├── ARCH_Approach_to_Index_2k18_Stocks.ipynb ├── ARIMA_Approach_to_Index_2k18_Stocks.ipynb ├── ARMA_Approach_to_Index2k18_Stocks.ipynb ├── Bitcoins_TSA.ipynb ├── Delhi_Climate_TSA.ipynb ├── Flights_TSA.ipynb ├── LICENSE ├── README.md └── The_Doge_Tale.ipynb /ARIMA_Approach_to_Index_2k18_Stocks.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "ARIMA Approach to Index 2k18 Stocks.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyOPEHXEUoHhaXDWGs5qQXU/", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "markdown", 32 | "metadata": { 33 | "id": "ZRLeWWpij1nI" 34 | }, 35 | "source": [ 36 | "### 1. Importing the necessary packages" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "metadata": { 42 | "colab": { 43 | "base_uri": "https://localhost:8080/" 44 | }, 45 | "id": "AoUNIabKjuzF", 46 | "outputId": "c3249d16-8242-42c9-8d7b-32ed3f4c4297" 47 | }, 48 | "source": [ 49 | "## Base packages\n", 50 | "import pandas as pd\n", 51 | "import numpy as np\n", 52 | "import matplotlib.pyplot as plt\n", 53 | "from math import sqrt\n", 54 | "import seaborn as sns\n", 55 | "sns.set()\n", 56 | "import warnings\n", 57 | "warnings.filterwarnings(\"ignore\")\n", 58 | "\n", 59 | "## For statistical modelling and ARIMA\n", 60 | "import statsmodels.graphics.tsaplots as sgt\n", 61 | "import statsmodels.tsa.stattools as sts\n", 62 | "from statsmodels.tsa.arima_model import ARIMA\n", 63 | "from scipy.stats.distributions import chi2 \n", 64 | "\n", 65 | "print(\"All the necessary packages have imported successfully!\")" 66 | ], 67 | "execution_count": 7, 68 | "outputs": [ 69 | { 70 | "output_type": "stream", 71 | "text": [ 72 | "All the necessary packages have imported successfully!\n" 73 | ], 74 | "name": "stdout" 75 | } 76 | ] 77 | }, 78 | { 79 | "cell_type": "markdown", 80 | "metadata": { 81 | "id": "GzMbpKGxkMti" 82 | }, 83 | "source": [ 84 | "### 2. Importing the Dataset" 85 | ] 86 | }, 87 | { 88 | "cell_type": "code", 89 | "metadata": { 90 | "colab": { 91 | "base_uri": "https://localhost:8080/", 92 | "height": 356 93 | }, 94 | "id": "yTmRTXTUkIF6", 95 | "outputId": "4df80f86-ba19-4c62-9cef-fa2c92b1d1bf" 96 | }, 97 | "source": [ 98 | "raw_csv_data = pd.read_csv(\"https://raw.githubusercontent.com/MainakRepositor/Datasets-/master/Index2018.csv\") \n", 99 | "df_comp=raw_csv_data.copy()\n", 100 | "df_comp.head(10)" 101 | ], 102 | "execution_count": 4, 103 | "outputs": [ 104 | { 105 | "output_type": "execute_result", 106 | "data": { 107 | "text/html": [ 108 | "
\n", 109 | "\n", 122 | "\n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | "
datespxdaxftsenikkei
007/01/1994469.902224.953445.9818124.01
110/01/1994475.272225.003440.5818443.44
211/01/1994474.132228.103413.7718485.25
312/01/1994474.172182.063372.0218793.88
413/01/1994472.472142.373360.0118577.26
514/01/1994474.912151.053400.5618973.70
617/01/1994473.302115.563407.8318725.37
718/01/1994474.252130.353437.0118514.55
819/01/1994474.302132.523475.1519039.40
920/01/1994474.982098.363469.9919183.92
\n", 216 | "
" 217 | ], 218 | "text/plain": [ 219 | " date spx dax ftse nikkei\n", 220 | "0 07/01/1994 469.90 2224.95 3445.98 18124.01\n", 221 | "1 10/01/1994 475.27 2225.00 3440.58 18443.44\n", 222 | "2 11/01/1994 474.13 2228.10 3413.77 18485.25\n", 223 | "3 12/01/1994 474.17 2182.06 3372.02 18793.88\n", 224 | "4 13/01/1994 472.47 2142.37 3360.01 18577.26\n", 225 | "5 14/01/1994 474.91 2151.05 3400.56 18973.70\n", 226 | "6 17/01/1994 473.30 2115.56 3407.83 18725.37\n", 227 | "7 18/01/1994 474.25 2130.35 3437.01 18514.55\n", 228 | "8 19/01/1994 474.30 2132.52 3475.15 19039.40\n", 229 | "9 20/01/1994 474.98 2098.36 3469.99 19183.92" 230 | ] 231 | }, 232 | "metadata": { 233 | "tags": [] 234 | }, 235 | "execution_count": 4 236 | } 237 | ] 238 | }, 239 | { 240 | "cell_type": "markdown", 241 | "metadata": { 242 | "id": "bU-P92LlkcMr" 243 | }, 244 | "source": [ 245 | "### 3. Preprocessing the data" 246 | ] 247 | }, 248 | { 249 | "cell_type": "code", 250 | "metadata": { 251 | "id": "CkM5tKhgkUfu" 252 | }, 253 | "source": [ 254 | "df_comp.date = pd.to_datetime(df_comp.date, dayfirst = True)\n", 255 | "df_comp.set_index(\"date\", inplace=True)\n", 256 | "df_comp=df_comp.asfreq('b')\n", 257 | "df_comp=df_comp.fillna(method='ffill')" 258 | ], 259 | "execution_count": 5, 260 | "outputs": [] 261 | }, 262 | { 263 | "cell_type": "code", 264 | "metadata": { 265 | "id": "lpev3q0oke4Y" 266 | }, 267 | "source": [ 268 | "df_comp['market_value']=df_comp.ftse\n", 269 | "size = int(len(df_comp)*0.8)\n", 270 | "df, df_test = df_comp.iloc[:size], df_comp.iloc[size:]" 271 | ], 272 | "execution_count": 6, 273 | "outputs": [] 274 | }, 275 | { 276 | "cell_type": "markdown", 277 | "metadata": { 278 | "id": "dPTsQEwVko1v" 279 | }, 280 | "source": [ 281 | "### 4. The LLR Test" 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "metadata": { 287 | "id": "uEX-PW-0kjkL" 288 | }, 289 | "source": [ 290 | "def LLR_test(mod_1, mod_2, DF = 1):\n", 291 | " L1 = mod_1.fit().llf\n", 292 | " L2 = mod_2.fit().llf\n", 293 | " LR = (2*(L2-L1)) \n", 294 | " p = chi2.sf(LR, DF).round(3)\n", 295 | " return p" 296 | ], 297 | "execution_count": 8, 298 | "outputs": [] 299 | }, 300 | { 301 | "cell_type": "markdown", 302 | "metadata": { 303 | "id": "gQT1sVW1kwHW" 304 | }, 305 | "source": [ 306 | "### 5. Creating Returns" 307 | ] 308 | }, 309 | { 310 | "cell_type": "code", 311 | "metadata": { 312 | "id": "enb1IzF2ktTD" 313 | }, 314 | "source": [ 315 | "df['returns'] = df.market_value.pct_change(1)*100" 316 | ], 317 | "execution_count": 9, 318 | "outputs": [] 319 | }, 320 | { 321 | "cell_type": "markdown", 322 | "metadata": { 323 | "id": "zyqSO2ask2vR" 324 | }, 325 | "source": [ 326 | "### 6. ARIMA(1,1,1)" 327 | ] 328 | }, 329 | { 330 | "cell_type": "code", 331 | "metadata": { 332 | "colab": { 333 | "base_uri": "https://localhost:8080/", 334 | "height": 337 335 | }, 336 | "id": "a57-uYRIkzqE", 337 | "outputId": "dddc0124-62e5-4e28-9892-e1c2840f73e1" 338 | }, 339 | "source": [ 340 | "model_ar_1_i_1_ma_1 = ARIMA(df.market_value, order=(1,1,1))\n", 341 | "results_ar_1_i_1_ma_1 = model_ar_1_i_1_ma_1.fit()\n", 342 | "results_ar_1_i_1_ma_1.summary()" 343 | ], 344 | "execution_count": 10, 345 | "outputs": [ 346 | { 347 | "output_type": "execute_result", 348 | "data": { 349 | "text/html": [ 350 | "\n", 351 | "\n", 352 | "\n", 353 | " \n", 354 | "\n", 355 | "\n", 356 | " \n", 357 | "\n", 358 | "\n", 359 | " \n", 360 | "\n", 361 | "\n", 362 | " \n", 363 | "\n", 364 | "\n", 365 | " \n", 366 | "\n", 367 | "\n", 368 | " \n", 369 | "\n", 370 | "\n", 371 | " \n", 372 | "\n", 373 | "
ARIMA Model Results
Dep. Variable: D.market_value No. Observations: 5020
Model: ARIMA(1, 1, 1) Log Likelihood -27603.666
Method: css-mle S.D. of innovations 59.134
Date: Mon, 16 Aug 2021 AIC 55215.333
Time: 06:08:44 BIC 55241.418
Sample: 01-10-1994 HQIC 55224.473
- 04-05-2013
\n", 374 | "\n", 375 | "\n", 376 | " \n", 377 | "\n", 378 | "\n", 379 | " \n", 380 | "\n", 381 | "\n", 382 | " \n", 383 | "\n", 384 | "\n", 385 | " \n", 386 | "\n", 387 | "
coef std err z P>|z| [0.025 0.975]
const 0.5656 0.682 0.829 0.407 -0.772 1.903
ar.L1.D.market_value 0.7475 0.070 10.652 0.000 0.610 0.885
ma.L1.D.market_value -0.7936 0.064 -12.378 0.000 -0.919 -0.668
\n", 388 | "\n", 389 | "\n", 390 | "\n", 391 | " \n", 392 | "\n", 393 | "\n", 394 | " \n", 395 | "\n", 396 | "\n", 397 | " \n", 398 | "\n", 399 | "
Roots
Real Imaginary Modulus Frequency
AR.1 1.3378 +0.0000j 1.3378 0.0000
MA.1 1.2601 +0.0000j 1.2601 0.0000
" 400 | ], 401 | "text/plain": [ 402 | "\n", 403 | "\"\"\"\n", 404 | " ARIMA Model Results \n", 405 | "==============================================================================\n", 406 | "Dep. Variable: D.market_value No. Observations: 5020\n", 407 | "Model: ARIMA(1, 1, 1) Log Likelihood -27603.666\n", 408 | "Method: css-mle S.D. of innovations 59.134\n", 409 | "Date: Mon, 16 Aug 2021 AIC 55215.333\n", 410 | "Time: 06:08:44 BIC 55241.418\n", 411 | "Sample: 01-10-1994 HQIC 55224.473\n", 412 | " - 04-05-2013 \n", 413 | "========================================================================================\n", 414 | " coef std err z P>|z| [0.025 0.975]\n", 415 | "----------------------------------------------------------------------------------------\n", 416 | "const 0.5656 0.682 0.829 0.407 -0.772 1.903\n", 417 | "ar.L1.D.market_value 0.7475 0.070 10.652 0.000 0.610 0.885\n", 418 | "ma.L1.D.market_value -0.7936 0.064 -12.378 0.000 -0.919 -0.668\n", 419 | " Roots \n", 420 | "=============================================================================\n", 421 | " Real Imaginary Modulus Frequency\n", 422 | "-----------------------------------------------------------------------------\n", 423 | "AR.1 1.3378 +0.0000j 1.3378 0.0000\n", 424 | "MA.1 1.2601 +0.0000j 1.2601 0.0000\n", 425 | "-----------------------------------------------------------------------------\n", 426 | "\"\"\"" 427 | ] 428 | }, 429 | "metadata": { 430 | "tags": [] 431 | }, 432 | "execution_count": 10 433 | } 434 | ] 435 | }, 436 | { 437 | "cell_type": "markdown", 438 | "metadata": { 439 | "id": "ETGVnl1Yk_AJ" 440 | }, 441 | "source": [ 442 | "### 7. Residuals of the ARIMA(1,1,1)" 443 | ] 444 | }, 445 | { 446 | "cell_type": "code", 447 | "metadata": { 448 | "colab": { 449 | "base_uri": "https://localhost:8080/", 450 | "height": 289 451 | }, 452 | "id": "zNw191Vdk5V9", 453 | "outputId": "de00548c-6a6f-412e-c5ec-11f2391f395b" 454 | }, 455 | "source": [ 456 | "df['res_ar_1_i_1_ma_1'] = results_ar_1_i_1_ma_1.resid\n", 457 | "sgt.plot_acf(df.res_ar_1_i_1_ma_1, zero = False, lags = 40)\n", 458 | "plt.title(\"ACF Of Residuals for ARIMA(1,1,1)\",size=20)\n", 459 | "plt.show()" 460 | ], 461 | "execution_count": 11, 462 | "outputs": [ 463 | { 464 | "output_type": "display_data", 465 | "data": { 466 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1SUZR4H8C8zqJjgBUIcsLweWbxAJaJmmNpwMUAEQUpBV1dt10trmWbZeivFXDUVdcuOVngpQIQEMS5KgVfSvKB4OauSyEUQJEDIdObdPzzMOg7wDMwIgd/POZ7TzPvMO78fDPOd53nfdzKRJEkCERFRHWRNXQAREf35MSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsGim7t+/j40bN8Ld3R39+/eHvb09UlJSmrqserG3t0dISIje40+cOAF7e3uEhYU9wapqtnDhQtjb2+PmzZtG33dFRQU++eQTjBo1Cn379oW9vT0uXrxo9Och/Rw/fhz29vZISEho6lKeiKqqKgwbNgzvvfdevR5n+oTqaTL/+c9/sH79egDAgQMH0LNnzzrH37lzB7t370Z6ejquX7+OiooKmJubo1evXhg+fDgCAgLw7LPPasaHhIQgIyOj1v35+flh1apVetd7/fp1hIeH49ixY7h16xYkSYKNjQ2GDh2KSZMm1Vr/V199hc2bN2PQoEEYPXo0TE1N0aNHjzqfa+HChYiJidG6z8zMDHZ2dhg+fDhmzJgBS0tLvWsn41i9ejUiIiIwcuRIjBkzBnK5XOs11xQ++ugjREVFwczMDOnp6Wjfvn2N48LCwrBp0yat+1q3bo0uXbpgyJAheOutt9C1a1edx1W/FkNDQ+Hv769zPwDMnDkT//znP2t83piYGCxcuBAA4OLigh07dtTay5QpU3D06FF06dIFhw4dglwur3WsWq1GaGgo/vKXv2D06NFa286dO4fk5GRcvHgRFy9exO3bt2FjY4O0tLRa91ebq1evYv/+/Zp95efnAwAuXLgAU9P6vS0XFBQgJiZGs6+cnBxIkoSkpCR069ZNZ3zbtm0xY8YMhIaGYtKkSXB0dNTreVpUWEiShKioKJiYmGj++/333691fGpqKubPn4/y8nJ069YNbm5usLKyQnl5Oc6ePYv169fjiy++QFJSEqytrbUe6+fnBzs7O519Ojg46F1veHg4Vq1aBbVajUGDBmHkyJEAHr5gvvvuO0RGRmLhwoWYNGlSjbU/88wz2L59O1q3bq33cwLAa6+9pqnz9u3bSEtLw1dffYWkpCRER0ejU6dO9dpfQyUkJKBt27aN8lx/Zj/++CO6d++Ozz//vKlLAfBwprN//36YmJjg999/x759+xAcHFznY1xcXODi4gIAKC0txfHjxxEZGYnExERERkaie/fu9arB1NQUe/fuxezZs2t8c4+MjISpqSkePHhQ535ycnJw7NgxmJiYoKCgAGlpaZq/s5rs378fly5dwpo1a2BiYqK1LS4uDuHh4WjVqhV69eqF27dv16unR6Wnp2Pz5s2Qy+Xo1q0b2rRpg3v37jVoX+fPn8f69ethYmKCrl27wsLCAmVlZXU+5o033sDmzZuxfv16bN++Xa/naVFhcfjwYeTm5sLf3x/p6emIiYnBO++8U+ObaUZGhuaFGBoaCj8/P50Xx+XLl7FixYoaf4l+fn4YPHhwg2uNjY3FihUr0LFjR2zatAmDBg3S2n7y5EnMmjULK1asQPv27TF27Fit7YWFhejUqVO9gwIAlEql1qe5e/fuYfz48bh06RJ27dqF2bNnN6ypeurVq1ejPM+fXWFhoc7vvynFx8ejsrISU6ZMwc6dOxEZGalXWMyZM0dzW61W4+9//zt++uknfPHFFwgNDa1XDSNGjEBKSgrS09MxYsQIrW1Xr17FL7/8Ajc3NyQnJ9e5n8jISEiShBkzZmDr1q2aGVxtdu3aBXNzc7i5uels8/f3h5+fH3r37o3WrVvD3t6+Xj09avjw4XjxxRdhb28PMzMzjBo1Crm5uQ3aV//+/bFr1y785S9/gbm5uXD1AwDatGmD0aNHIyIiAtnZ2XqFeYs6ZhEVFQUACAwMhI+PD+7cuVPjOr5arcbixYvx4MEDLFq0CP7+/jpBATxcU//6669hY2Nj1DorKiqwcuVKAMCaNWtqfKNwdnbGv//9bwBAaGgoKioqAGivnefm5sLe3h729vYYNWpUg+tp06YNfHx8AACZmZk620tLS7F27VqMHj0ajo6OGDhwICZPnozDhw/rjP3jjz8QHh4OPz8/DBo0CE5OThg1ahT+8Y9/4OjRo1pjaztmcfv2bXz44Yd4+eWX4ejoCF9fX53ls0eNGjWq1v7DwsJgb2+PEydOaN2fkpKC9957Dx4eHnjhhRfwwgsvwN/fH+Hh4VCr1bU+1+MOHjyIyZMn45VXXkH//v3xyiuvIDg4GLt27RI+NiQkBPb29pAkCRkZGZrf5aM/E7VajW+//Rbjxo3Diy++iBdeeAHjxo3D7t27a6yz+vFFRUVYtGgRXF1d4eDggL179+rdU2RkJGQyGSZPnoxRo0bh8uXLOHv2rN6PBwCZTAY/Pz8ANb+mRHx8fGBmZobIyMga6wMe/p3X5cGDB4iJiYG5uTlmzZqFfv36IS0tDbdu3apx/NWrV3H69GmMGjUKZmZmOtsdHBzQt2/fBn1Ae1zPnj3h5ORU4/PUV5cuXeDs7Axzc/N6Pc7LywuSJCE6Olqv8S1mZnH79m0cOnQI3bt3x0svvQRzc3Ns374dEREReP3117XGZmRk4Pr167CxsUFAQECd+5XJZJDJjJupiYmJ+O233+Do6AhXV9daxw0fPhwDBgxAZmYmEhMTMW7cOCiVStjZ2eGbb74BAEyePBkAYGFhYZTaHl8vzc3NRUhICHJzc+Hs7AxXV1dUVVUhNTUV06ZNw/LlyzF+/HjN+A8++ADx8fHo06cPfH19YWZmhsLCQpw6dQrp6el4+eWX63z+kpISvPHGG8jJycHAgQMxcOBAFBUVYcmSJRg2bJhRegQehrRMJoOjoyNsbGxQXl6O48ePY8WKFcjMzNQEdV0iIiKwePFiWFtbY+TIkejUqROKi4tx+fJl7N27FxMnTqzz8X5+fnBxccGmTZtgZ2eneXN9dHlz/vz5iI+Ph0KhQEBAAExMTJCSkoJly5bh1KlTWLt2rc5+S0tLERQUhGeeeQbu7u4wMTGBlZWVXj+XrKwsXLhwAcOGDYNCoYCfnx8SExMREREBJycnvfbxuPquwQNA+/bt4enpifj4eBQVFWmWgf/44w/ExsbCxcVF+Gn40KFDKCoqwvjx42FmZgZ/f398/PHH2LNnD2bNmqUz/tixYwCAgQMH1rve5sjR0RGtWrXCkSNHMG/ePOH4FhMWe/fuxf379zXLK3369EG/fv1w4sQJ/Prrr1oHek6dOgXg4dS5roNddYmJialxqvfoVLw21c8veuMEgGHDhiEzMxO//PKLJiyUSqXmk7Y+zyfy+++/4/vvvweg+4eycOFC5OXlYd26dfDy8tLcX1ZWhpCQEM1ZPM8++yzKy8uxf/9+9OvXD1FRUTo/2zt37ghr+eyzz5CTk4PJkyfjww8/1Nw/ceJEvPHGG4a0qWXr1q14/vnnte5Tq9X44IMPEBsbi+DgYOGbY0REBFq1aoXvv/9e5824pKREWEP1a7U6LB7/XcbHxyM+Ph59+/bFzp070a5dOwDA3LlzERwcjPj4eIwYMUIzK6x25coV+Pr6YuXKlfV+o/7uu++0anN1dYW1tTUOHDiADz/8UO9PryqVCnv27AHQ8DffwMBAxMbGYu/evXjrrbcAAMnJySgtLRXOKoCHvx/g/714e3tj1apViI6Oxj/+8Q+dD4HVf5f9+/dvUL3NjZmZGXr37o2LFy9qTuypS4tYhqo+mC2TybTW9v39/SFJks5UtqioCMDD6VtDxcTEYNOmTTr/9FGf568eU1hY2OBaH5eSkoKwsDCEhYVh6dKl8PT0xJUrVzBo0CC8+eabmnGXLl1CRkYG3N3dtYICePjJb86cObh37x4SExMBQHNiQevWrWucjYkOnN+/fx9xcXFo166dzhvngAEDdN4UDfF4UAAPZ5HVJxOkp6frtR9TU9Ma35CNcVZZ9fLAvHnzNEEBAM888wzmz58P4P9Lr49q1aoV3n///XoHRWVlJeLj42FhYaFZszc1NYWPjw8qKyuxb9++Wh+bkZGheU198skn8Pb2xuHDh9G7d2/MnDmzXnVUc3Z2Rs+ePREVFYXq/5NCZGQkOnToAA8Pjzofm5ubi6NHj6JHjx548cUXAQAdO3bUHBuo6fdbfUbS4yeztGTPPvss1Gp1rUtzj2oRM4vjx4/jxo0beOWVV7SOL1R/koiJicHcuXPRqlUroz1neHi4QQe4m9LBgwdx8OBBrfuGDRuGL774QutndPr0aQAPj7HUdG1D9afna9euAQDMzc0xcuRIpKamwtfXF+7u7nB2doaTk5NeZz1du3YNVVVVcHZ2rnFZzcXFpc5jF/Vx584dbNu2DT/99BNu3ryJyspKre36hLOPjw9WrVoFLy8vvP7663BxccFLL71ktNOPs7KyIJPJNGcZPWrQoEGQy+U1Xo9hZ2en97LTo/bv34+7d+8iKCgIbdq00dzv5+eH7du3IyoqChMmTKjxsRkZGTozbQcHB+zYscOgJdLx48dj1apVOH78OGxtbXHixAkEBwdr1VeTqKgoqNVqrRM5qntJTExEVFQUXn31Va1t1TPfDh06NLje5qa6V31m/S0iLB6fblar/iSRmJiIgwcPwtPTE8D/Pznok6ZPQvU59AUFBcKx1WM6d+5stOevPrddpVIhJycHGzZsQEJCApYuXYoVK1ZoxpWWlgIAjhw5giNHjtS6v0ffaNevX48vv/wS8fHxmoBp06YNPDw88P7779d5/UB5eTkA1PpGZ6xrD8rKyhAQEICbN29qDqB36NABpqamKCsrQ3h4OP744w/hfqZMmYJOnTph9+7d2LFjB7755huYmJhg0KBBWLBgAQYMGGBQneXl5ejQoUONB1RNTU01x0ge19BPxtUz8Mf/jqqXdC9cuIDMzMwa+5o9ezbmzJmj+ZS6bds27NixA3PnzsWXX37Z4ON+vr6+WLduHaKiomBrawtJkrSOkdVEpVIhOjoaMpkMvr6+Wtuql9VSU1O1joUA0BxsvnfvnlEOPDcH1Wd66tNvsw+LkpISzRlP7777Lt59990ax0VGRmrConoNNSMjAyqVqsHHLRpq4MCB2Lt3L44ePYp33nmnzrHVZxC99NJLRq9DLpeje/fuWLt2LXJzc7Fnzx6MGjUKr732GoD/HzRftGhRjdd61MTMzAxz5szBnDlzkJ+fj59//hkxMTHYt28fcnNzsXv37lofW/18Nb0BAqj1vHYTExPcv3+/xm01nW8eFRWFmzdvat7gHnX69GmEh4fXWuPjxo4di7Fjx6KsrAynT59GcnIyoqOjMW3aNBw4cMCgWYaFhQV+++033L9/X2dW/ODBA9y5c6fGdeaazuwTuXTpEs6dOwcACAoKqnVcZGRknSEok8mgUCjw0UcfobCwEImJidi5c6fer5/HWVpaak6RNTc3x4svvog+ffrU+ZjU1FTNzHD48OG1jouOjsbf//53ze3qDymlpaVPzeyi+gOhPjPRZn/MIiYmBvfv30e/fv0QEBBQ4z9LS0scPXoUOTk5AB4uZ/To0QMFBQXCUwrVanWtb0QN5enpifbt2+PcuXN1fmI/cuQIzp07h44dOwrXaA0hk8mwaNEiAA/PElKpVACgOcB78uTJBu1XoVBgzJgx2LZtG7p164ZTp07VOd3t2bMn2rZti4sXL2pmGY+q7dzxDh06oLi4uMbf0/nz53Xu+/XXXwEA7u7uOtt+/vnnWuurS/v27fHqq6/ik08+gZ+fH0pLSxu8r2oODg5Qq9U1/vx//vlnqFQq9O3b16DnqFY9q3Bxcan178jMzAzx8fG4e/euXvtcuHAhWrdujc2bN2tO/W6IwMBA/PHHHygpKdHrwHb1cZyRI0fW2Ef1zGnPnj149P8qXX3dRPWy6tPg+vXr6Nixo17HT5t9WFS/yKuXUGr6FxQUBEmSNGdnyGQyLF++HKampvjkk0/w/fffo6b/Ffl///tfTJ061ejLVebm5pory+fNm6c5C+NRv/zyi+Z0tg8++KDe51DXl5OTE0aOHIlr164hNjYWwMODys7OzkhOTtb87B53+fJlzUygpKQEly9f1hlTWVmJyspKmJqa1nncqFWrVvDx8cHdu3d1jpFkZmYiLi6uxscNGDAADx480An+vXv34pdfftEZX/31E4+HT1ZWFr744ota63vc8ePHa3zdVB/LMXQpY9y4cQCAtWvXoqqqSnN/VVWV5pRZ0anf+vj9998RFxcHuVyONWvW1Pp35O7ujsrKSuzfv1+v/dra2mL8+PEoLS3V+yrhmgwZMgRbtmzB5s2bdU60eFx+fj7S09PRoUMHbNiwocY+QkNDMXDgQOTk5Ghd+1N9bOjMmTMNrvVx1ddF1ec6l9pUXzNkrO9Gy8nJwe3btzF48GC9ZqPNehnqxIkTyM7ORp8+fer8fpOAgAB8/vnniI6Oxpw5c2BqagoXFxeEhYVhwYIFWLBgAbZs2YLBgwejU6dOqKiowPnz53H27Fm0bdv2iaxfBgQEoLy8HP/+978xceJEuLi4oF+/fjAxMcGFCxdw4sQJyGQyfPjhhzpXbz8pb7/9Nn788Uds3rwZPj4+aN26NdauXYvJkydj0aJF2LFjB5ycnGBhYYGCggJcuXIFV65cQUREBKysrHDr1i2MHTsWffr0gb29PRQKBSoqKvDjjz+iqKgIISEhwtB75513cOzYMXzzzTc4f/685jqLhIQEDB8+HIcOHdJ5TEhICPbu3YulS5fi2LFjUCgUuHjxIs6cOaM54P4oX19fbNu2DStXrsSJEyfQrVs3/Prrr/jxxx/h5uam9xfIzZ49G8888wxeeOEF2NnZQZIknDx5EpmZmejXr59ep0bXxcfHBwcPHsSBAwfg5eUFpVKpuc7i5s2beP311zFmzBiDngN4+LUrZWVlGDlyZJ0XoAYGBmLfvn2IiIgQHjeo9tZbb2HPnj34+uuvERwc3KBlORMTE83SqMiePXugUqkwZsyYOg+CBwYG4tSpU4iIiNBcvzNkyBC0b98ehw8frnF5+OrVq/jyyy+17isrK9N8RxUALFiwQKvH6gsnH1/qLikpwerVqzW3q2fcixYt0rxxT58+XetbDmrbFwCtGqpnRmvWrNGcRRcQEABnZ2etx1SvatQ0w65Jsw4Lfa/k7Nq1K15++WUcOXIEqampmtMCR40aheTkZM0XCSYmJqKiogLt2rVDz5498fbbbyMoKKhBZ5boY8qUKRg+fDjCw8Nx/PhxzVWyXbp0QVBQECZNmtSoX4nRt29fuLm5ISkpCREREQgJCUGXLl0QHR2NnTt3IikpCXFxcVCpVHj22WfRu3dvBAcHa9aQq68VyMjIwIkTJ3Dnzh107NgRPXr0wLx584SfCoGHa9Tffvst1q1bh9TUVJw/fx49evTA0qVLYWdnV2NY9O7dG1999RU+++wzpKamQi6Xw9nZGd999x2Sk5N1wsLGxga7du3CmjVrcOrUKRw+fBg9e/bEkiVLMHToUL3DYt68eTh8+DAuXLiAn376CW3atIGtrS3ee+89vPnmm0Y5+27dunUYNGgQoqOjNSdy9OrVC1OnTtU6zdkQ+v4dVV8Id/78eVy8eFGv70Hr3Lkz3nzzTXz11VfYunWr1puasanVas3pxqIZl6enJ1asWIFDhw6huLgYVlZWaNu2Lfz8/PDNN9/g6tWrOn97t2/f1jkbr6qqSuu+2bNna4XFlStX0K5dO52vLKmsrKzxzL7qWT3w8MytR2u4cuUKZDKZzhccAqhxX0lJSZr/dnFx0QmL2NhYWFpa6h0WJlJN82gioqdQTk4ORo8ejTfeeAMfffSRQfsqKyvD4MGDMWXKFCxYsMCgfUmShCFDhmDIkCHYsGGDQfsCHp7Q4Ovri3/+8596XwfT7I9ZEBEZy3PPPYdJkyYhMjLS4GOVJ0+ehKmpKaZMmWJwXVeuXEFpaanmSnZDbdy4EQqFAlOnTtX7MZxZEBE9oqKiAl9//TWGDh3aIr8nqqqqCtu2bcOgQYPqdWExw4KIiIS4DEVEREIMCyIiEmrWp84+7s6du1Crm9eqmpWVOYqLG351a3PEnlu+p61foHn2LJOZoFOnduKBaGFhoVZLzS4sADTLmg3Fnlu+p61foGX3zGUoIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISMhoYXH9+nUEBQXBw8MDQUFByM7O1hmjUqmwbNkyKJVKuLm5ISoqSmfMtWvX4OTkhE8//dRYpRERkYGMFhZLlizBhAkTkJiYiAkTJmDx4sU6Y+Li4nDjxg0kJSUhIiICYWFhuHnzpma7SqXCkiVLoFQqjVUWEREZgVHCori4GFlZWfD29gYAeHt7IysrCyUlJVrjEhISEBgYCJlMBktLSyiVSvzwww+a7Vu3bsWIESPQvXt3Y5RFRERGYpSwyM/Ph42NDeRyOQBALpejc+fOyM/P1xlna2urua1QKFBQUAAAuHTpEg4fPoy//vWvxiiJiIiMyLSpCwCA+/fv41//+hdCQ0M1gdMQVlbmRqyq8VhbWzR1CY2OPbd8T1u/QMvu2ShhoVAocOvWLahUKsjlcqhUKhQWFkKhUOiMy8vLg6OjI4D/zzSKiopw48YNzJgxAwBQVlYGSZJQUVGBjz/+WO86iosroFZLxmip0VhbW6CoqLypy2hU7Lnle9r6BZpnzzKZid4fso0SFlZWVnBwcEB8fDx8fX0RHx8PBwcHWFpaao3z9PREVFQU3N3dUVpaipSUFOzatQu2trY4ceKEZlxYWBgqKyvx/vvvG6M8IiIykNHOhlq6dCl27twJDw8P7Ny5E8uWLQMATJ8+HZmZmQAAX19fdO3aFe7u7hg/fjxmzZqF5557zlglEBHRE2IiSVLzWrepA5ehmgf23PI9bf0CzbPn+ixD8QpuIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJGS0srl+/jqCgIHh4eCAoKAjZ2dk6Y1QqFZYtWwalUgk3NzdERUVptm3evBleXl7w8fGBv78/0tPTjVUaEREZyNRYO1qyZAkmTJgAX19ffP/991i8eDHCw8O1xsTFxeHGjRtISkpCaWkpxo4di6FDh6Jr165wdHTE1KlT0bZtW1y6dAnBwcE4fPgwzMzMjFUiERE1kFFmFsXFxcjKyoK3tzcAwNvbG1lZWSgpKdEal5CQgMDAQMhkMlhaWkKpVOKHH34AALi6uqJt27YAAHt7e0iShNLSUmOUR0REBjJKWOTn58PGxgZyuRwAIJfL0blzZ+Tn5+uMs7W11dxWKBQoKCjQ2V9sbCyef/55dOnSxRjlERGRgYy2DGUsGRkZ2LBhA7Zv317vx1pZmT+Bip48a2uLpi6h0bHnlu9p6xdo2T0bJSwUCgVu3boFlUoFuVwOlUqFwsJCKBQKnXF5eXlwdHQEoDvTOH36NObPn48tW7agZ8+e9a6juLgCarVkWDONzNraAkVF5U1dRqNizy3f09Yv0Dx7lslM9P6QbZRlKCsrKzg4OCA+Ph4AEB8fDwcHB1haWmqN8/T0RFRUFNRqNUpKSpCSkgIPDw8AwLlz5/DOO+9g48aN6NevnzHKIiIiIzGRJMkoH8WvXr2KhQsXoqysDO3bt8enn36Knj17Yvr06Xj77bcxYMAAqFQqLF++HEeOHAEATJ8+HUFBQQCAcePGITc3FzY2Npp9rl69Gvb29nrXwJlF88CeW76nrV+gefZcn5mF0cLiz4Bh0Tyw55bvaesXaJ49N/oyFBERtWwMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCRktLK5fv46goCB4eHggKCgI2dnZOmNUKhWWLVsGpVIJNzc3REVF6bWNiIialtHCYsmSJZgwYQISExMxYcIELF68WGdMXFwcbty4gaSkJERERCAsLAw3b94UbiMioqZllLAoLi5GVlYWvL29AQDe3t7IyspCSUmJ1riEhAQEBgZCJpPB0tISSqUSP/zwg3AbERE1LVNj7CQ/Px82NjaQy+UAALlcjs6dOyM/Px+WlpZa42xtbTW3FQoFCgoKhNv09fn353Gn7J4hrTS6Vq3luP+HqqnLaFTsueV72voFmmfPndq3waKpQ/Qaa5Sw+LMwbSVHq9bypi6j3ppjzYZizy3f09Yv0Px6Nm2lf71GCQuFQoFbt25BpVJBLpdDpVKhsLAQCoVCZ1xeXh4cHR0BaM8m6tqmr2mvO0CtlozQUeOxtrZAUVF5U5fRqNhzy/e09Qs0z55lMhP9xxrjCa2srODg4ID4+HgAQHx8PBwcHLSWoADA09MTUVFRUKvVKCkpQUpKCjw8PITbiIioaRltGWrp0qVYuHAhtmzZgvbt2+PTTz8FAEyfPh1vv/02BgwYAF9fX5w