├── .dockerignore
├── Dockerfile
├── LICENSE
├── README.md
├── README.pdf
├── README_YOLO_v5.md
├── README_v3.md
├── data
├── coco.yaml
├── coco128.yaml
├── get_coco2017.sh
└── score.yaml
├── datasets
├── 01_check_img.py
├── 02_check_box.py
├── 03_train_val_split.py
├── 04_myData_label.py
└── score
│ ├── images
│ └── readme
│ └── labels
│ └── readme
├── detect.py
├── gen_wts.py
├── hubconf.py
├── inference
├── images
│ ├── bus.jpg
│ └── zidane.jpg
└── output
│ ├── bus.jpg
│ └── zidane.jpg
├── models
├── common.py
├── experimental.py
├── onnx_export.py
├── score
│ └── yolov5x.yaml
├── yolo.py
├── yolov3-spp.yaml
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5s.yaml
└── yolov5x.yaml
├── readmepic
├── readme1
│ ├── 82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg
│ ├── 83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg
│ ├── 84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png
│ ├── 84200349-729f2680-aa5b-11ea-8f9a-604c9e01a658.png
│ └── YOLOv4_author2.jpg
└── readme2
│ ├── pic
│ ├── 20200514_p6_5_247_one.jpg
│ ├── 78174482-307bb800-740e-11ea-8b09-840693671042.png
│ ├── 83666389-bab4d980-a581-11ea-898b-b25471d37b83.jpg
│ ├── 83667626-8c37fe00-a583-11ea-997b-0923fe59b29b.jpeg
│ ├── 83667635-90641b80-a583-11ea-8075-606316cebb9c.jpeg
│ ├── 83667642-90fcb200-a583-11ea-8fa3-338bbf7da194.jpeg
│ ├── 83667810-d7eaa780-a583-11ea-8de8-5cca0673d076.png
│ ├── datalist.png
│ ├── results.png
│ ├── t1.jpg
│ ├── test_batch0_gt.jpg
│ ├── test_batch0_pred.jpg
│ ├── train_batch0.jpg
│ ├── train_batch1.jpg
│ └── train_batch2.jpg
│ └── 教程.md
├── requirements.txt
├── results.txt
├── runs
└── readme
├── test.py
├── train.py
├── tutorial.ipynb
├── utils
├── __init__.py
├── activations.py
├── datasets.py
├── google_utils.py
├── torch_utils.py
└── utils.py
├── weights
├── download_weights.sh
└── readme
└── yolov5_trt.py
/.dockerignore:
--------------------------------------------------------------------------------
1 | # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2 | # .git
3 | .cache
4 | .idea
5 | runs
6 | output
7 | coco
8 | storage.googleapis.com
9 |
10 | data/samples/*
11 | **/results*.txt
12 | *.jpg
13 |
14 | # Neural Network weights -----------------------------------------------------------------------------------------------
15 | **/*.weights
16 | **/*.pt
17 | **/*.onnx
18 | **/*.mlmodel
19 |
20 |
21 | # Below Copied From .gitignore -----------------------------------------------------------------------------------------
22 | # Below Copied From .gitignore -----------------------------------------------------------------------------------------
23 |
24 |
25 | # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
26 | # Byte-compiled / optimized / DLL files
27 | __pycache__/
28 | *.py[cod]
29 | *$py.class
30 |
31 | # C extensions
32 | *.so
33 |
34 | # Distribution / packaging
35 | .Python
36 | env/
37 | build/
38 | develop-eggs/
39 | dist/
40 | downloads/
41 | eggs/
42 | .eggs/
43 | lib/
44 | lib64/
45 | parts/
46 | sdist/
47 | var/
48 | wheels/
49 | *.egg-info/
50 | .installed.cfg
51 | *.egg
52 |
53 | # PyInstaller
54 | # Usually these files are written by a python script from a template
55 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
56 | *.manifest
57 | *.spec
58 |
59 | # Installer logs
60 | pip-log.txt
61 | pip-delete-this-directory.txt
62 |
63 | # Unit test / coverage reports
64 | htmlcov/
65 | .tox/
66 | .coverage
67 | .coverage.*
68 | .cache
69 | nosetests.xml
70 | coverage.xml
71 | *.cover
72 | .hypothesis/
73 |
74 | # Translations
75 | *.mo
76 | *.pot
77 |
78 | # Django stuff:
79 | *.log
80 | local_settings.py
81 |
82 | # Flask stuff:
83 | instance/
84 | .webassets-cache
85 |
86 | # Scrapy stuff:
87 | .scrapy
88 |
89 | # Sphinx documentation
90 | docs/_build/
91 |
92 | # PyBuilder
93 | target/
94 |
95 | # Jupyter Notebook
96 | .ipynb_checkpoints
97 |
98 | # pyenv
99 | .python-version
100 |
101 | # celery beat schedule file
102 | celerybeat-schedule
103 |
104 | # SageMath parsed files
105 | *.sage.py
106 |
107 | # dotenv
108 | .env
109 |
110 | # virtualenv
111 | .venv
112 | venv/
113 | ENV/
114 |
115 | # Spyder project settings
116 | .spyderproject
117 | .spyproject
118 |
119 | # Rope project settings
120 | .ropeproject
121 |
122 | # mkdocs documentation
123 | /site
124 |
125 | # mypy
126 | .mypy_cache/
127 |
128 |
129 | # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
130 |
131 | # General
132 | .DS_Store
133 | .AppleDouble
134 | .LSOverride
135 |
136 | # Icon must end with two \r
137 | Icon
138 | Icon?
139 |
140 | # Thumbnails
141 | ._*
142 |
143 | # Files that might appear in the root of a volume
144 | .DocumentRevisions-V100
145 | .fseventsd
146 | .Spotlight-V100
147 | .TemporaryItems
148 | .Trashes
149 | .VolumeIcon.icns
150 | .com.apple.timemachine.donotpresent
151 |
152 | # Directories potentially created on remote AFP share
153 | .AppleDB
154 | .AppleDesktop
155 | Network Trash Folder
156 | Temporary Items
157 | .apdisk
158 |
159 |
160 | # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
161 | # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
162 | # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
163 |
164 | # User-specific stuff:
165 | .idea/*
166 | .idea/**/workspace.xml
167 | .idea/**/tasks.xml
168 | .idea/dictionaries
169 | .html # Bokeh Plots
170 | .pg # TensorFlow Frozen Graphs
171 | .avi # videos
172 |
173 | # Sensitive or high-churn files:
174 | .idea/**/dataSources/
175 | .idea/**/dataSources.ids
176 | .idea/**/dataSources.local.xml
177 | .idea/**/sqlDataSources.xml
178 | .idea/**/dynamic.xml
179 | .idea/**/uiDesigner.xml
180 |
181 | # Gradle:
182 | .idea/**/gradle.xml
183 | .idea/**/libraries
184 |
185 | # CMake
186 | cmake-build-debug/
187 | cmake-build-release/
188 |
189 | # Mongo Explorer plugin:
190 | .idea/**/mongoSettings.xml
191 |
192 | ## File-based project format:
193 | *.iws
194 |
195 | ## Plugin-specific files:
196 |
197 | # IntelliJ
198 | out/
199 |
200 | # mpeltonen/sbt-idea plugin
201 | .idea_modules/
202 |
203 | # JIRA plugin
204 | atlassian-ide-plugin.xml
205 |
206 | # Cursive Clojure plugin
207 | .idea/replstate.xml
208 |
209 | # Crashlytics plugin (for Android Studio and IntelliJ)
210 | com_crashlytics_export_strings.xml
211 | crashlytics.properties
212 | crashlytics-build.properties
213 | fabric.properties
214 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2 | FROM nvcr.io/nvidia/pytorch:20.03-py3
3 |
4 | # Install dependencies (pip or conda)
5 | RUN pip install -U gsutil
6 | # RUN pip install -U -r requirements.txt
7 |
8 | # Create working directory
9 | RUN mkdir -p /usr/src/app
10 | WORKDIR /usr/src/app
11 |
12 | # Copy contents
13 | COPY . /usr/src/app
14 |
15 | # Copy weights
16 | #RUN python3 -c "from models import *; \
17 | #attempt_download('weights/yolov5s.pt'); \
18 | #attempt_download('weights/yolov5m.pt'); \
19 | #attempt_download('weights/yolov5l.pt')"
20 |
21 |
22 | # --------------------------------------------------- Extras Below ---------------------------------------------------
23 |
24 | # Build and Push
25 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
26 |
27 | # Pull and Run
28 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
29 |
30 | # Pull and Run with local directory access
31 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t bash
32 |
33 | # Kill all
34 | # sudo docker kill "$(sudo docker ps -q)"
35 |
36 | # Kill all image-based
37 | # sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
38 |
39 | # Run bash for loop
40 | # sudo docker run --gpus all --ipc=host ultralytics/yolov5:latest while true; do python3 train.py --evolve; done
41 |
42 | # Bash into running container
43 | # sudo docker container exec -it ba65811811ab bash
44 | # python -c "from utils.utils import *; create_backbone('weights/last.pt')" && gsutil cp weights/backbone.pt gs://*
45 |
46 | # Bash into stopped container
47 | # sudo docker commit 6d525e299258 user/test_image && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh user/test_image
48 |
49 | # Clean up
50 | # docker system prune -a --volumes
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## [YOLO v5](https://github.com/ultralytics/yolov5)在医疗领域中消化内镜目标检测的应用
2 |
3 | ### YOLO v5训练自己数据集详细教程
4 |
5 | :bug: :bug: 现在YOLOv5 已经更新到6.0版本了,但是其训练方式同本Repo是一致的,只需要按照对应版本安装对应Python环境即可,其数据集的构建,配置文件的修改,训练方式等完全与本Repo一致!
6 |
7 | :bug: :bug: 我们提供了YOLOv5 TensorRT调用和INT8量化的C++和Python代码(其TensorRT加速方式不同于本Repo提供的TensorRT调用方式),有需要的大佬可在issues中留言!
8 |
9 | **Xu Jing**
10 |
11 | ------
12 | :fire: 由于官方新版YOLO v5的backbone和部分参数调整,导致很多小伙伴下载最新官方预训练模型不可用,这里提供原版的YOLO v5的预训练模型的百度云盘下载地址
13 |
14 | 链接:https://pan.baidu.com/s/1SDwp6I_MnRLK45QdB3-yNw
15 | 提取码:423j
16 |
17 | ------
18 |
19 | + YOLOv4还没有退热,YOLOv5已经发布!
20 |
21 | + 6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!
22 |
23 | + YOLO v5的主要贡献者是YOLO v4中重点介绍的马赛克数据增强的作者
24 |
25 |
26 |
27 |
28 |
29 |
30 | > 本项目描述了如何基于自己的数据集训练YOLO v5
31 |
32 |
33 |
34 | 但是YOLO v4的二作提供给我们的信息和官方提供的还是有一些出入:
35 |
36 |
37 |
38 |
39 | #### 0.环境配置
40 |
41 | 安装必要的python package和配置相关环境
42 |
43 | ```
44 | # python3.6
45 | # torch==1.3.0
46 | # torchvision==0.4.1
47 |
48 | # git clone yolo v5 repo
49 | git clone https://github.com/ultralytics/yolov5 # clone repo
50 | # 下载官方的样例数据(这一步可以省略)
51 | python3 -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')" # download dataset
52 | cd yolov5
53 | # 安装必要的package
54 | pip3 install -U -r requirements.txt
55 | ```
56 |
57 | #### 1.创建数据集的配置文件`dataset.yaml`
58 |
59 | [data/coco128.yaml](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml)来自于COCO train2017数据集的前128个训练图像,可以基于该`yaml`修改自己数据集的`yaml`文件
60 |
61 | ```ymal
62 | # train and val datasets (image directory or *.txt file with image paths)
63 | train: ./datasets/score/images/train/
64 | val: ./datasets/score/images/val/
65 |
66 | # number of classes
67 | nc: 3
68 |
69 | # class names
70 | names: ['QP', 'NY', 'QG']
71 | ```
72 |
73 | #### 2.创建标注文件
74 |
75 | 可以使用LabelImg,Labme,[Labelbox](https://labelbox.com/), [CVAT](https://github.com/opencv/cvat)来标注数据,对于目标检测而言需要标注bounding box即可。然后需要将标注转换为和**darknet format**相同的标注形式,每一个图像生成一个`*.txt`的标注文件(如果该图像没有标注目标则不用创建`*.txt`文件)。创建的`*.txt`文件遵循如下规则:
76 |
77 | - 每一行存放一个标注类别
78 | - 每一行的内容包括`class x_center y_center width height`
79 | - Bounding box 的坐标信息是归一化之后的(0-1)
80 | - class label转化为index时计数是从0开始的
81 |
82 | ```python
83 | def convert(size, box):
84 | '''
85 | 将标注的xml文件标注转换为darknet形的坐标
86 | '''
87 | dw = 1./(size[0])
88 | dh = 1./(size[1])
89 | x = (box[0] + box[1])/2.0 - 1
90 | y = (box[2] + box[3])/2.0 - 1
91 | w = box[1] - box[0]
92 | h = box[3] - box[2]
93 | x = x*dw
94 | w = w*dw
95 | y = y*dh
96 | h = h*dh
97 | return (x,y,w,h)
98 | ```
99 |
100 | 每一个标注`*.txt`文件存放在和图像相似的文件目录下,只需要将`/images/*.jpg`替换为`/lables/*.txt`即可(这个在加载数据时代码内部的处理就是这样的,可以自行修改为VOC的数据格式进行加载)
101 |
102 | 例如:
103 |
104 | ```
105 | datasets/score/images/train/000000109622.jpg # image
106 | datasets/score/labels/train/000000109622.txt # label
107 | ```
108 | 如果一个标注文件包含5个person类别(person在coco数据集中是排在第一的类别因此index为0):
109 |
110 |
111 |
112 | #### 3.组织训练集的目录
113 |
114 | 将训练集train和验证集val的images和labels文件夹按照如下的方式进行存放
115 |
116 |
117 |
118 | 至此数据准备阶段已经完成,过程中我们假设算法工程师的数据清洗和数据集的划分过程已经自行完成。
119 |
120 | #### 4.选择模型backbone进行模型配置文件的修改
121 |
122 | 在项目的`./models`文件夹下选择一个需要训练的模型,这里我们选择[yolov5x.yaml](https://github.com/ultralytics/yolov5/blob/master/models/yolov5x.yaml),最大的一个模型进行训练,参考官方README中的[table](https://github.com/ultralytics/yolov5#pretrained-checkpoints),了解不同模型的大小和推断速度。如果你选定了一个模型,那么需要修改模型对应的`yaml`文件
123 |
124 | ```yaml
125 |
126 | # parameters
127 | nc: 3 # number of classes <------------------ UPDATE to match your dataset
128 | depth_multiple: 1.33 # model depth multiple
129 | width_multiple: 1.25 # layer channel multiple
130 |
131 | # anchors
132 | anchors:
133 | - [10,13, 16,30, 33,23] # P3/8
134 | - [30,61, 62,45, 59,119] # P4/16
135 | - [116,90, 156,198, 373,326] # P5/32
136 |
137 | # yolov5 backbone
138 | backbone:
139 | # [from, number, module, args]
140 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
141 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
142 | [-1, 3, Bottleneck, [128]],
143 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
144 | [-1, 9, BottleneckCSP, [256]],
145 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
146 | [-1, 9, BottleneckCSP, [512]],
147 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
148 | [-1, 1, SPP, [1024, [5, 9, 13]]],
149 | [-1, 6, BottleneckCSP, [1024]], # 10
150 | ]
151 |
152 | # yolov5 head
153 | head:
154 | [[-1, 3, BottleneckCSP, [1024, False]], # 11
155 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
156 |
157 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
158 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
159 | [-1, 1, Conv, [512, 1, 1]],
160 | [-1, 3, BottleneckCSP, [512, False]],
161 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
162 |
163 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
164 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
165 | [-1, 1, Conv, [256, 1, 1]],
166 | [-1, 3, BottleneckCSP, [256, False]],
167 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
168 |
169 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
170 | ]
171 |
172 | ```
173 |
174 | #### 5.Train
175 |
176 | ```bash
177 | # Train yolov5x on score for 300 epochs
178 |
179 | $ python3 train.py --img-size 640 --batch-size 16 --epochs 300 --data ./data/score.yaml --cfg ./models/score/yolov5x.yaml --weights weights/yolov5x.pt
180 |
181 | ```
182 |
183 |
184 | #### 6.Visualize
185 |
186 | 开始训练后,查看`train*.jpg`图片查看训练数据,标签和数据增强,如果你的图像显示标签或数据增强不正确,你应该查看你的数据集的构建过程是否有问题
187 |
188 |
189 |
190 | 一个训练epoch完成后,查看`test_batch0_gt.jpg`查看batch 0 ground truth的labels
191 |
192 |
193 |
194 |
195 | 查看`test_batch0_pred.jpg`查看test batch 0的预测
196 |
197 |
198 |
199 | 训练的losses和评价指标被保存在Tensorboard和`results.txt`log文件。`results.txt`在训练结束后会被可视化为`results.png`
200 |
201 | ```python
202 | >>> from utils.utils import plot_results
203 | >>> plot_results()
204 | # 如果你是用远程连接请安装配置Xming: https://blog.csdn.net/akuoma/article/details/82182913
205 | ```
206 |
207 |
208 |
209 | #### 7.推断
210 |
211 | ```python
212 | $ python3 detect.py --source file.jpg # image
213 | file.mp4 # video
214 | ./dir # directory
215 | 0 # webcam
216 | rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
217 | http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
218 | ````
219 |
220 |
221 | ```python
222 | # inference /home/myuser/xujing/EfficientDet-Pytorch/dataset/test/ 文件夹下的图像
223 | $ python3 detect.py --source /home/myuser/xujing/EfficientDet-Pytorch/dataset/test/ --weights weights/best.pt --conf 0.1
224 |
225 | $ python3 detect.py --source ./inference/images/ --weights weights/yolov5x.pt --conf 0.5
226 |
227 | # inference 视频
228 | $ python3 detect.py --source test.mp4 --weights weights/yolov5x.pt --conf 0.4
229 | ```
230 |
231 |
232 |
233 |
234 |
235 | #### 8.YOLOv5的TensorRT加速
236 |
237 | [请到这里来](./README_v3.md)
