├── .gitignore
├── LICENSE.md
├── README.md
├── cfg
├── baseline
│ ├── r50-csp.yaml
│ ├── x50-csp.yaml
│ ├── yolor-csp-x.yaml
│ ├── yolor-csp.yaml
│ ├── yolor-d6.yaml
│ ├── yolor-e6.yaml
│ ├── yolor-p6.yaml
│ ├── yolor-w6.yaml
│ ├── yolov3-spp.yaml
│ ├── yolov3.yaml
│ └── yolov4-csp.yaml
├── deploy
│ ├── yolov7-d6.yaml
│ ├── yolov7-e6.yaml
│ ├── yolov7-e6e.yaml
│ ├── yolov7-tiny-silu.yaml
│ ├── yolov7-tiny.yaml
│ ├── yolov7-w6.yaml
│ ├── yolov7.yaml
│ ├── yolov7_score.yaml
│ └── yolov7x.yaml
└── training
│ ├── yolov7-tiny.yaml
│ ├── yolov7.yaml
│ ├── yolov7_score.yaml
│ ├── yolov7d6.yaml
│ ├── yolov7e6.yaml
│ ├── yolov7e6e.yaml
│ ├── yolov7w6.yaml
│ └── yolov7x.yaml
├── data
├── coco.yaml
├── hyp.scratch.p5.yaml
├── hyp.scratch.p6.yaml
├── hyp.scratch.tiny.yaml
└── score.yaml
├── dataset
└── score
│ ├── 01_check_img.py
│ ├── 02_check_box.py
│ ├── 03_train_val_split.py
│ ├── 04_myData_label.py
│ └── 05_copy_img.py
├── detect.py
├── figure
├── image1.jpg
├── image1_trt.jpg
├── image2.jpg
├── image2_trt.jpg
├── image3.jpg
├── image3_trt.jpg
├── onnx.png
├── onnx_0.png
├── onnx_1.png
└── performance.png
├── hubconf.py
├── inference.py
├── inference
└── images
│ └── horses.jpg
├── models
├── __init__.py
├── common.py
├── experimental.py
├── export.py
└── yolo.py
├── requirements.txt
├── scripts
└── get_coco.sh
├── tensorrt
├── logging.h
├── yolov7.cpp
├── yolov7_add_nms.py
└── yolov7_add_postprocess.py
├── test.py
├── test_img
├── image1.jpg
├── image2.jpg
└── image3.jpg
├── train.py
└── utils
├── __init__.py
├── activations.py
├── autoanchor.py
├── aws
├── __init__.py
├── mime.sh
├── resume.py
└── userdata.sh
├── datasets.py
├── general.py
├── google_app_engine
├── Dockerfile
├── additional_requirements.txt
└── app.yaml
├── google_utils.py
├── loss.py
├── metrics.py
├── plots.py
├── torch_utils.py
└── wandb_logging
├── __init__.py
├── log_dataset.py
└── wandb_utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | tensorrt/yolov7/.vs
2 | .vs
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## Official YOLOv7 训练自己的数据集(端到端TensorRT 模型部署)
2 |
3 | 目前适用的版本: `v0.1`
4 |
5 | > 我只能说太卷了!
6 |
7 | Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
8 |
9 |
10 |
11 |
12 | #### Performance
13 |
14 | MS COCO
15 |
16 | | Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time |
17 | | :-- | :-: | :-: | :-: | :-: | :-: | :-: |
18 | | [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
19 | | [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
20 | | | | | | | | |
21 | | [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
22 | | [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
23 | | [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
24 | | [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
25 |
26 | ### 1.训练环境配置
27 |
28 | ```shell
29 |
30 | # create the docker container, you can change the share memory size if you have more. # 注意这个share memory尽量设置的大一点,训练的话!
31 | sudo nvidia-docker run --name yolov7 -it -v /home/myuser/xujing/hackathon2022:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
32 |
33 | # apt install required packages
34 | apt update
35 | apt install -y zip htop screen libgl1-mesa-glx
36 |
37 | # pip install required packages
38 | pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
39 |
40 | # go to code folder
41 | cd /yolov7
42 | ```
43 |
44 |
45 | ### 2.训练集准备
46 |
47 | YOLOv7类似于YOLOR支持YOLOv5类型的标注数据构建,如果你熟悉YOLOv5的训练集的构造过程,该部分可以直接跳过,这里我们提供了构建数据集的代码,将数据集存放在`./dataset`下:
48 |
49 | ```shell
50 | ./datasets/score # 存放的文件,score是数据集的名称
51 | ├─images # 训练图像,每个文件夹下存放了具体的训练图像
52 | │ ├─train
53 | │ └─val
54 | └─labels # label,每个文件夹下存放了具体的txt标注文件,格式满足YOLOv5
55 | ├─train
56 | └─val
57 | ```
58 |
59 | 我们提供了VOC标注数据格式转换为YOLOv5标注的具体代码,存放在`./dataset`下,关于YOLOv5的标注细节可以参考:
60 | + https://github.com/DataXujing/YOLO-v5
61 | + https://github.com/DataXujing/YOLOv6#2%E6%95%B0%E6%8D%AE%E5%87%86%E5%A4%87
62 |
63 |
64 | ### 3.模型结构或配置文件修改
65 |
66 | + 1.修改模型的配置文件
67 |
68 | i.训练数据的配置:`./data/score.yaml`
69 |
70 | ```shell
71 | train: ./dataset/score/images/train # train images
72 | val: ./dataset/score/images/val # val images
73 | #test: ./dataset/score/images/test # test images (optional)
74 |
75 | # Classes
76 | nc: 4 # number of classes
77 | names: ['person','cat','dog','horse'] # class names
78 | ```
79 |
80 | ii.模型结构的配置:`./cfg/training/yolov7_score.yaml`
81 |
82 | ```shell
83 | # parameters
84 | nc: 4 # number of classes
85 | depth_multiple: 1.0 # model depth multiple
86 | width_multiple: 1.0 # layer channel multiple
87 |
88 | # anchors
89 | anchors:
90 | - [12,16, 19,36, 40,28] # P3/8
91 | - [36,75, 76,55, 72,146] # P4/16
92 | - [142,110, 192,243, 459,401] # P5/32
93 |
94 | ...
95 |
96 | ```
97 |
98 |
99 | ### 4.模型训练
100 |
101 | ```shell
102 | python3 train.py --workers 8 --device 0 --batch-size 32 --data data/score.yaml --img 640 640 --cfg cfg/training/yolov7_score.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
103 |
104 | # 一机多卡
105 | python3 -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/score.yaml --img 640 640 --cfg cfg/training/yolov7_score.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
106 |
107 | ```
108 |
109 |
110 | ### 5.模型评估
111 |
112 | ```shell
113 | python3 test.py --data data/score.yaml --img 640 --batch 32 --conf 0.001 --iou 0.45 --device 0 --weights ./runs/train/yolov7/weights/last.pt --name yolov7_640_val
114 |
115 | ```
116 |
117 | ### 6.模型推断
118 |
119 | ```shell
120 | python3 inference.py
121 |
122 | ```
123 |
124 | 推断效果如下:
125 |
126 |
127 |
128 | | | | |
129 | | :-----------------------------: | :------------------------------: | :------------------------------: |
130 | |

|

|

|
131 |
132 |
133 |
134 |
135 |
136 | ### 7.TensorRT 模型加速
137 |
138 | 我们实现了端到端的TensorRT模型加速,将NMS通过Plugin放入TensorRT Engine中。
139 |
140 | 1. YOLOv7转ONNX
141 |
142 | 注意:如果直接转ONNX会出现`scatterND`节点,可以做如下修改
143 |
144 |
145 |

146 |
147 |
148 | ```shell
149 | python3 ./models/export.py --weights ./runs/train/yolov7/weights/last.pt --img-size 640 640 --grid
150 |
151 | ```
152 |
153 |
154 |

155 |
156 |
157 | 1. YOLOv7的前处理
158 |
159 | YOLOv6, YOLOv7的前处理和YOLOv5是相同的。
160 |
161 | 其C++的实现如下:
162 |
163 | ```c++
164 | void preprocess(cv::Mat& img, float data[]) {
165 | int w, h, x, y;
166 | float r_w = INPUT_W / (img.cols*1.0);
167 | float r_h = INPUT_H / (img.rows*1.0);
168 | if (r_h > r_w) {
169 | w = INPUT_W;
170 | h = r_w * img.rows;
171 | x = 0;
172 | y = (INPUT_H - h) / 2;
173 | }
174 | else {
175 | w = r_h * img.cols;
176 | h = INPUT_H;
177 | x = (INPUT_W - w) / 2;
178 | y = 0;
179 | }
180 | cv::Mat re(h, w, CV_8UC3);
181 | cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
182 | //cudaResize(img, re);
183 | cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(114, 114, 114));
184 | re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
185 |
186 | int i = 0;
187 | for (int row = 0; row < INPUT_H; ++row) {
188 | uchar* uc_pixel = out.data + row * out.step;
189 | for (int col = 0; col < INPUT_W; ++col) {
190 | data[i] = (float)uc_pixel[2] / 255.0;
191 | data[i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
192 | data[i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
193 | uc_pixel += 3;
194 | ++i;
195 | }
196 | }
197 |
198 | }
199 |
200 | ```
201 |
202 |
203 | 3. YOLOv7的后处理
204 |
205 | 不难发现,YOLOv5, YOLOv6, YOLOv7的后处理基本是完全相同的,TensorRT后处理的代码基本可以复用
206 |
207 | 增加后处理和NMS节点:
208 |
209 | ```shell
210 |
211 | python tensorrt/yolov7_add_postprocess.py
212 | python tensorrt/yolov7_add_nms.py
213 |
214 | ```
215 |
216 | onnx中增加了如下节点:
217 |
218 |
219 |

220 |
221 |
222 |
223 | 4. TRT序列化Engine
224 |
225 | ```shell
226 | trtexec --onnx=last_1_nms.onnx --saveEngine=yolov7.engine --workspace=3000 --verbose
227 | ```
228 |
229 | 5. `VS2017`下编译运行`./tensorrt/yolov7`
230 |
231 |
232 |
233 |
234 |
235 | | | | |
236 | | :-----------------------------: | :------------------------------: | :------------------------------: |
237 | |

|

|

|
238 |
239 |
240 |
241 |
242 |
--------------------------------------------------------------------------------
/cfg/baseline/r50-csp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # CSP-ResNet backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Stem, [128]], # 0-P1/2
16 | [-1, 3, ResCSPC, [128]],
17 | [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18 | [-1, 4, ResCSPC, [256]],
19 | [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
20 | [-1, 6, ResCSPC, [512]],
21 | [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
22 | [-1, 3, ResCSPC, [1024]], # 7
23 | ]
24 |
25 | # CSP-Res-PAN head
26 | head:
27 | [[-1, 1, SPPCSPC, [512]], # 8
28 | [-1, 1, Conv, [256, 1, 1]],
29 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30 | [5, 1, Conv, [256, 1, 1]], # route backbone P4
31 | [[-1, -2], 1, Concat, [1]],
32 | [-1, 2, ResCSPB, [256]], # 13
33 | [-1, 1, Conv, [128, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [3, 1, Conv, [128, 1, 1]], # route backbone P3
36 | [[-1, -2], 1, Concat, [1]],
37 | [-1, 2, ResCSPB, [128]], # 18
38 | [-1, 1, Conv, [256, 3, 1]],
39 | [-2, 1, Conv, [256, 3, 2]],
40 | [[-1, 13], 1, Concat, [1]], # cat
41 | [-1, 2, ResCSPB, [256]], # 22
42 | [-1, 1, Conv, [512, 3, 1]],
43 | [-2, 1, Conv, [512, 3, 2]],
44 | [[-1, 8], 1, Concat, [1]], # cat
45 | [-1, 2, ResCSPB, [512]], # 26
46 | [-1, 1, Conv, [1024, 3, 1]],
47 |
48 | [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
49 | ]
50 |
--------------------------------------------------------------------------------
/cfg/baseline/x50-csp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # CSP-ResNeXt backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Stem, [128]], # 0-P1/2
16 | [-1, 3, ResXCSPC, [128]],
17 | [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18 | [-1, 4, ResXCSPC, [256]],
19 | [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
20 | [-1, 6, ResXCSPC, [512]],
21 | [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
22 | [-1, 3, ResXCSPC, [1024]], # 7
23 | ]
24 |
25 | # CSP-ResX-PAN head
26 | head:
27 | [[-1, 1, SPPCSPC, [512]], # 8
28 | [-1, 1, Conv, [256, 1, 1]],
29 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30 | [5, 1, Conv, [256, 1, 1]], # route backbone P4
31 | [[-1, -2], 1, Concat, [1]],
32 | [-1, 2, ResXCSPB, [256]], # 13
33 | [-1, 1, Conv, [128, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [3, 1, Conv, [128, 1, 1]], # route backbone P3
36 | [[-1, -2], 1, Concat, [1]],
37 | [-1, 2, ResXCSPB, [128]], # 18
38 | [-1, 1, Conv, [256, 3, 1]],
39 | [-2, 1, Conv, [256, 3, 2]],
40 | [[-1, 13], 1, Concat, [1]], # cat
41 | [-1, 2, ResXCSPB, [256]], # 22
42 | [-1, 1, Conv, [512, 3, 1]],
43 | [-2, 1, Conv, [512, 3, 2]],
44 | [[-1, 8], 1, Concat, [1]], # cat
45 | [-1, 2, ResXCSPB, [512]], # 26
46 | [-1, 1, Conv, [1024, 3, 1]],
47 |
48 | [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
49 | ]
50 |
--------------------------------------------------------------------------------
/cfg/baseline/yolor-csp-x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # CSP-Darknet backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, BottleneckCSPC, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, BottleneckCSPC, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, BottleneckCSPC, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, BottleneckCSPC, [1024]], # 10
26 | ]
27 |
28 | # CSP-Dark-PAN head
29 | head:
30 | [[-1, 1, SPPCSPC, [512]], # 11
31 | [-1, 1, Conv, [256, 1, 1]],
32 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [8, 1, Conv, [256, 1, 1]], # route backbone P4
34 | [[-1, -2], 1, Concat, [1]],
35 | [-1, 2, BottleneckCSPB, [256]], # 16
36 | [-1, 1, Conv, [128, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [6, 1, Conv, [128, 1, 1]], # route backbone P3
39 | [[-1, -2], 1, Concat, [1]],
40 | [-1, 2, BottleneckCSPB, [128]], # 21
41 | [-1, 1, Conv, [256, 3, 1]],
42 | [-2, 1, Conv, [256, 3, 2]],
43 | [[-1, 16], 1, Concat, [1]], # cat
44 | [-1, 2, BottleneckCSPB, [256]], # 25
45 | [-1, 1, Conv, [512, 3, 1]],
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 11], 1, Concat, [1]], # cat
48 | [-1, 2, BottleneckCSPB, [512]], # 29
49 | [-1, 1, Conv, [1024, 3, 1]],
50 |
51 | [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
52 | ]
53 |
--------------------------------------------------------------------------------
/cfg/baseline/yolor-csp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # CSP-Darknet backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, BottleneckCSPC, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, BottleneckCSPC, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, BottleneckCSPC, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, BottleneckCSPC, [1024]], # 10
26 | ]
27 |
28 | # CSP-Dark-PAN head
29 | head:
30 | [[-1, 1, SPPCSPC, [512]], # 11
31 | [-1, 1, Conv, [256, 1, 1]],
32 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [8, 1, Conv, [256, 1, 1]], # route backbone P4
34 | [[-1, -2], 1, Concat, [1]],
35 | [-1, 2, BottleneckCSPB, [256]], # 16
36 | [-1, 1, Conv, [128, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [6, 1, Conv, [128, 1, 1]], # route backbone P3
39 | [[-1, -2], 1, Concat, [1]],
40 | [-1, 2, BottleneckCSPB, [128]], # 21
41 | [-1, 1, Conv, [256, 3, 1]],
42 | [-2, 1, Conv, [256, 3, 2]],
43 | [[-1, 16], 1, Concat, [1]], # cat
44 | [-1, 2, BottleneckCSPB, [256]], # 25
45 | [-1, 1, Conv, [512, 3, 1]],
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 11], 1, Concat, [1]], # cat
48 | [-1, 2, BottleneckCSPB, [512]], # 29
49 | [-1, 1, Conv, [1024, 3, 1]],
50 |
51 | [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
52 | ]
53 |
--------------------------------------------------------------------------------
/cfg/baseline/yolor-d6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # expand model depth
4 | width_multiple: 1.25 # expand layer channels
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # CSP-Darknet backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18 | [-1, 1, DownC, [128]], # 2-P2/4
19 | [-1, 3, BottleneckCSPA, [128]],
20 | [-1, 1, DownC, [256]], # 4-P3/8
21 | [-1, 15, BottleneckCSPA, [256]],
22 | [-1, 1, DownC, [512]], # 6-P4/16
23 | [-1, 15, BottleneckCSPA, [512]],
24 | [-1, 1, DownC, [768]], # 8-P5/32
25 | [-1, 7, BottleneckCSPA, [768]],
26 | [-1, 1, DownC, [1024]], # 10-P6/64
27 | [-1, 7, BottleneckCSPA, [1024]], # 11
28 | ]
29 |
30 | # CSP-Dark-PAN head
31 | head:
32 | [[-1, 1, SPPCSPC, [512]], # 12
33 | [-1, 1, Conv, [384, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36 | [[-1, -2], 1, Concat, [1]],
37 | [-1, 3, BottleneckCSPB, [384]], # 17
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41 | [[-1, -2], 1, Concat, [1]],
42 | [-1, 3, BottleneckCSPB, [256]], # 22
43 | [-1, 1, Conv, [128, 1, 1]],
44 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45 | [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46 | [[-1, -2], 1, Concat, [1]],
47 | [-1, 3, BottleneckCSPB, [128]], # 27
48 | [-1, 1, Conv, [256, 3, 1]],
49 | [-2, 1, DownC, [256]],
50 | [[-1, 22], 1, Concat, [1]], # cat
51 | [-1, 3, BottleneckCSPB, [256]], # 31
52 | [-1, 1, Conv, [512, 3, 1]],
53 | [-2, 1, DownC, [384]],
54 | [[-1, 17], 1, Concat, [1]], # cat
55 | [-1, 3, BottleneckCSPB, [384]], # 35
56 | [-1, 1, Conv, [768, 3, 1]],
57 | [-2, 1, DownC, [512]],
58 | [[-1, 12], 1, Concat, [1]], # cat
59 | [-1, 3, BottleneckCSPB, [512]], # 39
60 | [-1, 1, Conv, [1024, 3, 1]],
61 |
62 | [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63 | ]
--------------------------------------------------------------------------------
/cfg/baseline/yolor-e6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # expand model depth
4 | width_multiple: 1.25 # expand layer channels
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # CSP-Darknet backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18 | [-1, 1, DownC, [128]], # 2-P2/4
19 | [-1, 3, BottleneckCSPA, [128]],
20 | [-1, 1, DownC, [256]], # 4-P3/8
21 | [-1, 7, BottleneckCSPA, [256]],
22 | [-1, 1, DownC, [512]], # 6-P4/16
23 | [-1, 7, BottleneckCSPA, [512]],
24 | [-1, 1, DownC, [768]], # 8-P5/32
25 | [-1, 3, BottleneckCSPA, [768]],
26 | [-1, 1, DownC, [1024]], # 10-P6/64
27 | [-1, 3, BottleneckCSPA, [1024]], # 11
28 | ]
29 |
30 | # CSP-Dark-PAN head
31 | head:
32 | [[-1, 1, SPPCSPC, [512]], # 12
33 | [-1, 1, Conv, [384, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36 | [[-1, -2], 1, Concat, [1]],
37 | [-1, 3, BottleneckCSPB, [384]], # 17
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41 | [[-1, -2], 1, Concat, [1]],
42 | [-1, 3, BottleneckCSPB, [256]], # 22
43 | [-1, 1, Conv, [128, 1, 1]],
44 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45 | [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46 | [[-1, -2], 1, Concat, [1]],
47 | [-1, 3, BottleneckCSPB, [128]], # 27
48 | [-1, 1, Conv, [256, 3, 1]],
49 | [-2, 1, DownC, [256]],
50 | [[-1, 22], 1, Concat, [1]], # cat
51 | [-1, 3, BottleneckCSPB, [256]], # 31
52 | [-1, 1, Conv, [512, 3, 1]],
53 | [-2, 1, DownC, [384]],
54 | [[-1, 17], 1, Concat, [1]], # cat
55 | [-1, 3, BottleneckCSPB, [384]], # 35
56 | [-1, 1, Conv, [768, 3, 1]],
57 | [-2, 1, DownC, [512]],
58 | [[-1, 12], 1, Concat, [1]], # cat
59 | [-1, 3, BottleneckCSPB, [512]], # 39
60 | [-1, 1, Conv, [1024, 3, 1]],
61 |
62 | [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63 | ]
--------------------------------------------------------------------------------
/cfg/baseline/yolor-p6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # expand model depth
4 | width_multiple: 1.0 # expand layer channels
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # CSP-Darknet backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
19 | [-1, 3, BottleneckCSPA, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
21 | [-1, 7, BottleneckCSPA, [256]],
22 | [-1, 1, Conv, [384, 3, 2]], # 6-P4/16
23 | [-1, 7, BottleneckCSPA, [384]],
24 | [-1, 1, Conv, [512, 3, 2]], # 8-P5/32
25 | [-1, 3, BottleneckCSPA, [512]],
26 | [-1, 1, Conv, [640, 3, 2]], # 10-P6/64
27 | [-1, 3, BottleneckCSPA, [640]], # 11
28 | ]
29 |
30 | # CSP-Dark-PAN head
31 | head:
32 | [[-1, 1, SPPCSPC, [320]], # 12
33 | [-1, 1, Conv, [256, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [-6, 1, Conv, [256, 1, 1]], # route backbone P5
36 | [[-1, -2], 1, Concat, [1]],
37 | [-1, 3, BottleneckCSPB, [256]], # 17
38 | [-1, 1, Conv, [192, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [-13, 1, Conv, [192, 1, 1]], # route backbone P4
41 | [[-1, -2], 1, Concat, [1]],
42 | [-1, 3, BottleneckCSPB, [192]], # 22
43 | [-1, 1, Conv, [128, 1, 1]],
44 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45 | [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46 | [[-1, -2], 1, Concat, [1]],
47 | [-1, 3, BottleneckCSPB, [128]], # 27
48 | [-1, 1, Conv, [256, 3, 1]],
49 | [-2, 1, Conv, [192, 3, 2]],
50 | [[-1, 22], 1, Concat, [1]], # cat
51 | [-1, 3, BottleneckCSPB, [192]], # 31
52 | [-1, 1, Conv, [384, 3, 1]],
53 | [-2, 1, Conv, [256, 3, 2]],
54 | [[-1, 17], 1, Concat, [1]], # cat
55 | [-1, 3, BottleneckCSPB, [256]], # 35
56 | [-1, 1, Conv, [512, 3, 1]],
57 | [-2, 1, Conv, [320, 3, 2]],
58 | [[-1, 12], 1, Concat, [1]], # cat
59 | [-1, 3, BottleneckCSPB, [320]], # 39
60 | [-1, 1, Conv, [640, 3, 1]],
61 |
62 | [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63 | ]
--------------------------------------------------------------------------------
/cfg/baseline/yolor-w6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # expand model depth
4 | width_multiple: 1.0 # expand layer channels
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # CSP-Darknet backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
19 | [-1, 3, BottleneckCSPA, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
21 | [-1, 7, BottleneckCSPA, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
23 | [-1, 7, BottleneckCSPA, [512]],
24 | [-1, 1, Conv, [768, 3, 2]], # 8-P5/32
25 | [-1, 3, BottleneckCSPA, [768]],
26 | [-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
27 | [-1, 3, BottleneckCSPA, [1024]], # 11
28 | ]
29 |
30 | # CSP-Dark-PAN head
31 | head:
32 | [[-1, 1, SPPCSPC, [512]], # 12
33 | [-1, 1, Conv, [384, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36 | [[-1, -2], 1, Concat, [1]],
37 | [-1, 3, BottleneckCSPB, [384]], # 17
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41 | [[-1, -2], 1, Concat, [1]],
42 | [-1, 3, BottleneckCSPB, [256]], # 22
43 | [-1, 1, Conv, [128, 1, 1]],
44 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45 | [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46 | [[-1, -2], 1, Concat, [1]],
47 | [-1, 3, BottleneckCSPB, [128]], # 27
48 | [-1, 1, Conv, [256, 3, 1]],
49 | [-2, 1, Conv, [256, 3, 2]],
50 | [[-1, 22], 1, Concat, [1]], # cat
51 | [-1, 3, BottleneckCSPB, [256]], # 31
52 | [-1, 1, Conv, [512, 3, 1]],
53 | [-2, 1, Conv, [384, 3, 2]],
54 | [[-1, 17], 1, Concat, [1]], # cat
55 | [-1, 3, BottleneckCSPB, [384]], # 35
56 | [-1, 1, Conv, [768, 3, 1]],
57 | [-2, 1, Conv, [512, 3, 2]],
58 | [[-1, 12], 1, Concat, [1]], # cat
59 | [-1, 3, BottleneckCSPB, [512]], # 39
60 | [-1, 1, Conv, [1024, 3, 1]],
61 |
62 | [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63 | ]
--------------------------------------------------------------------------------