9exbu7u4AgFmzZuG5554DgDq3ERFR0zKRJJJ13nkAAAu7SURBVKl5rdvUobi4gstQzQB7bvmetn6B5tmzTGYCKytz/cY+4VqIiKgFYFgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJGRwWVVVVmDt3Ltzc3ODp6YnU1NRax0ZGRsLNzQ1KpRLLly+HWq0GAKSkpMDf3x/e3t7w8vLC9u3bDS2LiIiMyNTQHWzbtg3m5uZITk5GdnY2Jk6ciKSkJLRr105rXE5ODjZt2oTY2Fh07NgR06dPx759+zB27FhYW1vjP//5D2xsbFBeXg5/f384OjrC2dnZ0PKIiMgIDJ5ZHDhwAEFBQQCA7t27o3///khLS9MZl5iYCKVSCUtLS8hkMgQGBiIhIQEA4OTkBBsbGwCAhYUFevXqhdzcXENLIyIiIzE4LPLy8mBnZ6e5rVAoUFBQoDMuPz8ftra2mtu2trbIz8/XGXf16lWcOXMGQ4YMMbQ0IiIyEuEylJ+fH/Ly8mrcdvToUaMWU1hYiJkzZ2LJkiWamUZ9WFmZG7WexmJtbdHUJTQ69tzyPW39Ai27Z2FYxMTE1Lnd1tYWubm5sLS0BPBwBjF48GCdcQqFQit08vLyoFAoNLeLi4sxZcoUTJs2DaNHj9a7gUcVF1dArZYa9NimYm1tgaKi8qYuo1Gx55bvaesXaJ49y2Qmen/INngZytPTExEREQCA7OxsZGZmwtXVVWech4cHUlJSUFJSArVajaioKE0o3LlzB1OmTMHEiRMRGBhoaElERGRkBofF3/72N5SVlcHNzQ1vvfUWli9fDnPzh0m1YcMGfPvttwCA5557DjNnzsT48ePh7u6Orl27YsyYMQCArVu3Ijs7GxEREfD19YWvry+io6MNLY2IiIzERJKk5rVuUwcuQzUP7Lnle9r6BZpnz426DEVERC0fw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIMCyIiEmJYEBGREMOCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREIGh0VVVRXmzp0LNzc3eHp6IjU1tdaxkZGRcHNzg1KpxPLly6FWq7W237t3D15eXvD39ze0LCIiMiKDw2Lbtm0wNzdHcnIyPv/8c3z00Ue4e/euzricnBxs2rQJERERSEpKwq+//op9+/Zpjfnss8/g5ORkaElERGRkBofFgQMHEBQUBADo3r07+vfvj7S0NJ1xiYmJUCqVsLS0hEwmQ2BgIBISEjTbT548iezsbPj6+hpaEhERGZnBYZGXlwc7OzvNbYVCgYKCAp1x+fn5sLW11dy2tbVFfn4+AKCyshIrV67EsmXLDC2HiIieAFPRAD8/P+Tl5dW47ejRo0YpYvXq1ZgwYQJsbGyQnZ3d4P1YWZkbpZ7GZm1t0dQlNDr23PI9bf0CLbtnYVjExMTUud3W1ha5ubmwtLQE8HAGMXjwYJ1xCoVCK3Ty8vKgUCgAAKdOnUJaWhq2bNmCe/fu4bfffoOPjw/i4uLq1UxxcQXUaqlej2lq1tYWKCoqb+oyGhV7bvmetn6B5tmzTGai94dsg5ehPD09ERERAQDIzs5GZmYmXF1ddcZ5eHggJSUFJSUlUKvViIqKwujRowEAcXFxOHToEA4dOoR169ahT58+9Q4KIiJ6coQzC5G//e1vWLhwIdzc3CCTybB8+XKYmz9Mqg0bNqBz585488038dxzz2HmzJkYP348AGDYsGEYM2aMoU9PRESNwESSpOa1blMHLkM1D+y55Xva+gWaZ8+NugxFREQtH8OCiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWREQkxLAgIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJMSwICIiIYYFEREJMSyIiEiIYUFEREKmTV2AMclkJk1dQoM017oNwZ5bvqetX6D59Vyfek0kSZKeYC1ERNQCcBmKiIiEGBZERCTEsCAiIiGGBRERCTEsiIhIiGFBRERCDAsiIhJiWBARkRDDgoiIhBgWT1hVVRXmzp0LNzc3eHp6IjU1tdaxkZGRcHNzg1KpxPLly6FWq7W237t3D15eXvD393/SZRvEGD2npKTA398f3t7e8PLywvbt2xurfL1dv34dQUFB8PDwQFBQELKzs3XGqFQqLFu2DEqlEm5uboiKitJr25+VoT1v3rwZXl5e8PHxgb+/P9LT0xux+oYxtOdq165dg5OTEz799NNGqPoJkOiJCgsLkxYtWiRJkiRdv35devnll6WKigqdcTdu3JBcXV2l4uJiSaVSSVOnTpViYmK0xoSGhkoffPCB5Ofn1yi1N5Qxej5z5oxUUFAgSZIklZWVSUqlUvr5558brwk9hISESLGxsZIkSVJsbKwUEhKiMyYmJkaaOnWqpFKppOLiYsnV1VXKyckRbvuzMrTntLQ0qbKyUpIkSbp48aI0cOBAqaqqqvEaaABDe5YkSXrw4IEUHBwsvfvuu9KqVasarXZj4sziCTtw4ACCgoIAAN27d0f//v2RlpamMy4xMRFKpRKWlpaQyWQIDAxEQkKCZvvJkyeRnZ0NX1/fRqu9oYzRs5OTE2xsbAAAFhYW6NWrF3JzcxuvCYHi4mJkZWXB29sbAODt7Y2srCyUlJRojUtISEBgYCBkMhksLS2hVCrxww8/CLf9GRmjZ1dXV7Rt2xYAYG9vD0mSUFpa2riN1IMxegaArVu3YsSIEejevXtjlm9UDIsnLC8vD3Z2dprbCoUCBQUFOuPy8/Nha2uruW1ra4v8/HwAQGVlJVauXIlly5Y9+YKNwBg9P+rq1as4c+YMhgwZ8mQKboD8/HzY2NhALpcDAORyOTp37qxT/+M9PvqzqGvbn5Exen5UbGwsnn/+eXTp0uXJFm4AY/R86dIlHD58GH/9618bre4noUV9RXlT8PPzQ15eXo3bjh49apTnWL16NSZMmAAbG5sa10sbW2P0XK2wsBAzZ87EkiVLNDMNav4yMjKwYcOGP+WxKGO6f/8+/vWvfyE0NFQTOM0Vw8JAMTExdW63tbVFbm4uLC0tATz8BDJ48GCdcQqFQusNOC8vDwqFAgBw6tQppKWlYcuWLbh37x5+++03+Pj4IC4uzoid6K8xegYeLgFMmTIF06ZNw+jRo41UvXEoFArcunULKpUKcrkcKpUKhYWFWvVXj8vLy4OjoyMA7U+gdW37MzJGzwBw+vRpzJ8/H1u2bEHPnj0btYf6MrTnoqIi3LhxAzNmzAAAlJWVQZIkVFRU4OOPP270fgzS1AdNWrqNGzdqHewdOnSoVF5erjOupoO9e/fu1Rl3/PjxP/0BbmP0XFJSIvn4+Ei7du1q1NrrIzg4WOvAZ3BwsM6Y6OhonQOfN27cEG77szK057Nnz0qvvvqqdObMmUat2xCG9vyojRs3NtsD3AyLJ+zu3bvSnDlzJKVSKbm7u0vJycmabevXr5d2796tuf3tt99Kr732mvTaa69Jixcvlh48eKCzv+YQFsboedWqVdKAAQOkMWPGaP7t2bOn0Xupy3//+18pICBAcnd3lwICAqSrV69KkiRJ06ZNk86dOydJ0sOzYBYvXqzp8bvvvtM8vq5tf1aG9uzv7y8NHjxY6/d66dKlJulFX4b2/KjmHBb8P+UREZEQz4YiIiIhhgUREQkxLIiISIhhQUREQgwLIiISYlgQEZEQw4KIiIQYFkREJPQ/wi4OsmmSe90AAAAASUVORK5CYII=\n", 467 | "text/plain": [ 468 | "
" 469 | ] 470 | }, 471 | "metadata": { 472 | "tags": [] 473 | } 474 | } 475 | ] 476 | }, 477 | { 478 | "cell_type": "code", 479 | "metadata": { 480 | "colab": { 481 | "base_uri": "https://localhost:8080/", 482 | "height": 289 483 | }, 484 | "id": "eJj_VwSIlB2i", 485 | "outputId": "33bd062c-64a4-4f12-c6a8-df9f03382211" 486 | }, 487 | "source": [ 488 | "df['res_ar_1_i_1_ma_1'] = results_ar_1_i_1_ma_1.resid.iloc[:]\n", 489 | "sgt.plot_acf(df.res_ar_1_i_1_ma_1[1:], zero = False, lags = 40)\n", 490 | "plt.title(\"ACF Of Residuals for ARIMA(1,1,1)\",size=20)\n", 491 | "plt.show()" 492 | ], 493 | "execution_count": 12, 494 | "outputs": [ 495 | { 496 | "output_type": "display_data", 497 | "data": { 498 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxU9f748dcsLCIggoqDmop+5ZJrubVcvckFl1IRUzHT+tl6r2W3rpWWXbebmd3sZmq35WuLZQXkkqCFmnrVTC3T1NT8upDI4sIiIMgyc35/4EyMMzAzMDDD8H4+HhYzZ3vPmTPnfT7bOSpFURSEEEKIGqhdHYAQQgj3J8lCCCGETZIshBBC2CTJQgghhE2SLIQQQtgkyUIIIYRNkiyEEELYJMmikSovL+ett95i6NCh9OjRg4iICLZu3erqsBwSERHBlClT7J5/3759REREsGzZsnqMyrpZs2YRERHB+fPnnb7uoqIiXn75ZaKiorj55puJiIjg+PHjTt+OsM/evXuJiIhg06ZNrg6lXpSUlHDnnXfy7LPPOrSctp7icZn//Oc/vPnmmwB8/fXXhIeH1zh/Xl4en332Gbt27eLs2bMUFRXh7+9Ply5dGDx4MOPGjaNVq1am+adMmcL+/furXV9cXByvvvqq3fGePXuWVatW8f3333PhwgUURSE0NJTbb7+dBx54oNr4P/zwQ1asWEH//v0ZMWIEWq2Wzp0717itWbNmsW7dOrP3fH19adeuHYMHD+axxx4jODjY7tiFc7z22mskJCQwZMgQRo8ejUajMTvmXOGll14iKSkJX19fdu3aRWBgoNX5li1bxvLly83e8/b2pm3bttx22208/vjjtG/f3mI547G4aNEixo4da/E+wLRp0/jb3/5mdbvr1q1j1qxZAAwYMIBPPvmk2s8ydepU9uzZQ9u2bdm2bRsajabaeQ0GA4sWLeIPf/gDI0aMMJt2+PBhtmzZwvHjxzl+/DiXL18mNDSUnTt3Vru+6pw+fZqNGzea1pWVlQXAL7/8glbr2Gk5OzubdevWmdaVnp6Ooihs3ryZjh07WszfrFkzHnvsMRYtWsQDDzxAr1697NqORyULRVFISkpCpVKZ/p45c2a182/fvp3nnnuOwsJCOnbsSExMDCEhIRQWFvLzzz/z5ptv8u6777J582Zat25ttmxcXBzt2rWzWGdkZKTd8a5atYpXX30Vg8FA//79GTJkCFB5wHzxxRckJiYya9YsHnjgAaux+/n58cEHH+Dt7W33NgH+/Oc/m+K8fPkyO3fu5MMPP2Tz5s2sWbOGli1bOrS+2tq0aRPNmjVrkG25sx07dtCpUyfeeecdV4cCVJZ0Nm7ciEql4tq1a2zYsIHJkyfXuMyAAQMYMGAAAPn5+ezdu5fExERSU1NJTEykU6dODsWg1WpZu3YtTz75pNWTe2JiIlqtloqKihrXk56ezvfff49KpSI7O5udO3eafmfWbNy4kRMnTvD666+jUqnMpiUnJ7Nq1Sq8vLzo0qULly9fdugzVbVr1y5WrFiBRqOhY8eO+Pj4UFpaWqt1HT16lDfffBOVSkX79u0JCAigoKCgxmUmTpzIihUrePPNN/nggw/s2o5HJYvdu3eTkZHB2LFj2bVrF+vWreOZZ56xejLdv3+/6UBctGgRcXFxFgfHr7/+ysKFC61+iXFxcQwcOLDWsa5fv56FCxcSFBTE8uXL6d+/v9n0H3/8kSeeeIKFCxcSGBjImDFjzKZfvHiRli1bOpwoAKKjo82u5kpLS5kwYQInTpxg9erVPPnkk7X7UA7q0qVLg2zH3V28eNHi+3ellJQUiouLmTp1Kp9++imJiYl2JYvp06ebXhsMBv7yl7/w3//+l3fffZdFixY5FMNdd93F1q1b2bVrF3fddZfZtNOnT/PTTz8RExPDli1balxPYmIiiqLw2GOP8d5775lKcNVZvXo1/v7+xMTEWEwbO3YscXFxdO3aFW9vbyIiIhz6TFUNHjyYW265hYiICHx9fYmKiiIjI6NW6+rRowerV6/mD3/4A/7+/jZrPwB8fHwYMWIECQkJpKWl2ZXMParNIikpCYDx48czatQo8vLyrNbjGwwG5syZQ0VFBbNnz2bs2LEWiQIq69Q/+ugjQkNDnRpnUVERr7zyCgCvv/661RNFv379+Ne//gXAokWLKCoqAszrzjMyMoiIiCAiIoKoqKhax+Pj48OoUaMAOHLkiMX0/Px8lixZwogRI+jVqxd9+/blwQcfZPfu3RbzlpWVsWrVKuLi4ujfvz+9e/cmKiqKv/71r+zZs8ds3uraLC5fvsyLL77IHXfcQa9evYiNjbWoPqsqKiqq2s+/bNkyIiIi2Ldvn9n7W7du5dlnn2XYsGH06dOHPn36MHbsWFatWoXBYKh2Wzf69ttvefDBB/njH/9Ijx49+OMf/8jkyZNZvXq1zWWnTJlCREQEiqKwf/9+03dZdZ8YDAY+//xz7r33Xm655Rb69OnDvffey2effWY1TuPyly5dYvbs2QwaNIjIyEjWrl1r92dKTExErVbz4IMPEhUVxa+//srPP/9s9/IAarWauLg4wPoxZcuoUaPw9fUlMTHRanxQ+TuvSUVFBevWrcPf358nnniC7t27s3PnTi5cuGB1/tOnT3Pw4EGioqLw9fW1mB4ZGcnNN99cqwu0G4WHh9O7d2+r23FU27Zt6devH/7+/g4td88996AoCmvWrLFrfo8pWVy+fJlt27bRqVMnbr31Vvz9/fnggw9ISEjg7rvvNpt3//79nD17ltDQUMaNG1fjetVqNWq1c3NqamoqV65coVevXgwaNKja+QYPHkzPnj05cuQIqamp3HvvvURHR9OuXTs+/vhjAB588EEAAgICnBLbjfWlGRkZTJkyhYyMDPr168egQYMoKSlh+/btPPLIIyxYsIAJEyaY5n/hhRdISUmhW7duxMbG4uvry8WLFzlw4AC7du3ijjvuqHH7ubm5TJw4kfT0dPr27Uvfvn25dOkSc+fO5c4773TKZ4TKJK1Wq+nVqxehoaEUFhayd+9eFi5cyJEjR0yJuiYJCQnMmTOH1q1bM2TIEFq2bElOTg6//vora9eu5f77769x+bi4OAYMGMDy5ctp166d6eRatXrzueeeIyUlBZ1Ox7hx41CpVGzdupX58+dz4MABlixZYrHe/Px84uPj8fPzY+jQoahUKkJCQuzaL8eOHeOXX37hzjvvRKfTERcXR2pqKgkJCfTu3duuddzI0Tp4gMDAQIYPH05KSgqXLl0yVQOXlZWxfv16BgwYYPNqeNu2bVy6dIkJEybg6+vL2LFj+ec//8mXX37JE088YTH/999/D0Dfvn0djrcx6tWrF15eXnz33XfMmDHD5vwekyzWrl1LeXm5qXqlW7dudO/enX379vHbb7+ZNfQcOHAAqCw619TYVZN169ZZLepVLYpXx7h9WydOgDvvvJMjR47w008/mZJFdHS06Urbnu3Zcu3aNb766ivA8ocya9YsMjMzeeONN7jnnntM7xcUFDBlyhRTL55WrVpRWFjIxo0b6d69O0lJSRb7Ni8vz2Ys//73v0lPT+fBBx/kxRdfNL1///33M3HixLp8TDPvvfceN910k9l7BoOBF154gfXr1zN58mSbJ8eEhAS8vLz46quvLE7Gubm5NmMwHqvGZHHjd5mSkkJKSgo333wzn376Kc2bNwfg6aefZvLkyaSkpHDXXXeZSoVGJ0+eJDY2lldeecXhE/UXX3xhFtugQYNo3bo1X3/9NS+++KLdV696vZ4vv/wSqP3Jd/z48axfv561a9fy+OOPA7Blyxby8/Ntliqg8vuB3z/LyJEjefXVV1mzZg1//etfLS4Cjb/LHj161CrexsbX15euXbty/PhxU8eemnhENZSxMVutVpvV7Y8dOxZFUSyKspcuXQIqi2+1tW7dOpYvX27xzx6ObN84z8WLF2sd6422bt3KsmXLWLZsGfPmzWP48OGcPHmS/v37c99995nmO3HiBPv372fo0KFmiQIqr/ymT59OaWkpqampAKaOBd7e3lZLY7YazsvLy0lOTqZ58+YWJ86ePXtanBTr4sZEAZWlSGNngl27dtm1Hq1Wa/WE7IxeZcbqgRkzZpgSBYCfnx/PPfcc8HvVa1VeXl7MnDnT4URRXFxMSkoKAQEBpjp7rVbLqFGjKC4uZsOGDdUuu3//ftMx9fLLLzNy5Eh2795N165dmTZtmkNxGPXr14/w8HCSkpIwPkkhMTGRFi1aMGzYsBqXzcjIYM+ePXTu3JlbbrkFgKCgIFPbgLXv19gj6cbOLJ6sVatWGAyGaqvmqvKIksXevXs5d+4cf/zjH83aF4xXEuvWrePpp5/Gy8vLadtctWpVnRq4Xenbb7/l22+/NXvvzjvv5N133zXbRwcPHgQq21isjW0wXj2fOXMGAH9/f4YMGcL27duJjY1l6NCh9OvXj969e9vV6+nMmTOUlJTQr18/q9VqAwYMqLHtwhF5eXmsXLmS//73v5w/f57i4mKz6fYk51GjRvHqq69yzz33cPfddzNgwABuvfVWp3U/PnbsGGq12tTLqKr+/fuj0Wisjsdo166d3dVOVW3cuJGrV68SHx+Pj4+P6f24uDg++OADkpKSmDRpktVl9+/fb1HSjoyM5JNPPqlTFemECRN49dVX2bt3L2FhYezbt4/JkyebxWdNUlISBoPBrCOH8bOkpqaSlJTEn/70J7NpxpJvixYtah1vY2P8rPaU+j0iWdxY3DQyXkmkpqby7bffMnz4cOD3Kwd7sml9MPahz87OtjmvcZ42bdo4bfvGvu16vZ709HSWLl3Kpk2bmDdvHgsXLjTNl5+fD8B3333Hd999V+36qp5o33zzTd5//31SUlJMCcbHx4dhw4Yxc+bMGscPFBYWAlR7onPW2IOCggLGjRvH+fPnTQ3oLVq0QKvVUlBQwKpVqygrK7O5nqlTp9KyZUs+++wzPvnkEz7++GNUKhX9+/fn+eefp2fPnnWKs7CwkBYtWlhtUNVqtaY2khvV9srYWAK/8XdkrNL95ZdfOHLkiNXP9eSTTzJ9+nTTVerKlSv55JNPePrpp3n//fdr3e4XGxvLG2+8QVJSEmFhYSiKYtZGZo1er2fNmjWo1WpiY2PNphmr1bZv327WFgKYGptLS0ud0vDcGBh7etrzeRt9ssjNzTX1ePr73//O3//+d6vzJSYmmpKFsQ51//796PX6Wrdb1Fbfvn1Zu3Yte/bs4ZlnnqlxXmMPoltvvdXpcWg0Gjp16sSSJUvIyMjgyy+/JCoqij//+c/A743ms2fPtjrWwxpfX1+mT5/O9OnTycrK4ocffmDdunVs2LCBjIwMPvvss2qXNW7P2gkQqLZfu0qlory83Oo0a/3Nk5KSOH/+vOkEV9XBgwdZtWpVtTHeaMyYMYwZM4aCggIOHjzIli1bWLNmDY888ghff/11nUoZAQEBXLlyhfLycotScUVFBXl5eVbrma317LPlxIkTHD58GID4+Phq50tMTKwxCarVanQ6HS+99BIXL14kNTWVTz/91O7j50bBwcGmLrL+/v7ccsstdOvWrcZltm/fbioZDh48uNr51qxZw1/+8hfTa+NFSn5+fpMpXRgvCO0piTb6Not169ZRXl5O9+7dGTdunNV/wcHB7Nmzh/T0dKCyOqNz585kZ2fb7FJoMBiqPRHV1vDhwwkMDOTw4cM1XrF/9913HD58mKCgIJt1tHWhVquZPXs2UNlLSK/XA5gaeH/88cdarVen0zF69GhWrlxJx44dOXDgQI3F3fDwcJo1a8bx48dNpYyqqus73qJFC3Jycqx+T0ePHrV477fffgNg6NChFtN++OGHauOrSWBgIH/60594+eWXiYuLIz8/v9brMoqMjMRgMFjd/z/88AN6vZ6bb765TtswMpYqBgwYUO3vyNfXl5SUFK5evWrXOmfNmoW3tzcrVqwwdf2ujfHjx1NWVkZubq5dDdvGdpwhQ4ZY/RzGktOXX35J1adKG8dNGKtVm4KzZ88SFBRkV/tpo08WxoPcWIVi7V98fDyKoph6Z6jVahYsWIBWq+Xll1/mq6++wtqjyE+dOsVDDz3k9Ooqf39/08jyGTNmmHphVPXTTz+ZurO98MILDvehdlTv3r0ZMmQIZ86cYf369UBlo3K/fv3YsmWLad/d6NdffzWVBHJzc/n1118t5ikuLqa4uBitVltju5GXlxejRo3i6tWrFm0kR44cITk52epyPXv2pKKiwiLxr127lp9++slifuPtJ25MPseOHePdd9+tNr4b7d271+pxY2zLqWtVxr333gvAkiVLKCkpMb1fUlJi6jJrq+u3Pa5du0ZycjIajYbXX3+92t/R0KFDKS4uZuPGjXatNywsjAkTJpCfn2/3KGFrbrvtNt5++21WrFhh0dHiRllZWezatYsWLVqwdOlSq59j0aJF9O3bl/T0dLOxP8a2oUOHDtU61hsZx0U5Ms6lOsYxQ866N1p6ejqXL19m4MCBdpVGG3U11L59+0hLS6Nbt2413t9k3LhxvPPOO6xZs4bp06ej1WoZMGAAy5Yt4/nnn+f555/n7bffZuDAgbRs2ZKioiKOHj3Kzz//TLNmzeql/nLcuHEUFhbyr3/9i/vvv58BAwbQvXt3VCoVv/zyC/v27UOtVvPiiy9ajN6uL0899RQ7duxgxYoVjBo1Cm9vb5YsWcKDDz7I7Nmz+eSTT+jduzcBAQFkZ2dz8uRJTp48SUJCAiEhIVy4cIExY8bQrVs3IiIi0Ol0FBUVsWPHDi5dusSUKVNsJr1nnnmG77//no8//pijR4+axlls2rSJwYMHs23bNotlpkyZwtq1a5k3bx7ff/89Op2O48ePc+jQIVODe1WxsbGsXLmSV155hX379tGxY0d+++03duzYQUxMjN03kHvyySfx8/OjT58+tGvXDkVR+PHHHzly5Ajdu3e3q2t0TUaNGsW3337L119/zT333EN0dLRpnMX58+e5++67GT16dJ22AZW3XSkoKGDIkCE1DkAdP348GzZsICEhwWa7gdHjjz/Ol19+yUcffcTkyZNrVS2nUqlMVaO2fPnll+j1ekaPHl1jI/j48eM5cOAACQkJpvE7t912G4GBgezevdtq9fDp06d5//33zd4rKCgw3aMK4Pnnnzf7jMaBkzdWdefm5vLaa6+ZXhtL3LNnzzaduB999FGzuxxUty7ALAZjyej111839aIbN24c/fr1M1vGWKthrYRtTaNOFvaO5Gzfvj133HEH3333Hdu3bzd1C4yKimLLli2mGwmmpqZSVFRE8+bNCQ8P56mnniI+Pr5WPUvsMXXqVAYPHsyqVavYu3evaZRs27ZtiY+P54EHHmjQW2LcfPPNxMTEsHnzZhISEpgyZQpt27ZlzZo1fPrpp2zevJnk5GT0ej2tWrWia9euTJ482VSHbBwrsH//fvbt20deXh5BQUF07tyZGTNm2LwqhMo66s8//5w33niD7du3c/ToUTp37sy8efNo166d1WTRtWtXPvzwQ/7973+zfft2NBoN/fr144svvmDLli0WySI0NJTVq1fz+uuvc+DAAXbv3k14eDhz587l9ttvtztZzJgxg927d/PLL7/w3//+Fx8fH8LCwnj22We57777nNL77o033qB///6sWbPG1JGjS5cuPPTQQ2bdnOvC3t+RcSDc0aNHOX78uF33QWvTpg333XcfH374Ie+9957ZSc3ZDAaDqbuxrRLX8OHDWbhwIdu2bSMnJ4eQkBCaNWtGXFwcH3/8MadPn7b47V2+fNmiN15JSYnZe08++aRZsjh58iTNmze3uGVJcXGx1Z59xlI9VPbcqhrDyZMnUavVFjc4BKyua/Pmzaa/BwwYYJEs1q9fT3BwsN3JQqVYK0cLIUQTlJ6ezogRI5g4cSIvvfRSndZVUFDAwIEDmTp1Ks8//3yd1qUoCrfddhu33XYbS5curdO6oLJDQ2xsLH/729/sHgfT6NsshBDCWTp06MADDzxAYmJindsqf/zxR7RaLVOnTq1zXCdPniQ/P980kr2u3nrrLXQ6HQ899JDdy0jJQgghqigqKuKjjz7i9ttv98j7RJWUlLBy5Ur69+/v0MBiSRZCCCFskmooIYQQNkmyEEIIYVOj7jp7o7y8qxgM9tWqhYT4k5NT+1Gl9UXicozE5RiJyzGeHpdaraJly+a2Z8TDkoXBoNidLIzzuyOJyzESl2MkLsdIXJWkGkoIIYRNkiyEEELYJMlCCCGETZIshBBC2ORRDdzuzGBQOHwmh3MXCrkpNIBe4SGo1Y4/pEYIIVxBkkUDMBgUliQc4kxmAWXlery9NISHBTIjvo8kDCFEoyDVUA3g8JkczmQWUFquRwFKy/WcySzg8Bnrjw8VQgh3I8miAZy7UEhZud7svbJyPekXLB8dKoQQ7kiSRQO4KTQAby/zp1t5e2noEBrgooiEEMIxkiwaQK/wEMLDAsFQDoqCz/U2i17h9fMEPiGEcDZJFg1ArVYxI74PZO+AnIM8HttdGreFEI2K9IZqIGq1CtXV83D1PH26tnJ1OEII4RApWQghhLBJkoUQQgibJFkIIYSwSZKFEEIImyRZCCGEsEmShRBCCJskWQghhLBJkoUQQgibJFkIIYSwSZKFEEIIm5yWLM6ePUt8fDzDhg0jPj6etLQ0i3n0ej3z588nOjqamJgYkpKSLOY5c+YMvXv3ZvHixc4KTQghRB05LVnMnTuXSZMmkZqayqRJk5gzZ47FPMnJyZw7d47NmzeTkJDAsmXLOH/+vGm6Xq9n7ty5REdHOyssIYQQTuCUZJGTk8OxY8cYOXIkACNHjuTYsWPk5uaazbdp0ybGjx+PWq0mODiY6OhovvnmG9P09957j7vuuotOnTo5IywhhBBO4pRkkZWVRWhoKBpN5QN+NBoNbdq0ISsry2K+sLAw02udTkd2djYAJ06cYPfu3fy///f/nBGSEEIIJ3KLW5SXl5fzj3/8g0WLFpkSTm2EhPg7NH/r1g37pDpvb61d223ouOwlcTlG4nKMxOWYho7LKclCp9Nx4cIF9Ho9Go0GvV7PxYsX0el0FvNlZmbSq1cv4PeSxqVLlzh37hyPPfYYAAUFBSiKQlFREf/85z/tjiMnpwiDQbFr3tatA7h0qWGfgV1WVgFQ43ZdEZc9JC7HSFyOkbgc46y41GqV3RfZTkkWISEhREZGkpKSQmxsLCkpKURGRhIcHGw23/Dhw0lKSmLo0KHk5+ezdetWVq9eTVhYGPv27TPNt2zZMoqLi5k5c6YzwhNCCFFHTusNNW/ePD799FOGDRvGp59+yvz58wF49NFHOXLkCACxsbG0b9+eoUOHMmHCBJ544gk6dOjgrBCEEELUE6e1WXTp0sXquIn333/f9LdGozElkZpMnz7dWWEJIYRwAhnBLYQQwiZJFkIIIWySZCGEEMImSRZCCCFscotBeUKI+mUwKBw+k0POoUxC/L3pFR6CWq1ydViiEZFkIYSHMxgUliQc4kxmAWXlery9NISHBTIjvo8kDGE3qYYSwsMdPpPDmcwCSsv1KEBpuZ4zmQUcPpPj6tBEIyLJQggPd+5CIWXlerP3ysr1pF9wv9tYCPclyUIID3dTaADeXuY36PT20tAh1D1vkCfckyQLITxcr/AQwsMCwVAOioLP9TaLXuEhrg5NNCKSLITwcGq1ihnxfSB7B5orP/N4bHdp3BYOk95QQjQBarUK1dXzaMuz6dO1lavDEY2QJAsPZ+xff+5CITeFBkj/eiFErUiy8GDSv14I4SzSZuHBmmr/eoNB4dCpy2z47iyHTl22++mJQojqScnCg9XUv95T662lNCVE/ZCShQdriv3rm2ppSoj6JsnCgzXF/vUyWlmI+iHJwoNV7V9PzsEm0b++KZamhGgI0mbh4Yz967l63mPbKaoylqaOn70IKi0+3lqnlKZUtcivtpdp2KStuh6Q6obAavPZ6oO9FzGKYtlhwVYXBiuLmN5ToYCq8rVitjKFktJyKvQGi51kvj77O1BYi6M2rpaUU1ZhML320qpQ1fPxJMniOkX5/YCxOr3aBa2/qSiASnV9fcr1bVROLa3QA9an5ReWUlJWQXUnEnsP0qpTDNcXulpaUWV55ff/2nEAq/KKKSwptz1jHSgWf1Q33+8zKLlXKbhaZjb9kZE388wLieATzJSpU4js2NIUu/Hz2/ubVRSlyj6q/Lvqycr6SUihuEKhoKDE9vot/qg9Wyei0nI9eoPC+ctFZtu0FoNiI6A6nfSs7L/LRWU291dNJ/xah2KxE6pOgxZXK7hypbq4FCt/NYz8kgquXCkGQKNW076NP95aSRb1TgHOXSyiokqmruv6qv4CjX9eK6sA4LesQrOZq/4wW5RUkJ9f7JQ4jK6VVdbhp2fXvt7+apnB6XE5Q0m5YjWu0vw0II3ggEe4kNvwcStqDfkFpQ2+3ZoYr5ALi8psz9zAfMoNXCvV256xgekNSuV+czMGg4Jeb0x0DROfJIvr9HqFcicli+oYU4L0+xdCNDbSwC2EEMImSRZCCCFskmQhhBDCJmmzEEIIBxkMCmeyCriYV0Kbls0I1wU2yPgl43YLTuUQ2ExLuC4QTQONm5JkUYWrDgAhRONhMCgk7jhFVk4x5RUGvLRqdCF+TLira72eL6rb7n1R/1Nv26xKksV1rjoAhBCNy5msAtN5AqC8wkBWTjFnsgro2q5Fg2/3dGYBnetxu0bSZnHd6cwr1R4AQghhdDGvxKKbfXmFgYt5tgdh1s92G2YckSSL67Jzi11yAAghGpc2LZvhpTU/dXpp1bRp2cxF2/Wr1+0aSbK4rm2wn0sOACFE4xKuC0QX4oeiL0dRFFOVdbgu0CXb7RJWv9s1kmRxXZewFi45AITwZAaDwqmMK+w5ms2pjCsecfcCtVrFhLu6UnZ+GxUXDzDqjk4N0rZZdbuGyz812HaNnNbAffbsWWbNmkV+fj5BQUEsXryYTp06mc2j1+t5+eWX2bVrFyqViscee4zx48cDsGLFCjZt2oRarcbLy4tnnnmGQYMGOSs8m/zO0x8AABvPSURBVIxfxMLXFqP2DeHe8ROkN5QQdeDJnUbUahWGwnMYCs/Rtd2jDb/dkgy6tnukwbYLTkwWc+fOZdKkScTGxvLVV18xZ84cVq1aZTZPcnIy586dY/PmzeTn5zNmzBhuv/122rdvT69evXjooYdo1qwZJ06cYPLkyezevRtfX19nhWiTqw4AITyRq3oNifrhlGqonJwcjh07xsiRIwEYOXIkx44dIzc312y+TZs2MX78eNRqNcHBwURHR/PNN98AMGjQIJo1q2wfiIiIQFEU8vPznRGeEMIFXNVrSNQPp5QssrKyCA0NRaOpfEKZRqOhTZs2ZGVlERwcbDZfWFiY6bVOpyM7O9tifevXr+emm26ibdu2DsUREuLv0PytW1c+Pa1CbyCnqPIhJ1pt5WcICnJ+DwN71+3sbTvrM9XHPnEGa3HV5/doL3fbXw29T8LbB7H/+AWzh/R4a9WEtw+yGoO77S+j6uJy1TF243bVKhVBQX40b+ZVv9ut17XXwv79+1m6dCkffPCBw8vm5BTZ3YDWunUAly5VPt9BAQoKSigr11NRUXlP/fp4doM96w4K8nP6tp3xmeojLmeoLq76/B7t4Y77q6JCj1arabC42gT60DbEj98y80CtxdtLQ9sQP9oE+ljE4I77C2qOy1XH2I3fo0atIt9PS3GR4xVFarXK7otsp1RD6XQ6Lly4gF5fufP0ej0XL15Ep9NZzJeZmWl6nZWVZVZ6OHjwIM899xwrVqwgPDzcGaEJIVzEVb2GRP1wSrIICQkhMjKSlJQUAFJSUoiMjDSrggIYPnw4SUlJGAwGcnNz2bp1K8OGDQPg8OHDPPPMM7z11lt0797dGWEJIVzM2Gmk4tJBurZrIYmiEXNaNdS8efOYNWsWb7/9NoGBgSxevBiARx99lKeeeoqePXsSGxvLzz//zNChQwF44okn6NChAwDz58/n2rVrzJkzx7TO1157jYiICGeFKIQQopacliy6dOlCUlKSxfvvv/++6W+NRsP8+fOtLr9mzRpnhSKEW5K7GovGzO0auIXj5CTk/tx5gJocP8IekiwaOXc+CdnSlE5S7jpArTEfP6JhSbJo5Nz1JGRLUztJ1TRAzZXfU2M9fkTDkxsJNnKNdZRsTScpT+Sq21rb0liPH9HwJFk0cu56ErKlqZ2kXHVba1sa6/EjGp4ki0bOXU9CtjS1k5S7DlBrrMePaHiSLBo5dz0J2dIUT1LuOECtsR4/ouFJsvAA7ngSskVOUu7DlceP8eFI235M95iHI3kq6Q0lXEaeH9K0eWqPOE/tEi7JQtSap/4oRMPwxG67npoAQZKFqCVP/lGIhuGuY0/qwhMToJG0WTRxxjrjPUezHaozbmrjJITzeWKPOE/uEi4liyasLqUDT7wqFA3L2COu6sORHOkR547VoMYEWPW30dgToJGULJqwupQOPPGqUDSsqj3iDJd/cqhHnPFCJ3lPGruPZJG8J43EHadc3pvKk7uES7JowupSZPbkH4VoOKYecTk/O9Rt112rQT25S7gkiyasLqUDT/5RCPfnzm0DjXHckz0kWTRhdS0deOqPQrg/qQZteJIsmjApHYjGSqpBG54kiyZOSgeiMZILnYYnyUII0SjJhU7DkmQhhBDCJkkWQgghbJIR3EII4SbccVS6kSQLIYRwA+5+c06phhJCCDfgrqPSjSRZiCantnfaFaI+ufOodJBqKNHEuHtRXzRd7n7HWilZiCbF3Yv6ouly91HpkixEk+LuRX3RdLn7qHRJFqJJkRvQCXfmzqPSJVmIJsXdi/pCuCtJFqJJcfeivhDuymnJ4uzZs8THxzNs2DDi4+NJS0uzmEev1zN//nyio6OJiYkhKSnJrmlCOJM7F/WFcFdO6zo7d+5cJk2aRGxsLF999RVz5sxh1apVZvMkJydz7tw5Nm/eTH5+PmPGjOH222+nffv2NU4TjZM737pACFdprL8Lp5QscnJyOHbsGCNHjgRg5MiRHDt2jNzcXLP5Nm3axPjx41Gr1QQHBxMdHc0333xjc5pofIzjGZL3pLH7SBbJe9JI3HFKBsCJJq0x/y6cUrLIysoiNDQUjUYDgEajoU2bNmRlZREcHGw2X1hYmOm1TqcjOzvb5jR7vfPVUfIKSu2a18tbQ3mZ3vS6pKwCRQHvzvcA8Pm3/+fQtu1hz7q1WjUVN3TtrOu6bW23LnFVt2xJaQU5V65h/AmUVxhIv1DER9+coJmP1uby9nI0Lmdtt77iqk/ene9BpVLV6hipiaIoXCvTU1ZhwFurxtdbg0r1+5WyPd9FdXHZ4qrv0da26/K7cHR/qQAfbw1qleOlk5aBPsx+6Da75vWoEdxaLw1e3hq75zfOqyig1SsoKHT9nz/UuMzpU78C0KVrhEPTAJet29Z26xJXdctWlCjceK2kABUGBW2Vrqs1bdvWZ65NXPZOr8t3UZe46rLu+jxGqlu3oihk55RQUloOqFCrVfh4aWgb4mdKGHX5Llz5m6qP/WnP76I2+0ur1aDROJ4stF72ny+dkix0Oh0XLlxAr9ej0WjQ6/VcvHgRnU5nMV9mZia9evUCzEsTNU2z1yN3R9pdnGvdOoBLlwqByi/rbGYBZeX6mhcC5m9eAsD4h+92aJo95m9eglarqZd110VNcVXnVMYVkvekWdy6IOqWdnRt18Lu7UL1n7k2cdmrLt9zXeKyZ921jQsgKMiP/Pxip8V1KuMKyZfSUKkqT3SKAnqDwq3/09ru77mmuJzxm6pueVccX874XYD5/tKoVXTUBeKtdbxVwZG2Eqe0WYSEhBAZGUlKSgoAKSkpREZGmlVBAQwfPpykpCQMBgO5ubls3bqVYcOG2ZwmXMdgUFAH3IQ6pLdDN90zjmcwDoCT8QyeSUbEO6Yx/y6cVg01b948Zs2axdtvv01gYCCLFy8G4NFHH+Wpp56iZ8+exMbG8vPPPzN06FAAnnjiCTp06ABQ4zThGsbGOO/2UaDWkrwnze6b7hnHMzTGXh/Cfu5+8zt305h/F05LFl26dLE6NuL99983/a3RaJg/f77V5WuaJlzDeNM9lcYLML/pnj1FZrVaRdd2LRwqXovGxXilfONdfBvDlbKrNNbfhUc1cAvnqqmKobEd6KJ+NOYrZeEYSRaiWlLFIOzRWK+UhWPk3lCiWo25MU4I4VxSshDVqlrFUHCtgkBfrVQxCNFESbIQNTJWMdS2f359MXXp9WvFqYwrHpHETJ/JN8RjPpPwHJIsRKNTly697soTP5PwLNJmIRqdql16VSqVWz1Hu7aDGN35MwkBkixEI+Suo4arlg7UrW516I6i7vqZhDCSZCEaHXd9jnZdSgfu+pmEMJJkIRodd+3SW5fSgbt+JiGMpIFbNDru2qW3LoMY6zoSWnpSifomyUI0Su7Ypbeu90mq7Uho6UklGoIkCyGcxFUlnrre8FEIe0iyEMKJXFHikRs+ioYgDdxCNHLSk0o0BEkWQjRy0pNKNASphhKikZNnSoiGIMlCCA8gz5QQ9U2qoYRbMo4b0La+xaF7LAkh6oeULITbkXEDQrgfKVkItyN3YBXC/UiyEG5H7sAqhPuRZCHcjowbEML9SLIQbkfGDQjhfqSBW7gdGTcghPuRZCHckowbEMK9SDWUEEIImyRZCCGEsEmShQNkVLEQoqmSNgs7yahiIURTJiULO8moYiFEUybJwk4yqlgI0ZTVOVmUlJTw9NNPExMTw/Dhw9m+fXu18yYmJhITE0N0dDQLFizAYKg8+W7dupWxY8cycuRI7rnnHj744IO6huV09T2q2Ngeog7pLe0hwq1IW50AJ7RZrFy5En9/f7Zs2UJaWhr3338/mzdvpnnz5mbzpaens3z5ctavX09QUBCPPvooGzZsYMyYMbRu3Zr//Oc/hIaGUlhYyNixY+nVqxf9+vWra3hOYxxVnJVTTHmFwamjiqU9RLgrOTaFUZ1LFl9//TXx8fEAdOrUiR49erBz506L+VJTU4mOjiY4OBi1Ws348ePZtGkTAL179yY0NBSAgIAAunTpQkZGRl1DcyrjqOJRd3Tijz11jLqjk9N+MNIeIuzhiit8OTaFUZ2TRWZmJu3atTO91ul0ZGdnW8yXlZVFWFiY6XVYWBhZWVkW850+fZpDhw5x22231TU0pzOOKr6jR1u6tmvhtCsraQ8RtlS9wte26UvynjQSd5yq94Qhx6YwslkNFRcXR2ZmptVpe/bscWowFy9eZNq0acydO9dU0nBESIi/Q/O3bh0AQIXeQE5RORV6g40laqbVagAICvJzaLnw9kHsP36Bsio/Sm+tmvD2QaZ11XbdzuTKbdekPuKqaX/b+104M64TablkX7/Ch8oTdnZOMRcLSvlDp2CH1uVIXPYcm85Sl31dnbp8j+7wm6uJMS61SkVQkB/Nm3nV6/ZsJot169bVOD0sLIyMjAyCgysP2KysLAYOHGgxn06nM0s6mZmZ6HQ60+ucnBymTp3KI488wogRI+z+AFXl5BTZfaXVunUAly4VAqAABQUllJXra7Vdo4qKyuXz84sdWq5NoA9tb2gPaRviR5tAH9O6artuZwkK8nPZtmtSX3HVtL/t+S6cHdeZ8/lmJ2yAsgoDZ87n0zbI1+71OBqXPcemM1QXV12P+7p8jxUVerRajdsf9xq1inw/LcVFjlcUqdUquy+y69zAPXz4cBISEujZsydpaWkcOXKEJUuWWMw3bNgw7r//fp588kmCgoJISkpi5MiRAOTl5TF16lTuv/9+xo8fX9eQGp2qd1ktuFZBoK9W7rIqzBh741WtEmqIZ3zIHYCFUZ2TxcMPP8ysWbOIiYlBrVazYMEC/P0rM9XSpUtp06YN9913Hx06dGDatGlMmDABgDvvvJPRo0cD8N5775GWlkZCQgIJCQkAPPDAA9x77711Da/RMLaHuOsVvHCt+uyNZ4vcAViAE5KFn58fb731ltVpf/vb38xeT5w4kYkTJ1rMN3PmTGbOnFnXUITwWHKFL1xN7g0lRCMhV/jCleR2H0IIIWySZCGEEMImSRZCCHEDuVebJWmzEEKIKuR+WNZJyUIIIaqQ+2FZJ8lCCCGqkPthWSfJQgghqqjvZ9c0VpIshBCiCuNoeWPCaMjR8u5MGrgbAVPPDN8QTmVckZG7QtQjuVebdZIsrlOpKv85QmmA3nTSM8O9SOJuGuRebZYkWVCZJNqGNLc9oxnLTOHrXbk7O+oCrycSxTSn8bWiGF9X/lH1taJAYKAvWtXv6z6Wlkt2ruVzDC4XXCOyU0uHEpbC9W1aCd/WegL8vFAqfBzbltnrOqhh4ebNtOjLve1bXDH+7/cVVve5NdcTgF8zL1AUDIqCwaDw6eaTZom7Xavm3B/TDdUNVxpajRpvL02NcTnbjfvcGq1GZVEfb74Omxtxot9Xplar0GpUFlON72iqTlOs/mnBYFDQBNyEyjeEM5kFhIcFor7+PSkopnXfeJHYEBeBjZEkCwAFmnnX/YdtvMCs7bpUKmjVyh/vKsniSmEp5eWWPTOuXC2lTVBtG9wcvxJu1cqfy07YR87WqpU/l32Kqp3uaGnRyJj4O7UNML136P8um7pUAqYulUUl5fT5n1bA7yev4JbNycmt34fRGDlycmvZ0o/85l6mOG9MpNWdfqvdRi138I3raxnUjDw/y9ORr8/17+F6e4FiligqT/iWoakw6BXeWvMz3h2iQKUlec9ZOukCmX5v7+slQQUfi4u739ds/I0EBPoS6Kv9fSs3bPDGbVteiNVP5gkIaIa/z+9J/8ZEWx8kWbgR4wFb9cDtEBqAt5eG0ioPZvL20tChTUAdroBqt6DippdcNcVV25CN66w6cjctu8DiAVll5XrOXSikd9dWZu9rNOpapOTaceR87e2lQaVSWcamsvijQTXz9aJIY1niMUbjZWVaTQ6lXSYtqxDUlQm7tNxAWlYhJ9Pz6HP9uzJe3PnWUAJsGeBLxbVyh7bdEFoFNUMpr2jQbUpvKDfXKzyE8LBAfLw0qAAfLw3hYYH0Cg9xdWhNzk3XE3dV3l4aOoQGVLOEcJVzFwqtJvb0C4Uuiqjxk5KFm1OrVcyI78PhMzmkXyikQ2gAvcJDpFHVBYyJ+0xmZQnDWxK327qpuhK5JPZak2TRCKjVKvp0bWUqPgvXkMTdeEhidz5JFkI4QBJ34yCJ3fkkWQghPJIkdueSBm4hhBA2SbIQQghhkyQLIYQQNkmyEEIIYZMkCyGEEDZJshBCCGGTJAshhBA2SbIQQghhkyQLIYQQNkmyEEIIYZMkCyGEWzIYFJTm7VGCe3Po1GWzZ4uIhifJQgjhdgwGhSUJh6DtXRB8C+9+9QtLEg5JwnAhSRZCCLdz+EwOZzILKp90p1JRWq7nTGYBh8/kuDq0JkuShRDC7dT3k+6kistxdU4WJSUlPP3008TExDB8+HC2b99e7byJiYnExMQQHR3NggULMBgMZtNLS0u55557GDt2bF3DEkI0YvX5CFup4qqdOieLlStX4u/vz5YtW3jnnXd46aWXuHr1qsV86enpLF++nISEBDZv3sxvv/3Ghg0bzOb597//Te/evesakhCikavPZ89LFVft1DlZfP3118THxwPQqVMnevTowc6dOy3mS01NJTo6muDgYNRqNePHj2fTpk2m6T/++CNpaWnExsbWNSQh6kSqKFzP+KS7x2O7M2ZQZx6P7c6M+D5OedJdfVdxeao6PykvMzOTdu3amV7rdDqys7Mt5svKyiIsLMz0OiwsjKysLACKi4t55ZVX+M9//kNaWlqtYwkJ8Xdo/tatnfvwdm9vrVPW6+y4nKUpxKU3KMx9b09lFYVKy3sbfiGiY0vmP3YHGgdPVE1hfzmTtbhiQgOdvp2e3drwzb5zXCv7PWH4eGvo0a2N1Rga0/6qTzaTRVxcHJmZmVan7dmzxylBvPbaa0yaNInQ0NA6JYucnCK7rwJbtw7g0iXnXkmUlVUA1Gm99RGXMzSVuA6dusyJtLzKKgrgWpmeE2l5bNuX5tDjOZvK/nKWhoyrY4gfnXWBnMksoKxcj7eXhs66QDqG+FnE4On7S61W2X2RbTNZrFu3rsbpYWFhZGRkEBwcDFSWIAYOHGgxn06nM0s6mZmZ6HQ6AA4cOMDOnTt5++23KS0t5cqVK4waNYrk5GS7PoQQzlJTFYU8y9kzGKu4Dp/JIf1CIR1CA+gVHuKUKi5PVuc2i+HDh5OQkABAWloaR44cYdCgQRbzDRs2jK1bt5Kbm4vBYCApKYkRI0YAkJyczLZt29i2bRtvvPEG3bp1k0QhXKI+e+EI96FWq+jTtRWj7uxMn66tJFHYoc7J4uGHH6agoICYmBgef/xxFixYgL9/ZbFm6dKlfP755wB06NCBadOmMWHCBIYOHUr79u0ZPXp0XTcvhFPVZy8cIRozlaIoHtPVw9VtFg8/PAWAlSs/qfU6PL2O1NnqIy6DQalzFUVT2l/OIHE5xi3bLIRoaoxVFNJGIcTv5HYfQgghbJJkIYQQwiZJFkIIIWySZOEkcosIIYQnk2ThBHIXSyGEp5Nk4QRyF0shhKeTZOEEchdLIYSnk2ThBHKLCCGEp5Nk4QRyiwghhKeTEdxOIHexFEJ4OkkWTiK3iBBCeDKphhJCCGGTJAshhBA2SbIQQghhkyQLIYQQNnlUA7ejvY/ctbeSxOUYicsxEpdjPDkuR9bhUU/KE0IIUT+kGkoIIYRNkiyEEELYJMlCCCGETZIshBBC2CTJQgghhE2SLIQQQtgkyUIIIYRNkiyEEELYJMlCCCGETR51uw97nD17llmzZpGfn09QUBCLFy+mU6dOrg6LqKgovL298fHxAeDZZ59l0KBBDR7H4sWLSU1NJSMjg+TkZLp16wa4fr9VF5er91teXh7PP/88586dw9vbm44dO7JgwQKCg4M5dOgQc+bMobS0lHbt2vGvf/2LkJCGeXpiTXFFRETQrVs31OrKa8XXXnuNiIiIBokLYNq0aZw/fx61Wo2fnx//+Mc/iIyMdPkxVl1crj7GjJYvX86yZctMx3+DH19KEzNlyhRl/fr1iqIoyvr165UpU6a4OKJKQ4YMUX799VdXh6H88MMPSmZmpkU8rt5v1cXl6v2Wl5en7N271/T61VdfVV544QVFr9cr0dHRyg8//KAoiqKsWLFCmTVrlsvjUhRF6datm1JUVNRgsdyooKDA9PeWLVuUMWPGKIri+mOsurhcfYwpiqIcPXpUefjhh02xuOL4alLVUDk5ORw7doyRI0cCMHLkSI4dO0Zubq6LI3Mf/fr1Q6fTmb3nDvvNWlzuICgoiIEDB5pe9+nTh8zMTI4ePYqPjw/9+vUDYOLEiXzzzTcuj8sdBAQEmP4uKipCpVK5xTFmLS53UFZWxoIFC5g3b57pPVccX02qGiorK4vQ0FA0Gg0AGo2GNm3akJWVRXBwsIujqyzeKopC3759+fvf/05gYKCrQwJkv9nLYDDw+eefExUVRVZWFmFhYaZpwcHBGAwGUxWLq+IymjJlCnq9nsGDBzN9+nS8vb0bNKbZs2fz3XffoSgK//u//+s2x9iNcRm58hhbunQpo0ePpn379qb3XHF8NamShTtbvXo1GzZsYM2aNSiKwoIFC1wdUqPgTvvtn//8J35+fkyePNllMVhzY1w7duxg7dq1rF69mlOnTrFixYoGj2nhwoXs2LGDZ555htdee63Bt18da3G58hg7ePAgR48eZdKkSQ22zeo0qWSh0+m4cOECer0eAL1ez8WLF92iesMYg7e3N5MmTeKnn35ycUS/k/1m2+LFi/ntt9948803UavV6HQ6s2qf3Nxc1Gp1g5cqbowLft9n/v7+jB8/3qXH2pgxY9i3bx9t27Z1q2PMGFdeXp5Lj7EffviB06dP8+c//5moqCiys7N5+OGH+e233xr8+GpSySIkJITIyEhSUlIASElJITIy0uVVKcXFxRQWFgKgKAqbNm0iMjLSpTFVJfutZm+88QZHjx5lxYoVpuqcHj16cO3aNX788UcAvvjiC4YPH+7yuK5cucK1a9cAqKioIDU1tUH32dWrV8nKyjK93rZtGy1atHD5MVZdXD4+Pi49xh577DF2797Ntm3b2LZtG23btmXlypU88sgjDX58NbmHH50+fZpZs2ZRUFBAYGAgixcvJjw83KUxpaenM336dPR6PQaDgS5duvDSSy/Rpk2bBo/l5ZdfZvPmzVy+fJmWLVsSFBTExo0bXb7frMX1zjvvuHy//d///R8jR46kU6dO+Pr6AtC+fXtWrFjBTz/9xNy5c826NrZq1cqlcT3yyCPMmTMHlUpFRUUFt9xyCy+++CLNmzdvkLguX77MtGnTKCkpQa1W06JFC2bOnEn37t1deoxVF1dgYKDLj7GqoqKieOedd+jWrVuDH19NLlkIIYRwXJOqhhJCCFE7kiyEEELYJMlCCCGETZIshBBC2CTJQgghhE2SLIQQQtgkyUIIIYRNkiyEEELY9P8BqB89/3IVsrcAAAAASUVORK5CYII=\n", 499 | "text/plain": [ 500 | "
" 501 | ] 502 | }, 503 | "metadata": { 504 | "tags": [] 505 | } 506 | } 507 | ] 508 | }, 509 | { 510 | "cell_type": "markdown", 511 | "metadata": { 512 | "id": "nnCUvUm5lJB3" 513 | }, 514 | "source": [ 515 | "### 8. Higher-Lag ARIMA Models" 516 | ] 517 | }, 518 | { 519 | "cell_type": "code", 520 | "metadata": { 521 | "id": "rFOf_QsjlFam" 522 | }, 523 | "source": [ 524 | "model_ar_1_i_1_ma_2 = ARIMA(df.market_value, order=(1,1,2))\n", 525 | "results_ar_1_i_1_ma_2 = model_ar_1_i_1_ma_2.fit()\n", 526 | "model_ar_1_i_1_ma_3 = ARIMA(df.market_value, order=(1,1,3))\n", 527 | "results_ar_1_i_1_ma_3 = model_ar_1_i_1_ma_3.fit()\n", 528 | "model_ar_2_i_1_ma_1 = ARIMA(df.market_value, order=(2,1,1))\n", 529 | "results_ar_2_i_1_ma_1 = model_ar_2_i_1_ma_1.fit()\n", 530 | "model_ar_3_i_1_ma_1 = ARIMA(df.market_value, order=(3,1,1))\n", 531 | "results_ar_3_i_1_ma_1 = model_ar_3_i_1_ma_1.fit()\n", 532 | "model_ar_3_i_1_ma_2 = ARIMA(df.market_value, order=(3,1,2))\n", 533 | "results_ar_3_i_1_ma_2 = model_ar_3_i_1_ma_2.fit(start_ar_lags=5)" 534 | ], 535 | "execution_count": 13, 536 | "outputs": [] 537 | }, 538 | { 539 | "cell_type": "code", 540 | "metadata": { 541 | "colab": { 542 | "base_uri": "https://localhost:8080/" 543 | }, 544 | "id": "_EYpc3ZllMlH", 545 | "outputId": "798efc99-ae02-4407-ed53-e8217a1cedb7" 546 | }, 547 | "source": [ 548 | "print(\"ARIMA(1,1,1): \\t LL = \", results_ar_1_i_1_ma_1.llf, \"\\t AIC = \", results_ar_1_i_1_ma_1.aic)\n", 549 | "print(\"ARIMA(1,1,2): \\t LL = \", results_ar_1_i_1_ma_2.llf, \"\\t AIC = \", results_ar_1_i_1_ma_2.aic)\n", 550 | "print(\"ARIMA(1,1,3): \\t LL = \", results_ar_1_i_1_ma_3.llf, \"\\t AIC = \", results_ar_1_i_1_ma_3.aic)\n", 551 | "print(\"ARIMA(2,1,1): \\t LL = \", results_ar_2_i_1_ma_1.llf, \"\\t AIC = \", results_ar_2_i_1_ma_1.aic)\n", 552 | "print(\"ARIMA(3,1,1): \\t LL = \", results_ar_3_i_1_ma_1.llf, \"\\t AIC = \", results_ar_3_i_1_ma_1.aic)\n", 553 | "print(\"ARIMA(3,1,2): \\t LL = \", results_ar_3_i_1_ma_2.llf, \"\\t AIC = \", results_ar_3_i_1_ma_2.aic)" 554 | ], 555 | "execution_count": 16, 556 | "outputs": [ 557 | { 558 | "output_type": "stream", 559 | "text": [ 560 | "ARIMA(1,1,1): \t LL = -27603.66641276839 \t AIC = 55215.33282553678\n", 561 | "ARIMA(1,1,2): \t LL = -27600.081863151576 \t AIC = 55210.16372630315\n", 562 | "ARIMA(1,1,3): \t LL = -27590.424032629428 \t AIC = 55192.848065258855\n", 563 | "ARIMA(2,1,1): \t LL = -27599.80748785492 \t AIC = 55209.61497570984\n", 564 | "ARIMA(3,1,1): \t LL = -27592.05537171072 \t AIC = 55196.11074342144\n", 565 | "ARIMA(3,1,2): \t LL = -27590.660808978784 \t AIC = 55195.32161795757\n" 566 | ], 567 | "name": "stdout" 568 | } 569 | ] 570 | }, 571 | { 572 | "cell_type": "code", 573 | "metadata": { 574 | "colab": { 575 | "base_uri": "https://localhost:8080/", 576 | "height": 289 577 | }, 578 | "id": "gZF6IBAnlgF-", 579 | "outputId": "88ad50be-3792-4187-cb6c-8a6c5ce045a0" 580 | }, 581 | "source": [ 582 | "df['res_ar_1_i_1_ma_3'] = results_ar_1_i_1_ma_3.resid\n", 583 | "sgt.plot_acf(df.res_ar_1_i_1_ma_3[1:], zero = False, lags = 40)\n", 584 | "plt.title(\"ACF Of Residuals for ARIMA(1,1,3)\", size=20)\n", 585 | "plt.show()" 586 | ], 587 | "execution_count": 18, 588 | "outputs": [ 589 | { 590 | "output_type": "display_data", 591 | "data": { 592 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxU9f748dcsrAIiiDiouX7lkmu5VaY3DURzQSxETetni92r2XJbpPLrdrOym90s9VZe62YrkCukoaZeTVMzy736pqLIpoIICArMzO8PmolhBmaGGZgB3s/Ho2TmfM457zlz5rzPZznnKPR6vR4hhBCiFkpXByCEEML9SbIQQghhlSQLIYQQVkmyEEIIYZUkCyGEEFZJshBCCGGVJAshhBBWSbJopMrLy3n77bcZMWIEPXv2JDw8nO3bt7s6LLuEh4czbdo0m8sfOHCA8PBw3nnnnXqMyrKEhATCw8O5cOGC05ddXFzMyy+/zPDhw7n55psJDw/n1KlTTl+PsM3+/fsJDw9n8+bNrg6lXpSWljJ48GCeffZZu+ZT11M8LvOvf/2Lt956C4AtW7bQpUuXWstfuXKFzz77jD179nD27FmKi4vx8/Oja9euDB06lPvuu4/WrVsby0+bNo2DBw/WuLzY2Fhee+01m+M9e/Ysa9as4bvvviM3Nxe9Xk9oaCi33347DzzwQI3xf/jhh6xYsYIBAwYwatQo1Go1nTt3rnVdCQkJrF+/3uQ9b29v2rVrx9ChQ5kxYwZBQUE2xy6c4/XXXycxMZFhw4Yxbtw4VCqVyT7nCnPnziU5ORlvb2/27NlDQECAxXLvvPMOy5cvN3nP09OTtm3bctttt/HYY4/Rvn17s/kM++Krr77KhAkTzN4HmDlzJk8++aTF9a5fv56EhAQABg4cyMcff1zjZ5k+fTr79u2jbdu27NixA5VKVWNZnU7Hq6++yp/+9CdGjRplMu3o0aNs27aNU6dOcerUKS5fvkxoaCi7d++ucXk1OX36NF999ZVxWdnZ2QCcOHECtdq+w/L3339PUlISp06d4tKlS5SUlBASEkL37t158MEHuf32203K+/j4MGPGDF599VUeeOABevfubdN6mlSy0Ov1JCcno1AojH/PmTOnxvI7d+7kueeeo6ioiI4dOxIVFUVwcDBFRUUcOXKEt956i/fee4+tW7cSEhJiMm9sbCzt2rUzW2ZERITN8a5Zs4bXXnsNnU7HgAEDGDZsGFC5w3zxxRckJSWRkJDAAw88YDF2X19fPvjgAzw9PW1eJ8Ddd99tjPPy5cvs3r2bDz/8kK1bt7J27VpatWpl1/LqavPmzfj4+DTIutzZrl276NSpE++++66rQwEqazpfffUVCoWC69evs2nTJqZOnVrrPAMHDmTgwIEAFBQUsH//fpKSkkhLSyMpKYlOnTrZFYNarWbdunU8/vjjFg/uSUlJqNVqKioqal1ORkYG3333HQqFgpycHHbv3m38nVny1Vdf8fPPP/PGG2+gUChMpqWkpLBmzRo8PDzo2rUrly9ftuszVbVnzx5WrFiBSqWiY8eOeHl5cePGjTota//+/ezfv58+ffpw22234ePjQ1ZWFjt27GDnzp389a9/5amnnjKZZ9KkSaxYsYK33nqLDz74wKb1NKlk8e2335KZmcmECRPYs2cP69ev5+mnn7Z4MD148KBxR3z11VeJjY012zl++eUXFi9ebPFLjI2NZdCgQXWOdcOGDSxevJjAwECWL1/OgAEDTKYfOnSIWbNmsXjxYgICAhg/frzJ9IsXL9KqVSu7EwVAZGSkydncjRs3mDhxIj///DOffvopjz/+eN0+lJ26du3aIOtxdxcvXjT7/l0pNTWVkpISpk+fzieffEJSUpJNyWL27NnG1zqdjr/85S/897//5b333uPVV1+1K4a77rqL7du3s2fPHu666y6TaadPn+bw4cNERUWxbdu2WpeTlJSEXq9nxowZvP/++8YaXE0+/fRT/Pz8iIqKMps2YcIEYmNj6datG56enoSHh9v1maoaOnQot9xyC+Hh4Xh7ezN8+HAyMzPrtKwZM2aYbHuD3NxcYmNjee+995gyZQpt2rQxTvPy8mLUqFEkJiaSnp5uUzJvUn0WycnJAMTFxTF27FiuXLlisR1fp9Mxb948KioqeOmll5gwYYJZooDKNvX//Oc/hIaGOjXO4uJiXnnlFQDeeOMNiweK/v37849//AOAV199leLiYsC07TwzM5Pw8HDCw8MZPnx4nePx8vJi7NixABw7dsxsekFBAUuXLmXUqFH07t2bfv368eCDD/Ltt9+alS0rK2PNmjXExsYyYMAA+vTpw/Dhw/nrX//Kvn37TMrW1Gdx+fJlXnzxRe644w569+5NTEyMWfNZVcOHD6/x87/zzjuEh4dz4MABk/e3b9/Os88+S3R0NH379qVv375MmDCBNWvWoNPpalxXdd988w0PPvggd955Jz179uTOO+9k6tSpfPrpp1bnnTZtGuHh4ej1eg4ePGj8LqtuE51Ox+eff869997LLbfcQt++fbn33nv57LPPLMZpmP/SpUu89NJLDBkyhIiICNatW2fzZ0pKSkKpVPLggw8yfPhwfvnlF44cOWLz/ABKpZLY2FjA8j5lzdixY/H29iYpKclifFD5O69NRUUF69evx8/Pj1mzZtGjRw92795Nbm6uxfKnT5/mxx9/ZPjw4Xh7e5tNj4iI4Oabb67TCVp1Xbp0oU+fPhbXYy8vLy+L74eGhnLLLbeg0+nIyMgwmz569Gj0ej1r1661aT1NpmZx+fJlduzYQadOnbj11lvx8/Pjgw8+IDExkXvuucek7MGDBzl79iyhoaHcd999tS5XqVSiVDo3p6alpXH16lV69+7NkCFDaiw3dOhQevXqxbFjx0hLS+Pee+8lMjKSdu3a8dFHHwHw4IMPAuDv7++U2Kq3l2ZmZjJt2jQyMzPp378/Q4YMobS0lJ07d/LII4+waNEiJk6caCz/wgsvkJqaSvfu3YmJicHb25uLFy/yww8/sGfPHu64445a15+fn8+kSZPIyMigX79+9OvXj0uXLjF//nwGDx7slM8IlUlaqVTSu3dvQkNDKSoqYv/+/SxevJhjx44ZE3VtEhMTmTdvHiEhIQwbNoxWrVqRl5fHL7/8wrp167j//vtrnT82NpaBAweyfPly2rVrZzy4Vm3efO6550hNTUWj0XDfffehUCjYvn07Cxcu5IcffmDp0qVmyy0oKCA+Ph5fX19GjBiBQqEgODjYpu1y8uRJTpw4weDBg9FoNMTGxpKWlkZiYiJ9+vSxaRnV2dsGDxAQEMDIkSNJTU3l0qVLxmbgsrIyNmzYwMCBA62eDe/YsYNLly4xceJEvL29mTBhAn//+9/58ssvmTVrlln57777DoB+/frZHa87ysvL48iRI3h6elrsz+zduzceHh7s3buXZ555xurymkyyWLduHeXl5cbmle7du9OjRw8OHDjAuXPn6Nixo7HsDz/8AFRWnWvr7KrN+vXrLXZ0W6oOVmdYv7UDJ8DgwYM5duwYhw8fNiaLyMhI45m2Leuz5vr162zcuBEw/6EkJCSQlZXFm2++yejRo43vFxYWMm3aNOMontatW1NUVMRXX31Fjx49SE5ONtu2V65csRrLP//5TzIyMnjwwQd58cUXje/ff//9TJo0yZGPaeL999/npptuMnlPp9PxwgsvsGHDBqZOnWr14JiYmIiHhwcbN240Oxjn5+dbjcGwrxqSRfXvMjU1ldTUVG6++WY++eQTWrRoAcBTTz3F1KlTSU1N5a677jLWCg1+/fVXYmJieOWVV+w+UH/xxRcmsQ0ZMoSQkBC2bNnCiy++iJ+fn03L0Wq1fPnll0DdD75xcXFs2LCBdevW8dhjjwGwbds2CgoKrNYqoPL7gT8+y5gxY3jttddYu3Ytf/3rX81OAg2/y549e9YpXlc7duwYu3btoqKigtzcXHbu3ElRURFz5861OHDF29ubbt26cerUKePAnto0iWRh6MxWKpUmbfsTJkzgxIkTJCUl8dxzzxnfv3TpEgBt27at8zprahax5eBtz/oNZS5evGhHdLXbvn27sX00Ly+PXbt2kZ2dzYABA5g8ebKx3M8//8zBgweJjo42SRRQeeY3e/ZsZs2aRVpaGvfff79xYIGnp6fF2pi1jvPy8nJSUlJo0aKF2Xbs1asXY8eOrbU5yh7VEwVU1iIfeOABNmzYwJ49e2w6k1ar1RYPyM4YVWZoHnjmmWeMiQLA19eX5557jv/3//4fycnJZsnCw8ODOXPm2J0oSkpKSE1Nxd/f39hmr1arGTt2LB988AGbNm1iypQpFuc9ePCgcUjz1atX2bt3L2fOnKFbt27MnDnTrjgM+vfvT5cuXUhOTmbGjBkoFAqSkpJo2bIl0dHR5OTk1DhvZmYm+/bto3Pnztxyyy0ABAYGMnz4cNLS0tizZw9//vOfTeYxjEiqPpilsTh+/LjJyLQWLVrwyiuvmPV3VtW6dWtOnTpFbm5u80gW+/fv5/z589x5550m/QuGM4n169fz1FNP4eHh4bR1rlmzxqEOblf65ptv+Oabb0zeGzx4MO+9957JNvrxxx+Byj4WS9c2GM6ez5w5A4Cfnx/Dhg1j586dxMTEMGLECPr370+fPn1sGvV05swZSktL6d+/v8VmtYEDBzotWVy5coXVq1fz3//+lwsXLlBSUmIy3ZbkPHbsWF577TVGjx7NPffcw8CBA7n11ludNvz45MmTKJVK4yijqgYMGIBKpbJ4PUa7du1sbnaq6quvvuLatWvEx8ebtIPHxsbywQcfkJycXGuyqF7TjoiI4OOPP3aoiXTixIm89tpr7N+/n7CwMA4cOMDUqVNrbKc3SE5ORqfTmQzkMHyWtLQ0kpOTzZKFoebbsmXLOsfrSpMnT2by5MncuHGDCxcu8PnnnzNnzhwOHz7MokWLLM5j+Ky21PqbRLKoXt00qHom8c033zBy5EjgjzOHmjq66pthDH1tZ0YGhjJVRzI4yjC2XavVkpGRwbJly9i8eTMLFixg8eLFxnIFBQUA7N27l71799a4vKoH2rfeeotVq1aRmppqTDBeXl5ER0czZ86cWq8fKCoqAqjxQOesaw8KCwu57777uHDhgrEDvWXLlqjVagoLC1mzZg1lZWVWlzN9+nRatWrFZ599xscff8xHH32EQqFgwIABPP/88/Tq1cuhOIuKimjZsqXFDlW1Wm3sI6murmfGho7j6r8jQ5PuiRMnOHbsmMXP9fjjjzN79mx0Oh25ubmsXr2ajz/+mKeeeopVq1bVud8vJiaGN998k+TkZMLCwtDr9SZ9ZJZotVrWrl2LUqkkJibGZJqhWW3nzp0mfSGAsbP5xo0bTul4dhUvLy+6du3K3LlzKSsrIzExkTvuuMN4/KvKMNLTls/b6JNFfn6+ccTT3/72N/72t79ZLJeUlGTcWIY21IMHD6LVauvcb1FX/fr1Y926dezbt4+nn3661rKGEUS33nqr0+NQqVR06tSJpUuXkpmZyZdffsnw4cO5++67gT86zV966SWL13pY4u3tzezZs5k9ezbZ2dl8//33rF+/nk2bNpGZmclnn31W47yG9Vk6AAI1jmtXKBSUl5dbnFZYWGj2XnJyMhcuXDAe4Kr68ccfWbNmTY0xVjd+/HjGjx9PYWEhP/74I9u2bWPt2rU88sgjbNmyxaFahr+/P1evXqW8vNysVlxRUcGVK1csNh1YGtlnzc8//8zRo0cBiI+Pr7FcUlJSrUlQqVSi0WiYO3cuFy9eJC0tjU8++cTm/ae6oKAg4xBZPz8/brnlFrp3717rPDt37jTWDIcOHVpjubVr1/KXv/zF+NpwklJQUNBoaxfVDR06lMTERA4ePGgxWRhOCG2piTb6obPr16+nvLycHj16cN9991n8LygoiH379hmHjw0cOJDOnTuTk5NjdUihTqer8UBUVyNHjiQgIICjR4/Wesa+d+9ejh49SmBgINHR0U6NoSqlUslLL70EVI4S0mq1AMY2+0OHDtVpuRqNhnHjxrF69Wo6duzIDz/8UGt1t0uXLvj4+HDq1CljLaOqmq6cb9myJXl5eRa/p+PHj5u9d+7cOQBGjBhhNu3777+vMb7aBAQE8Oc//5mXX36Z2NhYCgoK6rwsg4iICHQ6ncXt//3336PVarn55psdWoeBoVYxcODAGn9H3t7epKamcu3aNZuWmZCQgKenJytWrDAO/a6LuLg4ysrKyM/Pt6lj2zCEftiwYRY/h6Hm9OWXX1L1qdKG6yYMzapNgaH1pKYT4rNnzxIYGGhT/2mjTxaGndzQhGLpv/j4ePR6vXF0hlKpZNGiRajVal5++WU2btyIpUeR//bbbzz00ENOb67y8/MzXln+zDPPGEdhVHX48GHjcLYXXnjB5lEoddWnTx+GDRvGmTNn2LBhA1DZqdy/f3+2bdtm3HbV/fLLL8aaQH5+Pr/88otZmZKSEkpKSlCr1bX2G3l4eDB27FiuXbtm1kdy7NgxUlJSLM7Xq1cvKioqzBL/unXrOHz4sFl5w+0nqiefkydP8t5779UYX3X79++3uN8Y+nIcbcq49957AVi6dCmlpaXG90tLS41DZq0N/bbF9evXSUlJQaVS8cYbb9T4OxoxYgQlJSV89dVXNi03LCyMiRMnUlBQYPNVwpbcdtttrFy5khUrVpgNtKguOzubPXv20LJlS5YtW2bxc7z66qv069ePjIwMk2t/DH1DP/30U51jrc5wXZQ917nUxHDNUPXfhqFGWN358+eN+3P1Cxuh8ur2y5cvM2jQIJtqo426GerAgQOkp6fTvXv3Wu9vct999/Huu++ydu1aZs+ejVqtZuDAgbzzzjs8//zzPP/886xcuZJBgwbRqlUriouLOX78OEeOHMHHx6de2i/vu+8+ioqK+Mc//sH999/PwIED6dGjBwqFghMnTnDgwAGUSiUvvvhiraMZnOmJJ55g165drFixgrFjx+Lp6cnSpUt58MEHeemll/j444/p06cP/v7+5OTk8Ouvv/Lrr7+SmJhIcHAwubm5jB8/nu7duxMeHo5Go6G4uJhdu3Zx6dIlpk2bZjXpPf3003z33Xd89NFHHD9+3HidxebNmxk6dCg7duwwm2fatGmsW7eOBQsW8N1336HRaDh16hQ//fSTscO9qpiYGFavXs0rr7zCgQMH6NixI+fOnWPXrl1ERUXZfAO5xx9/HF9fX/r27Uu7du3Q6/UcOnSIY8eO0aNHD5uGRtdm7NixfPPNN2zZsoXRo0cTGRlpvM7iwoUL3HPPPYwbN86hdUDlbVcKCwsZNmxYrRegxsXFsWnTJhITE632Gxg89thjfPnll/znP/9h6tSpdWqWUygUxqZRa7788ku0Wi3jxo2rtRM8Li6OH374gcTEROP1O7fddhsBAQF8++23FpuHT58+zapVq0zeKywsNN6jCuD55583+YyGCyern9nn5+fz+uuvG18batwvvfSS8cD96KOPmtzloKZlPfTQQwQHBxMREYFGo6GiooKMjAz27NlDRUUF06ZNs3iNkqFVw1IN25JGnSxsvZKzffv23HHHHezdu5edO3cahwUOHz6cbdu2GW8kmJaWRnFxMS1atKBLly488cQTxMfH12lkiS2mT5/O0KFDWbNmDfv37zdeJdu2bVvi4+N54IEHGvSWGDfffDNRUVFs3bqVxMREpk2bRtu2bVm7di2ffPIJW7duJSUlBa1WS+vWrenWrRtTp041tiEbrhU4ePAgBw4c4MqVKwQGBtK5c2eeeeYZq2eFUNlG/fnnn/Pmm2+yc+dOjh8/TufOnVmwYAHt2rWzmCy6devGhx9+yD//+U927tyJSqWif//+fPHFF2zbts0sWYSGhvLpp5/yxhtv8MMPP/Dtt9/SpUsX5s+fz+23325zsnjmmWf49ttvOXHiBP/973/x8vIiLCyMZ599lsmTJztl9N2bb77JgAEDWLt2rXEgR9euXXnooYdMhjk7wtbfkeFCuOPHj3Pq1Cmb7oPWpk0bJk+ezIcffsj7779vcmB1Np1OZxxubK3GNXLkSBYvXsyOHTvIy8sjODgYHx8fYmNj+eijjzh9+rTZb+/y5ctmo/FKS0tN3nv88cdNksWvv/5KixYtzM7sS0pKLI7sM9TqoXLkVtUYfv31V5RKpdkNDp944gn27t3LkSNH2Llzp/H3effddxMXF1fjhb8bNmwgKCjI5mSh0FuqRwshRDOUkZHBqFGjmDRpEnPnznVoWYWFhQwaNIjp06fz/PPPO7QsvV7Pbbfdxm233cayZcscWhZUDmiIiYnhySeftPk6mEbfZyGEEM7SoUMHHnjgAZKSkhzuqzx06BBqtZrp06c7HNevv/5KQUGB8Up2R7399ttoNBoeeughm+eRmoUQQlRRXFzMf/7zH26//fYmc5+oqkpLS1m9ejUDBgyw68JiSRZCCCGskmYoIYQQVkmyEEIIYVWjHjpb3ZUr19DpbGtVCw72Iy+v7leV1heJyz4Sl30kLvs09biUSgWtWrWwXpAmlix0Or3NycJQ3h1JXPaRuOwjcdlH4qokzVBCCCGskmQhhBDCKkkWQgghrJJkIYQQwqom1cEthLBMp9Nz9EweeT9lEeznSe8uwSiV9j8kSTRfkiyEaOJ0Oj1LE3/iTFYhZeVaPD1UdAkL4Jn4vpIwhM2kGUqIJu7omTzOZBVyo1yLHrhRruVMViFHz1h+fK0QlkiyEKKJO59bRFm51uS9snItGbnmj64VoiaSLIRo4m4K9cfTw/Tpap4eKjqE+rsoItEYSbIQoonr3SWYLmEBoCsHvR6v3/ssenepnydAiqbJacni7NmzxMfHEx0dTXx8POnp6WZltFotCxcuJDIykqioKJKTk43T1q5dy9ixY4mJiWHs2LGsWbPGWaEJ0awplQqeie8LObtQXT3CYzE9pHNb2M1po6Hmz5/PlClTiImJYePGjcybN8/sgJ+SksL58+fZunUrBQUFjB8/nttvv5327dsTHR3NhAkTUCgUFBcXM3bsWAYOHMif/vQnZ4UoRLOlVCpQXLuAujyHvt1auzoc0Qg5pWaRl5fHyZMnGTNmDABjxozh5MmT5Ofnm5TbvHkzcXFxKJVKgoKCiIyM5OuvvwbAz88PhaLyTOf69euUl5cbXwshhHAtpySL7OxsQkNDUakqO9FUKhVt2rQhOzvbrFxYWJjxtUajIScnx/j6m2++YfTo0QwbNoxHHnmE8PBwZ4QnhBDCQW51Ud7dd9/N3XffTVZWFrNmzWLo0KF06dLF5vmDg/3sWl9IiHuOBpG47CNx2cbTs/Ln7m5xGUhc9mnouJySLDQaDbm5uWi1WlQqFVqtlosXL6LRaMzKZWVl0bt3b8C8pmEQFhZGr1692LVrl13JIi+v2OZ7vIeE+HPpkvuNM5e47CNx2a6srAJPT7XbxQXuub2g6celVCpsPsl2SjNUcHAwERERpKamApCamkpERARBQUEm5UaOHElycjI6nY78/Hy2b99OdHQ0AKdPnzaWy8/P58CBA3Tv3t0Z4QkhhHCQ05qhFixYQEJCAitXriQgIIAlS5YA8Oijj/LEE0/Qq1cvYmJiOHLkCCNGjABg1qxZdOjQAYDExET27t2LWq1Gr9czdepU7rzzTmeFJ4QQwgFOSxZdu3Y1uW7CYNWqVca/VSoVCxcutDj/iy++6KxQRDNnuMPq+dwibgr1lzusCuEEbtXBLYSjrN1h1fHR2NYXYFiHuyUow1D0muLS6+14prMCqMMjoKvPYlhlhVZndXF6PSjQozcs5/f/mYVdw5f8Rzm9xff1hvf1it//0lN47QalZab31aoyZ9WV1rAuR9S8kCuF1ym5UWF87eWpQlXPlxpIsqDyR1R1w7vS1eIblJZVjcXSTmjYlStf69Eb9ytbdtKq5W2lU12j6FqZfTNVXacTDiyWaJXFFBbdML4+mZ7P6ayrlJXrgMo7rJ7OusreEznc3CnIGIgty9ZXOxjpDX9X29bGw1yVf66WVnC16LqVFdgQRK2zW15ATdv6elkF5Vod6TlFoNejq1LQkYObMw6MecXlFBaW1r4eC/ttlZ+DDWr47k2/PuMLPXoCSyoouFpS8xKdkhTsF3hdS0FBZVwKBdzUNgAfT5WVuRwjyYLKjX2poJTS6+WuDoWWpRVcvVrisp2wJqUVeuPO6U5uaE3j+uV8gTFRGJSV6/i/8wWEBHg3WFxqDzXFDiTX+qDV6VEooaTU9ft5dRVandmdcd2B4YRMSLL4g95CddZF3CWOxqhNKx881ErKK/5IGB5qJW1a+bgwKiEaP7nrrGhSumgC0AT7oteWo9fr8VAr0QT70kUT4OrQhGjUJFmIJkWpVDDxrm6UXdhBxcUfGHtHJybe1c3tOpuFaGwkWYgmR6lUoCs6T8WlH+nWrqUkCiGcQJKFEEIIqyRZCCGEsEpGQwkhRCOh0+k5k11I4W95BPio6aIJQKVqmGZWSRZCCNEI6HR6knb9RnZeCeUVOuNIv/hh3Rpk/dIMJYQQjcCZ7EJjogAor9CRnVfCmezCBlm/JAshhGgELl4pNbnYFCoTxsUrtd8mxVkkWQghRCNguDtBVQ15dwJJFkII0Qi4+u4EkiyEEPVGp9PzW+ZV9h3P4bfMqzY/9liYq3p3At3lww1+dwIZDdUMGIbbXbxSSptWPnTRBMhVzaLe1TR6R26/UneGuxPoSjPp1u6RBl23JIsmTn6wwlVqG73TrV1LF0fnmOZ4Aua0ZHH27FkSEhIoKCggMDCQJUuW0KlTJ5MyWq2Wl19+mT179qBQKJgxYwZxcXEArFixgs2bN6NUKvHw8ODpp59myJAhzgqv2WrKP1jh3mobvdOY973megLmtD6L+fPnM2XKFNLS0pgyZQrz5s0zK5OSksL58+fZunUriYmJvPPOO1y4cAGA3r178+WXX5KSksIrr7zC008/zfXrVp40Jqxy9XA70Xy5evROfXH19Q6u4pRkkZeXx8mTJxkzZgwAY8aM4eTJk+Tn55uU27x5M3FxcSiVSoKCgoiMjOTrr78GYMiQIUztd5wAACAASURBVPj4VO5E4eHh6PV6CgoKnBFes9ZUf7DC/bl69E59aa4nYE5JFtnZ2YSGhqJSVT4DVqVS0aZNG7Kzs83KhYWFGV9rNBpycnLMlrdhwwZuuukm2rZt64zwmrWm+oMV7q+pPlukuZ6AuV0H98GDB1m2bBkffPCB3fMGB/vZVT4kxN/4d961cjy93eMZwIGBvk5d3ozxvUmYuxCFdxCTH5hK95ta1ekH6+y4nMVSXGq1qsZpDcXdtpertomyNBNKM+nf48lay7nb9jKoHtetAT4cOZ3HbxmXQaHGy0NFh1B/bo1o2yCJsPr3qABatvShpZ9X/a7XGQvRaDTk5uai1WpRqVRotVouXryIRqMxK5eVlUXv3r0B85rGjz/+yHPPPcfKlSvp0qWL3XHk5RXbPI47JMSfS5eKgMozoKLCUkquV9i9TmcLDPSloKDE6cstv5oOV9NpG/gIhYX2V5frKy5H1RRXRUVl4ndVzO64vSoqtKjVqgaPy5bvwh23F9QcV+ydnVn8ehJK72DujZtIF01AnX5XdVH9e1QoIMBHTVlpmd3LUioVNp9kO6UZKjg4mIiICFJTUwFITU0lIiKCoKAgk3IjR44kOTkZnU5Hfn4+27dvJzo6GoCjR4/y9NNP8/bbb9OjRw9nhCWEEPWiOT6N0WnNUAsWLCAhIYGVK1cSEBDAkiVLAHj00Ud54okn6NWrFzExMRw5coQRI0YAMGvWLDp06ADAwoULuX79uskoqtdff53w8HBnhSiEEKKOnJYsunbtSnJystn7q1atMv6tUqlYuHChxfnXrl3rrFCEEEI4mdwbSgghhFWSLIQQQlglyUIIIYRVbnedhRCi4TXHG+MJ+0iyEC4jByj30FxvjCfsI8lCuIQcoNyH3JlY2EL6LIRLNNc7d7qj5npjPGEfSRbCJeQA5T6a643xhH0kWQiXkAOU+5A7EwtbSLIQLiEHKPfRVG8lLpxLkoVwCTlAuZfmeGM8YR9JFsJl5AAlROMhyUIIIYRVkiyEEEJYJRflCdGA5Kr1pq+pfseSLIRoIHLVujnDgbXwtzwCfNSN/sDalL9jSRZCNBC5rYappnhgbcrfsfRZCNFA5Kp1U03xli9N+Tt2WrI4e/Ys8fHxREdHEx8fT3p6ulkZrVbLwoULiYyMJCoqyuQxrN9++y0TJkygZ8+exud3C9GUyFXrpprigbUpf8dOSxbz589nypQppKWlMWXKFObNm2dWJiUlhfPnz7N161YSExN55513uHDhAgAdOnRg8eLFPPzww84KSdQznU7Pb5lX2Xc8h98yr6LT6V0dkluTq9ZNNcUDa1P+jp2SLPLy8jh58iRjxowBYMyYMZw8eZL8/HyTcps3byYuLg6lUklQUBCRkZF8/fXXAHTs2JGIiAjUaulGaQwM7c0p+9L59lg2KfvSSdr1mySMWshV66YcPbC648lKU/6OnXJkzs7OJjQ0FJVKBYBKpaJNmzZkZ2cTFBRkUi4sLMz4WqPRkJOT44wQAAgO9rOrfEiIv/HvvGvleHprnRaLIwIDfZ2+TLVa5fCyq877c3o+OdXam3PySrhYeIM/dQqqaRH1Hpczl+uomtatLM2E0kz693iyQeOxtk3qa5vVttwZ43uTMHchCu8gJj8wle43tbLpwKrT6fkw9QQZuUWUVejwVCvpEOrP9DE9nH5grsv2qs/vuPp6FUDLlj609PNy+rpM1luvS29geXnFNp9dhIT4c+lSEVB5NlBUWErJ9Yr6DM8mgYG+FBSUOH25FRWVibCuy64e15kLBZRVa28uq9Bx5kIBbQO9XRaXs5brqNq+R1fFVlGhRa1WNXhc1pZbfjUd9bUM2gY+QmGhbf0Vv2Ve5XxukfFkpaxCx/ncIg6fynHqqKO6fo913Za2XKNR/XtUKCDAR01ZaZld64LKY5+tJ9lOSRYajYbc3Fy0Wi0qlQqtVsvFixfRaDRm5bKysujduzdgXtMQjYehvblqB2Vjb28WjUdtneONdYiquw8ldkqfRXBwMBEREaSmpgKQmppKRESESRMUwMiRI0lOTkan05Gfn8/27duJjo52RgiigTXljjzh/ppi57i7DyV22mioBQsW8MknnxAdHc0nn3zCwoULAXj00Uc5duwYADExMbRv354RI0YwceJEZs2aRYcOHQA4dOgQQ4cO5cMPP+SLL75g6NCh7Nmzx1nhNWmu6Ohryh15wv01xZMVdx9K7LQ+i65du5pcN2GwatUq498qlcqYRKrr378/u3fvdlY4zYYrq66GW4zris7Trd2j9bouIaoynKwsfn0JSu9g7o2b2OhvFeLuTbtyBXcj5+5VVyHqS1N7Hoq715YkWTRy7l51FULYxt2bdiVZNHJNsaNPiObKnWtLkiwaOXevugohmgZJFk4ko5KEEE1Vk7qC25VkVJIQoimTmoWTyKgkIURTJsnCSWRUkhCiKZNk4SQyKkkI0ZRJsnASGZUkhGjKJFk4SWMdleSOD5ARQrgfGQ3lRLWNSrLlPvUNzd1viSyEcB+SLBqAux6UaxvB1VifCSCEqB/SDNUA3HVYrYzgEqLhNdamX6lZNAB3faqXu98SWYimxl1bGWwhNYsG4K7DamUElxANy11bGWwhyaIBuOtBubGO4BKisWrMTb9OSxZnz54lPj6e6Oho4uPjSU9PNyuj1WpZuHAhkZGRREVFmTxZr7Zp7qKubY3ufFB251siC9HUuGsrgy2c1mcxf/58pkyZQkxMDBs3bmTevHmsWbPGpExKSgrnz59n69atFBQUMH78eG6//Xbat29f6zR34Ghbo9zsz3244zBm0TwYWhnOZV0BpRpPD5VbtDLYwik1i7y8PE6ePMmYMWMAGDNmDCdPniQ/P9+k3ObNm4mLi0OpVBIUFERkZCRff/211WkNpbaaQ2NuaxR/MCT9lH3pfHssm5R96STt+q3RjEhxR411dI8ruHMrgzVOqVlkZ2cTGhqKSqUCQKVS0aZNG7KzswkKCjIpFxYWZnyt0WjIycmxOs1W7248zpXCGzaV9fBUUV6mrXyhgNIbFeTml1JWrkVf+RaeHipCAr1RKBRcvVZmsa1x+w8X+P7ni8b3PDuPBuDzb/7PbJ21TTNQq5VUVFuPLawtu77ismXe2jg6v71xld6oIO/qdQyHs/IKHRm5xfzn65/x8XLe4MDavkdHP3NdeXYejUKhqNM+UhO9Xs+lgus1/m5sWa61uGpT39uyrt+jtbjUrXsB8P3PF02OH7bMa2l7eXuqUCrsTzitArx46aHbbCrbpIbOqj1UeHiqbC5ftezV4jLKKrTGg4geKKvQUq7V4evtgY+XiqIS0Fc5aVIowMdLhbpKG2S3//lTjeurbRrA6d9+AaBrt3C7ptmy7PqKy5F5rc1vbd66xFVRqqf6ea8eqNDpTb5HR74LV33m+txHalp2yfXyWn83jq63tnU7Om99fo/1+Xu0NF2lVqJW2d9QpPaw/XjplGSh0WjIzc1Fq9WiUqnQarVcvHgRjUZjVi4rK4vevXsDprWJ2qbZ6pF7ImyuAoeE+HPpUhFQWTX8aMvP5OSXmJTR6+F/2gVyR8+2DTI+euHWpajVKuIevsfiNMDitPpWW1y2zAt1i9vavHWJ67fMq6TsSze7tmT4Le1Mrnmpbd31EZc9y65rXACBgb4UFJTUON3euPYdzyE333QkT9Xfja1qi6u+9qH6/B7rW9XtpVDATW0D8LHjRNnAnmOXU/osgoODiYiIIDU1FYDU1FQiIiJMmqAARo4cSXJyMjqdjvz8fLZv3050dLTVaQ2hbbBvraMUDG2NY+/oxJ29NI2qrVH8wdDBaPiu3WUYc2PVmEf3CPs4rRlqwYIFJCQksHLlSgICAliyZAkAjz76KE888QS9evUiJiaGI0eOMGLECABmzZpFhw4dAGqd1hD+p11LNMG+ZjWHqgcRpVJBt3Yt5b5JjZgh6ctoKOcwJN/afjeiaXBasujatavFayNWrVpl/FulUrFw4UKL89c2rSHIQaT5kKTvPPK7aT6aVAe3o+QgIoT95HfTPMjtPkStdDo9Sv+bUAb3kTH0QjRjUrMQNTKMAPNsPxyUalL2pTeaO2QKIZxLahaiRoar1hUqDxQKhVy1LkQzJslC1Kgx3yFTCOFckixEjRwdQ2/o71CH3CL9HUI0cpIsRI0cuYCtan+Huk0/uWGfDSS5CncmHdyiRlXH0BderyDAW23zGPqq/R1gepdeGWJpTgYTCHcnNQtRK8MY+uH9Otj1cCTp77CPDCYQ7k6ShagXcs8g+0hyFe5OkoWoF3LDPvtIchXuTvosRL2QewbZR27IJ9ydJAtRb+SeQbaT5CrcnSQLIdyEJFfhzqTPQogmQK7REPVNahZCNHJyjYZoCFKzEKKRk2s0REOQZCEaJXnOxh/kGg3REBxOFqWlpTz11FNERUUxcuRIdu7cWWPZpKQkoqKiiIyMZNGiReh0lTt4bm4u06ZNo1+/fkyYMMHRkEQTV7XZRdn6Vre675QrkphcoyEagsPJYvXq1fj5+bFt2zbeffdd5s6dy7Vr18zKZWRksHz5chITE9m6dSvnzp1j06ZNAPj6+vLkk0+ydOlSR8MRzYC7Nru4KonJBZCiITicLLZs2UJ8fDwAnTp1omfPnuzevdusXFpaGpGRkQQFBaFUKomLi2Pz5s0A+Pv7079/f3x85ExIWOeuzS6uSmKGazTG3tGJO3tpGHtHJ+ncFk7n8GiorKws2rVrZ3yt0WjIyckxK5ednU1YWJjxdVhYGNnZ2Y6uXjRDhmaXqgnDHZpdakti9X3thFyjIeqb1WQRGxtLVlaWxWn79u1zekCOCA72s6t8SIi/8e+8a+V4emudHZJd1GoVAIGBvnZNaygNve6aPvOtAT4cOZ1HRm4RZRU6PNVKOoT6c2tEW6edTdflu+jSPpCDp3Ipq5IwPNVKurQPdNq2c8Z+UJd5G2L/q2nZjqzbkd+UO/zmamOISwG0bOlDSz+vel2f1WSxfv36WqeHhYWRmZlJUFAQUFmDGDRokFk5jUZjknSysrLQaDT2xlurvLxim9uHQ0L8uXSpCKg8KysqLKXkeoVT47FXRYUWtVpFQUGJxWmAxWkNITDQt0HXrdPp0fm0Q+kdzKET2Wa3voi9s7PZczYKC53XDFXb9q5pWpsAL9pWu79T22Bf2gR4OW3bObof1PV7rO/9r7a4HFl3Xb7HqtNr+j26WtXtpVBAgI+astIyu5ejVCpsPsl2uM9i5MiRJCYmApCens6xY8cYMmSIWbno6Gi2b99Ofn4+Op2O5ORkRo0a5ejqRRNky1P26vqcjfpUte8gcuBN0ncgmhSH+ywefvhhEhISiIqKQqlUsmjRIvz8KjPVsmXLaNOmDZMnT6ZDhw7MnDmTiRMnAjB48GDGjRsHgFarZdiwYZSVlVFcXMzQoUOJi4tj9uzZjoYnGqHG/JQ9QxJr6JqYEPXN4WTh6+vL22+/bXHak08+afJ60qRJTJo0yaycSqWyOIJKNE+u7CgWQlgmV3ALtyMXmQnhfiRZCLcjF5kJ4X7krrPC7ciDgIRwP5IshFuSi8yEcC/SDCWEEMIqSRZCCCGskmQhhKiVPLJVgPRZCCFqIY9sFQZSsxBC1Mhdnx0iGp4kCyFEjdz12SGi4UmyEELUSK6mFwaSLIRoJFzR0SxX0wsD6eAWohFwVUezXE0vDCRZCNEIuPK27XI1vQBphhKiUZCOZuFqkiyEaASko1m4miQLIRoB6WgWriZ9FkI0AtLRLFzN4WRRWlrKCy+8wIkTJ1CpVMyZM4dhw4ZZLJuUlMSqVavQ6/UMHTqUuXPnolQq2b59OytXrqSsrAy9Xs+9997LQw895GhoQjQp0tEsXMnhZLF69Wr8/PzYtm0b6enp3H///WzdupUWLVqYlMvIyGD58uVs2LCBwMBAHn30UTZt2sT48eMJCQnhX//6F6GhoRQVFTFhwgR69+5N//79HQ1PCCGEEzjcZ7Flyxbi4+MB6NSpEz179mT37t1m5dLS0oiMjCQoKAilUklcXBybN28GoE+fPoSGhgLg7+9P165dyczMdDQ0IYQQTuJwssjKyqJdu3bG1xqNhpycHLNy2dnZhIWFGV+HhYWRnZ1tVu706dP89NNP3HbbbY6GJoQQwkmsNkPFxsaSlZVlcdq+ffucGszFixeZOXMm8+fPN9Y07BEc7GdX+ZAQf+PfedfK8fTW2r1OZ1KrVQAEBvraNa2huHLdtamPuJzxXTSn7eUMNcXlyL7vyPfoDr+52hjiUgAtW/rQ0s+rXtdnNVmsX7++1ulhYWFkZmYSFBQEVNYgBg0aZFZOo9GYJJ2srCw0Go3xdV5eHtOnT+eRRx5h1KhRNn+AqvLyim2+X05IiD+XLhUBlR2HRYWllFyvqNN6nUGn06PzaYfatzWHTmSbjXSpqKhMZAUFJS6JLzDQ12Xrrk19xVXb9rblu2hu28tRtcXlyL7vyPdYUaFFrVa5/fZSKCDAR01ZaZndy1EqFTafZDvcDDVy5EgSExMBSE9P59ixYwwZMsSsXHR0NNu3byc/Px+dTkdycrIxKVy5coXp06dz//33ExcX52hIjU7V+/4oW99Kyr50knb9Jk8kE0K4DYeTxcMPP0xhYSFRUVE89thjLFq0CD+/yky1bNkyPv/8cwA6dOjAzJkzmThxIiNGjKB9+/aMGzcOgPfff5/09HQSExOJiYkhJiaGtWvXOhpaoyEPmBFCuDuHh876+vry9ttvW5z25JNPmryeNGkSkyZNMis3Z84c5syZ42gojVZt9/2RMfVCCHcgt/twA3LfHyGEu5Nk4Qbkvj9CuBfDg6aUwX0a7EFT7k7uDeUGqt73p/B6BQHearnvjxAu4qoHTbk7SRZuwnDfH3cd2ihEc+HKB025M2mGEkKIKuRBU5ZJshBCiCpkwIllkiyEEKIKGXBimfRZCCFEFTLgxDJJFkLYwTik0juY3zKvykGkiZIBJ+YkWQhhIxlSKZoz6bMQwkZyDy/RnEmyEMJGMqRSNGeSLISwkQypFM2ZJAshbCRDKkVzJh3cQtio6pDKi1dKadPKR0ZDiWZDksXvggJ9aKVvoDtL1rKagABvWniaV/i8PCqfB6wJaQF60OsrF6PX6ysXZ/jX2qr1NQdQ28cP8PdCqdfVXKABVf2kAX6eKHS1Pzu9+ucyvNZT8zZTqyq/A/8Wnhg2mR49ej307hqMrtpCq6/DQ63Ey1Nl5ZPUXV13VbVKiafHH3EZt4Ardv0qL1RKhXGbV6egMhmrVYo/ZrExbEMaVyoUv5fXm01TKOq+PZsTSRZUDon083KPTdE60Bd9ufnBT/X72WtLX0+L8ynq+eS2dWt/Ltffsa/OWrf257K6tg9ftw1jSM7tQ/zs2rb63486wcF+5OV51GndKLD74G1r8aBWLcjL/yMuvd6whUwTZ43Ls7oi2wM3HqAVCgIDfShoYXl7eXtVfhcdf2/uq5rsf19Ajav19qz8Xd9kbCr8o6CXYVrbgN/fV5icTOkBf39v/LxUZvPWcs5V4zRnJuaAAG98DPu9Ajxq/Q04h3scIYXDGuLMyF3PvmqPq25BGw76er2+Tp9boVDUfXvV43ZWqZQm6fOPRKiwLa1aLVS3g5aPlwfFyuu1LtGjhppHTXQ6Pfi1B69gfj6XT+8uwSiVfyzD0HroU0sNMLilD7qyCrvW2xBCglqg0DZsTd/hDu7S0lKeeuopoqKiGDlyJDt37qyxbFJSElFRUURGRrJo0SJ0usoPe+rUKWJjY4mJiWH06NH87//+L2VlZY6GJoRopnQ6PUsTf4K2d0HQLby38QRLE3+Shxg5wOFksXr1avz8/Ni2bRvvvvsuc+fO5dq1a2blMjIyWL58OYmJiWzdupVz586xadMmADp37kxiYiIbN24kJSWFgoICvvjiC0dDE0I0U0fP5HEmqxCUHqBQcKNcy5msQo6eyXN1aI2Ww8liy5YtxMfHA9CpUyd69uzJ7t27zcqlpaURGRlJUFAQSqWSuLg4Nm/eDIC3tzeenpVt8RUVFVy/ft2kuiiEEPY4n1tEWbW+v7JyLRm5RS6KqPFzuM8iKyuLdu3aGV9rNBpycnLMymVnZxMWFmZ8HRYWRnZ2tvF1bm4uM2bM4Pz58/z5z39m4sSJdscSHOxnV/mQEH+719EQLMXl+XtnnCtjbkzby1HO2N7NaXs5Q01x1eW76NW9DV8fOM/1sj8Shpenip7d2xiXY+tyG9v2qi9Wk0VsbCxZWVkWp+3bt89pgYSGhrJx40ZKSkp47rnn2LZtG6NHj7ZrGXl5xTa3SYaE+HPpkvudZdQUV9nvnWyuirmxbS9HObq9m9v2clRtcdXlu+gY7EtnTQBnsgopK9fi6aGisyaAjsG+xuXYstzGuL3soVQqbD7Jtpos1q9fX+v0sLAwMjMzCQoKAiprEIMGDTIrp9FoTJJOVlYWGo3GrJyvry/33HMPKSkpdicLIYSAyoPgM/F9OXomj4zcIjqE+v8+GkouoKwrhzsGRo4cSWJiIgDp6ekcO3aMIUOGmJWLjo5m+/bt5Ofno9PpSE5OZtSoUUBl57dh9FNZWRnffPMN3bt3dzQ0IUQzplQq6NutNWMHd6Zvt9aSKBzkcJ/Fww8/TEJCAlFRUSiVShYtWoSfX2W1ZtmyZbRp04bJkyfToUMHZs6caeyLGDx4MOPGjQPg8OHD/Pvf/0ahUKDT6RgwYAAzZ850NDQhhBBO4nCy8PX15e2337Y47cknnzR5PWnSJCZNmmRWLiYmhpiYGEdDEUIIUU9kfKoQQgirJFkIIYSwSpKFEEIIqyRZCCGEsEqShRBCCKskWQghhLBKkoUQQgirJFkIIYSwSpKFEEIIqyRZCCGEsEqShRBCCKskWQghhLBKkoUQQgirJFkIIYSwSpKFEEIIqyRZCCGEsEqShRBCCKscThalpaU89dRTREVFMXLkSHbu3Flj2aSkJKKiooiMjGTRokXodDqT6Tdu3GD06NFMmDDB0bCEqDOdTo++RXv0QX346bfL6HR6V4ckhMs5nCxWr16Nn58f27Zt491332Xu3Llcu3bNrFxGRgbLly8nMTGRrVu3cu7cOTZt2mRS5p///Cd9+vRxNCQh6kyn07M08SdoexcE3cJ7G0+wNPEnSRguIonbfTicLLZs2UJ8fDwAnTp1omfPnuzevdusXFpaGpGRkQQFBaFUKomLi2Pz5s3G6YcOHSI9PV2exS1c6uiZPM5kFYLSAxQKbpRrOZNVyNEzea4Ordmpz8QtSch+DieLrKws2rVrZ3yt0WjIyckxK5ednU1YWJjxdVhYGNnZ2QCUlJTwyiuvsHDhQkfDEcIh53OLKCvXmrxXVq4lI7fIRRE1X/WVuKX2WDdqawViY2PJysqyOG3fvn1OCeL1119nypQphIaGkp6eXuflBAf72VU+JMS/zuuqT9Xj0ur0qFp2RO8ZxNlL1+j3p1BUSoXL43IXzoyrV/c2fH3gPNfL/kgYXp4qenZvY/d6msP2cqbqceX9lGUxcecXlzn0GQ6ezOFs9u9JCLhRruVsdiHn8koYeHNbq3G5i4aOy2qyWL9+fa3Tw8LCyMzMJCgoCKisQQwaNMisnEajMUk6WVlZaDQaAH744Qd2797NypUruXHjBlevXmXs2LGkpKTY9WHy8optPjsICfHn0iX3O1usHpfhLKii9RBQqHl9zSG6hAXwTHxflA2YMBrL9nJUx2BfOmsCOJNVSFm5Fk8PFZ01AXQM9rVrPc1lezmLpbiC/Tzx9FBxo0rC8PRQEeTn6dBnOPbrRW6UmSahG2Vajv96kc4hLazG5Q6cFZdSqbD5JNvhZqiRI0eSmJgIQHp6OseOHWPIkCFm5aKjo9m+fTv5+fnodDqSk5MZNWoUACkpKezYsYMdO3bw5ptv0r17d7sTRVMlbegNS6lU8Ex8Xx6L6cH4IZ15LKZHgydmUal3l2C6hAXg5aFCAXh5qOgSFkDvLsEOLfemUH88PVQm73l6qOgQ6p41CHdhtWZhzcMPP0xCQgJRUVEolUoWLVqEn19lplq2bBlt2rRh8uTJdOjQgZkzZzJx4kQABg8ezLhx4xxdfZNXWxt6326tXRRV06ZUKujbrbVsXxczJO6jZ/LIyC2iQ6g/vbsEO5y4DUmoau3RGUmoqVPo9fom06vTFJuhfvrtMu9tPGFSFffyUPFYTI8GPZg1lu3lLiQu+zR0XDqd3qYk1NS3lz3NUA7XLET9krMgIZxPao/2k2Th5uqrKi6EEPaQZNEIyFmQEMLV5EaCQgghrJJkIYQQwipJFkIIIaySZCGEEMKqJtXBbe8IIXcdUSRx2Ufiso/EZZ+mHJc9y2hSF+UJIYSoH9IMJYQQwipJFkIIIaySZCGEEMIqSRZCCCGskmQhhBDCKkkWQgghrJJkIYQQwipJFkIIIaySZCGEEMKqJnW7D1ucPXuWhIQECgoKCAwMZMmSJXTq1MnVYTF8+HA8PT3x8vIC4Nlnn2XIkCENHseSJUtIS0sjMzOTlJQUunfvDrh+u9UUl6u325UrV3j++ec5f/48np6edOzYkUWLFhEUFMRPP/3EvHnzuHHjBu3ateMf//gHwcEN84TD2uIKDw+ne/fuKJWV54qvv/464eHhDRIXwMyZM7lw4QJKpRJfX1/+93//l4iICJfvYzXF5ep9zGD58uW88847xv2/wfcvfTMzbdo0/YYNG/R6vV6/YcMG/bRp01wcUaVhw4bpf/nlF1eHof/+++/1WVlZZvG4ervVFJert9uVK1f0+/fvN75+7bXX9C+88IJeq9XqIyMj9d9//71er9frV6xYoU9ISHB5XHq9Xt+9e3d9cXFxg8VSXWFhofHvbdu26cePH6/X612/j9UUl6v3Mb1erz9+/Lj+4YcfNsbiiv2rWTVD5eXlcfLkxizBogAAA6NJREFUScaMGQPAmDFjOHnyJPn5+S6OzH30798fjUZj8p47bDdLcbmDwMBABg0aZHzdt29fsrKyOH78OF5eXvTv3x+ASZMm8fXXX7s8Lnfg7+9v/Lu4uBiFQuEW+5iluNxBWVkZixYtYsGCBcb3XLF/NatmqOzsbEJDQ1GpVACoVCratGlDdnY2QUFBLo6usnqr1+vp168ff/vb3wgICHB1SIBsN1vpdDo+//xzhg8fTnZ2NmFhYcZpQUFB6HQ6YxOLq+IymDZtGlqtlqFDhzJ79mw8PT0bNKaXXnqJvXv3otfr+fe//+02+1j1uAxcuY8tW7aMcePG0b59e+N7rti/mlXNwp19+umnbNq0ibVr16LX61m0aJGrQ2oU3Gm7/f3vf8fX15epU6e6LAZLqse1a9cu1q1bx6effspvv/3GihUrGjymxYsXs2vXLp5++mlef/31Bl9/TSzF5cp97Mcff+T48eNMmTKlwdZZk2aVLDQaDbm5uWi1WgC0Wi0XL150i+YNQwyenp5MmTKFw4cPuziiP8h2s27JkiWcO3eOt956C6VSiUajMWn2yc/PR6lUNnitonpc8Mc28/PzIy4uzqX72vjx4zlw4ABt27Z1q33MENeVK1dcuo99//33nD59mrvvvpvhw4eTk5PDww8/zLlz5xp8/2pWySI4OJiIiAhSU1MBSE1NJSIiwuVNKSUlJRQVFQGg1+vZvHkzERERLo2pKtlutXvzzTc5fvw4K1asMDbn9OzZk+vXr3Po0CEAvvjiC0aOHOnyuK5evcr169cBqKioIC0trUG32bVr18jOzja+3rFjBy1btnT5PlZTXF5eXi7dx2bMmMG3337Ljh072LFjB23btmX16tU88sgjDb5/NbuHH50+fZqEhAQKCwsJCAhgyZIldOnSxaUxZWRkMHv2bLRaLTqdjq5duzJ37lzatGnT4LG8/PLLbN26lcuXL9OqVSsCAwP56quvXL7dLMX17rvvuny7/d///R9jxoyhU6dOeHt7A9C+fXtWrFjB4cOHmT9/vsnQxtatW7s0rkceeYR58+ahUCioqKjglltu4cUXX6RFixYNEtfly5eZOXMmpaWlKJVKWrZsyZw5c+jRo4dL97Ga4goICHD5PlbV8OHDeffdd+nevXuD71/NLlkIIYSwX7NqhhJCCFE3kiyEEEJYJclCCCGEVZIshBBCWCXJQgghhFWSLIQQQlglyUIIIYRVkiyEEEJY9f8BVZtRJD7iUKYAAAAASUVORK5CYII=\n", 593 | "text/plain": [ 594 | "
" 595 | ] 596 | }, 597 | "metadata": { 598 | "tags": [] 599 | } 600 | } 601 | ] 602 | }, 603 | { 604 | "cell_type": "code", 605 | "metadata": { 606 | "colab": { 607 | "base_uri": "https://localhost:8080/", 608 | "height": 499 609 | }, 610 | "id": "XZ8AasOqli8V", 611 | "outputId": "b17ab2f5-c913-46db-983e-9a378952eab8" 612 | }, 613 | "source": [ 614 | "model_ar_5_i_1_ma_1 = ARIMA(df.market_value, order=(5,1,1))\n", 615 | "results_ar_5_i_1_ma_1 = model_ar_5_i_1_ma_1.fit(start_ar_lags=11)\n", 616 | "model_ar_6_i_1_ma_3 = ARIMA(df.market_value, order=(6,1,3))\n", 617 | "results_ar_6_i_1_ma_3 = model_ar_6_i_1_ma_3.fit(start_ar_lags=11)\n", 618 | "results_ar_5_i_1_ma_1.summary()" 619 | ], 620 | "execution_count": 19, 621 | "outputs": [ 622 | { 623 | "output_type": "execute_result", 624 | "data": { 625 | "text/html": [ 626 | "\n", 627 | "\n", 628 | "\n", 629 | " \n", 630 | "\n", 631 | "\n", 632 | " \n", 633 | "\n", 634 | "\n", 635 | " \n", 636 | "\n", 637 | "\n", 638 | " \n", 639 | "\n", 640 | "\n", 641 | " \n", 642 | "\n", 643 | "\n", 644 | " \n", 645 | "\n", 646 | "\n", 647 | " \n", 648 | "\n", 649 | "
ARIMA Model Results
Dep. Variable: D.market_value No. Observations: 5020
Model: ARIMA(5, 1, 1) Log Likelihood -27586.512
Method: css-mle S.D. of innovations 58.932
Date: Mon, 16 Aug 2021 AIC 55189.024
Time: 06:11:49 BIC 55241.193
Sample: 01-10-1994 HQIC 55207.305
- 04-05-2013
\n", 650 | "\n", 651 | "\n", 652 | " \n", 653 | "\n", 654 | "\n", 655 | " \n", 656 | "\n", 657 | "\n", 658 | " \n", 659 | "\n", 660 | "\n", 661 | " \n", 662 | "\n", 663 | "\n", 664 | " \n", 665 | "\n", 666 | "\n", 667 | " \n", 668 | "\n", 669 | "\n", 670 | " \n", 671 | "\n", 672 | "\n", 673 | " \n", 674 | "\n", 675 | "
coef std err z P>|z| [0.025 0.975]
const 0.5663 0.690 0.820 0.412 -0.787 1.920
ar.L1.D.market_value 0.4011 0.159 2.529 0.011 0.090 0.712
ar.L2.D.market_value -0.0445 0.016 -2.856 0.004 -0.075 -0.014
ar.L3.D.market_value -0.0543 0.017 -3.163 0.002 -0.088 -0.021
ar.L4.D.market_value 0.0586 0.019 3.069 0.002 0.021 0.096
ar.L5.D.market_value -0.0581 0.014 -4.118 0.000 -0.086 -0.030
ma.L1.D.market_value -0.4213 0.158 -2.659 0.008 -0.732 -0.111
\n", 676 | "\n", 677 | "\n", 678 | "\n", 679 | " \n", 680 | "\n", 681 | "\n", 682 | " \n", 683 | "\n", 684 | "\n", 685 | " \n", 686 | "\n", 687 | "\n", 688 | " \n", 689 | "\n", 690 | "\n", 691 | " \n", 692 | "\n", 693 | "\n", 694 | " \n", 695 | "\n", 696 | "\n", 697 | " \n", 698 | "\n", 699 | "
Roots
Real Imaginary Modulus Frequency
AR.1 -1.7609 -0.0000j 1.7609 -0.5000
AR.2 1.4633 -0.8605j 1.6975 -0.0846
AR.3 1.4633 +0.8605j 1.6975 0.0846
AR.4 -0.0790 -1.8393j 1.8410 -0.2568
AR.5 -0.0790 +1.8393j 1.8410 0.2568
MA.1 2.3734 +0.0000j 2.3734 0.0000
" 700 | ], 701 | "text/plain": [ 702 | "\n", 703 | "\"\"\"\n", 704 | " ARIMA Model Results \n", 705 | "==============================================================================\n", 706 | "Dep. Variable: D.market_value No. Observations: 5020\n", 707 | "Model: ARIMA(5, 1, 1) Log Likelihood -27586.512\n", 708 | "Method: css-mle S.D. of innovations 58.932\n", 709 | "Date: Mon, 16 Aug 2021 AIC 55189.024\n", 710 | "Time: 06:11:49 BIC 55241.193\n", 711 | "Sample: 01-10-1994 HQIC 55207.305\n", 712 | " - 04-05-2013 \n", 713 | "========================================================================================\n", 714 | " coef std err z P>|z| [0.025 0.975]\n", 715 | "----------------------------------------------------------------------------------------\n", 716 | "const 0.5663 0.690 0.820 0.412 -0.787 1.920\n", 717 | "ar.L1.D.market_value 0.4011 0.159 2.529 0.011 0.090 0.712\n", 718 | "ar.L2.D.market_value -0.0445 0.016 -2.856 0.004 -0.075 -0.014\n", 719 | "ar.L3.D.market_value -0.0543 0.017 -3.163 0.002 -0.088 -0.021\n", 720 | "ar.L4.D.market_value 0.0586 0.019 3.069 0.002 0.021 0.096\n", 721 | "ar.L5.D.market_value -0.0581 0.014 -4.118 0.000 -0.086 -0.030\n", 722 | "ma.L1.D.market_value -0.4213 0.158 -2.659 0.008 -0.732 -0.111\n", 723 | " Roots \n", 724 | "=============================================================================\n", 725 | " Real Imaginary Modulus Frequency\n", 726 | "-----------------------------------------------------------------------------\n", 727 | "AR.1 -1.7609 -0.0000j 1.7609 -0.5000\n", 728 | "AR.2 1.4633 -0.8605j 1.6975 -0.0846\n", 729 | "AR.3 1.4633 +0.8605j 1.6975 0.0846\n", 730 | "AR.4 -0.0790 -1.8393j 1.8410 -0.2568\n", 731 | "AR.5 -0.0790 +1.8393j 1.8410 0.2568\n", 732 | "MA.1 2.3734 +0.0000j 2.3734 0.0000\n", 733 | "-----------------------------------------------------------------------------\n", 734 | "\"\"\"" 735 | ] 736 | }, 737 | "metadata": { 738 | "tags": [] 739 | }, 740 | "execution_count": 19 741 | } 742 | ] 743 | }, 744 | { 745 | "cell_type": "code", 746 | "metadata": { 747 | "colab": { 748 | "base_uri": "https://localhost:8080/" 749 | }, 750 | "id": "g0XZgxomllbE", 751 | "outputId": "29393271-0063-4506-8104-9e0088b047d0" 752 | }, 753 | "source": [ 754 | "print(\"ARIMA(1,1,3): \\t LL = \", results_ar_1_i_1_ma_3.llf, \"\\t AIC = \", results_ar_1_i_1_ma_3.aic)\n", 755 | "print(\"ARIMA(5,1,1): \\t LL = \", results_ar_5_i_1_ma_1.llf, \"\\t AIC = \", results_ar_5_i_1_ma_1.aic)\n", 756 | "print(\"ARIMA(6,1,3): \\t LL = \", results_ar_6_i_1_ma_3.llf, \"\\t AIC = \", results_ar_6_i_1_ma_3.aic)" 757 | ], 758 | "execution_count": 20, 759 | "outputs": [ 760 | { 761 | "output_type": "stream", 762 | "text": [ 763 | "ARIMA(1,1,3): \t LL = -27590.424032629428 \t AIC = 55192.848065258855\n", 764 | "ARIMA(5,1,1): \t LL = -27586.51188811041 \t AIC = 55189.02377622082\n", 765 | "ARIMA(6,1,3): \t LL = -27583.56532042454 \t AIC = 55189.13064084908\n" 766 | ], 767 | "name": "stdout" 768 | } 769 | ] 770 | }, 771 | { 772 | "cell_type": "code", 773 | "metadata": { 774 | "colab": { 775 | "base_uri": "https://localhost:8080/", 776 | "height": 594 777 | }, 778 | "id": "3z-j5ec1lsX2", 779 | "outputId": "e50dceaa-2f3d-4bfc-936a-9b7557ad22d8" 780 | }, 781 | "source": [ 782 | "df['res_ar_5_i_1_ma_1'] = results_ar_5_i_1_ma_1.resid\n", 783 | "sgt.plot_acf(df.res_ar_5_i_1_ma_1[1:], zero = False, lags = 40)\n", 784 | "plt.title(\"ACF Of Residuals for ARIMA(5,1,1)\", size=20)\n", 785 | "plt.show()\n", 786 | "print(\"\\n\")\n", 787 | "plt.plot(df.res_ar_5_i_1_ma_1)\n", 788 | "plt.title(\"Plots Residuals for ARIMA(5,1,1)\", size=20)\n", 789 | "plt.show()" 790 | ], 791 | "execution_count": 23, 792 | "outputs": [ 793 | { 794 | "output_type": "display_data", 795 | "data": { 796 