238 |
239 |
240 | **Reference**
241 |
242 | [1].https://github.com/ultralytics/yolov5
243 |
244 | [2].https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
245 |
--------------------------------------------------------------------------------
/README.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/README.pdf
--------------------------------------------------------------------------------
/README_YOLO_v5.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |  
4 |
5 | This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
6 |
7 |
** GPU Latency measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP32 inference, postprocessing and NMS.
8 |
9 | - **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates to all YOLOv5 models. New models are faster, smaller and more accurate. Credit to @WongKinYiu for his excellent work with CSP.
10 | - **May 27, 2020**: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations, YOLOv5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) bottlenecks, [YOLOv4](https://github.com/AlexeyAB/darknet) features, as well as PANet or BiFPN heads.
11 | - **April 1, 2020**: Begin development of a 100% PyTorch, scaleable YOLOv3/4-based group of future models, in a range of compound-scaled sizes. Models will be defined by new user-friendly `*.yaml` files. New training methods will be simpler to start, faster to finish, and more robust to training a wider variety of custom dataset.
12 |
13 |
14 | ## Pretrained Checkpoints
15 |
16 | | Model | APval | APtest | AP50 | LatencyGPU | FPSGPU || params | FLOPs |
17 | |---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
18 | | YOLOv5-s ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 35.5 | 35.5 | 55.0 | **2.5ms** | **400** || 7.1M | 12.6B
19 | | YOLOv5-m ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 42.7 | 42.7 | 62.4 | 4.4ms | 227 || 22.0M | 39.0B
20 | | YOLOv5-l ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.7 | 45.9 | 65.1 | 6.8ms | 147 || 50.3M | 89.0B
21 | | YOLOv5-x ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | **47.2** | **47.3** | **66.6** | 11.7ms | 85 || 95.9M | 170.3B
22 | | YOLOv3-SPP ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.6 | 45.5 | 65.2 | 7.9ms | 127 || 63.0M | 118.0B
23 |
24 | ** APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
25 | ** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
26 | ** LatencyGPU measures end-to-end latency per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP32 inference at batch size 32, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
27 | ** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
28 |
29 |
30 | ## Requirements
31 |
32 | Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
33 | ```bash
34 | $ pip install -U -r requirements.txt
35 | ```
36 |
37 |
38 | ## Tutorials
39 |
40 | *
41 | * [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
42 | * [Google Cloud Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
43 | * [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
44 |
45 |
46 | ## Inference
47 |
48 | Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
49 | ```bash
50 | $ python detect.py --source file.jpg # image
51 | file.mp4 # video
52 | ./dir # directory
53 | 0 # webcam
54 | rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
55 | http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
56 | ```
57 |
58 | To run inference on examples in the `./inference/images` folder:
59 |
60 | ```bash
61 | $ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
62 |
63 | Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
64 | Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
65 |
66 | Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
67 |
68 | image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
69 | image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
70 | Results saved to /content/yolov5/inference/output
71 | ```
72 |
73 |
74 |
75 | ## Reproduce Our Training
76 |
77 | Run command below. Training times for yolov5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster).
78 | ```bash
79 | $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 16
80 | ```
81 |
82 |
83 |
84 | ## Reproduce Our Environment
85 |
86 | To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
87 |
88 | - **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
89 | - **Google Colab Notebook** with 12 hours of free GPU time.
90 | - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
91 |
92 |
93 | ## Citation
94 |
95 | [](https://zenodo.org/badge/latestdoi/146165888)
96 |
97 |
98 | ## About Us
99 |
100 | Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
101 | - **Cloud-based AI** surveillance systems operating on **hundreds of HD video streams in realtime.**
102 | - **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
103 | - **Custom data training**, hyperparameter evolution, and model exportation to any destination.
104 |
105 | For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
106 |
107 |
108 | ## Contact
109 |
110 | **Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
111 |
--------------------------------------------------------------------------------
/README_v3.md:
--------------------------------------------------------------------------------
1 | ### YOLO v5转TensorRT模型并调用
2 |
3 | ### 0.pt模型转wts模型
4 |
5 | ```
6 | python3 gen_wts.py
7 | # 注意修改代码中模型保存和模型加载的路径
8 | ```
9 |
10 |
11 |
12 | ### 1.修改部分文件
13 |
14 | + 0.修改CMakeLists.txt
15 |
16 | ```
17 | cmake_minimum_required(VERSION 2.6)
18 |
19 | project(yolov5)
20 |
21 | add_definitions(-std=c++11)
22 |
23 | option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
24 | set(CMAKE_CXX_STANDARD 11)
25 | set(CMAKE_BUILD_TYPE Debug)
26 |
27 | find_package(CUDA REQUIRED)
28 |
29 | set(CUDA_NVCC_PLAGS ${CUDA_NVCC_PLAGS};-std=c++11;-g;-G;-gencode;arch=compute_30;code=sm_30)
30 |
31 | include_directories(${PROJECT_SOURCE_DIR}/include)
32 | # include and link dirs of cuda and tensorrt, you need adapt them if yours are different
33 | # cuda
34 | include_directories(/usr/local/cuda/include)
35 | link_directories(/usr/local/cuda/lib64)
36 |
37 | # tensorrt <------------------
38 | #include_directories(/usr/include/x86_64-linux-gnu/)
39 | #link_directories(/usr/lib/x86_64-linux-gnu/)
40 |
41 | include_directories(/home/myuser/xujing/TensorRT-7.0.0.11/)
42 | link_directories(/home/myuser/xujing/TensorRT-7.0.0.11/)
43 |
44 |
45 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -Ofast -Wfatal-errors -D_MWAITXINTRIN_H_INCLUDED")
46 |
47 | cuda_add_library(myplugins SHARED ${PROJECT_SOURCE_DIR}/yololayer.cu)
48 | target_link_libraries(myplugins nvinfer cudart)
49 |
50 | find_package(OpenCV)
51 | include_directories(OpenCV_INCLUDE_DIRS)
52 |
53 | add_executable(yolov5 ${PROJECT_SOURCE_DIR}/yolov5.cpp)
54 | target_link_libraries(yolov5 nvinfer)
55 | target_link_libraries(yolov5 cudart)
56 | target_link_libraries(yolov5 myplugins)
57 | target_link_libraries(yolov5 ${OpenCV_LIBS})
58 |
59 | add_definitions(-O2 -pthread)
60 |
61 |
62 | ```
63 |
64 |
65 |
66 | + 1.把tensorRT安装包下的bin文件的内容copy到yolov5文件夹
67 | 
68 | + 2.修改yololayer.h
69 |
70 | ```c++
71 | static constexpr int MAX_OUTPUT_BBOX_COUNT = 1000; //20000
72 | static constexpr int CLASS_NUM = 17; //需要修改
73 | static constexpr int INPUT_H = 640; //需要修改
74 | static constexpr int INPUT_W = 640; //需要修改
75 | ```
76 |
77 |
78 |
79 | + 3.修改yolov5.cpp
80 |
81 | ```c++
82 | #define NET x // s m l x 修改网络类型,我们用的是x
83 | #define NETSTRUCT(str) createEngine_##str
84 | #define CREATENET(net) NETSTRUCT(net)
85 | #define STR1(x) #x
86 | #define STR2(x) STR1(x)
87 |
88 | // #define USE_FP16 // comment out this if want to use FP32
89 | #define DEVICE 0 // GPU id
90 | #define NMS_THRESH 0.45
91 | #define CONF_THRESH 0.25
92 | #define BATCH_SIZE 1
93 | ```
94 |
95 |
96 |
97 | ### 2.编译YOLOv5
98 |
99 | ```shell
100 | 1. generate yolov5s.wts from pytorch with yolov5s.pt, or download .wts from model zoo
101 |
102 | git clone https://github.com/wang-xinyu/tensorrtx.git
103 | git clone https://github.com/ultralytics/yolov5.git
104 | // download its weights 'yolov5s.pt'
105 | // copy tensorrtx/yolov5/gen_wts.py into ultralytics/yolov5
106 | // ensure the file name is yolov5s.pt and yolov5s.wts in gen_wts.py
107 | // go to ultralytics/yolov5
108 | python gen_wts.py
109 | // a file 'yolov5s.wts' will be generated.
110 |
111 | 2. build tensorrtx/yolov5 and run
112 |
113 | // put yolov5s.wts into tensorrtx/yolov5
114 | // go to tensorrtx/yolov5
115 | // ensure the macro NET in yolov5.cpp is s
116 | mkdir build
117 | cd build
118 | cmake ..
119 | make
120 | ```
121 |
122 | ### 3.序列化引擎
123 |
124 | ```shell
125 | sudo ./yolov5 -s // serialize model to plan file i.e. 'yolov5s.engine'
126 | # 测试序列化的引擎是否可用
127 | sudo ./yolov5 -d ./sample // deserialize plan file and run inference, the images in samples will be processed.
128 | ```
129 |
130 |
131 |
132 | ### 4.YOLO v5 tensorRT加速Python调用
133 |
134 | ```
135 | python3 yolov5_trt.py
136 | # 注意修改模型类别,序列化引擎加载的路径,测试图像的路径
137 | ```
138 |
139 |
140 |
141 |
142 |
143 | #### Reference
144 |
145 | https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5
146 |
147 | https://github.com/wang-xinyu/tensorrtx/blob/master/tutorials/run_on_windows.md
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org
2 | # Download command: bash yolov5/data/get_coco2017.sh
3 | # Train command: python train.py --data ./data/coco.yaml
4 | # Dataset should be placed next to yolov5 folder:
5 | # /parent_folder
6 | # /coco
7 | # /yolov5
8 |
9 |
10 | # train and val datasets (image directory or *.txt file with image paths)
11 | train: ../coco/train2017.txt # 118k images
12 | val: ../coco/val2017.txt # 5k images
13 | test: ../coco/test-dev2017.txt # 20k images for submission to https://competitions.codalab.org/competitions/20794
14 |
15 | # number of classes
16 | nc: 80
17 |
18 | # class names
19 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
20 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
21 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
22 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
23 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
24 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
25 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
26 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
27 | 'hair drier', 'toothbrush']
28 |
29 | # Print classes
30 | # with open('data/coco.yaml') as f:
31 | # d = yaml.load(f, Loader=yaml.FullLoader) # dict
32 | # for i, x in enumerate(d['names']):
33 | # print(i, x)
--------------------------------------------------------------------------------
/data/coco128.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org - first 128 training images
2 | # Download command: python -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')"
3 | # Train command: python train.py --data ./data/coco128.yaml
4 | # Dataset should be placed next to yolov5 folder:
5 | # /parent_folder
6 | # /coco128
7 | # /yolov5
8 |
9 |
10 | # train and val datasets (image directory or *.txt file with image paths)
11 | train: ../coco128/images/train2017/
12 | val: ../coco128/images/train2017/
13 |
14 | # number of classes
15 | nc: 80
16 |
17 | # class names
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26 | 'hair drier', 'toothbrush']
--------------------------------------------------------------------------------
/data/get_coco2017.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Zip coco folder
3 | # zip -r coco.zip coco
4 | # tar -czvf coco.tar.gz coco
5 |
6 | # Download labels from Google Drive, accepting presented query
7 | filename="coco2017labels.zip"
8 | fileid="1cXZR_ckHki6nddOmcysCuuJFM--T-Q6L"
9 | curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=${fileid}" > /dev/null
10 | curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=${fileid}" -o ${filename}
11 | rm ./cookie
12 |
13 | # Unzip labels
14 | unzip -q ${filename} # for coco.zip
15 | # tar -xzf ${filename} # for coco.tar.gz
16 | rm ${filename}
17 |
18 | # Download and unzip images
19 | cd coco/images
20 | f="train2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 19G, 118k images
21 | f="val2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 1G, 5k images
22 | # f="test2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7G, 41k images
23 |
24 | # cd out
25 | cd ../..
26 |
--------------------------------------------------------------------------------
/data/score.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org - first 128 training images
2 | # Download command: python -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')"
3 | # Train command: python train.py --data ./data/coco128.yaml
4 | # Dataset should be placed next to yolov5 folder:
5 | # /parent_folder
6 | # /coco128
7 | # /yolov5
8 |
9 |
10 | # train and val datasets (image directory or *.txt file with image paths)
11 | train: ./datasets/score/images/train/
12 | val: ./datasets/score/images/val/
13 |
14 | # number of classes
15 | nc: 3
16 |
17 | # class names
18 | names: ['QP', 'NY', 'QG']
--------------------------------------------------------------------------------
/datasets/01_check_img.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import os
3 | import shutil
4 |
5 | def check_img(img_path):
6 | imgs = os.listdir(img_path)
7 | for img in imgs:
8 | if img.split(".")[-1] !="jpg":
9 | print(img)
10 | shutil.move(img_path+"/"+img,"./error/"+img)
11 |
12 | def check_anno(anno_path):
13 | anno_files = os.listdir(anno_path)
14 | for file in anno_files:
15 | if file.split(".")[-1] !="xml":
16 | print(file)
17 | shutil.move(anno_path+"/"+file,"./error/"+file)
18 |
19 | def ckeck_img_label(img_path,anno_path):
20 | imgs = os.listdir(img_path)
21 | anno_files = os.listdir(anno_path)
22 |
23 | files = [i.split(".")[0] for i in anno_files]
24 |
25 |
26 | for img in imgs:
27 | if img.split(".")[0] not in files:
28 | print(img)
29 | shutil.move(img_path+"/"+img,"./error/"+img)
30 |
31 | imgs = os.listdir(img_path)
32 | images = [j.split(".")[0] for j in imgs]
33 |
34 | for file in anno_files:
35 | if file.split(".")[0] not in images:
36 | print(file)
37 | shutil.move(anno_path+"/"+file,"./error/"+file)
38 |
39 |
40 | if __name__ == "__main__":
41 | img_path = "./myData/JPEGImages"
42 | anno_path = "./myData/Annotations"
43 |
44 | print("============check image=========")
45 | check_img(img_path)
46 |
47 | print("============check anno==========")
48 | check_anno(anno_path)
49 | print("============check both==========")
50 | ckeck_img_label(img_path,anno_path)
51 |
--------------------------------------------------------------------------------
/datasets/02_check_box.py:
--------------------------------------------------------------------------------
1 | import xml.etree.ElementTree as xml_tree
2 | import pandas as pd
3 | import numpy as np
4 | import os
5 | import shutil
6 |
7 |
8 | def check_box(path):
9 | files = os.listdir(path)
10 | i = 0
11 | for anna_file in files:
12 | tree = xml_tree.parse(path+"/"+anna_file)
13 | root = tree.getroot()
14 |
15 | # Image shape.
