├── acf and pacf.png ├── demand over time.jpg ├── inventory over time.jpg ├── time series forcast.png ├── LICENSE ├── CONTRIBUTING.md ├── README.md └── demand inv.ipynb /acf and pacf.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DavieObi/Demand-Forecasting-and-Inventory-Optimization/HEAD/acf and pacf.png -------------------------------------------------------------------------------- /demand over time.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DavieObi/Demand-Forecasting-and-Inventory-Optimization/HEAD/demand over time.jpg -------------------------------------------------------------------------------- /inventory over time.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DavieObi/Demand-Forecasting-and-Inventory-Optimization/HEAD/inventory over time.jpg -------------------------------------------------------------------------------- /time series forcast.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DavieObi/Demand-Forecasting-and-Inventory-Optimization/HEAD/time series forcast.png -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2025 DavieObi 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. -------------------------------------------------------------------------------- /CONTRIBUTING.md: -------------------------------------------------------------------------------- 1 | # Contributing to Demand Forecasting and Inventory Optimization 2 | 3 | Thank you for showing interest in contributing to **Demand Forecasting and Inventory Optimization**! 4 | This project thrives on community collaboration, and we welcome everyone — from first-time open-source contributors to experienced data scientists — to participate. 5 | 6 | --- 7 | 8 | ## 🏆 Ways You Can Contribute 9 | 10 | We value contributions of all kinds, including: 11 | 12 | - **Bug Fixes:** Help us identify and resolve issues in the code or documentation. 13 | - **Feature Enhancements:** Add new forecasting techniques, inventory optimization strategies, or visualization methods. 14 | - **Documentation:** Improve clarity, add tutorials, or create example workflows for beginners. 15 | - **Testing:** Write tests or verify existing code to ensure reliability and accuracy. 16 | - **Discussions:** Suggest ideas, request features, or share insights that can shape the project’s future. 17 | 18 | --- 19 | 20 | ## 🚀 Getting Started 21 | 22 | 1. **Fork** the repository to your own GitHub account. 23 | 2. **Clone** your fork locally: 24 | ```bash 25 | git clone https://github.com//Demand-Forecasting-and-Inventory-Optimization.git -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Demand Forecasting and Inventory Optimization 2 | 3 | ## Project Overview 4 | This project focuses on analyzing historical demand and inventory data for a product, building a time series model to forecast future demand, and then leveraging these forecasts to calculate key inventory management parameters such as **optimal order quantity**, **reorder point**, and **safety stock**. 5 | The goal is to optimize inventory levels to meet customer demand efficiently while minimizing costs. 6 | 7 | --- 8 | 9 | ## Problem Statement 10 | Businesses often face challenges in managing inventory effectively due to unpredictable demand fluctuations. 11 | - **Overstocking** leads to increased holding costs and potential waste. 12 | - **Understocking** results in lost sales, customer dissatisfaction, and stockout costs. 13 | 14 | The core problem is to accurately predict future demand and translate these predictions into actionable inventory control strategies to maintain optimal stock levels. 15 | 16 | --- 17 | 18 | ## Project Objective 19 | The primary objectives of this project are: 20 | 21 | 1. **Analyze** historical demand and inventory trends to understand underlying patterns. 22 | 2. **Build** a robust time series forecasting model (e.g., ARIMA) for future demand. 23 | 3. **Utilize** the demand forecasts to calculate optimal inventory parameters, including: 24 | - Reorder points 25 | - Safety stock 26 | - Order quantities 27 | aiming for a specified service level. 28 | 4. **Demonstrate** the application of time series analysis in practical inventory management scenarios. 29 | 30 | --- 31 | 32 | ## Column Dictionary 33 | | Column | Description | 34 | |--------------|-----------------------------------------------------------------------------| 35 | | **Date** | The specific date for which the demand and inventory data are recorded. (e.g., YYYY-MM-DD) | 36 | | **Product_ID** | A unique identifier for the product being tracked. (e.g., P1) | 37 | | **Demand** | The quantity of the product demanded on that specific date. (Integer) | 38 | | **Inventory**| The quantity of the product available in stock at the end of that date. (Integer) | 39 | 40 | --- 41 | 42 | 43 | ### Insights from Data Analysis 44 | - **Demand Volatility:** 45 | Analysis of "Demand Over Time" revealed significant day-to-day fluctuations, indicating a highly volatile demand pattern with no clear overall trend over the observed period (June 2023 - January 2024). 46 | ➜ This underscores the need for a robust forecasting approach. 47 | 48 | - **Decreasing Inventory:** 49 | The "Inventory Over Time" plot showed a consistent downward trend in inventory levels, suggesting demand was depleting stock faster than it was replenished. 50 | ➜ This highlighted a potential risk of stockouts if left unaddressed. 51 | 52 | - **Time Series Properties (ACF/PACF):** 53 | The Autocorrelation Function (ACF) plot exhibited a slow decay, indicating **non-stationarity** in the demand time series. 54 | ➜ First-order differencing (d=1) was required to stabilize the series before applying ARIMA. 55 | 56 | --- 57 | 58 | ### Forecasting and Inventory Optimization 59 | 60 | #### ARIMA Model 61 | - A non-seasonal **ARIMA(1,1,1)** model was implemented. 62 | - The choice of **d=1** was validated by the ACF plot. 63 | - For the simulated data used, the model produced a **flat forecast of 74 units/day for 10 days**. 64 | ➜ While useful for demonstration, real-world cases may require **SARIMA** or other advanced models to capture seasonality and complex patterns. 65 | 66 | --- 67 | 68 | ### Inventory Parameter Calculation 69 | Using the forecasted demand, the following inventory parameters were derived: 70 | 71 | | Parameter | Value | Description | 72 | |-----------------------|--------|-------------| 73 | | **Optimal Order Quantity** | 148 units | Recommended order size when stock reaches the reorder point. | 74 | | **Reorder Point** | 148 units | The inventory level at which a new order should be placed. | 75 | | **Safety Stock** | 74 units | Buffer stock to mitigate stockout risks due to demand spikes or lead time variability. | 76 | | **Total Cost** | 557.4 | Driven mainly by holding costs due to high initial inventory and zero stockout costs. | 77 | 78 | --- 79 | 80 | ## Conclusion 81 | This project successfully demonstrates a pipeline for **demand forecasting** and its application in deriving **practical inventory management parameters**. 