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxU9f748dcsLCKbIOKg5vqVyLXcKtObhqKloiZipvWw9V7NlmslldftZmY3K1O7lde6mS1ALglpqKlXzdSyzLX8uaAIiAoiICAwc35/0EzgDMwMMzADvJ+PR4+cOZ9zznvOHOZ9Pts5KkVRFIQQQohqqF0dgBBCCPcnyUIIIYRVkiyEEEJYJclCCCGEVZIshBBCWCXJQgghhFWSLIQQQlglyaKeKi0t5d1332Xo0KF07dqV8PBwtm7d6uqw7BIeHs7kyZNtLr9v3z7Cw8NZunRpLUZlWVxcHOHh4Zw/f97p2y4oKODVV19l8ODB3HLLLYSHh3P8+HGn70fYZu/evYSHh7Nx40ZXh1IrioqK6N+/P88//7xd62lrKR6X+fe//80777wDwKZNm+jQoUO15a9cucLnn3/Orl27OHPmDAUFBfj6+tKxY0cGDhzIuHHjaN68uan85MmT2b9/f5XbGzNmDK+//rrN8Z45c4ZVq1bxww8/kJWVhaIohIaGcscdd/DQQw9VGf/HH3/M8uXL6dOnD8OHD0er1dK+fftq9xUXF8e6desqveft7U2rVq0YOHAgTzzxBEFBQTbHLpzjjTfeID4+nkGDBjFq1Cg0Gk2lc84VZs2aRWJiIt7e3uzatQt/f3+L5ZYuXcqyZcsqvefp6UnLli25/fbbefLJJ2ndurXZesZzceHChYwdO9bsfYCpU6fyzDPPWNzvunXriIuLA6Bv3758+umnVX6WKVOmsGfPHlq2bMm2bdvQaDRVljUYDCxcuJCbb76Z4cOHW4y5Khs3bqRjx45VLq/o1KlTfPPNNxw/fpzjx4+TmZkJwNGjR9Fq7ftZvnDhAuvWrTNtKy0tDUVR2Lx5M23btjUr36RJE5544gkWLlzIQw89RPfu3W3aT4NKFoqikJiYiEqlMv175syZVZbfvn07L7zwAvn5+bRt25YhQ4YQHBxMfn4+v/76K++88w4ffPABmzdvJiQkpNK6Y8aMoVWrVmbbjIiIsDneVatW8frrr2MwGOjTpw+DBg0Cyk+YL7/8koSEBOLi4njooYcsxu7j48NHH32Ep6enzfsEuOeee0xxXr58mZ07d/Lxxx+zefNm1qxZQ7NmzezaXk1t3LiRJk2a1Mm+3NmOHTto164d77//vqtDAcprOt988w0qlYri4mI2bNjApEmTql2nb9++9O3bF4Dc3Fz27t1LQkICKSkpJCQk0K5dO7ti0Gq1rF27lqeeesrij3tCQgJarZaysrJqt5OWlsYPP/yASqXiwoUL7Ny50/R3Zsk333zDb7/9xptvvolKpbJY5qGHHrKYPO35u9m1axfLly9Ho9HQtm1bvLy8uH79us3rV3TkyBHeeecdVCoVrVu3xs/Pj7y8vGrXmTBhAsuXL+edd97ho48+smk/DSpZ7N69m/T0dMaOHcuuXbtYt24dzz33nMUf0/3795tOxIULFzJmzBizk+P3339nwYIFFr/EMWPG0K9fvxrHun79ehYsWEBgYCDLli2jT58+lZb/9NNPTJs2jQULFuDv78/o0aMrLb948SLNmjWzO1EAREZGVrqau379OuPHj+e3337js88+46mnnqrZh7KTrVdhDd3FixfNvn9XSk5OprCwkClTprB69WoSEhJsShbTp083vTYYDPz1r3/lf//7Hx988AELFy60K4a7776brVu3smvXLu6+++5Ky06dOsXPP//MkCFD2LJlS7XbSUhIQFEUnnjiCT788ENTDa4qn332Gb6+vgwZMqTKMg8//LDF2pI9Bg4cyK233kp4eDje3t4MHjyY9PT0Gm2ra9eufPbZZ9x88834+vpabf0A8PLyYvjw4cTHx5OammpTMm9QfRaJiYkAxMTEMHLkSK5cuWKxHd9gMDB79mzKysp45ZVXGDt2rMWriPDwcP773/8SGhrq1DgLCgp47bXXAHjzzTct/lD07t2bf/3rXwAsXLiQgoICoHLbeXp6OuHh4YSHhzN48OAax+Pl5cXIkSMBOHz4sNny3NxcFi9ezPDhw+nevTu9evXi4YcfZvfu3WZlS0pKWLVqFWPGjKFPnz706NGDwYMH87e//Y09e/ZUKltVn8Xly5d5+eWXufPOO+nevTvR0dHVVv8HDx5c5edfunQp4eHh7Nu3r9L7W7du5fnnnycqKoqePXvSs2dPxo4dy6pVqzAYDFXu60bfffcdDz/8MHfddRddu3blrrvuYtKkSXz22WdW1508eTLh4eEoisL+/ftN32XFY2IwGPjiiy+4//77ufXWW+nZsyf3338/n3/+ucU4jetfunSJV155hQEDBhAREcHatWtt/kwJCQmo1WoefvhhBg8ezO+//86vv/5q8/oAarWaMWPGAJbPKWtGjhyJt7c3CQkJFuOD8r/z6pSVlbFu3Tp8fX2ZNm0aXbp0YefOnWRlZVksf+rUKX755RcGDx6Mt7e33THbo0OHDvTo0cMp+2nZsiW9e/fG19fXrvXuu+8+FEVhzZo1NpVvMDWLy5cvs23bNtq1a8dtt92Gr68vH330EfHx8dx7772Vyu7fv58zZ84QGhrKuHHjqt2uWq1GrXZuTk1JSeHq1at0796dAQMGVFlu4MCBdOvWjcOHD5OSksL9999PZGQkrVq14pNPPgHKr3IA/Pz8nBLbje2l6enpTJ48mfT0dHr37s2AAQMoKipi+/btPPbYY8yfP5/x48ebyr/00kskJyfTuXNnoqOj8fb25uLFixw4cIBdu3Zx5513Vrv/nJwcJkyYQFpaGr169aJXr15cunSJOXPm0L9/f6d8RihP0mq1mu7duxMaGkp+fj579+5lwYIFHD582JSoqxMfH8/s2bMJCQlh0KBBNGvWjOzsbH7//XfWrl3Lgw8+WO36Y8aMoW/fvixbtoxWrVqZflwrNm++8MILJCcno9PpGDduHCqViq1btzJv3jwOHDjA4sWLzbabm5tLbGwsPj4+DB06FJVKRXBwsE3H5dixYxw9epT+/fuj0+kYM2YMKSkpxMfH06NHD5u2cSN72+AB/P39GTZsGMnJyVy6dMnUDFxSUsL69evp27ev1avhbdu2cenSJcaPH4+3tzdjx47ln//8J1999RXTpk0zK//DDz8A0KtXr2q3u3PnTgoKCkxNSLfffrvdP9TuoHv37nh4ePD9998zY8YMq+UbTLJYu3YtpaWlpuaVzp0706VLF/bt28fZs2crdfQcOHAAKK86V9fZVZ1169ZZrOpVrIpXxbh/az+cAP379+fw4cP8/PPPpmQRGRlputK2ZX/WFBcX8/XXXwPmfyhxcXFkZGTw1ltvcd9995nez8vLY/LkyaZRPM2bNyc/P59vvvmGLl26kJiYaHZsr1y5YjWWt99+m7S0NB5++GFefvll0/sPPvggEyZMcORjVvLhhx9y0003VXrPYDDw0ksvsX79eiZNmmT1xzE+Ph4PDw++/vprsx/jnJwcqzEYz1Vjsrjxu0xOTiY5OZlbbrmF1atX07RpUwCeffZZJk2aRHJyMnfffbepVmh04sQJoqOjee211+z+of7yyy8rxTZgwABCQkLYtGkTL7/8ss0/inq9nq+++gqw/uNblZiYGNavX8/atWt58sknAdiyZQu5ublWaxVQ/v3An59lxIgRvP7666xZs4a//e1vZheBxr/Lrl27VrvdefPmVXrdtGlTZsyYYfXiwN14e3vTqVMnjh8/bhrYU50G0Qxl7MxWq9WV2vbHjh2LoihmVdlLly4B5dW3mlq3bh3Lli0z+88W9uzfWObixYs1jvVGW7duZenSpSxdupS5c+cybNgwTpw4QZ8+fXjggQdM5X777Tf279/P0KFDKyUKKL/ymz59OtevXyclJQXANLDA09PTYm3MWgdgaWkpSUlJNG3a1OyHs1u3bmY/io64MVFAeS3SOJhg165dNm1Hq9Va/EF2xqgyY/PAjBkzTIkCwMfHhxdeeAH4s+m1Ig8PD2bOnGl3oigsLCQ5ORk/Pz9Tm71Wq2XkyJEUFhayYcOGKtfdv3+/6Zx69dVXGTFiBLt376ZTp05MnTrVrjiMevfuTYcOHUhMTMT4JIWEhAQCAgKIioqqdt309HT27NlD+/btufXWWwEIDAw09Q1Y+n6NI5JuHMxSMZ63336b7du3c+jQIbZu3WoaQDN//nxTcqpPmjdvjsFgqLJprqIGUbPYu3cv586d46677qrUv2C8kli3bh3PPvssHh4eTtvnqlWrHOrgdqXvvvuO7777rtJ7/fv354MPPqh0jH755RegvI/F0twG49Xz6dOnAfD19WXQoEFs376d6Ohohg4dSu/evenRo4dNo55Onz5NUVERvXv3ttis1rdv32r7Luxx5coVVq5cyf/+9z/Onz9PYWFhpeW2JOeRI0fy+uuvc99993HvvffSt29fbrvtNqcNPz527Bhqtdo0yqiiPn36oNFoLM7HaNWqlc3NThV98803XLt2jdjYWLy8vEzvjxkzho8++ojExEQmTpxocd39+/eb1bQjIiL49NNPHWoiHT9+PK+//jp79+4lLCyMffv2MWnSpErxWZKYmIjBYKg0kMP4WVJSUkhMTOQvf/lLpWXGmm9AQIDFbd7YZN2mTRseeeQR2rdvz1//+lfefvttxo0bV+PWClcwflZbav0NIlncWN00Ml5JpKSk8N133zFs2DDgzysHW7JpbTCOob9w4YLVssYyLVq0cNr+jWPb9Xo9aWlpLFmyhI0bNzJ37lwWLFhgKpebmwvA999/z/fff1/l9ir+0L7zzjusWLGC5ORkU4Lx8vIiKiqKmTNnVjt/ID8/H6DKHzpnzT3Iy8tj3LhxnD9/3tSBHhAQgFarJS8vj1WrVlFSUmJ1O1OmTKFZs2Z8/vnnfPrpp3zyySeoVCr69OnDiy++SLdu3RyKMz8/n4CAAIsj3rRaramP5EZVXRlbY6yB3/h3ZGzSPXr0KIcPH7b4uZ566immT59uukpduXIln376Kc8++ywrVqyocb9fdHQ0b731FomJiYSFhaEoSqU+Mkv0ej1r1qxBrVYTHR1daZmxWW379u2V+kIAU2fz9evX7ep4HjRoEKGhoWRlZXHy5EnCw8Pt+ISuZRzpacvnrffJIicnxzTi6e9//zt///vfLZZLSEgwJQtjG+r+/fvR6/V1fiXQq1cv1q5dy549e3juueeqLWscQXTbbbc5PQ6NRkO7du1YvHgx6enpfPXVVwwePJh77rkH+LPT/JVXXrE418MSb29vpk+fzvTp08nMzOTHH39k3bp1bNiwgfT0dD7//PMq1zXuz9IPIJQPYrBEpVJRWlpqcZml8eaJiYmcP3/e9ANX0S+//MKqVauqjPFGo0ePZvTo0eTl5fHLL7+wZcsW1qxZw2OPPcamTZscqmX4+flx9epVSktLzWrFZWVlXLlyxWI7c1XzA6rz22+/cejQIQBiY2OrLJeQkFBtElSr1eh0OmbNmsXFixdJSUlh9erVNp8/NwoKCjINkfX19eXWW2+lc+fO1a6zfft2U81w4MCBVZZbs2YNf/3rX02vjRcpubm5VdYuqoszKyuLoqIiu9ZzNeMFoS010XrfZ7Fu3TpKS0vp0qUL48aNs/hfUFAQe/bsIS0tDShvzmjfvj0XLlywOqTQYDBU+UNUU8OGDcPf359Dhw5Ve8X+/fffc+jQIQIDA6220TpCrVbzyiuvAOWjhPR6PYCpg/enn36q0XZ1Oh2jRo1i5cqVtG3blgMHDlRb3e3QoQNNmjTh+PHjplpGRVWNHQ8ICCA7O9vi93TkyBGz986ePQvA0KFDzZb9+OOPVcZXHX9/f/7yl7/w6quvMmbMGHJzc2u8LaOIiAgMBoPF4//jjz+i1+u55ZZbHNqHkbFW0bdv3yr/jry9vUlOTubatWs2bTMuLg5PT0+WL19uGvpdEzExMZSUlJCTk2NTx7axH2fQoEEWP4ex5vTVV19R8anSxhqBsVnVVvn5+Zw+fdo0Ka4+OXPmDIGBgTb1n9b7ZGE8yY1NKJb+i42NRVEU0+gMtVrN/Pnz0Wq1vPrqq3z99ddYehT5yZMneeSRR5zeXOXr62vqGJsxY4ZpFEZFP//8s2k420svvVTrQ/N69OjBoEGDOH36NOvXrwfKO5V79+7Nli1bTMfuRr///rupJpCTk8Pvv/9uVqawsJDCwkK0Wm21/UYeHh6MHDmSa9eumfWRHD58mKSkJIvrdevWjbKyMrPEv3btWn7++Wez8sY/6BuTz7Fjx/jggw+qjO9Ge/futXjeGPtyHB1Df//99wOwePHiSlesRUVFpiGz1oZ+26K4uJikpCQ0Gg1vvvlmlX9HQ4cOpbCwkG+++cam7YaFhTF+/Hhyc3NtniVsye233857773H8uXLzQZa3CgzM5Ndu3YREBDAkiVLLH6OhQsX0qtXL9LS0irN/TH2DR08eNBsu5cuXbLYbHzt2jXi4uK4fv06d955p1lTqXFelD3zXKpinDPkrHujpaWlcfnyZfr162dTbbReN0Pt27eP1NRUOnfuXO39TcaNG8f777/PmjVrmD59Olqtlr59+7J06VJefPFFXnzxRd577z369etHs2bNKCgo4MiRI/z66680adKkVibojBs3jvz8fP71r3/x4IMP0rdvX7p06YJKpeLo0aPs27cPtVrNyy+/bDZ7u7Y8/fTT7Nixg+XLlzNy5Eg8PT1ZvHgxDz/8MK+88gqffvopPXr0wM/PjwsXLnDixAlOnDhBfHw8wcHBZGVlMXr0aDp37kx4eDg6nY6CggJ27NjBpUuXmDx5stWk99xzz/HDDz/wySefcOTIEdM8i40bNzJw4EC2bdtmts7kyZNZu3Ytc+fO5YcffkCn03H8+HEOHjxo6nCvKDo6mpUrV/Laa6+xb98+2rZty9mzZ9mxYwdDhgyx+QZyTz31FD4+PvTs2ZNWrVqhKAo//fQThw8fpkuXLjYNja7OyJEj+e6779i0aRP33XcfkZGRpnkW58+f595772XUqFEO7QPKb7uSl5dnanuvSkxMDBs2bCA+Pt5qv4HRk08+yVdffcV///tfJk2aVKNmOZVKZWoatearr75Cr9czatSoajvBY2JiOHDgAPHx8ab5O7fffjv+/v7s3r3brHn49OnTTJkyhZ49e9KuXTvT+b5nzx4uXbpEmzZtePXVV832Y5w4eWNTd05ODm+88YbptbHG/corr5h+uB9//PFKdzmoaluA6T5ZxlihvJXAOIpu3Lhx9O7du9I6xlYNSzVsS+p1srB1Jmfr1q258847+f7779m+fbtpWODgwYPZsmWL6UaCKSkpFBQU0LRpUzp06MDTTz9NbGxsjUaW2GLKlCkMHDiQVatWsXfvXtMs2ZYtWxIbG8tDDz1Up7fEuOWWWxgyZAibN28mPj6eyZMn07JlS9asWcPq1avZvHkzSUlJ6PV6mjdvTqdOnZg0aZKpDdk4V2D//v3s27ePK1euEBgYSPv27ZkxY4bVq0Iob/v94osveOutt9i+fTtHjhyhffv2zJ07l1atWllMFp06deLjjz82DWvUaDT07t2bL7/8ki1btpgli9DQUD777DPefPNNDhw4wO7du+nQoQNz5szhjjvusDlZzJgxg927d3P06FH+97//4eXlRVhYGM8//zwPPPCAU0bfvfXWW/Tp04c1a9aYBnJ07NiRRx55pNIwZ0fY+ndknAh35MgRjh8/btN90Fq0aMEDDzzAxx9/zIcffljpR83ZDAaDabixtRrXsGHDWLBgAdu2bSM7O5vg4GCaNGnCmDFj+OSTTzh16lSlv72bbrqJcePGcfjwYbZt20Z+fj7e3t60b9+eBx98sMoLoRMnTtC0aVOzW5YUFhZaHNlnrNVD+citijGcOHECtVptdoNDwOK2Nm/ebPp33759zZLF+vXrCQoKsjlZqBRL9WghhGiE0tLSGD58OBMmTGDWrFkObSsvL49+/foxZcoUXnzxRYe2pSgKt99+O7fffjtLlixxaFtQPqAhOjqaZ555xuZ5MPW+z0IIIZylTZs2PPTQQyQkJDjcV/nTTz+h1WqZMmWKw3GdOHGC3Nxc00x2R7377rvodDoeeeQRm9eRmoUQQlRQUFDAf//7X+64444a36rEnRUVFbFy5Ur69Olj18RiSRZCCCGskmYoIYQQVkmyEEIIYVW9Hjp7oytXrmEw2NaqFhzsS3Z2zWeV1haJyz4Sl30kLvs09LjUahXNmjW1XpAGliwMBsXmZGEs744kLvtIXPaRuOwjcZWTZighhBBWSbIQQghhlSQLIYQQVkmyEEIIYVWD6uAWQlhmMCgcOp1N9sEMgn096d4hGLXa/ockicZLkoUQDZzBoLA4/iCnM/IoKdXj6aGhQ5g/M2J7SsIQNpNmKCEauEOnszmdkcf1Uj0KcL1Uz+mMPA6dtvz4WiEscVqyOHPmDLGxsURFRREbG0tqaqpZGb1ez7x584iMjGTIkCGmxx9C+fNwR44cSXR0NCNHjrTrOchCiKqdy8qnpFRf6b2SUj1pWeaPrhWiKk5rhpozZw4TJ04kOjqar7/+mtmzZ5v94CclJXHu3Dk2b95Mbm4uo0eP5o477qB169ZERUUxduxYVCoVBQUFjBw5kr59+3LzzTc7K0QhGqWbQv3w9NBwvULC8PTQ0CbUz4VRifrGKTWL7Oxsjh07xogRIwAYMWIEx44dMz2L2Gjjxo3ExMSgVqsJCgoiMjKSb7/9Fih/LrXxcYLFxcWUlpba9FxYIUT1uncIpkOYPxhKQVHw+qPPonuH2nkCpGiYnFKzyMzMJDQ01PRsWI1GQ4sWLcjMzKz0zN3MzEzCwsJMr3U6XaWHoH/33Xe89dZbnDt3jhkzZhAeHm5XHMHB1T/f+UYhIe55ZSVx2Ufism7hUwMY9/CzKJ5BvDjjSXrdHIrGzTq33el4VSRxlXOr0VD33HMP99xzDxkZGUybNo2BAwfSoUMHm9fPzi6w+X4pISF+XLrkfm22Epd9JC7b6a+exdMznfYhTclxs5vjuePxgoYfl1qtsvki2ynNUDqdjqysLPT68jZRvV7PxYsX0el0ZuUyMjJMrzMzM2nZsqXZ9sLCwujWrRs7duxwRnhCCCEc5JRkERwcTEREBMnJyQAkJycTERFRqQkKYNiwYSQmJmIwGMjJyWHr1q1ERUUBcOrUKVO5nJwc9u3bR+fOnZ0RnmhkDAaFgycvs+H7Mxw8edlt7xoqRH3itGaouXPnEhcXx3vvvYe/vz+LFi0C4PHHH+fpp5+mW7duREdH8+uvvzJ06FAApk2bRps2bQCIj4/n+++/R6vVoigKkyZN4q677nJWeKKRkAloQtQOpyWLjh07Vpo3YbRixQrTvzUaDfPmzbO4/ssvv+ysUEQjVnECGlSegNazU3MXRydE/eVWHdzCdq4YVew+I5krB1JxiHVaVoHlCWgXC7j1/0Ls35MNn1lRzJu59AbF5uNV00YyC7u1yqAoGFvlVCimfStVBlL1TuzefxUHRFGgqLiUUr2lDSpmZcvfVVAZlyoqG46h5e38uUz1x3uK6R0FUF8toqC49M8tVLOjittUUGr+xdrAoLlG/rUS0+umTbRo1bV7Qw5JFpSPCMjJv+4WbdtlKhV5+derXK5U+odS+b2K5ayd2ZXKWVekV8jLK7atsINMP2HV/WH+8f9rZXryrv4Zl5+PBx5aNSVlBtN7Hlo1fk08yLh8DQCDDduvtB+lPCZFARQFwx8Hrbpj519QytWrRdZ3UIeKS/Ro9AqpmXl2/5hVW9QJfzZXCkvJu1pofReKhfdsjEmpYo3qvsfAYj25uVXH5SpFZYopLpUKbmrpj9azdvcpyeIPeQXXKSwuc3UYlBhwy5PToFKTe7VukoVd1BpyKyTXFoFNaBnsw9mMK6DW4umhoWWwDy0Cm3C1oOok7GylZQazGo6rGRQFNbhdXFDe11RmsWYh3IXcSFA0KGq1ivF3d6Lk/DbKLh5g5J3tGH93J+ncFsJBkixEg6NWqzDkn6Ps0i90ahUgiUIIJ5BkIYQQwipJFkIIIaySZCGEEMIqSRZCCCGskmQhhBDCKkkWQgghrJJkIYQQwipJFkIIIayS230IIUQ9YTAonM7MI+9kNv5NtHTQ+aPR1M2kU0kWQghRDxgMCgk7TpKZXUhpmQEPrRpdsA+xgzrVyf6lGUoIIeqB05l5pkQB5TerzMwu5HRmXp3sX5KFEELUAxevFJkShVFpmYGLV+rmVviSLIQQoh5o0awJHtrKP9keWjUtmjWpk/07LVmcOXOG2NhYoqKiiI2NJTU11ayMXq9n3rx5REZGMmTIkEqPYV2+fDn33XcfI0eOZOzYsezatctZoQkhRL3XQeePLtgHRV+KoiimPosOOv862b/TksWcOXOYOHEiKSkpTJw4kdmzZ5uVSUpK4ty5c2zevJn4+HiWLl3K+fPnAejevTtfffUVSUlJvPbaazz33HMUF7vhw3aEEI2ewaBwMv0qe45c4GT61Tp5ymbFZ7UYLv9c589qcUqyyM7O5tixY4wYMQKAESNGcOzYMXJyciqV27hxIzExMajVaoKCgoiMjOTbb78FYMCAATRpUl6dCg8PR1EUcnNznRGeEEI4jXFUUtKeVHYfziRpTyoJO07WWcIw5J/DkP1rnT+rxSnJIjMzk9DQUDQaDQAajYYWLVqQmZlpVi4sLMz0WqfTceHCBbPtrV+/nptuuomWLVs6IzwhhHAaV49KchW3m2exf/9+lixZwkcffWT3usHBvnaVDwnxM/07+1opnt7u8WziwEAfp27PYFA4ce4KGZevEda8KZ1valajKxJnx+UsluLSajVVLqsr7na8XHFM7Dn33O14Gd0YV97JbIujkvKKy+rkM9z4PaqAgIAmBPh61e5+nbERnU5HVlYWer0ejUaDXq/n4sWL6HQ6s3IZGbbVVWkAACAASURBVBl0794dMK9p/PLLL7zwwgu89957dOjQwe44srMLbK4KhoT4celSPlBetcvPK6KwuMzufTpbYKAPubmFTtteVRN57G3rdHZczlJVXGVl5YnfVTG74/EqK9Oj1WrqLC57zj13PF5gOS7/Jlo8tOpKCcNDq8bfW1snn+HG71GlKo+ppKjE7m2p1SqbL7Kd0gwVHBxMREQEycnJACQnJxMREUFQUFClcsOGDSMxMRGDwUBOTg5bt24lKioKgEOHDvHcc8/x7rvv0qVLF2eEJWi8VWbheg313HP1qCRXcdpoqLlz57J69WqioqJYvXo18+bNA+Dxxx/n8OHDAERHR9O6dWuGDh3K+PHjmTZtGm3atAFg3rx5FBcXM3v2bKKjo4mOjub33393VniNlqsn8ojGq6GeexVHJZVdPFDno5JcxWl9Fh07dqw0b8JoxYoVpn9rNBpTErnRmjVrnBWKqMA4kefGKnNdTeQRjVdDPvdMo5Lyz9Gp1eOuDqdOyAzuBq6xVpmF68m517BIsmjgGmuVWbienHsNiySLRsBYZS679EudT+QRjZucew2HJAshhBBWud2kPGE/49OzLl4pokWzJnTQ+csVnBDCqSRZ1HPOmnQnhBDVkWaoeq6hTnwSQrgXSRb1XEOd+CTqlituuS3qF2mGquca8sQnUTekKVPYQmoW9Vx9nvgkV7PuQZoyhS2kZlHPGSc+LXhjEWrvYO6PGV8vRkPJ1az7qK4ps1OrABdFJdyN1CwagPo48UmuZt2HsSmzImnKFDeSZCFcQjrm3Ud9bsoUdUeShXCJxno16479NHIPJ2EL6bMQLmG8mj2bcQXUWjw9NA3+atad+2lcdctt490H8k5m499EWy/62xorSRbCJeprx7wjquunaYwdye6cPIU5aYYSLlMfO+YdIf00lckgh/pFkoUQdaSx9tNUpaEmT3fsl3IGaYYSoo40xn6a6jTEuw805KY1p9Uszpw5Q2xsLFFRUcTGxpKammpWRq/XM2/ePCIjIxkyZEilZ3bv3r2bsWPH0rVrVxYtWuSssIRwGzLqqLKGOGS3ITetOS1ZzJkzh4kTJ5KSksLEiROZPXu2WZmkpCTOnTvH5s2biY+PZ+nSpZw/fx6ANm3asGDBAh599FFnhSSE22ls/TTVqZg8DZd/tjt5umNzT0NtWgMnJYvs7GyOHTvGiBEjABgxYgTHjh0jJyenUrmNGzcSExODWq0mKCiIyMhIvv32WwDatm1LREQEWq20jAnRWJiG7Gb/alfyNDb3JO1JZffhTJL2pJKw46TLE0ZD7pdySrLIzMwkNDQUjUYDgEajoUWLFmRmZpqVCwsLM73W6XRcuHDBGSEIIRoRd23uaYhNa0YN6jI+ONjXrvIhIX6mf2dfK8XTW+/skGokMNDH7nW0Wk2161pbXpO4DAaFE+eukHH5GmHNm9L5pmZ2N6vURlzO2q6javO7qIm6OEfqar95J7MtNvfkFZc5PX57435idHfiZs1D5R3EAw9NqtHfRXVu3K8KCAhoQoCvl9P2YXG/ztiITqcjKysLvV6PRqNBr9dz8eJFdDqdWbmMjAy6d+8OmNc0HJWdXWBzNTQkxI9Ll/KB8qpwfl4RhcVlToulpgIDfcjNLbR7vbKy8kRX1brWltsbl7NGfTg7Lmdt11HVfY+uiq2sTI9Wq6nzuGw5N6uLyxL/JlqLI6n8vbVOjb+m32Pp1VS4mkrLwMfIy3Nuf8WNx0ulKj8eJUUldm9LrVbZfJHtlGao4OBgIiIiSE5OBiA5OZmIiAiCgoIqlRs2bBiJiYkYDAZycnLYunUrUVFRzghB1DF3bQYQjUNDbu5xV04bDTV37lxWr15NVFQUq1evZt68eQA8/vjjHD58GIDo6Ghat27N0KFDGT9+PNOmTaNNmzYA/PTTTwwcOJCPP/6YL7/8koEDB7Jr1y5nhSecrCGP+hDuT4Yh1z2n9Vl07Nix0rwJoxUrVpj+rdFoTEnkRr1792bnzp3OCqfeqW83VGuIE6pE/eKqmx82Vg2qg7u+qo+zPmU2shCNi9wbyg3Ux/Z/aQYQwvnccaKhkdQs3EB9fQayNAMI4Tzu3sIgNQs30JBnfQohbOPuLQySLNyADAMUQrj7CENJFm7A0RuqCSHqP3dvYZBk4SZqekM1IUTD4O4tDJIshBDCDbj7CENJFo2cOw/VE6KxcefnncjQ2UbM3YfqCSHch9QsGjF3H6onhHAfkiwaMXcfqieEcB+SLBoxdx+qJ4RwH5IsGjF3H6onhHAfkizs0NBGDrn7UD0hhPuQ0VA2aqgjh+RmgEIIW0jNwkYyckgI0ZhJsrCRjBwSQjRm0gxlI3mMqBDCGYyPUL54pYgWzZq4/SOUjZyWLM6cOUNcXBy5ubkEBgayaNEi2rVrV6mMXq/n1VdfZdeuXahUKp544gliYmKsLnMH8hhRIYSj6nPfp9OaoebMmcPEiRNJSUlh4sSJzJ4926xMUlIS586dY/PmzcTHx7N06VLOnz9vdZk7cHTkUEMbSSWEsF997vt0SrLIzs7m2LFjjBgxAoARI0Zw7NgxcnJyKpXbuHEjMTExqNVqgoKCiIyM5Ntvv7W6zF3U9CZfxquJpD2p7D6cSdKeVBJ2nJSE4SKSuIWr1Oe+T6c0Q2VmZhIaGopGowFAo9HQokULMjMzCQoKqlQuLCzM9Fqn03HhwgWry2z1/tdHuJJ33aayHp4aSkv05S9UUFyiR683UFyip6TMgKdWjbenBpWqckLwbH8fAF989/9sjqvoehnZV4sx/iSVlhlIyyrgv9/+RhOvP78Cz/b3oVKp7Nq2rXFVt9yWz6TVqim74SS3dd3qOLq+vXEpisKl3GJKSvUogArw9NAQEuht9l07oqq4qouttlk7v2orLlvOzdo67x1V0++xqmVF18tQARUvT1TAb+eucDYr3+p2jctvPF7enhrUNTh/m/l78cojt9tUtkF1cGs9NHh4amwuX7FsaZmBrJxiiq6XAirUahVeHhpaBvtU+hHp9H83V7k9RVE4feYsqD3QtWxBEy8tKpWKsiKFG69dFaDMoKCtcLuN6rZ96uTvAHTsFG5xeXXrWltubd3q9u3IutbWt7ZuTeIqLC6lpExv+j4UoKRMT6negI+3h03bdiSu6mJzdNu1eY7Uxndh6/LaOv9q83usapmvxoOColKul+pRFFCpwMtDg6+Ph+l3pibHS6NVo9XY31Ck9bD999IpyUKn05GVlYVer0ej0aDX67l48SI6nc6sXEZGBt27dwcq1yaqW2arx+6NsLlJISTEj0uXyjO5Wq0iZf85vtpxCpWq/IArCugNCrf9XwidWgVY3Z6xqUnl4QdqLTl519EFaxh/d0dOZ+aRtCfVbCTV4FtbmW07MNCH3NxCs+3P27wYgJhH77Xp8znTvM2L0Wo1Ndq3I3FbW7cmce05coGsnMpVfkWB/2sVyJ1dW9q079qIy55t1zQuqPr8qs24bFFdXLV1DtXm91gdZ4yGqni8VCq4qaU/Tey4UDayZ79O6bMIDg4mIiKC5ORkAJKTk4mIiKjUBAUwbNgwEhMTMRgM5OTksHXrVqKioqwuqwsXKnQ6GdnTlmjsuFJpyq8QKnZcGUdSGW/aJ/dgch25eaJwNbVaRadWAdzZtaXbPeCoOk5rhpo7dy5xcXG89957+Pv7s2jRIgAef/xxnn76abp160Z0dDS//vorQ4cOBWDatGm0adMGoNpldaHlHz/mNZ1HUV3HVadWAYy/u1O9HFvd0BgT941DFyVxC1E9pyWLjh07kpiYaPb+ihUrTP/WaDTMmzfP4vrVLasL/9cqwKEfEWuT9oxXE7Y0aYnaYxwCLYnbeQwGBbXfTai9gzmZflWOZwPVoDq4HeHoj4hcsdYfkridx9hX59l6MKi1JO1JrTeTzIR9JFlU4MiPiFyxisaoYl8dVJ5kJsm4YZFk4UQN8YrV1MTg01yaGIQZa311ouGQZCGqJE0Mwhq5wWbjIbcoF1WqbjiwEIAMC29EpGYhqiRNDMIa6atrPCRZiCpJE0Pdqq9DUBtiX50wJ81QokrSxFB3KvYPaVv0kjsTC7cjNQtRpYpNDHnFZfh7a+vN1W59I0NQhbuTZCGqZWxiqOkN6IRtpH9IuDtphhLCDcgNDoW7k2Qhao2xw1Ybcqs8kc4K6R8S7k6aoUStkAl99pEhqMLdSbIQtUI6bO0nQ1CFO5NmKFEr6vOD6YUQ5iRZiFohHbZCNCySLEStqO0OW9Ns5+AebtV57q5xCeEo6bMQtaI2O2zdtfPclXHV11uFiPpDahai1tTWg+nd9W64ropLbhUi6oLDyaKoqIhnn32WIUOGMGzYMLZv315l2YSEBIYMGUJkZCTz58/HYCjvAM3KymLy5Mn06tWLsWPHOhqSaODctfPcVXG5a/IUDYvDyWLlypX4+vqyZcsW3n//fWbNmsW1a9fMyqWlpbFs2TLi4+PZvHkzZ8+eZcOGDQD4+PjwzDPPsHjxYkfDEY2Au3aeuyoud02eomFxOFls2rSJ2NhYANq1a0fXrl3ZuXOnWbmUlBQiIyMJCgpCrVYTExPDxo0bAfDz86N37940aSIjZYR17jrb2VVxuWvyFA2Lwx3cGRkZtGrVyvRap9Nx4cIFs3KZmZmEhYWZXoeFhZGZmeno7isJDva1q3xIiJ/p39nXSvH01js1npoKDPQxe0+r1VS5rK7U9b6r+8xPjO7OiXNXyMi+RlhwUzrf1MypHbrV7dvd4rrNvwm/nsomLSufkjIDnlo1bUL9uC2ipcV91+R7rIvzr6ptO7Lvmn6Pju63LhjjUgEBAU0I8PWq1f1ZTRZjxowhIyPD4rI9e/Y4PSBHZGcX2NypFxLix6VL+UB5R2x+XhGFxWW1GZ5Nqrq7a1lZeSJz1Z1fXXHXWWufuWWgNze3CyI3t5C8POc2uVS3b3eMa8xd7c1Gnlnad02/x9o+/6qLy5F9O/I9lpXp0Wo1bnm35YrHS6UC/yZaSopK7N6OWq2y+SLbarJYt25dtcvDwsJIT08nKCgIKK9B9OvXz6ycTqerlHQyMjLQ6XQ2BSmEqJ7cKkTUNof7LIYNG0Z8fDwAqampHD58mAEDBpiVi4qKYuvWreTk5GAwGEhMTGT48OGO7l40UHLHWiHci8N9Fo8++ihxcXEMGTIEtVrN/Pnz8fUtr9YsWbKEFi1a8MADD9CmTRumTp3K+PHjAejfvz+jRo0CQK/XM2jQIEpKSigoKGDgwIHExMQwffp0R8MT9ZC7TroTojFzOFn4+Pjw7rvvWlz2zDPPVHo9YcIEJkyYYFZOo9FYHEElGie5Y60Q7kdmcAu3I/MGhHA/kiyE25F5A0K4H0kWwu2466Q7IRozueuscDvyiFEh3I8kC+GWZN6AEO5FmqGEEEJYJclCCCGEVZIshBDVktn0AqTPQghRDZlNL4ykZiGEqJI8hU8YSbIQQlRJZtMLI0kWQogqyWx6YSTJQoh6whUdzTKbXhhJB7cQ9YCrOpplNr0wkmQhRD3gytu2y2x6AdIMJUS9IB3NwtUkWQhRD0hHs3A1SRZC1APS0SxcTfoshKgHpKNZuJrDyaKoqIiXXnqJo0ePotFomDlzJoMGDbJYNiEhgRUrVqAoCgMHDmTWrFmo1Wq2bt3Ke++9R0lJCYqicP/99/PII484GpoQDYp0NAtXcjhZrFy5El9fX7Zs2UJqaioPPvggmzdvpmnTppXKpaWlsWzZMtavX09gYCCPP/44GzZsYPTo0YSEhPDvf/+b0NBQ8vPzGTt2LN27d6d3796OhieEEMIJHO6z2LRpE7GxsQC0a9eOrl27snPnTrNyKSkpREZGEhQUhFqtJiYmho0bNwLQo0cPQkNDAfDz86Njx46kp6c7GpoQQggncbhmkZGRQatWrUyvdTodFy5cMCuXmZlJWFiY6XVYWBiZmZlm5U6dOsXBgweZN2+e3bEEB/vaVT4kxM/07+xrpXh66+3eZ20IDPQxe0+r1VS5rK64ct/VqY24qjvetn4Xjel4OUNVcTly7jvyPbrD31x1jHGpgICAJgT4etXq/qwmizFjxpCRkWFx2Z49e5wazMWLF5k6dSpz5swx1TTskZ1dYPMtEEJC/Lh0KR8obwvOzyuisLjM7n06W2CgD7m5hWbvl5WVJzJLy+pCVXG5Wm3FVd3xtuW7aGzHy1HVxeXIue/I91hWpker1bj98VKpwL+JlpKiEru3o1arbL7Itpos1q1bV+3ysLAw0tPTCQoKAsprEP369TMrp9PpKiWdjIwMdDqd6XV2djZTpkzhscceY/jw4TYFL4QQtcF4Hy61T3NOpl+VkWc4oc9i2LBhxMfHA5Camsrhw4cZMGCAWbmoqCi2bt1KTk4OBoOBxMREU1K4cuUKU6ZM4cEHHyQmJsbRkBoceVKZEHWn4n241M1vI2lPKgk7Tjb6vzuHk8Wjjz5KXl4eQ4YM4cknn2T+/Pn4+pZXa5YsWcIXX3wBQJs2bZg6dSrjx49n6NChtG7dmlGjRgHw4YcfkpqaSnx8PNHR0URHR7NmzRpHQ2sQKp642ha95MQVopbJA58sc7iD28fHh3fffdfismeeeabS6wkTJjBhwgSzcjNnzmTmzJmOhtIgufIGckI0RtXdh6sx/83J7T7cnNxAToi6JffhskyShZuTE1eIuiX34bJM7g3l5ownbmZ2IaVlBjlxhahlFe/DlVdchr+3VkZDIcnC7ckN5ISoe8b7cLnrvBRXkGRRD8gN5IQQriZ9FkIIIaySZCGEEMIqSRZC2EFm04vGSvoshLBRxdn0qLUk7UlFF+zD+Ls7yYAD0eBJzUIIG8ltIERjJslCCBvJbHrRmEmyEMJGMpteNGaSLISwkdwGQjRm0sEthI1kNr1ozCRZCGEHmU0vGitJFn/QaNR4eWpcHQYeWvviUJw0zF+h+g1pNSo8PGqx1bKGn0OrUZn1I9i0Gyv7U6Eybf/GdSyualpW/g+Vqvw/IRoKSRaUj59vHdLU1WEAEBzsS3a2h93rWfoBszWR2FIuKMiHnBxPu2IyKv/NtDMbqGyLq1mzplxpWvl4VfdjbvyHolDtr7m3V3nCbqsLqLwOFRKrcsMnU/1ZKCCgCQFN7P/zck7yr3oj/v4+BDTRAKoK+1L+iL36tZVqN21f4Dduy9/Pm6aelpO+l0f5dxEW4oui/PldKICiVHGZ88ebnloNoBDSrImpnHEbHlo1KBAU4I2CUn48jMdAAQMKTZtoKSv1NNvuny//fMPid+esq7kbeHlq8PH+4/xSqerkwkSSxR9q6Tu1m0qlclostp4/tpxoHloNjjXN27+yLXF5emhQ21JQZfYPm4p7aFQ2r1ORf1MvrheW2L1ebQv086K02P3iat7MB6VMb3GZ5o8Tz9/HtouoiqeDh7b8+2se4G1WzvOPGmmoaTSb+ffcvLkv2d4FNu23Lt14UakofybB2uJwsigqKuKll17i6NGjaDQaZs6cyaBBgyyWTUhIYMWKFSiKwsCBA5k1axZqtZrjx4/z8ssvYzAYKCsr47bbbuMf//gHnp41u5IVQjReFX8zFcX8vaqXWf6xdddbutR1XA43Qq9cuRJfX1+2bNnC+++/z6xZs7h27ZpZubS0NJYtW0Z8fDybN2/m7NmzbNiwAYD27dsTHx/P119/TVJSErm5uXz55ZeOhiaEaMQMBgWlaWuUoB4cPHnZbX/06wuHk8WmTZuIjY0FoF27dnTt2pWdO3ealUtJSSEyMpKgoCDUajUxMTFs3LgRAG9vb1MtoqysjOLiYtRqmQIihKgZg0FhcfxBaHk3BN3KB18fZXH8QUkYDnD4FzkjI4NWrVqZXut0Oi5cuGBWLjMzk7CwMNPrsLAwMjMzTa+zsrKIjo6mX79+NG3alPHjxzsamhCikTp0OpvTGXmg9gCViuulek5n5HHodLarQ6u3rPZZjBkzhoyMDIvL9uzZ47RAQkND+frrryksLOSFF15gy5Yt3HfffXZtIzjY167yISF+dpWvKxKXfWojLk9PrcPbbkzHyxmqiqsm30X2wQxKSit3mJeU6skpKDFtx9bt1rfjVVusJot169ZVuzwsLIz09HSCgoKA8hpEv379zMrpdLpKSScjIwOdTmdWzsfHh3vvvZekpCS7k0V2doHN1cyQED8uXcq3a/t1QeKyT23FVVJSBlDjbTe24+Wo6uKqyXcR7OuJp4eG6xUShqeHhiBfT9N2bNlufTxe9lCrVTZfZDvcDDVs2DDi4+MBSE1N5fDhwwwYMMCsXFRUFFu3biUnJweDwUBiYiLDhw8Hyju/S0rKh/OVlJTw3Xff0blzZ0dDE0I0Ut07BNMhzB8vDw0qyudqdAjzp3uHYFeHVm85PHT20UcfJS4ujiFDhqBWq5k/fz6+vuWZasmSJbRo0YIHHniANm3aMHXqVFNfRP/+/Rk1ahQAP//8M//5z39QqVQYDAb69OnD1KlTHQ1NCNFIqdUqZsT25NDpbNKy8mkT6kf3DsFyHy8HOJwsfHx8ePfddy0ue+aZZyq9njBhAhMmTDArFx0dTXR0tKOhCCGEiVqtomen5vTs1NzVoTQIMj5VCCGEVZIshBBCWCXJQgghhFWSLIQQQlglyUIIIYRVkiyEEEJYJclCCCGEVZIshBBCWCXJQgghhFWSLIQQQlglyUIIIYRVkiyEEEJYJclCCCGEVZIshBBuy2BQUJq2RgnqwcGTl+UZ2i4kyUII4ZYMBoXF8Qeh5d0QdCsffH2UxfEHJWG4iCQLIYRbOnQ6m9MZeaD2AJWK66V6Tmfkceh0tqtDa5QkWQgh3NK5rHxKKjxDG6CkVE9alvs9E7sxkGQhhHBLN4X64emhqfSep4eGNqF+Dm9b+kLsJ8lCCOGWuncIpkOYP14eGlSAl4eGDmH+dO8Q7NB2pS+kZhx+BndRUREvvfQSR48eRaPRMHPmTAYNGmSxbEJCAitWrEBRFAYOHMisWbNQq//MV9evX2fs2LF4eXmxdu1aR0MTokaMV514BXPw5GW6dwhGrVa5OqxGR61WMSO2J4dOZ5OWlU+bUD+nfBeV+kKgUl+IPK+7ag7XLFauXImvry9btmzh/fffZ9asWVy7ds2sXFpaGsuWLSM+Pp7Nmzdz9uxZNmzYUKnM22+/TY8ePRwNSYgak6tO96JWq+jZqTkj+7enZ6fmTkna0hdSMw4ni02bNhEbGwtAu3bt6Nq1Kzt37jQrl5KSQmRkJEFBQajVamJiYti4caNp+U8//URqairR0dGOhiREjckInIavNvtCGjKHk0VGRgatWrUyvdbpdFy4cMGsXGZmJmFhYabXYWFhZGZmAlBYWMhrr73GvHnzHA1HCIfIVWfDV1t9IQ2d1T6LMWPGkJGRYXHZnj17nBLEG2+8wcSJEwkNDSU1NbXG2wkO9rWrfEiIe15JSFz2cWZc3Tq34Nt95ygu+TNheHlq6Nq5hd37aQzHy5nqMq6FTw3gwG9ZnEm/SvtWAfS6ORRNFU1ccrzKWU0W69atq3Z5WFgY6enpBAUFAeU1iH79+pmV0+l0lZJORkYGOp0OgAMHDrBz507ee+89rl+/ztWrVxk5ciRJSUl2fZjs7AKb25ZDQvy4dMn9rhYlLvs4O662wT601/lzOiOPklI9nh4a2uv8aRvsY9d+GsvxchZXxNU+pCntQ5oCkJNdYLFMQz9earXK5otsh0dDDRs2jPj4eLp160ZqaiqHDx9m8eLFZuWioqJ48MEHeeqppwgMDCQxMZERI0YAVEoK+/btY9GiRTIaSrhEbY3AEaK+czhZPProo8TFxTFkyBDUajXz58/H17c8Uy1ZsoQWLVrwwAMP0KZNG6ZOncr48eMB6N+/P6NGjXJ090I4nXEEjgyjFOJPKkVRGsyYQGmGqj0Sl30kLvtIXPZxRTOUzOAWQghhlSQLIYQQVkmyEEIIYZXDHdzuxN4RK+46wkXiso/EZR+Jyz4NOS57ttGgOriFEELUDmmGEkIIYZUkCyGEEFZJshBCCGGVJAshhBBWSbIQQghhlSQLIYQQVkmyEEIIYZUkCyGEEFZJshBCCGFVg7rdhy3OnDlDXFwcubm5BAYGsmjRItq1a+fqsBg8eDCenp54eXkB8PzzzzNgwIA6j2PRokWkpKSQnp5OUlISnTt3Blx/3KqKy9XH7cqVK7z44oucO3cOT09P2rZty/z58wkKCuLgwYPMnj2b69ev06pVK/71r38RHFw3z3muLq7w8HA6d+6MWl1+rfjGG28QHh5eJ3EBTJ06lfPnz6NWq/Hx8eEf//gHERERLj/HqorL1eeY0bJly1i6dKnp/K/z80tpZCZPnqysX79eURRFWb9+vTJ58mQXR1Ru0KBByu+//+7qMJQff/xRycjIMIvH1cetqrhcfdyuXLmi7N271/T69ddfV1566SVFr9crkZGRyo8//qgoiqIsX75ciYuLc3lciqIonTt3VgoKCuoslhvl5eWZ/r1lyxZl9OjRiqK4/hyrKi5Xn2OKoihHjhxRHn30UVMsrji/GlUzVHZ2NseOHTM9znXEiBEcO3aMnJwcF0fmPnr37m16NrqROxw3S3G5g8DAwErPnO/ZsycZGRkcOXIELy8vevfuDcCECRP49ttvXR6XO/Dz8zP9u6CgAJVK5RbnmKW43EFJSQnz589n7ty5pvdccX41qmaozMxMQkND0Wg0AGg0Glq0aEFmZiZBQUEujq68eqsoCr169eLvf/87/v7+rg4JkONmK4PBwBdffMHgwYPJzMwkLCzMtCwoKAiDwWBqYnFVXEaTJ09Gr9czcOBApk+fjqenZ53G9Morr/D999+jKAr/+c9/3OYcuzEuI1eeY0uWLGHUqFG0bt3a9J4rzq9GVbNwZ5999hkbNmxgzZo1KIrC/PnzXR1SveBOx+2f//wnPj4+TJo0UWdqTAAAAn9JREFUyWUxWHJjXDt27GDt2rV89tlnnDx5kuXLl9d5TAsWLGDHjh0899xzvPHGG3W+/6pYisuV59gvv/zCkSNHmDhxYp3tsyqNKlnodDqysrLQ6/UA6PV6Ll686BbNG8YYPD09mThxIj///LOLI/qTHDfrFi1axNmzZ3nnnXdQq9XodLpKzT45OTmo1eo6r1XcGBf8ecx8fX2JiYlx6bk2evRo9u3bR8uWLd3qHDPGdeXKFZeeYz/++COnTp3innvuYfDgwVy4cIFHH32Us2fP1vn51aiSRXBwMBERESQnJwOQnJxMRESEy5tSCgsLyc8vf/i6oihs3LiRiIgIl8ZUkRy36r311lscOXKE5cuXm5pzunbtSnFxMT/99BMAX375JcOGDXN5XFevXqW4uBiAsrIyUlJS6vSYXbt2jczMTNPrbdu2ERAQ4PJzrKq4vLy8XHqOPfHEE+zevZtt27axbds2WrZsycqVK3nsscfq/PxqdA8/OnXqFHFxceTl5eHv78+iRYvo0KGDS2NKS0tj+vTp6PV6DAYDHTt2ZNasWbRo0aLOY3n11VfZvHkzly9fplmzZgQGBvLNN9+4/LhZiuv99993+XH7f//v/zFixAjatWuHt7c3AK1bt2b58uX8/PPPzJkzp9LQxubNm7s0rscee4zZs2ejUqkoKyvj1ltv5eWXX6Zp06Z1Etfly5eZOnUqRUVFqNVqAgICmDlzJl26dHHpOVZVXP7+/i4/xyoaPHgw77//Pp07d67z86vRJQshhBD2a1TNUEIIIWpGkoUQQgirJFkIIYSwSpKFEEIIqyRZCCGEsEqShRBCCKskWQghhLBKkoUQQgir/j982A3ws+Py5gAAAABJRU5ErkJggg==\n", 797 | "text/plain": [ 798 | "