/cfg/baseline/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3-SPP head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, SPP, [512, [5, 9, 13]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/cfg/baseline/yolov3.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3 head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, Conv, [512, [1, 1]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/cfg/baseline/yolov4-csp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # CSP-Darknet backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, BottleneckCSPC, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, BottleneckCSPC, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, BottleneckCSPC, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, BottleneckCSPC, [1024]], # 10
26 | ]
27 |
28 | # CSP-Dark-PAN head
29 | head:
30 | [[-1, 1, SPPCSPC, [512]], # 11
31 | [-1, 1, Conv, [256, 1, 1]],
32 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [8, 1, Conv, [256, 1, 1]], # route backbone P4
34 | [[-1, -2], 1, Concat, [1]],
35 | [-1, 2, BottleneckCSPB, [256]], # 16
36 | [-1, 1, Conv, [128, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [6, 1, Conv, [128, 1, 1]], # route backbone P3
39 | [[-1, -2], 1, Concat, [1]],
40 | [-1, 2, BottleneckCSPB, [128]], # 21
41 | [-1, 1, Conv, [256, 3, 1]],
42 | [-2, 1, Conv, [256, 3, 2]],
43 | [[-1, 16], 1, Concat, [1]], # cat
44 | [-1, 2, BottleneckCSPB, [256]], # 25
45 | [-1, 1, Conv, [512, 3, 1]],
46 | [-2, 1, Conv, [512, 3, 2]],
47 | [[-1, 11], 1, Concat, [1]], # cat
48 | [-1, 2, BottleneckCSPB, [512]], # 29
49 | [-1, 1, Conv, [1024, 3, 1]],
50 |
51 | [[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
52 | ]
53 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7-d6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7-d6 backbone
14 | backbone:
15 | # [from, number, module, args],
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, DownC, [192]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [-1, 1, Conv, [64, 3, 1]],
29 | [-1, 1, Conv, [64, 3, 1]],
30 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
31 | [-1, 1, Conv, [192, 1, 1]], # 14
32 |
33 | [-1, 1, DownC, [384]], # 15-P3/8
34 | [-1, 1, Conv, [128, 1, 1]],
35 | [-2, 1, Conv, [128, 1, 1]],
36 | [-1, 1, Conv, [128, 3, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [-1, 1, Conv, [128, 3, 1]],
42 | [-1, 1, Conv, [128, 3, 1]],
43 | [-1, 1, Conv, [128, 3, 1]],
44 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
45 | [-1, 1, Conv, [384, 1, 1]], # 27
46 |
47 | [-1, 1, DownC, [768]], # 28-P4/16
48 | [-1, 1, Conv, [256, 1, 1]],
49 | [-2, 1, Conv, [256, 1, 1]],
50 | [-1, 1, Conv, [256, 3, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [-1, 1, Conv, [256, 3, 1]],
56 | [-1, 1, Conv, [256, 3, 1]],
57 | [-1, 1, Conv, [256, 3, 1]],
58 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
59 | [-1, 1, Conv, [768, 1, 1]], # 40
60 |
61 | [-1, 1, DownC, [1152]], # 41-P5/32
62 | [-1, 1, Conv, [384, 1, 1]],
63 | [-2, 1, Conv, [384, 1, 1]],
64 | [-1, 1, Conv, [384, 3, 1]],
65 | [-1, 1, Conv, [384, 3, 1]],
66 | [-1, 1, Conv, [384, 3, 1]],
67 | [-1, 1, Conv, [384, 3, 1]],
68 | [-1, 1, Conv, [384, 3, 1]],
69 | [-1, 1, Conv, [384, 3, 1]],
70 | [-1, 1, Conv, [384, 3, 1]],
71 | [-1, 1, Conv, [384, 3, 1]],
72 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
73 | [-1, 1, Conv, [1152, 1, 1]], # 53
74 |
75 | [-1, 1, DownC, [1536]], # 54-P6/64
76 | [-1, 1, Conv, [512, 1, 1]],
77 | [-2, 1, Conv, [512, 1, 1]],
78 | [-1, 1, Conv, [512, 3, 1]],
79 | [-1, 1, Conv, [512, 3, 1]],
80 | [-1, 1, Conv, [512, 3, 1]],
81 | [-1, 1, Conv, [512, 3, 1]],
82 | [-1, 1, Conv, [512, 3, 1]],
83 | [-1, 1, Conv, [512, 3, 1]],
84 | [-1, 1, Conv, [512, 3, 1]],
85 | [-1, 1, Conv, [512, 3, 1]],
86 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
87 | [-1, 1, Conv, [1536, 1, 1]], # 66
88 | ]
89 |
90 | # yolov7-d6 head
91 | head:
92 | [[-1, 1, SPPCSPC, [768]], # 67
93 |
94 | [-1, 1, Conv, [576, 1, 1]],
95 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
96 | [53, 1, Conv, [576, 1, 1]], # route backbone P5
97 | [[-1, -2], 1, Concat, [1]],
98 |
99 | [-1, 1, Conv, [384, 1, 1]],
100 | [-2, 1, Conv, [384, 1, 1]],
101 | [-1, 1, Conv, [192, 3, 1]],
102 | [-1, 1, Conv, [192, 3, 1]],
103 | [-1, 1, Conv, [192, 3, 1]],
104 | [-1, 1, Conv, [192, 3, 1]],
105 | [-1, 1, Conv, [192, 3, 1]],
106 | [-1, 1, Conv, [192, 3, 1]],
107 | [-1, 1, Conv, [192, 3, 1]],
108 | [-1, 1, Conv, [192, 3, 1]],
109 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
110 | [-1, 1, Conv, [576, 1, 1]], # 83
111 |
112 | [-1, 1, Conv, [384, 1, 1]],
113 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
114 | [40, 1, Conv, [384, 1, 1]], # route backbone P4
115 | [[-1, -2], 1, Concat, [1]],
116 |
117 | [-1, 1, Conv, [256, 1, 1]],
118 | [-2, 1, Conv, [256, 1, 1]],
119 | [-1, 1, Conv, [128, 3, 1]],
120 | [-1, 1, Conv, [128, 3, 1]],
121 | [-1, 1, Conv, [128, 3, 1]],
122 | [-1, 1, Conv, [128, 3, 1]],
123 | [-1, 1, Conv, [128, 3, 1]],
124 | [-1, 1, Conv, [128, 3, 1]],
125 | [-1, 1, Conv, [128, 3, 1]],
126 | [-1, 1, Conv, [128, 3, 1]],
127 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
128 | [-1, 1, Conv, [384, 1, 1]], # 99
129 |
130 | [-1, 1, Conv, [192, 1, 1]],
131 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
132 | [27, 1, Conv, [192, 1, 1]], # route backbone P3
133 | [[-1, -2], 1, Concat, [1]],
134 |
135 | [-1, 1, Conv, [128, 1, 1]],
136 | [-2, 1, Conv, [128, 1, 1]],
137 | [-1, 1, Conv, [64, 3, 1]],
138 | [-1, 1, Conv, [64, 3, 1]],
139 | [-1, 1, Conv, [64, 3, 1]],
140 | [-1, 1, Conv, [64, 3, 1]],
141 | [-1, 1, Conv, [64, 3, 1]],
142 | [-1, 1, Conv, [64, 3, 1]],
143 | [-1, 1, Conv, [64, 3, 1]],
144 | [-1, 1, Conv, [64, 3, 1]],
145 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
146 | [-1, 1, Conv, [192, 1, 1]], # 115
147 |
148 | [-1, 1, DownC, [384]],
149 | [[-1, 99], 1, Concat, [1]],
150 |
151 | [-1, 1, Conv, [256, 1, 1]],
152 | [-2, 1, Conv, [256, 1, 1]],
153 | [-1, 1, Conv, [128, 3, 1]],
154 | [-1, 1, Conv, [128, 3, 1]],
155 | [-1, 1, Conv, [128, 3, 1]],
156 | [-1, 1, Conv, [128, 3, 1]],
157 | [-1, 1, Conv, [128, 3, 1]],
158 | [-1, 1, Conv, [128, 3, 1]],
159 | [-1, 1, Conv, [128, 3, 1]],
160 | [-1, 1, Conv, [128, 3, 1]],
161 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
162 | [-1, 1, Conv, [384, 1, 1]], # 129
163 |
164 | [-1, 1, DownC, [576]],
165 | [[-1, 83], 1, Concat, [1]],
166 |
167 | [-1, 1, Conv, [384, 1, 1]],
168 | [-2, 1, Conv, [384, 1, 1]],
169 | [-1, 1, Conv, [192, 3, 1]],
170 | [-1, 1, Conv, [192, 3, 1]],
171 | [-1, 1, Conv, [192, 3, 1]],
172 | [-1, 1, Conv, [192, 3, 1]],
173 | [-1, 1, Conv, [192, 3, 1]],
174 | [-1, 1, Conv, [192, 3, 1]],
175 | [-1, 1, Conv, [192, 3, 1]],
176 | [-1, 1, Conv, [192, 3, 1]],
177 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
178 | [-1, 1, Conv, [576, 1, 1]], # 143
179 |
180 | [-1, 1, DownC, [768]],
181 | [[-1, 67], 1, Concat, [1]],
182 |
183 | [-1, 1, Conv, [512, 1, 1]],
184 | [-2, 1, Conv, [512, 1, 1]],
185 | [-1, 1, Conv, [256, 3, 1]],
186 | [-1, 1, Conv, [256, 3, 1]],
187 | [-1, 1, Conv, [256, 3, 1]],
188 | [-1, 1, Conv, [256, 3, 1]],
189 | [-1, 1, Conv, [256, 3, 1]],
190 | [-1, 1, Conv, [256, 3, 1]],
191 | [-1, 1, Conv, [256, 3, 1]],
192 | [-1, 1, Conv, [256, 3, 1]],
193 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
194 | [-1, 1, Conv, [768, 1, 1]], # 157
195 |
196 | [115, 1, Conv, [384, 3, 1]],
197 | [129, 1, Conv, [768, 3, 1]],
198 | [143, 1, Conv, [1152, 3, 1]],
199 | [157, 1, Conv, [1536, 3, 1]],
200 |
201 | [[158,159,160,161], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
202 | ]
203 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7-e6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7-e6 backbone
14 | backbone:
15 | # [from, number, module, args],
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, DownC, [160]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29 | [-1, 1, Conv, [160, 1, 1]], # 12
30 |
31 | [-1, 1, DownC, [320]], # 13-P3/8
32 | [-1, 1, Conv, [128, 1, 1]],
33 | [-2, 1, Conv, [128, 1, 1]],
34 | [-1, 1, Conv, [128, 3, 1]],
35 | [-1, 1, Conv, [128, 3, 1]],
36 | [-1, 1, Conv, [128, 3, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
41 | [-1, 1, Conv, [320, 1, 1]], # 23
42 |
43 | [-1, 1, DownC, [640]], # 24-P4/16
44 | [-1, 1, Conv, [256, 1, 1]],
45 | [-2, 1, Conv, [256, 1, 1]],
46 | [-1, 1, Conv, [256, 3, 1]],
47 | [-1, 1, Conv, [256, 3, 1]],
48 | [-1, 1, Conv, [256, 3, 1]],
49 | [-1, 1, Conv, [256, 3, 1]],
50 | [-1, 1, Conv, [256, 3, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
53 | [-1, 1, Conv, [640, 1, 1]], # 34
54 |
55 | [-1, 1, DownC, [960]], # 35-P5/32
56 | [-1, 1, Conv, [384, 1, 1]],
57 | [-2, 1, Conv, [384, 1, 1]],
58 | [-1, 1, Conv, [384, 3, 1]],
59 | [-1, 1, Conv, [384, 3, 1]],
60 | [-1, 1, Conv, [384, 3, 1]],
61 | [-1, 1, Conv, [384, 3, 1]],
62 | [-1, 1, Conv, [384, 3, 1]],
63 | [-1, 1, Conv, [384, 3, 1]],
64 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
65 | [-1, 1, Conv, [960, 1, 1]], # 45
66 |
67 | [-1, 1, DownC, [1280]], # 46-P6/64
68 | [-1, 1, Conv, [512, 1, 1]],
69 | [-2, 1, Conv, [512, 1, 1]],
70 | [-1, 1, Conv, [512, 3, 1]],
71 | [-1, 1, Conv, [512, 3, 1]],
72 | [-1, 1, Conv, [512, 3, 1]],
73 | [-1, 1, Conv, [512, 3, 1]],
74 | [-1, 1, Conv, [512, 3, 1]],
75 | [-1, 1, Conv, [512, 3, 1]],
76 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
77 | [-1, 1, Conv, [1280, 1, 1]], # 56
78 | ]
79 |
80 | # yolov7-e6 head
81 | head:
82 | [[-1, 1, SPPCSPC, [640]], # 57
83 |
84 | [-1, 1, Conv, [480, 1, 1]],
85 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
86 | [45, 1, Conv, [480, 1, 1]], # route backbone P5
87 | [[-1, -2], 1, Concat, [1]],
88 |
89 | [-1, 1, Conv, [384, 1, 1]],
90 | [-2, 1, Conv, [384, 1, 1]],
91 | [-1, 1, Conv, [192, 3, 1]],
92 | [-1, 1, Conv, [192, 3, 1]],
93 | [-1, 1, Conv, [192, 3, 1]],
94 | [-1, 1, Conv, [192, 3, 1]],
95 | [-1, 1, Conv, [192, 3, 1]],
96 | [-1, 1, Conv, [192, 3, 1]],
97 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
98 | [-1, 1, Conv, [480, 1, 1]], # 71
99 |
100 | [-1, 1, Conv, [320, 1, 1]],
101 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102 | [34, 1, Conv, [320, 1, 1]], # route backbone P4
103 | [[-1, -2], 1, Concat, [1]],
104 |
105 | [-1, 1, Conv, [256, 1, 1]],
106 | [-2, 1, Conv, [256, 1, 1]],
107 | [-1, 1, Conv, [128, 3, 1]],
108 | [-1, 1, Conv, [128, 3, 1]],
109 | [-1, 1, Conv, [128, 3, 1]],
110 | [-1, 1, Conv, [128, 3, 1]],
111 | [-1, 1, Conv, [128, 3, 1]],
112 | [-1, 1, Conv, [128, 3, 1]],
113 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
114 | [-1, 1, Conv, [320, 1, 1]], # 85
115 |
116 | [-1, 1, Conv, [160, 1, 1]],
117 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
118 | [23, 1, Conv, [160, 1, 1]], # route backbone P3
119 | [[-1, -2], 1, Concat, [1]],
120 |
121 | [-1, 1, Conv, [128, 1, 1]],
122 | [-2, 1, Conv, [128, 1, 1]],
123 | [-1, 1, Conv, [64, 3, 1]],
124 | [-1, 1, Conv, [64, 3, 1]],
125 | [-1, 1, Conv, [64, 3, 1]],
126 | [-1, 1, Conv, [64, 3, 1]],
127 | [-1, 1, Conv, [64, 3, 1]],
128 | [-1, 1, Conv, [64, 3, 1]],
129 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
130 | [-1, 1, Conv, [160, 1, 1]], # 99
131 |
132 | [-1, 1, DownC, [320]],
133 | [[-1, 85], 1, Concat, [1]],
134 |
135 | [-1, 1, Conv, [256, 1, 1]],
136 | [-2, 1, Conv, [256, 1, 1]],
137 | [-1, 1, Conv, [128, 3, 1]],
138 | [-1, 1, Conv, [128, 3, 1]],
139 | [-1, 1, Conv, [128, 3, 1]],
140 | [-1, 1, Conv, [128, 3, 1]],
141 | [-1, 1, Conv, [128, 3, 1]],
142 | [-1, 1, Conv, [128, 3, 1]],
143 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
144 | [-1, 1, Conv, [320, 1, 1]], # 111
145 |
146 | [-1, 1, DownC, [480]],
147 | [[-1, 71], 1, Concat, [1]],
148 |
149 | [-1, 1, Conv, [384, 1, 1]],
150 | [-2, 1, Conv, [384, 1, 1]],
151 | [-1, 1, Conv, [192, 3, 1]],
152 | [-1, 1, Conv, [192, 3, 1]],
153 | [-1, 1, Conv, [192, 3, 1]],
154 | [-1, 1, Conv, [192, 3, 1]],
155 | [-1, 1, Conv, [192, 3, 1]],
156 | [-1, 1, Conv, [192, 3, 1]],
157 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
158 | [-1, 1, Conv, [480, 1, 1]], # 123
159 |
160 | [-1, 1, DownC, [640]],
161 | [[-1, 57], 1, Concat, [1]],
162 |
163 | [-1, 1, Conv, [512, 1, 1]],
164 | [-2, 1, Conv, [512, 1, 1]],
165 | [-1, 1, Conv, [256, 3, 1]],
166 | [-1, 1, Conv, [256, 3, 1]],
167 | [-1, 1, Conv, [256, 3, 1]],
168 | [-1, 1, Conv, [256, 3, 1]],
169 | [-1, 1, Conv, [256, 3, 1]],
170 | [-1, 1, Conv, [256, 3, 1]],
171 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
172 | [-1, 1, Conv, [640, 1, 1]], # 135
173 |
174 | [99, 1, Conv, [320, 3, 1]],
175 | [111, 1, Conv, [640, 3, 1]],
176 | [123, 1, Conv, [960, 3, 1]],
177 | [135, 1, Conv, [1280, 3, 1]],
178 |
179 | [[136,137,138,139], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
180 | ]
181 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7-e6e.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7-e6e backbone
14 | backbone:
15 | # [from, number, module, args],
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, DownC, [160]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29 | [-1, 1, Conv, [160, 1, 1]], # 12
30 | [-11, 1, Conv, [64, 1, 1]],
31 | [-12, 1, Conv, [64, 1, 1]],
32 | [-1, 1, Conv, [64, 3, 1]],
33 | [-1, 1, Conv, [64, 3, 1]],
34 | [-1, 1, Conv, [64, 3, 1]],
35 | [-1, 1, Conv, [64, 3, 1]],
36 | [-1, 1, Conv, [64, 3, 1]],
37 | [-1, 1, Conv, [64, 3, 1]],
38 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
39 | [-1, 1, Conv, [160, 1, 1]], # 22
40 | [[-1, -11], 1, Shortcut, [1]], # 23
41 |
42 | [-1, 1, DownC, [320]], # 24-P3/8
43 | [-1, 1, Conv, [128, 1, 1]],
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, Conv, [128, 3, 1]],
46 | [-1, 1, Conv, [128, 3, 1]],
47 | [-1, 1, Conv, [128, 3, 1]],
48 | [-1, 1, Conv, [128, 3, 1]],
49 | [-1, 1, Conv, [128, 3, 1]],
50 | [-1, 1, Conv, [128, 3, 1]],
51 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
52 | [-1, 1, Conv, [320, 1, 1]], # 34
53 | [-11, 1, Conv, [128, 1, 1]],
54 | [-12, 1, Conv, [128, 1, 1]],
55 | [-1, 1, Conv, [128, 3, 1]],
56 | [-1, 1, Conv, [128, 3, 1]],
57 | [-1, 1, Conv, [128, 3, 1]],
58 | [-1, 1, Conv, [128, 3, 1]],
59 | [-1, 1, Conv, [128, 3, 1]],
60 | [-1, 1, Conv, [128, 3, 1]],
61 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62 | [-1, 1, Conv, [320, 1, 1]], # 44
63 | [[-1, -11], 1, Shortcut, [1]], # 45
64 |
65 | [-1, 1, DownC, [640]], # 46-P4/16
66 | [-1, 1, Conv, [256, 1, 1]],
67 | [-2, 1, Conv, [256, 1, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [-1, 1, Conv, [256, 3, 1]],
70 | [-1, 1, Conv, [256, 3, 1]],
71 | [-1, 1, Conv, [256, 3, 1]],
72 | [-1, 1, Conv, [256, 3, 1]],
73 | [-1, 1, Conv, [256, 3, 1]],
74 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
75 | [-1, 1, Conv, [640, 1, 1]], # 56
76 | [-11, 1, Conv, [256, 1, 1]],
77 | [-12, 1, Conv, [256, 1, 1]],
78 | [-1, 1, Conv, [256, 3, 1]],
79 | [-1, 1, Conv, [256, 3, 1]],
80 | [-1, 1, Conv, [256, 3, 1]],
81 | [-1, 1, Conv, [256, 3, 1]],
82 | [-1, 1, Conv, [256, 3, 1]],
83 | [-1, 1, Conv, [256, 3, 1]],
84 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
85 | [-1, 1, Conv, [640, 1, 1]], # 66
86 | [[-1, -11], 1, Shortcut, [1]], # 67
87 |
88 | [-1, 1, DownC, [960]], # 68-P5/32
89 | [-1, 1, Conv, [384, 1, 1]],
90 | [-2, 1, Conv, [384, 1, 1]],
91 | [-1, 1, Conv, [384, 3, 1]],
92 | [-1, 1, Conv, [384, 3, 1]],
93 | [-1, 1, Conv, [384, 3, 1]],
94 | [-1, 1, Conv, [384, 3, 1]],
95 | [-1, 1, Conv, [384, 3, 1]],
96 | [-1, 1, Conv, [384, 3, 1]],
97 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
98 | [-1, 1, Conv, [960, 1, 1]], # 78
99 | [-11, 1, Conv, [384, 1, 1]],
100 | [-12, 1, Conv, [384, 1, 1]],
101 | [-1, 1, Conv, [384, 3, 1]],
102 | [-1, 1, Conv, [384, 3, 1]],
103 | [-1, 1, Conv, [384, 3, 1]],
104 | [-1, 1, Conv, [384, 3, 1]],
105 | [-1, 1, Conv, [384, 3, 1]],
106 | [-1, 1, Conv, [384, 3, 1]],
107 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
108 | [-1, 1, Conv, [960, 1, 1]], # 88
109 | [[-1, -11], 1, Shortcut, [1]], # 89
110 |
111 | [-1, 1, DownC, [1280]], # 90-P6/64
112 | [-1, 1, Conv, [512, 1, 1]],
113 | [-2, 1, Conv, [512, 1, 1]],
114 | [-1, 1, Conv, [512, 3, 1]],
115 | [-1, 1, Conv, [512, 3, 1]],
116 | [-1, 1, Conv, [512, 3, 1]],
117 | [-1, 1, Conv, [512, 3, 1]],
118 | [-1, 1, Conv, [512, 3, 1]],
119 | [-1, 1, Conv, [512, 3, 1]],
120 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
121 | [-1, 1, Conv, [1280, 1, 1]], # 100
122 | [-11, 1, Conv, [512, 1, 1]],
123 | [-12, 1, Conv, [512, 1, 1]],
124 | [-1, 1, Conv, [512, 3, 1]],
125 | [-1, 1, Conv, [512, 3, 1]],
126 | [-1, 1, Conv, [512, 3, 1]],
127 | [-1, 1, Conv, [512, 3, 1]],
128 | [-1, 1, Conv, [512, 3, 1]],
129 | [-1, 1, Conv, [512, 3, 1]],
130 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
131 | [-1, 1, Conv, [1280, 1, 1]], # 110
132 | [[-1, -11], 1, Shortcut, [1]], # 111
133 | ]
134 |
135 | # yolov7-e6e head
136 | head:
137 | [[-1, 1, SPPCSPC, [640]], # 112
138 |
139 | [-1, 1, Conv, [480, 1, 1]],
140 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
141 | [89, 1, Conv, [480, 1, 1]], # route backbone P5
142 | [[-1, -2], 1, Concat, [1]],
143 |
144 | [-1, 1, Conv, [384, 1, 1]],
145 | [-2, 1, Conv, [384, 1, 1]],
146 | [-1, 1, Conv, [192, 3, 1]],
147 | [-1, 1, Conv, [192, 3, 1]],
148 | [-1, 1, Conv, [192, 3, 1]],
149 | [-1, 1, Conv, [192, 3, 1]],
150 | [-1, 1, Conv, [192, 3, 1]],
151 | [-1, 1, Conv, [192, 3, 1]],
152 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
153 | [-1, 1, Conv, [480, 1, 1]], # 126
154 | [-11, 1, Conv, [384, 1, 1]],
155 | [-12, 1, Conv, [384, 1, 1]],
156 | [-1, 1, Conv, [192, 3, 1]],
157 | [-1, 1, Conv, [192, 3, 1]],
158 | [-1, 1, Conv, [192, 3, 1]],
159 | [-1, 1, Conv, [192, 3, 1]],
160 | [-1, 1, Conv, [192, 3, 1]],
161 | [-1, 1, Conv, [192, 3, 1]],
162 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
163 | [-1, 1, Conv, [480, 1, 1]], # 136
164 | [[-1, -11], 1, Shortcut, [1]], # 137
165 |
166 | [-1, 1, Conv, [320, 1, 1]],
167 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
168 | [67, 1, Conv, [320, 1, 1]], # route backbone P4
169 | [[-1, -2], 1, Concat, [1]],
170 |
171 | [-1, 1, Conv, [256, 1, 1]],
172 | [-2, 1, Conv, [256, 1, 1]],
173 | [-1, 1, Conv, [128, 3, 1]],
174 | [-1, 1, Conv, [128, 3, 1]],
175 | [-1, 1, Conv, [128, 3, 1]],
176 | [-1, 1, Conv, [128, 3, 1]],
177 | [-1, 1, Conv, [128, 3, 1]],
178 | [-1, 1, Conv, [128, 3, 1]],
179 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
180 | [-1, 1, Conv, [320, 1, 1]], # 151
181 | [-11, 1, Conv, [256, 1, 1]],
182 | [-12, 1, Conv, [256, 1, 1]],
183 | [-1, 1, Conv, [128, 3, 1]],
184 | [-1, 1, Conv, [128, 3, 1]],
185 | [-1, 1, Conv, [128, 3, 1]],
186 | [-1, 1, Conv, [128, 3, 1]],
187 | [-1, 1, Conv, [128, 3, 1]],
188 | [-1, 1, Conv, [128, 3, 1]],
189 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
190 | [-1, 1, Conv, [320, 1, 1]], # 161
191 | [[-1, -11], 1, Shortcut, [1]], # 162
192 |
193 | [-1, 1, Conv, [160, 1, 1]],
194 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
195 | [45, 1, Conv, [160, 1, 1]], # route backbone P3
196 | [[-1, -2], 1, Concat, [1]],
197 |
198 | [-1, 1, Conv, [128, 1, 1]],
199 | [-2, 1, Conv, [128, 1, 1]],
200 | [-1, 1, Conv, [64, 3, 1]],
201 | [-1, 1, Conv, [64, 3, 1]],
202 | [-1, 1, Conv, [64, 3, 1]],
203 | [-1, 1, Conv, [64, 3, 1]],
204 | [-1, 1, Conv, [64, 3, 1]],
205 | [-1, 1, Conv, [64, 3, 1]],
206 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
207 | [-1, 1, Conv, [160, 1, 1]], # 176
208 | [-11, 1, Conv, [128, 1, 1]],
209 | [-12, 1, Conv, [128, 1, 1]],
210 | [-1, 1, Conv, [64, 3, 1]],
211 | [-1, 1, Conv, [64, 3, 1]],
212 | [-1, 1, Conv, [64, 3, 1]],
213 | [-1, 1, Conv, [64, 3, 1]],
214 | [-1, 1, Conv, [64, 3, 1]],
215 | [-1, 1, Conv, [64, 3, 1]],
216 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
217 | [-1, 1, Conv, [160, 1, 1]], # 186
218 | [[-1, -11], 1, Shortcut, [1]], # 187
219 |
220 | [-1, 1, DownC, [320]],
221 | [[-1, 162], 1, Concat, [1]],
222 |
223 | [-1, 1, Conv, [256, 1, 1]],
224 | [-2, 1, Conv, [256, 1, 1]],
225 | [-1, 1, Conv, [128, 3, 1]],
226 | [-1, 1, Conv, [128, 3, 1]],
227 | [-1, 1, Conv, [128, 3, 1]],
228 | [-1, 1, Conv, [128, 3, 1]],
229 | [-1, 1, Conv, [128, 3, 1]],
230 | [-1, 1, Conv, [128, 3, 1]],
231 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
232 | [-1, 1, Conv, [320, 1, 1]], # 199
233 | [-11, 1, Conv, [256, 1, 1]],
234 | [-12, 1, Conv, [256, 1, 1]],
235 | [-1, 1, Conv, [128, 3, 1]],
236 | [-1, 1, Conv, [128, 3, 1]],
237 | [-1, 1, Conv, [128, 3, 1]],
238 | [-1, 1, Conv, [128, 3, 1]],
239 | [-1, 1, Conv, [128, 3, 1]],
240 | [-1, 1, Conv, [128, 3, 1]],
241 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
242 | [-1, 1, Conv, [320, 1, 1]], # 209
243 | [[-1, -11], 1, Shortcut, [1]], # 210
244 |
245 | [-1, 1, DownC, [480]],
246 | [[-1, 137], 1, Concat, [1]],
247 |
248 | [-1, 1, Conv, [384, 1, 1]],
249 | [-2, 1, Conv, [384, 1, 1]],
250 | [-1, 1, Conv, [192, 3, 1]],
251 | [-1, 1, Conv, [192, 3, 1]],
252 | [-1, 1, Conv, [192, 3, 1]],
253 | [-1, 1, Conv, [192, 3, 1]],
254 | [-1, 1, Conv, [192, 3, 1]],
255 | [-1, 1, Conv, [192, 3, 1]],
256 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
257 | [-1, 1, Conv, [480, 1, 1]], # 222
258 | [-11, 1, Conv, [384, 1, 1]],
259 | [-12, 1, Conv, [384, 1, 1]],
260 | [-1, 1, Conv, [192, 3, 1]],
261 | [-1, 1, Conv, [192, 3, 1]],
262 | [-1, 1, Conv, [192, 3, 1]],
263 | [-1, 1, Conv, [192, 3, 1]],
264 | [-1, 1, Conv, [192, 3, 1]],
265 | [-1, 1, Conv, [192, 3, 1]],
