├── Ensemble.ipynb ├── README.md ├── Numpy_Extraction_for_Month_Start_Month_End.ipynb ├── Numpy_Extration_for_25_Periods.ipynb └── Field_Aggregation_Mean.ipynb /Ensemble.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Ensemble.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "metadata": { 33 | "id": "5XcPHquLXoba" 34 | }, 35 | "source": [ 36 | "# Import Libraries\n", 37 | "import pandas as pd\n", 38 | "import numpy as np" 39 | ], 40 | "execution_count": null, 41 | "outputs": [] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "metadata": { 46 | "id": "K6UuiZ2hYCe4" 47 | }, 48 | "source": [ 49 | "# Function that creates submission file\n", 50 | "def sub_creator(mpreds, name): \n", 51 | " ss_cols = ['Field ID', 'Crop_Lucerne/Medics', 'Crop_Planted pastures (perennial)', 'Crop_Fallow', 'Crop_Wine grapes', 'Crop_Weeds',\\\n", 52 | " 'Crop_Small grain grazing', 'Crop_Wheat', 'Crop_Canola', 'Crop_Rooibos']\n", 53 | " ss = pd.DataFrame(mpreds, columns = ss_cols[1:])\n", 54 | " ss['Field ID'] = catboost['Field ID'].astype(int)\n", 55 | " ss = ss[ss_cols]\n", 56 | " ss.to_csv(f'{name}.csv', index = False)\n", 57 | " ss.head()" 58 | ], 59 | "execution_count": null, 60 | "outputs": [] 61 | }, 62 | { 63 | "cell_type": "code", 64 | "metadata": { 65 | "id": "06xlb3o6Xutl" 66 | }, 67 | "source": [ 68 | "# Ensemble pytorch catboost and lightgbm models\n", 69 | "catboost = pd.read_csv('catboost_models.csv')\n", 70 | "lgbm = pd.read_csv('lgbm_models.csv')\n", 71 | "pytorch = pd.read_csv('pytorch_models.csv')\n", 72 | "\n", 73 | "ensemble = (((catboost.iloc[:, 1:].values * 0.7) + (lgbm.iloc[:, 1:].values * 0.3))*0.5) + (pytorch.iloc[:, 1:].values * 0.5)\n", 74 | "sub_creator(ensemble, 'final_submission')" 75 | ], 76 | "execution_count": null, 77 | "outputs": [] 78 | } 79 | ] 80 | } -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | [Team Ensemble](https://zindi.africa/competitions/radiant-earth-spot-the-crop-xl-challenge/leaderboard/teams/ensemble) [Radiant Earth Spot the Crop XL-Challenge Solution](https://zindi.africa/competitions/radiant-earth-spot-the-crop-xl-challenge) 2 | 3 | ![Radiant](https://media-exp1.licdn.com/dms/image/C4D22AQHKcHUHfCqplw/feedshare-shrink_800/0/1625482813965?e=1642032000&v=beta&t=hdWhRCdxYt5bf3QmUaRqyi_FTKh8aIF_rRcQKHc7NDA) 4 | 5 | Team Ensemble: [Brainiac](https://www.linkedin.com/in/dariusmoruri/) | [Dr Fad](https://www.linkedin.com/in/yinka-fadahunsi-846b4531/?originalSubdomain=ke) 6 | 7 | ### ***Many thanks to the organizers for such an exciting challenge!*** 8 | 9 | ## Objective 10 | The main objective of this challenge was to use time-series of Sentinel-1 and Sentinel-2 multi-spectral data to classify crops in the Western Cape of South Africa. The challenge was to build a machine learning model to predict crop type classes for the test dataset. The training dataset was generated by the Radiant Earth Foundation team, using the ground reference data collected and provided by the Western Cape Department of Agriculture 11 | 12 | ## Metrics of success 13 | The evaluation metric for this challenge was Cross Entropy with binary outcome for each crop 14 | 15 | 16 |

17 | 18 | 19 | 20 | In which: 21 | 22 | - j indicates the field number (j=1 to N) 23 | - N indicates total number of fields in the dataset (87,347 in the train and 35,389 in the test) 24 | - i indicates the crop type (i=1 to 9) 25 | - y_j,i is the binary (0, 1) indicator for crop type i in field j (each field has only one correct crop type) 26 | - p_j,i is the predicted probability (between 0 and 1) for crop type i in field j 27 | 28 | ## Hardware resources 29 | - Google colab pro 30 | 31 | ## Solution Approach 32 | #### ***Data Download and Manipulation*** 33 | - Images were downloaded in batches to avoid out of memory error as colab TPU has a maximum of 35gb RAM 34 | - The images were zipped and stored in google drive. 35 | - Images with a 10 day frequency were used to get the raw image pixels 36 | - Images at the start and end of every month were also processed to raw numpy values 37 | - Pyspark was used to get the mean of the pixel values for each field. Pyspark was utilised becaused the data was quite huge and because of limited compute resources. 38 | 39 | #### ***Featue Engineering and Preprocessing*** 40 | - Removed skewness using square root 41 | - Vegetation indices calculations 42 | - Vegetation Indices aggregation - mean 43 | - Vegetation indices differences between different periods 44 | - Quantiles 45 | - Filled missing and infinite numbers with -999999 46 | 47 | #### ***Model Training*** 48 | - Catboost classifier trained on vegetation indices data using a 10 stratified cross validation strategy 49 | - LGBM classifier trained on vegetation indices data using a 10 stratified cross validation strategy 50 | - A pytorch classifier trained on raw image pixels. 51 | 52 | #### ***Final Model*** 53 | - The final model is an ensemble of boosting trees i.e LGBM and catboost and a pytorch classifier 54 | 55 | 56 | ## To reproduce the same score on the leaderboard follow this instructions 57 | 1. Upload the Feature_Engineering_&_CATBOOST.ipynb notebook to colab. 58 | - Enable GPU runtime 59 | - Run all to get the catboost_models file 60 | 61 | 2. Upload the Feature_Engineering_&_LGBM.ipynb notebook to colab. 62 | - Enable TPU runtime 63 | - Run all to get the lgbm_models file 64 | 65 | 3. Upload the Pixel_Features-Pytorch.ipynb notebook to colab 66 | - Enable GPU runtime 67 | - Run all to get the pytorch_models file 68 | 69 | 4. Finally upload the Ensemble.ipynb notebook to colab 70 | - Upload the lgbm_models file 71 | - Upload the catboost_models file 72 | - Upload the pytorch_models file 73 | - Run all to get the final submission file 74 | -------------------------------------------------------------------------------- /Numpy_Extraction_for_Month_Start_Month_End.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Numpy_Extraction_for_Month_Start_Month_End.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "machine_shape": "hm", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | }, 16 | "language_info": { 17 | "name": "python" 18 | }, 19 | "accelerator": "TPU" 20 | }, 21 | "cells": [ 22 | { 23 | "cell_type": "markdown", 24 | "metadata": { 25 | "id": "view-in-github", 26 | "colab_type": "text" 27 | }, 28 | "source": [ 29 | "\"Open" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "metadata": { 35 | "colab": { 36 | "base_uri": "https://localhost:8080/" 37 | }, 38 | "id": "vemh8H3vZ9VO", 39 | "outputId": "fef28028-28ff-43a8-b9c5-30d3513dd6a7" 40 | }, 41 | "source": [ 42 | "!pip -qq install rasterio tifffile" 43 | ], 44 | "execution_count": null, 45 | "outputs": [ 46 | { 47 | "output_type": "stream", 48 | "name": "stdout", 49 | "text": [ 50 | "\u001b[K |████████████████████████████████| 19.3 MB 89 kB/s \n", 51 | "\u001b[?25h" 52 | ] 53 | } 54 | ] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "metadata": { 59 | "id": "3mKYb4JmMBEZ" 60 | }, 61 | "source": [ 62 | "import os\n", 63 | "import glob\n", 64 | "import shutil\n", 65 | "import gc\n", 66 | "from joblib import Parallel, delayed\n", 67 | "from tqdm import tqdm_notebook\n", 68 | "import h5py\n", 69 | "\n", 70 | "import pandas as pd\n", 71 | "import numpy as np\n", 72 | "import datetime as dt\n", 73 | "import matplotlib.pyplot as plt\n", 74 | "\n", 75 | "\n", 76 | "import rasterio\n", 77 | "import tifffile as tiff\n", 78 | "\n", 79 | "%matplotlib inline\n", 80 | "pd.set_option('display.max_colwidth', None)" 81 | ], 82 | "execution_count": null, 83 | "outputs": [] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "metadata": { 88 | "id": "MiS1dNGpRHBe" 89 | }, 90 | "source": [ 91 | "%%time\n", 92 | "# os.mkdir('radiant')\n", 93 | "shutil.unpack_archive('/content/drive/MyDrive/CompeData/Radiant/Radiant_Data.zip', '/content/radiant')\n", 94 | "gc.collect()" 95 | ], 96 | "execution_count": null, 97 | "outputs": [] 98 | }, 99 | { 100 | "cell_type": "code", 101 | "metadata": { 102 | "id": "O0_JwAo0bMdV" 103 | }, 104 | "source": [ 105 | "train = pd.concat([pd.read_csv(f'/content/radiant/train{i}.csv', parse_dates=['datetime']) for i in range(1, 5)]).reset_index(drop = True)\n", 106 | "test = pd.concat([pd.read_csv(f'/content/radiant/test{i}.csv', parse_dates=['datetime']) for i in range(1, 5)]).reset_index(drop = True)\n", 107 | "train.file_path = train.file_path.apply(lambda x: '/'.join(['/content', 'radiant'] + x.split('/')[2:]))\n", 108 | "test.file_path = test.file_path.apply(lambda x: '/'.join(['/content', 'radiant'] + x.split('/')[2:]))\n", 109 | "train.datetime, test.datetime = pd.to_datetime(train.datetime.dt.date), pd.to_datetime(test.datetime.dt.date)\n", 110 | "train['month'], test['month'] = train.datetime.dt.month, test.datetime.dt.month\n", 111 | "train.head()" 112 | ], 113 | "execution_count": null, 114 | "outputs": [] 115 | }, 116 | { 117 | "cell_type": "code", 118 | "metadata": { 119 | "id": "ph__jwFtDmR6" 120 | }, 121 | "source": [ 122 | "train.month.unique()" 123 | ], 124 | "execution_count": null, 125 | "outputs": [] 126 | }, 127 | { 128 | "cell_type": "code", 129 | "metadata": { 130 | "id": "ofOR8cvvB7YW" 131 | }, 132 | "source": [ 133 | "train.tile_id.unique()[50:60]" 134 | ], 135 | "execution_count": null, 136 | "outputs": [] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "metadata": { 141 | "id": "idcCxN2tAbQz" 142 | }, 143 | "source": [ 144 | "bands = ['B01','B02','B03','B04','B05','B06','B07','B08','B8A','B09','B11','B12','CLM']" 145 | ], 146 | "execution_count": null, 147 | "outputs": [] 148 | }, 149 | { 150 | "cell_type": "code", 151 | "metadata": { 152 | "id": "CwkqspiVAgSi" 153 | }, 154 | "source": [ 155 | "date_cols = []\n", 156 | "for i in range(4, 12):\n", 157 | " for x in range(1, 3):\n", 158 | " date_cols.append(str(i) + '_' + str(x))\n", 159 | "date_cols" 160 | ], 161 | "execution_count": null, 162 | "outputs": [] 163 | }, 164 | { 165 | "cell_type": "code", 166 | "metadata": { 167 | "id": "JJhxiJcXAbNN" 168 | }, 169 | "source": [ 170 | "def process_tile_train(tile):\n", 171 | " tile_df = train[(train.tile_id == tile)].reset_index(drop = True)\n", 172 | "\n", 173 | " y = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'labels'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 174 | " fields = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'field_ids'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 175 | "\n", 176 | " tile_df = train[(train.tile_id == tile) & (train.satellite_platform == 's2')].reset_index(drop = True)\n", 177 | "\n", 178 | " dates = []\n", 179 | " for month in range(4, 12):\n", 180 | " dates.append(tile_df[tile_df.month == month].datetime.sort_values().tolist()[0])\n", 181 | " dates.append(tile_df[tile_df.month == month].datetime.sort_values().tolist()[-1])\n", 182 | "\n", 183 | " X_tile = np.empty((256 * 256, 0))\n", 184 | "\n", 185 | " colls = []\n", 186 | " for date, datec in zip(dates, date_cols):\n", 187 | " for band in bands:\n", 188 | " tif_file = tile_df[(tile_df.asset == band) & (tile_df.datetime == date)].file_path.values[0]\n", 189 | " X_tile = np.append(X_tile, (np.expand_dims(rasterio.open(tif_file).read(1).flatten(), axis = 1)), axis = 1)\n", 190 | " colls.append(datec + '_' + band)\n", 191 | " df = pd.DataFrame(X_tile, columns = colls)\n", 192 | " df['y'], df['fields'] = y, fields\n", 193 | " return df" 194 | ], 195 | "execution_count": null, 196 | "outputs": [] 197 | }, 198 | { 199 | "cell_type": "code", 200 | "metadata": { 201 | "id": "7hQOhSMPb-qI" 202 | }, 203 | "source": [ 204 | "tiles = train.tile_id.unique()\n", 205 | "chunks = [tiles[x:x+265] for x in range(0, len(tiles), 265)]\n", 206 | "[len(x) for x in chunks]" 207 | ], 208 | "execution_count": null, 209 | "outputs": [] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "metadata": { 214 | "id": "iULhCd36KrGG" 215 | }, 216 | "source": [ 217 | "for i in range(len(chunks)):\n", 218 | " pd.DataFrame(np.vstack(Parallel(n_jobs=-1, verbose=1, backend=\"multiprocessing\")(map(delayed(process_tile_train), [x for x in chunks[i]])))).to_csv(f'/content/drive/MyDrive/CompeData/Radiant/Start_end/train{i}.csv', index = False)\n", 219 | " gc.collect()\n", 220 | " print(i)" 221 | ], 222 | "execution_count": null, 223 | "outputs": [] 224 | }, 225 | { 226 | "cell_type": "code", 227 | "metadata": { 228 | "id": "BZD9TPDRLAuQ" 229 | }, 230 | "source": [ 231 | "def process_tile_test(tile):\n", 232 | " tile_df = train[(train.tile_id == tile)].reset_index(drop = True)\n", 233 | "\n", 234 | " # y = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'labels'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 235 | " fields = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'field_ids'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 236 | "\n", 237 | " tile_df = train[(train.tile_id == tile) & (train.satellite_platform == 's2')].reset_index(drop = True)\n", 238 | "\n", 239 | " dates = []\n", 240 | " for month in range(4, 12):\n", 241 | " dates.append(tile_df[tile_df.month == month].datetime.sort_values().tolist()[0])\n", 242 | " dates.append(tile_df[tile_df.month == month].datetime.sort_values().tolist()[-1])\n", 243 | "\n", 244 | " X_tile = np.empty((256 * 256, 0))\n", 245 | "\n", 246 | " colls = []\n", 247 | " for date, datec in zip(dates, date_cols):\n", 248 | " for band in bands:\n", 249 | " tif_file = tile_df[(tile_df.asset == band) & (tile_df.datetime == date)].file_path.values[0]\n", 250 | " X_tile = np.append(X_tile, (np.expand_dims(rasterio.open(tif_file).read(1).flatten(), axis = 1)), axis = 1)\n", 251 | " colls.append(datec + '_' + band)\n", 252 | " df = pd.DataFrame(X_tile, columns = colls)\n", 253 | " df['fields'] = fields\n", 254 | " return df" 255 | ], 256 | "execution_count": null, 257 | "outputs": [] 258 | }, 259 | { 260 | "cell_type": "code", 261 | "metadata": { 262 | "id": "wbk6YD0akhTo" 263 | }, 264 | "source": [ 265 | "tiles = train.tile_id.unique()\n", 266 | "chunks = [tiles[x:x+265] for x in range(0, len(tiles), 265)]\n", 267 | "[len(x) for x in chunks]" 268 | ], 269 | "execution_count": null, 270 | "outputs": [] 271 | }, 272 | { 273 | "cell_type": "code", 274 | "metadata": { 275 | "id": "uQS4UBXKkhRF" 276 | }, 277 | "source": [ 278 | "for i in range(len(chunks)):\n", 279 | " pd.DataFrame(np.vstack(Parallel(n_jobs=-1, verbose=1, backend=\"multiprocessing\")(map(delayed(process_tile_train), [x for x in chunks[i]])))).to_csv(f'/content/drive/MyDrive/CompeData/Radiant/Start_end/test{i}.csv', index = False)\n", 280 | " gc.collect()\n", 281 | " print(i)" 282 | ], 283 | "execution_count": null, 284 | "outputs": [] 285 | }, 286 | { 287 | "cell_type": "code", 288 | "metadata": { 289 | "id": "ilCskgRkkhMg" 290 | }, 291 | "source": [ 292 | "" 293 | ], 294 | "execution_count": null, 295 | "outputs": [] 296 | } 297 | ] 298 | } -------------------------------------------------------------------------------- /Numpy_Extration_for_25_Periods.