├── .gitignore ├── 1. Pandas.ipynb ├── 2. matplotlib animations.ipynb ├── 3. Jupyter ipywidgets.ipynb ├── 4. Bokeh.ipynb ├── 5. Plotly.ipynb ├── LICENSE ├── README.md ├── d4sci.mplstyle ├── data ├── AAPL.csv ├── D4Sci_logo_ball.png ├── D4Sci_logo_full.png ├── ages.csv ├── gapminder.csv ├── green_tripdata_2014-04.csv.gz ├── volcano.csv ├── volcano.gif ├── volcano.mov └── volcano.mp4 ├── environment.yml └── slides └── InteractiveViz.pdf /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | books.txt 3 | *.key 4 | 5 | 6 | # Byte-compiled / optimized / DLL files 7 | __pycache__/ 8 | *.py[cod] 9 | *$py.class 10 | 11 | # C extensions 12 | *.so 13 | 14 | # Distribution / packaging 15 | .Python 16 | build/ 17 | develop-eggs/ 18 | dist/ 19 | downloads/ 20 | eggs/ 21 | .eggs/ 22 | lib/ 23 | lib64/ 24 | parts/ 25 | sdist/ 26 | var/ 27 | wheels/ 28 | pip-wheel-metadata/ 29 | share/python-wheels/ 30 | *.egg-info/ 31 | .installed.cfg 32 | *.egg 33 | MANIFEST 34 | 35 | # PyInstaller 36 | # Usually these files are written by a python script from a template 37 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 38 | *.manifest 39 | *.spec 40 | 41 | # Installer logs 42 | pip-log.txt 43 | pip-delete-this-directory.txt 44 | 45 | # Unit test / coverage reports 46 | htmlcov/ 47 | .tox/ 48 | .nox/ 49 | .coverage 50 | .coverage.* 51 | .cache 52 | nosetests.xml 53 | coverage.xml 54 | *.cover 55 | *.py,cover 56 | .hypothesis/ 57 | .pytest_cache/ 58 | 59 | # Translations 60 | *.mo 61 | *.pot 62 | 63 | # Django stuff: 64 | *.log 65 | local_settings.py 66 | db.sqlite3 67 | db.sqlite3-journal 68 | 69 | # Flask stuff: 70 | instance/ 71 | .webassets-cache 72 | 73 | # Scrapy stuff: 74 | .scrapy 75 | 76 | # Sphinx documentation 77 | docs/_build/ 78 | 79 | # PyBuilder 80 | target/ 81 | 82 | # Jupyter Notebook 83 | .ipynb_checkpoints 84 | 85 | # IPython 86 | profile_default/ 87 | ipython_config.py 88 | 89 | # pyenv 90 | .python-version 91 | 92 | # pipenv 93 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 94 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 95 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 96 | # install all needed dependencies. 97 | #Pipfile.lock 98 | 99 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 100 | __pypackages__/ 101 | 102 | # Celery stuff 103 | celerybeat-schedule 104 | celerybeat.pid 105 | 106 | # SageMath parsed files 107 | *.sage.py 108 | 109 | # Environments 110 | .env 111 | .venv 112 | env/ 113 | venv/ 114 | ENV/ 115 | env.bak/ 116 | venv.bak/ 117 | 118 | # Spyder project settings 119 | .spyderproject 120 | .spyproject 121 | 122 | # Rope project settings 123 | .ropeproject 124 | 125 | # mkdocs documentation 126 | /site 127 | 128 | # mypy 129 | .mypy_cache/ 130 | .dmypy.json 131 | dmypy.json 132 | 133 | # Pyre type checker 134 | .pyre/ 135 | -------------------------------------------------------------------------------- /3. Jupyter ipywidgets.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "
\n", 8 | "
\"Data
\n", 9 | "

Interactive Visualization

\n", 10 | "

Jupyter ipywidgets

\n", 11 | "

Bruno Gonçalves
\n", 12 | " www.data4sci.com
\n", 13 | " @bgoncalves, @data4sci

\n", 14 | "
" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 1, 20 | "metadata": {}, 21 | "outputs": [], 22 | "source": [ 23 | "import pandas as pd\n", 24 | "import numpy as np\n", 25 | "\n", 26 | "import matplotlib\n", 27 | "import matplotlib.pyplot as plt \n", 28 | "\n", 29 | "import ipywidgets as widgets\n", 30 | "\n", 31 | "import watermark\n", 32 | "\n", 33 | "%load_ext watermark\n", 34 | "%matplotlib inline" 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "metadata": {}, 40 | "source": [ 41 | "We start by print out the versions of the libraries we're using for future reference" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 2, 47 | "metadata": {}, 48 | "outputs": [ 49 | { 50 | "name": "stdout", 51 | "output_type": "stream", 52 | "text": [ 53 | "Python implementation: CPython\n", 54 | "Python version : 3.11.7\n", 55 | "IPython version : 8.12.3\n", 56 | "\n", 57 | "Compiler : Clang 14.0.6 \n", 58 | "OS : Darwin\n", 59 | "Release : 23.5.0\n", 60 | "Machine : arm64\n", 61 | "Processor : arm\n", 62 | "CPU cores : 16\n", 63 | "Architecture: 64bit\n", 64 | "\n", 65 | "Git hash: 14930659bf970db69b3f255cb4cfa30c7f9678e9\n", 66 | "\n", 67 | "numpy : 1.26.4\n", 68 | "pandas : 2.1.4\n", 69 | "watermark : 2.4.3\n", 70 | "ipywidgets: 8.1.2\n", 71 | "json : 2.0.9\n", 72 | "matplotlib: 3.8.0\n", 73 | "\n" 74 | ] 75 | } 76 | ], 77 | "source": [ 78 | "%watermark -n -v -m -g -iv" 79 | ] 80 | }, 81 | { 82 | "cell_type": "markdown", 83 | "metadata": {}, 84 | "source": [ 85 | "# Basic widgets with the Interact decorator" 86 | ] 87 | }, 88 | { 89 | "cell_type": "markdown", 90 | "metadata": {}, 91 | "source": [ 92 | "Let us load up some data" 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "execution_count": 3, 98 | "metadata": {}, 99 | "outputs": [], 100 | "source": [ 101 | "data = pd.read_csv('data/gapminder.csv')" 102 | ] 103 | }, 104 | { 105 | "cell_type": "markdown", 106 | "metadata": {}, 107 | "source": [ 108 | "And define some useful arrays." 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "execution_count": 4, 114 | "metadata": {}, 115 | "outputs": [], 116 | "source": [ 117 | "colors = np.array([\n", 118 | " '#5A6FFA',\n", 119 | " '#E60DA1',\n", 120 | " \"#7E7E7E\",\n", 121 | " \"#B7F025\",\n", 122 | " \"#FF9A1E\"])\n", 123 | "\n", 124 | "continents = [\n", 125 | " 'Africa',\n", 126 | " 'Americas',\n", 127 | " 'Asia',\n", 128 | " 'Europe',\n", 129 | " 'Oceania']" 130 | ] 131 | }, 132 | { 133 | "cell_type": "markdown", 134 | "metadata": {}, 135 | "source": [ 136 | "And define a simple function to generate the simple plot we created in Lesson I" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": 6, 142 | "metadata": {}, 143 | "outputs": [], 144 | "source": [ 145 | "def plot_continents():\n", 146 | " fig, ax = plt.subplots(1, figsize=(14,10))\n", 147 | "\n", 148 | " for i in range(5):\n", 149 | " continent = data[data['Continent']==i]\n", 150 | "\n", 151 | " ax.scatter(continent['GDP'], # x-axis\n", 152 | " continent['LifeExpectancy'], # y-axis\n", 153 | " s=continent['Population']/200000, # Bubble size\n", 154 | " c=colors[i], # Bubble color\n", 155 | " alpha=0.5) # Transparency\n", 156 | "\n", 157 | " ax.set_xscale('log')\n", 158 | "\n", 159 | " # Add the legend manually\n", 160 | " for i in range(len(continents)):\n", 161 | " ax.text(300, 83-i*2, continents[i], color=colors[i], fontsize=18)\n", 162 | "\n", 163 | " ax.set_xlabel('GDP Per Capita')\n", 164 | " ax.set_ylabel('Life Expectancy')\n", 165 | " ax.set_xlim(200, 100000)\n", 166 | " ax.set_ylim(40, 90)\n", 167 | "\n", 168 | " fig.tight_layout()" 169 | ] 170 | }, 171 | { 172 | "cell_type": "code", 173 | "execution_count": 7, 174 | "metadata": {}, 175 | "outputs": [ 176 | { 177 | "data": { 178 | "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAPdCAYAAADxjUr8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hV53nv/e+zyq7TO0MHAUKAUO+2XOUil8R24nLS7OQ9To+c86aeJK8dx045iY+TODlOnJzYVlxSnNiO47hLsmQ1JCEJgUQvQ5led1/lef/YMGjEDMzANOD3uS4uYK92r4FhmN++1/0Ya61FRERERERERERERBYFZ6ELEBEREREREREREZHTFNqKiIiIiIiIiIiILCIKbUVEREREREREREQWEYW2IiIiIiIiIiIiIouIQlsRERERERERERGRRUShrYiIiIiIiIiIiMgiotBWREREREREREREZBFRaCsiIiIiIiIiIiKyiCi0FREREREREREREVlEFNqKiIiIiIiIiIiILCILGtqOjY1xzz33sHLlStLpNLfddhvbtm0b326t5YMf/CCdnZ2k02le8YpXsHPnzgWsWERERERERERERGRuLWho+zM/8zN8+9vf5t5772XHjh3cddddvOY1r+HYsWMA/Mmf/Akf+9jH+MQnPsG2bdvo6Ojgta99LWNjYwtZtoiIiIiIiIiIiMicMdZauxAXLhaL1NbW8pWvfIW77757/PVrrrmGN73pTXz4wx+ms7OTe+65h9/4jd8AoFwu097ezh//8R/z/ve/fyHKFhEREREREREREZlT3kJdOAxDoigilUpNeD2dTvPQQw9x8OBBuru7ueuuu8a3JZNJ7rzzTh5++OEpQ9tyuUy5XB7/fRzHDA4O0tzcjDFmbm5GRERERERERERELivWWsbGxujs7MRxZnegwYKFtrW1tdx66618+MMfZuPGjbS3t/OFL3yBxx57jHXr1tHd3Q1Ae3v7hOPa29s5fPjwlOf9wz/8Qz70oQ/Nae0iIiIiIiIiIiIiAF1dXSxbtmxWz7lgoS3Avffey/ve9z6WLl2K67pcd911vOc97+Gpp54a3+el3bHW2rN2zP7Wb/0Wv/qrvzr++5GREVasWEFXVxd1dXWzfxMiIiIiIiIiIiJy2RkdHWX58uXU1tbO+rkXNLRdu3YtDzzwAPl8ntHRUZYsWcI73/lOVq9eTUdHBwDd3d0sWbJk/Jje3t4zum9fLJlMkkwmz3i9rq5Ooa2IiIiIiIiIiIjMqrkYyTq7wxbOUzabZcmSJQwNDfHNb36Tt771rePB7be//e3x/SqVCg888AC33XbbAlYrIiIiIiIiIiIiMncWtNP2m9/8JtZaNmzYwL59+/i1X/s1NmzYwHvf+16MMdxzzz189KMfZd26daxbt46PfvSjZDIZ3vOe9yxk2SIiIiIiIiIiIiJzZkFD25GREX7rt36Lo0eP0tTUxNvf/nY+8pGP4Ps+AL/+679OsVjk53/+5xkaGuLmm2/mW9/61pzMiRARERERERERERFZDIy11i50EXNpdHSU+vp6RkZGNNNWREREREREREREZsVc5o6LYqatiIiIiIiIiIiIiFQptBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIqLQVkRERERERERERGQRUWgrIiIiIiIiIiIisogotBURERERERERERFZRBTaioiIiIiIiIiIiCwiCm1FREREREREREREFhGFtiIiIiIiIiIiIiKLiEJbERERERERERERkUVEoa2IiIiIiIiIiIjIIuItdAEiAE8+F/ONB2IOHbUUS2AtvP7lDj/+Nnfa5+gbsNzz4RCAj/+uR2uzmatyRURERERERERE5oxCW5l1+YLlF34vJKjmp/zZ//ToaJ06QH38mZg//4cIAGOgNlv9OZ2aj2pFREREREREREQWF4W2Mut+8GQ8HtgC3P9ozLvePHXH7Ne+FwNw41bDz/03l2Ti/DpkXReWtJ3+tYiIiIiIiIiIyMVIM21l1t3/aDWEvetl1b9eD26LiWM75f5HT1S3vfwm57wDW4CmBsOf/rbPn/62T1ODRiOIiIiIiIiIiMjFSaGtzKqDXZbDxyCThne/xaGtGYZH4ennpw5ty5Xqz6nEPBUpIiIiIiIiIiKyiGk8gsyq+x+rdtnecq1DwjfccYPDv30z5oFHY67bdPo9ghcvGnbKR/4qAqLx33/u4z4An/xcyIPbLC+70fD+97jc/6jl+4/HHO+x5Arw39/tcufNzrQWIotjy+PPWB5+MuZAl2UsV52d29wIWzY43H6Dw/Ilp48LI8vz+yxPPWfZe8gyNGIZy0M2DSuXGl5+k8Ot1xmMUWeviIiIiIiIiIjMDoW2MmsqQTUMBXjZjebkzw7//q2Y7TstI2OW+trq644D9bXV40bGqj9nM+CdYxbtX3w64vFnLMZUu3lnkpWO5Swf/4eIF/af7vrNpKBQgrGjcOhoNQj+1Z85/Wmx54Dlj/7P6SDZ96o/RnOwY7dlx+6IJ3YYfvEnXBxHwa2IiIiIiIicnbWWIAiI4+r3z67r4nmemoFEZAKFtjJrtj1jKRShvQXWr6521ba1GNavNuw+YHloW8zdr6qmss2Nhr/+cLWT9r/dEwBwz3tdrlo39cSObc9aggDe81aHV97qkEkZSmVLsXTu2qLI8rG/j9hz0OJ78PY3ONx5s0NdjSGOLQND1RC2b3DiGIeED7ddb7j9eofVyw11NWCMIZe3PPREzL/+V8xjT1vWr455/Z1a/UxEREREREQmiuOYwcFBhoeHGRkZYWBggFKphLXV7z8dxyGTydDc3ExdXR2NjY00NDQoxBW5zCm0lVlzajTCy26cGLy+7EaH3Qci7n/0dGh7Pkpl+Im3Obzu5afPkUoaUslzH/vgNsueg9UO3Xve53LNVadrdBxDazO86rYzvyBescrhilVnBsk1WcPr73RprDf8xacjvvWgQlsRERERERE5rVwuc+LECQ4dOkR/fz9hGGKMIZFI4Pv+eChrrWVkZIS+vj4AEokE7e3trFy5kvb2dnzfX8jbEJEFotBWZkVvf3X2qzFwxw0TQ86brzV89t/geC/sORiPd+HOVDYDr77t/I49FShv3WgmBLYX6tqrql9ke/phaMTSWK93QkVERERERC5ncRxz9OhRdu3axcjICI7jUFtbSzI5dcdRNpsFqgFuqVTi2LFjHDt2jKamJrZs2UJbW5s6b0UuMwptZVbc/1iMtXDlWnPGAmCZlOH6LYZHnrI88Nj5h7Zrlhs8b+ZfpKLIcuBI9bGT6zbN/PhiyfLdh6tzeY/3WPJFiKIz91NoKyIiIiIicnnL5/Ps3LmTw4cP4zgOzc3NuO70n8o0xpBOp0mn04RhyODgID/4wQ+44oor2LBhw1mDXxG5tCi0lQsWx5YHt00+GuGUl9/o8MhTEY9ut/z4D1tSyZmHm3W151dfrnA6ZG1pmtl1T/RaPvrXIYPDp19LJiD7okXQTi2kVq6cX30iIiIiIiJy8RsaGmLbtm0MDAzQ0NBAKpW6oPN5nkdra+t4EDw4OMiNN9443pUrIpc2hbZywZ59wY6Hmp/6YsSnvjhJG+pJpTI8ut3yiltmHto6s9DEOtNT/M0XIgaHobUJ3v0Wl03rDDXZ02eJY8uP/2oIgLVTnEREREREREQuaYODgzz22GOMjIzQ1taG48zeWL5sNksymeTEiRM8+uij3HLLLQpuRS4Ds/eviFy2Ts2Lna4HZrj/harJwKmnUfoGp5+sDgxZ9h6s7v8LP+Fy8zXOhMAWYHh01soUERERERGRi9DY2Bjbtm1jdHSU1tbWWQ1sTznVddvb28u2bdsol8uzfg0RWVzUaSsXZDRneeq5arD5K+91ufrKqXtZj/VYfu9jEXsOVmfDdrbPz/xX1zWsXWHYc9Dy1E7Lq2+f3nEDw6cD3lXLJq/1uT1qrxUREREREblcxXHMjh07GBwcnPUO25dyXZeWlhZOnDjBCy+8wNVXX63FyUQuYeq0lQvy0LaYKIJMqrrIVyo59Y+1Kxw626rHzbQ790K94pbqX/Vnnrc8vWt6186kTn/xO3LszHC2WLJ8+VtTj4IQERERERGRS9uhQ4c4evQojY2NcxrYnuJ5HrW1tezfv5+enp45v56ILByFtnJBTo06uH6LwfPO/Q7fzddU/8pVw97561K94wbDhjUGa+Hj/xDxte9FjOWq149jS9+A5b/uj/jCV0+HsEs7oLmx+uu//ULEwa7T9e49GPMHnwjJF+ftFkRERERERGQRyeVy7Nq1C9/3SSaT83bdbDZLGIY899xzBEEwb9cVkfml8Qhy3vYeijnaXf31TddML/+/6RqHf/9WzMgYbN9luWHL/I1I+MD7XP73/43YfcDyha/GfPE/YtIpKFcgOpnVXr/5dD3GGH7qHS4f//uIo93wO38WkkxUt5UrkEzAr/6Myx/+tbptRURERERELjfHjh1jbGyM9vb2eb92Y2MjAwMDdHd3s3z58nm/vojMPXXaynm7/9Fql20mBVdvmF74uqLT0Hny69kDj87viITaGsPv/KLLz/+Yy9aNhtpsNXzNpmH1csObX+3wo29yJxxz3SaH3/0ll2uuMmTS1XC3Jgt33mT4g//hsXm9PoVEREREREQuN0EQcOjQIVKp1ILMlfU8D2MMhw8fxlqttSJyKTL2Ev/sHh0dpb6+npGREerq6ha6HBERERERERG5yB09epSHH36YxsZGPG9hHmIulUoUi0Ve8YpX0NTUtCA1iFzu5jJ3VJugiIiIiIiIiMgMDA4OEsfxggW2AMlkkkqlwtDQ0ILVICJzR6GtiIiIiIiIiMgMDAwM4Pv+gtZgjMEYw8jIyILWISJzQ6GtiIiIiIiIiMg0lctlxsbGSCaTC10KiUSCgYEBzbUVuQQptBURERERERERmaZCoUAQBAveaQvg+z7FYpFKpbLQpYjILFNoKyIiIiIiIiIyTXEcE8cxjrPwkYrjOOP1iMilZeH/hRERERERERERuUgsxlEEi7EmEbkwCm1FRERERERERKbJcRyMMYsiKLXWYozBdd2FLkVEZpm30AWIiIiIiIiIiFws0uk0vu8virm2QRCQSqXmtQ5rLcPDw+TzeRzHoampiVQqNW/XF7lcKLQVEREREREREZmmVCpFJpMhl8uRyWQWtJZKpUJnZ+e8zdcdGxtjx44ddHd3U6lUMMZQU1PDmjVrWL9+vTp+RWaRQlsRERERERERkWkyxtDc3Mzg4OBCl0IcxzQ0NMzLtYrFIo899hh9fX3U19fT0NCAtZaxsTGeffZZoihi8+bN81KLyOVAM21FRERERERERGagqakJqIamC6VSqeC6LvX19fNyva6uLvr6+mhtbSWdTmOMwXEc6uvrSafT7N+/n1wuNy+1iFwOFNqKiIiIiIiIiMxAR0cH2Wx2QUPKsbExmpqaaGlpmZfrdXV1kUgkJh2BUFNTQ7FYpLe3d15qEbkcKLQVEREREREREZmBVCrFihUrKBaLWGvn/fpxHBOGIatWrZq3ObLlchnPm3zKpjEGYwxhGM5LLSKXA4W2IiIiIiIiIiIztHz5cpLJJPl8ft6vPTIyQm1tLZ2dnfN2zbq6Osrl8qTboigCIJ1Oz1s9Ipc6hbYiIiIiIiIiIjPU2NjIunXryOfz89phWi6XCcOQq666al5D0pUrVwJQKpUmvG6tZWhoiPr6etrb2+etHpFLnUJbEREREREREZHzsH79etra2hgcHJyXMQlxHDM0NMTy5cvHQ9T50tnZyZo1axgdHWVgYIBisUgul6O3t5dEIsHVV19NIpGY15pELmUKbUVmSfnBbk7UfZYTdZ9d6FJERERERERkHiQSCbZs2UI6nWZoaGhOg1trLf39/TQ2NrJ582YcZ/YinUo8SC7aTyHuwtpo0n1c1+Xaa6/lxhtvpLGxkSAIsNayZs0abr/99nkd1SByOZh8grTIBYiHyvSs/xcoxwC0PvVDeFfULXBVIiIiIiIiIrOvtbWV6667jieeeIKhoSEaGxsxxszqNeI4ZmBggJqaGm644QZqa2tn5byluIfe4HuMRM8R2QLGeGSc5bR6L6fe3XrGfbiuy5o1a1i1ahXlchnHcUgmk7NSi4hMpE5bmXXFfz44HtgCFP5x3wJWM39M2sNdV4e7TgG1iIiIiIjI5WTZsmXccMMNeJ5HX1/frM64rVQq9PX1UVtby80330xLS8usnLcU93Ko/Gn6wwdx8Ek7S0mYJvLRQQ6XP8dg9OiUxzqOQzqdVmArMocU2sqsK9y7F4DM+68EoPj5/dgoPtshl4TEDS20PflDtD35QwtdioiIiIiIiMyzZcuWcdttt9Ha2kp/fz+5XO6CxiVYaxkZGWF4eJilS5dy2223nXdgG9o8h8uf40D5U5TiXgD6gvspxIepcdaRcJpwTALPZMm6qzHGoTv4JoEdPe/6ReTCKLSVWRU8PUD47BCmIUHdh6/HXVVD3F2k/K3jC12aiIiIiIiIyJxqbW3ljjvuYPPmzYRhSE9PD2NjY8Tx9BuZoihiZGSEnp4eXNfluuuu47bbbqO+vv6868pF+xgIH2EgfITRaAeVeJiR6FkSpgVj3DP2T5kOKvEAo9Hz531NEbkwmmkrs6rw2eoohPTbVmFSLul3rSH3R89SuHcvqTcsm/SY4Z/9AcXP7yf9nrU0fPJ2Cp/bR+H/7iHcPQKOwb+miZrf2Ery9nYAbBhT+LvdFD6/n2j/GBhI3NxG7e9eg39N81nrK33tCIXP7Sd4sp94oIzJevhXNZD6kdVkfmIdxj/zfYyBN36TykM91Pzm1dT82tXkP/k8pX89RHhgFDsS0PSfd5F8WQflB7sZvPtbACwZ/YlJr28rEcUvHKD05cMEzw4Sj1RwGpO4K7IkX7uU9LvW4K06PZvIFkPK952g9F9dBE8NEB8vEI8FOE1J/OtbyLx3Pam7lk55v+GeEXKf2EXlwW6i4wWw4DQncZdkSNzZQebda/HWn/8XfhEREREREZno1OJkS5cupauriyNHjtDX14cxhkQiQTKZxPf98XmxcRwTBAHlcpkgCACora1l/fr1LFu2jLq6Cx/Bl3aWknVWElEi46wkZJTIFkk67ZPufyrIDe3IBV9bRM6PQluZNbYUUfzXgwCk373m5M9ryf3xs5S/cZSot4jblj7rOU4FuHgGk/awwxUq93cz+FAPjZ97JclXLWHwnd+j8r0TkHAwvoPNh5S/fYzKD3po/q/X4V97ZnAb5wKG3/cg5W8cHX/N1PnYkQqVh3upPNxL8QsHaPqXV+E0Tj6Tx5YjBt74TYLH+qr11fgz+viEh8YYetd9hLuGTxYApj5B3F8i7ikSbOsnHqpQ/8c3jh9T/LdDjPzcw6dPknYxnlPtXv7PLsr/2UX2l66i7iM3nHG98veOM/jO752eL+w7mKxHfKxAfKxA8EQ/xneo/e1rZnQfIiIiIiIicm5NTU00NTWxfv16Tpw4wdDQEAMDAxQKBQqFAnEcY4zBGIPv+9TV1dHc3ExzczMdHR0kEomzX6DQB2OHISyD40G6BepXgzmzGSnptHBF6pexhHgmSynuwRifmAouqTP2t9ZiiXHQzFqRhaLQVmZN6SuHscMV3DW1JG5uA8BbXUvi1rZqKPrFA9T88qapj/96F7YcUf/nt5B+1xpM2iPcO8LwzzxEsH2A0V9/nOTrlhJsH6DhMy8n9aYV4BnCpwcZ+qnvEx0cY+Q3HqflW28449zD//0hyt84irumltr/eQ3J1y/DqfWxpYjy944z+pvbCB7vY/gXHqbp86+ctL7Cp3YDUP9/bqt2Eqc94oESTGNV0Hi0wuAPf4do/1h1dMTvX0fqh1fh1CewQUx0KEfpm0fPOM6pT5B57zpS71iNf1UDTnP1i2nUXaDw6b3k/tcO8n+5i8Tt7aTeuHzCsSO/+hiUYxKvWkLdR2/Av6oRqIbr4YFRSl85grs8e87aRURERERE5Pyl02nWrKk2NllrKRQKlEql8ZEJruuSTqdJpVLj3bdnNbwPTjwOfc9A+UWdsG4SGtbCkpuh/TpwJjYauSYJJ0PYpGmjxlnDSPQcnlN7xnUDO4xnaqlx15//jYvIBVFoK7OmcO/J0QjvXjvh9fS711J5uJfCZ/edNbS1wxUaPnUH6XeuGX/NW1dPw6dfTt81/050OEfhb3fT/M3Xkbj19CMc/rXN1P/FLQy++dsEj/YRHcvjLj0dRpa+cZTy17pw2tM0f/11uJ2Z8W0m5ZJ643L8rU303fAVyl/rInh2EP/qpjPry4U0/tMrSb3hdDh6KkQ9l/yf76yOckg6NP/Ha/G3nu4GNr6Dt66OmnVXnXFc6k0rquH0S7gdGWp/cysm4zH2O0+S/+TzE0LbqK9IdGAMgIZP3o7bMfGe/asax0NcERERERERmR/GGLLZLNnseTTQWAvHfwD7vgyVXLWztnHd6c7aIA9De2HwBRjaA+vfAd7kT7saY2jxX0Y+PkjRHiFFJ47xsdYS2CHKto8275WkTMf536yIXBAtRCazIjw4RuXBbjCQfteaCdtSP7wS0i7RnhEqj/VOeQ53eZbUj64+43VvdS3u6uqc18RtbRMC21MSd7RDsvrXOXhuaMK2wmf3AtW6XhzYTrj20iyJl1W/GJW/O/miad7GhgmB7UwU/rEaaGd+Yt2EwPZCJV9XnWcbPN6PjU4PtndqfHBOzkfqLs7a9URERERERC4X1kbkon10B99kf+lveL74EXYVP8ze0p9zrPIVhsOniWxp/grqeQL2fAkw0Lge0s0TRyH4WWhYA9klcPRB2PsliMMpT1fnbmR54p0kTBOF+DC5aC+5eC8xFdr919CZeMv0On9FZE6o01ZmRfHefWAhcXs73sqaCducugSpu5dT+tdDFO7dNz464aX8a5un/ILgtKWIDozhX9cy6XbjOjjNKeLjBexwZcK24JFqUFz49B6KX9g/5T3Eo9WB79GR3KTbE7e0Tnns2YRHcsQnqsHpVIuxnU3UW6Twqd2Uv3eccN8odjSAyE7YxxZC7HAFc7Lz16Q9End2ULnvBINv+y6Z960n+bql+FubMIkzVwYVERERERGR08aivfQE3yAfHSSijEMK11S/3wrsGLloHwZDyllCq38nje5NOGYOI5agAAe+Dlio6Tz7vokaqF0Gxx+Flq3QumXKXRu8a6hx1zMW7SawwzgkqHGvIDXFAmUiMn8U2soFs7GlcDIMPbUA2Utl3rOW0r8eovRvh4j/6MZqJ+hLnG1hL+M5J/eZ+q+s8aqBrw1Pd5zaICYeKFd/PRJgCc5xN2CL0aSvOy3TG4XwUnHP6U5Xd0XNWfY8U+WxPgZ/5LsTgmhT42HSHhggsuP3F+dDnBc18TZ84lYG33Uf4Y4hcn/yLLk/eRYSDv51zaTuXk7mx9fhNGmovIiIiIiIyCmxDekJvk1feD+RLZFyluCZyZ/YjG2Fku2lq/xPjHq7WZZ4O76pA04t5BUCBoN74R2r/c9BoRvqJ/+e+wyJWsifgO5t0LL5rGuxeCZDo3fthdUnIrNOoa1csPJ3jhMfKwAw8ouPMPKLj0y5r82FlP79EJkfXzc/xb2oI7XhH15G+u1njl+YNncWHguZwSlsGDP809/HDlfwrm6k9veuI3FrG07t6XA7PDBG3zX/fvKAl5S7vIaWB99E5XvHKX3rGMFjfQQ7Bgke7SN4tI/cnz1H4713krxzyYXfl4iIiIiIyEXO2pgTwX/SG3wX3zSQdpeedX/HJMiYZYS2wFCwjVLcQ4N7NWXbTzE+SmzLgMEzWTLOKtJuJ3XORhLOmWuonFPPNjAeODOIcdJtMLgLCr2QVeesyMVGoa1csOK9e2e0f+HeffMW2pqUi6n3sSMB4c5hePu8XHYCt+P04PfocA5vXf20jgse7yM6kgfX0PTPr550Hm/ce/Z5tcYxJF+zlORrqv/ZiMcCyv/VxdiHthN15Rn+6Qdp2/V2jUwQEREREZHL3lD0JH3hfSRMCwmnYXoHWYhtkcCOMhL8F4PBI2ScVXhOFoMHWMp2gEJ4BMIY3zRS726l1b+TlDP56MAzrxFDvrs69mAmEjVQ7IPysEJbkYuQQlu5IFF/idLXjwLQcO+dJF899WydcPcIA6/8OsGjfYR7RvDWTy+8vFCJm9sof+sYxS8fpuZ3rsE48ztI3V1eg7M0Q3ysQOm/jo4HqOcSHc0D1bEMUy2gVr7vxIxqcWp90j+6Bqc1xeBbv0PcWyLcOYx/7ewtjiYiIiIiInKxqcSDdAffwOCTcBqIbZnAjhLZPBEVsDHGeLgmjUcWz9RhicjHByjER7A2xKeemBDPqZl0Jqy1MRU7SF94H6PxLjr8u2hyb8KYczTRWFv9MZNHN+HkSAQLdvIRgCKyuCm0lQtS/OIBCGJMvU/qDcvO2rGZuL4Fd3090Z4RCvfuo+7D189LjZn3rqP8rWNE+0bJ//lOaj6wecp943yA8Z1Z7zzN/NgV5P74WQqf3UvmJ67A33rukNTUJao19RaJeou4bekJ26NjefKffH7SY20lOus9mPSLPvVnY+yDiIiIiIjIRWw4eoZSfIIkbYyGuyjZHmJKJ8NSqAamFgs4VMPbmAqhLeCbWlynOsu2YocoxkdJmrYz5tga45A0LSRsEyV7nK7KP1H2+ujw33j2RcwcF/wscaGbchwS2BGwFs9kSTpt4wuknSEsg+MTl32CB7uJjuSIxwJwDE6dj7euHn9zIyapJy9FFiNnoQuQi1vx3n0ApN64fFpBZ/qHVlaP+8L+CQuGzaXU3StIvnkFAGP/31OMfOBRwr2j49ttJaKyrY/R33uS3k3/RtxXmvUasr+8CXdtLZRjBt78bQqf3kM8Wl1czAYx4d5Rxv7oGXJ/sXP8mMStbZisBxaGf/L74zXbKKb8nWMMvPFbUw6TrzzWR9+tXyX3iV0Eu4excfU/GtZaKo/1MvKBRwFwlmbwNjXM+v2KiIiIiIhcLKyNGAgfphIPMRQ/RSE+BIBPIwmn+eSPpurPphnXpCnGx8jHh4lsEUs8nu16ZKjYQULGpryeMQ5pZxk+TfQE36En+AbW2in3Byi2dJArP8NwsJ18dIB8fJCRaAcD4SMU4q5Jj48HThAcq2HsY73k/+YFSv91lOCxXoKHeyh9rYv8X+5k9MPbKX3jKPFQ+bw/fiIyN9RpK+et8ngf4fPDAKR+aNW0jkn98Epyf/IscW+J8jePkrp7xdwV+CKNn7qD4V94mNKXDlH4+z0U/n5PNRD1HexoAPGLvsBd6Kqek3BqfZr+7TUMvfN7hC+MMPLLjzJyz2OYOh87FowvmJb5uY2nj6lPUPsH1zP6gceo/KCHvuu/jKnxsKGFUoTTnKTh/9zG0Dvvm/Sa4c5hxn77CcZ+G/AdTK2PHa1AWL2WqfNp/PuXYVy9dyMiIiIiIpevsWgPg+FjBHGBhFOH69ROua8xEMS56hgEarEElOJufNNIgkYMCSw5QpvDN3VnvW7CaYA4pje4n4y7mnp306T7FeIuuhqep8WPSFVqiNMnZ9vamJA8o+HzGM8lbU6PK4y6c0S7eyjt34A1Bm99Hcab+L2fLUdE3UUKn91LZVsf2Z9ah7t8hnNzRWTOKLSV81Y4uQCZqfdJvnrJtI7xNzXibagn3D1C4bP75i20NRmPxn94OeX3rad47z4qj/YS9RQhH+K0pvCurCf5mk5Sb1ox5fzYC+WtrqXloTdR+Ow+Sv9+iGDnMHYswGlL4S6vIXnXUtLvWjPhmOxPb8BdliX/FzsJtg9gQ4u7JEPyrqXU/OpmbGXybmX/umYaPvNyKt/vJnhqgOhEgbi/hEm5uGtqSb6qk+zPbcRdMjf3KiIiIiIiMh+iKKK/v59yuUwymaSlpQXXnf7j/pV4kMPleynHg6TN0rOPKQAiW6Jih3HwcYwLuMQ2ILCDACRME1iIbGFa1084TQTRCN2Vr5NNrcQzZ4amA8Ej5JM56tqupPbYASp+Euv5YBw8agkYJh8dImXaMcYl6s4T7XqWKN8KS6/BZfLv+0zSxVtZgw1iot0j5D75AjW/cNWcfU8sIjNj7Ll68C9yo6Oj1NfXMzIyQl3d2d/lEhEREREREZGLQ09PDzt27GBoaIg4jnEch4aGBrZs2UJHR8c5j49tyOHKvfQG36Uc95F0Ws55TCnuIbRjOKQnPKQZ2wBLRMppJ7Zlss5aar0N07qP2IYU4gMsT76bFu/2CdsCO8Lu4v8CHFJxPXV7niHde4wolSFKpcE4WBsS2jEa3evxRx2iZ3cTjTURJN8K8dSLhb+YjSzhC8N4VzVS+z+2YFKacysyHXOZO+q5aBERERERERG5qAwODvL4448zODhIfX09bW1t1NfXMzQ0xOOPP05/f/85zzEUPc5IuJ2k6cAY55xzZWMbENkCBv+MqXqO8QGo2EEsEcZMP25xjIdjkgwG24htOGFbaPNElPFMFuv5jG64htyK9QAkhgfwRwbx83n8sTHM0F7i471UelYT+G+fdmALYFyDd0Ud0e5hgmcHp32ciMwdjUcQERERERERkYvKgQMHyOfztLW1YU4mqL7v09LSQm9vLwcOHKClZerO2cgW6Q3ux5gUCVNPLvawBBgSUx9DkZhwynEDDkkiW8AacE16RveTMK0U46OU7HEy5vQYQYcEDh4xFVzSWNcjt2YjhaWrSA30kBjuh6BExViSmTuIH1hDPNaIWz/z2bQm6YIxVB7uwb+xZfzjKiILQ522IiIiIiIiInLRCIKAEydOkMlkzggWjTFks1m6u7spl8tTnmM0ep5S3E3KtOOSwTVJYqbeHyC2FQxmyrWrq7U4xLaMQ2pG9+SSJqJMOe6b8HrCNFPjrqUST+wcjpNpCp2rGL7qBrq3XMHIlttwcm8h7KrFaT//mbROR5rg+WGiQ7nzPoeIzA6FtiIiIiIiIiJy0YjjGGstjjN5pOE41VEHcTz5ws0Ao9EuDNWxBsa4pEwnka2cdURCNdQ9V4xiMThYG537Rl7EGIPBUrb9Z7ze5N2KIUEp7jmjvsCOEtgxmtxbMEcBC8Y//6jH1PmQD4mOT28hNRGZOwptRUREREREROSi4fs+9fX1FIvFSbcXi0Vqa2tJJpOTbrc2ohAfxjWnRwiknA5ckyIiP+V1rY0wTD0y4NR2hxQRk9d2LrENznitzrmKzsRbgJhcvIdifJxSfIJctJdKPEir93La/FcQ5wNmMEp3UsYYMEBpZqGziMw+zbQVERERERERkYuG4zisXr2a3t5e8vn8hDEJhUKBOI5Zs2bNlJ24FTtEaMdwTe34a56pIeusZix+gdgG4wuLTWSYqg/XWktMGc/UYvAJ7fmNF5gsFDbG0OLdQdZZyXD0NGPRbiwR9e4WGrxrqHU2YIyLcR3OsZbatFhQi5/IIqDQVkREREREREQuKsuWLWN0dJQ9e/aQy+VwXZcoivB9nyuvvJIVK1ZMeWxMhdhG+GZiJJJxVhDYMYr2KL6txTETFyUzxgNbOeN81sZElHBNioRpJiJPzJkds+diAc9kJ91mjCHjriDjTn1fpsaH+MJSWxvb6oiFjOIikYWmz0IRERERERERuag4jsOmTZvo6OjgxIkTFAoF0uk0nZ2dNDc3n7FA2UTVxcTsS/pmjXGpc6/CRIaiPYaxRTxqMSdnDrikCDndQWutxRJiCfBMhqRpxTE+oZ28Y/ZsqqMVHJJO24yOezFvXR0m6WIL4XmHrnF/CacpiXdF3XnXISKzQ6GtiIiIiIiIiFx0jDG0tLTQ0tIyo+M8U4NDktiWwWQmbHOMR527iYRtIh/vJ7BDYB0cTo1LiIlsmWrkG+Pg4ZsmEqYBY9zqLjbGNakZ1RTYYXxTS8p0zOi4Cfe1oR53bR3RgVG8tecXusZ9JVJvWI7TPLP6RWT2KbQVERERERERkYtHZRT6noWxLvBroGUL1K2Es3bXnuZRQ8I0UbLdQOMZ241xSJulJE0bZdtHOe4jZARrLQYPS4RnavBMGpfshPm31lowFs+pOeO8Z70lO0CLdwcJp2lGx02o23NI3t5O/vlhbDnCJN0ZHR8PVzBpj8RNreddw2JWirsZDp+lbHvwTQP17hYyzspzdGWLLByFtiIiIiIiIiJycSj0ws5Pw/B+MA7YCI4+AFf8ECy9Y1qnMMZQ415BLth/1v0c45M2naSdTqyNid2AQnSYsWgvSdM0PjbhxSwBBh/vRYucnUtgR3FI0uBdO+1jpuLf2IL/eB/BMwN46+sx/vRWFLOFkOhonuRdS3EvwdEIo9Euuir/RDnuq3ZZU2Eg/AGdibfQ7N220OWJTErrAYqIiIiIiIjIxeHwt2FoLzRcAY3rofHK6usH/hOK/dM+Tb27BZc0oc2de2eq3beuSZJ1V5F0mgjsyKT7hRTwTSMe0ws+rY0oxcdp8m6ixlk/7fqn4mR9Mu9dh7ehnnD3CLYQnuP6lnioTHRwjMRt7WTeuQbjXFqdp5EtcbzyVYJ4lBpnA1l3NbXuBixwovJ1ynHfQpcoMimFtiIiIiIiIiKy+AV56H8O0q3gnHxw2BjILoHSIAzvm/apMs5Katx1lOIT1ZEG0+SYBLXuOozxzgh8YxsAlrSzdFqP3FtryceHSJvltHqvJKZ88hwXxm1NU/MLV5G4oYXoWJ7g+WHigdKE+7RRTNRdINw1TDxSIXHXUrI/vR6TvvQeyM7HByjZE2f8uaTMEip2mLFozwJWJzK1BQ1twzDkd37nd1i9ejXpdJo1a9bw+7//+8RxPL6PtZYPfvCDdHZ2kk6necUrXsHOnTsXsGoRERERERERmXc2AmvBvHRW68kgLj57V+mEI4xDh/96PFNL2fbOqIyE01Lt1LQRgR3D2mp2EdhRUqadlGk/+21YSzkeZDB8lIodIGSM/eVP8HzxIzxf/Ah7S3/J8cpXGQy3EdixGdV2itOcIvtLm6j5wBaSL+vAlmLC50cInx8mfH6YaM8oxnVIvXkFtb++lcxPrLtoA9soijhx4gS7du3ihRdeoL+/f0JAHdsK1kYY/AnHnQpwY8rzWq/IdC3oZ+Qf//Ef88lPfpLPfOYzbNq0iSeeeIL3vve91NfX8yu/8isA/Mmf/Akf+9jH+PSnP8369ev5gz/4A1772teye/duamunPyNGRERERERERC5ifi00rIWeJyDVeHrhsdJAdVv96hmdLuuupM17NceDrxDYFL6pn/axGbMc4zmMRbspx/0YBzxTS427btJZt3AqrO0lH++nGB/HNSkyzgosFovB4GCJKcRHGAt3YwlwTJpa9wpq3avIOMtImlZ80zCtTl7jO/hXN+Ff3URwYoTyiR7ickAp2UOh5jBxa4CbyZJxllNvt5AwZy7KtthVKhWefPJJjh49ShRFWGtJJBJcccUVbNmyBcdxSDkdeKaGwA5PuMfIFnHwSDkdC3gHIlNb0ND2kUce4a1vfSt33303AKtWreILX/gCTzzxBFD9B+3jH/84//N//k/e9ra3AfCZz3yG9vZ2Pv/5z/P+979/wWoXERERERERkXlkDKx8DYwdgaEXwK+BsHzy9bsg2znjU7b6dxIySm9wH7GpkDAt0wpEMZA2S3FIM2SfIKaEb2qJbUBMiGNOxy3VLtwRxqJdFO1xDA5ZZzV17iZcJzXhtKEtEMZjVOgnjAuE5BiKnsAhQcp0kHFWkHRaaPJuoM7dQtJpPmuZoc0xEDzGYP1j5GsPUrQnMBgSppGEacGGEQM8TI/5No3ejXT4r8M1yRl/HBfKvn37OHToEI2NjSST1brz+Tx79uyhubmZZcuWkTTtNLjX0xfeTxxX8E0dkS1Qtn3Uu1upcdYt8F2ITG5BQ9s77riDT37