266 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
267 | [-1, 1, Conv, [480, 1, 1]], # 232
268 | [[-1, -11], 1, Shortcut, [1]], # 233
269 |
270 | [-1, 1, DownC, [640]],
271 | [[-1, 112], 1, Concat, [1]],
272 |
273 | [-1, 1, Conv, [512, 1, 1]],
274 | [-2, 1, Conv, [512, 1, 1]],
275 | [-1, 1, Conv, [256, 3, 1]],
276 | [-1, 1, Conv, [256, 3, 1]],
277 | [-1, 1, Conv, [256, 3, 1]],
278 | [-1, 1, Conv, [256, 3, 1]],
279 | [-1, 1, Conv, [256, 3, 1]],
280 | [-1, 1, Conv, [256, 3, 1]],
281 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
282 | [-1, 1, Conv, [640, 1, 1]], # 245
283 | [-11, 1, Conv, [512, 1, 1]],
284 | [-12, 1, Conv, [512, 1, 1]],
285 | [-1, 1, Conv, [256, 3, 1]],
286 | [-1, 1, Conv, [256, 3, 1]],
287 | [-1, 1, Conv, [256, 3, 1]],
288 | [-1, 1, Conv, [256, 3, 1]],
289 | [-1, 1, Conv, [256, 3, 1]],
290 | [-1, 1, Conv, [256, 3, 1]],
291 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
292 | [-1, 1, Conv, [640, 1, 1]], # 255
293 | [[-1, -11], 1, Shortcut, [1]], # 256
294 |
295 | [187, 1, Conv, [320, 3, 1]],
296 | [210, 1, Conv, [640, 3, 1]],
297 | [233, 1, Conv, [960, 3, 1]],
298 | [256, 1, Conv, [1280, 3, 1]],
299 |
300 | [[257,258,259,260], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
301 | ]
302 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7-tiny-silu.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv7-tiny backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 2]], # 0-P1/2
16 |
17 | [-1, 1, Conv, [64, 3, 2]], # 1-P2/4
18 |
19 | [-1, 1, Conv, [32, 1, 1]],
20 | [-2, 1, Conv, [32, 1, 1]],
21 | [-1, 1, Conv, [32, 3, 1]],
22 | [-1, 1, Conv, [32, 3, 1]],
23 | [[-1, -2, -3, -4], 1, Concat, [1]],
24 | [-1, 1, Conv, [64, 1, 1]], # 7
25 |
26 | [-1, 1, MP, []], # 8-P3/8
27 | [-1, 1, Conv, [64, 1, 1]],
28 | [-2, 1, Conv, [64, 1, 1]],
29 | [-1, 1, Conv, [64, 3, 1]],
30 | [-1, 1, Conv, [64, 3, 1]],
31 | [[-1, -2, -3, -4], 1, Concat, [1]],
32 | [-1, 1, Conv, [128, 1, 1]], # 14
33 |
34 | [-1, 1, MP, []], # 15-P4/16
35 | [-1, 1, Conv, [128, 1, 1]],
36 | [-2, 1, Conv, [128, 1, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [[-1, -2, -3, -4], 1, Concat, [1]],
40 | [-1, 1, Conv, [256, 1, 1]], # 21
41 |
42 | [-1, 1, MP, []], # 22-P5/32
43 | [-1, 1, Conv, [256, 1, 1]],
44 | [-2, 1, Conv, [256, 1, 1]],
45 | [-1, 1, Conv, [256, 3, 1]],
46 | [-1, 1, Conv, [256, 3, 1]],
47 | [[-1, -2, -3, -4], 1, Concat, [1]],
48 | [-1, 1, Conv, [512, 1, 1]], # 28
49 | ]
50 |
51 | # YOLOv7-tiny head
52 | head:
53 | [[-1, 1, Conv, [256, 1, 1]],
54 | [-2, 1, Conv, [256, 1, 1]],
55 | [-1, 1, SP, [5]],
56 | [-2, 1, SP, [9]],
57 | [-3, 1, SP, [13]],
58 | [[-1, -2, -3, -4], 1, Concat, [1]],
59 | [-1, 1, Conv, [256, 1, 1]],
60 | [[-1, -7], 1, Concat, [1]],
61 | [-1, 1, Conv, [256, 1, 1]], # 37
62 |
63 | [-1, 1, Conv, [128, 1, 1]],
64 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65 | [21, 1, Conv, [128, 1, 1]], # route backbone P4
66 | [[-1, -2], 1, Concat, [1]],
67 |
68 | [-1, 1, Conv, [64, 1, 1]],
69 | [-2, 1, Conv, [64, 1, 1]],
70 | [-1, 1, Conv, [64, 3, 1]],
71 | [-1, 1, Conv, [64, 3, 1]],
72 | [[-1, -2, -3, -4], 1, Concat, [1]],
73 | [-1, 1, Conv, [128, 1, 1]], # 47
74 |
75 | [-1, 1, Conv, [64, 1, 1]],
76 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77 | [14, 1, Conv, [64, 1, 1]], # route backbone P3
78 | [[-1, -2], 1, Concat, [1]],
79 |
80 | [-1, 1, Conv, [32, 1, 1]],
81 | [-2, 1, Conv, [32, 1, 1]],
82 | [-1, 1, Conv, [32, 3, 1]],
83 | [-1, 1, Conv, [32, 3, 1]],
84 | [[-1, -2, -3, -4], 1, Concat, [1]],
85 | [-1, 1, Conv, [64, 1, 1]], # 57
86 |
87 | [-1, 1, Conv, [128, 3, 2]],
88 | [[-1, 47], 1, Concat, [1]],
89 |
90 | [-1, 1, Conv, [64, 1, 1]],
91 | [-2, 1, Conv, [64, 1, 1]],
92 | [-1, 1, Conv, [64, 3, 1]],
93 | [-1, 1, Conv, [64, 3, 1]],
94 | [[-1, -2, -3, -4], 1, Concat, [1]],
95 | [-1, 1, Conv, [128, 1, 1]], # 65
96 |
97 | [-1, 1, Conv, [256, 3, 2]],
98 | [[-1, 37], 1, Concat, [1]],
99 |
100 | [-1, 1, Conv, [128, 1, 1]],
101 | [-2, 1, Conv, [128, 1, 1]],
102 | [-1, 1, Conv, [128, 3, 1]],
103 | [-1, 1, Conv, [128, 3, 1]],
104 | [[-1, -2, -3, -4], 1, Concat, [1]],
105 | [-1, 1, Conv, [256, 1, 1]], # 73
106 |
107 | [57, 1, Conv, [128, 3, 1]],
108 | [65, 1, Conv, [256, 3, 1]],
109 | [73, 1, Conv, [512, 3, 1]],
110 |
111 | [[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
112 | ]
113 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7-tiny.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov7-tiny backbone
13 | backbone:
14 | # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
15 | [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
16 |
17 | [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
18 |
19 | [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
20 | [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
21 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
22 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
23 | [[-1, -2, -3, -4], 1, Concat, [1]],
24 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
25 |
26 | [-1, 1, MP, []], # 8-P3/8
27 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
28 | [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
29 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
30 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
31 | [[-1, -2, -3, -4], 1, Concat, [1]],
32 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
33 |
34 | [-1, 1, MP, []], # 15-P4/16
35 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
36 | [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
37 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
38 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
39 | [[-1, -2, -3, -4], 1, Concat, [1]],
40 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
41 |
42 | [-1, 1, MP, []], # 22-P5/32
43 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
44 | [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
45 | [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
46 | [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
47 | [[-1, -2, -3, -4], 1, Concat, [1]],
48 | [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
49 | ]
50 |
51 | # yolov7-tiny head
52 | head:
53 | [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
54 | [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
55 | [-1, 1, SP, [5]],
56 | [-2, 1, SP, [9]],
57 | [-3, 1, SP, [13]],
58 | [[-1, -2, -3, -4], 1, Concat, [1]],
59 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
60 | [[-1, -7], 1, Concat, [1]],
61 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
62 |
63 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
64 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65 | [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
66 | [[-1, -2], 1, Concat, [1]],
67 |
68 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
69 | [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
70 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
71 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
72 | [[-1, -2, -3, -4], 1, Concat, [1]],
73 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
74 |
75 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
76 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77 | [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
78 | [[-1, -2], 1, Concat, [1]],
79 |
80 | [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
81 | [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
82 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
83 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
84 | [[-1, -2, -3, -4], 1, Concat, [1]],
85 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
86 |
87 | [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
88 | [[-1, 47], 1, Concat, [1]],
89 |
90 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
91 | [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
92 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
93 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
94 | [[-1, -2, -3, -4], 1, Concat, [1]],
95 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
96 |
97 | [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
98 | [[-1, 37], 1, Concat, [1]],
99 |
100 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
101 | [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
102 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
103 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
104 | [[-1, -2, -3, -4], 1, Concat, [1]],
105 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
106 |
107 | [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
108 | [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
109 | [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
110 |
111 | [[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
112 | ]
113 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7-w6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7-w6 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [[-1, -3, -5, -6], 1, Concat, [1]],
27 | [-1, 1, Conv, [128, 1, 1]], # 10
28 |
29 | [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
30 | [-1, 1, Conv, [128, 1, 1]],
31 | [-2, 1, Conv, [128, 1, 1]],
32 | [-1, 1, Conv, [128, 3, 1]],
33 | [-1, 1, Conv, [128, 3, 1]],
34 | [-1, 1, Conv, [128, 3, 1]],
35 | [-1, 1, Conv, [128, 3, 1]],
36 | [[-1, -3, -5, -6], 1, Concat, [1]],
37 | [-1, 1, Conv, [256, 1, 1]], # 19
38 |
39 | [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-2, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [256, 3, 1]],
43 | [-1, 1, Conv, [256, 3, 1]],
44 | [-1, 1, Conv, [256, 3, 1]],
45 | [-1, 1, Conv, [256, 3, 1]],
46 | [[-1, -3, -5, -6], 1, Concat, [1]],
47 | [-1, 1, Conv, [512, 1, 1]], # 28
48 |
49 | [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
50 | [-1, 1, Conv, [384, 1, 1]],
51 | [-2, 1, Conv, [384, 1, 1]],
52 | [-1, 1, Conv, [384, 3, 1]],
53 | [-1, 1, Conv, [384, 3, 1]],
54 | [-1, 1, Conv, [384, 3, 1]],
55 | [-1, 1, Conv, [384, 3, 1]],
56 | [[-1, -3, -5, -6], 1, Concat, [1]],
57 | [-1, 1, Conv, [768, 1, 1]], # 37
58 |
59 | [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
60 | [-1, 1, Conv, [512, 1, 1]],
61 | [-2, 1, Conv, [512, 1, 1]],
62 | [-1, 1, Conv, [512, 3, 1]],
63 | [-1, 1, Conv, [512, 3, 1]],
64 | [-1, 1, Conv, [512, 3, 1]],
65 | [-1, 1, Conv, [512, 3, 1]],
66 | [[-1, -3, -5, -6], 1, Concat, [1]],
67 | [-1, 1, Conv, [1024, 1, 1]], # 46
68 | ]
69 |
70 | # yolov7-w6 head
71 | head:
72 | [[-1, 1, SPPCSPC, [512]], # 47
73 |
74 | [-1, 1, Conv, [384, 1, 1]],
75 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76 | [37, 1, Conv, [384, 1, 1]], # route backbone P5
77 | [[-1, -2], 1, Concat, [1]],
78 |
79 | [-1, 1, Conv, [384, 1, 1]],
80 | [-2, 1, Conv, [384, 1, 1]],
81 | [-1, 1, Conv, [192, 3, 1]],
82 | [-1, 1, Conv, [192, 3, 1]],
83 | [-1, 1, Conv, [192, 3, 1]],
84 | [-1, 1, Conv, [192, 3, 1]],
85 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86 | [-1, 1, Conv, [384, 1, 1]], # 59
87 |
88 | [-1, 1, Conv, [256, 1, 1]],
89 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90 | [28, 1, Conv, [256, 1, 1]], # route backbone P4
91 | [[-1, -2], 1, Concat, [1]],
92 |
93 | [-1, 1, Conv, [256, 1, 1]],
94 | [-2, 1, Conv, [256, 1, 1]],
95 | [-1, 1, Conv, [128, 3, 1]],
96 | [-1, 1, Conv, [128, 3, 1]],
97 | [-1, 1, Conv, [128, 3, 1]],
98 | [-1, 1, Conv, [128, 3, 1]],
99 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100 | [-1, 1, Conv, [256, 1, 1]], # 71
101 |
102 | [-1, 1, Conv, [128, 1, 1]],
103 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
104 | [19, 1, Conv, [128, 1, 1]], # route backbone P3
105 | [[-1, -2], 1, Concat, [1]],
106 |
107 | [-1, 1, Conv, [128, 1, 1]],
108 | [-2, 1, Conv, [128, 1, 1]],
109 | [-1, 1, Conv, [64, 3, 1]],
110 | [-1, 1, Conv, [64, 3, 1]],
111 | [-1, 1, Conv, [64, 3, 1]],
112 | [-1, 1, Conv, [64, 3, 1]],
113 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114 | [-1, 1, Conv, [128, 1, 1]], # 83
115 |
116 | [-1, 1, Conv, [256, 3, 2]],
117 | [[-1, 71], 1, Concat, [1]], # cat
118 |
119 | [-1, 1, Conv, [256, 1, 1]],
120 | [-2, 1, Conv, [256, 1, 1]],
121 | [-1, 1, Conv, [128, 3, 1]],
122 | [-1, 1, Conv, [128, 3, 1]],
123 | [-1, 1, Conv, [128, 3, 1]],
124 | [-1, 1, Conv, [128, 3, 1]],
125 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
126 | [-1, 1, Conv, [256, 1, 1]], # 93
127 |
128 | [-1, 1, Conv, [384, 3, 2]],
129 | [[-1, 59], 1, Concat, [1]], # cat
130 |
131 | [-1, 1, Conv, [384, 1, 1]],
132 | [-2, 1, Conv, [384, 1, 1]],
133 | [-1, 1, Conv, [192, 3, 1]],
134 | [-1, 1, Conv, [192, 3, 1]],
135 | [-1, 1, Conv, [192, 3, 1]],
136 | [-1, 1, Conv, [192, 3, 1]],
137 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
138 | [-1, 1, Conv, [384, 1, 1]], # 103
139 |
140 | [-1, 1, Conv, [512, 3, 2]],
141 | [[-1, 47], 1, Concat, [1]], # cat
142 |
143 | [-1, 1, Conv, [512, 1, 1]],
144 | [-2, 1, Conv, [512, 1, 1]],
145 | [-1, 1, Conv, [256, 3, 1]],
146 | [-1, 1, Conv, [256, 3, 1]],
147 | [-1, 1, Conv, [256, 3, 1]],
148 | [-1, 1, Conv, [256, 3, 1]],
149 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
150 | [-1, 1, Conv, [512, 1, 1]], # 113
151 |
152 | [83, 1, Conv, [256, 3, 1]],
153 | [93, 1, Conv, [512, 3, 1]],
154 | [103, 1, Conv, [768, 3, 1]],
155 | [113, 1, Conv, [1024, 3, 1]],
156 |
157 | [[114,115,116,117], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
158 | ]
159 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [64, 3, 1]],
19 |
20 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [[-1, -3, -5, -6], 1, Concat, [1]],
28 | [-1, 1, Conv, [256, 1, 1]], # 11
29 |
30 | [-1, 1, MP, []],
31 | [-1, 1, Conv, [128, 1, 1]],
32 | [-3, 1, Conv, [128, 1, 1]],
33 | [-1, 1, Conv, [128, 3, 2]],
34 | [[-1, -3], 1, Concat, [1]], # 16-P3/8
35 | [-1, 1, Conv, [128, 1, 1]],
36 | [-2, 1, Conv, [128, 1, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [[-1, -3, -5, -6], 1, Concat, [1]],
42 | [-1, 1, Conv, [512, 1, 1]], # 24
43 |
44 | [-1, 1, MP, []],
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-3, 1, Conv, [256, 1, 1]],
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, -3], 1, Concat, [1]], # 29-P4/16
49 | [-1, 1, Conv, [256, 1, 1]],
50 | [-2, 1, Conv, [256, 1, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [[-1, -3, -5, -6], 1, Concat, [1]],
56 | [-1, 1, Conv, [1024, 1, 1]], # 37
57 |
58 | [-1, 1, MP, []],
59 | [-1, 1, Conv, [512, 1, 1]],
60 | [-3, 1, Conv, [512, 1, 1]],
61 | [-1, 1, Conv, [512, 3, 2]],
62 | [[-1, -3], 1, Concat, [1]], # 42-P5/32
63 | [-1, 1, Conv, [256, 1, 1]],
64 | [-2, 1, Conv, [256, 1, 1]],
65 | [-1, 1, Conv, [256, 3, 1]],
66 | [-1, 1, Conv, [256, 3, 1]],
67 | [-1, 1, Conv, [256, 3, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [[-1, -3, -5, -6], 1, Concat, [1]],
70 | [-1, 1, Conv, [1024, 1, 1]], # 50
71 | ]
72 |
73 | # yolov7 head
74 | head:
75 | [[-1, 1, SPPCSPC, [512]], # 51
76 |
77 | [-1, 1, Conv, [256, 1, 1]],
78 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79 | [37, 1, Conv, [256, 1, 1]], # route backbone P4
80 | [[-1, -2], 1, Concat, [1]],
81 |
82 | [-1, 1, Conv, [256, 1, 1]],
83 | [-2, 1, Conv, [256, 1, 1]],
84 | [-1, 1, Conv, [128, 3, 1]],
85 | [-1, 1, Conv, [128, 3, 1]],
86 | [-1, 1, Conv, [128, 3, 1]],
87 | [-1, 1, Conv, [128, 3, 1]],
88 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89 | [-1, 1, Conv, [256, 1, 1]], # 63
90 |
91 | [-1, 1, Conv, [128, 1, 1]],
92 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93 | [24, 1, Conv, [128, 1, 1]], # route backbone P3
94 | [[-1, -2], 1, Concat, [1]],
95 |
96 | [-1, 1, Conv, [128, 1, 1]],
97 | [-2, 1, Conv, [128, 1, 1]],
98 | [-1, 1, Conv, [64, 3, 1]],
99 | [-1, 1, Conv, [64, 3, 1]],
100 | [-1, 1, Conv, [64, 3, 1]],
101 | [-1, 1, Conv, [64, 3, 1]],
102 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103 | [-1, 1, Conv, [128, 1, 1]], # 75
104 |
105 | [-1, 1, MP, []],
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-3, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 2]],
109 | [[-1, -3, 63], 1, Concat, [1]],
110 |
111 | [-1, 1, Conv, [256, 1, 1]],
112 | [-2, 1, Conv, [256, 1, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [-1, 1, Conv, [128, 3, 1]],
115 | [-1, 1, Conv, [128, 3, 1]],
116 | [-1, 1, Conv, [128, 3, 1]],
117 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118 | [-1, 1, Conv, [256, 1, 1]], # 88
119 |
120 | [-1, 1, MP, []],
121 | [-1, 1, Conv, [256, 1, 1]],
122 | [-3, 1, Conv, [256, 1, 1]],
123 | [-1, 1, Conv, [256, 3, 2]],
124 | [[-1, -3, 51], 1, Concat, [1]],
125 |
126 | [-1, 1, Conv, [512, 1, 1]],
127 | [-2, 1, Conv, [512, 1, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [-1, 1, Conv, [256, 3, 1]],
132 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133 | [-1, 1, Conv, [512, 1, 1]], # 101
134 |
135 | [75, 1, RepConv, [256, 3, 1]],
136 | [88, 1, RepConv, [512, 3, 1]],
137 | [101, 1, RepConv, [1024, 3, 1]],
138 |
139 | [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
140 | ]
141 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7_score.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 4 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [64, 3, 1]],
19 |
20 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [[-1, -3, -5, -6], 1, Concat, [1]],
28 | [-1, 1, Conv, [256, 1, 1]], # 11
29 |
30 | [-1, 1, MP, []],
31 | [-1, 1, Conv, [128, 1, 1]],
32 | [-3, 1, Conv, [128, 1, 1]],
33 | [-1, 1, Conv, [128, 3, 2]],
34 | [[-1, -3], 1, Concat, [1]], # 16-P3/8
35 | [-1, 1, Conv, [128, 1, 1]],
36 | [-2, 1, Conv, [128, 1, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [[-1, -3, -5, -6], 1, Concat, [1]],
42 | [-1, 1, Conv, [512, 1, 1]], # 24
43 |
44 | [-1, 1, MP, []],
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-3, 1, Conv, [256, 1, 1]],
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, -3], 1, Concat, [1]], # 29-P4/16
49 | [-1, 1, Conv, [256, 1, 1]],
50 | [-2, 1, Conv, [256, 1, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [[-1, -3, -5, -6], 1, Concat, [1]],
56 | [-1, 1, Conv, [1024, 1, 1]], # 37
57 |
58 | [-1, 1, MP, []],
59 | [-1, 1, Conv, [512, 1, 1]],
60 | [-3, 1, Conv, [512, 1, 1]],
61 | [-1, 1, Conv, [512, 3, 2]],
62 | [[-1, -3], 1, Concat, [1]], # 42-P5/32
63 | [-1, 1, Conv, [256, 1, 1]],
64 | [-2, 1, Conv, [256, 1, 1]],
65 | [-1, 1, Conv, [256, 3, 1]],
66 | [-1, 1, Conv, [256, 3, 1]],
67 | [-1, 1, Conv, [256, 3, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [[-1, -3, -5, -6], 1, Concat, [1]],
70 | [-1, 1, Conv, [1024, 1, 1]], # 50
71 | ]
72 |
73 | # yolov7 head
74 | head:
75 | [[-1, 1, SPPCSPC, [512]], # 51
76 |
77 | [-1, 1, Conv, [256, 1, 1]],
78 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79 | [37, 1, Conv, [256, 1, 1]], # route backbone P4
80 | [[-1, -2], 1, Concat, [1]],
81 |
82 | [-1, 1, Conv, [256, 1, 1]],
83 | [-2, 1, Conv, [256, 1, 1]],
84 | [-1, 1, Conv, [128, 3, 1]],
85 | [-1, 1, Conv, [128, 3, 1]],
86 | [-1, 1, Conv, [128, 3, 1]],
87 | [-1, 1, Conv, [128, 3, 1]],
88 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89 | [-1, 1, Conv, [256, 1, 1]], # 63
90 |
91 | [-1, 1, Conv, [128, 1, 1]],
92 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93 | [24, 1, Conv, [128, 1, 1]], # route backbone P3
94 | [[-1, -2], 1, Concat, [1]],
95 |
96 | [-1, 1, Conv, [128, 1, 1]],
97 | [-2, 1, Conv, [128, 1, 1]],
98 | [-1, 1, Conv, [64, 3, 1]],
99 | [-1, 1, Conv, [64, 3, 1]],
100 | [-1, 1, Conv, [64, 3, 1]],
101 | [-1, 1, Conv, [64, 3, 1]],
102 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103 | [-1, 1, Conv, [128, 1, 1]], # 75
104 |
105 | [-1, 1, MP, []],
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-3, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 2]],
109 | [[-1, -3, 63], 1, Concat, [1]],
110 |
111 | [-1, 1, Conv, [256, 1, 1]],
112 | [-2, 1, Conv, [256, 1, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [-1, 1, Conv, [128, 3, 1]],
115 | [-1, 1, Conv, [128, 3, 1]],
116 | [-1, 1, Conv, [128, 3, 1]],
117 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118 | [-1, 1, Conv, [256, 1, 1]], # 88
119 |
120 | [-1, 1, MP, []],
121 | [-1, 1, Conv, [256, 1, 1]],
122 | [-3, 1, Conv, [256, 1, 1]],
123 | [-1, 1, Conv, [256, 3, 2]],
124 | [[-1, -3, 51], 1, Concat, [1]],
125 |
126 | [-1, 1, Conv, [512, 1, 1]],
127 | [-2, 1, Conv, [512, 1, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [-1, 1, Conv, [256, 3, 1]],
132 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133 | [-1, 1, Conv, [512, 1, 1]], # 101
134 |
135 | [75, 1, RepConv, [256, 3, 1]],
136 | [88, 1, RepConv, [512, 3, 1]],
137 | [101, 1, RepConv, [1024, 3, 1]],
138 |
139 | [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
140 | ]
141 |
--------------------------------------------------------------------------------
/cfg/deploy/yolov7x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7x backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [40, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [80, 3, 1]],
19 |
20 | [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [-1, 1, Conv, [64, 3, 1]],
29 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
30 | [-1, 1, Conv, [320, 1, 1]], # 13
31 |
32 | [-1, 1, MP, []],
33 | [-1, 1, Conv, [160, 1, 1]],
34 | [-3, 1, Conv, [160, 1, 1]],
35 | [-1, 1, Conv, [160, 3, 2]],
36 | [[-1, -3], 1, Concat, [1]], # 18-P3/8
37 | [-1, 1, Conv, [128, 1, 1]],
38 | [-2, 1, Conv, [128, 1, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [-1, 1, Conv, [128, 3, 1]],
42 | [-1, 1, Conv, [128, 3, 1]],
