├── .gitignore
├── 1. Basic Concepts.ipynb
├── 10. Convolutional Neural Networks II.ipynb
├── 11_Non supervised learning I .ipynb
├── 12. Non supervised learning II.ipynb
├── 13. Reinforcement learning.ipynb
├── 14. Uncertainty_and_Probabilistic_Layers.ipynb
├── 2. Automatic Differentiation.ipynb
├── 3-Tensorflow programming model (Solution).ipynb
├── 3_Tensorflow_programming_model.ipynb
├── 4. Tensorflow first learning models.ipynb
├── 5. Keras.ipynb
├── 6. Recurrent Neural Networks I.ipynb
├── 7. Recurrent Neural Networks II.ipynb
├── 8. Embeddings.ipynb
├── 9. Convolutional Neural Networks.ipynb
├── Assignment 1. Pixel regression.ipynb
├── Assignment 2. Ethics and Sentiment Classification.ipynb
├── Assignment 3. X-ray image classification.ipynb
├── Chollet-advanced-usage-of-recurrent-neural-networks.ipynb
├── DeepLearningMasterIntro2019.pdf
├── Dockerfile
├── LICENSE.txt
├── README.md
├── Uncertainty_and_Probabilistic_Layers.ipynb
├── data
├── Advertising.csv
├── NombresMujerBarcelona.txt
├── adult.data
├── adult.test
├── cat.txt
├── household_power_consumption.zip
├── iris_test.csv
├── iris_training.csv
├── jena_climate_2009_2016.csv.zip
├── monalisa.jpg
├── monalisa.png
├── negative-words.txt
├── otto.zip
├── positive-words.txt
├── t10k-images-idx3-ubyte.gz
├── t10k-labels-idx1-ubyte.gz
├── toponims.txt
├── train-images-idx3-ubyte.gz
├── train-labels-idx1-ubyte.gz
├── train_titanic.csv
├── vocab.txt
├── wiki106.txt.zip
└── wordVectors.txt.zip
├── deeplearninginside2.png
├── images
├── FVMNLN.png
├── FVSBN.png
├── NADE.png
├── README.md
├── TanhReal.gif
├── alexnet.png
├── autoencoder.jpg
├── back.png
├── conv.png
├── conv1.png
├── conv2.png
├── deeplearninginside2.png
├── deepq1.png
├── deepq2.png
├── denoised_digits.png
├── densenet.png
├── dgan.png
├── dgan2.png
├── dgan3.png
├── dropout.png
├── exploding.png
├── fasterrcnn.png
├── fastrcnn.png
├── fastrcnn2.png
├── fword2vec-sg.png
├── g1.gif
├── g2.gif
├── gan1.png
├── googlenet.png
├── googlenet2.png
├── gru.png
├── inception.png
├── kar.png
├── loss_functions.png
├── lstm.png
├── maxpool.jpeg
├── merge.png
├── minibatch.png
├── mnistExamples.png
├── multi.png
├── par2vec.png
├── pipeline1.png
├── pipeline2.png
├── pixelrcnn.png
├── pong.jpg
├── rcnn.png
├── res1.png
├── resnet.png
├── result.png
├── ridge2.png
├── seq2seq.png
├── siamese1.png
├── siameseresult.png
├── slot.jpg
├── spectrogram.png
├── split.png
├── steeper.png
├── subsampling.png
├── t1.png
├── t10.png
├── t12.png
├── t2.png
├── t3.png
├── t4.png
├── t5.png
├── t6.png
├── t7.png
├── t8.png
├── t9.png
├── tf-gru.png
├── tf-lstm.png
├── ub.png
├── unrolling.png
├── vae1.png
├── vae2.png
├── vae3.png
├── vae4.png
├── vae5.png
├── vae6.png
├── vae7.png
├── vae_sampling.png
├── vanilla.png
├── vgg16.png
├── w2v1.png
├── weights.jpeg
├── word2vec-cbow.png
└── zfnet.png
└── requirements.txt
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 |
--------------------------------------------------------------------------------
/10. Convolutional Neural Networks II.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "10. Convolutional Neural Networks II.ipynb",
7 | "version": "0.3.2",
8 | "provenance": [],
9 | "include_colab_link": true
10 | },
11 | "language_info": {
12 | "codemirror_mode": {
13 | "name": "ipython",
14 | "version": 3
15 | },
16 | "file_extension": ".py",
17 | "mimetype": "text/x-python",
18 | "name": "python",
19 | "nbconvert_exporter": "python",
20 | "pygments_lexer": "ipython3",
21 | "version": "3.5.2"
22 | },
23 | "kernelspec": {
24 | "name": "python3",
25 | "display_name": "Python 3"
26 | },
27 | "accelerator": "GPU"
28 | },
29 | "cells": [
30 | {
31 | "cell_type": "markdown",
32 | "metadata": {
33 | "id": "view-in-github",
34 | "colab_type": "text"
35 | },
36 | "source": [
37 | "
"
38 | ]
39 | },
40 | {
41 | "metadata": {
42 | "id": "zlMderMf6iaX",
43 | "colab_type": "text"
44 | },
45 | "cell_type": "markdown",
46 | "source": [
47 | "# 10. Convolutional Neural Networks II\n",
48 | "## Large Convolutional Networks\n",
49 | "\n",
50 | "There are several architectures in the field of Convolutional Networks that have a name. The most common are:\n",
51 | "\n",
52 | "+ **LeNet**, 1990’s. \n",
53 | "
\n",
54 | "
\n",
55 | "\n",
56 | "\n",
57 | "\n",
58 | "\n",
59 | "+ **AlexNet**. 2012.\n",
60 | "\n",
61 | "
\n",
62 | "(Source: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)\n",
63 | "\n",
64 | "\n",
65 | "> AlexNet has about 60 million parameters!\n",
66 | "\n",
67 | "\n",
68 | "+ **ZF Net**. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and Rob Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an improvement on AlexNet by tweaking the architecture hyperparameters, in particular by expanding the size of the middle convolutional layers and making the stride and filter size on the first layer smaller.\n",
69 | "\n",
70 | "
\n",
71 | "(Source: https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf)\n",
72 | "\n",
73 | "\n",
74 | "\n",
75 | "+ **VGGNet**. The runner-up in ILSVRC 2014 was the network from Karen Simonyan and Andrew Zisserman that became known as the VGGNet. Its main contribution was in showing that the depth of the network is a critical component for good performance. Their final best network contains 16 CONV/FC layers and, appealingly, features an **extremely homogeneous architecture that only performs 3x3 convolutions and 2x2 pooling from the beginning to the end**. A downside of the VGGNet is that it is more expensive to evaluate and uses a lot more memory and parameters. Most of these parameters are in the first fully connected layer, and it was since found that these FC layers can be removed with no performance downgrade, significantly reducing the number of necessary parameters.\n",
76 | "\n",
77 | "\n",
78 | "\n",
79 | "
\n",
80 | "(Source: https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/)\n",
81 | ""
82 | ]
83 | },
84 | {
85 | "metadata": {
86 | "id": "xZnRS5306iaa",
87 | "colab_type": "code",
88 | "outputId": "fe4da8fb-84f5-4ad5-fd59-0b6c1284232e",
89 | "colab": {
90 | "base_uri": "https://localhost:8080/",
91 | "height": 1129
92 | }
93 | },
94 | "cell_type": "code",
95 | "source": [
96 | "# Small VGG-like convnet in Keras\n",
97 | "\n",
98 | "import numpy as np\n",
99 | "import keras\n",
100 | "from keras.models import Sequential\n",
101 | "from keras.layers import Dense, Dropout, Flatten\n",
102 | "from keras.layers import Conv2D, MaxPooling2D\n",
103 | "from keras.optimizers import SGD\n",
104 | "\n",
105 | "# Generate dummy data\n",
106 | "\n",
107 | "def to_categorical(y, num_classes=None):\n",
108 | " \"\"\"\n",
109 | " Converts a class vector (integers) to binary class matrix.\n",
110 | " \"\"\"\n",
111 | " y = np.array(y, dtype='int').ravel()\n",
112 | " if not num_classes:\n",
113 | " num_classes = np.max(y) + 1\n",
114 | " n = y.shape[0]\n",
115 | " categorical = np.zeros((n, num_classes))\n",
116 | " categorical[np.arange(n), y] = 1\n",
117 | " return categorical\n",
118 | "\n",
119 | "x_train = np.random.random((100, 100, 100, 3))\n",
120 | "y_train = to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)\n",
121 | "x_test = np.random.random((20, 100, 100, 3))\n",
122 | "y_test = to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)\n",
123 | "\n",
124 | "model = Sequential()\n",
125 | "model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))\n",
126 | "model.add(Conv2D(32, (3, 3), activation=\"relu\"))\n",
127 | "model.add(MaxPooling2D(pool_size=(2, 2)))\n",
128 | "model.add(Dropout(0.25))\n",
129 | "\n",
130 | "model.add(Conv2D(32, (3, 3), activation=\"relu\"))\n",
131 | "model.add(Conv2D(32, (3, 3), activation=\"relu\"))\n",
132 | "model.add(MaxPooling2D(pool_size=(2, 2)))\n",
133 | "model.add(Dropout(0.25))\n",
134 | "\n",
135 | "model.add(Flatten())\n",
136 | "model.add(Dense(256, activation='relu'))\n",
137 | "model.add(Dropout(0.5))\n",
138 | "model.add(Dense(10, activation='softmax'))\n",
139 | "\n",
140 | "sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)\n",
141 | "model.compile(loss='categorical_crossentropy', optimizer=sgd)\n",
142 | "print(model.summary())\n",
143 | "\n",
144 | "model.fit(x_train, y_train, batch_size=32, epochs=10)\n",
145 | "score = model.evaluate(x_test, y_test, batch_size=32)"
146 | ],
147 | "execution_count": 0,
148 | "outputs": [
149 | {
150 | "output_type": "stream",
151 | "text": [
152 | "Using TensorFlow backend.\n"
153 | ],
154 | "name": "stderr"
155 | },
156 | {
157 | "output_type": "stream",
158 | "text": [
159 | "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
160 | "Instructions for updating:\n",
161 | "Colocations handled automatically by placer.\n",
162 | "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n",
163 | "Instructions for updating:\n",
164 | "Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n",
165 | "_________________________________________________________________\n",
166 | "Layer (type) Output Shape Param # \n",
167 | "=================================================================\n",
168 | "conv2d_1 (Conv2D) (None, 98, 98, 32) 896 \n",
169 | "_________________________________________________________________\n",
170 | "conv2d_2 (Conv2D) (None, 96, 96, 32) 9248 \n",
171 | "_________________________________________________________________\n",
172 | "max_pooling2d_1 (MaxPooling2 (None, 48, 48, 32) 0 \n",
173 | "_________________________________________________________________\n",
174 | "dropout_1 (Dropout) (None, 48, 48, 32) 0 \n",
175 | "_________________________________________________________________\n",
176 | "conv2d_3 (Conv2D) (None, 46, 46, 32) 9248 \n",
177 | "_________________________________________________________________\n",
178 | "conv2d_4 (Conv2D) (None, 44, 44, 32) 9248 \n",
179 | "_________________________________________________________________\n",
180 | "max_pooling2d_2 (MaxPooling2 (None, 22, 22, 32) 0 \n",
181 | "_________________________________________________________________\n",
182 | "dropout_2 (Dropout) (None, 22, 22, 32) 0 \n",
183 | "_________________________________________________________________\n",
184 | "flatten_1 (Flatten) (None, 15488) 0 \n",
185 | "_________________________________________________________________\n",
186 | "dense_1 (Dense) (None, 256) 3965184 \n",
187 | "_________________________________________________________________\n",
188 | "dropout_3 (Dropout) (None, 256) 0 \n",
189 | "_________________________________________________________________\n",
190 | "dense_2 (Dense) (None, 10) 2570 \n",
191 | "=================================================================\n",
192 | "Total params: 3,996,394\n",
193 | "Trainable params: 3,996,394\n",
194 | "Non-trainable params: 0\n",
195 | "_________________________________________________________________\n",
196 | "None\n",
197 | "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
198 | "Instructions for updating:\n",
199 | "Use tf.cast instead.\n",
200 | "Epoch 1/10\n",
201 | "100/100 [==============================] - 6s 57ms/step - loss: 2.3112\n",
202 | "Epoch 2/10\n",
203 | "100/100 [==============================] - 0s 747us/step - loss: 2.3700\n",
204 | "Epoch 3/10\n",
205 | "100/100 [==============================] - 0s 746us/step - loss: 2.3099\n",
206 | "Epoch 4/10\n",
207 | "100/100 [==============================] - 0s 719us/step - loss: 2.2850\n",
208 | "Epoch 5/10\n",
209 | "100/100 [==============================] - 0s 725us/step - loss: 2.2990\n",
210 | "Epoch 6/10\n",
211 | "100/100 [==============================] - 0s 740us/step - loss: 2.3016\n",
212 | "Epoch 7/10\n",
213 | "100/100 [==============================] - 0s 778us/step - loss: 2.3113\n",
214 | "Epoch 8/10\n",
215 | "100/100 [==============================] - 0s 792us/step - loss: 2.2885\n",
216 | "Epoch 9/10\n",
217 | "100/100 [==============================] - 0s 758us/step - loss: 2.2925\n",
218 | "Epoch 10/10\n",
219 | "100/100 [==============================] - 0s 867us/step - loss: 2.2957\n",
220 | "20/20 [==============================] - 0s 6ms/step\n"
221 | ],
222 | "name": "stdout"
223 | }
224 | ]
225 | },
226 | {
227 | "metadata": {
228 | "id": "WMiG37Tg6iah",
229 | "colab_type": "code",
230 | "outputId": "33c25635-a733-4069-a217-fae2215c046e",
231 | "colab": {
232 | "base_uri": "https://localhost:8080/",
233 | "height": 35
234 | }
235 | },
236 | "cell_type": "code",
237 | "source": [
238 | "# how to compute the numer of trainable and non trainable weights in a model\n",
239 | "\n",
240 | "from keras import backend as K\n",
241 | "import numpy\n",
242 | "\n",
243 | "trainable_count = int(numpy.sum([K.count_params(p) for p in set(model.trainable_weights)]))\n",
244 | "\n",
245 | "non_trainable_count = int(numpy.sum([K.count_params(p) for p in set(model.non_trainable_weights)]))\n",
246 | "\n",
247 | "print(trainable_count,non_trainable_count)"
248 | ],
249 | "execution_count": 0,
250 | "outputs": [
251 | {
252 | "output_type": "stream",
253 | "text": [
254 | "3996394 0\n"
255 | ],
256 | "name": "stdout"
257 | }
258 | ]
259 | },
260 | {
261 | "metadata": {
262 | "id": "D3R-Gg0c6iak",
263 | "colab_type": "code",
264 | "outputId": "22fb793c-cd46-433f-afc4-c0e605890fd3",
265 | "colab": {
266 | "base_uri": "https://localhost:8080/",
267 | "height": 35
268 | }
269 | },
270 | "cell_type": "code",
271 | "source": [
272 | "# how to compute the memory allocated by the activations of a model\n",
273 | "\n",
274 | "batch = 1\n",
275 | "shapes_count = int(numpy.sum([numpy.prod(numpy.array([s if isinstance(s, int) \n",
276 | " else 1 for s in l.output_shape])) \n",
277 | " for l in model.layers]))\n",
278 | "memory = shapes_count * 4 * batch\n",
279 | "\n",
280 | "print(memory)"
281 | ],
282 | "execution_count": 0,
283 | "outputs": [
284 | {
285 | "output_type": "stream",
286 | "text": [
287 | "3643436\n"
288 | ],
289 | "name": "stdout"
290 | }
291 | ]
292 | },
293 | {
294 | "metadata": {
295 | "id": "31DIGKll6iap",
296 | "colab_type": "text"
297 | },
298 | "cell_type": "markdown",
299 | "source": [
300 | "**Exercise**\n",
301 | "\n",
302 | "+ Why do we have 896 parameters in the ``convolution2d_1`` layer of the previous example?\n",
303 | "\n",
304 | "+ Compute the number of parameters of the original VGG16 (all CONV layers are 3x3).\n",
305 | "> The VGG16 architecture is: INPUT: [224x224x3] $\\rightarrow$ CONV3-64: [224x224x64] $\\rightarrow$ CONV3-64: [224x224x64] $\\rightarrow$ POOL2: [112x112x64] $\\rightarrow$ CONV3-128: [112x112x128] $\\rightarrow$ CONV3-128: [112x112x128] $\\rightarrow$ POOL2: [56x56x128] $\\rightarrow$ CONV3-256: [56x56x256] $\\rightarrow$ CONV3-256: [56x56x256] $\\rightarrow$ CONV3-256: [56x56x256] $\\rightarrow$ POOL2: [28x28x256] $\\rightarrow$ CONV3-512: [28x28x512] $\\rightarrow$ CONV3-512: [28x28x512] $\\rightarrow$ CONV3-512: [28x28x512] $\\rightarrow$ POOL2: [14x14x512] $\\rightarrow$ CONV3-512: [14x14x512] $\\rightarrow$ CONV3-512: [14x14x512] $\\rightarrow$ CONV3-512: [14x14x512] $\\rightarrow$ POOL2: [7x7x512] $\\rightarrow$ FC: [1x1x4096] $\\rightarrow$ FC: [1x1x4096] $\\rightarrow$ FC: [1x1x1000].\n",
306 | "\n",
307 | "+ The largest bottleneck to be aware of when constructing ConvNet architectures is the memory bottleneck. What is the necessary memory size (supposing that we need 4 bytes for each element) to store intermediate data?\n",
308 | "\n"
309 | ]
310 | },
311 | {
312 | "metadata": {
313 | "id": "oyrajG_-6iaq",
314 | "colab_type": "code",
315 | "colab": {}
316 | },
317 | "cell_type": "code",
318 | "source": [
319 | "# your code here\n"
320 | ],
321 | "execution_count": 0,
322 | "outputs": []
323 | },
324 | {
325 | "metadata": {
326 | "id": "aYqr5XV66ias",
327 | "colab_type": "text"
328 | },
329 | "cell_type": "markdown",
330 | "source": [
331 | "## More Large Convolutional Networks\n",
332 | "\n",
333 | "\n",
334 | "+ **GoogLeNet**. The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al. from Google. Its main contribution was the development of an **Inception Module** that dramatically reduced the number of parameters in the network (4M, compared to VGG with 138,357,544). Additionally, this paper uses Average Pooling instead of Fully Connected layers at the top of the ConvNet, eliminating a large amount of parameters that do not seem to matter much. There are also several followup versions to the GoogLeNet, most recently Inception-v4.\n",
335 | "\n",
336 | "\n",
337 | "\n",
338 | "
\n",
339 | "GoogLeNet Architecture. Source: https://arxiv.org/pdf/1409.4842v1.pdf\n",
340 | "\n",
341 | "\n",
342 | "Blue Box: Convolution | Red Box: Pooling | Yelow Box: Softmax | Green Box: Normalization\n",
343 | "\n",
344 | "\n",
345 | "
\n",
346 | "Inception Layer. Source: https://arxiv.org/pdf/1409.4842v1.pdf\n",
347 | "\n",
348 | "\n",
349 | "\n",
350 | "
\n",
351 | "GoogLeNet parameters and ops. Source: https://arxiv.org/pdf/1409.4842v1.pdf\n",
352 | "\n",
353 | "\n",
354 | "> What is the role of 1x1 convolutions?\n",
355 | "\n",
356 | "+ **ResNet**. Residual Network developed by Kaiming He et al. was the winner of ILSVRC 2015. It features special **skip connections** and a heavy use of batch normalization. A Residual Network, or ResNet is a neural network architecture which solves the problem of vanishing gradients in the simplest way possible. If there is trouble sending the gradient signal backwards, why not provide the network with a shortcut at each layer to make things happen more smoothly? The architecture is also missing fully connected layers at the end of the network. \n",
357 | "\n",
358 | "\n",
359 | "
\n",
360 | "(Source: https://arxiv.org/pdf/1512.03385.pdf)\n",
361 | "\n",
362 | "\n",
363 | "\n",
364 | "
\n",
365 | " \n",
366 | "(Source: https://arxiv.org/pdf/1512.03385.pdf)\n",
367 | ""
368 | ]
369 | },
370 | {
371 | "metadata": {
372 | "id": "XOHYi9jh6iat",
373 | "colab_type": "text"
374 | },
375 | "cell_type": "markdown",
376 | "source": [
377 | "## Deeper is better?\n",
378 | "\n",
379 | "When it comes to neural network design, the trend in the past few years has pointed in one direction: deeper. \n",
380 | "\n",
381 | "Whereas the state of the art only a few years ago consisted of networks which were roughly twelve layers deep, it is now not surprising to come across networks which are hundreds of layers deep. \n",
382 | "\n",
383 | "This move hasn’t just consisted of greater depth for depths sake. For many applications, the most prominent of which being object classification, the deeper the neural network, the better the performance.\n",
384 | "\n",
385 | "So the problem is to design a network in which the gradient can more easily reach all the layers of a network which might be dozens, or even hundreds of layers deep. This is the goal behind some of state of the art architectures: ResNets, HighwayNets, and DenseNets.\n",
386 | "\n",
387 | "**HighwayNets** builds on the ResNet in a pretty intuitive way. The Highway Network preserves the shortcuts introduced in the ResNet, but augments them with a learnable parameter to determine to what extent each layer should be a skip connection or a nonlinear connection. Layers in a Highway Network are defined as follows:\n",
388 | "\n",
389 | " $$ y = H(x, W_H) \\cdot T(x,W_T) + x \\cdot C(x, W_C) $$\n",
390 | " \n",
391 | "In this equation we can see an outline of two kinds of layers discussed: $y = H(x,W_H)$ mirrors the traditional layer, and $y = H(x,W_H) + x$ mirrors our residual unit. \n",
392 | "\n",
393 | "The traditional layer can be implemented as:\n",
394 | "\n",
395 | "```python\n",
396 | "def dense(x, input_size, output_size, activation):\n",
397 | " W = tf.Variable(tf.truncated_normal([input_size, output_size], stddev=0.1), name=\"weight\")\n",
398 | " b = tf.Variable(tf.constant(0.1, shape=[output_size]), name=\"bias\")\n",
399 | " y = activation(tf.matmul(x, W) + b)\n",
400 | " return y\n",
401 | "```\n",
402 | "\n",
403 | "What is new is the $T(x,W_t)$, the transform gate function and $C(x,W_C) = 1 - T(x,W_t)$, the carry gate function. What happens is that when the transform gate is 1, we pass through our activation (H) and suppress the carry gate (since it will be 0). When the carry gate is 1, we pass through the unmodified input (x), while the activation is suppressed.\n",
404 | "\n",
405 | "```python\n",
406 | "def highway(x, size, activation, carry_bias=-1.0):\n",
407 | " W_T = tf.Variable(tf.truncated_normal([size, size], stddev=0.1), name=\"weight_transform\")\n",
408 | " b_T = tf.Variable(tf.constant(carry_bias, shape=[size]), name=\"bias_transform\")\n",
409 | "\n",
410 | " W = tf.Variable(tf.truncated_normal([size, size], stddev=0.1), name=\"weight\")\n",
411 | " b = tf.Variable(tf.constant(0.1, shape=[size]), name=\"bias\")\n",
412 | "\n",
413 | " T = tf.sigmoid(tf.matmul(x, W_T) + b_T, name=\"transform_gate\")\n",
414 | " H = activation(tf.matmul(x, W) + b, name=\"activation\")\n",
415 | " C = tf.sub(1.0, T, name=\"carry_gate\")\n",
416 | "\n",
417 | " y = tf.add(tf.mul(H, T), tf.mul(x, C), \"y\")\n",
418 | " return y\n",
419 | "```\n",
420 | "\n",
421 | "With this kind of network you can train models with hundreds of layers.\n",
422 | "\n",
423 | "**DenseNet** takes the insights of the skip connection to the extreme. The idea here is that if connecting a skip connection from the previous layer improves performance, why not connect every layer to every other layer? That way there is always a direct route for the information backwards through the network.\n",
424 | "\n",
425 | "\n",
426 | "
\n",
427 | "(Source: https://arxiv.org/abs/1608.06993)\n",
428 | "\n",
429 | "\n",
430 | "Instead of using an addition however, the DenseNet relies on stacking of layers. Mathematically this looks like:\n",
431 | "\n",
432 | "$$ y = f(x, x-1, x-2, \\dots, x-n) $$\n",
433 | "\n",
434 | "This architecture makes intuitive sense in both the feedforward and feed backward settings. In the feed-forward setting, a task may benefit from being able to get low-level feature activations in addition to high level feature activations. In classifying objects for example, a lower layer of the network may determine edges in an image, whereas a higher layer would determine larger-scale features such as presence of faces. There may be cases where being able to use information about edges can help in determining the correct object in a complex scene. In the backwards case, having all the layers connected allows us to quickly send gradients to their respective places in the network easily.\n",
435 | "\n"
436 | ]
437 | },
438 | {
439 | "metadata": {
440 | "id": "Zg29A7wJ6iau",
441 | "colab_type": "text"
442 | },
443 | "cell_type": "markdown",
444 | "source": [
445 | "## Fully Convolutional Networks\n",
446 | "\n",
447 | "(Source: http://cs231n.github.io/convolutional-networks/#convert)\n",
448 | "\n",
449 | "The only difference between **Fully Connected (FC)** and **Convolutional (CONV)** layers is that the neurons in the CONV layer are connected only to a local region in the input, and that many of the neurons in a CONV volume share parameters. \n",
450 | "\n",
451 | "However, the neurons in both layers still compute dot products, so their functional form is identical.\n",
452 | "\n",
453 | "Then, it is easy to see that for any CONV layer there is an FC layer that implements the same forward function. The weight matrix would be a large matrix that is mostly zero except for at certain blocks (due to local connectivity) where the weights in many of the blocks are equal (due to parameter sharing).\n",
454 | "\n",
455 | "\n",
456 | "
\n",
457 | "\n",
458 | "\n",
459 | "\n",
460 | "Conversely, any FC layer can be converted to a CONV layer. \n",
461 | "\n",
462 | "Let $F$ be the receptive field size of the CONV layer neurons and $K$ the depth (number of bands) of the CONV layer.\n",
463 | "\n",
464 | "For example, an FC layer with $K=4096$ that is looking at some input volume of size $7×7×512$ (this is a tensor with size $(7×7×512, 4096$) can be equivalently expressed as $4096$ CONV layers with $F=7,K=512$ (this are $4096$ $(7,7,512)$ matrices). \n",
465 | "\n",
466 | "This can be very useful, bacause now we can apply the network to arbitrary large images!"