82 | 83 | - By understanding historical patterns, forecasting future demand, and applying inventory models, businesses can make **data-driven decisions** to: 84 | - Optimize stock levels 85 | - Minimize holding and stockout costs 86 | - Improve customer service 87 | 88 | The flat ARIMA forecast (on simulated data) highlights the importance of selecting appropriate model parameters and potentially incorporating **seasonal components (SARIMA)** in real-world scenarios. 89 | 90 | ### ✅ **Future Work** 91 | - Refine forecasting models with more complex techniques. 92 | - Incorporate advanced inventory optimization methods. 93 | - Integrate real-time data for dynamic inventory adjustments. 94 | ``` 95 | -------------------------------------------------------------------------------- /demand inv.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "4bd2257c", 7 | "metadata": {}, 8 | "outputs": [ 9 | { 10 | "name": "stdout", 11 | "output_type": "stream", 12 | "text": [ 13 | " Unnamed: 0 Date Product_ID Demand Inventory\n", 14 | "0 0 2023-06-01 P1 51 5500\n", 15 | "1 1 2023-06-02 P1 141 5449\n", 16 | "2 2 2023-06-03 P1 172 5308\n", 17 | "3 3 2023-06-04 P1 91 5136\n", 18 | "4 4 2023-06-05 P1 198 5045\n" 19 | ] 20 | } 21 | ], 22 | "source": [ 23 | "import pandas as pd\n", 24 | "import numpy as np\n", 25 | "import plotly.express as px\n", 26 | "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n", 27 | "import matplotlib.pyplot as plt\n", 28 | "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", 29 | "\n", 30 | "data = pd.read_csv(\"demand_inventory.csv\")\n", 31 | "print(data.head())" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 2, 37 | "id": "171665ae", 38 | "metadata": {}, 39 | "outputs": [], 40 | "source": [ 41 | "data.drop('Unnamed: 0', axis=1, inplace=True)" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 3, 47 | "id": "f062b17f", 48 | "metadata": {}, 49 | "outputs": [ 50 | { 51 | "data": { 52 | "application/vnd.plotly.v1+json": { 53 | "config": { 54 | "plotlyServerURL": "https://plot.ly" 55 | }, 56 | "data": [ 57 | { 58 | "hovertemplate": "Date=%{x}
Demand=%{y}", 59 | "legendgroup": "", 60 | "line": { 61 | "color": "#636efa", 62 | "dash": "solid" 63 | }, 64 | "marker": { 65 | "symbol": "circle" 66 | }, 67 | "mode": "lines", 68 | "name": "", 69 | "orientation": "v", 70 | "showlegend": false, 71 | "type": "scatter", 72 | "x": [ 73 | "2023-06-01", 74 | "2023-06-02", 75 | "2023-06-03", 76 | "2023-06-04", 77 | "2023-06-05", 78 | "2023-06-06", 79 | "2023-06-07", 80 | "2023-06-08", 81 | "2023-06-09", 82 | "2023-06-10", 83 | "2023-06-11", 84 | "2023-06-12", 85 | "2023-06-13", 86 | "2023-06-14", 87 | "2023-06-15", 88 | "2023-06-16", 89 | "2023-06-17", 90 | "2023-06-18", 91 | "2023-06-19", 92 | "2023-06-20", 93 | "2023-06-21", 94 | "2023-06-22", 95 | "2023-06-23", 96 | "2023-06-24", 97 | "2023-06-25", 98 | "2023-06-26", 99 | "2023-06-27", 100 | "2023-06-28", 101 | "2023-06-29", 102 | "2023-06-30", 103 | "2023-07-01", 104 | "2023-07-02", 105 | "2023-07-03", 106 | "2023-07-04", 107 | "2023-07-05", 108 | "2023-07-06", 109 | "2023-07-07", 110 | "2023-07-08", 111 | "2023-07-09", 112 | "2023-07-10", 113 | "2023-07-11", 114 | "2023-07-12", 115 | "2023-07-13", 116 | "2023-07-14", 117 | "2023-07-15", 118 | "2023-07-16", 119 | "2023-07-17", 120 | "2023-07-18", 121 | "2023-07-19", 122 | "2023-07-20", 123 | "2023-07-21", 124 | "2023-07-22", 125 | "2023-07-23", 126 | "2023-07-24", 127 | "2023-07-25", 128 | "2023-07-26", 129 | "2023-07-27", 130 | "2023-07-28", 131 | "2023-07-29", 132 | "2023-07-30", 133 | "2023-07-31", 134 | "2023-08-01" 135 | ], 136 | "xaxis": "x", 137 | "y": [ 138 | 51, 139 | 141, 140 | 172, 141 | 91, 142 | 198, 143 | 70, 144 | 95, 145 | 53, 146 | 136, 147 | 168, 148 | 126, 149 | 135, 150 | 198, 151 | 135, 152 | 120, 153 | 67, 154 | 190, 155 | 196, 156 | 125, 157 | 143, 158 | 107, 159 | 108, 160 | 56, 161 | 69, 162 | 52, 163 | 93, 164 | 83, 165 | 135, 166 | 56, 167 | 152, 168 | 142, 169 | 183, 170 | 98, 171 | 95, 172 | 78, 173 | 108, 174 | 191, 175 | 146, 176 | 84, 177 | 125, 178 | 70, 179 | 96, 180 | 130, 181 | 174, 182 | 157, 183 | 128, 184 | 100, 185 | 199, 186 | 99, 187 | 88, 188 | 123, 189 | 63, 190 | 126, 191 | 190, 192 | 153, 193 | 71, 194 | 158, 195 | 174, 196 | 72, 197 | 52, 198 | 188, 199 | 102 200 | ], 201 | "yaxis": "y" 202 | } 203 | ], 204 | "layout": { 205 | "legend": { 206 | "tracegroupgap": 0 207 | }, 208 | "template": { 209 | "data": { 210 | "bar": [ 211 | { 212 | "error_x": { 213 | "color": "#2a3f5f" 214 | }, 215 | "error_y": { 216 | "color": "#2a3f5f" 217 | }, 218 | "marker": { 219 | "line": { 220 | "color": "#E5ECF6", 221 | "width": 0.5 222 | }, 223 | "pattern": { 224 | "fillmode": "overlay", 225 | "size": 10, 226 | "solidity": 0.2 227 | } 228 | }, 229 | "type": "bar" 230 | } 231 | ], 232 | "barpolar": [ 233 | { 234 | "marker": { 235 | "line": { 236 | "color": "#E5ECF6", 237 | "width": 0.5 238 | }, 239 | "pattern": { 240 | "fillmode": "overlay", 241 | "size": 10, 242 | "solidity": 0.2 243 | } 244 | }, 245 | "type": "barpolar" 246 | } 247 | ], 248 | "carpet": [ 249 | { 250 | "aaxis": { 251 | "endlinecolor": "#2a3f5f", 252 | "gridcolor": "white", 253 | "linecolor": "white", 254 | "minorgridcolor": "white", 255 | "startlinecolor": "#2a3f5f" 256 | }, 257 | "baxis": { 258 | "endlinecolor": "#2a3f5f", 259 | "gridcolor": "white", 260 | "linecolor": "white", 261 | "minorgridcolor": "white", 262 | "startlinecolor": "#2a3f5f" 263 | }, 264 | "type": "carpet" 265 | } 266 | ], 267 | "choropleth": [ 268 | { 269 | "colorbar": { 270 | "outlinewidth": 0, 271 | "ticks": "" 272 | }, 273 | "type": "choropleth" 274 | } 275 | ], 276 | "contour": [ 277 | { 278 | "colorbar": { 279 | "outlinewidth": 0, 280 | "ticks": "" 281 | }, 282 | "colorscale": [ 283 | [ 284 | 0, 285 | "#0d0887" 286 | ], 287 | [ 288 | 0.1111111111111111, 289 | "#46039f" 290 | ], 291 | [ 292 | 0.2222222222222222, 293 | "#7201a8" 294 | ], 295 | [ 296 | 0.3333333333333333, 297 | "#9c179e" 298 | ], 299 | [ 300 | 0.4444444444444444, 301 | "#bd3786" 302 | ], 303 | [ 304 | 0.5555555555555556, 305 | "#d8576b" 306 | ], 307 | [ 308 | 0.6666666666666666, 309 | "#ed7953" 310 | ], 311 | [ 312 | 0.7777777777777778, 313 | "#fb9f3a" 314 | ], 315 | [ 316 | 0.8888888888888888, 317 | "#fdca26" 318 | ], 319 | [ 320 | 1, 321 | "#f0f921" 322 | ] 323 | ], 324 | "type": "contour" 325 | } 326 | ], 327 | "contourcarpet": [ 328 | { 329 | "colorbar": { 330 | "outlinewidth": 0, 331 | "ticks": "" 332 | }, 333 | "type": "contourcarpet" 334 | } 335 | ], 336 | "heatmap": [ 337 | { 338 | "colorbar": { 339 | "outlinewidth": 0, 340 | "ticks": "" 341 | }, 342 | "colorscale": [ 343 | [ 344 | 0, 345 | "#0d0887" 346 | ], 347 | [ 348 | 0.1111111111111111, 349 | "#46039f" 350 | ], 351 | [ 352 | 0.2222222222222222, 353 | "#7201a8" 354 | ], 355 | [ 356 | 0.3333333333333333, 357 | "#9c179e" 358 | ], 359 | [ 360 | 0.4444444444444444, 361 | "#bd3786" 362 | ], 363 | [ 364 | 0.5555555555555556, 365 | "#d8576b" 366 | ], 367 | [ 368 | 0.6666666666666666, 369 | "#ed7953" 370 | ], 371 | [ 372 | 0.7777777777777778, 373 | "#fb9f3a" 374 | ], 375 | [ 376 | 0.8888888888888888, 377 | "#fdca26" 378 | ], 379 | [ 380 | 1, 381 | "#f0f921" 382 | ] 383 | ], 384 | "type": "heatmap" 385 | } 386 | ], 387 | "heatmapgl": [ 388 | { 389 | "colorbar": { 390 | "outlinewidth": 0, 391 | "ticks": "" 392 | }, 393 | "colorscale": [ 394 | [ 395 | 0, 396 | "#0d0887" 397 | ], 398 | [ 399 | 0.1111111111111111, 400 | "#46039f" 401 | ], 402 | [ 403 | 0.2222222222222222, 404 | "#7201a8" 405 | ], 406 | [ 407 | 0.3333333333333333, 408 | "#9c179e" 409 | ], 410 | [ 411 | 0.4444444444444444, 412 | "#bd3786" 413 | ], 414 | [ 415 | 0.5555555555555556, 416 | "#d8576b" 417 | ], 418 | [ 419 | 0.6666666666666666, 420 | "#ed7953" 421 | ], 422 | [ 423 | 0.7777777777777778, 424 | "#fb9f3a" 425 | ], 426 | [ 427 | 0.8888888888888888, 428 | "#fdca26" 429 | ], 430 | [ 431 | 1, 432 | "#f0f921" 433 | ] 434 | ], 435 | "type": "heatmapgl" 436 | } 437 | ], 438 | "histogram": [ 439 | { 440 | "marker": { 441 | "pattern": { 442 | "fillmode": "overlay", 443 | "size": 10, 444 | "solidity": 0.2 445 | } 446 | }, 447 | "type": "histogram" 448 | } 449 | ], 450 | "histogram2d": [ 451 | { 452 | "colorbar": { 453 | "outlinewidth": 0, 454 | "ticks": "" 455 | }, 456 | "colorscale": [ 457 | [ 458 | 0, 459 | "#0d0887" 460 | ], 461 | [ 462 | 0.1111111111111111, 463 | "#46039f" 464 | ], 465 | [ 466 | 0.2222222222222222, 467 | "#7201a8" 468 | ], 469 | [ 470 | 0.3333333333333333, 471 | "#9c179e" 472 | ], 473 | [ 474 | 0.4444444444444444, 475 | "#bd3786" 476 | ], 477 | [ 478 | 0.5555555555555556, 479 | "#d8576b" 480 | ], 481 | [ 482 | 0.6666666666666666, 483 | "#ed7953" 484 | ], 485 | [ 486 | 0.7777777777777778, 487 | "#fb9f3a" 488 | ], 489 | [ 490 | 0.8888888888888888, 491 | "#fdca26" 492 | ], 493 | [ 494 | 1, 495 | "#f0f921" 496 | ] 497 | ], 498 | "type": "histogram2d" 499 | } 500 | ], 501 | "histogram2dcontour": [ 502 | { 503 | "colorbar": { 504 | "outlinewidth": 0, 505 | "ticks": "" 506 | }, 507 | "colorscale": [ 508 | [ 509 | 0, 510 | "#0d0887" 511 | ], 512 | [ 513 | 0.1111111111111111, 514 | "#46039f" 515 | ], 516 | [ 517 | 0.2222222222222222, 518 | "#7201a8" 519 | ], 520 | [ 521 | 0.3333333333333333, 522 | "#9c179e" 523 | ], 524 | [ 525 | 0.4444444444444444, 526 | "#bd3786" 527 | ], 528 | [ 529 | 0.5555555555555556, 530 | "#d8576b" 531 | ], 532 | [ 533 | 0.6666666666666666, 534 | "#ed7953" 535 | ], 536 | [ 537 | 0.7777777777777778, 538 | "#fb9f3a" 539 | ], 540 | [ 541 | 0.8888888888888888, 542 | "#fdca26" 543 | ], 544 | [ 545 | 1, 546 | "#f0f921" 547 | ] 548 | ], 549 | "type": "histogram2dcontour" 550 | } 551 | ], 552 | "mesh3d": [ 553 | { 554 | "colorbar": { 555 | "outlinewidth": 0, 556 | "ticks": "" 557 | }, 558 | "type": "mesh3d" 559 | } 560 | ], 561 | "parcoords": [ 562 | { 563 | "line": { 564 | "colorbar": { 565 | "outlinewidth": 0, 566 | "ticks": "" 567 | } 568 | }, 569 | "type": "parcoords" 570 | } 571 | ], 572 | "pie": [ 573 | { 574 | "automargin": true, 575 | "type": "pie" 576 | } 577 | ], 578 | "scatter": [ 579 | { 580 | "fillpattern": { 581 | "fillmode": "overlay", 582 | "size": 10, 583 | "solidity": 0.2 584 | }, 585 | "type": "scatter" 586 | } 587 | ], 588 | "scatter3d": [ 589 | { 590 | "line": { 591 | "colorbar": { 592 | "outlinewidth": 0, 593 | "ticks": "" 594 | } 595 | }, 596 | "marker": { 597 | "colorbar": { 598 | "outlinewidth": 0, 599 | "ticks": "" 600 | } 601 | }, 602 | "type": "scatter3d" 603 | } 604 | ], 605 | "scattercarpet": [ 606 | { 607 | "marker": { 608 | "colorbar": { 609 | "outlinewidth": 0, 610 | "ticks": "" 611 | } 612 | }, 613 | "type": "scattercarpet" 614 | } 615 | ], 616 | "scattergeo": [ 617 | { 618 | "marker": { 619 | "colorbar": { 620 | "outlinewidth": 0, 621 | "ticks": "" 622 | } 623 | }, 624 | "type": "scattergeo" 625 | } 626 | ], 627 | "scattergl": [ 628 | { 629 | "marker": { 630 | "colorbar": { 631 | "outlinewidth": 0, 632 | "ticks": "" 633 | } 634 | }, 635 | "type": "scattergl" 636 | } 637 | ], 638 | "scattermapbox": [ 639 | { 640 | "marker": { 641 | "colorbar": { 642 | "outlinewidth": 0, 643 | "ticks": "" 644 | } 645 | }, 646 | "type": "scattermapbox" 647 | } 648 | ], 649 | "scatterpolar": [ 650 | { 651 | "marker": { 652 | "colorbar": { 653 | "outlinewidth": 0, 654 | "ticks": "" 655 | } 656 | }, 657 | "type": "scatterpolar" 658 | } 659 | ], 660 | "scatterpolargl": [ 661 | { 662 | "marker": { 663 | "colorbar": { 664 | "outlinewidth": 0, 665 | "ticks": "" 666 | } 667 | }, 668 | "type": "scatterpolargl" 669 | } 670 | ], 671 | "scatterternary": [ 672 | { 673 | "marker": { 674 | "colorbar": { 675 | "outlinewidth": 0, 676 | "ticks": "" 677 | } 678 | }, 679 | "type": "scatterternary" 680 | } 681 | ], 682 | "surface": [ 683 | { 684 | "colorbar": { 685 | "outlinewidth": 0, 686 | "ticks": "" 687 | }, 688 | "colorscale": [ 689 | [ 690 | 0, 691 | "#0d0887" 692 | ], 693 | [ 694 | 0.1111111111111111, 695 | "#46039f" 696 | ], 697 | [ 698 | 0.2222222222222222, 699 | "#7201a8" 700 | ], 701 | [ 702 | 0.3333333333333333, 703 | "#9c179e" 704 | ], 705 | [ 706 | 0.4444444444444444, 707 | "#bd3786" 708 | ], 709 | [ 710 | 0.5555555555555556, 711 | "#d8576b" 712 | ], 713 | [ 714 | 0.6666666666666666, 715 | "#ed7953" 716 | ], 717 | [ 718 | 0.7777777777777778, 719 | "#fb9f3a" 720 | ], 721 | [ 722 | 0.8888888888888888, 723 | "#fdca26" 724 | ], 725 | [ 726 | 1, 727 | "#f0f921" 728 | ] 729 | ], 730 | "type": "surface" 731 | } 732 | ], 733 | "table": [ 734 | { 735 | "cells": { 736 | "fill": { 737 | "color": "#EBF0F8" 738 | }, 739 | "line": { 740 | "color": "white" 741 | } 742 | }, 743 | "header": { 744 | "fill": { 745 | "color": "#C8D4E3" 746 | }, 747 | "line": { 748 | "color": "white" 749 | } 750 | }, 751 | "type": "table" 752 | } 753 | ] 754 | }, 755 | "layout": { 756 | "annotationdefaults": { 757 | "arrowcolor": "#2a3f5f", 758 | "arrowhead": 0, 759 | "arrowwidth": 1 760 | }, 761 | "autotypenumbers": "strict", 762 | "coloraxis": { 763 | "colorbar": { 764 | "outlinewidth": 0, 765 | "ticks": "" 766 | } 767 | }, 768 | "colorscale": { 769 | "diverging": [ 770 | [ 771 | 0, 772 | "#8e0152" 773 | ], 774 | [ 775 | 0.1, 776 | "#c51b7d" 777 | ], 778 | [ 779 | 0.2, 780 | "#de77ae" 781 | ], 782 | [ 783 | 0.3, 784 | "#f1b6da" 785 | ], 786 | [ 787 | 0.4, 788 | "#fde0ef" 789 | ], 790 | [ 791 | 0.5, 792 | "#f7f7f7" 793 | ], 794 | [ 795 | 0.6, 796 | "#e6f5d0" 797 | ], 798 | [ 799 | 0.7, 800 | "#b8e186" 801 | ], 802 | [ 803 | 0.8, 804 | "#7fbc41" 805 | ], 806 | [ 807 | 0.9, 808 | "#4d9221" 809 | ], 810 | [ 811 | 1, 812 | "#276419" 813 | ] 814 | ], 815 | "sequential": [ 816 | [ 817 | 0, 818 | "#0d0887" 819 | ], 820 | [ 821 | 0.1111111111111111, 822 | "#46039f" 823 | ], 824 | [ 825 | 0.2222222222222222, 826 | "#7201a8" 827 | ], 828 | [ 829 | 0.3333333333333333, 830 | "#9c179e" 831 | ], 832 | [ 833 | 0.4444444444444444, 834 | "#bd3786" 835 | ], 836 | [ 837 | 0.5555555555555556, 838 | "#d8576b" 839 | ], 840 | [ 841 | 0.6666666666666666, 842 | "#ed7953" 843 | ], 844 | [ 845 | 0.7777777777777778, 846 | "#fb9f3a" 847 | ], 848 | [ 849 | 0.8888888888888888, 850 | "#fdca26" 851 | ], 852 | [ 853 | 1, 854 | "#f0f921" 855 | ] 856 | ], 857 | "sequentialminus": [ 858 | [ 859 | 0, 860 | "#0d0887" 861 | ], 862 | [ 863 | 0.1111111111111111, 864 | "#46039f" 865 | ], 866 | [ 867 | 0.2222222222222222, 868 | "#7201a8" 869 | ], 870 | [ 871 | 0.3333333333333333, 872 | "#9c179e" 873 | ], 874 | [ 875 | 0.4444444444444444, 876 | "#bd3786" 877 | ], 878 | [ 879 | 0.5555555555555556, 880 | "#d8576b" 881 | ], 882 | [ 883 | 0.6666666666666666, 884 | "#ed7953" 885 | ], 886 | [ 887 | 0.7777777777777778, 888 | "#fb9f3a" 889 | ], 890 | [ 891 | 0.8888888888888888, 892 | "#fdca26" 893 | ], 894 | [ 895 | 1, 896 | "#f0f921" 897 | ] 898 | ] 899 | }, 900 | "colorway": [ 901 | "#636efa", 902 | "#EF553B", 903 | "#00cc96", 904 | "#ab63fa", 905 | "#FFA15A", 906 | "#19d3f3", 907 | "#FF6692", 908 | "#B6E880", 909 | "#FF97FF", 910 | "#FECB52" 911 | ], 912 | "font": { 913 | "color": "#2a3f5f" 914 | }, 915 | "geo": { 916 | "bgcolor": "white", 917 | "lakecolor": "white", 918 | "landcolor": "#E5ECF6", 919 | "showlakes": true, 920 | "showland": true, 921 | "subunitcolor": "white" 922 | }, 923 | "hoverlabel": { 924 | "align": "left" 925 | }, 926 | "hovermode": "closest", 927 | "mapbox": { 928 | "style": "light" 929 | }, 930 | "paper_bgcolor": "white", 931 | "plot_bgcolor": "#E5ECF6", 932 | "polar": { 933 | "angularaxis": { 934 | "gridcolor": "white", 935 | "linecolor": "white", 936 | "ticks": "" 937 | }, 938 | "bgcolor": "#E5ECF6", 939 | "radialaxis": { 940 | "gridcolor": "white", 941 | "linecolor": "white", 942 | "ticks": "" 943 | } 944 | }, 945 | "scene": { 946 | "xaxis": { 947 | "backgroundcolor": "#E5ECF6", 948 | "gridcolor": "white", 949 | "gridwidth": 2, 950 | "linecolor": "white", 951 | "showbackground": true, 952 | "ticks": "", 953 | "zerolinecolor": "white" 954 | }, 955 | "yaxis": { 956 | "backgroundcolor": "#E5ECF6", 957 | "gridcolor": "white", 958 | "gridwidth": 2, 959 | "linecolor": "white", 960 | "showbackground": true, 961 | "ticks": "", 962 | "zerolinecolor": "white" 963 | }, 964 | "zaxis": { 965 | "backgroundcolor": "#E5ECF6", 966 | "gridcolor": "white", 967 | "gridwidth": 2, 968 | "linecolor": "white", 969 | "showbackground": true, 970 | "ticks": "", 971 | "zerolinecolor": "white" 972 | } 973 | }, 974 | "shapedefaults": { 975 | "line": { 976 | "color": "#2a3f5f" 977 | } 978 | }, 979 | "ternary": { 980 | "aaxis": { 981 | "gridcolor": "white", 982 | "linecolor": "white", 983 | "ticks": "" 984 | }, 985 | "baxis": { 986 | "gridcolor": "white", 987 | "linecolor": "white", 988 | "ticks": "" 989 | }, 990 | "bgcolor": "#E5ECF6", 991 | "caxis": { 992 | "gridcolor": "white", 993 | "linecolor": "white", 994 | "ticks": "" 995 | } 996 | }, 997 | "title": { 998 | "x": 0.05 999 | }, 1000 | "xaxis": { 1001 | "automargin": true, 1002 | "gridcolor": "white", 1003 | "linecolor": "white", 1004 | "ticks": "", 1005 | "title": { 1006 | "standoff": 15 1007 | }, 1008 | "zerolinecolor": "white", 1009 | "zerolinewidth": 2 1010 | }, 1011 | "yaxis": { 1012 | "automargin": true, 1013 | "gridcolor": "white", 1014 | "linecolor": "white", 1015 | "ticks": "", 1016 | "title": { 1017 | "standoff": 15 1018 | }, 1019 | "zerolinecolor": "white", 1020 | "zerolinewidth": 2 1021 | } 1022 | } 1023 | }, 1024 | "title": { 1025 | "text": "Demand Over Time" 1026 | }, 1027 | "xaxis": { 1028 | "anchor": "y", 1029 | "domain": [ 1030 | 0, 1031 | 1 1032 | ], 1033 | "title": { 1034 | "text": "Date" 1035 | } 1036 | }, 1037 | "yaxis": { 1038 | "anchor": "x", 1039 | "domain": [ 1040 | 0, 1041 | 1 1042 | ], 1043 | "title": { 1044 | "text": "Demand" 1045 | } 1046 | } 1047 | } 1048 | } 1049 | }, 1050 | "metadata": {}, 1051 | "output_type": "display_data" 1052 | } 1053 | ], 1054 | "source": [ 1055 | "fig_demand = px.line(data, x='Date',\n", 1056 | " y='Demand',\n", 1057 | " title='Demand Over Time')\n", 1058 | "fig_demand.show()" 1059 | ] 1060 | }, 1061 | { 1062 | "cell_type": "code", 1063 | "execution_count": 4, 1064 | "id": "f1a260e5", 1065 | "metadata": {}, 1066 | "outputs": [ 1067 | { 1068 | "data": { 1069 | "application/vnd.plotly.v1+json": { 1070 | "config": { 1071 | "plotlyServerURL": "https://plot.ly" 1072 | }, 1073 | "data": [ 1074 | { 1075 | "hovertemplate": "Date=%{x}
Inventory=%{y}", 1076 | "legendgroup": "", 1077 | "line": { 1078 | "color": "#636efa", 1079 | "dash": "solid" 1080 | }, 1081 | "marker": { 1082 | "symbol": "circle" 1083 | }, 1084 | "mode": "lines", 1085 | "name": "", 1086 | "orientation": "v", 1087 | "showlegend": false, 1088 | "type": "scatter", 1089 | "x": [ 1090 | "2023-06-01", 1091 | "2023-06-02", 1092 | "2023-06-03", 1093 | "2023-06-04", 1094 | "2023-06-05", 1095 | "2023-06-06", 1096 | "2023-06-07", 1097 | "2023-06-08", 1098 | "2023-06-09", 1099 | "2023-06-10", 1100 | "2023-06-11", 1101 | "2023-06-12", 1102 | "2023-06-13", 1103 | "2023-06-14", 1104 | "2023-06-15", 1105 | "2023-06-16", 1106 | "2023-06-17", 1107 | "2023-06-18", 1108 | "2023-06-19", 1109 | "2023-06-20", 1110 | "2023-06-21", 1111 | "2023-06-22", 1112 | "2023-06-23", 1113 | "2023-06-24", 1114 | "2023-06-25", 1115 | "2023-06-26", 1116 | "2023-06-27", 1117 | "2023-06-28", 1118 | "2023-06-29", 1119 | "2023-06-30", 1120 | "2023-07-01", 1121 | "2023-07-02", 1122 | "2023-07-03", 1123 | "2023-07-04", 1124 | "2023-07-05", 1125 | "2023-07-06", 1126 | "2023-07-07", 1127 | "2023-07-08", 1128 | "2023-07-09", 1129 | "2023-07-10", 1130 | "2023-07-11", 1131 | "2023-07-12", 1132 | "2023-07-13", 1133 | "2023-07-14", 1134 | "2023-07-15", 1135 | "2023-07-16", 