43 | [-1, 1, Conv, [128, 3, 1]],
44 | [-1, 1, Conv, [128, 3, 1]],
45 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
46 | [-1, 1, Conv, [640, 1, 1]], # 28
47 |
48 | [-1, 1, MP, []],
49 | [-1, 1, Conv, [320, 1, 1]],
50 | [-3, 1, Conv, [320, 1, 1]],
51 | [-1, 1, Conv, [320, 3, 2]],
52 | [[-1, -3], 1, Concat, [1]], # 33-P4/16
53 | [-1, 1, Conv, [256, 1, 1]],
54 | [-2, 1, Conv, [256, 1, 1]],
55 | [-1, 1, Conv, [256, 3, 1]],
56 | [-1, 1, Conv, [256, 3, 1]],
57 | [-1, 1, Conv, [256, 3, 1]],
58 | [-1, 1, Conv, [256, 3, 1]],
59 | [-1, 1, Conv, [256, 3, 1]],
60 | [-1, 1, Conv, [256, 3, 1]],
61 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62 | [-1, 1, Conv, [1280, 1, 1]], # 43
63 |
64 | [-1, 1, MP, []],
65 | [-1, 1, Conv, [640, 1, 1]],
66 | [-3, 1, Conv, [640, 1, 1]],
67 | [-1, 1, Conv, [640, 3, 2]],
68 | [[-1, -3], 1, Concat, [1]], # 48-P5/32
69 | [-1, 1, Conv, [256, 1, 1]],
70 | [-2, 1, Conv, [256, 1, 1]],
71 | [-1, 1, Conv, [256, 3, 1]],
72 | [-1, 1, Conv, [256, 3, 1]],
73 | [-1, 1, Conv, [256, 3, 1]],
74 | [-1, 1, Conv, [256, 3, 1]],
75 | [-1, 1, Conv, [256, 3, 1]],
76 | [-1, 1, Conv, [256, 3, 1]],
77 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
78 | [-1, 1, Conv, [1280, 1, 1]], # 58
79 | ]
80 |
81 | # yolov7x head
82 | head:
83 | [[-1, 1, SPPCSPC, [640]], # 59
84 |
85 | [-1, 1, Conv, [320, 1, 1]],
86 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
87 | [43, 1, Conv, [320, 1, 1]], # route backbone P4
88 | [[-1, -2], 1, Concat, [1]],
89 |
90 | [-1, 1, Conv, [256, 1, 1]],
91 | [-2, 1, Conv, [256, 1, 1]],
92 | [-1, 1, Conv, [256, 3, 1]],
93 | [-1, 1, Conv, [256, 3, 1]],
94 | [-1, 1, Conv, [256, 3, 1]],
95 | [-1, 1, Conv, [256, 3, 1]],
96 | [-1, 1, Conv, [256, 3, 1]],
97 | [-1, 1, Conv, [256, 3, 1]],
98 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
99 | [-1, 1, Conv, [320, 1, 1]], # 73
100 |
101 | [-1, 1, Conv, [160, 1, 1]],
102 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
103 | [28, 1, Conv, [160, 1, 1]], # route backbone P3
104 | [[-1, -2], 1, Concat, [1]],
105 |
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-2, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 1]],
109 | [-1, 1, Conv, [128, 3, 1]],
110 | [-1, 1, Conv, [128, 3, 1]],
111 | [-1, 1, Conv, [128, 3, 1]],
112 | [-1, 1, Conv, [128, 3, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
115 | [-1, 1, Conv, [160, 1, 1]], # 87
116 |
117 | [-1, 1, MP, []],
118 | [-1, 1, Conv, [160, 1, 1]],
119 | [-3, 1, Conv, [160, 1, 1]],
120 | [-1, 1, Conv, [160, 3, 2]],
121 | [[-1, -3, 73], 1, Concat, [1]],
122 |
123 | [-1, 1, Conv, [256, 1, 1]],
124 | [-2, 1, Conv, [256, 1, 1]],
125 | [-1, 1, Conv, [256, 3, 1]],
126 | [-1, 1, Conv, [256, 3, 1]],
127 | [-1, 1, Conv, [256, 3, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
132 | [-1, 1, Conv, [320, 1, 1]], # 102
133 |
134 | [-1, 1, MP, []],
135 | [-1, 1, Conv, [320, 1, 1]],
136 | [-3, 1, Conv, [320, 1, 1]],
137 | [-1, 1, Conv, [320, 3, 2]],
138 | [[-1, -3, 59], 1, Concat, [1]],
139 |
140 | [-1, 1, Conv, [512, 1, 1]],
141 | [-2, 1, Conv, [512, 1, 1]],
142 | [-1, 1, Conv, [512, 3, 1]],
143 | [-1, 1, Conv, [512, 3, 1]],
144 | [-1, 1, Conv, [512, 3, 1]],
145 | [-1, 1, Conv, [512, 3, 1]],
146 | [-1, 1, Conv, [512, 3, 1]],
147 | [-1, 1, Conv, [512, 3, 1]],
148 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
149 | [-1, 1, Conv, [640, 1, 1]], # 117
150 |
151 | [87, 1, Conv, [320, 3, 1]],
152 | [102, 1, Conv, [640, 3, 1]],
153 | [117, 1, Conv, [1280, 3, 1]],
154 |
155 | [[118,119,120], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
156 | ]
157 |
--------------------------------------------------------------------------------
/cfg/training/yolov7-tiny.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # yolov7-tiny backbone
13 | backbone:
14 | # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
15 | [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
16 |
17 | [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
18 |
19 | [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
20 | [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
21 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
22 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
23 | [[-1, -2, -3, -4], 1, Concat, [1]],
24 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
25 |
26 | [-1, 1, MP, []], # 8-P3/8
27 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
28 | [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
29 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
30 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
31 | [[-1, -2, -3, -4], 1, Concat, [1]],
32 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
33 |
34 | [-1, 1, MP, []], # 15-P4/16
35 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
36 | [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
37 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
38 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
39 | [[-1, -2, -3, -4], 1, Concat, [1]],
40 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
41 |
42 | [-1, 1, MP, []], # 22-P5/32
43 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
44 | [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
45 | [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
46 | [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
47 | [[-1, -2, -3, -4], 1, Concat, [1]],
48 | [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
49 | ]
50 |
51 | # yolov7-tiny head
52 | head:
53 | [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
54 | [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
55 | [-1, 1, SP, [5]],
56 | [-2, 1, SP, [9]],
57 | [-3, 1, SP, [13]],
58 | [[-1, -2, -3, -4], 1, Concat, [1]],
59 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
60 | [[-1, -7], 1, Concat, [1]],
61 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
62 |
63 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
64 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65 | [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
66 | [[-1, -2], 1, Concat, [1]],
67 |
68 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
69 | [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
70 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
71 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
72 | [[-1, -2, -3, -4], 1, Concat, [1]],
73 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
74 |
75 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
76 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77 | [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
78 | [[-1, -2], 1, Concat, [1]],
79 |
80 | [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
81 | [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
82 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
83 | [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
84 | [[-1, -2, -3, -4], 1, Concat, [1]],
85 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
86 |
87 | [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
88 | [[-1, 47], 1, Concat, [1]],
89 |
90 | [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
91 | [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
92 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
93 | [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
94 | [[-1, -2, -3, -4], 1, Concat, [1]],
95 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
96 |
97 | [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
98 | [[-1, 37], 1, Concat, [1]],
99 |
100 | [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
101 | [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
102 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
103 | [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
104 | [[-1, -2, -3, -4], 1, Concat, [1]],
105 | [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
106 |
107 | [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
108 | [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
109 | [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
110 |
111 | [[74,75,76], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
112 | ]
113 |
--------------------------------------------------------------------------------
/cfg/training/yolov7.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [64, 3, 1]],
19 |
20 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [[-1, -3, -5, -6], 1, Concat, [1]],
28 | [-1, 1, Conv, [256, 1, 1]], # 11
29 |
30 | [-1, 1, MP, []],
31 | [-1, 1, Conv, [128, 1, 1]],
32 | [-3, 1, Conv, [128, 1, 1]],
33 | [-1, 1, Conv, [128, 3, 2]],
34 | [[-1, -3], 1, Concat, [1]], # 16-P3/8
35 | [-1, 1, Conv, [128, 1, 1]],
36 | [-2, 1, Conv, [128, 1, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [[-1, -3, -5, -6], 1, Concat, [1]],
42 | [-1, 1, Conv, [512, 1, 1]], # 24
43 |
44 | [-1, 1, MP, []],
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-3, 1, Conv, [256, 1, 1]],
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, -3], 1, Concat, [1]], # 29-P4/16
49 | [-1, 1, Conv, [256, 1, 1]],
50 | [-2, 1, Conv, [256, 1, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [[-1, -3, -5, -6], 1, Concat, [1]],
56 | [-1, 1, Conv, [1024, 1, 1]], # 37
57 |
58 | [-1, 1, MP, []],
59 | [-1, 1, Conv, [512, 1, 1]],
60 | [-3, 1, Conv, [512, 1, 1]],
61 | [-1, 1, Conv, [512, 3, 2]],
62 | [[-1, -3], 1, Concat, [1]], # 42-P5/32
63 | [-1, 1, Conv, [256, 1, 1]],
64 | [-2, 1, Conv, [256, 1, 1]],
65 | [-1, 1, Conv, [256, 3, 1]],
66 | [-1, 1, Conv, [256, 3, 1]],
67 | [-1, 1, Conv, [256, 3, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [[-1, -3, -5, -6], 1, Concat, [1]],
70 | [-1, 1, Conv, [1024, 1, 1]], # 50
71 | ]
72 |
73 | # yolov7 head
74 | head:
75 | [[-1, 1, SPPCSPC, [512]], # 51
76 |
77 | [-1, 1, Conv, [256, 1, 1]],
78 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79 | [37, 1, Conv, [256, 1, 1]], # route backbone P4
80 | [[-1, -2], 1, Concat, [1]],
81 |
82 | [-1, 1, Conv, [256, 1, 1]],
83 | [-2, 1, Conv, [256, 1, 1]],
84 | [-1, 1, Conv, [128, 3, 1]],
85 | [-1, 1, Conv, [128, 3, 1]],
86 | [-1, 1, Conv, [128, 3, 1]],
87 | [-1, 1, Conv, [128, 3, 1]],
88 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89 | [-1, 1, Conv, [256, 1, 1]], # 63
90 |
91 | [-1, 1, Conv, [128, 1, 1]],
92 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93 | [24, 1, Conv, [128, 1, 1]], # route backbone P3
94 | [[-1, -2], 1, Concat, [1]],
95 |
96 | [-1, 1, Conv, [128, 1, 1]],
97 | [-2, 1, Conv, [128, 1, 1]],
98 | [-1, 1, Conv, [64, 3, 1]],
99 | [-1, 1, Conv, [64, 3, 1]],
100 | [-1, 1, Conv, [64, 3, 1]],
101 | [-1, 1, Conv, [64, 3, 1]],
102 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103 | [-1, 1, Conv, [128, 1, 1]], # 75
104 |
105 | [-1, 1, MP, []],
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-3, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 2]],
109 | [[-1, -3, 63], 1, Concat, [1]],
110 |
111 | [-1, 1, Conv, [256, 1, 1]],
112 | [-2, 1, Conv, [256, 1, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [-1, 1, Conv, [128, 3, 1]],
115 | [-1, 1, Conv, [128, 3, 1]],
116 | [-1, 1, Conv, [128, 3, 1]],
117 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118 | [-1, 1, Conv, [256, 1, 1]], # 88
119 |
120 | [-1, 1, MP, []],
121 | [-1, 1, Conv, [256, 1, 1]],
122 | [-3, 1, Conv, [256, 1, 1]],
123 | [-1, 1, Conv, [256, 3, 2]],
124 | [[-1, -3, 51], 1, Concat, [1]],
125 |
126 | [-1, 1, Conv, [512, 1, 1]],
127 | [-2, 1, Conv, [512, 1, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [-1, 1, Conv, [256, 3, 1]],
132 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133 | [-1, 1, Conv, [512, 1, 1]], # 101
134 |
135 | [75, 1, RepConv, [256, 3, 1]],
136 | [88, 1, RepConv, [512, 3, 1]],
137 | [101, 1, RepConv, [1024, 3, 1]],
138 |
139 | [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
140 | ]
141 |
--------------------------------------------------------------------------------
/cfg/training/yolov7_score.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 4 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [64, 3, 1]],
19 |
20 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [[-1, -3, -5, -6], 1, Concat, [1]],
28 | [-1, 1, Conv, [256, 1, 1]], # 11
29 |
30 | [-1, 1, MP, []],
31 | [-1, 1, Conv, [128, 1, 1]],
32 | [-3, 1, Conv, [128, 1, 1]],
33 | [-1, 1, Conv, [128, 3, 2]],
34 | [[-1, -3], 1, Concat, [1]], # 16-P3/8
35 | [-1, 1, Conv, [128, 1, 1]],
36 | [-2, 1, Conv, [128, 1, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [[-1, -3, -5, -6], 1, Concat, [1]],
42 | [-1, 1, Conv, [512, 1, 1]], # 24
43 |
44 | [-1, 1, MP, []],
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-3, 1, Conv, [256, 1, 1]],
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, -3], 1, Concat, [1]], # 29-P4/16
49 | [-1, 1, Conv, [256, 1, 1]],
50 | [-2, 1, Conv, [256, 1, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [[-1, -3, -5, -6], 1, Concat, [1]],
56 | [-1, 1, Conv, [1024, 1, 1]], # 37
57 |
58 | [-1, 1, MP, []],
59 | [-1, 1, Conv, [512, 1, 1]],
60 | [-3, 1, Conv, [512, 1, 1]],
61 | [-1, 1, Conv, [512, 3, 2]],
62 | [[-1, -3], 1, Concat, [1]], # 42-P5/32
63 | [-1, 1, Conv, [256, 1, 1]],
64 | [-2, 1, Conv, [256, 1, 1]],
65 | [-1, 1, Conv, [256, 3, 1]],
66 | [-1, 1, Conv, [256, 3, 1]],
67 | [-1, 1, Conv, [256, 3, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [[-1, -3, -5, -6], 1, Concat, [1]],
70 | [-1, 1, Conv, [1024, 1, 1]], # 50
71 | ]
72 |
73 | # yolov7 head
74 | head:
75 | [[-1, 1, SPPCSPC, [512]], # 51
76 |
77 | [-1, 1, Conv, [256, 1, 1]],
78 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79 | [37, 1, Conv, [256, 1, 1]], # route backbone P4
80 | [[-1, -2], 1, Concat, [1]],
81 |
82 | [-1, 1, Conv, [256, 1, 1]],
83 | [-2, 1, Conv, [256, 1, 1]],
84 | [-1, 1, Conv, [128, 3, 1]],
85 | [-1, 1, Conv, [128, 3, 1]],
86 | [-1, 1, Conv, [128, 3, 1]],
87 | [-1, 1, Conv, [128, 3, 1]],
88 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89 | [-1, 1, Conv, [256, 1, 1]], # 63
90 |
91 | [-1, 1, Conv, [128, 1, 1]],
92 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93 | [24, 1, Conv, [128, 1, 1]], # route backbone P3
94 | [[-1, -2], 1, Concat, [1]],
95 |
96 | [-1, 1, Conv, [128, 1, 1]],
97 | [-2, 1, Conv, [128, 1, 1]],
98 | [-1, 1, Conv, [64, 3, 1]],
99 | [-1, 1, Conv, [64, 3, 1]],
100 | [-1, 1, Conv, [64, 3, 1]],
101 | [-1, 1, Conv, [64, 3, 1]],
102 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103 | [-1, 1, Conv, [128, 1, 1]], # 75
104 |
105 | [-1, 1, MP, []],
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-3, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 2]],
109 | [[-1, -3, 63], 1, Concat, [1]],
110 |
111 | [-1, 1, Conv, [256, 1, 1]],
112 | [-2, 1, Conv, [256, 1, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [-1, 1, Conv, [128, 3, 1]],
115 | [-1, 1, Conv, [128, 3, 1]],
116 | [-1, 1, Conv, [128, 3, 1]],
117 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118 | [-1, 1, Conv, [256, 1, 1]], # 88
119 |
120 | [-1, 1, MP, []],
121 | [-1, 1, Conv, [256, 1, 1]],
122 | [-3, 1, Conv, [256, 1, 1]],
123 | [-1, 1, Conv, [256, 3, 2]],
124 | [[-1, -3, 51], 1, Concat, [1]],
125 |
126 | [-1, 1, Conv, [512, 1, 1]],
127 | [-2, 1, Conv, [512, 1, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [-1, 1, Conv, [256, 3, 1]],
132 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133 | [-1, 1, Conv, [512, 1, 1]], # 101
134 |
135 | [75, 1, RepConv, [256, 3, 1]],
136 | [88, 1, RepConv, [512, 3, 1]],
137 | [101, 1, RepConv, [1024, 3, 1]],
138 |
139 | [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
140 | ]
141 |
--------------------------------------------------------------------------------
/cfg/training/yolov7d6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7 backbone
14 | backbone:
15 | # [from, number, module, args],
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, DownC, [192]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [-1, 1, Conv, [64, 3, 1]],
29 | [-1, 1, Conv, [64, 3, 1]],
30 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
31 | [-1, 1, Conv, [192, 1, 1]], # 14
32 |
33 | [-1, 1, DownC, [384]], # 15-P3/8
34 | [-1, 1, Conv, [128, 1, 1]],
35 | [-2, 1, Conv, [128, 1, 1]],
36 | [-1, 1, Conv, [128, 3, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [-1, 1, Conv, [128, 3, 1]],
42 | [-1, 1, Conv, [128, 3, 1]],
43 | [-1, 1, Conv, [128, 3, 1]],
44 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
45 | [-1, 1, Conv, [384, 1, 1]], # 27
46 |
47 | [-1, 1, DownC, [768]], # 28-P4/16
48 | [-1, 1, Conv, [256, 1, 1]],
49 | [-2, 1, Conv, [256, 1, 1]],
50 | [-1, 1, Conv, [256, 3, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [-1, 1, Conv, [256, 3, 1]],
56 | [-1, 1, Conv, [256, 3, 1]],
57 | [-1, 1, Conv, [256, 3, 1]],
58 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
59 | [-1, 1, Conv, [768, 1, 1]], # 40
60 |
61 | [-1, 1, DownC, [1152]], # 41-P5/32
62 | [-1, 1, Conv, [384, 1, 1]],
63 | [-2, 1, Conv, [384, 1, 1]],
64 | [-1, 1, Conv, [384, 3, 1]],
65 | [-1, 1, Conv, [384, 3, 1]],
66 | [-1, 1, Conv, [384, 3, 1]],
67 | [-1, 1, Conv, [384, 3, 1]],
68 | [-1, 1, Conv, [384, 3, 1]],
69 | [-1, 1, Conv, [384, 3, 1]],
70 | [-1, 1, Conv, [384, 3, 1]],
71 | [-1, 1, Conv, [384, 3, 1]],
72 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
73 | [-1, 1, Conv, [1152, 1, 1]], # 53
74 |
75 | [-1, 1, DownC, [1536]], # 54-P6/64
76 | [-1, 1, Conv, [512, 1, 1]],
77 | [-2, 1, Conv, [512, 1, 1]],
78 | [-1, 1, Conv, [512, 3, 1]],
79 | [-1, 1, Conv, [512, 3, 1]],
80 | [-1, 1, Conv, [512, 3, 1]],
81 | [-1, 1, Conv, [512, 3, 1]],
82 | [-1, 1, Conv, [512, 3, 1]],
83 | [-1, 1, Conv, [512, 3, 1]],
84 | [-1, 1, Conv, [512, 3, 1]],
85 | [-1, 1, Conv, [512, 3, 1]],
86 | [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
87 | [-1, 1, Conv, [1536, 1, 1]], # 66
88 | ]
89 |
90 | # yolov7 head
91 | head:
92 | [[-1, 1, SPPCSPC, [768]], # 67
93 |
94 | [-1, 1, Conv, [576, 1, 1]],
95 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
96 | [53, 1, Conv, [576, 1, 1]], # route backbone P5
97 | [[-1, -2], 1, Concat, [1]],
98 |
99 | [-1, 1, Conv, [384, 1, 1]],
100 | [-2, 1, Conv, [384, 1, 1]],
101 | [-1, 1, Conv, [192, 3, 1]],
102 | [-1, 1, Conv, [192, 3, 1]],
103 | [-1, 1, Conv, [192, 3, 1]],
104 | [-1, 1, Conv, [192, 3, 1]],
105 | [-1, 1, Conv, [192, 3, 1]],
106 | [-1, 1, Conv, [192, 3, 1]],
107 | [-1, 1, Conv, [192, 3, 1]],
108 | [-1, 1, Conv, [192, 3, 1]],
109 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
110 | [-1, 1, Conv, [576, 1, 1]], # 83
111 |
112 | [-1, 1, Conv, [384, 1, 1]],
113 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
114 | [40, 1, Conv, [384, 1, 1]], # route backbone P4
115 | [[-1, -2], 1, Concat, [1]],
116 |
117 | [-1, 1, Conv, [256, 1, 1]],
118 | [-2, 1, Conv, [256, 1, 1]],
119 | [-1, 1, Conv, [128, 3, 1]],
120 | [-1, 1, Conv, [128, 3, 1]],
121 | [-1, 1, Conv, [128, 3, 1]],
122 | [-1, 1, Conv, [128, 3, 1]],
123 | [-1, 1, Conv, [128, 3, 1]],
124 | [-1, 1, Conv, [128, 3, 1]],
125 | [-1, 1, Conv, [128, 3, 1]],
126 | [-1, 1, Conv, [128, 3, 1]],
127 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
128 | [-1, 1, Conv, [384, 1, 1]], # 99
129 |
130 | [-1, 1, Conv, [192, 1, 1]],
131 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
132 | [27, 1, Conv, [192, 1, 1]], # route backbone P3
133 | [[-1, -2], 1, Concat, [1]],
134 |
135 | [-1, 1, Conv, [128, 1, 1]],
136 | [-2, 1, Conv, [128, 1, 1]],
137 | [-1, 1, Conv, [64, 3, 1]],
138 | [-1, 1, Conv, [64, 3, 1]],
139 | [-1, 1, Conv, [64, 3, 1]],
140 | [-1, 1, Conv, [64, 3, 1]],
141 | [-1, 1, Conv, [64, 3, 1]],
142 | [-1, 1, Conv, [64, 3, 1]],
143 | [-1, 1, Conv, [64, 3, 1]],
144 | [-1, 1, Conv, [64, 3, 1]],
145 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
146 | [-1, 1, Conv, [192, 1, 1]], # 115
147 |
148 | [-1, 1, DownC, [384]],
149 | [[-1, 99], 1, Concat, [1]],
150 |
151 | [-1, 1, Conv, [256, 1, 1]],
152 | [-2, 1, Conv, [256, 1, 1]],
153 | [-1, 1, Conv, [128, 3, 1]],
154 | [-1, 1, Conv, [128, 3, 1]],
155 | [-1, 1, Conv, [128, 3, 1]],
156 | [-1, 1, Conv, [128, 3, 1]],
157 | [-1, 1, Conv, [128, 3, 1]],
158 | [-1, 1, Conv, [128, 3, 1]],
159 | [-1, 1, Conv, [128, 3, 1]],
160 | [-1, 1, Conv, [128, 3, 1]],
161 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
162 | [-1, 1, Conv, [384, 1, 1]], # 129
163 |
164 | [-1, 1, DownC, [576]],
165 | [[-1, 83], 1, Concat, [1]],
166 |
167 | [-1, 1, Conv, [384, 1, 1]],
168 | [-2, 1, Conv, [384, 1, 1]],
169 | [-1, 1, Conv, [192, 3, 1]],
170 | [-1, 1, Conv, [192, 3, 1]],
171 | [-1, 1, Conv, [192, 3, 1]],
172 | [-1, 1, Conv, [192, 3, 1]],
173 | [-1, 1, Conv, [192, 3, 1]],
174 | [-1, 1, Conv, [192, 3, 1]],
175 | [-1, 1, Conv, [192, 3, 1]],
176 | [-1, 1, Conv, [192, 3, 1]],
177 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
178 | [-1, 1, Conv, [576, 1, 1]], # 143
179 |
180 | [-1, 1, DownC, [768]],
181 | [[-1, 67], 1, Concat, [1]],
182 |
183 | [-1, 1, Conv, [512, 1, 1]],
184 | [-2, 1, Conv, [512, 1, 1]],
185 | [-1, 1, Conv, [256, 3, 1]],
186 | [-1, 1, Conv, [256, 3, 1]],
187 | [-1, 1, Conv, [256, 3, 1]],
188 | [-1, 1, Conv, [256, 3, 1]],
189 | [-1, 1, Conv, [256, 3, 1]],
190 | [-1, 1, Conv, [256, 3, 1]],
191 | [-1, 1, Conv, [256, 3, 1]],
192 | [-1, 1, Conv, [256, 3, 1]],
193 | [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
194 | [-1, 1, Conv, [768, 1, 1]], # 157
195 |
196 | [115, 1, Conv, [384, 3, 1]],
197 | [129, 1, Conv, [768, 3, 1]],
198 | [143, 1, Conv, [1152, 3, 1]],