16 | size = root.find('size')
17 | shape = [int(size.find('height').text),
18 | int(size.find('width').text),
19 | int(size.find('depth').text)]
20 | # Find annotations.
21 | bboxes = []
22 | labels = []
23 | labels_text = []
24 | difficult = []
25 | truncated = []
26 |
27 | for obj in root.findall('object'):
28 | # label = obj.find('name').text
29 | # labels.append(int(dataset_common.VOC_LABELS[label][0]))
30 | # # labels_text.append(label.encode('ascii'))
31 | # labels_text.append(label.encode('utf-8'))
32 |
33 |
34 | # isdifficult = obj.find('difficult')
35 | # if isdifficult is not None:
36 | # difficult.append(int(isdifficult.text))
37 | # else:
38 | # difficult.append(0)
39 |
40 | # istruncated = obj.find('truncated')
41 | # if istruncated is not None:
42 | # truncated.append(int(istruncated.text))
43 | # else:
44 | # truncated.append(0)
45 |
46 | bbox = obj.find('bndbox')
47 | # bboxes.append((float(bbox.find('ymin').text) / shape[0],
48 | # float(bbox.find('xmin').text) / shape[1],
49 | # float(bbox.find('ymax').text) / shape[0],
50 | # float(bbox.find('xmax').text) / shape[1]
51 | # ))
52 | if (float(bbox.find('ymin').text) >= float(bbox.find('ymax').text)) or (float(bbox.find('xmin').text) >= float(bbox.find('xmax').text)):
53 | print(anna_file)
54 | i += 1
55 | try:
56 | shutil.move(path+"/"+anna_file,"./error2/"+anna_file)
57 | shutil.move("./myData/JPEGImages/"+anna_file.split(".")[0]+".jpg","./error2/"+anna_file.split(".")[0]+".jpg")
58 | except:
59 | pass
60 |
61 | print(i)
62 |
63 |
64 |
65 | if __name__ == "__main__":
66 | check_box("./myData/Annotations")
--------------------------------------------------------------------------------
/datasets/03_train_val_split.py:
--------------------------------------------------------------------------------
1 | import os
2 | import random
3 |
4 | trainval_percent = 0.1
5 | train_percent = 0.9
6 | xmlfilepath = 'Annotations'
7 | txtsavepath = 'ImageSets/Main'
8 | total_xml = os.listdir(xmlfilepath)
9 |
10 | num = len(total_xml)
11 | lists = range(num)
12 |
13 | tr = int(num * train_percent)
14 | train = random.sample(lists, tr)
15 |
16 |
17 | ftrain = open('./ImageSets/Main/train.txt', 'w')
18 | fval = open('./ImageSets/Main/val.txt', 'w')
19 |
20 | for i in lists:
21 | name = total_xml[i][:-4] + '\n'
22 | if i in train:
23 | ftrain.write(name)
24 | else:
25 | fval.write(name)
26 |
27 |
28 |
29 | ftrain.close()
30 | fval.close()
31 |
32 | # voc Main/train,val 图像名生成
--------------------------------------------------------------------------------
/datasets/04_myData_label.py:
--------------------------------------------------------------------------------
1 |
2 | # _*_ coding:utf-8 _*_
3 | import xml.etree.ElementTree as ET
4 | import pickle
5 | import os
6 | from os import listdir, getcwd
7 | from os.path import join
8 | import cv2
9 |
10 | # sets=[('myData', 'train'),('myData', 'val'), ('myData', 'test')] # 根据自己数据去定义
11 | sets=[('score', 'train'),('score', 'val')] # 根据自己数据去定义
12 |
13 | class2id = {'QP':0,"NY":1,"QG":2}
14 | # classes = ["plane", "boat", "person"] # 根据自己的类别去定义
15 |
16 |
17 | def convert(size, box):
18 | dw = 1./(size[0])
19 | dh = 1./(size[1])
20 | x = (box[0] + box[1])/2.0 - 1
21 | y = (box[2] + box[3])/2.0 - 1
22 | w = box[1] - box[0]
23 | h = box[3] - box[2]
24 | x = x*dw
25 | w = w*dw
26 | y = y*dh
27 | h = h*dh
28 | return (x,y,w,h)
29 |
30 | def convert_annotation(year, image_id,image_set):
31 | in_file = open('./score/Annotations/%s.xml'%(image_id),encoding="utf-8")
32 | out_file = open('./labels/%s/%s.txt'%(image_set,image_id), 'w')
33 | # print(in_file)
34 | tree=ET.parse(in_file)
35 | root = tree.getroot()
36 | # size = root.find('size')
37 | # w = int(size.find('width').text)
38 | # h = int(size.find('height').text)
39 |
40 | img = cv2.imread("./score/JPEGImages/"+image_id+".jpg")
41 | sp = img.shape
42 |
43 | h = sp[0] #height(rows) of image
44 | w = sp[1] #width(colums) of image
45 |
46 | for obj in root.iter('object'):
47 | difficult = obj.find('difficult').text
48 | cls_ = obj.find('name').text
49 | if cls_ not in list(class2id.keys()):
50 | print("没有该label: {}".format(cls_))
51 | continue
52 | cls_id = class2id[cls_]
53 | xmlbox = obj.find('bndbox')
54 | b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
55 | bb = convert((w,h), b)
56 | out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
57 |
58 | wd = getcwd()
59 |
60 | for year, image_set in sets:
61 | if not os.path.exists('./labels/'+image_set):
62 | os.makedirs('./labels/'+image_set)
63 | image_ids = open('./score/ImageSets/Main/%s.txt'%(image_set)).read().strip().split()
64 | list_file = open('./%s_%s.txt'%(year, image_set), 'w')
65 | for image_id in image_ids:
66 | list_file.write('%s/JPEGImages/%s.jpg\n'%(wd, image_id)) # 写了train或val的list
67 | convert_annotation(year, image_id,image_set)
68 | list_file.close()
69 |
70 |
71 | # labels/标注数据有了
72 | # train val的list数据也有了
73 |
--------------------------------------------------------------------------------
/datasets/score/images/readme:
--------------------------------------------------------------------------------
1 | 此处存放训练和验证图片!
--------------------------------------------------------------------------------
/datasets/score/labels/readme:
--------------------------------------------------------------------------------
1 | 此处存放训练和验证label!
--------------------------------------------------------------------------------
/detect.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | from utils.datasets import *
4 | from utils.utils import *
5 |
6 |
7 | def detect(save_img=False):
8 | out, source, weights, half, view_img, save_txt, imgsz = \
9 | opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt, opt.img_size
10 | webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
11 |
12 | # Initialize
13 | device = torch_utils.select_device(opt.device)
14 | if os.path.exists(out):
15 | shutil.rmtree(out) # delete output folder
16 | os.makedirs(out) # make new output folder
17 |
18 | # Load model
19 | google_utils.attempt_download(weights)
20 | model = torch.load(weights, map_location=device)['model']
21 | # torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning
22 | # model.fuse()
23 | model.to(device).eval()
24 |
25 | # Second-stage classifier
26 | classify = False
27 | if classify:
28 | modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
29 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
30 | modelc.to(device).eval()
31 |
32 | # Half precision
33 | half = half and device.type != 'cpu' # half precision only supported on CUDA
34 | if half:
35 | model.half()
36 |
37 | # Set Dataloader
38 | vid_path, vid_writer = None, None
39 | if webcam:
40 | view_img = True
41 | torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
42 | dataset = LoadStreams(source, img_size=imgsz)
43 | else:
44 | save_img = True
45 | dataset = LoadImages(source, img_size=imgsz)
46 |
47 | # Get names and colors
48 | names = model.names if hasattr(model, 'names') else model.modules.names
49 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
50 |
51 | # Run inference
52 | t0 = time.time()
53 | img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
54 | _ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once
55 | for path, img, im0s, vid_cap in dataset:
56 | img = torch.from_numpy(img).to(device)
57 | img = img.half() if half else img.float() # uint8 to fp16/32
58 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
59 | if img.ndimension() == 3:
60 | img = img.unsqueeze(0)
61 |
62 | # Inference
63 | t1 = torch_utils.time_synchronized()
64 | pred = model(img, augment=opt.augment)[0]
65 | t2 = torch_utils.time_synchronized()
66 |
67 | # to float
68 | if half:
69 | pred = pred.float()
70 |
71 | # Apply NMS
72 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
73 | fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
74 |
75 | # Apply Classifier
76 | if classify:
77 | pred = apply_classifier(pred, modelc, img, im0s)
78 |
79 | # Process detections
80 | for i, det in enumerate(pred): # detections per image
81 | if webcam: # batch_size >= 1
82 | p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
83 | else:
84 | p, s, im0 = path, '', im0s
85 |
86 | save_path = str(Path(out) / Path(p).name)
87 | s += '%gx%g ' % img.shape[2:] # print string
88 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
89 | if det is not None and len(det):
90 | # Rescale boxes from img_size to im0 size
91 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
92 |
93 | # Print results
94 | for c in det[:, -1].unique():
95 | n = (det[:, -1] == c).sum() # detections per class
96 | s += '%g %ss, ' % (n, names[int(c)]) # add to string
97 |
98 | # Write results
99 | for *xyxy, conf, cls in det:
100 | if save_txt: # Write to file
101 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
102 | with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
103 | file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
104 |
105 | if save_img or view_img: # Add bbox to image
106 | label = '%s %.2f' % (names[int(cls)], conf)
107 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
108 |
109 | # Print time (inference + NMS)
110 | print('%sDone. (%.3fs)' % (s, t2 - t1))
111 |
112 | # Stream results
113 | if view_img:
114 | cv2.imshow(p, im0)
115 | if cv2.waitKey(1) == ord('q'): # q to quit
116 | raise StopIteration
117 |
118 | # Save results (image with detections)
119 | if save_img:
120 | if dataset.mode == 'images':
121 | cv2.imwrite(save_path, im0)
122 | else:
123 | font = cv2.FONT_HERSHEY_SIMPLEX
124 | cv2.putText(im0,"YOLO v5 | by Xujing | Tesla V100 32G",(40,40),font, 0.7, (0, 255, 0), 2)
125 | if vid_path != save_path: # new video
126 | vid_path = save_path
127 | if isinstance(vid_writer, cv2.VideoWriter):
128 | vid_writer.release() # release previous video writer
129 |
130 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
131 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
132 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
133 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
134 | vid_writer.write(im0)
135 |
136 | if save_txt or save_img:
137 | print('Results saved to %s' % os.getcwd() + os.sep + out)
138 | if platform == 'darwin': # MacOS
139 | os.system('open ' + save_path)
140 |
141 | print('Done. (%.3fs)' % (time.time() - t0))
142 |
143 |
144 | if __name__ == '__main__':
145 | parser = argparse.ArgumentParser()
146 | parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
147 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
148 | parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
149 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
150 | parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
151 | parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
152 | parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
153 | parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
154 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
155 | parser.add_argument('--view-img', action='store_true', help='display results')
156 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
157 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
158 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
159 | parser.add_argument('--augment', action='store_true', help='augmented inference')
160 | opt = parser.parse_args()
161 | print(opt)
162 |
163 | with torch.no_grad():
164 | detect()
165 |
--------------------------------------------------------------------------------
/gen_wts.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import struct
3 | from utils.torch_utils import select_device
4 |
5 | # Initialize
6 | device = select_device('cpu')
7 | # Load model
8 | model = torch.load('weights/yolov5s.pt', map_location=device)['model'].float() # load to FP32
9 | model.to(device).eval()
10 |
11 | f = open('yolov5s.wtx', 'w')
12 | f.write('{}\n'.format(len(model.state_dict().keys())))
13 | for k, v in model.state_dict().items():
14 | vr = v.reshape(-1).cpu().numpy()
15 | f.write('{} {} '.format(k, len(vr)))
16 | for vv in vr:
17 | f.write(' ')
18 | f.write(struct.pack('>f',float(vv)).hex())
19 | f.write('\n')
20 |
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
2 |
3 | Usage:
4 | import torch
5 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
6 | """
7 |
8 | dependencies = ['torch', 'yaml']
9 | import torch
10 |
11 | from models.yolo import Model
12 | from utils import google_utils
13 |
14 |
15 | def create(name, pretrained, channels, classes):
16 | """Creates a specified YOLOv5 model
17 |
18 | Arguments:
19 | name (str): name of model, i.e. 'yolov5s'
20 | pretrained (bool): load pretrained weights into the model
21 | channels (int): number of input channels
22 | classes (int): number of model classes
23 |
24 | Returns:
25 | pytorch model
26 | """
27 | model = Model('models/%s.yaml' % name, channels, classes)
28 | if pretrained:
29 | ckpt = '%s.pt' % name # checkpoint filename
30 | google_utils.attempt_download(ckpt) # download if not found locally
31 | state_dict = torch.load(ckpt)['model'].state_dict()
32 | state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].numel() == v.numel()} # filter
33 | model.load_state_dict(state_dict, strict=False) # load
34 | return model
35 |
36 |
37 | def yolov5s(pretrained=False, channels=3, classes=80):
38 | """YOLOv5-small model from https://github.com/ultralytics/yolov5
39 |
40 | Arguments:
41 | pretrained (bool): load pretrained weights into the model, default=False
42 | channels (int): number of input channels, default=3
43 | classes (int): number of model classes, default=80
44 |
45 | Returns:
46 | pytorch model
47 | """
48 | return create('yolov5s', pretrained, channels, classes)
49 |
50 |
51 | def yolov5m(pretrained=False, channels=3, classes=80):
52 | """YOLOv5-medium model from https://github.com/ultralytics/yolov5
53 |
54 | Arguments:
55 | pretrained (bool): load pretrained weights into the model, default=False
56 | channels (int): number of input channels, default=3
57 | classes (int): number of model classes, default=80
58 |
59 | Returns:
60 | pytorch model
61 | """
62 | return create('yolov5m', pretrained, channels, classes)
63 |
64 |
65 | def yolov5l(pretrained=False, channels=3, classes=80):
66 | """YOLOv5-large model from https://github.com/ultralytics/yolov5
67 |
68 | Arguments:
69 | pretrained (bool): load pretrained weights into the model, default=False
70 | channels (int): number of input channels, default=3
71 | classes (int): number of model classes, default=80
72 |
73 | Returns:
74 | pytorch model
75 | """
76 | return create('yolov5l', pretrained, channels, classes)
77 |
78 |
79 | def yolov5x(pretrained=False, channels=3, classes=80):
80 | """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
81 |
82 | Arguments:
83 | pretrained (bool): load pretrained weights into the model, default=False
84 | channels (int): number of input channels, default=3
85 | classes (int): number of model classes, default=80
86 |
87 | Returns:
88 | pytorch model
89 | """
90 | return create('yolov5x', pretrained, channels, classes)
91 |
--------------------------------------------------------------------------------
/inference/images/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/inference/images/bus.jpg
--------------------------------------------------------------------------------
/inference/images/zidane.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/inference/images/zidane.jpg
--------------------------------------------------------------------------------
/inference/output/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/inference/output/bus.jpg
--------------------------------------------------------------------------------
/inference/output/zidane.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/inference/output/zidane.jpg
--------------------------------------------------------------------------------
/models/common.py:
--------------------------------------------------------------------------------
1 | # This file contains modules common to various models
2 |
3 |
4 | from utils.utils import *
5 |
6 |
7 | def DWConv(c1, c2, k=1, s=1, act=True):
8 | # Depthwise convolution
9 | return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
10 |
11 |
12 | class Conv(nn.Module):
13 | # Standard convolution
14 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
15 | super(Conv, self).__init__()
16 | self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
17 | self.bn = nn.BatchNorm2d(c2)
18 | self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()
19 |
20 | def forward(self, x):
21 | return self.act(self.bn(self.conv(x)))
22 |
23 | def fuseforward(self, x):
24 | return self.act(self.conv(x))
25 |
26 |
27 | class Bottleneck(nn.Module):
28 | # Standard bottleneck
29 | def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
30 | super(Bottleneck, self).__init__()
31 | c_ = int(c2 * e) # hidden channels
32 | self.cv1 = Conv(c1, c_, 1, 1)
33 | self.cv2 = Conv(c_, c2, 3, 1, g=g)
34 | self.add = shortcut and c1 == c2
35 |
36 | def forward(self, x):
37 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
38 |
39 |
40 | class BottleneckCSP(nn.Module):
41 | # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
42 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
43 | super(BottleneckCSP, self).__init__()
44 | c_ = int(c2 * e) # hidden channels
45 | self.cv1 = Conv(c1, c_, 1, 1)
46 | self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
47 | self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
48 | self.cv4 = Conv(c2, c2, 1, 1)
49 | self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
50 | self.act = nn.LeakyReLU(0.1, inplace=True)
51 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
52 |
53 | def forward(self, x):
54 | y1 = self.cv3(self.m(self.cv1(x)))
55 | y2 = self.cv2(x)
56 | return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
57 |
58 |
59 | class SPP(nn.Module):
60 | # Spatial pyramid pooling layer used in YOLOv3-SPP
61 | def __init__(self, c1, c2, k=(5, 9, 13)):
62 | super(SPP, self).__init__()
63 | c_ = c1 // 2 # hidden channels
64 | self.cv1 = Conv(c1, c_, 1, 1)
65 | self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
66 | self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
67 |
68 | def forward(self, x):
69 | x = self.cv1(x)
70 | return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
71 |
72 |
73 | class Flatten(nn.Module):
74 | # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
75 | def forward(self, x):
76 | return x.view(x.size(0), -1)
77 |
78 |
79 | class Focus(nn.Module):
80 | # Focus wh information into c-space
81 | def __init__(self, c1, c2, k=1):
82 | super(Focus, self).__init__()
83 | self.conv = Conv(c1 * 4, c2, k, 1)
84 |
85 | def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
86 | return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
87 |
88 |
89 | class Concat(nn.Module):
90 | # Concatenate a list of tensors along dimension
91 | def __init__(self, dimension=1):
92 | super(Concat, self).__init__()
93 | self.d = dimension
94 |
95 | def forward(self, x):
96 | return torch.cat(x, self.d)
97 |
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | from models.common import *
2 |
3 |
4 | class Sum(nn.Module):
5 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
6 | def __init__(self, n, weight=False): # n: number of inputs
7 | super(Sum, self).__init__()
8 | self.weight = weight # apply weights boolean
9 | self.iter = range(n - 1) # iter object
10 | if weight:
11 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
12 |
13 | def forward(self, x):
14 | y = x[0] # no weight
15 | if self.weight:
16 | w = torch.sigmoid(self.w) * 2
17 | for i in self.iter:
18 | y = y + x[i + 1] * w[i]
19 | else:
20 | for i in self.iter:
21 | y = y + x[i + 1]
22 | return y
23 |
24 |
25 | class GhostConv(nn.Module):
26 | # Ghost Convolution https://github.com/huawei-noah/ghostnet
27 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
28 | super(GhostConv, self).__init__()
29 | c_ = c2 // 2 # hidden channels
30 | self.cv1 = Conv(c1, c_, k, s, g, act)
31 | self.cv2 = Conv(c_, c_, 5, 1, c_, act)
32 |
33 | def forward(self, x):
34 | y = self.cv1(x)
35 | return torch.cat([y, self.cv2(y)], 1)
36 |
37 |
38 | class GhostBottleneck(nn.Module):
39 | # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
40 | def __init__(self, c1, c2, k, s):
41 | super(GhostBottleneck, self).__init__()
42 | c_ = c2 // 2
43 | self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
44 | DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
45 | GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
46 | self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
47 | Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
48 |