yk+zZs4f169fzzDPP8NBDD/Hxj38cgIMHD9Ld3c1dd901fkwymeTOO+/k4YcfnjS0LZfLlMunW9tHR0fn/D5EREREREREZB7Ur4atPwsnHoPh/ZCsh/broPXa0523M+AYjyX+m3HJ0hd+j0K8n5SzFNekz3qctZaKHaBiB2jzX0G9t4VSfIKxaC+F+DBweuxjYEcpxd3EBNQ4V5B1VuGbhvGpDlCdh5uPD1GMu4go4eDjmAQp2gGHiByVeACIiSnRVTlIwnyHFu9ltPp34poULxXYUQ6X72U02kVoC5Ti44DFWkPFDJF0W8k6a7HEVOwAPcE3Ce0wyxPvwjGJGX8s51sURRw5coRUKjUe2AJks1kKhQJdXV0sW7YMYwydibfgmQyD0TbKcR+uSdHqvYKOxOtxjH+Wq4gsnAUNbX/jN36DkZERrrzySlzXJYoiPvKRj/Dud78bgO7ubgDa2yfOg2lvb+fw4cOTnvMP//AP+dCHPjS3hcuC2759O1/+8pdpaGjgAx/4wEKXIyIiIiIiIvOlZimse9usnc4xHh2Ju6hx19IdfJ1cdABLiGfq8EwWhxQGQ0xIZKvdr5Et4JsG2v27aPdfjWdqTnbUDlO2vZTjfmLKFOKjDIQ/IOOuoMasO6OzFqrh6mj0PIEdwCFNgqYzun09anCcFBU7hLE+9c5mQsY4HnyVXLyHpYm3k3Ymdhr3Bt9jNNqJb5ooxF24JoVnagAIbZ5cvA/facA39SRNK67NMhg+TtIsoSPx2ln7+M6VMAypVCr4/pmhq+d5FIvF8d+7JsmSxN202jup2CE8akg4F984CLm8LGho+0//9E/84z/+I5///OfZtGkTTz/9NPfccw+dnZ385E/+5Ph+L/3Hylo75eMKv/Vbv8Wv/uqvjv9+dHSU5cuXz80NyKSKxSJ/+qd/ShhWh8D/8i//Ms3NZ39kQ0RERERERGQh1bhrWeP8HPl4H0Ph0+TjfQR2hNj2npw66+KZDGmzhAb/GurdLSSd1vHjjTk5doBGat0NFOIu+sLv45El7aycNMcI7AjD4bNENndyVu1LF1k7zTEeCRopx72M8Tz17lZ808BotJuw/BlWJH+cjLPs9Hmjp0iYZspxH9ZW8F80SsElS8UOUIp78N3qLF/PZPBMLYPRo7TY2/FMZrY+tHPC931qa2vp7+8nm82Ov26tpVKp0NTUdMYxnqkZD65FFrsFDW1/7dd+jd/8zd/kXe96FwBbtmzh8OHD/OEf/iE/+ZM/SUdHdRh0d3c3S5YsGT+ut7f3jO7bU5LJ5IS2eJl/zz777HhgC/DUU0/x2tfO7rt0qVSKlpYWLUYnIiIiIiIis8YxHrXuldS6VxLbkIodILRjWGIcfBJOCx4155x7G9sKJypfoxL3k3XWTbp/ZIuMRDtOBraN01tczLj4NFCKe0iYo2TcldQ4a8nHB+gqf5E1qf8H39RTinsJ4hESpp2S7cZ5ybgHY8DBJ7BDE15PmBYK8SHGoudp9K6fxkds4TiOw9q1axkYGGBoaIja2lriOGZkZIRMJsOKFSsWukSRCzL5kobzpFAo4DgTS3Bdlziuzn5ZvXo1HR0dfPvb3x7fXqlUeOCBB7jtttvmtVaZvqeeegqAm2++GYBnnnlm/M90tmzcuJFf+qVf4qd+6qdm9bwiIiIiIiJy+YhskdFoF0Phk4xEzxHa/Pg2x3iknHZq3CuoddeTdVfjm9pphav9wQ8YiXaRdlZMur+1lly0nyAePdlhO/15vI7xcEyCXLyf0I5hjEvWWUM+Pkh35ZvVp5MxgCGiQGwruEzV3DbxutX5rtV5vReD5cuXc+2115JKpRgeHmZsbIzGxkZuvPHGSTttRS4mC9pp++Y3v5mPfOQjrFixgk2bNrF9+3Y+9rGP8b73vQ+oPlpwzz338NGPfpR169axbt06PvrRj5LJZHjPe96zkKXLFI4fP053dzepVIrXvva17Nmzh6GhIfbu3cuGDRsWujwRERERERERYluhL3iIwegRyrYXa2PAkHRaaHJvotV/Ja45v6d4Q5unP3oIz9RMukAYQMX2UbLH8EwNxpy7n85aS0SR2FYAMHjEFCjGx6h1r8QYl5TTwWD4GA3e1aSdZfhOI+W47+QZXjp2srr4WcKZPNi0zG7jFUA8FhB3F4n7ithShA0txBbjGfAcTJ2PuySD05rCeNPrMTTGsHbtWpYvX87IyAjGGBobG3HdqcdMiFwsFjS0/cu//Et+93d/l5//+Z+nt7eXzs5O3v/+9/N7v/d74/v8+q//OsVikZ//+Z9naGiIm2++mW9961t6LH6ROtVlu3nzZnzfZ+vWrdx///089dRTZw1t9+3bxxNPPMGxY8fI5/N4nkcmk6GpqYm1a9dy7bXXksmcnqdztoXIoiji0KFD7N69m66uLkZHRykWi6RSKTo6Orj22mvZvHnzjN7JFBERERERkUtDbEOOVf6dvvAhPJMlbVbgOP7JcQj9HA/+g5LtYXniXecV3I5GuyjHvWSc1ZNut9ZSjI9jbYzrnPv8oS1QiQeJKQGW0wGsIRftJ+OswjUpfFNPmV4GwydZmbySJvcGjkZfql6TEEPi5PUhZBTXpEg5HWfUZrG4XPg823igRPD8MNHxAtG+UaLuIjYXQBBX78KCNdW7Gb+rrIdTl8BdXYu3qgZ3RQ3ehvpzhriJRILW1taz7iNysVnQ0La2tpaPf/zjfPzjH59yH2MMH/zgB/ngBz84b3XJ+QmCgB07dgCwdevW8Z8feOAB9uzZQy6Xo6bmzIHf999/P/fdd9/4733fx1rL0NAQQ0ND7N+/n87OTlavnvwL3ksdOXKEz372s+O/9zwP13XJ5/Ps37+f/fv38/zzz/OOd7zjjPEcIiIiIiIicmkbjrYzED5M2unAM6cbwhzjkTIdeLaOofAJss5qWv2Xz/z84VMYPBwzeeQSkads+3GnsdBXaAuU4x4sEQ7J8a5ca2NiKpRtH2PRCzR41wDVmbSj0U7KcR+t/ispxsc5Vvl3yraPBE1YYiJbwjVJat0rz1iUK7DD+KaOWnf9jO8bwMaWcO8IweP9VLb1EQ+VwYLJuDg1Ps6yLCSdyUdGRBabD7D5kOCxXio/6MH4Du6aWpK3t+Nf24zTqDWM5PKxoKGtXFqef/55SqUSTU1N4wO/T/368OHDPPPMM9x+++0TjhkeHub+++8H4NZbb+W2226jrq4OgFKpRE9PDzt27JjR4nK+77NlyxauvvpqOjs7yWazGGMoFAo8++yzfO9732Pnzp2sWLGCW265ZXZuXkRERERERBY9a2MGw8cxOBMC2xfzTAbHpBgMH6fZuwXHJKZ9/sgWKcTH8EzdlPsEdoyYAI8zm5om1mqpxIMnA9s0L845jXFwSRHbCvn4IHV2I45J4pt68vE+ivFxGrytrEz+OI7x6Kr8M5ENcI1P1llJyukk4TSe8bEp2x6avdvO6MA9FxvEVB7vo/JQN+HeUWwpwmlJVrtknek95Wpcg6lLQF0CTq5Fb4sh0eEc+ReGcVvT+De3kri9HW/F2T92IpcChbYya06NRjjVZXvK1q1bOXz4ME899dQZoe3Ro0ex1tLc3MzrX//6CdtSqRQrV65k5cqVM6pj2bJlvOMd7zjj9Uwmwy233EJtbS3//M//zGOPPabQVkRERERE5DJSsYMU4y58p/ms+yVMM6W4m5LtIWOWT/v8pbiXyOZJOm1T7hPaHMbac4aZEXlCcgBYchjr4+BPmIHrkCC0eUpxLxl3+fi2su0FwDUpViT+G9bCYPQoabMc3zkzULY2Ih8fJO0so81/9bTvFyDqylH80iGCpwbANThL0jg1/ozOMRWT9vDW1GIjS9xXovS1I1Qe7iF593JSr+rEJDS7Vi5dejZcZsXg4CCHDh3CGHNGaLtp0yZ836e/v58jR45M2JZKVYeyVyoVKpXKvNS6fv368ZrHxsbm5ZoiIiIiIiKy8Cwhlghzjh42Bw9LhLXhjM4f2GFiKjhMvgAZQGQLcI7Fx2IbUop7iCliCYipEJEjJHdy0bQqg4slIrAjLzrapRIPnr4Xk2B58kdo8W6nQj+5aB+VeJDQ5gjsKPnoEPl4P2lnGSsTP0baWTKte7VBTPk7x8j96Q4qT/TjrsjiraubtcD2xYxrcDvSeFc1gIXiP+4n/5e7CA/pe3q5dKnTVmbF9u3bsdaycuVKGhsnPmKRSqW48sor2bFjB9u3bx8fnQCwdOlSMpkMY2NjfOpTn+KGG25gzZo1tLS0XNBCYeVymW3btrFnzx76+/splUpEUXTGfqOjo1rUTkRERERE5DLhmiwOKSJbwDvLTNnQFnBN6oyZr+diqYa8Z/9+1mI4+/e7gR0ipgy4LwqYLTEBEUU8sidfM+NbGH/FEDMxbPZMDcsT76YxvoGh8AnGoj0EtojBIeuupMm7iXp3y7TvNzpRoPhPB6g82Y9T6+NtrJ+Xxb6NMbidGZzGBMH2AcJDY6TetILkazoxrvoS5dKi0FYuWBzHPP3008CZoxFOueaaa9ixYwfPPfccr3/968dn1KbTad7xjnfwpS99id7eXr7+9a8Dp0cjbNq0ic2bN+O603/kob+/n8985jOMjo6Ov+b7PqlUavyLSC5XfcQkCIIZ36+IiIiIiIhcnHxTS4O7lb7wPhK2efIFsaylYvto9G4gYVpmeIVzB4fV7th4yu3WRoQ2j8HHEAGWajhrMLjEVLA2fXIUggXAM9nTxxPjcOYcXsf41LlXUetsJCRHbEsYPHxThzHT/547PDRG/u92Ex0Yw1tTi8nMf7Rk0h7uxnriE0WKn9tPPFQm/fbVGF/BrVw6FNrKBdu/f/94QPrVr36Vr371q1PuW6lU2LlzJ9ddd934a2vXruWee+7h+eef58CBA3R1dTEwMMDu3bvZvXs3Dz30ED/+4z8+vkDZuXz5y19mdHSUhoYG7rrrLlavXk0mc/od1DiO+dCHPgRUvxiLiIiIiIjI5aPJu4nh+FkK8REyzooJwa21lpI9jmeyNHu3zrh71DNpwCG2IY6ZPHLxTA3ElqmabS0RlhiXJJZgwjgHg8ESY4kxOMQEOPikTMeLjreknNYpazTG4FMLUyzEdjbhvtFqYHssX+2uXcDu1lNdt3G6TOlrXdhyRObdazXnVi4ZCm3lgp1agGy6tm/fPiG0BUgkEmzdunW8U3d0dJRnn32W++67b7wD913vetc5zz0yMkJXVxcA73jHO1i+/MyB8ae6bEVERERERGR+BUFALpcjl8sRRRHGGFKpFLW1taTT6Xl5xD7jrmC5/yMcDf6VXLwHz9TikiSmQmBHSZgGOhM/RK27fsbnTpo2PJMhooDD5I1HrsmAMVgbT1hU7BSDNz6r1iFFRP5kcHuqQ9epBra2giUgbVbgOdVO29iGGMxZF0I7X+HhXDWwPV7A21B/zoXU5ovTmATXUP72cYznkH7XGo1KkEuCQlu5IPl8nt27dwPwzne+k7Vr1065b39/P3/7t3/LkSNH6Ovro7V16nf+6urquOOOOyiXy3z/+99n//7906pnZOT08PUlSyYfnn7gwIFpnUtERERERERmx/DwMF1dXXR1dVEsFgnD6sxVay2O45BMJmlqamLVqlV0dHTg+7O/mNWL1XtbSDqtDIfPMBQ9SWRLuCZLi3cHDd41pJ2l53Ve3zTgmwYqdgjfTB7a+qYBl/RLZtOeZoyDb2oo20FckkCWiCIxFSDGkCCihIOHRw1Zd/X4sRU7QMJpJuOsOOO8FyLqK1L4+91ER/N4Vy6ewPYUpy4BnVD+xlFMxiP1Qyvn5Q0Akbmk0FYuyDPPPEMURaRSKdavX4/nTf1XaunSpbS0tNDf38/27du56667CMPwrMec2uY403uXLJU6vUJnd3c3y5Ytm7C9XC7zwAMPTOtcIiIiIiIicmEqlQp79uxh3759FItF0uk0NTU1+L4/HqpFUUS5XObEiRMcP36c9vZ2tmzZQnNz85zWlnI66Eh00G5fOz5mYLLO15kwxqHe3cKJ4D+x1k4aHLomScp0kIsP4JKZdB/fNBITEtrcyRm1Pha3GtSaWlxSGONjbYBvqouBW2sJ7DBLvDfOeAG1s7FRTOlLhwj3jVZHIiyywPYUpyGBDWJK3ziKt74ef1PjuQ8SWcTULy4XZPv27QBs2LDhrOHrKZs2bQJOh70PPfQQ9957L88888yELtkwDHnuued4+OGHAVi3bt206mltbaW+vh6Ar3zlKxw/fnx8W1dXF//wD/9AqVSa3s2JiIiIiIjIecvn8zzyyCPs2LED13Vpb2+nvr6eRCIxIah0XZdMJkNraytNTU309PTw0EMPcfDgwXlZh8QYB9ckLziwPaXB24pnaggZm3KflNuJa5JEFKasKWXaSTudJE0LSdNK1llJ1llLymnHd+qJbZmE00TCNABQtj0kTCMN3nWTnvN8VR7to/JoL+7KminHDlhiCo1HGVrxNCOdOwmSU9/7XHJbU1CKKP7rQeKcFh6Xi5s6beW8dXV10dvbC5wOY89l06ZNPPDAA+RyOfbu3Yu1ln379rFv3z4AfN/H8zxKpdL4F+fW1lZe97rXTev8xhjuvvtuvvjFL9Lb28vf/M3fjD9WEwQBvu/znve8h8985jMzvV0RERERERGZpmKxyOOPP053dzctLS3TavKB6tOWra2tjIyMsH37dowxrFq1am6LnWUp00mdu5HBcBueUztFJ20dGWc1Y/ELODY5+aJlBlzSuCZ9xqbYVgPJtLMUjCGyRUI7xrLEO0g7k48KPB9Rb5HSVw5DwsGpnXxkRexW6N54H2Mdu4ndAGPAL9TTtvvl1PbMfC7whXLX1BLuHqH09S7SP7JaYxLkoqXQVs7bqQXIUqnUWWfZvlh7ezutra309fXx1FNP8aY3vYna2loOHTpET08PuVyOUqlEKpWira2NjRs3csMNN8xontGGDRt43/vex/e//32OHDlCEATU1NSwZs0a7rjjDlpaWs7rfkVERERE5lp0LE/w7CA2H+IsyeBf04STndvZniKzzVrLrl27ZhzYnmKMoaGhgaGhIXbs2EFDQwMNDQ1zU+wcMMbQ7r+OfHyAku0mbSYPUbPOSkI7TDHuxqd+8uB2EtUxCKMnu3DbiWyRQnyYRu9Gmr1bZ+0+bBRT+rdDRMfyeBsbptxveNkORpbtIDnWglfJYIkp1ffSc+UDJEfbSBSnPnYuGN/B7UhT/u5x/E2NGpMgFy1j5+NZgwU0OjpKfX09IyMj1NVNPgRcRERERERkoVUe66Xwuf3E/SUwgDF4GxvI/vcNuK1ndtpdquJ8QPjcMPFwGSw4jQm8qxqn7PKTM8UDJcrf7yZ4ehCTcPBvbCV5RzsmMz99W8ePH+fhhx8mk8mQTp//311rLb29vSxbtozbbrtt2mudLBb9wUN0Vf6ZpNM25aJkkS0zGj1HyXbjUYNrUpPud4q1ENgRXJOk0buB2FYo214avWtZnnjXrM6yDZ4bIvexHTjt6Sk//ywxh2/9PJX0MKmxthe9bik0d7HkubtoOHr1rNU0E8ELI/ibG6n5f7cs2jm8cvGby9xRnbYiIiIiIiILLB4sU/zng9hiiLepAWMMthIT7hyi9LUusu+d/0eM55sthJS+c4zKQz3E3QVsTDW8xuC2p0jc3k7ytUtxahTenk08WCb3iV2EL4zg1PvYyBLsGibcO0L2v1+J8ec2+LTWsn//fqIouqDAFk533HZ3d9Pf309bW9u5D5pDUy0sNpUm7xaK8Qn6wwfAYdLg1jVJ6t0tuFGGou0iskU8anDMmX/PrYWQERzjknVWUo67cUyCDv91tPmvwTOZC7q/l6o81outxGd9w8Q6MZFfwokSE1431XeeiPzyrNY0E+7SDOGeEaL9o3jr6hesDpHzpdBWRERERERkgYUvDBP1FPE21I+HQibh4LSlCJ4eIB4LLulO0zgXUPi73VQe78NpSOCurRsPF20YE/cUKf7LQcL9Y2T/nw049YlznPHyVX6kh3D3CN7GeoxX/RjG+ZBgWx/BrW0krpvbcXFDQ0P09fXNWsdZMplkeHiYrq6ueQ9twzCkt7eXI0eOMDw8TBRF+L5PW1sby5Yto6mp6azdv47xWJp4KwD94YNEJk/SdJwR/DomQa17JUnbQj4+SCUextoQx3g4+ICLtRGhHQHjkHI6AIca9wra/VdR42yY9bmtUXeB4KkB3Lazd/46sUdqeAljS17AL9SfDGsh8so4sUNyrHlW65oJp9YnOpKn8nifQlu5KCm0FRERERERWWA2iKu/eEn+Y3wHW4jg1PZLkLWW4j8dqAYra2sx6YnfphrPwV2axWlOETzVT+FzLtmf3ajHnacQPT+MyXjjgS2Ak/WIQ0t0JA9zHNoODw9TqVRmdQZtKpWir6+POI7nbUTC8ePH2blzJ0NDQ1hrSSaTOI5DpVLhhRdeYP/+/bS2tnL11Vef9V4dk2Bp4odJOR30ht8mH+8l6XTgMXGBMmMMSdNKwjQTOMOU434ChgnjHCGjWCr4TiON3nU0utdR615J1lmNMXPz8ag81U88VMbbNPW9ndLYtZVC01EKTUdJFOqJ3YAwlaO2Zz2ZwRVzUt90OS1JKo/3kXrDcpym5ILWIjJTCm1FREREREQWmLuyBlPjYQfLmOZqZ5u1lqinhH91I6bh0u0sjY7kqWzrw12aOSOwfTGTcnFXZAm2DxAdGMO7QmuWTCrjnRHyW2uxscUk5z7wHBkZwRgzq52fyWSSYrFIPp+ntrZ21s47lUOHDrF9+3bCMKShoWHShbHL5TLHjx8nn89z00030dw8dUepYzxa/ZdR466lO/gGY9ELlOwJfFOHa2rwyGCMe3JvU51L6xgcm8R3avGceprcG2nzX0nCaZqjuz7NliIqD/Xi1PnT+nPMDC1j6bNvZHDFdkr13ThhkpZ9V9N4+FqceGFjJ6clRfTCMMFT/SRfs3RBaxGZKYW2IiIiIiIiC8xdWUPyZR2Uv3mUeLiCSXvEwxWcxgSpNyy/pLtKgyf7sWMhZnn2nPuaWh/blafyRJ9C2ykkrm8heLyPeKCEOdlZGB8t4DQm8TY1zvn1C4UCruuee8cZ8DyPMAypVCqzet7J9PT08PTTTwPQ0jJ1V3IymaS1tZX+/n6eeOIJ7rjjDrLZs/8dTjudrEq8l6LtYjh8hpFoB4EdpWx7gNNrxBs8PJMl666k0bueenczvpm/x/vDQ2PEJwq40/icPCUzuJz04DJir4yJvQUPa08xroGkS/DMoEJbuegsjs8iERERERGRS0CcD4j2jWJLMSbl4K2rx2TO/W2XMYb0j67BXZql8nAP8VCF5NVNJF+xBG/9pT2LMdwzgsm60+roM8bg1CUIXxiZh8ouTv4NLSRft4zyfSewPUXA4DQmSL99Nd6KmoUub1Gz1rJ3717K5TKtra3n3N9xHFpaWsbn3m7cuPGcxxhjyJgVZBIrWGLfSMUOUrK9RLaAJcbBxTcNJJ12PGpmfVbtdMTdRWwQY1IzC98NBjc8+wzchWBqfcKjeWwpmvE9iSwkhbYiIiIiIiIXyBZDSt85RuXBHuKeIjayGNfgdGRI3NFG6jVLz/roP1Tn1yZfsYTkK5bMeJX6i5ktRxh3Bo/tuwZbjuauoIuccR3S71pD4qZWwgNjGM/gbWzA7cjMy/VTqRRRNLt/PlEU4brupGMKZtPw8DC9vb3U1tZO+/PPcRxSqRSHDx/miiuumFGNxrgkTStJzh0QT1chPsJQ+BT5+BAeaeq9q2lwr8E16WmfIzqWh0vonx+n1ifqKRJ1F/BWzf14DZHZotBWRERERETkAthiSP7v9xA80oOpT+Cuqa0uIBbExD1FSl88QNSVJ/u+DdPu8rpcAls4Gagczk17f1uOcDvnJ4C8WBlj8NbW4a2d/xES9fX1WGvPveMMlMtlUqnUOccPXKju7m7K5fKMF1GrqalhaGiI3t5eli5duEfwh8NnOFr5Fyp2CM9kiW3ASPQcI+4OViT/G54598fPWku4dxQnewnFRWkXW4yIu4ug0FYuIvOz7KKIiIiIiMglqvTd4wSP9OCursVdlsX41W+zjO/gLsvirq4l+EEPpe8cW+BKFyf/mmZsOcJG5w76bGyx+RD/+qlnjcr5szYmtpULCl3r6+vxPG9W58+WSiVaWlpmfVbuS52axzvTN008zyOOY8rl8hxVdm6hzXE8+CqhLVLjrCftLCPrribtLGc4eoaB4OFpnceOBNV5yDVz29U8n4wxGCA6XljoUkRm5BJ660RERERERGR+2UJI5aEeTF1iytm1JuNh6hJUHuoh9erOc45JuNz41zbjtqWrCx8tO3snYNxbxGlO4l/XPE/VXR4K8RGGw6cZjp7F2gquydLoXk+Ddw1JZ2YBeXNzM83NzfT39591Ia/pCoIAx3FYvnz5BZ/rXOI4vqDjZ7vDeCbGoj2U4z4yzqoJobNrUnimhqHoSVrtK3HM2f/9iftL2HyI05ic65LnV8Kpjn0QuYio01ZEREREROQ8hftHiU4UcNrPPi/SaU8TnSgQ7h+bp8ouHk5jkuQblmGLIVFvccr94v4SdiQg+fpluK3Tn88pU7PWMhA+zP7SJ+kOvnlyMSxDxQ5wLPh39pf/mrFo94zO6TgOa9aswVp7wZ2n1lqGhoZoaWmhra3tgs41Hclk8ryC21PHzPXM3bOJbAGwk4ayLmlCmyfm3N3PNowhtuBeYiNaNAtbLkIKbUVERERERM6TLUUQWUzi7N9amYQDkcUWw3mq7OKSfM1SUm9bhS1EhLuGifpK2FKELUXE/SWCXcPEowGpt64k9fplC13uJWM03sWxypcBS42znpTTQdJpJu0so8ZZRyUepKvyT5Ti7hmdd/ny5SxfvpyhoaEL6l7N5XIkEgk2b94856MRgPERDEEQzOi4QqFAOp2muXnhOsB9pwFjHGJ7ZjAbMkbCNOOSOveJQou9FENbx0DlwjqpReabQlsREREREZHzZNJetYOrcvYOLluJwDUajTAF4xhSb1pBzQc2k3h1J4Qx0bE80dE8thKTfOUSau7ZTOqHV2JcfRs7G6y1DAQ/ILZlUs6SM+a4GuOQcVZTirsZCp+a0bkdx2Hz5s00NzfT19d3XsFtLpejXC6zceNGWltbZ3z8+Whvb6ehoYGxsZl1xOfzeZYtWzbnC6WdTa2znrRZQSE+jLWn/z0K7AixDWj2b8KYaXzuLOCIhzl3Cd+aXJr0PwYREREREZHz5K2txe3MEveUcJdPHdjE3UXczizeFXXzWN3FxRiDv7EBf2MD8VtWEA9XwILTmMBpnkaHoMxIyZ4gF+8n4UwdiBpj8E0DQ9GTtNlX45rpzzmtra3lpptuYtu2bfT29tLQ0EAqde4/xziOGRoaAuCqq65i/fr1077mhXJdlzVr1vDEE09QKpWmVe/o6CjJZJKVK1fOQ4VTc0yC5ckf4Uj5C+TjA1gsYHFJ0+rdSaN70/RO5DsYx1RHJDiXULettZDUGz5ycVFoKyIiIiIicp5M2iPxsjaKnz+AyQc42TNnWsa5gDgXkn5LGyY19494Xwqc5pSC2jkW2hyRLZEyHWfdzzUZIlsgsoUZhbYADQ0N3H777ezcuZPDhw8zOjpKTU0NqVQKxzkdoFlrCYKAfD5PuVymqamJTZs2sXTp0jM6gM/F2ghjzv/zbNWqVQwPD7N3717iOCadTk9ag7WWkZERoijimmuumZVF1y5UxlnBFalfYCR6jlLcg2sS1DjryDprptdlC9VOdsdAZC+txCiymIT+/ZWLy6X0KSgiIiIiIjLvUq9eSnwkT/mhHmyNh9OexiRdbDki7ikS50KSd7STevXShS5VZJzBw+ASE+IydZhlbYjBwTHnt8hWJpPh+uuvZ9myZRw+fJju7m5yuRz2JY/he55HXV0dmzdvZvny5aTTM1tsrhif4Hjlq5TiEySdVjoTbybjrJhxva7rsnXrVlzX5cCBA4yNjZHJZMaD5iiKKBQKlEolstksW7duZfXq1TO+zlzxTA3N3i3nfbzTlMCkPWwhxCQvoZCzEuN0Zha6CpEZUWgrIiIiIiJyAUzSJfPe9bgrayk/2E10OAehBc/gdGbJvLWD5KuWXFoBiFz00s5SUk4rFdtP2kz9hkLFDtLoXYfL+c9rdRyHJUuW0NHRQT6fZ3R0lHw+TxiGGGNIpVLU1tZSX1+P5808pghtniPlz5GPD5IwTYxFz3OkPMba1M/hm/oZn8/zPLZu3cry5cvp6uqiq6uL0dFRrLU4jkM2m+XKK69k2bJl1NbWzvj8i5lpSuI0J4n7StA4s87qxcra6rAId4lCW7m4KLQVERERERG5QCbpknrDMpKvXEJ4YBRbjDBpF29NnUYiyKLkmiSN7k0cC/6NyBZxzZmdrZV4GMd4NHo3zHhMwWSMMdTU1FBTU3PB53qxUnyCYnyUrLMaxyRI2Cby8QGK8TF8d+ah7alam5ubaW5u5sorr6RQKBBFEZ7nUVNTg++fX+fxYmeMwV1bS3god5b+64tMKcIkXNyOmXVviyw0hbZywfaW/oL95U9Me//X1++Zw2pERERERBaOSbn4VzUudBki09Li307BHmYofBLf1JMwLTjGI7JlyrYXayu0+q+mzrlqoUs9K4OPwSOmjEOCmAoGFzNLkUcqlZrWomSXCm9ZDeXYnnvHi0ScCzG1Ho5CW7nIKLSVWZUwCz98XURERERERM7NNSlWJN5NyixhKNpGIT4ExBg80s5Smv3baPZumfYiVgsl7SylwbuGwfBRLCcwWBq868g6qxa6tIuSsySN8Qy2EmMSi/vPfjrsWIC3rm7ShSJFFjOFtjKrXlX38EKXICIiIiIiItPkmjRLEm+g1b6cQnyYyJbxTGZ81MDFwDEeyxI/QsZZSSUeIOE00OTdfNHUv9i4K2tw2tLEfUXcpec/y3i+WWsJiPBwcU6O87CxxRZC/KubF7g6kZlTaCsiIiIiIiJymfNMljp3cY9BOBvXJGn1X7bQZVwSnKxP4tY2iv9yEKczMyvzjOfasM2zMzpC3pbwjcs6p5Olphk7WMZpSuJfr9BWLj4KbWVBfWNkPQA3Zu+l2bt50n0ey/0YQ9HjrE3+IutSvzzl8TXOFRwo/w194f2U4m5iShPm50a2TFflC3QH/0Uu2k9MiYRpocm7kVXJ9075H5T7R19JyR5jc/qP6PDvYn/5k/QE36YUH8c1aRrd61mT/FkavK1nvdfRaBeHy/cyGD1OOe7D4JBxltPqv4pViZ8k4TRN++MmIiIiIiIiMlcSN7RQ+tYx7HAF05hc6HLOqmDLbI8OMBoXyJgkBVtmR3SYhOvR1AeJV3bitmmerVx8FNrKJaEQH+aZwgeo2H4ckmcMnC/F3TyR/xlycTXENfi4pCjZ4xwPvsLx4D/YmPptViZ/YsprhHaER3JvJx8fPHl8ksAO0xt+l97wPjan/4BliXdMeuze0p+zv/zXQHWYu0uamICxeDdj5d0cq3yJ67N/e1G/sy0iIiIiIiKXBmdZFn9zI5XH+nAWeWg7ZHOM2gJNphbHGDIk6YtH6CkP0uS3kLi5daFLFDkvCm3lkvBC8Q9JOW1szfwZTe7NGOOQjw4CYG3E9sIvkYv34FHLVen/jw7/9TgmQSE+wvPFj9AX3sfzpT8g46yk1b9z0mvsK30CYxyuyfw5bd5rcYxHLtrHzuIHGYoeZ2fx96h1N1Lvbppw3KHyp9lf/itcsqxN/ixLE28j6bRibcRo/Dy7i3/CYPQoT+V/ljtq/wvPXDwzg0REREREROTSY4whcWsbweN92EKIySze+MhiAcuLhzgYDNFQBXdtHd6G+oUqTeSCLN7POrkofW/0trNuX+K/kY3p35n16xoMN2Y/Q8rpGH8t664GoDv4BiPRMwBszXx8wpyjjLOCazN/xWP5dzMSPcPu0v+aMrQNGePGzKdp9k7fY417BTdk/44f5N5CIT7EvtLHuT77qfHtlXiQvaX/DRiuy/7VhGONcal3N3ND9v/yaP5HGY2e42jlX1iV/KnZ+JCIiIiIiIiInDd/SxP+tc1UnujH21i/aGfbNpoaakgzSI4am6JMgBtAc5gl9bplGM9Z6BJFzov+5sqsqtj+s/4I7NicXLcz8dYJge2LdQdfB6DBvXbSwfSO8bgi+YsA5OI9jEW7Jz1Pg3vdhND1FNekWJ38aQD6wgcn3OPx4D+IKFLvbp702FPXX+LfDUB/+OBUtygiIiIiIiIyb4zvkH77KtyWJPGxwkKXM6WsSbHVXU29yVAhwIsdruxpYcUt67UAmVzU1Gkrs+rFC3/Npwb3+im3jUTPAUwZmgI0ebdgcLFEjETPUetuOGOfZu/WKY9vdk9tixmNdtLs3QLAUPgkAGPR3rN2Ice2BEAxPj7lPiIiIiIiIiLzyV1eQ+pNK8h/Zi/OIh6T0OLUcYe5ijIB5mCRZFsNmbeuWrTdwSLTsTg/20RmKOk0TbmtYgeq+5j2KfdxTRLfNJ7sCB6Y/BpnOT7pnN5WiU8fX7a9AMSUqJwMZs8mmsY+IiIiIiIiIvMlcecSgueGqGzrw9vYgHEWZxDqGofUEMSxQ/ptqxb9Amoi56LQVi4R7jn3mP4bbJPveLbjzRTHWCIAlifezab0h6ZbgIiIiIiIiMiiYHyH9DtWEx0vEO0dxV1ftyg7WONcQHS8SOoNyzQWQS4JmmkrC8qcDFtjW55yn/AC5+AmTPUf61LcPeU+kS0T2OGT+0/etVuKe6Y8/sXnTjinvzgkTQvAlHNyRURERERERBY7d1mWzE+vx2lKEu0fw1q70CVNYAsh0aEcyTs7SP/I6kUZKovMlEJbWVCeqQOgZE9Muj20OfLx/gu6Rr27GYCB8JEp9xkMH8MSntx/yxT7PDrl8QPRqW0Ode5V4683etVZuyPRMxTjYzMpW0RERERERGTR8Dc0kHnvepy6BNG+MWy8OILbeCwgPDBG4o52Mj92BSZ57idxRS4GCm1lQdU5VwLQE3xr0u0Hy39PTOWCrtHh3w3AcLSd/uChM7bHNmR/+a8AqHHWU+uun/Q8Q9GTDISPnfF6ZMscKv9fAFq8O/BPBtEAnf5bcUhhidhV/BDWRlPWaW1MYEenf2MiIiIiIotAnAsID+cI944S7hslPJwjzgcLXZaIzAH/6iYy/30DTnOScPcItjL197jzIe4vEXXlSb6qk+x71y/ahdJEzof+NsuCWpJ4EwPFR+gPH2Rv6c9ZnfxpPFNDJR7kUOUfOFD+FB51hJx/mNnhv45Dla2MRM/wdOFXuCr9QTr81+MYn0LcxQvFjzIcbQdgQ+rXpjyPRy1PF36JTenfp817DY7xyEX72VX8EPn4AAaXdclfmXBM0mllfer/5YXSH9AX3s+2/HtZl/oVGtxrMMbFWks+PkBf+ABHK//C2uTP0pl463nfq4iIiIjIXLNBTPj8MMELw0T7Rol6ith8CKe67lyDyXi4HRncK2rxNzbiXVmP8dQzJHIp8K9qJPtzGyl88QDhziGcthROa2peRxLYSkx0cAxSLqm3riD91pWYhDps5dKi0FZm1fdGbzvnPtdmPkGjdx0AS/23cbzyHwxGj7K//FfsL/81vqkb7zjdkPp1eoP7GIoeP++ajHG5NvOXPJH/aXLxXp4t/g92FH8Tl/SLwmCHK1O/Tat/55TnuSL1i3RVvsjThV/GIYFDkpBT83YNV6U/SL135miFVcmfwFJhT+nPGIwe5bH8oxh8PJMltHksL+5C0NwdEREREVmc4nxA8Ggf5Ye6iQ6NQWAh4+LU+DgdaXBP/l82ssT5kPDAKOFzQ5S/fhR3TS3JO9pJ3NymTjiRS4C3to6aezZR/uYxSt86SrhnFG91zbwEp3F/iai7iHdlPem3r8a7qkEzbOWSpK+WMqsqtv+c+8QvCimNcbk++7ccLP8dJ4KvUYyPAoYW7w5WJ3+aZu82eoP7LriulNPBrTX/Rlfl85wI/ot8tJ+IIimzhCbvJlYl3zthFu1kPFPPrTVfYn/5k/QE36IUn8A3DTS417Em+X4avWunPHZ18mdo817LkcrnGAwfoRgfI7RjeKaGjLOCJvcW2vzX0OBec8H3KiIiIiIy24Lnhyl+6SDhCyOYlIu7LItJT/3tpJvxoDUFnFwg6HCO/O4RKo/0kn7Harz19fNVuojMESfrk37bKryrGih+6RDRriGo8XE70rM+V9Zaix2uEHUXMRmP1A+tJPXG5Tg1/qxeR2QxMXaxLfk3y0ZHR6mvr2dkZIS6urpzHyDyEvePvpKSPcbm9B+xLPG2hS5HRERERGTe2CCm9LUjlL55FFuMLqiTzpYjwoM5nKxH8vXLSN29XCMTRC4RcT6g8mAP5Qe7iY/msZZqeFvvX1AXrA1i4p4i8XAFpz6Bt6WR5CuW4G1Ud60sDnOZO6rTVkRERERERM5gKxGFz++n/J3jOC1J3OXZCwpJTNLF21BH3Fui+K8HsaMB6XetwfgKbkUudk7WJ/X6ZSRfuYRgxxCVR3oIdg5hj+YxCQdT42NqPEzWx7iT/ztirYVyjM0HxGMhthBiDDhLMqRft4zE9S04SzMKa+WyodBWREREREREJrBhTPGfDlL+znHcZRmcusSsnNcYg9tefXS69M2j4BnSP7oa4yq4vZSV437KtheLJWlaSDntC12SzBGTdEnc0IJ/fTNRV55w5zDh4TGig2PEwxU4XoAYMGAtYKu/xoCxwMmA11uZxV1Th7e6Fm9LI05WYxDk8qPQVkRERERERCaoPNhN+TvHcDtnL7B9MachAdZS/uZR3GVZki/rmPVryMIrxd30BvczEu0gtCNYwDe11LlX0eq/koyzbKFLlDlijMFbUYO3ogaovhEU95WIThSIe0vYSgShhdiC52A8g6lL4HakcTrSmNoLG6sgcilQaCsiIiIiIiLjouMFSl89gkm71XB1jjiNSeKRgNJXDuOtr8dtT8/ZtWT+FePjHC5/lkJ8hKRpI+tcARgCO8xA+Cj5+BArEz9B1l250KXKPDCeg7skg7sks9CliFw09AyKyDm8ou4+Xl+/R4uQiYiIyCXF2phS3Esp7sXaeKHLkUXCxpbilw4S9ZZwlmfn/HruiizRiQKlfz/EJb5G9mXF2pjjla9QiI9S46wj4TRhjIMxhoTTSI2zjnLcx7HKvxPbYKHLFRFZlNRpKyIiIiJymSnERzhR+U/y8WEAss5KliTeRMZZvsCVzY5T4Z8erQUbxUT7x4iHyjgtKdw1tWf9uET7RwmeGcRdcWGLjk2XcQzusiyVpwZIHszhramd82vK3MvHB8lF+0k7nRjjnrHdGIe0s5RCfIhcvJc696oFqFJEZHFTaCsiIiIichkJ7ChHyp+nGB8l6VTniI5GOwnKI6xN/QK+ubhDsyPHLQ8/GWMt3H6Dw4rOyze4jUcqFD69h+DZIWw5wmRcEje0kvnxKzDpyb8VrDzehy1GOLXzt+iPqfOxRwtUnuhTaHuJKMRHiCnhmZop93FNGktAIe5SaCsiMgmNRxARERERuYyMRjspxF1knbX4pg7f1JF11lKMjzIa7Vro8i5IHFse3BbT3W/pGaj+Ooou30fuS//ZReXRPpz2FN7GepyGJJUHTlD63vFJ94+HylQe78NpSc5rncYYnKYEwaO9xGN6VP5SYImAc79hYjFYG819QSIiFyGFtiIiIiIil5HQjmEwEx5Zrv7aENrRhStsFlgLUQSuU/0RRXC5Rra2GFLZ1ofTmsSpqa7C7jQkoMYneKR30vmx0dE88VAFp3l+Q1sApzlFPFgmOpqf92vL7PNNPRbOGshWZ2lbfFM3b3WJiFxMFNqKiIiIiFxGEqYVcIhtZfy1yJYxGJKmdeEKmwWua7j1WkNttvrj1msNnnt5jkewoYXIVtPrFzGewZbjSdPs6EQRYovx5v/bRJNwsKElPlGY92vL7Kt1ryTpNFO2vVPuU7EDJEyjRiOIiExBM21FRERERC4jde5Gat0NjEY78U09AIEdoc7dRK27cYGru3DrVjusXFpNJBOJyzOwBTA1Ht6V9VR+0IvTlMC4DjaIiYcqpO7owDhnfmyio3nMQobcBqJjCm0vBb6ppcV9OSeCL1OOB0iYpvGF7ay1BHaYwA7T4b+BhNO0wNWKiCxOCm1FRERERC4jrkmxMvlj9AXfZzh6BoBm7zZa/Zfjmvl/LH4uXM5h7SnGGNJvXkF0rEC0e3S8sdbb2EDyNZ2THhP3lyC5cA9jmqRLPFBasOvL7Grz7ySmRF/4fXLxHlyTASC2BVyTpc1/Ne3+axe4ShGRxUuhrYiIiIjIZcY39XQm3swSezcAxmhq2qXIXV5D7f/YQvD0APFQGac1jX9tM06tP/kBQQxmAQNvB2wQL9z1ZVYZ49Lhv4F6bwsj4bPk40MAZJzl1LtbyTgrxrtvRUTkTAptRUREREQuUwprL31OU5LkqybvrD2DZ6qruS2UmAWZpzsZa2MiSsS2jDEODqlLphN9PhljyJjlZBLLF7oUEZGLjkJbEREREZFZFscxQRAQBAHW2vEfjuNgjMHzPBKJBI6zOAIqEQBTn4DKAna6BnG1hgUU2hwj0XMMhdsoxb1YIsDg4FHjrqPRu44aZx2OmaJbWUREZJYotBUREREROQ9xHJPL5cjlcoyNjVEsFikWixQKBUqlEmEYEscx9iWdi8YYHMfB8zySySSZTIZMJkM6naampmb8h+u6C3RncrnyVtZQeahn4QqILO6y7IJcOrQ5+oL7GYyepBz34+DjmzockwQssQ0YDB9nKHyCjLOCZv82mtyb1K0uIiJzRqGtyEK6/3/A3n+Fde+AV/zZQlcjIiIiZxGGIYODgwwNDY3/KJVKVCqV8WDWdV1c18XzPDzPG++sffGq6dZa4jgmiiLGxsYYHh4mDEOgGuj6vk8qlaKxsZHGxkYaGhpobm7G99XZJ3PLaU9jDNjIYtz5nTVqwxjrGNwl6bm9jo2p2CHAkjBNGONQjgfoqnyR0WgnvmmkxlmDMS9508RAkhYiW6Joj9FV+QIlr5sl/htxzMJ2B4uIyKVJoa3MrrAEe78ER74LA89DaQCcBGTboOMmWPsW6LxtoasUERERmZZiscjAwAB9fX2cOHGCfD5PFEU4jkMymSSVSlFXVzdrYw5OjVUol8scPXqUw4cP4zgO2WyWjo4O2traaG5uJpPJzMr1RF7MXZ7F1CWww2VMc2perx0PVXDqfdylc9dpm4v20xN8m0J8GLBknJU0e7fSHz7IaPQ8WWfNOQNY16TImJUEdpje4LsAdPpvUcetiIjMOoW2MnuOPgjf/zXInzj9ml8LcQWG91d/vPAFWP4KeMXHIdW4UJUuHpk2qF9b/VlEREQWhSiK6Ovr48iRI3R3d1MsFrHWkk6nqa+vn9OO11NhcDJ5esGjMAwpFArs27ePffv2kUqlaGtrY+XKlbS1teF5+i+9zA63NY2/tYnyg904cxja2iAm7i0Rj5SJhytQiYkHy/jXtxA8M4C3qRG3bXY7bgtxF4cr91KJB0g6bYBhJNxFb3A/nklT526Z0Zxa3zSAA33hfaScDpq9W2a1XhEREWNfOmTrEjM6Okp9fT0jIyPU1dUtdDmXrv1fg/t+BWwI2Q647gOw+g2QrK9uH94Hz38edn6muk/dKnjLlyDdsqBli4iIiJxSLBY5fvw4hw4dYnBwkCiKyGazpNPpRTNfNo5jisUi+XweYwwNDQ2sXr2azs5OstmFmQUql5bg2UFy/3sH7rIsJj27bwjYyBIeHCM6OIbNBWAB34HYYvMh7tpanNoETkOCxI2tJO9ejtsyO+Hx0fK/0hveR42zfnxcSSUeojf4LllnNY3+9ed13kJ8mLTp5IrUL2txspOGhoY4ceIEQRDQ1NTEkiVL9OaSiFyy5jJ31L+ccuGG91U7bG0ITVfCGz8P6eaJ+zRcAbf+Hiy9A779fhg9BN/7Zbj78wtSsoiIiMgpuVyOAwcOcPjwYXK5HIlEYs47as/XqVEJ2WyWIAjI5XI88cQTZDIZVqxYwdq1a9WoIBfE29iAt6GBYOcQ3pX14wHnhYpzAcGzg8TdRUzSxWlKgmOqc54HyniravBvbK3uO1Cm9M2jBM8Pk3nnGvxrm89x9nPLxfvwTN2E+ynHvRjjENjceZ83adopxF3k4r3UuVddcJ0Xu6NHj/Lkk09SKBTGF11cuXIlN9xww6J582uuBEFAFEWkUvM7WkRELl0KbeXCbftfEBbATcKr//rMwPbFVrwKrv1FePJjcPwH1dm3K1595n5Hvw+7/xl6n4JiP3gpyC6BjpvhirdC+yTvhMcR7Ps32PdVGNwF5RFI1ELzZtjwI7DmzTDZfzqL/dU6jny3GkDne6sjHbIdsOQW2Pwz0LR+8vt56UJiB/4Tdn0WBp+HsAz1a6rX3vRTMNmcq7MtRFYZha774fB3YPAFKHRXZwanW6r3v+m90H7d1B9rEREROatiscjBgwfZv38/uVyObDZLW1vbrM2nnWu+79PY2EgcxxQKBV544QWOHDnCmjVrWLNmjTpvLwG2GFJ5tJdg5xAm6eJf14J/bTPGmbtFwozvkH77KqIjOeLeEm77hY8piHMBwRP9xINlnMYkeKfrt7kQk3TxNjaM35fbmsJpShIdHCP/dy+Q+an1JE4GuufLNRms7Rv/fWTLlOwJDB6uSZ7lyHOdN4UlYih86rIPbcMwZNeuXVQqFdrb2zHGUP7/2fvv+Mjy877z/fxOqhxQQCE1uhudp8PkRI40JCWL5IqyZMmS1kq+kmn7akXbSva11i9771q6MmXp3ivZa99dB1m0gmUFSitRupREUYHUkMNJnNA9nbvRQHcjVwGVq0767R81wHRPA90Ihfy8Xy+8gK5wzlMB6KpvPef5tVqMjo4yNDTEvn37trrEDTM7O8urr76K67qcOHGCEydObHVJQohdQEJbsT71KRj9XPvnI98C2SMPvs7Dfw/e+k/gVdsB552hrd9oB5kj//93T7OT7bCyeLH9NfkKfPsfvaeOGfjTvw/Tr797mpOGZhFuf7H9de0z7VDZfM/iAi/9TDs4Xdxfqh0Al0fbX1d/D77u38Chj93/dn3pf2nfHmW0aw6a7fD4xZ+E2XPwoZ9/8H1zp7P/Bb76b+6o6503XtXb7a9rfwDv/1/hzN9Z3XaFEEKIPc51XUZHR7ly5QqlUol4PL4YMOxEhmGQTCZJJBJUq1XOnTvH6OgoR48e5dChQ3fNxxU7h/ZCar90GffFaZSl0KHGfXGG6LcfJPZNBzZ039axDJGPDtH4rRGMlI2Kr/1tow403ltzhIUWRk+7u3bxPDeEZoD5cFc7zL2DMhXmkRTBjSqNX7+GORDHHFr7BxFd5hNUgyv4uo6l4vi6jKcroE1i5sCatwtgqy6qwWUC3VpXALzTVSoVKpUK6fS7Hc2RSIQwDJmfn9/Voe3Vq1eZm5sjEolw6dIlDh48KB23Qoh1k9BWrM/4V0CH7Z+Hv3Fl17ETMPQ8jPxRO4ANfTDeeSp+4Z+0A1tlwCM/CKe+H5IDoHU7IJ74Svs6dwpc+NzfhZk3oecMPPmPYfD9YMXAq7f38/InYfRP4eV/3R7TcKfUfnj8H7Vn8KYPgR1v36a5q/Dm/68d2v7lP4beJyHRt/RtGvtT8Brwvv8FTvytdodvc669v0u/AVd+B459O+z7mhXftcTycObvwpFvbnfsRjLt+6FyE97+FJz7FHzl/wX9T7dvtxBCCCEeaHp6mnPnzjE9PU0kEtlRnbUPopQilUqRSCSoVCq8/vrr3Lx5kzNnztDf379jQ+m9yj83h/fKDObBBEaiPaojGK/T+txtIu/r3dCFwgCiH9lHMFbFfXEa62gKFV3bW8fgRoVwso6Rc+4ObL0QPe9iHkhgHUoteV2lFOZwEv/8PI1Pj5D4R6dQ5tp+X7usp6mG15gPvkozDHD1PCFNkuYxYsb6wkRD2QS6QUgTk70b2tq2jWma+L6P47QbZbTWaK235biZTopEImitabVaxOPxXT8KQgixOSS0Feszd/ndn3tOr/x6uVPtMNWrtbtG0wfh9gtw/Q/b5z/3U3Dqb797eaXa4wqOfmv7604X/3s7sO06Dt/0m+Ak3z3PjsPxb2+f93vfDOd/FR77xN0LoD35o/fWp4z2SISv+7fQKsPNP4dLvwlP/PDSt6dVgg/+f+D4d757WrQLPvCzUHgbZs+2O31XE9qe+r4l6lKQPtDusA39dmfv+V+BD/zcyrcrhBBC7EGu63Lp0iWuXr2K67p0d3fv2oVxDMMgk8mQTCYpFot8+ctf5vDhw5w8eVI6v3aQYLKO9vViYAtg9Ebxr1UIJhsbHtqqmEX8+4+Br3FfmcE8mMRIrS54036IP1JFOQZY74atuhWgSx7mUBz70RzKWj6IVUphHkzinS3iXyljP5Rd0+0xVYQDzneTDR6jGlyjFt5AYZAxH0ap9QZsCtBoHbR/3KMSiQSDg4Ncu3YNrTWmaVIul0mlUgwMrK+bebt76KGHAGi1Whw9enTXh9RCiM2xO9oKxNZpzb/7cyS78utFc+/+3Jxrf7/0W+3vXcfvDmwf5NJvtL+f+tt3B7Z3yj/c3m7owviLK982tOfwAky9uvxlEoPtTtqlHPxw+3vx4ur2u9K6Ju9TlxBCCCGYnp7mhRde4Ny5c1iWRT6f37WB7Z1M0ySfzxONRrl48SJ/9Vd/xcTEBFrrrS5NrIB6JyDVfrh4mq56qJiJkd6cQMhIO8T//gkiHxwgnKjj36igw5U/f8LpJrrioZLv3BatCeddqPqYh5PYj/egnAcHpkbShlaI9+rsmm8LgKEcstajDEX+Jv32h7FVmk68JdY6QGFh7OHRCNAO2B955BGOHTtGEAQ0Gg3y+TxPP/00qdTS3dS7RSwW4/HHH+d973sfPT09D76CEEKswO5/tSq2qSVe7E291v5+4BtWvhm3+m4Y+ur/F776vy1/2YWAuXr73vMK5+HCf2sHs5Vb7Q7g99ZYm1h+2/lHll5oDCDee/f+V6M81u6knXix/bNXfXccxUrqEkIIIfawMAy5evUqb7/9Nq7r0tPTsyfC2veKx+NEIpHFrtuHHnqIhx56SA7f3ebsR3JYh1L4F0uY/TG0HxLOtoh8cABjHbNdV8tI2sT/3nGs01mavz+Kf34eoyeCkY8+cFRBWHJBa7QCXfGgEWBkbKwTWYyh+KpGdqiUjXdxHq11R0Z9OEY3pkriU8Yms65tebpEwhzGZP2Ltu100WiUp556ilOnTuH7PolEQv7WCCHEGu29V62is+7srm3Ng9W/sustdNdCe4wAQOOd1VyTq5gp1Zh5N8RcaSjqN+7+99v/tb1Y2GIYqtozac13Pin3m+BV2vNxl2Mv0+EL787rDf2V1bdg5I/hL34YgtYd+0mBFWnXGLrtsQz+feoSQggh9ijXdTl37hxXr14lEomQz+f39EzXha7bhYXKqtUqjz76qIxL2MaMtEPiBx+i8ZlR/IsllG0S/ZYDRL/pwKY/l5VpEPnafqzjGVp/Po730gz+pTLKMVApG5W0UXFzsS6tNbruE9yqoRs+FEAlLMyHMliHUmta2EwlLfS8i55zUbn1d7RG1QAp8wTz/hvY5tpDW60DNB4562nUck0ce1A8Ht/qEoQQYseT0FasT9exd3+ePdeeO7sShbfb3+3EHSHtOy8+V/MiVAfv/vw3fg96H1/5dQHmrsCLP9UObA99Ezz6g5A7Cabz7mUu/gb81U+sbrvr1ZxrL8oWtGDwOXjiRyD/GFh3vLG6/QJ89ns3ty4hhBBiB6hWq7z++uvcunWLTCZDLCbdbwuSySS2bXP9+nXq9TpPPPEEmcz6ugxXQwch/pUy3usFwqkGmO15pc4TPRj7Vtd5uReYQwkSP3SyPWLANlCxrX37ZvbGiH/XEcL/YT/eGwW8r87i36oRTjegGSwep6YAYiYqBCMXwTrZhdkfQ0XX0XFpGWjfQ7vBgy+7AkopcuaTlII3CLWLoZwHX2kJLT2LY3STNmVhYCGEEJ0loa1Yn8H3t8cC6LC9sNjBFYw28GrtwBGg/+l3O1HjeajcbI8nWKlY/t2fixdXH9qOfLYd/GaPwl/790uPOFjoAN5MN/+i3d0bycBHfwmsJd5sbkVdQgghxDZXKBR47bXXKBQKdHd3y2IwS4hEIvT09DA1NcWXv/xlnnjiCfr6+jZ8v8FknfqvXsW/OA+tEKImhBr3xWlaf3QL5/29xL7j0Jq6MHczpRQqvbZAcaMYWYfIhwaIfGgA3QwIphqEs03wQ0CBrTB6otT/21WC6xWs4fsclbZSoUYZ6q4FzdYrZT5ETO2nEd4kbhxe9YcGoXbx9Dz91kex1e6e2SqEEGLzyfEbYn3ife8utHX9D2D+2oOvc/YX27NZAU7+3949ve/J9vexz698/5EMZN/p9r32Byu/3oKFebDdp5afSbsQMG+m6nj7e+bw0oEtwO0vbV49QgghxA4wMzPDSy+9xNzcHL29vRLY3sfCgmyVSoWXX36ZiYmNnZEfzDSo/YeLeG8UMfpjWKeyWIdTWEfTWKezqLhJ849vUf+VKx3rpBSbQ0VNrINJnCd7cJ7txXk2j/NED9aBJNZwCt3szOOpaz4qZWNkOxdgG8phn/OtWEaGeji2qkX6Qu1RC0dIm6fotb++YzUJIYQQCyS0Fev35D8BM9o+lP/PPgHN4vKXvfkX8Pq/b/888H44cMcLnBN/q/197jKc/9WV7//k97S/j38Jrn3m/pdtzt/9b+edT8SLF2GpF2k3/wImvrLyWjploa7SSHum7nsV3oarv7+5NQkhhBDb2PT0NC+//DLVapV8Po9hyMvcBzEMg56eHprNJi+//DK3by+xWGuHNP/wJv7lEtaJNEbi7jBdKYXRHcU8lMT98jTuy3I00W5hvrNgmg5WHoYuJyx7WIfTqA522gIkzaPst78Dy4hTD68Tave+l9da4+sKtfAaKfM4+52/haU60EkshBBCvIe8mhXrlzsOH/hZUGY7/Pzdj8Gl32wvkrVg/np7duyf/L32AlqpA/D1/9vd82sHn4Mj39L++cv/T3j5Z6H6TteH1lCbgov/Hb7w/7h7/ye/992xCH/xY/DK//vdTlVoLzw2/iJ86X+B33z+7usOfbD9fe4yfOlfvBvqenW48N/g8z8Eka513T1rMvSBdudvax7+4kegNtk+PXDh2h/CZ/92ex6wEEIIIZiZmeGVV16hXq/T09Mjc1FXQSlFd3c3nufx6quvbkjHbTDTwHttFqMvdt/AzUjYYCncF6bQQbjs5cTOYZ/uwshF2qMT1kG3AhQa+4nuDlV2t4z1CMPO9xMzhmjom1SDa3i6fFfnrdYBrXCaangZN5yny3qa4cgPEDF6NqQmIYQQQgZGic44+q0QycIX/2l75MAX/2n7y0m3O3CD1ruX3fcB+Lp/A7ElXnR94OfaweSNP4Y3//f2l51qB70L28iduvs6ZqQ99/XP/gGMfxne+PftLzvVDoXdCiwsi6De85Tf97XtoPjaZ+DCr7W/nHR77q4OoOdhOP4d8OX/tTP300plDsEjPwhv/h/t++LGH7fr8hsQepDaD0/9k3agK4QQYl201lQqlcWvWq1GEASYpkkkEiGdTpNKpUin05jmOhbRERuiWCzyyiuvUKvVJLBdI6UUuVyOQqHAq6++yrPPPktvb2/Htu9fLKHnXcyHHrzgmdEXw79eIbhdxzqwfPeiG85TCt6kHo5hEidtnSRlPIRabtyV2BJGLoLz/l6anxnD6I6suUs2GKthHk5jP5zrcIXvSppHORb9EcrBBeaC16gEl2jpSRYXSwYcI0ef9WGy5mPEjYPy90YIIcSGktBWdM7+D8Hf+iJc/u32XNriRWjOgWFDcl970bEj39IOSpdjxeDD/xHG/qzdrTv9RnsbdqI933Xgfe2A+L2iOfjYr7f3e+V337leoX1eoh9yJ2D/18PwR++97tf923an7qXfgtL19qJquRNw+Jvh4b/74JELG+WZ/xm6jsPbv9y+L0MP0gfbt+HR/wlm396auoQQYpfwPI/JyUlGR0eZmZnBdV201u1Ff955Ix6G7W4/27bJZrMMDw8zODhILLbMvHGxqer1Oq+99hqVSoV8Pi8ByjosdNwuLOT2NV/zNaTT6Y5sWzfaM02V8eDHR0VM8AK4zxzURjjOaOtXqYdjGNhoAmb9L5G3P8Sg/dcluN1moh8dwjs3R3C9inksterf02CmCZYi9jeHUdGN/eDMUA5Z61Ey5iM09QRuWCCgicLEVFFixj5s9eAPH4QQQohOUHo109Z3oHK5TCaToVQqdeyFpxBCCCF2Lq0109PTnDt3jkKh/QFfMpkkEoksOQdVa43rutRqNVzXJZ1Oc/LkSYaHh2Vu6hbyPI+XX36ZsbEx8vm8dEF3SBiGzMzM0N/fz/vf/34ikci6t9n6ywlqv3gJ62TmgYGdrvsEkw1S//wxrEOpe8/XmhvuLzHnf5WkcRSl2o+7G87h6zKHo/93UuaJddcsOst7e47af7yIrnqYh1MrCvABgukGes4l+m3DRP/GAflgRgghxLazkbmjvNMQQgghxJ7h+z5nz57lS1/6EoVCga6uLvL5PLFYbNkAVilFJBIhl8vR29uL67q8+uqrvPTSS9RqtU2+BQLaweLbb7/N2NgY3d3dEth2kGEYdHd3MzExwZtvvkkQLN/xulLmoRQqaaFL3gMvG0w3MQfjmPviS57v6gLV4CpRo28xsAVwjC4CmlSCS+uuV3SefbqLxN89jpGL4F+YJyy53K93SLcC/MsldD1oB7bfvF8C2yX4us6c/yqT3p8w432BZji51SUJIYToIBmPIIQQQog9wfM8vvrVrzIyMkIymaSra/ULTRqGQTabpdVqcePGDer1Os888wyp1L0dgWLjjIyMcPnyZTKZDLZtb3U5u45lWXR1dS3+rpw8eXJdgZl5IIF9ugv3KzOojL3strQboGseztcMo5ylg/gQlxAfi3sfd4VBoNe34JXYOPaj3ST74zR+ZwTv9QL6Vg2VtDGSFtgGhBpd8wkrPkqBeSRF7NuGsc50SWC7hFowyk33N2mEN9FoQGOrDH3Wh8nbH5L7TAghdgEJbYUQQgix6wVBwOuvv87169fp6upa9yHfkUiEfD7PzMwML7/8Mu9///uJx5fuDBSdVSwWOXfuHI7jyGzhDRSJRIjH41y8eJHu7m76+vrWvC2lFNGP7Se4USW4UsY8kkKZd3e266aPf62C/XAO5/3LL4IWUT1EVA8tPYOlEounh7rdxRs396+5TrHxzL4Yif/pJMH1Cu5XZ/Evlghnm9DwQClU2iHyRA/2Y93YZ7raM47FPXxdXwxs48YhDGWhtaalp5nw/pCI2UvGPL3VZQohhFgnCW2FEEIIseuNjIwwMjLSkcB2gWma9PT0MD09zdmzZ3n66adlxu0GWxhv0Wg06O1dPtgTnZFMJpmZmeHs2bNks9l1/e5YR9LE/94J6r9yBf9SGRUxUEkbtCYseSjanZjxv3MMI+0sux1DOeTtD3LL/S3q4SiOyhFql5aeIWkcJ2M+vOYaxcbTWqPRWEfTWEfT7X9XPLQbogyFyjornne7l1WCCzTCW8SNYQzVfkuvlCKq+qgGV5nzX5HQVgghdgEJbYUQQgixq5VKJS5cuEAkEulYYLvANE2y2SxjY2P09/dz8ODBjm5f3O3q1atMTEyQy+Xk0N9NksvlmJmZ4dKlSzz88MPrut/tk1lSP/Eo3hsF3C9PEcw2UcrAeSqL81zvijsrc+azKMdgxvsiLT2DgU2P9Tx99oexVHLN9W0WrTUBdUxiKLX7P+hpNpuMj48zNjZGvV4nDEMcx2FwcJChoSEymQyG/D6viquLgMZQ944JsVSKenhr84sSQgjRcRLaCiGEEGLX0lpz4cIFarXahnVmRqNR6vU6Fy5cYGBgAMdZvktQrF2xWOTixYvEYjGZY7uJTNMklUpx9epV+vr61jUmAcDIOkQ+NEDkQwNoPwRDrbqzUilFznqGrPk4rp7DVBFslVlXXZsl1B633d+lFJwjbh7kgPNdOyJoXosgCLh48SIjIyNUq1Usy8K22zONa7UaZ8+e5cqVK/T19fHII4+QTO7O+2EjGESBEK31PR+khDSJqvX9ngohhNgedv9Hu0IIIYTYsyqVCpOTk6RSqQ3tzMxkMpRKJSYmJjZsH3tZEAScPXuWZrO5okXfPM+jXq9Tr9dpNpv3XaVePFgikVgcTeG6bse2qyxjXYfCG8omavTumMAWoBaOUPC/giak5L9BKTi31SVtCN/3ee211zh79ixBEJDP5+nu7iadTpNKpchms/T19RGJRBgdHeXFF1+kVCptddk7Rso8ga2ytPTUXacHukGoXbrMJ7aoMiGEEJ0knbZCCCGE2LVu3bpFo9EgnU5v6H5M00QpxejoKAcOHJBD9zvs1q1bTE5O3ncsgtaaRqNBqVSiXC4TBAFaawzDIBqNks1mSaVSWJa8/F2LXC7H7Owso6OjHDt2bKvL2bFMohgqgq/LKGVhEt3qkjpOa825c+e4fv36fWchK6WIxWJEIhFmZmZ49dVXee6552SBwRWIGr302R9l3PsDqsFVLJUk0C00LbLWY3RZT251iUIIITpAXrUKIYQQYlfSWjM5OUkkEtmUEDWZTFIsFqnX6yQSiQdfQayI53lcvnwZ0zSXHYugtWZ2dpbZ2VmCIMC27cWgKAxD6vU6tVqNRCLB4OBgx2cb7wWmaRKJRLhy5QpDQ0MSrK1RzNjPkPPtlINzxNQB0uaZrS6p40qlEiMjIySTyRX9rhmGsbio482bNzl+/PgmVLnz9VjPEzHyzPmvUg9vEjUG6DKfoMt6AlPJ76cQQuwGEtoKIYQQYldqtVpUq9VNmzHrOA7VapVKpSKhbQeNjY1RKBTo6elZ8vyFwHZ6ehrLsohG7+5cNAwDy7IIw5Barcbt27cZGhqS2cNrkE6nmZ6eZmRkhFOnTm11OTtSex7v0+Ssp7e6lA1z69Ytms0mmczKx1YsfChw48YNDh8+LB3xK6CUIm2eJG2e3OpShBBCbBCZaSuEEEKIXalardJqtTatq9I0TcIwpFKpbMr+9oJms8nly5dxHAfTNJe8TKPRYHZ2Fsuy7hvEGoZBPB6nVqsxOzu7USXvagv34bVr16hWq1tdjtiGXNdlbGyMWCy26iMcUqkU8/PzTE9Pb1B1QgghxM4iH2EKIYQQYlfyPI8gCJYN+zaCUgrf9zdtf7vdjRs3mJ+fp7e3d9nLLMyvXUk4r5TCcRzK5TI9PT3SbbsGqVSKqakprl+/ziOPPLLV5exqvq5RDs5TDi4Q6AaO6iJjnSFpHMNQS48K2WrNZpNms0k8Hl/1dS3LQmtNvV7fgMqEEEKInUdCWyGEEELsSlrrLdlvGIZbst/dxvM8bty4QTQaxTCWPjjM933K5TKWZa24q8+2ber1OpVKhe7u7k6WvCcopYjH44yNjXH8+PF7xlGsl+tpJmfAdTWOo+jPg2PvvYX9qsE1brmfphHeQmGglEWoXQrBl0kZJ9jv/C0cI7fhdWitoRGgGz4YCpWwUM7yH4TduQDgWsnfUCGEEKJNQlshhBBC7EqGYaCUQmu9KQuRQTvg2MzO3t1scnKScrlMV1fXspfxPA/f91fVMbvwXPA8b9017lXJZJKZmRnGx8c5fPhwR7YZBJqzlzRvX9YU5jVhCIYB3VnF6eOKMycUlrk3wttGOMGY++u0whnixiEM9e5btkA3KAXn0G7IocjHN2zBKe2F+OfncL8yg3dhDjwNClTMwn6mB+epPOZw8q6/rWGomZo1mS7AdNEnmTDpyigS8dU9bvI3VAghhGiT0FYIIYQQu1I8Hse2bTzP25S5tgudvbGYrNq9XlprRkdHATZsQaKt6sTeDRYWd7tx4wbDw8Pr6qqEdtj3wqshb5zXRBzo7QbbUni+Zr6s+cuXNPNlxQeeMTCM3R/cFv2v0AwnSRrHUOru+9ZUMRLGISrBRUrBuQ1Z0My/XKL+G9cIrlfRQYjRHUElLECj6z7N3xul9flx7EdzxL/7CEZXhCDQ/NWrIecuRihXEhBUmStHmJrVDA20H9MHfXjWarUwTZN0Ot3x2ySEEELsRLIQmRBCCCF2pUQiQTQapdVqbcr+PM/Dtm1SqdSm7G83m5ubY3p6+oH35UI39WoPp5aO6PVLpVIUCgVmZmbWva1rY5q3Lmq6MpDPKWyrHe7ZliKfU3Rn4OwlzbXR3R+0+7rKfPAGjsrdE9guMJSDwmLOf7Xj+/fOFqn9Hxfwr1UwD8SxT2Yxe2MYWQcjG8EcjGOdymJkHNwXpqj+7xcIC00uXNO8eV6TTpoMDAwTcTzSyfbjdXNCU13BmNpKpUJPT4+MLRFCCCHeIaGtEEIIIXYl0zTJ5XKbFto2m02i0aiEth1w+/ZtWq3WAzukHcchkUisatTBwuJ0iURivWXuaY7jEAQBN2/eXNd2tNZcvKbRGhKxpTsx4zEFmncut7uDW0+X8MM6lkre93KWStAMp9G6c/Nf/bEq9V++QjjvYh1Po6JLd7krpTCyDtaJDP75OaqfusKFt30sExJxRTy5D8uO47tlYlHwPSjO3/9xc12XMAw5ePDguju3hRBCiN1C/kcUQgghxK41NDQEtBes2kgLK57v378f296eq7rvFEEQcPv2baLR6AMPp1ZKkclk0FqvuNu21WoRi8XWtLq9uFs8HmdychLXdde8jUYTJmc06ftnlKSTMDmrqTfWvKsdQWG2Z3ET3PdymgBD2UDnxkW4X5gkGK9jHk2taA64sg2sI2larxdQ5wsk3vmVsuw4mdxJQu3jeVVMi/s+bp7nUSwW2b9//+LfbCGEEEJIaCuEEEKIXayvr49MJkOlUtnQ/TSbTSKRiAQOHTA3N0e1Wl1xqJpMJkkmkzQajQcGt61WC8Mw6O7u3rTF6XazeDxOvV6nUCiseRtBCFq3Fx27H8OAMGx/7WaO6iGqBnD1/e9TT1dIGQ917HkcFpq4r8xg9D74w5I7qaiJYSp6rs3gee920yYzh8nmTqMDF681i+LeIx6CIGB+fp5CocD+/ft54okn5EMvIYQQ4g4S2gohhBBi17Jtm6NHj+J53rq6Ae8nDENKpRL79u2jq6trQ/axlxQKBXzfX3F4Y5omg4ODJBIJ6vU6rVbrnkPofd+nXq+jtaavr08WOuoQ0zQJw3Bdc21jEYhFFY3m/S/XaEI8qohG17yrHcFQFjn7GULt4evakpdphTNYKkGX9XjH9uu9XiAstDB6Vn8HWwMxBkol9M0aYdj+3VNKkc6dINPzNIadJ2LXmZqaYnZ2lkKhwNTUFIVCgWg0yqOPPsozzzxDdLc/uEIIIcQqbcxyvEIIIYQQ28Tw8DATExPcunWL3t7ejndYzs/Pk8lkOH36tHRvrpPWmtu3b2Pb9qruS8dxGBoaolAoUC6XqdfvXvXIMAwSiQTd3d0yc7jDIpEI4+PjnD59ek2Lu1mW4qEj8MIrEGY0hnHv4x6GmloDHjvN4iJlu1nOfJqaNULR/wqmShJReRQWIU2a4RRKafqtbyJuDHdsn8FsExSoJe7/B1Fpm6xdZ8BucXUySSalcWyoN6HaGOL0w0M8dbrI7Mwk9XqdMAyJRqP09PTQ39+P4zgdux1CCCHEbiKhrRBCCCF2NdM0OXPmDKVSiUKh0NFD46vVKlprTp8+TTL5gKGc4oEqlQqlUolYLLbq69q2TX9/P93d3VSrVTzPQ2u9GNjGYjEJ1TdAPB6nUqkwNzdHT0/PmrZx/JDB5esht6c1A3mNZb77OAWBZmIGersVJw7vjYMEDeWw3/kfiap+isFL1MMxIEDhEDf202N/LV3mUx19PutGgDLXtj2lFI4Nz52BZFJxfUxTrbc7qB99CB49ZRCN9DI40NuxeoUQQoi9QEJbIYQQQux62WyWJ598kpdffrljwW2lUqHVanHmzBkOHDjQoUr3tvn5eVzXJZPJrHkbtm3LmIpNZNs2vu9TKpXWHNpmUooPf63Bn70YMjmjUUrjWOD67Rm2fT2Kr3/OIJPaO6G7oRz6nG+gR38N9XCUULuYKkHcOIihOv8WTiUsdKAffMElaK3RGlI5k6970uTZxzQtF+IxiDh75zETQgghOk1CWyGEEELsCf39/TzzzDO89tprTE9P09XVtabDcoMgoFgsYlkWDz/8MCdOnNjyDs5Go0GpVMI0TXK53JoOU98OyuUyWustvz/FyimlUEpRKpXWtZ3eHsW3fcTgxi3NyE1NvQGxGBzerxgeUkQje/M5YaoYKfOhjd9Pb7u7XQchylxdR7Oed1EpG7O3PZM2HlPEV98sL5YQ6BaV4CKungUgonpJmScwlIyUEEKIvUBCWyGEEELsGf39/Tz//POcO3eOW7duYRgGqVRqReFtEARUq1UajQb5fJ6HH354Q2bkrobWmitXrnDp0iXq9TqGYdDV1cVjjz225q7HrbQQhoudxXEcCoXCugP3aETx0JH2jNudSgch4WyLcKJOMNkgnG+BG6IDjXIMVMzC6Ith9sUwBmIYiZUtuLfR7Me6MfNRwpkmZn98VdcNppo4z+YxhhIbVN3eVPLfYsL7IxrhbWBhgTeDmBqi3/kYGfP01hYohBBiw8mrYiGEEELsKel0mmeffZbBwUGuXbtGsVgkCAIcx8FxHGzbxjAMtNb4vo/rurRarcXrHj9+nCNHjhCJRLb4lsDt27d56623sCyLnp4egiCgUCjwyiuv8KEPfWhNs2G3iud5lEqlbXG/itVxHId6vU6j0SAeX13gtxvoUBNcK+O+MoN3dg4976JrPoQazTuLeylAa3QISgGOgUramEMJnGfy2I91Y2S2rnvSyDrYz+ZpfmYMIx9b8XzbsOajFDjv39oPsHabkv8WY+5/J9BN4saBxc7aQLdohOOMtX6dg5HvJW2e2uJKhRBCbCQJbYUQQgix55imyfDwMPv372d2dpaJiQkKhQLVapVWq4XW7a4my7KIxWLs27ePvr6+bbfS+Y0bNwjDcHEGrGEY9PT0MDMzw+TkJIcOHdriCleuWq3iuq4s6LYDRSIRarUa1Wp1VaGtDjXB9QrBWJXgdp1wrgUKjJ4o5r4E1uEUxr74tg0DdcPHe71A64Up/MsldCPAyNqotI0xGFt2zIDWGloBYcXHvzCP92YRszeK/b5enGfyWMOpTb4lbZEPDeC9NYd/tYx1LN0Om+9DNwOCkQrO1/Rhn5E50p0SapdJ708IdJOEefffcFNFiBvD1MMRJt0/IRk9viEzjoUQQmwP8hdeCCGEEHuWaZr09fXR19eH1ppWq0Wj0SAMQwzDwHEcYrEYhrE9V62vVqv3hMgLtTabza0oac2q1Sq+72Pb2+NwcbFypmkShiHVapXe3t4HXl5rjf9Gkdafj+NdnEc3AlCgnPZzV7shSoNK2VgPdxH98D6sY2tfnG4j+JdLNH5nBO/8PMoyMPpjGKmVPXeVUhC1MKMW5KNoPyScadL8/THcv5wg8uF9RD86hIpv7ls1sz9O4u8co/afLxFcLGHsT6CS1j2huQ41YaFFONXAebKH+PcdRTk7c472dlQJL9PQt4gaQ0uer5QiagxQD0ephldImyc3uUIhhBCbRUJbIYQQQgjeeSMcjRKNRre6lBXr6urixo0bd80S9X0fpRSJxM6aL7nQ4bxduyrFgy2MEbmfsOLR/D9v0PrCBPgaYzC+dDCoNXrexf3yNP65OSIfGSL6saEtDwd13af5J7dofe42Yc3HOpxCRdZXk7IMzIE4Rn+sHd5+uh0Gx75jGPtEtjOFr5B1LEPiH56i8Vsj+Jfm0TcDjIwNjtke71AP0FUPIxch+o1DRL9tGCMpH7R0UiucIdQBprH8qBhTxdAEuGEBJC8XQohdS0JbIYQQQogd6tChQ0xMTDA7O0sqlSIMQ8rlMr29vfT39291eaviuu5WlyDWQSn1wO7usOxS/y+XcV+ZwRyKY2SXD6WUUqiuCCrrEE43aXx6hLDYIv59R7YsuA2mG9R/6TL+2SIqH8UaSnf0QwalFGZvDJ1x8C+VqP2bt4l+60EiH9m3qR9mWAeSJH/8DMG1Cu6rM3ivF9BuexivORDDef8w9hPdmL07Z2b2TqJQrOzR1htciRBCiK0moa0QQgghxA7V29vL008/zcWLFymXyxiGwaFDhzh9+vS2mr27Eo1GQ7psdzDTNKnX68uer4OQxq9fw31lButoGhVdWfCqlMLsi6FiJq0/H0elbWLfPrzpz5Xgdo3af76Ef7nUnve6zu7a+1ERE+tEmnCyQeM3rqMbAdFvOfDAGbP30wwnmfffoqFvYeCQMo+TNk9jqaU78pWhsI6lsY6l0d91GFohGIBtyO/pBosYfSgsAt3AVEsH476uY+AQNbbmwzmtNfPz88zNzeF5HkopHMeht7d3Ty5GKIQQG0VCWyGEEEKIHWzfvn309/dTq9UwTZN4fPsu3HQ/9Xody5KXpjvVg0Jb98vTuF+ZxjyYXHFgeycj7aDzIa3P38Y+lcU+tXkLXwVTjfac16tlrIcyKGvjZ1wrpTAH4gQzTZq/dwNMiP71A2v63S74LzLu/iGensMgisan6H+FuHGIA5HvIWYMPLAW1vCYibVJGseIGwephzeIG4eXHB3SDMdJmcdIGJu72GQQBExMTHDjxg2mp6dxXXexPq018Xic/fv3s3//fnp6eja1NiGE2I3klbEQQgghxCbSWhOO1wlnm6i4hXkote4QyDRN0ul0hyrcGvV6HdOUYGinMk2TVqtFEAT3PI664dP87E1wjBUv1rXkPvJRvIslWn90C+tkdlM+nAhrHvVfuoR/pYx1Ir0pge2dzHyUQGua/+cYRjZC5PnVdVZWgivcdn8fgKRxYvE+C7VPLbzOzdZvcjT6CQy1szrzdzNDWQw438Ro61ephdeIGoNYqt296usazXACx8jRb38MpTbvb6brurzxxhvcuHEDgGQySTb77u9hGIbU63UuXbrEjRs3OHPmDEeOHNm2C3kKIcROIKGtEEIIIcQmCYstGr89gvdmgbDioRwD81CK2N8c3tTOwe1Ga43v+/LmfgczTZMgCJYMbb235ghv1zEPp9a/n8EY3sV5gmsVrKMb+0GF1prmH93COzuHdXzzA9sFZm8Mv1Gl+XujWMfSmP0rP/x8zn+VQNdImsfuOt1QFgljmLoeoRxcIGs92umyxTqkzOMMR76fSe+PqAUjNPEAjUGElHmCfvsbSZqHN60e3/d57bXXuHHjBl1dXUQi986jNgyDZDJJMpmkXC7zxhtvEIYhx48f35FHfwghxHYgoa0QQgghxCbQrYDaL17Ce6OAuS+ONRiHZkBwpUz9P18i8cOnsQ6tP9TaibTWaC2L6ux0yz2O3sU5tNYoZ/2hp0rZ6Jv1dufrBoe2/sUSrc/fxuiLbdniZwvM/Qn8C/M0fvcGiR98CGU++L4MtUcluIStskuebyiHMPRphDfJIqHtdpM0j3LE+AS1cISWngYgovpIGIdQanM/QLh8+TKjo6PkcrkVzUtPp9OUy2XefvttstksfX19m1ClEELsPtLOIIQQQgixCby3ivhvz2EdTWN0RVCGao9HOJ4mmG7g/tXkVpe4ZRaCPunG2rnuPET6TlprgqsVjOTaxyK8dz/KUgRj1Y5sbzlhzaPx6RF0I8DMRzd0XyuhDIV5MIn30gzul6ZXeC39ztfyv1cKhUY+MNmulDJJmkfptp6j23qOpHlk0wPbVqvFjRs3iEajq1rgMp1O47ouo6OjG1idEELsbhLaCiGEEEJsAv96Be2H9yzCpJTCyEXw3iyig3CZawuxM9wTvDcCwrKLinWuU1XFLYLJ5Rc96wTvlVn8S6Vt1f1uJG2IGDT/+Ba64T/w8gqbuDmMp0t3nR5qD19XaYUFvMBl/HYvX307ZKYg4a2418TEBJVKhWQyuerrJpNJxsfHqVQqG1CZEELsfjIeQQghhBBCbKk7Vx8XO9Ny3dI61A9q9lw9BQQb91zRfkjrhSlUxOjISIdOMgfjBNereGfncJ7J3/eySily1tOUg3M0gxlMI0IznKIZjhPqFp6u0GokmJ3+AtVJj7eunOGbns+Q75aOd/GuW7duoZRa00KR8XicqakpJicnSaW2zwcgQgixU0hoK4QQQgixCazDKZSp0M3grm5brTVhsUXkI/tWNKdyN1JK3Xc0gtaaer2O77e7Cw3DIB6PrylEECsXhppyFRpNCAJAgWlAMg7JxN0BrdZ6ycdRRU2UY6DdoGN1aTfESHdm3MJS/EslgutlzMGVL/i1WZRjggHul6ewn+554EiRtHGaXvOvMer+Go1gHIVGYYMGky4qs8dIZCbI9Pw65eIAI7PfQb775CbdGrET1Gq1VY1FuNPC3wTXdTtclRBC7A0S2gohhBBCbAL7kRzWmdziQmQq60AjILhZw+yNEfnAwFaXuGWUUkQikXsOoQ2CgHK5zPz8PI1GY3FeqlIKx3HIZrNkMpk1BwpL0VpTq9WoVCp4nofjOKRSKeLx+J6Zuet5mmIJZouaah3e2wBtGpBKQk8XdGXANBVhGGKaJpZ199sLZRmYB5J4rxegf/216VaALrmog6s/VHul3JdmwAtR8e35Vsnoi+FdmCcYqWIdflD3oiaghakixNlHqH2UYRJVvZhhP1OtKM062HaAFR2jmf41ysH3kjZPbcptEdtfGIbr/tv33lnXQgghVmZ7vhIRQgghhNhlVMQk8XeP0/jtEbw3iwSTDZRjYB5NE/ubw9tqduZWiMfjzM/PL/7b8zwmJiYol8sYhoHjOIudtWEY4rouU1NTlEolBgYGSCQS665Ba83U1BTFYpEwDDEMgzAMKRaL9PT0kM/nd31wW6trRm5qKnWwDIhH4b0Nzb4PpQrMlzXZNBzaD77vk0wmMYx7u8Wt4xncr0wvduOuhfZC/Ivz+GM1dMnF+NI0/jO9WB0Ob3UzwDtXRHVFOrrdTlJpG327TnC9/MDQdj74KrPBF0iYh7BV9u4zTRga1Nwa1/i+STZ+iGRylFvu73A00o9j5DbuRogdw3EcGo3Gurbx3g9zhBBCrIz89RRCCCGE2CRGd5T4Dz5EOF4nnG2iYhbm4RTK2ptjEe4Uj8cJgvYh9EEQLC5eE41G7xmDYBgG0WgUrTWNRoPx8XGGhoaIxWLrqqFcLlMoFLBtG9t+9/B713WZnZ0lFovt6rmMtbrm6qim0YR0ApbLVy0LUhaEIcyVIAg0ubS/7P1vP96N8Qdj6EIL1RNdU23+lRL+lTIEGpVxCCfr1H/pEqn/+VFUrHNvaYKpBrriYfSu77m0kZRSYCj8mzXuFy1rHVDwXwStsI3skpfp6VJkkooghIgDcJBqeIVScI688YENqF7sNPl8nunptX3o4nkehmGQyWQ2qDohhNjd5B2CEEIIIcQmUkph7ktgP9qNdTwjge07IpHI4mJW8/PzVCoVYrHYfefWKqWIxWK0Wi1mZmbWtZCZ1nqx0/fOwBbanWZhGFIqlda8/e3O9dodto0mpJPLB7Z3Moz2ZctVmJoJiUSXDjrNvhjO+/MEEw20v/rDpLUfEt6qg63AVNgPZbAeyhKMVPEvdfYxCSfr6EaAim/veclGwiK4Xrnvc74WjlALbhAxeu+7LduGaKT9mCtlYKo4Rf9lQi1zSAUMDQ0RiURotVqrvm6lUqGrq4ve3vs/B4UQQixN3iUIIYQQQuwRnucxPz/P7Owss7OzzM3NbZsFYiKRds9gGIbMz89jGMaSh9q/18J821qtRrPZXPP+tda0Wq1lD+O1LGtd29/uisWQZsElq1zUKoJVpdoLk9UbmnJt+b7P6DcdwDySIrh2/6BxSRp0EKKrPkZ/DHM4BSagNdpfe1C/lGCiDty9yFpo+LjxeVqJAm58jsBafXjVaSplERZb6OLytdTDUQJaWGp1o0MiqodmOElTT663TLELLISupVJpVb+7vu/jui7Dw8MyHkEIIdZI/noKIYQQQuxSC92j4+PjzM7OUi6XcV13cVGYhVmxqVSK7u5uBgcHyeVyWzK3NRqNopSiWq3SbDaJRld+GL1lWbiuu9iduxZKKUzTXDbEXlhoa7fRfoh/o4r/VpX+qodlQWibuD0Jmr1JQufBt9kwNBqYnI0sewi10RUh/n1Hqf/HiwRXyphH0ihzhc8z/c6XaWAdTkOgCUYrGH0xrKPpVd3eBwmmGihL4cbnqOav08iO00xPE9hNUBq0wghsnFqO2NwgydlhoqV+1Cb3wqiYRTjbIiy6GN1L/64Euoli9b/LChuNR6C3PpwWW08pxcmTJ5mbm6NQKNDd3f3A/yOCIGB2dpaBgQEOHDiwSZUKIcTuI6GtEEIIIcQuo7Vmenqaa9euMTU1RbPZxHEcHMe5a7GohQW9CoUCExMTXLlyhXw+z5EjRxgYGNjU8DaZTC4ueKO1XlGX7QKlFEqpdXUNK6VIp9NMTk4uLkK2IAxDwjDcdXMZtR/ivV6gOVKDpkLFTUJDYbgB8bF57FKT6tFugsj93zJo7ePYJrPzSWbnIL/M+lX2Q1nif/8E9V+9in9hHnNfHJV1ln2eaa0JZ5qE002cD/ajLIPgdh2/5GIOxIl/12GMrLPeu+EuLWuamef/kvqpcfxIFSOwMd0YVjOB0gYoTWi5NDMT1HpuUDz0GvHiPrrGniAxe3BNIemaGApCjQ6W74pWyqKddq9WCBgodt+HFGJturu7eeqpp3j11VeZmZkhk8ksHh1xp4U54+Vymb6+Pp566qklLyeEEGJlJLQVQgghhNhFWq0WFy9e5Nq1a3ieRyqVIpPJLBuMOU479FoYDzA+Ps7U1BSHDh3i1KlT617ca6USiQTRaJRqtbqm6yulFjuI1yqbzVKtVqlWq9i2jWmaBEGA7/skk0nS6c52dW61YKRKcLOGF7NpKYOo3Y74gphBELWwy01iN+epHu2573bCwMVxInh+ktmiJp9bPri0T3WR+icP0/i9UdxXZtDjDVTCwkhZEDHboxCaAbrioes+Ri5C9NsOEv3G/aiYSXCjim4FmAeTGAl72f2sVqh9iv5L3Dr927S8GSJ+nnj1wJIhrOnFsBvtAN+3G9R6Rml03SZ78xFyI09jefGO1bUsA7QGguVDWVu1n69aByi18gDW11VMFcdWu+tDCrE+AwMDvP/97+fcuXPMzs4yPz+/OHdca43v+zSbTWKxGEeOHOHhhx/etP8/hBBit5LQVgghhBBilyiVSrzyyivMzMyQSqXo6upa8XWVUkSjUaLRKI1Gg8uXL1MoFHjqqafI5ZZpnewg0zTJZrNMTU0BrHql8jAM1z030bZthoaGKBaLlEolfN/HNE3y+Tzd3d27ai6j9kP8sSrKMQiW6mpWCj9m48w3MeseQXz5gDQMXCKxblzDwfUevG+jO0r848eJfMM+vK/O4p+fI5hqomvtw/FV1MQ6nsF+OIf9RDdm37vBj3Wk88F5qF1uu79Pwf8rQtsnNroPM7ey8RyWF8Oa24cXrVA4/DLN1AwDb38Eu7nBAX8IygCs5X9H0uYpHKMbVxeJqPyKN+3qAjnr/USM7g4UKnaTnp4ePvCBD1AoFLh58yYTExMEQYBSing8zkMPPcS+fft23QdcQgixVXbPK08hhBBCiD2sVCrx0ksvUSwWyefz65q/GovFiEQizM7O8pWvfIVnn32W7u6ND3ByuRyWZWFZFp7nLXYBP8hCh20isboFl5Zi2zZ9fX309PQQBAGmae7OWbZlD13zMFI2qrHMZRwTo+Fh1dz7h7bax4l24fmseDiAUgrrYBLrYBL9rQcXO2tRql1TfHPepoTa57b7+8z6XyBi9IPnEYSr7/a2mylMN0otP8LEmT9h8K2PYbnrfz4uyw/BNFD3mTlsqwxZ8zGmvM/j6NyKum19XUVh0WU93slqxS5iGAb5fJ58Pk8YhouhrWmaWzIPXQghdrPNnZgvhBBCCCE6rtFo8PLLL3cksF2w8Ma8UqnwyiuvUKlUOlDp/aVSKWzbJpVK4Xneilcqd12XaDRKMpnsWC2maeI4zq4MbIH2sfUaUO90bC53MQXqPo9D+zHS2HYKDdhrGDGrlMJIO5j9ccy+2KYFtgBzwcsU/BeIGP3YKo1K2u/MHVg9I7SJze2j1nOD2aNfRrO+cR33E1b99liJ/PIdwb7vE/eeIKr2UQtH0Pr+9fi6TiO8TZf1NEnjWKdLFruQYRjYto1lWRLYCiHEBpBOWyGEEEKIHUxrzfnz55mdnSWfz69qAa8HUUrR09PD9PQ0586d49lnn+3o9t+rq6uLaDSKaZpYlkWz2SQajd43DPA8jzAM6erq2r0B6zpordtzT0111/2oYhbKMdCtEMe2UEoT6vb6VouXCUJQisBZ/i1DGLQwjAie7iIWgd7unRPcNMNJJr3PYajo4vxXI2WDUuhQo4zV3xYjtIhUeijte5t44SDpqeOdLhsAXfWwDqcxkvd2QAdBwJUrVxgZGaHVahHrOkDmRAmdvEzEyGOrLtQdSX2oXVp6hkDXyFlPs8/5VgwlbxOFEEKIrSb/GwshhBBC7GDj4+OMjIyQyWQ2JLQ0DIOuri5u3rzJwMAAw8PDHd/HglgsRj6f59atWwwMDDAxMUGj0SASidxz2xYWTguCgO7u7k2Zu7udaK2p1aHWgEZDU21AELTPs0xIWQHx+TrR2RpWGKCiFuaBBOZQAuWYqLiFMRAnuFbG6TFxbPA8cO7IAM26h59w8NPLr/7u+3Ui0RzVRoqTRxW5HbR21Yz3RVrhzF1dpSppg2OAF7YXRlsDy03gxcoUD79McuYQRti5BdMW6EaAeTS15Hnnz5/n/PnzOI5DJBKhOhujUjrGoccb6O5JquEVFAbtgy4DFAYRo58+6yPk7ecx1BrapYUQQgjRcRLaCiGEEELsUGEYcunSJbTWG7pK90JoeunSJYaGhjZ0Qa7+/n7GxsZIp9MYhsHMzAyNRnvo6kKXbxiGaK1xHGdxkbC9cmhuGGqKJZgtaiq1u4PahbsgrPn4IwValSZN28CKGsRqLnahiTXZwH6yBxUxsQ6nCAtNdKFFPGIz5xpo3R6HYNVctGnQ2JdBL9NxqrVGhx5WZIAQxYnDxo55HNywSCl4C0f13NV1qmImKmai6z5qjaEtQKTSQzMzTa1nlNT00U6UvEgH7fEN5uC9M3Pr9TojIyPEYjFSqXaoG4vFmJtTzLwd52u//jtoqMu0wgIhLqaKETcOkDZPYqqVLb4mhBBCiM0hoa0QQgghxA41MzNDoVDYlJW60+k0c3NzTE5OMjQ0tGH76e7uJhKJ0Gq1SKVSJBIJarUa5XIZ13UBsCyLVCpFMpm8J0DWDZ9gqoFuBCjLwOiNotL2jgkT76dW19ya0MyXAQWxCFhLZPWJiTKxRhOvK0KIou5DPYSYrUndrqO6KtgnsxhpB+fJPN65ItHZFslGiFcBy1YECZv6vixu1/IfBujQB2VTrndz+iHF0MDG3fZOKwVv4+q5e2e3GgpzKIF3dm5h5O+atLtrNZW+yx0PbcPZJkZ3BPtk9p7zarUarVaLrq6uu06Px+PU63V0K0k+9cGO1iOEEEKIjSGhrRBCCCHEDnXr1i2CIMBxNv5w5oVwdGxsjKGhIcIwpF6vU6lUqFar+L5PGLYXOjIMA8uySCaTpFIp4vH4imfhptNpMpkMc3NzRKNRDMMglUotdg3eT3Crhnd+Dl312ydoDVET62AS61TXmmaUbgdaa2aKcGtC43qQiMFykzCMlk+kWCeIWu0AEjAdCEOoe4rQNUlcq5I5kkI5JkbWwXmuj7DYQs+4TExpZjGx+qIY1v0fM9et0/SSPHS8iw8+a2CZO+f+rYejKKy7umwXmANx/CtlaAQQW3u3rdVK0MhOEBo+Rti5t13hbIvox4YwcveOrYhEIliWRavVIh6PL57earVwHGdT/lYIIYQQojMktBVCCCGE2IHCMGR6enpDxyK8VyQS4caNGyilKJVKNBqNxe5XrfU9l1dK4TgOsViMXC5Hf38//f399w2OlFLs37+f6elpwjBccdgbFpp4bxXRQYjRHWmvqKU1uhG0A7iIiX1sBw1cfYfWmqlZGBvXGAakk/e/vNkKUH5IkLj7PjYMiDjghSbVOR9/yqdnfzuQVIbC7ImS6Imy75Bm5JamXGmPW4hF4L3TMFwPmk1N4Dc5OHyM/+GDNon4xge2WmvC8Trua7ME1yvomg+OgZGP4jze3Q7m7Qc/X7QOqIdjWOre8QLQnmtr9sfwx6qY6whtTS+GFyvjxeeJVHvWvJ07hRUPFTNxnskveX4qlWJgYICRkRGUUkQiERqNBvV6ndOnTxOJLD+fWAghhBDbi4S2QgghhBA7UK1Wo9lsEo1u7BzKhQW/yuUyxWKRer1OEASkUimi0eji7NmlhGGI67o0m01GRkYYGRkhnU5z8OBB9u3bRzqdXnJsweDgIBcuXKBer5NMPiClfIc/VkM3A4yeyLvDXZVCxS3wQ4LRKtZwakWh3nZSnIebExrTbAeoD6IN1b7dob5nFq0CIoYmUIqbUworo8mm775MLKo4fgjmy+/Oza0379g+YFuQSTVJxqJ87BuGNiWw9a+WaX3+Nt5bRcJ5FxUzwTLawfxbRdwvTGIeTBL5YD/O8/2o+3QJ+1TxdQ1TLfOBhwJzKEFwq45uBWuebWt4EYJUCy9a6Uhoq7UmuFXDfjSHeWTpkShKKR599FG01kxMTFCpVIhEIhw/fpyTJ0+uuwYhhBBCbB4JbYUQQgghdqBqtYrruhs6z9bzPGZmZiiVSvi+j2VZ2LZNMpkkk3lw16phGESj0cVgOQgCqtUqb775JpcuXeLAgQOcOnXqnm7hRCLB0NAQly9fXlFoq0NNONNoB3lLhMAqYRGWPHTZRXXvnMWWWq7m1qQGvbLAFsBP2PgJB6vawk/deyWj6eHn4riWyc0JTSIOtnX3fWaZip4u6M5CtQ71Rnu8ArTHMiTjUK3U2L9/P7lcdn03cgXcV2dp/NoVgpkW5kAMa1/8nrBfN3yC2zXqn7qCP1Yl/l1Hlg1btQ6AAFg+2DV6Y5gHEvjXKxh5c6mn1QMpFCiNNoLVX3kJ4VQTI20T+9bh+476iMVivO9976NUKtFsNonH45sy91oIIYQQnSWhrRBCCCHEDuR5HsCKxweshtaaSqXC9PQ0jUaDSCSyGLzWarXF2bWrZZommUyGdDpNo9Hg8uXLzM7Ocvr0afbt23dXELd//36uX79Oq9V68CHd+p2vB1xoiQkO25bW7cC23njwSIS7KEWjP0XyuotZcwlidntURKixai7aNmn2p0jGFeUqjE9pDu5bOgBUSpFKQOo9UwR830cpxcGDBzd8gTfv3Bz1/3oZ3QywTmWW3Z+KWViHUoQll9afjqNMg9h3H0aZS/1+GO983ecJocB6KENYaKHnXVTX6mfB6ne2r8L1/47qZkBYaBH7rkNYRx8cwCqlyGaz697vewVBQKvVQmuNaZpEIpFdscifEEIIsR1JaCuEEEIIsQMtNUO2E3zfZ3p6mvn5eaDd9drpUEYpRTweJxqNMj0zxx9/7kXs6DDxzClMK0o0AoO9OVLpbsql2QeGtspUGD1RgrEqKmnfc76u+6i4hZG+97ztqtZoj0aIR5dsHr4vtztOTWtit8tYVRfQoBR+3KYxlMVLR1FANAKzRejr0UQjK99JpVIhm83S19e3usJWSdd96r9+DV3zMY+mVvQ8NDIOaGj9+TjWiQzO0/fOfrVUElPFCHQDWy0fgKqYhXUyg/fqLLoZoKKrG5MQWi6G72C5S8/OXSkdavzrFeyHu4h+eGhd21r1vrWmVCoxOTlJoVBgfn5+8QMjpRTRaJTu7m66u7sZGBjY8HEtQgghxF4ioa0QQgghxA5kmu0ASWvdsVDVdV3Gx8epVCpEo1Gs965A9Y5O7K/e0MwUoTDfRbPZgOAKzkyVePZJQuJcugaOMYxuTmM7Lpn0/TsdzQMJgol6ewRCym4nnVqjWwG6GWIdSaOctS8qtdmK85rAB3uN68y1ehK4XTHscgvlh4S2gZ+O3jXnNuJAqQJzJRjoXdl2gyDAdV0OHz687POjU7yzRcKbVcwjS88+Xo6RdQinGrhfnsJ+quee6xrKIm7sZ95/84HbMgcThIdb+FfKGIZCOSvvmg3sBqYXw651rfg676W1JrhaxhyME/uuw6sOjtdjdnaWy5cvMzU1RbPZxLIsIpEIjuOglCIMQxqNBteuXePatWskEgkOHDjAsWPHNnWBRCGEEGK3ktBWCCGEEGIHisfjmKaJ7/vY9vo7SF3X5fbt21SrVeLx+JJjF8IwRCm17v3NlzU3bmkazXZwmEnF0NrGbU5A6xV6+5/BMGOUq4NMFfNcujrD0SN5cpnlgzszH8N+OId/fo5wptkeCaA12AbWkdSKDinfLoJAU5wHe/VH5N9FmwZu1/3DM9uCmaKmP7+yMH5+fp7u7m4OHDiwvuIeQGuN+8IUmKsLShcYfTG88/OLC9C9V9w4SJFXHvyhhwL7VBf4Gn+kgpG2V7wwmR+pk5w9hBms7YHUYTuwNboixD9+fMnbsRE8z+Py5ctcvnyZVqtFOp0mk1l+NAW0/zZUq1XefvttJiYmlhx5IoQQQojVkdBWCCGEEGIHSiaTRCIRWq3WukNUz/MYHx+nWq3edxxCEASYponjrD1NLFU018c0XgCZOzIopSwi0R6a9SkKU6/S0/8M2XQU58Axbo7McO1GCzUcoes+wa11MInRHSGcbKAbPtgGZj6Gyjk7KjxqtMD1Vr742HrYdntfLbc9LuF+PM8jCAKOHTu2rufASoRTDfyrZYzetXVsqoyNvl3Hv1haMuxMmyexVQpPl3BU9v4bMxX2wzkwwL9WQcU1KmFxv2dUaPhgBKQnT6ypft0K8K9XMAfixD9+HPuhB9TYIc1mk9dee42xsbHFBQdXNJbCMEin0ySTSebm5njppZc4deoUJ06c2JC520IIIcReIP+DCiGEEELsQI7jkMlkaDab69qO1prJyUkqlQrxePy+Ac1CV+9aQ+KW2+6w9XxIxe89XxkmTrSbRm2CuZk30ToklhigKzeA55YYva1pNO8/y9dI2lhH09gP57AfymJ077yFkpotCEMwN+FIeMsE34fGCp5G8/Pz5PN5hoY2fq6qrvlod/VzZBcopUC15+IuJaL6SJuncPX0yuZDWwr7TA77dBcEmnC2hQ6Wv56bmMOp5UjMDK+qbq01wXSD4GoZ+2SWxA+d3LTA1nVdXn31VcbGxuju7iaZTK76d8cwDLq7u3Ech3PnznH58uUNm78thBBC7HYS2gohhBBC7FD79+8nCALCMFzzNubn5ymXy8Risft2xGmtCcOQbDa75hC0OA/1BqTusy6TYVjYkSy1yk1qlTGUUqS7jhOLWtTrDYrzuz8Acr3N29fCQ+k9YJ+tVgulFCdOnNjwWbYAhICG+7azrsQygaFSih7rA1gqhatnVrYtU7UXN3tfL2ZPhLDYIqx69+wisJqEdovcjScx/ZUvzKXrPv6lMrRCot9xiOSPnsE6tDkjEbTWXLx4kZs3b9Ld3b3u7v2FIwHOnz/P1NRUh6oUQggh9hYJbYUQQgghdqiBgQGSySTVanVN12+1WszMzGAYxuLCZsvxPA/Lskil1hYiBaFmpqixV5D3mWYEZZiUChfw3CqRWA/J9EEMXWamGOLfp8NxN9Brz+DXLLzPXaq1Zm5ujqGhIQYGBjalHhUzwTbQ7tJ3hqcD5nWNmbDETFiiGFZoae+erk4VW/4JlzCH6bW+Hk/PE+jGimszuiM47+ttz7pVinC2STjvov0QrUKamSmSU0fJ3D79wG3pUBPONvEvzBOM17FPZUn+2Bli3zaMim/eJLvp6WmuXr1KKpXqyIxsgFQqhe/7nDt3jlar1ZFtCiGEEHuJzLQVQgghhNihotEow8PDnD17lkQi8cDg9U5aa6anp2m1WiSTyQde1nVdenp61jzLtFRpH4KfWOGIUtvJ0mpMUyq8TXf/02S6T9Koz1KtzlEq99DdtaYydoStmOZwv33Oz8+TTqc5c+bMps0nNfpjmEMJgtEqRqodIra0x5SeZzwsUtF1XHyCdxJuAwNbmSRUlAHVRW8zTcwxMIfv/9zusT9AXd9izn+FuHEQU630CWpgPZTBPJggnGjgj1UJS00aveNER3vpfvVpNBpiGmW071ytNfgaXfPQFZ+w5kOoMbIOztcN4jybxzqRQVmb21cThiEXLlzA9326ujr7i5XL5ZiZmWF0dJTjx493dNtCCCHEbiehrRBCCCHEDnbs2DEmJycpFovk8/kVX69Wqy2ORXiQZrNJLBajp6dnzXU2m+0j1Vea+Sml2mMSqrdI1IeJJfrI5U9TqXyFcqVBd9cSQ3F3ic2YPrDSfbZaLXzf5/HHH19zl/VaKMsg8jV91C6W8P2AUTXNSDhFjRYGigg2CaKYqv1BRUiIh09J15nVZSJNODA8yKPDUe7XN2qqCPud7wRC5vyvElF5HCO38jpjFubhFPqAQas8S2L2KP1Xvh6rniCsNtDNAKXbkx7at0uhEjaqO0LkmTzWgSTWw12Ya1xwrRMKhQKzs7Ok0+mOb9s0TSKRCDdu3ODw4cObM1pDCCGE2CXkf00hhBBCiB0sEolw5swZXnzxRcrl8oqDl1KphNb6gd25rusCkM/n13XYdLCGQ/5NM4LvlqlVbxJL9BFLDGJHD1GvXSEMo7t2VfpopN35GoYrD7nXyg/aC57FIveetzAWYXh4mIMHD25sIUuwH++m3q95e/5tZjINItjkSGKoe+8UAxMLkxgRtB9QC2pcyxWpfOkFHnnkEfr6+pbdj6WSHHC+h4jKM+u/QC2YI2IMYKkHfzAQapemnkarFrnu5xjs/+tEHsmjmwHBZB1d9tB+CIFG2QZETMzeKCq3fRbIu337Nr7vE4ks8STogFQqxdzcHDMzM5s2XkMIIYTYDSS0FUIIIYTY4fr6+jhz5gxvvvkmlUrlgR2RrVaLSqXywFEHruvi+z75fH7dXXhrzadMK0GjOo7XVcV2ktjxh4hHChQKBXp6erZN8NVJsQjYFng+RNY2jWLFPL+9r+gSeV2xWNz0sQh3mtc13jxZpHCpTFc9gZ1YwaJefoguuqSGsmSP5ijOzfGVr3yFJ598kqGhoWWvZqoYA/Y3kzIfYsr7E2rBCA1cbJXCVAlMYigMNJqQFoGu4esKoIkaA+SdD9FlPo2h2m+vVNTEGt68zuS10lozMzOzYYEtgGVZhGFIuVyW0FYIIYRYBQlthRBCCCF2OKUUR48eJQxDzp07R6FQoKura9mgrVKp4HnesrNstdY0m02g3WGbz+fXHY5aZns8wmqZVoxWY5pG7Ta2cwJlxjh05HHKs1+hVCqRzWbXVdd2ZNuKTEozU9z40NZ1YbAPDOPux7dSqWAYBo899timjkW4c/+vvPIKlaRH35F9BJdKhG4LI22DucTzWmt03UfXfIyBOPYjOVTEoqenh7m5OV577TVs275vx61SipR5nKRxhGp4nZL/BtXwGp4u4epZNCGgMFUESyXJmo+TNR8jZT6EqVYQKG9DzWaTer2+5lnVK2WaJsVicUP3IYQQQuw2EtoKIYQQQuwCSimOHz9OIpHg3LlzTE9Pk06nicVidwWuWmtKpdKSsyW11gRBQLPZJBqNks/nyWQyHelmTSXac1MXOjtXc7sMM0KtfBMreoyIrThxtJfW4CO89tpr1Ot14vHdN9+2u0sxO6cJ3hlfsBE8v/2YdGfvfnybzSbNZpNHH32Uffv2bczO72Phw4disUhvby+qV2HGLbwrZcL59rgOFTXBUKBBuwG4ISpuYR1LYz2URTntO00pRVdXF7Ozs7z11ls8//zzRKP3D1iVMkmZx0iZx9A6xNVzeHoOjQ+YWCpJRPVgqLWPC9kuGo0GnuetaLb1eti2TaVS2dB9CCGEELuNhLZCCCGEELuEUoqhoSFyuRznz5/n5s2bi4uNxWIxbNvG8zw8z1sMbbXWhGGI7/v4vo9pmnR1ddHb29vR7rt4DDIpmCutLrSFd2bb+nWK83UODiXpz4NSw1QqFc6fP49lWRveKbjZ0sn2V6nS/r4R6g3o7oLEHZm353nMz89z/Phxjh07tjE7foCxsTFu3rx5V7e4uT+JMRAnnG4S3KoRzrUg0KAURsrGHEpiDMYx4vc+uZRS5HI5ZmZmuHTpEo8++uiKa1HKIKK6idDdsdu3nYRhiNZ6w8eMKKUIwzUMthZCCCH2MAlthRBCCCF2mXg8zpNPPsnRo0e5desWY2NjVCoVgiCg0WhQq9VwHGcxqDEMA8uyFmfXRqPRjoc4Sil6umCutPruUcOM0GpVMbwKJ4+mFg/lP3XqFLVajRs3btDT07OrVqY3DMX+Aag3NM3W0jNn16PehEgEhvrV4mMdBAGFQoF9+/bx8MMPb8kc2yAIuHr1KoZh3DNnVVkG5mAcczCODjX4Ybvb1lQPfL6apkkikWB0dJSjR4+SSCQ28mbsGIZhoJRCr2V2ySqEYbhrFw4UQgghNsrueWUrhBBCCCEWKaXIZrNks1lOnDhBpVKhUqlw9epVms0mmUwGwzBwHAfHcYhEIpgbdRz+O7JpyGVhttgel7DSDEdrg1ZLMzxU49DQu+GcZVk89thjuK7L+Pj4rgtukwnFQK9mbLwdcq+2Q3k5rgdBAPsHFPHYu4HtzMwMvb29PPnkk1vWuTwzM8Pc3ByZTOa+l1OGAmd1z9dEIsH09DTj4+Nb1kW83dzZgW/bGzfuwfO8dS9mKIQQQuw18nGnEEIIIcQuZ9s2uVyOgwcPkk6n6erqor+/n97eXrLZLPF4fMMDW2h3jw7vU3RloFID33/wdfygfdl4zGB4sITj3N1RGYvFePrpp+nv72d2dhZ/JRvdQfrzir4eaDTbM2jXy/Wg2YKBPPS+c8R/EATMzs6Sz+d55plntrQLdWZmhiAINiRANAwD27YZHx/v+LZ3qmg0Sjwex3XdDd1PGIZ0dXVt6D6EEEKI3UZCWyGEEEKIPaTRaGxpN6ptK44cVORz0HShVIXWEnlRy4VytR0wdnfBvgGTMGguuc14PM4zzzzDwMDArgtuDUNxcJ+iP9++L2oNWMuR7FpDtd4Obff1wdBAe6TAQodtT08PzzzzDKlUqvM3YhWKxeKGdnxGIhHK5fKGh5Q7hVKK3t5ems2lf7c6wfM8TNN8YPe0EEIIIe4moa0QQgghxB4SBMGGLzr0ILbVDm4fOqIY6GkHiuXq3V9hCL09cOKw4uhBhW0ZBEGw7DYTiQTPPPMMg4ODzM7O7qpQbiG4PXxAYVvvhtkrCW+1bnfplqvtubhHDyqGBhSGofA8j5mZGfr6+njf+9635Yeve55HuVze0NEMjuPgui61Wm3D9rHT7Nu3D8dxaLVaG7L9SqVCNpsln89vyPaFEEKI3Wr3DP0SQgghhBAPFIbhloe20O7wSychnVQM9GlqdQhCQLfnt8ZjEI2ouy7/oNXn4/E4zz77LK+//jqjo6Mkk8lds+CUUu3u5FQCpmY1xfn22AilwDLBsto/A+iwPVbCCwDdDmuHeqCvWy2Ol2g0GpTLZfbv38/jjz++Le6nIAgIw3BDO8FN0yQMw13Vjb1euVyOfD7PxMQE+Xy+o38ffN/H8zwOHTq0KSNYhBBCiN1EQlshhBBCiD3ENM0NXyl+tSKOIvKA5kqt9YrCvGg0ytNPP00ymeTSpUu4rks2m90WQfVytB8STjcJZ5toN0A5JkY+itEbRZl3HxgXjbS7bgd6NfNlqFTbgbfnQ/jOw2oosG3oykAqochm2t3N0L4fK5UKrVaLEydOcObMmQ0dR7Aam/EYLTz3t/PzYbMZhsHJkycpFArUajWSyWRHtqu1plgs0tvby4EDBzqyTSGEEGIvkdBWCCGEEGIPsW37gR2r29FqOjAty+LMmTOkUinefPNNZmdnyeVy27LTL5hu4L89R1hyQdMeXhYA18sY2QjWmS7Mnug913NsRW839HYrtNa4XnukBIBhgGPfG0yGYUixWMSyLJ544gkOHz6MYWyfaWmWZWHbNp7nbdg+giDANM0NHcGwE+XzeY4dO8a5c+dwHKcj90+lUsFxHM6cOSP3txBCCLEGEtoKIYQQQuwhmUyGmzdvdny7OtCEcy1wQ1TEQHVFUEZnD7NezUJGSimGh4dJJBK88cYbzMzMkE6nicfjHatpvYKZBt5XZ9HNACPrwJ1dtX5IONfCe20W9VQPRve9we0CpR7cqdxsNpmfn6erq4tHH32UgYGBDt2KzjFNk2w2y+3btzdsH61Wi2g0ui3GQWw3J06coFKpcOPGDXK53LqC1oXF3h5//HF6e3s7WKUQQgixd0hoK4QQQgixhywsNqW17sgh4lprwvE6/pVyu1s00GApjK4I1vEMZl+sI/sA1rRQVj6f5/nnn+fChQtcv36der1OV1fXlnfd6kDjn59vB7a5yLsDaRdYBkZ3hLDQwrswj/Nc35pC8DAMmZubQ2vN0aNHOX369LYKrt8rl8sxOjrasefne7VaLfr6+rb88d+ObNvmiSeeAGB0dJRYLEYqlVrV4xAEAXNzc5imyWOPPcaRI0c2qlwhhBBi15PQVgghhBBiD0mlUouHoHfikOXwdh33jQIEGiNtg2WgvZCw0MR7zYOnejB71xfcep6HbdukUqk1XT8ajfLYY4/R19fHuXPnFrtuY7HYls02DWebhPMtjIxzb2C7QClU2iYstgiLrSXHJNxPo9GgVCqRzWY5c+YM+/bt21bjEJbS399PNBql2WwSi60/8L+T7/tordm3b19Ht7ubRCIRnn76abq6urh06RLT09Mkk0ni8fh9f1eCIKBardJoNOjp6eHMmTP09/fL7GAhhBBiHSS0FUIIIYTYQ5LJJI7j4LruukNb7Yd4l0sQ6na36DuUbaByEcJiC/9yCaMnuq5RCQu1rmeBJKUUg4OD5HI5Lly4wI0bN6hUKmQyGaLR1YWhnRAWW+3Ztdb9Q1TlmOiShy62YIWhbavVolQqYVkWx44d49SpU9u6u/ZOmUyGvr4+xsbGiEajHQ39Fh7v/v7+jm1zN7Isi4ceeoje3l6uXr3K+Pg409PTGIaB4zhYloVS78xSdl1c10UpRSqV4vjx4xw+fHhLfqeEEEKI3UZCWyGEEEKIPcS2bXp7e7lx48a6V4kPCy102W3PY30vpVCpdpeonndRd4S6q1Wv1xkeHsa27XVU27bQdXvgwAEuX77M7du3KZfLZLPZzV0sKVjdYnA60A+8jOd5zM/Po5Ri3759HD9+nHw+v6O6HZVSHDt2jKmpKWq12rqfowtarRa+73P8+PGOPI/2glwuxzPPPEOlUmFycpK5uTmKxSKu66K1xjAMstksuVyOXC5Hf3+/LDgmhBBCdJCEtkIIIYQQe8yBAwcYGxtbHDuwZm4AmrsX0LqDsg20r9FusOZdeJ6HUooDBw6seRv31KUU3d3dvO9972N6eppLly4xNTWF1ppUKkUkEtnwoFPZ78xU1Xr58QgL56NR9vIdua1Wi3K5DLRn+J44cYL+/v5tPwphOfl8nmPHjnHu3Dkikci6Q9aFOavDw8MMDw93psg9JJVKLY4mCcMQ3/cJwxDTNBe7boUQQgjReVv6Sm54eBil1D1f/+Af/AOgvejEv/yX/5LBwUFisRgf+tCHePvtt7eyZCGEEEKIHa+3t5dsNkulUlnfhmwDFMt2jWq/vSjZYkC5BpVKhVwutyEr0Cul6Ovr42u/9mt57rnnGBwcpNFoMDU1RblcJgxX1w27GkY+CrZCu/ffh24F4Jjty98hDMPFDsharUZfXx/ve9/7+MAHPsDg4OCODWwXnDhxgv3791MoFHBdd83bCYKA2dlZenp6ePjhh3f8/bLVFkYkRKNRbNuWwFYIIYTYQFvaafvKK68QBO92Xpw7d44Pf/jDfOd3ficAP/dzP8fP//zP81//63/l+PHj/PRP/zQf/vCHuXTp0poXohBCCCGE2OtM0+TQoUO8+uqrhGG45iDL6ImiUg5hxcPIvmf8gdbt0QndUVTX2g6ZDsMQz/MYHh7GNNce/D6IYRjs27ePwcFB5ubmuHXrFmNjY8zMzGCaJvF4nGg02tHAT3U5mD0xgokaqjsKS838DTW64mEOJdsLkoUhzWaTRqOB7/vE43Eeeugh9u/fTy6X21WBpG3bPPXUUwDcvHmTeDxOMplcVUi4sBBbPp/nmWee6dioBSGEEEKIzaC01g8ekLVJfvRHf5Q//MM/5MqVKwAMDg7yoz/6o/zET/wE0D70q6+vj5/92Z/lB3/wB5fcRqvVotVqLf67XC6zf/9+SqUS6XR642+EEEIIIcQOUK/X+cu//EsajQa5XG7N2wluVnHfKIAGI223RyX4IWHZRdkG9hM9mP1rWwSrWCwSi8X4uq/7OmKx2JprXItms8nExAS3b9+mUCjQbDYBiMVixGIxLGv9vQ9hxcN7dYaw2EKlbFTUbI9K0BrdDNAVD93t4J9O0MIjDEOi0ShdXV0MDQ0xMDCwYxYYWyvP87h8+TJXrlyh2WySSqWIxWL3DW8XxkUopTh06NCOWohNCCGEEDtLuVwmk8lsSO64bWbauq7Lr/3ar/HjP/7jKKW4fv06k5OTfOQjH1m8TCQS4YMf/CBf/vKXlw1tf+Znfoaf/Mmf3KyyhRBCCCF2pHg8zunTp3nppZdoNptrXu3dGErgAN6VMuG8B6EGU2FkIlgnMmsObJvNJmEYcvr06U0PbKG9YNmhQ4c4dOgQtVqNQqHA9PQ0k5OTzM/PEwQBSikcx1n8Mk1zVZ2gRsrGfjqPf3GeYKqOX3XxzABXBXiOxthnYw2ZxGMWw3376Ovro7u7m0QisWcOS7dtm9OnT9PX18fVq1eZmJigUqksHqa/EJ4HQYDruvi+j+M49PX1cfToUQYHB/fMfSWEEEKI3WXbhLa/93u/x/z8PD/wAz8AwOTkJAB9fX13Xa6vr4/R0dFlt/PP/tk/48d//McX/73QaSuEEEIIIe62f/9+JicnuX79Or29vWs6vF4phbk/iTEQJyy2wA0hYmDkoihzbWFZGIbMz89z+PDhbfE6LpFIkEgkOHDgAK7rMj8/T6VSoVwuMzs7S71ep16vE4YhCwexKaUwTXNxrMNCcLhwfhAEBEHQ/vd+IG9DVWETJROLkz/UT/ZAnlQqRTabJRKJLFnbXtHT00N3dzflcpnp6Wnm5uYoFot4nge0w918Pk8ul6Onp2fXjYsQe5d/vULrCxOgIPL1g1gHZMyHEELsFdsmtP0v/+W/8I3f+I0MDg7edfp7PxnXWt/30/JIJLLnX9QKIYQQQqyEYRicPn2aQqHA3Nwc3d3da96WsgzM3s50xM7NzZHJZDhz5sy2C94cx6G3t3dxYTStNc1mk2q1SrPZxHVdXNel0WhQr9dptVporRcXNTMMY7FDN5FIEI1GcRxn8TVsMpl84OH/e5VSikwmQyaTAdrh/sL6GKZpbrvnihDrFZZcav/5IsGNKigIrpVJ/sSjGEl7q0sTQgixCbZFaDs6OsrnP/95fvd3f3fxtP7+fqDdcTswMLB4+vT09D3dt0IIIYQQYm2SySSPPPIIL7/8MqVSaTEQ2yqlUgnTNHnkkUdIJBJbWstKKKUW59yKzWUYhgS1YlcLZ5qEUw2soyl0oAkmG4TFloS2QgixR2yLVzmf+tSn6O3t5Zu+6ZsWTzt06BD9/f386Z/+6eJpruvyhS98geeee24ryhRCCCGE2JWGhoZ47LHHCIKAUqm0ZXWUSiWCIOCxxx5jaGhoy+oQQojtwOiLYe6L418pE1yvYg4lMHvWNn9cCCHEzrPlnbZhGPKpT32K7//+779rFV6lFD/6oz/KJz/5SY4dO8axY8f45Cc/STwe53u+53u2sGIhhBBCiN3n0KFDaK158803mZubI5vNbtoh+lpr5ubmUErx+OOPMzw8vCn7FUKI7cxI2SR+8CStL0+1Z9p+bT8qvuVv4YUQQmySLf+L//nPf56xsTE+/vGP33PeP/2n/5RGo8EnPvEJ5ubmePbZZ/nc5z5HKpXagkqFEEIIIXYvpRRHjhzBtm3efPNNpqen6erqwnGcDd2v67rMzc2RSCR49NFHOXDgwIbuTwghdhJzKEH8fzy81WUIIYTYAkovLGG7S5XLZTKZDKVSiXQ6vdXlCCGEEEJse6VSibNnz3L79m0ikQjpdLrjXbdaa8rlMq1Wi3379vHwww9v+TxdIYQQQgghVmMjc8ct77QVQgghhBDbSyaT4f3vfz8jIyNcuHCBqakp4vE4yWRy3Qs/hWFItVqlXq+TTCZ58sknOXToEKZpdqh6IYQQQgghdj4JbYUQQgghxD1M0+To0aPk83lGR0cZGxtjZmYGy7JIJpM4jrPi7lutNa7rUq1WCYKARCLB6dOnOXjwoHTXCiGEEEIIsQQJbYUQQgghxLIymQyPPPIIx48fZ3x8nBs3bjA3N8f8/DwAlmXhOA6maS6GuFprgiDAdV183wfAcRxyuRzDw8MMDg4SjcoK6EIIIYQQQixHQlshhBBCCPFA0WiUw4cPMzw8TLlcplKpUKlUKBaLzM/PEwQBC0slKKUwDIP+/n5yuRypVIpUKkU6nV73eAUhhBBCCCH2AglthRBCCCHEihmGQTabJZvNLp4WBAG+7xOG4eJlLMuSObVCCCGEEEKskYS2QgghhBBiXUzTlIBWCCGEEEKIDpLj04QQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbkdBWCCGEEEIIIYQQQgghthEJbYUQQgghhBBCCCGEEGIbWXVo+wM/8AN88Ytf3IhahBBCCCGEEEIIIYQQYs9bdWhbqVT4yEc+wrFjx/jkJz/J7du3N6IuIYQQQgghhBBCCCGE2JNWHdr+zu/8Drdv3+Yf/sN/yG//9m8zPDzMN37jN/LpT38az/M2okYhhBBiz6tUKty6dYvR0VFu3rxJsVhEa73VZQkhhBBCCCGE2ABKr/Md3+uvv84v/dIv8Yu/+Iskk0m+7/u+j0984hMcO3asUzWuS7lcJpPJUCqVSKfTW12OEEIIsWJhGDI9Pc3Y2Bjj4+M0m00AlFLYtk0+n2d4eJiBgQEsy9riaoUQQgghhBBib9nI3HFdC5FNTEzwuc99js997nOYpsnHPvYx3n77bU6dOsUv/MIvdKpGIYQQYs8JgoCzZ8/ywgsvcP36dSzLore3l76+PvL5PLFYjImJCV588UVeeeWVxUBXCCGEEEIIIcTOt+q2HM/z+MxnPsOnPvUpPve5z/HII4/wYz/2Y3zv934vqVQKgN/4jd/gh37oh/ixH/uxjhcshBBC7HZhGHL27FkuXbpEMpkkHo/fdb5Simg0SjQaxXVdbty4QRiGPPPMM9i2vUVV7w5hGBIEAVprtNYopVBKYZomhrGuz7qFEEIIIYQQYsVWHdoODAwQhiHf/d3fzcsvv8xjjz12z2U++tGPks1mO1CeEEIIsfeMj49z9epVUqkUsVjsvpd1HIfu7m5u3rxJLpfj5MmTm1TlzuW6LpVKhUqlQrPZpNlsUq/XaTQaNJtNwjC8a17wQnAbjUaJxWIkEgkikQjRaJRUKkUqlSISiWzhLRJCCCGEEELsNqsObX/hF36B7/zO7yQajS57ma6uLkZGRtZVmBBCCLEXaa0XO2cfFNgusG2bSCTC6OgoR48elW7b96jVahQKBebn5ykWi5TLZVzXxff9xcuYpollWYsdtQtB7UJ4G4YhlUqF+fn5xU7chetFIhGSySTd3d1ks1m6u7tJJBIopbbk9gohhBBCCCF2vlWHtt/yLd9CvV6/J7QtFotYliWLfQkhhBDrMDc3x/T0NMlkclXXSyaTFItFJicn2b9//wZVtzOEYUi5XGZ2dpaJiQmKxSLNZhOt9WLAnU6nsSxrXcGq1hrf93Fdl/n5eaanpwGIRqN0dXUxODi4GOTKaAUhhBBCCCHEaqw6tP2u7/ouvvmbv5lPfOITd53+W7/1W3zmM5/hs5/9bMeKE0IIIfaa+fl5XNdd9Zghy7LQWlMsFvdsaNtqtZiYmGB0dJRCoUCr1cKyLOLxOD09PR0PTpVS2LaNbdskEgmgHRg3m01mZmaYmJjAtm26uroYHh5mcHDwvkcqCSGEEEIIIcSCVYe2L730Ej//8z9/z+kf+tCH+Of//J93pCghhBBir/J9f/HQ/NUyDAPXdTegqu1La02pVOLWrVuMjY1RqVQwDINkMkk2m930EQWGYRCPx4nH42itcV2XYrG42D194MABhoaG6OrqkvEJQgghhBBCiGWtOrRttVp3zYBb4HkejUajI0UJIYQQe9V6ukG11pim2cFqtrdSqcTVq1cZGxuj2WwSi8Xo7u7eNveBUopIJEIkEiEMQ6rVKm+//TZXr15l3759HDt2jFwut9VlCiGEEEIIIbahVYe2Tz/9NP/pP/0n/t2/+3d3nf4f/sN/4Mknn+xYYUIIIcReFIvFUErh+z6WtfL/prXWhGG4eJj+blar1bh27RojIyPU63XS6TSZTGZbd64ahkE6nSaVStFsNhkZGWF8fJzh4WGOHDkiawIIIYQQQggh7rLq0PZf/at/xTd8wzfw5ptv8tf+2l8D4M/+7M945ZVX+NznPtfxAoUQQoi9pLe3l3Q6TbVaXdVc23q9TiwWY3BwcOOK22K+73P16lWuXLlCtVolmUzS19e3rcPa91JKEYvFiEaj1Ot1Ll68yNjYGEeOHOH48eM4jrPVJQohhBBCCCG2gVUfg/k1X/M1vPjii+zfv5/f+q3f4g/+4A84evQob731Fs8///xG1CiEEELsGbZtc+jQIZrNJkEQrOg6WmsqlQqDg4OkUqkNrnBrFItFvvSlL/HGG28QBAG9vb0kk8kdFdjeSSlFIpFYDJ3Pnj3LCy+8wPT09FaXJoQQQgghhNgGlNZab3URG6lcLpPJZCiVSnLooRBCiB2h0WjwpS99idnZWfL5/H3n3GqtKRQKxONxnnvuObq6ujax0o230F176dIlGo0GuVwO27a3uqyO832fYrGI4zgcPXqUEydOSNetEEIIIYQQ29xG5o6rHo8AEIYhV69eZXp6mjAM7zrvAx/4QEcKE0IIIfaqWCzG008/zcsvv8z09DSpVIp4PH5XV6nWmmazSblcJplM8uSTT+66wLZSqfD6668zPj5OLBajt7d3x3bWPohlWeTzeWq1GufOnWNmZoYnnnhiVSMy7hSGIYVCgVKpRCQSoa+vT0JgIYQQQgghdpBVd9p+5Stf4Xu+53sYHR3lvVdVSq34UM7NIp22QgghdqpqtcqFCxcYHx+nXq9j2zaGYRCGIZ7nEYlE6O3t5eTJk3R3d291uR01PT3N66+/ztzc3K7trl2O7/sUCgXS6TSPPfbYqucUh2HIW2+9xbVr1/A8D6UUPT09PPvssySTyQ2qWgghhBBCiL1nI3PHVYe2jz32GMePH+cnf/InGRgYuKfjJZPJdLTA9ZLQVgghxE5XqVQYHx+nUCjgui6WZZHJZBgaGiKbze6q7lOtNTdu3OCtt96i1WrR3d193/EQu9XC2AvLsjh9+jRHjx5d8f0wOTnJCy+8QCwWIx6PEwQBMzMznDhxgieeeGKDKxdCCCGEEGLv2FbjEa5cucKnP/1pjh492tFChBBCCLG0VCrFiRMntrqMDRcEAefPn+fixYtYlkVPT8+uCqRXY6E7tlwu88Ybb1CtVnnkkUewrAe/dJubm8P3feLxOACmaRKLxZicnERrvWfvUyGEEEIIIXaSVbeuPPvss1y9enUjahFCCCHEHhUEAWfPnuX8+fPEYrFd10G8Vul0mmQyyeXLl3n99dfxPO+B11mYXXvnugO+7xONRuU+FUIIIYQQYodYdaftP/pH/4h//I//MZOTkzz88MP3zJh75JFHOlacEEIIIXa/IAh48803uXLlCqlUilgsttUlbSuxWAzDMLh69SphGPLEE0/cd8Zvf38/mUyGmZkZEokEruuitebw4cObWLUQQgghhBBiPVY903apeWpKqcXD7WQhMiGEEEKs1MKiWZcuXZLA9gFarRZzc3McPXqUxx9//L6jEorFIhcuXKBYLBKNRjly5AjDw8N7cj6wEEIIIYQQG2VbzbQdGRnpaAFCCCGE2Ju01ly4cGFHBra+79NqtXBdl2azSavVIgxDtNYYhoFhGMRiMRzHIRKJ4DgOpmmua5+RSISuri6uXbuGZVk8+uijy4awuVyO5557Dt/3MU1TwlohhBBCCCF2mFWHtgcPHtyIOoQQQgixx9y8eZMLFy6QSCR2RGCrtaZer1MqlahUKvi+z8IBS4Zh3DUvVmtNpVJZPM+2bTKZDOl0mkgksubZspFIhHQ6zdWrV0mlUvddGFYpdd8xCkIIIYQQQojta9Wh7YLz588zNjaG67p3nf4t3/It6y5KCCGEELvb7Owsb775JoZhkEgktrqc+9JaUyqVmJubo9FoEIYhtm0TjUYf2MGqtSYMQzzPY2pqikKhQCqVoqura823OxaL4XkeZ8+eJZFIMDAwsKbtCCGEEEIIIbavVYe2169f59u+7ds4e/bs4ixbYLFjZLvNtBVCCCHE9lKr1Xj99dep1+vk8/mtLue+Wq0W09PTlMtloN3pupoxB0opTNPENE201vi+z/z8PJVKhe7ubrq7u9c0NiGVSlEoFHj99deJx+NkMplVb0MIIYQQQgixfa16wNmP/MiPcOjQIaampojH47z99tt88Ytf5KmnnuIv//IvN6BEIYQQQuwWQRDwxhtvMDs7S09Pz5rHBGw0rTVzc3OMjo5SKpWIRCLE4/F1zaVdGFcQj8cxDIPp6WnGxsao1Wpr2lYul6NcLvP666/jed6a6xJCCCGEEEJsP6sObV988UV+6qd+inw+v7jQxtd+7dfyMz/zM/zwD//wRtQohBBCiF3ixo0b3Lp1i1wut20Xx9JaMzMzw/j4OEEQrDusfS+lFI7jEIvFqNVq3Lx5c7GTdzUMw6C7u5vJyUmuXr3asfqEEEIIIYQQW2/V75aCICCZTALQ09PD+Pg40F6g7NKlS52tTgghhBC7RqlU4vz58ziOg+M4W13OkrTWTE1NMT09vTi3dqO6gQ3DIB6PE4Yh4+PjlEqlVW/Dsizi8TiXLl2iUChsQJVCCCGEEEKIrbDq0PbMmTO89dZbADz77LP83M/9HF/60pf4qZ/6KQ4fPtzxAoUQQgix8wVBwLlz56jVatt2/upCh22hUMBxHGzb3vB9KqWIRqOEYcjExASVSmXV20gmk7RaLd566y0ZkyCEEEIIIcQuserQ9l/8i39BGIYA/PRP/zSjo6M8//zzfPazn+Xf/tt/2/EChRBCCLHzjY2NcevWLbq6urbtHNtqtcrs7CyWZW1KYLvgzuB2ampq1cHrwnzbqakprl27tkFVCiGEEEIIITaTtdorfPSjH138+fDhw5w/f55isbit34QJIYQQYuu0Wi0uXbqEbdvbdiyC7/tMT0+jtd6SGheC21qtxszMDAMDA6t6XWVZFtFolKtXr7J//34SicQGViuEEEIIIYTYaKvutP34xz9+z6F7uVyOer3Oxz/+8Y4VJoQQQojdYWRkhPn5edLp9FaXsiStNbOzszQaDaLR6JbVsRDczs3NrWlhslQqRaVSkW5bIYQQQgghdoFVh7a//Mu/TKPRuOf0RqPBr/zKr3SkKCGEEELsDvV6nWvXrhGNRjFNc6vLWVKz2WRubg7HcTCMVb806ijLah8ENTs7uziOaqUMwyCZTDIyMrKm0FcIIYQQQgixfaz4nUm5XKZUKqG1plKpUC6XF7/m5ub47Gc/S29v70bWKoQQQogd5tq1a5TLZVKp1FaXsqxyuUwQBIuB6VaLRqM0m02q1eqqr5tIJKjX61y5cmUDKhNCCCGEEEJslhW/O8lmsyilUEpx/Pjxe85XSvGTP/mTHS1OCCGEEDtXo9Hgxo0bJBKJLe9gXY7v+5RKJSzL2jaz+Rfuq1KpRCqVWlVdSilSqRQ3b97k2LFj23YkhRBCCCGEEOL+Vhza/sVf/AVaa77+67+e3/md3yGXyy2e5zgOBw8eZHBwcEOKFEIIIcTOMz4+Tq1WI5/Pb3Upy6pUKriuSzwe3+pS7mLbNtVqlVarteo5u/F4nKmpKW7dusWpU6c2qMLO0s0A760i/mgFAo3ZF8N+tBsjF9nq0oQQQgghhNgSKw5tP/jBDwLtxUQOHDiwbbpRhBBCCLH9BEHAyMgItm1v2y5bgFqttngk0XZiWRau665pcbSFBc1GR0c5evQojuNsUJWd4V2ap/Fr1whGq+ggBEOhQo3Kx4j9jQM4HxrYdo+PEEIIIYQQG23V76L+/M//nE9/+tP3nP7bv/3b/PIv/3JHihJCCCHEzjYzM8Pc3Ny2nmWrtabRaGzLBdIWQspms7mm66dSKcrlMpOTk50sq+P8sSr1/3wJf7SKeTiJfboL+2QW86EstALqv3YN98vTW12mEEIIIYQQm27Voe2//tf/mp6enntO7+3t5ZOf/GRHihJCiP+LvTuPkfu+7/v/+nznvnZm75vL+xQpkrplyfJROXabNG3QBjkKF23SOsgPddIiCGIErZ00lWujTRw0QNoEaGoDSdMfAqQwWvjn27Ktm5REUSLFm9yDe87uzszOzv39/P4YcSWa1+5yZmd29vkAFtLO8Z33HNyZ72ve3/cHwOY2OjqqSqUin8/X6FLuqFgsqlwuN2VoK0kej0e5XE7W2nVd1xija9eurev6G6X4g0lVri/Lu69Nxv/+82A8Rp7hiORI+W+MyRYqDawSAAAA2HhrDm2vXbumHTt23HL6yMiIRkdHa1IUAAC4vWLRan7RNnUQl8/nNTU1pUgk0uhS7qpYLMp13aYObW8Ey+sRjUaVTCa1tLRU48pqw10sqnhiTk5P8I7jDzwDYbljWZXfXdzY4gAAAIAGW3No29PTo7feeuuW00+dOqXOzs6aFAUAAG7lulbfeN7V33yjoncvNW9om0wmlc/nFQqFGl3KXVUqFVlrm3ZequM4staqUllfl2kwGFQ+n1cymaxxZbXhpouyubKc6J27sU3AI+tauenSBlYGAAAANN6aQ9tf+IVf0Gc/+1l9//vfV6VSUaVS0fe+9z39xm/8hn7hF36hHjUCAABJrpWyy9Wf5fWNOt0Qs7OzstY2bQfrDc3crXyDtevvqjbGyHGcpp1rawIeGa8jW3TveBlbsZLVTaMTAAAAgK3Au9Yr/MEf/IGuXbumj3/84/J6q1d3XVef/vSnmWkLAEAdeT1Gzz7tKLlgtXO4ObtDy+WyJicnFQgEGl0KJIVCIc3MzCifzysYDDa6nJs4PUF5d7epdHpeTsJ/28u4s3k5nQF597RtcHUAAABAY605tPX7/fpf/+t/6d//+3+vU6dOKRQK6fDhwxoZGalHfQAA4AO6O4y6O5ozsJWkhYUFZbNZtbU1f8jWrGMRPuhGt+x6hUIhzc/Pa35+XgMDAzWs7P4ZY+T/cJ9KZxZUmc7J03vzOA13qSR3Lq/gz47I6eBLAAAAAGwtaw5tb9i+fbustdq1a9dKxy0AANjaMpmMyuWyfL47zyltFjfGNzTrXFvXdeU4zn2NmfB4PHJdV+l0uulCW0nyPdyl4M9tV/7royqfWZRJ+CXHyKaKkqTAM30K/f1tDa4SAAAA2Hhrbt1YXl7Wr/zKrygcDuvQoUMaHR2VJH32s5/Vf/yP/7HmBQIAgM0jlUo1ZQB6O4FAQF6vd90LfdVbuVyW3++/7y/HPR6PFhYWalRVbRljFPy7w4r+6wfkf3ZAJuSVfEa+452K/D8HFf5ne6unAQAAAFvMmj8Ff+5zn9OpU6f0gx/8QJ/85CdXTv87f+fv6POf/7x+53d+p6YFAgA2Xrls9eLrrsYnpZ3bpEcfdOQ4myOIQ+NYa5VMJjdFl60k+Xw+eb1elcvlpjxqyHVdhUKhe1/wHvx+vxYWFlSpVJpycThjjHz7E/LtT1QXXbOS4e8NAAAAtrg1d9r+7//9v/Unf/Ineuqpp27qpDl48KAuXbpU0+IAAI1xadTqjXesUhmr196yGr3e6IqwGeTzeWWz2U2zCJkxRqFQqCk7ba21klSTxzIQCKw8N83OGENgCwAAAGgdnbazs7Pq6em55fRsNrtpDocEAKyO40i2LL2XH21prusql8spk8kok8kon8+rUqnIWiuv16tgMKhoNKpYLKZwOHxfi0dtVktLSyoWiwqHw40uZdUikYgWFhZW5sc2ixvdv7V4LH0+n0qlkjKZzKZYIA4AAADAOkLbRx55RP/3//5f/at/9a8kvb/y8p//+Z/riSeeqG11AICG2DFs9MA+o/FJ6cBuabj51i/aMJlMRtevX9fo6Kiy2ayKxaJc15X0/nvgja5IY4wCgYDC4bCGh4c1ODi4pUKyG0F2Mx6CfyfRaFSBQEClUqmpOoSLxaISiURNanIcR9ZaFQqFGlQGAAAAYCOsObT94he/qE9+8pM6c+aMyuWy/viP/1jvvPOOXnrpJT3//PP1qBEAsMH8PqOPP+mR69otO8s2mUzq8uXLun79upaXlxUIBFa6ae8USrquq0KhoGw2qzfffFPnzp1Tf3+/du7cqe7u7g2+BxuvWCxK0qY68sbr9Soej2tmZkZ+v78paq9UKjLGKB6P13S7N54fAAAAAM1vzccBPvnkk3rhhRe0vLysXbt26Vvf+pZ6e3v10ksv6aGHHqpHjQCABtmKgW2pVNI777yjH/3oR7p06ZI8Ho96e3vV3t6uUCh01y5Sx3EUCoWUSCTU29srn8+nK1eu6Ec/+pFOnz7d8qHZZr1/bW1t8nq9KpVKjS5FklQoFBQKhRSJRGq63Xw+X9PtAQAAAKifdS2VfPjwYX31q1+tdS0AADRUMpnUW2+9penpaYXDYfX09Ky789IYo3A4rFAopOXlZb399tuamZnRkSNHWrbrNpfLNUWn6loFg0F1dHRoZmZGXq+3obNtS6WSjDHq7u6uaR1er1fLy8s12x4AAACA+lpXaFupVPS3f/u3Onv2rIwxOnDggH72Z39WXu+6NgcAQMNNTU3pxIkTymaz6uzsrNl7mjFGkUhEwWBQc3NzK0emDA4O1mT7zSSXy22qebYf1NnZqWw2q2w2q3A43JDw2XVdFYtFdXZ2KhqN1nTbHo+H0BYAAADYRNa8R/r222/rZ3/2ZzU1NaV9+/ZJks6fP6/u7m59/etf1+HDh2teJAAA9TQ1NaVXX31VhUJB3d3ddQnsPB6Puru7NT8/r9dee02SWi64LZfLDe1SvR8ej0c9PT0aHR1VsVjc8EXJrLXK5/MKhUJ1eQ0aY1SpVGq6TQAAAAD1s+Y9q1/91V/VoUOHND4+rtdff12vv/66xsbGdOTIEf3Lf/kv61EjAAB1Mz8/rxMnTqhQKKizs7OuHZbGGHV0dKhcLuvkyZOanZ2t2201guu6jS7hvkQiEfX09Kx0vG6UG4Gtz+dTX19fXY5cMsbIWlvz7QIAAACojzWHtqdOndIXv/hFtbe3r5zW3t6u//Af/oPefPPNWtYGAEBdlUolnTp1SktLS3UPbG+4Edzmcjm99dZbKhQKdb/NjdIKoWBHR4e6u7tVLpc35Lmx1q6MlRgYGKj54mMftNlDdQAAAGArWXNou2/fPk1PT99y+szMjHbv3l2TogAA2AgXLlzQ9PT0hgW2Nxhj1NnZqZmZGZ07d64lwk5Jm3Y0wgcZY9TV1aXe3l65rqtcLle356dSqWh5eVk+n0+Dg4M1n2P7k1rh+QEAAAC2ijV/en/uuef02c9+Vn/zN3+j8fFxjY+P62/+5m/0m7/5m/rSl76kdDq98gMAQLNKJpM6f/68wuFwQxbS9Hg8isViunjxYsuMSWiVQ/BvhOpDQ0Py+/1aXl5WqVSq2fattSoUCsrn84rFYtq2bVvdA1trbUMWVwMAAACwPmveS/3pn/5pSdLP//zPr3z4v7GD9jM/8zMrv7PgBQCgmV29elX5fF49PT0NqyESiSibzerSpUt1WwBtI/n9/pY5BN8Yo7a2NoVCIc3OzmpxcVGlUkk+n09er3ddz5W1VqVSaWU7/f39am9v35AOWNd15ff76347AAAAAGpjzaHt97///XrUAQDAhllaWtL4+LgikUjDg9JoNKqpqSml02nF4/GG1nK/wuFwy31heyNcjcViWlhYUDabVbFYlNfrlcfjkcfjuetryFqrSqWiUqkk13Xl8/nU2dmp9vZ2BYPBDbsflUpF4XB4w24PAAAAwP1Zc2j7zDPP1KMOAAA2zPXr17W8vKze3t5Gl6JQKKR0Oq2JiYlNH9oGg8GGh+D1YIxRLBZTNBpVPp9XJpNRKpW6abEyY8xN9/1Gx7ExRo7jKBgMKpFIKBaLyefzbfh9qFQqCoVCG367AAAAANZnzaHtv/23/1Zf+MIX5PF4bjo9lUrp137t1/Q//+f/rFlxAADUmrVWo6Oj8vv9TREwGmMUDAY1Ojqq/fv3N8ViUdllq+SiFPRLXR2S46zucfL7/S0x0/ZOjDEKhUIKhULq6upSsVhUsVhUoVBQoVCQ67orI6K8Xq8CgYD8fr8CgYB8Pl9DX2/GGAUCgYbdPgAAAIC1WXNo+7WvfU3f/va39Zd/+ZfatWuXJOkHP/iBPv3pT2twcLDmBQIAUEu5XE7ZbHZDD02/l2AwuFJXLBZrWB3WWr31rquTb0tLWSufV9o2YPSRxx1FwvcOHG/MTN0Ki17d6J5tptfR3VhrCW0BAACATWTNoe1bb72lz3zmMzp69Kj+8A//UOfPn9cf//Ef63d+53f0+c9/vh41AgA2uXQ6rfHxcc3OzqpQKMhxHIVCIQ0ODqq/v39Dw6RMJqNCoaBIJLJht3kvfr9f6XRamUymoaHt2KT04kkrjyP1dUmFonTuspXf5+rZpz33vH4oFJLP51OpVGLRqyZSqVRW/s0BAAAA2BzWHNrG43H99V//tX73d39Xn/nMZ+T1evWNb3xDH//4x+tRHwBgE1tYWNC5c+c0NTWlXC4nv98vj8cja63m5+c1Pj6uaDSqkZER7dmzZ0PC20wmI9d1bxnz00iO48haq0wm09A6ro67KhSl4f5ql2w4JLXHra5OWGWyVrHI3btnY7GY/H6/isUioW0TufF8NPILAQAAAABrs67Bef/lv/wX/dEf/ZF+8Rd/UTt37tRnP/tZnTp1qta1AQA2sampKb344ou6cuWKfD6fent71dHRoXg8rkQioe7ubnV2dqpcLuv06dN65ZVXtLy8XPe6biwc1WyMMRty/++mWJJ+cqqB1yO5rlSp3Pv6Pp9PbW1tKhaL9SkQ61IoFBQOh+m0BQAAADaRNYe2n/rUp/R7v/d7+trXvqa//Mu/1BtvvKEPf/jDevzxx/XlL3+5HjUCADaZZDKpEydOKJvNqre3V+Fw+LYzTj0ej9ra2tTZ2amJiQmdPHmy7oFfZTXpYwMYYxpe21Bf9TnK5auLibmu1fyi1NNp1BZd3TY6OztVKpXqVCHWo1gsqrOzs+XnDAMAAACtZM2hbblc1ltvvaV/9I/+kaTq/Lo//dM/1d/8zd/oj/7oj2peIABgc6lUKjp16pSy2ay6urpWFRT5fD51dnZqfHxcly5dqmt91tq6bv9+NLq2XSNGB3YZLaSl0UmriWmpI2H0+DFHjrO6wO/GIfiNvi94n7VW8Xi80WUAAAAAWIM1z7T99re/fdvT/97f+3s6ffr0fRcEANjc5ubmlEwmlUgk1tTZ5/P5FAwGde3aNe3evVs+n68u9Xm9a37r2xDW2obX5vMafexDjvbskJILVsGANDJk7jnL9oMSiYT8fr8KhYKCwWAdq8VqlEoleb1eQlsAAABgk1l1p+2rr75602GbP9lBUygU9L3vfa92lQEANqXR0VG5rruuhaii0ahSqZSmpqbqUFnVRix2th7WWoXD4UaXIa/HaMew0cNHHD2wz1lTYCtVO23j8XjD5/Oianl5WZFIRO3t7Y0uBQAAAMAarDq0feKJJ5RMJld+j8fjunz58srvi4uL+sVf/MXaVgcA2FQKhYImJyfXHT7e6DSdnp6uZVk3icVichyn4fNjP8h1XRljVkYLbGaO42hwcJC5tk0in89rYGCg4V3cAAAAANZm1aHtT3bW3m5WHfPrAGBrK5VKqlQq9xUQeb1e5XK5GlZ1s1gsJr/fX/cFz9aiWCzK7/crGl3lal9NrrOzU16vl+C2wSqVihzHUXd3d6NLAQAAALBGa16I7G5YlRgAIN3/+0E9vwQMhUKKRCLK5/N1u421yufzK3W1gvb2dkUiEUYkNFgul1MoFFJnZ2ejSwEAAACwRjUNbQEAW5vX65XjOCqXy+veRqVSqevcWWOMRkZGVCgUmuIIEWut8vm8hoeH5fF4Gl1OTXi9Xg0PDyuXyzXFY7xVZbNZDQwMNO0cZwAAAAB3tqbjV8+cObOyOIy1Vu+++66WlpYkVVcLBwBsbYFAQF1dXZqYmFhX16jrunJdVz09PXWo7n0DAwM6e/bsyiJNjZTL5RQMBjU0NNTQOmptaGhIFy5cWOkixsYqFAor4TkAAACAzWdNoe3HP/7xmzpmfvqnf1pStWvJWst4BADY4m50sU5MTKhcLq95tu3S0pKi0aj6+/vrVGFVNBrV4OCgLl68qHA43ND3r0wmo5GREbW1tTWshnqIx+Pq7e3V2NgYoW0DZDIZdXV1qaurq9GlAAAAAFiHVe9NX7lypZ51AABaRG9vr+LxuFKp1JpmaVYqFS0vL+vQoUMKBoN1rLBqx44dGh8f19LSkmKxWN1v73ay2az8fr927tzZcl983gjwx8fH1xXgY/0qlYoqlYq2b98ux2ESFgAAALAZrXoPamRkpJ51AABahM/n06FDh/Taa69pcXFRiUTintdxXVdzc3Pq6urSrl276l+kpM7OTu3Zs0enT59WKBTa8FCxUqkok8no0KFDdR8H0Si9vb1qb29XOp1WR0dHo8vZMm58ETEwMNDoUgAAAACsE+0XAICaGxoa0tGjRyVVZ56XSqXbXs5aq1wup5mZGXV2duqRRx7Z0Bmze/fuVW9vr+bn5zd0wSxrrebn59Xd3a19+/a1XJftDV6vV7t371a5XL6vxemwepVKRblcTnv27GEBMgAAAGAT41hFAEBd7NixQ4FAQGfOnFkJRUOhkDwej6y1KpfLK4twjYyM6MiRI4pGoxtao8/n05EjR/Tiiy8qmUyqs7Oz7gGqtVYLCwsKBAI6cuRI3YM1a61m56UrY67SS5LHkXo6jXYMG0XC9Q+Lh4eHdeXKFSWTSearboBUKqWOjg6OkAIAAAA2OUJbAEDdDAwMqLe3VzMzMxodHdXs7KzK5bKMMQoEAtq9e7eGhoYUj8cb1m3a2dmphx9+WK+++mrdg9sbga3H49FDDz1U97EIyzmrH73m6vKYVT4veT2StZJrrdpiRscPSUf2O3Kc+j32Xq9Xe/fu1YsvvqhisSi/31+329rqbnQ002ULAAAAbH6EtgCAuvJ4POrv71d/f78qlYpKpZIcx5HX622aRZL6+/v16KOP6sSJE5qdnVVHR0fNZ9xWKhXNz88rEAjooYce0tDQUE23/5PyBavvvODq0jWrzoTU3a6VMNp1rRbSVj96TSpXXD30gFPX0Ly/v199fX2anJxUd3d3y46DaLTFxUV1dXVpeHi40aUAAAAAuE/r2lsul8v6zne+o//23/6bMpmMJOn69etaWlqqaXEAgNbi8XgUDAbl9/ubJrC9ob+/X08++aR6eno0NzenpaWlms25zWazK2HwE088UffAVpLOX7a6PGrV1y1FwuamoNRxjDoTRqGg9PrbVvOL9a3F4/Fo//798vv9ymaz9b2xLSqXy8kYo/3798vn8zW6HAAAAAD3ac1tRNeuXdMnP/lJjY6OqlAo6Nlnn1UsFtOXv/xl5fN5/df/+l/rUScAAHXX2dmpp556SufPn9f58+c1MzOjaDSqcDi85u7QG4usLS0tyefz6dChQ9q3b9+GHLZerliduWjl90l+353rTsSksUnp0qirznZPXWvq6enR7t279