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Numpy_Extration_for_25_Periods.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "machine_shape": "hm", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | }, 16 | "language_info": { 17 | "name": "python" 18 | }, 19 | "accelerator": "GPU" 20 | }, 21 | "cells": [ 22 | { 23 | "cell_type": "markdown", 24 | "metadata": { 25 | "id": "view-in-github", 26 | "colab_type": "text" 27 | }, 28 | "source": [ 29 | "\"Open" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "metadata": { 35 | "id": "vemh8H3vZ9VO" 36 | }, 37 | "source": [ 38 | "# Install libraries\n", 39 | "!pip -qq install rasterio tifffile" 40 | ], 41 | "execution_count": null, 42 | "outputs": [] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "metadata": { 47 | "id": "3mKYb4JmMBEZ" 48 | }, 49 | "source": [ 50 | "# Import libraries\n", 51 | "import os\n", 52 | "import glob\n", 53 | "import shutil\n", 54 | "import gc\n", 55 | "from joblib import Parallel, delayed\n", 56 | "from tqdm import tqdm_notebook\n", 57 | "import h5py\n", 58 | "\n", 59 | "import pandas as pd\n", 60 | "import numpy as np\n", 61 | "import datetime as dt\n", 62 | "from datetime import datetime, timedelta\n", 63 | "import matplotlib.pyplot as plt\n", 64 | "\n", 65 | "\n", 66 | "import rasterio\n", 67 | "import tifffile as tiff\n", 68 | "\n", 69 | "%matplotlib inline\n", 70 | "pd.set_option('display.max_colwidth', None)" 71 | ], 72 | "execution_count": null, 73 | "outputs": [] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "metadata": { 78 | "id": "MAFPT_D_ovYr" 79 | }, 80 | "source": [ 81 | "# Download data with a frequency of 10 days\n", 82 | "def date_finder(start_date):\n", 83 | " season_dates = []\n", 84 | " m = str(start_date)[:10]\n", 85 | " s = str(start_date)[:10]\n", 86 | " for i in range(24):\n", 87 | " date = datetime.strptime(s, \"%Y-%m-%d\")\n", 88 | " s = str(date + timedelta(days = 10))[:10]\n", 89 | " season_dates.append(datetime.strptime(s, \"%Y-%m-%d\"))\n", 90 | " seasons_dates = [datetime.strptime(m, \"%Y-%m-%d\")] + season_dates\n", 91 | " seasons_dates = [np.datetime64(x) for x in seasons_dates]\n", 92 | " return list(seasons_dates)\n", 93 | "\n", 94 | "# If day not in a frequency of 10 days, find the nearest date\n", 95 | "def nearest(items, pivot):\n", 96 | " return min(items, key=lambda x: abs(x - pivot))" 97 | ], 98 | "execution_count": null, 99 | "outputs": [] 100 | }, 101 | { 102 | "cell_type": "code", 103 | "metadata": { 104 | "id": "MiS1dNGpRHBe", 105 | "colab": { 106 | "base_uri": "https://localhost:8080/" 107 | }, 108 | "outputId": "d0ef8c1b-1d0d-4fe7-8998-e8e3f1d9118f" 109 | }, 110 | "source": [ 111 | "%%time\n", 112 | "# Unpack data saved in gdrive to colab\n", 113 | "shutil.unpack_archive('/content/drive/MyDrive/CompeData/Radiant/Radiant_Data.zip', '/content/radiant')\n", 114 | "gc.collect()" 115 | ], 116 | "execution_count": null, 117 | "outputs": [ 118 | { 119 | "output_type": "stream", 120 | "name": "stdout", 121 | "text": [ 122 | "CPU times: user 13min 43s, sys: 4min 22s, total: 18min 5s\n", 123 | "Wall time: 27min 23s\n" 124 | ] 125 | } 126 | ] 127 | }, 128 | { 129 | "cell_type": "code", 130 | "metadata": { 131 | "id": "O0_JwAo0bMdV", 132 | "colab": { 133 | "base_uri": "https://localhost:8080/", 134 | "height": 203 135 | }, 136 | "outputId": "0b21aed2-dc7b-414c-fcd6-8340d6ca3f8c" 137 | }, 138 | "source": [ 139 | "# Load files\n", 140 | "train = pd.concat([pd.read_csv(f'/content/radiant/train{i}.csv', parse_dates=['datetime']) for i in range(1, 5)]).reset_index(drop = True)\n", 141 | "test = pd.concat([pd.read_csv(f'/content/radiant/test{i}.csv', parse_dates=['datetime']) for i in range(1, 5)]).reset_index(drop = True)\n", 142 | "train.file_path = train.file_path.apply(lambda x: '/'.join(['/content', 'radiant'] + x.split('/')[2:]))\n", 143 | "test.file_path = test.file_path.apply(lambda x: '/'.join(['/content', 'radiant'] + x.split('/')[2:]))\n", 144 | "train.datetime, test.datetime = pd.to_datetime(train.datetime.dt.date), pd.to_datetime(test.datetime.dt.date)\n", 145 | "train['month'], test['month'] = train.datetime.dt.month, test.datetime.dt.month\n", 146 | "train.head()" 147 | ], 148 | "execution_count": null, 149 | "outputs": [ 150 | { 151 | "output_type": "execute_result", 152 | "data": { 153 | "text/html": [ 154 | "
\n", 155 | "\n", 168 | "\n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | "
tile_iddatetimesatellite_platformassetfile_pathmonth
02587NaTNaNdocumentation/content/radiant/ref_south_africa_crops_competition_v1_train_labels/_common/documentation.pdfNaN
12587NaTNaNfield_ids/content/radiant/ref_south_africa_crops_competition_v1_train_labels/ref_south_africa_crops_competition_v1_train_labels_2587/field_ids.tifNaN
22587NaTNaNfield_info_train/content/radiant/ref_south_africa_crops_competition_v1_train_labels/_common/field_info_train.csvNaN
32587NaTNaNlabels/content/radiant/ref_south_africa_crops_competition_v1_train_labels/ref_south_africa_crops_competition_v1_train_labels_2587/labels.tifNaN
42587NaTNaNraster_values/content/radiant/ref_south_africa_crops_competition_v1_train_labels/_common/raster_values.jsonNaN
\n", 228 | "
" 229 | ], 230 | "text/plain": [ 231 | " tile_id ... month\n", 232 | "0 2587 ... NaN\n", 233 | "1 2587 ... NaN\n", 234 | "2 2587 ... NaN\n", 235 | "3 2587 ... NaN\n", 236 | "4 2587 ... NaN\n", 237 | "\n", 238 | "[5 rows x 6 columns]" 239 | ] 240 | }, 241 | "metadata": {}, 242 | "execution_count": 4 243 | } 244 | ] 245 | }, 246 | { 247 | "cell_type": "code", 248 | "metadata": { 249 | "id": "ph__jwFtDmR6", 250 | "colab": { 251 | "base_uri": "https://localhost:8080/" 252 | }, 253 | "outputId": "61c45381-5b4f-47de-f2ff-4d264fb2eb7d" 254 | }, 255 | "source": [ 256 | "# Unique months\n", 257 | "train.month.unique()" 258 | ], 259 | "execution_count": null, 260 | "outputs": [ 261 | { 262 | "output_type": "execute_result", 263 | "data": { 264 | "text/plain": [ 265 | "array([nan, 4., 5., 6., 7., 8., 9., 10., 11.])" 266 | ] 267 | }, 268 | "metadata": {}, 269 | "execution_count": 5 270 | } 271 | ] 272 | }, 273 | { 274 | "cell_type": "code", 275 | "metadata": { 276 | "id": "idcCxN2tAbQz" 277 | }, 278 | "source": [ 279 | "# Bands\n", 280 | "bands = ['B01','B02','B03','B04','B05','B06','B07','B08','B8A','B09','B11','B12','CLM']" 281 | ], 282 | "execution_count": null, 283 | "outputs": [] 284 | }, 285 | { 286 | "cell_type": "code", 287 | "metadata": { 288 | "id": "JJhxiJcXAbNN" 289 | }, 290 | "source": [ 291 | "# Function to load tile and extract fields data into a numpy array and convert the same to a dataframe\n", 292 | "# Train\n", 293 | "def process_tile_train(tile):\n", 294 | " tile_df = train[(train.tile_id == tile)].reset_index(drop = True)\n", 295 | "\n", 296 | " y = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'labels'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 297 | " fields = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'field_ids'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 298 | "\n", 299 | " tile_df = train[(train.tile_id == tile) & (train.satellite_platform == 's2')].reset_index(drop = True)\n", 300 | "\n", 301 | " unique_dates = list(tile_df.datetime.unique())\n", 302 | " start_date = tile_df.datetime.unique()[0]\n", 303 | " # Assert\n", 304 | " diff = set([str(x)[:10] for x in date_finder(start_date)]) - set([str(x)[:10] for x in unique_dates])\n", 305 | " if len(diff) > 0:\n", 306 | " missing = list(set([str(x)[:10] for x in date_finder(start_date)]) - set(diff))\n", 307 | " for d in diff:\n", 308 | " missing.append(str(nearest(unique_dates, np.datetime64(d)))[:10])\n", 309 | " dates = sorted([np.datetime64(x) for x in missing]) \n", 310 | " else:\n", 311 | " dates = date_finder(start_date)\n", 312 | "\n", 313 | " X_tile = np.empty((256 * 256, 0))\n", 314 | "\n", 315 | " colls = []\n", 316 | " for date, datec in zip(dates, range(25)):\n", 317 | " for band in bands:\n", 318 | " tif_file = tile_df[(tile_df.asset == band) & (tile_df.datetime == date)].file_path.values[0]\n", 319 | " X_tile = np.append(X_tile, (np.expand_dims(rasterio.open(tif_file).read(1).flatten(), axis = 1)), axis = 1)\n", 320 | " colls.append(str(datec) + '_' + band)\n", 321 | " df = pd.DataFrame(X_tile, columns = colls)\n", 322 | " df['y'], df['fields'] = y, fields\n", 323 | " return df" 324 | ], 325 | "execution_count": null, 326 | "outputs": [] 327 | }, 328 | { 329 | "cell_type": "code", 330 | "metadata": { 331 | "id": "7hQOhSMPb-qI", 332 | "colab": { 333 | "base_uri": "https://localhost:8080/" 334 | }, 335 | "outputId": "8a2ab606-a1b3-440f-8df4-546cc0be0b2d" 336 | }, 337 | "source": [ 338 | "# Preprocessing the data in chunks to avoid outofmemmory error\n", 339 | "# Train\n", 340 | "tiles = train.tile_id.unique()\n", 341 | "chunks = [tiles[x:x+50] for x in range(0, len(tiles), 50)]\n", 342 | "[len(x) for x in chunks], len(chunks)" 343 | ], 344 | "execution_count": null, 345 | "outputs": [ 346 | { 347 | "output_type": "execute_result", 348 | "data": { 349 | "text/plain": [ 350 | "([50,\n", 351 | " 50,\n", 352 | " 50,\n", 353 | " 50,\n", 354 | " 50,\n", 355 | " 50,\n", 356 | " 50,\n", 357 | " 50,\n", 358 | " 50,\n", 359 | " 50,\n", 360 | " 50,\n", 361 | " 50,\n", 362 | " 50,\n", 363 | " 50,\n", 364 | " 50,\n", 365 | " 50,\n", 366 | " 50,\n", 367 | " 50,\n", 368 | " 50,\n", 369 | " 50,\n", 370 | " 50,\n", 371 | " 50,\n", 372 | " 50,\n", 373 | " 50,\n", 374 | " 50,\n", 375 | " 50,\n", 376 | " 50,\n", 377 | " 50,\n", 378 | " 50,\n", 379 | " 50,\n", 380 | " 50,\n", 381 | " 50,\n", 382 | " 50,\n", 383 | " 50,\n", 384 | " 50,\n", 385 | " 50,\n", 386 | " 50,\n", 387 | " 50,\n", 388 | " 50,\n", 389 | " 50,\n", 390 | " 50,\n", 391 | " 50,\n", 392 | " 50,\n", 393 | " 50,\n", 394 | " 50,\n", 395 | " 50,\n", 396 | " 50,\n", 397 | " 50,\n", 398 | " 50,\n", 399 | " 50,\n", 400 | " 50,\n", 401 | " 50,\n", 402 | " 50],\n", 403 | " 53)" 404 | ] 405 | }, 406 | "metadata": {}, 407 | "execution_count": 43 408 | } 409 | ] 410 | }, 411 | { 412 | "cell_type": "code", 413 | "metadata": { 414 | "id": "iULhCd36KrGG" 415 | }, 416 | "source": [ 417 | "# Preprocessing the tiles without storing them in memory but saving them as csvs in gdrive\n", 418 | "# Train\n", 419 | "for i in range(len(chunks)):\n", 420 | " pd.DataFrame(np.vstack(Parallel(n_jobs=-1, verbose=1, backend=\"multiprocessing\")(map(delayed(process_tile_train), [x for x in chunks[i]])))).to_csv(f'/content/drive/MyDrive/CompeData/Radiant/Seasonality/train/train{i}.csv', index = False)\n", 421 | " gc.collect()" 422 | ], 423 | "execution_count": null, 424 | "outputs": [] 425 | }, 426 | { 427 | "cell_type": "code", 428 | "metadata": { 429 | "id": "scZ6uxWaz0Fq" 430 | }, 431 | "source": [ 432 | "# Function to load tile and extract fields data into a numpy array and convert the same to a dataframe\n", 433 | "# Test\n", 434 | "def process_tile_test(tile):\n", 435 | " tile_df = test[(test.tile_id == tile)].reset_index(drop = True)\n", 436 | "\n", 437 | " fields = np.expand_dims(rasterio.open(tile_df[tile_df.asset == 'field_ids'].file_path.values[0]).read(1).flatten(), axis = 1)\n", 438 | "\n", 439 | " tile_df = test[(test.tile_id == tile) & (test.satellite_platform == 's2')].reset_index(drop = True)\n", 440 | "\n", 441 | " unique_dates = list(tile_df.datetime.unique())\n", 442 | " start_date = tile_df.datetime.unique()[0]\n", 443 | " # Assert\n", 444 | " diff = set([str(x)[:10] for x in date_finder(start_date)]) - set([str(x)[:10] for x in unique_dates])\n", 445 | " if len(diff) > 0:\n", 446 | " missing = list(set([str(x)[:10] for x in date_finder(start_date)]) - set(diff))\n", 447 | " for d in diff:\n", 448 | " missing.append(str(nearest(unique_dates, np.datetime64(d)))[:10])\n", 449 | " dates = sorted([np.datetime64(x) for x in missing]) \n", 450 | " else:\n", 451 | " dates = date_finder(start_date)\n", 452 | "\n", 453 | " X_tile = np.empty((256 * 256, 0))\n", 454 | "\n", 455 | " colls = []\n", 456 | " for date, datec in zip(dates, range(25)):\n", 457 | " for band in bands:\n", 458 | " tif_file = tile_df[(tile_df.asset == band) & (tile_df.datetime == date)].file_path.values[0]\n", 459 | " X_tile = np.append(X_tile, (np.expand_dims(rasterio.open(tif_file).read(1).flatten(), axis = 1)), axis = 1)\n", 460 | " colls.append(str(datec) + '_' + band)\n", 461 | " df = pd.DataFrame(X_tile, columns = colls)\n", 462 | " df['fields'] = fields\n", 463 | " return df" 464 | ], 465 | "execution_count": null, 466 | "outputs": [] 467 | }, 468 | { 469 | "cell_type": "code", 470 | "metadata": { 471 | "id": "q2-rj6T9z0Co" 472 | }, 473 | "source": [ 474 | "# Preprocessing the data in chunks to avoid outofmemmory error\n", 475 | "# Train\n", 476 | "tiles = test.tile_id.unique()\n", 477 | "chunks = [tiles[x:x+50] for x in range(0, len(tiles), 50)]\n", 478 | "[len(x) for x in chunks], len(chunks)" 479 | ], 480 | "execution_count": null, 481 | "outputs": [] 482 | }, 483 | { 484 | "cell_type": "code", 485 | "metadata": { 486 | "id": "ifNd5fgxzz_1" 487 | }, 488 | "source": [ 489 | "# Preprocessing the tiles without storing them in memory but saving them as csvs in gdrive\n", 490 | "# Train\n", 491 | "for i in range(len(chunks)):\n", 492 | " pd.DataFrame(np.vstack(Parallel(n_jobs=-1, verbose=1, backend=\"multiprocessing\")(map(delayed(process_tile_test), [x for x in chunks[i]])))).to_csv(f'/content/drive/MyDrive/CompeData/Radiant/Seasonality/test/test{i}.csv', index = False)\n", 493 | " gc.collect()" 494 | ], 495 | "execution_count": null, 496 | "outputs": [] 497 | } 498 | ] 499 | } -------------------------------------------------------------------------------- /Field_Aggregation_Mean.