49 | def forward(self, x):
50 | return self.conv(x) + self.shortcut(x)
51 |
52 |
53 | class ConvPlus(nn.Module):
54 | # Plus-shaped convolution
55 | def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
56 | super(ConvPlus, self).__init__()
57 | self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
58 | self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)
59 |
60 | def forward(self, x):
61 | return self.cv1(x) + self.cv2(x)
62 |
63 |
64 | class MixConv2d(nn.Module):
65 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
66 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
67 | super(MixConv2d, self).__init__()
68 | groups = len(k)
69 | if equal_ch: # equal c_ per group
70 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
71 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
72 | else: # equal weight.numel() per group
73 | b = [c2] + [0] * groups
74 | a = np.eye(groups + 1, groups, k=-1)
75 | a -= np.roll(a, 1, axis=1)
76 | a *= np.array(k) ** 2
77 | a[0] = 1
78 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
79 |
80 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
81 | self.bn = nn.BatchNorm2d(c2)
82 | self.act = nn.LeakyReLU(0.1, inplace=True)
83 |
84 | def forward(self, x):
85 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
86 |
--------------------------------------------------------------------------------
/models/onnx_export.py:
--------------------------------------------------------------------------------
1 | """Exports a pytorch *.pt model to *.onnx format
2 |
3 | Usage:
4 | import torch
5 | $ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
6 | """
7 |
8 | import argparse
9 |
10 | import onnx
11 |
12 | from models.common import *
13 |
14 | if __name__ == '__main__':
15 | parser = argparse.ArgumentParser()
16 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
17 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
18 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
19 | opt = parser.parse_args()
20 | print(opt)
21 |
22 | # Parameters
23 | f = opt.weights.replace('.pt', '.onnx') # onnx filename
24 | img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection
25 |
26 | # Load pytorch model
27 | google_utils.attempt_download(opt.weights)
28 | model = torch.load(opt.weights)['model']
29 | model.eval()
30 | model.fuse()
31 |
32 | # Export to onnx
33 | model.model[-1].export = True # set Detect() layer export=True
34 | _ = model(img) # dry run
35 | torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
36 | output_names=['output']) # output_names=['classes', 'boxes']
37 |
38 | # Check onnx model
39 | model = onnx.load(f) # load onnx model
40 | onnx.checker.check_model(model) # check onnx model
41 | print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
42 | print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
43 |
--------------------------------------------------------------------------------
/models/score/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 3 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 10
25 | ]
26 |
27 | # yolov5 head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 11
30 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
31 |
32 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
34 | [-1, 1, Conv, [512, 1, 1]],
35 | [-1, 3, BottleneckCSP, [512, False]],
36 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
37 |
38 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-1, 3, BottleneckCSP, [256, False]],
42 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
43 |
44 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45 | ]
46 |
--------------------------------------------------------------------------------
/models/yolo.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import yaml
4 |
5 | from models.experimental import *
6 |
7 |
8 | class Detect(nn.Module):
9 | def __init__(self, nc=80, anchors=()): # detection layer
10 | super(Detect, self).__init__()
11 | self.stride = None # strides computed during build
12 | self.nc = nc # number of classes
13 | self.no = nc + 5 # number of outputs per anchor
14 | self.nl = len(anchors) # number of detection layers
15 | self.na = len(anchors[0]) // 2 # number of anchors
16 | self.grid = [torch.zeros(1)] * self.nl # init grid
17 | a = torch.tensor(anchors).float().view(self.nl, -1, 2)
18 | self.register_buffer('anchors', a) # shape(nl,na,2)
19 | self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
20 | self.export = False # onnx export
21 |
22 | def forward(self, x):
23 | # x = x.copy() # for profiling
24 | z = [] # inference output
25 | self.training |= self.export
26 | for i in range(self.nl):
27 | bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
28 | x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
29 |
30 | if not self.training: # inference
31 | if self.grid[i].shape[2:4] != x[i].shape[2:4]:
32 | self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
33 |
34 | y = x[i].sigmoid()
35 | y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
36 | y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
37 | z.append(y.view(bs, -1, self.no))
38 |
39 | return x if self.training else (torch.cat(z, 1), x)
40 |
41 | @staticmethod
42 | def _make_grid(nx=20, ny=20):
43 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
44 | return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
45 |
46 |
47 | class Model(nn.Module):
48 | def __init__(self, model_cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
49 | super(Model, self).__init__()
50 | if type(model_cfg) is dict:
51 | self.md = model_cfg # model dict
52 | else: # is *.yaml
53 | with open(model_cfg) as f:
54 | self.md = yaml.load(f, Loader=yaml.FullLoader) # model dict
55 |
56 | # Define model
57 | if nc:
58 | self.md['nc'] = nc # override yaml value
59 | self.model, self.save = parse_model(self.md, ch=[ch]) # model, savelist, ch_out
60 | # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
61 |
62 | # Build strides, anchors
63 | m = self.model[-1] # Detect()
64 | m.stride = torch.tensor([64 / x.shape[-2] for x in self.forward(torch.zeros(1, ch, 64, 64))]) # forward
65 | m.anchors /= m.stride.view(-1, 1, 1)
66 | self.stride = m.stride
67 |
68 | # Init weights, biases
69 | torch_utils.initialize_weights(self)
70 | self._initialize_biases() # only run once
71 | torch_utils.model_info(self)
72 | print('')
73 |
74 | def forward(self, x, augment=False, profile=False):
75 | if augment:
76 | img_size = x.shape[-2:] # height, width
77 | s = [0.83, 0.67] # scales
78 | y = []
79 | for i, xi in enumerate((x,
80 | torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
81 | torch_utils.scale_img(x, s[1]), # scale
82 | )):
83 | # cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
84 | y.append(self.forward_once(xi)[0])
85 |
86 | y[1][..., :4] /= s[0] # scale
87 | y[1][..., 0] = img_size[1] - y[1][..., 0] # flip lr
88 | y[2][..., :4] /= s[1] # scale
89 | return torch.cat(y, 1), None # augmented inference, train
90 | else:
91 | return self.forward_once(x, profile) # single-scale inference, train
92 |
93 | def forward_once(self, x, profile=False):
94 | y, dt = [], [] # outputs
95 | for m in self.model:
96 | if m.f != -1: # if not from previous layer
97 | x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
98 |
99 | if profile:
100 | import thop
101 | o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
102 | t = torch_utils.time_synchronized()
103 | for _ in range(10):
104 | _ = m(x)
105 | dt.append((torch_utils.time_synchronized() - t) * 100)
106 | print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
107 |
108 | x = m(x) # run
109 | y.append(x if m.i in self.save else None) # save output
110 |
111 | if profile:
112 | print('%.1fms total' % sum(dt))
113 | return x
114 |
115 | def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
116 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
117 | m = self.model[-1] # Detect() module
118 | for f, s in zip(m.f, m.stride): # from
119 | mi = self.model[f % m.i]
120 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
121 | b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
122 | b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
123 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
124 |
125 | def _print_biases(self):
126 | m = self.model[-1] # Detect() module
127 | for f in sorted([x % m.i for x in m.f]): # from
128 | b = self.model[f].bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
129 | print(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))
130 |
131 | # def _print_weights(self):
132 | # for m in self.model.modules():
133 | # if type(m) is Bottleneck:
134 | # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
135 |
136 | def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
137 | print('Fusing layers...')
138 | for m in self.model.modules():
139 | if type(m) is Conv:
140 | m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
141 | m.bn = None # remove batchnorm
142 | m.forward = m.fuseforward # update forward
143 | torch_utils.model_info(self)
144 |
145 |
146 | def parse_model(md, ch): # model_dict, input_channels(3)
147 | print('\n%3s%15s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
148 | anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple']
149 | na = (len(anchors[0]) // 2) # number of anchors
150 | no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
151 |
152 | layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
153 | for i, (f, n, m, args) in enumerate(md['backbone'] + md['head']): # from, number, module, args
154 | m = eval(m) if isinstance(m, str) else m # eval strings
155 | for j, a in enumerate(args):
156 | try:
157 | args[j] = eval(a) if isinstance(a, str) else a # eval strings
158 | except:
159 | pass
160 |
161 | n = max(round(n * gd), 1) if n > 1 else n # depth gain
162 | if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, ConvPlus, BottleneckCSP]:
163 | c1, c2 = ch[f], args[0]
164 |
165 | # Normal
166 | # if i > 0 and args[0] != no: # channel expansion factor
167 | # ex = 1.75 # exponential (default 2.0)
168 | # e = math.log(c2 / ch[1]) / math.log(2)
169 | # c2 = int(ch[1] * ex ** e)
170 | # if m != Focus:
171 | c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
172 |
173 | # Experimental
174 | # if i > 0 and args[0] != no: # channel expansion factor
175 | # ex = 1 + gw # exponential (default 2.0)
176 | # ch1 = 32 # ch[1]
177 | # e = math.log(c2 / ch1) / math.log(2) # level 1-n
178 | # c2 = int(ch1 * ex ** e)
179 | # if m != Focus:
180 | # c2 = make_divisible(c2, 8) if c2 != no else c2
181 |
182 | args = [c1, c2, *args[1:]]
183 | if m is BottleneckCSP:
184 | args.insert(2, n)
185 | n = 1
186 | elif m is nn.BatchNorm2d:
187 | args = [ch[f]]
188 | elif m is Concat:
189 | c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
190 | elif m is Detect:
191 | f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
192 | else:
193 | c2 = ch[f]
194 |
195 | m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
196 | t = str(m)[8:-2].replace('__main__.', '') # module type
197 | np = sum([x.numel() for x in m_.parameters()]) # number params
198 | m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
199 | print('%3s%15s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
200 | save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
201 | layers.append(m_)
202 | ch.append(c2)
203 | return nn.Sequential(*layers), sorted(save)
204 |
205 |
206 | if __name__ == '__main__':
207 | parser = argparse.ArgumentParser()
208 | parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
209 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
210 | opt = parser.parse_args()
211 | opt.cfg = glob.glob('./**/' + opt.cfg, recursive=True)[0] # find file
212 | device = torch_utils.select_device(opt.device)
213 |
214 | # Create model
215 | model = Model(opt.cfg).to(device)
216 | model.train()
217 |
218 | # Profile
219 | # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
220 | # y = model(img, profile=True)
221 | # print([y[0].shape] + [x.shape for x in y[1]])
222 |
223 | # ONNX export
224 | # model.model[-1].export = True
225 | # torch.onnx.export(model, img, f.replace('.yaml', '.onnx'), verbose=True, opset_version=11)
226 |
227 | # Tensorboard
228 | # from torch.utils.tensorboard import SummaryWriter
229 | # tb_writer = SummaryWriter()
230 | # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
231 | # tb_writer.add_graph(model.model, img) # add model to tensorboard
232 | # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
233 |
--------------------------------------------------------------------------------
/models/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # expand model depth
4 | width_multiple: 1.0 # expand layer channels
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # yolov3-spp head
29 | # na = len(anchors[0])
30 | head:
31 | [[-1, 1, Bottleneck, [1024, False]], # 11
32 | [-1, 1, SPP, [512, [5, 9, 13]]],
33 | [-1, 1, Conv, [1024, 3, 1]],
34 | [-1, 1, Conv, [512, 1, 1]],
35 | [-1, 1, Conv, [1024, 3, 1]],
36 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 16 (P5/32-large)
37 |
38 | [-3, 1, Conv, [256, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
41 | [-1, 1, Bottleneck, [512, False]],
42 | [-1, 1, Bottleneck, [512, False]],
43 | [-1, 1, Conv, [256, 1, 1]],
44 | [-1, 1, Conv, [512, 3, 1]],
45 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 24 (P4/16-medium)
46 |
47 | [-3, 1, Conv, [128, 1, 1]],
48 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
49 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
50 | [-1, 1, Bottleneck, [256, False]],
51 | [-1, 2, Bottleneck, [256, False]],
52 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 30 (P3/8-small)
53 |
54 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
55 | ]
56 |
--------------------------------------------------------------------------------
/models/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 10
25 | ]
26 |
27 | # yolov5 head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 11
30 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
31 |
32 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
34 | [-1, 1, Conv, [512, 1, 1]],
35 | [-1, 3, BottleneckCSP, [512, False]],
36 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
37 |
38 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-1, 3, BottleneckCSP, [256, False]],
42 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
43 |
44 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45 | ]
46 |
--------------------------------------------------------------------------------
/models/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.67 # model depth multiple
4 | width_multiple: 0.75 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 10
25 | ]
26 |
27 | # yolov5 head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 11
30 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
31 |
32 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
34 | [-1, 1, Conv, [512, 1, 1]],
35 | [-1, 3, BottleneckCSP, [512, False]],
36 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
37 |
38 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-1, 3, BottleneckCSP, [256, False]],
42 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
43 |
44 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45 | ]
46 |
--------------------------------------------------------------------------------
/models/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 10
25 | ]
26 |
27 | # yolov5 head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 11
30 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
31 |
32 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
34 | [-1, 1, Conv, [512, 1, 1]],
35 | [-1, 3, BottleneckCSP, [512, False]],
36 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
37 |
38 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-1, 3, BottleneckCSP, [256, False]],
42 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
43 |
44 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45 | ]
46 |
--------------------------------------------------------------------------------
/models/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 10
25 | ]
26 |
27 | # yolov5 head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 11
30 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
31 |
32 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
34 | [-1, 1, Conv, [512, 1, 1]],
35 | [-1, 3, BottleneckCSP, [512, False]],
36 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)
37 |
38 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-1, 3, BottleneckCSP, [256, False]],
42 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)
43 |
44 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45 | ]
46 |
--------------------------------------------------------------------------------
/readmepic/readme1/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme1/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg
--------------------------------------------------------------------------------
/readmepic/readme1/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme1/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg
--------------------------------------------------------------------------------
/readmepic/readme1/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme1/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png
--------------------------------------------------------------------------------
/readmepic/readme1/84200349-729f2680-aa5b-11ea-8f9a-604c9e01a658.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme1/84200349-729f2680-aa5b-11ea-8f9a-604c9e01a658.png
--------------------------------------------------------------------------------
/readmepic/readme1/YOLOv4_author2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme1/YOLOv4_author2.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/20200514_p6_5_247_one.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/20200514_p6_5_247_one.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/78174482-307bb800-740e-11ea-8b09-840693671042.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/78174482-307bb800-740e-11ea-8b09-840693671042.png
--------------------------------------------------------------------------------
/readmepic/readme2/pic/83666389-bab4d980-a581-11ea-898b-b25471d37b83.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/83666389-bab4d980-a581-11ea-898b-b25471d37b83.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/83667626-8c37fe00-a583-11ea-997b-0923fe59b29b.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/83667626-8c37fe00-a583-11ea-997b-0923fe59b29b.jpeg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/83667635-90641b80-a583-11ea-8075-606316cebb9c.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/83667635-90641b80-a583-11ea-8075-606316cebb9c.jpeg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/83667642-90fcb200-a583-11ea-8fa3-338bbf7da194.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/83667642-90fcb200-a583-11ea-8fa3-338bbf7da194.jpeg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/83667810-d7eaa780-a583-11ea-8de8-5cca0673d076.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/83667810-d7eaa780-a583-11ea-8de8-5cca0673d076.png
--------------------------------------------------------------------------------
/readmepic/readme2/pic/datalist.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/datalist.png
--------------------------------------------------------------------------------
/readmepic/readme2/pic/results.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/results.png
--------------------------------------------------------------------------------
/readmepic/readme2/pic/t1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/t1.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/test_batch0_gt.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/test_batch0_gt.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/test_batch0_pred.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/test_batch0_pred.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/train_batch0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/train_batch0.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/train_batch1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/train_batch1.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/pic/train_batch2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/readmepic/readme2/pic/train_batch2.jpg
--------------------------------------------------------------------------------
/readmepic/readme2/教程.md:
--------------------------------------------------------------------------------
1 | This guide explains how to train your own **custom dataset** with YOLOv5.
