├── Example
├── toy_GE.csv
└── toy_me.csv
├── MOMA
└── MOMA_toy_example.ipynb
├── README.md
├── Supplementary_Material
├── MOMA Supplementary Material.z01
├── MOMA Supplementary Material.z02
└── MOMA Supplementary Material.zip
└── requirements.txt
/README.md:
--------------------------------------------------------------------------------
1 | # MOMA: A Multi-task Attention Learning Algorithm for Multi-omics Data Interpretation and Classification
2 |
3 | MOMA is a **multi-task attention learning model** that provides a general classification framework for **multi-data**.
4 | MOMA can capture **important biological processes for high diagnostic performance** and **interpretability**.
5 | The model vectorizes features and modules using a geometric approach, and focuses on important modules in multi-omics data via an attention mechanism.
6 |
7 | * * *
8 |
9 | ### We found that there was a download error related to the supplementary material, so we uploaded the file.
10 |
11 | * * *
12 | ⭐⭐⭐
13 | **The appropriate hyperparameters are different according to various multi-modal data and tasks.
**
14 | **The following is an empirical priority order, and it is recommended to put it on the tuning list at a minimum.
**
15 | **Number of module = 16, 32, 64, 128, ...
**
16 | **LearningRate = 5e-7, 5e-6, 5e-5, 5e-4, ... (with ADAM on PyTorch)
**
17 |
18 | * * *
19 | ## MOMA workflow
20 |
21 |
22 |
23 |
24 | ## Example
25 | Check dependencies in requirements.txt, and necessarily run
26 | ```
27 | pip install -r requirements.txt
28 | ```
29 | Example codes that employ MOMA to build classifiers of simulation data are included in the /[Example/](https://https://github.com/DMCB-GIST/MOMA/tree/main/Example) folder and /[MOMA/MOMA_toy_example.ipynb](https://https://https://github.com/DMCB-GIST/MOMA/blob/main/MOMA/MOMA_toy_example.ipynb).
30 |
--------------------------------------------------------------------------------
/Supplementary_Material/MOMA Supplementary Material.z01:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DMCB-GIST/MOMA/e9e027df1afddc7abf5a7c8ee7bec7b3542c3e6e/Supplementary_Material/MOMA Supplementary Material.z01
--------------------------------------------------------------------------------
/Supplementary_Material/MOMA Supplementary Material.z02:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DMCB-GIST/MOMA/e9e027df1afddc7abf5a7c8ee7bec7b3542c3e6e/Supplementary_Material/MOMA Supplementary Material.z02
--------------------------------------------------------------------------------
/Supplementary_Material/MOMA Supplementary Material.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DMCB-GIST/MOMA/e9e027df1afddc7abf5a7c8ee7bec7b3542c3e6e/Supplementary_Material/MOMA Supplementary Material.zip
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | python==3.7.9
2 | numpy==1.19.2
3 | matplotlib==3.3.2
4 | sklearn==0.23.2
5 | pandas==1.1.3
6 | torch==1.4.0
7 | scipy==1.5.3
8 | seaborn==0.11.0
--------------------------------------------------------------------------------