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "kernelspec": { 6 | "display_name": "Python 3", 7 | "language": "python", 8 | "name": "python3" 9 | }, 10 | "language_info": { 11 | "codemirror_mode": { 12 | "name": "ipython", 13 | "version": 3 14 | }, 15 | "file_extension": ".py", 16 | "mimetype": "text/x-python", 17 | "name": "python", 18 | "nbconvert_exporter": "python", 19 | "pygments_lexer": "ipython3", 20 | "version": "3.7.4" 21 | }, 22 | "colab": { 23 | "name": "Field_Aggregation_Mean.ipynb", 24 | "provenance": [], 25 | "collapsed_sections": [], 26 | "machine_shape": "hm", 27 | "include_colab_link": true 28 | }, 29 | "widgets": { 30 | "application/vnd.jupyter.widget-state+json": { 31 | "7b430419c8e04c91acafc35a53118cf3": { 32 | "model_module": "@jupyter-widgets/controls", 33 | "model_name": "HBoxModel", 34 | "model_module_version": "1.5.0", 35 | "state": { 36 | "_view_name": "HBoxView", 37 | "_dom_classes": [], 38 | "_model_name": "HBoxModel", 39 | "_view_module": "@jupyter-widgets/controls", 40 | "_model_module_version": "1.5.0", 41 | "_view_count": null, 42 | "_view_module_version": "1.5.0", 43 | "box_style": "", 44 | "layout": "IPY_MODEL_8466a8ec4bc347b4b69f220d31679012", 45 | "_model_module": "@jupyter-widgets/controls", 46 | "children": [ 47 | "IPY_MODEL_2bce2a23961544b1960e268693e33947", 48 | "IPY_MODEL_89380e275f19406a8614dace6af1f99b", 49 | "IPY_MODEL_54724ef8ab44408c8fcc616610dd9bdb" 50 | ] 51 | } 52 | }, 53 | "8466a8ec4bc347b4b69f220d31679012": { 54 | "model_module": "@jupyter-widgets/base", 55 | "model_name": "LayoutModel", 56 | "model_module_version": "1.2.0", 57 | "state": { 58 | "_view_name": "LayoutView", 59 | "grid_template_rows": null, 60 | "right": null, 61 | "justify_content": null, 62 | "_view_module": "@jupyter-widgets/base", 63 | "overflow": null, 64 | "_model_module_version": "1.2.0", 65 | "_view_count": null, 66 | "flex_flow": null, 67 | "width": null, 68 | "min_width": null, 69 | "border": null, 70 | "align_items": null, 71 | "bottom": null, 72 | "_model_module": "@jupyter-widgets/base", 73 | "top": null, 74 | "grid_column": null, 75 | "overflow_y": null, 76 | "overflow_x": null, 77 | "grid_auto_flow": null, 78 | "grid_area": null, 79 | "grid_template_columns": null, 80 | "flex": null, 81 | "_model_name": "LayoutModel", 82 | "justify_items": null, 83 | "grid_row": null, 84 | "max_height": null, 85 | "align_content": null, 86 | "visibility": null, 87 | "align_self": null, 88 | "height": null, 89 | "min_height": null, 90 | "padding": null, 91 | "grid_auto_rows": null, 92 | "grid_gap": null, 93 | "max_width": null, 94 | "order": null, 95 | "_view_module_version": "1.2.0", 96 | "grid_template_areas": null, 97 | "object_position": null, 98 | "object_fit": null, 99 | "grid_auto_columns": null, 100 | "margin": null, 101 | "display": null, 102 | "left": null 103 | } 104 | }, 105 | "2bce2a23961544b1960e268693e33947": { 106 | "model_module": "@jupyter-widgets/controls", 107 | "model_name": "HTMLModel", 108 | "model_module_version": "1.5.0", 109 | "state": { 110 | "_view_name": "HTMLView", 111 | "style": "IPY_MODEL_1bd7d3e972804c65bed5fdc30011d9f1", 112 | "_dom_classes": [], 113 | "description": "", 114 | "_model_name": "HTMLModel", 115 | "placeholder": "​", 116 | "_view_module": "@jupyter-widgets/controls", 117 | "_model_module_version": "1.5.0", 118 | "value": "100%", 119 | "_view_count": null, 120 | "_view_module_version": "1.5.0", 121 | "description_tooltip": null, 122 | "_model_module": "@jupyter-widgets/controls", 123 | "layout": "IPY_MODEL_b771437f48194bad9dbcc254019b6803" 124 | } 125 | }, 126 | "89380e275f19406a8614dace6af1f99b": { 127 | "model_module": "@jupyter-widgets/controls", 128 | "model_name": "FloatProgressModel", 129 | "model_module_version": "1.5.0", 130 | "state": { 131 | "_view_name": "ProgressView", 132 | "style": "IPY_MODEL_e8fa90fbc2b741ad988e6b5d13af6d67", 133 | "_dom_classes": [], 134 | "description": "", 135 | "_model_name": "FloatProgressModel", 136 | "bar_style": "success", 137 | "max": 10, 138 | "_view_module": "@jupyter-widgets/controls", 139 | "_model_module_version": "1.5.0", 140 | "value": 10, 141 | "_view_count": null, 142 | "_view_module_version": "1.5.0", 143 | "orientation": "horizontal", 144 | "min": 0, 145 | "description_tooltip": null, 146 | "_model_module": "@jupyter-widgets/controls", 147 | "layout": "IPY_MODEL_f649ba6bc4b14c7ab06d08da5fe3b7de" 148 | } 149 | }, 150 | "54724ef8ab44408c8fcc616610dd9bdb": { 151 | "model_module": "@jupyter-widgets/controls", 152 | "model_name": "HTMLModel", 153 | "model_module_version": "1.5.0", 154 | "state": { 155 | "_view_name": "HTMLView", 156 | "style": "IPY_MODEL_e5be528350c54c34b702a87be4c16b40", 157 | "_dom_classes": [], 158 | "description": "", 159 | "_model_name": "HTMLModel", 160 | "placeholder": "​", 161 | "_view_module": "@jupyter-widgets/controls", 162 | "_model_module_version": "1.5.0", 163 | "value": " 10/10 [00:11<00:00, 1.58it/s]", 164 | "_view_count": null, 165 | "_view_module_version": "1.5.0", 166 | "description_tooltip": null, 167 | "_model_module": "@jupyter-widgets/controls", 168 | "layout": "IPY_MODEL_355037c622754c2bba10bd49c8f25754" 169 | } 170 | }, 171 | "1bd7d3e972804c65bed5fdc30011d9f1": { 172 | "model_module": "@jupyter-widgets/controls", 173 | "model_name": "DescriptionStyleModel", 174 | "model_module_version": "1.5.0", 175 | "state": { 176 | "_view_name": "StyleView", 177 | "_model_name": "DescriptionStyleModel", 178 | "description_width": "", 179 | "_view_module": "@jupyter-widgets/base", 180 | "_model_module_version": "1.5.0", 181 | "_view_count": null, 182 | "_view_module_version": "1.2.0", 183 | "_model_module": "@jupyter-widgets/controls" 184 | } 185 | }, 186 | "b771437f48194bad9dbcc254019b6803": { 187 | "model_module": "@jupyter-widgets/base", 188 | "model_name": "LayoutModel", 189 | "model_module_version": "1.2.0", 190 | "state": { 191 | "_view_name": "LayoutView", 192 | "grid_template_rows": null, 193 | "right": null, 194 | "justify_content": null, 195 | "_view_module": "@jupyter-widgets/base", 196 | "overflow": null, 197 | "_model_module_version": "1.2.0", 198 | "_view_count": null, 199 | "flex_flow": null, 200 | "width": null, 201 | "min_width": null, 202 | "border": null, 203 | "align_items": null, 204 | "bottom": null, 205 | "_model_module": "@jupyter-widgets/base", 206 | "top": null, 207 | "grid_column": null, 208 | "overflow_y": null, 209 | "overflow_x": null, 210 | "grid_auto_flow": null, 211 | "grid_area": null, 212 | "grid_template_columns": null, 213 | "flex": null, 214 | "_model_name": "LayoutModel", 215 | "justify_items": null, 216 | "grid_row": null, 217 | "max_height": null, 218 | "align_content": null, 219 | "visibility": null, 220 | "align_self": null, 221 | "height": null, 222 | "min_height": null, 223 | "padding": null, 224 | "grid_auto_rows": null, 225 | "grid_gap": null, 226 | "max_width": null, 227 | "order": null, 228 | "_view_module_version": "1.2.0", 229 | "grid_template_areas": null, 230 | "object_position": null, 231 | "object_fit": null, 232 | "grid_auto_columns": null, 233 | "margin": null, 234 | "display": null, 235 | "left": null 236 | } 237 | }, 238 | "e8fa90fbc2b741ad988e6b5d13af6d67": { 239 | "model_module": "@jupyter-widgets/controls", 240 | "model_name": "ProgressStyleModel", 241 | "model_module_version": "1.5.0", 242 | "state": { 243 | "_view_name": "StyleView", 244 | "_model_name": "ProgressStyleModel", 245 | "description_width": "", 246 | "_view_module": "@jupyter-widgets/base", 247 | "_model_module_version": "1.5.0", 248 | "_view_count": null, 249 | "_view_module_version": "1.2.0", 250 | "bar_color": null, 251 | "_model_module": "@jupyter-widgets/controls" 252 | } 253 | }, 254 | "f649ba6bc4b14c7ab06d08da5fe3b7de": { 255 | "model_module": "@jupyter-widgets/base", 256 | "model_name": "LayoutModel", 257 | "model_module_version": "1.2.0", 258 | "state": { 259 | "_view_name": "LayoutView", 260 | "grid_template_rows": null, 261 | "right": null, 262 | "justify_content": null, 263 | "_view_module": "@jupyter-widgets/base", 264 | "overflow": null, 265 | "_model_module_version": "1.2.0", 266 | "_view_count": null, 267 | "flex_flow": null, 268 | "width": null, 269 | "min_width": null, 270 | "border": null, 271 | "align_items": null, 272 | "bottom": null, 273 | "_model_module": "@jupyter-widgets/base", 274 | "top": null, 275 | "grid_column": null, 276 | "overflow_y": null, 277 | "overflow_x": null, 278 | "grid_auto_flow": null, 279 | "grid_area": null, 280 | "grid_template_columns": null, 281 | "flex": null, 282 | "_model_name": "LayoutModel", 283 | "justify_items": null, 284 | "grid_row": null, 285 | "max_height": null, 286 | "align_content": null, 287 | "visibility": null, 288 | "align_self": null, 289 | "height": null, 290 | "min_height": null, 291 | "padding": null, 292 | "grid_auto_rows": null, 293 | "grid_gap": null, 294 | "max_width": null, 295 | "order": null, 296 | "_view_module_version": "1.2.0", 297 | "grid_template_areas": null, 298 | "object_position": null, 299 | "object_fit": null, 300 | "grid_auto_columns": null, 301 | "margin": null, 302 | "display": null, 303 | "left": null 304 | } 305 | }, 306 | "e5be528350c54c34b702a87be4c16b40": { 307 | "model_module": "@jupyter-widgets/controls", 308 | "model_name": "DescriptionStyleModel", 309 | "model_module_version": "1.5.0", 310 | "state": { 311 | "_view_name": "StyleView", 312 | "_model_name": "DescriptionStyleModel", 313 | "description_width": "", 314 | "_view_module": "@jupyter-widgets/base", 315 | "_model_module_version": "1.5.0", 316 | "_view_count": null, 317 | "_view_module_version": "1.2.0", 318 | "_model_module": "@jupyter-widgets/controls" 319 | } 320 | }, 321 | "355037c622754c2bba10bd49c8f25754": { 322 | "model_module": "@jupyter-widgets/base", 323 | "model_name": "LayoutModel", 324 | "model_module_version": "1.2.0", 325 | "state": { 326 | "_view_name": "LayoutView", 327 | "grid_template_rows": null, 328 | "right": null, 329 | "justify_content": null, 330 | "_view_module": "@jupyter-widgets/base", 331 | "overflow": null, 332 | "_model_module_version": "1.2.0", 333 | "_view_count": null, 334 | "flex_flow": null, 335 | "width": null, 336 | "min_width": null, 337 | "border": null, 338 | "align_items": null, 339 | "bottom": null, 340 | "_model_module": "@jupyter-widgets/base", 341 | "top": null, 342 | "grid_column": null, 343 | "overflow_y": null, 344 | "overflow_x": null, 345 | "grid_auto_flow": null, 346 | "grid_area": null, 347 | "grid_template_columns": null, 348 | "flex": null, 349 | "_model_name": "LayoutModel", 350 | "justify_items": null, 351 | "grid_row": null, 352 | "max_height": null, 353 | "align_content": null, 354 | "visibility": null, 355 | "align_self": null, 356 | "height": null, 357 | "min_height": null, 358 | "padding": null, 359 | "grid_auto_rows": null, 360 | "grid_gap": null, 361 | "max_width": null, 362 | "order": null, 363 | "_view_module_version": "1.2.0", 364 | "grid_template_areas": null, 365 | "object_position": null, 366 | "object_fit": null, 367 | "grid_auto_columns": null, 368 | "margin": null, 369 | "display": null, 370 | "left": null 371 | } 372 | }, 373 | "dfc9917c7f834a50a4243f9c2b0c7acf": { 374 | "model_module": "@jupyter-widgets/controls", 375 | "model_name": "HBoxModel", 376 | "model_module_version": "1.5.0", 377 | "state": { 378 | "_view_name": "HBoxView", 379 | "_dom_classes": [], 380 | "_model_name": "HBoxModel", 381 | "_view_module": "@jupyter-widgets/controls", 382 | "_model_module_version": "1.5.0", 383 | "_view_count": null, 384 | "_view_module_version": "1.5.0", 385 | "box_style": "", 386 | "layout": "IPY_MODEL_44459dfef2754dfe8c5c5a4ff37dcf4a", 387 | "_model_module": "@jupyter-widgets/controls", 388 | "children": [ 389 | "IPY_MODEL_d0fcacb5d7624f04a939f93dc6ce2263", 390 | "IPY_MODEL_02bd460511784a6daf3dbe9d1ef63443", 391 | "IPY_MODEL_2f5def119b2745018845e600fd6478bf" 392 | ] 393 | } 394 | }, 395 | "44459dfef2754dfe8c5c5a4ff37dcf4a": { 396 | "model_module": "@jupyter-widgets/base", 397 | "model_name": "LayoutModel", 398 | "model_module_version": "1.2.0", 399 | "state": { 400 | "_view_name": "LayoutView", 401 | "grid_template_rows": null, 402 | "right": null, 403 | "justify_content": null, 404 | "_view_module": "@jupyter-widgets/base", 405 | "overflow": null, 406 | "_model_module_version": "1.2.0", 407 | "_view_count": null, 408 | "flex_flow": null, 409 | "width": null, 410 | "min_width": null, 411 | "border": null, 412 | "align_items": null, 413 | "bottom": null, 414 | "_model_module": "@jupyter-widgets/base", 415 | "top": null, 416 | "grid_column": null, 417 | "overflow_y": null, 418 | "overflow_x": null, 419 | "grid_auto_flow": null, 420 | "grid_area": null, 421 | "grid_template_columns": null, 422 | "flex": null, 423 | "_model_name": "LayoutModel", 424 | "justify_items": null, 425 | "grid_row": null, 426 | "max_height": null, 427 | "align_content": null, 428 | "visibility": null, 429 | "align_self": null, 430 | "height": null, 431 | "min_height": null, 432 | "padding": null, 433 | "grid_auto_rows": null, 434 | "grid_gap": null, 435 | "max_width": null, 436 | "order": null, 437 | "_view_module_version": "1.2.0", 438 | "grid_template_areas": null, 439 | "object_position": null, 440 | "object_fit": null, 441 | "grid_auto_columns": null, 442 | "margin": null, 443 | "display": null, 444 | "left": null 445 | } 446 | }, 447 | "d0fcacb5d7624f04a939f93dc6ce2263": { 448 | "model_module": "@jupyter-widgets/controls", 449 | "model_name": "HTMLModel", 450 | "model_module_version": "1.5.0", 451 | "state": { 452 | "_view_name": "HTMLView", 453 | "style": "IPY_MODEL_ce26a50eec88416384396ea39d569c61", 454 | "_dom_classes": [], 455 | "description": "", 456 | "_model_name": "HTMLModel", 457 | "placeholder": "​", 458 | "_view_module": "@jupyter-widgets/controls", 459 | "_model_module_version": "1.5.0", 460 | "value": "100%", 461 | "_view_count": null, 462 | "_view_module_version": "1.5.0", 463 | "description_tooltip": null, 464 | "_model_module": "@jupyter-widgets/controls", 465 | "layout": "IPY_MODEL_0f9efdd1b2214514be75d26fcdb18385" 466 | } 467 | }, 468 | "02bd460511784a6daf3dbe9d1ef63443": { 469 | "model_module": "@jupyter-widgets/controls", 470 | "model_name": "FloatProgressModel", 471 | "model_module_version": "1.5.0", 472 | "state": { 473 | "_view_name": "ProgressView", 474 | "style": "IPY_MODEL_cfcd541aac3f4c4d8b848d93599feaaf", 475 | "_dom_classes": [], 476 | "description": "", 477 | "_model_name": "FloatProgressModel", 478 | "bar_style": "success", 479 | "max": 10, 480 | "_view_module": "@jupyter-widgets/controls", 481 | "_model_module_version": "1.5.0", 482 | "value": 10, 483 | "_view_count": null, 484 | "_view_module_version": "1.5.0", 485 | "orientation": "horizontal", 486 | "min": 0, 487 | "description_tooltip": null, 488 | "_model_module": "@jupyter-widgets/controls", 489 | "layout": "IPY_MODEL_87cf6567215b4ba8b02ae7fe4e680e6d" 490 | } 491 | }, 