467 | ]
468 | },
469 | {
470 | "metadata": {
471 | "id": "B3HZ8p-g6iau",
472 | "colab_type": "text"
473 | },
474 | "cell_type": "markdown",
475 | "source": [
476 | "## Object Detection and Segmentation\n",
477 | "(Source: https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4)\n",
478 | "\n",
479 | "In classification, there’s generally an image with a single object as the focus and the task is to say what that image is. But when we look at the world around us, we see complicated sights with multiple overlapping objects, and different backgrounds and we not only classify these different objects but also identify their boundaries, differences, and relations to one another!\n",
480 | "\n",
481 | "To what extent do CNN generalize to object detection? Object detection is the task of finding the different objects in an image and classifying them.\n",
482 | "\n",
483 | "### R-CNN\n",
484 | "\n",
485 | "A team, comprised of Ross Girshick (a name we’ll see again), Jeff Donahue, and Trevor Darrel found that this problem can be solved with AlexNet by testing on the PASCAL VOC Challenge, a popular object detection challenge akin to ImageNet.\n",
486 | "\n",
487 | "The goal of R-CNN is to take in an image, and correctly identify where the main objects (via a bounding box) in the image.\n",
488 | "\n",
489 | ">Inputs: Image\n",
490 | "\n",
491 | ">Outputs: Bounding boxes + labels for each object in the image.\n",
492 | "\n",
493 | "But how do we find out where these bounding boxes are? R-CNN proposes a bunch of boxes in the image and see if any of them actually correspond to an object.\n",
494 | "\n",
495 | "R-CNN creates these bounding boxes, or region proposals, using a process called Selective Search (see http://www.cs.cornell.edu/courses/cs7670/2014sp/slides/VisionSeminar14.pdf). \n",
496 | "\n",
497 | "At a high level, Selective Search looks at the image through windows of different sizes, and for each size tries to group together adjacent pixels by texture, color, or intensity to identify objects.\n",
498 | "\n",
499 | "Once the proposals are created, R-CNN warps the region to a standard square size and passes it through to a modified version of AlexNet.\n",
500 | "\n",
501 | "On the final layer of the CNN, R-CNN adds a Support Vector Machine (SVM) that simply classifies whether this is an object, and if so what object. \n",
502 | "\n",
503 | "\n",
504 | "
\n",
505 | "\n",
506 | "\n",
507 | "Now, having found the object in the box, can we tighten the box to fit the true dimensions of the object? We can, and this is the final step of R-CNN. R-CNN runs a simple linear regression on the region proposal to generate tighter bounding box coordinates to get our final result. Here are the inputs and outputs of this regression model:\n",
508 | "\n",
509 | "> Inputs: sub-regions of the image corresponding to objects.\n",
510 | "\n",
511 | "> Outputs: New bounding box coordinates for the object in the sub-region.\n",
512 | "\n",
513 | "\n",
514 | "\n",
515 | "### Fast R-CNN\n",
516 | "\n",
517 | "R-CNN works really well, but is really quite slow for a few simple reasons:\n",
518 | "+ It requires a forward pass of the CNN (AlexNet) for every single region proposal for every single image (that’s around 2000 forward passes per image!).\n",
519 | "+ It has to train three different models separately - the CNN to generate image features, the classifier that predicts the class, and the regression model to tighten the bounding boxes. This makes the pipeline extremely hard to train.\n",
520 | "\n",
521 | "In 2015, Ross Girshick, the first author of R-CNN, solved both these problems, leading to Fast R-CNN. \n",
522 | "\n",
523 | "For the forward pass of the CNN, Girshick realized that for each image, a lot of proposed regions for the image invariably overlapped causing us to run the same CNN computation again and again (~2000 times!). His insight was simple — Why not run the CNN just once per image and then find a way to share that computation across the ~2000 proposals?\n",
524 | "\n",
525 | "This is exactly what Fast R-CNN does using a technique known as **RoIPool** (Region of Interest Pooling). At its core, RoIPool shares the forward pass of a CNN for an image across its subregions. In the image below, notice how the CNN features for each region are obtained by selecting a corresponding region from the CNN’s feature map. Then, the features in each region are pooled (usually using max pooling). So all it takes us is one pass of the original image as opposed to ~2000!\n",
526 | "\n",
527 | "\n",
528 | "
\n",
529 | "(Source: Stanford’s CS231N slides by Fei Fei Li, Andrei Karpathy, and Justin Johnson)\n",
530 | "\n",
531 | "\n",
532 | "\n",
533 | "The second insight of Fast R-CNN is to jointly train the CNN, classifier, and bounding box regressor in a single model. Where earlier we had different models to extract image features (CNN), classify (SVM), and tighten bounding boxes (regressor), Fast R-CNN instead used a single network to compute all three.\n",
534 | "\n",
535 | "\n",
536 | "
\n",
537 | "(Source: https://www.slideshare.net/simplyinsimple/detection-52781995)\n",
538 | "\n",
539 | "\n",
540 | "### Faster R-CNN\n",
541 | "\n",
542 | "Even with all these advancements, there was still one remaining bottleneck in the Fast R-CNN process — the region proposer. As we saw, the very first step to detecting the locations of objects is generating a bunch of potential bounding boxes or regions of interest to test. In Fast R-CNN, these proposals were created using Selective Search, a fairly slow process that was found to be the bottleneck of the overall process.\n",
543 | "\n",
544 | "In the middle 2015, a team at Microsoft Research composed of Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, found a way to make the region proposal step almost cost free through an architecture they (creatively) named Faster R-CNN.\n",
545 | "\n",
546 | "The insight of Faster R-CNN was that region proposals depended on features of the image that were already calculated with the forward pass of the CNN (first step of classification). So why not reuse those same CNN results for region proposals instead of running a separate selective search algorithm?\n",
547 | "\n",
548 | "\n",
549 | "
\n",
550 | "(Source: https://arxiv.org/abs/1506.01497)\n",
551 | "\n",
552 | "\n",
553 | "Here are the inputs and outputs of their model:\n",
554 | "\n",
555 | "> Inputs: Images (Notice how region proposals are not needed).\n",
556 | "\n",
557 | "> Outputs: Classifications and bounding box coordinates of objects in the images.\n",
558 | "\n",
559 | "### Mask R-CNN\n",
560 | "\n",
561 | "So far, we’ve seen how we’ve been able to use CNN features in many interesting ways to effectively locate different objects in an image with bounding boxes.\n",
562 | "\n",
563 | "Can we extend such techniques to go one step further and locate exact pixels of each object instead of just bounding boxes? This problem, known as image segmentation, is what Kaiming He and a team of researchers, including Girshick, explored at Facebook AI using an architecture known as Mask R-CNN.\n",
564 | "\n",
565 | "Given that Faster R-CNN works so well for object detection, could we extend it to also carry out pixel level segmentation? \n",
566 | "\n",
567 | "Mask R-CNN does this by adding a branch to Faster R-CNN that outputs a binary mask that says whether or not a given pixel is part of an object. The branch (in white in the above image), as before, is just a Fully Convolutional Network on top of a CNN based feature map. Here are its inputs and outputs:\n",
568 | "\n",
569 | "> Inputs: CNN Feature Map.\n",
570 | "> Outputs: Matrix with 1s on all locations where the pixel belongs to the object and 0s elsewhere (this is known as a binary mask).\n",
571 | "\n",
572 | "\n",
573 | "
\n",
574 | "(Source: https://arxiv.org/abs/1703.06870)\n",
575 | ""
576 | ]
577 | },
578 | {
579 | "metadata": {
580 | "id": "4QlgQgrl6iav",
581 | "colab_type": "text"
582 | },
583 | "cell_type": "markdown",
584 | "source": [
585 | "## 1D-Conv for text classification\n",
586 | "\n",
587 | "**IMDB Movie reviews sentiment classification**: Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative). Reviews have been preprocessed, and each review is encoded as a sequence of word indexes (integers). For convenience, words are indexed by overall frequency in the dataset, so that for instance the integer \"3\" encodes the 3rd most frequent word in the data. This allows for quick filtering operations such as: \"only consider the top 10,000 most common words, but eliminate the top 20 most common words\".\n",
588 | "\n",
589 | "The seminal research paper on this subject was published by Yoon Kim on 2014. In this paper Yoon Kim has laid the foundations for how to model and process text by convolutional neural networks for the purpose of sentiment analysis. He has shown that by simple one-dimentional convolutional networks, one can develops very simple neural networks that reach 90% accuracy very quickly.\n",
590 | "\n",
591 | "Here is the text of an example review from our dataset:\n",
592 | "\n",
593 | "\n",
594 | "
\n",
595 | ""
596 | ]
597 | },
598 | {
599 | "metadata": {
600 | "id": "pp2zq6BWCoVi",
601 | "colab_type": "code",
602 | "colab": {
603 | "base_uri": "https://localhost:8080/",
604 | "height": 72
605 | },
606 | "outputId": "a1cc3933-5049-4c7f-d0e2-a6e6bc959a52"
607 | },
608 | "cell_type": "code",
609 | "source": [
610 | "!pip install numpy==1.16.2"
611 | ],
612 | "execution_count": 2,
613 | "outputs": [
614 | {
615 | "output_type": "stream",
616 | "text": [
617 | "Requirement already satisfied: numpy==1.16.2 in /usr/local/lib/python3.6/dist-packages (1.16.2)\n",
618 | "\n"
619 | ],
620 | "name": "stdout"
621 | }
622 | ]
623 | },
624 | {
625 | "metadata": {
626 | "id": "6sgz-wbhCuF2",
627 | "colab_type": "code",
628 | "colab": {
629 | "base_uri": "https://localhost:8080/",
630 | "height": 34
631 | },
632 | "outputId": "7151d57f-31c9-4484-a20e-85f3b83527a5"
633 | },
634 | "cell_type": "code",
635 | "source": [
636 | "import numpy as np\n",
637 | "print(np.__version__)"
638 | ],
639 | "execution_count": 4,
640 | "outputs": [
641 | {
642 | "output_type": "stream",
643 | "text": [
644 | "1.16.2\n"
645 | ],
646 | "name": "stdout"
647 | }
648 | ]
649 | },
650 | {
651 | "metadata": {
652 | "id": "bZolXdO46iaw",
653 | "colab_type": "code",
654 | "outputId": "4584bda2-8dd1-44c0-a561-c7d0b66c5226",
655 | "colab": {
656 | "base_uri": "https://localhost:8080/",
657 | "height": 575
658 | }
659 | },
660 | "cell_type": "code",
661 | "source": [
662 | "'''\n",
663 | "This example demonstrates the use of Convolution1D for text classification.\n",
664 | "'''\n",
665 | "\n",
666 | "from __future__ import print_function\n",
667 | "import numpy as np\n",
668 | "import tensorflow as tf\n",
669 | "np.random.seed(1337) # for reproducibility\n",
670 | "\n",
671 | "from tensorflow.keras.preprocessing import sequence\n",
672 | "from tensorflow.keras.models import Sequential\n",
673 | "from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten\n",
674 | "from tensorflow.keras.layers import Embedding\n",
675 | "from tensorflow.keras.layers import Conv1D, MaxPooling1D\n",
676 | "from tensorflow.keras.datasets import imdb\n",
677 | "\n",
678 | "\n",
679 | "# set parameters:\n",
680 | "max_features = 5000\n",
681 | "maxlen = 100\n",
682 | "batch_size = 32\n",
683 | "embedding_dims = 100\n",
684 | "nb_filter = 250\n",
685 | "filter_length = 3\n",
686 | "hidden_dims = 250\n",
687 | "nb_epoch = 10\n",
688 | "\n",
689 | "print('Loading data...')\n",
690 | "(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_features)\n",
691 | "print(len(X_train), ' train sequences \\n')\n",
692 | "print(len(X_test), ' test sequences \\n')\n",
693 | "\n",
694 | "print('Pad sequences (samples x time)')\n",
695 | "X_train = sequence.pad_sequences(X_train, maxlen=maxlen)\n",
696 | "X_test = sequence.pad_sequences(X_test, maxlen=maxlen)\n",
697 | "print('X_train shape:', X_train.shape)\n",
698 | "print('X_test shape:', X_test.shape)\n",
699 | "\n",
700 | "print('Build model...')\n",
701 | "model = Sequential()\n",
702 | "\n",
703 | "# we start off with an efficient embedding layer which maps\n",
704 | "# our vocab indices into embedding_dims dimensions\n",
705 | "model.add(Embedding(max_features, embedding_dims, input_length=maxlen))\n",
706 | "model.add(Dropout(0.25))\n",
707 | "\n",
708 | "# we add a Convolution1D, which will learn nb_filter\n",
709 | "# word group filters of size filter_length:\n",
710 | "model.add(Conv1D(padding=\"valid\", \n",
711 | " kernel_size=3, \n",
712 | " filters=250, \n",
713 | " strides=1, \n",
714 | " activation=\"relu\"))\n",
715 | "# we use standard max pooling (halving the output of the previous layer):\n",
716 | "model.add(MaxPooling1D(pool_size=2))\n",
717 | "\n",
718 | "model.add(Conv1D(padding=\"valid\", \n",
719 | " kernel_size=3, \n",
720 | " filters=250, \n",
721 | " strides=1, \n",
722 | " activation=\"relu\"))\n",
723 | "model.add(MaxPooling1D(pool_size=2))\n",
724 | "\n",
725 | "\n",
726 | "# We flatten the output of the conv layer,\n",
727 | "# so that we can add a vanilla dense layer:\n",
728 | "model.add(Flatten())\n",
729 | "\n",
730 | "# We add a vanilla hidden layer:\n",
731 | "model.add(Dense(hidden_dims))\n",
732 | "model.add(Dropout(0.25))\n",
733 | "model.add(Activation('relu'))\n",
734 | "\n",
735 | "# We project onto a single unit output layer, and squash it with a sigmoid:\n",
736 | "model.add(Dense(1))\n",
737 | "model.add(Activation('sigmoid'))\n",
738 | "\n",
739 | "model.compile(loss='binary_crossentropy',\n",
740 | " optimizer='rmsprop',\n",
741 | " metrics=['accuracy'])\n",
742 | "model.fit(X_train, y_train,\n",
743 | " batch_size=batch_size,\n",
744 | " epochs=nb_epoch,\n",
745 | " validation_data=(X_test, y_test))"
746 | ],
747 | "execution_count": 5,
748 | "outputs": [
749 | {
750 | "output_type": "stream",
751 | "text": [
752 | "Loading data...\n",
753 | "25000 train sequences \n",
754 | "\n",
755 | "25000 test sequences \n",
756 | "\n",
757 | "Pad sequences (samples x time)\n",
758 | "X_train shape: (25000, 100)\n",
759 | "X_test shape: (25000, 100)\n",
760 | "Build model...\n",
761 | "Train on 25000 samples, validate on 25000 samples\n",
762 | "Epoch 1/10\n",
763 | "25000/25000 [==============================] - 10s 384us/sample - loss: 0.4533 - acc: 0.7702 - val_loss: 0.3769 - val_acc: 0.8333\n",
764 | "Epoch 2/10\n",
765 | "25000/25000 [==============================] - 6s 222us/sample - loss: 0.3199 - acc: 0.8620 - val_loss: 0.3270 - val_acc: 0.8564\n",
766 | "Epoch 3/10\n",
767 | "25000/25000 [==============================] - 6s 223us/sample - loss: 0.2845 - acc: 0.8836 - val_loss: 0.3240 - val_acc: 0.8582\n",
768 | "Epoch 4/10\n",
769 | "25000/25000 [==============================] - 6s 236us/sample - loss: 0.2559 - acc: 0.8992 - val_loss: 0.3555 - val_acc: 0.8459\n",
770 | "Epoch 5/10\n",
771 | "25000/25000 [==============================] - 6s 243us/sample - loss: 0.2326 - acc: 0.9072 - val_loss: 0.4883 - val_acc: 0.8101\n",
772 | "Epoch 6/10\n",
773 | "25000/25000 [==============================] - 6s 223us/sample - loss: 0.2097 - acc: 0.9195 - val_loss: 0.5515 - val_acc: 0.7976\n",
774 | "Epoch 7/10\n",
775 | "25000/25000 [==============================] - 6s 224us/sample - loss: 0.1858 - acc: 0.9300 - val_loss: 0.4102 - val_acc: 0.8372\n",
776 | "Epoch 8/10\n",
777 | "25000/25000 [==============================] - 6s 221us/sample - loss: 0.1644 - acc: 0.9378 - val_loss: 0.3814 - val_acc: 0.8463\n",
778 | "Epoch 9/10\n",
779 | "25000/25000 [==============================] - 6s 223us/sample - loss: 0.1430 - acc: 0.9480 - val_loss: 0.5229 - val_acc: 0.8366\n",
780 | "Epoch 10/10\n",
781 | "25000/25000 [==============================] - 6s 220us/sample - loss: 0.1291 - acc: 0.9537 - val_loss: 0.4734 - val_acc: 0.8504\n"
782 | ],
783 | "name": "stdout"
784 | },
785 | {
786 | "output_type": "execute_result",
787 | "data": {
788 | "text/plain": [
789 | ""
790 | ]
791 | },
792 | "metadata": {
793 | "tags": []
794 | },
795 | "execution_count": 5
796 | }
797 | ]
798 | }
799 | ]
800 | }
--------------------------------------------------------------------------------
/3-Tensorflow programming model (Solution).ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "nbpresent": {
7 | "id": "58f4f8ea-e41a-469a-a078-bb1e1725a1d3"
8 | }
9 | },
10 | "source": [
11 | "### Exercise\n",
12 | "\n",
13 | "Let's built and visualize and complex model:\n",
14 | "\n",
15 | "+ Our inputs will be placeholders.\n",
16 | "+ The model will take in a single vector of any lenght.\n",
17 | "+ The graph will be segmented in name scopes.\n",
18 | "+ We will accumulate the total value of all outputs over time.\n",
19 | "+ At each run, we are going to save the output of the graph, the accumulated total of all outputs, and the average value of all outputs to disk for use in `tensorboard`.\n",
20 | "\n",
21 | "\n",
22 | "\n"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 1,
28 | "metadata": {
29 | "ExecuteTime": {
30 | "end_time": "2019-03-05T16:27:52.921775Z",
31 | "start_time": "2019-03-05T16:27:50.195592Z"
32 | },
33 | "code_folding": [],
34 | "nbpresent": {
35 | "id": "a8218e4e-4edc-48b5-a6a3-3af3169dee3f"
36 | }
37 | },
38 | "outputs": [
39 | {
40 | "name": "stdout",
41 | "output_type": "stream",
42 | "text": [
43 | "WARNING:tensorflow:From /Users/jordivitria/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
44 | "Instructions for updating:\n",
45 | "Colocations handled automatically by placer.\n",
46 | "WARNING:tensorflow:From :46: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
47 | "Instructions for updating:\n",
48 | "Deprecated in favor of operator or tf.math.divide.\n"
49 | ]
50 | }
51 | ],
52 | "source": [
53 | "import tensorflow as tf\n",
54 | "import numpy as np\n",
55 | "\n",
56 | "tf.reset_default_graph()\n",
57 | "\n",
58 | "# Explicitly create a Graph object\n",
59 | "graph = tf.Graph()\n",
60 | "\n",
61 | "with graph.as_default():\n",
62 | " \n",
63 | " with tf.name_scope(\"variables\"):\n",
64 | " # Variable to keep track of how many times the graph has been run\n",
65 | " global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name=\"global_step\")\n",
66 | "\n",
67 | " # Variable that keeps track of the sum of all output values over time:\n",
68 | " total_output = tf.Variable(0.0, dtype=tf.float32, trainable=False, name=\"total_output\")\n",
69 | "\n",
70 | " with tf.name_scope(\"transformation\"):\n",
71 | "\n",
72 | " # Separate input layer\n",
73 | " with tf.name_scope(\"input\"):\n",
74 | " # Create input placeholder- takes in a Vector\n",
75 | " a = tf.placeholder(tf.float32, shape=[None], name=\"input_placeholder_a\")\n",
76 | "\n",
77 | " # Separate middle layer\n",
78 | " with tf.name_scope(\"intermediate_layer\"):\n",
79 | " b = tf.reduce_sum(a, name=\"sum_b\")\n",
80 | " c = tf.reduce_prod(a, name=\"product_c\")\n",
81 | "\n",
82 | " # Separate output layer\n",
83 | " with tf.name_scope(\"output\"):\n",
84 | " output = tf.add(b, c, name=\"output\")\n",
85 | " \n",
86 | " \n",
87 | " with tf.name_scope(\"update\"):\n",
88 | " # Increments the total_output Variable by the latest output\n",
89 | " update_total = total_output.assign_add(output)\n",
90 | "\n",
91 | " # Increments the above `global_step` Variable, should be run whenever the graph is run\n",
92 | " increment_step = global_step.assign_add(1)\n",
93 | "\n",
94 | " \n",
95 | " # Summary Operations\n",
96 | " with tf.name_scope(\"summaries\"):\n",
97 | " # Calculating average (avg = total/steps)\n",
98 | " avg = tf.div(update_total, tf.cast(increment_step, tf.float32), name=\"average\")\n",
99 | "\n",
100 | " # Creates summaries for output node\n",
101 | " tf.summary.scalar(\"output_summary\", output)\n",
102 | " tf.summary.scalar(\"total_summary\", update_total)\n",
103 | " tf.summary.scalar(\"average_summary\", avg)\n",
104 | " \n",
105 | " # Global Variables and Operations\n",
106 | " with tf.name_scope(\"global_ops\"):\n",
107 | " # Initialization Op\n",
108 | " init = tf.global_variables_initializer()\n",
109 | " # Merge all summaries[…]\n",
110 | " merged_summaries = tf.summary.merge_all()\n",
111 | " # Start a Session, using the explicitly created Graph\n",
112 | "sess = tf.Session(graph=graph)\n",
113 | "\n",
114 | "# Open a SummaryWriter to save summaries\n",
115 | "writer = tf.summary.FileWriter('./improved_graph', graph)\n",
116 | "\n",
117 | "# Initialize Variables\n",
118 | "sess.run(init)"
119 | ]
120 | },
121 | {
122 | "cell_type": "markdown",
123 | "metadata": {
124 | "nbpresent": {
125 | "id": "76d05e86-509b-494a-8364-953c74c1aadb"
126 | }
127 | },
128 | "source": [
129 | "Let's write a function to run the graph several times:"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": 2,
135 | "metadata": {
136 | "ExecuteTime": {
137 | "end_time": "2019-03-05T16:27:56.374145Z",
138 | "start_time": "2019-03-05T16:27:56.370352Z"
139 | },
140 | "nbpresent": {
141 | "id": "ac2057e4-ca62-4985-af03-04ecaf7c41b5"
142 | }
143 | },
144 | "outputs": [],
145 | "source": [
146 | "def run_graph(input_tensor):\n",
147 | " \"\"\"\n",
148 | " Helper function; runs the graph with given input tensor and saves summaries\n",
149 | " \"\"\"\n",
150 | " feed_dict = {a: input_tensor}\n",
151 | " out, step, summary = sess.run([output, increment_step, merged_summaries], \n",
152 | " feed_dict=feed_dict)\n",
153 | " writer.add_summary(summary, global_step=step)"
154 | ]
155 | },
156 | {
157 | "cell_type": "code",
158 | "execution_count": 3,
159 | "metadata": {
160 | "ExecuteTime": {
161 | "end_time": "2019-03-05T16:27:57.426704Z",
162 | "start_time": "2019-03-05T16:27:57.393916Z"
163 | },
164 | "nbpresent": {
165 | "id": "47fcb7a3-7d43-4dfc-9b03-2fc208b165e6"
166 | }
167 | },
168 | "outputs": [],
169 | "source": [
170 | "# Run the graph with various inputs\n",
171 | "run_graph([2,8])\n",
172 | "run_graph([3,1,3,3])\n",
173 | "run_graph([8])\n",
174 | "run_graph([1,2,3])\n",