fbbbysYDNa8k3krc11XqVRKe/fu1cDAQKPLAQAAAFADa95j+o3f+A09/PDDOnXqlDo7O1dO/4f/8B/qV3/1V2taHAAAG+1GwNrb26vLly/r+vXrmp6eViAQUDAYVCAQuGOXsOu6KhaLyufzyufzCoVCGhkZ0c6dOzd0LMDCojSfsorH7n45Y4yCAatr49KjD9a/rn379ml2dlazs7N1ezxc19XS0pJSqZQKhYKstfJ4PIpGo2pra1MgEGi58Qzz8/Pq6OjQwYMHW+6+AQAAAFvVmkPbH//4x3rhhRduWUhkZGREExMTNSsMAIBG6urqUldXlzKZjMbHxzU2Nqbl5WVlMpmVsQk3ArIP/u73+xUOh7Vv3z4NDg6qra1tw4O0iiu5ruRZRfOsxyOVyvWvSZL8fr8eeOABvfDCC8pms4pGozXbtrVW6XRas7OzKhQKkqpjGaTqWKdsNqtkMqlYLKbe3t6WGSFwYyzCAw88oFAo1OhyAAAAANTImkNb13VVqVRuOX18fFyx2D1aegAA2GRisZgOHDigffv2rYS2S0tLyuVyKperaafH41EoFFIsFlM0GlUkEmnozN6AX/J5pWKx+t+7KRalaPfG1CVVxyTs2bNHb7/9tvx+/y1fAq/XwsKCpqamJEnBYPCWx99aq3K5rIWFBZVKJQ0NDW364LZUKimVSmnfvn2MRQAAAABazJpD22effVZf+cpX9Gd/9meSql1FS0tL+vznP6+/+3f/bs0LBACgGTiOo2g0WtPu0HpJtElD/UaXrllFwne+XMW1KlekXSMb2wm8f/9+ZTIZXb16Vd3d3SsdseuVyWQ0PT0tx3HuODPYGCOfzyePx6NsNqvJyUkNDQ013YJ4q+W6rpLJpAYHB/XAAw8wFgEAAABoMWveU/mjP/ojPf/88zp48KDy+bx+6Zd+Sdu3b9fExIS+9KUv1aNGAACwBsYYHdhl5PFI6SV728tYazU9K3V1GO0Y3tjAz+v16ujRo+rt7dXc3NzKeIn1sNZqYWFBruuuapE3x3EUDAaVyWSUzWbXfbuNZK1VMplUZ2enjh8/XrNuZQAAAADNY82dtgMDA3rzzTf113/91zp58qRc19Wv/Mqv6Jd/+ZeZpQYAQJPYMWz08GGjV09ZLees2uNSwG9krdXSsrSQkhJxo4885igc3PguzVAopOPHj+vFF19cCSDX0y2az+eVzWbXFFx6PB5Za5VKpTblaKfFxUUFg0EdP358U3R+AwAAAFg7Y1fR3nL8+HF997vfVXt7u37/939fv/Vbv6Vw+C7HWzaRdDqteDyuVCqltra2RpcDAMCGcV2rc1es3j5nNT1n9d4IXoWC0vYho2MHHfV0Nfaw+snJSb3yyiuqVCpqb29fc3A7Ozur6elpn1ttHwAAcJFJREFUhcPhNV23VCrJdV3t2rVrU822TaVScl1XDz30kEZGRhpdDgAAALCl1TN3XFVoGwqFdOHCBQ0NDcnj8WhyclI9PT01LaReCG0BAFtdpWI1NStlc1aOkToSRh2J5pmBOjY2phMnTshaq0QisabwdWpqSnNzc4pEImu6zUqlomKxqJ07dyoYDK615IZIp9Mql8s6duyYdu7c2ehyAAAAgC2vnrnjqsYjHD16VP/sn/0zPfXUU7LW6j/9p/90x8Px/t2/+3c1LRAAcP9uHAqeTCaVTqeVyWTkuq78fr/a29vV1tamnp6eTdVxiNXzeIwG+ySpeYLaDxoeHpa1VidPntTCwsK6Om5bXSqVUqVS0YMPPqgdO3Y0uhwAAAAAdbaq0PZ//I//oc9//vP6P//n/8gYo2984xvyem+9qjGG0BYAmszs7KwuXLig6elpFQoFGWPk9XpljFGlUtHo6Kgcx1FbW5u2b9+unTt3srARNty2bdtkjNHrr7++phm3N+bTWmvXFPS6rivHceTxeO6n7Lq7sdCaMUbHjh3Tjh07CLQBAACALWBV4xE+yHEcTU1NMR4BAJpcuVzWu+++qwsXLqhYLCoWiykYDN428CmXy1paWlKhUFBPT4+OHDmirq6uBlSNrW5yclJvvPGG0um0urq67hmqLi8v6+rVq/L5fLf9QvlOstmsEomEBgcHmzYErVQqSiaTCofDOnr0qIaHhxtdEgAAAIAPaPh4hA9yXbemBQAAaq9UKun111/XlStXFIlEFI/H7xpMeb1eJRIJlctlzc7O6qWXXtIjjzyivr6+DawakPr7+xUOh/X6669rampK7e3tCgQCd7x8KBRSJBLR0tLSqkPbSqUiY8w9/100UqlUUjKZVFdXl44fP67Ozs5GlwQAAABgA61q7+brX/+6PvWpT8nn8+nrX//6XS/79//+369JYQCA9bHW6q233tKVK1eUSCTuGnj9JK/Xq+7ubiWTSZ04cUIf+tCH1N7eXsdqgVvF43E98cQTOnXqlK5evapQKKRoNHrbgNUYo46ODi0vL6tQKNzz9e66rnK5nNra2ta8eNlGyWazymQy2rZtm44dO6ZwONzokgAAAABssFWNR/jgSATHce68sffmIzYTxiMA2GrGx8f18ssvKxwOKxQKrWsb1lrNzMxoYGBATz755JoOOwdqpVKp6Ny5czp//rwKhYI6Ojpu+1q8Mfd1ampKkhQIBG75vGKtVblcVrFYVCQS0eDgYNPNbq5UKpqfn5fX69Xu3bt14MABFgcEAAAAmljDxyN8cCQC4xEAoHmVy2WdPXtW1tp1B7bS+92LU1NTGh8f1/bt22tXJLBKHo9HBw8eVE9Pj06fPq3p6WmFw+Fbum6NMWpvb5fjOJqbm1Mul5MxZmUerrVWlUpFHo9HiURCvb29TReG3uiu7e7u1uHDh9XT09O0oxsAAAAA1N+d22bXaGxsTP/8n//zWm0OALAO09PTWlhYUCKRuO9t+Xw+GWN09epVvrBDQ3V1dempp57SkSNH5LquZmZmVCgUbrqMMUaJREI7duzQ8PCwYrGYPB6PHMeR3+9XT0+PduzYocHBwaYKbIvFomZmZlQsFnXo0CE9/fTT6u3tJbAFAAAAtriaHe86Pz+vr371q/rv//2/12qTAIA1mpyclLW2ZuMMYrGYksmkUqkUs23RUD6fTwcPHlRvb6/effddTU5OrhyK9MExBx6PR/F4XPF4XDcmQDVjAFoqlbS4uChjjPr7+7Vv3z66awEAAACsYEghALQI13WVTCbXtPDYvfj9fi0uLiqTyRDaoil0dnbqiSee0PT0tM6fP6/p6WkZY9TW1nbLjNpmDEBLpZLS6bQqlYq6u7u1d+9eDQwM3HXNAAAAAABbD6EtALSIQqGgfD5f08WVboRe2Wy2ZtsE7pfjOOrv71dPT4+uX7+uCxcuKJlMqlKpKBqNKhwON1Vga61VLpfT0tKSHMdRIpHQnj17NDQ0xCJ/AAAAAG6LPQUAaBGVSkWu69YlrKpUKjXfJnC/PB6PhoeHNTg4qNnZWY2NjWliYkLT09Py+/0Kh8MKBAINCXCttSoWi1peXlahUFAoFNLIyIhGRkbU09OzskgaAAAAANzOqkPbn/u5n7vr+YuLi/dbCwDgPjiOI2PMyhzPWm8baFaO46i3t1e9vb3av3+/JiYmNDY2pnQ6rVQqJY/Ho1AopFAoVNfXsuu6yufzyuVyKpVK8vv9isVi2r9/v4aGhtTW1la32wYAAADQWlYd2sbj8Xue/+lPf/q+CwIArE8wGFQwGFQ+n1coFKrJNm8EwJFIpCbbA+otGo1q37592rNnj9LptJLJpCYnJ5VMJjU3NydrrRzHkd/vl9/vl8/nk8fjWVM3rrVWlUpF5XJZxWJRhUJhpcs9EAiou7tbAwMD6urqUjwe50sPAAAAAGu26tD2L/7iL+pZBwDgPjmOo46ODl29erVm2yyVSvL5fIrFYjXbJrARbsyOTSQS2rVrl5aXl5VKpZTJZLS4uKj5+Xnl83lls9mV8R83OtVvhKwf7Fx3XXfltBvb93q9CgaD6uvrUyKRUCwWU1tbmyKRSFPN1AUAAACw+TDTFgBaSH9/v65cuaJKpVKTmZmZTEbt7e33PNoCaHbhcFjhcFj9/f2SqiHs8vKy8vn8SrdssVhUPp9XuVyW67or3bMfDGgDgcBKl24wGFQkEqGTFgAAAEDNEdoCQAu50fGXSqXU0dFxX9sql8uqVCravn07iyah5TiOo2g0qmg02uhSAAAAAOAWtIYAQAvx+Xzav3+/KpWK8vn8urdjrdX8/Lx6enq0bdu2GlYIAAAAAADuhdAWAFrM8PCwRkZGtLi4qFKptObrW2u1sLCgYDCow4cPy+fz1aFKAAAAAABwJ4S2ANBiHMfR0aNHNTw8rGQyqVwut+rrVioVzc3NyePx6Pjx4+rq6qpjpQAAAAAA4HaYaQsALSgQCOjRRx9VOBzW5cuXtbS0pLa2NgUCgdte3nVdZbNZZbNZdXZ26vDhwysLNgEAAAAAgI1FaAsALcrv9+vYsWPq6+vTuXPnlEwmtbi4KI/HI5/PJ2OMKpWKisWijDEKh8M6ePCg9u7dq1Ao1OjyAQAAAADYsghtAaCFGWM0MDCgvr4+JZNJJZNJLSwsKJPJyHVd+f1+dXR0KJFIqLe3l7AWAAAAAIAmQGgLAFuA4zjq7u5Wd3d3o0sBAAAAAAD3wEJkAAAAAAAAANBECG0BAAAAAAAAoIkQ2gIAAAAAAABAE2GmLQBgU7LWqjKWVeXaklSxcnpD8u5tk/HwfSQAAAAAYHMjtAUAbDpuMq/l//eKSm/NS5mSrJGMz5FnV5vC/3iHvHvjjS4RAAAAAIB1ox0JALCpuJmSsn9+TsUfTcmJeuU5EJfvQEKegbDK51LK/tezKl9KN7pMAAAAAADWjdAWALCpFF+eUfn0vLx72+S0B2SMkSSZsFfefW2qTOeV///GZa1tcKUAAAAAAKwPoS0AYNOwrlXxhWkp7JXxe2453xgjz0BI5bcX5E7mGlAhAAAAAAD3j9AWALB55CtyFwpyYr47XsTEfHKXy3IXCxtYGAAAAAAAtUNoCwDYPHyOjM+RLbp3vkzRlfE6t+3EBQAAAABgMyC0BQBsGsbnyPdQl9yFwh1n1lamc/IMR+QZiW5wdQAAAAAA1AahLQBgU/E/0SOnM6jK5Yys+35wa61VZTYvlVwFPtov4+MtDgAAAACwOXkbXQAAAGvh3R5T+J/uUe4vL6p8ZlEm7JUcyWbLMlGfgj87Iv/TfY0uEwAAAACAdSO0BQBsOv6HuuQZjqh0MqnyO/OyZSvP9qj8D3fLsysmY0yjSwQAAAAAYN0IbQEAm5KnJyTPp4akTw01uhQAAAAAAGqKgX8AAAAAAAAA0EQIbQEA+Amua1Wp2HtfEAAAAACAOmA8AgAAkrLLVlfGrc5ftkovWVkr+f1Gu7dJu7Y76kyIWbkAAAAAgA1BaAsA2NJc1+qNd1ydeldKZ6x8XikYqJ63tGT14uvSG2cr2jFk9NTDjiJhglsAAAAAQH0R2gIAtizXtfrxCVdvvGMVDkqDvZLj3BzKWmuVzUlnLlgtLbv6qacdRSMEtwAAAACA+mGmLQBgy3rrXVdvnrFKtEkdCXNLYCtVRyJEw0YDPdLohNX3X3aZdwsAAAAAqCtCWwDAlpQvWJ06KwX8UnQVIw+8XqOeTunquNX41AYUCAAAAADYshoe2k5MTOif/JN/os7OToXDYR09elQnT55cOd9aqy984QsaGBhQKBTSRz7yEb3zzjsNrBgA0AquTVgtpq3a21Z/nWDAyHWl81fc+hUGAAAAANjyGhraLiws6EMf+pB8Pp++8Y1v6MyZM/rP//k/K5FIrFzmy1/+sv7wD/9Qf/Inf6LXXntNfX19evbZZ5XJZBpXOABg07t4zco4kseztvm0bdFqt+1SlhEJAAAAAID6aOhCZF/60pc0PDysv/iLv1g5bfv27Sv/b63VV77yFf3u7/6ufu7nfk6S9NWvflW9vb36q7/6K33mM5+5ZZuFQkGFQmHl93Q6Xb87AADYtNJLUtC39usF/FIuI+UKUjRS+7pqrVwua3p6WmNjY0qlUpKkeDyu4eFh9fb2yutlTVLgg6ytfiFjDAsOAgAAoHEauqf29a9/XT/1Uz+lf/yP/7Gef/55DQ4O6td//df1L/7Fv5AkXblyRVNTU/rEJz6xcp1AIKBnnnlGL7744m1D2y9+8Yv6vd/7vQ27DwCAzcneT6Osfe+nyaVSKZ08eVJzc3Oy1ioQCEiSFhcXNTo6qq6uLj388MNqa1vDjAigBeVyOU1OTmp0dFTLy8uy1srn86mvr09DQ0Nqb28nxAUAAMCGauh4hMuXL+tP//RPtWfPHn3zm9/Ur/3ar+mzn/2svva1r0mSpqaqK7309vbedL3e3t6V837S5z73OaVSqZWfsbGx+t4JAMCmFA1JxdLar1cqSV6v9F7+2bSWlpb0yiuvaGZmRu3t7erp6VE8Hlc8HldPT48SiYRmZmb0yiuvaGlpqdHlAg1RLBb11ltv6Tvf+Y5effVVzc3NqVQqqVKpKJvN6syZM/rBD36gH//4x0omk40uFwAAAFtIQzttXdfVww8/rOeee06SdOzYMb3zzjv60z/9U336059eudxPdjZYa+/Y7RAIBFY6iQAAuJOd24wuj1m5rpXjrL6DLpWRdm03ijX5aITz588rmUyqp6dHjnPrd7Q+n0/d3d2amZnRhQsXdOzYsQZUCTROPp/XiRMnNDY2pkgkou7u7lv+rVhrVSgUNDExoVQqpYcfflh9fX0NqhgAAABbSUM7bfv7+3Xw4MGbTjtw4IBGR0claeVD8U921c7MzNzSfQsAaIxC0er8FVc/eKWib/6wou+9WNGps64yS809P2DHsFFbzCi1hnUtS2UrGWn/TtPUh0pns1mNj48rGo3eNrC9wXEcRSIRjY2NaXl5eQMrBBqrXC7rjTfe0NjYmDo7OxWLxW77b8UYo2AwqJ6eHuVyOZ04cYKOWwAAAGyIhoa2H/rQh3Tu3LmbTjt//rxGRkYkSTt27FBfX5++/e1vr5xfLBb1/PPP68knn9zQWgEAN3NdqzfPVPT//l9X3/iBqzffsbpwxertc1bfe9HV//q/FT3/SkXL+eYMbyNhowO7pKVlKV+4d42uazU5Iw30Gm0bbN7AVpKSyaRyuZzC4fA9LxuJRJTL5QiisKVMTExodHRUHR0d8vnuvSKhMUadnZ1aWlrSmTNnVhYrAwAAAOqloeMR/vW//td68skn9dxzz+nnf/7n9eqrr+rP/uzP9Gd/9meSqh+Qf/M3f1PPPfec9uzZoz179ui5555TOBzWL/3SLzWydADY0lzX6kevuXrzjFXQL/V1SV6vuen8TFY6+bbV/KKrTzztKBJuvqDz4SOOUhlXZy9atcetouHbrxhfLFpNJaWeLqOPPuHI522++/JB5XJZku7aZXvDjcuUSusY8AtsQq7r6urVq3IcR36/f9XXM8YoHo9rdnZW8/Pz6uzsrGOVAAAA2OoaGto+8sgj+tu//Vt97nOf0+///u9rx44d+spXvqJf/uVfXrnMb//2byuXy+nXf/3XtbCwoMcee0zf+ta3FIvFGlg5AGxtb56pBrbtbbptGOs4RvGYFA5ZXR23+sErrj71jLOm2bEbwec1+tiTjoIBV+9eslpISdGwVSAgGUmlspTJSo4jjQwYfeRxRx2J5roPt+PxeGStvesM+BtuXM7rbehHAmDDzM/Pa25ubl2fJQOBgBYXFzU+Pk5oCwAAgLoytsWP70qn04rH40qlUmpra2t0OQBahOtaFUuS36emCyLrLV+w+l//x1WhYNXZfu/7nitYpdLSzz7r0VB/cz5W1lrNLUiXrrk6d7k6p9dayeuRtg0Y7dnhaKhf8nqas/6flMlk9N3vflder1eRyN1XTMtms6pUKvr4xz+uaDS6QRUCjXPx4kWdOHFi3esjLC4uKhKJ6BOf+ESNKwMAAMBmU8/ckbYaAFij2Xmr519xtZi2iseMnnnMUU/n5gjzauHKuNVC2mqge3WXDwWM5spWF666Gur31Le4dTLGqLtD6u7w6KHDVvmC5LpSwC8FA5vvuY3FYhoYGNClS5cUDofv2G3ruq4ymYz27NlDYIsto1Qq3ddCgh6PR8ViUa7rrmoECQAAALAefNIEgDUol62+/5Kr8UkrryNNTFV/L5Vb+qCFm0xMWjlG8qyh6zQaka6O203xOPm8RrGIUTxmNmVge8PevXtX5m+6rnvL+ZVKRXNzc0okEtqzZ08DKgQa436D1htjR+4n+AUAAADuhU5bAFiDbE5aSFl1JqRwyMjrtVpIWS1lpfZ4o6vbGLl8dWzAWvg8UrEslUqSj3eeDZFIJPToo4/q5MmTmp2dldfrVSAQkCTl83lVKhV1dHTooYceUjy+RV68gCS/3y9r7bo7ZUulktra2ghtAQAAUFfsOgPAGoQC1bB2MW3l9VotpqW2mFEo2OjKNo7HWx0dsBau1XvdufWpCbfX1dWlZ555RpOTk7py5Yqy2ezK6du3b1d/f7+CwS304gUk9fT0KBwOa3l5ec1jQVzXValU0rZt2+pUHQAAAFBFaAsAa+D3Gz39iKPnX3E1v2gVjVR/38yH0a9Vd4d07tL7hwivxlJOGuo18vvqXBxuEQwGtWPHDm3fvl2VSkVSdSYnXYLYqiKRiIaGhnT+/Pk1h7bZbFbRaFT9/f11qg4AAACoIrQFgDXaPmTU3eEok5ViESkS3lrh185tjl5/u6LscnVW7b1UKlaVsrR/FzMgG8kYI6+Xt31AkrZt26Zr164pnU6vepXfUqmkbDargwcPKhwO17lCAAAAbHUsRAYA6xAJG/V1my0X2EpSR7waXM+nqoHs3VhrNZ2UutqNtg9tvccKQHPq6urS4cOHVSqVlE6n73n5YrGoZDKpoaEhHThwYAMqBAAAwFZHyw0AYE2MMXryuKNU2tXEtFVft5Xfd2sg67pWU8nqHOAPP+YoFCS0BdA8du3aJUk6ffq0pqenFYlEFA6Hb1qcrFAoKJPJyHVdbdu2TcePH5ff729UyQAAANhCCG0BAGsWixp94sOOvv+Sq7FJK1mrWFTyeqqLlC0tS6Wy1JkwevpRR9sGCGzReqy1ml+UpmatkotW6YxkJcXCUke7UU+nUW+XGAvSpIwx2r17txKJhK5du6aJiQnNzs7KGCNrq0cReL1edXd3a/v27RocHJTPx2BuAAAAbAxjb3wqbVHpdFrxeFypVGrVM8sAAKtTLluNXrc6d9lqYtqqUpEcR2qPGx3YZbRj2CgcIrBC65mes3rjHVfXJqxyeclIujEyuFyRXCsF/dJgr9GRA45GBglvm102m9XMzIwKhYKstfJ6vUokEurs7Lyp+xYAAAC4oZ65I6EtAOC+WWuVL1S7az2OFApKjkNAhdbjutWw9uTbVss5qb1NioRvDWSttcoVpIVUNcw9vNfosaOO/H7+XQAAAACtop65I+MRAAD3zRijUFAKNboQoI5c1+qFE65ef8cqEpKG+u7cPWuMUTgohYNSJmt14rTV0rKrjz9JcAsAAADg3ghtAQAAVuH0Oas3zlgl2qRoePXBayxi5PNavXvJKhp29dQjDqMSAAAAANwVA7oAAADuYW7B6sRbVsHA2gLbG4IBo/Z4Nfi9NlGHAgEAAAC0FEJbAACAe3jnvKv0klVHfP3biEWMyhXpzTOuXLellxQAAAAAcJ8IbQEAAO4ik7W6cNUqHrvzDNvV6ohL16etpudqVBwAAACAlkRoCwAAcBezSavsshSL3P+2QkGjYkmaSdJpCwAAAODOWIgMADah7LLVuStWl65alSrSYK+0f5ej3i4WNwJqbSEtWSs5Tm3+fTmONDtPaAsAAADgzghtAWCTSWWsvvm8q4np6qJIjiO9MSudv1LRx55wtGuEgyiAWsrnaxuw+rzS0nJNNwkAAACgxRDaAsAmc/K0q/Fpq6FeyeOpdv7ZRHVG5osnrQb7rIIBOm6BZmWtxL9QAAAAAHdDOxYAbCJLWavLo1aJ2PuBrVRdHKm7Q5pPWY1d57BroJbCodpGrKWyFI/WdJMAAAAAWgyhLQBsIvliNfAJBm4970aImytscFFAi0u0GRkjVSr3/4WItVaulTra6bUFAAAAcGeEtgCwiYRDUiBgtJy/9bxS2coYKRLe+LqAVtbbLbVFjdJL97+t5bwUCkh93YS2AAAAAO6M0BYANpFw0GjPdim9JBVL73f9WWs1Myd1dxgN9xMGAbUUDhrt3Smls5Lrrr/b1lqr+ZQ03F8dZwIAAAAAd8JCZAA2jeW81ZUxq/lFK7+vGk7291TnuW4lDz3gaGHR1ZVxK2OsHFMdmdDZbvThRx35fVvr8QA2wgN7HV286mpuwaqnc33bSGWqXbbHDjlb7u8WAAAAgLUhtAWwKSQXrL71Y1fTs9UuN2utggHp+CGjRx505DhbJwAJh4w++YyjK+NW1yasymWpr8do1zajeGzrPA7ARorHjB49avTdF6wW01aJtrX9W1vOWWWy0pPHjQZ6+XcKAAAA4O4IbQE0Pde1+tFrrqZmrQZ73l9wK5WxOnHaqrdb2j7U4CI3mN9vtG+n0b6dja4E2Dr27zTKZo1eftOqmLTq7rh3p7+1VgtpaTknHT1gdPwwk6kAAAAA3Bt7DgCa3uy8dH3aqrv9/cBWqna+lSvSxWtuA6sDsFUYY/TQYUcf/5CjUNBobFJaSNnbzrm11iq9ZDU2KclKTz1s9PSjjrweumwBAAAA3BudtgCaXi4vFUtSMHDreT6vtJTd+JoAbE3GGB3YZdTfbfX2OVfnr0rXZ6ystTKSZCT7XoYbCUtHDhgd3uuop4uwFgAAAMDqEdoCaHqxqBQKStllKRp5/3RrrYpFqSPRsNIAbFGJNqOnHvHo2CGr6TmrxbSUXbayVgqFjBJtUk8nc6YBAAAArA+hLYCm1xGXtg8Znblg5fFYhYJGrms1tyCFw9LeHUx6AdAYkbDRzm0EswAAAABqi9AWQNMzxuiphx2Vy66uTljNLVSPPY63GT153Kivm8AEAAAAAAC0DkJbAJtCJGz0qY84mpyRFtJWPq803G8UDhHYAgAAAACA1kJoC2DTcByjwT5psI+gFgAAAAAAtC4GQQIAAAAAAABAEyG0BQAAAAAAAIAmQmgLAAAAAAAAAE2E0BYAAAAAAAAAmgihLQAAAAAAAAA0EUJbAAAAAAAAAGgihLYAAAAAAAAA0EQIbQEAAAAAAACgiRDaAgAAAAAAAEAT8Ta6AAD4oHLZam5BKpYkv0/q6pC8HtPosgAAAAAAADYMoS2AplAoWp29aPXuJavkglW5Ink9Ume70cHdRvt3Gfn9hLcAAAAAAKD1EdoCaLhc3uo7L7i6dM0q4Jfa45LPK5XK0kLK6nsvWY1NGX38SUfBAMEtAAAAAABobYS2ABrKWqsXTrq6eNWqr0s3ddMG/FJPZ7UL99xlq1DQ1cee8DSwWgAAAAAAgPojtAXQUPOL0qVrVh1x3XH8QcBv1NFmdfGq1bGDVu1xum3R3BZSVmPXrQpFKRCQRgaN4jFetwAAAACA1SG0BdBQV8ZcLeekzsTdLxeNSKOT0pVxQls0r3LZ6pU3Xb1zwSqbk4wka6uv38P7jB454sjDwnoAAAAAgHsgtAXQUKklyeORjLl7kGWMkcexSi/ZDaoMWLtX3nT12mmrtog03Fd93VprlcpIr7xp5RhXjx5lxAcAAKtRLFllslIkJNY1AABsOYS2ABrKYyStNoe1ksPndTSpxbTVmQvVwPaDoxCMMUq0Vec3nz5ndWCPVSzCCxkAgLuZW7D63guukimraNjomcccbRvg/RMAsHU4jS4AwNbWkTCqWMl1757cuq6VKzEaAU1rbNJqKSe1RW9/fjwmZbLS+CTd4gAA3MvLr7uamLGKRaqz4n/0mqtymfdQAMDWQWgLoKF2DBvFItUxCXeTykhtUaMdQ4S2aE6FYrUT/E6jPpz32sQLxY2sCgCAzSmVkSJBKRQwaotKyzmrYqnRVQEAsHEIbQE0VCxqdHiv0VJWyi7fvntiKVtd1OnwPinKYeVoUqGA5N6la9x1rWSkYGCDCwMAYBPaNihl89L0nNVCShroMbyHAgC2FGbaAmi4h444KpRcvfWu1ULaqi0qeT1SuSKl31uo7PgDRg89wPdMaF7bBqpd44sZqSN+6/kLqWq3OPP4AAC4t8cedOT3upqcldrj0sOHnZWjVgAA2AoIbQE0nNdj9NTDjrYNSOcvuxqdrB7+5vFIB3cb7dlRPY8P6mhmsajRgweMXnrdat5aJdqqr9mKa7WYkgol6dGjUjjE6xgAgHvx+40eO+ZpdBkAADQMoS2ApuA4RtuHpO1DHi3nrUolye+TQkECLmweDz3gyOO4evOsNDFjZWRlJSViRo8elY7sp1scAAAAAHBvhLYAmk44aKRgo6sA1s5xjI4/4NH+XVZjk1aFghQMSkP9pvq6BgAAAABgFQhtAQCosXDIaN9OQloAAAAAwPpwnCYAAAAAAAAANBE6bQFgi3Bdq6lZ6dI1V9NJyTFSf4+0a8RRd4dkDJ2hAAAAAAA0A0JbANgCyhWrl066evu8Vb4ghQKSlXRtQnrr3YqOHTR6+IgjxyG4BQAAAACg0QhtAWALOPmWq5NvW7W3ST2d7wez1lqlMtIrp6yCAVdHDngaWCUAAAAAAJCYaQsALS+TtTp93ioakaKRmztpjTFKtBn5vNKpd6Vi0TaoSgAAAAAAcAOhLQC0uNEJq6WsFI/e+TLtbdJCympsitAWAAAAAIBGI7QFgBa3nJeMdNd5tV6vkWulXH7j6gIAAAAAALdHaAsALc7rkVxbnV97J9ZayUoeRtoCAAAAANBwhLYA0OL6e4yCgbt30WayUiQsDfTcuRsXAAAAAABsDEJbAGhxvV3SUL/R3IJUqdzabVsqWy2mpV3bjOIxQlsAAAAAABrN2+gCAAD1ZYzRhx91lMu5Gp+yikasomHJ2mqHbS4v7Rg2euwo3+MBAAAAANAMCG0BYAuIx4w+9VFHZ867eveytJixMpLaokaPPGh0cLdRKEiXLQAAAAAAzYDQFgC2iFjE6LFjHh09ZJVekoyR2qKS30dYCwAAAABAMyG0BYAtJuA36u5odBUAAAAAAOBOGGAIAAAAAAAAAE2ETlsAAADURblidX1aWs5ZxWNGvV2S4zCSBQAAALgXQlsAAADU3GLa6rsvuro+ZVWxkt8r7dxm9JHHHQUDBLcAAADA3TAeAQAAADVlrdWPXnM1OmHV1S4N9xnFItLZi1ZvvOM2ujwAAACg6RHaAgAAoKaSi9L4VDWw9furXbXhkFE0LJ2/IpXKtrEFAgAAAE2O0BYAAAA1VSxKlbLk+4lBXD6vVCpZlcqNqQsAAADYLAhtAQAAUFMdCSkWNVrMvH+atVapJamnyygUaFhpAAAAwKZAaAsAAICaCgaMHnrAyHWliSmruQWr8SkpEpaOHXJkDAuRAQAAAHfjvfdFAAAAgLU5tNcoHHL07iWrxYy0e7t0aI+jvm4CWwAAAOBeCG0BAABQc8YY7dxmtHNboysBAAAANh/GIwAAAAAAAABAEyG0BQAAAAAAAIAmQmgLAAAAAAAAAE2EmbYAAKApLOetTp52VSpLxw46ao+zYBUAAACArYnQFgBw31zXKpeXXFcKBiWfl7ANa3fmgtVrp6xcK5XLrj7xtKfRJQEAAABAQxDaAgDWrVi0ujRq9e4lq7n5atgWChrt2yHt2eGoI0F4i9VzjCQjGSs5DHACAAAAsIUR2gIA1mU5Z/XdF11dGrXyOlIsUg3acgWrF1+Xzl5y9ZHHHW0fIrjF6hzaa1SuGJXK0pF9pLYAAAAAti5CWwDAmrmu1Q9ecXXhilV/j+T3vR/MhkNSR9xqcs7qey+5+pmPO+ru2JrBretazSSlTNaqVJI8HingNxrokfz+rfmY3E3Ab/Tog4xEAAAAAABCWwDAmk3OSFdGrXo6bw5sbzDGqL/LamzS6t1Lrro7tlYQly9YXRmvjo2YnLYqliQjyarajdweNzqwS9o1wmJbAAAAAIBbEdoCANbs0qirUrk6v/ZOjDGKRa0uXJUeOmwVvstlW8m1CasfvepqbtHK45HaYzc/TuWy1WLG6oevSa+/U9GD+40ePuLI49kajw8AAAAA4N4IbQEAaza/KAX8975cOCgtpq2y2er/t7oLV1x9/2VXhaI00K3bBrFer1FXu9SZsEplpJfftFrOu/rwowS3AAAAAIAqQlsAwJo5RrJ2lRc27/20uPHJ6pzfclnq7652Gt+NMUaJNsnvszr1rlUw4OrxY849rwcAAAAAaH0szQwAWLOeLqlQlOw9kttMVopFjNqiG1RYg1QqVi+/6SqXl3o67x3YflA4ZBSPSqfOVhctAwAAAACA0BYAsGa7RhyFQtJS9s6XqbhW2Zy0b6cU8Ld29+jEtDQ1Y9XVvrbA9oZYRMrnpYvX3DpUBwAAAADYbAhtAQBr1tUuHdpttJiRlrK3dtuWy1bXp6X+bqMDu1r/rebCVVcVd/3htDFG0Yh07rK0nFvt3AkAAAAAQKtipi0AYM2MMXriuCPXunrngtV8yiocqs66zRWq824Heo0+9qSjWLS1u2yzy1ZXxux9j4CIx6TrM1Zjk1b7drb2YwYAAAAAuDtCWwDAuni9Rk8/4mjvDuniVVdjU5Jbkfp7pD07jLYPmZYfiyBVQ+piSUrE7m87jmMkWeXyNSkLAAAAALCJEdoCANbNcYz6e6T+Hk+jS2mYclmybrXLuCbbq9RmOwAAAACAzav1Bw0CAFBHPq/kOFKlRmuI+fg6FQAAAAC2PEJbAADuQygk+X1SvnB/26lUqguQhYM1KAoAAAAAsKkR2gIAcB/CQaPd243S2fvbzmJGSrQZDQ+0/hxgAAAAAMDdEdoCAHCf9mx35PdJubxd1/WttcouS/t3ScEAoS0AAAAAbHWEtgAA3Ke+bmmw12husRrArtViWoqEpV0jvC0DAAAAAAhtAQC4b45j9MRxR4mY0eTs2oLbzJLVcl56+LBRVztdtgAAAAAAiTWqAbQ817XKZKvdjLm8letKHo8UCRu1t0nhkGQMYRnuT2+X0ceedPTdF11NTFv1dFj5/Xd+Xbmu1XxKKpakR44YHT3I96gAAAAAgCpCWwAtayFldWnU1fkr0lLWKpevnm6tJCN5HCkYkNrjRvt3Gu0YNoqECW+xftsGjD71jKMfvupqes7Kda3iMSkclByn+torlqpfIJTKUjxm9MRxowf2GjkOrz0AAAAAQBWhLYCWk122OnHa1bnL1cWdQsFqN20iJnk87wdj5bJVriBNz1qNT1q1xYyO7JeO7Hfk9xGgYX36uo1+7pOOxiel85ddXZ2wSi9JrisZI/m8Um+30YFd1S8KwiFeawAAAACAmxHaAmgpV8asXnrd1dScVXubNNx/59EHXq9RzCvFItVD1RfTVj9+TRq77upDDzvq6SRMw/p4PUbbh6TtQx4tpq2WstXOWo9HCvil7g7RWQsAAAAAuCNCWwAt48wFVz98zVWpLA31SZ41hGKOY9SRkKIRq2sTVuklVx//kKOhPoI13J9Em1GirdFVAAAAAAA2E1Y9AdASzl9x9fwrroykgW6zpsD2g/w+o6E+KZ2x+s6PXU3N2toWCgAAAAAAcA+EtgA2vflFqx+fqIarXe333xlrjFF/j5RKW/34hKt8geAWAAAAAABsHEJbAJtapWL18huuUmmr7o7abdcYo75uaey61RvvuLXbMAAAAAAAwD0Q2gLY1K5OWF26ZtXTeecFx9bL6zWKx6TT56zmF+m2BQAAAAAAG4PQFsCmZa3VuctWVlIwUJ8Fw9qiUnZZujRKty0AAAAAANgYhLYANq35VHV8QTxWv9swxigckt69JBVLdNsCAAAAAID6I7QFsGnNzVvl8lIkVN/biUWkzJLVYqq+twMAAAAAACBJ3kYXAADrtZCqdr7WepbtT/L7pGJJWkhb9XTV97a2Ate1uj5dfTyLJcmo+hh3dRj1dtX/+QSAekllrBbTUjCgusxaBwAAwNZBaAtg00ouSN4N+CtW3em2Si/V/7Za2XLO6sqY1dlLVlOzVuVyNbCVkayVAn5psNdo/26jkUGjgJ+wA8DmcWnU1fOvWGWWrPw+6ch+oyeOO3Ic/pYBAABg7QhtAWxaxbLk2cAhL5XKxt1Wq7k2YfXDV1wlF618XqkjrptCWWuroy6uTlhdGbfq6zb66BOOejoJOwA0v+W81Y9fs8rlrAZ6qgtYvnHGaqBX2jHc6OoAAACwGTHTFsCm5bzXoblROMp1fS5cdfWtH1a0mKkGGH3dt3bRVhd8MxrsNerrkqZmrb7xA1fXp1n8DUDzyy5L2ZxVe1xyHKNY1KhSkTJZ/oYBAABgfQhtAWxakbBULm/c7QX8G3dbrWJ80ur5V1yVylJ/t+RZxWHCXq/RYK+USlt978Vqdy4ANLNISAoFjRbT1SMHsstWjiNFw42uDAAAAJsVoS2ATaur3cjdgDyv4loZIyXaaLVdi0rF6uU3XS0vr31BHmOM+nukmXmrk2+5dawSAO5fOGT0oYeM/D5pfErKLFdn2m4f4n0DAAAA68NMWwCbVnvcyBipXLbyeuu3Y5zLS6Gg1B6v2020pIlpaWrGqqtjfSuoO45RR9zq6oTV/KJVR4LwA0Dz2rvDUWe70WLaKuivfvHEImQAAABYLzptAWxafd1SR9wolanv7aQyUn+PUVu0vrfTas5fcVVxdcv82rWIhquzIi+N0m0LoPl1Jox2bXM02GcIbAEAAHBf6LQFsGkF/Eb7dkkvnJA6EnZd3Zz3UipbWSvt32Xqsv1WlVmyujJm7zvori5QZnXuknTs4O07qisVq4lp6cq4q6UlyfFI3R3Srm2O2uM8ZwAAAACAzYfQFsCmtme7o9PnXM0vWnW21377s0mpv9toZIDwby2yOalQlGI1eE5CAWk5b5UvSNGfeNeanbf64auuJqetyhXJ55Wsld69KL3+dkX7dho9ccyR/z66fQEAAAAA2GiEtgA2tfa40SOHjb7/slWhaO/rUPyflF6y8nqlx48T+q1VqSy5ruTUYAiP41S3VSrffPrcgtU3n3c1t2DV03nzGAZrrTJZ6fW3rQoFVx970qnr3GMAAAAAAGqJmbYANr2De412bjOanqsuSlYLuYJVKiMdOWA03F+TTW4pHkcyRrI1GEVrbXVbXs/7p7mu1QsnqoHtYO+tc3ONMWqLGvV0SmcvWZ27XJvXBQAAAAAAG4HQFsCm5/UYffRxR9sGjSZmpGLp/gK65ZzVbFI6uNvo0QcdZtmuQyAgeb1SsXT/2yqWqmMP/P73T5uekyamrLra7746ezBg5PVUg1vXJbgFAAAAAGwOhLYAWkI0YvSJpx3teq/jdiFlZe3aQjrXtZpJWi2kqx22H3nCkY9D6telvU3q6zZaXLr/bWWy0o5hc1M37dikVaEohYL3fn4SbdLMnNVM8v5rAQAAAABgIxDaAmgZsYjRpz7i6KlHjFwrjU1Jqcy9OywrFav5RavxKSkcMnr2aUcffdyR30dgu16OY7R/l1GlUn181ytfqM4V3rP95rer5byVZ5XvYAF/dR5uvrDuMgAAAAAA2FAsRAagpfh9Rg8f9mhbv9WZi64uXrOamJYkq4Bf8vuq81FdKxWL1UPvjZESbUZP7pf273YUjxHW1sKOIaP2NqOFdHWMwXrMp6T+HqOB3ptP9zjV53A1XLf6HHs8974sAAAAAADNgNAWQEvq6TLq6fLooQesxiatkotWU7PSUtbKSvI6UlevUW+X1NlutG3AKBggrK2lYMDowQPSD1+VlpatouG1Pb4LKSuvRzp20Nwyt7arw0iyqlSsPJ67bzedlaJho474Wu8BAAAAAACNQWgLoKXFokYH97wf6rmuletKjnP3BaxQG0f2O8osuTr5dnVMRVt0dY/5/KJVoSR96CGjndtuvc6OIaP2+L27eK21Si9JjxyRImsMjQEAAAAAaBRm2gLYUhzHyOu9tXMT9eE4Rk8+5Oixo0bLeWliympp+faLxFUD1mpntGulZx5zdPSgI2Nufa5udPEWilJ66fZzEqy1mpyROhNGB/fwdgcAAAAA2DzotAUA1EwqYzU9Z1UsSjJSwCf19Rg9fsxRX7f07iVX165bzS9KAX91MTErqVKpzheORqTD+43273Q02Hf3YP3Ifkf5QrWLN71kFY9VFx2zVlpalrLLUkfC6ONPOupMENIDAAAAADYPQlsAwH1x3epibxeuuLo0apXNfeBMWw1i92w32rPd0U992Gg+5ejSVVfTSSlfqC4SFgpIA31Gu7aZVS8E5zhGjx2thsHnLru6NmGVXa5uLxI2enC/tHeno/Y4gS0AAAAAYHMx9nbHqLaQdDqteDyuVCqltra2RpcDAC2lVLZ68XVXb79rVSpL8ZgUi2hlpIHrVmfKZrLVLtijB40efdC55+Jha3Vjdm0uX51X3BYVC8sBAAAAAOqqnrkjnbYAgHUpV6yef8XV2+es2uNS9DYLfTmOUaJNSrRVZ8++csqqWHb19MNOTecKG2MUj1VDYwAAAAAANjtWZgEArMsb71QD26722we2P6ktatTRJr35jtXb51v6IA8AAAAAAO4LoS0AYM1yeat3zkuRkBQKrr5jNhI2Cvik0+9aFUsEtwAAAAAA3A6hLQBgza6MWS1m7LrGESTiUnLRanSC0BYAAAAAgNthpi0AYE2stTp32crraF0Livm8RpLV+StWu7fXvDwAANBgyUWrH73qqlSSPvSwo4FeFgcFAGCt6LQFAKxJuSItpKzCofVvIxSU5haqATAAAGgtb59zdfGa1dik1Ym33EaXAwDApkRoCwBYk3JZcl3JuY93EMdIlYpVhf04AABaTigged77nHA/X/ICALCVMR4BALAmXm81sHXvI3B1reTzmJUdOgAA0DqOHnTk81lVKtKB3YxGAABgPQhtAQBr4vVIbTGj6dn1LUQmSbm81N8tGcOOHAAArcbvNzp2iPd4AADuBz1OAIA1McZo/y6jUlly3bXPpC2XrayV9u5kZw4AAAAAgNshtAUArNmOIaO2mFEqs/brLmakjoTRyCChLQAAAAAAt0NoCwBYs0jY6NBuaWlZyhdW3227nLPKF6RDe6SAn9AWAAAAAIDbIbQFAKzL8cOODuw2mklWw9h7yS5bJRelw/uMHjzA2w8AAAAAAHfCQmQAgHXxeY0++rgjr9fVmQtW8ymrREyKhN9fYMxaq6WslFqSPB7p+ANGTxx35PHQZQsAAAAAwJ0Q2gIA1s3vN/rIY452DkvnLru6NmG1kJaMqXbeWiuFQ9LB3UZ7dzoa7pcch8AWAAAAAIC7IbQFANwXj8dox7C0fcjRfEqamrEqliRjJL9P6u8xao8T1AIAAAAAsFqEtgCAmjDGqDMhdSYIaAEAAAAAuB+EtgAAtChrrebmpSvjrhbTktdT7XzePmQUChKuAwAAAECzIrQFAKAFFUtWL5509e4lq1xe8nol15XeeteqI2H01MNGO7c5jS4TALDFWGuVXZbKFaktyqx7AADuhNAWAIAW47pWL5xw9eZZq/Y2qau9Or5CkioVq5l5q+++YOX1Gm0baMzOsrVW6SUpl6/+HglLsQg77gDQyqy1OnHa1amzVuWKNNxv9NEnHIU5+gMAgFsQ2gIA0GJmktLZS1adcSkSvnlH2OMx6uuympiW3nzH1VCfs6FdTq5rdW1COn/F1bWJ6qJ1khTwSzu3Ge3Z7mioj84rAGhF41PSa6esfD4pHJTOXbLqiLt64rin0aUBANB0CG0BAGgxl665KhSkno7bn2+MUUfCanzaaiYp9XVvTF3FUrUD+O3zVq4rxWPVQ2NlpVxBevuc1buXKjp20Oixo448HoJbAGglS1mrYlnq7ar+fU/7rRZSDS4KAIAmRWgLAECLSS5WO1dvjES4nVBASi5ImaxVX3f9w9EPjmzoSkjh0M236fNVA9xM1uq1t6yMcfX4Meeu9wEAsLnEY0ZBvzSbtPL7pVKpOsIHAADcihVIAABoMR5Hcu3qLrtRUwjGJqV3Ltw+sP2gWMSoLSqdOlvtAgYAtI7+HunpRxwFg0aulR48YHT0ILukAADcDp22AAC0mP5eo/NXrKy1d+xUzWSlSEjq6tiY1Pb8FVeVyt0D2xtiESmVli5ec9XbxZxDAGgVxhgd2mu0d6dVpXLvo0IAANjK+FoTAIAWs2ubUSwqzS/e/vyKa7WQlnaOGMVj9d9ZzmStro7b6vzaVTDGKBKRLlypzsEFALQWn9coGDAEtgAA3AWhLQAALSYeM3r8qKNyRZqatSvBp7VWS1mriSmpv8fo4cMb8zEgn6/OLQz4V3+doL8a2BYK9asLAAAAAJoV4xEAAGhBh/Ya+XyO3njHanbeqvLekNtQQDq4x+ixo86GdNlKksx7P2tgbzTY0oQFAAAAYAsitAUAoAUZY7Rvp9GubVYT09LSspXjSD0dRh2JjZ0hGAlLQb9RLm9X3W2bK0iRkFEoUN/aAAAAAKAZEdoCANDCvF6jkUGpkS2r4aDRnu3SibeleOzOi6PdYK1VNic99EC1fgAAAADYaphpCwAA6m73dkehgJTK3Puy84tSW0TaNcLHFAAAAABbU0P3hr7whS/IGHPTT19f38r51lp94Qtf0MDAgEKhkD7ykY/onXfeaWDFAABgPfq6pYcPG2Vz0kLKyq4MrX2ftVZzC1alsvT4MUftcbpsAQAAAGxNDW9hOXTokCYnJ1d+Tp8+vXLel7/8Zf3hH/6h/uRP/kSvvfaa+vr69OyzzyqTWUWbDgAAaBrGGB1/wNGHHjJyrTQ2Kc0tWC1lqz+z81Zjk5LHIz3zuKNDewlsAQAAAGxdDZ9p6/V6b+quvcFaq6985Sv63d/9Xf3cz/2cJOmrX/2qent79Vd/9Vf6zGc+s9GlAgCA++A4Rg8d9mj7sNWla67OX5ZyBSsjqS1q9OhRo13bjOIxAlsAAAAAW1vDQ9sLFy5oYGBAgUBAjz32mJ577jnt3LlTV65c0dTUlD7xiU+sXDYQCOiZZ57Riy++eMfQtlAoqFAorPyeTqfrfh8AAMDqdSaMOhMeHX/AqliUZKSAT/J4CGsBAAAAQGrweITHHntMX/va1/TNb35Tf/7nf66pqSk9+eSTSiaTmpqakiT19vbedJ3e3t6V827ni1/8ouLx+MrP8PBwXe8DAABYH6/HKBwyCgcNgS2ALcN1rYpFq2Lp9vO9AQAApAZ32n7qU59a+f/Dhw/riSee0K5du/TVr35Vjz/+uKTqDLwPstbectoHfe5zn9O/+Tf/ZuX3dDpNcAsAAACgYbLLVlfGrSanrabnpEKpGtaGAkZ93dJAr9H2IaNggC+wAABAVcPHI3xQJBLR4cOHdeHCBf2Df/APJElTU1Pq7+9fuczMzMwt3bcfFAgEFAgE6l0qcE/WWs3NS2OTVoWiFAhIIwNGHYlbv4wAAABA6ykWrd486+rt81I6Y+UYKRiUfO/thS1lrU7PS2+ds2pvMzp20OjgXiMvRx8AALDlNVVoWygUdPbsWT399NPasWOH+vr69O1vf1vHjh2TJBWLRT3//PP60pe+1OBKgbsrFq1+fNLV+ctWubxkjGStFA5JB3YbPXHckc/Lh3EAAIBWlVy0+sHLrsauW0VC0mBvdUHG26lUrBbSVt9/2eradaOPPOYoFuWzIgAAW1lDQ9vf+q3f0s/8zM9o27ZtmpmZ0R/8wR8onU7rn/7TfypjjH7zN39Tzz33nPbs2aM9e/boueeeUzgc1i/90i81smzgrqy1+vEJV6fOWnXEpa72amettVaZrPT621bGuHr6EU+jSwUAAEAdJBetvvm8q+mkVX+37vllvcdj1NUuFYpWF69aFYqufurDjmIRglsAALaqhoa24+Pj+sVf/EXNzc2pu7tbjz/+uF5++WWNjIxIkn77t39buVxOv/7rv66FhQU99thj+ta3vqVYLNbIsoG7mk1K565UA9voBz5oG2PUFpUkq7MXrQ7tsepI8EEcAACglRSLVs+/7Gp6zmqo787dtbcT8BsN9FiNXrf68WvV4HYt1wcAAK3D2BZfsjSdTisejyuVSqmtra3R5WALOPGWqx++5mpb/+1n11prNTYpffQJR0cPOg2oEAAAAPVy4q2KfnzCqm8VHbZ3ki9YJRelv/MhRwf38HkRAIBmVc/ckU8AQI3li9VFJu602JgxRsZIheIGFwYAAIC6Ws5ZnT4nRULrD2wlKRgw8nqkt961KpdbuscGAADcAaEtUGNBv5G11Y7a27HWylop4N/gwgAAAFBXV8atUhmreA0abdrj0myyeoQWAADYeghtgRrbNmAUDErZ5dufn8lKkbA0Msh8MgAAgFYyPWtljOSpwRxav8+o4kpz83TaAgCwFRHaAjXW3Snt22k0n5IyWbvScWutVXrJKpWRDuw2ao8T2gIAALQKa62mZqVgoHbb9Hql6TlCWwAAtiJvowsAWo0xRk895MjI1bnLVgspyZjqSIRwSHrosNETx/i+BAAAoJVU3OraBr4a7mH5vNLSHY7eAgAArY3QFqgDv9/oI487emCfNDZpVShUuy62DRp1xO+8SBkAAAA2LyPJrXFjLB8bAQDYmghtgToxxqi7Q+ru4JM2AABAq/M4UiRkNJ+qXWpbLEnxWM02BwAANhGO0QYAAACA+2SMUV+3VCjUbpvlitTdSQMAAABbEaEtAAAAANRAf4+RcaRy+f67bfMFK79X6u0itAUAYCsitAUAAACAGhgZNOpMGM2n7n9byVQ1BB7ouf9tAQCAzYfQFgAAAABqwO83OnrIqFSudsqu11LWyuNIxw45chw6bQEA2IoIbQEAAACgRg7sMtqz3WgmKZXWMSahULSaT0kP7DXaPlSHAgEAwKbgbXQBAAAAANAqHMfow486KhRdXR616u6wCodW1y27lK0Gtvt3GT1xzJExdNkCALBV0WkLAAAAADUUCRs9+5Sjw/uNFjPS5KxVoXjnrttc3mpi2iqbkx46bPTxJx35/QS2AABsZXTaAgAAAECNRcLV8HVk0OrUGavpOatyxcrjkXxeSVYqliXXlfw+aXjA6NhBRyODosMWAAAQ2gIAAABAPTiO0d4dRru2WU1MS7PzVrNJq6WsJCPFo1JXh1Fvl1Fft1h0DAAArCC0BQCgCVhrNZOULo+6SmUk10qxsDQy5GiwV/J42JEHgM3K4zHaNiBtG+BvOQAAWB1CWwBYp0zWam5eKpetAoFqh4zfx84Y1i65YPXi667GJ63yhfcOmzVSuSydOltRX4/Row867OwDAAAAwBZBaAsAa7SQsnrrXVcXrr5/eKNjpM6E0YE9Rg/sMSweglWbSVp964euZhesuhJSd8fNswwLRavr01bffL6ijz3paNcIa4gCAAAAQKsjtAWANZhJWn37R66mk1bxqDTYW50/VypbLaatnn/FanKmuvBIMEBwi7vLF6y+96Kr5KLVUO/tZxkG/EYDPdXRCc+/YhVvs+pq57UFAAAAAK2Mdh0AWKV8wer7L7maW7Aa7pMSbWYlZPN5jbo7jHo7pfOXrV55021wtdgMro5bTc3aey4+Y4xRT6eUylhduMJrCwAAAABaHZ22ALBK1ybeC9i67hywBfxG8ZjVhStWRw9axWON7YhczltdGbOamLIql6X2uLRzm6OezpsPwcfGc12rs5esPB7Ju4pFxowxioatzl2Wjh60CgV5/gAAAACgVRHaAsAqnb9sZRzJ6717WNYWlcYmpWvjVkcONC5YG5+0+sHL1c5gx5E8jnT+svTmmYoe2Gv0xEPOqsJC1EcuL80lrdoiq79OW1SambdKLkpDfXUrDQAAAADQYIS2ALAK1lotpKVw4N6XNcbIGKvMsq1/YXeQXLD6zguuMktWA72S573OYGutlpalk+9Y+X2uHjvmaViNW125IrlWctYwqMhxJNeVyuX61QUAAAAAaDxm2gLAKhlJdg05rNPA8QNnL7paSFn197wf2ErVQDkWMYqGpbfPW2WyjQuWtzqftxrCVtYworbiVq/j99WvLgAAAABA4xHaAsAqGGPU0yUt5+992YpbDULjsToXdQfFotWFq1Iscue5tfGolMlKY9cJbRslFJT6e4zSS6u/TjpTXQCvs71+dQEAAAAAGo/QFgBWae8OR44jFYp3DzoX09VgbftwYzptCyWpVLby++98GccxMkbKFzeuLtzMGKN9O6uvkVL53uG5tVbZnLR/V3XBOwAAAABA6yK0BYBVGh6Qtg8aTc3dOWRbylrl8tID+6RwsDHBms8reT1SqXTny1hrZS2H2TfayKDRYJ/R5IxUqdw5uLXWanJG6mw32rOdt24AAAAAaHXs+QHAKnk9Rh95wtHOYaOpWWl6ziqXtyoWrZayVhPTVpll6fgDRscONu7PazBgtHObUTpbDftuJ70kRcLScD8dm43k9xl97AlHA71GE9NSesne9JxZa5VdthqbkmJRo48+4SjRxnMGAAAAAK3O2+gCAGAziUWMPvmMowtXrc5etEouWLm22t26e3v1cPcdQ0aO09hg7cBuRxevVjQ9J/V22Ztm2+byVqmM9NBho3iMALDR2uNGn/qIoxOnXV26ZjU2KRlTDW6trc6+3bvD6OHDjnq7eL4AAAAAYCsw9k5tWC0inU4rHo8rlUqpra2t0eUAaCGVitViRqpUpIBfaoveeeGvRrg06ur5V6xSaauAX/I41Rm2jiPt32X0zKOO/MxGbSqpjNXVcaulZSvXlcIho239Rl0dzfXaAgAAAADUN3ek0xYA1snjMepMNLqKO9u1zVFXu9Wl0WoQWC5LHQlpz3ZHQ33V+tFc4jGjBw+05vPiulaZrJRdliputYvY66mO6YhF1PDudAAAAABoJoS2ANDC4jGj44eMjh9qdCXYijLZ6hcG03NW07PS0rJVsVQNbCXJmOpieJGQUW+X1NtlNDLE2A4AAAAAILQFAAA1Y63V5Ix04aqrC1etMkuSxyMF/dX5vIlYdUSHJLmuVCxV5yyfvSS9fcEqFpZ2jRjt2e5osI+xEAAAAAC2JkJbAABQE8s5q9dOuzpz3qpQrI49GOq78+gDx5G8Xikcqv5urVV6STp11ursxYr27zJ69EFH0QjBLQAAAICthdAWAADcF2utrk1IL73uamrWqiMu9XSuPWg1xigek+IxKZuzOnXWanLG1WNHjXaNGLpuAQAAAGwZhLYAAGDdrLU6fc7qhZOuymVpsLc2i9xFQkahgNXMvNW3fmT1WMbo2CGHBcsAAAAAbAlOowsAAACbk7VWp866+uGrrryONNBjahLY3uA4Rn1dRgG/9OJJq5Nvu7I3VjEDAAAAgBZGpy0AAFiX81esXjxpFfRL7fH6dcAm2oyMsXrlTatQwOqBfXTbAgAAAGhtdNoCAIA1W0hZvfS6lTH1DWxviMeM/F7plTetZufptgUAAADQ2ghtAQDAmriu1ctvuFpIWXV3bNztdiSkdNbq5dddlSsEtwAAAABaF6EtAABYk/NXrC5cterplIzZuFEFxhj1dkqXx6zOXiS0BQAAANC6CG0BAMCqua7V2+etHEcKBjZ+tmzAb+T3SW+fsyqXCW4BAAAAtCZCWwAAsGoT09LUrFVHvHE1JNqk2Xmr0euEtgAAAABak7fRBWBjlCtWqYy0mLYqFCQryeetLuzS3ib5/azEDQC4twtXXJXL1Y7XRvH7jKy1OnfZasew3dARDQAAAACwEQhtW5i1VslF6dJVV+evSEs5q0JRMqqGtpLk90rBgLRj2GjPdkcDvZLjsPMLALhVqWx1bcIqFml0JVJbVJqYtsoVpHCw0dUAAAAAQG0R2rao5bzVybdcnblotZyTIiEpFpa6Eu+HstZaFUtSLi+dOmv1zoWKRgaNnjzuqLOd4BYAcLPFlJQrSPFooyuRQgFpbrFaE6EtAAAAgFZDaNuCrk9b/fBVV5MzVok2qTNx+9W9jTEK+KWAvzofMF+wunjNaibp6vGjRgf3GA45BQCsWEhbFYvV941G83qlcrla00Av71UAAAAAWguhbYsZvW71nRdcLS1ZDfZKHs/qd2SDAaPhPqvkotX3X7YqFI2OHXIIbgEAkqRUpvrfZnhfqNZglUqzGBkAAACA1uM0ugDUztyC1fdedJVdthpYY2B7gzFGXe1GwYD00utW56+wMwwAqCqXG13BzRwjFYuNrgIAAAAAao/QtkWUK1YvnXS1kLLq777/Lqj2NiNjpJffsEplCG4BAJLrNtn7gZHKbqOLAAAAAIDaI7RtEe9esro8ZtXbVbvDVrs7pPlFq9feYo8YAPD+QpbNwtrqbFsAAAAAaDWEti2gXLF657yVzysF/LXboXYco/a4dHnUan6xybqrAAAbLhCQmmCc7QrXSqFAExUEAAAAADVCaNsCJqakmTmr9rbabzsalrLL0uVRum0BYKtLxKr/bYYxCdZaGUmJOrz3AQAAAECjEdq2gJk5q0pF8tewy/YGY4wCfmn0es03DQDYZNrj1feEfBMs/lUsSX5ftSYAAAAAaDWEti1gas7K56vf9kNBaSFllS80vrMKANA4bVEpEjbK5RpdibScq74/0WkLAAAAoBUR2m5yrmuVXJAC/vrdRsAvFYpSeql+t4HWUy5bXbji6u1zrmbnCfzvh7VWcwtWp866OnHa1dmLrrLLPKbYeB6P0Z7tUjZXfV020lJW2jVi5PfRaQsAAACg9bDm8ibnupJrrZw6xu+OU72dSqV+t4HW4rpW33/Z1dmLVq4rtcWMfuppR4N9hCtrtZy3euE1V5fGrHL59xaBstXH9OgB6ehBR47D44qNs2vE0ZtnKlrOSZFwY2rI5a38fmn3CN89AwAAAGhN7O1scsZIRlI9G56sfe92yIWwSnML0sWrVok2aahPSqWtzl5kMbu1KpWtvv+iq9PnrUJ+abhPGu4zGuyVKmWrH5+weuMdHldsrK52adug0UK6cTXMp6SBXqO+7sbVAAAAAAD1RGi7yXk8RtGIUbFUv9solSSfT4qE6ncbaD1W1S8UpGrg3+AjqTelq+NWl0at+rqkaMTIvPfNieMYdSSMQgHpzTNWmSwPLjaOMUaH9zny+6X00sa/9paWrTwe6cEDdJkDAAAAaF2Eti2gr1sq1DG0zRWqgVE0Ur/bQGvpTEi7txnNp6SxSSkWkfbv5s/NWl24Wg3EAv7bB1OJNimTla6NE9piYw31SQ/uN1pMV+dXb5RKxSq5KB3aa7R9aMNuFgAAAAA2HDNtW0B3R3XIZcW18tSh6yiXl/bv0kqXH3AvHo/RR590tG3QqlCU+ruNerp4/azVYkoKBu58vuMYGWOVzW1cTYBUfT84/oCj8UlXk7NWg7227u8R1lpNzUl9XUaPHHZ4TwIAAADQ0mh9awHbBo0SMaNUHeYL5gtWXq+0axsvFayNz2u0f5ejBw84BLbr5PdL5fLdL2Ot5OXrNzRAMGD04cccxWNGk7PVULVerLWanpMiIaOnH3UUCfM3BQAAAEBrI4lrAeGg0b6d1cOkXbe2O83JRam/x2igt6abBbAKO7cZFYp3DsNyeSu/TxroIcBCY/R1G33syWqIen2m9u9BUvX1PzlX/RLjY086Gu7n9Q4AAACg9RHatojD+6rdjDPJ2m0zvWTl80qPHGGxF6ARdm2rLjh2/TZdjKWy1cy8NDJo1NvVoAIBSdsGjH7qaUftbUbjU9UvE2olX7DVudhho0887dGOYd6LAAAAAGwNhLYtIhoxeuxodWc2lbn/HeZC0WoxLR05YDTcf9+bA7AO8ZjRR59w1BYxGp2UZpNWCymryRmrqVlpx1D18HS+VEGjDfYZ/f1nHR3cU12AcCZpVams/72o4lrNzlcXHdu3y+hnn3U0MsjrHAAAAMDWwSTEFrJ7xGjhiNHLb1pZa5VoW98Obq5gNZuU9u9isReg0bYNGP2DTzi6eNXVxWtSoSh1dUj7dhrtGDYKBvj3ieYQjxk9+5SjkUGr105ZXZ+x8nit2tuk0Cpfp/mC1UK6Osu5PW701CNGB3YZeTy8zgEAAABsLcbWc+WQJpBOpxWPx5VKpdTW1tbocurOda1ef9vVa29ZlctST5fkXeXOrrVWyQUpX5QO7Kp28BEIAc3FWssXKWh6+YLVlXGrdy9ZTU5bFUuSkRQISAG/ZEz1d9dKxWL1fcdayeeVeruNDuyufikRDvJaBwAAANC86pk70mnbYhzH6KHDjro7pZded3V9xirgs0q0SQH/7Xd+KxWrxYyUXZbibUYferi6w0xn0+ospq2SC1aBgFF/t3jcUFcEttgMgoFqh+y+HVYzSWluwWp+wWpyVlpatrKV6uWMU33f2dcjdSaMOhNGfd1i5AcAAACALY/QtgUZYzQyKPV0Orpw1ersxepswHLZykjyvvesVyrVLifHqR7W+uB+ae9OR+1xdpZXw3WtTpx2deqMVTZXfVyH+ow+/qSjWJTHEAAcpxrC9nVX/yZaa1UqSRW3er7HkXw+vowAAAAAgJ9EaNvCQkGjI/uNDu6xmp6VFlJW84tWSznJutXDVLvajRJt1Z1qRiGszeh16bVTVoGANNQnFUvSlTGrl99w9ezTnkaXBwBNxxgjv7/RVQAAAABA8yO03QK8HqPBvurq3qid0euuSuX3O8gCfinRZnXtutVyzioc4vEGAAAAAADA2jmNLgDYtO6whJ+11R8AAAAAAABgPQhtgXUa7DfyeKT0kq3OaSxbLaal4X6jcKjR1QEAAAAAAGCzIrQF1mnHkNHxQ0aFojQ+Jc0kpaF+o8ePOSyqAwAAAAAAgHVjpi2wTo5j9ORDjvbukOYWrYJ+o6F+yeclsAUAAAAAAMD6EdoC98EYo+5OqbuToBYAAAAAAAC1wXgEAAAAAAAAAGgihLYAAAAAAAAA0EQIbQEAAAAAAACgiRDaAgAAAAAAAEATIbQFAAAAAAAAgCZCaAsAAAAAAAAATYTQFgAAAAAAAACaCKEtAAAAAAAAADQRb6MLAIBGKVesxq5L12dcSdJAj6NtA5LHYxpcGQAAAAAA2MoIbQFsSaWy1Q9ecvXuZatyWZKRvJ6K9u8y+sjjjnxeglsAAAAAANAYhLYAtqTzl63OXLTqTEihYDWgzeWtzlywGui1OrSH0BYAAAAAADQGM20BbEkXrlp5PO8HtlL1/z2OdOmqbWBlAAAAAABgqyO0BbAlFYqS13Pr6V6vlC9ufD0AAAAAAAA3ENoC2JKG+qRcXrL2/a5aa61y+ep5AAAAAAAAjcJMWwBb0v7dji5eczU2aZVoqwa3i2mps91o/y6+zwIAAAAAAI1DMgFgS+pMGH3qGUcHdhtVXKniSgf3GH3yGUcdCRYhAwAAAAAAjUOnLYAtq6fL6Kc+7ChXqP4eCkjGENgCAAAAAIDGIrQFsKUZYxQONroKAAAAAACA9zEeAQAAAAAAAACaCJ22AABJUjab1cLCgsrlsiTJ5/Opvb1d4XC4wZUBAAAAALC1ENoCwBbmuq7m5uY0Njam8fFx5XK5m+b6hkIhDQ8Pa3h4WB0dHXIcDtAAAAAAAKDeCG0BYIsqFot68803NTo6qnK5rEgkou7u7pVg1nVdZbNZnTt3TpcvX9b27dt15MgR+Xy+BlcOAAAAAEBrI7QFgC2oWCzq1Vdf1djYmBKJhILBW1djcxxHsVhMsVhMuVxOFy5cULFY1MMPP0xwCwAAAABAHRHaAsAW47qu3nzzTY2Njamzs3NVAWwoFJLH49HVq1cVCAR07Nixm8YoAAAAAACA2mE4IQBsMclkcqXDdi0ds36/X21tbbp69aoWFxfrVyAAAAAAAFscoS0AbDHj4+MqlUq3HYlwL6FQSIVCQePj43WoDAAAAAAASIS2ALClLC8va2xsTJFIZF3XN8YoHA5rdHRUhUKhxtUBAAAAAACJ0BYAtpTFxUXlcjmFw+F1byMSiSibzSqVStWwMgAAAAAAcAOhLQBsIaVSSZLkOOv/8+84jqy1K9sCAAAAAAC15W10AQDuznWtJmeki9dcTc9J1kqd7dLuEUdD/ZLXYxpdIjYRY4ystfe9HWutjOG1BwAAAABAPRDaAk0sX7D60auuzl+1KpWkYEAyRpqalc5erGj7oNFHnnAUixCeYXW8Xq+MMXJdd93dtpVKRR6PR14vbyEAAAAAANQDe9xAkypXrJ5/xdU7F6y626Vw6OZgtlC0unDNquK6+uQzjoIBglvcW0dHhyKRiJaWltTW1raubSwtLSkajSqRSNS2OAAAAAAAIImZtkDTGrsunb9s1dt5a2ArSQG/0UCPdHXc6uK1+z/cHVtDMBjUtm3btLy8vK4xCdZa5fN5jYyMyO/316FCAAAAAABAaAs0qXOXXblWd+2g9XmNfF7p3UtWrktwi9UZGhpSIBBQLpdb83Wz2axCoZCGhobqUBkAAAAAAPj/27vz4Kqr+//jr3Oz3ps9IQt8CSYhLCkBAolQqIKouNAfU8a2jqNjq2OtC6KoGRnGYqUIjLZuiLj9A6060GXUdpxxEKhRocquCCEGSSBqAhKyh6z3/P64JZomgQTCvR+S5+MPhpz7+ZzP+/MhlwOvnHuORGgLOFJbu1X5catIz9mPjYqUKqus6hsvfF0YGOLi4pSRkaG6ujo1Nzf3+rympiY1NjYqMzPznJdWAAAAAAAAZ8eatoADeb2S10q92SfKZST733OA3jDGKDs7Wy0tLTp8+LAiIyPl8XhkTPezuq21qq+v16lTp5SZmamsrCw/VwwAAAAAwOBCaAs4UEiwFOE2OlltFR155mNPNUthIUbucP/UhoEhODhYkydPVlhYmEpKSnTs2DG53W5FREQoKChIktTW1qaGhgY1NTXJ7XZr3LhxysrK6ngdAAAAAABcGIS2gAMZY5SVabRlm2+tWpfrDDMgG6QpOb6NyYC+CA4O1oQJE5SWlqZvvvlGR44cUXV1tbz/nbbtcrkUFRWlsWPHavjw4YqKigpwxQAAAAAADA6EtoBDjRxhtO+gUfl3VsOSbJePrltrdbxSio4yGp3O8tQ4N8YYxcTEKCYmRpmZmaqpqVFbW5skKSQkRDExMQoJCQlwlQAAAAAADC6EtoBDRUYYzZrm0qatXpWVW0VHWkV4JCOpsUmqqZMiPNIVU40S45lli/MXGhqqxMTEQJcBAAAAAMCgR2gLONj/pRj9vytdOlDs1Zel0ncnrSQpPEwaP9Zo3CiXUhIJbAEAAAAAAAYSQlvA4RLijC6fEqTJ2VY1db62yAgpOpKwFgAAAAAAYCAitAUuEhEeowhPoKsAAADdsdaqpVWyVgoNUY+biAIAAAC9QWgLAAAAnKOmZquSMquDX1mdrLaykmKijLJGGmWMMPK4CW8BAADQd4S2AAAAwDmorrXavM2rsm+tgoPUsWHo8RNW31RYpXxpdNVPXGwYCgAAgD4jtAUAAAD6qKnZF9ge/cZqWJIUHPx9MBsVKbW3W3173GrTx17NvcqlyAiCWwAAAPSeK9AFAAAAABebw0etysq7BranBQUZDUuWKr6zKi61AagQAAAAFzNCWwC4CDQ0WhWXelX4lVcV31l5vQQAABAoXq9vDdtgV/eB7WlBLiN3mFR4yKqtjb+3AQAA0HssjwAADub1Wu094NXeQqmu3vp2JQ+VUocazZjiUkwUH7cd6OoarE6dkiIjxIZGgEO0tEona6wiPWc/NiJCqm2wajglxURd+NoAAAAwMBDaAoCDHSi22rrLKixUGpYkGSOdapaKS61aWr2ae6VLoaEEeb3R1mZVVi7V1Plmu8VEGaUOPfMsuUDbX+zVJ7u9amqRIj1GM6e6lDbcufUCg4U9PWm2F2/H04dYJtoCAACgDwhtAcChWtusPjvo25E8Ifb7ZMATLg1Lsvq63OrIN1aj0gnxzsRaq6LDVnv2W3130srr9bW7XFJivNGkcUZjMoyMcdZzPF5ptXWnV9YrxUdLJ6qtCj71KjHepQiPs2oFBpuwUCk6wuhElVVUxJmPbTwlRbiNPG7/1AYAAICBgTVtAcChKquk6hqr2G4+ThsSbGStVH6cqVtns6/IavNWr6pqrJLifUtLpA41SoqXqmp8r+076LznWFNr1XhKSoiTQkONEuN9SyXU1ge6MgAul9HYTKPmFqn9DGuMW+tbFmFMhhQawg9bAAAA0HuEtgDgUNZKVurx47fGSF5/FnQRqqyy+nSPV6EhUvIQo5AfhCYhIUbJQ4xCQ6RP9np1ospZwa3bbRQSLDU0+r6uq/fN7nOHB7YuAD4jRxilJBp9e1zdbg5prdW3x6WEOKPR6fyTGwAAAH3D8ggAECBt7VZfl0snqqza26WgIGlInNHwoVJwkFF8rBQTaVRbbzUkruu51vqCSPTs0BGv6hul1KE9HxMXI5WVS1+VejUkLsh/xZ3FsCRpQpbRZ4VWVXW+dY2nTTKKjebPHHCCCI/RVT9xadPHXn1dYeUO/35jssZTUsMpX2B71XQX71sAAAD0GaEtAPhZe7vVgUNW+7/0rbHa3v79a0FBvnVWx402+lGm0bjR0kc7fJtnRUdKxhi1tFodOyENTTJKZ1OqMzp81Dcz9Uzr1Rpj5Am3+uqoNHWSH4s7C5fL6Ce5Ll3yf1LjKauYKKOUxEBXBeCHkhKM5l7lUnGpVeEhq7oG34xbj9soZ5w0Ks2luBj+ngYAAEDfEdoCgB+1tVkVbPfqiyKrkGBpSFzndQ5bWq1OVltt2WZ1vNLoslzfmon7iqzKKiQjq6AgafhQo1k/dik8jDCgJ9ZaNbf4NnI7m6Bg37O31jpqQzKXy2jEMKlXW9QDCIioSKPJ2Ubjx1o1NPqWtolw+9aiBgAAAM4VoS0A+Im1Vv/Z49v0KiHWNxPrf4WGGCUP8c2s3HfQKjREuizPpbEjpW+OWbW1SbHR3y+hgJ4ZY+RxG504efa1altbpehI46jAFsDFJSTYKDY60FUAAABgoCC0BQA/qayW9hdbxUR1H9j+kMdt1NZudaDYKivTt9YtH7Htu9HpRt9UnHkGrbVWTc2+YwEAAAAAcAK2sgUAP/mq1KtTp6SoiN4dHxXh28zmq1LvhS1sAMsYYRQbY3TshC+c/V/W+tYHjo0xyhhBaAsAAAAAcAZCWwDwg/Z2qy9LfOsc9vYj+MYYRbilL0t856PvoiONrpjqUlio9HWFVN/om3VrrVV9o9XXFVJYqDRzilF0JKEtAAAAAMAZWB4BAPyguVVqbrEKDe3beaGhvvNaWiV3LzbUQlfpqUZzZgXps0Kvjn5rVVXjaw8Pl8ZkGE3McmlYMoEtAAAAAMA5CG0BwA9Mxy/nejLOx7Bko6FJLp2slmrqfLOWY6KM4mN7P/MZAAAAAAB/IbQFAD8IC5XcYUb1DbbXa9pKUlOzFBVhFNbHGbroyhijhDgpIY6QFgAAAADgbKxpCwB+4HIZjRkpNTZ1vyFWd6y1OtUkjRnpOx8AAAAAAAwOhLYA4CcjR7gU4ZFq6np3fE2dFOHxnQcAAAAAAAYPkgAA8JO4GKOcLKP6Rqmu4cyzbesbrOobpZwso7gYZtkCAAAAADCYsKYtAPhR3gSXWtu92v2FVW2DVVy05A7zrbdqrdWpZqmq1rf3WN4Eo9zx/GwNAAAAAIDBhtAWAPzI5TKaNsmlpHirA4esvjlmVVklSb6Zt6GhUtowo6xMo5GXGNayBQAAAABgECK0BQA/c7mMRqUbjbzE6nildKLKqq1NCg6WhsQZJSWw8RgAAAAAAIMZoS0ABIjLZZSSKKUkEtACAAAAAIDvsVgiAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOAihLQAAAAAAAAA4CKEtAAAAAAAAADgIoS0AAAAAAAAAOIhjQtuVK1fKGKOFCxd2tFlr9fjjj2vYsGFyu9264oortH///sAVCQAAAAAAAAAXmCNC2x07dujVV1/VhAkTOrU/9dRTeuaZZ7R69Wrt2LFDKSkpmj17turq6gJUKQAAAAAAAABcWMGBLqC+vl633HKLXnvtNT3xxBMd7dZaPffcc3r00Ud1ww03SJLWrVun5ORkvfnmm7rrrru67a+5uVnNzc0dX9fU1EiSamtrL+BdAAAAAAAAABhMTueN1tp+7zvgoe38+fP105/+VFdffXWn0LakpEQVFRW65pprOtrCwsI0c+ZMbdu2rcfQduXKlVq6dGmX9tTU1P4vHgAAAAAAAMCgVllZqZiYmH7tM6Ch7fr167V7927t2LGjy2sVFRWSpOTk5E7tycnJOnLkSI99Ll68WA899FDH116vV7m5udq9e7eMMf1UOSTp0ksv7fbPbqC6mO/XybUHujZ/X98f17sQ16itrVVqaqrKysoUHR3dr31j8An0+34gGozP9GK+Z6fW7oS6GJd7h3EZ/cUJ7/uBaLA914v5fp1ce6BrY0zunZqaGo0YMULx8fH92q8UwNC2rKxMDzzwgDZu3Kjw8PAej/vfoNVae8bwNSwsTGFhYV3a+jvthhQUFDSo/pF4Md+vk2sPdG3+vr4/rnchrxEdHe3Y7yVcPAL9vh+IBuMzvZjv2am1O6EuxuW+YVzG+XLC+34gGmzP9WK+XyfXHujaGJP7xuXq/23DArYR2a5du3T8+HHl5uYqODhYwcHBKigo0KpVqxQcHNwxw/b0jNvTjh8/3mX27dnMnz+/3+rG9wbbc72Y79fJtQe6Nn9f3x/XC/QzBc6G79H+Nxif6cV8z06t3Ql1MS4D/sX354Ux2J7rxXy/Tq490LUxJgeesRdipdxeqKur67LMwe23366xY8dq0aJFGjdunIYNG6YHH3xQjzzyiCSppaVFSUlJevLJJ3tc0xYA0P9qa2sVExOjmpoax/4kGgCAwYJxGQAAZ7iQY3LAlkeIiopSdnZ2p7aIiAglJCR0tC9cuFArVqzQqFGjNGrUKK1YsUIej0c333xzIEoGgEErLCxMv//977ssPwMAAPyPcRkAAGe4kGNywGbadueKK65QTk6OnnvuOUm+9WuXLl2qV155RVVVVZo6dapefPHFLmEvAAAAAAAAAAwUjgptAQAAAAAAAGCwC9hGZAAAAAAAAACArghtAQAAAAAAAMBBCG0BAAAAAAAAwEEIbQEAAAAAAADAQQhtAQDnpa6uTpdeeqlycnI0fvx4vfbaa4EuCQCAQa2xsVGXXHKJ8vPzA10KAACDWnBwsHJycpSTk6Pf/OY3fTv3AtUEABgkPB6PCgoK5PF41NjYqOzsbN1www1KSEgIdGkAAAxKy5cv19SpUwNdBgAAg15sbKz27t17Tucy0xYAcF6CgoLk8XgkSU1NTWpvb5e1NsBVAQAwOBUXF+vgwYOaM2dOoEsBAADngdAWAAa5Dz/8UHPnztWwYcNkjNHbb7/d5Zg1a9YoPT1d4eHhys3N1UcffdTp9erqak2cOFHDhw/XI488oiFDhvipegAABo7+GJPz8/O1cuVKP1UMAMDA1R/jcm1trXJzc3XZZZepoKCgT9cntAWAQa6hoUETJ07U6tWru319w4YNWrhwoR599FHt2bNHl19+ua6//nodPXq045jY2Fh99tlnKikp0Ztvvqljx475q3wAAAaM8x2T33nnHY0ePVqjR4/2Z9kAAAxI/fF/5dLSUu3atUsvv/yyfvWrX6m2trbX1zeWz7ACAP7LGKO33npL8+bN62ibOnWqJk+erJdeeqmjLSsrS/Pmzet2Js8999yjK6+8Ur/85S/9UTIAAAPSuYzJixcv1uuvv66goCDV19ertbVVDz/8sB577LEA3AEAAANHf/xf+frrr9eyZcuUl5fXq2sy0xYA0KOWlhbt2rVL11xzTaf2a665Rtu2bZMkHTt2rOOnhbW1tfrwww81ZswYv9cKAMBA1psxeeXKlSorK1Npaan+9Kc/6c477ySwBQDgAujNuFxVVaXm5mZJ0tdff60DBw4oIyOj19cI7r9yAQADzYkTJ9Te3q7k5ORO7cnJyaqoqJDkG3zuuOMOWWtlrdV9992nCRMmBKJcAAAGrN6MyQAAwD96My4XFhbqrrvuksvlkjFGzz//vOLj43t9DUJbAMBZGWM6fW2t7WjLzc3V3r17A1AVAACDz5nG5B+67bbb/FQRAACD15nG5enTp2vfvn3n3DfLIwAAejRkyBAFBQV1mcFz/PjxLj9RBAAAFw5jMgAAzuGPcZnQFgDQo9DQUOXm5ur999/v1P7+++9r+vTpAaoKAIDBhzEZAADn8Me4zPIIADDI1dfX69ChQx1fl5SUaO/evYqPj9eIESP00EMP6dZbb1VeXp6mTZumV199VUePHtXdd98dwKoBABh4GJMBAHCOQI/Lxlpr+6UnAMBF6YMPPtCsWbO6tP/617/W2rVrJUlr1qzRU089pfLycmVnZ+vZZ5/VjBkz/FwpAAADG2MyAADOEehxmdAWAAAAAAAAAByENW0BAAAAAAAAwEEIbQEAAAAAAADAQQhtAQAAAAAAAMBBCG0BAAAAAAAAwEEIbQEAAAAAAADAQQhtAQAAAAAAAMBBCG0BAAAAAAAAwEEIbQEAAAAAAADAQQhtAQAAAAAAAMBBCG0BAAAAB3v88ceVk5MT6DIAAADgR4S2AAAAOG8VFRV64IEHlJmZqfDwcCUnJ+uyyy7Tyy+/rMbGxo7j0tLSZIyRMUZut1tpaWm68cYbtWXLlk79lZaWdhxnjFFcXJxmzJihgoKCHmv44IMPOp2TmJio66+/Xp999tkFu+cFCxYoIyNDYWFhSk1N1dy5c7V58+Z+vU5+fn6nPm+77TbNmzevX68BAAAAZyG0BQAAwHk5fPiwJk2apI0bN2rFihXas2ePNm3apAcffFD/+te/tGnTpk7H/+EPf1B5ebmKior05z//WbGxsbr66qu1fPnyLn1v2rRJ5eXlKigoUHR0tObMmaOSkpIz1lNUVKTy8nK9++67qqqq0nXXXaeamppzureWlpZu20tLS5Wbm6stW7boqaee0r59+/Tee+9p1qxZmj9//jldqyeRkZFKSEjo1z4BAADgbIS2AAAAOC/33nuvgoODtXPnTt14443KysrS+PHj9fOf/1zvvvuu5s6d2+n4qKgopaSkaMSIEZoxY4ZeffVVLVmyRI899piKioo6HZuQkKCUlBRNmDBBr7zyihobG7Vx48Yz1pOUlKSUlBRNmTJFTz/9tCoqKvTJJ59IkrZt26YZM2bI7XYrNTVV999/vxoaGjrOTUtL0xNPPKHbbrtNMTExuvPOO3u8Z2OMtm/frl/84hcaPXq0xo0bp4ceeqjjWpL0zDPPaPz48YqIiFBqaqruvfde1dfXd7y+du1axcbG6u2339bo0aMVHh6u2bNnq6ysrOOYHy6P8Pjjj2vdunV65513OmYUf/DBB5KkRYsWafTo0fJ4PMrIyNCSJUvU2tp6xmcFAAAAZyK0BQAAwDmrrKzUxo0bNX/+fEVERHR7jDHmrP088MADstbqnXfe6fEYj8cjSX0KIt1ud8c5+/bt07XXXqsbbrhBn3/+uTZs2KCPP/5Y9913X6dz/vjHPyo7O1u7du3SkiVLuvR58uRJvffeez3ec2xsbMfvXS6XVq1apS+++ELr1q3Tli1b9Mgjj3Q6vrGxUcuXL9e6deu0detW1dbW6qabbur2fvLz83XjjTfquuuuU3l5ucrLyzV9+nRJvjB87dq1OnDggJ5//nm99tprevbZZ3v9rAAAAOAcwYEuAAAAABevQ4cOyVqrMWPGdGofMmSImpqaJEnz58/Xk08+ecZ+4uPjlZSUpNLS0m5fb2ho0OLFixUUFKSZM2f2qrbKykotXbpUUVFRmjJlivLz83XzzTdr4cKFkqRRo0Zp1apVmjlzpl566SWFh4dLkq688krl5+ef9Z7Hjh171hpOX0uS0tPTtWzZMt1zzz1as2ZNR3tra6tWr16tqVOnSpLWrVunrKwsbd++XVOmTOnUX2RkpNxut5qbm5WSktLptd/97ncdv09LS9PDDz+sDRs2dAmJAQAA4HyEtgAAADhv/zubdvv27fJ6vbrlllvU3Nzcqz6stV36mT59ulwulxobGzV06FCtXbtW48ePP2M/w4cPl+QLekeNGqW//e1vSkpK0q5du3To0CG98cYbna7p9XpVUlKirKwsSVJeXt5Z6+zunrvz73//WytWrNCBAwdUW1urtrY2NTU1qaGhoWOWbnBwcKdrjh07VrGxsSosLOwS2p7J3//+dz333HM6dOiQ6uvr1dbWpujo6F6fDwAAAOcgtAUAAMA5y8zMlDFGBw8e7NSekZEh6fvlCc6msrJS3333ndLT0zu1b9iwQT/60Y8UGxvb6824PvroI0VHRysxMbFTaOn1enXXXXfp/vvv73LOiBEjOn7f0zIPp40aNUrGGBUWFmrevHk9HnfkyBHNmTNHd999t5YtW6b4+Hh9/PHHuuOOO7os8dBdANybUPi0Tz75RDfddJOWLl2qa6+9VjExMVq/fr2efvrpXvcBAAAA5yC0BQAAwDlLSEjQ7NmztXr1ai1YsOCsgWdPnn/+eblcri4haGpqqkaOHNmnvtLT0zutK3va5MmTtX//fmVmZp5TjafFx8fr2muv1Ysvvqj777+/yz1XV1crNjZWO3fuVFtbm55++mm5XL6tJP7617926a+trU07d+7smFVbVFSk6urqHpdfCA0NVXt7e6e2rVu36pJLLtGjjz7a0XbkyJHzuk8AAAAEDhuRAQAA4LysWbNGbW1tysvL04YNG1RYWKiioiK9/vrrOnjwoIKCgjodX1dXp4qKCpWVlenDDz/Ub3/7Wz3xxBNavnz5eQeqZ7Jo0SL95z//0fz587V3714VFxfrn//8pxYsWNDnvtasWaP29nZNmTJF//jHP1RcXKzCwkKtWrVK06ZNkySNHDlSbW1teuGFF3T48GH95S9/0csvv9ylr5CQEC1YsECffvqpdu/erdtvv10//vGPe1waIS0tTZ9//rmKiop04sQJtba2KjMzU0ePHtX69ev11VdfadWqVXrrrbf6fF8AAABwBkJbAAAAnJeRI0dqz549uvrqq7V48WJNnDhReXl5euGFF5Sfn69ly5Z1Ov6xxx7T0KFDlZmZqVtvvVU1NTXavHmzFi1adEHrnDBhggoKClRcXKzLL79ckyZN0pIlSzR06NA+95Wenq7du3dr1qxZevjhh5Wdna3Zs2dr8+bNeumllyRJOTk5euaZZ/Tkk08qOztbb7zxhlauXNmlL4/Ho0WLFunmm2/WtGnT5Ha7tX79+h6vfeedd2rMmDHKy8tTYmKitm7dqp/97Gd68MEHdd999yknJ0fbtm3TkiVL+nxfAAAAcAZjT++kAAAAAMCv1q5dq4ULF6q6ujrQpQAAAMBBmGkLAAAAAAAAAA5CaAsAAAAAAAAADsLyCAAAAAAAAADgIMy0BQAAAAAAAAAHIbQFAAAAAAAAAAchtAUAAAAAAAAAByG0BQAAAAAAAAAHIbQFAAAAAAAAAAchtAUAAAAAAAAAByG0BQAAAAAAAAAHIbQFAAAAAAAAAAf5/3NHeMCMdRj9AAAAAElFTkSuQmCC", 179 | "text/plain": [ 180 | "
" 181 | ] 182 | }, 183 | "metadata": {}, 184 | "output_type": "display_data" 185 | } 186 | ], 187 | "source": [ 188 | "plot_continents()" 189 | ] 190 | }, 191 | { 192 | "cell_type": "markdown", 193 | "metadata": {}, 194 | "source": [ 195 | "Create a dictionary to map continent names to integer IDs" 196 | ] 197 | }, 198 | { 199 | "cell_type": "code", 200 | "execution_count": 8, 201 | "metadata": {}, 202 | "outputs": [], 203 | "source": [ 204 | "cont_dict = dict(zip(continents, range(len(continents))))" 205 | ] 206 | }, 207 | { 208 | "cell_type": "markdown", 209 | "metadata": {}, 210 | "source": [ 211 | "Now we can use __@widgets.interact__ to automatically generate widgets matching the function arguments. Here we pass the dictionary created above as the default argument. This will force interact to display the dictionary keys in the dropdown box, while passing the numerical value as input to the function" 212 | ] 213 | }, 214 | { 215 | "cell_type": "code", 216 | "execution_count": 9, 217 | "metadata": {}, 218 | "outputs": [ 219 | { 220 | "data": { 221 | "application/vnd.jupyter.widget-view+json": { 222 | "model_id": "f2679458cc374aeead9256d2d8349ba5", 223 | "version_major": 2, 224 | "version_minor": 0 225 | }, 226 | "text/plain": [ 227 | "interactive(children=(Dropdown(description='cont', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3…" 228 | ] 229 | }, 230 | "metadata": {}, 231 | "output_type": "display_data" 232 | } 233 | ], 234 | "source": [ 235 | "@widgets.interact\n", 236 | "def plot_continent(cont = cont_dict):\n", 237 | " fig, ax = plt.subplots(1, figsize=(14,10))\n", 238 | "\n", 239 | " continent = data[data['Continent']==cont]\n", 240 | " \n", 241 | " ax.scatter(continent['GDP'], # x-axis\n", 242 | " continent['LifeExpectancy'], # y-axis\n", 243 | " s=continent['Population']/200000, # Bubble size\n", 244 | " c=colors[cont], # Bubble color\n", 245 | " alpha=0.5) # Transparency\n", 246 | "\n", 247 | " ax.set_xscale('log')\n", 248 | "\n", 249 | " # Add the legend manually\n", 250 | " ax.text(300, 83-cont*2, continents[cont], color=colors[cont], fontsize=18)\n", 251 | "\n", 252 | " ax.set_xlabel('GDP Per Capita')\n", 253 | " ax.set_ylabel('Life Expectancy')\n", 254 | " ax.set_xlim(200, 100000)\n", 255 | " ax.set_ylim(40, 90)\n", 256 | "\n", 257 | " fig.tight_layout()" 258 | ] 259 | }, 260 | { 261 | "cell_type": "markdown", 262 | "metadata": {}, 263 | "source": [ 264 | "Boolean arguments correspond to check boxes" 265 | ] 266 | }, 267 | { 268 | "cell_type": "code", 269 | "execution_count": 10, 270 | "metadata": {}, 271 | "outputs": [ 272 | { 273 | "data": { 274 | "application/vnd.jupyter.widget-view+json": { 275 | "model_id": "159a92f73cf64964bd6a98e5d2db4da8", 276 | "version_major": 2, 277 | "version_minor": 0 278 | }, 279 | "text/plain": [ 280 | "interactive(children=(Dropdown(description='cont', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3…" 281 | ] 282 | }, 283 | "metadata": {}, 284 | "output_type": "display_data" 285 | } 286 | ], 287 | "source": [ 288 | "@widgets.interact\n", 289 | "def plot_continent(cont = cont_dict, log_scale=True):\n", 290 | " fig, ax = plt.subplots(1, figsize=(14,10))\n", 291 | "\n", 292 | " continent = data[data['Continent']==cont]\n", 293 | " \n", 294 | " ax.scatter(continent['GDP'], # x-axis\n", 295 | " continent['LifeExpectancy'], # y-axis\n", 296 | " s=continent['Population']/200000, # Bubble size\n", 297 | " c=colors[cont], # Bubble color\n", 298 | " alpha=0.5) # Transparency\n", 299 | " \n", 300 | " if log_scale:\n", 301 | " ax.set_xscale('log')\n", 302 | "\n", 303 | " # Add the legend manually\n", 304 | " ax.text(300, 83-cont*2, continents[cont], color=colors[cont], fontsize=18)\n", 305 | "\n", 306 | " ax.set_xlabel('GDP Per Capita')\n", 307 | " ax.set_ylabel('Life Expectancy')\n", 308 | " ax.set_xlim(200, 100000)\n", 309 | " ax.set_ylim(40, 90)\n", 310 | "\n", 311 | " fig.tight_layout()" 312 | ] 313 | }, 314 | { 315 | "cell_type": "markdown", 316 | "metadata": {}, 317 | "source": [ 318 | "Let's add another parameter to our function to change the font size" 319 | ] 320 | }, 321 | { 322 | "cell_type": "code", 323 | "execution_count": 11, 324 | "metadata": {}, 325 | "outputs": [], 326 | "source": [ 327 | "font_sizes = [10, 14, 18, 22, 26]" 328 | ] 329 | }, 330 | { 331 | "cell_type": "markdown", 332 | "metadata": {}, 333 | "source": [ 334 | "interact helpfully adds a third parameter with the appropriate widget" 335 | ] 336 | }, 337 | { 338 | "cell_type": "code", 339 | "execution_count": 12, 340 | "metadata": {}, 341 | "outputs": [ 342 | { 343 | "data": { 344 | "application/vnd.jupyter.widget-view+json": { 345 | "model_id": "f0c1705402aa4929afb210f87d055e78", 346 | "version_major": 2, 347 | "version_minor": 0 348 | }, 349 | "text/plain": [ 350 | "interactive(children=(Dropdown(description='cont', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3…" 351 | ] 352 | }, 353 | "metadata": {}, 354 | "output_type": "display_data" 355 | } 356 | ], 357 | "source": [ 358 | "@widgets.interact\n", 359 | "def plot_continent(cont = cont_dict, log_scale=True, font_size=font_sizes):\n", 360 | " fig, ax = plt.subplots(1, figsize=(14,10))\n", 361 | "\n", 362 | " continent = data[data['Continent']==cont]\n", 363 | " \n", 364 | " ax.scatter(continent['GDP'], # x-axis\n", 365 | " continent['LifeExpectancy'], # y-axis\n", 366 | " s=continent['Population']/200000, # Bubble size\n", 367 | " c=colors[cont], # Bubble color\n", 368 | " alpha=0.5) # Transparency\n", 369 | " \n", 370 | " if log_scale:\n", 371 | " ax.set_xscale('log')\n", 372 | "\n", 373 | " # Add the legend manually\n", 374 | " ax.text(300, 83-cont*2, \n", 375 | " continents[cont], \n", 376 | " color=colors[cont], \n", 377 | " fontsize=font_size)\n", 378 | "\n", 379 | " ax.set_xlabel('GDP Per Capita')\n", 380 | " ax.set_ylabel('Life Expectancy')\n", 381 | " ax.set_xlim(200, 100000)\n", 382 | " ax.set_ylim(40, 90)\n", 383 | "\n", 384 | " fig.tight_layout()" 385 | ] 386 | }, 387 | { 388 | "cell_type": "code", 389 | "execution_count": 13, 390 | "metadata": { 391 | "scrolled": false 392 | }, 393 | "outputs": [ 394 | { 395 | "data": { 396 | "application/vnd.jupyter.widget-view+json": { 397 | "model_id": "f4a492470c374683a8f84da198c80ce5", 398 | "version_major": 2, 399 | "version_minor": 0 400 | }, 401 | "text/plain": [ 402 | "interactive(children=(Dropdown(description='cont', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3…" 403 | ] 404 | }, 405 | "metadata": {}, 406 | "output_type": "display_data" 407 | } 408 | ], 409 | "source": [ 410 | "widgets.interact(plot_continent, #The same function defined above\n", 411 | " cont = cont_dict, \n", 412 | " log_scale=True, \n", 413 | " font_size=font_sizes);" 414 | ] 415 | }, 416 | { 417 | "cell_type": "code", 418 | "execution_count": 14, 419 | "metadata": {}, 420 | "outputs": [ 421 | { 422 | "data": { 423 | "application/vnd.jupyter.widget-view+json": { 424 | "model_id": "e545c3f894044d37820557b5bb821299", 425 | "version_major": 2, 426 | "version_minor": 0 427 | }, 428 | "text/plain": [ 429 | "interactive(children=(Dropdown(description='cont', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3…" 430 | ] 431 | }, 432 | "metadata": {}, 433 | "output_type": "display_data" 434 | } 435 | ], 436 | "source": [ 437 | "widgets.interact_manual(plot_continent, \n", 438 | " cont = cont_dict, \n", 439 | " log_scale=True, \n", 440 | " font_size=font_sizes);" 441 | ] 442 | }, 443 | { 444 | "cell_type": "markdown", 445 | "metadata": {}, 446 | "source": [ 447 | "But we can also specify by hand which widget we want to use, including any options we like" 448 | ] 449 | }, 450 | { 451 | "cell_type": "code", 452 | "execution_count": 15, 453 | "metadata": {}, 454 | "outputs": [], 455 | "source": [ 456 | "font_slider = widgets.IntSlider(\n", 457 | " value=18,\n", 458 | " min=10,\n", 459 | " max=40,\n", 460 | " step=2,\n", 461 | " description='Font size:',\n", 462 | " disabled=False,\n", 463 | " \n", 464 | " # Should the figure be updated as the value is being changed?