492 | "2f5def119b2745018845e600fd6478bf": { 493 | "model_module": "@jupyter-widgets/controls", 494 | "model_name": "HTMLModel", 495 | "model_module_version": "1.5.0", 496 | "state": { 497 | "_view_name": "HTMLView", 498 | "style": "IPY_MODEL_d66ad955b2c34d15bd37b2bde9d0439b", 499 | "_dom_classes": [], 500 | "description": "", 501 | "_model_name": "HTMLModel", 502 | "placeholder": "​", 503 | "_view_module": "@jupyter-widgets/controls", 504 | "_model_module_version": "1.5.0", 505 | "value": " 10/10 [00:00<00:00, 89.67it/s]", 506 | "_view_count": null, 507 | "_view_module_version": "1.5.0", 508 | "description_tooltip": null, 509 | "_model_module": "@jupyter-widgets/controls", 510 | "layout": "IPY_MODEL_ccfe7c215f9942c99ce74be1931161c8" 511 | } 512 | }, 513 | "ce26a50eec88416384396ea39d569c61": { 514 | "model_module": "@jupyter-widgets/controls", 515 | "model_name": "DescriptionStyleModel", 516 | "model_module_version": "1.5.0", 517 | "state": { 518 | "_view_name": "StyleView", 519 | "_model_name": "DescriptionStyleModel", 520 | "description_width": "", 521 | "_view_module": "@jupyter-widgets/base", 522 | "_model_module_version": "1.5.0", 523 | "_view_count": null, 524 | "_view_module_version": "1.2.0", 525 | "_model_module": "@jupyter-widgets/controls" 526 | } 527 | }, 528 | "0f9efdd1b2214514be75d26fcdb18385": { 529 | "model_module": "@jupyter-widgets/base", 530 | "model_name": "LayoutModel", 531 | "model_module_version": "1.2.0", 532 | "state": { 533 | "_view_name": "LayoutView", 534 | "grid_template_rows": null, 535 | "right": null, 536 | "justify_content": null, 537 | "_view_module": "@jupyter-widgets/base", 538 | "overflow": null, 539 | "_model_module_version": "1.2.0", 540 | "_view_count": null, 541 | "flex_flow": null, 542 | "width": null, 543 | "min_width": null, 544 | "border": null, 545 | "align_items": null, 546 | "bottom": null, 547 | "_model_module": "@jupyter-widgets/base", 548 | "top": null, 549 | "grid_column": null, 550 | "overflow_y": null, 551 | "overflow_x": null, 552 | "grid_auto_flow": null, 553 | "grid_area": null, 554 | "grid_template_columns": null, 555 | "flex": null, 556 | "_model_name": "LayoutModel", 557 | "justify_items": null, 558 | "grid_row": null, 559 | "max_height": null, 560 | "align_content": null, 561 | "visibility": null, 562 | "align_self": null, 563 | "height": null, 564 | "min_height": null, 565 | "padding": null, 566 | "grid_auto_rows": null, 567 | "grid_gap": null, 568 | "max_width": null, 569 | "order": null, 570 | "_view_module_version": "1.2.0", 571 | "grid_template_areas": null, 572 | "object_position": null, 573 | "object_fit": null, 574 | "grid_auto_columns": null, 575 | "margin": null, 576 | "display": null, 577 | "left": null 578 | } 579 | }, 580 | "cfcd541aac3f4c4d8b848d93599feaaf": { 581 | "model_module": "@jupyter-widgets/controls", 582 | "model_name": "ProgressStyleModel", 583 | "model_module_version": "1.5.0", 584 | "state": { 585 | "_view_name": "StyleView", 586 | "_model_name": "ProgressStyleModel", 587 | "description_width": "", 588 | "_view_module": "@jupyter-widgets/base", 589 | "_model_module_version": "1.5.0", 590 | "_view_count": null, 591 | "_view_module_version": "1.2.0", 592 | "bar_color": null, 593 | "_model_module": "@jupyter-widgets/controls" 594 | } 595 | }, 596 | "87cf6567215b4ba8b02ae7fe4e680e6d": { 597 | "model_module": "@jupyter-widgets/base", 598 | "model_name": "LayoutModel", 599 | "model_module_version": "1.2.0", 600 | "state": { 601 | "_view_name": "LayoutView", 602 | "grid_template_rows": null, 603 | "right": null, 604 | "justify_content": null, 605 | "_view_module": "@jupyter-widgets/base", 606 | "overflow": null, 607 | "_model_module_version": "1.2.0", 608 | "_view_count": null, 609 | "flex_flow": null, 610 | "width": null, 611 | "min_width": null, 612 | "border": null, 613 | "align_items": null, 614 | "bottom": null, 615 | "_model_module": "@jupyter-widgets/base", 616 | "top": null, 617 | "grid_column": null, 618 | "overflow_y": null, 619 | "overflow_x": null, 620 | "grid_auto_flow": null, 621 | "grid_area": null, 622 | "grid_template_columns": null, 623 | "flex": null, 624 | "_model_name": "LayoutModel", 625 | "justify_items": null, 626 | "grid_row": null, 627 | "max_height": null, 628 | "align_content": null, 629 | "visibility": null, 630 | "align_self": null, 631 | "height": null, 632 | "min_height": null, 633 | "padding": null, 634 | "grid_auto_rows": null, 635 | "grid_gap": null, 636 | "max_width": null, 637 | "order": null, 638 | "_view_module_version": "1.2.0", 639 | "grid_template_areas": null, 640 | "object_position": null, 641 | "object_fit": null, 642 | "grid_auto_columns": null, 643 | "margin": null, 644 | "display": null, 645 | "left": null 646 | } 647 | }, 648 | "d66ad955b2c34d15bd37b2bde9d0439b": { 649 | "model_module": "@jupyter-widgets/controls", 650 | "model_name": "DescriptionStyleModel", 651 | "model_module_version": "1.5.0", 652 | "state": { 653 | "_view_name": "StyleView", 654 | "_model_name": "DescriptionStyleModel", 655 | "description_width": "", 656 | "_view_module": "@jupyter-widgets/base", 657 | "_model_module_version": "1.5.0", 658 | "_view_count": null, 659 | "_view_module_version": "1.2.0", 660 | "_model_module": "@jupyter-widgets/controls" 661 | } 662 | }, 663 | "ccfe7c215f9942c99ce74be1931161c8": { 664 | "model_module": "@jupyter-widgets/base", 665 | "model_name": "LayoutModel", 666 | "model_module_version": "1.2.0", 667 | "state": { 668 | "_view_name": "LayoutView", 669 | "grid_template_rows": null, 670 | "right": null, 671 | "justify_content": null, 672 | "_view_module": "@jupyter-widgets/base", 673 | "overflow": null, 674 | "_model_module_version": "1.2.0", 675 | "_view_count": null, 676 | "flex_flow": null, 677 | "width": null, 678 | "min_width": null, 679 | "border": null, 680 | "align_items": null, 681 | "bottom": null, 682 | "_model_module": "@jupyter-widgets/base", 683 | "top": null, 684 | "grid_column": null, 685 | "overflow_y": null, 686 | "overflow_x": null, 687 | "grid_auto_flow": null, 688 | "grid_area": null, 689 | "grid_template_columns": null, 690 | "flex": null, 691 | "_model_name": "LayoutModel", 692 | "justify_items": null, 693 | "grid_row": null, 694 | "max_height": null, 695 | "align_content": null, 696 | "visibility": null, 697 | "align_self": null, 698 | "height": null, 699 | "min_height": null, 700 | "padding": null, 701 | "grid_auto_rows": null, 702 | "grid_gap": null, 703 | "max_width": null, 704 | "order": null, 705 | "_view_module_version": "1.2.0", 706 | "grid_template_areas": null, 707 | "object_position": null, 708 | "object_fit": null, 709 | "grid_auto_columns": null, 710 | "margin": null, 711 | "display": null, 712 | "left": null 713 | } 714 | }, 715 | "c05b441e442f4c2396c9ba920423e05a": { 716 | "model_module": "@jupyter-widgets/controls", 717 | "model_name": "HBoxModel", 718 | "model_module_version": "1.5.0", 719 | "state": { 720 | "_view_name": "HBoxView", 721 | "_dom_classes": [], 722 | "_model_name": "HBoxModel", 723 | "_view_module": "@jupyter-widgets/controls", 724 | "_model_module_version": "1.5.0", 725 | "_view_count": null, 726 | "_view_module_version": "1.5.0", 727 | "box_style": "", 728 | "layout": "IPY_MODEL_80ac4e5eaa574d1d9796dafb61c968b1", 729 | "_model_module": "@jupyter-widgets/controls", 730 | "children": [ 731 | "IPY_MODEL_dbdc3f534915460d8c094fe3fbf6d3e5", 732 | "IPY_MODEL_a930671d0de84ca093dcb8b4e3cb1d0d", 733 | "IPY_MODEL_62b1340ef5b146a69f5426ddd31a132e" 734 | ] 735 | } 736 | }, 737 | "80ac4e5eaa574d1d9796dafb61c968b1": { 738 | "model_module": "@jupyter-widgets/base", 739 | "model_name": "LayoutModel", 740 | "model_module_version": "1.2.0", 741 | "state": { 742 | "_view_name": "LayoutView", 743 | "grid_template_rows": null, 744 | "right": null, 745 | "justify_content": null, 746 | "_view_module": "@jupyter-widgets/base", 747 | "overflow": null, 748 | "_model_module_version": "1.2.0", 749 | "_view_count": null, 750 | "flex_flow": null, 751 | "width": null, 752 | "min_width": null, 753 | "border": null, 754 | "align_items": null, 755 | "bottom": null, 756 | "_model_module": "@jupyter-widgets/base", 757 | "top": null, 758 | "grid_column": null, 759 | "overflow_y": null, 760 | "overflow_x": null, 761 | "grid_auto_flow": null, 762 | "grid_area": null, 763 | "grid_template_columns": null, 764 | "flex": null, 765 | "_model_name": "LayoutModel", 766 | "justify_items": null, 767 | "grid_row": null, 768 | "max_height": null, 769 | "align_content": null, 770 | "visibility": null, 771 | "align_self": null, 772 | "height": null, 773 | "min_height": null, 774 | "padding": null, 775 | "grid_auto_rows": null, 776 | "grid_gap": null, 777 | "max_width": null, 778 | "order": null, 779 | "_view_module_version": "1.2.0", 780 | "grid_template_areas": null, 781 | "object_position": null, 782 | "object_fit": null, 783 | "grid_auto_columns": null, 784 | "margin": null, 785 | "display": null, 786 | "left": null 787 | } 788 | }, 789 | "dbdc3f534915460d8c094fe3fbf6d3e5": { 790 | "model_module": "@jupyter-widgets/controls", 791 | "model_name": "HTMLModel", 792 | "model_module_version": "1.5.0", 793 | "state": { 794 | "_view_name": "HTMLView", 795 | "style": "IPY_MODEL_b760c18a75cb4a3785b0aa429ac21660", 796 | "_dom_classes": [], 797 | "description": "", 798 | "_model_name": "HTMLModel", 799 | "placeholder": "​", 800 | "_view_module": "@jupyter-widgets/controls", 801 | "_model_module_version": "1.5.0", 802 | "value": "100%", 803 | "_view_count": null, 804 | "_view_module_version": "1.5.0", 805 | "description_tooltip": null, 806 | "_model_module": "@jupyter-widgets/controls", 807 | "layout": "IPY_MODEL_c02d098387c44ac899bcc1a5ef97aeaa" 808 | } 809 | }, 810 | "a930671d0de84ca093dcb8b4e3cb1d0d": { 811 | "model_module": "@jupyter-widgets/controls", 812 | "model_name": "FloatProgressModel", 813 | "model_module_version": "1.5.0", 814 | "state": { 815 | "_view_name": "ProgressView", 816 | "style": "IPY_MODEL_81305ee731aa4b958c71a180aedcc7a2", 817 | "_dom_classes": [], 818 | "description": "", 819 | "_model_name": "FloatProgressModel", 820 | "bar_style": "success", 821 | "max": 5, 822 | "_view_module": "@jupyter-widgets/controls", 823 | "_model_module_version": "1.5.0", 824 | "value": 5, 825 | "_view_count": null, 826 | "_view_module_version": "1.5.0", 827 | "orientation": "horizontal", 828 | "min": 0, 829 | "description_tooltip": null, 830 | "_model_module": "@jupyter-widgets/controls", 831 | "layout": "IPY_MODEL_f37f5d60c87b4652b46b6175882c9caa" 832 | } 833 | }, 834 | "62b1340ef5b146a69f5426ddd31a132e": { 835 | "model_module": "@jupyter-widgets/controls", 836 | "model_name": "HTMLModel", 837 | "model_module_version": "1.5.0", 838 | "state": { 839 | "_view_name": "HTMLView", 840 | "style": "IPY_MODEL_4843dbc1f2dd4701a136f87dfa1b940e", 841 | "_dom_classes": [], 842 | "description": "", 843 | "_model_name": "HTMLModel", 844 | "placeholder": "​", 845 | "_view_module": "@jupyter-widgets/controls", 846 | "_model_module_version": "1.5.0", 847 | "value": " 5/5 [00:01<00:00, 2.52it/s]", 848 | "_view_count": null, 849 | "_view_module_version": "1.5.0", 850 | "description_tooltip": null, 851 | "_model_module": "@jupyter-widgets/controls", 852 | "layout": "IPY_MODEL_e7f81c8eee9e460faa0c2a8eba58f3c9" 853 | } 854 | }, 855 | "b760c18a75cb4a3785b0aa429ac21660": { 856 | "model_module": "@jupyter-widgets/controls", 857 | "model_name": "DescriptionStyleModel", 858 | "model_module_version": "1.5.0", 859 | "state": { 860 | "_view_name": "StyleView", 861 | "_model_name": "DescriptionStyleModel", 862 | "description_width": "", 863 | "_view_module": "@jupyter-widgets/base", 864 | "_model_module_version": "1.5.0", 865 | "_view_count": null, 866 | "_view_module_version": "1.2.0", 867 | "_model_module": "@jupyter-widgets/controls" 868 | } 869 | }, 870 | "c02d098387c44ac899bcc1a5ef97aeaa": { 871 | "model_module": "@jupyter-widgets/base", 872 | "model_name": "LayoutModel", 873 | "model_module_version": "1.2.0", 874 | "state": { 875 | "_view_name": "LayoutView", 876 | "grid_template_rows": null, 877 | "right": null, 878 | "justify_content": null, 879 | "_view_module": "@jupyter-widgets/base", 880 | "overflow": null, 881 | "_model_module_version": "1.2.0", 882 | "_view_count": null, 883 | "flex_flow": null, 884 | "width": null, 885 | "min_width": null, 886 | "border": null, 887 | "align_items": null, 888 | "bottom": null, 889 | "_model_module": "@jupyter-widgets/base", 890 | "top": null, 891 | "grid_column": null, 892 | "overflow_y": null, 893 | "overflow_x": null, 894 | "grid_auto_flow": null, 895 | "grid_area": null, 896 | "grid_template_columns": null, 897 | "flex": null, 898 | "_model_name": "LayoutModel", 899 | "justify_items": null, 900 | "grid_row": null, 901 | "max_height": null, 902 | "align_content": null, 903 | "visibility": null, 904 | "align_self": null, 905 | "height": null, 906 | "min_height": null, 907 | "padding": null, 908 | "grid_auto_rows": null, 909 | "grid_gap": null, 910 | "max_width": null, 911 | "order": null, 912 | "_view_module_version": "1.2.0", 913 | "grid_template_areas": null, 914 | "object_position": null, 915 | "object_fit": null, 916 | "grid_auto_columns": null, 917 | "margin": null, 918 | "display": null, 919 | "left": null 920 | } 921 | }, 922 | "81305ee731aa4b958c71a180aedcc7a2": { 923 | "model_module": "@jupyter-widgets/controls", 924 | "model_name": "ProgressStyleModel", 925 | "model_module_version": "1.5.0", 926 | "state": { 927 | "_view_name": "StyleView", 928 | "_model_name": "ProgressStyleModel", 929 | "description_width": "", 930 | "_view_module": "@jupyter-widgets/base", 931 | "_model_module_version": "1.5.0", 932 | "_view_count": null, 933 | "_view_module_version": "1.2.0", 934 | "bar_color": null, 935 | "_model_module": "@jupyter-widgets/controls" 936 | } 937 | }, 938 | "f37f5d60c87b4652b46b6175882c9caa": { 939 | "model_module": "@jupyter-widgets/base", 940 | "model_name": "LayoutModel", 941 | "model_module_version": "1.2.0", 942 | "state": { 943 | "_view_name": "LayoutView", 944 | "grid_template_rows": null, 945 | "right": null, 946 | "justify_content": null, 947 | "_view_module": "@jupyter-widgets/base", 948 | "overflow": null, 949 | "_model_module_version": "1.2.0", 950 | "_view_count": null, 951 | "flex_flow": null, 952 | "width": null, 953 | "min_width": null, 954 | "border": null, 955 | "align_items": null, 956 | "bottom": null, 957 | "_model_module": "@jupyter-widgets/base", 958 | "top": null, 959 | "grid_column": null, 960 | "overflow_y": null, 961 | "overflow_x": null, 962 | "grid_auto_flow": null, 963 | "grid_area": null, 964 | "grid_template_columns": null, 965 | "flex": null, 966 | "_model_name": "LayoutModel", 967 | "justify_items": null, 968 | "grid_row": null, 969 | "max_height": null, 970 | "align_content": null, 971 | "visibility": null, 972 | "align_self": null, 973 | "height": null, 974 | "min_height": null, 975 | "padding": null, 976 | "grid_auto_rows": null, 977 | "grid_gap": null, 978 | "max_width": null, 979 | "order": null, 980 | "_view_module_version": "1.2.0", 981 | "grid_template_areas": null, 982 | "object_position": null, 983 | "object_fit": null, 984 | "grid_auto_columns": null, 985 | "margin": null, 986 | "display": null, 987 | "left": null 988 | } 989 | }, 990 | "4843dbc1f2dd4701a136f87dfa1b940e": { 991 | "model_module": "@jupyter-widgets/controls", 992 | "model_name": "DescriptionStyleModel", 993 | "model_module_version": "1.5.0", 994 | "state": { 995 | "_view_name": "StyleView", 996 | "_model_name": "DescriptionStyleModel", 997 | "description_width": "", 998 | "_view_module": "@jupyter-widgets/base", 999 | "_model_module_version": "1.5.0", 1000 | "_view_count": null, 1001 | "_view_module_version": "1.2.0", 1002 | "_model_module": "@jupyter-widgets/controls" 1003 | } 1004 | }, 1005 | "e7f81c8eee9e460faa0c2a8eba58f3c9": { 1006 | "model_module": "@jupyter-widgets/base", 1007 | "model_name": "LayoutModel", 1008 | "model_module_version": "1.2.0", 1009 | "state": { 1010 | "_view_name": "LayoutView", 1011 | "grid_template_rows": null, 1012 | "right": null, 1013 | "justify_content": null, 1014 | "_view_module": "@jupyter-widgets/base", 1015 | "overflow": null, 1016 | "_model_module_version": "1.2.0", 1017 | "_view_count": null, 1018 | "flex_flow": null, 1019 | "width": null, 1020 | "min_width": null, 1021 | "border": null, 1022 | "align_items": null, 1023 | "bottom": null, 1024 | "_model_module": "@jupyter-widgets/base", 1025 | "top": null, 1026 | "grid_column": null, 1027 | "overflow_y": null, 1028 | "overflow_x": null, 1029 | "grid_auto_flow": null, 1030 | "grid_area": null, 1031 | "grid_template_columns": null, 1032 | "flex": null, 1033 | "_model_name": "LayoutModel", 1034 | "justify_items": null, 1035 | "grid_row": null, 1036 | "max_height": null, 1037 | "align_content": null, 1038 | "visibility": null, 1039 | "align_self": null, 1040 | "height": null, 1041 | "min_height": null, 1042 | "padding": null, 1043 | "grid_auto_rows": null, 1044 | "grid_gap": null, 1045 | "max_width": null, 1046 | "order": null, 1047 | "_view_module_version": "1.2.0", 1048 | "grid_template_areas": null, 1049 | "object_position": null, 1050 | "object_fit": null, 1051 | "grid_auto_columns": null, 1052 | "margin": null, 1053 | "display": null, 1054 | "left": null 1055 | } 1056 | }, 1057 | "dc7d7680505d44999e165717debcd1a4": { 1058 | "model_module": "@jupyter-widgets/controls", 1059 | "model_name": "HBoxModel", 1060 | "model_module_version": "1.5.0", 1061 | "state": { 1062 | "_view_name": "HBoxView", 1063 | "_dom_classes": [], 1064 | "_model_name": "HBoxModel", 1065 | "_view_module": "@jupyter-widgets/controls", 1066 | "_model_module_version": "1.5.0", 1067 | "_view_count": null, 1068 | "_view_module_version": "1.5.0", 1069 | "box_style": "", 1070 | "layout": "IPY_MODEL_63cf9d3439294863a5728040904c8ad7", 1071 | "_model_module": "@jupyter-widgets/controls", 1072 | "children": [ 1073 | "IPY_MODEL_2bfaac11391a4adfb91433e0f3368683", 1074 | "IPY_MODEL_788a1eafa3814b9399816accd124f6eb", 1075 | "IPY_MODEL_d984a74eb7ad432a82fde659554da5b9" 1076 | ] 1077 | } 1078 | }, 1079 | "63cf9d3439294863a5728040904c8ad7": { 1080 | "model_module": "@jupyter-widgets/base", 1081 | "model_name": "LayoutModel", 1082 | "model_module_version": "1.2.0", 1083 | "state": { 1084 | "_view_name": "LayoutView", 1085 | "grid_template_rows": null, 1086 | "right": null, 1087 | "justify_content": null, 1088 | "_view_module": "@jupyter-widgets/base", 1089 | "overflow": null, 1090 | "_model_module_version": "1.2.0", 1091 | "_view_count": null, 1092 | "flex_flow": null, 1093 | "width": null, 1094 | "min_width": null, 1095 | "border": null, 1096 | "align_items": null, 1097 | "bottom": null, 1098 | "_model_module": "@jupyter-widgets/base", 1099 | "top": null, 1100 | "grid_column": null, 1101 | "overflow_y": null, 1102 | "overflow_x": null, 1103 | "grid_auto_flow": null, 1104 | "grid_area": null, 1105 | "grid_template_columns": null, 1106 | "flex": null, 1107 | "_model_name": "LayoutModel", 1108 | "justify_items": null, 1109 | "grid_row": null, 1110 | "max_height": null, 1111 | "align_content": null, 1112 | "visibility": null, 1113 | "align_self": null, 1114 | "height": null, 1115 | "min_height": null, 1116 | "padding": null, 1117 | "grid_auto_rows": null, 1118 | "grid_gap": null, 1119 | "max_width": null, 1120 | "order": null, 1121 | "_view_module_version": "1.2.0", 1122 | "grid_template_areas": null, 1123 | "object_position": null, 1124 | "object_fit": null, 1125 | "grid_auto_columns": null, 1126 | "margin": null, 1127 | "display": null, 1128 | "left": null 1129 | } 1130 | }, 1131 | "2bfaac11391a4adfb91433e0f3368683": { 1132 | "model_module": "@jupyter-widgets/controls", 1133 | "model_name": "HTMLModel", 1134 | "model_module_version": "1.5.0", 1135 | "state": { 1136 | "_view_name": "HTMLView", 1137 | "style": "IPY_MODEL_50696b849220459495b9b9a091ce05bb", 1138 | "_dom_classes": [], 1139 | "description": "", 1140 | "_model_name": "HTMLModel", 1141 | "placeholder": "​", 1142 | "_view_module": "@jupyter-widgets/controls", 1143 | "_model_module_version": "1.5.0", 1144 | "value": "100%", 1145 | "_view_count": null, 1146 | "_view_module_version": "1.5.0", 1147 | "description_tooltip": null, 1148 | "_model_module": "@jupyter-widgets/controls", 1149 | "layout": "IPY_MODEL_72efa9c92d01410dbca8b357bc581e56" 1150 | } 1151 | }, 1152 | "788a1eafa3814b9399816accd124f6eb": { 1153 | "model_module": "@jupyter-widgets/controls", 1154 | "model_name": "FloatProgressModel", 1155 | "model_module_version": "1.5.0", 1156 | "state": { 1157 | "_view_name": "ProgressView", 1158 | "style": "IPY_MODEL_5be0c6d165d748fcbb017817fd29c708", 1159 | "_dom_classes": [], 1160 | "description": "", 1161 | "_model_name": "FloatProgressModel", 1162 | "bar_style": "success", 1163 | "max": 5, 1164 | "_view_module": "@jupyter-widgets/controls", 1165 | "_model_module_version": "1.5.0", 1166 | "value": 5, 1167 | "_view_count": null, 1168 | "_view_module_version": "1.5.0", 1169 | "orientation": "horizontal", 1170 | "min": 0, 1171 | "description_tooltip": null, 1172 | "_model_module": "@jupyter-widgets/controls", 1173 | "layout": "IPY_MODEL_f3591ac91f184068827b659c302bbe99" 1174 | } 1175 | }, 1176 | "d984a74eb7ad432a82fde659554da5b9": { 1177 | "model_module": "@jupyter-widgets/controls", 1178 | "model_name": "HTMLModel", 1179 | "model_module_version": "1.5.0", 1180 | "state": { 1181 | "_view_name": "HTMLView", 1182 | "style": "IPY_MODEL_9bca2e1c229b41d7add2792d72015b3a", 1183 | "_dom_classes": [], 1184 | "description": "", 1185 | "_model_name": "HTMLModel", 1186 | "placeholder": "​", 1187 | "_view_module": "@jupyter-widgets/controls", 1188 | "_model_module_version": "1.5.0", 1189 | "value": " 5/5 [00:00<00:00, 86.87it/s]", 1190 | "_view_count": null, 1191 | "_view_module_version": "1.5.0", 1192 | "description_tooltip": null, 1193 | "_model_module": "@jupyter-widgets/controls", 1194 | "layout": "IPY_MODEL_03f86a1edb104dd2b55a587599a8339e" 1195 | } 1196 | }, 1197 | "50696b849220459495b9b9a091ce05bb": { 1198 | "model_module": "@jupyter-widgets/controls", 1199 | "model_name": "DescriptionStyleModel", 1200 | "model_module_version": "1.5.0", 1201 | "state": { 1202 | "_view_name": "StyleView", 1203 | "_model_name": "DescriptionStyleModel", 1204 | "description_width": "", 1205 | "_view_module": "@jupyter-widgets/base", 1206 | "_model_module_version": "1.5.0", 1207 | "_view_count": null, 1208 | "_view_module_version": "1.2.0", 1209 | "_model_module": "@jupyter-widgets/controls" 1210 | } 1211 | }, 1212 | "72efa9c92d01410dbca8b357bc581e56": { 1213 | "model_module": "@jupyter-widgets/base", 1214 | "model_name": "LayoutModel", 1215 | "model_module_version": "1.2.0", 1216 | "state": { 1217 | "_view_name": "LayoutView", 1218 | "grid_template_rows": null, 1219 | "right": null, 1220 | "justify_content": null, 1221 | "_view_module": "@jupyter-widgets/base", 1222 | "overflow": null, 1223 | "_model_module_version": "1.2.0", 1224 | "_view_count": null, 1225 | "flex_flow": null, 1226 | "width": null, 1227 | "min_width": null, 1228 | "border": null, 1229 | "align_items": null, 1230 | "bottom": null, 1231 | "_model_module": "@jupyter-widgets/base", 1232 | "top": null, 1233 | "grid_column": null, 1234 | "overflow_y": null, 1235 | "overflow_x": null, 1236 | "grid_auto_flow": null, 1237 | "grid_area": null, 1238 | "grid_template_columns": null, 1239 | "flex": null, 1240 | "_model_name": "LayoutModel", 1241 | "justify_items": null, 1242 | "grid_row": null, 1243 | "max_height": null, 1244 | "align_content": null, 1245 | "visibility": null, 1246 | "align_self": null, 1247 | "height": null, 1248 | "min_height": null, 1249 | "padding": null, 1250 | "grid_auto_rows": null, 1251 | "grid_gap": null, 1252 | "max_width": null, 1253 | "order": null, 1254 | "_view_module_version": "1.2.0", 1255 | "grid_template_areas": null, 1256 | "object_position": null, 1257 | "object_fit": null, 1258 | "grid_auto_columns": null, 1259 | "margin": null, 1260 | "display": null, 1261 | "left": null 1262 | } 1263 | }, 1264 | "5be0c6d165d748fcbb017817fd29c708": { 1265 | "model_module": "@jupyter-widgets/controls", 1266 | "model_name": "ProgressStyleModel", 1267 | "model_module_version": "1.5.0", 1268 | "state": { 1269 | "_view_name": "StyleView", 1270 | "_model_name": "ProgressStyleModel", 1271 | "description_width": "", 1272 | "_view_module": "@jupyter-widgets/base", 1273 | "_model_module_version": "1.5.0", 1274 | "_view_count": null, 1275 | "_view_module_version": "1.2.0", 1276 | "bar_color": null, 1277 | "_model_module": "@jupyter-widgets/controls" 1278 | } 1279 | }, 1280 | "f3591ac91f184068827b659c302bbe99": { 1281 | "model_module": "@jupyter-widgets/base", 1282 | "model_name": "LayoutModel", 1283 | "model_module_version": "1.2.0", 1284 | "state": { 1285 | "_view_name": "LayoutView", 1286 | "grid_template_rows": null, 1287 | "right": null, 1288 | "justify_content": null, 1289 | "_view_module": "@jupyter-widgets/base", 1290 | "overflow": null, 1291 | "_model_module_version": "1.2.0", 1292 | "_view_count": null, 1293 | "flex_flow": null, 1294 | "width": null, 1295 | "min_width": null, 1296 | "border": null, 1297 | "align_items": null, 1298 | "bottom": null, 1299 | "_model_module": "@jupyter-widgets/base", 1300 | "top": null, 1301 | "grid_column": null, 1302 | "overflow_y": null, 1303 | "overflow_x": null, 1304 | "grid_auto_flow": null, 1305 | "grid_area": null, 1306 | "grid_template_columns": null, 1307 | "flex": null, 1308 | "_model_name": "LayoutModel", 1309 | "justify_items": null, 1310 | "grid_row": null, 1311 | "max_height": null, 1312 | "align_content": null, 1313 | "visibility": null, 1314 | "align_self": null, 1315 | "height": null, 1316 | "min_height": null, 1317 | "padding": null, 1318 | "grid_auto_rows": null, 1319 | "grid_gap": null, 1320 | "max_width": null, 1321 | "order": null, 1322 | "_view_module_version": "1.2.0", 1323 | "grid_template_areas": null, 1324 | "object_position": null, 1325 | "object_fit": null, 1326 | "grid_auto_columns": null, 1327 | "margin": null, 1328 | "display": null, 1329 | "left": null 1330 | } 1331 | }, 1332 | "9bca2e1c229b41d7add2792d72015b3a": { 1333 | "model_module": "@jupyter-widgets/controls", 1334 | "model_name": "DescriptionStyleModel", 1335 | "model_module_version": "1.5.0", 1336 | "state": { 1337 | "_view_name": "StyleView", 1338 | "_model_name": "DescriptionStyleModel", 1339 | "description_width": "", 1340 | "_view_module": "@jupyter-widgets/base", 1341 | "_model_module_version": "1.5.0", 1342 | "_view_count": null, 1343 | "_view_module_version": "1.2.0", 1344 | "_model_module": "@jupyter-widgets/controls" 1345 | } 1346 | }, 1347 | "03f86a1edb104dd2b55a587599a8339e": { 1348 | "model_module": "@jupyter-widgets/base", 1349 | "model_name": "LayoutModel", 1350 | "model_module_version": "1.2.0", 1351 | "state": { 1352 | "_view_name": "LayoutView", 1353 | "grid_template_rows": null, 1354 | "right": null, 1355 | "justify_content": null, 1356 | "_view_module": "@jupyter-widgets/base", 1357 | "overflow": null, 1358 | "_model_module_version": "1.2.0", 1359 | "_view_count": null, 1360 | "flex_flow": null, 1361 | "width": null, 1362 | "min_width": null, 1363 | "border": null, 1364 | "align_items": null, 1365 | "bottom": null, 1366 | "_model_module": "@jupyter-widgets/base", 1367 | "top": null, 1368 | "grid_column": null, 1369 | "overflow_y": null, 1370 | "overflow_x": null, 1371 | "grid_auto_flow": null, 1372 | "grid_area": null, 1373 | "grid_template_columns": null, 1374 | "flex": null, 1375 | "_model_name": "LayoutModel", 1376 | "justify_items": null, 1377 | "grid_row": null, 1378 | "max_height": null, 1379 | "align_content": null, 1380 | "visibility": null, 1381 | "align_self": null, 1382 | "height": null, 1383 | "min_height": null, 1384 | "padding": null, 1385 | "grid_auto_rows": null, 1386 | "grid_gap": null, 1387 | "max_width": null, 1388 | "order": null, 1389 | "_view_module_version": "1.2.0", 1390 | "grid_template_areas": null, 1391 | "object_position": null, 1392 | "object_fit": null, 1393 | "grid_auto_columns": null, 1394 | "margin": null, 1395 | "display": null, 1396 | "left": null 1397 | } 1398 | } 1399 | } 1400 | } 1401 | }, 1402 | "cells": [ 1403 | { 1404 | "cell_type": "markdown", 1405 | "metadata": { 1406 | "id": "view-in-github", 1407 | "colab_type": "text" 1408 | }, 1409 | "source": [ 1410 | "\"Open" 1411 | ] 1412 | }, 1413 | { 1414 | "cell_type": "markdown", 1415 | "metadata": { 1416 | "id": "SmtqOeQpmANk" 1417 | }, 1418 | "source": [ 1419 | "#### Use this notebook to calculate mean of pixels per field for \n", 1420 | " - Sentinel one data\n", 1421 | " - Sentinel 2 data with 25 periods/dates\n", 1422 | " - Sentinel 2 data with month start month end dates\n", 1423 | "\n", 1424 | "**All you have to change is the path to the files**" 1425 | ] 1426 | }, 1427 | { 1428 | "cell_type": "code", 1429 | "metadata": { 1430 | "id": "Mr9kNjYMfssv", 1431 | "colab": { 1432 | "base_uri": "https://localhost:8080/" 1433 | }, 1434 | "outputId": "8b873aec-cba7-47df-82b2-ab1170e1062f" 