199 | [157, 1, Conv, [1536, 3, 1]],
200 |
201 | [115, 1, Conv, [384, 3, 1]],
202 | [99, 1, Conv, [768, 3, 1]],
203 | [83, 1, Conv, [1152, 3, 1]],
204 | [67, 1, Conv, [1536, 3, 1]],
205 |
206 | [[158,159,160,161,162,163,164,165], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
207 | ]
208 |
--------------------------------------------------------------------------------
/cfg/training/yolov7e6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7 backbone
14 | backbone:
15 | # [from, number, module, args],
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, DownC, [160]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29 | [-1, 1, Conv, [160, 1, 1]], # 12
30 |
31 | [-1, 1, DownC, [320]], # 13-P3/8
32 | [-1, 1, Conv, [128, 1, 1]],
33 | [-2, 1, Conv, [128, 1, 1]],
34 | [-1, 1, Conv, [128, 3, 1]],
35 | [-1, 1, Conv, [128, 3, 1]],
36 | [-1, 1, Conv, [128, 3, 1]],
37 | [-1, 1, Conv, [128, 3, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
41 | [-1, 1, Conv, [320, 1, 1]], # 23
42 |
43 | [-1, 1, DownC, [640]], # 24-P4/16
44 | [-1, 1, Conv, [256, 1, 1]],
45 | [-2, 1, Conv, [256, 1, 1]],
46 | [-1, 1, Conv, [256, 3, 1]],
47 | [-1, 1, Conv, [256, 3, 1]],
48 | [-1, 1, Conv, [256, 3, 1]],
49 | [-1, 1, Conv, [256, 3, 1]],
50 | [-1, 1, Conv, [256, 3, 1]],
51 | [-1, 1, Conv, [256, 3, 1]],
52 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
53 | [-1, 1, Conv, [640, 1, 1]], # 34
54 |
55 | [-1, 1, DownC, [960]], # 35-P5/32
56 | [-1, 1, Conv, [384, 1, 1]],
57 | [-2, 1, Conv, [384, 1, 1]],
58 | [-1, 1, Conv, [384, 3, 1]],
59 | [-1, 1, Conv, [384, 3, 1]],
60 | [-1, 1, Conv, [384, 3, 1]],
61 | [-1, 1, Conv, [384, 3, 1]],
62 | [-1, 1, Conv, [384, 3, 1]],
63 | [-1, 1, Conv, [384, 3, 1]],
64 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
65 | [-1, 1, Conv, [960, 1, 1]], # 45
66 |
67 | [-1, 1, DownC, [1280]], # 46-P6/64
68 | [-1, 1, Conv, [512, 1, 1]],
69 | [-2, 1, Conv, [512, 1, 1]],
70 | [-1, 1, Conv, [512, 3, 1]],
71 | [-1, 1, Conv, [512, 3, 1]],
72 | [-1, 1, Conv, [512, 3, 1]],
73 | [-1, 1, Conv, [512, 3, 1]],
74 | [-1, 1, Conv, [512, 3, 1]],
75 | [-1, 1, Conv, [512, 3, 1]],
76 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
77 | [-1, 1, Conv, [1280, 1, 1]], # 56
78 | ]
79 |
80 | # yolov7 head
81 | head:
82 | [[-1, 1, SPPCSPC, [640]], # 57
83 |
84 | [-1, 1, Conv, [480, 1, 1]],
85 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
86 | [45, 1, Conv, [480, 1, 1]], # route backbone P5
87 | [[-1, -2], 1, Concat, [1]],
88 |
89 | [-1, 1, Conv, [384, 1, 1]],
90 | [-2, 1, Conv, [384, 1, 1]],
91 | [-1, 1, Conv, [192, 3, 1]],
92 | [-1, 1, Conv, [192, 3, 1]],
93 | [-1, 1, Conv, [192, 3, 1]],
94 | [-1, 1, Conv, [192, 3, 1]],
95 | [-1, 1, Conv, [192, 3, 1]],
96 | [-1, 1, Conv, [192, 3, 1]],
97 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
98 | [-1, 1, Conv, [480, 1, 1]], # 71
99 |
100 | [-1, 1, Conv, [320, 1, 1]],
101 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102 | [34, 1, Conv, [320, 1, 1]], # route backbone P4
103 | [[-1, -2], 1, Concat, [1]],
104 |
105 | [-1, 1, Conv, [256, 1, 1]],
106 | [-2, 1, Conv, [256, 1, 1]],
107 | [-1, 1, Conv, [128, 3, 1]],
108 | [-1, 1, Conv, [128, 3, 1]],
109 | [-1, 1, Conv, [128, 3, 1]],
110 | [-1, 1, Conv, [128, 3, 1]],
111 | [-1, 1, Conv, [128, 3, 1]],
112 | [-1, 1, Conv, [128, 3, 1]],
113 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
114 | [-1, 1, Conv, [320, 1, 1]], # 85
115 |
116 | [-1, 1, Conv, [160, 1, 1]],
117 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
118 | [23, 1, Conv, [160, 1, 1]], # route backbone P3
119 | [[-1, -2], 1, Concat, [1]],
120 |
121 | [-1, 1, Conv, [128, 1, 1]],
122 | [-2, 1, Conv, [128, 1, 1]],
123 | [-1, 1, Conv, [64, 3, 1]],
124 | [-1, 1, Conv, [64, 3, 1]],
125 | [-1, 1, Conv, [64, 3, 1]],
126 | [-1, 1, Conv, [64, 3, 1]],
127 | [-1, 1, Conv, [64, 3, 1]],
128 | [-1, 1, Conv, [64, 3, 1]],
129 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
130 | [-1, 1, Conv, [160, 1, 1]], # 99
131 |
132 | [-1, 1, DownC, [320]],
133 | [[-1, 85], 1, Concat, [1]],
134 |
135 | [-1, 1, Conv, [256, 1, 1]],
136 | [-2, 1, Conv, [256, 1, 1]],
137 | [-1, 1, Conv, [128, 3, 1]],
138 | [-1, 1, Conv, [128, 3, 1]],
139 | [-1, 1, Conv, [128, 3, 1]],
140 | [-1, 1, Conv, [128, 3, 1]],
141 | [-1, 1, Conv, [128, 3, 1]],
142 | [-1, 1, Conv, [128, 3, 1]],
143 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
144 | [-1, 1, Conv, [320, 1, 1]], # 111
145 |
146 | [-1, 1, DownC, [480]],
147 | [[-1, 71], 1, Concat, [1]],
148 |
149 | [-1, 1, Conv, [384, 1, 1]],
150 | [-2, 1, Conv, [384, 1, 1]],
151 | [-1, 1, Conv, [192, 3, 1]],
152 | [-1, 1, Conv, [192, 3, 1]],
153 | [-1, 1, Conv, [192, 3, 1]],
154 | [-1, 1, Conv, [192, 3, 1]],
155 | [-1, 1, Conv, [192, 3, 1]],
156 | [-1, 1, Conv, [192, 3, 1]],
157 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
158 | [-1, 1, Conv, [480, 1, 1]], # 123
159 |
160 | [-1, 1, DownC, [640]],
161 | [[-1, 57], 1, Concat, [1]],
162 |
163 | [-1, 1, Conv, [512, 1, 1]],
164 | [-2, 1, Conv, [512, 1, 1]],
165 | [-1, 1, Conv, [256, 3, 1]],
166 | [-1, 1, Conv, [256, 3, 1]],
167 | [-1, 1, Conv, [256, 3, 1]],
168 | [-1, 1, Conv, [256, 3, 1]],
169 | [-1, 1, Conv, [256, 3, 1]],
170 | [-1, 1, Conv, [256, 3, 1]],
171 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
172 | [-1, 1, Conv, [640, 1, 1]], # 135
173 |
174 | [99, 1, Conv, [320, 3, 1]],
175 | [111, 1, Conv, [640, 3, 1]],
176 | [123, 1, Conv, [960, 3, 1]],
177 | [135, 1, Conv, [1280, 3, 1]],
178 |
179 | [99, 1, Conv, [320, 3, 1]],
180 | [85, 1, Conv, [640, 3, 1]],
181 | [71, 1, Conv, [960, 3, 1]],
182 | [57, 1, Conv, [1280, 3, 1]],
183 |
184 | [[136,137,138,139,140,141,142,143], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
185 | ]
186 |
--------------------------------------------------------------------------------
/cfg/training/yolov7w6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [[-1, -3, -5, -6], 1, Concat, [1]],
27 | [-1, 1, Conv, [128, 1, 1]], # 10
28 |
29 | [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
30 | [-1, 1, Conv, [128, 1, 1]],
31 | [-2, 1, Conv, [128, 1, 1]],
32 | [-1, 1, Conv, [128, 3, 1]],
33 | [-1, 1, Conv, [128, 3, 1]],
34 | [-1, 1, Conv, [128, 3, 1]],
35 | [-1, 1, Conv, [128, 3, 1]],
36 | [[-1, -3, -5, -6], 1, Concat, [1]],
37 | [-1, 1, Conv, [256, 1, 1]], # 19
38 |
39 | [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
40 | [-1, 1, Conv, [256, 1, 1]],
41 | [-2, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [256, 3, 1]],
43 | [-1, 1, Conv, [256, 3, 1]],
44 | [-1, 1, Conv, [256, 3, 1]],
45 | [-1, 1, Conv, [256, 3, 1]],
46 | [[-1, -3, -5, -6], 1, Concat, [1]],
47 | [-1, 1, Conv, [512, 1, 1]], # 28
48 |
49 | [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
50 | [-1, 1, Conv, [384, 1, 1]],
51 | [-2, 1, Conv, [384, 1, 1]],
52 | [-1, 1, Conv, [384, 3, 1]],
53 | [-1, 1, Conv, [384, 3, 1]],
54 | [-1, 1, Conv, [384, 3, 1]],
55 | [-1, 1, Conv, [384, 3, 1]],
56 | [[-1, -3, -5, -6], 1, Concat, [1]],
57 | [-1, 1, Conv, [768, 1, 1]], # 37
58 |
59 | [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
60 | [-1, 1, Conv, [512, 1, 1]],
61 | [-2, 1, Conv, [512, 1, 1]],
62 | [-1, 1, Conv, [512, 3, 1]],
63 | [-1, 1, Conv, [512, 3, 1]],
64 | [-1, 1, Conv, [512, 3, 1]],
65 | [-1, 1, Conv, [512, 3, 1]],
66 | [[-1, -3, -5, -6], 1, Concat, [1]],
67 | [-1, 1, Conv, [1024, 1, 1]], # 46
68 | ]
69 |
70 | # yolov7 head
71 | head:
72 | [[-1, 1, SPPCSPC, [512]], # 47
73 |
74 | [-1, 1, Conv, [384, 1, 1]],
75 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76 | [37, 1, Conv, [384, 1, 1]], # route backbone P5
77 | [[-1, -2], 1, Concat, [1]],
78 |
79 | [-1, 1, Conv, [384, 1, 1]],
80 | [-2, 1, Conv, [384, 1, 1]],
81 | [-1, 1, Conv, [192, 3, 1]],
82 | [-1, 1, Conv, [192, 3, 1]],
83 | [-1, 1, Conv, [192, 3, 1]],
84 | [-1, 1, Conv, [192, 3, 1]],
85 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86 | [-1, 1, Conv, [384, 1, 1]], # 59
87 |
88 | [-1, 1, Conv, [256, 1, 1]],
89 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90 | [28, 1, Conv, [256, 1, 1]], # route backbone P4
91 | [[-1, -2], 1, Concat, [1]],
92 |
93 | [-1, 1, Conv, [256, 1, 1]],
94 | [-2, 1, Conv, [256, 1, 1]],
95 | [-1, 1, Conv, [128, 3, 1]],
96 | [-1, 1, Conv, [128, 3, 1]],
97 | [-1, 1, Conv, [128, 3, 1]],
98 | [-1, 1, Conv, [128, 3, 1]],
99 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100 | [-1, 1, Conv, [256, 1, 1]], # 71
101 |
102 | [-1, 1, Conv, [128, 1, 1]],
103 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
104 | [19, 1, Conv, [128, 1, 1]], # route backbone P3
105 | [[-1, -2], 1, Concat, [1]],
106 |
107 | [-1, 1, Conv, [128, 1, 1]],
108 | [-2, 1, Conv, [128, 1, 1]],
109 | [-1, 1, Conv, [64, 3, 1]],
110 | [-1, 1, Conv, [64, 3, 1]],
111 | [-1, 1, Conv, [64, 3, 1]],
112 | [-1, 1, Conv, [64, 3, 1]],
113 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114 | [-1, 1, Conv, [128, 1, 1]], # 83
115 |
116 | [-1, 1, Conv, [256, 3, 2]],
117 | [[-1, 71], 1, Concat, [1]], # cat
118 |
119 | [-1, 1, Conv, [256, 1, 1]],
120 | [-2, 1, Conv, [256, 1, 1]],
121 | [-1, 1, Conv, [128, 3, 1]],
122 | [-1, 1, Conv, [128, 3, 1]],
123 | [-1, 1, Conv, [128, 3, 1]],
124 | [-1, 1, Conv, [128, 3, 1]],
125 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
126 | [-1, 1, Conv, [256, 1, 1]], # 93
127 |
128 | [-1, 1, Conv, [384, 3, 2]],
129 | [[-1, 59], 1, Concat, [1]], # cat
130 |
131 | [-1, 1, Conv, [384, 1, 1]],
132 | [-2, 1, Conv, [384, 1, 1]],
133 | [-1, 1, Conv, [192, 3, 1]],
134 | [-1, 1, Conv, [192, 3, 1]],
135 | [-1, 1, Conv, [192, 3, 1]],
136 | [-1, 1, Conv, [192, 3, 1]],
137 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
138 | [-1, 1, Conv, [384, 1, 1]], # 103
139 |
140 | [-1, 1, Conv, [512, 3, 2]],
141 | [[-1, 47], 1, Concat, [1]], # cat
142 |
143 | [-1, 1, Conv, [512, 1, 1]],
144 | [-2, 1, Conv, [512, 1, 1]],
145 | [-1, 1, Conv, [256, 3, 1]],
146 | [-1, 1, Conv, [256, 3, 1]],
147 | [-1, 1, Conv, [256, 3, 1]],
148 | [-1, 1, Conv, [256, 3, 1]],
149 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
150 | [-1, 1, Conv, [512, 1, 1]], # 113
151 |
152 | [83, 1, Conv, [256, 3, 1]],
153 | [93, 1, Conv, [512, 3, 1]],
154 | [103, 1, Conv, [768, 3, 1]],
155 | [113, 1, Conv, [1024, 3, 1]],
156 |
157 | [83, 1, Conv, [320, 3, 1]],
158 | [71, 1, Conv, [640, 3, 1]],
159 | [59, 1, Conv, [960, 3, 1]],
160 | [47, 1, Conv, [1280, 3, 1]],
161 |
162 | [[114,115,116,117,118,119,120,121], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
163 | ]
164 |
--------------------------------------------------------------------------------
/cfg/training/yolov7x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [12,16, 19,36, 40,28] # P3/8
9 | - [36,75, 76,55, 72,146] # P4/16
10 | - [142,110, 192,243, 459,401] # P5/32
11 |
12 | # yolov7 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [40, 3, 1]], # 0
16 |
17 | [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
18 | [-1, 1, Conv, [80, 3, 1]],
19 |
20 | [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
21 | [-1, 1, Conv, [64, 1, 1]],
22 | [-2, 1, Conv, [64, 1, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [-1, 1, Conv, [64, 3, 1]],
29 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
30 | [-1, 1, Conv, [320, 1, 1]], # 13
31 |
32 | [-1, 1, MP, []],
33 | [-1, 1, Conv, [160, 1, 1]],
34 | [-3, 1, Conv, [160, 1, 1]],
35 | [-1, 1, Conv, [160, 3, 2]],
36 | [[-1, -3], 1, Concat, [1]], # 18-P3/8
37 | [-1, 1, Conv, [128, 1, 1]],
38 | [-2, 1, Conv, [128, 1, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [-1, 1, Conv, [128, 3, 1]],
42 | [-1, 1, Conv, [128, 3, 1]],
43 | [-1, 1, Conv, [128, 3, 1]],
44 | [-1, 1, Conv, [128, 3, 1]],
45 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
46 | [-1, 1, Conv, [640, 1, 1]], # 28
47 |
48 | [-1, 1, MP, []],
49 | [-1, 1, Conv, [320, 1, 1]],
50 | [-3, 1, Conv, [320, 1, 1]],
51 | [-1, 1, Conv, [320, 3, 2]],
52 | [[-1, -3], 1, Concat, [1]], # 33-P4/16
53 | [-1, 1, Conv, [256, 1, 1]],
54 | [-2, 1, Conv, [256, 1, 1]],
55 | [-1, 1, Conv, [256, 3, 1]],
56 | [-1, 1, Conv, [256, 3, 1]],
57 | [-1, 1, Conv, [256, 3, 1]],
58 | [-1, 1, Conv, [256, 3, 1]],
59 | [-1, 1, Conv, [256, 3, 1]],
60 | [-1, 1, Conv, [256, 3, 1]],
61 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62 | [-1, 1, Conv, [1280, 1, 1]], # 43
63 |
64 | [-1, 1, MP, []],
65 | [-1, 1, Conv, [640, 1, 1]],
66 | [-3, 1, Conv, [640, 1, 1]],
67 | [-1, 1, Conv, [640, 3, 2]],
68 | [[-1, -3], 1, Concat, [1]], # 48-P5/32
69 | [-1, 1, Conv, [256, 1, 1]],
70 | [-2, 1, Conv, [256, 1, 1]],
71 | [-1, 1, Conv, [256, 3, 1]],
72 | [-1, 1, Conv, [256, 3, 1]],
73 | [-1, 1, Conv, [256, 3, 1]],
74 | [-1, 1, Conv, [256, 3, 1]],
75 | [-1, 1, Conv, [256, 3, 1]],
76 | [-1, 1, Conv, [256, 3, 1]],
77 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
78 | [-1, 1, Conv, [1280, 1, 1]], # 58
79 | ]
80 |
81 | # yolov7 head
82 | head:
83 | [[-1, 1, SPPCSPC, [640]], # 59
84 |
85 | [-1, 1, Conv, [320, 1, 1]],
86 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
87 | [43, 1, Conv, [320, 1, 1]], # route backbone P4
88 | [[-1, -2], 1, Concat, [1]],
89 |
90 | [-1, 1, Conv, [256, 1, 1]],
91 | [-2, 1, Conv, [256, 1, 1]],
92 | [-1, 1, Conv, [256, 3, 1]],
93 | [-1, 1, Conv, [256, 3, 1]],
94 | [-1, 1, Conv, [256, 3, 1]],
95 | [-1, 1, Conv, [256, 3, 1]],
96 | [-1, 1, Conv, [256, 3, 1]],
97 | [-1, 1, Conv, [256, 3, 1]],
98 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
99 | [-1, 1, Conv, [320, 1, 1]], # 73
100 |
101 | [-1, 1, Conv, [160, 1, 1]],
102 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
103 | [28, 1, Conv, [160, 1, 1]], # route backbone P3
104 | [[-1, -2], 1, Concat, [1]],
105 |
106 | [-1, 1, Conv, [128, 1, 1]],
107 | [-2, 1, Conv, [128, 1, 1]],
108 | [-1, 1, Conv, [128, 3, 1]],
109 | [-1, 1, Conv, [128, 3, 1]],
110 | [-1, 1, Conv, [128, 3, 1]],
111 | [-1, 1, Conv, [128, 3, 1]],
112 | [-1, 1, Conv, [128, 3, 1]],
113 | [-1, 1, Conv, [128, 3, 1]],
114 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
115 | [-1, 1, Conv, [160, 1, 1]], # 87
116 |
117 | [-1, 1, MP, []],
118 | [-1, 1, Conv, [160, 1, 1]],
119 | [-3, 1, Conv, [160, 1, 1]],
120 | [-1, 1, Conv, [160, 3, 2]],
121 | [[-1, -3, 73], 1, Concat, [1]],
122 |
123 | [-1, 1, Conv, [256, 1, 1]],
124 | [-2, 1, Conv, [256, 1, 1]],
125 | [-1, 1, Conv, [256, 3, 1]],
126 | [-1, 1, Conv, [256, 3, 1]],
127 | [-1, 1, Conv, [256, 3, 1]],
128 | [-1, 1, Conv, [256, 3, 1]],
129 | [-1, 1, Conv, [256, 3, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
132 | [-1, 1, Conv, [320, 1, 1]], # 102
133 |
134 | [-1, 1, MP, []],
135 | [-1, 1, Conv, [320, 1, 1]],
136 | [-3, 1, Conv, [320, 1, 1]],
137 | [-1, 1, Conv, [320, 3, 2]],
138 | [[-1, -3, 59], 1, Concat, [1]],
139 |
140 | [-1, 1, Conv, [512, 1, 1]],
141 | [-2, 1, Conv, [512, 1, 1]],
142 | [-1, 1, Conv, [512, 3, 1]],
143 | [-1, 1, Conv, [512, 3, 1]],
144 | [-1, 1, Conv, [512, 3, 1]],
145 | [-1, 1, Conv, [512, 3, 1]],
146 | [-1, 1, Conv, [512, 3, 1]],
147 | [-1, 1, Conv, [512, 3, 1]],
148 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
149 | [-1, 1, Conv, [640, 1, 1]], # 117
150 |
151 | [87, 1, Conv, [320, 3, 1]],
152 | [102, 1, Conv, [640, 3, 1]],
153 | [117, 1, Conv, [1280, 3, 1]],
154 |
155 | [[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
156 | ]
157 |
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org
2 |
3 | # download command/URL (optional)
4 | download: bash ./scripts/get_coco.sh
5 |
6 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
7 | train: ./coco/train2017.txt # 118287 images
8 | val: ./coco/val2017.txt # 5000 images
9 | test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
10 |
11 | # number of classes
12 | nc: 80
13 |
14 | # class names
15 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
16 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
17 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
18 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
19 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
20 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
21 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
22 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
23 | 'hair drier', 'toothbrush' ]
24 |
--------------------------------------------------------------------------------
/data/hyp.scratch.p5.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
16 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
17 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
18 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
19 | degrees: 0.0 # image rotation (+/- deg)
20 | translate: 0.2 # image translation (+/- fraction)
21 | scale: 0.9 # image scale (+/- gain)
22 | shear: 0.0 # image shear (+/- deg)
23 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
24 | flipud: 0.0 # image flip up-down (probability)
25 | fliplr: 0.5 # image flip left-right (probability)
26 | mosaic: 1.0 # image mosaic (probability)
27 | mixup: 0.15 # image mixup (probability)
28 | copy_paste: 0.0 # image copy paste (probability)
29 | paste_in: 0.15 # image copy paste (probability)
30 |
--------------------------------------------------------------------------------
/data/hyp.scratch.p6.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
16 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
17 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
18 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
19 | degrees: 0.0 # image rotation (+/- deg)
20 | translate: 0.2 # image translation (+/- fraction)
21 | scale: 0.9 # image scale (+/- gain)
22 | shear: 0.0 # image shear (+/- deg)
23 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
24 | flipud: 0.0 # image flip up-down (probability)
25 | fliplr: 0.5 # image flip left-right (probability)
26 | mosaic: 1.0 # image mosaic (probability)
27 | mixup: 0.15 # image mixup (probability)
28 | copy_paste: 0.0 # image copy paste (probability)
29 | paste_in: 0.15 # image copy paste (probability)
30 |
--------------------------------------------------------------------------------
/data/hyp.scratch.tiny.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.5 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 1.0 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
16 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
17 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
18 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
19 | degrees: 0.0 # image rotation (+/- deg)
20 | translate: 0.1 # image translation (+/- fraction)
21 | scale: 0.5 # image scale (+/- gain)
22 | shear: 0.0 # image shear (+/- deg)
23 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
24 | flipud: 0.0 # image flip up-down (probability)
25 | fliplr: 0.5 # image flip left-right (probability)
26 | mosaic: 1.0 # image mosaic (probability)
27 | mixup: 0.05 # image mixup (probability)
28 | copy_paste: 0.0 # image copy paste (probability)
29 | paste_in: 0.05 # image copy paste (probability)
30 |
--------------------------------------------------------------------------------
/data/score.yaml:
--------------------------------------------------------------------------------
1 | train: ./dataset/score/images/train # train images
2 | val: ./dataset/score/images/val # val images
3 | #test: ./dataset/score/images/test # test images (optional)
4 |
5 | # Classes
6 | nc: 4 # number of classes
7 | names: ['person','cat','dog','horse'] # class names
--------------------------------------------------------------------------------
/dataset/score/01_check_img.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import os
3 | import shutil
4 |
5 | def check_img(img_path):
6 | imgs = os.listdir(img_path)
7 | for img in imgs:
8 | if img.split(".")[-1] !="jpg":
9 | print(img)
10 | shutil.move(img_path+"/"+img,"./error/"+img)
11 |
12 | def check_anno(anno_path):
13 | anno_files = os.listdir(anno_path)
14 | for file in anno_files:
15 | if file.split(".")[-1] !="xml":
16 | print(file)
17 | shutil.move(anno_path+"/"+file,"./error/"+file)
18 |
19 | def ckeck_img_label(img_path,anno_path):
20 | imgs = os.listdir(img_path)
21 | anno_files = os.listdir(anno_path)
22 |
23 | files = [i.split(".")[0] for i in anno_files]
24 |
25 |
26 | for img in imgs:
27 | if img.split(".")[0] not in files:
28 | print(img)
29 | shutil.move(img_path+"/"+img,"./error/"+img)
30 |
31 | imgs = os.listdir(img_path)
32 | images = [j.split(".")[0] for j in imgs]
33 |
34 | for file in anno_files:
35 | if file.split(".")[0] not in images:
36 | print(file)
37 | shutil.move(anno_path+"/"+file,"./error/"+file)
38 |
39 |
40 | if __name__ == "__main__":
41 | img_path = "./JPEGImages"
42 | anno_path = "./Annotations"
43 |
44 | print("============check image=========")
45 | check_img(img_path)
46 |
47 | print("============check anno==========")
48 | check_anno(anno_path)
49 | print("============check both==========")
50 | ckeck_img_label(img_path,anno_path)
51 |
--------------------------------------------------------------------------------
/dataset/score/02_check_box.py:
--------------------------------------------------------------------------------
1 | import xml.etree.ElementTree as xml_tree
2 | import pandas as pd
3 | import numpy as np
4 | import os
5 | import shutil
6 |
7 |
8 | def check_box(path):
9 | files = os.listdir(path)
10 | i = 0
11 | for anna_file in files:
12 | tree = xml_tree.parse(path+"/"+anna_file)
13 | root = tree.getroot()
14 |
15 | # Image shape.
