├── Example ├── toy_GE.csv └── toy_me.csv ├── MOMA └── MOMA_toy_example.ipynb ├── README.md ├── Supplementary_Material ├── MOMA Supplementary Material.z01 ├── MOMA Supplementary Material.z02 └── MOMA Supplementary Material.zip └── requirements.txt /README.md: -------------------------------------------------------------------------------- 1 | # MOMA: A Multi-task Attention Learning Algorithm for Multi-omics Data Interpretation and Classification 2 | 3 | MOMA is a **multi-task attention learning model** that provides a general classification framework for **multi-data**.
4 | MOMA can capture **important biological processes for high diagnostic performance** and **interpretability**.
5 | The model vectorizes features and modules using a geometric approach, and focuses on important modules in multi-omics data via an attention mechanism. 6 | 7 | * * * 8 | 9 | ### We found that there was a download error related to the supplementary material, so we uploaded the file. 10 | 11 | * * * 12 | ⭐⭐⭐
13 | **The appropriate hyperparameters are different according to various multi-modal data and tasks.
** 14 | **The following is an empirical priority order, and it is recommended to put it on the tuning list at a minimum.
** 15 | **Number of module = 16, 32, 64, 128, ...
** 16 | **LearningRate = 5e-7, 5e-6, 5e-5, 5e-4, ... (with ADAM on PyTorch)
** 17 | 18 | * * * 19 | ## MOMA workflow 20 | 21 |
22 | 23 | 24 | ## Example 25 | Check dependencies in requirements.txt, and necessarily run 26 | ``` 27 | pip install -r requirements.txt 28 | ``` 29 | Example codes that employ MOMA to build classifiers of simulation data are included in the /[Example/](https://https://github.com/DMCB-GIST/MOMA/tree/main/Example) folder and /[MOMA/MOMA_toy_example.ipynb](https://https://https://github.com/DMCB-GIST/MOMA/blob/main/MOMA/MOMA_toy_example.ipynb).
30 | -------------------------------------------------------------------------------- /Supplementary_Material/MOMA Supplementary Material.z01: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DMCB-GIST/MOMA/e9e027df1afddc7abf5a7c8ee7bec7b3542c3e6e/Supplementary_Material/MOMA Supplementary Material.z01 -------------------------------------------------------------------------------- /Supplementary_Material/MOMA Supplementary Material.z02: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DMCB-GIST/MOMA/e9e027df1afddc7abf5a7c8ee7bec7b3542c3e6e/Supplementary_Material/MOMA Supplementary Material.z02 -------------------------------------------------------------------------------- /Supplementary_Material/MOMA Supplementary Material.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DMCB-GIST/MOMA/e9e027df1afddc7abf5a7c8ee7bec7b3542c3e6e/Supplementary_Material/MOMA Supplementary Material.zip -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | python==3.7.9 2 | numpy==1.19.2 3 | matplotlib==3.3.2 4 | sklearn==0.23.2 5 | pandas==1.1.3 6 | torch==1.4.0 7 | scipy==1.5.3 8 | seaborn==0.11.0 --------------------------------------------------------------------------------