2 |
3 | ## Before You Start
4 |
5 | Clone this repo, download tutorial dataset, and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies, including **Python>=3.7** and **PyTorch>=1.5**.
6 |
7 | ```bash
8 | git clone https://github.com/ultralytics/yolov5 # clone repo
9 | python3 -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')" # download dataset
10 | cd yolov5
11 | pip install -U -r requirements.txt
12 | ```
13 |
14 | ## Train On Custom Data
15 |
16 | ### 1. Create Dataset.yaml
17 |
18 | [data/coco128.yaml](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml) is a small tutorial dataset composed of the first 128 images in [COCO](http://cocodataset.org/#home) train2017. These same 128 images are used for both training and validation in this example. `coco128.yaml` defines 1) a path to a directory of training images (or path to a *.txt file with a list of training images), 2) the same for our validation images, 3) the number of classes, 4) a list of class names:
19 | ```yaml
20 | # train and val datasets (image directory or *.txt file with image paths)
21 | train: ../coco128/images/train2017/
22 | val: ../coco128/images/train2017/
23 |
24 | # number of classes
25 | nc: 80
26 |
27 | # class names
28 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
29 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
30 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
31 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
32 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
33 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
34 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
35 | 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
36 | 'teddy bear', 'hair drier', 'toothbrush']
37 | ```
38 |
39 |
40 | ### 2. Create Labels
41 |
42 | After using a tool like [Labelbox](https://labelbox.com/) or [CVAT](https://github.com/opencv/cvat) to label your images, export your labels to **darknet format**, with one `*.txt` file per image (if no objects in image, no `*.txt` file is required). The `*.txt` file specifications are:
43 |
44 | - One row per object
45 | - Each row is `class x_center y_center width height` format.
46 | - Box coordinates must be in **normalized xywh** format (from 0 - 1). If your boxes are in pixels, divide `x_center` and `width` by image width, and `y_center` and `height` by image height.
47 | - Class numbers are zero-indexed (start from 0).
48 |
49 | Each image's label file should be locatable by simply replacing `/images/*.jpg` with `/labels/*.txt` in its pathname. An example image and label pair would be:
50 | ```bash
51 | dataset/images/train2017/000000109622.jpg # image
52 | dataset/labels/train2017/000000109622.txt # label
53 | ```
54 | An example label file with 5 persons (all class `0`):
55 |
56 |
57 |
58 | ### 3. Organize Directories
59 |
60 | Organize your train and val images and labels according to the example below. Note `/coco128` should be **next to** the `/yolov5` directory. Make sure `coco128/labels` folder is next to `coco128/images` folder.
61 |
62 |
63 |
64 | ### 4. Select a Model
65 |
66 | Select a model from the `./models` folder. Here we select [yolov5s.yaml](https://github.com/ultralytics/yolov5/blob/master/models/yolov5s.yaml), the smallest and fastest model available. See our README [table](https://github.com/ultralytics/yolov5#pretrained-checkpoints) for a full comparison of all models. Once you have selected a model, if you are not training COCO, **update** the `nc: 80` parameter in your yaml file to match the number of classes in your dataset from step **1.**
67 | ```yaml
68 | # parameters
69 | nc: 80 # number of classes <------------------ UPDATE to match your dataset
70 | depth_multiple: 0.33 # model depth multiple
71 | width_multiple: 0.50 # layer channel multiple
72 |
73 | # anchors
74 | anchors:
75 | - [10,13, 16,30, 33,23] # P3/8
76 | - [30,61, 62,45, 59,119] # P4/16
77 | - [116,90, 156,198, 373,326] # P5/32
78 |
79 | # yolov5 backbone
80 | backbone:
81 | # [from, number, module, args]
82 | [[-1, 1, Focus, [64, 3]], # 1-P1/2
83 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
84 | [-1, 3, Bottleneck, [128]],
85 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
86 | [-1, 9, BottleneckCSP, [256, False]],
87 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
88 | [-1, 9, BottleneckCSP, [512, False]],
89 | [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
90 | [-1, 1, SPP, [1024, [5, 9, 13]]],
91 | [-1, 12, BottleneckCSP, [1024, False]], # 10
92 | ]
93 |
94 | # yolov5 head
95 | head:
96 | [[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)
97 |
98 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
99 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
100 | [-1, 1, Conv, [512, 1, 1]],
101 | [-1, 3, BottleneckCSP, [512, False]],
102 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 16 (P4/16-medium)
103 |
104 | [-2, 1, nn.Upsample, [None, 2, 'nearest']],
105 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
106 | [-1, 1, Conv, [256, 1, 1]],
107 | [-1, 3, BottleneckCSP, [256, False]],
108 | [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 21 (P3/8-small)
109 |
110 | [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
111 | ]
112 | ```
113 |
114 | ### 5. Train
115 |
116 | Run the training command below to train `coco128.yaml` for 5 epochs. You can train yolov5s from scratch by passing `--cfg yolov5s.yaml --weights ''`, or train from a pretrained checkpoint by passing a matching weights file: `--cfg yolov5s.yaml --weights yolov5s.pt`.
117 | ```bash
118 | # Train yolov5s on coco128 for 5 epochs
119 | $ python train.py --img 640 --batch 16 --epochs 5 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --weights ''
120 | ```
121 |
122 | For training command outputs and further details please see the training section of Google Colab Notebook.
123 |
124 | ### 6. Visualize
125 |
126 | After training starts, view `train*.jpg` images to see training images, labels and augmentation effects. Note a mosaic dataloader is used for training (shown below), a new dataloading concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934). If your labels are not correct in these images then you have incorrectly labelled your data, and should revisit **2. Create Labels**.
127 | 
128 |
129 | After the first epoch is complete, view `test_batch0_gt.jpg` to see test batch 0 ground truth labels:
130 | 
131 |
132 | And view `test_batch0_pred.jpg` to see test batch 0 predictions:
133 | 
134 |
135 | Training losses and performance metrics are saved to Tensorboard and also to a `results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show yolov5s trained on coco128 to 100 epochs, starting from scratch (orange), and starting from pretrained `yolov5s.pt` weights (blue):
136 |
137 | 
138 |
139 |
140 | ## Reproduce Our Environment
141 |
142 | To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
143 |
144 | - **GCP** Deep Learning VM with $300 free credit offer. See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
145 | - **Google Colab Notebook** with 12 hours of free GPU time.
146 | - **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # pip install -U -r requirements.txt
2 | numpy==1.17
3 | opencv-python
4 | torch >= 1.5
5 | matplotlib
6 | pycocotools
7 | tqdm
8 | pillow
9 | tensorboard
10 | pyyaml
11 |
12 |
13 | # Nvidia Apex (optional) for mixed precision training --------------------------
14 | # git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex
15 |
16 | # Conda commands (in place of pip) ---------------------------------------------
17 | # conda update -yn base -c defaults conda
18 | # conda install -yc anaconda numpy opencv matplotlib tqdm pillow ipython
19 | # conda install -yc conda-forge scikit-image pycocotools tensorboard
20 | # conda install -yc spyder-ide spyder-line-profiler
21 | # conda install -yc pytorch pytorch torchvision
22 | # conda install -yc conda-forge protobuf numpy && pip install onnx # https://github.com/onnx/onnx#linux-and-macos
23 |
--------------------------------------------------------------------------------
/runs/readme:
--------------------------------------------------------------------------------
1 | 此处存放tensorboard日志文件
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 |
4 | import yaml
5 | from torch.utils.data import DataLoader
6 |
7 | from utils.datasets import *
8 | from utils.utils import *
9 |
10 |
11 | def test(data,
12 | weights=None,
13 | batch_size=16,
14 | imgsz=640,
15 | conf_thres=0.001,
16 | iou_thres=0.6, # for nms
17 | save_json=False,
18 | single_cls=False,
19 | augment=False,
20 | model=None,
21 | dataloader=None,
22 | fast=False,
23 | verbose=False): # 0 fast, 1 accurate
24 | # Initialize/load model and set device
25 | if model is None:
26 | device = torch_utils.select_device(opt.device, batch_size=batch_size)
27 |
28 | # Remove previous
29 | for f in glob.glob('test_batch*.jpg'):
30 | os.remove(f)
31 |
32 | # Load model
33 | google_utils.attempt_download(weights)
34 | model = torch.load(weights, map_location=device)['model']
35 | torch_utils.model_info(model)
36 | # model.fuse()
37 | model.to(device)
38 |
39 | if device.type != 'cpu' and torch.cuda.device_count() > 1:
40 | model = nn.DataParallel(model)
41 |
42 | training = False
43 | else: # called by train.py
44 | device = next(model.parameters()).device # get model device
45 | training = True
46 |
47 | # Configure run
48 | with open(data) as f:
49 | data = yaml.load(f, Loader=yaml.FullLoader) # model dict
50 | nc = 1 if single_cls else int(data['nc']) # number of classes
51 | iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
52 | # iouv = iouv[0].view(1) # comment for mAP@0.5:0.95
53 | niou = iouv.numel()
54 |
55 | # Dataloader
56 | if dataloader is None:
57 | fast |= conf_thres > 0.001 # enable fast mode
58 | path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
59 | dataset = LoadImagesAndLabels(path,
60 | imgsz,
61 | batch_size,
62 | rect=True, # rectangular inference
63 | single_cls=opt.single_cls, # single class mode
64 | pad=0.0 if fast else 0.5) # padding
65 | batch_size = min(batch_size, len(dataset))
66 | nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
67 | dataloader = DataLoader(dataset,
68 | batch_size=batch_size,
69 | num_workers=nw,
70 | pin_memory=True,
71 | collate_fn=dataset.collate_fn)
72 |
73 | seen = 0
74 | model.eval()
75 | _ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
76 | names = model.names if hasattr(model, 'names') else model.module.names
77 | coco91class = coco80_to_coco91_class()
78 | s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
79 | p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
80 | loss = torch.zeros(3, device=device)
81 | jdict, stats, ap, ap_class = [], [], [], []
82 | for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
83 | imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
84 | targets = targets.to(device)
85 | nb, _, height, width = imgs.shape # batch size, channels, height, width
86 | whwh = torch.Tensor([width, height, width, height]).to(device)
87 |
88 | # Disable gradients
89 | with torch.no_grad():
90 | # Run model
91 | t = torch_utils.time_synchronized()
92 | inf_out, train_out = model(imgs, augment=augment) # inference and training outputs
93 | t0 += torch_utils.time_synchronized() - t
94 |
95 | # Compute loss
96 | if training: # if model has loss hyperparameters
97 | loss += compute_loss(train_out, targets, model)[1][:3] # GIoU, obj, cls
98 |
99 | # Run NMS
100 | t = torch_utils.time_synchronized()
101 | output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, fast=fast)
102 | t1 += torch_utils.time_synchronized() - t
103 |
104 | # Statistics per image
105 | for si, pred in enumerate(output):
106 | labels = targets[targets[:, 0] == si, 1:]
107 | nl = len(labels)
108 | tcls = labels[:, 0].tolist() if nl else [] # target class
109 | seen += 1
110 |
111 | if pred is None:
112 | if nl:
113 | stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
114 | continue
115 |
116 | # Append to text file
117 | # with open('test.txt', 'a') as file:
118 | # [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
119 |
120 | # Clip boxes to image bounds
121 | clip_coords(pred, (height, width))
122 |
123 | # Append to pycocotools JSON dictionary
124 | if save_json:
125 | # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
126 | image_id = int(Path(paths[si]).stem.split('_')[-1])
127 | box = pred[:, :4].clone() # xyxy
128 | scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
129 | box = xyxy2xywh(box) # xywh
130 | box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
131 | for p, b in zip(pred.tolist(), box.tolist()):
132 | jdict.append({'image_id': image_id,
133 | 'category_id': coco91class[int(p[5])],
134 | 'bbox': [round(x, 3) for x in b],
135 | 'score': round(p[4], 5)})
136 |
137 | # Assign all predictions as incorrect
138 | correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
139 | if nl:
140 | detected = [] # target indices
141 | tcls_tensor = labels[:, 0]
142 |
143 | # target boxes
144 | tbox = xywh2xyxy(labels[:, 1:5]) * whwh
145 |
146 | # Per target class
147 | for cls in torch.unique(tcls_tensor):
148 | ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
149 | pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices
150 |
151 | # Search for detections
152 | if pi.shape[0]:
153 | # Prediction to target ious
154 | ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
155 |
156 | # Append detections
157 | for j in (ious > iouv[0]).nonzero():
158 | d = ti[i[j]] # detected target
159 | if d not in detected:
160 | detected.append(d)
161 | correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
162 | if len(detected) == nl: # all targets already located in image
163 | break
164 |
165 | # Append statistics (correct, conf, pcls, tcls)
166 | stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
167 |
168 | # Plot images
169 | if batch_i < 1:
170 | f = 'test_batch%g_gt.jpg' % batch_i # filename
171 | plot_images(imgs, targets, paths, f, names) # ground truth
172 | f = 'test_batch%g_pred.jpg' % batch_i
173 | plot_images(imgs, output_to_target(output, width, height), paths, f, names) # predictions
174 |
175 | # Compute statistics
176 | stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
177 | if len(stats):
178 | p, r, ap, f1, ap_class = ap_per_class(*stats)
179 | p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
180 | mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
181 | nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
182 | else:
183 | nt = torch.zeros(1)
184 |
185 | # Print results
186 | pf = '%20s' + '%12.3g' * 6 # print format
187 | print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
188 |
189 | # Print results per class
190 | if verbose and nc > 1 and len(stats):
191 | for i, c in enumerate(ap_class):
192 | print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
193 |
194 | # Print speeds
195 | t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
196 | if not training:
197 | print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
198 |
199 | # Save JSON
200 | if save_json and map50 and len(jdict):
201 | imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
202 | f = 'detections_val2017_%s_results.json' % \
203 | (weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
204 | print('\nCOCO mAP with pycocotools... saving %s...' % f)
205 | with open(f, 'w') as file:
206 | json.dump(jdict, file)
207 |
208 | try:
209 | from pycocotools.coco import COCO
210 | from pycocotools.cocoeval import COCOeval
211 |
212 | # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
213 | cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
214 | cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
215 |
216 | cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
217 | cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
218 | cocoEval.evaluate()
219 | cocoEval.accumulate()
220 | cocoEval.summarize()
221 | map, map50 = cocoEval.stats[:2] # update to pycocotools results (mAP@0.5:0.95, mAP@0.5)
222 | except:
223 | print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
224 | 'See https://github.com/cocodataset/cocoapi/issues/356')
225 |
226 | # Return results
227 | maps = np.zeros(nc) + map
228 | for i, c in enumerate(ap_class):
229 | maps[c] = ap[i]
230 | return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
231 |
232 |
233 | if __name__ == '__main__':
234 | parser = argparse.ArgumentParser(prog='test.py')
235 | parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
236 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
237 | parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
238 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
239 | parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
240 | parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
241 | parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
242 | parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
243 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
244 | parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
245 | parser.add_argument('--augment', action='store_true', help='augmented inference')
246 | parser.add_argument('--verbose', action='store_true', help='report mAP by class')
247 | opt = parser.parse_args()
248 | opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
249 | opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file
250 | print(opt)
251 |
252 | # task = 'val', 'test', 'study'
253 | if opt.task in ['val', 'test']: # (default) run normally
254 | test(opt.data,
255 | opt.weights,
256 | opt.batch_size,
257 | opt.img_size,
258 | opt.conf_thres,
259 | opt.iou_thres,
260 | opt.save_json,
261 | opt.single_cls,
262 | opt.augment)
263 |
264 | elif opt.task == 'study': # run over a range of settings and save/plot
265 | for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
266 | f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
267 | x = list(range(288, 896, 64)) # x axis
268 | y = [] # y axis
269 | for i in x: # img-size
270 | print('\nRunning %s point %s...' % (f, i))
271 | r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
272 | y.append(r + t) # results and times
273 | np.savetxt(f, y, fmt='%10.4g') # save
274 | os.system('zip -r study.zip study_*.txt')
275 | # plot_study_txt(f, x) # plot