16 | size = root.find('size')
17 | shape = [int(size.find('height').text),
18 | int(size.find('width').text),
19 | int(size.find('depth').text)]
20 | # Find annotations.
21 | bboxes = []
22 | labels = []
23 | labels_text = []
24 | difficult = []
25 | truncated = []
26 |
27 | for obj in root.findall('object'):
28 | # label = obj.find('name').text
29 | # labels.append(int(dataset_common.VOC_LABELS[label][0]))
30 | # # labels_text.append(label.encode('ascii'))
31 | # labels_text.append(label.encode('utf-8'))
32 |
33 |
34 | # isdifficult = obj.find('difficult')
35 | # if isdifficult is not None:
36 | # difficult.append(int(isdifficult.text))
37 | # else:
38 | # difficult.append(0)
39 |
40 | # istruncated = obj.find('truncated')
41 | # if istruncated is not None:
42 | # truncated.append(int(istruncated.text))
43 | # else:
44 | # truncated.append(0)
45 |
46 | bbox = obj.find('bndbox')
47 | # bboxes.append((float(bbox.find('ymin').text) / shape[0],
48 | # float(bbox.find('xmin').text) / shape[1],
49 | # float(bbox.find('ymax').text) / shape[0],
50 | # float(bbox.find('xmax').text) / shape[1]
51 | # ))
52 | if (float(bbox.find('ymin').text) >= float(bbox.find('ymax').text)) or (float(bbox.find('xmin').text) >= float(bbox.find('xmax').text)):
53 | print(anna_file)
54 | print((bbox.find('ymin').text,bbox.find('ymax').text,bbox.find('xmin').text,bbox.find('xmax').text))
55 | i += 1
56 | try:
57 | shutil.move(path+"/"+anna_file,"./error2/"+anna_file)
58 | shutil.move("./JPEGImages/"+anna_file.split(".")[0]+".jpg","./error2/"+anna_file.split(".")[0]+".jpg")
59 | except:
60 | pass
61 |
62 | print(i)
63 |
64 |
65 |
66 | if __name__ == "__main__":
67 | check_box("./Annotations")
--------------------------------------------------------------------------------
/dataset/score/03_train_val_split.py:
--------------------------------------------------------------------------------
1 | import os
2 | import random
3 |
4 | trainval_percent = 0.05
5 | train_percent = 0.95
6 | xmlfilepath = 'Annotations'
7 | txtsavepath = 'ImageSets/Main'
8 | total_xml = os.listdir(xmlfilepath)
9 |
10 | num = len(total_xml)
11 | lists = range(num)
12 |
13 | tr = int(num * train_percent)
14 | train = random.sample(lists, tr)
15 |
16 |
17 | ftrain = open('./ImageSets/Main/train.txt', 'w')
18 | fval = open('./ImageSets/Main/val.txt', 'w')
19 |
20 | for i in lists:
21 | name = total_xml[i][:-4] + '\n'
22 | if i in train:
23 | ftrain.write(name)
24 | else:
25 | fval.write(name)
26 |
27 |
28 |
29 | ftrain.close()
30 | fval.close()
31 |
32 | # voc Main/train,val 图像名生成
--------------------------------------------------------------------------------
/dataset/score/04_myData_label.py:
--------------------------------------------------------------------------------
1 |
2 | # _*_ coding:utf-8 _*_
3 | import xml.etree.ElementTree as ET
4 | import pickle
5 | import os
6 | from os import listdir, getcwd
7 | from os.path import join
8 | import shutil
9 | import cv2
10 |
11 | # sets=[('myData', 'train'),('myData', 'val'), ('myData', 'test')] # 根据自己数据去定义
12 | sets=[('myData', 'train'),('myData', 'val')] # 根据自己数据去定义
13 |
14 | class2id = {
15 | 'person':0, 'cat':1, 'dog':2, 'horse':3
16 |
17 | }
18 |
19 | def convert(size, box):
20 | dw = 1./(size[0])
21 | dh = 1./(size[1])
22 | x = (box[0] + box[1])/2.0 - 1
23 | y = (box[2] + box[3])/2.0 - 1
24 | w = box[1] - box[0]
25 | h = box[3] - box[2]
26 | x = x*dw
27 | w = w*dw
28 | y = y*dh
29 | h = h*dh
30 | return (x,y,w,h)
31 |
32 | def convert_annotation(year, image_id):
33 | in_file = open('./Annotations/%s.xml'%(image_id),encoding='utf-8')
34 | out_file = open('./labels/%s/%s.txt'%(year,image_id), 'w')
35 | # print(in_file)
36 | tree=ET.parse(in_file)
37 | root = tree.getroot()
38 | size = root.find('size')
39 | w = int(size.find('width').text)
40 | h = int(size.find('height').text)
41 |
42 | img = cv2.imread("./JPEGImages/"+image_id+".jpg")
43 | # shutil.copy("./JPEGImages/"+image_id+".jpg","./images/%s/%s.jpg"%(year,image_id))
44 |
45 | sp = img.shape
46 |
47 | h = sp[0] #height(rows) of image
48 | w = sp[1] #width(colums) of image
49 |
50 | for obj in root.iter('object'):
51 | difficult = obj.find('difficult').text
52 | cls_ = obj.find('name').text
53 | if cls_ not in list(class2id.keys()):
54 | print("没有该label: {}".format(cls_))
55 | continue
56 | cls_id = class2id[cls_]
57 | xmlbox = obj.find('bndbox')
58 | x1 = float(xmlbox.find('xmin').text)
59 | x2 = float(xmlbox.find('xmax').text)
60 | y1 = float(xmlbox.find('ymin').text)
61 | y2 = float(xmlbox.find('ymax').text)
62 |
63 | #
64 | if x1 <= 0:
65 | x1 = 10
66 | if y1 <= 0:
67 | y1 = 10
68 |
69 | if x2 >= w:
70 | x2 = w-10
71 | if y2 >= h:
72 | y2 = h-10
73 |
74 | if x1 > x2:
75 | x1,x2 = x2,x1
76 | if y1 > y2:
77 | y1,y2 = y2,y1
78 | b = (x1, x2, y1 ,y2)
79 | bb = convert((w,h), b)
80 | out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
81 |
82 | wd = getcwd()
83 |
84 | for year, image_set in sets:
85 | if not os.path.exists('./labels/'):
86 | os.makedirs('./labels/')
87 | image_ids = open('./ImageSets/Main/%s.txt'%(image_set)).read().strip().split()
88 | # list_file = open('./%s_%s.txt'%(year, image_set), 'w')
89 | for image_id in image_ids:
90 | # list_file.write('%s/JPEGImages/%s.jpg\n'%(wd, image_id)) # 写了train或val的list
91 | convert_annotation(image_set, image_id)
92 | # list_file.close()
93 |
94 |
95 | # labels/标注数据有了
96 | # train val的list数据也有了
97 |
--------------------------------------------------------------------------------
/dataset/score/05_copy_img.py:
--------------------------------------------------------------------------------
1 | import os
2 | import shutil
3 |
4 |
5 | with open("./ImageSets/Main/val.txt",'r') as f:
6 | lines = f.readlines()
7 | for line in lines:
8 | print(line.strip())
9 |
10 | img_file = line.strip() + ".jpg"
11 | print(img_file)
12 |
13 | shutil.copy("./JPEGImages/"+img_file,"./images/val/"+img_file)
14 |
15 |
16 | with open("./ImageSets/Main/train.txt",'r') as f:
17 | lines = f.readlines()
18 | for line in lines:
19 | print(line.strip())
20 |
21 | img_file = line.strip() + ".jpg"
22 | print(img_file)
23 |
24 | shutil.copy("./JPEGImages/"+img_file,"./images/train/"+img_file)
--------------------------------------------------------------------------------
/detect.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import time
3 | from pathlib import Path
4 |
5 | import cv2
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | from numpy import random
9 |
10 | from models.experimental import attempt_load
11 | from utils.datasets import LoadStreams, LoadImages
12 | from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13 | scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14 | from utils.plots import plot_one_box
15 | from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16 |
17 |
18 | def detect(save_img=False):
19 | source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20 | save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21 | webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22 | ('rtsp://', 'rtmp://', 'http://', 'https://'))
23 |
24 | # Directories
25 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27 |
28 | # Initialize
29 | set_logging()
30 | device = select_device(opt.device)
31 | half = device.type != 'cpu' # half precision only supported on CUDA
32 |
33 | # Load model
34 | model = attempt_load(weights, map_location=device) # load FP32 model
35 | stride = int(model.stride.max()) # model stride
36 | imgsz = check_img_size(imgsz, s=stride) # check img_size
37 |
38 | if trace:
39 | model = TracedModel(model, device, opt.img_size)
40 |
41 | if half:
42 | model.half() # to FP16
43 |
44 | # Second-stage classifier
45 | classify = False
46 | if classify:
47 | modelc = load_classifier(name='resnet101', n=2) # initialize
48 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49 |
50 | # Set Dataloader
51 | vid_path, vid_writer = None, None
52 | if webcam:
53 | view_img = check_imshow()
54 | cudnn.benchmark = True # set True to speed up constant image size inference
55 | dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56 | else:
57 | dataset = LoadImages(source, img_size=imgsz, stride=stride)
58 |
59 | # Get names and colors
60 | names = model.module.names if hasattr(model, 'module') else model.names
61 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62 |
63 | # Run inference
64 | if device.type != 'cpu':
65 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66 | t0 = time.time()
67 | for path, img, im0s, vid_cap in dataset:
68 | img = torch.from_numpy(img).to(device)
69 | img = img.half() if half else img.float() # uint8 to fp16/32
70 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
71 | if img.ndimension() == 3:
72 | img = img.unsqueeze(0)
73 |
74 | # Inference
75 | t1 = time_synchronized()
76 | pred = model(img, augment=opt.augment)[0]
77 |
78 | # Apply NMS
79 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
80 | t2 = time_synchronized()
81 |
82 | # Apply Classifier
83 | if classify:
84 | pred = apply_classifier(pred, modelc, img, im0s)
85 |
86 | # Process detections
87 | for i, det in enumerate(pred): # detections per image
88 | if webcam: # batch_size >= 1
89 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
90 | else:
91 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
92 |
93 | p = Path(p) # to Path
94 | save_path = str(save_dir / p.name) # img.jpg
95 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
96 | s += '%gx%g ' % img.shape[2:] # print string
97 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
98 | if len(det):
99 | # Rescale boxes from img_size to im0 size
100 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
101 |
102 | # Print results
103 | for c in det[:, -1].unique():
104 | n = (det[:, -1] == c).sum() # detections per class
105 | s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
106 |
107 | # Write results
108 | for *xyxy, conf, cls in reversed(det):
109 | if save_txt: # Write to file
110 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
111 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
112 | with open(txt_path + '.txt', 'a') as f:
113 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
114 |
115 | if save_img or view_img: # Add bbox to image
116 | label = f'{names[int(cls)]} {conf:.2f}'
117 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
118 |
119 | # Print time (inference + NMS)
120 | #print(f'{s}Done. ({t2 - t1:.3f}s)')
121 |
122 | # Stream results
123 | if view_img:
124 | cv2.imshow(str(p), im0)
125 | cv2.waitKey(1) # 1 millisecond
126 |
127 | # Save results (image with detections)
128 | if save_img:
129 | if dataset.mode == 'image':
130 | cv2.imwrite(save_path, im0)
131 | print(f" The image with the result is saved in: {save_path}")
132 | else: # 'video' or 'stream'
133 | if vid_path != save_path: # new video
134 | vid_path = save_path
135 | if isinstance(vid_writer, cv2.VideoWriter):
136 | vid_writer.release() # release previous video writer
137 | if vid_cap: # video
138 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
139 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
140 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
141 | else: # stream
142 | fps, w, h = 30, im0.shape[1], im0.shape[0]
143 | save_path += '.mp4'
144 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
145 | vid_writer.write(im0)
146 |
147 | if save_txt or save_img:
148 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
149 | #print(f"Results saved to {save_dir}{s}")
150 |
151 | print(f'Done. ({time.time() - t0:.3f}s)')
152 |
153 |
154 | if __name__ == '__main__':
155 | parser = argparse.ArgumentParser()
156 | parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
157 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
158 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
159 | parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
160 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
161 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
162 | parser.add_argument('--view-img', action='store_true', help='display results')
163 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
164 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
165 | parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
166 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
167 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
168 | parser.add_argument('--augment', action='store_true', help='augmented inference')
169 | parser.add_argument('--update', action='store_true', help='update all models')
170 | parser.add_argument('--project', default='runs/detect', help='save results to project/name')
171 | parser.add_argument('--name', default='exp', help='save results to project/name')
172 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
173 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
174 | opt = parser.parse_args()
175 | print(opt)
176 | #check_requirements(exclude=('pycocotools', 'thop'))
177 |
178 | with torch.no_grad():
179 | if opt.update: # update all models (to fix SourceChangeWarning)
180 | for opt.weights in ['yolov7.pt']:
181 | detect()
182 | strip_optimizer(opt.weights)
183 | else:
184 | detect()
185 |
--------------------------------------------------------------------------------
/figure/image1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/image1.jpg
--------------------------------------------------------------------------------
/figure/image1_trt.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/image1_trt.jpg
--------------------------------------------------------------------------------
/figure/image2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/image2.jpg
--------------------------------------------------------------------------------
/figure/image2_trt.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/image2_trt.jpg
--------------------------------------------------------------------------------
/figure/image3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/image3.jpg
--------------------------------------------------------------------------------
/figure/image3_trt.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/image3_trt.jpg
--------------------------------------------------------------------------------
/figure/onnx.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/onnx.png
--------------------------------------------------------------------------------
/figure/onnx_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/onnx_0.png
--------------------------------------------------------------------------------
/figure/onnx_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/onnx_1.png
--------------------------------------------------------------------------------
/figure/performance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/figure/performance.png
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | """PyTorch Hub models
2 |
3 | Usage:
4 | import torch
5 | model = torch.hub.load('repo', 'model')
6 | """
7 |
8 | from pathlib import Path
9 |
10 | import torch
11 |
12 | from models.yolo import Model
13 | from utils.general import check_requirements, set_logging
14 | from utils.google_utils import attempt_download
15 | from utils.torch_utils import select_device
16 |
17 | dependencies = ['torch', 'yaml']
18 | check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
19 | set_logging()
20 |
21 |
22 | def create(name, pretrained, channels, classes, autoshape):
23 | """Creates a specified model
24 |
25 | Arguments:
26 | name (str): name of model, i.e. 'yolov7'
27 | pretrained (bool): load pretrained weights into the model
28 | channels (int): number of input channels
29 | classes (int): number of model classes
30 |
31 | Returns:
32 | pytorch model
33 | """
34 | try:
35 | cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
36 | model = Model(cfg, channels, classes)
37 | if pretrained:
38 | fname = f'{name}.pt' # checkpoint filename
39 | attempt_download(fname) # download if not found locally
40 | ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
41 | msd = model.state_dict() # model state_dict
42 | csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
43 | csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
44 | model.load_state_dict(csd, strict=False) # load
45 | if len(ckpt['model'].names) == classes:
46 | model.names = ckpt['model'].names # set class names attribute
47 | if autoshape:
48 | model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
49 | device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
50 | return model.to(device)
51 |
52 | except Exception as e:
53 | s = 'Cache maybe be out of date, try force_reload=True.'
54 | raise Exception(s) from e
55 |
56 |
57 | def custom(path_or_model='path/to/model.pt', autoshape=True):
58 | """custom mode
59 |
60 | Arguments (3 options):
61 | path_or_model (str): 'path/to/model.pt'
62 | path_or_model (dict): torch.load('path/to/model.pt')
63 | path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
64 |
65 | Returns:
66 | pytorch model
67 | """
68 | model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
69 | if isinstance(model, dict):
70 | model = model['ema' if model.get('ema') else 'model'] # load model
71 |
72 | hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
73 | hub_model.load_state_dict(model.float().state_dict()) # load state_dict
74 | hub_model.names = model.names # class names
75 | if autoshape:
76 | hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
77 | device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
78 | return hub_model.to(device)
79 |
80 |
81 | def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
82 | return create('yolov7', pretrained, channels, classes, autoshape)
83 |
84 |
85 | if __name__ == '__main__':
86 | model = custom(path_or_model='yolov7.pt') # custom example
87 | # model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
88 |
89 | # Verify inference
90 | import numpy as np
91 | from PIL import Image
92 |
93 | imgs = [np.zeros((640, 480, 3))]
94 |
95 | results = model(imgs) # batched inference
96 | results.print()
97 | results.save()
98 |
--------------------------------------------------------------------------------
/inference.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import time
3 | from pathlib import Path
4 | import os
5 | import numpy as np
6 |
7 | import cv2
8 | import torch
9 | import torch.backends.cudnn as cudnn
10 | from numpy import random
11 |
12 | from models.experimental import attempt_load
13 | from utils.datasets import LoadStreams, LoadImages,letterbox
14 | from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
15 | scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
16 | from utils.plots import plot_one_box
17 | from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
18 |
19 |
20 | half = False
21 | save_img = True
22 | save_txt = True
23 |
24 | conf_thres = 0.25
25 | iou_thres=0.45
26 |
27 | weights = "./runs/train/yolov7/weights/last.pt"
28 |
29 | test_path = "./test_img"
30 |
31 | device = select_device("0")
32 | model = attempt_load(weights, map_location=device) # load FP32 model
33 |
34 | if half:
35 | model.half() # to FP16
36 |
37 | # stride = int(model.stride.max()) # model stride
38 | # imgsz = check_img_size(imgsz, s=stride) # check img_size
39 |
40 | # Get names and colors
41 | names = model.module.names if hasattr(model, 'module') else model.names
42 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
43 |
44 |
45 | files = os.listdir(test_path)
46 |
47 | for file in files:
48 | img_path = os.path.join(test_path,file)
49 | img0 = cv2.imread(img_path)
50 | img = letterbox(img0,new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32)[0]
51 |
52 | # Convert
53 | img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
54 | img = np.ascontiguousarray(img)
55 |
56 | img = torch.from_numpy(img).to(device)
57 | img = img.half() if half else img.float() # uint8 to fp16/32
58 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
59 | if img.ndimension() == 3:
60 | img = img.unsqueeze(0)
61 |
62 |
63 | pred = model(img, augment=False)[0]
64 |
65 | # Apply NMS
66 | # (center x, center y, width, height)
67 | pred = non_max_suppression(pred, conf_thres=conf_thres, iou_thres=iou_thres, classes=None, agnostic=False)
68 |
69 |
70 | # Process detections
71 | for i, det in enumerate(pred): # detections per image
72 | save_path = os.path.join("./res",file)
73 | txt_path = os.path.join("./res/labels",file[:-4])
74 |
75 | gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh
76 |
77 | if len(det):
78 | # Rescale boxes from img_size to im0 size
79 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round() # 映射到原图,这个可以在NMS后做
80 |
81 | # # Print results
82 | # for c in det[:, -1].unique():
83 | # n = (det[:, -1] == c).sum() # detections per class
84 | # s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
85 |
86 | # Write results
87 | for *xyxy, conf, cls in reversed(det):
88 | if save_txt: # Write to file
89 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
90 | # line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
91 | line = (cls, *xywh, conf) # label format
92 |
93 | with open(txt_path + '.txt', 'a') as f:
94 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
95 |
96 | if save_img: # Add bbox to image
97 | label = f'{names[int(cls)]} {conf:.2f}'
98 | plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=3)
99 |
100 | # Print time (inference + NMS)
101 | #print(f'{s}Done. ({t2 - t1:.3f}s)')
102 |
103 | # # Stream results
104 | # if view_img:
105 | # cv2.imshow(str(p), im0)
106 | # cv2.waitKey(1) # 1 millisecond
107 |
108 | # Save results (image with detections)
109 | if save_img:
110 | cv2.imwrite(save_path, img0)
111 | print(file)
112 |
113 |
114 |
115 |
116 |
117 |
--------------------------------------------------------------------------------
/inference/images/horses.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/inference/images/horses.jpg
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn as nn
4 |
5 | from models.common import Conv, DWConv
6 | from utils.google_utils import attempt_download
7 |
8 |
9 | class CrossConv(nn.Module):
10 | # Cross Convolution Downsample
11 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
12 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
13 | super(CrossConv, self).__init__()
14 | c_ = int(c2 * e) # hidden channels
15 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
16 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
17 | self.add = shortcut and c1 == c2
18 |
19 | def forward(self, x):
20 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
21 |
22 |
23 | class Sum(nn.Module):
24 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
25 | def __init__(self, n, weight=False): # n: number of inputs
26 | super(Sum, self).__init__()
27 | self.weight = weight # apply weights boolean
28 | self.iter = range(n - 1) # iter object
29 | if weight:
30 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
31 |
32 | def forward(self, x):
33 | y = x[0] # no weight
34 | if self.weight:
35 | w = torch.sigmoid(self.w) * 2
36 | for i in self.iter:
37 | y = y + x[i + 1] * w[i]
38 | else:
39 | for i in self.iter:
40 | y = y + x[i + 1]
41 | return y
42 |
43 |
44 | class MixConv2d(nn.Module):
45 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
46 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
47 | super(MixConv2d, self).__init__()
48 | groups = len(k)
49 | if equal_ch: # equal c_ per group
50 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
51 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
52 | else: # equal weight.numel() per group
53 | b = [c2] + [0] * groups
54 | a = np.eye(groups + 1, groups, k=-1)
55 | a -= np.roll(a, 1, axis=1)
56 | a *= np.array(k) ** 2
57 | a[0] = 1
58 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
59 |
60 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
61 | self.bn = nn.BatchNorm2d(c2)
62 | self.act = nn.LeakyReLU(0.1, inplace=True)
63 |
64 | def forward(self, x):
65 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
66 |
67 |
68 | class Ensemble(nn.ModuleList):
69 | # Ensemble of models
70 | def __init__(self):
71 | super(Ensemble, self).__init__()
72 |
73 | def forward(self, x, augment=False):
74 | y = []
75 | for module in self:
76 | y.append(module(x, augment)[0])
77 | # y = torch.stack(y).max(0)[0] # max ensemble
78 | # y = torch.stack(y).mean(0) # mean ensemble
79 | y = torch.cat(y, 1) # nms ensemble
80 | return y, None # inference, train output
81 |
82 |
83 | def attempt_load(weights, map_location=None):
84 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
85 | model = Ensemble()
86 | for w in weights if isinstance(weights, list) else [weights]:
87 | attempt_download(w)
88 | ckpt = torch.load(w, map_location=map_location) # load
89 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
90 |
91 | # Compatibility updates
92 | for m in model.modules():
93 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
94 | m.inplace = True # pytorch 1.7.0 compatibility
95 | elif type(m) is nn.Upsample:
96 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
97 | elif type(m) is Conv:
98 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
99 |
100 | if len(model) == 1:
101 | return model[-1] # return model
102 | else:
103 | print('Ensemble created with %s\n' % weights)
104 | for k in ['names', 'stride']:
105 | setattr(model, k, getattr(model[-1], k))
106 | return model # return ensemble
107 |
--------------------------------------------------------------------------------
/models/export.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import sys
3 | import time
4 |
5 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
6 |
7 | import torch
8 | import torch.nn as nn
9 |
10 | import models
11 | from models.experimental import attempt_load
12 | from utils.activations import Hardswish, SiLU
13 | from utils.general import set_logging, check_img_size
14 | from utils.torch_utils import select_device
15 |
16 | if __name__ == '__main__':
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
19 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
20 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
21 | parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
22 | parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
23 | parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
24 | opt = parser.parse_args()
25 | opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
26 | print(opt)
27 | set_logging()
28 | t = time.time()
29 |
30 | # Load PyTorch model
31 | device = select_device(opt.device)
32 | model = attempt_load(opt.weights, map_location=device) # load FP32 model
33 | labels = model.names
34 |
35 | # Checks
36 | gs = int(max(model.stride)) # grid size (max stride)
37 | opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
38 |
39 | # Input
40 | img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
41 |
42 | # Update model
43 | for k, m in model.named_modules():
44 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
45 | if isinstance(m, models.common.Conv): # assign export-friendly activations
46 | if isinstance(m.act, nn.Hardswish):
47 | m.act = Hardswish()
48 | elif isinstance(m.act, nn.SiLU):
49 | m.act = SiLU()
50 | # elif isinstance(m, models.yolo.Detect):
51 | # m.forward = m.forward_export # assign forward (optional)
52 | model.model[-1].export = not opt.grid # set Detect() layer grid export
53 | y = model(img) # dry run
54 |
55 | # TorchScript export
56 | try:
57 | print('\nStarting TorchScript export with torch %s...' % torch.__version__)
58 | f = opt.weights.replace('.pt', '.torchscript.pt') # filename
59 | ts = torch.jit.trace(model, img, strict=False)
60 | ts.save(f)
61 | print('TorchScript export success, saved as %s' % f)
62 | except Exception as e:
63 | print('TorchScript export failure: %s' % e)
64 |
65 | # ONNX export
66 | try:
67 | import onnx
68 |
69 | print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
70 | f = opt.weights.replace('.pt', '.onnx') # filename
71 | torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
72 | output_names=['classes', 'boxes'] if y is None else ['output'],
73 | dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
74 | 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
75 |
76 | # Checks
77 | onnx_model = onnx.load(f) # load onnx model
78 | onnx.checker.check_model(onnx_model) # check onnx model
79 | # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
80 | print('ONNX export success, saved as %s' % f)
81 | except Exception as e:
82 | print('ONNX export failure: %s' % e)
83 |
84 | # CoreML export
85 | try:
86 | import coremltools as ct
87 |
88 | print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
89 | # convert model from torchscript and apply pixel scaling as per detect.py
90 | model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
91 | f = opt.weights.replace('.pt', '.mlmodel') # filename
92 | model.save(f)
93 | print('CoreML export success, saved as %s' % f)
94 | except Exception as e:
95 | print('CoreML export failure: %s' % e)
96 |
97 | # Finish
98 | print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
99 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # Usage: pip install -r requirements.txt
2 |
3 | # Base ----------------------------------------
4 | matplotlib>=3.2.2
5 | seaborn
6 | numpy>=1.18.5
7 | opencv-python>=4.1.1
8 | Pillow>=7.1.2
9 | PyYAML>=5.3.1
10 | requests>=2.23.0
11 | scipy>=1.4.1
12 | torch>=1.7.0,!=1.12.0
13 | torchvision>=0.8.1,!=0.13.0
14 | tqdm>=4.41.0
15 | protobuf<4.21.3
16 | opencv-contrib-python
17 |
18 | # Logging -------------------------------------
19 | tensorboard>=2.4.1
20 | # wandb
21 |
22 | # Plotting ------------------------------------
23 | pandas>=1.1.4
24 | seaborn>=0.11.0
25 |
26 | # Export --------------------------------------
27 | # coremltools>=4.1 # CoreML export
28 | # onnx>=1.9.0 # ONNX export
29 | # onnx-simplifier>=0.3.6 # ONNX simplifier
30 | # scikit-learn==0.19.2 # CoreML quantization
31 | # tensorflow>=2.4.1 # TFLite export
32 | # tensorflowjs>=3.9.0 # TF.js export
33 | # openvino-dev # OpenVINO export
34 |
35 | # Extras --------------------------------------
36 | ipython # interactive notebook
37 | psutil # system utilization
38 | thop # FLOPs computation
39 | # albumentations>=1.0.3
40 | # pycocotools>=2.0 # COCO mAP
41 | # roboflow
42 |
--------------------------------------------------------------------------------
/scripts/get_coco.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # COCO 2017 dataset http://cocodataset.org
3 | # Download command: bash ./scripts/get_coco.sh
4 |
5 | # Download/unzip labels
6 | d='./' # unzip directory
7 | url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
8 | f='coco2017labels-segments.zip' # or 'coco2017labels.zip', 68 MB
9 | echo 'Downloading' $url$f ' ...'