\n", 465 | " continuous_update=False,\n", 466 | " orientation='horizontal',\n", 467 | " readout=True,\n", 468 | " \n", 469 | " # Show only decimal values\n", 470 | " readout_format='d'\n", 471 | ")" 472 | ] 473 | }, 474 | { 475 | "cell_type": "code", 476 | "execution_count": 16, 477 | "metadata": {}, 478 | "outputs": [ 479 | { 480 | "data": { 481 | "application/vnd.jupyter.widget-view+json": { 482 | "model_id": "1af7f95b6cec4fd4b433c2cf1488327b", 483 | "version_major": 2, 484 | "version_minor": 0 485 | }, 486 | "text/plain": [ 487 | "interactive(children=(Dropdown(description='cont', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3…" 488 | ] 489 | }, 490 | "metadata": {}, 491 | "output_type": "display_data" 492 | } 493 | ], 494 | "source": [ 495 | "widgets.interact_manual(plot_continent, \n", 496 | " cont = cont_dict, \n", 497 | " log_scale=True, \n", 498 | " font_size=font_slider);" 499 | ] 500 | }, 501 | { 502 | "cell_type": "markdown", 503 | "metadata": {}, 504 | "source": [ 505 | "Connected widgets" 506 | ] 507 | }, 508 | { 509 | "cell_type": "code", 510 | "execution_count": 18, 511 | "metadata": {}, 512 | "outputs": [ 513 | { 514 | "data": { 515 | "text/plain": [ 516 | "{'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3, 'Oceania': 4}" 517 | ] 518 | }, 519 | "execution_count": 18, 520 | "metadata": {}, 521 | "output_type": "execute_result" 522 | } 523 | ], 524 | "source": [ 525 | "cont_dict" 526 | ] 527 | }, 528 | { 529 | "cell_type": "code", 530 | "execution_count": 19, 531 | "metadata": {}, 532 | "outputs": [], 533 | "source": [ 534 | "continent_widget = widgets.Dropdown(\n", 535 | " options=cont_dict,\n", 536 | " value=3,\n", 537 | " description='Continent:',\n", 538 | ")" 539 | ] 540 | }, 541 | { 542 | "cell_type": "code", 543 | "execution_count": 20, 544 | "metadata": {}, 545 | "outputs": [], 546 | "source": [ 547 | "new_font_slider = widgets.IntSlider(\n", 548 | " value=18,\n", 549 | " min=10,\n", 550 | " max=40,\n", 551 | " step=2,\n", 552 | " description='Font size:',\n", 553 | " disabled=False,\n", 554 | " \n", 555 | " # Should the figure be updated as the value is being changed?\n", 556 | " continuous_update=False,\n", 557 | " orientation='horizontal',\n", 558 | " \n", 559 | " # Show only decimal values\n", 560 | " readout_format='d'\n", 561 | ")" 562 | ] 563 | }, 564 | { 565 | "cell_type": "code", 566 | "execution_count": 21, 567 | "metadata": {}, 568 | "outputs": [], 569 | "source": [ 570 | "def update_font_range(*args):\n", 571 | " print(args)\n", 572 | " new_font_slider.max = 30 + 2.0 * continent_widget.value\n", 573 | "\n", 574 | "# Tell the continent widget to call update_font_range \n", 575 | "# whenever it's value changes\n", 576 | "continent_widget.observe(update_font_range, 'value')" 577 | ] 578 | }, 579 | { 580 | "cell_type": "code", 581 | "execution_count": 23, 582 | "metadata": { 583 | "scrolled": false 584 | }, 585 | "outputs": [ 586 | { 587 | "data": { 588 | "application/vnd.jupyter.widget-view+json": { 589 | "model_id": "8003beba6e49415eb57842d9aa47b101", 590 | "version_major": 2, 591 | "version_minor": 0 592 | }, 593 | "text/plain": [ 594 | "interactive(children=(Dropdown(description='Continent:', index=3, options={'Africa': 0, 'Americas': 1, 'Asia':…" 595 | ] 596 | }, 597 | "metadata": {}, 598 | "output_type": "display_data" 599 | }, 600 | { 601 | "name": "stdout", 602 | "output_type": "stream", 603 | "text": [ 604 | "({'name': 'value', 'old': 3, 'new': 0, 'owner': Dropdown(description='Continent:', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3, 'Oceania': 4}, value=0), 'type': 'change'},)\n", 605 | "({'name': 'value', 'old': 0, 'new': 4, 'owner': Dropdown(description='Continent:', index=4, options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3, 'Oceania': 4}, value=4), 'type': 'change'},)\n", 606 | "({'name': 'value', 'old': 4, 'new': 0, 'owner': Dropdown(description='Continent:', options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3, 'Oceania': 4}, value=0), 'type': 'change'},)\n", 607 | "({'name': 'value', 'old': 0, 'new': 1, 'owner': Dropdown(description='Continent:', index=1, options={'Africa': 0, 'Americas': 1, 'Asia': 2, 'Europe': 3, 'Oceania': 4}, value=1), 'type': 'change'},)\n" 608 | ] 609 | } 610 | ], 611 | "source": [ 612 | "# Use interact as a function instead of a decorator\n", 613 | "widgets.interact(plot_continent, \n", 614 | " cont = continent_widget, \n", 615 | " log_scale=True, \n", 616 | " font_size=new_font_slider);" 617 | ] 618 | }, 619 | { 620 | "cell_type": "markdown", 621 | "metadata": {}, 622 | "source": [ 623 | "EXTRA: TQDM to quickly generate progress bars" 624 | ] 625 | }, 626 | { 627 | "cell_type": "code", 628 | "execution_count": 24, 629 | "metadata": {}, 630 | "outputs": [], 631 | "source": [ 632 | "from tqdm.notebook import tqdm\n", 633 | "import time" 634 | ] 635 | }, 636 | { 637 | "cell_type": "code", 638 | "execution_count": 25, 639 | "metadata": {}, 640 | "outputs": [ 641 | { 642 | "data": { 643 | "application/vnd.jupyter.widget-view+json": { 644 | "model_id": "672745f3642f407fa3c8c18513558a09", 645 | "version_major": 2, 646 | "version_minor": 0 647 | }, 648 | "text/plain": [ 649 | " 0%| | 0/29 [00:00\n", 691 | " \"Data \n", 692 | "" 693 | ] 694 | } 695 | ], 696 | "metadata": { 697 | "kernelspec": { 698 | "display_name": "Python 3 (ipykernel)", 699 | "language": "python", 700 | "name": "python3" 701 | }, 702 | "language_info": { 703 | "codemirror_mode": { 704 | "name": "ipython", 705 | "version": 3 706 | }, 707 | "file_extension": ".py", 708 | "mimetype": "text/x-python", 709 | "name": "python", 710 | "nbconvert_exporter": "python", 711 | "pygments_lexer": "ipython3", 712 | "version": "3.11.7" 713 | }, 714 | "varInspector": { 715 | "cols": { 716 | "lenName": 16, 717 | "lenType": 16, 718 | "lenVar": 40 719 | }, 720 | "kernels_config": { 721 | "python": { 722 | "delete_cmd_postfix": "", 723 | "delete_cmd_prefix": "del ", 724 | "library": "var_list.py", 725 | "varRefreshCmd": "print(var_dic_list())" 726 | }, 727 | "r": { 728 | "delete_cmd_postfix": ") ", 729 | "delete_cmd_prefix": "rm(", 730 | "library": "var_list.r", 731 | "varRefreshCmd": "cat(var_dic_list()) " 732 | } 733 | }, 734 | "types_to_exclude": [ 735 | "module", 736 | "function", 737 | "builtin_function_or_method", 738 | "instance", 739 | "_Feature" 740 | ], 741 | "window_display": false 742 | } 743 | }, 744 | "nbformat": 4, 745 | "nbformat_minor": 4 746 | } 747 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 Data For Science 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ![GitHub](https://img.shields.io/github/license/DataForScience/InteractiveViz) 2 | [![Twitter @data4sci](https://img.shields.io/twitter/follow/data4sci)](https://twitter.com/intent/follow?screen_name=data4sci) 3 | ![GitHub top language](https://img.shields.io/github/languages/top/DataForScience/InteractiveViz) 4 | ![GitHub repo size](https://img.shields.io/github/repo-size/DataForScience/InteractiveViz) 5 | ![GitHub last commit](https://img.shields.io/github/last-commit/DataForScience/InteractiveViz) 6 | 7 | [![Data For Science](https://img.shields.io/badge/Data_For_Science-Subscribe-blue)](https://data4sci.substack.com/) 8 | [![Data Science Briefing](https://img.shields.io/badge/Data_Science_Briefing-Subscribe-blue)](https://data4sci.com/newsletter) 9 | 10 | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/DataForScience/InteractiveViz/master) 11 | 12 | # Interactive Visualization With Python 13 | ### Code and slides to accompany the online series of webinars: https://data4sci.com/interactive-data-visualization by Data For Science. 14 | 15 | ### Run the code in Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/DataForScience/InteractiveViz/master) 16 | 17 | Our brains are highly developed visual processing machines. We’ve evolved highly sophisticated visual systems to quickly process large quantities of information. The power of visualization rests on its ability to encode data in a way that can be processed intuitively and accurately. 18 | 19 | As the quantity and complexity of data increases, the correct use of visualization will only become more important. In this course, we survey a range of techniques and tools to produce visually appealing and effective interactive visualizations using Jupyter notebooks, Bokeh and Plotly to make your data shine. 20 | 21 | ## Schedule 22 | ### 1. Data Cleaning and Visualization with Pandas 23 | - Data Frames and Series 24 | - GroupBy 25 | - Pivot Tables 26 | - The plot() function 27 | - Customizing pandas plots with matplotlib 28 | - Interactive Pandas plots 29 | Break (10 min) 30 | Q&A (5 min) 31 | 32 | 33 | ### 2. matplotlib animations 34 | - The Matplotlib animation API 35 | - FuncAnimation 36 | - Animation writers 37 | 38 | ### 3. Jupyter ipywidgets 39 | - Ipywidgets as interactive browser controls 40 | - Simple Widget use 41 | - Widget customizing 42 | - Layout 43 | Break (10 min) 44 | Q&A (5 min) 45 | 46 | ### 4. Bokeh 47 | - Basic Plotting 48 | - Styling and Annotations 49 | - Networks 50 | - Geographic Plots 51 | 52 | ### 5. Plotly 53 | - Basic Plotly 54 | - Importing Data 55 | - 3D plotting 56 | - Animated Plots 57 | - Course wrap-up, Q&A, and Next Steps (15 min) 58 | 59 | Slides: https://data4sci.com/landing/interactiveviz 60 | -------------------------------------------------------------------------------- /d4sci.mplstyle: -------------------------------------------------------------------------------- 1 | # Data For Science style 2 | # Author: Bruno Goncalves 3 | # Modified from the matplotlib FiveThirtyEight style by 4 | # Author: Cameron Davidson-Pilon, replicated styles from FiveThirtyEight.com 5 | # See https://www.dataorigami.net/blogs/fivethirtyeight-mpl 6 | 7 | lines.linewidth: 4 8 | lines.solid_capstyle: butt 9 | 10 | legend.fancybox: true 11 | 12 | axes.prop_cycle: cycler('color', ['51a7f9', 'cf51f9', '70bf41', 'f39019', 'f9e351', 'f9517b', '6d904f', '8b8b8b','810f7c']) 13 | 14 | axes.labelsize: large 15 | axes.axisbelow: true 16 | axes.grid: true 17 | axes.edgecolor: f0f0f0 18 | axes.linewidth: 3.0 19 | axes.titlesize: x-large 20 | 21 | patch.edgecolor: f0f0f0 22 | patch.linewidth: 0.5 23 | 24 | svg.fonttype: path 25 | 26 | grid.linestyle: - 27 | grid.linewidth: 1.0 28 | 29 | xtick.major.size: 0 30 | xtick.minor.size: 0 31 | ytick.major.size: 0 32 | ytick.minor.size: 0 33 | 34 | font.size: 24.0 35 | 36 | savefig.edgecolor: f0f0f0 37 | savefig.facecolor: f0f0f0 38 | 39 | figure.subplot.left: 0.08 40 | figure.subplot.right: 0.95 41 | figure.subplot.bottom: 0.07 42 | figure.figsize: 12.8, 8.8 43 | figure.autolayout: True 44 | figure.dpi: 300 45 | -------------------------------------------------------------------------------- /data/D4Sci_logo_ball.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/data/D4Sci_logo_ball.png -------------------------------------------------------------------------------- /data/D4Sci_logo_full.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/data/D4Sci_logo_full.png -------------------------------------------------------------------------------- /data/ages.csv: -------------------------------------------------------------------------------- 1 | Wife,Husband 2 | 43,49 3 | 28,25 4 | 30,40 5 | 57,52 6 | 52,58 7 | 27,32 8 | 52,43 9 | 43,47 10 | 23,31 11 | 25,26 12 | 39,40 13 | 32,35 14 | 35,35 15 | 33,35 16 | 43,47 17 | 35,38 18 | 32,33 19 | 30,32 20 | 40,38 21 | 29,29 22 | 55,59 23 | 25,26 24 | 45,50 25 | 44,49 26 | 40,42 27 | 31,33 28 | 25,27 29 | 51,57 30 | 31,34 31 | 25,28 32 | 35,37 33 | 55,56 34 | 23,27 35 | 35,36 36 | 28,31 37 | 52,57 38 | 53,55 39 | 43,47 40 | 61,64 41 | 23,31 42 | 35,35 43 | 35,36 44 | 39,40 45 | 24,30 46 | 29,32 47 | 21,20 48 | 39,45 49 | 52,59 50 | 52,43 51 | 26,29 52 | 48,47 53 | 53,54 54 | 42,43 55 | 50,54 56 | 64,61 57 | 26,27 58 | 32,27 59 | 31,32 60 | 53,54 61 | 39,37 62 | 45,55 63 | 33,36 64 | 32,32 65 | 55,57 66 | 52,51 67 | 50,50 68 | 32,32 69 | 54,54 70 | 32,34 71 | 41,45 72 | 61,64 73 | 43,55 74 | 28,27 75 | 51,55 76 | 41,41 77 | 41,44 78 | 21,22 79 | 28,30 80 | 47,53 81 | 37,42 82 | 28,31 83 | 35,36 84 | 55,56 85 | 45,46 86 | 34,34 87 | 51,55 88 | 39,44 89 | 35,45 90 | 45,48 91 | 44,44 92 | 47,59 93 | 57,64 94 | 33,34 95 | 38,37 96 | 59,54 97 | 46,49 98 | 60,63 99 | 47,48 100 | 55,64 101 | 45,33 102 | 47,52 103 | 24,27 104 | 32,33 105 | 47,46 106 | 57,54 107 | 46,54 108 | 42,49 109 | 63,62 110 | 32,34 111 | 24,23 112 | 32,36 113 | 56,59 114 | 50,53 115 | 55,55 116 | 58,62 117 | 38,42 118 | 44,50 119 | 35,37 120 | 44,51 121 | 25,25 122 | 43,54 123 | 31,34 124 | 35,43 125 | 41,43 126 | 50,58 127 | 23,28 128 | 43,45 129 | 49,47 130 | 59,57 131 | 38,34 132 | 42,57 133 | 21,27 134 | 42,48 135 | 35,37 136 | 26,25 137 | 57,57 138 | 34,40 139 | 63,61 140 | 23,25 141 | 23,24 142 | 46,47 143 | 40,44 144 | 53,52 145 | 40,45 146 | 22,20 147 | 60,60 148 | 32,36 149 | 24,25 150 | 28,25 151 | 40,35 152 | 48,49 153 | 33,33 154 | 49,50 155 | 64,63 156 | 55,57 157 | 41,41 158 | 38,38 159 | 31,30 160 | 52,52 161 | 43,51 162 | 51,46 163 | 47,50 164 | 32,52 165 | 33,30 166 | 18,20 167 | 45,51 168 | 64,64 169 | 43,44 170 | 39,40 171 | 56,59 -------------------------------------------------------------------------------- /data/gapminder.csv: -------------------------------------------------------------------------------- 1 | Country,GDP,Population,LifeExpectancy,Continent 2 | Algeria,6223.367465,33333216,72.301,0 3 | Angola,4797.231267,12420476,42.731,0 4 | Benin,1441.284873,8078314,56.728,0 5 | Botswana,12569.851770000001,1639131,50.728,0 6 | Burkina Faso,1217.032994,14326203,52.295,0 7 | Burundi,430.07069160000003,8390505,49.58,0 8 | Cameroon,2042.0952399999999,17696293,50.43,0 9 | Central 0n Republic,706.016537,4369038,44.74100000000001,0 10 | Chad,1704.0637239999999,10238807,50.651,0 11 | Comoros,986.1478792000001,710960,65.152,0 12 | Congo Dem. Rep.,277.55185869999997,64606759,46.461999999999996,0 13 | Congo Rep.,3632.557798,3800610,55.321999999999996,0 14 | Cote d'Ivoire,1544.750112,18013409,48.328,0 15 | Djibouti,2082.4815670000003,496374,54.791000000000004,0 16 | Egypt,5581.180998,80264543,71.33800000000001,0 17 | Equatorial Guinea,12154.08975,551201,51.57899999999999,0 18 | Eritrea,641.3695236000001,4906585,58.04,0 19 | Ethiopia,690.8055759,76511887,52.946999999999996,0 20 | Gabon,13206.48452,1454867,56.735,0 21 | Gambia,752.7497265,1688359,59.448,0 22 | Ghana,1327.60891,22873338,60.022,0 23 | Guinea,942.6542111,9947814,56.007,0 24 | Guinea-Bissau,579.2317429999999,1472041,46.388000000000005,0 25 | Kenya,1463.249282,35610177,54.11,0 26 | Lesotho,1569.331442,2012649,42.592,0 27 | Liberia,414.5073415,3193942,45.678000000000004,0 28 | Libya,12057.49928,6036914,73.952,0 29 | Madagascar,1044.770126,19167654,59.443000000000005,0 30 | Malawi,759.3499101,13327079,48.303000000000004,0 31 | Mali,1042.581557,12031795,54.467,0 32 | Mauritania,1803.1514960000002,3270065,64.164,0 33 | Mauritius,10956.99112,1250882,72.801,0 34 | Morocco,3820.17523,33757175,71.164,0 35 | Mozambique,823.6856205,19951656,42.082,0 36 | Namibia,4811.060429,2055080,52.906000000000006,0 37 | Niger,619.6768923999999,12894865,56.867,0 38 | Nigeria,2013.9773050000001,135031164,46.858999999999995,0 39 | Reunion,7670.122558,798094,76.442,0 40 | Rwanda,863.0884639000001,8860588,46.242,0 41 | Sao Tome and Principe,1598.435089,199579,65.528,0 42 | Senegal,1712.4721359999999,12267493,63.062,0 43 | Sierra Leone,862.5407561000001,6144562,42.568000000000005,0 44 | Somalia,926.1410683,9118773,48.159,0 45 | South 0,9269.657808,43997828,49.339,0 46 | Sudan,2602.394995,42292929,58.556000000000004,0 47 | Swaziland,4513.480643,1133066,39.613,0 48 | Tanzania,1107.482182,38139640,52.516999999999996,0 49 | Togo,882.9699437999999,5701579,58.42,0 50 | Tunisia,7092.923025,10276158,73.923,0 51 | Uganda,1056.3801210000001,29170398,51.542,0 52 | Zambia,1271.211593,11746035,42.38399999999999,0 53 | Zimbabwe,469.70929810000007,12311143,43.486999999999995,0 54 | Argentina,12779.379640000001,40301927,75.32,1 55 | Bolivia,3822.1370840000004,9119152,65.554,1 56 | Brazil,9065.800825,190010647,72.39,1 57 | Canada,36319.235010000004,33390141,80.653,1 58 | Chile,13171.63885,16284741,78.553,1 59 | Colombia,7006.580419,44227550,72.889,1 60 | Costa Rica,9645.06142,4133884,78.782,1 61 | Cuba,8948.102923,11416987,78.273,1 62 | Dominican Republic,6025.374752000001,9319622,72.235,1 63 | Ecuador,6873.262326000001,13755680,74.994,1 64 | El Salvador,5728.353514,6939688,71.878,1 65 | Guatemala,5186.050003,12572928,70.259,1 66 | Haiti,1201.637154,8502814,60.916000000000004,1 67 | Honduras,3548.3308460000003,7483763,70.19800000000001,1 68 | Jamaica,7320.880262000001,2780132,72.567,1 69 | Mexico,11977.57496,108700891,76.195,1 70 | Nicaragua,2749.320965,5675356,72.899,1 71 | Panama,9809.185636,3242173,75.53699999999999,1 72 | Paraguay,4172.838464,6667147,71.752,1 73 | Peru,7408.905561,28674757,71.421,1 74 | Puerto Rico,19328.70901,3942491,78.74600000000001,1 75 | Trinidad and Tobago,18008.50924,1056608,69.819,1 76 | United States,42951.65309,301139947,78.242,1 77 | Uruguay,10611.46299,3447496,76.384,1 78 | Venezuela,11415.805690000001,26084662,73.747,1 79 | Afghanistan,974.5803384,31889923,43.828,2 80 | Bahrain,29796.048339999998,708573,75.635,2 81 | Bangladesh,1391.253792,150448339,64.062,2 82 | Cambodia,1713.7786859999999,14131858,59.723,2 83 | China,4959.1148539999995,1318683096,72.961,2 84 | Hong Kong China,39724.97867,6980412,82.208,2 85 | India,2452.210407,1110396331,64.69800000000001,2 86 | Indonesia,3540.6515640000002,223547000,70.65,2 87 | Iran,11605.71449,69453570,70.964,2 88 | Iraq,4471.061906,27499638,59.545,2 89 | Israel,25523.2771,6426679,80.745,2 90 | Japan,31656.06806,127467972,82.603,2 91 | Jordan,4519.461171,6053193,72.535,2 92 | Korea Dem. Rep.,1593.06548,23301725,67.297,2 93 | Korea Rep.,23348.139730000003,49044790,78.623,2 94 | Kuwait,47306.98978,2505559,77.58800000000001,2 95 | Lebanon,10461.05868,3921278,71.993,2 96 | Malaysia,12451.6558,24821286,74.241,2 97 | Mongolia,3095.7722710000003,2874127,66.803,2 98 | Myanmar,944.0,47761980,62.068999999999996,2 99 | Nepal,1091.359778,28901790,63.785,2 100 | Oman,22316.19287,3204897,75.64,2 101 | Pakistan,2605.94758,169270617,65.483,2 102 | Philippines,3190.481016,91077287,71.688,2 103 | Saudi Arabia,21654.83194,27601038,72.777,2 104 | Singapore,47143.179639999995,4553009,79.972,2 105 | Sri Lanka,3970.0954070000003,20378239,72.396,2 106 | Syria,4184.548089,19314747,74.143,2 107 | Taiwan,28718.27684,23174294,78.4,2 108 | Thailand,7458.3963269999995,65068149,70.616,2 109 | Vietnam,2441.576404,85262356,74.249,2 110 | West Bank and Gaza,3025.349798,4018332,73.422,2 111 | Yemen Rep.,2280.769906,22211743,62.698,2 112 | Albania,5937.029525999999,3600523,76.423,3 113 | Austria,36126.4927,8199783,79.829,3 114 | Belgium,33692.60508,10392226,79.441,3 115 | Bosnia and Herzegovina,7446.298803,4552198,74.852,3 116 | Bulgaria,10680.79282,7322858,73.005,3 117 | Croatia,14619.222719999998,4493312,75.748,3 118 | Czech Republic,22833.30851,10228744,76.486,3 119 | Denmark,35278.41874,5468120,78.332,3 120 | Finland,33207.0844,5238460,79.313,3 121 | France,30470.0167,61083916,80.657,3 122 | Germany,32170.37442,82400996,79.406,3 123 | Greece,27538.41188,10706290,79.483,3 124 | Hungary,18008.94444,9956108,73.33800000000001,3 125 | Iceland,36180.789189999996,301931,81.757,3 126 | Ireland,40675.99635,4109086,78.885,3 127 | Italy,28569.7197,58147733,80.546,3 128 | Montenegro,9253.896111,684736,74.543,3 129 | Netherlands,36797.93332,16570613,79.762,3 130 | Norway,49357.19017,4627926,80.196,3 131 | Poland,15389.924680000002,38518241,75.563,3 132 | Portugal,20509.64777,10642836,78.098,3 133 | Romania,10808.47561,22276056,72.476,3 134 | Serbia,9786.534714,10150265,74.002,3 135 | Slovak Republic,18678.31435,5447502,74.663,3 136 | Slovenia,25768.25759,2009245,77.926,3 137 | Spain,28821.0637,40448191,80.941,3 138 | Sweden,33859.74835,9031088,80.884,3 139 | Switzerland,37506.419069999996,7554661,81.70100000000001,3 140 | Turkey,8458.276384,71158647,71.777,3 141 | United Kingdom,33203.26128,60776238,79.425,3 142 | Australia,34435.367439999995,20434176,81.235,4 143 | New Zealand,25185.00911,4115771,80.204,4 144 | -------------------------------------------------------------------------------- /data/green_tripdata_2014-04.