1435 | }, 1436 | "source": [ 1437 | "!pip -qq install pyspark findspark\n", 1438 | "!apt-get install openjdk-8-jdk-headless -qq > /dev/null\n", 1439 | "!wget -q https://www-us.apache.org/dist/spark/spark-3.0.1/spark-3.0.1-bin-hadoop2.7.tgz" 1440 | ], 1441 | "execution_count": null, 1442 | "outputs": [ 1443 | { 1444 | "output_type": "stream", 1445 | "name": "stdout", 1446 | "text": [ 1447 | "\u001b[K |████████████████████████████████| 212.4 MB 48 kB/s \n", 1448 | "\u001b[K |████████████████████████████████| 198 kB 50.4 MB/s \n", 1449 | "\u001b[?25h Building wheel for pyspark (setup.py) ... \u001b[?25l\u001b[?25hdone\n" 1450 | ] 1451 | } 1452 | ] 1453 | }, 1454 | { 1455 | "cell_type": "code", 1456 | "metadata": { 1457 | "id": "_0YW6UeGfiZo" 1458 | }, 1459 | "source": [ 1460 | "import pandas as pd\n", 1461 | "import numpy as np\n", 1462 | "import os\n", 1463 | "import glob\n", 1464 | "from tqdm.notebook import tqdm_notebook\n", 1465 | "import pyspark\n", 1466 | "from pyspark import SparkContext\n", 1467 | "from pyspark.sql import SparkSession\n", 1468 | "import pyspark.sql.functions as F\n", 1469 | "from pyspark.sql import Row, DataFrame, Column\n", 1470 | "from pyspark.sql.functions import lit\n", 1471 | "\n", 1472 | "from functools import reduce" 1473 | ], 1474 | "execution_count": null, 1475 | "outputs": [] 1476 | }, 1477 | { 1478 | "cell_type": "code", 1479 | "metadata": { 1480 | "id": "VeJYJfIefiZr" 1481 | }, 1482 | "source": [ 1483 | "os.environ[\"JAVA_HOME\"] = \"/usr/lib/jvm/java-8-openjdk-amd64\"" 1484 | ], 1485 | "execution_count": null, 1486 | "outputs": [] 1487 | }, 1488 | { 1489 | "cell_type": "code", 1490 | "metadata": { 1491 | "id": "6Pr1lA3HEA7P" 1492 | }, 1493 | "source": [ 1494 | "spark = SparkSession.builder \\\n", 1495 | " .master('local[*]') \\\n", 1496 | " .config(\"spark.driver.memory\", \"15g\") \\\n", 1497 | " .appName('my-cool-app') \\\n", 1498 | " .getOrCreate()" 1499 | ], 1500 | "execution_count": null, 1501 | "outputs": [] 1502 | }, 1503 | { 1504 | "cell_type": "code", 1505 | "metadata": { 1506 | "colab": { 1507 | "base_uri": "https://localhost:8080/", 1508 | "height": 214 1509 | }, 1510 | "id": "p-lXDoJ7smXI", 1511 | "outputId": "00dfad31-12f5-4b54-ae9b-c379af98eb47" 1512 | }, 1513 | "source": [ 1514 | "spark" 1515 | ], 1516 | "execution_count": null, 1517 | "outputs": [ 1518 | { 1519 | "output_type": "execute_result", 1520 | "data": { 1521 | "text/html": [ 1522 | "\n", 1523 | "
\n", 1524 | "

SparkSession - in-memory

\n", 1525 | " \n", 1526 | "
\n", 1527 | "

SparkContext

\n", 1528 | "\n", 1529 | "

Spark UI

\n", 1530 | "\n", 1531 | "
\n", 1532 | "
Version
\n", 1533 | "
v3.1.2
\n", 1534 | "
Master
\n", 1535 | "
local[*]
\n", 1536 | "
AppName
\n", 1537 | "
my-cool-app
\n", 1538 | "
\n", 1539 | "
\n", 1540 | " \n", 1541 | "
\n", 1542 | " " 1543 | ], 1544 | "text/plain": [ 1545 | "" 1546 | ] 1547 | }, 1548 | "metadata": {}, 1549 | "execution_count": 5 1550 | } 1551 | ] 1552 | }, 1553 | { 1554 | "cell_type": "code", 1555 | "metadata": { 1556 | "colab": { 1557 | "base_uri": "https://localhost:8080/" 1558 | }, 1559 | "id": "zPAm0Gykyo6M", 1560 | "outputId": "b1ddfce2-eeb8-4936-8586-3eb6e85ab041" 1561 | }, 1562 | "source": [ 1563 | "train = pd.read_csv('/content/drive/MyDrive/CompeData/Radiant/train_file.csv')\n", 1564 | "field_ids = train.field.unique()\n", 1565 | "len(field_ids)" 1566 | ], 1567 | "execution_count": null, 1568 | "outputs": [ 1569 | { 1570 | "output_type": "execute_result", 1571 | "data": { 1572 | "text/plain": [ 1573 | "87114" 1574 | ] 1575 | }, 1576 | "metadata": {}, 1577 | "execution_count": 8 1578 | } 1579 | ] 1580 | }, 1581 | { 1582 | "cell_type": "code", 1583 | "metadata": { 1584 | "colab": { 1585 | "base_uri": "https://localhost:8080/" 1586 | }, 1587 | "id": "CpH-dnlrB1HD", 1588 | "outputId": "65b14ec0-9fcf-4837-c5c2-1d0dc1a264b2" 1589 | }, 1590 | "source": [ 1591 | "train.shape" 1592 | ], 1593 | "execution_count": null, 1594 | "outputs": [ 1595 | { 1596 | "output_type": "execute_result", 1597 | "data": { 1598 | "text/plain": [ 1599 | "(87114, 106)" 1600 | ] 1601 | }, 1602 | "metadata": {}, 1603 | "execution_count": 9 1604 | } 1605 | ] 1606 | }, 1607 | { 1608 | "cell_type": "markdown", 1609 | "metadata": { 1610 | "id": "FzO9EQksO5sb" 1611 | }, 1612 | "source": [ 1613 | "## SAR" 1614 | ] 1615 | }, 1616 | { 1617 | "cell_type": "code", 1618 | "metadata": { 1619 | "colab": { 1620 | "base_uri": "https://localhost:8080/", 1621 | "height": 82, 1622 | "referenced_widgets": [ 1623 | "7b430419c8e04c91acafc35a53118cf3", 1624 | "8466a8ec4bc347b4b69f220d31679012", 1625 | "2bce2a23961544b1960e268693e33947", 1626 | "89380e275f19406a8614dace6af1f99b", 1627 | "54724ef8ab44408c8fcc616610dd9bdb", 1628 | "1bd7d3e972804c65bed5fdc30011d9f1", 1629 | "b771437f48194bad9dbcc254019b6803", 1630 | "e8fa90fbc2b741ad988e6b5d13af6d67", 1631 | "f649ba6bc4b14c7ab06d08da5fe3b7de", 1632 | "e5be528350c54c34b702a87be4c16b40", 1633 | "355037c622754c2bba10bd49c8f25754" 1634 | ] 1635 | }, 1636 | "id": "-0HJ-fPHO4lC", 1637 | "outputId": "7034e8c0-d17c-4ef0-fcd6-2a0945299e24" 1638 | }, 1639 | "source": [ 1640 | "%%time\n", 1641 | "dfs = []\n", 1642 | "for i in tqdm_notebook(glob.glob('/content/drive/MyDrive/CompeData/Radiant/s1_all_data/s1_train*.csv')):\n", 1643 | " dfs.append(spark.read.csv(path = i, sep =',', encoding = 'UTF-8', comment = None, header = True))" 1644 | ], 1645 | "execution_count": null, 1646 | "outputs": [ 1647 | { 1648 | "output_type": "display_data", 1649 | "data": { 1650 | "application/vnd.jupyter.widget-view+json": { 1651 | "model_id": "7b430419c8e04c91acafc35a53118cf3", 1652 | "version_minor": 0, 1653 | "version_major": 2 1654 | }, 1655 | "text/plain": [ 1656 | " 0%| | 0/10 [00:00\n", 1894 | "\n", 1907 | "\n", 1908 | " \n", 1909 | " \n", 1910 | " \n", 1911 | " \n", 1912 | " \n", 1913 | " \n", 1914 | " \n", 1915 | " \n", 1916 | " \n", 1917 | " \n", 1918 | " \n", 1919 | " \n", 1920 | " \n", 1921 | " \n", 1922 | " \n", 1923 | " \n", 1924 | " \n", 1925 | " \n", 1926 | " \n", 1927 | " \n", 1928 | " \n", 1929 | " \n", 1930 | " \n", 1931 | " \n", 1932 | " \n", 1933 | " \n", 1934 | " \n", 1935 | " \n", 1936 | " \n", 1937 | " \n", 1938 | " \n", 1939 | " \n", 1940 | " \n", 1941 | " \n", 1942 | " \n", 1943 | " \n", 1944 | " \n", 1945 | " \n", 1946 | " \n", 1947 | " \n", 1948 | " \n", 1949 | " \n", 1950 | " \n", 1951 | " \n", 1952 | " \n", 1953 | " \n", 1954 | " \n", 1955 | " \n", 1956 | " \n", 1957 | " \n", 1958 | " \n", 1959 | " \n", 1960 | " \n", 1961 | " \n", 1962 | " \n", 1963 | " \n", 1964 | " \n", 1965 | " \n", 1966 | " \n", 1967 | " \n", 1968 | " \n", 1969 | " \n", 1970 | " \n", 1971 | " \n", 1972 | " \n", 1973 | " \n", 1974 | " \n", 1975 | " \n", 1976 | " \n", 1977 | " \n", 1978 | " \n", 1979 | " \n", 1980 | " \n", 1981 | " \n", 1982 | " \n", 1983 | " \n", 1984 | " \n", 1985 | " \n", 1986 | " \n", 1987 | " \n", 1988 | " \n", 1989 | " \n", 1990 | " \n", 1991 | " \n", 1992 | " \n", 1993 | " \n", 1994 | " \n", 1995 | " \n", 1996 | " \n", 1997 | " \n", 1998 | " \n", 1999 | " \n", 2000 | " \n", 2001 | " \n", 2002 | " \n", 2003 | " \n", 2004 | " \n", 2005 | " \n", 2006 | " \n", 2007 | " \n", 2008 | " \n", 2009 | " \n", 2010 | " \n", 2011 | " \n", 2012 | " \n", 2013 | " \n", 2014 | " \n", 2015 | " \n", 2016 | " \n", 2017 | " \n", 2018 | " \n", 2019 | " \n", 2020 | " \n", 2021 | " \n", 2022 | " \n", 2023 | " \n", 2024 | " \n", 2025 | " \n", 2026 | " \n", 2027 | " \n", 2028 | " \n", 2029 | " \n", 2030 | " \n", 2031 | " \n", 2032 | " \n", 2033 | " \n", 2034 | " \n", 2035 | " \n", 2036 | " \n", 2037 | " \n", 2038 | " \n", 2039 | " \n", 2040 | " \n", 2041 | " \n", 2042 | " \n", 2043 | " \n", 2044 | " \n", 2045 | " \n", 2046 | " \n", 2047 | " \n", 2048 | " \n", 2049 | " \n", 2050 | " \n", 2051 | " \n", 2052 | " \n", 2053 | " \n", 2054 | " \n", 2055 | " \n", 2056 | " \n", 2057 | " \n", 2058 | " \n", 2059 | " \n", 2060 | " \n", 2061 | " \n", 2062 | " \n", 2063 | " \n", 2064 | " \n", 2065 | " \n", 2066 | " \n", 2067 | " \n", 2068 | " \n", 2069 | " \n", 2070 | " \n", 2071 | " \n", 2072 | " \n", 2073 | " \n", 2074 | " \n", 2075 | " \n", 2076 | " \n", 2077 | " \n", 2078 | " \n", 2079 | " \n", 2080 | " \n", 2081 | " \n", 2082 | " \n", 2083 | " \n", 2084 | " \n", 2085 | " \n", 2086 | " \n", 2087 | " \n", 2088 | " \n", 2089 | " \n", 2090 | " \n", 2091 | " \n", 2092 | " \n", 2093 | " \n", 2094 | " \n", 2095 | " \n", 2096 | " \n", 2097 | " \n", 2098 | " \n", 2099 | " \n", 2100 | " \n", 2101 | " \n", 2102 | " \n", 2103 | " \n", 2104 | " \n", 2105 | " \n", 2106 | " \n", 2107 | " \n", 2108 | " \n", 2109 | " \n", 2110 | " \n", 2111 | " \n", 2112 | " \n", 2113 | " \n", 2114 | " \n", 2115 | " \n", 2116 | " \n", 2117 | " \n", 2118 | " \n", 2119 | " \n", 2120 | " \n", 2121 | " \n", 2122 | " \n", 2123 | " \n", 2124 | " \n", 2125 | " \n", 2126 | " \n", 2127 | " \n", 2128 | " \n", 2129 | " \n", 2130 | " \n", 2131 | " \n", 2132 | " \n", 2133 | " \n", 2134 | " \n", 2135 | " \n", 2136 | " \n", 2137 | " \n", 2138 | " \n", 2139 | " \n", 2140 | " \n", 2141 | " \n", 2142 | " \n", 2143 | " \n", 2144 | " \n", 2145 | " \n", 2146 | " \n", 2147 | " \n", 2148 | " \n", 2149 | " \n", 2150 | " \n", 2151 | " \n", 2152 | " \n", 2153 | " \n", 2154 | " \n", 2155 | " \n", 2156 | " \n", 2157 | " \n", 2158 | " \n", 2159 | " \n", 2160 | " \n", 2161 | " \n", 2162 | " \n", 2163 | " \n", 2164 | " \n", 2165 | " \n", 2166 | " \n", 2167 | " \n", 2168 | " \n", 2169 | " \n", 2170 | " \n", 2171 | " \n", 2172 | " \n", 2173 | " \n", 2174 | " \n", 2175 | " \n", 2176 | " \n", 2177 | " \n", 2178 | " \n", 2179 | " \n", 2180 | " \n", 2181 | " \n", 2182 | " \n", 2183 | " \n", 2184 | " \n", 2185 | " \n", 2186 | " \n", 2187 | " \n", 2188 | " \n", 2189 | " \n", 2190 | " \n", 2191 | " \n", 2192 | " \n", 2193 | " \n", 2194 | " \n", 2195 | " \n", 2196 | " \n", 2197 | " \n", 2198 | " \n", 2199 | " \n", 2200 | " \n", 2201 | " \n", 2202 | " \n", 2203 | " \n", 2204 | " \n", 2205 | " \n", 2206 | " \n", 2207 | " \n", 2208 | " \n", 2209 | " \n", 2210 | " \n", 2211 | " \n", 2212 | " \n", 2213 | " \n", 2214 | " \n", 2215 | " \n", 2216 | " \n", 2217 | " \n", 2218 | " \n", 2219 | " \n", 2220 | " \n", 2221 | " \n", 2222 | " \n", 2223 | " \n", 2224 | " \n", 2225 | " \n", 2226 | " \n", 2227 | " \n", 2228 | " \n", 2229 | " \n", 2230 | " \n", 2231 | " \n", 2232 | " \n", 2233 | " \n", 2234 | " \n", 2235 | " \n", 2236 | " \n", 2237 | " \n", 2238 | " \n", 2239 | " \n", 2240 | " \n", 2241 | " \n", 2242 | " \n", 2243 | " \n", 2244 | " \n", 2245 | " \n", 2246 | " \n", 2247 | " \n", 2248 | " \n", 2249 | " \n", 2250 | " \n", 2251 | " \n", 2252 | " \n", 2253 | " \n", 2254 | " \n", 2255 | " \n", 2256 | " \n", 2257 | " \n", 2258 | " \n", 2259 | " \n", 2260 | " \n", 2261 | " \n", 2262 | " \n", 2263 | " \n", 2264 | " \n", 2265 | " \n", 2266 | " \n", 2267 | " \n", 2268 | " \n", 2269 | " \n", 2270 | " \n", 2271 | " \n", 2272 | " \n", 2273 | " \n", 2274 | " \n", 2275 | " \n", 2276 | " \n", 2277 | " \n", 2278 | " \n", 2279 | " \n", 2280 | " \n", 2281 | " \n", 2282 | " \n", 2283 | " \n", 2284 | " \n", 2285 | " \n", 2286 | " \n", 2287 | " \n", 2288 | " \n", 2289 | " \n", 2290 | " \n", 2291 | " \n", 2292 | " \n", 2293 | " \n", 2294 | " \n", 2295 | " \n", 2296 | " \n", 2297 | " \n", 2298 | " \n", 2299 | " \n", 2300 | " \n", 2301 | " \n", 2302 | " \n", 2303 | " \n", 2304 | " \n", 2305 | " \n", 2306 | " \n", 2307 | " \n", 2308 | " \n", 2309 | " \n", 2310 | " \n", 2311 | " \n", 2312 | " \n", 2313 | " \n", 2314 | " \n", 2315 | " \n", 2316 | " \n", 2317 | " \n", 2318 | " \n", 2319 | " \n", 2320 | " \n", 2321 | " \n", 2322 | " \n", 2323 | " \n", 2324 | " \n", 2325 | " \n", 2326 | " \n", 2327 | " \n", 2328 | " \n", 2329 | " \n", 2330 | " \n", 2331 | " \n", 2332 | " \n", 2333 | " \n", 2334 | " \n", 2335 | " \n", 2336 | " \n", 2337 | " \n", 2338 | " \n", 2339 | " \n", 2340 | " \n", 2341 | " \n", 2342 | " \n", 2343 | " \n", 2344 | " \n", 2345 | " \n", 2346 | " \n", 2347 | " \n", 2348 | " \n", 2349 | " \n", 2350 | " \n", 2351 | " \n", 2352 | " \n", 2353 | " \n", 2354 | " \n", 2355 | " \n", 2356 | " \n", 2357 | " \n", 2358 | " \n", 2359 | " \n", 2360 | " \n", 2361 | " \n", 2362 | " \n", 2363 | " \n", 2364 | " \n", 2365 | " \n", 2366 | " \n", 2367 | " \n", 2368 | " \n", 2369 | " \n", 2370 | " \n", 2371 | " \n", 2372 | " \n", 2373 | " \n", 2374 | " \n", 2375 | " \n", 2376 | " \n", 2377 | " \n", 2378 | " \n", 2379 | " \n", 2380 | " \n", 2381 | " \n", 2382 | " \n", 2383 | " \n", 2384 | " \n", 2385 | " \n", 2386 | " \n", 2387 | " \n", 2388 | " \n", 2389 | " \n", 2390 | " \n", 2391 | " \n", 2392 | " \n", 2393 | " \n", 2394 | " \n", 2395 | " \n", 2396 | " \n", 2397 | " \n", 2398 | " \n", 2399 | " \n", 2400 | " \n", 2401 | " \n", 2402 | " \n", 2403 | " \n", 2404 | " \n", 2405 | " \n", 2406 | " \n", 2407 | " \n", 2408 | " \n", 2409 | " \n", 2410 | " \n", 2411 | " \n", 2412 | " \n", 2413 | " \n", 2414 | " \n", 2415 | " \n", 2416 | "
fieldsavg(04_0_VH)avg(04_0_VV)avg(04_1_VH)avg(04_1_VV)avg(04_2_VH)avg(04_2_VV)avg(04_3_VH)avg(04_3_VV)avg(04_4_VH)avg(04_4_VV)avg(04_5_VH)avg(04_5_VV)avg(05_0_VH)avg(05_0_VV)avg(05_1_VH)avg(05_1_VV)avg(05_2_VH)avg(05_2_VV)avg(05_3_VH)avg(05_3_VV)avg(05_4_VH)avg(05_4_VV)avg(06_0_VH)avg(06_0_VV)avg(06_1_VH)avg(06_1_VV)avg(06_2_VH)avg(06_2_VV)avg(06_3_VH)avg(06_3_VV)avg(06_4_VH)avg(06_4_VV)avg(07_0_VH)avg(07_0_VV)avg(07_1_VH)avg(07_1_VV)avg(07_2_VH)avg(07_2_VV)avg(07_3_VH)...avg(08_1_VH)avg(08_1_VV)avg(08_2_VH)avg(08_2_VV)avg(08_3_VH)avg(08_3_VV)avg(08_4_VH)avg(08_4_VV)avg(09_0_VH)avg(09_0_VV)avg(09_1_VH)avg(09_1_VV)avg(09_2_VH)avg(09_2_VV)avg(09_3_VH)avg(09_3_VV)avg(09_4_VH)avg(09_4_VV)avg(10_0_VH)avg(10_0_VV)avg(10_1_VH)avg(10_1_VV)avg(10_2_VH)avg(10_2_VV)avg(10_3_VH)avg(10_3_VV)avg(10_4_VH)avg(10_4_VV)avg(11_0_VH)avg(11_0_VV)avg(11_1_VH)avg(11_1_VV)avg(11_2_VH)avg(11_2_VV)avg(11_3_VH)avg(11_3_VV)avg(11_4_VH)avg(11_4_VV)avg(fields)avg(y)
087958.02.67682719.9409022.95458816.9147741.51726317.3178852.62581615.0634532.49020219.4432352.07807213.4961123.02643924.2783833.16547420.3256614.28553729.9822713.80746524.8301713.39035828.8500782.19968917.4986004.49486853.8668743.99098029.8674963.54961141.7580093.65598821.9732502.74681222.4923793.85163320.7433904.14961131.1402804.115708...6.01648523.4161745.15987617.3555215.14432319.1751173.6093319.6143084.09766711.3222404.80684311.5688965.04385714.1589425.23452613.9751175.29922216.2382585.26936214.1598764.78911417.7648525.26283019.4538103.97387216.5259724.18413713.9020222.56236415.1480563.33312614.9014002.62923817.4771383.06251914.7922242.81399718.10171187958.06.0