276 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import torch.distributed as dist
4 | import torch.nn.functional as F
5 | import torch.optim as optim
6 | import torch.optim.lr_scheduler as lr_scheduler
7 | import yaml
8 | from torch.utils.tensorboard import SummaryWriter
9 |
10 | import test # import test.py to get mAP after each epoch
11 | from models.yolo import Model
12 | from utils.datasets import *
13 | from utils.utils import *
14 |
15 | mixed_precision = True
16 | try: # Mixed precision training https://github.com/NVIDIA/apex
17 | from apex import amp
18 | except:
19 | print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
20 | mixed_precision = False # not installed
21 |
22 | wdir = 'weights' + os.sep # weights dir
23 | last = wdir + 'last.pt'
24 | best = wdir + 'best.pt'
25 | results_file = 'results.txt'
26 |
27 | # Hyperparameters
28 | hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
29 | 'momentum': 0.937, # SGD momentum
30 | 'weight_decay': 5e-4, # optimizer weight decay
31 | 'giou': 0.05, # giou loss gain
32 | 'cls': 0.58, # cls loss gain
33 | 'cls_pw': 1.0, # cls BCELoss positive_weight
34 | 'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320)
35 | 'obj_pw': 1.0, # obj BCELoss positive_weight
36 | 'iou_t': 0.20, # iou training threshold
37 | 'anchor_t': 4.0, # anchor-multiple threshold
38 | 'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
39 | 'hsv_h': 0.014, # image HSV-Hue augmentation (fraction)
40 | 'hsv_s': 0.68, # image HSV-Saturation augmentation (fraction)
41 | 'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
42 | 'degrees': 0.0, # image rotation (+/- deg)
43 | 'translate': 0.0, # image translation (+/- fraction)
44 | 'scale': 0.5, # image scale (+/- gain)
45 | 'shear': 0.0} # image shear (+/- deg)
46 | print(hyp)
47 |
48 | # Overwrite hyp with hyp*.txt (optional)
49 | f = glob.glob('hyp*.txt')
50 | if f:
51 | print('Using %s' % f[0])
52 | for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
53 | hyp[k] = v
54 |
55 | # Print focal loss if gamma > 0
56 | if hyp['fl_gamma']:
57 | print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])
58 |
59 |
60 | def train(hyp):
61 | epochs = opt.epochs # 300
62 | batch_size = opt.batch_size # 64
63 | weights = opt.weights # initial training weights
64 |
65 | # Configure
66 | init_seeds(1)
67 | with open(opt.data) as f:
68 | data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
69 | train_path = data_dict['train']
70 | test_path = data_dict['val']
71 | nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
72 |
73 | # Remove previous results
74 | for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
75 | os.remove(f)
76 |
77 | # Create model
78 | model = Model(opt.cfg).to(device)
79 | assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc'])
80 |
81 | # Image sizes
82 | gs = int(max(model.stride)) # grid size (max stride)
83 | if any(x % gs != 0 for x in opt.img_size):
84 | print('WARNING: --img-size %g,%g must be multiple of %s max stride %g' % (*opt.img_size, opt.cfg, gs))
85 | imgsz, imgsz_test = [make_divisible(x, gs) for x in opt.img_size] # image sizes (train, test)
86 |
87 | # Optimizer
88 | nbs = 64 # nominal batch size
89 | accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
90 | hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
91 | pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
92 | for k, v in model.named_parameters():
93 | if v.requires_grad:
94 | if '.bias' in k:
95 | pg2.append(v) # biases
96 | elif '.weight' in k and '.bn' not in k:
97 | pg1.append(v) # apply weight decay
98 | else:
99 | pg0.append(v) # all else
100 |
101 | optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
102 | optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
103 | optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
104 | optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
105 | print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
106 | del pg0, pg1, pg2
107 |
108 | # Load Model
109 | google_utils.attempt_download(weights)
110 | start_epoch, best_fitness = 0, 0.0
111 | if weights.endswith('.pt'): # pytorch format
112 | ckpt = torch.load(weights, map_location=device) # load checkpoint
113 |
114 | # load model
115 | try:
116 | ckpt['model'] = \
117 | {k: v for k, v in ckpt['model'].state_dict().items() if model.state_dict()[k].numel() == v.numel()}
118 | model.load_state_dict(ckpt['model'], strict=False)
119 | except KeyError as e:
120 | s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
121 | % (opt.weights, opt.cfg, opt.weights)
122 | raise KeyError(s) from e
123 |
124 | # load optimizer
125 | if ckpt['optimizer'] is not None:
126 | optimizer.load_state_dict(ckpt['optimizer'])
127 | best_fitness = ckpt['best_fitness']
128 |
129 | # load results
130 | if ckpt.get('training_results') is not None:
131 | with open(results_file, 'w') as file:
132 | file.write(ckpt['training_results']) # write results.txt
133 |
134 | start_epoch = ckpt['epoch'] + 1
135 | del ckpt
136 |
137 | # Mixed precision training https://github.com/NVIDIA/apex
138 | if mixed_precision:
139 | model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
140 |
141 | # Scheduler https://arxiv.org/pdf/1812.01187.pdf
142 | lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
143 | scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
144 | scheduler.last_epoch = start_epoch - 1 # do not move
145 | # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
146 | # plot_lr_scheduler(optimizer, scheduler, epochs)
147 |
148 | # Initialize distributed training
149 | if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
150 | dist.init_process_group(backend='nccl', # distributed backend
151 | init_method='tcp://127.0.0.1:9999', # init method
152 | world_size=1, # number of nodes
153 | rank=0) # node rank
154 | model = torch.nn.parallel.DistributedDataParallel(model)
155 |
156 | # Dataset
157 | dataset = LoadImagesAndLabels(train_path, imgsz, batch_size,
158 | augment=True,
159 | hyp=hyp, # augmentation hyperparameters
160 | rect=opt.rect, # rectangular training
161 | cache_images=opt.cache_images,
162 | single_cls=opt.single_cls)
163 | mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
164 | assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)
165 |
166 | # Dataloader
167 | batch_size = min(batch_size, len(dataset))
168 | nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
169 | dataloader = torch.utils.data.DataLoader(dataset,
170 | batch_size=batch_size,
171 | num_workers=nw,
172 | shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
173 | pin_memory=True,
174 | collate_fn=dataset.collate_fn)
175 |
176 | # Testloader
177 | testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
178 | hyp=hyp,
179 | rect=True,
180 | cache_images=opt.cache_images,
181 | single_cls=opt.single_cls),
182 | batch_size=batch_size,
183 | num_workers=nw,
184 | pin_memory=True,
185 | collate_fn=dataset.collate_fn)
186 |
187 | # Model parameters
188 | hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
189 | model.nc = nc # attach number of classes to model
190 | model.hyp = hyp # attach hyperparameters to model
191 | model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
192 | model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
193 | model.names = data_dict['names']
194 |
195 | # class frequency
196 | labels = np.concatenate(dataset.labels, 0)
197 | c = torch.tensor(labels[:, 0]) # classes
198 | # cf = torch.bincount(c.long(), minlength=nc) + 1.
199 | # model._initialize_biases(cf.to(device))
200 | # plot_labels(labels) #<----------------------------close by xujing
201 | tb_writer.add_histogram('classes', c, 0)
202 |
203 | # Exponential moving average
204 | ema = torch_utils.ModelEMA(model)
205 |
206 | # Start training
207 | t0 = time.time()
208 | nb = len(dataloader) # number of batches
209 | n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations)
210 | maps = np.zeros(nc) # mAP per class
211 | results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
212 | print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
213 | print('Using %g dataloader workers' % nw)
214 | print('Starting training for %g epochs...' % epochs)
215 | # torch.autograd.set_detect_anomaly(True)
216 | for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
217 | model.train()
218 |
219 | # Update image weights (optional)
220 | if dataset.image_weights:
221 | w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
222 | image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
223 | dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
224 |
225 | mloss = torch.zeros(4, device=device) # mean losses
226 | print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
227 | pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
228 | for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
229 | ni = i + nb * epoch # number integrated batches (since train start)
230 | imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
231 |
232 | # Burn-in
233 | if ni <= n_burn:
234 | xi = [0, n_burn] # x interp
235 | # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
236 | accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
237 | for j, x in enumerate(optimizer.param_groups):
238 | # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
239 | x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
240 | if 'momentum' in x:
241 | x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
242 |
243 | # Multi-scale
244 | if opt.multi_scale:
245 | sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
246 | sf = sz / max(imgs.shape[2:]) # scale factor
247 | if sf != 1:
248 | ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
249 | imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
250 |
251 | # Forward
252 | pred = model(imgs)
253 |
254 | # Loss
255 | loss, loss_items = compute_loss(pred, targets.to(device), model)
256 | if not torch.isfinite(loss):
257 | print('WARNING: non-finite loss, ending training ', loss_items)
258 | return results
259 |
260 | # Backward
261 | if mixed_precision:
262 | with amp.scale_loss(loss, optimizer) as scaled_loss:
263 | scaled_loss.backward()
264 | else:
265 | loss.backward()
266 |
267 | # Optimize
268 | if ni % accumulate == 0:
269 | optimizer.step()
270 | optimizer.zero_grad()
271 | ema.update(model)
272 |
273 | # Print
274 | mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
275 | mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
276 | s = ('%10s' * 2 + '%10.4g' * 6) % (
277 | '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
278 | pbar.set_description(s)
279 |
280 | # Plot
281 | if ni < 3:
282 | f = 'train_batch%g.jpg' % i # filename
283 | res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
284 | if tb_writer:
285 | tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
286 | # tb_writer.add_graph(model, imgs) # add model to tensorboard
287 |
288 | # end batch ------------------------------------------------------------------------------------------------
289 |
290 | # Scheduler
291 | scheduler.step()
292 |
293 | # mAP
294 | ema.update_attr(model)
295 | final_epoch = epoch + 1 == epochs
296 | if not opt.notest or final_epoch: # Calculate mAP
297 | results, maps, times = test.test(opt.data,
298 | batch_size=batch_size,
299 | imgsz=imgsz_test,
300 | save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
301 | model=ema.ema,
302 | single_cls=opt.single_cls,
303 | dataloader=testloader,
304 | fast=ni < n_burn)
305 |
306 | # Write
307 | with open(results_file, 'a') as f:
308 | f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
309 | if len(opt.name) and opt.bucket:
310 | os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
311 |
312 | # Tensorboard
313 | if tb_writer:
314 | tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
315 | 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
316 | 'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
317 | for x, tag in zip(list(mloss[:-1]) + list(results), tags):
318 | tb_writer.add_scalar(tag, x, epoch)
319 |
320 | # Update best mAP
321 | fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
322 | if fi > best_fitness:
323 | best_fitness = fi
324 |
325 | # Save model
326 | save = (not opt.nosave) or (final_epoch and not opt.evolve)
327 | if save:
328 | with open(results_file, 'r') as f: # create checkpoint
329 | ckpt = {'epoch': epoch,
330 | 'best_fitness': best_fitness,
331 | 'training_results': f.read(),
332 | 'model': ema.ema.module if hasattr(model, 'module') else ema.ema,
333 | 'optimizer': None if final_epoch else optimizer.state_dict()}
334 |
335 | # Save last, best and delete
336 | torch.save(ckpt, last)
337 | if (best_fitness == fi) and not final_epoch:
338 | torch.save(ckpt, best)
339 | del ckpt
340 |
341 | # end epoch ----------------------------------------------------------------------------------------------------
342 | # end training
343 |
344 | n = opt.name
345 | if len(n):
346 | n = '_' + n if not n.isnumeric() else n
347 | fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
348 | for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
349 | if os.path.exists(f1):
350 | os.rename(f1, f2) # rename
351 | ispt = f2.endswith('.pt') # is *.pt
352 | strip_optimizer(f2) if ispt else None # strip optimizer
353 | os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
354 |
355 | if not opt.evolve:
356 | # plot_results() # save as results.png
357 | pass
358 | print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
359 | dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
360 | torch.cuda.empty_cache()
361 | return results
362 |
363 |
364 | if __name__ == '__main__':
365 | parser = argparse.ArgumentParser()
366 | parser.add_argument('--epochs', type=int, default=300)
367 | parser.add_argument('--batch-size', type=int, default=16)
368 | parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path')
369 | parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
370 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
371 | parser.add_argument('--rect', action='store_true', help='rectangular training')
372 | parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
373 | parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
374 | parser.add_argument('--notest', action='store_true', help='only test final epoch')
375 | parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
376 | parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
377 | parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
378 | parser.add_argument('--weights', type=str, default='', help='initial weights path')
379 | parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
380 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
381 | parser.add_argument('--adam', action='store_true', help='use adam optimizer')
382 | parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%')
383 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
384 | opt = parser.parse_args()
385 | opt.weights = last if opt.resume else opt.weights
386 | opt.cfg = glob.glob('./**/' + opt.cfg, recursive=True)[0] # find file
387 | opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file
388 | print(opt)
389 | opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
390 | device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
391 | # check_git_status()
392 | if device.type == 'cpu':
393 | mixed_precision = False
394 |
395 | # Train
396 | if not opt.evolve:
397 | tb_writer = SummaryWriter(comment=opt.name)
398 | print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
399 | train(hyp)
400 |
401 | # Evolve hyperparameters (optional)
402 | else:
403 | tb_writer = None
404 | opt.notest, opt.nosave = True, True # only test/save final epoch
405 | if opt.bucket:
406 | os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
407 |
408 | for _ in range(10): # generations to evolve
409 | if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
410 | # Select parent(s)
411 | parent = 'single' # parent selection method: 'single' or 'weighted'
412 | x = np.loadtxt('evolve.txt', ndmin=2)
413 | n = min(5, len(x)) # number of previous results to consider
414 | x = x[np.argsort(-fitness(x))][:n] # top n mutations
415 | w = fitness(x) - fitness(x).min() # weights
416 | if parent == 'single' or len(x) == 1:
417 | # x = x[random.randint(0, n - 1)] # random selection
418 | x = x[random.choices(range(n), weights=w)[0]] # weighted selection
419 | elif parent == 'weighted':
420 | x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
421 |
422 | # Mutate
423 | mp, s = 0.9, 0.2 # mutation probability, sigma
424 | npr = np.random
425 | npr.seed(int(time.time()))
426 | g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
427 | ng = len(g)
428 | v = np.ones(ng)
429 | while all(v == 1): # mutate until a change occurs (prevent duplicates)
430 | v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
431 | for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
432 | hyp[k] = x[i + 7] * v[i] # mutate
433 |
434 | # Clip to limits
435 | keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
436 | limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
437 | for k, v in zip(keys, limits):
438 | hyp[k] = np.clip(hyp[k], v[0], v[1])
439 |
440 | # Train mutation
441 | results = train(hyp.copy())
442 |
443 | # Write mutation results
444 | print_mutation(hyp, results, opt.bucket)
445 |
446 | # Plot results
447 | # plot_evolution_results(hyp)
448 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLO-v5/ead1c141106f114d92dddafb6ac8c57d7e96afb4/utils/__init__.py
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.functional as F
3 | import torch.nn as nn
4 |
5 |
6 | # Swish ------------------------------------------------------------------------
7 | class SwishImplementation(torch.autograd.Function):
8 | @staticmethod
9 | def forward(ctx, x):
10 | ctx.save_for_backward(x)
11 | return x * torch.sigmoid(x)
12 |
13 | @staticmethod
14 | def backward(ctx, grad_output):
15 | x = ctx.saved_tensors[0]
16 | sx = torch.sigmoid(x)
17 | return grad_output * (sx * (1 + x * (1 - sx)))
18 |
19 |
20 | class MemoryEfficientSwish(nn.Module):
21 | @staticmethod
22 | def forward(x):
23 | return SwishImplementation.apply(x)
24 |
25 |
26 | class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
27 | @staticmethod
28 | def forward(x):
29 | return x * F.hardtanh(x + 3, 0., 6., True) / 6.