175 | "run_graph([11,4])\n",
176 | "run_graph([4,1])\n",
177 | "run_graph([7,3,1])\n",
178 | "run_graph([6,3])\n",
179 | "run_graph([0,2])\n",
180 | "run_graph([4,5,6])\n",
181 | "\n",
182 | "# Write the summaries to disk\n",
183 | "writer.flush()\n",
184 | "\n",
185 | "# Close the SummaryWriter\n",
186 | "writer.close()\n",
187 | "\n",
188 | "# Close the session\n",
189 | "sess.close()"
190 | ]
191 | },
192 | {
193 | "cell_type": "markdown",
194 | "metadata": {
195 | "nbpresent": {
196 | "id": "4adbbc73-2fc9-4f83-8c54-081b32a3375e"
197 | }
198 | },
199 | "source": [
200 | "To start TensorBoard after running this code, run the following command:\n",
201 | "\n",
202 | "`tensorboard --logdir='./improved_graph'` "
203 | ]
204 | }
205 | ],
206 | "metadata": {
207 | "anaconda-cloud": {},
208 | "kernel_info": {
209 | "name": "python3"
210 | },
211 | "kernelspec": {
212 | "display_name": "Python 3",
213 | "language": "python",
214 | "name": "python3"
215 | },
216 | "language_info": {
217 | "codemirror_mode": {
218 | "name": "ipython",
219 | "version": 3
220 | },
221 | "file_extension": ".py",
222 | "mimetype": "text/x-python",
223 | "name": "python",
224 | "nbconvert_exporter": "python",
225 | "pygments_lexer": "ipython3",
226 | "version": "3.6.7"
227 | },
228 | "nbpresent": {
229 | "slides": {
230 | "0eb9ee9c-5399-4988-94f3-8cee78537404": {
231 | "id": "0eb9ee9c-5399-4988-94f3-8cee78537404",
232 | "prev": null,
233 | "regions": {
234 | "4acc45f3-e023-4446-a93e-619fe0b22943": {
235 | "attrs": {
236 | "height": 0.8,
237 | "width": 0.8,
238 | "x": 0.1,
239 | "y": 0.1
240 | },
241 | "content": {
242 | "cell": "47a4bdec-f25c-4842-9025-77aa6ace8805",
243 | "part": "whole"
244 | },
245 | "id": "4acc45f3-e023-4446-a93e-619fe0b22943"
246 | }
247 | }
248 | },
249 | "10844e3a-543e-48a6-b696-d4dcfd40d55f": {
250 | "id": "10844e3a-543e-48a6-b696-d4dcfd40d55f",
251 | "prev": "5fc39987-5f96-4eef-88a0-b974113bfbab",
252 | "regions": {
253 | "af141f66-ba8f-4546-ab4a-e5e22cac1950": {
254 | "attrs": {
255 | "height": 0.8,
256 | "width": 0.8,
257 | "x": 0.1,
258 | "y": 0.1
259 | },
260 | "content": {
261 | "cell": "f3a49756-9e22-421c-a0d3-8bc670856ab0",
262 | "part": "whole"
263 | },
264 | "id": "af141f66-ba8f-4546-ab4a-e5e22cac1950"
265 | }
266 | }
267 | },
268 | "131dcdac-6159-44e0-9867-2c6521c536b9": {
269 | "id": "131dcdac-6159-44e0-9867-2c6521c536b9",
270 | "prev": "f788e7d5-5631-4090-b44e-03ea24aa1887",
271 | "regions": {
272 | "1ef1e8fa-cac5-4873-a3f7-d39435a2c89a": {
273 | "attrs": {
274 | "height": 0.8,
275 | "width": 0.8,
276 | "x": 0.1,
277 | "y": 0.1
278 | },
279 | "content": {
280 | "cell": "efe7c304-c8de-4d24-8bd0-dbfa078133b5",
281 | "part": "whole"
282 | },
283 | "id": "1ef1e8fa-cac5-4873-a3f7-d39435a2c89a"
284 | }
285 | }
286 | },
287 | "168f7f5f-f3e3-46ad-b488-436b5cc1fea0": {
288 | "id": "168f7f5f-f3e3-46ad-b488-436b5cc1fea0",
289 | "prev": "33131316-744b-45af-b499-9e1784ddd7ed",
290 | "regions": {
291 | "930c6824-963f-4cd5-bfde-65130261f1c7": {
292 | "attrs": {
293 | "height": 0.8,
294 | "width": 0.8,
295 | "x": 0.1,
296 | "y": 0.1
297 | },
298 | "content": {
299 | "cell": "a8218e4e-4edc-48b5-a6a3-3af3169dee3f",
300 | "part": "whole"
301 | },
302 | "id": "930c6824-963f-4cd5-bfde-65130261f1c7"
303 | }
304 | }
305 | },
306 | "2b9c3116-58b8-4773-8bb0-1bf8fe05296d": {
307 | "id": "2b9c3116-58b8-4773-8bb0-1bf8fe05296d",
308 | "prev": "3ff0f7df-82f5-43b2-be58-8ef1fea20437",
309 | "regions": {
310 | "e97963bc-5880-455f-b739-fe2035ff0725": {
311 | "attrs": {
312 | "height": 0.8,
313 | "width": 0.8,
314 | "x": 0.1,
315 | "y": 0.1
316 | },
317 | "content": {
318 | "cell": "ee6da6ee-dd82-49bf-8a6f-b92a8413b396",
319 | "part": "whole"
320 | },
321 | "id": "e97963bc-5880-455f-b739-fe2035ff0725"
322 | }
323 | }
324 | },
325 | "33131316-744b-45af-b499-9e1784ddd7ed": {
326 | "id": "33131316-744b-45af-b499-9e1784ddd7ed",
327 | "prev": "dfb0485f-4165-455b-a321-1368a5593f90",
328 | "regions": {
329 | "2f4480ab-af8e-4c1b-bbe7-e31da84b1df1": {
330 | "attrs": {
331 | "height": 0.8,
332 | "width": 0.8,
333 | "x": 0.1,
334 | "y": 0.1
335 | },
336 | "content": {
337 | "cell": "58f4f8ea-e41a-469a-a078-bb1e1725a1d3",
338 | "part": "whole"
339 | },
340 | "id": "2f4480ab-af8e-4c1b-bbe7-e31da84b1df1"
341 | }
342 | }
343 | },
344 | "39446710-2f8f-48cc-9800-22e7cbf9baa7": {
345 | "id": "39446710-2f8f-48cc-9800-22e7cbf9baa7",
346 | "prev": "564fcf1c-547b-4fc1-a39d-8998a92426ce",
347 | "regions": {
348 | "5682b394-0a6a-4d97-974f-ecaeb0e167fb": {
349 | "attrs": {
350 | "height": 0.8,
351 | "width": 0.8,
352 | "x": 0.1,
353 | "y": 0.1
354 | },
355 | "content": {
356 | "cell": "a637e0a1-a62b-49a1-99e2-d8eeb974fada",
357 | "part": "whole"
358 | },
359 | "id": "5682b394-0a6a-4d97-974f-ecaeb0e167fb"
360 | }
361 | }
362 | },
363 | "3c0bfcfd-edb6-4599-814d-85a7bdd827d3": {
364 | "id": "3c0bfcfd-edb6-4599-814d-85a7bdd827d3",
365 | "prev": "b8ef6042-0e70-43fe-a97b-c3c5e98e48a9",
366 | "regions": {
367 | "d00b6aa4-5b6d-4c1f-9db3-0f8e0c27be3b": {
368 | "attrs": {
369 | "height": 0.8,
370 | "width": 0.8,
371 | "x": 0.1,
372 | "y": 0.1
373 | },
374 | "content": {
375 | "cell": "6937c67a-43fa-4f1e-ab3d-89a199c83eb0",
376 | "part": "whole"
377 | },
378 | "id": "d00b6aa4-5b6d-4c1f-9db3-0f8e0c27be3b"
379 | }
380 | }
381 | },
382 | "3ff0f7df-82f5-43b2-be58-8ef1fea20437": {
383 | "id": "3ff0f7df-82f5-43b2-be58-8ef1fea20437",
384 | "prev": "8b8a4005-fafe-4345-b56a-ceea0afd3563",
385 | "regions": {
386 | "94792abe-ffb8-422b-89d2-7345f8cd9706": {
387 | "attrs": {
388 | "height": 0.8,
389 | "width": 0.8,
390 | "x": 0.1,
391 | "y": 0.1
392 | },
393 | "content": {
394 | "cell": "ca99d481-e62a-45c3-960c-ad87b458d8cb",
395 | "part": "whole"
396 | },
397 | "id": "94792abe-ffb8-422b-89d2-7345f8cd9706"
398 | }
399 | }
400 | },
401 | "42b53f50-3c32-4035-9006-72199a92dfa1": {
402 | "id": "42b53f50-3c32-4035-9006-72199a92dfa1",
403 | "prev": "99bfd62c-37d6-4513-975f-7453d45208bf",
404 | "regions": {
405 | "b3a398a7-4346-4a59-aea5-13fa483aab87": {
406 | "attrs": {
407 | "height": 0.8,
408 | "width": 0.8,
409 | "x": 0.1,
410 | "y": 0.1
411 | },
412 | "content": {
413 | "cell": "a4071b69-ab10-4ccd-93ed-b445d8ba7299",
414 | "part": "whole"
415 | },
416 | "id": "b3a398a7-4346-4a59-aea5-13fa483aab87"
417 | }
418 | }
419 | },
420 | "4d691fc4-2db6-4207-aafe-5534e2efcc31": {
421 | "id": "4d691fc4-2db6-4207-aafe-5534e2efcc31",
422 | "prev": "9169cd80-86a2-4764-bf37-e1c61e762403",
423 | "regions": {
424 | "1016787c-0369-47d3-8a83-316f76b88dd7": {
425 | "attrs": {
426 | "height": 0.8,
427 | "width": 0.8,
428 | "x": 0.1,
429 | "y": 0.1
430 | },
431 | "content": {
432 | "cell": "47fcb7a3-7d43-4dfc-9b03-2fc208b165e6",
433 | "part": "whole"
434 | },
435 | "id": "1016787c-0369-47d3-8a83-316f76b88dd7"
436 | }
437 | }
438 | },
439 | "50c442dc-bea5-4ccb-a16b-32b67ba7974d": {
440 | "id": "50c442dc-bea5-4ccb-a16b-32b67ba7974d",
441 | "prev": "39446710-2f8f-48cc-9800-22e7cbf9baa7",
442 | "regions": {
443 | "fdeaf8e6-6364-4c4d-a0b7-aeffa5ca4658": {
444 | "attrs": {
445 | "height": 0.8,
446 | "width": 0.8,
447 | "x": 0.1,
448 | "y": 0.1
449 | },
450 | "content": {
451 | "cell": "c4c8921f-ec0b-4302-bd4e-23251c7cd7de",
452 | "part": "whole"
453 | },
454 | "id": "fdeaf8e6-6364-4c4d-a0b7-aeffa5ca4658"
455 | }
456 | }
457 | },
458 | "564fcf1c-547b-4fc1-a39d-8998a92426ce": {
459 | "id": "564fcf1c-547b-4fc1-a39d-8998a92426ce",
460 | "prev": "65ab85a7-29e3-409f-8440-429ff4935863",
461 | "regions": {
462 | "d2bce45d-7487-41a5-b872-ecd420e8ada9": {
463 | "attrs": {
464 | "height": 0.8,
465 | "width": 0.8,
466 | "x": 0.1,
467 | "y": 0.1
468 | },
469 | "content": {
470 | "cell": "1acdc391-57ed-4c09-854d-b7c8cb07701b",
471 | "part": "whole"
472 | },
473 | "id": "d2bce45d-7487-41a5-b872-ecd420e8ada9"
474 | }
475 | }
476 | },
477 | "5bde732d-d4dd-4c0a-887b-8ecfbe878dbe": {
478 | "id": "5bde732d-d4dd-4c0a-887b-8ecfbe878dbe",
479 | "prev": "65c8bb38-d316-4bae-9a4f-a2853b16d1b7",
480 | "regions": {
481 | "af634b4f-62f6-4a77-af50-72798a8ab9fa": {
482 | "attrs": {
483 | "height": 0.8,
484 | "width": 0.8,
485 | "x": 0.1,
486 | "y": 0.1
487 | },
488 | "content": {
489 | "cell": "6c4f248a-2039-4d50-946e-934257e12d29",
490 | "part": "whole"
491 | },
492 | "id": "af634b4f-62f6-4a77-af50-72798a8ab9fa"
493 | }
494 | }
495 | },
496 | "5e7fc216-62a9-4e9e-aec1-86c77ce5811b": {
497 | "id": "5e7fc216-62a9-4e9e-aec1-86c77ce5811b",
498 | "prev": "b7abb62f-c11a-4375-a27e-e793c2795a3d",
499 | "regions": {
500 | "cd5f198c-ac67-440e-923f-4388a6d666b6": {
501 | "attrs": {
502 | "height": 0.8,
503 | "width": 0.8,
504 | "x": 0.1,
505 | "y": 0.1
506 | },
507 | "content": {
508 | "cell": "33897391-05a6-4b4e-a235-9e162427f843",
509 | "part": "whole"
510 | },
511 | "id": "cd5f198c-ac67-440e-923f-4388a6d666b6"
512 | }
513 | }
514 | },
515 | "5fc39987-5f96-4eef-88a0-b974113bfbab": {
516 | "id": "5fc39987-5f96-4eef-88a0-b974113bfbab",
517 | "prev": "c398a942-e2de-433f-b565-b6c258e5f76f",
518 | "regions": {
519 | "a5089fac-dd81-4121-81cb-617389f4448b": {
520 | "attrs": {
521 | "height": 0.8,
522 | "width": 0.8,
523 | "x": 0.1,
524 | "y": 0.1
525 | },
526 | "content": {
527 | "cell": "86c6424a-3e4a-4e6c-98f1-f9917cc659c8",
528 | "part": "whole"
529 | },
530 | "id": "a5089fac-dd81-4121-81cb-617389f4448b"
531 | }
532 | }
533 | },
534 | "65ab85a7-29e3-409f-8440-429ff4935863": {
535 | "id": "65ab85a7-29e3-409f-8440-429ff4935863",
536 | "prev": "8d834420-65a6-4be5-ab68-621de6fbe163",
537 | "regions": {
538 | "d0614420-c749-4937-ab00-52caeb7ba9b0": {
539 | "attrs": {
540 | "height": 0.8,
541 | "width": 0.8,
542 | "x": 0.1,
543 | "y": 0.1
544 | },
545 | "content": {
546 | "cell": "0cb9c1e0-21d6-4dfd-bfbe-582238143402",
547 | "part": "whole"
548 | },
549 | "id": "d0614420-c749-4937-ab00-52caeb7ba9b0"
550 | }
551 | }
552 | },
553 | "65c8bb38-d316-4bae-9a4f-a2853b16d1b7": {
554 | "id": "65c8bb38-d316-4bae-9a4f-a2853b16d1b7",
555 | "prev": "50c442dc-bea5-4ccb-a16b-32b67ba7974d",
556 | "regions": {
557 | "125c6623-7694-4973-beb8-17015254fbd6": {
558 | "attrs": {
559 | "height": 0.8,
560 | "width": 0.8,
561 | "x": 0.1,
562 | "y": 0.1
563 | },
564 | "content": {
565 | "cell": "65a196d3-5416-4ccc-923c-29c06466427c",
566 | "part": "whole"
567 | },
568 | "id": "125c6623-7694-4973-beb8-17015254fbd6"
569 | }
570 | }
571 | },
572 | "6b170754-f46e-4f7d-b3af-4fc2d6777247": {
573 | "id": "6b170754-f46e-4f7d-b3af-4fc2d6777247",
574 | "prev": "df917a16-e756-4db8-ae9a-506e790cf04c",
575 | "regions": {
576 | "d9e1fcf9-c339-49db-8020-de72925717c8": {
577 | "attrs": {
578 | "height": 0.8,
579 | "width": 0.8,
580 | "x": 0.1,
581 | "y": 0.1
582 | },
583 | "content": {
584 | "cell": "e46c73f6-5607-4af4-b22f-41f3f4dcec9e",
585 | "part": "whole"
586 | },
587 | "id": "d9e1fcf9-c339-49db-8020-de72925717c8"
588 | }
589 | }
590 | },
591 | "7675660a-4c0e-4fde-bedc-6bfdefe232d4": {
592 | "id": "7675660a-4c0e-4fde-bedc-6bfdefe232d4",
593 | "prev": "4d691fc4-2db6-4207-aafe-5534e2efcc31",
594 | "regions": {
595 | "46382fff-6b3a-40f9-8af5-25052be0b668": {
596 | "attrs": {
597 | "height": 0.8,
598 | "width": 0.8,
599 | "x": 0.1,
600 | "y": 0.1
601 | },
602 | "content": {
603 | "cell": "4adbbc73-2fc9-4f83-8c54-081b32a3375e",
604 | "part": "whole"
605 | },
606 | "id": "46382fff-6b3a-40f9-8af5-25052be0b668"
607 | }
608 | }
609 | },
610 | "79afa2d5-c641-43ae-8f08-3d64fdd52373": {
611 | "id": "79afa2d5-c641-43ae-8f08-3d64fdd52373",
612 | "prev": "defa79e9-d30e-49e9-b206-1dcf6736fd0b",
613 | "regions": {
614 | "e01a8964-f684-4035-9ddc-ef3516fdec90": {
615 | "attrs": {
616 | "height": 0.8,
617 | "width": 0.8,
618 | "x": 0.1,
619 | "y": 0.1
620 | },
621 | "content": {
622 | "cell": "e0b483f6-ccce-4f20-b082-0546e7f5f1e7",
623 | "part": "whole"
624 | },
625 | "id": "e01a8964-f684-4035-9ddc-ef3516fdec90"
626 | }
627 | }
628 | },
629 | "7fe8d340-580d-4293-bf70-3058295f0e5f": {
630 | "id": "7fe8d340-580d-4293-bf70-3058295f0e5f",
631 | "prev": "168f7f5f-f3e3-46ad-b488-436b5cc1fea0",
632 | "regions": {
633 | "ddfe5f89-e891-4b9d-9bdf-c0fc3fbc2c84": {
634 | "attrs": {
635 | "height": 0.8,
636 | "width": 0.8,
637 | "x": 0.1,
638 | "y": 0.1
639 | },
640 | "content": {
641 | "cell": "76d05e86-509b-494a-8364-953c74c1aadb",
642 | "part": "whole"
643 | },
644 | "id": "ddfe5f89-e891-4b9d-9bdf-c0fc3fbc2c84"
645 | }
646 | }
647 | },
648 | "8b8a4005-fafe-4345-b56a-ceea0afd3563": {
649 | "id": "8b8a4005-fafe-4345-b56a-ceea0afd3563",
650 | "prev": "c45f3e22-0112-491b-8708-cfb8fd55e67d",
651 | "regions": {
652 | "c09e06d3-9ce9-462e-b827-de824b2fd3eb": {
653 | "attrs": {
654 | "height": 0.8,
655 | "width": 0.8,
656 | "x": 0.1,
657 | "y": 0.1
658 | },
659 | "content": {
660 | "cell": "0eb291f0-5427-44ad-b55b-08fd1ce2ef01",
661 | "part": "whole"
662 | },
663 | "id": "c09e06d3-9ce9-462e-b827-de824b2fd3eb"
664 | }
665 | }
666 | },
667 | "8d834420-65a6-4be5-ab68-621de6fbe163": {
668 | "id": "8d834420-65a6-4be5-ab68-621de6fbe163",
669 | "prev": "5e7fc216-62a9-4e9e-aec1-86c77ce5811b",
670 | "regions": {
671 | "0709a4f5-d5b2-486f-a68d-508ec9b3118a": {
672 | "attrs": {
673 | "height": 0.8,
674 | "width": 0.8,
675 | "x": 0.1,
676 | "y": 0.1
677 | },
678 | "content": {
679 | "cell": "757d1ac9-70da-430a-819a-903afd30e0bb",
680 | "part": "whole"
681 | },
682 | "id": "0709a4f5-d5b2-486f-a68d-508ec9b3118a"
683 | }
684 | }
685 | },
686 | "8f3b675e-7fe6-447e-864b-074941b1619c": {
687 | "id": "8f3b675e-7fe6-447e-864b-074941b1619c",
688 | "prev": "42b53f50-3c32-4035-9006-72199a92dfa1",
689 | "regions": {
690 | "6b0c668f-bcd7-42e7-886d-8d8a18b8abe7": {
691 | "attrs": {
692 | "height": 0.8,
693 | "width": 0.8,
694 | "x": 0.1,
695 | "y": 0.1
696 | },
697 | "content": {
698 | "cell": "e8e3c449-56f2-4b1e-9112-6b013cfc6ec6",
699 | "part": "whole"
700 | },
701 | "id": "6b0c668f-bcd7-42e7-886d-8d8a18b8abe7"
702 | }
703 | }
704 | },
705 | "9169cd80-86a2-4764-bf37-e1c61e762403": {
706 | "id": "9169cd80-86a2-4764-bf37-e1c61e762403",
707 | "prev": "7fe8d340-580d-4293-bf70-3058295f0e5f",
708 | "regions": {
709 | "6f9bab17-12fc-4ffd-8ac8-aaf4f5b9666b": {
710 | "attrs": {
711 | "height": 0.8,
712 | "width": 0.8,
713 | "x": 0.1,
714 | "y": 0.1
715 | },
716 | "content": {
717 | "cell": "ac2057e4-ca62-4985-af03-04ecaf7c41b5",
718 | "part": "whole"
719 | },
720 | "id": "6f9bab17-12fc-4ffd-8ac8-aaf4f5b9666b"
721 | }
722 | }
723 | },
724 | "99bfd62c-37d6-4513-975f-7453d45208bf": {
725 | "id": "99bfd62c-37d6-4513-975f-7453d45208bf",
726 | "prev": "f2242224-82bb-45d0-948c-e0b58b8456c8",
727 | "regions": {
728 | "ec50533b-af5d-4fae-b186-c6dbd88efa04": {
729 | "attrs": {
730 | "height": 0.8,
731 | "width": 0.8,
732 | "x": 0.1,
733 | "y": 0.1
734 | },
735 | "content": {
736 | "cell": "92384d6d-bed6-4e4e-bfc1-ddf88de0963e",
737 | "part": "whole"
738 | },
739 | "id": "ec50533b-af5d-4fae-b186-c6dbd88efa04"
740 | }
741 | }
742 | },
743 | "a67d3ded-1c1a-43ec-ac9d-5fb0946652c2": {
744 | "id": "a67d3ded-1c1a-43ec-ac9d-5fb0946652c2",
745 | "prev": "3c0bfcfd-edb6-4599-814d-85a7bdd827d3",
746 | "regions": {
747 | "8b1efa67-24eb-47b1-b579-ec26c1e865ee": {
748 | "attrs": {
749 | "height": 0.8,
750 | "width": 0.8,
751 | "x": 0.1,
752 | "y": 0.1
753 | },
754 | "content": {
755 | "cell": "aae85c45-c89c-401a-9131-01e07651e0af",
756 | "part": "whole"
757 | },
758 | "id": "8b1efa67-24eb-47b1-b579-ec26c1e865ee"
759 | }
760 | }
761 | },
762 | "af606d45-02cf-4a7e-b91e-76d47fe00c40": {
763 | "id": "af606d45-02cf-4a7e-b91e-76d47fe00c40",
764 | "prev": "2b9c3116-58b8-4773-8bb0-1bf8fe05296d",
765 | "regions": {
766 | "e2bb3e5e-7372-4f9a-92a5-70d35bbcc850": {
767 | "attrs": {
768 | "height": 0.8,
769 | "width": 0.8,
770 | "x": 0.1,
771 | "y": 0.1
772 | },
773 | "content": {
774 | "cell": "ea824159-e736-4e2a-b024-524e337f6fac",
775 | "part": "whole"
776 | },
777 | "id": "e2bb3e5e-7372-4f9a-92a5-70d35bbcc850"
778 | }
779 | }
780 | },
781 | "b7abb62f-c11a-4375-a27e-e793c2795a3d": {
782 | "id": "b7abb62f-c11a-4375-a27e-e793c2795a3d",
783 | "prev": "131dcdac-6159-44e0-9867-2c6521c536b9",
784 | "regions": {
785 | "c41e06a6-86bf-436a-bbd5-25f4733cca6b": {
786 | "attrs": {
787 | "height": 0.8,
788 | "width": 0.8,
789 | "x": 0.1,
790 | "y": 0.1
791 | },
792 | "content": {
793 | "cell": "c14452d1-3454-4704-b59a-e18b8251103b",
794 | "part": "whole"
795 | },
796 | "id": "c41e06a6-86bf-436a-bbd5-25f4733cca6b"
797 | }
798 | }
799 | },
800 | "b8ef6042-0e70-43fe-a97b-c3c5e98e48a9": {
801 | "id": "b8ef6042-0e70-43fe-a97b-c3c5e98e48a9",
802 | "prev": "0eb9ee9c-5399-4988-94f3-8cee78537404",
803 | "regions": {
804 | "0393ad1f-f602-477d-9561-b9997b6ae0b1": {
805 | "attrs": {
806 | "height": 0.8,
807 | "width": 0.8,
808 | "x": 0.1,
809 | "y": 0.1
810 | },
811 | "content": {
812 | "cell": "20019a20-ae7f-4beb-8cd4-d68150382b1e",
813 | "part": "whole"
814 | },
815 | "id": "0393ad1f-f602-477d-9561-b9997b6ae0b1"
816 | }
817 | }
818 | },
819 | "c398a942-e2de-433f-b565-b6c258e5f76f": {
820 | "id": "c398a942-e2de-433f-b565-b6c258e5f76f",
821 | "prev": "8f3b675e-7fe6-447e-864b-074941b1619c",
822 | "regions": {
823 | "dd42546e-f361-4901-b289-853b870b5ef9": {
824 | "attrs": {
825 | "height": 0.8,
826 | "width": 0.8,
827 | "x": 0.1,
828 | "y": 0.1
829 | },
830 | "content": {
831 | "cell": "77252053-4889-4a38-a497-49465a2e9ac1",
832 | "part": "whole"
833 | },
834 | "id": "dd42546e-f361-4901-b289-853b870b5ef9"
835 | }
836 | }
837 | },
838 | "c45f3e22-0112-491b-8708-cfb8fd55e67d": {
839 | "id": "c45f3e22-0112-491b-8708-cfb8fd55e67d",
840 | "prev": "6b170754-f46e-4f7d-b3af-4fc2d6777247",
841 | "regions": {
842 | "d2c1656c-3044-4792-a198-e6148a0f7291": {
843 | "attrs": {
844 | "height": 0.8,
845 | "width": 0.8,
846 | "x": 0.1,
847 | "y": 0.1
848 | },
849 | "content": {
850 | "cell": "defd975d-f087-4747-9b2f-06ccde7ee725",
851 | "part": "whole"
852 | },
853 | "id": "d2c1656c-3044-4792-a198-e6148a0f7291"
854 | }
855 | }
856 | },
857 | "defa79e9-d30e-49e9-b206-1dcf6736fd0b": {
858 | "id": "defa79e9-d30e-49e9-b206-1dcf6736fd0b",
859 | "prev": "5bde732d-d4dd-4c0a-887b-8ecfbe878dbe",
860 | "regions": {
861 | "d6201f68-d926-464f-af69-b6358baa3169": {
862 | "attrs": {
863 | "height": 0.8,
864 | "width": 0.8,
865 | "x": 0.1,
866 | "y": 0.1
867 | },
868 | "content": {
869 | "cell": "3d475195-dd8a-4ce5-8e90-f7bcd42008f4",
870 | "part": "whole"
871 | },
872 | "id": "d6201f68-d926-464f-af69-b6358baa3169"
873 | }
874 | }
875 | },
876 | "df917a16-e756-4db8-ae9a-506e790cf04c": {
877 | "id": "df917a16-e756-4db8-ae9a-506e790cf04c",
878 | "prev": "79afa2d5-c641-43ae-8f08-3d64fdd52373",
879 | "regions": {
880 | "d9d17a48-00c5-4ef8-839f-11157b81e4d3": {
881 | "attrs": {
882 | "height": 0.8,
883 | "width": 0.8,
884 | "x": 0.1,
885 | "y": 0.1
886 | },
887 | "content": {
888 | "cell": "8f062cb0-836d-47b9-a5fd-a9291431e3dc",
889 | "part": "whole"
890 | },
891 | "id": "d9d17a48-00c5-4ef8-839f-11157b81e4d3"
892 | }
893 | }
894 | },
895 | "dfb0485f-4165-455b-a321-1368a5593f90": {
896 | "id": "dfb0485f-4165-455b-a321-1368a5593f90",
897 | "prev": "af606d45-02cf-4a7e-b91e-76d47fe00c40",
898 | "regions": {
899 | "9a34c164-a20e-4e3e-adae-493e61d54955": {
900 | "attrs": {
901 | "height": 0.8,
902 | "width": 0.8,
903 | "x": 0.1,
904 | "y": 0.1
905 | },
906 | "content": {
907 | "cell": "236459a0-db19-4ca3-ab64-d36697e6180f",
908 | "part": "whole"
909 | },
910 | "id": "9a34c164-a20e-4e3e-adae-493e61d54955"
911 | }
912 | }
913 | },
914 | "f2242224-82bb-45d0-948c-e0b58b8456c8": {
915 | "id": "f2242224-82bb-45d0-948c-e0b58b8456c8",
916 | "prev": "a67d3ded-1c1a-43ec-ac9d-5fb0946652c2",
917 | "regions": {
918 | "e947732f-650c-4a35-ad0a-869a3ba452fe": {
919 | "attrs": {
920 | "height": 0.8,
921 | "width": 0.8,
922 | "x": 0.1,
923 | "y": 0.1
924 | },
925 | "content": {
926 | "cell": "3fd06df9-1eec-447c-bed7-d88be2d8d4d9",
927 | "part": "whole"
928 | },
929 | "id": "e947732f-650c-4a35-ad0a-869a3ba452fe"
930 | }
931 | }
932 | },
933 | "f788e7d5-5631-4090-b44e-03ea24aa1887": {
934 | "id": "f788e7d5-5631-4090-b44e-03ea24aa1887",
935 | "prev": "10844e3a-543e-48a6-b696-d4dcfd40d55f",
936 | "regions": {
937 | "d441b345-210c-492c-8540-b0f3e833269c": {
938 | "attrs": {
939 | "height": 0.8,
940 | "width": 0.8,
941 | "x": 0.1,
942 | "y": 0.1
943 | },
944 | "content": {
945 | "cell": "24af87db-9051-4768-9064-079dc5e9b965",
946 | "part": "whole"
947 | },
948 | "id": "d441b345-210c-492c-8540-b0f3e833269c"
949 | }
950 | }
951 | }
952 | },
953 | "themes": {}
954 | },
955 | "nteract": {
956 | "version": "0.12.3"
957 | },
958 | "toc": {
959 | "base_numbering": 1,
960 | "nav_menu": {},
961 | "number_sections": true,
962 | "sideBar": true,
963 | "skip_h1_title": false,
964 | "title_cell": "Table of Contents",
965 | "title_sidebar": "Contents",
966 | "toc_cell": false,
967 | "toc_position": {},
968 | "toc_section_display": true,
969 | "toc_window_display": false
970 | }
971 | },
972 | "nbformat": 4,
973 | "nbformat_minor": 1
974 | }
975 |
--------------------------------------------------------------------------------
/DeepLearningMasterIntro2019.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/DeepLearningMasterIntro2019.pdf
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 |
2 | FROM gcr.io/tensorflow/tensorflow:1.5.0-py3
3 | #Install packages
4 | RUN DEBIAN_FRONTEND=noninteractive apt-get update
5 | RUN DEBIAN_FRONTEND=noninteractive apt-get -qqy install wget python3-pip git
6 | RUN DEBIAN_FRONTEND=noninteractive pip3 install --upgrade pip
7 | RUN DEBIAN_FRONTEND=noninteractive pip3 install tqdm seaborn keras edward autograd pymc3 gym gensim
8 |
9 | #Remove examples
10 | RUN rm -Rf *
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018 Jordi Vitrià
4 | Permission is hereby granted, free of charge, to any person obtaining a copy
5 | of this software and associated documentation files (the "Software"), to deal
6 | in the Software without restriction, including without limitation the rights
7 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 | copies of the Software, and to permit persons to whom the Software is
9 | furnished to do so, subject to the following conditions:
10 |
11 | The above copyright notice and this permission notice shall be included in all
12 | copies or substantial portions of the Software.