" 799 | ] 800 | }, 801 | "metadata": { 802 | "tags": [] 803 | } 804 | }, 805 | { 806 | "output_type": "stream", 807 | "text": [ 808 | "\n", 809 | "\n" 810 | ], 811 | "name": "stdout" 812 | }, 813 | { 814 | "output_type": "display_data", 815 | "data": { 816 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEQCAYAAACwSgOGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xT9f4/8FeS7j0otBQoS2qlQIFSlqyCFGVWWSqFCwKOC4oCWsAriCKIDBXrT/GLgoDsIRRklg2lbChbZumetKW7Ob8/0hwyTpKT5GS0eT8fD++lOSOfk5yc92d/RAzDMCCEEGLzxJZOACGEEOtAAYEQQggACgiEEEJqUEAghBACgAICIYSQGhQQCCGEAKCAQAghpAYFBAVPnjxBcHAwYmNjLZ2UWic4OBgxMTG89z979iyCg4OxYsUKE6aKW2xsLIKDg/HkyRPBz11cXIyvv/4akZGReOmllxAcHIybN28K/j6En8TERAQHB2Pv3r2WTopJlJaWonv37pgxY4Yg57MT5CxWLDg4WOlvsVgMDw8PBAcHY8SIERg8eLDg77l9+3bMmjULCxcuxOuvvy74+QHZQ23Hjh1Krzk5OSEwMBA9e/bE5MmT4ePjY5L3JpotXrwYmzZtQp8+fTBkyBBIJBLUq1fPomn6/PPPsWXLFjg5OeHEiRPw8PDg3G/FihX46aeflF5zcHCAv78/unTpgnfffReNGjVSO05+L6re74r36AcffICPPvqI83137NjBZsIiIiKwdu1ajdcyfvx4nD59Gv7+/khISIBEItG4r1QqxcKFC/Hiiy/i1Vdf5UyzJnv37kWLFi00bld079497NmzBzdv3sTNmzeRnp4OALh+/Trs7PR7xGZkZGDHjh3suVJSUsAwDA4cOICgoCC1/Z2dnTF58mQsXLgQY8eORdu2bfV6P1V1PiDITZkyBQBQVVWF+/fv4/Dhwzh79iySk5Mxa9YsC6fOcH379kVISAgAICcnB8ePH8cff/yBAwcOYNu2bfD29jZLOvbu3QtnZ2ezvJc1O3r0KJo2bYpffvnF0kkBICux7NmzByKRCGVlZdi1axfGjBmj9ZiIiAhEREQAAAoKCpCYmIjNmzdj//792Lx5M5o2bapXGuzs7LB9+3ZMmTKF8wG+efNm2NnZoaqqSut5UlJScObMGYhEImRkZOD48ePo06ePxv337NmDW7duYcmSJRCJRJz7jB07ljNA6vO7OXHiBOLi4iCRSBAUFARHR0eUl5fzPl5RcnIyvv/+e4hEIjRq1Aju7u4oLCzUeszo0aMRFxeH77//Hr///rtB7ytnMwFh6tSpSn+fOXMG48ePx5o1axATE8OZ86kN+vXrp5QrKy8vx8iRI3Hr1i2sX7+eDYSmxjc3VddlZWWhU6dOlk4GKz4+HiUlJRg/fjzWrVuHzZs38woIir8XqVSK9957D8eOHcOvv/6KhQsX6pWG3r1749ChQzhx4gR69+6ttO3evXu4ePEiXnnlFRw8eFDreTZv3gyGYTB58mSsXLmSLYlpsn79eri5ueGVV17RuM+4ceOM/u337NkT7du3R3BwMJycnBAZGYnU1FSDzhUaGor169fjxRdfhJubG2JiYpCUlKT1GEdHR7z66qvYtGkTHj58qHfAVmSzbQhdu3ZF8+bNwTAMrl27pnP/rKwsfPnll4iMjERoaCi6dOmCKVOmIDk5WWm/mJgYtsQxa9YsBAcHs//J66yLi4sRFxeHQYMGoUOHDmjfvj369euHadOmqZ1PX46Ojmw1GNd1FRQUYOnSpXj11VfRtm1bdOzYEePGjcPJkyfV9q2oqMCff/6J6OhodOrUCe3atUNkZCTef/99nD59WmlfTW0IOTk5mD17Nrp164a2bdti6NChWovqkZGRiIyM5Ny2YsUKBAcH4+zZs0qvHzp0CDNmzEBUVBTCwsIQFhaG119/HX/++SekUqnG91J1+PBhjBs3Di+//DJCQ0Px8ssvY8yYMVi/fr3OY2NiYhAcHAyGYZCUlMR+54qfiVQqxYYNG/DGG2+gffv2CAsLwxtvvIG//vqLM53y47OzszFnzhz06NEDISEh2L59O+9r2rx5M8RiMcaNG4fIyEjcvn0bV65c4X08IKtmjY6OBsB9T+kyePBgODk5YfPmzZzpA4ARI0ZoPUdVVRV27NgBNzc3/Pe//0Xr1q1x/PhxZGZmcu5/7949XLp0CZGRkXByctI7zfpo3rw52rVrJ8j7+Pv7Izw8HG5ubnodN3DgQDAMg23bthn1/jZTQuAin9dPU3FSLiUlBW+99RaysrLQpUsXDBw4EOnp6di3bx+OHj2KFStWsDmV6OhouLu74/Dhw0rVOQDg4eEBhmEwceJEXLp0Ce3bt8eIESMgkUiQmZmJs2fPIjw8HKGhoYJcn2r9ZWpqKmJiYpCamorw8HD06NEDpaWlOHLkCCZOnIj58+dj5MiR7P6zZs1CfHw8WrVqhaFDh8LJyQlZWVm4cOECTpw4gW7duml9/7y8PIwePRopKSno2LEjOnbsiOzsbMydOxfdu3cX5BoBYMmSJRCLxWjbti0aNGiAoqIiJCYmYsGCBbh27Rq+++47nefYtGkTvvjiC/j5+aFPnz7w9vZGbm4ubt++je3bt+Ptt9/Wenx0dDQiIiLw008/ITAwkH2ABgYGsvvMnDkT8fHxCAgIwPDhwyESiXDo0CF8+eWXuHDhApYuXap23oKCAowaNQouLi7o378/RCIRfH19eX0uN27cwPXr19G9e3cEBAQgOjoa+/fvx6ZNm9CuXTte51Clb504ILvvBwwYgPj4eGRnZ8PPzw+ALMOxc+dORERE6MzVJiQkIDs7GyNHjoSTkxNef/11fPXVV9i6dSv++9//qu1/5swZAEDHjh21nvf48eMoLi5mq3u6dOmi98PYGrRt2xb29vY4deoUpk+fbvB5bDYgnD59Gg8ePIBIJEKbNm207jtv3jxkZWVh2rRpeP/999nX33rrLYwZMwaxsbFISEiAq6srW31z+PBhteocALh9+zYuXbqEfv36IS4uTmmbVCpFUVGRUddVVlaGv//+G4D6jyE2NhZpaWlYtmwZBg4cyL5eWFiImJgYtndMvXr1UFRUhD179qB169bYsmWLWt1vfn6+zrQsX74cKSkpGDduHGbPns2+/vbbb2P06NHGXKaSlStXokmTJkqvSaVSzJo1Czt37sSYMWN0PgA3bdoEe3t7/P3332oP3Ly8PJ1pkH/P8oCgWkUZHx+P+Ph4vPTSS1i3bh1cXV0BANOmTcOYMWMQHx+P3r17q3VyuHPnDoYOHYpvvvlG74fxxo0bldLWo0cP+Pn54Z9//sHs2bN5P/iqq6uxdetWALofsJqMGDECO3fuxPbt2/Huu+8CAA4ePIiCggKdpQNA9v0Az69l0KBBWLRoEbZt24b3338fYrFyZceFCxcAQGfm6ssvv1T629XVFdOnT9eZAbA2Tk5OaNmyJW7evIni4mKDg5rNVBmtWLECK1aswPLly/Hhhx9i4sSJYBgG48aNU8rFqcrIyMDJkyfRsGFDTJw4UWlbhw4dMHDgQBQUFOis/1TFVbwUi8Xw9PTU6zyHDh1ir23evHkYMGAA7ty5g06dOuHNN99k97t16xaSkpLQv39/pWAAyHJwU6dORXl5Ofbv3w9AVmpiGAYODg5qPzZAd6NbZWUldu/eDVdXV7WHY5s2bQTt3aUaDADZZzl27FgAskY/Puzs7DgfukL01pIX5adPn84GAwBwcXHBzJkzAQBbtmxRO87e3h6fffaZ3sGgpKQE8fHxcHd3Z+vQ7ezsMHjwYJSUlGDXrl0aj01KSmLvqa+//hqDBg3CyZMn0bJlS3zwwQd6pUMuPDwczZs3x5YtW9iS+ebNm+Hp6YmoqCitx6ampuL06dNo1qwZ2rdvDwDw8vJi6+q5vl95Tx95aYQrPcuXL8eRI0dw9epVHDp0CJ999hkAYP78+WwAqk3q1asHqVSqsRqND5spIci704lEInh4eKBjx44YPnw4hg4dqvW4GzduAJDljOzt7dW2d+nSBbt27cKNGzcwbNgwnelo2bIlQkJCEB8fj9TUVPTt2xcdO3ZEaGgoHBwc9L6uw4cP4/Dhw0qvde/eHb/++qtSei9dugRA1n7B1fdfngu+f/8+AMDNzQ19+vTBkSNHMHToUPTv3x/h4eFo164dr95E9+/fR2lpKcLDw+Hu7q62PSIiQmtbgj7y8/OxatUqHDt2DE+ePEFJSYnS9qysLJ3nGDx4MBYtWoSBAwfitddeQ0REBDp06CBY190bN25ALBazvXcUderUCRKJhHO8QmBgIO8qIkV79uzBs2fPMGrUKDg6OrKvR0dH4/fff8eWLVvw1ltvcR6blJSk1pAZEhKCtWvXcn6XfI0cORKLFi1CYmIiGjZsiLNnz2LMmDFK6eOyZcsWSKVStdK2vApsy5Yt6NWrl9I2eQlWUwZr+PDhSn83btwYEyZMQLNmzfDee+9h+fLlGD58uNZurdZGfq18Su+a2ExAuH37tkHHyatwNOU05K/zreqRSCRYs2YN4uLisH//fixZsgSArKgaHR2NTz75RCkHqYu873d1dTVSUlLwww8/YO/evZg3bx4WLFjA7ldQUAAAOHXqFE6dOqXxfIoP0++//x6//fYb4uPj2SDi6OiIqKgofPbZZ1r718s/D00PM6H65hcWFmL48OF48uQJ22jt6ekJOzs7FBYW4s8//0RFRYXO84wfPx7e3t7466+/sHbtWqxZswYikQidOnXCp59+qrNaUZeioiJ4enpyBn07Ozu2zUKVpvtOF3ljrepDtFWrVmjdujWuX7+Oa9eucV7XlClTMHXqVDa3uWrVKqxduxbTpk3Db7/9xlli5GPo0KFYtmwZtmzZgoYNG4JhGKU2Ky7V1dXYtm0bxGKxWuZNXgV25MgRpbYJ4HkJvLy8XK/G3j59+qBBgwbIzMzEv//+qzaOyZrJu7oa07htMwHBUPIcUU5ODuf27OxsANCrzs7T0xOzZ8/G7Nmz8ejRIyQlJWHTpk1Yt24dCgsLeTWCqpJIJGjatCmWLl2K1NRUbN26FZGRkejbt6/SdcyZM4etStHFyckJU6dOxdSpU5Geno5z585hx44d2LVrF1JTU/HXX39pPFb+flwPOUDz5ykSiVBZWcm5jas/9pYtW/DkyRP2Iabo0qVL+PPPPzWmUdWwYcMwbNgwFBYW4tKlSzh48CC2bduGiRMn4p9//jGqtODu7o6nT5+isrJSraRZVVWF/Px8zntIV4cHLrdu3cLVq1cBAKNGjdK43+bNm7UGOrFYjICAAHz++efIysrC/v37sW7dOt73jyofHx+2e6mbmxvat2+PVq1aaT3myJEjbAmvZ8+eGvfbtm0b3nvvPfZveUakoKBA72pYHx8fZGZmorS0VK/jLE2e6TOkRClnM20IhnrppZcAyBqpuAbOyLtAtm7dmn1NnoOqrq7Wef6goCCMGDEC69atg4uLi1r1j77EYjHmzJkDQNb7Rp4GeaPq+fPnDTpvQEAAhgwZglWrViEoKAgXLlzQWjRt3rw5nJ2dcfPmTc7Sk6a+1Z6ensjNzeUMClxdch89egQA6N+/v9q2c+fOaUyfNh4eHujVqxe+/vprREdHo6CgwOBzyYWEhEAqlXJ+/ufOnUN1dTV7rxlLXjqIiIjA8OHDOf9zcnJCfHw8nj17xuucsbGxcHBwQFxcHIqLiw1O24gRI1BRUYG8vDxejcnydpU+ffpwXoe8BLR161YorgYsz9nLq0D5Kioqwv3799mBYbXJgwcP4OXlBX9/f4PPQQFBB39/f3Tv3h2pqalYs2aN0rYrV64gPj4enp6e6NevH/u6vMFV3rClKCUlBSkpKWqvy3OPQvRlbteuHfr06YP79+9j586dAGQNueHh4Th48CDbY0TV7du32Rx9Xl4eZzVbSUkJSkpKYGdnx9mmImdvb4/Bgwfj2bNnam0W165dw+7duzmPa9OmDaqqqtT62m/fvh0XL15U21/+o1UNMDdu3MCvv/6qMX2qEhMTwbW8uLxtxdjv5Y033gAALF26VCnnWVpaynY3Va3XNkRZWRl2794NiUSCJUuWYMGCBZz/9e/fHyUlJdizZw+v8zZs2BAjR45EQUGBUaNhu3Tpgp9//hlxcXFqnRtUpaen48SJE/D09MQPP/zAeR0LFy5Ex44dkZKSojQ2Rt5Wc/nyZbXzZmdnIyMjQ+31Z8+eITY2FuXl5ejWrZtataZ8Dix9xoFoIh9TI9RcXikpKcjJyUHnzp0NKlXKUZURD19++SXefPNNLF68GKdOnUJoaCg7DkEsFuObb75RKu6HhYXB2dkZa9asQUFBAXtjxcTE4Pbt25gyZQratGmDFi1aoH79+sjLy8Phw4dRWVmJSZMmCZLmDz/8EEePHkVcXBwGDx4MBwcHLF26FOPGjcOcOXOwdu1atGvXDu7u7sjIyMCdO3dw584dbNq0Cb6+vsjMzMSwYcPQqlUrBAcHIyAgAMXFxTh69Ciys7MRExOjs5rs448/xpkzZ7BmzRokJyez4xD27t2Lnj17IiEhQe2YmJgYbN++HfPmzcOZM2cQEBCAmzdv4vLly2wjt6KhQ4di1apV+Oabb3D27FkEBQXh0aNHOHr0KF555RXek5pNmTIFLi4uCAsLQ2BgIBiGwfnz53Ht2jW0bt1a55gLXQYPHozDhw/jn3/+wcCBA9GvXz92HMKTJ0/w2muvYciQIUa9ByCbQqSwsJCtC9dkxIgR2LVrFzZt2qSzHl/u3XffxdatW7F69WqMGTPGoCo0kUjEVmPqsnXrVlRXV2PIkCFaG55HjBiBCxcuYNOmTez4li5dusDDwwMnT57Exx9/rLT//fv3MX78eISFhaFp06bs/X769GlkZ2ejcePG+Prrr9XeRz54ULWhOS8vD4sXL2b/lpec58yZwz6cJ02apDSaX9O5AChNrikv4SxZsoRtWxw+fDjCw8OVjpG3C3KVlPVBAYGHxo0bY9u2bfj5559x/PhxJCUlwdXVFT169MB7772nNqGUp6cnfvzxR8TFxWHHjh1sQ+2QIUMQGhqKyZMnIykpCSdOnMDTp0/h4+OD1q1bIyYmRq23hKFeeuklvPLKKzhw4AA2bdqEmJgY+Pv7Y9u2bVi3bh0OHDiA3bt3o7q6GvXq1UPLli0xZswYtk5X3pc+KSkJZ8+eRX5+Pry8vNCsWTNMnz5dZ+4OkNXFbtiwAcuWLcORI0eQnJyMZs2aYd68eQgMDOQMCC1btsQff/zBdgmUSCQIDw/Hxo0bcfDgQbWA0KBBA6xfvx5LlizBhQsXcPLkSTRv3hxz585F165deQeE6dOn4+TJk7h+/TqOHTsGR0dHNGzYEDNmzMCbb76ptTTE17Jly9CpUyds27aN7dbYokULTJgwQamLsDH4jvyVDwZLTk7GzZs3lQZQalK/fn28+eab+OOPP7By5UqTzgoslUrZrrq6Sk4DBgzAggULkJCQgNzcXPj6+sLZ2RnR0dFYs2YN7t27p/QwbtKkCYYPH45r164hISEBRUVFcHJyQrNmzfD2229rzOzcuXMHrq6uatNvlJSUcPaYk5fOAVmPKMU03LlzB2KxWG3SPQCc5zpw4AD774iICLWAsHPnTvj4+BgdEEQMVzmZEEJquZSUFLz66qsYPXo0Pv/8c6POVVhYiM6dO2P8+PH49NNPjToXwzDo0qULunTpgh9++MGocwGyTgRDhw7FRx99ZPA4ETlqQyCE1EmNGzfG2LFjsXnzZqMGawGyzhh2dnYYP3680em6c+cOCgoK2BHbxvrxxx8REBCACRMmGH0uKiEQQuqs4uJirF69Gl27djV42g1rVlpailWrVqFTp07o3Lmz0eejgEAIIQQAVRkRQgipQQGBEEIIgDrQ7TQ//xmk0tpV6+Xr64bcXMNHe9Z2tnz9dO107ZYmFovg7c09X1qtDwhSKVPrAgKAWplmIdny9dO126bacO1UZUQIIQQABQRCCCE1KCAQQggBQAGBEEJIDQoIhBBCAFBAIIQQUoMCAiHEqqTnPsOERQm4l/bU0kmxORQQCCFW5do92ap9STeyLJwS2yN4QPjpp58QHByMO3fuAJAtYTdkyBBERUVhwoQJSouua9tGCCHEvAQNCNevX8fly5cRGBgIQLbq0cyZM/HFF19g//79CA8Px5IlS3RuI4QQBtY/sreuESwgVFRUYP78+Zg3bx77WnJyMhwdHdnl3kaPHo19+/bp3EYIsWFGLBJPjCPYXEY//PADhgwZgkaNGrGvpaeno2HDhuzfPj4+kEqlKCgo0LrNy8uL9/v6+mpf6N1a+fm5WzoJFmXL10/Xrp2bmyMAwMXZoU59VrXhWgQJCJcuXUJycjJmzJghxOn0kptbXCsmjVLk5+eO7OwiSyfDYmz5+unadV97cXE5AKCkpKLOfFbW9L2LxSKNGWlBAsK5c+dw79499O3bFwCQkZGBd955BzExMUhLS2P3y8vLg1gshpeXFwICAjRuI4TYLqowshxB2hAmT56MkydPIiEhAQkJCfD398eqVaswceJElJWV4fz58wCAjRs3YsCAAQCA0NBQjdsIIYSYn0nXQxCLxVi8eDHmzp2L8vJyBAYG4rvvvtO5jRBCaldFcN1gkoCQkJDA/rtDhw7YvXs3537athFCCDEvGqlMCCEEAAUEQoi1oVZli6GAQAghBAAFBEKItaJWZbOjgEAIsSpUY2Q5FBAIIYQAoIBACLFSNNup+VFAIIRYFZHCbKdShkHO01ILpsa2UEAghFitfxIf4dP/dwbpuc8snRSbQAGBEGK1bj0uAADkPi2zcEpsAwUEQgghACggEEKsFAMADDUsmxMFBEIIIQAoIBBCrBmtr2xWFBAIIdaJAVUZmRkFBEKIVeEsFFBBwSwoIBBCrB8VFMyCAgIhxCpRDDA/CgiEEOtHVUZmQQGBEGKVpFIGz8qqLJ0Mm2Jn6QQQQgiX41fSLJ0Em0MlBEKIVaHaIcuhgEAIIQQABQRCCCE1KCAQQqwLTVdhMRQQCCGEAKCAQAixMlQ+sBwKCIQQQgBQQCCE2CiplMHNh3mWToZVoYBACLFJexIf4buNl3H9AQUFOQoIhBCblJlXAgAoKC63cEqsBwUEQohZZOQ+Q/KDXIOOfVpcIXBqCBcKCIQQs5j0zSEs23RF944c3YxW7bkpeHpoMTZ1FBAIIYQAoIBACCGkBgUEQohVMd/ANKozUkUBgRBCCAAKCIQQKyMy2+R2NEmGKgoIhBCrwpit+w9VGakSJCDk5+dj0qRJiIqKwuDBgzFlyhTk5clG/12+fBlDhgxBVFQUJkyYgNzc5/2QtW0jhBBzoNm2nxMkIIhEIkycOBH79+/H7t270bhxYyxZsgRSqRQzZ87EF198gf379yM8PBxLliwBAK3bCLEGVdVSzPktEVfvUUbFnMxXZURUCRIQvLy80LlzZ/bvsLAwpKWlITk5GY6OjggPDwcAjB49Gvv27QMArdsIsQb5ReVIzy3BugO3LZ0UYgJUYaTOTugTSqVSbNiwAZGRkUhPT0fDhg3ZbT4+PpBKpSgoKNC6zcvLi/f7+fq6CZp+c/Hzc7d0EiyqNlx/tViWXxJLxIKmtzZcuyn5+bkjK78E7i4OcHZUfwS5uTlpPE5ITo72AAAPD2ezfCe14XsXPCB89dVXcHFxwZgxY3Dw4EGhT68mN7cYUmntivV+fu7Izi6ydDJ4eZxZhIt3sjGsR3MAQLVUChFEEIsNL9bXluvPKygFAEirpWrpvZf2FBm5JejeJkCvc9aWazel7OwivLMoAU3qu2HehAi17cXFZRqPE1JZeSUAoLCwVNBzZxeU4sz1DAzu1pSt/rKm710sFmnMSAsaEL799ls8evQIv/zyC8RiMQICApCWlsZuz8vLg1gshpeXl9ZtxHp8teY8qqUMhnRvBrFYhCnLT8DRQYLvp75s6aRZ1II/LwCA3gHBFlVVSzlff5xVbOaUmMf3W64gPbcE3Vr7o56Xs6WToxfBup0uW7YMycnJiIuLg4ODAwAgNDQUZWVlOH/+PABg48aNGDBggM5txHpUy0tfNQWC8spqFD6ruzNPSqUM+wCrXeVO6zX1hxP4YNlx9u+lGy9p3X/1P7dMnSQlIoHHI1RW1d77R5ASwt27d/Hrr7+iadOmGD16NACgUaNGiIuLw+LFizF37lyUl5cjMDAQ3333HQBALBZr3EasT1l5FVyc7C2dDJOb+3sSUnOe4ffYSEsnpc4or6hW+vv6w3wLpcQ8KmoCwq5TD/DOwJcsnBr9CBIQXnjhBdy+zd0To0OHDti9e7fe24hlSRkGE789wv69/uAdTBrc2oIpMo/UnGcAgMJnFTSO1QAFxeV4nFmMti18LZ0U3UyUhS8rrwIAnLqWgeG9W6K8srpWNCgDNFKZaCAv9so9K6sy6fsVl1bicaZ1NLoBsqoyeXVZpYY6cKJuwZ8X8P0WHmseGKmqWopqqUDfi8CRXzHOfLziJGJ/OSPsG5gQBQTC6f2lx5T+Vp1N4GFGoaDv983aC5j3xzlBz2mshAtPANBqXfrILZT1EJq0+AjO38oy2ft8sOwYpsedNtn5bRUFBGKQy3dzBD1fRs36tkI6cTXNqIdSWWW17p0Ip2opgx0n7pvs/FXVjNV2bqjNVY0UEOq4RxlFKDFxdY+i/KJynZOTFT6rwIN0YUsYXP7Yews/70w26FiaPYHYIgoIdRjDMPhy9Tks33JZ8HMXPqtQy9Wn5z7D9LhT2J+UovXY2LiT+GrNecHTJKTcwjKlnF5eIfdgKaKdtebiTak2djeVo4BgA+6lCp8bP3o5DbNXJiq9ll0ge2jeeJSn9dgUlcbj6w+e778/6TEqeFbVFBSXI6ugFJl5JTh2OVVpW1pNbyFDyQeeye0+/dCo89kqIaeyvnovFwfPpeDWI2G6rQr94L77pADzV59T65BRmwg+dQWxfqXlVbj75KleXQMZPX8+ZRVVkIjFsLfTnucofFaBpZuel2A2JfyLp88qMLJPS53vMfPn06iWMnB2lKC0vBq9wgLZbZpGxxLzeVZWJSmGbZYAACAASURBVOjMpVy9lwqfVcDD1cGo895NKUDX1v5GnQMA/i/+Bpspqq2ohFCHaXqE/773Jr7fcgVZNXP18DoXo94VVZsPlh3HxytOYu2B2xofzpMWH0HCxSdqr5eWc7d5VFVLsf7gHRSXyuagkXcLLS3XXqIwtEdUbS7681VZVY0JixKw7+xjwc9dXFJp8raYaStOGn2Oo5fTdO/Eg9nW9TEhCgg2KCNXVvdfUaH+IC0qqcCh8+ptANcf5OHdJUf1ep+S8iocuZiKi3eyObdXSxnsOvVQ7XWuZ0hpeRW2Hr2HwxeeYHPCv3qlY/Ve46dCqKttzPLxJfuShA8IDBirXttAtTqrqlqKE1fTMGFRAp4WlxtwPqFSZjlUZWSD2PuW47f6W/wNJN/X3gbA48zGUXmISKUM5q8+h8z8mtlH9fzlpWQV49LdbLR/wU+v405eTddr/9qIfWCb4mnG45RV1VLYSawjX/q//zvL3mNpuSXwdHPU63ht92XyvRz4uTtAbMUBEqASgk2S54y4bs1npcZ3URVysrDU7GJMXHyE/aFqo6kBkwGwYts1ncfbQgBQJf+m9J1Bnqvh/36actUcA93ddyd/d5R9kK7Zdwu3H5tvniPV0gufe8xQs34+ZZJqOaFRQKjLdP3ITZRbkapMKSASiZBTUKpX180TV9Lw2+7rOMhRfaUpI2ZsHvfP/eadZdMaGHIL3Et9iveWHlNbWvTaffWlRvlkDs4kZwAAjl1Ow7d/aZ8JVUiKGYgD57R3lRZCeq72nm+X/81BzlP1oFRUUoG9iY8E7bGlCQWEOubUtXScvZGp9npVtRRfrTmvVJ9vqsKr6myWSTcz8ekvZzDjZ35TDYgA/PHPLZy5nmn19bJX7wk7Ytvc5LlkeUM9H3efPAUA3HhoaNWishINnQjMaePhu5yvV0ulyOQYRX/xTrZaW4Ox+asft17FF6uS2L9Lyirx5/7bWLnrOrYevcd+7qZEAaGOWbXnJn7ddV3t9SnfH8eD9EL88neyoA/ZfWcfo7JKey+fC7efByFepQRDf1gK18U1EvqpjkFSVdW6P5gn2cWYsCiB/fv7LVf5p8/KZeaXIG7HNYP70Rucg7XSoH86OR2TFh/FrJWJaj3y5L3jnmQbN95FVVlFNXvv7j79EEcvpbIZrGozrAxJAcFGVFTWLNrBPP/9CVFjtPnIv9h9+iHvuY34lBIUk8X1E+AqVsv2fb73kUupats/FqCLYtJN9dJXbaZ4DyxcewEXbmfjTkqBWdNgpfEA/xd/k/23ECOuKyqlal2wD194ggmLEpRmbv1qzXlUVUsh1GSu+qCAUIfpO5jMUP8kPsaP267izHXzPCz5FJ31bdjWWf1R8+S09iosVffTCpH7VHOpTPFzKizhV22kT0aCV48wgT7UzHz1qp2qain+SXxk9EDFa/dytX6OfJy7lYW5vycpvbb12D0AzzNscpa6z6jbqS2S9zISqFFZXpTN0WOgmykwjKxKavvx+6jSM3t1o46u4vX1n7I5ozStAMd5Cxh4W3DdT3wba/Vpw+CSdDMTv/x9HdNGtEPbFr5Ys+8Wrt7LRavGXjh7IxMMgNe6BPE+n+qV7D79EIcuPEHcxz1RWFLBeb/w+djSc5WDlvwY9QDAERGoUZmYAltlxLHNmBhxL02YOZOM6ba6/uAdnE7OQKqGut0nBi7sfuOhbGCeOWeOrW242hCKS3RXtTAA/p+Bs9LKPcyQzY91/UFezdxWacgvKmc7WJRVGP+9yUfQX/nXuI4EpeVV2HL0X1RVS61uVl0KCHUYV4aiWsogq6a/9a5TD/DT9mtssf5xZpFaX3KL0NWIYIQvfk9CfpH+o1Cz8ktRWSVFSrZhAaU2EfIZxefrYxgYXR0jbwg/eD4Fs1QmXQSA+NOP1NZ21iZbS2lXdXBZcWklthz5l3ej765TD/BP4mOlIPhIZcLHRDNVv6qiKiMbJq/zv3A7G7lPy7D5iH5TQpiKwZ2MGPUfK5eSskp4uyuPQrW2nBoAHL2UipAgbzTwcbF0Ugz2KIPfsqj5BkwVIXf0UioOX1CfE0stLZlFaNXYi9c5//hH85gUqcqDf9PhuzhVM5aCj4qa4HXpbg6cHWWP4O82KI+/OJWcgaAG5l+HmQICMbq4bgn/pnI1LDMGPdhLyir5d+nTsFtWQSl8PRwhEQtT6GYYBn/uvw0XRzv89HFPQc7J/T789pNKGdxPK4STo0Tt2NuP8/HtX5fQoZX61CAPeQYEY6aM/nP/bYOOM6RK/mFGoVqw0HcqFUWaJnIELJNJoYBArJqmnlLFHD1iqqUMzt/mnkhPmynfnzAqPXmFZYj95QwGRDTByEjd03brwxoGbQGyag75RISRHQKVtl28I6tTN3Sgmrl6w51OzkCrxl5GzZ80fzXXwk56Prl51qNxxZmbj/JRUlaJjsH19XtPnqgNQWAMwyDxRgbNx28MHr+vXI4BbluO3jNBYpRxLTYkH/B2U6CFWwDT9c2/+Sgfa/Zpn6KD6+N/nPm87UQ11y8Ry45QrUqxNsevpOFe2lNM/u4o52h+Q525zr+6COD/3d7imNfpuw2XELcjWW3sglAoIAjs6r1crNx1AzuOm26BcT7yi8px6LzuelVrpNjLqEBDA/D6g3fUXtM0zbaq1ftuITO/RJCeJwDYxkrVnC7DMGaZf0bu5x3X8M/ZR1r3+W7DJRzTY/7/a/dzcU+lek7e8UB+vaKap0iFgdU+fAc1CkG+Ep5QAUFxcSchFZZUIkWlR5zqSHvVsQtCoIAgMHkRP8+AnixCmh53ymoaifWlmNNUnRdJG4ZnDvVeaiFm/ZqIOb+d1TttXOQlk8eZxShU6Gb5zrdH1BoLAWDDobv4iyOgGev87WxsOSJMKUkqZVBZVY3lm69gwdoLnPvIq+2Mnd3WHHP0qLpsZNdRo/DIJHCNy1i5+4YpUqOEAoLAxOyIVmFzhlXVUo1ryUoZBgfPp3DODFobHeZYRY0PviNt5fKLygX5nhTnTZr240mlqR9uPS5ARWU1/tx3CyVlsvQdPJ+CQ7p6xVi49uX7LVfw7pJjWvdJrMllW2MPLT64qh2thbED9QxFAUGDzLwSg+Yvkf84hK5O/fvkAyzecImzd835W1nYcOguNhzinrGRmJdqn/JjV9Jw9HIa/j75UPD3qpZKedclq05PffdJAWeD7r+pT5H8gF8D8YRFCdhzRns1lbWy1JgboZbsNAUKCBrMWpnIe7pmRaYqIciXvSwoKsfB8ylKA3lMUZdIDLfh0F2lh2+Zlp5CUimDcoXFZq4/zMPtx/m8e97M+Pk0/rvsuM79Lt/NwfLNzxepv3Q3GwvXXcSRi+qTAFq0OoXwZormKQoIWhjSU8hUKxKKanpyFBSXY8Ohu/jslzPstmdllile1gWmqplRfPjuOPEAgHrVyvlbWfgt/gbeX3qMzeUv3XhZ6yIxNx7mIfHG814tT4srNDbm3lToBvrjNuVpurcdk3V62M7R+YFrTMZ9junESd1DAYEHhmGw88R9XnP5yyf4ungnG08EnOagJh6wc/ZLGQaX7mQjI6+EurgaYeK3Ryz23j/vTGZ7u3z4g/JYCMUMhWL//iUbL2PlLvXGRa57U9ugsLQczfP4K3YxlRNi+mciLFO03dhsQCgpq1QbJbg/6TEmf3cEF25nKb0ef/ohdp16iF/+Vl54RiplsGrPDY0Pfnkucd/Zx3isUK+8bt9NHNQwC2RpeRXnfPTimohQqfDwX7H9GmavTMRRjrn/Se1SWq48z47iPbVko3rXRqmUwfErz+uiVadVPnk13SzjMojlmKLKyGZHKstHpw57uRn6hjeCs4MdNiXIumnG7Xg+lcO/qU/ZIn95ZTXSc5/B290RTg52SM8rwalrGTh1LQNzYjqiRaAnu5ISAHYSNXn3z1GRLREV0QSbarocvtKpsVq6ft6ZjOsP8rBiWg+4Otmzr8vbJrjGN+QWWraLK+FHnxKj6ojYa/dzsbtmpDAgW1hlg8Kyj89UZmG9UsuX9iSWYZMBQXEd3J0nH+D87Sw00TCR1Lmbz0sLKVnFmPPbWbQI9MCcmHClhuPkB3loEeiJp8XKRWvFFbY2JfyLHm0D2L8rq6px4mo6fNydsDfxEVKyi+FoJyu0HT7/BI0buKFloCeKSyt5TdpGrNuNh/moqNQ846a29SQU2yQAaJ2xddLiI2ZZbpFYmvDfsU0GBNV1cJ9kP9O4NipX33759AXVCmvwVlVLMXtlIjJUFuRWq2ZS+A65+nk71ASEnScfKL3eroUvZ/pI7XJOywjZTxU6CuiSV6S5PYuCATGUiDHn2HoTyM0t1nsOFcVF0g31zsAQ7D71kF18283Z3mKDSQghtuenaT3golCtzJdYLIKvrxvnNpssIQhh1Z6bSn9TMCCEmJMpcvI228uIEEJqMxqYRgghxGQsHhAePHiAUaNGISoqCqNGjcLDhw8tnSRCCLFJFg8Ic+fOxVtvvYX9+/fjrbfewhdffGHpJBFCiNUzRX8giwaE3Nxc3LhxA4MGDQIADBo0CDdu3EBenmFL8RFCiK2oc43K6enpaNCgASQS2cLdEokE9evXR3p6uiWTRQgh1o+mrlCnqT8tIYTUZb6+bvBydxT0nBYNCAEBAcjMzER1dTUkEgmqq6uRlZWFgIAA3QfXMGRgGiGE1HY5ucWoLNN/FlptA9MsWmXk6+uLkJAQxMfHAwDi4+MREhICHx8fSyaLEEKsnwkalS1eZTRv3jzExsbi559/hoeHB7799ltLJ4kQQqyeKepFLB4QWrRogS1btlg6GYQQUqvQSGVCCCEmQwGBEEIIAAoIglkwqTMCfF3Yv//vsz54f1go+3d9L2f051ghDQAcHSQmTx+p2xr5uVo6CcRE/H1cOF+vcyOVrcm88Z30PuaTUe3QwNsZACASieCk8GAXi0To9GJ9pf07tPIDAIQ09UGgwg844sX6kIhpRTRiuD4dGrH/Xjmzt+USQgT3wbBQTHm9jVneiwJCDdUlNBe/11XpAc+lvEKKqM5NAABebg46G3nsa1ZDq6yqxlfvdGZfd3W2x2+f9lHb//fYSPbfvcIaaj85sWl92gey/7aT0M+6LpFIRHB3UV8IhxqVBcKneF3PyxmDujVl/25Y7/kxX03sjNDmPght5oPeYYH4PTYSTg52aOSnPtjD1UnWkYsBwwaEiiqp0j6DFd6Hi6ebA8YNeFFnmknd0bKRJ97s+4LSawG+Lpg/IcJCKbItw15uZukkKGkR6GmW97HJgPC/ceG89uvZ7nmufHRkS/bfgfVc8cnIMLW6/zH9W2l9r/peznB1ssPYV0MAAL4esmHnzo6ae//OHtMRc/+juzrLzVn/pfSIecW+3YH3vt1a++MVhTaniJD6+HpiZzSq74b3hrbWefx/XlXPQBhSLWqrBnVvaukkKBGL1KuUGROMRLDJgGBvJ9H6EJZTfMi2biYbPa2t6sbBXr2KyclB9j4tGnrCwV6CFdN6onOobGqOz8eG6wxOLRt5wstNfb6SdwaGKP2tz8OGWEarxl68922pkiN8b2goRDUPhYiQBjqP79raX+011WpRQyhmggJrcUO2rgwU1wPYUjRWDVGVkXA+H9uR/Xfcxz017vfpm+2x+P2uEIlE+L9P+2BsVLBe7+Ph6oB54ztx5tg83RzRLMCD/Xvufzrxbjzq3iYAg7oFsX9rau8ICfLWK71EGFzVh9qM6N0CCyY9b1dSfB51ba09ADSur/5epnqetW3uy/771c5N8PXEzlr2tl6m6KFjKmaMB7YbEAJ8n+dutJUWXgzyRj1PWU8isVjE5tL00aSBO2fpQVWQvzvbE4kPR4VzarqG8a9R24Ml/G9cR6W/5Q/OVyKaKLVhBfnLcu1S1QdUzX22cmZvvDPoJa3vxZXZ0OSX6b147wsALzZRLtXUr+lVJ6fYtlabVNemCTE1BC8KCAQAd7dCZ0c7DKjp8aTIx8PJDCkiin6d0Qv2dhK2l1iTBm7sg/PDUe0x/x3duWp5L2Q7iZiz+uK9oa3ZTABXryKxhm7MfDImit4d8ry9YkSfFkodIGpRJluNWgAmACggcHKws/zHoq0covoA6NtR1gd9ZJ+WWDmzNzs2Qtt5rKiKtM6xt3v+0P32va747C3N7Tvyr0Hf51NESAMs+aAbJg4K4awyUgwi3hrmzFfs1qyJp0L71audg/QOKObGp0T83+g2CG6suyp1/jvC9uga2DVI904cNN4adXG2U2vyRq/maODtgnCVAWX6WPJBN5RWVBuVjg/faIuAetyjE7koBjA7iRgL3+2KCYsSAEBjFdfc/3TC9Qd5KKuoxu7TD41Kb23l4WKPwpJKk76Hn5ez1u3y74cB4Opkr/a6Ns6OdugW+nztkA/faIsGPurv99HwtkpVpEKprZnsBj7OvDJEQjcsv9GrBY5dTkNxqfo95+nmgKfFGtY20PA5U5WRwFyd7ODp6sD+PbBrU6OCASCrogk0sl417IV6aOCtOyAY0p4hJxaL8GqXIHgoXL+tGRX5gu6d9DRrjIG9vRgGHq4OeHdIa7Rp7gs/L/2r+sJeqMf54BeJROwYGCEZ2zA7SqErtzkZ8qsZEKFeHSskbWly1dQjipbQFNYPH/WwdBKM4lzTs4hPF1pV8qkyrLXqyMlBgjIjS1ravNnvBUgksov3cHVA4TP9V55SxacKRpX885f/tju/1ACdX9LdrdTUvvhPOEQ1j6nYtzvAx0O92snY55Elb723XmmFq/fO8D/AxInVlrnTVOVnCjZdQhCLRFbV31hfPcMa4s1+L3A2Jusib3R8uQ3/5UqNoWliP0UhQd5s46sxpR998RkfUM/TNI3zhrYh8FG/prrKkJx8U38PtgdUq8ZebE87IYlMMH+XJ58Sr0jEfja1GVUZ2bgPhoUq9fqQiMV4JbyxQXPXSGoeuOZqJBzeuwV+1KNE1rOdaQOVk57X/TnP0e36CqgJgKboF6/pu503vpNVDGR0N8Ho+jbNffHh8Lb47dPeGvcxJgz5mrjXnq5pbBTRbKc2LvzF+oJVJ2jqlmgqIhG/6in5TW5MyUXbQMNfZ/TC6MiW6K5wfkuWEU39gOHSpIG7XqOmNbHGrpsikQhhLetBItb8aNN1H0aEaG5H7N3eNJNMytPUs11DTB8dhjf7aW7fklffOZogM0cBwUYJFRC0/XgU8akCEomeT9ng4mR47pGrTeXlNgGY+nob2NtJ0D+iCcRiEVu94O/jotRV15xMWWX0/rDWeLlNgN6jptu28NW9E2B0nYX1hRMZbRPJmaoqk70PwKB1Ux+8Eq65irVtc198PjbcJGOMbLpR2ZZ5uAjTu4jvg4zvz2hM/2D0C28MLzdhez8F1HNBe5VR4MFNvDHzzfZo1dgTV/7NEfT9dJn6Rht4uDrg+oM8AKaZqCzA1xUTVOa80uWX6b3YxnZdjE6xGSNCn/aBuP4wD1n5pSZ5qLd/oR4u3RXgHlL4TOa/E8HZOyygniuaN/RQe10IVEKwIW1q5qH5cHhbwUoIir/p1s18NDYe8yohQLZmBNdAK2OJNISkkCBvrdULuvRoa1jVVvsX/NCioSfsa9p/jEmDkBzsJfzTYmSxRugg2KSB5vvmjV4t2H8bcucrHjNzdJjStqAG7pj6Rlutx9vVBNmoCPXfh6ebA2eqGvm5KXU/n/J6G0x4LYQdiGoKVEKwQULmjxQn1bOXiDG67ws4cC7F6PMKnYvzNVEvobdfaYVXuwShSmWNC776dmyEotJKg3qKWZr8cT59VBgy8kqw/uAd/Y4XuISgukKh+hvW/L+uW4sjXVERTZCa8wy9whrC1cmeHdT4xX/CEeCje9yRfMT3wK5N4eJkj7X7b7PbFFdL1PaR6DPPmaGsI1tCzEqIZ62DvRjzJ0Tw6+ZnJjPfbI//Rodyvh4erOPHxOMz6R6qPqW0g70E/j4uaGRgqcbBXoKRfVqapIFQXx31fODIH+itm/mgb8dGauuDKK7iZioO9vwfYa1qJuozZNyOh6sDpo1opzSaHAC83Rx5rYku0vBvQNY4PGnwS3ixiRfneA9zooBgQ4QsojvYSdQegroCjc5nLs9IpWm3kCBvdAxWzyWGBHkLUuLQNetobddD4K6+/r78p18x1JIPurMdG7SXOBiMjQrGgkmddbefqdwqAVzXoTDliBBaNfbCp291sHjVIQUEm1R7B+MBQFSnJmZbdNy26HdfaOsHr+8024Zyc7bH2KhgdG/jr1a3vui9rkp/20nE/OZ04vGUl09l4cKztNFQz55elkJtCKRWErr/vqZGZ6KZthy5g71E54NVqDYEFyd7vDNQvfRW38sZzo52KC2vErxD04DOTfRq95k1rhNKn5Urp8/bGVn5pQKnzDhUQqij5k+IwLcqOSQhfxV8amD0WbhFH43q185FWayRMctgqt5OqreEplX8nh9v3A3JZzoUfcinsQlt7iPoeb3dHeGmUE0lP78+o5LNhQJCHdWovpvGqZc1PcyH9WiGsQP4LRHKJz/dPEC/vtJ8ztmuhS/nesFG41lAGNO/lcn6gFuCkCUj1fuqu67R5kbEgxebeGF0X2Fnq20R6IHfYyPZaiX59UgEHtVfz9MZv8dGKi2fay0oIBDWkO7N0DssEO9wDGZq01z36FV9xjYE+rny7tUypHtTALIf5tQ32pp14jtVkR0a4fOxppnXyBKM+ih11PmIxSJ4uGgecW6OcWn6XJ7qfeXv44KBXYMwRccYA0PJe5b5+5i+8Z0vCgg2xJgfoB2P0av2HJPsLZjUGe8NlU/I9/wcHwwLVR+FqeEt5PMaebk5sEHHFCN7bZExAxT5fAOGBO+WjTRPHSF/iOrb/sBnf9WPQiQS4Y1eLYyeGVVT47uvpxM+GdkOE62o9xoFBBsS1rIeAKjN22MnEQkynoBr1tUAX1dEhMgn5Hv+w+D7oGjXwldpVTE5c8+rZg3jBEyhkcJiTg15rtIn73fP6zswIN5ofSjVorb/ZVO6AwD6dNA8sji0ua9B4yJMxXpSQkwuskMgurb2h4uT8tf+8ye9lKoOeM1KyvGanR6rconY/1F8TfmFJR90g7uLPYpqlrk0ZRAY0r0pVmy7xrkt7uOedTYgyD/y8a+9yHvNg95hDbE/KcUkpbSurf2R+9QyPW+Eror0cnM0aNEkS6ISgg0RiURqwQCQ5ewVB8RwPfz4/FhU57fXtgCKSKQ7s+fj4QR7O8nzEoIBEYHvyM/2L/jhZQ3zEllTDs4asIGbVzWM5m+Z6/sc1qOZjvfm/day/fV4xpt5RnirRAGBqFGdFZSL6rTNrk52GNQtSGmfhlpGqsqql5R/gbp+vIaUEPTJ2dMDgR95SVC9/UHPgW0K//54ZDtMHvySxp5xpjA2SrlHnSlWcKttKOtjA8ZGBcPLjf8cKVy5OtVXVJ/NAzo3gb2d8sNXW6nCx8MJ7lp6oCjydHNAj7YB6NNB/7lx9Asi9EDgY2CXIFRVSxHJ4/vgesZ6ujngaXGF0k2k2IvNXM1DfiptaXW2WlAPVEKwAb3bByLshXoGH98i0EPtWdlNZaI3Pg9e+S6uNdVWr/dszuv9xSIRxr8Wgqb+z/ttW+FiXTbD0UE2IZ9qBoCbekSQd24w5CsUqRZNdXiz3wtwcpBoHST3YhMvDOneVK3EYIsoIBCtFk7ugpmj26u9PvRlWV2vQe1wAqznbIoGTQsOb6gTuD4+rukd2P00PNS1f7P6TSrXLTQAP3/Si3vd8ZqTiEQiDOvRHO4CLRpVm1GVEeH0/rBQMAyDBiqDZia8FoJG9V3h5CC7dYTMqVv6eazP+0vEIlRLqZiiS9+OjXDqWjoeZhQ9f9FKIq88U2ElybEKFBAIJ02LjTg6SJSqbuQUf1TRPZujFcfgIiGDRxOe6w/o82NXbfNo3cwH3TRMk7FsSneUV1TzPzlRw0C2VkXi9QzLJQCWz4hYE6MDwpdffokzZ87AwcEBLi4umDNnDtq0kU1NnJOTg08//RSpqalwdHTEV199hXbt2uncRqzP86pb3U91fSbtCm3mg+QHeQhu7IURfVryPo5f/bWeFJ4My6e+DA8Xe40N4+4uDnC3nhkHDNarXSBOXctASJC32d5TsRkgJMhb/b213GLyRmpBy2ZURGAZHRB69uyJ2bNnw97eHkeOHMHHH3+MQ4cOAQCWLl2K8PBw/P777zh//jxmzpyJ/fv3QyQSad1GrJAA3wvXKd4d2hoVlVJ4u1t2pShV1rQSnCm1bOQp2OAp3reIru7FZupn1DTAAxKxCK91CdK9s40wulG5T58+sLeXdR8MCwtDRkYGpFLZ+rL79u3D6NGjAQDh4eFwcHDAtWvXdG4jtYdDTZ90zkY7FVyFC1cne6sJBpQVsRJmappxc7bHb5/2MWvpyNoJ2sto/fr16N27N8RiMfLz88EwDHx8ns8tHhAQgIyMDK3biHXS9LAc0LkJBnVrikgt87XwPZel0SI5pvHu0NboFdaQ/VtX9SOveEDt+Sahs8ooOjoaaWlpnNtOnz4NiURWl7tnzx7s3r0b69evFzaFOvj61o6l6VT5+blbOgl6+e/IMPy++zr6dW2mNoDn3Te8eJ3D8VkF+29TXD/XOe3sxLzfKzzUH4cvPtF4LqHUtu+eL8WRy4rX6OfnjtBWDXDs8t8AABdnWXWcm5uTxu9M13vY20us/nNUTZ+1pxfgERB27Nih8yQHDx7E8uXLsXr1atSrJxt04u0tK4bl5eWxJYH09HT4+/tr3aav3NxiSGtZ9z8/P3dkZxfp3tHK/CcqGIUFJQYfX1wqm6ROJIKg1z9vfCfcTyvkPGdVlZT3e9VTaDcw1fdTW797PnqFBSL+9EMA2j+/0pr7oKi4jHO/ykr13lu+Hk7ILSxDkL877CVivN6zudV9jq+EN8bB8yns34rps6bvXSwWacxIG11ls7hFNAAACz9JREFUdOTIESxcuBCrVq1Co0bK1QYDBgzAxo0bAQDnz59HWVkZQkNDdW4jdZvQo4ybNHBH7/bK0yjIR6YGN9G/fpjvhHhEWbSOielYOmaoa+irvqzn6L6yHmh2YjGmvtEWgVa4aH2LQOtbAU1fRvcymjVrFuzt7fHhhx+yr61evRre3t6YPn06Zs6ciZ07d8LR0RGLFy+GuGZWTW3bCDHWC428cO1+LsJa6l7pjQiDbw9BXTOWxkQF41Ty8/bENs19tc6aSoRjdEBITEzUuM3Pzw+rV6/Wexup24T8bfuaIDdP8ySZmI75iFSnNKktq+PVhS7zNFKZ1Fo/TesBiYburoY8ROrA77lWkM+86+rMb7ZbYj4UEIjZGLLAjTYuTnweKPSUtzZREY3h5eaALhqmBSGWQwGBWAA9pG2ZRCxGt1Du1ek0eTHIG00auPGeMp0YhgICqeNqR/0z0c7Z0Q7zxkdYOhl1HnXrIXWSMaOOha7asiURIdyz5BqjfUvDF3cyp9ZNvdWmi69tKCAQUqMu9BKxtMlDWmPlzN6CnlN1jIm1cnGyx8LJXSydDKNQlRExG2vPd3u6OqB1U28M0mP6bqJMLBJBLBE2sNa2QB3doxkeZxZbOhkGoYBAzM5af99isQjTOZYLJUQfg7vzHLFthajKiJiNPA7Ya5m8TGjUHEAIf1RCIGbj5myPYT2aIaqb6XNQ1loKIcSaUQmBmI1IJMKQ7s3QqL7ppwGmkgEh+qOAQOo0KikQwh8FBEIIIQAoIJA6jqqOCOGPAgKpk6iqiBD9UUAghBACgAICIYSQGhQQCCGEAKCAQAghpAYFBFInDerWFK5OdmjZyNPSSSGk1qCpK0id1DLQEyum9bR0MgipVaiEQAghBAAFBEIIITUoIBBCCAFAAYEQQkgNCgiEEEIAUC8jQoiZ/L/PIpGZVWTpZBAtKCAQQsyiUX13ONKkg1aNqowIIVYrumdzSyfBplBAIIRYLQ8Xe0snwaZQQCCEWC0RLWxhVhQQCCGEAKCAQAixYgytgWpWFBAIIVaLwoF5UUAghFgtakEwLwoIhBBCAFBAIIQQUoMCAiGEEAAUEAghVqx5Q1oC1ZwECwhnz55FSEgI1q1bx76Wk5ODCRMmICoqCkOGDMGVK1d4bSOE2DaJWNacHODrYuGU2BZBAkJxcTGWLFmCnj2V17BdunQpwsPDsX//fnzxxReYOXMm269Y2zZCCAEAeiSYlyABYdGiRXjnnXfg7e2t9Pq+ffswevRoAEB4eDgcHBxw7do1ndsIIbaNZqywDKMDwrFjx1BUVIQBAwYovZ6fnw+GYeDj48O+FhAQgIyMDK3bCCGEWIbO9RCio6ORlpbGuW3fvn1YunQp/vjjD8ETxpevr5vF3tsYfn7ulk6CRdny9dO18yECwMDPzw32dhJTJslsasP3rjMg7NixQ+O28+fPIzs7GyNGjAAgKxUcOXIEBQUFmDJlCgAgLy+PLQmkp6fD39+frVri2qav3NxiSKW1q6LRz88d2dm2u3KULV8/XTu/a3+5bQCOXkpFbm4xJOLa3xnSmr53sVikMSNt1CcdHh6OM2fOICEhAQkJCYiKisLUqVPZYDBgwABs3LgRgCx4lJWVITQ0VOc2QohtG/NKK/z8Sc86EQxqE5MuoTl9+nTMnDkTO3fuhKOjIxYvXgxxzResbRshxLaJxSI4OdAKv+YmYmp5X0+qMqp9bPn66drp2i3NZFVGhBBC6g4KCIQQQgBQQCCEEFKDAgIhhBAAFBAIIYTUqPX9usTi2jnpSW1Nt1Bs+frp2m2TtVy7tnTU+m6nhBBChEFVRoQQQgBQQCCEEFKDAgIhhBAAFBAIIYTUoIBACCEEAAUEQgghNSggEEIIAUABgRBCSA0KCIQQQgBQQDDat99+i8jISAQHB+POnTvs60ePHkV0dDQGDx6MMWPGICUlhde28vJyzJ07F/3798fgwYPxv//9z6zXo4/8/HxMmjQJUVFRGDx4MKZMmYK8vDwAwOXLlzFkyBBERUVhwoQJyM3NZY8zdJu1McX1y82aNQvBwcF49uyZ2a5HH6a49q1bt2Lw4MEYOnQoXn/9dZw/f97s18WHodc+ffp0vPzyy2rf64MHDxATE4MBAwZg0KBBmDVrFsrKysx+XQAAhhjl3LlzTFpaGtOnTx/m9u3bDMMwTEFBARMREcHcv3+fYRiG2blzJzNhwgSd2xiGYb766itmwYIFjFQqZRiGYbKzs815OXrJz89nEhMT2b8XLVrEzJo1i6murmb69evHnDt3jmEYhomLi2NiY2MZhmEM3maNhL5+ucOHDzOzZs1iWrVqxRQXF5vpavQj9LXn5eUx7du3Z+/3Q4cOMa+++qo5L4k3Q66dYRjm9OnTTE5Ojtr3mpKSwly/fp1hGNln9NFHHzE//fSTma5GGQUEgSgGhCtXrjCvvfYauy0/P59p1aoVk5ubq3VbcXEx07FjR6t9COiyb98+Zty4ccyVK1eYgQMHsq/n5uYyYWFhDMMwBm+rDYy9foaRPRijo6OZwsJCqw4Iqoy9dvm/Hz58yDAMw+zYsYMZP368Ga/AcHyuXZGu73XVqlXM7NmzTZJWXWr9bKfWqFmzZsjJycHVq1fRtm1b7N69GwCQnp6udZtEIoGXlxd++uknnD17Fq6urvjoo48QHh5uycvhRSqVYsOGDYiMjER6ejoaNmzIbvPx8YFUKkVBQYHB27y8vMx6PfoS4vq9vLwwf/58fPjhh3B3d7fEZRhEiGv38fHB/PnzER0dDQ8PD0ilUqxdu9YSl6MXvtfO9/4tKyvDtm3b8Mknn5gqyVpRG4IJuLu7Y/ny5Vi4cCFef/115ObmwsPDAxKJROu26upqpKSk4KWXXsL27dsxY8YMTJ06FcXFxZa+JJ2++uoruLi4YMyYMZZOikUIcf179+6Fvb09evfuLVzCzECIay8uLsb69euxdetWHD16FLGxsZgyZQoYK5+MWcj7vqqqCh9//DG6dOmCvn37CpA6/VEJwUS6deuGbt26AQBycnKwatUqNGnSROu2srIy2NnZYdCgQQCAdu3awdvbGw8ePECbNm0scyE8fPvtt3j06BF++eUXiMViBAQEIC0tjd2el5cHsVgMLy8vg7dZM6GuPykpCYmJiYiMjGS3Dxo0CL/99htatmxp1mviS6hr37dvH9zd3dG8eXMAwGuvvYZZs2YhPz8fPj4+Zr8uPvS5dl2qq6sxY8YMeHp64vPPPzdlsrWiEoKJZGdnA5AVKZctW4bRo0fDxcVF6zYfHx907twZp06dAiDrfZCbm4ugoCDLXAQPy5YtQ3JyMuLi4uDg4AAACA0NRVlZGdtLZOPGjRgwYIBR26yVkNc/b948HD9+HAkJCUhISAAAxMfHW20wEPLaGzVqhBs3brC9chITE+Hm5gZvb29zXxYv+l67NlKpFLGxsZBIJFiwYAFEIsstpEML5Bjp66+/xoEDB5CTkwNvb294eXlhz549mDNnDi5evIjKykp0794ds2fPhqOjIwBo3ZaSkoLZs2ejoKAAdnZ2mDZtGnr16mXJS9To7t27GDRoEJo2bQonJycAsh92XFwcLl68iLlz56K8vByBgYH47rvvUK9ePQAweJu1McX1KwoODsbFixfh6upq1uviwxTX/scff2Dz5s2wt7eHg4MDYmNjrbL9zNBrnzJlCq5evYrMzEzUr18frVq1wqpVq3D06FG8++67aNWqFcRiWR69Q4cOmDt3rtmvjQICIYQQAFRlRAghpAYFBEIIIQAoIBBCCKlBAYEQQggACgiEEEJqUEAghBACgAICIYSQGhQQCCGEAAD+P71QkrX6vCfSAAAAAElFTkSuQmCC\n", 817 | "text/plain": [ 818 | "
" 819 | ] 820 | }, 821 | "metadata": { 822 | "tags": [] 823 | } 824 | } 825 | ] 826 | }, 827 | { 828 | "cell_type": "markdown", 829 | "metadata": { 830 | "id": "c85JLF50l20m" 831 | }, 832 | "source": [ 833 | "### 9. Models with Higher Levels of Integration" 834 | ] 835 | }, 836 | { 837 | "cell_type": "code", 838 | "metadata": { 839 | "colab": { 840 | "base_uri": "https://localhost:8080/", 841 | "height": 337 842 | }, 843 | "id": "dUkuF6y5lva5", 844 | "outputId": "eb1df03a-ccb9-4beb-a3f1-616c8c6bf0ea" 845 | }, 846 | "source": [ 847 | "df['delta_prices']=df.market_value.diff(1)\n", 848 | "model_delta_ar_1_i_1_ma_1 = ARIMA(df.delta_prices[1:], order=(1,0,1))\n", 849 | "results_delta_ar_1_i_1_ma_1 = model_delta_ar_1_i_1_ma_1.fit()\n", 850 | "results_delta_ar_1_i_1_ma_1.summary()" 851 | ], 852 | "execution_count": 24, 853 | "outputs": [ 854 | { 855 | "output_type": "execute_result", 856 | "data": { 857 | "text/html": [ 858 | "\n", 859 | "\n", 860 | "\n", 861 | " \n", 862 | "\n", 863 | "\n", 864 | " \n", 865 | "\n", 866 | "\n", 867 | " \n", 868 | "\n", 869 | "\n", 870 | " \n", 871 | "\n", 872 | "\n", 873 | " \n", 874 | "\n", 875 | "\n", 876 | " \n", 877 | "\n", 878 | "\n", 879 | " \n", 880 | "\n", 881 | "
ARMA Model Results
Dep. Variable: delta_prices No. Observations: 5020
Model: ARMA(1, 1) Log Likelihood -27603.666
Method: css-mle S.D. of innovations 59.134
Date: Mon, 16 Aug 2021 AIC 55215.333
Time: 06:13:12 BIC 55241.418
Sample: 01-10-1994 HQIC 55224.473
- 04-05-2013
\n", 882 | "\n", 883 | "\n", 884 | " \n", 885 | "\n", 886 | "\n", 887 | " \n", 888 | "\n", 889 | "\n", 890 | " \n", 891 | "\n", 892 | "\n", 893 | " \n", 894 | "\n", 895 | "
coef std err z P>|z| [0.025 0.975]
const 0.5656 0.682 0.829 0.407 -0.772 1.903
ar.L1.delta_prices 0.7475 0.070 10.652 0.000 0.610 0.885
ma.L1.delta_prices -0.7936 0.064 -12.378 0.000 -0.919 -0.668
\n", 896 | "\n", 897 | "\n", 898 | "\n", 899 | " \n", 900 | "\n", 901 | "\n", 902 | " \n", 903 | "\n", 904 | "\n", 905 | " \n", 906 | "\n", 907 | "
Roots
Real Imaginary Modulus Frequency
AR.1 1.3378 +0.0000j 1.3378 0.0000
MA.1 1.2601 +0.0000j 1.2601 0.0000
" 908 | ], 909 | "text/plain": [ 910 | "\n", 911 | "\"\"\"\n", 912 | " ARMA Model Results \n", 913 | "==============================================================================\n", 914 | "Dep. Variable: delta_prices No. Observations: 5020\n", 915 | "Model: ARMA(1, 1) Log Likelihood -27603.666\n", 916 | "Method: css-mle S.D. of innovations 59.134\n", 917 | "Date: Mon, 16 Aug 2021 AIC 55215.333\n", 918 | "Time: 06:13:12 BIC 55241.418\n", 919 | "Sample: 01-10-1994 HQIC 55224.473\n", 920 | " - 04-05-2013 \n", 921 | "======================================================================================\n", 922 | " coef std err z P>|z| [0.025 0.975]\n", 923 | "--------------------------------------------------------------------------------------\n", 924 | "const 0.5656 0.682 0.829 0.407 -0.772 1.903\n", 925 | "ar.L1.delta_prices 0.7475 0.070 10.652 0.000 0.610 0.885\n", 926 | "ma.L1.delta_prices -0.7936 0.064 -12.378 0.000 -0.919 -0.668\n", 927 | " Roots \n", 928 | "=============================================================================\n", 929 | " Real Imaginary Modulus Frequency\n", 930 | "-----------------------------------------------------------------------------\n", 931 | "AR.1 1.3378 +0.0000j 1.3378 0.0000\n", 932 | "MA.1 1.2601 +0.0000j 1.2601 0.0000\n", 933 | "-----------------------------------------------------------------------------\n", 934 | "\"\"\"" 935 | ] 936 | }, 937 | "metadata": { 938 | "tags": [] 939 | }, 940 | "execution_count": 24 941 | } 942 | ] 943 | }, 944 | { 945 | "cell_type": "markdown", 946 | "metadata": { 947 | "id": "plPI3CBFl92j" 948 | }, 949 | "source": [ 950 | "### 10. ADF Results" 951 | ] 952 | }, 953 | { 954 | "cell_type": "code", 955 | "metadata": { 956 | "colab": { 957 | "base_uri": "https://localhost:8080/" 958 | }, 959 | "id": "aWNqsTgcl6uj", 960 | "outputId": "8109fda5-64fe-42e4-c7fa-d3bca6102f86" 961 | }, 962 | "source": [ 963 | "sts.adfuller(df.delta_prices[1:])" 964 | ], 965 | "execution_count": 25, 966 | "outputs": [ 967 | { 968 | "output_type": "execute_result", 969 | "data": { 970 | "text/plain": [ 971 | "(-32.244093495707475,\n", 972 | " 0.0,\n", 973 | " 5,\n", 974 | " 5014,\n", 975 | " {'1%': -3.4316548765428174,\n", 976 | " '10%': -2.5670769326348926,\n", 977 | " '5%': -2.8621166146845334},\n", 978 | " 54845.96104221891)" 979 | ] 980 | }, 981 | "metadata": { 982 | "tags": [] 983 | }, 984 | "execution_count": 25 985 | } 986 | ] 987 | }, 988 | { 989 | "cell_type": "code", 990 | "metadata": { 991 | "colab": { 992 | "base_uri": "https://localhost:8080/", 993 | "height": 337 994 | }, 995 | "id": "6ia7We0jl8x5", 996 | "outputId": "bf56137d-ac18-403a-aab6-037548a2ea73" 997 | }, 998 | "source": [ 999 | "model_ar_1_i_2_ma_1 = ARIMA(df.market_value, order=(1,2,1))\n", 1000 | "results_ar_1_i_2_ma_1 = model_ar_1_i_2_ma_1.fit(start_ar_lags=10)\n", 1001 | "results_ar_1_i_2_ma_1.summary()" 1002 | ], 1003 | "execution_count": 29, 1004 | "outputs": [ 1005 | { 1006 | "output_type": "execute_result", 1007 | "data": { 1008 | "text/html": [ 1009 | "\n", 1010 | "\n", 1011 | "\n", 1012 | " \n", 1013 | "\n", 1014 | "\n", 1015 | " \n", 1016 | "\n", 1017 | "\n", 1018 | " \n", 1019 | "\n", 1020 | "\n", 1021 | " \n", 1022 | "\n", 1023 | "\n", 1024 | " \n", 1025 | "\n", 1026 | "\n", 1027 | " \n", 1028 | "\n", 1029 | "\n", 1030 | " \n", 1031 | "\n", 1032 | "
ARIMA Model Results
Dep. Variable: D2.market_value No. Observations: 5019
Model: ARIMA(1, 2, 1) Log Likelihood -27614.159
Method: css-mle S.D. of innovations 59.272
Date: Mon, 16 Aug 2021 AIC 55236.317
Time: 06:16:50 BIC 55262.401
Sample: 01-11-1994 HQIC 55245.458
- 04-05-2013
\n", 1033 | "\n", 1034 | "\n", 1035 | " \n", 1036 | "\n", 1037 | "\n", 1038 | " \n", 1039 | "\n", 1040 | "\n", 1041 | " \n", 1042 | "\n", 1043 | "\n", 1044 | " \n", 1045 | "\n", 1046 | "
coef std err z P>|z| [0.025 0.975]
const -0.0001 0.001 -0.198 0.843 -0.001 0.001
ar.L1.D2.market_value -0.0178 0.014 -1.258 0.209 -0.045 0.010
ma.L1.D2.market_value -1.0000 0.001 -1715.538 0.000 -1.001 -0.999
\n", 1047 | "\n", 1048 | "\n", 1049 | "\n", 1050 | " \n", 1051 | "\n", 1052 | "\n", 1053 | " \n", 1054 | "\n", 1055 | "\n", 1056 | " \n", 1057 | "\n", 1058 | "
Roots
Real Imaginary Modulus Frequency
AR.1 -56.3260 +0.0000j 56.3260 0.5000
MA.1 1.0000 +0.0000j 1.0000 0.0000
" 1059 | ], 1060 | "text/plain": [ 1061 | "\n", 1062 | "\"\"\"\n", 1063 | " ARIMA Model Results \n", 1064 | "==============================================================================\n", 1065 | "Dep. Variable: D2.market_value No. Observations: 5019\n", 1066 | "Model: ARIMA(1, 2, 1) Log Likelihood -27614.159\n", 1067 | "Method: css-mle S.D. of innovations 59.272\n", 1068 | "Date: Mon, 16 Aug 2021 AIC 55236.317\n", 1069 | "Time: 06:16:50 BIC 55262.401\n", 1070 | "Sample: 01-11-1994 HQIC 55245.458\n", 1071 | " - 04-05-2013 \n", 1072 | "=========================================================================================\n", 1073 | " coef std err z P>|z| [0.025 0.975]\n", 1074 | "-----------------------------------------------------------------------------------------\n", 1075 | "const -0.0001 0.001 -0.198 0.843 -0.001 0.001\n", 1076 | "ar.L1.D2.market_value -0.0178 0.014 -1.258 0.209 -0.045 0.010\n", 1077 | "ma.L1.D2.market_value -1.0000 0.001 -1715.538 0.000 -1.001 -0.999\n", 1078 | " Roots \n", 1079 | "=============================================================================\n", 1080 | " Real Imaginary Modulus Frequency\n", 1081 | "-----------------------------------------------------------------------------\n", 1082 | "AR.1 -56.3260 +0.0000j 56.3260 0.5000\n", 1083 | "MA.1 1.0000 +0.0000j 1.0000 0.0000\n", 1084 | "-----------------------------------------------------------------------------\n", 1085 | "\"\"\"" 1086 | ] 1087 | }, 1088 | "metadata": { 1089 | "tags": [] 1090 | }, 1091 | "execution_count": 29 1092 | } 1093 | ] 1094 | }, 1095 | { 1096 | "cell_type": "code", 1097 | "metadata": { 1098 | "colab": { 1099 | "base_uri": "https://localhost:8080/", 1100 | "height": 289 1101 | }, 1102 | "id": "8SrW8YY6mGEU", 1103 | "outputId": "b91aee26-63d6-4703-e3cf-44f5ec47807f" 1104 | }, 1105 | "source": [ 1106 | "df['res_ar_1_i_2_ma_1'] = results_ar_1_i_2_ma_1.resid.iloc[:]\n", 1107 | "sgt.plot_acf(df.res_ar_1_i_2_ma_1[2:], zero = False, lags = 40)\n", 1108 | "plt.title(\"ACF Of Residuals for ARIMA(1,2,1)\",size=20)\n", 1109 | "plt.show()" 1110 | ], 1111 | "execution_count": 30, 1112 | "outputs": [ 1113 | { 1114 | "output_type": "display_data", 1115 | "data": { 1116 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1xUdf748ddcQEQEBBUHNU1dWfLaeqtc3XRBMS+IqZjXtbI207LtRpf1Vqa22WZq2+VrbZZtQF5S0lBTUzM1LVPT9OeFRC5eQAQEBWbO7w+ciZGBmWGGmXF4Px8Pi5lze8+ZM+d9zud2VIqiKAghhBDVULs7ACGEEJ5PkoUQQgirJFkIIYSwSpKFEEIIqyRZCCGEsEqShRBCCKskWQghhLBKksUtqrS0lLfffpsBAwbQsWNHIiIi2LJli7vDsktERAQTJkywef69e/cSERHBkiVLajEqyxISEoiIiODcuXNOX3dhYSGvvvoq/fv354477iAiIoJjx445fTvCNnv27CEiIoINGza4O5RaUVxcTO/evXnmmWfsWk5bS/G4zX/+8x/eeustADZu3EibNm2qnf/y5ct89tln7Ny5kzNnzlBYWEhAQABt27alb9++jBw5ksaNG5vmnzBhAvv27atyfXFxcSxYsMDmeM+cOcOKFSv4/vvvOX/+PIqiEBYWxt13383EiROrjP+jjz5i2bJl9OjRg0GDBqHVarn99tur3VZCQgJr1qwxe8/Pz4/mzZvTt29fHnnkEUJCQmyOXTjH66+/TmJiIv369WPYsGFoNBqzY84dXn75ZZKTk/Hz82Pnzp0EBgZanG/JkiUsXbrU7D1fX1+aNWvGXXfdxaOPPkqLFi0qLWc8FufPn8+IESMqvQ8wdepUnnzySYvbXbNmDQkJCQD07NmTTz75pMrPMnnyZHbv3k2zZs3YunUrGo2mynkNBgPz58/nj3/8I4MGDTKbdujQITZv3syxY8c4duwYly5dIiwsjB07dlS5PksURWHnzp18++237N+/n8zMTK5du0Z4eDh9+/bl0Ucftev7z87OZs2aNaa40tPTURSFTZs20apVq0rz169fn0ceeYT58+czceJEOnfubNN2vCpZKIpCcnIyKpXK9Pfzzz9f5fzbtm3j2WefpaCggFatWhEdHU1oaCgFBQX8/PPPvPXWW7z33nts2rSJJk2amC0bFxdH8+bNK60zMjLS5nhXrFjBggULMBgM9OjRg379+gHwyy+/8Pnnn5OUlERCQgITJ060GLu/vz8ffvghvr6+Nm8T4K9//aspzkuXLrFjxw4++ugjNm3axKpVq2jUqJFd66upDRs2UL9+fZdsy5Nt376d1q1b8+6777o7FKD8Tuerr75CpVJx7do11q1bx/jx46tdpmfPnvTs2ROAvLw89uzZQ1JSEqmpqSQlJdG6dWu7YtBqtaxevZpp06ZZPLknJSWh1WopKyurdj3p6el8//33qFQqsrOz2bFjh+l3ZslXX33Fr7/+yhtvvIFKpTKbtn79elasWIGPjw9t27bl0qVLdn0mo5KSEqZMmYKPjw89evTgnnvuQa/Xs2fPHlasWMGGDRtYuXKlzfvsyJEjvPXWW6hUKlq0aEHDhg3Jz8+vdpkxY8awbNky3nrrLT788EObtuNVyWLXrl1kZGQwYsQIdu7cyZo1a3jqqacsnkz37dtnOhDnz59PXFxcpYPj+PHjzJs3j+vXr1daPi4ujl69etU41rVr1zJv3jyCg4NZunQpPXr0MJu+f/9+Hn/8cebNm0dgYCDDhw83m37hwgUaNWpkd6IAiIqKMruau379OqNHj+bXX39l5cqVTJs2rWYfyk5t27Z1yXY83YULFyp9/+6UkpJCUVERkydP5tNPPyUpKcmmZDF9+nTTa4PBwN///ne+/fZb3nvvPebPn29XDPfeey9btmxh586d3HvvvWbTTp06xY8//kh0dDSbN2+udj1JSUkoisIjjzzC+++/b7qDq8rKlSsJCAggOjq60rQRI0YQFxdHu3bt8PX1JSIiwq7PZKRWq5kxYwZjx44lKCjI9L7BYGD27NkkJiayYMECmy8eOnbsyMqVK/njH/9IQECA1dIPgHr16jFo0CASExNJS0uzKTF5VZ1FcnIyAKNGjWLo0KFcvnzZYjm+wWBg5syZlJWV8dJLLzFixIhKiQLKy9T/+9//EhYW5tQ4CwsLee211wB44403LJ4ounfvzr/+9S8A5s+fT2FhIWBedp6RkUFERAQRERH079+/xvHUq1ePoUOHAnD48OFK0/Py8li0aBGDBg2ic+fOdOvWjUmTJrFr165K85aUlLBixQri4uLo0aMHXbp0oX///jz22GPs3r3bbN6q6iwuXbrEiy++yD333EPnzp2JjY2tVHxWUf/+/av8/EuWLCEiIoK9e/eavb9lyxaeeeYZBg4cSNeuXenatSsjRoxgxYoVGAyGKrd1s2+++YZJkybx5z//mY4dO/LnP/+Z8ePHs3LlSqvLTpgwgYiICBRFYd++fabvsuI+MRgM/O9//+P+++/nzjvvpGvXrtx///189tlnFuM0Ln/x4kVeeukl+vTpQ2RkJKtXr7b5MyUlJaFWq5k0aRL9+/fn+PHj/PzzzzYvD+UnxLi4OMDyMWXN0KFD8fPzIykpyWJ8UP47r05ZWRlr1qwhICCAxx9/nA4dOrBjxw7Onz9vcf5Tp07x008/0b9/f/z8/CpNj4yM5I477qjRBVpFPj4+PPbYY2aJAsr32eOPPw5Q6XitTrNmzejevTsBAQF2xTF48GAURWHVqlU2ze81dxaXLl1i69attG7dmj/96U8EBATw4YcfkpiYyH333Wc27759+zhz5gxhYWGMHDmy2vWq1WrUaufm1NTUVK5cuULnzp3p06dPlfP17duXTp06cfjwYVJTU7n//vuJioqiefPmfPzxxwBMmjQJgIYNGzolNq3W/JDIyMhgwoQJZGRk0L17d/r06UNxcTHbtm3j4YcfZu7cuYwePdo0/wsvvEBKSgrt27cnNjYWPz8/Lly4wIEDB9i5cyf33HNPtdvPzc1lzJgxpKen061bN7p168bFixeZNWsWvXv3dspnhPIkrVar6dy5M2FhYRQUFLBnzx7mzZvH4cOHTYm6OomJicycOZMmTZrQr18/GjVqRE5ODsePH2f16tWMGzeu2uXj4uLo2bMnS5cupXnz5qaTa8XizWeffZaUlBR0Oh0jR45EpVKxZcsW5syZw4EDB1i0aFGl9ebl5REfH4+/vz8DBgxApVIRGhpq0345evQov/zyC71790an0xEXF0dqaiqJiYl06dLFpnXc7OZjyhaBgYHExMSQkpLCxYsXTcXAJSUlrF27lp49e1q9Gt66dSsXL15k9OjR+Pn5MWLECF555RW++OIL00m5ou+//x6Abt262R2vs/j4+AA122f26ty5Mz4+Pnz33Xc8/fTTVuf3mmSxevVqSktLTcUr7du3p0OHDuzdu5fffvvNrKLnwIEDQPmtc3WVXdVZs2aNxVu9irfiVTFu39qJE6B3794cPnyYH3/80ZQsoqKiTFfatmzPmmvXrvHll18ClX8oCQkJZGZm8uabbzJ48GDT+/n5+UyYMMHUiqdx48YUFBTw1Vdf0aFDB5KTkyvt28uXL1uN5d///jfp6elMmjSJF1980fT+uHHjGDNmjCMf08z777/PbbfdZvaewWDghRdeYO3atYwfP97qyTExMREfHx++/PLLSifj3NxcqzEYj1Vjsrj5u0xJSSElJYU77riDTz/9lAYNGgAwY8YMxo8fT0pKCvfee6/prtDoxIkTxMbG8tprr9l90vn888/NYuvTpw9NmjRh48aNvPjiizZfver1er744gug5iffUaNGsXbtWlavXs2jjz4KwObNm8nLy7N6VwHl3w/8/lmGDBnCggULWLVqFY899lili0Dj77Jjx441itcZjPusuotIZ/Hz86Ndu3YcO3bM1LCnOl5RDGWszFar1WZl+yNGjEBRlEq3shcvXgTKb99qas2aNSxdurTSP1vYs33jPBcuXKhxrDfbsmULS5YsYcmSJcyePZuYmBhOnDhBjx49eOCBB0zz/frrr+zbt48BAwaYJQoov/KbPn06169fJzU1FcDUsMDX19fi3Zi1ivPS0lLWr19PgwYNKp04O3XqVOmk6IibEwWU30UaGxPs3LnTpvVotVqLJ2RntCozFg88/fTTpkQB4O/vz7PPPgv8XvRakY+PD88//7zdiaKoqIiUlBQaNmxoKrPXarUMHTqUoqIi1q1bV+Wy+/btMx1Tr776KkOGDGHXrl20a9eOqVOn2hWHUffu3WnTpg3JyckYn6SQlJREUFAQAwcOrHbZjIwMdu/eze23386dd94JQHBwMP379ycjI8Pi95uVlQVQqTGLqxw6dIhly5bRoEEDZsyY4ZJtNm7cGIPBUGXRXEVecWexZ88ezp49y5///Gez+gXjlcSaNWuYMWOG6RbPGVasWOFQBbc7ffPNN3zzzTdm7/Xu3Zv33nvPbB/99NNPQHkdi6W+Dcar59OnTwMQEBBAv3792LZtG7GxsQwYMIDu3bvTpUsXm1o9nT59muLiYrp3726xWK1nz57V1l3Y4/Llyyxfvpxvv/2Wc+fOUVRUZDbdluQ8dOhQFixYwODBg7nvvvvo2bMnf/rTn5zW/Pjo0aOo1WpTK6OKevTogUajsdgfo3nz5jYXO1X01VdfcfXqVeLj46lXr57p/bi4OD788EOSk5MZO3asxWX37dtX6U47MjKSTz75xKEi0tGjR7NgwQL27NlDeHg4e/fuZfz48WbxWZKcnIzBYDBryGH8LKmpqSQnJ/OXv/zFbJrxzvfmugRXOHPmDI899hhlZWW8+eabFi9maoPxs9py1+8VyeLm200j45VEamoq33zzDTExMcDvVw62ZNPaYGxDnZ2dbXVe4zxNmzZ12vaNbdv1ej3p6eksXryYDRs2MHv2bObNm2eaLy8vD4DvvvuO7777rsr1VTzRvvXWW3zwwQekpKSYEky9evUYOHAgzz//fLXtxwsKCgCqPNE5q+9Bfn4+I0eO5Ny5c6YK9KCgILRaLfn5+axYsYKSkhKr65k8eTKNGjXis88+45NPPuHjjz9GpVLRo0cPnnvuOTp16uRQnAUFBQQFBVmsUNVqtaY6kpvV9MrYeAd+8+/IWKT7yy+/cPjwYYufa9q0aUyfPt10lbp8+XI++eQTZsyYwQcffFDjer/Y2FjefPNNkpOTCQ8PR1EUszoyS/R6PatWrUKtVhMbG2s2zVistm3bNrO6EMBUqX39+nWLFdy15cyZM0ycOJErV67w5ptv8te//tVl2za29LTl897yySI3N9fU4ukf//gH//jHPyzOl5SUZEoWxjLUffv2odfra1xvUVPdunVj9erV7N69m6eeeqraeY0tiP70pz85PQ6NRkPr1q1ZtGgRGRkZfPHFF/Tv3990sBqvCF966SWLfT0s8fPzY/r06UyfPp2srCx++OEH1qxZw7p168jIyOCzzz6rclnj9iydAIEq27WrVCpKS0stTrPU3jw5OZlz586ZTnAV/fTTT6xYsaLKGG82fPhwhg8fTn5+Pj/99BObN29m1apVPPzww2zcuNGhu4yGDRty5coVSktLK90Vl5WVcfnyZYvlzJZa9lnz66+/cujQIQDi4+OrnC8pKanaJKhWq9HpdLz88stcuHCB1NRUPv30U5uPn5uFhISYmsgGBARw55130r59+2qX2bZtm+nOsG/fvlXOt2rVKv7+97+bXhsvUvLy8lx2d3Hq1CkmTZpEXl4eb731FlFRUS7ZrpHxgtCWO9Fbvs5izZo1lJaW0qFDB0aOHGnxX0hICLt37yY9PR0oL864/fbbyc7Ottqk0GAwVHkiqqmYmBgCAwM5dOhQtVfs3333HYcOHSI4ONhqGa0j1Go1L730ElDeSkiv1wOYKnj3799fo/XqdDqGDRvG8uXLadWqFQcOHKj2drdNmzbUr1+fY8eOme4yKqqq7XhQUBA5OTkWv6cjR45Ueu+3334DYMCAAZWm/fDDD1XGV53AwED+8pe/8OqrrxIXF0deXl6N12UUGRmJwWCwuP9/+OEH9Ho9d9xxh0PbMDLeVfTs2bPK35Gfnx8pKSlcvXrVpnUmJCTg6+vLsmXLTE2/a2LUqFGUlJSQm5trU8W2sR6nX79+Fj+H8c7piy++oOJTpY39JozFqrXt+PHjTJgwgStXrrB06VKXJwoov6sJDg62qf70lk8WxoPcWIRi