30 |
31 |
32 | class Swish(nn.Module):
33 | @staticmethod
34 | def forward(x):
35 | return x * torch.sigmoid(x)
36 |
37 |
38 | # Mish ------------------------------------------------------------------------
39 | class MishImplementation(torch.autograd.Function):
40 | @staticmethod
41 | def forward(ctx, x):
42 | ctx.save_for_backward(x)
43 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
44 |
45 | @staticmethod
46 | def backward(ctx, grad_output):
47 | x = ctx.saved_tensors[0]
48 | sx = torch.sigmoid(x)
49 | fx = F.softplus(x).tanh()
50 | return grad_output * (fx + x * sx * (1 - fx * fx))
51 |
52 |
53 | class MemoryEfficientMish(nn.Module):
54 | @staticmethod
55 | def forward(x):
56 | return MishImplementation.apply(x)
57 |
58 |
59 | class Mish(nn.Module): # https://github.com/digantamisra98/Mish
60 | @staticmethod
61 | def forward(x):
62 | return x * F.softplus(x).tanh()
63 |
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
2 | # pip install --upgrade google-cloud-storage
3 | # from google.cloud import storage
4 |
5 | import os
6 | import time
7 | from pathlib import Path
8 |
9 |
10 | def attempt_download(weights):
11 | # Attempt to download pretrained weights if not found locally
12 | weights = weights.strip()
13 | msg = weights + ' missing, try downloading from https://drive.google.com/drive/folders/1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J'
14 |
15 | r = 1
16 | if len(weights) > 0 and not os.path.isfile(weights):
17 | d = {'yolov3-spp.pt': '1mM67oNw4fZoIOL1c8M3hHmj66d8e-ni_', # yolov3-spp.yaml
18 | 'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO', # yolov5s.yaml
19 | 'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr', # yolov5m.yaml
20 | 'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV', # yolov5l.yaml
21 | 'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS', # yolov5x.yaml
22 | }
23 |
24 | file = Path(weights).name
25 | if file in d:
26 | r = gdrive_download(id=d[file], name=weights)
27 |
28 | # Error check
29 | if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
30 | os.system('rm ' + weights) # remove partial downloads
31 | raise Exception(msg)
32 |
33 |
34 | def gdrive_download(id='1HaXkef9z6y5l4vUnCYgdmEAj61c6bfWO', name='coco.zip'):
35 | # https://gist.github.com/tanaikech/f0f2d122e05bf5f971611258c22c110f
36 | # Downloads a file from Google Drive, accepting presented query
37 | # from utils.google_utils import *; gdrive_download()
38 | t = time.time()
39 |
40 | print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
41 | os.remove(name) if os.path.exists(name) else None # remove existing
42 | os.remove('cookie') if os.path.exists('cookie') else None
43 |
44 | # Attempt file download
45 | os.system("curl -c ./cookie -s -L \"https://drive.google.com/uc?export=download&id=%s\" > /dev/null" % id)
46 | if os.path.exists('cookie'): # large file
47 | s = "curl -Lb ./cookie \"https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=%s\" -o %s" % (
48 | id, name)
49 | else: # small file
50 | s = "curl -s -L -o %s 'https://drive.google.com/uc?export=download&id=%s'" % (name, id)
51 | r = os.system(s) # execute, capture return values
52 | os.remove('cookie') if os.path.exists('cookie') else None
53 |
54 | # Error check
55 | if r != 0:
56 | os.remove(name) if os.path.exists(name) else None # remove partial
57 | print('Download error ') # raise Exception('Download error')
58 | return r
59 |
60 | # Unzip if archive
61 | if name.endswith('.zip'):
62 | print('unzipping... ', end='')
63 | os.system('unzip -q %s' % name) # unzip
64 | os.remove(name) # remove zip to free space
65 |
66 | print('Done (%.1fs)' % (time.time() - t))
67 | return r
68 |
69 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
70 | # # Uploads a file to a bucket
71 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
72 | #
73 | # storage_client = storage.Client()
74 | # bucket = storage_client.get_bucket(bucket_name)
75 | # blob = bucket.blob(destination_blob_name)
76 | #
77 | # blob.upload_from_filename(source_file_name)
78 | #
79 | # print('File {} uploaded to {}.'.format(
80 | # source_file_name,
81 | # destination_blob_name))
82 | #
83 | #
84 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
85 | # # Uploads a blob from a bucket
86 | # storage_client = storage.Client()
87 | # bucket = storage_client.get_bucket(bucket_name)
88 | # blob = bucket.blob(source_blob_name)
89 | #
90 | # blob.download_to_filename(destination_file_name)
91 | #
92 | # print('Blob {} downloaded to {}.'.format(
93 | # source_blob_name,
94 | # destination_file_name))
95 |
--------------------------------------------------------------------------------
/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os
3 | import time
4 | from copy import deepcopy
5 |
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | import torch.nn as nn
9 | import torch.nn.functional as F
10 |
11 |
12 | def init_seeds(seed=0):
13 | torch.manual_seed(seed)
14 |
15 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
16 | if seed == 0: # slower, more reproducible
17 | cudnn.deterministic = True
18 | cudnn.benchmark = False
19 | else: # faster, less reproducible
20 | cudnn.deterministic = False
21 | cudnn.benchmark = True
22 |
23 |
24 | def select_device(device='', apex=False, batch_size=None):
25 | # device = 'cpu' or '0' or '0,1,2,3'
26 | cpu_request = device.lower() == 'cpu'
27 | if device and not cpu_request: # if device requested other than 'cpu'
28 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
29 | assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
30 |
31 | cuda = False if cpu_request else torch.cuda.is_available()
32 | if cuda:
33 | c = 1024 ** 2 # bytes to MB
34 | ng = torch.cuda.device_count()
35 | if ng > 1 and batch_size: # check that batch_size is compatible with device_count
36 | assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
37 | x = [torch.cuda.get_device_properties(i) for i in range(ng)]
38 | s = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex
39 | for i in range(0, ng):
40 | if i == 1:
41 | s = ' ' * len(s)
42 | print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
43 | (s, i, x[i].name, x[i].total_memory / c))
44 | else:
45 | print('Using CPU')
46 |
47 | print('') # skip a line
48 | return torch.device('cuda:0' if cuda else 'cpu')
49 |
50 |
51 | def time_synchronized():
52 | torch.cuda.synchronize() if torch.cuda.is_available() else None
53 | return time.time()
54 |
55 |
56 | def initialize_weights(model):
57 | for m in model.modules():
58 | t = type(m)
59 | if t is nn.Conv2d:
60 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
61 | elif t is nn.BatchNorm2d:
62 | m.eps = 1e-4
63 | m.momentum = 0.03
64 | elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
65 | m.inplace = True
66 |
67 |
68 | def find_modules(model, mclass=nn.Conv2d):
69 | # finds layer indices matching module class 'mclass'
70 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
71 |
72 |
73 | def fuse_conv_and_bn(conv, bn):
74 | # https://tehnokv.com/posts/fusing-batchnorm-and-conv/
75 | with torch.no_grad():
76 | # init
77 | fusedconv = torch.nn.Conv2d(conv.in_channels,
78 | conv.out_channels,
79 | kernel_size=conv.kernel_size,
80 | stride=conv.stride,
81 | padding=conv.padding,
82 | bias=True)
83 |
84 | # prepare filters
85 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
86 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
87 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
88 |
89 | # prepare spatial bias
90 | if conv.bias is not None:
91 | b_conv = conv.bias
92 | else:
93 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device)
94 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
95 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
96 |
97 | return fusedconv
98 |
99 |
100 | def model_info(model, verbose=False):
101 | # Plots a line-by-line description of a PyTorch model
102 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
103 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
104 | if verbose:
105 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
106 | for i, (name, p) in enumerate(model.named_parameters()):
107 | name = name.replace('module_list.', '')
108 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
109 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
110 |
111 | try: # FLOPS
112 | from thop import profile
113 | macs, _ = profile(model, inputs=(torch.zeros(1, 3, 480, 640),), verbose=False)
114 | fs = ', %.1f GFLOPS' % (macs / 1E9 * 2)
115 | except:
116 | fs = ''
117 |
118 | print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
119 |
120 |
121 | def load_classifier(name='resnet101', n=2):
122 | # Loads a pretrained model reshaped to n-class output
123 | import pretrainedmodels # https://github.com/Cadene/pretrained-models.pytorch#torchvision
124 | model = pretrainedmodels.__dict__[name](num_classes=1000, pretrained='imagenet')
125 |
126 | # Display model properties
127 | for x in ['model.input_size', 'model.input_space', 'model.input_range', 'model.mean', 'model.std']:
128 | print(x + ' =', eval(x))
129 |
130 | # Reshape output to n classes
131 | filters = model.last_linear.weight.shape[1]
132 | model.last_linear.bias = torch.nn.Parameter(torch.zeros(n))
133 | model.last_linear.weight = torch.nn.Parameter(torch.zeros(n, filters))
134 | model.last_linear.out_features = n
135 | return model
136 |
137 |
138 | def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
139 | # scales img(bs,3,y,x) by ratio
140 | h, w = img.shape[2:]
141 | s = (int(h * ratio), int(w * ratio)) # new size
142 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
143 | if not same_shape: # pad/crop img
144 | gs = 32 # (pixels) grid size
145 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
146 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
147 |
148 |
149 | class ModelEMA:
150 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
151 | Keep a moving average of everything in the model state_dict (parameters and buffers).
152 | This is intended to allow functionality like
153 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
154 | A smoothed version of the weights is necessary for some training schemes to perform well.
155 | E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
156 | RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
157 | smoothing of weights to match results. Pay attention to the decay constant you are using
158 | relative to your update count per epoch.
159 | To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
160 | disable validation of the EMA weights. Validation will have to be done manually in a separate
161 | process, or after the training stops converging.
162 | This class is sensitive where it is initialized in the sequence of model init,
163 | GPU assignment and distributed training wrappers.
164 | I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
165 | """
166 |
167 | def __init__(self, model, decay=0.9999, device=''):
168 | # make a copy of the model for accumulating moving average of weights
169 | self.ema = deepcopy(model)
170 | self.ema.eval()
171 | self.updates = 0 # number of EMA updates
172 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
173 | self.device = device # perform ema on different device from model if set
174 | if device:
175 | self.ema.to(device=device)
176 | for p in self.ema.parameters():
177 | p.requires_grad_(False)
178 |
179 | def update(self, model):
180 | self.updates += 1
181 | d = self.decay(self.updates)
182 | with torch.no_grad():
183 | if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel):
184 | msd, esd = model.module.state_dict(), self.ema.module.state_dict()
185 | else:
186 | msd, esd = model.state_dict(), self.ema.state_dict()
187 |
188 | for k, v in esd.items():
189 | if v.dtype.is_floating_point:
190 | v *= d
191 | v += (1. - d) * msd[k].detach()
192 |
193 | def update_attr(self, model):
194 | # Assign attributes (which may change during training)
195 | for k in model.__dict__.keys():
196 | if not k.startswith('_'):
197 | setattr(self.ema, k, getattr(model, k))
198 |
--------------------------------------------------------------------------------
/weights/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Download common models
3 |
4 | python3 -c "from utils.google_utils import *;
5 | attempt_download('weights/yolov5s.pt');
6 | attempt_download('weights/yolov5m.pt');
7 | attempt_download('weights/yolov5l.pt')"
8 |
--------------------------------------------------------------------------------
/weights/readme:
--------------------------------------------------------------------------------
1 | 此处存放与训练和训练的模型!
--------------------------------------------------------------------------------
/yolov5_trt.py:
--------------------------------------------------------------------------------
1 | """
2 | An example that uses TensorRT's Python api to make inferences.