13 |
14 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 | SOFTWARE.
21 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | This is an outdated repository corresponding to the 2018/2019 UB MSc Course. If you are looking for the 2019/2020 course, go to https://github.com/DataScienceUB/DeepLearningMaster20192020
5 |
6 |
7 |
8 |
9 |
10 |
11 | ## DeepLearningMaster Repository
12 |
13 | This repository contains notebooks used in DEEP LEARNING COURSE of the [MASTER IN FUNDAMENTAL PRINCIPLES OF DATA SCIENCE](http://www.ub.edu/datascience/master/) of the Universitat de Barcelona.
14 |
15 | ## Course Description
16 |
17 | Deep learning is one of the fastest growing areas of machine learning and a hot topic in both academia and industry. This course will cover the basics of deep learning by using a hands-on approach.
18 |
19 | ## Course Instructor
20 |
21 | [Jordi Vitrià](http://www.ub.edu/cvub/jordivitria/)
22 |
23 | ## Class Time and Location
24 |
25 | + 2ond Semester (February - May, 2019)
26 | + Lecture: Tuesday 15:00h-17:00h
27 | + Location: Aula B1, Facultat de Matemàtiques i Informàtica, Universitat de Barcelona. [Map](https://www.google.es/maps/place/Gran+Via+de+les+Corts+Catalanes,+585,+08007+Barcelona/@41.3865736,2.1619408,17z/data=!3m1!4b1!4m5!3m4!1s0x12a4a28cbeee3689:0x4b4a8ba716765923!8m2!3d41.3865736!4d2.1641295?hl=ca).
28 |
29 | ## Prerequisites
30 |
31 | + Proficiency in Python (3.6): All class assignments will be in Python (using ``tensorflow`` and ``keras``).
32 | + Calculus, Linear Algebra, Optimization: You should be comfortable taking derivatives and understanding matrix vector operations and notation.
33 | + Basic Probability and Statistics.
34 | + Machine Learning.
35 |
36 | If you are not used to Git, you can complete this free online git [course](https://try.github.io/levels/1/challenges/1)
37 |
38 | ## Grading
39 |
40 | + Assignment #1: 30%. Submission deadline (UB Campus Virtual): **March 19th, 2019.**
41 | + Assignment #2: 30%. Submission deadline (UB Campus Virtual): **April 20th, 2019.**
42 | + Assignment #3: 40%. Submission deadline (UB Campus Virtual): **June 2nd, 2019**
43 |
44 | Study groups are allowed but we expect students to understand and complete their own assignments and to hand in one assignment per student.
45 |
46 | ## Course Agenda
47 |
48 | - Introduction to Deep Learning and its applications. Using the Jupyter notebook & Docker. Software stack.
49 |
- Basic concepts: learning from data.
50 |
- Automated differentiation & Backpropagation, Training a Neural Network from Scratch.
51 |
- Tensorflow programming model. Dense Neural Networks.
52 |
- Keras.
53 |
- Recurrent Neural Netwoks I.
54 |
- Recurrent Neural Netwoks II.
55 |
- Embeddings.
56 |
- Convolutional Neural Networks I.
57 |
- Convolutional Neural Networks for Large Scale Learning.
58 |
- Unsupervised Learning I.
59 |
- Unsupervised Learning II.
60 |
- Deep Reinforcement Learning.
61 |
62 |
63 | ## Course Software Installation: Working in Colab
64 |
65 | You can develop deep learning applications with Google Colaboratory (Colab) -on the free Tesla K80 GPU- using Keras and Tensorflow. Colab is a Google internal research tool for data science. They have released the tool sometime earlier to the general public with a goal of dissemination of machine learning education and research. This is a free service that may not always be available, and requires extra steps to ensure your work is saved. Be sure to read the docs on the Colab web site to ensure you understand the limitations of the system.
66 |
67 | For accessing Colab, first of all you should sign in to you Google account if you are not signed in by default. You must do this step before opening Colab, otherwise the notebooks will not work.
68 |
69 | Next, head on to the Colab Welcome Page (https://colab.research.google.com) and click on ‘Github’. In the ‘Enter a GitHub URL or search by organization or user’ line enter ‘https://github.com/DataScienceUB/DeepLearningMaster2019’. You will see all the courses notebooks listed there. Click on the one you are interested in using.
70 |
71 | You should see your notebook displayed now. Before running anything, you need to tell Colab that you are interested in using a GPU. You can do this by clicking on the ‘Runtime’ tab and selecting ‘Change runtime type’. A pop-up window will open up with a drop-down menu. Select ‘GPU’ from the menu and click ‘Save’.
72 |
73 | When you run the first cell, you will face a pop-up saying ‘Warning: This notebook was not authored by Google’; you should leave the default tick in the ‘Reset all runtimes before running’ check box and click on ‘Run Anyway’.
74 |
75 | If you opened a notebook from Github, you will need to save your work to Google Drive. You can do this by clicking on ‘File’ and then ‘Save’.
76 |
77 | Click on ‘SAVE A COPY IN DRIVE’. This will open up a new tab with the same file, only this time located in your Drive. If you want to continue working after saving, use the file in the new tab. Your notebook will be saved in a folder called Colab Notebooks in your Google Drive by default.
78 |
79 | If you run a script which creates/ downloads files, the files will NOT persist after the allocated instance is shutdown. To save files, you need to permit your Colaboratory instance to read and write files to your Google Drive. Add the following code snippet at the beginning of every notebook.
80 |
81 | ```python
82 | from google.colab import drive
83 | drive.mount('/content/gdrive', force_remount=True)
84 | root_dir = "/content/gdrive/My Drive/"
85 | base_dir = root_dir + 'masterUB/'
86 | ```
87 |
88 | Now, you may access your Google Drive as a file sytem using standard python commands to both read and write files.
89 |
90 | You can find more information in these blogs:
91 | + https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d
92 | + https://medium.com/tensorflow/colab-an-easy-way-to-learn-and-use-tensorflow-d74d1686e309
93 |
94 | ## Course Software Installation: Working with Docker
95 |
96 | You can run the course software using a **Docker container**.
97 |
98 | > A gentle introduction to docker: [How Docker Can Help You Become A More Effective Data Scientist](https://towardsdatascience.com/how-docker-can-help-you-become-a-more-effective-data-scientist-7fc048ef91d5)
99 |
100 | There’s full documentation on installing Docker at ``docker.com``, but in a few words, the steps are:
101 |
102 | + Go to ``docs.docker.com`` in your browser.
103 | + Step one of the instructions sends you to download Docker.
104 | + Run that downloaded file to install Docker.
105 | + At the end of the install process a whale in the top status bar indicates that Docker is running, and accessible from a terminal.
106 | + Click the whale to get ``Preferences``, and other options.
107 | + Open a command-line terminal, and run some Docker commands to verify that Docker is working as expected.
108 | Some good commands to try are ``docker version`` to check that you have the latest release installed, and ``docker ps`` and ``docker run hello-world`` to verify that Docker is running.
109 | + By default, Docker is set to use 2 processors. You can increase processing power for the app by setting this to a higher number in ``Preferences``, or lower it to use fewer computing resources.
110 | + Memory - By default, Docker is set to use 2 GB runtime memory, allocated from the total available memory on your computer. You can increase the RAM on the app to get faster performance by setting this number higher (for example to 3) or lower (to 1) if you want Docker to use less memory.
111 |
112 | Once Docker is installed, you can download the **image of this course** and download this git repository:
113 |
114 | + In a terminal, go to your course folder and run (This operation requires a good internet connection; it will take some minutes): ``docker pull datascienceub/deepub``
115 | + MacOS & Linux: Run the ``deepub`` image on your system: ``docker run -it -p 8888:8888 -p 6006:6006 -v /$(pwd):/notebooks datascienceub/deepub``
116 | + Windows: Run the ``deepub`` image on your system: ``docker run -it -p 8888:8888 -p 6006:6006 -v C:/your_course_folder_path:/notebooks datascienceub/deepub``
117 | + Once these steps have been done, you can check the installation by starting your web browser and introducing the referred URL.
118 | + Finally, to have the contents of this repository in your computer, open terminal from your browser and execute this instruction: ``git clone https://github.com/DataScienceUB/DeepLearningMaster2019``.
119 |
120 | To run this image:
121 |
122 | + Windows: In a terminal, go to your course folder and run the ``deepub`` image on your system: ``docker run -it -p 8888:8888 -p 6006:6006 -v C:/your_course_folder_path:/notebooks datascienceub/deepub``.
123 | + MacOS & Linux: In a terminal, go to your course folder and run the ``deepub`` image on your system: ``docker run -it -p 8888:8888 -p 6006:6006 -v /$(pwd):/notebooks datascienceub/deepub``
124 | + Start your web browser and introduce the corresponding URL.
125 |
126 | Next times, if there are new contents in the repository, you can bring your local copy of the repository up to date:
127 |
128 | + Open a new Jupyter notebook and execute this instruction in a code cell:
129 | ``!git pull https://github.com/DataScienceUB/DeepLearningMaster2019``
130 |
131 |
--------------------------------------------------------------------------------
/data/Advertising.csv:
--------------------------------------------------------------------------------
1 | "","TV","Radio","Newspaper","Sales"
2 | "1",230.1,37.8,69.2,22.1
3 | "2",44.5,39.3,45.1,10.4
4 | "3",17.2,45.9,69.3,9.3
5 | "4",151.5,41.3,58.5,18.5
6 | "5",180.8,10.8,58.4,12.9
7 | "6",8.7,48.9,75,7.2
8 | "7",57.5,32.8,23.5,11.8
9 | "8",120.2,19.6,11.6,13.2
10 | "9",8.6,2.1,1,4.8
11 | "10",199.8,2.6,21.2,10.6
12 | "11",66.1,5.8,24.2,8.6
13 | "12",214.7,24,4,17.4
14 | "13",23.8,35.1,65.9,9.2
15 | "14",97.5,7.6,7.2,9.7
16 | "15",204.1,32.9,46,19
17 | "16",195.4,47.7,52.9,22.4
18 | "17",67.8,36.6,114,12.5
19 | "18",281.4,39.6,55.8,24.4
20 | "19",69.2,20.5,18.3,11.3
21 | "20",147.3,23.9,19.1,14.6
22 | "21",218.4,27.7,53.4,18
23 | "22",237.4,5.1,23.5,12.5
24 | "23",13.2,15.9,49.6,5.6
25 | "24",228.3,16.9,26.2,15.5
26 | "25",62.3,12.6,18.3,9.7
27 | "26",262.9,3.5,19.5,12
28 | "27",142.9,29.3,12.6,15
29 | "28",240.1,16.7,22.9,15.9
30 | "29",248.8,27.1,22.9,18.9
31 | "30",70.6,16,40.8,10.5
32 | "31",292.9,28.3,43.2,21.4
33 | "32",112.9,17.4,38.6,11.9
34 | "33",97.2,1.5,30,9.6
35 | "34",265.6,20,0.3,17.4
36 | "35",95.7,1.4,7.4,9.5
37 | "36",290.7,4.1,8.5,12.8
38 | "37",266.9,43.8,5,25.4
39 | "38",74.7,49.4,45.7,14.7
40 | "39",43.1,26.7,35.1,10.1
41 | "40",228,37.7,32,21.5
42 | "41",202.5,22.3,31.6,16.6
43 | "42",177,33.4,38.7,17.1
44 | "43",293.6,27.7,1.8,20.7
45 | "44",206.9,8.4,26.4,12.9
46 | "45",25.1,25.7,43.3,8.5
47 | "46",175.1,22.5,31.5,14.9
48 | "47",89.7,9.9,35.7,10.6
49 | "48",239.9,41.5,18.5,23.2
50 | "49",227.2,15.8,49.9,14.8
51 | "50",66.9,11.7,36.8,9.7
52 | "51",199.8,3.1,34.6,11.4
53 | "52",100.4,9.6,3.6,10.7
54 | "53",216.4,41.7,39.6,22.6
55 | "54",182.6,46.2,58.7,21.2
56 | "55",262.7,28.8,15.9,20.2
57 | "56",198.9,49.4,60,23.7
58 | "57",7.3,28.1,41.4,5.5
59 | "58",136.2,19.2,16.6,13.2
60 | "59",210.8,49.6,37.7,23.8
61 | "60",210.7,29.5,9.3,18.4
62 | "61",53.5,2,21.4,8.1
63 | "62",261.3,42.7,54.7,24.2
64 | "63",239.3,15.5,27.3,15.7
65 | "64",102.7,29.6,8.4,14
66 | "65",131.1,42.8,28.9,18
67 | "66",69,9.3,0.9,9.3
68 | "67",31.5,24.6,2.2,9.5
69 | "68",139.3,14.5,10.2,13.4
70 | "69",237.4,27.5,11,18.9
71 | "70",216.8,43.9,27.2,22.3
72 | "71",199.1,30.6,38.7,18.3
73 | "72",109.8,14.3,31.7,12.4
74 | "73",26.8,33,19.3,8.8
75 | "74",129.4,5.7,31.3,11
76 | "75",213.4,24.6,13.1,17
77 | "76",16.9,43.7,89.4,8.7
78 | "77",27.5,1.6,20.7,6.9
79 | "78",120.5,28.5,14.2,14.2
80 | "79",5.4,29.9,9.4,5.3
81 | "80",116,7.7,23.1,11
82 | "81",76.4,26.7,22.3,11.8
83 | "82",239.8,4.1,36.9,12.3
84 | "83",75.3,20.3,32.5,11.3
85 | "84",68.4,44.5,35.6,13.6
86 | "85",213.5,43,33.8,21.7
87 | "86",193.2,18.4,65.7,15.2
88 | "87",76.3,27.5,16,12
89 | "88",110.7,40.6,63.2,16
90 | "89",88.3,25.5,73.4,12.9
91 | "90",109.8,47.8,51.4,16.7
92 | "91",134.3,4.9,9.3,11.2
93 | "92",28.6,1.5,33,7.3
94 | "93",217.7,33.5,59,19.4
95 | "94",250.9,36.5,72.3,22.2
96 | "95",107.4,14,10.9,11.5
97 | "96",163.3,31.6,52.9,16.9
98 | "97",197.6,3.5,5.9,11.7
99 | "98",184.9,21,22,15.5
100 | "99",289.7,42.3,51.2,25.4
101 | "100",135.2,41.7,45.9,17.2
102 | "101",222.4,4.3,49.8,11.7
103 | "102",296.4,36.3,100.9,23.8
104 | "103",280.2,10.1,21.4,14.8
105 | "104",187.9,17.2,17.9,14.7
106 | "105",238.2,34.3,5.3,20.7
107 | "106",137.9,46.4,59,19.2
108 | "107",25,11,29.7,7.2
109 | "108",90.4,0.3,23.2,8.7
110 | "109",13.1,0.4,25.6,5.3
111 | "110",255.4,26.9,5.5,19.8
112 | "111",225.8,8.2,56.5,13.4
113 | "112",241.7,38,23.2,21.8
114 | "113",175.7,15.4,2.4,14.1
115 | "114",209.6,20.6,10.7,15.9
116 | "115",78.2,46.8,34.5,14.6
117 | "116",75.1,35,52.7,12.6
118 | "117",139.2,14.3,25.6,12.2
119 | "118",76.4,0.8,14.8,9.4
120 | "119",125.7,36.9,79.2,15.9
121 | "120",19.4,16,22.3,6.6
122 | "121",141.3,26.8,46.2,15.5
123 | "122",18.8,21.7,50.4,7
124 | "123",224,2.4,15.6,11.6
125 | "124",123.1,34.6,12.4,15.2
126 | "125",229.5,32.3,74.2,19.7
127 | "126",87.2,11.8,25.9,10.6
128 | "127",7.8,38.9,50.6,6.6
129 | "128",80.2,0,9.2,8.8
130 | "129",220.3,49,3.2,24.7
131 | "130",59.6,12,43.1,9.7
132 | "131",0.7,39.6,8.7,1.6
133 | "132",265.2,2.9,43,12.7
134 | "133",8.4,27.2,2.1,5.7
135 | "134",219.8,33.5,45.1,19.6
136 | "135",36.9,38.6,65.6,10.8
137 | "136",48.3,47,8.5,11.6
138 | "137",25.6,39,9.3,9.5
139 | "138",273.7,28.9,59.7,20.8
140 | "139",43,25.9,20.5,9.6
141 | "140",184.9,43.9,1.7,20.7
142 | "141",73.4,17,12.9,10.9
143 | "142",193.7,35.4,75.6,19.2
144 | "143",220.5,33.2,37.9,20.1
145 | "144",104.6,5.7,34.4,10.4
146 | "145",96.2,14.8,38.9,11.4
147 | "146",140.3,1.9,9,10.3
148 | "147",240.1,7.3,8.7,13.2
149 | "148",243.2,49,44.3,25.4
150 | "149",38,40.3,11.9,10.9
151 | "150",44.7,25.8,20.6,10.1
152 | "151",280.7,13.9,37,16.1
153 | "152",121,8.4,48.7,11.6
154 | "153",197.6,23.3,14.2,16.6
155 | "154",171.3,39.7,37.7,19
156 | "155",187.8,21.1,9.5,15.6
157 | "156",4.1,11.6,5.7,3.2
158 | "157",93.9,43.5,50.5,15.3
159 | "158",149.8,1.3,24.3,10.1
160 | "159",11.7,36.9,45.2,7.3
161 | "160",131.7,18.4,34.6,12.9
162 | "161",172.5,18.1,30.7,14.4
163 | "162",85.7,35.8,49.3,13.3
164 | "163",188.4,18.1,25.6,14.9
165 | "164",163.5,36.8,7.4,18
166 | "165",117.2,14.7,5.4,11.9
167 | "166",234.5,3.4,84.8,11.9
168 | "167",17.9,37.6,21.6,8
169 | "168",206.8,5.2,19.4,12.2
170 | "169",215.4,23.6,57.6,17.1
171 | "170",284.3,10.6,6.4,15
172 | "171",50,11.6,18.4,8.4
173 | "172",164.5,20.9,47.4,14.5
174 | "173",19.6,20.1,17,7.6
175 | "174",168.4,7.1,12.8,11.7
176 | "175",222.4,3.4,13.1,11.5
177 | "176",276.9,48.9,41.8,27
178 | "177",248.4,30.2,20.3,20.2
179 | "178",170.2,7.8,35.2,11.7
180 | "179",276.7,2.3,23.7,11.8
181 | "180",165.6,10,17.6,12.6
182 | "181",156.6,2.6,8.3,10.5
183 | "182",218.5,5.4,27.4,12.2
184 | "183",56.2,5.7,29.7,8.7
185 | "184",287.6,43,71.8,26.2
186 | "185",253.8,21.3,30,17.6
187 | "186",205,45.1,19.6,22.6
188 | "187",139.5,2.1,26.6,10.3
189 | "188",191.1,28.7,18.2,17.3
190 | "189",286,13.9,3.7,15.9
191 | "190",18.7,12.1,23.4,6.7
192 | "191",39.5,41.1,5.8,10.8
193 | "192",75.5,10.8,6,9.9
194 | "193",17.2,4.1,31.6,5.9
195 | "194",166.8,42,3.6,19.6
196 | "195",149.7,35.6,6,17.3
197 | "196",38.2,3.7,13.8,7.6
198 | "197",94.2,4.9,8.1,9.7
199 | "198",177,9.3,6.4,12.8
200 | "199",283.6,42,66.2,25.5
201 | "200",232.1,8.6,8.7,13.4
202 |
--------------------------------------------------------------------------------
/data/cat.txt:
--------------------------------------------------------------------------------
1 | Wow! Carai!