126338.05.60306026.8015302.64939927.3940984.03497320.696393NaNNaNNaNNaNNaNNaN3.61879821.3020774.79497325.0688525.04568327.548634NaNNaNNaNNaN3.81355242.7427323.39016431.265792NaNNaNNaNNaNNaNNaN3.40524617.9954104.08786925.9038253.80874316.022295NaN...4.26076515.931585NaNNaNNaNNaNNaNNaN4.26841511.6203284.16437211.8303835.48983615.177049NaNNaNNaNNaN5.15060115.4448093.14076515.039781NaNNaNNaNNaNNaNNaN2.43497315.2832792.28000015.9307103.11082017.633443NaNNaNNaNNaN26338.07.0
255436.01.37469612.5236841.22611312.2348181.43259112.479352NaNNaNNaNNaNNaNNaN4.42327926.4192315.00668028.8856284.18137726.215992NaNNaNNaNNaN4.68704535.2696364.10870428.842713NaNNaNNaNNaNNaNNaN4.37408924.3299608.35040542.9864379.07145736.728340NaN...8.34493925.227530NaNNaNNaNNaNNaNNaN9.09534420.19514214.56315832.72004017.94655938.577733NaNNaNNaNNaN12.28198428.0921057.10526318.811741NaNNaNNaNNaNNaNNaN3.45546613.4692312.97105315.1412962.60081014.885628NaNNaNNaNNaN55436.08.0
3101335.01.5146489.3586701.2581167.9738721.6286628.5898651.3776728.0213781.79414110.2169447.68646144.3824231.74346811.7165481.3855909.5003961.77197112.0451314.84639729.1733971.90894713.0205861.38717310.5241493.22802929.8582743.02533721.1140143.15914520.2050673.87648520.4821853.36975514.8171024.91528122.5431515.93270025.9002385.742676...6.45843221.0570075.04592217.7078385.96912118.8725263.90973913.2533654.02612810.7838484.82897915.5201903.9445769.9952494.44180514.8400635.03008713.4726848.27157621.7244665.29691216.0221696.55581922.5241493.80443413.3721303.05859111.5954084.06888423.4267621.7933499.3072051.6191619.4030091.3388768.8796521.65399810.286619101335.07.0
413268.03.00000019.5000005.16666712.8333333.66666720.6666672.00000010.8333333.66666718.6666672.33333314.3333332.83333320.6666671.66666713.5000002.33333325.1666674.16666717.5000002.00000018.1666673.33333320.5000006.00000058.0000003.83333333.3333332.16666735.8333332.33333321.1666674.33333329.0000003.83333328.8333335.83333317.8333334.833333...3.33333332.5000007.50000022.3333334.50000019.6666674.3333339.1666672.16666713.1666678.50000016.6666673.83333322.1666672.83333321.0000001.33333328.8333332.50000027.1666672.50000027.1666673.33333328.6666672.16666720.3333332.16666711.0000002.33333327.3333333.00000015.5000005.33333324.0000009.16666742.3333335.00000023.16666713268.02.0
\n", 2417 | "

5 rows × 85 columns

\n", 2418 | "" 2419 | ], 2420 | "text/plain": [ 2421 | " fields avg(04_0_VH) avg(04_0_VV) ... avg(11_4_VV) avg(fields) avg(y)\n", 2422 | "0 87958.0 2.676827 19.940902 ... 18.101711 87958.0 6.0\n", 2423 | "1 26338.0 5.603060 26.801530 ... NaN 26338.0 7.0\n", 2424 | "2 55436.0 1.374696 12.523684 ... NaN 55436.0 8.0\n", 2425 | "3 101335.0 1.514648 9.358670 ... 10.286619 101335.0 7.0\n", 2426 | "4 13268.0 3.000000 19.500000 ... 23.166667 13268.0 2.0\n", 2427 | "\n", 2428 | "[5 rows x 85 columns]" 2429 | ] 2430 | }, 2431 | "metadata": {}, 2432 | "execution_count": 21 2433 | } 2434 | ] 2435 | }, 2436 | { 2437 | "cell_type": "code", 2438 | "metadata": { 2439 | "colab": { 2440 | "base_uri": "https://localhost:8080/", 2441 | "height": 252 2442 | }, 2443 | "id": "cTIe-_-jfNK_", 2444 | "outputId": "75d3f1b7-42f7-4828-dc25-52fbb1aa97a3" 2445 | }, 2446 | "source": [ 2447 | "sar_train = final_data_mean.iloc[:, 1:]\n", 2448 | "sar_train.columns = final_data.columns\n", 2449 | "sar_train.y = round(sar_train.y).astype(int)\n", 2450 | "sar_train = sar_train[sar_train.y != 0].reset_index(drop = True)\n", 2451 | "sar_train.head()" 2452 | ], 2453 | "execution_count": null, 2454 | "outputs": [ 2455 | { 2456 | "output_type": "execute_result", 2457 | "data": { 2458 | "text/html": [ 2459 | "
\n", 2460 | "\n", 2473 | "\n", 2474 | " \n", 2475 | " \n", 2476 | " \n", 2477 | " \n", 2478 | " \n", 2479 | " \n", 2480 | " \n", 2481 | " \n", 2482 | " \n", 2483 | " \n", 2484 | " \n", 2485 | " \n", 2486 | " \n", 2487 | " \n", 2488 | " \n", 2489 | " \n", 2490 | " \n", 2491 | " \n", 2492 | " \n", 2493 | " \n", 2494 | " \n", 2495 | " \n", 2496 | " \n", 2497 | " \n", 2498 | " \n", 2499 | " \n", 2500 | " \n", 2501 | " \n", 2502 | " \n", 2503 | " \n", 2504 | " \n", 2505 | " \n", 2506 | " \n", 2507 | " \n", 2508 | " \n", 2509 | " \n", 2510 | " \n", 2511 | " \n", 2512 | " \n", 2513 | " \n", 2514 | " \n", 2515 | " \n", 2516 | " \n", 2517 | " \n", 2518 | " \n", 2519 | " \n", 2520 | " \n", 2521 | " \n", 2522 | " \n", 2523 | " \n", 2524 | " \n", 2525 | " \n", 2526 | " \n", 2527 | " \n", 2528 | " \n", 2529 | " \n", 2530 | " \n", 2531 | " \n", 2532 | " \n", 2533 | " \n", 2534 | " \n", 2535 | " \n", 2536 | " \n", 2537 | " \n", 2538 | " \n", 2539 | " \n", 2540 | " \n", 2541 | " \n", 2542 | " \n", 2543 | " \n", 2544 | " \n", 2545 | " \n", 2546 | " \n", 2547 | " \n", 2548 | " \n", 2549 | " \n", 2550 | " \n", 2551 | " \n", 2552 | " \n", 2553 | " \n", 2554 | " \n", 2555 | " \n", 2556 | " \n", 2557 | " \n", 2558 | " \n", 2559 | " \n", 2560 | " \n", 2561 | " \n", 2562 | " \n", 2563 | " \n", 2564 | " \n", 2565 | " \n", 2566 | " \n", 2567 | " \n", 2568 | " \n", 2569 | " \n", 2570 | " \n", 2571 | " \n", 2572 | " \n", 2573 | " \n", 2574 | " \n", 2575 | " \n", 2576 | " \n", 2577 | " \n", 2578 | " \n", 2579 | " \n", 2580 | " \n", 2581 | " \n", 2582 | " \n", 2583 | " \n", 2584 | " \n", 2585 | " \n", 2586 | " \n", 2587 | " \n", 2588 | " \n", 2589 | " \n", 2590 | " \n", 2591 | " \n", 2592 | " \n", 2593 | " \n", 2594 | " \n", 2595 | " \n", 2596 | " \n", 2597 | " \n", 2598 | " \n", 2599 | " \n", 2600 | " \n", 2601 | " \n", 2602 | " \n", 2603 | " \n", 2604 | " \n", 2605 | " \n", 2606 | " \n", 2607 | " \n", 2608 | " \n", 2609 | " \n", 2610 | " \n", 2611 | " \n", 2612 | " \n", 2613 | " \n", 2614 | " \n", 2615 | " \n", 2616 | " \n", 2617 | " \n", 2618 | " \n", 2619 | " \n", 2620 | " \n", 2621 | " \n", 2622 | " \n", 2623 | " \n", 2624 | " \n", 2625 | " \n", 2626 | " \n", 2627 | " \n", 2628 | " \n", 2629 | " \n", 2630 | " \n", 2631 | " \n", 2632 | " \n", 2633 | " \n", 2634 | " \n", 2635 | " \n", 2636 | " \n", 2637 | " \n", 2638 | " \n", 2639 | " \n", 2640 | " \n", 2641 | " \n", 2642 | " \n", 2643 | " \n", 2644 | " \n", 2645 | " \n", 2646 | " \n", 2647 | " \n", 2648 | " \n", 2649 | " \n", 2650 | " \n", 2651 | " \n", 2652 | " \n", 2653 | " \n", 2654 | " \n", 2655 | " \n", 2656 | " \n", 2657 | " \n", 2658 | " \n", 2659 | " \n", 2660 | " \n", 2661 | " \n", 2662 | " \n", 2663 | " \n", 2664 | " \n", 2665 | " \n", 2666 | " \n", 2667 | " \n", 2668 | " \n", 2669 | " \n", 2670 | " \n", 2671 | " \n", 2672 | " \n", 2673 | " \n", 2674 | " \n", 2675 | " \n", 2676 | " \n", 2677 | " \n", 2678 | " \n", 2679 | " \n", 2680 | " \n", 2681 | " \n", 2682 | " \n", 2683 | " \n", 2684 | " \n", 2685 | " \n", 2686 | " \n", 2687 | " \n", 2688 | " \n", 2689 | " \n", 2690 | " \n", 2691 | " \n", 2692 | " \n", 2693 | " \n", 2694 | " \n", 2695 | " \n", 2696 | " \n", 2697 | " \n", 2698 | " \n", 2699 | " \n", 2700 | " \n", 2701 | " \n", 2702 | " \n", 2703 | " \n", 2704 | " \n", 2705 | " \n", 2706 | " \n", 2707 | " \n", 2708 | " \n", 2709 | " \n", 2710 | " \n", 2711 | " \n", 2712 | " \n", 2713 | " \n", 2714 | " \n", 2715 | " \n", 2716 | " \n", 2717 | " \n", 2718 | " \n", 2719 | " \n", 2720 | " \n", 2721 | " \n", 2722 | " \n", 2723 | " \n", 2724 | " \n", 2725 | " \n", 2726 | " \n", 2727 | " \n", 2728 | " \n", 2729 | " \n", 2730 | " \n", 2731 | " \n", 2732 | " \n", 2733 | " \n", 2734 | " \n", 2735 | " \n", 2736 | " \n", 2737 | " \n", 2738 | " \n", 2739 | " \n", 2740 | " \n", 2741 | " \n", 2742 | " \n", 2743 | " \n", 2744 | " \n", 2745 | " \n", 2746 | " \n", 2747 | " \n", 2748 | " \n", 2749 | " \n", 2750 | " \n", 2751 | " \n", 2752 | " \n", 2753 | " \n", 2754 | " \n", 2755 | " \n", 2756 | " \n", 2757 | " \n", 2758 | " \n", 2759 | " \n", 2760 | " \n", 2761 | " \n", 2762 | " \n", 2763 | " \n", 2764 | " \n", 2765 | " \n", 2766 | " \n", 2767 | " \n", 2768 | " \n", 2769 | " \n", 2770 | " \n", 2771 | " \n", 2772 | " \n", 2773 | " \n", 2774 | " \n", 2775 | " \n", 2776 | " \n", 2777 | " \n", 2778 | " \n", 2779 | " \n", 2780 | " \n", 2781 | " \n", 2782 | " \n", 2783 | " \n", 2784 | " \n", 2785 | " \n", 2786 | " \n", 2787 | " \n", 2788 | " \n", 2789 | " \n", 2790 | " \n", 2791 | " \n", 2792 | " \n", 2793 | " \n", 2794 | " \n", 2795 | " \n", 2796 | " \n", 2797 | " \n", 2798 | " \n", 2799 | " \n", 2800 | " \n", 2801 | " \n", 2802 | " \n", 2803 | " \n", 2804 | " \n", 2805 | " \n", 2806 | " \n", 2807 | " \n", 2808 | " \n", 2809 | " \n", 2810 | " \n", 2811 | " \n", 2812 | " \n", 2813 | " \n", 2814 | " \n", 2815 | " \n", 2816 | " \n", 2817 | " \n", 2818 | " \n", 2819 | " \n", 2820 | " \n", 2821 | " \n", 2822 | " \n", 2823 | " \n", 2824 | " \n", 2825 | " \n", 2826 | " \n", 2827 | " \n", 2828 | " \n", 2829 | " \n", 2830 | " \n", 2831 | " \n", 2832 | " \n", 2833 | " \n", 2834 | " \n", 2835 | " \n", 2836 | " \n", 2837 | " \n", 2838 | " \n", 2839 | " \n", 2840 | " \n", 2841 | " \n", 2842 | " \n", 2843 | " \n", 2844 | " \n", 2845 | " \n", 2846 | " \n", 2847 | " \n", 2848 | " \n", 2849 | " \n", 2850 | " \n", 2851 | " \n", 2852 | " \n", 2853 | " \n", 2854 | " \n", 2855 | " \n", 2856 | " \n", 2857 | " \n", 2858 | " \n", 2859 | " \n", 2860 | " \n", 2861 | " \n", 2862 | " \n", 2863 | " \n", 2864 | " \n", 2865 | " \n", 2866 | " \n", 2867 | " \n", 2868 | " \n", 2869 | " \n", 2870 | " \n", 2871 | " \n", 2872 | " \n", 2873 | " \n", 2874 | " \n", 2875 | " \n", 2876 | " \n", 2877 | " \n", 2878 | " \n", 2879 | " \n", 2880 | " \n", 2881 | " \n", 2882 | " \n", 2883 | " \n", 2884 | " \n", 2885 | " \n", 2886 | " \n", 2887 | " \n", 2888 | " \n", 2889 | " \n", 2890 | " \n", 2891 | " \n", 2892 | " \n", 2893 | " \n", 2894 | " \n", 2895 | " \n", 2896 | " \n", 2897 | " \n", 2898 | " \n", 2899 | " \n", 2900 | " \n", 2901 | " \n", 2902 | " \n", 2903 | " \n", 2904 | " \n", 2905 | " \n", 2906 | " \n", 2907 | " \n", 2908 | " \n", 2909 | " \n", 2910 | " \n", 2911 | " \n", 2912 | " \n", 2913 | " \n", 2914 | " \n", 2915 | " \n", 2916 | " \n", 2917 | " \n", 2918 | " \n", 2919 | " \n", 2920 | " \n", 2921 | " \n", 2922 | " \n", 2923 | " \n", 2924 | " \n", 2925 | " \n", 2926 | " \n", 2927 | " \n", 2928 | " \n", 2929 | " \n", 2930 | " \n", 2931 | " \n", 2932 | " \n", 2933 | " \n", 2934 | " \n", 2935 | " \n", 2936 | " \n", 2937 | " \n", 2938 | " \n", 2939 | " \n", 2940 | " \n", 2941 | " \n", 2942 | " \n", 2943 | " \n", 2944 | " \n", 2945 | " \n", 2946 | " \n", 2947 | " \n", 2948 | " \n", 2949 | " \n", 2950 | " \n", 2951 | " \n", 2952 | " \n", 2953 | " \n", 2954 | " \n", 2955 | " \n", 2956 | " \n", 2957 | " \n", 2958 | " \n", 2959 | " \n", 2960 | " \n", 2961 | " \n", 2962 | " \n", 2963 | " \n", 2964 | " \n", 2965 | " \n", 2966 | " \n", 2967 | " \n", 2968 | " \n", 2969 | " \n", 2970 | " \n", 2971 | " \n", 2972 | " \n", 2973 | " \n", 2974 | " \n", 2975 | " \n", 2976 | " \n", 2977 | " \n", 2978 | " \n", 2979 | " \n", 2980 | " \n", 2981 | " \n", 2982 | "
04_0_VH04_0_VV04_1_VH04_1_VV04_2_VH04_2_VV04_3_VH04_3_VV04_4_VH04_4_VV04_5_VH04_5_VV05_0_VH05_0_VV05_1_VH05_1_VV05_2_VH05_2_VV05_3_VH05_3_VV05_4_VH05_4_VV06_0_VH06_0_VV06_1_VH06_1_VV06_2_VH06_2_VV06_3_VH06_3_VV06_4_VH06_4_VV07_0_VH07_0_VV07_1_VH07_1_VV07_2_VH07_2_VV07_3_VH07_3_VV...08_1_VH08_1_VV08_2_VH08_2_VV08_3_VH08_3_VV08_4_VH08_4_VV09_0_VH09_0_VV09_1_VH09_1_VV09_2_VH09_2_VV09_3_VH09_3_VV09_4_VH09_4_VV10_0_VH10_0_VV10_1_VH10_1_VV10_2_VH10_2_VV10_3_VH10_3_VV10_4_VH10_4_VV11_0_VH11_0_VV11_1_VH11_1_VV11_2_VH11_2_VV11_3_VH11_3_VV11_4_VH11_4_VVfieldsy
02.67682719.9409022.95458816.9147741.51726317.3178852.62581615.0634532.49020219.4432352.07807213.4961123.02643924.2783833.16547420.3256614.28553729.9822713.80746524.8301713.39035828.8500782.19968917.4986004.49486853.8668743.99098029.8674963.54961141.7580093.65598821.9732502.74681222.4923793.85163320.7433904.14961131.1402804.11570815.497356...6.01648523.4161745.15987617.3555215.14432319.1751173.6093319.6143084.09766711.3222404.80684311.5688965.04385714.1589425.23452613.9751175.29922216.2382585.26936214.1598764.78911417.7648525.26283019.4538103.97387216.5259724.18413713.9020222.56236415.1480563.33312614.9014002.62923817.4771383.06251914.7922242.81399718.10171187958.06
15.60306026.8015302.64939927.3940984.03497320.696393NaNNaNNaNNaNNaNNaN3.61879821.3020774.79497325.0688525.04568327.548634NaNNaNNaNNaN3.81355242.7427323.39016431.265792NaNNaNNaNNaNNaNNaN3.40524617.9954104.08786925.9038253.80874316.022295NaNNaN...4.26076515.931585NaNNaNNaNNaNNaNNaN4.26841511.6203284.16437211.8303835.48983615.177049NaNNaNNaNNaN5.15060115.4448093.14076515.039781NaNNaNNaNNaNNaNNaN2.43497315.2832792.28000015.9307103.11082017.633443NaNNaNNaNNaN26338.07
21.37469612.5236841.22611312.2348181.43259112.479352NaNNaNNaNNaNNaNNaN4.42327926.4192315.00668028.8856284.18137726.215992NaNNaNNaNNaN4.68704535.2696364.10870428.842713NaNNaNNaNNaNNaNNaN4.37408924.3299608.35040542.9864379.07145736.728340NaNNaN...8.34493925.227530NaNNaNNaNNaNNaNNaN9.09534420.19514214.56315832.72004017.94655938.577733NaNNaNNaNNaN12.28198428.0921057.10526318.811741NaNNaNNaNNaNNaNNaN3.45546613.4692312.97105315.1412962.60081014.885628NaNNaNNaNNaN55436.08
31.5146489.3586701.2581167.9738721.6286628.5898651.3776728.0213781.79414110.2169447.68646144.3824231.74346811.7165481.3855909.5003961.77197112.0451314.84639729.1733971.90894713.0205861.38717310.5241493.22802929.8582743.02533721.1140143.15914520.2050673.87648520.4821853.36975514.8171024.91528122.5431515.93270025.9002385.74267620.196358...6.45843221.0570075.04592217.7078385.96912118.8725263.90973913.2533654.02612810.7838484.82897915.5201903.9445769.9952494.44180514.8400635.03008713.4726848.27157621.7244665.29691216.0221696.55581922.5241493.80443413.3721303.05859111.5954084.06888423.4267621.7933499.3072051.6191619.4030091.3388768.8796521.65399810.286619101335.07
43.00000019.5000005.16666712.8333333.66666720.6666672.00000010.8333333.66666718.6666672.33333314.3333332.83333320.6666671.66666713.5000002.33333325.1666674.16666717.5000002.00000018.1666673.33333320.5000006.00000058.0000003.83333333.3333332.16666735.8333332.33333321.1666674.33333329.0000003.83333328.8333335.83333317.8333334.83333320.333333...3.33333332.5000007.50000022.3333334.50000019.6666674.3333339.1666672.16666713.1666678.50000016.6666673.83333322.1666672.83333321.0000001.33333328.8333332.50000027.1666672.50000027.1666673.33333328.6666672.16666720.3333332.16666711.0000002.33333327.3333333.00000015.5000005.33333324.0000009.16666742.3333335.00000023.16666713268.02
\n", 2983 | "

5 rows × 84 columns

\n", 2984 | "