10 | curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
11 |
12 | # Download/unzip images
13 | d='./coco/images' # unzip directory
14 | url=http://images.cocodataset.org/zips/
15 | f1='train2017.zip' # 19G, 118k images
16 | f2='val2017.zip' # 1G, 5k images
17 | f3='test2017.zip' # 7G, 41k images (optional)
18 | for f in $f1 $f2 $f3; do
19 | echo 'Downloading' $url$f '...'
20 | curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
21 | done
22 | wait # finish background tasks
23 |
--------------------------------------------------------------------------------
/tensorrt/yolov7.cpp:
--------------------------------------------------------------------------------
1 | // xujing
2 | // 2021-12-19
3 | //把YOLOv5的后处理通过NMSPluin 和网络一体调用
4 | // 没有了后处理
5 |
6 |
7 | #include
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 |
14 | #include
15 | #include "opencv2/highgui/highgui.hpp"
16 | #include "opencv2/imgproc/imgproc.hpp"
17 |
18 | #include "cuda_runtime_api.h"
19 | #include "NvOnnxParser.h"
20 | #include "NvInfer.h"
21 | #include "NvInferPlugin.h"
22 |
23 | #include
24 | #include "logging.h"
25 |
26 | using namespace sample;
27 |
28 | #define BATCH_SIZE 1
29 | #define INPUT_W 640
30 | #define INPUT_H 640
31 | #define INPUT_SIZE 640
32 | #define IsPadding 1
33 | //#define NUM_CLASS 20
34 | //#define NMS_THRESH 0.45
35 | //#define CONF_THRESH 0.25
36 | //#define PROB_THRESH 0.80
37 |
38 | using namespace std;
39 | using namespace cv;
40 |
41 | std::vector class_names = { "person","cat","dog","horse" };
42 |
43 |
44 | // 中点坐标宽高
45 | struct Bbox {
46 | float x;
47 | float y;
48 | float w;
49 | float h;
50 | float score;
51 | int classes;
52 | };
53 |
54 | //前处理
55 |
56 | void preprocess(cv::Mat& img, float data[]) {
57 | int w, h, x, y;
58 | float r_w = INPUT_W / (img.cols*1.0);
59 | float r_h = INPUT_H / (img.rows*1.0);
60 | if (r_h > r_w) {
61 | w = INPUT_W;
62 | h = r_w * img.rows;
63 | x = 0;
64 | y = (INPUT_H - h) / 2;
65 | }
66 | else {
67 | w = r_h * img.cols;
68 | h = INPUT_H;
69 | x = (INPUT_W - w) / 2;
70 | y = 0;
71 | }
72 | cv::Mat re(h, w, CV_8UC3);
73 | cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
74 | //cudaResize(img, re);
75 | cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(114, 114, 114));
76 | re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
77 |
78 | int i = 0;
79 | for (int row = 0; row < INPUT_H; ++row) {
80 | uchar* uc_pixel = out.data + row * out.step;
81 | for (int col = 0; col < INPUT_W; ++col) {
82 | data[i] = (float)uc_pixel[2] / 255.0;
83 | data[i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
84 | data[i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
85 | uc_pixel += 3;
86 | ++i;
87 | }
88 | }
89 |
90 | }
91 |
92 | //只需把box映射回原图
93 | std::vector rescale_box(std::vector &out, int width, int height) {
94 | float gain = 640.0 / std::max(width, height);
95 | float pad_x = (640.0 - width * gain) / 2;
96 | float pad_y = (640.0 - height * gain) / 2;
97 |
98 | std::vector boxs;
99 | Bbox box;
100 | for (int i = 0; i < (int)out.size(); i++) {
101 | box.x = (out[i].x - pad_x) / gain;
102 | box.y = (out[i].y - pad_y) / gain;
103 | box.w = out[i].w / gain;
104 | box.h = out[i].h / gain;
105 | box.score = out[i].score;
106 | box.classes = out[i].classes;
107 |
108 | boxs.push_back(box);
109 | }
110 |
111 | return boxs;
112 |
113 | }
114 |
115 | //可视化
116 | cv::Mat renderBoundingBox(cv::Mat image, const std::vector &bboxes) {
117 | for (const auto &rect : bboxes)
118 | {
119 |
120 | cv::Rect rst(rect.x - rect.w / 2, rect.y - rect.h / 2, rect.w, rect.h);
121 | cv::rectangle(image, rst, cv::Scalar(255, 204, 0), 2, cv::LINE_8, 0);
122 | //cv::rectangle(image, cv::Point(rect.x - rect.w / 2, rect.y - rect.h / 2), cv::Point(rect.x + rect.w / 2, rect.y + rect.h / 2), cv::Scalar(255, 204,0), 3);
123 |
124 | int baseLine;
125 | std::string label = class_names[rect.classes] + ": " + std::to_string(rect.score * 100).substr(0, 4) + "%";
126 |
127 | cv::Size labelSize = getTextSize(label, cv::FONT_HERSHEY_TRIPLEX, 0.5, 1, &baseLine);
128 | //int newY = std::max(rect.y, labelSize.height);
129 | rectangle(image, cv::Point(rect.x - rect.w / 2, rect.y - rect.h / 2 - round(1.5*labelSize.height)),
130 | cv::Point(rect.x - rect.w / 2 + round(1.0*labelSize.width), rect.y - rect.h / 2 + baseLine), cv::Scalar(255, 204, 0), cv::FILLED);
131 | cv::putText(image, label, cv::Point(rect.x - rect.w / 2, rect.y - rect.h / 2), cv::FONT_HERSHEY_TRIPLEX, 0.5, cv::Scalar(0, 204, 255));
132 |
133 |
134 | }
135 | return image;
136 | }
137 |
138 |
139 | float h_input[INPUT_SIZE * INPUT_SIZE * 3];
140 | int h_output_0[1]; //1
141 | float h_output_1[1 * 20 * 4]; //1
142 | float h_output_2[1 * 20]; //1
143 | float h_output_3[1 * 20]; //1
144 |
145 |
146 | int main()
147 | {
148 | Logger gLogger;
149 | //初始化插件,调用plugin必须初始化plugin respo
150 | nvinfer1:initLibNvInferPlugins(&gLogger, "");
151 |
152 |
153 | nvinfer1::IRuntime* engine_runtime = nvinfer1::createInferRuntime(gLogger);
154 | std::string engine_filepath = "./model/yolov7.engine";
155 |
156 | std::ifstream file;
157 | file.open(engine_filepath, std::ios::binary | std::ios::in);
158 | file.seekg(0, std::ios::end);
159 | int length = file.tellg();
160 | file.seekg(0, std::ios::beg);
161 |
162 | std::shared_ptr data(new char[length], std::default_delete());
163 | file.read(data.get(), length);
164 | file.close();
165 |
166 | //nvinfer1::ICudaEngine* engine_infer = engine_runtime->deserializeCudaEngine(cached_engine.data(), cached_engine.size(), nullptr);
167 | nvinfer1::ICudaEngine* engine_infer = engine_runtime->deserializeCudaEngine(data.get(), length, nullptr);
168 | nvinfer1::IExecutionContext* engine_context = engine_infer->createExecutionContext();
169 |
170 | int input_index = engine_infer->getBindingIndex("images"); //1x3x640x640
171 | //std::string input_name = engine_infer->getBindingName(0)
172 | int output_index_1 = engine_infer->getBindingIndex("num_detections"); //1
173 | int output_index_2 = engine_infer->getBindingIndex("nmsed_boxes"); // 2
174 | int output_index_3 = engine_infer->getBindingIndex("nmsed_scores"); //3
175 | int output_index_4 = engine_infer->getBindingIndex("nmsed_classes"); //5
176 |
177 |
178 | std::cout << "输入的index: " << input_index << " 输出的num_detections-> " << output_index_1 << " 输出的nmsed_boxes-> " << output_index_2
179 | << " 输出的nmsed_scores-> " << output_index_3 << " 输出的nmsed_classes-> " << output_index_4 << std::endl;
180 |
181 | if (engine_context == nullptr)
182 | {
183 | std::cerr << "Failed to create TensorRT Execution Context." << std::endl;
184 | }
185 |
186 | // cached_engine->destroy();
187 | std::cout << "loaded trt model , do inference" << std::endl;
188 |
189 |
190 | cv::String pattern = "./test/*.jpg";
191 | std::vector fn;
192 | cv::glob(pattern, fn, false);
193 | std::vector images;
194 | size_t count = fn.size(); //number of png files in images folde
195 |
196 | std::cout << count << std::endl;
197 |
198 | for (size_t i = 0; i < count; i++)
199 | {
200 | cv::Mat image = cv::imread(fn[i]);
201 | cv::Mat image_origin = image.clone();
202 |
203 | ////cv2读图片
204 | //cv::Mat image;
205 | //image = cv::imread("./test.jpg", 1);
206 | std::cout << fn[i] << std::endl;
207 |
208 | preprocess(image, h_input);
209 |
210 | void* buffers[5];
211 | cudaMalloc(&buffers[0], INPUT_SIZE * INPUT_SIZE * 3 * sizeof(float)); //<- input
212 | cudaMalloc(&buffers[1], 1 * sizeof(int)); //<- num_detections
213 | cudaMalloc(&buffers[2], 1 * 20 * 4 * sizeof(float)); //<- nmsed_boxes
214 | cudaMalloc(&buffers[3], 1 * 20 * sizeof(float)); //<- nmsed_scores
215 | cudaMalloc(&buffers[4], 1 * 20 * sizeof(float)); //<- nmsed_classes
216 |
217 | cudaMemcpy(buffers[0], h_input, INPUT_SIZE * INPUT_SIZE * 3 * sizeof(float), cudaMemcpyHostToDevice);
218 |
219 | // -- do execute --------//
220 | engine_context->executeV2(buffers);
221 |
222 | cudaMemcpy(h_output_0, buffers[1], 1 * sizeof(int), cudaMemcpyDeviceToHost);
223 | cudaMemcpy(h_output_1, buffers[2], 1 * 20 * 4 * sizeof(float), cudaMemcpyDeviceToHost);
224 | cudaMemcpy(h_output_2, buffers[3], 1 * 20 * sizeof(float), cudaMemcpyDeviceToHost);
225 | cudaMemcpy(h_output_3, buffers[4], 1 * 20 * sizeof(float), cudaMemcpyDeviceToHost);
226 |
227 | std::cout << h_output_0[0] << std::endl;
228 | std::vector pred_box;
229 | for (int i = 0; i < h_output_0[0]; i++) {
230 |
231 | Bbox box;
232 | box.x = (h_output_1[i * 4 + 2] + h_output_1[i * 4]) / 2.0;
233 | box.y = (h_output_1[i * 4 + 3] + h_output_1[i * 4 + 1]) / 2.0;
234 | box.w = h_output_1[i * 4 + 2] - h_output_1[i * 4];
235 | box.h = h_output_1[i * 4 + 3] - h_output_1[i * 4 + 1];
236 | box.score = h_output_2[i];
237 | box.classes = (int)h_output_3[i];
238 |
239 | std::cout << box.classes << "," << box.score << std::endl;
240 |
241 | pred_box.push_back(box);
242 |
243 |
244 | }
245 |
246 | std::vector out = rescale_box(pred_box, image.cols, image.rows);
247 |
248 | cv::Mat img = renderBoundingBox(image, out);
249 |
250 | //cv::imwrite("final.jpg", img);
251 |
252 | cv::namedWindow("Image", 1);//创建窗口
253 | cv::imshow("Image", img);//显示图像
254 |
255 | cv::waitKey(0); //等待按键
256 |
257 | std::string x = fn[i].substr(6);
258 | std::cout << x << std::endl;
259 | std::string save_index = "./res/" + x;
260 | cv::imwrite(save_index, img);
261 |
262 | cudaFree(buffers[0]);
263 | cudaFree(buffers[1]);
264 | cudaFree(buffers[2]);
265 | cudaFree(buffers[3]);
266 | cudaFree(buffers[4]);
267 |
268 |
269 |
270 | }
271 |
272 | engine_runtime->destroy();
273 | engine_infer->destroy();
274 |
275 | return 0;
276 | }
277 |
278 |
--------------------------------------------------------------------------------
/tensorrt/yolov7_add_nms.py:
--------------------------------------------------------------------------------
1 | '''
2 | xujing
3 |
4 | 把NMSPlugin对应的结点添加到 ONNX
5 |
6 | '''
7 | import onnx_graphsurgeon as gs
8 | import argparse
9 | import onnx
10 | import numpy as np
11 |
12 | def create_and_add_plugin_node(graph, topK, keepTopK):
13 |
14 | batch_size = graph.inputs[0].shape[0]
15 | print("The batch size is: ", batch_size)
16 | input_h = graph.inputs[0].shape[2]
17 | input_w = graph.inputs[0].shape[3]
18 |
19 | tensors = graph.tensors()
20 | boxes_tensor = tensors["boxes"]
21 | confs_tensor = tensors["scores"]
22 |
23 | num_detections = gs.Variable(name="num_detections").to_variable(dtype=np.int32, shape=[batch_size, 1])
24 | nmsed_boxes = gs.Variable(name="nmsed_boxes").to_variable(dtype=np.float32, shape=[batch_size, keepTopK, 4])
25 | nmsed_scores = gs.Variable(name="nmsed_scores").to_variable(dtype=np.float32, shape=[batch_size, keepTopK])
26 | nmsed_classes = gs.Variable(name="nmsed_classes").to_variable(dtype=np.float32, shape=[batch_size, keepTopK])
27 |
28 | new_outputs = [num_detections, nmsed_boxes, nmsed_scores, nmsed_classes]
29 |
30 | mns_node = gs.Node(
31 | op="BatchedNMS_TRT",
32 | attrs=create_attrs(topK, keepTopK),
33 | inputs=[boxes_tensor, confs_tensor],
34 | outputs=new_outputs)
35 |
36 | graph.nodes.append(mns_node)
37 | graph.outputs = new_outputs
38 |
39 | return graph.cleanup().toposort()
40 |
41 |
42 | def create_attrs(topK, keepTopK):
43 |
44 | # num_anchors = 3
45 |
46 | # h1 = input_h // 8
47 | # h2 = input_h // 16
48 | # h3 = input_h // 32
49 |
50 | # w1 = input_w // 8
51 | # w2 = input_w // 16
52 | # w3 = input_w // 32
53 |
54 | # num_boxes = num_anchors * (h1 * w1 + h2 * w2 + h3 * w3)
55 |
56 | attrs = {}
57 |
58 | attrs["shareLocation"] = 1
59 | attrs["backgroundLabelId"] = -1
60 | attrs["numClasses"] = 4
61 | attrs["topK"] = topK # number of bounding boxes for nms eg 1000s
62 | attrs["keepTopK"] = keepTopK # bounding boxes to be kept per image eg 20
63 | attrs["scoreThreshold"] = 0.20 #0.70
64 | attrs["iouThreshold"] = 0.45
65 | attrs["isNormalized"] = 0
66 | attrs["clipBoxes"] = 0
67 | attrs['scoreBits'] = 16
68 |
69 | # 001 is the default plugin version the parser will search for, and therefore can be omitted,
70 | # but we include it here for illustrative purposes.
71 | attrs["plugin_version"] = "1"
72 |
73 | return attrs
74 |
75 |
76 | def main():
77 | parser = argparse.ArgumentParser(description="Add batchedNMSPlugin")
78 | parser.add_argument("-f", "--model", help="Path to the ONNX model generated by export_model.py", default="./tensorrt/last_1.onnx")
79 | parser.add_argument("-t", "--topK", help="number of bounding boxes for nms", default=1000)
80 | parser.add_argument("-k", "--keepTopK", help="bounding boxes to be kept per image", default=20)
81 |
82 | args, _ = parser.parse_known_args()
83 |
84 | graph = gs.import_onnx(onnx.load(args.model))
85 |
86 | graph = create_and_add_plugin_node(graph, int(args.topK), int(args.keepTopK))
87 |
88 | onnx.save(gs.export_onnx(graph), args.model[:-5] + "_nms.onnx")
89 |
90 |
91 | if __name__ == '__main__':
92 | main()
93 |
94 |
--------------------------------------------------------------------------------
/tensorrt/yolov7_add_postprocess.py:
--------------------------------------------------------------------------------
1 | '''
2 | xujing
3 |
4 | 为了使用batchNMSPlugin!!!
5 |
6 | 给yolov7 的onnx拼接几个操作
7 | 实现将yolov7 的output: [1, 25200,85] # 85在我们这里是9
8 |
9 | 经切片和reshape操作 变为2个节点
10 |
11 | boxes input : [batch_size, number_boxes, number_classes, number_box_parameters]
12 | [x_min, y_min, x_max, y_max]
13 | [8732, 100, 4] 8732个box, 100个类别, 4个坐标
14 | scores input: [batch_size, number_boxes, number_classes]
15 |
16 | # 对于上述问题:
17 |
18 | boxes input: [1,25200, 1, 4]
19 | scores_input: [1, 25200, 80] # 80是类别个数,我们是4个人类别
20 |
21 |
22 | # 需要如何处理呢?