3 | """
4 | import ctypes
5 | import os
6 | import random
7 | import sys
8 | import threading
9 | import time
10 |
11 | import cv2
12 | import numpy as np
13 | import pycuda.autoinit
14 | import pycuda.driver as cuda
15 | import tensorrt as trt
16 | import torch
17 | import torchvision
18 |
19 | INPUT_W = 640
20 | INPUT_H = 640
21 | CONF_THRESH = 0.25
22 | IOU_THRESHOLD = 0.45
23 |
24 | PROB_THRESH = 0.65
25 |
26 | id2label = {
27 | 0:"normal", #A
28 | 1:"normal", #B
29 | 2:"normal", #C
30 | 3:"normal", #D
31 | 4:"normal", #E
32 | 5:"early_esophageal_cancer", #F
33 | 6:"early_gastric_cancer", #G
34 | 7:"normal", #N1
35 | 8:"normal", #N2
36 | 9:"normal", #N3
37 | 10:"normal", #N4
38 | 11:"normal", #N5
39 | 12:"normal", #N6
40 | 13:"normal", #N7
41 | 14:"normal", #N8
42 | 15:"normal", #N9
43 | 16:"normal", #N10
44 | }
45 |
46 | # 画框
47 | def plot_one_box(x, img, color=None, label=None, line_thickness=None):
48 | """
49 | description: Plots one bounding box on image img,
50 | this function comes from YoLov5 project.
51 | param:
52 | x: a box likes [x1,y1,x2,y2]
53 | img: a opencv image object
54 | color: color to draw rectangle, such as (0,255,0)
55 | label: str
56 | line_thickness: int
57 | return:
58 | no return
59 |
60 | """
61 | # if not os.path.exists("detect_res"):
62 | # os.makdedirs("detect_res")
63 | tl = (
64 | line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1
65 | ) # line/font thickness
66 | color = color or [random.randint(0, 255) for _ in range(3)]
67 | c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
68 | cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
69 | if label:
70 | tf = max(tl - 1, 1) # font thickness
71 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
72 | c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
73 | cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
74 | cv2.putText(
75 | img,
76 | label,
77 | (c1[0], c1[1] - 2),
78 | 0,
79 | tl / 3,
80 | [225, 255, 255],
81 | thickness=tf,
82 | lineType=cv2.LINE_AA,
83 | )
84 | # cv2.imwrite(os.path.join(save_path,file_name),img)
85 |
86 |
87 | class YoLov5TRT(object):
88 | """
89 | description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops.
90 | """
91 |
92 | def __init__(self, engine_file_path):
93 | # Create a Context on this device,
94 | self.cfx = cuda.Device(0).make_context()
95 | stream = cuda.Stream()
96 | TRT_LOGGER = trt.Logger(trt.Logger.INFO)
97 | runtime = trt.Runtime(TRT_LOGGER)
98 |
99 | # <--------------------读取序列化引擎
100 | with open(engine_file_path, "rb") as f:
101 | engine = runtime.deserialize_cuda_engine(f.read())
102 | context = engine.create_execution_context()
103 |
104 | host_inputs = []
105 | cuda_inputs = []
106 | host_outputs = []
107 | cuda_outputs = []
108 | bindings = []
109 |
110 | for binding in engine:
111 | size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
112 | dtype = trt.nptype(engine.get_binding_dtype(binding))
113 | # Allocate host and device buffers
114 | host_mem = cuda.pagelocked_empty(size, dtype)
115 | cuda_mem = cuda.mem_alloc(host_mem.nbytes)
116 | # Append the device buffer to device bindings.
117 | bindings.append(int(cuda_mem))
118 | # Append to the appropriate list.
119 | if engine.binding_is_input(binding):
120 | host_inputs.append(host_mem)
121 | cuda_inputs.append(cuda_mem)
122 | else:
123 | host_outputs.append(host_mem)
124 | cuda_outputs.append(cuda_mem)
125 |
126 | # Store
127 | self.stream = stream
128 | self.context = context
129 | self.engine = engine
130 | self.host_inputs = host_inputs
131 | self.cuda_inputs = cuda_inputs
132 | self.host_outputs = host_outputs
133 | self.cuda_outputs = cuda_outputs
134 | self.bindings = bindings
135 |
136 | def infer(self, input_image_path):
137 | threading.Thread.__init__(self)
138 | # Make self the active context, pushing it on top of the context stack.
139 | self.cfx.push()
140 | # Restore
141 | stream = self.stream
142 | context = self.context
143 | engine = self.engine
144 | host_inputs = self.host_inputs
145 | cuda_inputs = self.cuda_inputs
146 | host_outputs = self.host_outputs
147 | cuda_outputs = self.cuda_outputs
148 | bindings = self.bindings
149 |
150 | # # <-----------------模型的前处理,图像处理
151 |
152 | input_image, image_raw, origin_h, origin_w = self.preprocess_image_0(
153 | input_image_path
154 | )
155 | # Copy input image to host buffer
156 | np.copyto(host_inputs[0], input_image.ravel())
157 | # Transfer input data to the GPU.
158 | cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
159 | # #<-----------基于序列化的引擎,开始推断
160 | start = time.time()
161 | context.execute_async(bindings=bindings, stream_handle=stream.handle)
162 | # Transfer predictions back from the GPU.
163 | cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
164 | # Synchronize the stream
165 | stream.synchronize()
166 | # Remove any context from the top of the context stack, deactivating it.
167 | self.cfx.pop()
168 | # Here we use the first row of output in that batch_size = 1
169 | # <---------------得到推断结果
170 | output = host_outputs[0]
171 | end = time.time()
172 | print(output.shape)
173 |
174 | # <--------------后处理
175 | result_boxes, result_scores, result_classid = self.post_process(
176 | output, origin_h, origin_w
177 | )
178 |
179 | print("waste_time: {}".format(end-start))
180 | # Draw rectangles and labels on the original image
181 |
182 | file_name = input_image_path.split("/")[-1]
183 | for i in range(len(result_boxes)):
184 | box = result_boxes[i]
185 | if result_scores[i] <= PROB_THRESH:
186 | continue;
187 | if not int(result_classid[i]) in [5,6]:
188 | continue;
189 | plot_one_box(
190 | box,
191 | image_raw,
192 | label="{}:{:.2f}".format(
193 | id2label[int(result_classid[i])], result_scores[i]
194 | ),
195 | )
196 | parent, filename = os.path.split(input_image_path)
197 |
198 | if not os.path.exists("detect_res"):
199 | os.makedirs("detect_res")
200 | save_name = os.path.join("detect_res", filename)
201 | # Save image
202 | cv2.imwrite(save_name, image_raw)
203 |
204 | def destroy(self):
205 | # Remove any context from the top of the context stack, deactivating it.
206 | self.cfx.pop()
207 |
208 | def preprocess_image(self, input_image_path):
209 | """
210 | description: Read an image from image path, convert it to RGB,
211 | resize and pad it to target size, normalize to [0,1],
212 | transform to NCHW format.
213 | param:
214 | input_image_path: str, image path
215 | return:
216 | image: the processed image
217 | image_raw: the original image
218 | h: original height
219 | w: original width
220 | """
221 | image_raw = cv2.imread(input_image_path) # 1.opencv读入图片
222 | h, w, c = image_raw.shape
223 |
224 | # Calculate widht and height and paddings
225 | r_w = INPUT_W / w # INPUT_W=INPUT_H=640 # 4.计算宽高缩放的倍数 r_w,r_h
226 | r_h = INPUT_H / h
227 | if r_h > r_w: # 5.如果原图的高小于宽(长边),则长边缩放到640,短边按长边缩放比例缩放
228 | tw = INPUT_W
229 | th = int(r_w * h)
230 |
231 | dw = INPUT_W - tw
232 | dh = INPUT_H - th
233 |
234 | dw, dh = np.mod(dw,32),np.mod(dh,32)
235 | dw /= 2 # divide padding into 2 sides
236 | dh /= 2
237 |
238 | else:
239 | tw = int(r_h * w)
240 | th = INPUT_H
241 |
242 | dw = INPUT_W - tw
243 | dh = INPUT_H - th
244 |
245 | dw, dh = np.mod(dw,32),np.mod(dh,32)
246 | dw /= 2 # divide padding into 2 sides
247 | dh /= 2
248 |
249 |
250 |
251 | # Resize the image with long side while maintaining ratio
252 | image = cv2.resize(image_raw, (tw, th),interpolation=cv2.INTER_LINEAR) # 6.图像resize,按照cv2.INTER_LINEAR方法
253 | # Pad the short side with (128,128,128)
254 |
255 | top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
256 | left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
257 | image = cv2.copyMakeBorder(
258 | # image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128)
259 | image, top, bottom, left, right, cv2.BORDER_CONSTANT, (114, 114, 114)
260 |
261 | ) # image:图像, ty1, ty2.tx1,tx2: 相应方向上的边框宽度,添加的边界框像素值为常数,value填充的常数值
262 |
263 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 3. BGR2RGB
264 |
265 | image = image.astype(np.float32) # 7.unit8-->float
266 | # Normalize to [0,1]
267 | image /= 255.0 # 8. 逐像素点除255.0
268 | # HWC to CHW format:
269 | image = np.transpose(image, [2, 0, 1]) # 9. HWC2CHW
270 | # CHW to NCHW format
271 | image = np.expand_dims(image, axis=0) # 10.CWH2NCHW
272 | # Convert the image to row-major order, also known as "C order":
273 | image = np.ascontiguousarray(image) # 11.ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快
274 | return image, image_raw, h, w # 处理后的图像,原图, 原图的h,w
275 |
276 | def preprocess_image_0(self, input_image_path):
277 | """
278 | description: Read an image from image path, convert it to RGB,
279 | resize and pad it to target size, normalize to [0,1],
280 | transform to NCHW format.
281 | param:
282 | input_image_path: str, image path
283 | return:
284 | image: the processed image
285 | image_raw: the original image
286 | h: original height
287 | w: original width
288 | """
289 | image_raw = cv2.imread(input_image_path) # 1.opencv读入图片
290 | h, w, c = image_raw.shape # 2.记录图片大小
291 | image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) # 3. BGR2RGB
292 | # Calculate widht and height and paddings
293 | r_w = INPUT_W / w # INPUT_W=INPUT_H=640 # 4.计算宽高缩放的倍数 r_w,r_h
294 | r_h = INPUT_H / h
295 | if r_h > r_w: # 5.如果原图的高小于宽(长边),则长边缩放到640,短边按长边缩放比例缩放
296 | tw = INPUT_W
297 | th = int(r_w * h)
298 | tx1 = tx2 = 0
299 | ty1 = int((INPUT_H - th) / 2) # ty1=(640-短边缩放的长度)/2 ,这部分是YOLOv5为加速推断而做的一个图像缩放算法
300 | ty2 = INPUT_H - th - ty1 # ty2=640-短边缩放的长度-ty1
301 | else:
302 | tw = int(r_h * w)
303 | th = INPUT_H
304 | tx1 = int((INPUT_W - tw) / 2)
305 | tx2 = INPUT_W - tw - tx1
306 | ty1 = ty2 = 0
307 | # Resize the image with long side while maintaining ratio
308 | image = cv2.resize(image, (tw, th),interpolation=cv2.INTER_LINEAR) # 6.图像resize,按照cv2.INTER_LINEAR方法
309 | # Pad the short side with (128,128,128)
310 | image = cv2.copyMakeBorder(
311 | # image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128)
312 | image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (114, 114, 114)
313 |
314 | ) # image:图像, ty1, ty2.tx1,tx2: 相应方向上的边框宽度,添加的边界框像素值为常数,value填充的常数值
315 | image = image.astype(np.float32) # 7.unit8-->float
316 | # Normalize to [0,1]
317 | image /= 255.0 # 8. 逐像素点除255.0
318 | # HWC to CHW format:
319 | image = np.transpose(image, [2, 0, 1]) # 9. HWC2CHW
320 | # CHW to NCHW format
321 | image = np.expand_dims(image, axis=0) # 10.CWH2NCHW
322 | # Convert the image to row-major order, also known as "C order":
323 | image = np.ascontiguousarray(image) # 11.ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快
324 | return image, image_raw, h, w # 处理后的图像,原图, 原图的h,w
325 |
326 | def xywh2xyxy(self, origin_h, origin_w, x):
327 | """
328 | description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
329 | param:
330 | origin_h: height of original image
331 | origin_w: width of original image
332 | x: A boxes tensor, each row is a box [center_x, center_y, w, h]
333 | return:
334 | y: A boxes tensor, each row is a box [x1, y1, x2, y2]
335 | """
336 | y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
337 | r_w = INPUT_W / origin_w
338 | r_h = INPUT_H / origin_h
339 | if r_h > r_w:
340 | y[:, 0] = x[:, 0] - x[:, 2] / 2 #x1
341 | y[:, 2] = x[:, 0] + x[:, 2] / 2 #x2
342 | y[:, 1] = x[:, 1] - x[:, 3] / 2 - (INPUT_H - r_w * origin_h) / 2 # y1
343 | y[:, 3] = x[:, 1] + x[:, 3] / 2 - (INPUT_H - r_w * origin_h) / 2 # y2
344 | y /= r_w
345 | else:
346 | y[:, 0] = x[:, 0] - x[:, 2] / 2 - (INPUT_W - r_h * origin_w) / 2
347 | y[:, 2] = x[:, 0] + x[:, 2] / 2 - (INPUT_W - r_h * origin_w) / 2
348 | y[:, 1] = x[:, 1] - x[:, 3] / 2
349 | y[:, 3] = x[:, 1] + x[:, 3] / 2
350 | y /= r_h
351 |
352 | return y
353 |
354 | def post_process(self, output, origin_h, origin_w):
355 | """
356 | description: postprocess the prediction
357 | param:
358 | output: A tensor likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...]
359 | origin_h: height of original image
360 | origin_w: width of original image
361 | return:
362 | result_boxes: finally boxes, a boxes tensor, each row is a box [x1, y1, x2, y2]
363 | result_scores: finally scores, a tensor, each element is the score correspoing to box
364 | result_classid: finally classid, a tensor, each element is the classid correspoing to box
365 | """
366 | # Get the num of boxes detected
367 | num = int(output[0]) # detect的box的个数
368 | # Reshape to a two dimentional ndarray
369 | pred = np.reshape(output[1:], (-1, 6))[:num, :] #[[cx,cy,w,h,conf,cls_id],[cx,cy,w,h,conf,cls_id],...]
370 | # to a torch Tensor
371 | pred = torch.Tensor(pred).cuda()
372 | # Get the boxes
373 | boxes = pred[:, :4] # [[cx,cy,w,h],[cx,cy,w,h],...]
374 | # Get the scores
375 | scores = pred[:, 4] #[conf,conf,....]
376 | # Get the classid
377 | classid = pred[:, 5] # [cls_id,cls_id,...]
378 | # Choose those boxes that score > CONF_THRESH
379 | si = scores > CONF_THRESH
380 | boxes = boxes[si, :]
381 | scores = scores[si]
382 | classid = classid[si]
383 | # Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]
384 | boxes = self.xywh2xyxy(origin_h, origin_w, boxes)
385 | # Do nms
386 | indices = torchvision.ops.nms(boxes, scores, iou_threshold=IOU_THRESHOLD).cpu() # NMS
387 | result_boxes = boxes[indices, :].cpu()
388 | result_scores = scores[indices].cpu()
389 | result_classid = classid[indices].cpu()
390 | return result_boxes, result_scores, result_classid
391 |
392 |
393 | class myThread(threading.Thread):
394 | def __init__(self, func, args):
395 | threading.Thread.__init__(self)
396 | self.func = func
397 | self.args = args
398 |
399 | def run(self):
400 | self.func(*self.args)
401 |
402 |
403 | if __name__ == "__main__":
404 |
405 | # load custom plugins
406 | PLUGIN_LIBRARY = "build/libmyplugins.so"
407 | ctypes.CDLL(PLUGIN_LIBRARY)
408 |
409 | engine_file_path = "build/yolov5x.engine"
410 |
411 | # a YoLov5TRT instance
412 | yolov5_wrapper = YoLov5TRT(engine_file_path)
413 |
414 | # from https://github.com/ultralytics/yolov5/tree/master/inference/images
415 |
416 | files = os.listdir('test')
417 | input_image_paths = [os.path.join('test',file) for file in files]
418 |
419 | for input_image_path in input_image_paths:
420 | # create a new thread to do inference
421 | thread1 = myThread(yolov5_wrapper.infer, [input_image_path])
422 | thread1.start()
423 | thread1.join()
424 |
425 | # destroy the instance
426 | yolov5_wrapper.destroy()
427 |
--------------------------------------------------------------------------------