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/data/green_tripdata_2014-04.csv.gz -------------------------------------------------------------------------------- /data/volcano.csv: -------------------------------------------------------------------------------- 1 | V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18,V19,V20,V21,V22,V23,V24,V25,V26,V27,V28,V29,V30,V31,V32,V33,V34,V35,V36,V37,V38,V39,V40,V41,V42,V43,V44,V45,V46,V47,V48,V49,V50,V51,V52,V53,V54,V55,V56,V57,V58,V59,V60,V61 2 | 100,100,101,101,101,101,101,100,100,100,101,101,102,102,102,102,103,104,103,102,101,101,102,103,104,104,105,107,107,107,108,108,110,110,110,110,110,110,110,110,108,108,108,107,107,108,108,108,108,108,107,107,107,107,106,106,105,105,104,104,103 3 | 101,101,102,102,102,102,102,101,101,101,102,102,103,103,103,103,104,105,104,103,102,102,103,105,106,106,107,109,110,110,110,110,111,112,113,114,116,115,114,112,110,110,110,109,108,109,109,109,109,108,108,108,108,107,107,106,106,105,105,104,104 4 | 102,102,103,103,103,103,103,102,102,102,103,103,104,104,104,104,105,106,105,104,104,105,106,107,108,110,111,113,114,115,114,115,116,118,119,119,121,121,120,118,116,114,112,111,110,110,110,110,109,109,109,109,108,108,107,107,106,106,105,105,104 5 | 103,103,104,104,104,104,104,103,103,103,103,104,104,104,105,105,106,107,106,106,106,107,108,110,111,114,117,118,117,119,120,121,122,124,125,126,127,127,126,124,122,120,117,116,113,111,110,110,110,109,109,109,109,108,108,107,107,106,106,105,105 6 | 104,104,105,105,105,105,105,104,104,103,104,104,105,105,105,106,107,108,108,108,109,110,112,114,115,118,121,122,121,123,128,131,129,130,131,131,132,132,131,130,128,126,122,119,115,114,112,110,110,110,110,110,109,109,108,107,107,107,106,106,105 7 | 105,105,105,106,106,106,106,105,105,104,104,105,105,106,106,107,109,110,110,112,113,115,116,118,119,121,124,126,126,129,134,137,137,136,136,135,136,136,136,135,133,129,126,122,118,116,115,113,111,110,110,110,110,109,108,108,108,107,107,106,106 8 | 105,106,106,107,107,107,107,106,106,105,105,106,106,107,108,109,111,113,114,116,118,120,121,122,123,125,127,129,130,135,140,142,142,142,141,140,140,140,140,139,137,134,129,125,121,118,116,114,112,110,110,110,111,110,109,109,108,108,107,107,106 9 | 106,107,107,108,108,108,108,107,107,106,106,107,108,108,110,113,115,117,118,120,122,124,125,127,128,129,131,134,135,141,146,147,146,146,145,144,144,144,143,142,141,139,135,130,126,122,118,116,114,112,112,113,112,110,110,109,109,108,108,107,106 10 | 107,108,108,109,109,109,109,108,108,107,108,108,110,111,113,116,118,120,123,125,127,129,130,132,134,135,137,139,142,146,152,152,151,151,150,149,148,148,146,145,143,142,139,135,131,127,122,119,117,115,115,115,114,112,110,110,109,109,108,107,107 11 | 108,109,109,110,110,110,110,109,109,108,110,110,113,116,118,120,122,125,127,129,133,136,138,140,141,142,148,150,151,156,158,159,158,157,158,158,154,151,149,148,146,144,141,137,134,130,125,122,120,118,117,117,115,113,111,110,110,109,108,107,107 12 | 109,110,110,111,111,111,111,110,110,110,112,114,118,121,123,125,127,129,133,137,141,143,145,146,148,150,154,156,159,161,162,163,164,163,164,164,160,157,154,151,149,146,144,140,137,133,129,126,124,121,119,118,116,114,112,111,110,109,108,107,106 13 | 110,110,111,113,112,111,113,112,112,114,116,119,121,124,127,129,133,138,143,146,149,149,151,153,154,157,159,160,163,165,166,167,168,168,168,168,166,162,159,157,154,152,149,144,140,136,133,131,128,125,122,119,117,115,113,111,110,109,108,107,106 14 | 110,111,113,115,114,113,114,114,115,117,119,121,124,126,129,133,140,145,150,154,155,155,157,159,161,162,164,165,167,168,169,170,172,174,172,172,171,169,166,163,161,158,153,148,143,140,137,134,131,128,125,120,118,116,114,112,110,109,108,107,105 15 | 111,113,115,117,116,115,116,117,117,119,121,124,126,128,132,137,143,151,156,161,161,162,163,165,166,167,168,170,171,173,175,177,179,178,177,176,176,174,171,169,165,161,156,152,148,144,140,138,135,131,127,123,119,117,115,113,111,110,108,106,105 16 | 114,115,117,117,117,118,119,119,120,121,124,126,128,131,137,143,150,156,160,163,165,168,170,171,172,173,174,175,177,179,180,182,183,183,183,183,180,178,177,172,168,164,160,156,152,148,144,141,138,134,130,126,121,117,114,112,110,110,108,106,104 17 | 116,118,118,118,120,121,121,122,122,123,125,128,130,134,141,147,152,156,160,165,168,170,174,176,179,180,181,181,182,182,183,184,186,187,187,184,184,181,180,176,172,168,165,161,157,153,149,145,142,138,133,129,125,120,115,111,110,110,108,106,104 18 | 118,120,120,121,122,123,124,124,125,126,127,129,132,135,142,149,153,157,161,166,170,174,178,180,182,183,184,184,185,186,186,187,189,189,189,189,189,186,182,179,175,171,168,165,162,157,152,149,145,141,137,131,125,120,116,111,110,110,108,106,104 19 | 120,121,122,123,124,125,126,127,127,128,130,132,134,137,142,151,155,158,162,169,172,176,181,183,184,186,187,188,189,189,189,189,190,190,191,190,190,188,186,183,180,175,171,168,165,161,157,152,149,145,141,134,127,121,116,112,110,110,108,106,104 20 | 120,122,125,126,126,127,128,129,130,130,132,134,136,139,145,152,157,160,167,172,175,178,181,185,186,188,190,191,192,193,193,192,192,191,192,191,191,190,190,187,184,181,177,172,169,165,161,156,152,147,143,139,131,123,119,115,111,110,108,106,105 21 | 121,124,126,128,129,129,130,131,132,133,135,137,139,143,150,154,159,164,170,173,176,179,184,186,189,190,191,192,193,194,195,194,193,192,191,191,191,191,190,190,188,184,181,177,173,169,165,160,155,149,145,142,136,129,123,118,114,110,108,108,107 22 | 122,125,127,130,130,131,133,134,135,136,137,140,143,147,154,158,162,166,171,174,177,181,186,189,190,190,191,192,191,191,190,189,188,189,190,190,191,190,190,190,189,186,184,181,177,173,169,164,158,152,148,144,140,134,125,118,115,111,110,108,107 23 | 122,125,128,130,132,133,135,136,137,139,140,143,147,152,157,161,164,168,172,175,179,182,186,190,190,190,190,189,187,184,184,183,182,182,183,183,183,184,185,186,187,186,185,184,181,177,173,169,163,157,149,145,141,136,130,119,116,112,110,108,106 24 | 123,126,129,131,133,135,137,138,139,141,143,147,150,156,161,164,167,170,173,177,181,184,187,188,190,189,187,185,183,179,176,174,174,174,174,174,176,177,179,180,182,183,182,181,181,180,176,171,166,160,152,147,142,138,133,126,121,115,110,106,105 25 | 124,127,130,132,135,137,138,140,142,144,147,149,154,157,161,165,168,171,175,178,181,184,186,187,187,184,184,181,179,175,171,169,168,168,168,169,170,172,174,177,178,179,180,181,181,180,179,174,167,161,155,148,144,139,134,128,121,115,110,106,105 26 | 123,128,131,133,136,138,140,142,144,146,149,151,154,157,160,164,168,172,175,178,181,183,184,184,185,183,180,177,174,170,167,165,164,164,164,165,166,168,171,175,176,178,180,181,180,180,179,177,170,163,157,150,144,139,134,128,121,115,110,108,107 27 | 123,127,131,134,136,138,140,142,144,147,149,151,154,157,160,164,168,171,174,178,180,181,181,182,183,181,178,173,169,166,163,161,161,160,160,161,163,165,168,173,176,178,179,180,181,180,180,175,173,166,159,152,145,139,134,127,121,115,110,109,108 28 | 120,124,128,131,134,137,139,142,144,146,149,151,153,156,160,163,167,171,174,178,180,180,180,180,180,180,175,171,167,162,160,158,157,157,157,158,159,162,166,170,175,177,178,180,181,181,180,178,175,169,160,154,148,140,134,128,121,115,110,110,109 29 | 118,121,125,129,132,134,137,140,142,145,147,149,151,155,159,163,166,169,173,177,179,180,180,180,180,179,174,169,166,161,158,156,154,153,153,154,156,159,163,169,173,175,178,180,181,180,180,179,175,170,160,154,149,142,135,128,122,116,111,110,110 30 | 117,120,121,125,129,132,135,138,140,143,145,147,149,153,157,160,163,166,171,174,177,179,180,180,180,179,172,168,164,160,157,154,151,149,150,150,154,158,164,169,174,178,180,180,180,180,178,177,175,170,161,153,148,142,135,129,123,116,113,112,110 31 | 115,118,120,122,126,130,133,136,138,141,143,145,148,151,154,157,160,163,168,171,174,177,179,179,179,176,171,167,164,160,156,153,149,148,149,151,155,158,163,170,173,177,179,180,180,180,178,175,173,171,162,154,147,141,136,130,124,117,115,112,110 32 | 114,116,118,120,122,127,131,133,136,138,141,143,146,148,151,154,157,160,164,168,171,174,178,178,179,177,173,169,165,161,157,154,151,149,150,152,155,159,166,171,175,177,179,180,180,179,176,174,171,168,159,151,146,141,135,129,124,119,116,113,110 33 | 115,114,116,118,120,122,127,129,132,136,139,141,143,146,148,151,153,156,160,164,167,172,174,176,177,176,173,170,166,162,159,157,154,153,154,155,158,161,169,172,174,176,178,178,178,178,175,172,169,162,156,149,144,140,134,128,123,118,115,112,110 34 | 113,113,114,116,118,120,122,125,129,133,136,138,141,143,146,149,150,153,156,160,165,170,173,176,176,176,173,172,169,165,163,160,158,157,158,159,161,166,170,170,173,175,176,178,176,173,171,168,164,158,153,146,140,137,132,127,121,117,113,111,110 35 | 111,112,113,114,116,118,120,122,126,130,133,136,139,142,145,147,148,151,155,158,163,168,173,176,177,177,176,174,171,169,166,164,161,161,162,164,165,167,170,170,171,173,173,173,170,168,165,163,160,155,149,143,138,134,130,125,119,116,112,110,109 36 | 110,112,113,113,114,116,118,120,123,127,131,134,137,141,143,145,148,150,154,157,161,166,171,176,178,178,178,176,174,172,170,167,167,167,166,168,170,169,168,167,168,168,168,168,167,165,163,160,156,152,146,140,136,131,128,122,118,114,110,110,109 37 | 109,110,111,112,114,116,118,119,120,124,128,131,136,140,142,145,147,150,153,157,160,165,170,174,178,179,179,178,178,176,174,171,170,170,170,168,167,166,164,163,161,162,163,163,163,161,160,157,153,148,142,136,130,127,124,120,117,113,110,110,109 38 | 108,109,111,112,114,116,117,118,120,121,125,128,132,138,142,144,147,149,153,156,160,164,170,174,178,180,180,179,179,178,176,172,170,170,170,168,166,164,162,160,157,156,157,158,158,156,153,151,149,144,139,130,127,124,121,118,115,112,110,110,109 39 | 108,109,111,113,114,116,117,118,119,120,122,126,130,135,139,143,147,149,152,156,160,164,169,173,177,180,180,180,180,179,178,174,170,170,168,167,165,163,161,157,154,153,152,152,152,149,148,147,144,140,134,128,125,122,119,117,114,110,110,109,109 40 | 107,108,111,112,114,115,116,117,119,120,121,124,128,133,137,141,145,149,152,156,160,164,168,172,176,179,180,180,180,179,178,174,170,168,166,165,163,161,158,154,150,149,148,146,145,143,143,143,140,136,130,126,123,120,118,115,112,110,110,109,109 41 | 107,108,110,112,113,113,115,116,118,120,122,125,128,132,136,140,145,148,150,155,160,164,167,170,174,177,179,179,178,176,176,173,169,166,164,163,161,159,155,152,148,145,143,141,140,139,139,138,136,132,128,124,121,118,116,114,111,110,110,109,108 42 | 107,108,109,111,113,114,116,117,119,120,122,125,128,132,137,141,144,146,149,152,157,162,166,168,171,173,175,175,173,172,172,171,168,165,162,160,158,156,153,149,145,142,139,138,137,136,135,133,131,129,126,122,119,117,114,112,110,110,109,108,107 43 | 108,109,110,112,114,115,116,117,119,120,122,126,129,133,137,141,143,146,148,151,155,160,164,167,168,169,170,170,169,168,167,168,166,163,160,158,155,153,150,147,143,140,137,136,134,133,132,130,129,127,125,121,118,115,112,110,110,110,108,107,107 44 | 109,110,111,113,115,116,117,118,120,121,123,126,129,133,138,141,143,146,148,150,155,159,163,165,166,167,168,168,166,165,164,161,160,159,158,155,152,149,147,144,141,138,135,134,132,130,129,128,126,124,122,120,117,113,111,110,110,110,108,107,107 45 | 110,111,112,113,116,117,118,119,120,122,125,127,130,133,138,141,143,146,148,150,154,159,162,163,164,166,166,166,165,163,161,159,157,156,155,153,150,146,143,140,138,136,133,132,130,129,128,125,124,122,120,119,117,114,111,110,110,109,108,107,107 46 | 111,112,113,114,116,117,118,119,120,123,125,128,130,134,139,141,144,146,148,151,154,158,161,164,166,167,168,166,165,163,161,158,156,154,152,150,146,142,139,137,135,133,131,130,129,128,127,125,123,121,120,118,116,113,111,110,110,109,108,107,106 47 | 111,112,113,115,117,118,118,120,121,124,126,128,131,135,139,142,144,146,148,151,155,160,164,165,168,169,169,168,166,163,160,158,156,153,151,148,145,142,139,137,135,132,130,129,127,126,125,124,123,120,120,117,116,114,112,110,110,108,107,106,106 48 | 112,113,114,116,117,118,119,120,122,124,127,129,132,135,139,142,144,146,149,152,157,162,167,169,170,170,170,168,165,163,161,159,157,155,151,148,145,141,139,136,134,132,130,128,127,126,124,123,122,120,119,117,116,114,112,111,109,107,106,106,105 49 | 113,114,115,116,117,119,119,120,122,125,127,129,132,135,139,142,144,147,149,154,159,164,169,170,170,170,170,170,168,165,163,161,158,155,151,148,145,142,139,137,135,132,131,128,126,125,124,122,121,120,119,117,115,113,111,110,109,106,105,105,104 50 | 113,114,115,117,118,119,120,121,123,125,127,130,132,135,139,142,145,148,150,156,161,166,170,170,170,170,170,170,169,166,163,161,159,155,151,148,146,143,140,138,135,134,132,130,127,125,123,121,120,120,119,116,114,112,110,110,108,106,105,104,104 51 | 114,115,116,117,118,119,120,121,123,126,128,130,133,136,139,142,145,148,152,157,161,166,168,170,170,170,170,168,166,164,163,160,159,155,151,148,146,143,141,138,136,134,132,130,128,125,123,121,120,120,118,116,113,111,110,110,109,106,105,104,104 52 | 115,116,117,118,119,120,121,121,123,126,128,131,134,136,139,142,145,149,152,157,161,163,164,166,168,167,166,164,163,161,160,158,156,152,149,147,144,143,141,139,136,134,132,130,128,125,122,120,120,119,117,115,113,110,110,109,107,106,105,104,104 53 | 115,116,117,118,119,120,121,122,123,125,128,131,134,137,139,142,145,149,152,156,159,159,160,162,162,161,161,160,159,158,157,155,153,150,148,146,145,143,142,140,137,134,131,129,126,124,122,120,119,117,115,113,111,110,109,109,107,106,105,104,104 54 | 114,115,116,116,118,119,120,121,122,126,129,132,135,137,140,143,146,149,152,155,156,157,158,159,159,159,158,158,157,155,153,151,150,149,147,146,145,144,142,141,138,135,132,128,125,122,120,118,117,115,113,112,110,109,108,108,106,105,105,104,104 55 | 113,114,115,116,117,118,119,120,123,126,129,132,135,138,140,143,146,148,151,153,154,156,157,157,157,157,156,155,154,152,150,149,148,147,146,145,144,142,141,140,139,136,132,129,125,121,118,116,115,113,111,110,109,108,108,107,106,105,104,104,104 56 | 112,113,114,115,116,117,119,120,122,126,130,133,136,138,141,143,146,148,150,152,154,155,155,155,155,155,154,152,152,150,148,147,146,145,145,143,142,141,140,140,140,137,133,129,125,120,117,115,111,110,110,109,108,107,107,106,105,105,104,104,103 57 | 111,112,114,115,116,117,118,120,122,125,131,134,137,139,142,144,146,148,150,152,153,153,153,153,153,153,153,151,149,147,146,144,144,143,143,142,141,140,140,140,140,138,134,130,123,120,118,111,110,110,110,108,107,106,108,105,105,104,104,103,103 58 | 111,112,113,115,115,116,117,119,121,126,131,135,138,140,142,144,146,148,150,151,151,151,151,151,151,151,151,150,148,146,144,142,141,141,142,141,140,140,140,140,140,140,136,132,126,120,115,110,110,110,109,107,106,105,107,105,104,104,104,103,103 59 | 112,113,113,114,115,116,117,119,122,127,132,135,139,141,143,145,147,149,150,150,150,150,150,150,150,150,150,149,147,144,142,141,140,140,140,140,140,140,140,140,140,140,137,133,128,120,117,110,110,110,108,106,105,105,106,105,104,104,103,103,103 60 | 112,113,114,114,116,117,118,120,122,128,132,136,139,141,144,146,147,149,150,150,150,150,150,150,150,150,150,149,146,143,141,140,140,139,139,139,140,140,140,140,140,140,137,133,129,121,118,110,110,109,107,106,105,105,105,104,104,103,103,103,102 61 | 112,114,114,115,116,117,119,120,122,128,133,136,140,142,144,146,148,150,150,150,150,150,150,150,150,150,150,148,145,142,140,138,138,138,137,138,140,140,140,140,140,140,137,134,130,122,118,110,110,108,106,105,103,104,104,104,104,103,103,102,102 62 | 113,114,115,116,116,117,118,120,123,129,133,137,140,142,144,146,149,150,150,150,150,150,150,150,150,150,150,147,143,141,139,137,136,136,135,136,138,140,140,140,140,139,136,134,130,123,119,113,109,108,106,104,103,104,104,104,103,103,102,102,101 63 | 114,115,115,116,117,118,118,120,123,129,133,137,140,143,145,147,150,150,150,150,150,150,150,150,150,150,148,145,142,139,138,136,135,134,134,134,136,138,137,138,139,137,134,132,125,122,117,114,109,107,105,103,102,104,104,103,103,102,102,101,101 64 | 114,115,116,117,117,119,118,120,123,128,132,136,139,142,145,148,150,150,150,150,150,150,150,150,150,150,147,144,141,139,136,135,134,133,132,132,134,134,134,134,135,133,131,128,124,120,116,113,110,107,104,102,102,103,103,103,102,102,102,101,100 65 | 115,116,116,117,118,119,119,120,124,128,132,136,139,142,145,148,150,150,150,150,150,150,150,150,150,149,146,143,140,138,135,134,133,131,131,131,131,131,131,131,130,127,124,122,119,117,115,112,109,106,104,101,102,103,103,102,102,102,101,100,100 66 | 115,116,117,118,118,119,120,123,125,128,131,135,138,141,145,148,150,150,150,150,150,150,150,150,150,147,145,142,139,137,134,132,131,130,129,128,128,128,128,128,126,123,121,119,116,114,112,110,108,105,103,101,103,103,103,102,102,101,100,100,100 67 | 116,117,118,118,119,120,122,123,125,128,131,134,137,141,145,148,149,150,150,150,150,150,150,150,148,145,143,141,138,135,133,130,129,128,127,126,125,125,125,124,123,120,118,116,114,111,109,107,106,104,102,100,101,101,102,102,101,100,100,100,100 68 | 116,117,118,119,120,121,123,124,126,128,130,133,137,140,144,145,147,148,149,150,149,149,147,146,144,141,139,136,133,131,129,128,127,126,125,124,123,123,122,121,120,118,116,114,112,108,107,105,103,102,100,100,100,100,101,101,100,100,100,100,100 69 | 117,118,119,119,120,121,123,124,126,128,129,131,135,139,142,143,145,146,147,147,147,146,144,142,140,138,135,133,130,128,127,126,125,124,123,122,121,120,119,118,117,115,114,112,110,106,105,102,101,100,100,100,100,100,100,100,100,99,99,99,99 70 | 117,118,119,120,120,121,123,124,125,126,128,129,132,137,140,142,143,143,144,144,144,143,141,139,137,135,133,130,128,127,126,125,123,122,121,120,119,117,116,115,114,112,111,108,107,105,100,100,100,100,100,100,100,99,99,99,99,99,99,99,98 71 | 116,117,118,120,120,121,122,123,124,125,126,128,130,134,139,140,141,141,141,141,141,140,138,136,134,133,131,129,127,125,124,123,122,120,119,118,117,116,114,112,111,108,109,106,106,100,100,100,100,100,99,99,99,99,99,99,99,98,98,98,97 72 | 114,115,116,117,119,119,120,121,122,123,125,127,129,133,136,134,134,136,138,138,137,137,135,133,132,130,129,127,125,124,122,121,120,119,117,116,115,114,112,110,109,108,107,105,105,100,100,100,100,99,99,99,98,98,98,98,98,97,97,97,97 73 | 112,113,114,115,116,116,117,119,120,122,124,126,127,129,129,128,127,129,132,133,133,133,133,131,129,127,126,125,124,122,121,119,118,117,116,114,113,112,110,109,108,106,106,105,100,100,100,98,98,98,98,98,98,97,97,97,97,97,97,97,96 74 | 109,111,112,112,113,113,113,114,116,119,121,123,124,125,124,123,123,123,125,127,129,129,128,128,127,125,124,123,122,121,119,118,117,116,114,113,112,110,109,108,107,106,105,100,100,100,97,97,97,97,97,97,97,96,96,96,96,96,96,96,96 75 | 106,107,108,108,109,110,110,112,113,114,117,119,120,121,119,117,117,117,118,120,123,124,125,125,125,123,121,120,120,119,118,117,116,115,114,113,111,109,109,107,106,105,100,100,100,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96 76 | 104,105,105,106,106,107,108,108,109,109,111,115,116,114,113,112,111,110,111,113,116,119,122,122,122,121,120,119,118,118,117,116,115,114,113,112,111,108,108,106,105,100,100,100,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96 77 | 102,103,103,104,104,105,106,106,107,108,109,111,112,110,109,108,108,108,108,109,110,112,116,117,117,118,118,118,117,116,116,115,114,113,112,111,110,107,107,105,100,100,100,97,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96 78 | 101,102,103,103,104,105,105,106,106,107,108,109,109,107,106,106,105,105,105,106,107,108,109,110,111,113,114,115,115,115,114,113,112,111,110,108,108,106,105,100,100,100,97,97,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96 79 | 100,101,102,102,103,103,104,104,105,106,106,107,106,106,106,105,105,104,103,103,104,105,107,108,110,111,111,112,112,113,113,112,111,110,108,107,106,105,100,100,100,98,97,97,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96 80 | 100,101,101,102,102,103,103,104,104,105,105,105,105,106,105,105,104,103,102,101,102,103,104,106,107,110,111,111,111,112,112,112,110,107,107,106,105,102,100,100,99,98,97,97,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,95 81 | 99,100,101,102,102,103,103,103,104,104,104,104,103,104,104,104,104,102,101,101,102,103,104,105,107,110,111,111,111,111,111,111,108,106,105,105,102,101,100,99,99,98,97,97,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,95,95 82 | 99,100,100,101,101,102,102,102,103,103,103,103,102,103,103,104,103,102,101,101,101,102,103,104,106,109,110,111,111,111,110,110,107,105,103,104,100,100,99,99,98,98,97,97,96,96,96,96,96,96,96,96,96,96,95,95,95,95,95,95,95 83 | 99,100,100,100,101,101,101,102,102,103,102,102,101,102,102,103,103,101,101,100,101,101,102,103,105,109,110,110,111,110,110,109,106,105,100,102,100,99,99,99,98,98,97,97,96,96,96,96,96,96,95,95,95,95,95,95,95,95,95,95,94 84 | 99,99,99,99,100,100,101,101,102,102,101,101,101,101,101,102,102,101,100,100,101,101,101,103,104,107,109,109,110,110,109,108,105,102,100,100,99,99,99,98,98,98,97,96,96,96,96,96,95,95,95,95,95,95,95,94,94,94,94,94,94 85 | 98,99,99,99,99,100,100,101,101,102,101,100,100,100,101,101,101,100,100,100,100,101,101,101,103,106,107,109,109,109,109,107,104,101,100,99,99,99,98,98,98,97,96,96,96,96,95,95,95,95,95,95,95,94,94,94,94,94,94,94,94 86 | 98,98,98,99,99,99,100,100,101,101,100,100,99,99,100,100,100,100,100,100,100,101,101,101,102,105,106,109,108,109,107,105,102,100,100,99,99,98,98,98,97,96,96,96,96,95,95,95,95,95,95,94,94,94,94,94,94,94,94,94,94 87 | 97,98,98,98,99,99,99,100,100,100,100,100,99,99,99,100,100,100,100,100,100,100,101,101,101,103,104,105,106,105,104,101,100,100,99,99,98,98,97,97,97,96,96,96,95,95,95,95,95,94,94,94,94,94,94,94,94,94,94,94,94 88 | 97,97,97,98,98,99,99,99,100,100,100,99,99,99,99,99,100,100,100,100,100,100,101,101,100,100,100,100,100,100,100,100,100,100,99,99,98,97,97,97,96,96,96,95,95,95,95,94,94,94,94,94,94,94,94,94,94,94,94,94,94 89 | -------------------------------------------------------------------------------- /data/volcano.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/data/volcano.gif -------------------------------------------------------------------------------- /data/volcano.mov: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/data/volcano.mov -------------------------------------------------------------------------------- /data/volcano.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/data/volcano.mp4 -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | dependencies: 2 | - bokeh==3.3.4 3 | - ipython==8.21.0 4 | - ipywidgets==8.1.1 5 | - matplotlib==3.8.2 6 | - networkx==3.2.1 7 | - numpy==1.26.4 8 | - pandas==2.2.1 9 | - plotly==5.18.0 10 | - tqdm==4.66.1 11 | - watermark==2.4.3 12 | -------------------------------------------------------------------------------- /slides/InteractiveViz.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DataForScience/InteractiveViz/446792f6c4b915c0f1b5bc36db2eefbc06954f54/slides/InteractiveViz.pdf --------------------------------------------------------------------------------