6V98fDyKophaGqjVaubOnYtWq+XVV1/lyy+/xNKjyE+ePMmDDz7o9OKqgIAAU8/yp59+2tQKo6Iff/zR1JzthRdesLsNtb26dOlCv379OH36NGvXrgXKK5W7d+/O5s2bTfvuZsePHzfdCeTm5nL8+PFK8xQVFVFUVIRWq6223sjHx4ehQ4dy9erVSnUkhw8fZv369RaX69SpE2VlZZUS/+rVq/nxxx8rzW8cfuLm5HP06FHee++9KuO72Z49eyweN8a6HEeLMu6//34AFi1aRHFxsen94uJiU5NZa02/bXHt2jXWr1+PRqPhjTfeqPJ3NGDAAIqKivjqq69sWm94eDijR48mLy/P5l7Cltx111288847LFu2rFJDi5tlZWWxc+dOgoKCWLx4scXPMX/+fLp160Z6erpZ3x9j3dDBgwdrHOvNjP2ibj42jx07xsSJE7l69SrvvPNOpY6Hlhj7DDlrbLT09HQuXbpEr169bLobvaWLofbu3UtaWhrt27evdnyTkSNH8u6777Jq1SqmT5+OVqulZ8+eLFmyhOeee47nnnuOd955h169etGoUSMKCws5cuQIP//8M/Xr16+V8suRI0dSUFDAv/71L8aNG0fPnj3p0KEDKpWKX375hb1796JWq3nxxRcr9d6uLU888QTbt29n2bJlDB06FF9fXxYtWsSkSZN46aWX+OSTT+jSpQsNGzYkOzubEydOcOLECRITEwkNDeX8+fMMHz6c9u3bExERgU6no7CwkO3bt3Px4kUmTJhgNek99dRTfP/993z88cccOXLE1M9iw4YN9O3bl61bt1ZaZsKECaxevZrZs2fz/fffo9PpOHbsGAcPHjRVuFcUGxvL8uXLee2119i7dy+tWrXit99+Y/v27URHR9s8gNy0adPw9/ena9euNG/eHEVR2L9/P4cPH6ZDhw42NY2uztChQ/nmm2/YuHEjgwcPJioqytTP4ty5c9x3330MGzbMoW1A+bAr+fn59OvXr9oOqKNGjWLdunUkJiZarTcwevTRR/niiy/473//y/jx42tULKdSqWwux//iiy/Q6/UMGzas2krwUaNGceDAARITE039d+666y4CAwPZtWuXxeLhU6dO8cEHH5i9l5+fbxqjCuC5554z+4zGjpMVi7qvXLnC3/72N/Ly8rj77rs5ePCgxQQ1adIkszG5LK3LqGIMxjujN954w9SKbuTIkXTv3t1sGWOphqU7bEtu6WRha0/OFi1acM899/Ddd9+xbds2U7PA/v37s3nzZtNAgqmpqRQWFtKgQQPatGnDE088QXx8fI1althi8uTJ9O3blxUrVrBnzx5TL9lmzZoRHx/PxIkTXTokxh133EF0dDSbNm0iMTGRCRMm0KxZM1atWsWnn37Kpk2bWL9+PXq9nsaNG9OuXTvGjx9vKkM29hXYt28fe/fu5fLlywQHB3P77bfz9NNPW70qhPIy6v/973+8+eabbNu2jSNHjnD77bcze/ZsmjdvbjFZtGvXjo8++oh///vfbNu2DY1GQ/fu3fn888/ZvHlzpWQRFhbGypUreeONNzhw4AC7du2iTZs2zJo1i7vvvtvmZPH000+za9cufvnlF7799lvq1atHeHg4zzzzDA888IBTWt+9+eab9OjRg1WrVpkacrRt25YHH3zQrJmzI2z9HRk7wh05coRjx47ZNA5a06ZNeeCBB/joo494//33zU5qzmYwGEzNja3dccXExDBv3jy2bt1KTk4OoaGh1K9fn7i4OD7++GNOnTpV6bd36dKlSq3xiouLzd6bNm2aWbI4ceIEDRo0MLtzKCgoMNUVfP/996bOgDeLi4szSxYnTpxArVZXGuAQsNhKcNOmTaa/e/bsWSlZrF27lpCQEJuThUqxdB8thBB1UHp6OoMGDWLMmDG8/PLLDq0rPz+fXr16MXnyZJ577jmH1qUoCnfddRd33XUXixcvdmhdUN6gITY2lieffNLmfjC3fJ2FEEI4S8uWLZk4cSJJSUkO11Xu378frVbL5MmTHY7rxIkT5OXlmXqyO+rtt99Gp9Px4IMP2ryM3FkIIUQFhYWF/Pe//+Xuu+926zhRtaW4uJjly5fTo0cPuzoWOy1ZnDlzhoSEBPLy8ggODmbhwoWVBvrS6/W8+uqr7Ny5E5VKxSOPPFKpnPT06dPExcUxduzYap9FIYQQwnWcVgw1a9Ysxo4dS2pqKmPHjmXmzJmV5lm/fj1nz541VaAuWbLE7DGVer2eWbNmuaW9sRBCiKo5JVnk5ORw9OhRhgwZApSPyXT06NFKI29u2LCBUaNGoVarCQkJISoqiq+//to0/f333+fee++1+6laQgghapdTkkVWVhZhYWGm9r8ajYamTZuaRnGsOF94eLjptU6nM4199Ouvv7Jr1y7+9re/OSMkIYQQTuQR/SxKS0v55z//yfz58x0apyknpxCDwbYqmCZNGnLxYuUhJdxN4rKPxGUfics+3h6XWq0iNNS20SGckix0Oh3nz583Dcqn1+u5cOECOp2u0nyZmZmm3tbGO42LFy9y9uxZHnnkEaC8fbKiKBQWFvLKK684I0QhhBAOcEqyCA0NJTIykpSUFGJjY0lJSSEyMrJS1/6YmBiSk5MZMGAAeXl5bNmyhZUrV5rGqTdasmQJRUVF0hpKCCE8hNNaQ82ePZtPP/2UgQMH8umnnzJnzhwApkyZYnpge2xsLC1atGDAgAGMHj2axx9/nJYtWzorBCGEELXEqzrlSZ1F7ZG47CNx2Ufiss8tW2chhPBsBoPCodM55BzMJDTAl85tQlGr7X9Ikqi7JFkI4eUMBoVFiQc5nZlPSakeXx8NbcIDeTq+qyQMYTMZSFAIL3fodA6nM/O5XqpHAa6X6jmdmc+h05YfXyuEJZIshPByZ88XUFKqN3uvpFRP+nnPK4sXnkuShRBe7rawhvj6mHd29fXR0DKsoZsiErciSRZCeLnObUJpEx4IhlJQFOrdqLPo3KZ2ngApvJMkCxcxGBQOnrzEuu/OcPDkJZub+ArhKLVaxdPxXSF7O5orP/NobAep3BZ2k9ZQLiCtUYS7qdUqVFfPoS3Npmu7xu4OR9yC5M7CBaQ1ihDiVifJwgWkNYprSZGfEM4nxVAuYGyNcr1CwpDWKLVDivyEqB1yZ+EC0hrFdaTIT4jaIcnCBSq2RiHnJ2mNUoukyE+I2iHFUC5ibI3C1XPSGqUWSZGfELVD7iyEV5EiPyFqhyQL4VWkyE+I2iHFUC6kUpn//6apFear+sRWzaRa564TbnXP51IUpdI+0WhUqIvOQdE57vyD5SI/WxrTVtysohi/IQXl5uUtvLhWUkaZ3mDDVipw4Mu15RFmCqA3GCitEFel5VTV728VVe07lW079aZ4jPKvXudaaYX9pbIU3I3lKr1t4UNUtc2qv7jfv9ff/4Mqr4iC4tLK67npDwXFps/vrEfNGTRXyS8sKX+hgoD6WrTq2r32l2RB+cn5Wqm+2h+JJYrZEaO68frGyURRMCigGMr/b1AUSsrKfwznLxf/vo4bB5nx+Lxapif/yjXTupUb6/v9oPx9kzem/B6HDfErFZazx8XCEvKvFFuf0cUuFZaSn185ruLr5XUWpzPzzd6v6Y9VqfQFVDVfuaCrZVyxEJfFmZ2m+hVeu16GVq8hLct8n1hazGU9U25sKKi4lCt5Ve+v6o7Z2nzWZ/B1A3l5RbW3gRq6pldMcalUUK9ZIFrf2t2mJAvKd/aF3CKKr5XZvEzFg9fWg7X0RrLIvXKt6pk0GvIKrtsch6v4lRq4XqK3PqOLlZZZjstw40txV8x6g0JZmZ13FrXMeOWs13teJ0VF+f07uxUYDAqns/K5cLmYpo3q00YX6PVFnZIsbii/E7h1DlYhhHsYDApJ20+SlVNEaZkBH60aXag/o+9t59UJQyq46wCDQeFkxhV2H8nmZMYVGf5CCAeczso3JQoov7vNyini9M3Fe15G7iy8XF29ChKitly4XGxKFEalZQYuXC6mXfOgWt22sfgr/2QOgfW1tNEFotG45ncsycLLVXcVVNsHthDeqGmj+vho1WYJw0erpmmj+rW63aou/OL7tavV7RpJMZSXq+4qSAhhvza6QHSh/ij6UhRFMZ202+gCa3W77i7+kmTh5YxXQRW54ipICPDO+jK1WsXoe9tRcm4rZRcOMPSe1i4p1nX3hZ8UQ3k541XQb5mXQa3F10fjkqsgIby5vkytVmEoOIuh4Cztmk9xyTbdVfxlJHcWXs5dV0FCuLvYxNu4q/jLSJJFHWC8Ciq7+BPtmgdJohAu4e5iE29T8cLPcOlHl1/4OS1ZnDlzhvj4eAYOHEh8fDxpaWmV5tHr9cyZM4eoqCiio6NJTk42TVu2bBmDBw9m6NChjBgxgp07dzorNCGEG0h9mfOZir9yfnb5hZ/T6ixmzZrF2LFjiY2N5csvv2TmzJmsWLHCbJ7169dz9uxZNm3aRF5eHsOHD+fuu++mRYsWdO7cmQcffJD69evz66+/Mn78eHbt2oWfn5+zQhRCuJDUl3kXp9xZ5OTkcPToUYYMGQLAkCFDOHr0KLm5uWbzbdiwgVGjRqFWqwkJCSEqKoqvv/4agD59+lC/fvkVR0REBIqikJeX54zwhBBuIPVl3sUpdxZZWVmEhYWh0WgA0Gg0NG3alKysLEJCQszmCw8PN73W6XRkZ2dXWt/atWu57bbbaNasmV1xhIYG2DV/kya/Pz0t52opvn61O+icVlu+f4KD/audz9r02tx2dWojLmewFJczPq+jPG1/uWufqIszoDiD7h2erF+Wt10AAB34SURBVHY+T9tfRlXF5a79efN2VUBQUH2CAurV7nZrde01sG/fPhYvXsyHH35o97I5OYU2t+Nu0qQhFy+WP5dZrVZRkF9MkR2jztZEWVl5MqpuyOPgYP9aGRLZlm1Xp7biclRVcTn6eR1VVVzuHK20rEyPVqtx+T5x53HvqOrictcxdvP3qFJBYH0tJcUldq9LrVbZfJHtlGSh0+k4f/48er0ejUaDXq/nwoUL6HS6SvNlZmbSuXNnoPKdxk8//cSzzz7LO++8Q5s2bZwRmhAew5v7HQjv55Q6i9DQUCIjI0lJSQEgJSWFyMhIsyIogJiYGJKTkzEYDOTm5rJlyxYGDhwIwKFDh3jqqad4++236dChgzPCEsKjSL8DcStzWjHU7NmzSUhI4J133iEwMJCFCxcCMGXKFJ544gk6depEbGwsP//8MwMGDADg8ccfp2XLlgDMmTOHa9euMXPmTNM6X3/9dSIiIpwVohBu5c7RSq2piw/zEfZxWrJo27atWb8Jow8++MD0t0ajYc6cORaXX7VqlbNCEcIjuXu4hqpI8ZiwhfTgFsJF3D1cQ1WkeEzYQpKFEC7iqf0OZFgOYQtJFkK4kCeO0yXDcghbeFw/C1F3SKWqZ3DnsByWHhMqx4BnkmQh3EIqVT2HsXhs3usLUfuFcv+o0S45aXvrMeCtF0GSLIRbyLPBPYs7HubjjceAtyZAkDoL4SZSqSocPQY88ZGt3tyyTO4shFt4ap8D4TqOHAOeegXvyR0vHSV3FsItPLXPgXAdR44BT72C9+aWZZIshFt4ap8D4TqOPCbUU4sxvfkiSJKFcBtP7HMgXKumjwn11Ct4b74IkmQhhLjlePIVvLdeBEmyEELccrz5Ct5TSbIQNeaJTRdF3eGtV/CeSprOegF39Bj11KaLQojaIcniFueuk7Y39r4VQlRNiqFuce5qb+6pTReFELVDksUtzl0nbU9tuiiEqB2SLG5xjp60a1pJ7clNF4UQzid1Frc4R55F4Eh9h7uGtRbCm3ny8OaSLG5xjpy0Ha2kdsew1s7gyT9IUXd5egtDSRZeoKYnbW8eIbMqnv6DFHWXp7cwlDqLOqwuVlJ76milQnh6C0NJFnVYXayk9vQfpKi7PP3iTZJFHVYXx9fx9B+kqLs8/eJNkkUdV9fG1/H0H6Souzz94k2ShahTPP0HKeo2T754k2Qh6hxP/kEK4amclizOnDlDfHw8AwcOJD4+nrS0tErz6PV65syZQ1RUFNHR0SQnJ9s0TQghhHs5rZ/FrFmzGDt2LLGxsXz55ZfMnDmTFStWmM2zfv16zp49y6ZNm8jLy2P48OHcfffdtGjRotppQgjhLW7VTqEqRVEcfmJNTk4OAwcOZO/evWg0GvR6Pb169WLTpk2EhISY5nvkkUcYMWIEMTExAMydO5fw8HAefvjhaqfZat6He7icf92meX18NZSW6MtfqOBaiR693sC1Ej0lZQZ8tWr8fDWoVM77EtPOnACg9e3tq5xHq1VTdlPTTmesu7rpjsRly7LVcXT5msbl6HZrGpcrtl2VtDMnUKlUtGr9hyqng/1xKYpS7e/Glu+iuriq46nfY1XTFEXhYt41Skr1KIAK8PXR0CTYz7TParK//Hw1qGtwrmoUWI+XHrzLpnmdcmeRlZVFWFgYGo0GAI1GQ9OmTcnKyjJLFllZWYSHh5te63Q6srOzrU6zldZHg4+vxub5K85bWmbgfO41iq+XAirUahX1fDQ0C/U3O/BPnTwOQNt2ERbXWd30dn/4Y7XxVLeste1aW3d10x2Jy5FlrS1fm/u6Nr8Ld33m2jxGqlq3oihk5xRX+7upze/CU7/HqqYVXSulpKw8UQAoQEmZnlK9AX8/H6vrrWq6RqtGq7G/VkHrY/v50quG+3j4vkibR01t0qQhFy8WAOUVnqn7zvLF9lOoVOU7XFFAb1D40x+amHW1n7NpEQCjHrrP4nqtTa/OnE2L0Go1Fpd1ZL2Oqi4uW5aFmu+P6pZ1JC5Htl2bcTlyfNmyr4OD/cnLK3JaXCczrrD+YprV34011cVVW8eQO46v3UeyOZ9r3gFUUeAPzYO5p2Mzm9dTcX+pVHBbs0Dq23GhbGRP8ZdTKrh1Oh3nz59Hry8v1tHr9Vy4cAGdTldpvszMTNPrrKwsmjVrZnWaK2RXGALCSHr2OsZgUFA3vA1tkzvlGd1eSnrE2+dW7hTqlGQRGhpKZGQkKSkpAKSkpBAZGWlWBAUQExNDcnIyBoOB3NxctmzZwsCBA61Oc4Vmof637JfoiYwD9vm26I+2aTfW704jaftJSRhe5lY++bmDsVOocZ/dSp1CnVYMNXv2bBISEnjnnXcIDAxk4cKFAEyZMoUnnniCTp06ERsby88//8yAAQMAePzxx2nZsiVAtdNc4Q/Ng9CF+lcajfRW+BI9kXHAPpWmvBzW00bQFM5hPPnJ78Y2xk6ht2JrKKcli7Zt21rsG/HBBx+Y/tZoNMyZM8fi8tVNc4Vb+Uv0RHVx+PO6SH439lOrVbRrHnTL/Q68qoLbUbfql+iJjMUTFROGFE94J/nd1A0y3IeoFbdy2awjjJX66tAudlfqS4MA4cnkzkLUirpYPFGxUh+1lvW702x+Cp8jywrhCnJnIWqNsXjino7N6sSAfRUr9VUqlV1P4XNkWSFcQZKFqJYjxSq1yRPjcqTPgfRXEJ5OiqFElTy1aMRT43KkUl8aBAhPJ3cWokqeWjTiqXE5UqlfVxsEiFuH3FmIKnlqXwlPjatipX7+tTIC/bQ2V+o72iDAVCznF8rJjCte35hAuJ4kC1ElTy0a8dS44PdK/ZoM2FfT/gqeWiwnvIsUQ4kqeWrRiKfG5S6eWiwnvIvcWYgqOVKsUhfjchdPLZYT3kWShaiWI8UqtclT43IHTy6WE95DiqGEuMVJsZxwBbmzEOIWVxeHVhGuJ8lCCC8gI7+K2ibFUEIIIaySZCGEEMIqSRZCCCGskmQhPJI8CEgIzyIV3MLjyPAVQngeubMQHkeGrxDC80iyEB5HHgQkhOeRZCE8jnH4iopk+Aoh3EuShfA4MnyFEJ5HKriFx5HhK4TwPJIshEeS4SuE8CxSDCWEEMIqh5NFcXExM2bMIDo6mpiYGLZt21blvElJSURHRxMVFcXcuXMxGMpbvGzZsoURI0YwZMgQBg8ezIcffuhoWEIIIZzI4WKo5cuXExAQwObNm0lLS2PcuHFs2rSJBg0amM2Xnp7O0qVLWbt2LcHBwUyZMoV169YxfPhwmjRpwn/+8x/CwsIoKChgxIgRdO7cme7duzsanhDCQcbe9Gq/UE5mXJH6ozrK4TuLjRs3Eh8fD0Dr1q3p2LEjO3bsqDRfamoqUVFRhISEoFarGTVqFBs2bACgS5cuhIWFAdCwYUPatm1LRkaGo6EJ4VXcMQRKxd702qbdWL87jaTtJ2X4lTrI4WSRmZlJ8+bNTa91Oh3Z2dmV5svKyiI8PNz0Ojw8nKysrErznTp1ioMHD3LXXXc5GpoQXsNdJ23pTS+MrBZDxcXFkZmZaXHa7t27nRrMhQsXmDp1KrNmzTLdadgjNDTArvmbNGlo+jvnaim+fnqry2i1GgCCg/1rNL2m63Zkvc7izm1XpzbicsZ34cy4fk3LJfvGSRvKe7Rn5xRxIf86f2wdYte67Ikr/2SOxd70+dfKnL7fPe035Qm/ueoY41IBQUH1CQqoV6vbs5os1qxZU+308PBwMjIyCAkpP2CzsrLo1atXpfl0Op1Z0snMzESn05le5+TkMHnyZB5++GEGDRpk8weoKCen0OYrrSZNGnLxYgFQ3kyzIL+YomtlVpcrKytPKHl5RTWabm3dWq3G4rKOrNcZgoP93bbt6tRWXNXtb1u+C2fHdfpcHiU3nbRLygycPpdHs2A/m9djb1yB9bX4aNVmCcNHqybQT+vUz1ddXI7+pqpa1pbfclW/R3eruL9UqvLvqaS4xO71qNUqmy+yHS6GiomJITExEYC0tDQOHz5Mnz59Ks03cOBAtmzZQm5uLgaDgeTkZFNSuHz5MpMnT2bcuHGMGjXK0ZCE8DruGgJFetMLI4dbQz300EMkJCQQHR2NWq1m7ty5BASUZ6rFixfTtGlTHnjgAVq2bMnUqVMZPXo0AL1792bYsGEAvP/++6SlpZGYmGhKPBMnTuT+++93NDwhvILxpJ2VU0RpmcFlJ23pTS+MHE4W/v7+vP322xanPfnkk2avx4wZw5gxYyrN9/zzz/P88887GooQXsudJ23pTS9AhvsQ4pYhJ23XMfUt8W8sfUtukGQhhBAVyJMaLZOxoYQQogLpW2KZJAshhKhAntRomSQLIYSoQJ7UaJkkCyGEqED6llgmFdxCCFFBxWbK+dfKCPTTSmsoJFkIIbyUI0OrG5spe+owN+4gyUII4XWk+avzSbK4oWEDX/zr+1idz1iOGRpcH1BQboxbqCjlf2s15dMDGviWv2dQ0N8Y3NA0L6Y/zKhVKlQVtlFxlvIpxvUrlRe3c6Rqewe2VqnwyB+ZSlW+36xR7PzExjUaV2387uRBQLeGis1fAbPmr9KpsWYkWVB+AghpaNvwvr43TuRNLY70qaKeT/mwxrc1NR/JUVHKT1eKUv6v/PRiftL389Wg1WpobapI+z3J+NUrX2/r8EDTiavidHtUPHGqsC1xBAf5k+df08NFZX92qkbFVQUF+XHFapKvvHFr+6yeb/lnva1ZoGl5gwGWrDqEb8v+oNLy1fdptGoWyLQRnVBVSBiKAoGBfgTc+M7sja3qd2syk7nAhn74+6pBuXEcVFjHzfvE6uoVCxctNrp5mcBAP3xUltfkq1WjAI0b1UepEGR132HByUsWm78WFJcQfOO3brywC25Y7/eLgQr7RAH8/bSU+ftWiNt8o5ViuCk+ey9SbOXrozadE1QqFTZcLzlMksUNtp5wf7+TsDjVdDBXNVS6Cip8saoK/y2nVqvQmE48KrjpL63ZVazrrmgD/H0pvnrdZduzVWCDelwvsn9oZmuMu7m+7+8n/IMnL/FbdgEqdXlyul5q4LfsAk5mXKFru8Zmy4cG1cdQYn3Ie1dr3Mgfpcz6c1tcSaWCxo0D8K3ixGq8024SZPtQ7He0asSOg5lcL/39s9bz0XBHq1B0oQ1MrwHTa0txhYYGkJNTaPN2XeXmuMovQmv3QViSLISw0dnzBZSUmp9oS0r1pJ8vqJQshO2qvwCzPt2STm1CaRMeyOnMfEpK9fj6aGgTHkinNiGmk+rN/69qu576CFlXxyXJQggb3RbWEF8fjdnVqq+PhpZhDatZSriDWq3i6fiuHDqdQ/r5AlqGNaRzm1CpX3KAJAshbNS5iqvVzm1C3R2asECtVtG1XWO563MSSRZC2EiuVkVdJslCCDvI1aqoq2RsKCGEEFZJsvAQBoOC0qAFZUGdOHjykse2wBBC1E2SLDyAwaCwKPEgNLsXfVAX3vvyFxYlHpSEIYTwGJIsPMCh0zmczswHtQ+oVFwv1XM6M59Dp3PcHZoQQgCSLDxCdZ29hBDCE0iy8ADGzl4VSWcvIYQnkWThAYydver5aFBRPmaNdPYSQngS6WfhASp29sotLCEkwFc6ewnB760EqRfKwZOX5HfhRpIsPISxs1eTJg25eFHqKoSo2EoQlZb3vvyFNuGBPB3fVRKGG0gxlBDCI0krQc8iyUII4ZGklaBncThZFBcXM2PGDKKjo4mJiWHbtm1VzpuUlER0dDRRUVHMnTsXg8H8SVbXr19n8ODBjBgxwtGwhBC3uNpsJWisC1FCusiICTZyOFksX76cgIAANm/ezLvvvsvLL7/M1atXK82Xnp7O0qVLSUxMZNOmTfz222+sW7fObJ5///vfdOnSxdGQvI4c2KIuqq1WgmZ1ISF3yogJNnI4WWzcuJH4+HgAWrduTceOHdmxY0el+VJTU4mKiiIkJAS1Ws2oUaPYsGGDafr+/ftJS0sjNjbW0ZC8ihzYoq4ythJ8NLYDw/vczqOxHZxSuS11ITXjcLLIzMykefPmptc6nY7s7OxK82VlZREeHm56HR4eTlZWFgBFRUW89tprzJkzx9FwvI4c2KIuM7YSHNr7drq2a+yUVlBSF1IzVpvOxsXFkZmZaXHa7t27nRLE66+/ztixYwkLCyMtLa3G6wkNDbBr/iZN7C/79PXVVrusten2xpVzMNPigZ1bWOLQNhyNy5M4Oy69QUET1ArFN4QzF6/S7Y9haGpwkqor+8tZXBVXp/ZN+XrvWa6V/P67queroWP7phZjqOv7y8hqslizZk2108PDw8nIyCAkJAQov4Po1atXpfl0Op1Z0snMzESn0wFw4MABduzYwTvvvMP169e5cuUKQ4cOZf369XZ9mJycQpuLZ2ran6GkpAygymWtTbc3rtAAX4vPfQ4J8HVpfwxP7f/h7LiMxX5ljfuASsvrK/bXqG1/XdlfzuLKuFqF+nO7zvzxuLfrAmkV6l8pBm/fX2q1yuaLbIc75cXExJCYmEinTp1IS0vj8OHDLFq0qNJ8AwcOZNy4cUybNo3g4GCSk5MZMmQIgFlS2Lt3LwsXLmT16tWOhuYV5LnPrmVW7AdmxX7ydDzvII/HrRmHk8VDDz1EQkIC0dHRqNVq5s6dS0BAeaZavHgxTZs25YEHHqBly5ZMnTqV0aNHA9C7d2+GDRvm6Oa9nhzYrlVdebYkC+8hj8e1n8PJwt/fn7ffftvitCeffNLs9ZgxYxgzZky16+vVq5fcVdxEDmzXMbbtv7nYT0YAFnWd9OAWogIZAVgIy2QgQSEqkGI/ISyTZCHETaTYT4jKpBhKCCGEVZIshBBCWCXJQgghhFWSLIQQQlglyUIIIYRVkiyEEEJYJclCCCGEVZIshBBCWCXJQgghhFWSLOwgz8IWQtRVkixsJM/CFkLUZZIsbCTPwhZC1GWSLGwkD3kXQtRlkixsZHwoTkXyUBwhRF0hycJG8lAcIURdJs+zsJE8FEcIUZdJsrCDPBRHCFFXSTGUEEIIqyRZCCGEsEqShRBCCKskWQghhLBKkoUQQgirJFkIIYSwSpKFEEIIqyRZCCGEsMrhZFFcXMyMGTOIjo4mJiaGbdu2VTlvUlIS0dHRREVFMXfuXAwGg2nasWPHGDduHPfddx/33Xcf3377raOhCSGEcBKHe3AvX76cgIAANm/eTFpaGuPGjWPTpk00aNDAbL709HSWLl3K2rVrCQ4OZsqUKaxbt47hw4dTVFTEtGnTWLRoEV27dqWsrIyCAhnNVQghPIXDdxYbN24kPj4egNatW9OxY0d27NhRab7U1FSioqIICQlBrVYzatQoNmzYAEBKSgrdunWja9euAGi1Who1auRoaEIIIZzE4TuLzMxMmjdvbnqt0+nIzs6uNF9WVhbh4eGm1+Hh4WRlZQFw8uRJtFotU6ZM4cKFC3To0IHnn3+eoKAgR8MTQgjhBFaTRVxcHJmZmRan7d692ylBGAwG9uzZw+eff07jxo2ZP38+CxYsYP78+XatJzQ0wK75mzRx/rMofH21Dq+7NuJyBonLPhKXfSQu+7g6LqvJYs2aNdVODw8PJyMjg5CQEKD8DqJXr16V5tPpdGZJJzMzE51OZ5rWq1cvmjZtCsDQoUN58cUXbf8UN+TkFNr8TOwmTRpy8aLz60VKSsoAarzu2orLURKXfSQu+0hc9nFWXGq1yuaLbIfrLGJiYkhMTAQgLS2Nw4cP06dPn0rzDRw4kC1btpCbm4vBYCA5OZlBgwYBMGjQIA4dOkRhYSEAO3bsICIiwtHQhBBCOInDdRYPPfQQCQkJREdHo1armTt3LgEB5Zlq8eLFNG3alAceeICWLVsydepURo8eDUDv3r0ZNmwYUH53MmXKFMaMGYNKpaJFixa88sorjoYmhBDCSVSKothWbnML8IRiqIcemgDA8uWf1Gh5b7/tdTaJyz4Sl328PS6XFkMJIYTwfpIshBBCWCXJQgghhFWSLIQQQlglyUIIIYRVkiyEEEJYJclCCCGEVZIshBBCWCXJQgghhFWSLIQQQlglyUIIIYRVkiyEEEJYJclCCCGEVZIsnMhgUFAatEAJ6cLBk5dsHgFXCCE8nSQLJzEYFBYlHoRm90LInbz35S8sSjwoCUMI4RUkWTjJodM5nM7MB7UPqFRcL9VzOjOfQ6dz3B2aEEI4TJKFk5w9X0BJqd7svZJSPennPe/BKUIIYS9JFk5yW1hDfH00Zu/5+mhoGdbQTREJIYTzSLJwks5tQmkTHkg9Hw0qoJ6PhjbhgXRuE+ru0IQQwmFadwfgLdRqFU/Hd+XQ6RzSzxfQMqwhnduEolar3B2aEEI4TJKFE6nVKrq2a0zXdo3dHYoQQjiVFEMJIYSwSpKFEEIIqyRZCCGEsEqShRBCCKu8qoLb3pZHntpSSeKyj8RlH4nLPt4clz3rUCmKIoMXCSGEqJYUQwkhhLBKkoUQQgirJFkIIYSwSpKFEEIIqyRZCCGEsEqShRBCCKskWQghhLBKkoUQQgirJFkIIYSwyquG+7DFmTNnSEhIIC8vj+DgYBYuXEjr1q3dHRb9+/fH19eXevXqAfDMM8/Qp08fl8excOFCUlNTycjIYP369bRv3x5w/36rKi5377fLly/z3HPPcfbsWXx9fWnVqhVz584lJCSEgwcPMnPmTK5fv07z5s3517/+RWioa56cWF1cERERtG/fHrW6/Frx9ddfJyIiwiVxAUydOpVz586hVqvx9/fnn//8J5GRkW4/xqqKy93HmNHSpUtZsmSJ6fh3+fGl1DETJkxQ1q5dqyiKoqxdu1aZMGGCmyMq169fP+X48ePuDkP54YcflMzMzErxuHu/VRWXu/fb5cuXlT179pheL1iwQHnhhRcUvV6vREVFKT/88IOiKIqybNkyJSEhwe1xKYqitG/fXiksLHRZLDfLz883/b1582Zl+PDhiqK4/xirKi53H2OKoihHjhxRHnroIVMs7ji+6lQxVE5ODkePHmXIkCEADBkyhKNHj5Kbm+vmyDxH9+7d0el0Zu95wn6zFJcnCA4OplevXqbXXbt2JTMzkyNHjlCvXj26d+8OwJgxY/j666/dHpcnaNiwoenvwsJCVCqVRxxjluLyBCUlJcydO5fZs2eb3nPH8VWniqGysrIICwtDo9EAoNFoaNq0KVlZWYSEhLg5uvLbW0VR6NatG//4xz8IDAx0d0iA7DdbGQwG/ve//9G/f3+ysrIIDw83TQsJCcFgMJiKWNwVl9GECRPQ6/X07duX6dOn4+vr69KYXnrpJb777jsUReH//u//POYYuzkuI3ceY4sXL2bYsGG0aNHC9J47jq86dWfhyVauXMm6detYtWoViqIwd+5cd4d0S/Ck/fbKK6/g7+/P+PHj3RaDJTfHtX37dlavXs3KlSs5efIky5Ytc3lM8+bNY/v27Tz11FO8/vrrLt9+VSzF5c5j7KeffuLIkSOMHTvWZdusSp1KFjqdjvPnz6PX6wHQ6/VcuHDBI4o3jDH4+voyduxYfvzxRzdH9DvZb9YtXLiQ3377jbfeegu1Wo1OpzMr9snNzUWtVrv8ruLmuOD3fRYQEMCoUaPceqwNHz6cvXv30qxZM486xoxxXb582a3H2A8//MCpU6f461//Sv/+/cnOzuahhx7it99+c/nxVaeSRWhoKJGRkaSkpACQkpJCZGSk24tSioqKKCgoAEBRFDZs2EBkZKRbY6pI9lv13nzzTY4cOcKyZctMxTkdO3bk2rVr7N+/H4DPP/+cmJgYt8d15coVrl27BkBZWRmpqaku3WdXr14lKyvL9Hrr1q0EBQW5/RirKq569eq59Rh75JFH2LVrF1u3bmXr1q00a9aM5cuX8/DDD7v8+KpzDz86deoUCQkJ5OfnExgYyMKFC2nTpo1bY0pPT2f69Ono9XoMBgNt27bl5ZdfpmnTpi6P5dVXX2XTpk1cunSJRo0aERwczFdffeX2/WYprnfffdft++3//b//x5AhQ2jdujV+fn4AtGjRgmXLlvHjjz8ya9Yss6aNjRs3dmtcDz/8MDNnzkSlUlFWVsadd97Jiy++SIMGDVwS16VLl5g6dSrFxcWo1WqCgoJ4/vnn6dChg1uPsariCgwMdPsxVlH//v159913ad++vcuPrzqXLIQQQtivThVDCSGEqBlJFkIIIaySZCGEEMIqSRZCCCGskmQhhBDCKkkWQgghrJJkIYQQwipJFkIIIaz6/7N2P7UIAvJFAAAAAElFTkSuQmCC\n", 1117 | "text/plain": [ 1118 | "
" 1119 | ] 1120 | }, 1121 | "metadata": { 1122 | "tags": [] 1123 | } 1124 | } 1125 | ] 1126 | }, 1127 | { 1128 | "cell_type": "markdown", 1129 | "metadata": { 1130 | "id": "awTBHn1_m1RX" 1131 | }, 1132 | "source": [ 1133 | "### 11. ARIMAX Approach" 1134 | ] 1135 | }, 1136 | { 1137 | "cell_type": "code", 1138 | "metadata": { 1139 | "colab": { 1140 | "base_uri": "https://localhost:8080/", 1141 | "height": 358 1142 | }, 1143 | "id": "TCef0Q77myKG", 1144 | "outputId": "a0ebc73e-6a7c-407c-dfee-079ce7da8e9d" 1145 | }, 1146 | "source": [ 1147 | "model_ar_1_i_1_ma_1_Xspx = ARIMA(df.market_value, exog = df.spx, order=(1,1,1))\n", 1148 | "results_ar_1_i_1_ma_1_Xspx = model_ar_1_i_1_ma_1_Xspx.fit()\n", 1149 | "results_ar_1_i_1_ma_1_Xspx.summary()" 1150 | ], 1151 | "execution_count": 31, 1152 | "outputs": [ 1153 | { 1154 | "output_type": "execute_result", 1155 | "data": { 1156 | "text/html": [ 1157 | "\n", 1158 | "\n", 1159 | "\n", 1160 | " \n", 1161 | "\n", 1162 | "\n", 1163 | " \n", 1164 | "\n", 1165 | "\n", 1166 | " \n", 1167 | "\n", 1168 | "\n", 1169 | " \n", 1170 | "\n", 1171 | "\n", 1172 | " \n", 1173 | "\n", 1174 | "\n", 1175 | " \n", 1176 | "\n", 1177 | "\n", 1178 | " \n", 1179 | "\n", 1180 | "
ARIMA Model Results
Dep. Variable: D.market_value No. Observations: 5020
Model: ARIMA(1, 1, 1) Log Likelihood -27603.556
Method: css-mle S.D. of innovations 59.132
Date: Mon, 16 Aug 2021 AIC 55217.112
Time: 06:17:25 BIC 55249.718
Sample: 01-10-1994 HQIC 55228.538
- 04-05-2013
\n", 1181 | "\n", 1182 | "\n", 1183 | " \n", 1184 | "\n", 1185 | "\n", 1186 | " \n", 1187 | "\n", 1188 | "\n", 1189 | " \n", 1190 | "\n", 1191 | "\n", 1192 | " \n", 1193 | "\n", 1194 | "\n", 1195 | " \n", 1196 | "\n", 1197 | "
coef std err z P>|z| [0.025 0.975]
const -0.5842 2.655 -0.220 0.826 -5.789 4.620
spx 0.0011 0.002 0.450 0.653 -0.004 0.006
ar.L1.D.market_value 0.7456 0.070 10.578 0.000 0.607 0.884
ma.L1.D.market_value -0.7917 0.065 -12.274 0.000 -0.918 -0.665
\n", 1198 | "\n", 1199 | "\n", 1200 | "\n", 1201 | " \n", 1202 | "\n", 1203 | "\n", 1204 | " \n", 1205 | "\n", 1206 | "\n", 1207 | " \n", 1208 | "\n", 1209 | "
Roots
Real Imaginary Modulus Frequency
AR.1 1.3412 +0.0000j 1.3412 0.0000
MA.1 1.2632 +0.0000j 1.2632 0.0000
" 1210 | ], 1211 | "text/plain": [ 1212 | "\n", 1213 | "\"\"\"\n", 1214 | " ARIMA Model Results \n", 1215 | "==============================================================================\n", 1216 | "Dep. Variable: D.market_value No. Observations: 5020\n", 1217 | "Model: ARIMA(1, 1, 1) Log Likelihood -27603.556\n", 1218 | "Method: css-mle S.D. of innovations 59.132\n", 1219 | "Date: Mon, 16 Aug 2021 AIC 55217.112\n", 1220 | "Time: 06:17:25 BIC 55249.718\n", 1221 | "Sample: 01-10-1994 HQIC 55228.538\n", 1222 | " - 04-05-2013 \n", 1223 | "========================================================================================\n", 1224 | " coef std err z P>|z| [0.025 0.975]\n", 1225 | "----------------------------------------------------------------------------------------\n", 1226 | "const -0.5842 2.655 -0.220 0.826 -5.789 4.620\n", 1227 | "spx 0.0011 0.002 0.450 0.653 -0.004 0.006\n", 1228 | "ar.L1.D.market_value 0.7456 0.070 10.578 0.000 0.607 0.884\n", 1229 | "ma.L1.D.market_value -0.7917 0.065 -12.274 0.000 -0.918 -0.665\n", 1230 | " Roots \n", 1231 | "=============================================================================\n", 1232 | " Real Imaginary Modulus Frequency\n", 1233 | "-----------------------------------------------------------------------------\n", 1234 | "AR.1 1.3412 +0.0000j 1.3412 0.0000\n", 1235 | "MA.1 1.2632 +0.0000j 1.2632 0.0000\n", 1236 | "-----------------------------------------------------------------------------\n", 1237 | "\"\"\"" 1238 | ] 1239 | }, 1240 | "metadata": { 1241 | "tags": [] 1242 | }, 1243 | "execution_count": 31 1244 | } 1245 | ] 1246 | }, 1247 | { 1248 | "cell_type": "code", 1249 | "metadata": { 1250 | "id": "fYgOCzgOm4f4" 1251 | }, 1252 | "source": [ 1253 | "" 1254 | ], 1255 | "execution_count": null, 1256 | "outputs": [] 1257 | } 1258 | ] 1259 | } -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 DataMinati 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # TSA-Fauj 🛡⚔🏹 2 | An army of time series analysis projects in Python 3 | 4 | | S.No. | Project Title | 5 | |-------|---------------| 6 | | 1 | [ARIMAX Approach to Stock Analysis](https://github.com/DataMinati/TSA-Fauj/blob/main/ARIMA_Approach_to_Index_2k18_Stocks.ipynb) | 7 | | 2 | [ARCH Modelling on Stock Data](https://github.com/DataMinati/TSA-Fauj/blob/main/ARCH_Approach_to_Index_2k18_Stocks.ipynb) | 8 | | 3 | [ARMA Approach to Stock Analysis](https://github.com/DataMinati/TSA-Fauj/blob/main/ARMA_Approach_to_Index2k18_Stocks.ipynb) | 9 | | 4 | [The Doge Tale](https://github.com/DataMinati/TSA-Fauj/blob/main/The_Doge_Tale.ipynb) | 10 | | 5 | [Bitcoins TSA](https://github.com/DataMinati/TSA-Fauj/blob/main/Bitcoins_TSA.ipynb) | 11 | | 6 | [Delhi Climate](https://github.com/DataMinati/TSA-Fauj/blob/main/Delhi_Climate_TSA.ipynb) | 12 | | 7 | [Flight TSA](https://github.com/DataMinati/TSA-Fauj/blob/main/Flights_TSA.ipynb) | 13 | --------------------------------------------------------------------------------