2 | Really? De veritat?
3 | Thanks. Gràcies!
4 | Goodbye! Adéu!
5 | Hurry up. Afanya't.
6 | Too late. Massa tard.
7 | Thank you. Gràcies!
8 | Can I help? Puc ajudar?
9 | I envy him. L'envejo.
10 | Time flies. El temps vola.
11 | I'm 17, too. Jo també tinc 17 anys.
12 | I'm at home. Estic a casa.
13 | Make a wish. Demana un desig
14 | Money talks. Qui paga, mana.
15 | We love you. T'estimem.
16 | We love you. Us estimem.
17 | Who are you? Qui ets tu?
18 | Who are you? Qui és vostè?
19 | Who are you? Qui ets?
20 | Who are you? Qui sou?
21 | He has a dog. Ell té un gos.
22 | She stood up. Ella es va aixecar.
23 | Hi, everybody. Hola a tots.
24 | I'm desperate. Estic desesperat.
25 | Let me try it. Deixa'm intentar-ho.
26 | You look good. Tens bona cara.
27 | You look good. Fas bona cara.
28 | You look good. Fas bon aspecte.
29 | Are you insane? Estàs boig?
30 | Can I help you? Puc ajudar?
31 | Happy New Year! Bon any nou!
32 | I need a stamp. Necessito un segell.
33 | I saw him jump. El vaig veure saltar.
34 | Leave me alone! Deixa'm en pau!
35 | Who painted it? Qui ho ha pintat?
36 | Her book is red. El seu llibre és roig.
37 | I didn't say it. No ho he dit pas.
38 | I felt the same. Em sentia igual.
39 | I have two cats. Tinc dos gats.
40 | I speak Swedish. Parlo suec.
41 | It's cold today! Avui fa fred!
42 | It's your fault. És culpa teva.
43 | Who are you all? Qui sou tots vosaltres?
44 | Who are you all? Qui sou totes vosaltres?
45 | Here is your bag. Aquí és la teva bossa.
46 | Here is your bag. Ací està la teua bossa.
47 | Here is your bag. Ací tens la teua bossa.
48 | I am now on duty. Ara estic de servei.
49 | I ate the cheese. Em vaig menjar el formatge.
50 | I have a problem. Tinc un problema.
51 | I have a problem. Tinc un maldecap.
52 | I have no family. No tinc família.
53 | I work in a bank. Jo treballo a un banc.
54 | I wrote a letter. Vaig escriure una carta.
55 | I'm already late. Ja faig tard.
56 | I'm not a doctor. Jo no sóc metge.
57 | Let go of my arm. Deixa'm anar el braç.
58 | She lives nearby. Viu aquí prop.
59 | They're my books. Són els meus llibres.
60 | This is your dog. Aquest és el teu gos.
61 | Tom isn't hungry. Tom no té fam.
62 | Tom walked alone. En Tom caminava sol.
63 | What is going on? Què hi ha?
64 | What is going on? Què passa?
65 | Who are you with? Amb qui estàs?
66 | Who are you with? Amb qui esteu?
67 | Answer in English. Contesta en anglès!
68 | He went back home. Ell va tornar a casa.
69 | I have an earache. Tinc otitis.
70 | I have black eyes. Tinc els ulls negres.
71 | I think he did it. Crec que ho va fer ell.
72 | I'm a salesperson. Sóc venedor.
73 | Let me have a try. Deixa'm intentar-ho.
74 | Nobody is perfect. Ningú és perfecte.
75 | She has long hair. Ella té el cabell llarg.
76 | Tom doesn't drink. Tom no beu.
77 | Why is snow white? Per què és blanca la neu?
78 | You need to hurry. T'has d'afanyar.
79 | Are you hungry now? Tens fam, ara?
80 | Are you hungry now? Teniu fam, ara?
81 | Are you hungry now? Ara tens fam?
82 | Come along with me. Acompanya'm.
83 | Do it by all means. Fes-ho com sigui.
84 | Do it by all means. Fes-ho peti qui peti.
85 | Everyone loves him. Tots l'estimen.
86 | He speaks fluently. Parla amb soltura.
87 | I don't have a cat. No tinc cap gat.
88 | I don't want sugar. No vull sucre.
89 | I have lost my key. He perdut la meva clau.
90 | It was a nightmare. Va ser un malson.
91 | Shut up and listen! Calla i escolta!
92 | Shut up and listen. Calla i escolta!
93 | Stay out of my way. Fora del meu camí!
94 | This coat fits you. Aquest abric et queda bé.
95 | Tom is a silly man. En tom és un ximplet.
96 | What's the problem? Quin problema hi ha?
97 | What's your secret? Quin és el teu secret?
98 | You are a good boy. Ets un bon noi.
99 | Europe is in crisis. Europa està en crisi.
100 | Everybody loves him. Tots l'estimen.
101 | He'll return at six. Tornarà a les sis.
102 | He's the oldest son. Ell és el fill gran.
103 | I can see the light. Puc veure la llum.
104 | I want to stay here. Vull quedar-me aquí.
105 | I'll call him later. Li cridaré més tard.
106 | I've got a question. Tinc una pregunta.
107 | She has a white cat. Ella té un gat blanc.
108 | She raised her hand. Ella va aixecar la mà.
109 | She raised her hand. Ella va alçar la mà.
110 | She raised her hand. Ella alçà la mà.
111 | She raised her hand. Va alçar la mà.
112 | The bicycle is mine. La bicicleta és meva.
113 | They were satisfied. Estaven satisfets.
114 | They were satisfied. Estaven cofois.
115 | Where are you going? A on vas?
116 | Your father is tall. Ton pare és alt.
117 | Birds fly in the sky. Els ocells volen pel cel.
118 | Can he speak English? Que parla anglès, ell?
119 | Do you live in Tokyo? Vius a Tokyo?
120 | Fish live in the sea. Els peixos viuen al mar.
121 | He is a good athlete. Ell és un bon atleta.
122 | I dislike big cities. No m'agraden les ciutats grans.
123 | I don't want to work. No vull treballar.
124 | I have two daughters. Tinc dues filles.
125 | I'm glad you're here. M'alegra que estigues ací.
126 | I'm glad you're here. M'alegra que estigueu ací.
127 | It's a piece of cake. Això és bufar i fer ampolles.
128 | It's really annoying. És realment molest.
129 | She sent me a letter. Ella em va enviar una carta.
130 | Sorry for being late. Perdó pel retard.
131 | That's a bright idea. És una idea brillant.
132 | The ground seems wet. El sòl sembla mullat.
133 | Tom always says that. Tom sempre diu això.
134 | Tom doesn't watch TV. En Tom no mira la tele.
135 | Who's coming with me? Qui ve amb mi?
136 | You can come with me. Pots venir amb mi.
137 | Your son is a genius. El vostre fill és un geni.
138 | Do you have two books? Tens dos llibres?
139 | Does he speak English? Que parla anglès, ell?
140 | Does he speak English? Parla anglès?
141 | Does he speak English? Ell parla anglès?
142 | His house was on fire. La seva casa està en flames.
143 | I don't have time now. Ara no tinc temps.
144 | I have to go to sleep. He d'anar a dormir.
145 | I know these students. conec aquests estudiants.
146 | I'd like some aspirin. Voldria una aspirina.
147 | Money opens all doors. Els diners obren totes les portes.
148 | She is a good swimmer. És una bona nedadora.
149 | Thanks for everything. Mercès per tot.
150 | The girl said nothing. La nena no va dir res.
151 | Those are empty words. Són paraules buides.
152 | We have two daughters. Tenim dues filles.
153 | What's wrong with you? Què et passa?
154 | You should eat slower. Has de menjar més a poc a poc.
155 | You're taller than me. Ets més alt que jo.
156 | Come whenever you like. Vingui quan vulgui.
157 | Come whenever you like. Veniu quan vulgueu.
158 | Come whenever you like. Vine quan vulguis.
159 | Does the bus stop here? L'autobús para ací?
160 | I didn't buy this book. No vaig comprar aquest llibre.
161 | I think he has done it. Crec que ell ho ha fet.
162 | Mary married for money. La Mary es va casar per diners.
163 | They will not eat meat. No menjaran carn.
164 | Tom wants to be famous. Tom vol ser famós.
165 | We have to act quickly. Hem d'actuar ràpid.
166 | What is wrong with him? Què li passa?
167 | Ask me something easier. Pregunta'm una cosa més fàcil.
168 | Do you have a cellphone? Tens un mòbil?
169 | He died three years ago. Va morir fa tres anys.
170 | I don't like big cities. No m'agraden les ciutats grans.
171 | I felt like I would die. Sentia que em moriria.
172 | I hope that I can do it. Espere poder-ho fer.
173 | I listened to her story. Vaig escoltar la història d'ella.
174 | I won't see him anymore. No el veuré mai més.
175 | I'll start this evening. Començaré aquest vespre.
176 | I'll start this evening. Començaré esta vesprada.
177 | I'm sure of his success. Estic segur del seu èxit.
178 | I've forgotten his name. He oblidat el seu nom.
179 | Many sailors can't swim. Molts mariners no saben nedar,
180 | My father quit drinking. El meu pare va aturar de beure.
181 | My father quit drinking. Mon pare va deixar de beure.
182 | She helped me willingly. Ella em va ajudar de bon gust.
183 | Tell me when he returns. Avisa'm quan torni.
184 | Tom is thirty years old. Tom té trenta anys.
185 | What a beautiful sunset! Quina posta de sol més bonica!
186 | What a beautiful sunset. Quina posta més maca!
187 | What a beautiful sunset. Quina posta de sol més bonica.
188 | Where are our umbrellas? On estan els nostres paraigües?
189 | Would you draw me a map? Em faríes un mapa?
190 | You will miss the train. Perdràs el tren.
191 | Can your mom drive a car? La teva mama sap conduir?
192 | Can your mom drive a car? Ta mare sap conduir?
193 | Can your mom drive a car? La teua mare sap conduir un cotxe?
194 | Can your mom drive a car? La vostra mare sap conduir?
195 | Do you have a cell phone? Tens un mòbil?
196 | Do you have a smartphone? Tens un mòbil?
197 | Don't ever do that again. No ho facis mai més.
198 | Fire is always dangerous. El foc sempre és perillós.
199 | He fell and hurt his leg. Ell es va caure i es va fer mal a la cama.
200 | He has never played golf. Ell no ha jugat mai al golf.
201 | He looks like his father. Ell s'assembla al seu pare.
202 | He speaks five languages. Ell parla cinc idiomes.
203 | I can't stand that noise. No puc aguantar aquest soroll.
204 | I didn't know what to do. No sabia què fer.
205 | I don't know her address. No sé la seva adreça.
206 | I made my son a new suit. He fet un vestit nou per a mon fill.
207 | I only have eyes for you. Aquí no veig ningú més que tu.
208 | I recognized him at once. El vaig reconèixer de seguida.
209 | I'm talking on the phone. Parlo per telèfon.
210 | I'm talking on the phone. Estic parlant per telèfon.
211 | It doesn't sound natural. No sona natural.
212 | It is nice and cool here. Aquí fa fresca i s'hi està bé.
213 | My mother is always busy. La meva mare sempre està ocupada.
214 | She had a strange hat on. Ella portava un barret estrany.
215 | This is his car, I think. Aquest és el seu cotxe, crec.
216 | Tom is a history teacher. En Tom és un professor d'història.
217 | Tom visited Mary's grave. En Tom va visitar la tomba de la Mary.
218 | Turn down the TV, please. Baixa el volum del televisor.
219 | Turn the TV down, please. Baixa el volum del televisor.
220 | You are everything to me. Tu ets tot per mi.
221 | You don't have to eat it. Vostè no ha de menjar-ho.
222 | I like to listen to music. M'agrada escoltar música.
223 | I made a careless mistake. Vaig cometre una negligència.
224 | I'm busy, so I can't help. Estic ocupat, no puc ajudar-te.
225 | I'm busy, so I can't help. Estic ocupat, no puc ajudar-vos.
226 | I'm standing in the shade. M'estic dret a l'ombra.
227 | It's always been that way. Sempre ha sigut així.
228 | That'll put you in danger. Això et posarà en perill.
229 | We may be late for school. Potser farem tard a l'escola.
230 | What a nice sounding word! Què bé sona aquesta paraula!
231 | Where will you be staying? On t'estaràs?
232 | Where will you be staying? On t'allotjaràs?
233 | Where will you be staying? On et quedaràs?
234 | Where will you be staying? On us allotjareu?
235 | You agree with Tom, right? Estàs d'acord amb Tom, oi?
236 | You agree with Tom, right? Esteu d'acord amb Tom, veritat?
237 | You don't have to do this. No has de fer-ho.
238 | You don't have to do this. Això no ho has de fer.
239 | Do they have any good news? Tens bones notícies?
240 | Do you come here every day? Véns aquí cada dia?
241 | Do you come here every day? Veniu ací tots els dies?
242 | Do you have a mobile phone? Tens un mòbil?
243 | Do you know his birthplace? Saps on va néixer?
244 | I have to buy one tomorrow. He de comprar-ne un demà.
245 | I just want to be near you. Només vull estar prop de tu.
246 | I know he likes jazz music. Sé que li agrada el jazz.
247 | I'd rather do it by myself. Prefereixo fer-lo pel meu compte.
248 | I'm afraid I caught a cold. Em sembla que he agafat un constipat.
249 | It's all you can really do. És tot el que pots fer.
250 | It's always been like that. Sempre ha sigut així.
251 | She's Tom's younger sister. És la germana petita d'en Tom.
252 | She's Tom's younger sister. És la germana menuda de Tom.
253 | The bird's wing was broken. L'ala de l'ocell estava trencada.
254 | The bird's wing was broken. L'ocell tenia una ala trencada.
255 | The bird's wing was broken. El pardal tenia una ala trencada.
256 | There were ten eggs in all. Hi havia deu ous en total.
257 | There's no reason to worry. No hi ha cap motiu per preocupar-se.
258 | Things are not that simple. Les coses no són tan senzilles.
259 | This store sells old books. Aquesta botiga ven llibres vells.
260 | You're not a child anymore. Ja no ets un nen.
261 | Columbus discovered America. Colón va descobrir Amèrica.
262 | Don't you like Chinese food? No t'agrada el menjar xinès?
263 | France is in western Europe. França és a l'Europa Occidental.
264 | He plays baseball every day. Juga al beisbol tots el dies.
265 | He wants a watch like yours. Vol un rellotge com el teu.
266 | He's the one who touched me. Ell és el que em va tocar.
267 | I don't know if he knows it. No sé si ho sap.
268 | I'll be back in ten minutes. Tornaré en deu minuts.
269 | I'm the one who has the key. Jo sóc qui té la clau.
270 | Take off your socks, please. Sisplau, lleva't els mitjons.
271 | Take off your socks, please. Lleva't els calcetins, per favor.
272 | Take off your socks, please. Lleveu-vos els calcetins, per favor.
273 | The evidence was against me. L'evidència estava en contra meua.
274 | The food was great in Italy. El menjar va ser cosa fina a Itàlia.
275 | They work eight hours a day. Treballen vuit hores al dia.
276 | What are you doing tomorrow? Què fas demà?
277 | What is wrong with that guy? Què li passa a aquet paio?
278 | Where will we go afterwards? On anirem després?
279 | Do you know where she's gone? Saps on ha anat ella?
280 | He goes to the office by car. Va al despatx amb cotxe.
281 | He is the manager of a hotel. És el director d'un hotel.
282 | He lost all the money he had. Va perdre tots els diners que tenia.
283 | He plays the piano very well. Ell toca el piano molt bé.
284 | I don't want to go to school. No vull anar a l'escola.
285 | I have something to tell you. T'he de dir una cosa.
286 | I have something to tell you. Us he de dir una cosa.
287 | I have something to tell you. Tinc una cosa a dir-te.
288 | I must have the wrong number. Dec tenir el número equivocat.
289 | I never get tired of talking. No em canso mai de parlar.
290 | I saw him tear up the letter. El vaig veure estripar la carta.
291 | I will get in touch with you. Em posaré en contacte amb tu.
292 | Japan is smaller than Canada. El Japó és més petit que el Canadà.
293 | She sent you her best wishes. Ella t'envia els seus millors desitjos.
294 | That's exactly what happened. Això és exactament el què va passar.
295 | The girl didn't say anything. La nena no va dir res.
296 | The soldier gave water to me. El soldat m'ha donat aigua.
297 | We killed time playing cards. Matàvem el temps jugant a les cartes.
298 | We must control our passions. Hem de controlar les nostres passions.
299 | What you think is irrelevant. El que penses és irellevant.
300 | Do you have medical insurance? Teniu assegurança mèdica?
301 | He comes here every five days. Ve aquí cada cinc dies.
302 | He left the book on the table. Va deixar el llibre sobre la taula.
303 | How many children do you have? Quants fills tens?
304 | I believe the choice is clear. Crec que l'elecció està clara.
305 | I study for 3 hours every day. Jo estudio 3 hores cada dia.
306 | It was cheaper than I thought. És més barat del que em vaig pensar.
307 | Let me know whenever you come. Quan vinguis, fes-m'ho saber.
308 | Most schools are closed today. La majoria d'escoles avui estan tancades.
309 | My dad died before I was born. Mon pare va morir abans del meu naixement.
310 | Nobody equals him in strength. Ningú no li fa ombra.
311 | Nobody equals him in strength. Ningú no li és rival.
312 | Our summer is short, but warm. El nostre estiu és curt, però calorós.
313 | She didn't tell me her secret. Ella no em va dir el seu secret.
314 | She is giving a party tonight. Ella fa una festa aquesta nit.
315 | This is a very strange letter. Aquesta és una carta molt estranya.
316 | Tom wants to change the world. En Tom vol canviar el món.
317 | Tom's arm had to be amputated. Van haver d'amputar el braç al Tom.
318 | Tom's arm had to be amputated. Li van haver d'amputar el braç a Tom.
319 | You agree with Tom, don't you? Estàs d'acord amb Tom, no?
320 | He is a very thoughtful person. És una persona molt considerada.
321 | I don't know when he will come. No sé quan vindrà.
322 | I don't like it when you swear. No m'agrada que digues paraulotes.
323 | I don't like it when you swear. No m'agrada que digueu paraulotes.
324 | I have breakfast every morning. Cada dia esmorzo.
325 | I have not seen him since then. No l'he vist des d'aleshores.
326 | I opened the box. It was empty. Vaig obrir la caixa. Estava buida.
327 | I wish I could buy that guitar. Com voldria poder comprar aquesta guitarra.
328 | I wish I could buy that guitar. M'agradaria poder comprar eixa guitarra.
329 | I wish I could buy that guitar. Tant de bo pogués comprar aquesta guitarra.
330 | I wish I could buy that guitar. Tant de bo poguera comprar eixa guitarra.
331 | I'm very glad to see you again. Estic molt content de tornar-te a veure.
332 | Please circle the right answer. Encercleu la resposta correcta, sisplau.
333 | He had a firm belief in his God. Té una creença ferma en Déu.
334 | He is getting better bit by bit. Ell s'està millorant poc a poc
335 | He is getting better bit by bit. Està millorant poc a poc.
336 | He told me an interesting story. M'ha contat una història interessant.
337 | Helen Keller was deaf and blind. Hellen Keller era sorda i cega.
338 | How much does he earn per month? Quant guanya al mes?
339 | I can repeat it again and again. Puc repetir-ho vint vegades.
340 | I caught the ball with one hand. Vaig agafar la pilota amb una mà.
341 | I heard him sing at the concert. El vaig sentir cantant al concert.
342 | I was not aware of his presence. Jo no era conscient que ell estava al davant.
343 | I wonder if he'll come tomorrow. Em pregunto si vindrà demà.
344 | I'm a professional photographer. Jo sóc fotògraf professional.
345 | Let me know when he will arrive. Ja em diràs quan arriba.
346 | My mother speaks little English. La meva mare parla una mica d'anglès.
347 | She made the same mistake again. Ella va cometre una altra vegada la mateixa errada.
348 | She will have a baby next month. Ella vol tenir un fill el mes vinent.
349 | Thanks a lot for the invitation. Moltes gràcies per la invitació.
350 | The food didn't taste very good. El menjar no tenia gaire bon gust.
351 | The food didn't taste very good. El menjar no feia gaire bon gust.
352 | The sun appeared on the horizon. El Sol apareix a l'horitzont.
353 | The sun appeared on the horizon. El sol aparegué a l'horitzó.
354 | The sun gives us heat and light. El Sol ens dóna calor i llum.
355 | The sun is larger than the moon. El Sol és més gran que la Lluna.
356 | Tom is too young to drive a car. Tom és massa jove per portar un cotxe.
357 | Tom was fired for a good reason. Tom va ser despedit per una causa justa.
358 | You don't have to kick yourself. No et facis mala sang.
359 | You should've told me yesterday. M'ho hauries d'haver dit ahir.
360 | Your opinion is important to me. La teua opinió és important per a mi.
361 | Asians generally have black hair. Els asiàtics normalment tenen el cabell negre,
362 | Do you know who wrote this novel? Saps qui va escriure aquesta novela?
363 | Do you know who wrote this novel? Sabeu qui va escriure aquesta novel·la?
364 | Don't compare me to a movie star. No em comparis amb una estrella de cinema.
365 | He went skiing during the winter. Se'n va anar a esquiar a l'hivern.
366 | I have lived in Tokyo since 1985. He viscut a Tokyo des de 1985.
367 | I saw the moon above the horizon. Veig la lluna sobre l'horitzont.
368 | My brother-in-law is a policeman. El meu cunyat és policia.
369 | My father died before I was born. Mon pare va morir abans del meu naixement.
370 | My father died before I was born. Mon pare va morir abans que jo nasquera.
371 | My father died before I was born. El meu pare va morir abans de néixer jo.
372 | The bus arrived ten minutes late. El bus va arribar deu minuts tard.
373 | The bus arrived ten minutes late. L'autobús arribà deu minuts tard.
374 | The bus arrived ten minutes late. L'autobús va arribar amb deu minuts de retard.
375 | The flood caused a lot of damage. La riada va fer molt de mal.
376 | The flood caused a lot of damage. La inundació va fer molt de mal.
377 | The rumor is true to some extent. Fins a un cert punt, el rumor és cert.
378 | The teacher told me study harder. El professor em va dir que estudiés molt.
379 | Tom and Mary acted like children. En Tom i la Mary es portaven com nens.
380 | Tom couldn't hold back his tears. Tom no va poder contenir les llàgrimes.
381 | Tom couldn't hold back his tears. Tom no podia contenir les llàgrimes.
382 | Tom doesn't go to school anymore. Tom ja no va a l'escola.
383 | Tom is no longer studying French. En Tom ja no estudia francès.
384 | When can we see each other again? On ens podem tornar a veure?
385 | Are we talking about the same Tom? Estem parlant del mateix Tom?
386 | Are we talking about the same Tom? Parlem del mateix Tom?
387 | Everyone hoped that she would win. Tothom esperava que guanyés.
388 | He was willing to work for others. Ell estava disposat a treballar per altres.
389 | I burned my fingers on a hot iron. Em vaig cremar els dits amb un ferro roent.
390 | I burned my fingers on a hot iron. Em vaig cremar els dits amb una planxa calenta.
391 | I have nothing in common with her. No tinc res en comú amb ella.
392 | I spend money as soon as I get it. Em gasto els diners de seguida que en tinc.
393 | I write letters that I never send. Escric cartes que no envio mai.
394 | Is Flight 123 going to be delayed? El vol 123, té retard?
395 | Last night we worked until 10 p.m. Ahir a la nit vàrem treballar fins a les deu.
396 | My mother knows how to make cakes. La meva mare sap com fer pastissos.
397 | Tell me your plans for the future. Explica'm els teus plans per al futur.
398 | Tell me your plans for the future. Conta'm els teus plans de futur.
399 | Tell me your plans for the future. Expliqueu-me els vostres plans per al futur.
400 | Thank you so much for inviting me. Moltes gràcies per la invitació.
401 | The plane took off exactly at six. L'avió s'enlairà a les sis clavades.
402 | Today's meeting has been canceled. La reunió d'avui ha sigut cancelada.
403 | We're sorry for the inconvenience. Ens sap greu la molèstia causada.
404 | Where's the nearest travel agency? On és l'agència de viatges més propera?
405 | Bangkok is Thailand's capital city. Bangkok és la capital de Tailàndia.
406 | Do you want to play tennis with us? Vols jugar a tennis amb nosaltres?
407 | He helped poor people all his life. Ell va ajudar els pobres tota la seva vida.
408 | Her husband is now living in Tokyo. El seu marit viu a Tòkio ara.
409 | I can't remember where I bought it. No puc recordar on el vaig comprar.
410 | I can't remember where I bought it. No recorde on el vaig comprar.
411 | I can't remember where I bought it. No recorde on ho vaig comprar.
412 | I can't remember where I bought it. No recorde on la vaig comprar.