" 2985 | ], 2986 | "text/plain": [ 2987 | " 04_0_VH 04_0_VV 04_1_VH 04_1_VV ... 11_4_VH 11_4_VV fields y\n", 2988 | "0 2.676827 19.940902 2.954588 16.914774 ... 2.813997 18.101711 87958.0 6\n", 2989 | "1 5.603060 26.801530 2.649399 27.394098 ... NaN NaN 26338.0 7\n", 2990 | "2 1.374696 12.523684 1.226113 12.234818 ... NaN NaN 55436.0 8\n", 2991 | "3 1.514648 9.358670 1.258116 7.973872 ... 1.653998 10.286619 101335.0 7\n", 2992 | "4 3.000000 19.500000 5.166667 12.833333 ... 5.000000 23.166667 13268.0 2\n", 2993 | "\n", 2994 | "[5 rows x 84 columns]" 2995 | ] 2996 | }, 2997 | "metadata": {}, 2998 | "execution_count": 41 2999 | } 3000 | ] 3001 | }, 3002 | { 3003 | "cell_type": "code", 3004 | "metadata": { 3005 | "colab": { 3006 | "base_uri": "https://localhost:8080/" 3007 | }, 3008 | "id": "Ox20DSAEfyyG", 3009 | "outputId": "64bdf921-d532-42f8-c280-3df1b8061138" 3010 | }, 3011 | "source": [ 3012 | "sar_train.y.unique()" 3013 | ], 3014 | "execution_count": null, 3015 | "outputs": [ 3016 | { 3017 | "output_type": "execute_result", 3018 | "data": { 3019 | "text/plain": [ 3020 | "array([6, 7, 8, 2, 5, 4, 1, 3, 9])" 3021 | ] 3022 | }, 3023 | "metadata": {}, 3024 | "execution_count": 42 3025 | } 3026 | ] 3027 | }, 3028 | { 3029 | "cell_type": "code", 3030 | "metadata": { 3031 | "id": "N5PwFjR0hKZY" 3032 | }, 3033 | "source": [ 3034 | "sar_train.to_csv('/content/drive/MyDrive/CompeData/Radiant/s1_all_data/sar_train.csv', index = False)" 3035 | ], 3036 | "execution_count": null, 3037 | "outputs": [] 3038 | }, 3039 | { 3040 | "cell_type": "code", 3041 | "metadata": { 3042 | "colab": { 3043 | "base_uri": "https://localhost:8080/", 3044 | "height": 82, 3045 | "referenced_widgets": [ 3046 | "c05b441e442f4c2396c9ba920423e05a", 3047 | "80ac4e5eaa574d1d9796dafb61c968b1", 3048 | "dbdc3f534915460d8c094fe3fbf6d3e5", 3049 | "a930671d0de84ca093dcb8b4e3cb1d0d", 3050 | "62b1340ef5b146a69f5426ddd31a132e", 3051 | "b760c18a75cb4a3785b0aa429ac21660", 3052 | "c02d098387c44ac899bcc1a5ef97aeaa", 3053 | "81305ee731aa4b958c71a180aedcc7a2", 3054 | "f37f5d60c87b4652b46b6175882c9caa", 3055 | "4843dbc1f2dd4701a136f87dfa1b940e", 3056 | "e7f81c8eee9e460faa0c2a8eba58f3c9" 3057 | ] 3058 | }, 3059 | "id": "lfwLN-mbhYhb", 3060 | "outputId": "2fa25d79-cfe8-4a5f-af3d-35ff314c90fb" 3061 | }, 3062 | "source": [ 3063 | "%%time\n", 3064 | "dfs = []\n", 3065 | "for i in tqdm_notebook(glob.glob('/content/drive/MyDrive/CompeData/Radiant/s1_all_data/s1_test*.csv')):\n", 3066 | " dfs.append(spark.read.csv(path = i, sep =',', encoding = 'UTF-8', comment = None, header = True))" 3067 | ], 3068 | "execution_count": null, 3069 | "outputs": [ 3070 | { 3071 | "output_type": "display_data", 3072 | "data": { 3073 | "application/vnd.jupyter.widget-view+json": { 3074 | "model_id": "c05b441e442f4c2396c9ba920423e05a", 3075 | "version_minor": 0, 3076 | "version_major": 2 3077 | }, 3078 | "text/plain": [ 3079 | " 0%| | 0/5 [00:00\n", 3286 | "\n", 3299 | "\n", 3300 | " \n", 3301 | " \n", 3302 | " \n", 3303 | " \n", 3304 | " \n", 3305 | " \n", 3306 | " \n", 3307 | " \n", 3308 | " \n", 3309 | " \n", 3310 | " \n", 3311 | " \n", 3312 | " \n", 3313 | " \n", 3314 | " \n", 3315 | " \n", 3316 | " \n", 3317 | " \n", 3318 | " \n", 3319 | " \n", 3320 | " \n", 3321 | " \n", 3322 | " \n", 3323 | " \n", 3324 | " \n", 3325 | " \n", 3326 | " \n", 3327 | " \n", 3328 | " \n", 3329 | " \n", 3330 | " \n", 3331 | " \n", 3332 | " \n", 3333 | " \n", 3334 | " \n", 3335 | " \n", 3336 | " \n", 3337 | " \n", 3338 | " \n", 3339 | " \n", 3340 | " \n", 3341 | " \n", 3342 | " \n", 3343 | " \n", 3344 | " \n", 3345 | " \n", 3346 | " \n", 3347 | " \n", 3348 | " \n", 3349 | " \n", 3350 | " \n", 3351 | " \n", 3352 | " \n", 3353 | " \n", 3354 | " \n", 3355 | " \n", 3356 | " \n", 3357 | " \n", 3358 | " \n", 3359 | " \n", 3360 | " \n", 3361 | " \n", 3362 | " \n", 3363 | " \n", 3364 | " \n", 3365 | " \n", 3366 | " \n", 3367 | " \n", 3368 | " \n", 3369 | " \n", 3370 | " \n", 3371 | " \n", 3372 | " \n", 3373 | " \n", 3374 | " \n", 3375 | " \n", 3376 | " \n", 3377 | " \n", 3378 | " \n", 3379 | " \n", 3380 | " \n", 3381 | " \n", 3382 | " \n", 3383 | " \n", 3384 | " \n", 3385 | " \n", 3386 | " \n", 3387 | " \n", 3388 | " \n", 3389 | " \n", 3390 | " \n", 3391 | " \n", 3392 | " \n", 3393 | " \n", 3394 | " \n", 3395 | " \n", 3396 | " \n", 3397 | " \n", 3398 | " \n", 3399 | " \n", 3400 | " \n", 3401 | " \n", 3402 | " \n", 3403 | " \n", 3404 | " \n", 3405 | " \n", 3406 | " \n", 3407 | " \n", 3408 | " \n", 3409 | " \n", 3410 | " \n", 3411 | " \n", 3412 | " \n", 3413 | " \n", 3414 | " \n", 3415 | " \n", 3416 | " \n", 3417 | " \n", 3418 | " \n", 3419 | " \n", 3420 | " \n", 3421 | " \n", 3422 | " \n", 3423 | " \n", 3424 | " \n", 3425 | " \n", 3426 | " \n", 3427 | " \n", 3428 | " \n", 3429 | " \n", 3430 | " \n", 3431 | " \n", 3432 | " \n", 3433 | " \n", 3434 | " \n", 3435 | " \n", 3436 | " \n", 3437 | " \n", 3438 | " \n", 3439 | " \n", 3440 | " \n", 3441 | " \n", 3442 | " \n", 3443 | " \n", 3444 | " \n", 3445 | " \n", 3446 | " \n", 3447 | " \n", 3448 | " \n", 3449 | " \n", 3450 | " \n", 3451 | " \n", 3452 | " \n", 3453 | " \n", 3454 | " \n", 3455 | " \n", 3456 | " \n", 3457 | " \n", 3458 | " \n", 3459 | " \n", 3460 | " \n", 3461 | " \n", 3462 | " \n", 3463 | " \n", 3464 | " \n", 3465 | " \n", 3466 | " \n", 3467 | " \n", 3468 | " \n", 3469 | " \n", 3470 | " \n", 3471 | " \n", 3472 | " \n", 3473 | " \n", 3474 | " \n", 3475 | " \n", 3476 | " \n", 3477 | " \n", 3478 | " \n", 3479 | " \n", 3480 | " \n", 3481 | " \n", 3482 | " \n", 3483 | " \n", 3484 | " \n", 3485 | " \n", 3486 | " \n", 3487 | " \n", 3488 | " \n", 3489 | " \n", 3490 | " \n", 3491 | " \n", 3492 | " \n", 3493 | " \n", 3494 | " \n", 3495 | " \n", 3496 | " \n", 3497 | " \n", 3498 | " \n", 3499 | " \n", 3500 | " \n", 3501 | " \n", 3502 | " \n", 3503 | " \n", 3504 | " \n", 3505 | " \n", 3506 | " \n", 3507 | " \n", 3508 | " \n", 3509 | " \n", 3510 | " \n", 3511 | " \n", 3512 | " \n", 3513 | " \n", 3514 | " \n", 3515 | " \n", 3516 | " \n", 3517 | " \n", 3518 | " \n", 3519 | " \n", 3520 | " \n", 3521 | " \n", 3522 | " \n", 3523 | " \n", 3524 | " \n", 3525 | " \n", 3526 | " \n", 3527 | " \n", 3528 | " \n", 3529 | " \n", 3530 | " \n", 3531 | " \n", 3532 | " \n", 3533 | " \n", 3534 | " \n", 3535 | " \n", 3536 | " \n", 3537 | " \n", 3538 | " \n", 3539 | " \n", 3540 | " \n", 3541 | " \n", 3542 | " \n", 3543 | " \n", 3544 | " \n", 3545 | " \n", 3546 | " \n", 3547 | " \n", 3548 | " \n", 3549 | " \n", 3550 | " \n", 3551 | " \n", 3552 | " \n", 3553 | " \n", 3554 | " \n", 3555 | " \n", 3556 | " \n", 3557 | " \n", 3558 | " \n", 3559 | " \n", 3560 | " \n", 3561 | " \n", 3562 | " \n", 3563 | " \n", 3564 | " \n", 3565 | " \n", 3566 | " \n", 3567 | " \n", 3568 | " \n", 3569 | " \n", 3570 | " \n", 3571 | " \n", 3572 | " \n", 3573 | " \n", 3574 | " \n", 3575 | " \n", 3576 | " \n", 3577 | " \n", 3578 | " \n", 3579 | " \n", 3580 | " \n", 3581 | " \n", 3582 | " \n", 3583 | " \n", 3584 | " \n", 3585 | " \n", 3586 | " \n", 3587 | " \n", 3588 | " \n", 3589 | " \n", 3590 | " \n", 3591 | " \n", 3592 | " \n", 3593 | " \n", 3594 | " \n", 3595 | " \n", 3596 | " \n", 3597 | " \n", 3598 | " \n", 3599 | " \n", 3600 | " \n", 3601 | " \n", 3602 | " \n", 3603 | " \n", 3604 | " \n", 3605 | " \n", 3606 | " \n", 3607 | " \n", 3608 | " \n", 3609 | " \n", 3610 | " \n", 3611 | " \n", 3612 | " \n", 3613 | " \n", 3614 | " \n", 3615 | " \n", 3616 | " \n", 3617 | " \n", 3618 | " \n", 3619 | " \n", 3620 | " \n", 3621 | " \n", 3622 | " \n", 3623 | " \n", 3624 | " \n", 3625 | " \n", 3626 | " \n", 3627 | " \n", 3628 | " \n", 3629 | " \n", 3630 | " \n", 3631 | " \n", 3632 | " \n", 3633 | " \n", 3634 | " \n", 3635 | " \n", 3636 | " \n", 3637 | " \n", 3638 | " \n", 3639 | " \n", 3640 | " \n", 3641 | " \n", 3642 | " \n", 3643 | " \n", 3644 | " \n", 3645 | " \n", 3646 | " \n", 3647 | " \n", 3648 | " \n", 3649 | " \n", 3650 | " \n", 3651 | " \n", 3652 | " \n", 3653 | " \n", 3654 | " \n", 3655 | " \n", 3656 | " \n", 3657 | " \n", 3658 | " \n", 3659 | " \n", 3660 | " \n", 3661 | " \n", 3662 | " \n", 3663 | " \n", 3664 | " \n", 3665 | " \n", 3666 | " \n", 3667 | " \n", 3668 | " \n", 3669 | " \n", 3670 | " \n", 3671 | " \n", 3672 | " \n", 3673 | " \n", 3674 | " \n", 3675 | " \n", 3676 | " \n", 3677 | " \n", 3678 | " \n", 3679 | " \n", 3680 | " \n", 3681 | " \n", 3682 | " \n", 3683 | " \n", 3684 | " \n", 3685 | " \n", 3686 | " \n", 3687 | " \n", 3688 | " \n", 3689 | " \n", 3690 | " \n", 3691 | " \n", 3692 | " \n", 3693 | " \n", 3694 | " \n", 3695 | " \n", 3696 | " \n", 3697 | " \n", 3698 | " \n", 3699 | " \n", 3700 | " \n", 3701 | " \n", 3702 | " \n", 3703 | " \n", 3704 | " \n", 3705 | " \n", 3706 | " \n", 3707 | " \n", 3708 | " \n", 3709 | " \n", 3710 | " \n", 3711 | " \n", 3712 | " \n", 3713 | " \n", 3714 | " \n", 3715 | " \n", 3716 | " \n", 3717 | " \n", 3718 | " \n", 3719 | " \n", 3720 | " \n", 3721 | " \n", 3722 | " \n", 3723 | " \n", 3724 | " \n", 3725 | " \n", 3726 | " \n", 3727 | " \n", 3728 | " \n", 3729 | " \n", 3730 | " \n", 3731 | " \n", 3732 | " \n", 3733 | " \n", 3734 | " \n", 3735 | " \n", 3736 | " \n", 3737 | " \n", 3738 | " \n", 3739 | " \n", 3740 | " \n", 3741 | " \n", 3742 | " \n", 3743 | " \n", 3744 | " \n", 3745 | " \n", 3746 | " \n", 3747 | " \n", 3748 | " \n", 3749 | " \n", 3750 | " \n", 3751 | " \n", 3752 | " \n", 3753 | " \n", 3754 | " \n", 3755 | " \n", 3756 | " \n", 3757 | " \n", 3758 | " \n", 3759 | " \n", 3760 | " \n", 3761 | " \n", 3762 | " \n", 3763 | " \n", 3764 | " \n", 3765 | " \n", 3766 | " \n", 3767 | " \n", 3768 | " \n", 3769 | " \n", 3770 | " \n", 3771 | " \n", 3772 | " \n", 3773 | " \n", 3774 | " \n", 3775 | " \n", 3776 | " \n", 3777 | " \n", 3778 | " \n", 3779 | " \n", 3780 | " \n", 3781 | " \n", 3782 | " \n", 3783 | " \n", 3784 | " \n", 3785 | " \n", 3786 | " \n", 3787 | " \n", 3788 | " \n", 3789 | " \n", 3790 | " \n", 3791 | " \n", 3792 | " \n", 3793 | " \n", 3794 | " \n", 3795 | " \n", 3796 | " \n", 3797 | " \n", 3798 | " \n", 3799 | " \n", 3800 | " \n", 3801 | " \n", 3802 | " \n", 3803 | " \n", 3804 | " \n", 3805 | " \n", 3806 | " \n", 3807 | " \n", 3808 | "
04_0_VH04_0_VV04_1_VH04_1_VV04_2_VH04_2_VV04_3_VH04_3_VV04_4_VH04_4_VV04_5_VH04_5_VV05_0_VH05_0_VV05_1_VH05_1_VV05_2_VH05_2_VV05_3_VH05_3_VV05_4_VH05_4_VV06_0_VH06_0_VV06_1_VH06_1_VV06_2_VH06_2_VV06_3_VH06_3_VV06_4_VH06_4_VV07_0_VH07_0_VV07_1_VH07_1_VV07_2_VH07_2_VV07_3_VH07_3_VV...08_0_VV08_1_VH08_1_VV08_2_VH08_2_VV08_3_VH08_3_VV08_4_VH08_4_VV09_0_VH09_0_VV09_1_VH09_1_VV09_2_VH09_2_VV09_3_VH09_3_VV09_4_VH09_4_VV10_0_VH10_0_VV10_1_VH10_1_VV10_2_VH10_2_VV10_3_VH10_3_VV10_4_VH10_4_VV11_0_VH11_0_VV11_1_VH11_1_VV11_2_VH11_2_VV11_3_VH11_3_VV11_4_VH11_4_VVfields
00.8165145.4495410.6513764.7247710.9174314.431193NaNNaNNaNNaNNaNNaN0.7155963.2568810.7614684.4587160.8532114.458716NaNNaNNaNNaN0.82568814.1651380.95412816.211009NaNNaNNaNNaNNaNNaN1.2844045.4220180.88073411.6238530.8532116.009174NaNNaN...23.8990831.80733916.972477NaNNaNNaNNaNNaNNaN1.7247719.3486242.3211017.7064221.8348628.174312NaNNaNNaNNaN1.5229366.7155961.89908310.045872NaNNaNNaNNaNNaNNaN1.8623857.8073391.9724778.2752291.1100927.440367NaNNaNNaNNaN714.0
10.95454522.1363641.63636411.2727272.8636369.181818NaNNaNNaNNaNNaNNaN1.5454559.3181822.3636368.2727271.81818210.772727NaNNaNNaNNaN1.59090915.3636362.0000008.545455NaNNaNNaNNaNNaNNaN2.36363612.8636363.18181811.1363642.5909096.818182NaNNaN...7.4545451.54545510.590909NaNNaNNaNNaNNaNNaN1.22727311.1363643.2272739.7727271.77272712.136364NaNNaNNaNNaN2.81818211.4090912.1818189.954545NaNNaNNaNNaNNaNNaN1.0000009.1363642.1363649.3181821.9545459.590909NaNNaNNaNNaN118859.0
21.1372557.7581700.7058824.7254901.0000007.2549020.8823535.5947711.3464057.4313732.83660116.1045751.1045756.8823531.0000005.4967321.4183017.5490200.8562096.2483661.2875827.0065360.8562096.2418301.99346423.3790852.11111116.2745102.89542519.0196082.64705914.2875824.13071917.2352943.98039214.5228763.82352922.4444444.24183017.372549...14.7516344.64052320.7581704.43137321.2091505.94771219.2091505.87581721.7254904.90196115.7908505.24836616.2549023.25490210.8562094.14379111.8300652.7320267.8692815.26797412.8627452.7320267.8039222.15032710.1111112.2941188.8300652.3594776.8692812.23529415.2875822.3398697.5424841.7777788.6797391.6274517.0261442.4248379.05228897477.0
32.2231837.3269901.9048446.5536331.9307969.4429071.8719726.8910032.1297587.6453293.72664415.2491351.7629766.4204151.6107277.2370241.9463678.4100352.1782019.2871972.4117659.0778551.8961949.3633222.60380612.6712802.42906613.4757792.85986211.2698962.16955010.0605542.7681669.5536332.13148810.0726642.69550211.3442912.2664369.012111...9.6089973.20069217.3391003.30449812.5778553.56747413.9723183.39965411.5501733.60899710.9359863.0086519.4342563.26643610.4740482.95501710.3460212.76470611.1332182.7525959.8044982.75086510.9359862.48442911.0259522.80449810.3771632.5190319.3321802.46885813.2370242.3858139.2508652.9602089.3096892.3183398.7318343.01384110.85986265754.0
42.09090914.0454552.46212111.4090913.96969719.3333332.59090912.2272732.74242412.3181823.45454512.7803032.32575816.5984853.75757622.7803032.95454521.4393942.84848521.7651523.09090923.9090913.53030339.2196977.39393992.0303036.32575865.3257584.87878864.0984857.04545552.8030303.25757639.0454555.96212151.6136364.25757651.2651524.88636434.128788...29.3333336.90909172.5303038.93939451.8333339.43181864.3106063.65909120.9469703.48484822.1590915.33333320.7878793.46969716.8106063.98484812.2272734.58333315.8939394.32575810.2045452.8560619.3257586.51515210.1666673.8409098.3636364.3257587.2651529.53787925.2348484.27272710.4318183.46212116.5000003.07575813.5151523.60606118.939394120372.0
\n", 3809 | "

5 rows × 83 columns

\n", 3810 | "" 3811 | ], 3812 | "text/plain": [ 3813 | " 04_0_VH 04_0_VV 04_1_VH ... 11_4_VH 11_4_VV fields\n", 3814 | "0 0.816514 5.449541 0.651376 ... NaN NaN 714.0\n", 3815 | "1 0.954545 22.136364 1.636364 ... NaN NaN 118859.0\n", 3816 | "2 1.137255 7.758170 0.705882 ... 2.424837 9.052288 97477.0\n", 3817 | "3 2.223183 7.326990 1.904844 ... 3.013841 10.859862 65754.0\n", 3818 | "4 2.090909 14.045455 2.462121 ... 3.606061 18.939394 120372.0\n", 3819 | "\n", 3820 | "[5 rows x 83 columns]" 3821 | ] 3822 | }, 3823 | "metadata": {}, 3824 | "execution_count": 50 3825 | } 3826 | ] 3827 | }, 3828 | { 3829 | "cell_type": "code", 3830 | "metadata": { 3831 | "id": "q_fhmm9WhqWH" 3832 | }, 3833 | "source": [ 3834 | "sar_test.to_csv('/content/drive/MyDrive/CompeData/Radiant/s1_all_data/sar_test.csv', index = False)" 3835 | ], 3836 | "execution_count": null, 3837 | "outputs": [] 3838 | } 3839 | ] 3840 | } --------------------------------------------------------------------------------