23 |
24 | 85这个维度的排列是:[x1_center,y_center,w,h, prob,80个类别的conf] 4, 1, 80 == [1,25200,4], [1,25200,1], [1,25200,80]
25 |
26 | boxes: [1,25200,1,4] # x_center,y_center, w,h--> x1,y1,x2,y2
27 |
28 | socres: [1,25200,80] # 80个类别的概率
29 |
30 |
31 |
32 | '''
33 |
34 | import onnx_graphsurgeon as gs
35 | import numpy as np
36 | import onnx
37 |
38 | graph = gs.import_onnx(onnx.load("./tensorrt/last.onnx"))
39 |
40 |
41 | # 添加计算类别概率的结点
42 |
43 | # input
44 | origin_output = [node for node in graph.nodes if node.name == "Concat_318"][0]
45 | print(origin_output.outputs)
46 |
47 | starts_wh = gs.Constant("starts_wh",values=np.array([0,0,0],dtype=np.int64))
48 | ends_wh = gs.Constant("ends_wh",values=np.array([1,25200,4],dtype=np.int64))
49 | # axes = gs.Constant("axes",values=np.array([2],dtype=np.int64))
50 | # steps = gs.Constant("steps",values=np.array([4,1,80],dtype=np.int64))
51 | # split = gs.Constant("split",values=np.array([4,1,80],dtype=np.int64))
52 |
53 | starts_object = gs.Constant("starts_object",values=np.array([0,0,4],dtype=np.int64))
54 | ends_object = gs.Constant("ends_object",values=np.array([1,25200,5],dtype=np.int64))
55 |
56 | starts_conf = gs.Constant("starts_conf",values=np.array([0,0,5],dtype=np.int64))
57 | ends_conf = gs.Constant("ends_conf",values=np.array([1,25200,9],dtype=np.int64))
58 |
59 | # output
60 | box_xywh_0 = gs.Variable(name="box_xywh_0",shape=(1,25200,4),dtype=np.float32)
61 | object_prob_0 = gs.Variable(name="object_prob_0",shape=(1,25200,1),dtype=np.float32)
62 | label_conf_0 = gs.Variable(name='label_conf_0',shape=(1,25200,4),dtype=np.float32)
63 |
64 | # trt不支持
65 | # split_node = gs.Node(op="Split",inputs=[origin_output.outputs[0],split],outputs= [ box_xywh_0,object_prob_0,label_conf_0] )
66 | # slice
67 | box_xywh_node = gs.Node(op="Slice",inputs=[origin_output.outputs[0],starts_wh,ends_wh],outputs= [ box_xywh_0])
68 | box_prob_node = gs.Node(op="Slice",inputs=[origin_output.outputs[0],starts_object,ends_object],outputs= [ object_prob_0])
69 | box_conf_node = gs.Node(op="Slice",inputs=[origin_output.outputs[0],starts_conf,ends_conf],outputs= [ label_conf_0])
70 |
71 |
72 | # identity
73 | box_xywh = gs.Variable(name="box_xywh",shape=(1,25200,4),dtype=np.float32)
74 | object_prob = gs.Variable(name="object_prob",shape=(1,25200,1),dtype=np.float32)
75 | label_conf = gs.Variable(name='label_conf',shape=(1,25200,4),dtype=np.float32)
76 |
77 | identity_node_wh = gs.Node(op="Identity",inputs=[box_xywh_0],outputs= [ box_xywh] )
78 | identity_node_prob = gs.Node(op="Identity",inputs=[object_prob_0],outputs= [object_prob] )
79 | identity_node_conf = gs.Node(op="Identity",inputs=[label_conf_0],outputs= [ label_conf] )
80 |
81 |
82 | print(identity_node_wh)
83 |
84 | # graph.nodes.extend([split_node])
85 |
86 | # graph.outputs = [ box_xywh,object_prob,label_conf ]
87 |
88 | # graph.cleanup().toposort()
89 |
90 |
91 |
92 | # onnx.save(gs.export_onnx(graph),"test0.onnx")
93 |
94 |
95 | # #-----------------------重新加载模型-------------
96 |
97 | # graph = gs.import_onnx(onnx.load("./test0.onnx"))
98 |
99 |
100 | # # 添加计算类别概率的结点
101 |
102 | # # input
103 | # origin_output = [node for node in graph.nodes ][-1]
104 | # print(origin_output.outputs)
105 |
106 | # 添加xywh->x1y1x2y2的结点
107 |
108 | # input
109 | starts_1 = gs.Constant("starts_x",values=np.array([0,0,0],dtype=np.int64))
110 | ends_1 = gs.Constant("ends_x",values=np.array([1,25200,1],dtype=np.int64))
111 | # axes_1 = gs.Constant("axes",values=np.array([2],dtype=np.int64))
112 | # steps_1 = gs.Constant("steps",values=np.array([1],dtype=np.int64))
113 |
114 | starts_2 = gs.Constant("starts_y",values=np.array([0,0,1],dtype=np.int64))
115 | ends_2 = gs.Constant("ends_y",values=np.array([1,25200,2],dtype=np.int64))
116 |
117 | starts_3 = gs.Constant("starts_w",values=np.array([0,0,2],dtype=np.int64))
118 | ends_3 = gs.Constant("ends_w",values=np.array([1,25200,3],dtype=np.int64))
119 |
120 | starts_4 = gs.Constant("starts_h",values=np.array([0,0,3],dtype=np.int64))
121 | ends_4 = gs.Constant("ends_h",values=np.array([1,25200,4],dtype=np.int64))
122 |
123 | # output
124 | x = gs.Variable(name="x_center",shape=(1,25200,1),dtype=np.float32)
125 | y = gs.Variable(name="y_center",shape=(1,25200,1),dtype=np.float32)
126 | w = gs.Variable(name="w",shape=(1,25200,1),dtype=np.float32)
127 | h = gs.Variable(name="h",shape=(1,25200,1),dtype=np.float32)
128 |
129 | # xywh_split_node = gs.Node(op="Split",inputs=[box_xywh],outputs= [x,y,w,h] )
130 | x_node = gs.Node(op="Slice",inputs=[box_xywh,starts_1,ends_1],outputs=[x])
131 | y_node = gs.Node(op="Slice",inputs=[box_xywh,starts_2,ends_2],outputs=[y])
132 | w_node = gs.Node(op="Slice",inputs=[box_xywh,starts_3,ends_3],outputs=[w])
133 | h_node = gs.Node(op="Slice",inputs=[box_xywh,starts_4,ends_4],outputs=[h])
134 |
135 |
136 |
137 | # 变换1
138 | # input
139 | div_val = gs.Constant("div_val",values=np.array([2],dtype=np.float32))
140 | div_val_ = gs.Constant("div_val_",values=np.array([-2],dtype=np.float32))
141 | # output
142 | w_ = gs.Variable(name="w_half_",shape=(1,25200,1),dtype=np.float32)
143 | wplus = gs.Variable(name="w_half_plus",shape=(1,25200,1),dtype=np.float32)
144 | h_ = gs.Variable(name="h_half_",shape=(1,25200,1),dtype=np.float32)
145 | hplus = gs.Variable(name="h_half_plus",shape=(1,25200,1),dtype=np.float32)
146 |
147 |
148 | w_node_ = gs.Node(op="Div",inputs=[w,div_val_],outputs= [w_] )
149 | w_node_plus = gs.Node(op="Div",inputs=[w,div_val],outputs= [wplus] )
150 | h_node_ = gs.Node(op="Div",inputs=[h,div_val_],outputs= [h_] )
151 | h_node_plus = gs.Node(op="Div",inputs=[h,div_val],outputs= [hplus] )
152 |
153 |
154 | #变换2
155 | # output
156 | x1 = gs.Variable(name="x1",shape=(1,25200,1),dtype=np.float32)
157 | y1 = gs.Variable(name="y1",shape=(1,25200,1),dtype=np.float32)
158 | x2 = gs.Variable(name="x2",shape=(1,25200,1),dtype=np.float32)
159 | y2 = gs.Variable(name="y2",shape=(1,25200,1),dtype=np.float32)
160 |
161 |
162 | x1_node = gs.Node(op="Add",inputs=[x,w_],outputs= [x1] )
163 | x2_node = gs.Node(op="Add",inputs=[x,wplus],outputs= [x2] )
164 | y1_node = gs.Node(op="Add",inputs=[y,h_],outputs= [y1] )
165 | y2_node= gs.Node(op="Add",inputs=[y,hplus],outputs= [y2] )
166 |
167 |
168 | # concat
169 | # output
170 |
171 | boxes_0 = gs.Variable(name="boxes_0",shape=(1,25200,4),dtype=np.float32)
172 |
173 | # print(help(gs.Node))
174 |
175 | boxes_node_0 = gs.Node(op="Concat",inputs=[x1,y1,x2,y2],outputs= [boxes_0] ,attrs={"axis":2})
176 | # print(boxes_node_0)
177 |
178 | # # Unsqueeze tensorrt不支持
179 | # axis_squeeze = gs.Constant("axes",values=np.array([2],dtype=np.int64))
180 | shapes = gs.Constant("shape",values=np.array([1,25200,1,4],dtype=np.int64))
181 |
182 | # output
183 | boxes = gs.Variable(name="boxes",shape=(1,25200,1,4),dtype=np.float32)
184 |
185 |
186 | # boxes_node = gs.Node(op="Unsqueeze",inputs=[boxes_0,axis_squeeze],outputs= [boxes])
187 | # print(boxes_node)
188 | boxes_node = gs.Node(op="Reshape",inputs=[boxes_0,shapes],outputs= [boxes])
189 |
190 | #----处理prob
191 | scores = gs.Variable(name="scores",shape=(1,25200,4),dtype=np.float32)
192 |
193 | # Mul是矩阵中逐点相乘
194 | scores_node = gs.Node(op="Mul",inputs=[label_conf,object_prob],outputs=[scores])
195 |
196 |
197 | graph.nodes.extend([box_xywh_node,box_prob_node,box_conf_node,identity_node_wh,identity_node_prob,identity_node_conf,
198 | x_node,y_node,w_node,h_node,
199 | w_node_,w_node_plus,h_node_,h_node_plus,x1_node,x2_node,y1_node,y2_node,boxes_node_0,boxes_node,scores_node])
200 | # graph.nodes.extend([split_node,xywh_split_node,w_node_,w_node_plus,h_node_,h_node_plus,x1_node,x2_node,y1_node,y2_node,boxes_node,scores_node])
201 |
202 | graph.outputs = [ boxes,scores ]
203 |
204 | graph.cleanup().toposort()
205 |
206 |
207 | onnx.save(gs.export_onnx(graph),"./last_1.onnx")
208 |
209 |
--------------------------------------------------------------------------------
/test_img/image1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/test_img/image1.jpg
--------------------------------------------------------------------------------
/test_img/image2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/test_img/image2.jpg
--------------------------------------------------------------------------------
/test_img/image3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/DataXujing/YOLOv7/5b16e7970d4a8661ebfab3d382b832dfff6049f1/test_img/image3.jpg
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | # Activation functions
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 |
8 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9 | class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10 | @staticmethod
11 | def forward(x):
12 | return x * torch.sigmoid(x)
13 |
14 |
15 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16 | @staticmethod
17 | def forward(x):
18 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
19 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20 |
21 |
22 | class MemoryEfficientSwish(nn.Module):
23 | class F(torch.autograd.Function):
24 | @staticmethod
25 | def forward(ctx, x):
26 | ctx.save_for_backward(x)
27 | return x * torch.sigmoid(x)
28 |
29 | @staticmethod
30 | def backward(ctx, grad_output):
31 | x = ctx.saved_tensors[0]
32 | sx = torch.sigmoid(x)
33 | return grad_output * (sx * (1 + x * (1 - sx)))
34 |
35 | def forward(self, x):
36 | return self.F.apply(x)
37 |
38 |
39 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40 | class Mish(nn.Module):
41 | @staticmethod
42 | def forward(x):
43 | return x * F.softplus(x).tanh()
44 |
45 |
46 | class MemoryEfficientMish(nn.Module):
47 | class F(torch.autograd.Function):
48 | @staticmethod
49 | def forward(ctx, x):
50 | ctx.save_for_backward(x)
51 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52 |
53 | @staticmethod
54 | def backward(ctx, grad_output):
55 | x = ctx.saved_tensors[0]
56 | sx = torch.sigmoid(x)
57 | fx = F.softplus(x).tanh()
58 | return grad_output * (fx + x * sx * (1 - fx * fx))
59 |
60 | def forward(self, x):
61 | return self.F.apply(x)
62 |
63 |
64 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65 | class FReLU(nn.Module):
66 | def __init__(self, c1, k=3): # ch_in, kernel
67 | super().__init__()
68 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69 | self.bn = nn.BatchNorm2d(c1)
70 |
71 | def forward(self, x):
72 | return torch.max(x, self.bn(self.conv(x)))
73 |
--------------------------------------------------------------------------------
/utils/autoanchor.py:
--------------------------------------------------------------------------------
1 | # Auto-anchor utils
2 |
3 | import numpy as np
4 | import torch
5 | import yaml
6 | from scipy.cluster.vq import kmeans
7 | from tqdm import tqdm
8 |
9 | from utils.general import colorstr
10 |
11 |
12 | def check_anchor_order(m):
13 | # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area
15 | da = a[-1] - a[0] # delta a
16 | ds = m.stride[-1] - m.stride[0] # delta s
17 | if da.sign() != ds.sign(): # same order
18 | print('Reversing anchor order')
19 | m.anchors[:] = m.anchors.flip(0)
20 | m.anchor_grid[:] = m.anchor_grid.flip(0)
21 |
22 |
23 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
24 | # Check anchor fit to data, recompute if necessary
25 | prefix = colorstr('autoanchor: ')
26 | print(f'\n{prefix}Analyzing anchors... ', end='')
27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31 |
32 | def metric(k): # compute metric
33 | r = wh[:, None] / k[None]
34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35 | best = x.max(1)[0] # best_x
36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37 | bpr = (best > 1. / thr).float().mean() # best possible recall
38 | return bpr, aat
39 |
40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41 | bpr, aat = metric(anchors)
42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43 | if bpr < 0.98: # threshold to recompute
44 | print('. Attempting to improve anchors, please wait...')
45 | na = m.anchor_grid.numel() // 2 # number of anchors
46 | try:
47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48 | except Exception as e:
49 | print(f'{prefix}ERROR: {e}')
50 | new_bpr = metric(anchors)[0]
51 | if new_bpr > bpr: # replace anchors
52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
55 | check_anchor_order(m)
56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57 | else:
58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59 | print('') # newline
60 |
61 |
62 | def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63 | """ Creates kmeans-evolved anchors from training dataset
64 |
65 | Arguments:
66 | path: path to dataset *.yaml, or a loaded dataset
67 | n: number of anchors
68 | img_size: image size used for training
69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70 | gen: generations to evolve anchors using genetic algorithm
71 | verbose: print all results
72 |
73 | Return:
74 | k: kmeans evolved anchors
75 |
76 | Usage:
77 | from utils.autoanchor import *; _ = kmean_anchors()
78 | """
79 | thr = 1. / thr
80 | prefix = colorstr('autoanchor: ')
81 |
82 | def metric(k, wh): # compute metrics
83 | r = wh[:, None] / k[None]
84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
86 | return x, x.max(1)[0] # x, best_x
87 |
88 | def anchor_fitness(k): # mutation fitness
89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90 | return (best * (best > thr).float()).mean() # fitness
91 |
92 | def print_results(k):
93 | k = k[np.argsort(k.prod(1))] # sort small to large
94 | x, best = metric(k, wh0)
95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99 | for i, x in enumerate(k):
100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101 | return k
102 |
103 | if isinstance(path, str): # *.yaml file
104 | with open(path) as f:
105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106 | from utils.datasets import LoadImagesAndLabels
107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108 | else:
109 | dataset = path # dataset
110 |
111 | # Get label wh
112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114 |
115 | # Filter
116 | i = (wh0 < 3.0).any(1).sum()
117 | if i:
118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121 |
122 | # Kmeans calculation
123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124 | s = wh.std(0) # sigmas for whitening
125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127 | k *= s
128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130 | k = print_results(k)
131 |
132 | # Plot
133 | # k, d = [None] * 20, [None] * 20
134 | # for i in tqdm(range(1, 21)):
135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137 | # ax = ax.ravel()
138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142 | # fig.savefig('wh.png', dpi=200)
143 |
144 | # Evolve
145 | npr = np.random
146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148 | for _ in pbar:
149 | v = np.ones(sh)
150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152 | kg = (k.copy() * v).clip(min=2.0)
153 | fg = anchor_fitness(kg)
154 | if fg > f:
155 | f, k = fg, kg.copy()
156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157 | if verbose:
158 | print_results(k)
159 |
160 | return print_results(k)
161 |
--------------------------------------------------------------------------------
/utils/aws/__init__.py:
--------------------------------------------------------------------------------
1 | #init
--------------------------------------------------------------------------------
/utils/aws/mime.sh:
--------------------------------------------------------------------------------
1 | # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2 | # This script will run on every instance restart, not only on first start
3 | # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4 |
5 | Content-Type: multipart/mixed; boundary="//"
6 | MIME-Version: 1.0
7 |
8 | --//
9 | Content-Type: text/cloud-config; charset="us-ascii"
10 | MIME-Version: 1.0
11 | Content-Transfer-Encoding: 7bit
12 | Content-Disposition: attachment; filename="cloud-config.txt"
13 |
14 | #cloud-config
15 | cloud_final_modules:
16 | - [scripts-user, always]
17 |
18 | --//
19 | Content-Type: text/x-shellscript; charset="us-ascii"
20 | MIME-Version: 1.0
21 | Content-Transfer-Encoding: 7bit
22 | Content-Disposition: attachment; filename="userdata.txt"
23 |
24 | #!/bin/bash
25 | # --- paste contents of userdata.sh here ---
26 | --//
27 |
--------------------------------------------------------------------------------
/utils/aws/resume.py:
--------------------------------------------------------------------------------
1 | # Resume all interrupted trainings in yolor/ dir including DDP trainings
2 | # Usage: $ python utils/aws/resume.py
3 |
4 | import os
5 | import sys
6 | from pathlib import Path
7 |
8 | import torch
9 | import yaml
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | port = 0 # --master_port
14 | path = Path('').resolve()
15 | for last in path.rglob('*/**/last.pt'):
16 | ckpt = torch.load(last)
17 | if ckpt['optimizer'] is None:
18 | continue
19 |
20 | # Load opt.yaml
21 | with open(last.parent.parent / 'opt.yaml') as f:
22 | opt = yaml.load(f, Loader=yaml.SafeLoader)
23 |
24 | # Get device count
25 | d = opt['device'].split(',') # devices
26 | nd = len(d) # number of devices
27 | ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28 |
29 | if ddp: # multi-GPU
30 | port += 1
31 | cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32 | else: # single-GPU
33 | cmd = f'python train.py --resume {last}'
34 |
35 | cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36 | print(cmd)
37 | os.system(cmd)
38 |
--------------------------------------------------------------------------------
/utils/aws/userdata.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3 | # This script will run only once on first instance start (for a re-start script see mime.sh)
4 | # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5 | # Use >300 GB SSD
6 |
7 | cd home/ubuntu
8 | if [ ! -d yolor ]; then
9 | echo "Running first-time script." # install dependencies, download COCO, pull Docker
10 | git clone -b paper https://github.com/WongKinYiu/yolor && sudo chmod -R 777 yolor
11 | cd yolor
12 | bash data/scripts/get_coco.sh && echo "Data done." &
13 | sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." &
14 | python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15 | wait && echo "All tasks done." # finish background tasks
16 | else
17 | echo "Running re-start script." # resume interrupted runs
18 | i=0
19 | list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20 | while IFS= read -r id; do
21 | ((i++))
22 | echo "restarting container $i: $id"
23 | sudo docker start $id
24 | # sudo docker exec -it $id python train.py --resume # single-GPU
25 | sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26 | done <<<"$list"
27 | fi
28 |
--------------------------------------------------------------------------------
/utils/google_app_engine/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM gcr.io/google-appengine/python
2 |
3 | # Create a virtualenv for dependencies. This isolates these packages from
4 | # system-level packages.
5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 | RUN virtualenv /env -p python3
7 |
8 | # Setting these environment variables are the same as running
9 | # source /env/bin/activate.
10 | ENV VIRTUAL_ENV /env
11 | ENV PATH /env/bin:$PATH
12 |
13 | RUN apt-get update && apt-get install -y python-opencv
14 |
15 | # Copy the application's requirements.txt and run pip to install all
16 | # dependencies into the virtualenv.
17 | ADD requirements.txt /app/requirements.txt
18 | RUN pip install -r /app/requirements.txt
19 |
20 | # Add the application source code.
21 | ADD . /app
22 |
23 | # Run a WSGI server to serve the application. gunicorn must be declared as
24 | # a dependency in requirements.txt.
25 | CMD gunicorn -b :$PORT main:app
26 |
--------------------------------------------------------------------------------
/utils/google_app_engine/additional_requirements.txt:
--------------------------------------------------------------------------------
1 | # add these requirements in your app on top of the existing ones
2 | pip==18.1
3 | Flask==1.0.2
4 | gunicorn==19.9.0
5 |
--------------------------------------------------------------------------------
/utils/google_app_engine/app.yaml:
--------------------------------------------------------------------------------
1 | runtime: custom
2 | env: flex
3 |
4 | service: yolorapp
5 |
6 | liveness_check:
7 | initial_delay_sec: 600
8 |
9 | manual_scaling:
10 | instances: 1
11 | resources:
12 | cpu: 1
13 | memory_gb: 4
14 | disk_size_gb: 20
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='WongKinYiu/yolov6'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/weights').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov6.pt']
30 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
31 |
32 | name = file.name
33 | if name in assets:
34 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
35 | redundant = False # second download option
36 | try: # GitHub
37 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
38 | print(f'Downloading {url} to {file}...')
39 | torch.hub.download_url_to_file(url, file)
40 | assert file.exists() and file.stat().st_size > 1E6 # check
41 | except Exception as e: # GCP
42 | print(f'Download error: {e}')
43 | assert redundant, 'No secondary mirror'
44 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
45 | print(f'Downloading {url} to {file}...')
46 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
47 | finally:
48 | if not file.exists() or file.stat().st_size < 1E6: # check
49 | file.unlink(missing_ok=True) # remove partial downloads
50 | print(f'ERROR: Download failure: {msg}')
51 | print('')
52 | return
53 |
54 |
55 | def gdrive_download(id='', file='tmp.zip'):
56 | # Downloads a file from Google Drive. from yolov6.utils.google_utils import *; gdrive_download()
57 | t = time.time()
58 | file = Path(file)
59 | cookie = Path('cookie') # gdrive cookie
60 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
61 | file.unlink(missing_ok=True) # remove existing file
62 | cookie.unlink(missing_ok=True) # remove existing cookie
63 |
64 | # Attempt file download
65 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
66 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
67 | if os.path.exists('cookie'): # large file
68 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
69 | else: # small file
70 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
71 | r = os.system(s) # execute, capture return
72 | cookie.unlink(missing_ok=True) # remove existing cookie
73 |
74 | # Error check
75 | if r != 0:
76 | file.unlink(missing_ok=True) # remove partial
77 | print('Download error ') # raise Exception('Download error')
78 | return r
79 |
80 | # Unzip if archive
81 | if file.suffix == '.zip':
82 | print('unzipping... ', end='')
83 | os.system(f'unzip -q {file}') # unzip
84 | file.unlink() # remove zip to free space
85 |
86 | print(f'Done ({time.time() - t:.1f}s)')
87 | return r
88 |
89 |
90 | def get_token(cookie="./cookie"):
91 | with open(cookie) as f:
92 | for line in f:
93 | if "download" in line:
94 | return line.split()[-1]
95 | return ""
96 |
97 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
98 | # # Uploads a file to a bucket
99 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
100 | #
101 | # storage_client = storage.Client()
102 | # bucket = storage_client.get_bucket(bucket_name)
103 | # blob = bucket.blob(destination_blob_name)
104 | #
105 | # blob.upload_from_filename(source_file_name)
106 | #
107 | # print('File {} uploaded to {}.'.format(
108 | # source_file_name,
109 | # destination_blob_name))
110 | #
111 | #
112 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
113 | # # Uploads a blob from a bucket
114 | # storage_client = storage.Client()
115 | # bucket = storage_client.get_bucket(bucket_name)
116 | # blob = bucket.blob(source_blob_name)
117 | #
118 | # blob.download_to_filename(destination_file_name)
119 | #
120 | # print('Blob {} downloaded to {}.'.format(
121 | # source_blob_name,
122 | # destination_file_name))
123 |
--------------------------------------------------------------------------------
/utils/metrics.py:
--------------------------------------------------------------------------------
1 | # Model validation metrics
2 |
3 | from pathlib import Path
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import torch
8 |
9 | from . import general
10 |
11 |
12 | def fitness(x):
13 | # Model fitness as a weighted combination of metrics
14 | w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15 | return (x[:, :4] * w).sum(1)
16 |
17 |
18 | def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
19 | """ Compute the average precision, given the recall and precision curves.
20 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21 | # Arguments
22 | tp: True positives (nparray, nx1 or nx10).
23 | conf: Objectness value from 0-1 (nparray).
24 | pred_cls: Predicted object classes (nparray).
25 | target_cls: True object classes (nparray).
26 | plot: Plot precision-recall curve at mAP@0.5
27 | save_dir: Plot save directory
28 | # Returns
29 | The average precision as computed in py-faster-rcnn.
30 | """
31 |
32 | # Sort by objectness
33 | i = np.argsort(-conf)
34 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35 |
36 | # Find unique classes
37 | unique_classes = np.unique(target_cls)
38 | nc = unique_classes.shape[0] # number of classes, number of detections
39 |
40 | # Create Precision-Recall curve and compute AP for each class
41 | px, py = np.linspace(0, 1, 1000), [] # for plotting
42 | ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43 | for ci, c in enumerate(unique_classes):
44 | i = pred_cls == c
45 | n_l = (target_cls == c).sum() # number of labels
46 | n_p = i.sum() # number of predictions
47 |
48 | if n_p == 0 or n_l == 0:
49 | continue
50 | else:
51 | # Accumulate FPs and TPs
52 | fpc = (1 - tp[i]).cumsum(0)
53 | tpc = tp[i].cumsum(0)
54 |
55 | # Recall
56 | recall = tpc / (n_l + 1e-16) # recall curve
57 | r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58 |
59 | # Precision
60 | precision = tpc / (tpc + fpc) # precision curve
61 | p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62 |
63 | # AP from recall-precision curve
64 | for j in range(tp.shape[1]):
65 | ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
66 | if plot and j == 0:
67 | py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68 |
69 | # Compute F1 (harmonic mean of precision and recall)
70 | f1 = 2 * p * r / (p + r + 1e-16)
71 | if plot:
72 | plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73 | plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74 | plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75 | plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76 |
77 | i = f1.mean(0).argmax() # max F1 index
78 | return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79 |
80 |
81 | def compute_ap(recall, precision):
82 | """ Compute the average precision, given the recall and precision curves
83 | # Arguments
84 | recall: The recall curve (list)
85 | precision: The precision curve (list)
86 | # Returns
87 | Average precision, precision curve, recall curve
88 | """
89 |
90 | # Append sentinel values to beginning and end
91 | mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
92 | mpre = np.concatenate(([1.], precision, [0.]))
93 |
94 | # Compute the precision envelope
95 | mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
96 |
97 | # Integrate area under curve
98 | method = 'interp' # methods: 'continuous', 'interp'
99 | if method == 'interp':
100 | x = np.linspace(0, 1, 101) # 101-point interp (COCO)
101 | ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
102 | else: # 'continuous'
103 | i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
104 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
105 |
106 | return ap, mpre, mrec
107 |
108 |
109 | class ConfusionMatrix:
110 | # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
111 | def __init__(self, nc, conf=0.25, iou_thres=0.45):
112 | self.matrix = np.zeros((nc + 1, nc + 1))
113 | self.nc = nc # number of classes
114 | self.conf = conf
115 | self.iou_thres = iou_thres
116 |
117 | def process_batch(self, detections, labels):
118 | """
119 | Return intersection-over-union (Jaccard index) of boxes.
120 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
121 | Arguments:
122 | detections (Array[N, 6]), x1, y1, x2, y2, conf, class
123 | labels (Array[M, 5]), class, x1, y1, x2, y2
124 | Returns:
125 | None, updates confusion matrix accordingly
126 | """
127 | detections = detections[detections[:, 4] > self.conf]
128 | gt_classes = labels[:, 0].int()
129 | detection_classes = detections[:, 5].int()
130 | iou = general.box_iou(labels[:, 1:], detections[:, :4])
131 |
132 | x = torch.where(iou > self.iou_thres)
133 | if x[0].shape[0]:
134 | matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
135 | if x[0].shape[0] > 1:
136 | matches = matches[matches[:, 2].argsort()[::-1]]
137 | matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
138 | matches = matches[matches[:, 2].argsort()[::-1]]
139 | matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
140 | else:
141 | matches = np.zeros((0, 3))
142 |
143 | n = matches.shape[0] > 0
144 | m0, m1, _ = matches.transpose().astype(np.int16)
145 | for i, gc in enumerate(gt_classes):
146 | j = m0 == i
147 | if n and sum(j) == 1:
148 | self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
149 | else:
150 | self.matrix[self.nc, gc] += 1 # background FP
151 |
152 | if n:
153 | for i, dc in enumerate(detection_classes):
154 | if not any(m1 == i):
155 | self.matrix[dc, self.nc] += 1 # background FN
156 |
157 | def matrix(self):
158 | return self.matrix
159 |
160 | def plot(self, save_dir='', names=()):
161 | try:
162 | import seaborn as sn
163 |
164 | array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
165 | array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
166 |
167 | fig = plt.figure(figsize=(12, 9), tight_layout=True)
168 | sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
169 | labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
170 | sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
171 | xticklabels=names + ['background FP'] if labels else "auto",
172 | yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
173 | fig.axes[0].set_xlabel('True')
174 | fig.axes[0].set_ylabel('Predicted')
175 | fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
176 | except Exception as e:
177 | pass
178 |
179 | def print(self):
180 | for i in range(self.nc + 1):
181 | print(' '.join(map(str, self.matrix[i])))
182 |
183 |
184 | # Plots ----------------------------------------------------------------------------------------------------------------
185 |
186 | def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
187 | # Precision-recall curve
188 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
189 | py = np.stack(py, axis=1)
190 |
191 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
192 | for i, y in enumerate(py.T):
193 | ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
194 | else:
195 | ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
196 |
197 | ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
198 | ax.set_xlabel('Recall')
199 | ax.set_ylabel('Precision')
200 | ax.set_xlim(0, 1)
201 | ax.set_ylim(0, 1)
202 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
203 | fig.savefig(Path(save_dir), dpi=250)
204 |
205 |
206 | def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
207 | # Metric-confidence curve
208 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
209 |
210 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
211 | for i, y in enumerate(py):
212 | ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
213 | else:
214 | ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
215 |
216 | y = py.mean(0)
217 | ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
218 | ax.set_xlabel(xlabel)
219 | ax.set_ylabel(ylabel)
220 | ax.set_xlim(0, 1)
221 | ax.set_ylim(0, 1)
222 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
223 | fig.savefig(Path(save_dir), dpi=250)
224 |
--------------------------------------------------------------------------------
/utils/wandb_logging/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/utils/wandb_logging/log_dataset.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import yaml
4 |
5 | from wandb_utils import WandbLogger
6 |
7 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8 |
9 |
10 | def create_dataset_artifact(opt):
11 | with open(opt.data) as f:
12 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13 | logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14 |
15 |
16 | if __name__ == '__main__':
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
19 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20 | parser.add_argument('--project', type=str, default='YOLOR', help='name of W&B Project')
21 | opt = parser.parse_args()
22 | opt.resume = False # Explicitly disallow resume check for dataset upload job
23 |
24 | create_dataset_artifact(opt)
25 |
--------------------------------------------------------------------------------