413 | I can't remember where I bought it. No me'n recorde d'on ho vaig comprar.
414 | I can't remember where I bought it. No recordo on el vaig comprar.
415 | I heard a beautiful song yesterday. Ahir vaig sentir una cançó bonica.
416 | I thanked him for what he had done. Li vaig agrair el que va fer.
417 | I'd like to meet your older sister. Voldria trobar-me amb la teva germana gran.
418 | I'd like to meet your older sister. M'agradaria conèixer la teva germana gran.
419 | I'm the one who pays all the bills. Jo sóc qui paga totes les factures.
420 | I'm very slow at making up my mind. Sóc molt lent a l'hora de prendre decisions.
421 | I, too, didn't understand anything. Jo tampoc entenc res.
422 | Is there a post office around here? Hi ha alguna oficina postal per aquí?
423 | Is there a post office around here? Hi ha alguna oficina de correus prop d'ací?
424 | Is there a post office around here? Hi ha per ací alguna oficina de correus?
425 | The door is locked at nine o'clock. La porta es tanca amb clau a les nou.
426 | The lion is the king of the jungle. El lleó és el rei de la selva.
427 | These questions are easy to answer. Aquestes preguntes són fàcils de respondre.
428 | We are sorry for the inconvenience. Ens sap greu la molèstia causada.
429 | We're not going to change anything. No canviarem res.
430 | What little money I had was stolen. Els pocs diners que tenia me'ls van robar.
431 | A lot of jobs are done by computers. Moltes feines les fan els ordinadors.
432 | Do you wonder why no one trusts him? T'estranya que ningú hi confiï?
433 | Don't go to sleep with the light on. No et durmis amb el llum encès.
434 | I can't remember which is my racket. No recorde quina és la meua raqueta.
435 | I don't think we can take that risk. Crec que no podem córrer aquest risc.
436 | I don't think we can take that risk. Crec que no podem córrer eixe risc.
437 | I have nothing to say to any of you. No tinc res a dir-vos a cap de vosaltres.
438 | I was caught in a shower on the way. M'ha enxampat un xàfec pel camí.
439 | I'd like to reserve a table for two. M'agradaria reservar una taula per a dos.
440 | Look that word up in the dictionary. Cerca aquella paraula al diccionari.
441 | My apartment is on the fourth floor. El meu apartament està al quart pis.
442 | Night is when most people go to bed. La nit és quan la majoria de la gent se'n va al llit.
443 | Take this medicine before each meal. Preneu aquest medicament abans de cada àpat.
444 | Tom may talk to Mary if he wants to. En Tom, si vol, pot parlar amb la Mary.
445 | Tom may talk to Mary if he wants to. Tom pot parlar amb Mary, si vol.
446 | When did you come back from Germany? Quan vas tornar d'Alemanya?
447 | Flowers die if they don't have water. Sense aigua les flors es panseixen.
448 | His arrogance is no longer tolerable. La seva arrogància ja no és tolerable.
449 | His courage is worthy of high praise. La seva valentia mereix grans lloances.
450 | I planted an apple tree in my garden. He plantat un pomer al meu jardí.
451 | I really must have my watch repaired. He de dur el rellotge a arreglar.
452 | I'm sick. Will you send for a doctor? Estic malalt. Oi que avisaràs un metge?
453 | I'm sure of winning the championship. Estic segur de guanyar el campionat.
454 | It seems that he was a great athlete. Sembla que va ser un gran atleta.
455 | It's easier to have fun than to work. És més fàcil divertir-se que treballar.
456 | Please write to me from time to time. Escriu-me de tant en tant, sí?
457 | What are you going to eat for dinner? Que soparàs avui?
458 | What do you want to talk to me about? De què vols parlar amb mi?
459 | What languages are spoken in America? Quins idiomes es parlen a Amèrica?
460 | What's your opinion of Japanese food? Quina és la teva opinió sobre el menjar japonès?
461 | Everyone was listening very carefully. Tots estaven escoltant atentament.
462 | He is three years younger than Father. Ell és tres anys més jove que el pare.
463 | I don't know what has happened to him. No sé què li ha passat.
464 | I was the one who knocked on the door. Vaig ser jo qui va trucar a la porta.
465 | I'll make an exception just this once. Faré una excepció només per aquesta vegada.
466 | I'm the one who takes out the garbage. Jo sóc qui treu les escombraries.
467 | In general, men are taller than women. En general, els homes són més alts que les dones.
468 | Japan imports a large quantity of oil. El Japó importa una gran quantitat de petroli.
469 | Mary's doctor advised her to exercise. El metge de la Mary li va aconsellar que fes exercici.
470 | Please correct me if I make a mistake. Si us plau, corregeix-me si m'equivoco.
471 | Will the work be finished by tomorrow? Estarà enllestida la feina per a demà?
472 | "Is she reading a book?" "Yes, she is." "Està llegint un llibre?" "Sí."
473 | "Is she reading a book?" "Yes, she is." "Està ella llegint un llibre?" "Sí."
474 | All my friends like playing videogames. A tots els meus amics els agraden els videojocs.
475 | As long as there's life, there is hope. Mentre hi ha vida, hi ha esperança.
476 | Blue lines on the map designate rivers. Les línies blaves al mapa designen rius.
477 | How much time do you spend on Facebook? Quant de temps passes a Facebook?
478 | I don't know whether it is true or not. No sé si és veritat o no.
479 | I don't think Tom was talking about me. No crec que Tom estigués parlant de mi.
480 | I have cookies for breakfast every day. Cada dia menjo galetes per esmorzar.
481 | I would like to visit New York someday. Un dia m'agradaria visitar New York.
482 | I've been waiting for this day to come. He estat esperant que arribi aquest dia.
483 | In Japan there are four seasons a year. Al Japó hi ha quatre estacions cada any.
484 | Mathematics is important in daily life. Les matemàtiques són importants a la vida diària.
485 | The Japanese economy developed rapidly. L'economia japonesa es va desenvolupar depressa.
486 | The class was divided into four groups. La classe es va dividir en quatre grups.
487 | The earth is much larger than the moon. La Terra és molt més gran que la Lluna.
488 | They arrived late because of the storm. Ells van arribar tard a causa de la tempesta.
489 | They say golf is very popular in Japan. Diuen que el golf és molt popular al Japó.
490 | This is the best book I have ever read. És el millor llibre que he llegit mai.
491 | Tom is interested in French literature. En Tom està interessat en la literatura francesa.
492 | Tom is making great progress in French. En Tom està progressant molt amb el francès.
493 | He fought against racial discrimination. Va lluitar contra la discriminació racial.
494 | I know that there was a big church here. Sé que aquí hi havia una església gran.
495 | I noticed that she sat in the front row. Vaig notar que ella va seure a la fila del davant.
496 | I was in the shower when the phone rang. Estava en la dutxa quan ha sonat el telèfon.
497 | President Clinton denied the accusation. El president Clinton va negar l'acusació.
498 | The men are wearing short sleeve shirts. Els homes porten camises de màniga curta.
499 | What do these dots represent on the map? Què signifiquen aquests punts al mapa?
500 | Will you please stop talking about food? Podries deixar de parlar de menjar?
501 | German is the best language in the world. L'alemany és la millor llengua del món.
502 | How many people are there in your family? Quants són a la seva família?
503 | I asked him many questions about ecology. Li vaig fer moltes preguntes sobre ecologia.
504 | I don't have the strength to keep trying. No tinc la força per continuar triant.
505 | I started learning English six years ago. Fa sis anys que vaig començar a aprendre anglès.
506 | I will ask him where he went last Sunday. Li preguntaré on va anar el diumenge.
507 | I'm surprised that he accepted the offer. Em sorprèn que acceptés l'oferiment.
508 | It is difficult to speak three languages. És difícil parlar tres llengues.
509 | There are many beautiful parks in London. A Londres hi han molts parcs bonics.
510 | Tom does everything he can to save money. En Tom fa tot el que pot per estalviar.
511 | Tom goes to Boston every once in a while. En Tom va a Boston de tant en tant.
512 | I am sure of his winning the tennis match. Estic segur de la seva victòria al tennis.
513 | I don't know the reason why he went there. No sé el motiu pel qual va anar-hi.
514 | I'd like to know when you can send it out. M'agadaria saber quan ho pot enviar.
515 | Nothing happens unless you make it happen. No passa res si tu no fas que passi.
516 | This is the best book that I've ever read. És el millor llibre que he llegit mai.
517 | As we go up higher, the air becomes cooler. Com més amunt anem, més fresc és l'aire.
518 | Do you support or oppose the death penalty? Estàs a favor o en contra de la pena de mort?
519 | English is not easy, but it is interesting. L'anglès no és fàcil, però és interessant.
520 | I don't have anything to say to any of you. No tinc res a dir-vos a cap de vosaltres.
521 | I don't know for certain when he will come. No sé del cert quan vindrà.
522 | I eat a boiled egg for breakfast every day. Cada dia em menjo un ou dur per esmorzar.
523 | I have been studying French four years now. Fa quatre anys que estudio francès.
524 | I told you to be here on time this morning. Et vaig dir que havies de ser aquí puntual aquest matí.
525 | I'm fed up with him always preaching to me. Estic tip que em sermonegi constantment.
526 | I'm fed up with him always preaching to me. Estic tip dels seus sermons constants.
527 | I'm getting off the train at the next stop. Em baixo del tren a la pròxima estació.
528 | It seems those two are made for each other. Sembla que aquell parell estan fets l'un per l'altre.
529 | This is the place where my father was born. Aquest és el lloc on va nèixer el meu pare.
530 | When will it be convenient for you to come? Quan li convendria venir?
531 | Give him this message the moment he arrives. Dóna-li aquest missatge quan arribi.
532 | I demanded that he pay the bill immediately. Li vaig demanar de pagar la factura immediatament.
533 | I feel like telling him what I think of him. Tinc ganes de dir-li què penso d'ell.
534 | I really need to take care of some business. He de tenir cura d'alguns negocis.
535 | I refused to eat until my parents came home. No vaig voler menjar fins que els meus pares no tornessin a casa.
536 | Japan imports great quantities of crude oil. El Japó importa una gran quantitat de petroli.
537 | She makes him do his homework before dinner. Ella l'obliga a fer els deures abans de sopar.
538 | They fell into the conversation immediately. Van passar al tema a l'instant.
539 | You should pay more attention to what I say. Deuries prestar més atenció a allò que dic.
540 | Both of them are unpredictable and impatient. Tots dos són impredictibles i impacients.
541 | Her explanation of the problem made no sense. La seva explicació del problema no tenia ni cap ni peus.
542 | I am going to do it whether you agree or not. Ho faré, estigueu o no d'acord amb mi.
543 | I didn't know you were that kind of a person. No sabia que eres així.
544 | I will take you to the zoo one of these days. Un dia d'aquests et portaré al zoo.
545 | My son has gone to America to study medicine. El meu fill ha anat a Amèrica a estudiar medicina.
546 | She says she brushes her teeth every morning. Ella diu que es raspatlla les dents tots els dematins.
547 | We need to invest in clean, renewable energy. Hem d'invertir en energia neta i renovable.
548 | He is one of the candidates running for mayor. És un dels candidats que es presenta per alcalde.
549 | I haven't got the nerve to ask you for a loan. No tinc valor per demanar-te un préstec.
550 | I'm getting off the train at the next station. Em baixo del tren a la pròxima estació.
551 | It is said that golf is very popular in Japan. Es diu que el golf és molt popular al Japó.
552 | It seems I'm going to be up all night tonight. Sembla que avui estaré despert tota la nit.
553 | Please wash your hands properly before eating. Siusplau renteu-vos les mans com cal abans de menjar.
554 | The urban population of America is increasing. La població urbana a Amèrica està creixent.
555 | I thought she was angry and would just go away. Vaig pensar que s'havia enfadat i que se n'aniria.
556 | It doesn't matter whether he comes late or not. No hi fa res si ve tard o no.
557 | She buys what she wants regardless of the cost. Compra el que vol sense fixar-se en el que val.
558 | She's curious to find out who sent the flowers. Ella té curiositat per saber qui va enviar les flors.
559 | Unfortunately, my birthday is only once a year. Malauradament, el meu aniversario només succeeix una vegada a l'any.
560 | What would it cost to have this chair repaired? Quant costaria arreglar aquesta cadira?
561 | Drink some coffee. It tastes very good, I think. Pren una mica de cafè. Té molt bon gust, crec.
562 | He and his sisters are currently living in Tokyo. En aquest moment, ell i les seves germanes viuen a Tòquio.
563 | He never fails to write to his mother every week. No passa una setmana que no li escrigui a la seva mare.
564 | I have a friend whose father is a famous pianist. Tinc un amic el pare del qual és un pianista famós.
565 | I'm not interested in going to the baseball game. No tinc cap interès a anar al partit de beisbol.
566 | I'm sorry, but I can't find the book you lent me. Em sap greu, però no trobo el llibre que em vas deixar.
567 | If only I knew, I would tell you all that I knew. Si ho sabés, et diria tot el que sé.
568 | She tried to squeeze the juice out of the orange. Va provar d'escórrer la taronja.
569 | This story is far more interesting than that one. Aquesta història és molt més interessant que aquella.
570 | I took it for granted that he would pass the exam. Dono per descomptat que aprovarà l'examen.
571 | They insisted on my making use of the opportunity. Em varen insistir per a que aprofitès aquella oportunitat.
572 | Do you know which deity this temple is dedicated to? Sabeu a quina divinitat està dedicat aquest temple?
573 | Why don't we see if Tom wants to play cards with us? Perquè no mirem si en Tom vol jugar a les cartes amb niosaltres?
574 | I was glad to see that he finally came to his senses. Vaig estar content de veure que al final va posar-hi seny.
575 | It's difficult for me to express myself in Esperanto. Per mi és difícil expressar-me en esperanto.
576 | I want to live in a quiet city where the air is clean. Vull viure a una ciutat tranquila amb l'aire pur.
577 | If you don't want to be alone, I can keep you company. Si no vols estar sol, puc fer-te companyia.
578 | He will take over the business when his father retires. Ell continuarà el negoci quan son pare es jubili.
579 | My mother likes tulips very much and so does my sister. A ma mare li agraden molt les tulipes i a ma germana també.
580 | This cola has lost its fizz and doesn't taste any good. Aquesta cola s'ha esbravat i no té bon gust.
581 | Tom is accustomed to calling up girls on the telephone. En Tom acostuma a trucar noies.
582 | Cuzco is one of the most interesting places in the world. Cuzco és un dels indrets més interessants del món.
583 | I stayed in bed one more day just to be on the safe side. Em vaig quedar un dia més al llit per si de cas.
584 | Tom will likely be discharged from the hospital tomorrow. Demà donaran d'alta de l'hospital en Tom.
585 | "How are you feeling this morning?" "Pretty good, thanks." "Com et sents aquest matí?" "Bastant bé, gràcies."
586 | People of my generation all think the same way about this. Tota la gent de la meva generació pensen igual sobre això.
587 | The only useful answers are those that raise new questions. Les úniques respostes útils són les que creen noves preguntes.
588 | It takes us thirty minutes to walk from here to the station. D'aquí a l'estació triguem mitja hora a peu.
589 | The secret of longevity is to choose your parents carefully. El secret de la longevitat és triar amb compte els pares.
590 | It takes about 10 minutes to get to the train station by foot. Tens uns 10 minuts d'aquí a l'estació a peu.
591 | This medicine must not be placed within the reach of children. Aquest medicament no s'ha de deixar a la ma dels nins.
592 | You told her that you had finished the work three days before. Li vas dir que havies enllestit la feina feia tres dies.
593 | His father died, and to make matters worse, his mother fell ill. Son pare es va morir, i per acabar-ho d'adobar, sa mare es va posar malalta.
594 | Try to understand it in Spanish, without translating to English. Tracta d'entendre-ho amb espanyol, sense traduïr-lo amb anglès.
595 | We lost our way, and what was worse, we were caught in a shower. Ens vam perdre i, encara pitjor, ens va enxampar un xàfec.
596 | She's worried since she hasn't heard from her son for many months. Està amoïnada perquè fa mesos que no té notícia del seu fill.
597 | I suspected that he was telling a lie, but that didn't surprise me. Sospitava que m'estava dient una mentida, però això no em va sorprendre.
598 | My daughter won't find it easy to get accustomed to the new school. La meva filla no trobarà fàcil per acostumar-se a la nova escola.
599 | The bullet penetrated his chest, leaving him in critical condition. La bala va penetrar al seu pit i el va deixar en estat crític.
600 | I wanted to buy the book, but I found I had no more than 200 yen with me. Volia comprar el llibre, però vaig adonar-me que no duia més de 200 iens.
601 | For the first time in more than 6 years, the unemployment rate is below 6%. Per primera vegada en més de 6 anys, la taxa d'atur està per davall del 6%.
602 | We would have bought the plane tickets if the price had been a little lower. Hauríem comprat els bitllets d'avió si el preu fos un pèl més baix.
603 | My friend has had three jobs in a year; he never sticks to anything for long. El meu amic ha treballat a tres llocs diferents en un any; res no li dura gaire.
604 | You can't park in a handicapped parking space unless you have a special permit. No pots aparcar a una plaça d'aparcament per discapacitats si no tens un permís especial.
605 | Drinking lots of water is good for you, sure, but one can't drink that much water at once. Beure molta aigua és bo per tu, segur, però no es pot beure tanta aigua de cop.
606 | We're gonna make sure that no one is taking advantage of the American people for their own short-term gain. Ens assegurarem que ningú s'estiga aprofitant del poble americà per al seu propi interès a curt termini.
607 |
--------------------------------------------------------------------------------
/data/household_power_consumption.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/household_power_consumption.zip
--------------------------------------------------------------------------------
/data/iris_test.csv:
--------------------------------------------------------------------------------
1 | 30,4,setosa,versicolor,virginica
2 | 5.9,3.0,4.2,1.5,1
3 | 6.9,3.1,5.4,2.1,2
4 | 5.1,3.3,1.7,0.5,0
5 | 6.0,3.4,4.5,1.6,1
6 | 5.5,2.5,4.0,1.3,1
7 | 6.2,2.9,4.3,1.3,1
8 | 5.5,4.2,1.4,0.2,0
9 | 6.3,2.8,5.1,1.5,2
10 | 5.6,3.0,4.1,1.3,1
11 | 6.7,2.5,5.8,1.8,2
12 | 7.1,3.0,5.9,2.1,2
13 | 4.3,3.0,1.1,0.1,0
14 | 5.6,2.8,4.9,2.0,2
15 | 5.5,2.3,4.0,1.3,1
16 | 6.0,2.2,4.0,1.0,1
17 | 5.1,3.5,1.4,0.2,0
18 | 5.7,2.6,3.5,1.0,1
19 | 4.8,3.4,1.9,0.2,0
20 | 5.1,3.4,1.5,0.2,0
21 | 5.7,2.5,5.0,2.0,2
22 | 5.4,3.4,1.7,0.2,0
23 | 5.6,3.0,4.5,1.5,1
24 | 6.3,2.9,5.6,1.8,2
25 | 6.3,2.5,4.9,1.5,1
26 | 5.8,2.7,3.9,1.2,1
27 | 6.1,3.0,4.6,1.4,1
28 | 5.2,4.1,1.5,0.1,0
29 | 6.7,3.1,4.7,1.5,1
30 | 6.7,3.3,5.7,2.5,2
31 | 6.4,2.9,4.3,1.3,1
32 |
--------------------------------------------------------------------------------
/data/iris_training.csv:
--------------------------------------------------------------------------------
1 | 120,4,setosa,versicolor,virginica
2 | 6.4,2.8,5.6,2.2,2
3 | 5.0,2.3,3.3,1.0,1
4 | 4.9,2.5,4.5,1.7,2
5 | 4.9,3.1,1.5,0.1,0
6 | 5.7,3.8,1.7,0.3,0
7 | 4.4,3.2,1.3,0.2,0
8 | 5.4,3.4,1.5,0.4,0
9 | 6.9,3.1,5.1,2.3,2
10 | 6.7,3.1,4.4,1.4,1
11 | 5.1,3.7,1.5,0.4,0
12 | 5.2,2.7,3.9,1.4,1
13 | 6.9,3.1,4.9,1.5,1
14 | 5.8,4.0,1.2,0.2,0
15 | 5.4,3.9,1.7,0.4,0
16 | 7.7,3.8,6.7,2.2,2
17 | 6.3,3.3,4.7,1.6,1
18 | 6.8,3.2,5.9,2.3,2
19 | 7.6,3.0,6.6,2.1,2
20 | 6.4,3.2,5.3,2.3,2
21 | 5.7,4.4,1.5,0.4,0
22 | 6.7,3.3,5.7,2.1,2
23 | 6.4,2.8,5.6,2.1,2
24 | 5.4,3.9,1.3,0.4,0
25 | 6.1,2.6,5.6,1.4,2
26 | 7.2,3.0,5.8,1.6,2
27 | 5.2,3.5,1.5,0.2,0
28 | 5.8,2.6,4.0,1.2,1
29 | 5.9,3.0,5.1,1.8,2
30 | 5.4,3.0,4.5,1.5,1
31 | 6.7,3.0,5.0,1.7,1
32 | 6.3,2.3,4.4,1.3,1
33 | 5.1,2.5,3.0,1.1,1
34 | 6.4,3.2,4.5,1.5,1
35 | 6.8,3.0,5.5,2.1,2
36 | 6.2,2.8,4.8,1.8,2
37 | 6.9,3.2,5.7,2.3,2
38 | 6.5,3.2,5.1,2.0,2
39 | 5.8,2.8,5.1,2.4,2
40 | 5.1,3.8,1.5,0.3,0
41 | 4.8,3.0,1.4,0.3,0
42 | 7.9,3.8,6.4,2.0,2
43 | 5.8,2.7,5.1,1.9,2
44 | 6.7,3.0,5.2,2.3,2
45 | 5.1,3.8,1.9,0.4,0
46 | 4.7,3.2,1.6,0.2,0
47 | 6.0,2.2,5.0,1.5,2
48 | 4.8,3.4,1.6,0.2,0
49 | 7.7,2.6,6.9,2.3,2
50 | 4.6,3.6,1.0,0.2,0
51 | 7.2,3.2,6.0,1.8,2
52 | 5.0,3.3,1.4,0.2,0
53 | 6.6,3.0,4.4,1.4,1
54 | 6.1,2.8,4.0,1.3,1
55 | 5.0,3.2,1.2,0.2,0
56 | 7.0,3.2,4.7,1.4,1
57 | 6.0,3.0,4.8,1.8,2
58 | 7.4,2.8,6.1,1.9,2
59 | 5.8,2.7,5.1,1.9,2
60 | 6.2,3.4,5.4,2.3,2
61 | 5.0,2.0,3.5,1.0,1
62 | 5.6,2.5,3.9,1.1,1
63 | 6.7,3.1,5.6,2.4,2
64 | 6.3,2.5,5.0,1.9,2
65 | 6.4,3.1,5.5,1.8,2
66 | 6.2,2.2,4.5,1.5,1
67 | 7.3,2.9,6.3,1.8,2
68 | 4.4,3.0,1.3,0.2,0
69 | 7.2,3.6,6.1,2.5,2
70 | 6.5,3.0,5.5,1.8,2
71 | 5.0,3.4,1.5,0.2,0
72 | 4.7,3.2,1.3,0.2,0
73 | 6.6,2.9,4.6,1.3,1
74 | 5.5,3.5,1.3,0.2,0
75 | 7.7,3.0,6.1,2.3,2
76 | 6.1,3.0,4.9,1.8,2
77 | 4.9,3.1,1.5,0.1,0
78 | 5.5,2.4,3.8,1.1,1
79 | 5.7,2.9,4.2,1.3,1
80 | 6.0,2.9,4.5,1.5,1
81 | 6.4,2.7,5.3,1.9,2
82 | 5.4,3.7,1.5,0.2,0
83 | 6.1,2.9,4.7,1.4,1
84 | 6.5,2.8,4.6,1.5,1
85 | 5.6,2.7,4.2,1.3,1
86 | 6.3,3.4,5.6,2.4,2
87 | 4.9,3.1,1.5,0.1,0
88 | 6.8,2.8,4.8,1.4,1
89 | 5.7,2.8,4.5,1.3,1
90 | 6.0,2.7,5.1,1.6,1
91 | 5.0,3.5,1.3,0.3,0
92 | 6.5,3.0,5.2,2.0,2
93 | 6.1,2.8,4.7,1.2,1
94 | 5.1,3.5,1.4,0.3,0
95 | 4.6,3.1,1.5,0.2,0
96 | 6.5,3.0,5.8,2.2,2
97 | 4.6,3.4,1.4,0.3,0
98 | 4.6,3.2,1.4,0.2,0
99 | 7.7,2.8,6.7,2.0,2
100 | 5.9,3.2,4.8,1.8,1
101 | 5.1,3.8,1.6,0.2,0
102 | 4.9,3.0,1.4,0.2,0
103 | 4.9,2.4,3.3,1.0,1
104 | 4.5,2.3,1.3,0.3,0
105 | 5.8,2.7,4.1,1.0,1
106 | 5.0,3.4,1.6,0.4,0
107 | 5.2,3.4,1.4,0.2,0
108 | 5.3,3.7,1.5,0.2,0
109 | 5.0,3.6,1.4,0.2,0
110 | 5.6,2.9,3.6,1.3,1
111 | 4.8,3.1,1.6,0.2,0
112 | 6.3,2.7,4.9,1.8,2
113 | 5.7,2.8,4.1,1.3,1
114 | 5.0,3.0,1.6,0.2,0
115 | 6.3,3.3,6.0,2.5,2
116 | 5.0,3.5,1.6,0.6,0
117 | 5.5,2.6,4.4,1.2,1
118 | 5.7,3.0,4.2,1.2,1
119 | 4.4,2.9,1.4,0.2,0
120 | 4.8,3.0,1.4,0.1,0
121 | 5.5,2.4,3.7,1.0,1
122 |
--------------------------------------------------------------------------------
/data/jena_climate_2009_2016.csv.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/jena_climate_2009_2016.csv.zip
--------------------------------------------------------------------------------
/data/monalisa.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/monalisa.jpg
--------------------------------------------------------------------------------
/data/monalisa.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/monalisa.png
--------------------------------------------------------------------------------
/data/negative-words.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/negative-words.txt
--------------------------------------------------------------------------------
/data/otto.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/otto.zip
--------------------------------------------------------------------------------
/data/positive-words.txt:
--------------------------------------------------------------------------------
1 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2 | ;
3 | ; Opinion Lexicon: Positive
4 | ;
5 | ; This file contains a list of POSITIVE opinion words (or sentiment words).
6 | ;
7 | ; This file and the papers can all be downloaded from
8 | ; http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
9 | ;
10 | ; If you use this list, please cite the following paper:
11 | ;
12 | ; Minqing Hu and Bing Liu. "Mining and Summarizing Customer Reviews."
13 | ; Proceedings of the ACM SIGKDD International Conference on Knowledge
14 | ; Discovery and Data Mining (KDD-2004), Aug 22-25, 2004, Seattle,
15 | ; Washington, USA,
16 | ; Notes:
17 | ; 1. The appearance of an opinion word in a sentence does not necessarily
18 | ; mean that the sentence expresses a positive or negative opinion.
19 | ; See the paper below:
20 | ;
21 | ; Bing Liu. "Sentiment Analysis and Subjectivity." An chapter in
22 | ; Handbook of Natural Language Processing, Second Edition,
23 | ; (editors: N. Indurkhya and F. J. Damerau), 2010.
24 | ;
25 | ; 2. You will notice many misspelled words in the list. They are not
26 | ; mistakes. They are included as these misspelled words appear
27 | ; frequently in social media content.
28 | ;
29 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
30 |
31 | a+
32 | abound
33 | abounds
34 | abundance
35 | abundant
36 | accessable
37 | accessible
38 | acclaim
39 | acclaimed
40 | acclamation
41 | accolade
42 | accolades
43 | accommodative
44 | accomodative
45 | accomplish
46 | accomplished
47 | accomplishment
48 | accomplishments
49 | accurate
50 | accurately
51 | achievable
52 | achievement
53 | achievements
54 | achievible
55 | acumen
56 | adaptable
57 | adaptive
58 | adequate
59 | adjustable
60 | admirable
61 | admirably
62 | admiration
63 | admire
64 | admirer
65 | admiring
66 | admiringly
67 | adorable
68 | adore
69 | adored
70 | adorer
71 | adoring
72 | adoringly
73 | adroit
74 | adroitly
75 | adulate
76 | adulation
77 | adulatory
78 | advanced
79 | advantage
80 | advantageous
81 | advantageously
82 | advantages
83 | adventuresome
84 | adventurous
85 | advocate
86 | advocated
87 | advocates
88 | affability
89 | affable
90 | affably
91 | affectation
92 | affection
93 | affectionate
94 | affinity
95 | affirm
96 | affirmation
97 | affirmative
98 | affluence
99 | affluent
100 | afford
101 | affordable
102 | affordably
103 | afordable
104 | agile
105 | agilely
106 | agility
107 | agreeable
108 | agreeableness
109 | agreeably
110 | all-around
111 | alluring
112 | alluringly
113 | altruistic
114 | altruistically
115 | amaze
116 | amazed
117 | amazement
118 | amazes
119 | amazing
120 | amazingly
121 | ambitious
122 | ambitiously
123 | ameliorate
124 | amenable
125 | amenity
126 | amiability
127 | amiabily
128 | amiable
129 | amicability
130 | amicable
131 | amicably
132 | amity
133 | ample
134 | amply
135 | amuse
136 | amusing
137 | amusingly
138 | angel
139 | angelic
140 | apotheosis
141 | appeal
142 | appealing
143 | applaud
144 | appreciable
145 | appreciate
146 | appreciated
147 | appreciates
148 | appreciative
149 | appreciatively
150 | appropriate
151 | approval
152 | approve
153 | ardent
154 | ardently
155 | ardor
156 | articulate
157 | aspiration
158 | aspirations
159 | aspire
160 | assurance
161 | assurances
162 | assure
163 | assuredly
164 | assuring
165 | astonish
166 | astonished
167 | astonishing
168 | astonishingly
169 | astonishment
170 | astound
171 | astounded
172 | astounding
173 | astoundingly
174 | astutely
175 | attentive
176 | attraction
177 | attractive
178 | attractively
179 | attune
180 | audible
181 | audibly
182 | auspicious
183 | authentic
184 | authoritative
185 | autonomous
186 | available
187 | aver
188 | avid
189 | avidly
190 | award
191 | awarded
192 | awards
193 | awe
194 | awed
195 | awesome
196 | awesomely
197 | awesomeness
198 | awestruck
199 | awsome
200 | backbone
201 | balanced
202 | bargain
203 | beauteous
204 | beautiful
205 | beautifullly
206 | beautifully
207 | beautify
208 | beauty
209 | beckon
210 | beckoned
211 | beckoning
212 | beckons
213 | believable
214 | believeable
215 | beloved
216 | benefactor
217 | beneficent
218 | beneficial
219 | beneficially
220 | beneficiary
221 | benefit
222 | benefits
223 | benevolence
224 | benevolent
225 | benifits
226 | best
227 | best-known
228 | best-performing
229 | best-selling
230 | better
231 | better-known
232 | better-than-expected
233 | beutifully
234 | blameless
235 | bless
236 | blessing
237 | bliss
238 | blissful
239 | blissfully
240 | blithe
241 | blockbuster
242 | bloom
243 | blossom
244 | bolster
245 | bonny
246 | bonus
247 | bonuses
248 | boom
249 | booming
250 | boost
251 | boundless
252 | bountiful
253 | brainiest
254 | brainy
255 | brand-new
256 | brave
257 | bravery
258 | bravo
259 | breakthrough
260 | breakthroughs
261 | breathlessness
262 | breathtaking
263 | breathtakingly
264 | breeze
265 | bright
266 | brighten
267 | brighter
268 | brightest
269 | brilliance
270 | brilliances
271 | brilliant
272 | brilliantly
273 | brisk
274 | brotherly
275 | bullish
276 | buoyant
277 | cajole
278 | calm
279 | calming
280 | calmness
281 | capability
282 | capable
283 | capably
284 | captivate
285 | captivating
286 | carefree
287 | cashback
288 | cashbacks
289 | catchy
290 | celebrate
291 | celebrated
292 | celebration
293 | celebratory
294 | champ
295 | champion
296 | charisma
297 | charismatic
298 | charitable
299 | charm
300 | charming
301 | charmingly
302 | chaste
303 | cheaper
304 | cheapest
305 | cheer
306 | cheerful
307 | cheery
308 | cherish
309 | cherished
310 | cherub
311 | chic
312 | chivalrous
313 | chivalry
314 | civility
315 | civilize
316 | clarity
317 | classic
318 | classy
319 | clean
320 | cleaner
321 | cleanest
322 | cleanliness
323 | cleanly
324 | clear
325 | clear-cut
326 | cleared
327 | clearer
328 | clearly
329 | clears
330 | clever
331 | cleverly
332 | cohere
333 | coherence
334 | coherent
335 | cohesive
336 | colorful
337 | comely
338 | comfort
339 | comfortable
340 | comfortably
341 | comforting
342 | comfy
343 | commend
344 | commendable
345 | commendably
346 | commitment
347 | commodious
348 | compact
349 | compactly
350 | compassion
351 | compassionate
352 | compatible
353 | competitive
354 | complement
355 | complementary
356 | complemented
357 | complements
358 | compliant
359 | compliment
360 | complimentary
361 | comprehensive
362 | conciliate
363 | conciliatory
364 | concise
365 | confidence
366 | confident
367 | congenial
368 | congratulate
369 | congratulation
370 | congratulations
371 | congratulatory
372 | conscientious
373 | considerate
374 | consistent
375 | consistently
376 | constructive
377 | consummate
378 | contentment
379 | continuity
380 | contrasty
381 | contribution
382 | convenience
383 | convenient
384 | conveniently
385 | convience
386 | convienient
387 | convient
388 | convincing
389 | convincingly
390 | cool
391 | coolest
392 | cooperative
393 | cooperatively
394 | cornerstone
395 | correct
396 | correctly
397 | cost-effective
398 | cost-saving
399 | counter-attack
400 | counter-attacks
401 | courage
402 | courageous
403 | courageously
404 | courageousness
405 | courteous
406 | courtly
407 | covenant
408 | cozy
409 | creative
410 | credence
411 | credible
412 | crisp
413 | crisper
414 | cure
415 | cure-all
416 | cushy
417 | cute
418 | cuteness
419 | danke
420 | danken
421 | daring
422 | daringly
423 | darling
424 | dashing
425 | dauntless
426 | dawn
427 | dazzle
428 | dazzled
429 | dazzling
430 | dead-cheap
431 | dead-on
432 | decency
433 | decent
434 | decisive
435 | decisiveness
436 | dedicated
437 | defeat
438 | defeated
439 | defeating
440 | defeats
441 | defender
442 | deference
443 | deft
444 | deginified
445 | delectable
446 | delicacy
447 | delicate
448 | delicious
449 | delight
450 | delighted
451 | delightful
452 | delightfully
453 | delightfulness
454 | dependable
455 | dependably
456 | deservedly
457 | deserving
458 | desirable
459 | desiring
460 | desirous
461 | destiny
462 | detachable
463 | devout
464 | dexterous
465 | dexterously
466 | dextrous
467 | dignified
468 | dignify
469 | dignity
470 | diligence
471 | diligent
472 | diligently
473 | diplomatic
474 | dirt-cheap
475 | distinction
476 | distinctive
477 | distinguished
478 | diversified
479 | divine
480 | divinely
481 | dominate
482 | dominated
483 | dominates
484 | dote
485 | dotingly
486 | doubtless
487 | dreamland
488 | dumbfounded
489 | dumbfounding
490 | dummy-proof
491 | durable
492 | dynamic
493 | eager
494 | eagerly
495 | eagerness
496 | earnest
497 | earnestly
498 | earnestness
499 | ease
500 | eased
501 | eases
502 | easier
503 | easiest
504 | easiness
505 | easing
506 | easy
507 | easy-to-use
508 | easygoing
509 | ebullience
510 | ebullient
511 | ebulliently
512 | ecenomical
513 | economical
514 | ecstasies
515 | ecstasy
516 | ecstatic
517 | ecstatically
518 | edify
519 | educated
520 | effective
521 | effectively
522 | effectiveness
523 | effectual
524 | efficacious
525 | efficient
526 | efficiently
527 | effortless
528 | effortlessly
529 | effusion
530 | effusive
531 | effusively
532 | effusiveness
533 | elan
534 | elate
535 | elated
536 | elatedly
537 | elation
538 | electrify
539 | elegance
540 | elegant
541 | elegantly
542 | elevate
543 | elite
544 | eloquence
545 | eloquent
546 | eloquently
547 | embolden
548 | eminence
549 | eminent
550 | empathize
551 | empathy
552 | empower
553 | empowerment
554 | enchant
555 | enchanted
556 | enchanting
557 | enchantingly
558 | encourage
559 | encouragement
560 | encouraging
561 | encouragingly
562 | endear
563 | endearing
564 | endorse
565 | endorsed
566 | endorsement
567 | endorses
568 | endorsing
569 | energetic
570 | energize
571 | energy-efficient
572 | energy-saving
573 | engaging
574 | engrossing
575 | enhance
576 | enhanced
577 | enhancement
578 | enhances
579 | enjoy
580 | enjoyable
581 | enjoyably
582 | enjoyed
583 | enjoying
584 | enjoyment
585 | enjoys
586 | enlighten
587 | enlightenment
588 | enliven
589 | ennoble
590 | enough
591 | enrapt
592 | enrapture
593 | enraptured
594 | enrich
595 | enrichment
596 | enterprising
597 | entertain
598 | entertaining
599 | entertains
600 | enthral
601 | enthrall
602 | enthralled
603 | enthuse
604 | enthusiasm
605 | enthusiast
606 | enthusiastic
607 | enthusiastically
608 | entice
609 | enticed
610 | enticing
611 | enticingly
612 | entranced
613 | entrancing
614 | entrust
615 | enviable
616 | enviably
617 | envious
618 | enviously
619 | enviousness
620 | envy
621 | equitable
622 | ergonomical
623 | err-free
624 | erudite
625 | ethical
626 | eulogize
627 | euphoria
628 | euphoric
629 | euphorically
630 | evaluative
631 | evenly
632 | eventful
633 | everlasting
634 | evocative
635 | exalt
636 | exaltation
637 | exalted
638 | exaltedly
639 | exalting
640 | exaltingly
641 | examplar
642 | examplary
643 | excallent
644 | exceed
645 | exceeded
646 | exceeding
647 | exceedingly
648 | exceeds
649 | excel
650 | exceled
651 | excelent
652 | excellant
653 | excelled
654 | excellence
655 | excellency
656 | excellent
657 | excellently
658 | excels
659 | exceptional
660 | exceptionally
661 | excite
662 | excited
663 | excitedly
664 | excitedness
665 | excitement
666 | excites
667 | exciting
668 | excitingly
669 | exellent
670 | exemplar
671 | exemplary
672 | exhilarate
673 | exhilarating
674 | exhilaratingly
675 | exhilaration
676 | exonerate
677 | expansive
678 | expeditiously
679 | expertly
680 | exquisite
681 | exquisitely
682 | extol
683 | extoll
684 | extraordinarily
685 | extraordinary
686 | exuberance
687 | exuberant
688 | exuberantly
689 | exult
690 | exultant
691 | exultation
692 | exultingly
693 | eye-catch
694 | eye-catching
695 | eyecatch
696 | eyecatching
697 | fabulous
698 | fabulously
699 | facilitate
700 | fair
701 | fairly
702 | fairness
703 | faith
704 | faithful
705 | faithfully
706 | faithfulness
707 | fame
708 | famed
709 | famous
710 | famously
711 | fancier
712 | fancinating
713 | fancy
714 | fanfare
715 | fans
716 | fantastic
717 | fantastically
718 | fascinate
719 | fascinating
720 | fascinatingly
721 | fascination
722 | fashionable
723 | fashionably
724 | fast
725 | fast-growing
726 | fast-paced
727 | faster
728 | fastest
729 | fastest-growing
730 | faultless
731 | fav
732 | fave
733 | favor
734 | favorable
735 | favored
736 | favorite
737 | favorited
738 | favour
739 | fearless
740 | fearlessly
741 | feasible
742 | feasibly
743 | feat
744 | feature-rich
745 | fecilitous
746 | feisty
747 | felicitate
748 | felicitous
749 | felicity
750 | fertile
751 | fervent
752 | fervently
753 | fervid
754 | fervidly
755 | fervor
756 | festive
757 | fidelity
758 | fiery
759 | fine
760 | fine-looking
761 | finely
762 | finer
763 | finest
764 | firmer
765 | first-class
766 | first-in-class
767 | first-rate
768 | flashy
769 | flatter
770 | flattering
771 | flatteringly
772 | flawless
773 | flawlessly
774 | flexibility
775 | flexible
776 | flourish
777 | flourishing
778 | fluent
779 | flutter
780 | fond
781 | fondly
782 | fondness
783 | foolproof
784 | foremost
785 | foresight
786 | formidable
787 | fortitude
788 | fortuitous
789 | fortuitously
790 | fortunate
791 | fortunately
792 | fortune
793 | fragrant
794 | free
795 | freed
796 | freedom
797 | freedoms
798 | fresh
799 | fresher
800 | freshest
801 | friendliness
802 | friendly
803 | frolic
804 | frugal
805 | fruitful
806 | ftw
807 | fulfillment
808 | fun
809 | futurestic
810 | futuristic
811 | gaiety
812 | gaily
813 | gain
814 | gained
815 | gainful
816 | gainfully
817 | gaining
818 | gains
819 | gallant
820 | gallantly
821 | galore
822 | geekier
823 | geeky
824 | gem
825 | gems
826 | generosity
827 | generous
828 | generously
829 | genial
830 | genius
831 | gentle
832 | gentlest
833 | genuine
834 | gifted
835 | glad
836 | gladden
837 | gladly
838 | gladness
839 | glamorous
840 | glee
841 | gleeful
842 | gleefully
843 | glimmer
844 | glimmering
845 | glisten
846 | glistening
847 | glitter
848 | glitz
849 | glorify
850 | glorious
851 | gloriously
852 | glory
853 | glow
854 | glowing
855 | glowingly
856 | god-given
857 | god-send
858 | godlike
859 | godsend
860 | gold
861 | golden
862 | good
863 | goodly
864 | goodness
865 | goodwill
866 | goood
867 | gooood
868 | gorgeous
869 | gorgeously
870 | grace
871 | graceful
872 | gracefully
873 | gracious
874 | graciously
875 | graciousness
876 | grand
877 | grandeur
878 | grateful
879 | gratefully
880 | gratification
881 | gratified
882 | gratifies
883 | gratify
884 | gratifying
885 | gratifyingly
886 | gratitude
887 | great
888 | greatest
889 | greatness
890 | grin
891 | groundbreaking
892 | guarantee
893 | guidance
894 | guiltless
895 | gumption
896 | gush
897 | gusto
898 | gutsy
899 | hail
900 | halcyon
901 | hale
902 | hallmark
903 | hallmarks
904 | hallowed
905 | handier
906 | handily
907 | hands-down
908 | handsome
909 | handsomely
910 | handy
911 | happier
912 | happily
913 | happiness
914 | happy
915 | hard-working
916 | hardier
917 | hardy
918 | harmless
919 | harmonious
920 | harmoniously
921 | harmonize
922 | harmony
923 | headway
924 | heal
925 | healthful
926 | healthy
927 | hearten
928 | heartening
929 | heartfelt
930 | heartily
931 | heartwarming
932 | heaven
933 | heavenly
934 | helped
935 | helpful
936 | helping
937 | hero
938 | heroic
939 | heroically
940 | heroine
941 | heroize
942 | heros
943 | high-quality
944 | high-spirited
945 | hilarious
946 | holy
947 | homage
948 | honest
949 | honesty
950 | honor
951 | honorable
952 | honored
953 | honoring
954 | hooray
955 | hopeful
956 | hospitable
957 | hot
958 | hotcake
959 | hotcakes
960 | hottest
961 | hug
962 | humane
963 | humble
964 | humility
965 | humor
966 | humorous
967 | humorously
968 | humour
969 | humourous
970 | ideal
971 | idealize
972 | ideally
973 | idol
974 | idolize
975 | idolized
976 | idyllic
977 | illuminate
978 | illuminati
979 | illuminating
980 | illumine
981 | illustrious
982 | ilu
983 | imaculate
984 | imaginative
985 | immaculate
986 | immaculately
987 | immense
988 | impartial
989 | impartiality
990 | impartially
991 | impassioned
992 | impeccable
993 | impeccably
994 | important
995 | impress
996 | impressed
997 | impresses
998 | impressive
999 | impressively
1000 | impressiveness
1001 | improve
1002 | improved
1003 | improvement
1004 | improvements
1005 | improves
1006 | improving
1007 | incredible
1008 | incredibly
1009 | indebted
1010 | individualized
1011 | indulgence
1012 | indulgent
1013 | industrious
1014 | inestimable
1015 | inestimably
1016 | inexpensive
1017 | infallibility
1018 | infallible
1019 | infallibly
1020 | influential
1021 | ingenious
1022 | ingeniously
1023 | ingenuity
1024 | ingenuous
1025 | ingenuously
1026 | innocuous
1027 | innovation
1028 | innovative
1029 | inpressed
1030 | insightful
1031 | insightfully
1032 | inspiration
1033 | inspirational
1034 | inspire
1035 | inspiring
1036 | instantly
1037 | instructive
1038 | instrumental
1039 | integral
1040 | integrated
1041 | intelligence
1042 | intelligent
1043 | intelligible
1044 | interesting
1045 | interests
1046 | intimacy
1047 | intimate
1048 | intricate
1049 | intrigue
1050 | intriguing
1051 | intriguingly
1052 | intuitive
1053 | invaluable
1054 | invaluablely
1055 | inventive
1056 | invigorate
1057 | invigorating
1058 | invincibility
1059 | invincible
1060 | inviolable
1061 | inviolate
1062 | invulnerable
1063 | irreplaceable
1064 | irreproachable
1065 | irresistible
1066 | irresistibly
1067 | issue-free
1068 | jaw-droping
1069 | jaw-dropping
1070 | jollify
1071 | jolly
1072 | jovial
1073 | joy
1074 | joyful
1075 | joyfully
1076 | joyous
1077 | joyously
1078 | jubilant
1079 | jubilantly
1080 | jubilate
1081 | jubilation
1082 | jubiliant
1083 | judicious
1084 | justly
1085 | keen
1086 | keenly
1087 | keenness
1088 | kid-friendly
1089 | kindliness
1090 | kindly
1091 | kindness
1092 | knowledgeable
1093 | kudos
1094 | large-capacity
1095 | laud
1096 | laudable
1097 | laudably
1098 | lavish
1099 | lavishly
1100 | law-abiding
1101 | lawful
1102 | lawfully
1103 | lead
1104 | leading
1105 | leads
1106 | lean
1107 | led
1108 | legendary
1109 | leverage
1110 | levity
1111 | liberate
1112 | liberation
1113 | liberty
1114 | lifesaver
1115 | light-hearted
1116 | lighter
1117 | likable
1118 | like
1119 | liked
1120 | likes
1121 | liking
1122 | lionhearted
1123 | lively
1124 | logical
1125 | long-lasting
1126 | lovable
1127 | lovably
1128 | love
1129 | loved
1130 | loveliness
1131 | lovely
1132 | lover
1133 | loves
1134 | loving
1135 | low-cost
1136 | low-price
1137 | low-priced
1138 | low-risk
1139 | lower-priced
1140 | loyal
1141 | loyalty
1142 | lucid
1143 | lucidly
1144 | luck
1145 | luckier
1146 | luckiest
1147 | luckiness
1148 | lucky
1149 | lucrative
1150 | luminous
1151 | lush
1152 | luster
1153 | lustrous
1154 | luxuriant
1155 | luxuriate
1156 | luxurious
1157 | luxuriously
1158 | luxury
1159 | lyrical
1160 | magic
1161 | magical
1162 | magnanimous
1163 | magnanimously
1164 | magnificence
1165 | magnificent
1166 | magnificently
1167 | majestic
1168 | majesty
1169 | manageable
1170 | maneuverable
1171 | marvel
1172 | marveled
1173 | marvelled
1174 | marvellous
1175 | marvelous
1176 | marvelously
1177 | marvelousness
1178 | marvels
1179 | master
1180 | masterful
1181 | masterfully
1182 | masterpiece
1183 | masterpieces
1184 | masters
1185 | mastery
1186 | matchless
1187 | mature
1188 | maturely
1189 | maturity
1190 | meaningful
1191 | memorable
1192 | merciful
1193 | mercifully
1194 | mercy
1195 | merit
1196 | meritorious
1197 | merrily
1198 | merriment
1199 | merriness
1200 | merry
1201 | mesmerize
1202 | mesmerized
1203 | mesmerizes
1204 | mesmerizing
1205 | mesmerizingly
1206 | meticulous
1207 | meticulously
1208 | mightily
1209 | mighty
1210 | mind-blowing
1211 | miracle
1212 | miracles
1213 | miraculous
1214 | miraculously
1215 | miraculousness
1216 | modern
1217 | modest
1218 | modesty
1219 | momentous
1220 | monumental
1221 | monumentally
1222 | morality
1223 | motivated
1224 | multi-purpose
1225 | navigable
1226 | neat
1227 | neatest
1228 | neatly
1229 | nice
1230 | nicely
1231 | nicer
1232 | nicest
1233 | nifty
1234 | nimble
1235 | noble
1236 | nobly
1237 | noiseless
1238 | non-violence
1239 | non-violent
1240 | notably
1241 | noteworthy
1242 | nourish
1243 | nourishing
1244 | nourishment
1245 | novelty
1246 | nurturing
1247 | oasis
1248 | obsession
1249 | obsessions
1250 | obtainable
1251 | openly
1252 | openness
1253 | optimal
1254 | optimism
1255 | optimistic
1256 | opulent
1257 | orderly
1258 | originality
1259 | outdo
1260 | outdone
1261 | outperform
1262 | outperformed
1263 | outperforming
1264 | outperforms
1265 | outshine
1266 | outshone
1267 | outsmart
1268 | outstanding
1269 | outstandingly
1270 | outstrip
1271 | outwit
1272 | ovation
1273 | overjoyed
1274 | overtake
1275 | overtaken
1276 | overtakes
1277 | overtaking
1278 | overtook
1279 | overture
1280 | pain-free
1281 | painless
1282 | painlessly
1283 | palatial
1284 | pamper
1285 | pampered
1286 | pamperedly
1287 | pamperedness
1288 | pampers
1289 | panoramic
1290 | paradise
1291 | paramount
1292 | pardon
1293 | passion
1294 | passionate
1295 | passionately
1296 | patience
1297 | patient
1298 | patiently
1299 | patriot
1300 | patriotic
1301 | peace
1302 | peaceable
1303 | peaceful
1304 | peacefully
1305 | peacekeepers
1306 | peach
1307 | peerless
1308 | pep
1309 | pepped
1310 | pepping
1311 | peppy
1312 | peps
1313 | perfect
1314 | perfection
1315 | perfectly
1316 | permissible
1317 | perseverance
1318 | persevere
1319 | personages
1320 | personalized
1321 | phenomenal
1322 | phenomenally
1323 | picturesque
1324 | piety
1325 | pinnacle
1326 | playful
1327 | playfully
1328 | pleasant
1329 | pleasantly
1330 | pleased
1331 | pleases
1332 | pleasing
1333 | pleasingly
1334 | pleasurable
1335 | pleasurably
1336 | pleasure
1337 | plentiful
1338 | pluses
1339 | plush
1340 | plusses
1341 | poetic
1342 | poeticize
1343 | poignant
1344 | poise
1345 | poised
1346 | polished
1347 | polite
1348 | politeness
1349 | popular
1350 | portable
1351 | posh
1352 | positive
1353 | positively
1354 | positives
1355 | powerful
1356 | powerfully
1357 | praise
1358 | praiseworthy
1359 | praising
1360 | pre-eminent
1361 | precious
1362 | precise
1363 | precisely
1364 | preeminent
1365 | prefer
1366 | preferable
1367 | preferably
1368 | prefered
1369 | preferes
1370 | preferring
1371 | prefers
1372 | premier
1373 | prestige
1374 | prestigious
1375 | prettily
1376 | pretty
1377 | priceless
1378 | pride
1379 | principled
1380 | privilege
1381 | privileged
1382 | prize
1383 | proactive
1384 | problem-free
1385 | problem-solver
1386 | prodigious
1387 | prodigiously
1388 | prodigy
1389 | productive
1390 | productively
1391 | proficient
1392 | proficiently
1393 | profound
1394 | profoundly
1395 | profuse
1396 | profusion
1397 | progress
1398 | progressive
1399 | prolific
1400 | prominence
1401 | prominent
1402 | promise
1403 | promised
1404 | promises
1405 | promising
1406 | promoter
1407 | prompt
1408 | promptly
1409 | proper
1410 | properly
1411 | propitious
1412 | propitiously
1413 | pros
1414 | prosper
1415 | prosperity
1416 | prosperous
1417 | prospros
1418 | protect
1419 | protection
1420 | protective
1421 | proud
1422 | proven
1423 | proves
1424 | providence
1425 | proving
1426 | prowess
1427 | prudence
1428 | prudent
1429 | prudently
1430 | punctual
1431 | pure
1432 | purify
1433 | purposeful
1434 | quaint
1435 | qualified
1436 | qualify
1437 | quicker
1438 | quiet
1439 | quieter
1440 | radiance
1441 | radiant
1442 | rapid
1443 | rapport
1444 | rapt
1445 | rapture
1446 | raptureous
1447 | raptureously
1448 | rapturous
1449 | rapturously
1450 | rational
1451 | razor-sharp
1452 | reachable
1453 | readable
1454 | readily
1455 | ready
1456 | reaffirm
1457 | reaffirmation
1458 | realistic
1459 | realizable
1460 | reasonable
1461 | reasonably
1462 | reasoned
1463 | reassurance
1464 | reassure
1465 | receptive
1466 | reclaim
1467 | recomend
1468 | recommend
1469 | recommendation
1470 | recommendations
1471 | recommended
1472 | reconcile
1473 | reconciliation
1474 | record-setting
1475 | recover
1476 | recovery
1477 | rectification
1478 | rectify
1479 | rectifying
1480 | redeem
1481 | redeeming
1482 | redemption
1483 | refine
1484 | refined
1485 | refinement
1486 | reform
1487 | reformed
1488 | reforming
1489 | reforms
1490 | refresh
1491 | refreshed
1492 | refreshing
1493 | refund
1494 | refunded
1495 | regal
1496 | regally
1497 | regard
1498 | rejoice
1499 | rejoicing
1500 | rejoicingly
1501 | rejuvenate
1502 | rejuvenated
1503 | rejuvenating
1504 | relaxed
1505 | relent
1506 | reliable
1507 | reliably
1508 | relief
1509 | relish
1510 | remarkable
1511 | remarkably
1512 | remedy
1513 | remission
1514 | remunerate
1515 | renaissance
1516 | renewed
1517 | renown
1518 | renowned
1519 | replaceable
1520 | reputable
1521 | reputation
1522 | resilient
1523 | resolute
1524 | resound
1525 | resounding
1526 | resourceful
1527 | resourcefulness
1528 | respect
1529 | respectable
1530 | respectful
1531 | respectfully
1532 | respite
1533 | resplendent
1534 | responsibly
1535 | responsive
1536 | restful
1537 | restored
1538 | restructure
1539 | restructured
1540 | restructuring
1541 | retractable
1542 | revel
1543 | revelation
1544 | revere
1545 | reverence
1546 | reverent
1547 | reverently
1548 | revitalize
1549 | revival
1550 | revive
1551 | revives
1552 | revolutionary
1553 | revolutionize
1554 | revolutionized
1555 | revolutionizes
1556 | reward
1557 | rewarding
1558 | rewardingly
1559 | rich
1560 | richer
1561 | richly
1562 | richness
1563 | right
1564 | righten
1565 | righteous
1566 | righteously
1567 | righteousness
1568 | rightful
1569 | rightfully
1570 | rightly
1571 | rightness
1572 | risk-free
1573 | robust
1574 | rock-star
1575 | rock-stars
1576 | rockstar
1577 | rockstars
1578 | romantic
1579 | romantically
1580 | romanticize
1581 | roomier
1582 | roomy
1583 | rosy
1584 | safe
1585 | safely
1586 | sagacity
1587 | sagely
1588 | saint
1589 | saintliness
1590 | saintly
1591 | salutary
1592 | salute
1593 | sane
1594 | satisfactorily
1595 | satisfactory
1596 | satisfied
1597 | satisfies
1598 | satisfy
1599 | satisfying
1600 | satisified
1601 | saver
1602 | savings
1603 | savior
1604 | savvy
1605 | scenic
1606 | seamless
1607 | seasoned
1608 | secure
1609 | securely
1610 | selective
1611 | self-determination
1612 | self-respect
1613 | self-satisfaction
1614 | self-sufficiency
1615 | self-sufficient
1616 | sensation
1617 | sensational
1618 | sensationally
1619 | sensations
1620 | sensible
1621 | sensibly
1622 | sensitive
1623 | serene
1624 | serenity
1625 | sexy
1626 | sharp
1627 | sharper
1628 | sharpest
1629 | shimmering
1630 | shimmeringly
1631 | shine
1632 | shiny
1633 | significant
1634 | silent
1635 | simpler
1636 | simplest
1637 | simplified
1638 | simplifies
1639 | simplify
1640 | simplifying
1641 | sincere
1642 | sincerely
1643 | sincerity
1644 | skill
1645 | skilled
1646 | skillful
1647 | skillfully
1648 | slammin
1649 | sleek
1650 | slick
1651 | smart
1652 | smarter
1653 | smartest
1654 | smartly
1655 | smile
1656 | smiles
1657 | smiling
1658 | smilingly
1659 | smitten
1660 | smooth
1661 | smoother
1662 | smoothes
1663 | smoothest
1664 | smoothly
1665 | snappy
1666 | snazzy
1667 | sociable
1668 | soft
1669 | softer
1670 | solace
1671 | solicitous
1672 | solicitously
1673 | solid
1674 | solidarity
1675 | soothe
1676 | soothingly
1677 | sophisticated
1678 | soulful
1679 | soundly
1680 | soundness
1681 | spacious
1682 | sparkle
1683 | sparkling
1684 | spectacular
1685 | spectacularly
1686 | speedily
1687 | speedy
1688 | spellbind
1689 | spellbinding
1690 | spellbindingly
1691 | spellbound
1692 | spirited
1693 | spiritual
1694 | splendid
1695 | splendidly
1696 | splendor
1697 | spontaneous
1698 | sporty
1699 | spotless
1700 | sprightly
1701 | stability
1702 | stabilize
1703 | stable
1704 | stainless
1705 | standout
1706 | state-of-the-art
1707 | stately
1708 | statuesque
1709 | staunch
1710 | staunchly
1711 | staunchness
1712 | steadfast
1713 | steadfastly
1714 | steadfastness
1715 | steadiest
1716 | steadiness
1717 | steady
1718 | stellar
1719 | stellarly
1720 | stimulate
1721 | stimulates
1722 | stimulating
1723 | stimulative
1724 | stirringly
1725 | straighten
1726 | straightforward
1727 | streamlined
1728 | striking
1729 | strikingly
1730 | striving
1731 | strong
1732 | stronger
1733 | strongest
1734 | stunned
1735 | stunning
1736 | stunningly
1737 | stupendous
1738 | stupendously
1739 | sturdier
1740 | sturdy
1741 | stylish
1742 | stylishly
1743 | stylized
1744 | suave
1745 | suavely
1746 | sublime
1747 | subsidize
1748 | subsidized
1749 | subsidizes
1750 | subsidizing
1751 | substantive
1752 | succeed
1753 | succeeded
1754 | succeeding
1755 | succeeds
1756 | succes
1757 | success
1758 | successes
1759 | successful
1760 | successfully
1761 | suffice
1762 | sufficed
1763 | suffices
1764 | sufficient
1765 | sufficiently
1766 | suitable
1767 | sumptuous
1768 | sumptuously
1769 | sumptuousness
1770 | super
1771 | superb
1772 | superbly
1773 | superior
1774 | superiority
1775 | supple
1776 | support
1777 | supported
1778 | supporter
1779 | supporting
1780 | supportive
1781 | supports
1782 | supremacy
1783 | supreme
1784 | supremely
1785 | supurb
1786 | supurbly
1787 | surmount
1788 | surpass
1789 | surreal
1790 | survival
1791 | survivor
1792 | sustainability
1793 | sustainable
1794 | swank
1795 | swankier
1796 | swankiest
1797 | swanky
1798 | sweeping
1799 | sweet
1800 | sweeten
1801 | sweetheart
1802 | sweetly
1803 | sweetness
1804 | swift
1805 | swiftness
1806 | talent
1807 | talented
1808 | talents
1809 | tantalize
1810 | tantalizing
1811 | tantalizingly
1812 | tempt
1813 | tempting
1814 | temptingly
1815 | tenacious
1816 | tenaciously
1817 | tenacity
1818 | tender
1819 | tenderly
1820 | terrific
1821 | terrifically
1822 | thank
1823 | thankful
1824 | thinner
1825 | thoughtful
1826 | thoughtfully
1827 | thoughtfulness
1828 | thrift
1829 | thrifty
1830 | thrill
1831 | thrilled
1832 | thrilling
1833 | thrillingly
1834 | thrills
1835 | thrive
1836 | thriving
1837 | thumb-up
1838 | thumbs-up
1839 | tickle
1840 | tidy
1841 | time-honored
1842 | timely
1843 | tingle
1844 | titillate
1845 | titillating
1846 | titillatingly
1847 | togetherness
1848 | tolerable
1849 | toll-free
1850 | top
1851 | top-notch
1852 | top-quality
1853 | topnotch
1854 | tops
1855 | tough
1856 | tougher
1857 | toughest
1858 | traction
1859 | tranquil
1860 | tranquility
1861 | transparent
1862 | treasure
1863 | tremendously
1864 | trendy
1865 | triumph
1866 | triumphal
1867 | triumphant
1868 | triumphantly
1869 | trivially
1870 | trophy
1871 | trouble-free
1872 | trump
1873 | trumpet
1874 | trust
1875 | trusted
1876 | trusting
1877 | trustingly
1878 | trustworthiness
1879 | trustworthy
1880 | trusty
1881 | truthful
1882 | truthfully
1883 | truthfulness
1884 | twinkly
1885 | ultra-crisp
1886 | unabashed
1887 | unabashedly
1888 | unaffected
1889 | unassailable
1890 | unbeatable
1891 | unbiased
1892 | unbound
1893 | uncomplicated
1894 | unconditional
1895 | undamaged
1896 | undaunted
1897 | understandable
1898 | undisputable
1899 | undisputably
1900 | undisputed
1901 | unencumbered
1902 | unequivocal
1903 | unequivocally
1904 | unfazed
1905 | unfettered
1906 | unforgettable
1907 | unity
1908 | unlimited
1909 | unmatched
1910 | unparalleled
1911 | unquestionable
1912 | unquestionably
1913 | unreal
1914 | unrestricted
1915 | unrivaled
1916 | unselfish
1917 | unwavering
1918 | upbeat
1919 | upgradable
1920 | upgradeable
1921 | upgraded
1922 | upheld
1923 | uphold
1924 | uplift
1925 | uplifting
1926 | upliftingly
1927 | upliftment
1928 | upscale
1929 | usable
1930 | useable
1931 | useful
1932 | user-friendly
1933 | user-replaceable
1934 | valiant
1935 | valiantly
1936 | valor
1937 | valuable
1938 | variety
1939 | venerate
1940 | verifiable
1941 | veritable
1942 | versatile
1943 | versatility
1944 | vibrant
1945 | vibrantly
1946 | victorious
1947 | victory
1948 | viewable
1949 | vigilance
1950 | vigilant
1951 | virtue
1952 | virtuous
1953 | virtuously
1954 | visionary
1955 | vivacious
1956 | vivid
1957 | vouch
1958 | vouchsafe
1959 | warm
1960 | warmer
1961 | warmhearted
1962 | warmly
1963 | warmth
1964 | wealthy
1965 | welcome
1966 | well
1967 | well-backlit
1968 | well-balanced
1969 | well-behaved
1970 | well-being
1971 | well-bred
1972 | well-connected
1973 | well-educated
1974 | well-established
1975 | well-informed
1976 | well-intentioned
1977 | well-known
1978 | well-made
1979 | well-managed
1980 | well-mannered
1981 | well-positioned
1982 | well-received
1983 | well-regarded
1984 | well-rounded
1985 | well-run
1986 | well-wishers
1987 | wellbeing
1988 | whoa
1989 | wholeheartedly
1990 | wholesome
1991 | whooa
1992 | whoooa
1993 | wieldy
1994 | willing
1995 | willingly
1996 | willingness
1997 | win
1998 | windfall
1999 | winnable
2000 | winner
2001 | winners
2002 | winning
2003 | wins
2004 | wisdom
2005 | wise
2006 | wisely
2007 | witty
2008 | won
2009 | wonder
2010 | wonderful
2011 | wonderfully
2012 | wonderous
2013 | wonderously
2014 | wonders
2015 | wondrous
2016 | woo
2017 | work
2018 | workable
2019 | worked
2020 | works
2021 | world-famous
2022 | worth
2023 | worth-while
2024 | worthiness
2025 | worthwhile
2026 | worthy
2027 | wow
2028 | wowed
2029 | wowing
2030 | wows
2031 | yay
2032 | youthful
2033 | zeal
2034 | zenith
2035 | zest
2036 | zippy
2037 |
--------------------------------------------------------------------------------
/data/t10k-images-idx3-ubyte.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/t10k-images-idx3-ubyte.gz
--------------------------------------------------------------------------------
/data/t10k-labels-idx1-ubyte.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/t10k-labels-idx1-ubyte.gz
--------------------------------------------------------------------------------
/data/train-images-idx3-ubyte.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/train-images-idx3-ubyte.gz
--------------------------------------------------------------------------------
/data/train-labels-idx1-ubyte.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/train-labels-idx1-ubyte.gz
--------------------------------------------------------------------------------
/data/wiki106.txt.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/wiki106.txt.zip
--------------------------------------------------------------------------------
/data/wordVectors.txt.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/data/wordVectors.txt.zip
--------------------------------------------------------------------------------
/deeplearninginside2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/deeplearninginside2.png
--------------------------------------------------------------------------------
/images/FVMNLN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/FVMNLN.png
--------------------------------------------------------------------------------
/images/FVSBN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/FVSBN.png
--------------------------------------------------------------------------------
/images/NADE.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/NADE.png
--------------------------------------------------------------------------------
/images/README.md:
--------------------------------------------------------------------------------
1 | # Deep Learning from Scratch
2 | This course is organized by the Data Science Group @ UB
3 |
--------------------------------------------------------------------------------
/images/TanhReal.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/TanhReal.gif
--------------------------------------------------------------------------------
/images/alexnet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/alexnet.png
--------------------------------------------------------------------------------
/images/autoencoder.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/autoencoder.jpg
--------------------------------------------------------------------------------
/images/back.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/back.png
--------------------------------------------------------------------------------
/images/conv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/conv.png
--------------------------------------------------------------------------------
/images/conv1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/conv1.png
--------------------------------------------------------------------------------
/images/conv2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/conv2.png
--------------------------------------------------------------------------------
/images/deeplearninginside2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/deeplearninginside2.png
--------------------------------------------------------------------------------
/images/deepq1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/deepq1.png
--------------------------------------------------------------------------------
/images/deepq2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/deepq2.png
--------------------------------------------------------------------------------
/images/denoised_digits.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/denoised_digits.png
--------------------------------------------------------------------------------
/images/densenet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/densenet.png
--------------------------------------------------------------------------------
/images/dgan.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/dgan.png
--------------------------------------------------------------------------------
/images/dgan2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/dgan2.png
--------------------------------------------------------------------------------
/images/dgan3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/dgan3.png
--------------------------------------------------------------------------------
/images/dropout.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/dropout.png
--------------------------------------------------------------------------------
/images/exploding.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/exploding.png
--------------------------------------------------------------------------------
/images/fasterrcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/fasterrcnn.png
--------------------------------------------------------------------------------
/images/fastrcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/fastrcnn.png
--------------------------------------------------------------------------------
/images/fastrcnn2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/fastrcnn2.png
--------------------------------------------------------------------------------
/images/fword2vec-sg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/fword2vec-sg.png
--------------------------------------------------------------------------------
/images/g1.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/g1.gif
--------------------------------------------------------------------------------
/images/g2.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/g2.gif
--------------------------------------------------------------------------------
/images/gan1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/gan1.png
--------------------------------------------------------------------------------
/images/googlenet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/googlenet.png
--------------------------------------------------------------------------------
/images/googlenet2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/googlenet2.png
--------------------------------------------------------------------------------
/images/gru.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/gru.png
--------------------------------------------------------------------------------
/images/inception.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/inception.png
--------------------------------------------------------------------------------
/images/kar.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/kar.png
--------------------------------------------------------------------------------
/images/loss_functions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/loss_functions.png
--------------------------------------------------------------------------------
/images/lstm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/lstm.png
--------------------------------------------------------------------------------
/images/maxpool.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/maxpool.jpeg
--------------------------------------------------------------------------------
/images/merge.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/merge.png
--------------------------------------------------------------------------------
/images/minibatch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/minibatch.png
--------------------------------------------------------------------------------
/images/mnistExamples.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/mnistExamples.png
--------------------------------------------------------------------------------
/images/multi.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/multi.png
--------------------------------------------------------------------------------
/images/par2vec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/par2vec.png
--------------------------------------------------------------------------------
/images/pipeline1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/pipeline1.png
--------------------------------------------------------------------------------
/images/pipeline2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/pipeline2.png
--------------------------------------------------------------------------------
/images/pixelrcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/pixelrcnn.png
--------------------------------------------------------------------------------
/images/pong.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/pong.jpg
--------------------------------------------------------------------------------
/images/rcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/rcnn.png
--------------------------------------------------------------------------------
/images/res1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/res1.png
--------------------------------------------------------------------------------
/images/resnet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/resnet.png
--------------------------------------------------------------------------------
/images/result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/result.png
--------------------------------------------------------------------------------
/images/ridge2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/ridge2.png
--------------------------------------------------------------------------------
/images/seq2seq.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/seq2seq.png
--------------------------------------------------------------------------------
/images/siamese1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/siamese1.png
--------------------------------------------------------------------------------
/images/siameseresult.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/siameseresult.png
--------------------------------------------------------------------------------
/images/slot.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/slot.jpg
--------------------------------------------------------------------------------
/images/spectrogram.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/spectrogram.png
--------------------------------------------------------------------------------
/images/split.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/split.png
--------------------------------------------------------------------------------
/images/steeper.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/steeper.png
--------------------------------------------------------------------------------
/images/subsampling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/subsampling.png
--------------------------------------------------------------------------------
/images/t1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t1.png
--------------------------------------------------------------------------------
/images/t10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t10.png
--------------------------------------------------------------------------------
/images/t12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t12.png
--------------------------------------------------------------------------------
/images/t2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t2.png
--------------------------------------------------------------------------------
/images/t3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t3.png
--------------------------------------------------------------------------------
/images/t4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t4.png
--------------------------------------------------------------------------------
/images/t5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t5.png
--------------------------------------------------------------------------------
/images/t6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t6.png
--------------------------------------------------------------------------------
/images/t7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t7.png
--------------------------------------------------------------------------------
/images/t8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t8.png
--------------------------------------------------------------------------------
/images/t9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/t9.png
--------------------------------------------------------------------------------
/images/tf-gru.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/tf-gru.png
--------------------------------------------------------------------------------
/images/tf-lstm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/tf-lstm.png
--------------------------------------------------------------------------------
/images/ub.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/ub.png
--------------------------------------------------------------------------------
/images/unrolling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/unrolling.png
--------------------------------------------------------------------------------
/images/vae1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae1.png
--------------------------------------------------------------------------------
/images/vae2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae2.png
--------------------------------------------------------------------------------
/images/vae3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae3.png
--------------------------------------------------------------------------------
/images/vae4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae4.png
--------------------------------------------------------------------------------
/images/vae5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae5.png
--------------------------------------------------------------------------------
/images/vae6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae6.png
--------------------------------------------------------------------------------
/images/vae7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae7.png
--------------------------------------------------------------------------------
/images/vae_sampling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vae_sampling.png
--------------------------------------------------------------------------------
/images/vanilla.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vanilla.png
--------------------------------------------------------------------------------
/images/vgg16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/vgg16.png
--------------------------------------------------------------------------------
/images/w2v1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/w2v1.png
--------------------------------------------------------------------------------
/images/weights.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/weights.jpeg
--------------------------------------------------------------------------------
/images/word2vec-cbow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/word2vec-cbow.png
--------------------------------------------------------------------------------
/images/zfnet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataScienceUB/DeepLearningMaster2019/e4106e183a2c171ef62b1c3bcdc702667af62b0b/images/zfnet.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | autograd==1.2
2 | bleach==1.5.0
3 | boto==2.48.0
4 | boto3==1.5.6
5 | botocore==1.8.20
6 | bz2file==0.98
7 | certifi==2017.11.5
8 | chardet==3.0.4
9 | cycler==0.10.0
10 | decorator==4.1.2
11 | docutils==0.14
12 | edward==1.3.4
13 | entrypoints==0.2.3
14 | enum34==1.1.6
15 | future==0.16.0
16 | futures==3.1.1
17 | gensim==3.2.0
18 | gym==0.9.4
19 | h5py==2.7.1
20 | html5lib==0.9999999
21 | idna==2.6
22 | ipykernel==4.6.1
23 | ipython==6.2.1
24 | ipython-genutils==0.2.0
25 | ipywidgets==7.0.3
26 | jedi==0.11.0
27 | Jinja2==2.9.6
28 | jmespath==0.9.3
29 | joblib==0.11
30 | jsonschema==2.6.0
31 | jupyter==1.0.0
32 | jupyter-client==5.1.0
33 | jupyter-console==5.2.0
34 | jupyter-core==4.3.0
35 | Keras==2.1.2
36 | Markdown==2.6.9
37 | MarkupSafe==1.0
38 | matplotlib==2.1.0
39 | mistune==0.7.4
40 | nbconvert==5.3.1
41 | nbformat==4.4.0
42 | notebook==5.2.0
43 | numpy==1.13.3
44 | olefile==0.44
45 | pandas==0.20.3
46 | pandocfilters==1.4.2
47 | parso==0.1.0
48 | patsy==0.4.1
49 | pexpect==4.2.1
50 | pickleshare==0.7.4
51 | Pillow==4.3.0
52 | prompt-toolkit==1.0.15
53 | protobuf==3.4.0
54 | ptyprocess==0.5.2
55 | pycurl==7.43.0
56 | pyglet==1.3.0
57 | Pygments==2.2.0
58 | pygobject==3.20.0
59 | pymc3==3.2
60 | pyparsing==2.2.0
61 | python-apt==1.1.0b1
62 | python-dateutil==2.6.1
63 | pytz==2017.2
64 | PyYAML==3.12
65 | pyzmq==16.0.2
66 | qtconsole==4.3.1
67 | requests==2.18.4
68 | s3transfer==0.1.12
69 | scikit-learn==0.19.0
70 | scipy==0.19.1
71 | seaborn==0.8.1
72 | simplegeneric==0.8.1
73 | six==1.11.0
74 | sklearn==0.0
75 | smart-open==1.5.6
76 | tensorflow==1.4.0rc1
77 | tensorflow-tensorboard==0.4.0rc1
78 | terminado==0.6
79 | testpath==0.3.1
80 | Theano==1.0.1
81 | tornado==4.5.2
82 | tqdm==4.19.5
83 | traitlets==4.3.2
84 | urllib3==1.22
85 | wcwidth==0.1.7
86 | webencodings==0.5.1
87 | Werkzeug==0.12.2
88 | widgetsnbextension==3.0.6
89 |
--------------------------------------------------------------------------------