1136 | "2023-07-17", 1137 | "2023-07-18", 1138 | "2023-07-19", 1139 | "2023-07-20", 1140 | "2023-07-21", 1141 | "2023-07-22", 1142 | "2023-07-23", 1143 | "2023-07-24", 1144 | "2023-07-25", 1145 | "2023-07-26", 1146 | "2023-07-27", 1147 | "2023-07-28", 1148 | "2023-07-29", 1149 | "2023-07-30", 1150 | "2023-07-31", 1151 | "2023-08-01" 1152 | ], 1153 | "xaxis": "x", 1154 | "y": [ 1155 | 5500, 1156 | 5449, 1157 | 5308, 1158 | 5136, 1159 | 5045, 1160 | 4847, 1161 | 4777, 1162 | 4682, 1163 | 4629, 1164 | 4493, 1165 | 4325, 1166 | 4199, 1167 | 4064, 1168 | 3866, 1169 | 3731, 1170 | 3611, 1171 | 3544, 1172 | 3354, 1173 | 3158, 1174 | 3033, 1175 | 2890, 1176 | 2783, 1177 | 2675, 1178 | 2619, 1179 | 2550, 1180 | 2498, 1181 | 2405, 1182 | 2322, 1183 | 2187, 1184 | 2131, 1185 | 1979, 1186 | 1837, 1187 | 1654, 1188 | 1556, 1189 | 1461, 1190 | 1383, 1191 | 1275, 1192 | 1084, 1193 | 938, 1194 | 854, 1195 | 729, 1196 | 659, 1197 | 563, 1198 | 433, 1199 | 259, 1200 | 102, 1201 | 0, 1202 | 0, 1203 | 0, 1204 | 0, 1205 | 0, 1206 | 0, 1207 | 0, 1208 | 0, 1209 | 0, 1210 | 0, 1211 | 0, 1212 | 0, 1213 | 0, 1214 | 0, 1215 | 0, 1216 | 0 1217 | ], 1218 | "yaxis": "y" 1219 | } 1220 | ], 1221 | "layout": { 1222 | "legend": { 1223 | "tracegroupgap": 0 1224 | }, 1225 | "template": { 1226 | "data": { 1227 | "bar": [ 1228 | { 1229 | "error_x": { 1230 | "color": "#2a3f5f" 1231 | }, 1232 | "error_y": { 1233 | "color": "#2a3f5f" 1234 | }, 1235 | "marker": { 1236 | "line": { 1237 | "color": "#E5ECF6", 1238 | "width": 0.5 1239 | }, 1240 | "pattern": { 1241 | "fillmode": "overlay", 1242 | "size": 10, 1243 | "solidity": 0.2 1244 | } 1245 | }, 1246 | "type": "bar" 1247 | } 1248 | ], 1249 | "barpolar": [ 1250 | { 1251 | "marker": { 1252 | "line": { 1253 | "color": "#E5ECF6", 1254 | "width": 0.5 1255 | }, 1256 | "pattern": { 1257 | "fillmode": "overlay", 1258 | "size": 10, 1259 | "solidity": 0.2 1260 | } 1261 | }, 1262 | "type": "barpolar" 1263 | } 1264 | ], 1265 | "carpet": [ 1266 | { 1267 | "aaxis": { 1268 | "endlinecolor": "#2a3f5f", 1269 | "gridcolor": "white", 1270 | "linecolor": "white", 1271 | "minorgridcolor": "white", 1272 | "startlinecolor": "#2a3f5f" 1273 | }, 1274 | "baxis": { 1275 | "endlinecolor": "#2a3f5f", 1276 | "gridcolor": "white", 1277 | "linecolor": "white", 1278 | "minorgridcolor": "white", 1279 | "startlinecolor": "#2a3f5f" 1280 | }, 1281 | "type": "carpet" 1282 | } 1283 | ], 1284 | "choropleth": [ 1285 | { 1286 | "colorbar": { 1287 | "outlinewidth": 0, 1288 | "ticks": "" 1289 | }, 1290 | "type": "choropleth" 1291 | } 1292 | ], 1293 | "contour": [ 1294 | { 1295 | "colorbar": { 1296 | "outlinewidth": 0, 1297 | "ticks": "" 1298 | }, 1299 | "colorscale": [ 1300 | [ 1301 | 0, 1302 | "#0d0887" 1303 | ], 1304 | [ 1305 | 0.1111111111111111, 1306 | "#46039f" 1307 | ], 1308 | [ 1309 | 0.2222222222222222, 1310 | "#7201a8" 1311 | ], 1312 | [ 1313 | 0.3333333333333333, 1314 | "#9c179e" 1315 | ], 1316 | [ 1317 | 0.4444444444444444, 1318 | "#bd3786" 1319 | ], 1320 | [ 1321 | 0.5555555555555556, 1322 | "#d8576b" 1323 | ], 1324 | [ 1325 | 0.6666666666666666, 1326 | "#ed7953" 1327 | ], 1328 | [ 1329 | 0.7777777777777778, 1330 | "#fb9f3a" 1331 | ], 1332 | [ 1333 | 0.8888888888888888, 1334 | "#fdca26" 1335 | ], 1336 | [ 1337 | 1, 1338 | "#f0f921" 1339 | ] 1340 | ], 1341 | "type": "contour" 1342 | } 1343 | ], 1344 | "contourcarpet": [ 1345 | { 1346 | "colorbar": { 1347 | "outlinewidth": 0, 1348 | "ticks": "" 1349 | }, 1350 | "type": "contourcarpet" 1351 | } 1352 | ], 1353 | "heatmap": [ 1354 | { 1355 | "colorbar": { 1356 | "outlinewidth": 0, 1357 | "ticks": "" 1358 | }, 1359 | "colorscale": [ 1360 | [ 1361 | 0, 1362 | "#0d0887" 1363 | ], 1364 | [ 1365 | 0.1111111111111111, 1366 | "#46039f" 1367 | ], 1368 | [ 1369 | 0.2222222222222222, 1370 | "#7201a8" 1371 | ], 1372 | [ 1373 | 0.3333333333333333, 1374 | "#9c179e" 1375 | ], 1376 | [ 1377 | 0.4444444444444444, 1378 | "#bd3786" 1379 | ], 1380 | [ 1381 | 0.5555555555555556, 1382 | "#d8576b" 1383 | ], 1384 | [ 1385 | 0.6666666666666666, 1386 | "#ed7953" 1387 | ], 1388 | [ 1389 | 0.7777777777777778, 1390 | "#fb9f3a" 1391 | ], 1392 | [ 1393 | 0.8888888888888888, 1394 | "#fdca26" 1395 | ], 1396 | [ 1397 | 1, 1398 | "#f0f921" 1399 | ] 1400 | ], 1401 | "type": "heatmap" 1402 | } 1403 | ], 1404 | "heatmapgl": [ 1405 | { 1406 | "colorbar": { 1407 | "outlinewidth": 0, 1408 | "ticks": "" 1409 | }, 1410 | "colorscale": [ 1411 | [ 1412 | 0, 1413 | "#0d0887" 1414 | ], 1415 | [ 1416 | 0.1111111111111111, 1417 | "#46039f" 1418 | ], 1419 | [ 1420 | 0.2222222222222222, 1421 | "#7201a8" 1422 | ], 1423 | [ 1424 | 0.3333333333333333, 1425 | "#9c179e" 1426 | ], 1427 | [ 1428 | 0.4444444444444444, 1429 | "#bd3786" 1430 | ], 1431 | [ 1432 | 0.5555555555555556, 1433 | "#d8576b" 1434 | ], 1435 | [ 1436 | 0.6666666666666666, 1437 | "#ed7953" 1438 | ], 1439 | [ 1440 | 0.7777777777777778, 1441 | "#fb9f3a" 1442 | ], 1443 | [ 1444 | 0.8888888888888888, 1445 | "#fdca26" 1446 | ], 1447 | [ 1448 | 1, 1449 | "#f0f921" 1450 | ] 1451 | ], 1452 | "type": "heatmapgl" 1453 | } 1454 | ], 1455 | "histogram": [ 1456 | { 1457 | "marker": { 1458 | "pattern": { 1459 | "fillmode": "overlay", 1460 | "size": 10, 1461 | "solidity": 0.2 1462 | } 1463 | }, 1464 | "type": "histogram" 1465 | } 1466 | ], 1467 | "histogram2d": [ 1468 | { 1469 | "colorbar": { 1470 | "outlinewidth": 0, 1471 | "ticks": "" 1472 | }, 1473 | "colorscale": [ 1474 | [ 1475 | 0, 1476 | "#0d0887" 1477 | ], 1478 | [ 1479 | 0.1111111111111111, 1480 | "#46039f" 1481 | ], 1482 | [ 1483 | 0.2222222222222222, 1484 | "#7201a8" 1485 | ], 1486 | [ 1487 | 0.3333333333333333, 1488 | "#9c179e" 1489 | ], 1490 | [ 1491 | 0.4444444444444444, 1492 | "#bd3786" 1493 | ], 1494 | [ 1495 | 0.5555555555555556, 1496 | "#d8576b" 1497 | ], 1498 | [ 1499 | 0.6666666666666666, 1500 | "#ed7953" 1501 | ], 1502 | [ 1503 | 0.7777777777777778, 1504 | "#fb9f3a" 1505 | ], 1506 | [ 1507 | 0.8888888888888888, 1508 | "#fdca26" 1509 | ], 1510 | [ 1511 | 1, 1512 | "#f0f921" 1513 | ] 1514 | ], 1515 | "type": "histogram2d" 1516 | } 1517 | ], 1518 | "histogram2dcontour": [ 1519 | { 1520 | "colorbar": { 1521 | "outlinewidth": 0, 1522 | "ticks": "" 1523 | }, 1524 | "colorscale": [ 1525 | [ 1526 | 0, 1527 | "#0d0887" 1528 | ], 1529 | [ 1530 | 0.1111111111111111, 1531 | "#46039f" 1532 | ], 1533 | [ 1534 | 0.2222222222222222, 1535 | "#7201a8" 1536 | ], 1537 | [ 1538 | 0.3333333333333333, 1539 | "#9c179e" 1540 | ], 1541 | [ 1542 | 0.4444444444444444, 1543 | "#bd3786" 1544 | ], 1545 | [ 1546 | 0.5555555555555556, 1547 | "#d8576b" 1548 | ], 1549 | [ 1550 | 0.6666666666666666, 1551 | "#ed7953" 1552 | ], 1553 | [ 1554 | 0.7777777777777778, 1555 | "#fb9f3a" 1556 | ], 1557 | [ 1558 | 0.8888888888888888, 1559 | "#fdca26" 1560 | ], 1561 | [ 1562 | 1, 1563 | "#f0f921" 1564 | ] 1565 | ], 1566 | "type": "histogram2dcontour" 1567 | } 1568 | ], 1569 | "mesh3d": [ 1570 | { 1571 | "colorbar": { 1572 | "outlinewidth": 0, 1573 | "ticks": "" 1574 | }, 1575 | "type": "mesh3d" 1576 | } 1577 | ], 1578 | "parcoords": [ 1579 | { 1580 | "line": { 1581 | "colorbar": { 1582 | "outlinewidth": 0, 1583 | "ticks": "" 1584 | } 1585 | }, 1586 | "type": "parcoords" 1587 | } 1588 | ], 1589 | "pie": [ 1590 | { 1591 | "automargin": true, 1592 | "type": "pie" 1593 | } 1594 | ], 1595 | "scatter": [ 1596 | { 1597 | "fillpattern": { 1598 | "fillmode": "overlay", 1599 | "size": 10, 1600 | "solidity": 0.2 1601 | }, 1602 | "type": "scatter" 1603 | } 1604 | ], 1605 | "scatter3d": [ 1606 | { 1607 | "line": { 1608 | "colorbar": { 1609 | "outlinewidth": 0, 1610 | "ticks": "" 1611 | } 1612 | }, 1613 | "marker": { 1614 | "colorbar": { 1615 | "outlinewidth": 0, 1616 | "ticks": "" 1617 | } 1618 | }, 1619 | "type": "scatter3d" 1620 | } 1621 | ], 1622 | "scattercarpet": [ 1623 | { 1624 | "marker": { 1625 | "colorbar": { 1626 | "outlinewidth": 0, 1627 | "ticks": "" 1628 | } 1629 | }, 1630 | "type": "scattercarpet" 1631 | } 1632 | ], 1633 | "scattergeo": [ 1634 | { 1635 | "marker": { 1636 | "colorbar": { 1637 | "outlinewidth": 0, 1638 | "ticks": "" 1639 | } 1640 | }, 1641 | "type": "scattergeo" 1642 | } 1643 | ], 1644 | "scattergl": [ 1645 | { 1646 | "marker": { 1647 | "colorbar": { 1648 | "outlinewidth": 0, 1649 | "ticks": "" 1650 | } 1651 | }, 1652 | "type": "scattergl" 1653 | } 1654 | ], 1655 | "scattermapbox": [ 1656 | { 1657 | "marker": { 1658 | "colorbar": { 1659 | "outlinewidth": 0, 1660 | "ticks": "" 1661 | } 1662 | }, 1663 | "type": "scattermapbox" 1664 | } 1665 | ], 1666 | "scatterpolar": [ 1667 | { 1668 | "marker": { 1669 | "colorbar": { 1670 | "outlinewidth": 0, 1671 | "ticks": "" 1672 | } 1673 | }, 1674 | "type": "scatterpolar" 1675 | } 1676 | ], 1677 | "scatterpolargl": [ 1678 | { 1679 | "marker": { 1680 | "colorbar": { 1681 | "outlinewidth": 0, 1682 | "ticks": "" 1683 | } 1684 | }, 1685 | "type": "scatterpolargl" 1686 | } 1687 | ], 1688 | "scatterternary": [ 1689 | { 1690 | "marker": { 1691 | "colorbar": { 1692 | "outlinewidth": 0, 1693 | "ticks": "" 1694 | } 1695 | }, 1696 | "type": "scatterternary" 1697 | } 1698 | ], 1699 | "surface": [ 1700 | { 1701 | "colorbar": { 1702 | "outlinewidth": 0, 1703 | "ticks": "" 1704 | }, 1705 | "colorscale": [ 1706 | [ 1707 | 0, 1708 | "#0d0887" 1709 | ], 1710 | [ 1711 | 0.1111111111111111, 1712 | "#46039f" 1713 | ], 1714 | [ 1715 | 0.2222222222222222, 1716 | "#7201a8" 1717 | ], 1718 | [ 1719 | 0.3333333333333333, 1720 | "#9c179e" 1721 | ], 1722 | [ 1723 | 0.4444444444444444, 1724 | "#bd3786" 1725 | ], 1726 | [ 1727 | 0.5555555555555556, 1728 | "#d8576b" 1729 | ], 1730 | [ 1731 | 0.6666666666666666, 1732 | "#ed7953" 1733 | ], 1734 | [ 1735 | 0.7777777777777778, 1736 | "#fb9f3a" 1737 | ], 1738 | [ 1739 | 0.8888888888888888, 1740 | "#fdca26" 1741 | ], 1742 | [ 1743 | 1, 1744 | "#f0f921" 1745 | ] 1746 | ], 1747 | "type": "surface" 1748 | } 1749 | ], 1750 | "table": [ 1751 | { 1752 | "cells": { 1753 | "fill": { 1754 | "color": "#EBF0F8" 1755 | }, 1756 | "line": { 1757 | "color": "white" 1758 | } 1759 | }, 1760 | "header": { 1761 | "fill": { 1762 | "color": "#C8D4E3" 1763 | }, 1764 | "line": { 1765 | "color": "white" 1766 | } 1767 | }, 1768 | "type": "table" 1769 | } 1770 | ] 1771 | }, 1772 | "layout": { 1773 | "annotationdefaults": { 1774 | "arrowcolor": "#2a3f5f", 1775 | "arrowhead": 0, 1776 | "arrowwidth": 1 1777 | }, 1778 | "autotypenumbers": "strict", 1779 | "coloraxis": { 1780 | "colorbar": { 1781 | "outlinewidth": 0, 1782 | "ticks": "" 1783 | } 1784 | }, 1785 | "colorscale": { 1786 | "diverging": [ 1787 | [ 1788 | 0, 1789 | "#8e0152" 1790 | ], 1791 | [ 1792 | 0.1, 1793 | "#c51b7d" 1794 | ], 1795 | [ 1796 | 0.2, 1797 | "#de77ae" 1798 | ], 1799 | [ 1800 | 0.3, 1801 | "#f1b6da" 1802 | ], 1803 | [ 1804 | 0.4, 1805 | "#fde0ef" 1806 | ], 1807 | [ 1808 | 0.5, 1809 | "#f7f7f7" 1810 | ], 1811 | [ 1812 | 0.6, 1813 | "#e6f5d0" 1814 | ], 1815 | [ 1816 | 0.7, 1817 | "#b8e186" 1818 | ], 1819 | [ 1820 | 0.8, 1821 | "#7fbc41" 1822 | ], 1823 | [ 1824 | 0.9, 1825 | "#4d9221" 1826 | ], 1827 | [ 1828 | 1, 1829 | "#276419" 1830 | ] 1831 | ], 1832 | "sequential": [ 1833 | [ 1834 | 0, 1835 | "#0d0887" 1836 | ], 1837 | [ 1838 | 0.1111111111111111, 1839 | "#46039f" 1840 | ], 1841 | [ 1842 | 0.2222222222222222, 1843 | "#7201a8" 1844 | ], 1845 | [ 1846 | 0.3333333333333333, 1847 | "#9c179e" 1848 | ], 1849 | [ 1850 | 0.4444444444444444, 1851 | "#bd3786" 1852 | ], 1853 | [ 1854 | 0.5555555555555556, 1855 | "#d8576b" 1856 | ], 1857 | [ 1858 | 0.6666666666666666, 1859 | "#ed7953" 1860 | ], 1861 | [ 1862 | 0.7777777777777778, 1863 | "#fb9f3a" 1864 | ], 1865 | [ 1866 | 0.8888888888888888, 1867 | "#fdca26" 1868 | ], 1869 | [ 1870 | 1, 1871 | "#f0f921" 1872 | ] 1873 | ], 1874 | "sequentialminus": [ 1875 | [ 1876 | 0, 1877 | "#0d0887" 1878 | ], 1879 | [ 1880 | 0.1111111111111111, 1881 | "#46039f" 1882 | ], 1883 | [ 1884 | 0.2222222222222222, 1885 | "#7201a8" 1886 | ], 1887 | [ 1888 | 0.3333333333333333, 1889 | "#9c179e" 1890 | ], 1891 | [ 1892 | 0.4444444444444444, 1893 | "#bd3786" 1894 | ], 1895 | [ 1896 | 0.5555555555555556, 1897 | "#d8576b" 1898 | ], 1899 | [ 1900 | 0.6666666666666666, 1901 | "#ed7953" 1902 | ], 1903 | [ 1904 | 0.7777777777777778, 1905 | "#fb9f3a" 1906 | ], 1907 | [ 1908 | 0.8888888888888888, 1909 | "#fdca26" 1910 | ], 1911 | [ 1912 | 1, 1913 | "#f0f921" 1914 | ] 1915 | ] 1916 | }, 1917 | "colorway": [ 1918 | "#636efa", 1919 | "#EF553B", 1920 | "#00cc96", 1921 | "#ab63fa", 1922 | "#FFA15A", 1923 | "#19d3f3", 1924 | "#FF6692", 1925 | "#B6E880", 1926 | "#FF97FF", 1927 | "#FECB52" 1928 | ], 1929 | "font": { 1930 | "color": "#2a3f5f" 1931 | }, 1932 | "geo": { 1933 | "bgcolor": "white", 1934 | "lakecolor": "white", 1935 | "landcolor": "#E5ECF6", 1936 | "showlakes": true, 1937 | "showland": true, 1938 | "subunitcolor": "white" 1939 | }, 1940 | "hoverlabel": { 1941 | "align": "left" 1942 | }, 1943 | "hovermode": "closest", 1944 | "mapbox": { 1945 | "style": "light" 1946 | }, 1947 | "paper_bgcolor": "white", 1948 | "plot_bgcolor": "#E5ECF6", 1949 | "polar": { 1950 | "angularaxis": { 1951 | "gridcolor": "white", 1952 | "linecolor": "white", 1953 | "ticks": "" 1954 | }, 1955 | "bgcolor": "#E5ECF6", 1956 | "radialaxis": { 1957 | "gridcolor": "white", 1958 | "linecolor": "white", 1959 | "ticks": "" 1960 | } 1961 | }, 1962 | "scene": { 1963 | "xaxis": { 1964 | "backgroundcolor": "#E5ECF6", 1965 | "gridcolor": "white", 1966 | "gridwidth": 2, 1967 | "linecolor": "white", 1968 | "showbackground": true, 1969 | "ticks": "", 1970 | "zerolinecolor": "white" 1971 | }, 1972 | "yaxis": { 1973 | "backgroundcolor": "#E5ECF6", 1974 | "gridcolor": "white", 1975 | "gridwidth": 2, 1976 | "linecolor": "white", 1977 | "showbackground": true, 1978 | "ticks": "", 1979 | "zerolinecolor": "white" 1980 | }, 1981 | "zaxis": { 1982 | "backgroundcolor": "#E5ECF6", 1983 | "gridcolor": "white", 1984 | "gridwidth": 2, 1985 | "linecolor": "white", 1986 | "showbackground": true, 1987 | "ticks": "", 1988 | "zerolinecolor": "white" 1989 | } 1990 | }, 1991 | "shapedefaults": { 1992 | "line": { 1993 | "color": "#2a3f5f" 1994 | } 1995 | }, 1996 | "ternary": { 1997 | "aaxis": { 1998 | "gridcolor": "white", 1999 | "linecolor": "white", 2000 | "ticks": "" 2001 | }, 2002 | "baxis": { 2003 | "gridcolor": "white", 2004 | "linecolor": "white", 2005 | "ticks": "" 2006 | }, 2007 | "bgcolor": "#E5ECF6", 2008 | "caxis": { 2009 | "gridcolor": "white", 2010 | "linecolor": "white", 2011 | "ticks": "" 2012 | } 2013 | }, 2014 | "title": { 2015 | "x": 0.05 2016 | }, 2017 | "xaxis": { 2018 | "automargin": true, 2019 | "gridcolor": "white", 2020 | "linecolor": "white", 2021 | "ticks": "", 2022 | "title": { 2023 | "standoff": 15 2024 | }, 2025 | "zerolinecolor": "white", 2026 | "zerolinewidth": 2 2027 | }, 2028 | "yaxis": { 2029 | "automargin": true, 2030 | "gridcolor": "white", 2031 | "linecolor": "white", 2032 | "ticks": "", 2033 | "title": { 2034 | "standoff": 15 2035 | }, 2036 | "zerolinecolor": "white", 2037 | "zerolinewidth": 2 2038 | } 2039 | } 2040 | }, 2041 | "title": { 2042 | "text": "Inventory Over Time" 2043 | }, 2044 | "xaxis": { 2045 | "anchor": "y", 2046 | "domain": [ 2047 | 0, 2048 | 1 2049 | ], 2050 | "title": { 2051 | "text": "Date" 2052 | } 2053 | }, 2054 | "yaxis": { 2055 | "anchor": "x", 2056 | "domain": [ 2057 | 0, 2058 | 1 2059 | ], 2060 | "title": { 2061 | "text": "Inventory" 2062 | } 2063 | } 2064 | } 2065 | } 2066 | }, 2067 | "metadata": {}, 2068 | "output_type": "display_data" 2069 | } 2070 | ], 2071 | "source": [ 2072 | "fig_inventory = px.line(data, x='Date',\n", 2073 | " y='Inventory',\n", 2074 | " title='Inventory Over Time')\n", 2075 | "fig_inventory.show()" 2076 | ] 2077 | }, 2078 | { 2079 | "cell_type": "code", 2080 | "execution_count": 9, 2081 | "id": "810ff52d", 2082 | "metadata": {}, 2083 | "outputs": [ 2084 | { 2085 | "name": "stdout", 2086 | "output_type": "stream", 2087 | "text": [ 2088 | "Number of observations in differenced_series_small: 4\n", 2089 | "Number of observations in differenced_series_larger: 49\n" 2090 | ] 2091 | }, 2092 | { 2093 | "data": { 2094 | "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGdCAYAAADDrMAsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3p0lEQVR4nO3dd3RU1drH8d+QXsgIBFKkBa6EjhSBBOkQqtgB0YheQCyIiL4iNopeKfaO3kuzASpFRMALSFNC0wCiXkQBQUnoJAFCSNnvH5iRyUxCAplJMvl+1poFc2afffY5c5I888wuFmOMEQAAAAAAAOBGFUq6AQAAAAAAACh/SEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgFAMXj99ddlsVjUuHHjAsvt2bNHI0aMUL169RQQEKDAwEA1atRITz31lP78809bubvuuksWi8XpY8mSJa4+nUJZs2aNLBaL1qxZU2C5WbNm2bXf29tb1atX19133213zrnK4rU8d+6c7r33XkVERMjLy0tXX311vmXzticoKEi1a9dWv379NHPmTGVkZDjs06lTJ3Xq1Mlu2759+9SnTx9VrlxZFotFo0aNkiQlJiaqY8eOslqtslgsevXVV4vlHMuq8ePHy2Kx5Pt67n1cmIck1a5dW3fddZebWl84mzZt0o033qiaNWvKz89PYWFhiomJ0SOPPFLsx7rrrrtUu3btYq+3MLp27ap77733sutxdg7PP/+8Fi1a5FA29/fX1q1bL/u4xWHVqlVq1aqVgoKCZLFYbG2eN2+eGjVqpICAAFksFm3btu2i935+3PEeHzx4UOPHj9e2bdsuq57c92ffvn1F3nfp0qUaP378ZR0/Pj5eN9xww2XVAQDlnXdJNwAAPMGMGTMkST/++KM2bdqkNm3aOJRZsmSJBg4cqNDQUI0YMULNmzeXxWLRDz/8oBkzZujLL79UYmKirXxAQIC+/vprh3rq16/vuhNxoZkzZ6p+/fpKT0/XunXrNGnSJK1du1Y//PCDgoKCbOXK4rV855139O677+qNN95Qy5YtFRwcXGD5C9uTnp6uAwcOaNmyZRo2bJheeuklLV++XNWrV7eVf/vttx3qePjhh7Vp0ybNmDFD4eHhioiIkCT985//1OnTpzV37lxVqlSpxBIIZUWLFi2UkJBgt+3GG29U3bp19eKLLzqUX7hwoUJCQtzVvIv68ssv1a9fP3Xq1ElTp05VRESEkpKStHXrVs2dO1cvvfRSsR7v6aef1kMPPVSsdRbG559/rm+//Vbvv//+Zdfl7Byef/553XLLLaU6wWCMUf/+/VWvXj0tXrxYQUFBio6O1pEjRxQfH6+ePXvq7bfflp+fn+rVq6ehQ4eqZ8+eRT6OO97jgwcPasKECapdu3aBSXxXWrp0qd56663LSkyNHz9e9evX19dff60uXboUX+MAoBwhKQUAl2nr1q3avn27+vTpoy+//FLTp093SKTs3btXAwcOVL169bR69WpZrVbba126dNHIkSO1cOFCu30qVKigtm3buuUc3KFx48Zq1aqVJKlz587Kzs7Ws88+q0WLFun222+XVHav5c6dOxUQEKARI0YUqryz9tx55526++671bdvX91yyy3auHGj7bWGDRs6PWbr1q0dPkTv3LlTw4YNU69evYp+Ik5kZ2crKytLfn5+xVJfaRMSEuLwXvj5+emKK65wes80b97cXU0rlKlTpyoqKkpfffWVvL3/DusGDhyoqVOnFttxzpw5o8DAQNWtW7fY6iyK559/XjfeeKOuvPLKy66rpM7hch08eFDHjx/XjTfeqK5du9q2f/vtt8rMzNQdd9yhjh072rYHBgbaJbcLq6xen5JQt25d9ezZU5MnTyYpBQCXiOF7AHCZpk+fLkmaPHmyYmNjNXfuXJ05c8auzMsvv6zTp0/r7bfftkui5LJYLLrpppuKpT1vvfWWOnTooGrVqikoKEhNmjTR1KlTlZmZaVeuU6dOaty4sbZs2aL27dsrMDBQderU0eTJk5WTk2NX9n//+5969uypwMBAhYaG6t5771VaWtpltTP3A//vv/9u21baruXZs2c1duxYRUVFydfXV1deeaUeeOABnTx50u54//nPf5Senm4b5jVr1qxLOl5cXJyGDRumTZs2ad26dbbtFw7fyx1u9uuvv2rZsmV2x7RYLMrKytI777xjN+RMkpKTkzV8+HBVr15dvr6+ioqK0oQJE5SVlWUrs2/fPlksFk2dOlXPPfecoqKi5Ofnp9WrV0s6nzTs16+fKleuLH9/fzVv3lyffPKJ3TnktmP16tW67777FBoaqipVquimm27SwYMHHc75448/VkxMjIKDgxUcHKyrr77adh/kWrlypbp27aqQkBAFBgaqXbt2WrVqlUNdX375pa6++mr5+fkpKirKaU+ny5V3+F7u+/Hxxx9rzJgxioiIUHBwsK677jodOnRIaWlpuueeexQaGqrQ0FDdfffdOnXqlF2dxhi9/fbbuvrqqxUQEKBKlSrplltu0Z49ey7anmPHjik0NNQuIZWrQgXHMG/evHmKiYlRUFCQgoOD1aNHD7tehdL54VvBwcH64YcfFBcXp4oVK9qSIM6GdhW2/YmJierbt6+qVasmPz8/RUZGqk+fPvrjjz8KPMfExERt3rxZ8fHxtm2pqany9vbWCy+8YNt29OhRVahQQVar1e6+HjlypKpWrSpjjNNzsFgsOn36tGbPnm37uck7XDYtLa1Q93Nee/bs0cCBAxUZGWkbWtm1a1e7YWsWi8Vpb50L77Xx48fbEkxjxoyRxWKxvX7ttddKkgYMGGDX9vyG713sZ+5y3uPC/F1Zs2aNrrnmGknS3XffbbvmF+uxtHHjRrVr107+/v6KjIzU2LFjHf6uSefv8bi4OEVERCggIEANGjTQ448/rtOnT9ud41tvvSVJdkN0c4cBFvbvqHR+CN/KlSv122+/Fdh+AIBzJKUA4DKkp6drzpw5uuaaa9S4cWP985//VFpamj799FO7cv/9738VFhZW5N46WVlZdo/s7OyL7vPbb79p0KBB+uCDD7RkyRINGTJEL7zwgoYPH+5QNjk5WbfffrvuuOMOLV68WL169dLYsWP14Ycf2socOnRIHTt21M6dO/X222/rgw8+0KlTpwrdKyg/v/76qySpatWqkkrftTTG6IYbbtCLL76o+Ph4ffnllxo9erRmz56tLl262OZ+SkhIUO/evRUQEKCEhAQlJCSoT58+RWrbhfr16ydJdkmpC+UONwsPD1e7du1sx+zVq5dtGNott9xi2y6df59bt26tr776Ss8884yWLVumIUOGaNKkSRo2bJjDMV5//XV9/fXXevHFF7Vs2TLVr19fq1evVrt27XTy5ElNmzZNn3/+ua6++moNGDDAaRJu6NCh8vHx0ccff6ypU6dqzZo1uuOOO+zKPPPMM7r99tsVGRmpWbNmaeHChRo8eLBdovLDDz9UXFycQkJCNHv2bH3yySeqXLmyevToYZeYWrVqla6//npVrFhRc+fO1QsvvKBPPvlEM2fOLNobcImeeOIJHT58WLNmzdJLL72kNWvW6LbbbtPNN98sq9WqOXPm6LHHHtMHH3ygJ554wm7f4cOHa9SoUerWrZsWLVqkt99+Wz/++KNiY2N16NChAo8bExOjTZs2aeTIkdq0aZPTD825nn/+ed12221q2LChPvnkE33wwQdKS0tT+/bt9dNPP9mVPXfunPr166cuXbro888/14QJE/KttzDtP336tLp3765Dhw7prbfe0ooVK/Tqq6+qZs2aF01wL1myRF5eXurQoYNtW0hIiK655hqtXLnStm3VqlXy8/NTWlqaNm/ebNu+cuVKdenSJd/5lRISEhQQEKDevXvbfm7yDpktzP3sTO/evfXdd99p6tSpWrFihd555x01b97cLrFdGEOHDtWCBQskSQ8++KASEhK0cOFCPf3007bkyvPPP++07RcqzM+cM0W5Ry/2d6VFixa2n8unnnrKds2HDh2a7/F/+uknde3aVSdPntSsWbM0bdo0JSYm6rnnnnMou3v3bvXu3VvTp0/X8uXLNWrUKH3yySe67rrrbGWefvpp3XLLLZJkO35CQoJtGHRR/o526tRJxhgtXbq0wGsIAMiHAQBcsvfff99IMtOmTTPGGJOWlmaCg4NN+/bt7cr5+/ubtm3bFrrewYMHG0kOj3bt2hWpfdnZ2SYzM9O8//77xsvLyxw/ftz2WseOHY0ks2nTJrt9GjZsaHr06GF7PmbMGGOxWMy2bdvsynXv3t1IMqtXry6wDTNnzjSSzMaNG01mZqZJS0szS5YsMVWrVjUVK1Y0ycnJxpjSdy2XL19uJJmpU6fabZ83b56RZN577z27YwQFBRW6PQWV/fnnn40kc99999m2dezY0XTs2NGuXK1atUyfPn0c9pdkHnjgAbttw4cPN8HBweb333+32/7iiy8aSebHH380xhizd+9eI8nUrVvXnDt3zq5s/fr1TfPmzU1mZqbd9r59+5qIiAiTnZ1tjPn7/b7//vvtyk2dOtVIMklJScYYY/bs2WO8vLzM7bffnu+1OH36tKlcubK57rrr7LZnZ2ebZs2amdatW9u2tWnTxkRGRpr09HTbttTUVFO5cmVT1HAnv2ub+9rgwYNtz1evXm0kObRx1KhRRpIZOXKk3fYbbrjBVK5c2fY8ISHBSDIvvfSSXbkDBw6YgIAA89hjjxXY1qNHj5prr73Wdl/7+PiY2NhYM2nSJJOWlmYrt3//fuPt7W0efPBBu/3T0tJMeHi46d+/v21b7s/MjBkzHI43ePBgU6tWrSK3f+vWrUaSWbRoUYHn40yvXr1M/fr1HbY/9dRTJiAgwJw9e9YYY8zQoUNNz549TdOmTc2ECROMMcb8+eefTn9eLzwHY4wJCgqye19zFfZ+dubo0aNGknn11VcLPD9JZty4cQ7b895ruT+fL7zwgl253Hvw008/tds+btw4u3u/MD9zxlz6e2xM4f+ubNmyxUgyM2fOLLAtuQYMGGACAgJsfy+MMSYrK8vUr1/fSDJ79+51ul9OTo7JzMw0a9euNZLM9u3bba898MADhfrdUNDf0VxXXnmlGTBgQKHOBQBgj55SAHAZpk+froCAAA0cOFCSFBwcrFtvvVXr16/X7t27L6vugIAAbdmyxe6Rd1iTM4mJierXr5+qVKkiLy8v+fj46M4771R2drZ++eUXu7Lh4eFq3bq13bamTZvafWu+evVqNWrUSM2aNbMrN2jQoCKdT9u2beXj46OKFSuqb9++Cg8P17JlyxQWFiap9F3L3InI8660duuttyooKMjp8LHiYP4aYlSclixZos6dOysyMtKut1juvFNr1661K9+vXz/5+PjYnv/666/63//+Z5v768I6evfuraSkJO3atcuhjgs1bdpU0t/DNVesWKHs7Gw98MAD+bZ7w4YNOn78uAYPHmx3zJycHPXs2VNbtmzR6dOndfr0aW3ZskU33XST/P39bftXrFjRrneEK/Xt29fueYMGDSTJoddcgwYNdPz4cdsQviVLlshiseiOO+6wO8fw8HA1a9bsoqtbVqlSRevXr9eWLVs0efJkXX/99frll180duxYNWnSREePHpUkffXVV8rKytKdd95pdxx/f3917NjR6XFuvvnmi553Ydv/j3/8Q5UqVdKYMWM0bdo0h55ZBTl48KCqVavmsL1r165KT0/Xhg0bJJ3vEdW9e3d169ZNK1assG2TpG7duhX6eM5c7H52pnLlyqpbt65eeOEFvfzyy0pMTHQYGu1OhfmZc6ao92hh/q4U1erVq9W1a1fb3wtJ8vLy0oABAxzK7tmzR4MGDVJ4eLjtb2DuXFs///xzoY5XlL+jklStWjWnq8kCAC6Oic4B4BL9+uuvWrdunW6++WYZY2zDMW655RbNnDlTM2bM0KRJkyRJNWvW1N69e4tUf4UKFWwTgxfW/v371b59e0VHR+u1115T7dq15e/vr82bN+uBBx5Qenq6XfkqVao41OHn52dX7tixY4qKinIoFx4eXqS2vf/++2rQoIG8vb0VFhZmGyYhlc5reezYMXl7e9uGF+ayWCwKDw/XsWPHilRfYeV+cIuMjCy2Og8dOqQvvvjCLtF0odzERa4L35vc/SXp0Ucf1aOPPlqoOvLeW7kTpefeW0eOHJGkAidizj1u7jAbZ44fPy6LxaKcnByn92RR79NLVblyZbvnvr6+BW4/e/asgoODdejQIRlj7D5sX6hOnTqFOn6rVq1s93hmZqbGjBmjV155RVOnTtXUqVNt1zJ3Lp+88s4/FRgYWKhVBgvbfqvVqrVr1+pf//qXnnjiCZ04cUIREREaNmyYnnrqqXzvTen8PeOs/tjYWAUGBmrlypWqUaOG9u3bp+7du+uPP/7QG2+8oVOnTmnlypWqU6eO099hRXGx+9kZi8WiVatWaeLEiZo6daoeeeQRVa5cWbfffrv+9a9/qWLFipfVpqIqzM+cM0W9Rwvzd6Wojh07Vqif71OnTql9+/by9/fXc889p3r16ikwMFAHDhzQTTfdVKg2FPXvqCT5+/tf1vkBQHlGUgoALtGMGTNkjNFnn32mzz77zOH12bNn67nnnpOXl5d69OihN954Qxs3bnTpKnCLFi3S6dOntWDBAtWqVcu2/cJJdYuqSpUqSk5OdtjubFtBGjRokG9iqDReyypVqigrK0tHjhyxS0wZY5ScnJzvh/vLtXjxYklymGj5coSGhqpp06b617/+5fT1vAmwvHPvhIaGSpLGjh2b7yTy0dHRRWpT7jX9448/VKNGjXzbLUlvvPFGvu91WFiYMjMzZbFYiuU+dbfQ0FBZLBatX7/e6QqHl7LqoY+Pj8aNG6dXXnlFO3futB1Hkj777DO73w35yW/+pbyK0v4mTZpo7ty5MsZox44dmjVrliZOnKiAgAA9/vjjBR7j+PHjDtt9fX117bXXauXKlapevbrCw8PVpEkTW5JkzZo1WrVqlUMvNneqVauWrVfmL7/8ok8++UTjx4/XuXPnNG3aNEnnr1HuHHUXKu7Ed2F+5pxxxT1aVIX9O/T111/r4MGDWrNmjd1KhEWZw+tS/o4eP37cYXJ4AEDhkJQCgEuQnZ2t2bNnq27duvrPf/7j8PqSJUv00ksvadmyZerbt68efvhhzZgxQ/fff79Wr17tsGqcMUaLFi3SjTfeeFntyv0geeGHBGOM/v3vf19ynZ07d9bUqVO1fft2uyF8H3/88aU39AKl9Vp27dpVU6dO1YcffqiHH37Ytn3+/Pk6ffq03ZLsxWXFihX6z3/+o9jYWNuKWsWhb9++Wrp0qerWratKlSoVef/o6GhdddVV2r59u55//vliaVNcXJy8vLz0zjvvKCYmxmmZdu3a6YorrtBPP/1U4MT6vr6+at26tRYsWKAXXnjBNoQvLS1NX3zxRbG011X69u2ryZMn688//1T//v2LvH9SUpJDzzbp72FKuQnHHj16yNvbW7/99luhhuUV1qW032KxqFmzZnrllVc0a9Ysff/99wWWr1+/vhYtWuT0tW7dumns2LGqWLGibYheUFCQ2rZtqzfeeEMHDx4s1NC9y+3JUxj16tXTU089pfnz59udc+3atbVjxw67sl9//bXDKo2XqzA/c85c7j3qTGF6ml2oc+fOWrx4sQ4dOmTrsZWdna158+bZlXP2N1CS3n333QLbEBAQUGAdBf0dzcrK0oEDB9S7d+9CnQsAwB5JKQC4BMuWLdPBgwc1ZcoUpz1aGjdurDfffFPTp09X3759FRUVpblz52rAgAG6+uqrNWLECDVv3lzS+VWFcnsKXW4ipXv37vL19dVtt92mxx57TGfPntU777yjEydOXHKdo0aN0owZM9SnTx8999xzCgsL00cffaT//e9/l9XWXKX5Wvbo0UNjxoxRamqq2rVrpx07dmjcuHFq3ry53fL0RZWTk6ONGzdKkjIyMrR//34tW7ZMn3zyiRo0aKBPPvnkstqe18SJE7VixQrFxsZq5MiRio6O1tmzZ7Vv3z4tXbpU06ZNu+iQnnfffVe9evVSjx49dNddd+nKK6/U8ePH9fPPP+v77793WCXxYmrXrq0nnnhCzz77rNLT03XbbbfJarXqp59+0tGjRzVhwgQFBwfrjTfe0ODBg3X8+HHdcsstqlatmo4cOaLt27fryJEjeueddyRJzz77rHr27Knu3bvrkUceUXZ2tqZMmaKgoCCnvWxKi3bt2umee+7R3Xffra1bt6pDhw4KCgpSUlKSvvnmGzVp0kT33Xdfvvv36NFD1atX13XXXaf69esrJydH27Zt00svvaTg4GA99NBDks5f74kTJ+rJJ5/Unj171LNnT1WqVEmHDh3S5s2bFRQUVOAKe5fb/iVLlujtt9/WDTfcoDp16sgYowULFujkyZPq3r17gcfo1KmTZsyYoV9++UX16tWze61r167Kzs7WqlWrNHv2bNv2bt26ady4cbJYLOrSpctFz6NJkyZas2aNvvjiC0VERKhixYpF7v2X144dOzRixAjdeuutuuqqq+Tr66uvv/5aO3bssOsZFh8fr6efflrPPPOMOnbsqJ9++klvvvmmQ8L9chXmZ86Zy71Hnalbt64CAgL00UcfqUGDBgoODlZkZGS+w5afeuopLV68WF26dNEzzzyjwMBAvfXWWzp9+rRdudjYWFWqVEn33nuvxo0bJx8fH3300Ufavn27Q51NmjSRJE2ZMkW9evWSl5eXmjZtWuS/ozt27NCZM2fUuXPnIl0DAMBf3D61OgB4gBtuuMH4+vqaw4cP51tm4MCBxtvb2261oN9++83cf//95h//+Ifx8/MzAQEBpmHDhmb06NF2qwcVZTW3vL744gvTrFkz4+/vb6688krzf//3f2bZsmUOK+V17NjRNGrUyGF/ZytT/fTTT6Z79+7G39/fVK5c2QwZMsR8/vnnRVp9b8uWLU5fL83XMj093YwZM8bUqlXL+Pj4mIiICHPfffeZEydO2JUr6up7umAVwICAAFOzZk1z3XXXmRkzZpiMjAyHfS539T1jjDly5IgZOXKkiYqKMj4+PqZy5cqmZcuW5sknnzSnTp0yxuS/uleu7du3m/79+5tq1aoZHx8fEx4ebrp06WJbMdGY/N/v3BXC8t4v77//vrnmmmuMv7+/CQ4ONs2bN3dYkWvt2rWmT58+pnLlysbHx8dceeWVpk+fPg6rjS1evNg0bdrU+Pr6mpo1a5rJkyc7rEBWGJey+l7etuR3HXLbc+TIEbvtM2bMMG3atDFBQUEmICDA1K1b19x5551m69atBbZ13rx5ZtCgQeaqq64ywcHBxsfHx9SsWdPEx8ebn376yaH8okWLTOfOnU1ISIjx8/MztWrVMrfccotZuXKlrUxB97Oz3w+Faf///vc/c9ttt5m6deuagIAAY7VaTevWrc2sWbMKPD9jjElJSTHBwcEOK2Eac351tdDQUCPJ/Pnnn7bt3377rZFkWrRoUahz2LZtm2nXrp0JDAw0kmw/b0W9ny906NAhc9ddd5n69euboKAgExwcbJo2bWpeeeUVk5WVZSuXkZFhHnvsMVOjRg0TEBBgOnbsaLZt21bsq+/lutjP3KW+x8YU7e/KnDlzTP369Y2Pj0++KxBe6NtvvzVt27Y1fn5+Jjw83Pzf//2fee+99xxW39uwYYOJiYkxgYGBpmrVqmbo0KHm+++/d1jtLyMjwwwdOtRUrVrVWCwWu3oK+3fUGGOefvppExoaalsFEgBQNBZjXLDMDwAAAFBMHnzwQa1atUo//vhjoee7AlwtOztb//jHPzRo0KB85+wDABSswsWLAAAAACXnqaee0p9//qn58+eXdFMAmw8//FCnTp3S//3f/5V0UwCgzCIpBQAAgFItdy47V09GDhRFTk6OPvroI11xxRUl3RQAKLMYvgcAAAAAAAC3o6cUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFAAAAAAAANyOpBQAAAAAAADcjqQUAAAAAAAA3I6kFIACvf7667JYLGrcuPFl1bN06VKNHz++eBpVyu3bt08Wi0WzZs0q8r4HDx7U+PHjtW3bNofXxo8fL4vFcvkNBADAw82aNUsWi8X28Pb2VvXq1XX33Xfrzz//LNZjPf/881q0aJHD9jVr1shisWjNmjVFrvNS9l28eLEsFouqVKmijIyMIh/zQhs2bND48eN18uTJy6qnrLBYLJcUp545c0bjx493+j7l3oP79u277PYBnoykFIACzZgxQ5L0448/atOmTZdcz9KlSzVhwoTiapbHOnjwoCZMmOA0KTV06FAlJCS4v1EAAJRRM2fOVEJCglasWKFhw4Zpzpw5at++vU6fPl1sx8gvKdWiRQslJCSoRYsWxXasgkyfPl2SdPz4caftKYoNGzZowoQJ5SYpdanOnDmjCRMmOE1K9enTRwkJCYqIiHB/w4AyhKQUgHxt3bpV27dvV58+fST9Hex4qjNnzjjdboxRenq6m1vjqHr16mrbtm1JNwMAgDKjcePGatu2rTp37qxx48bpscce0969ey87aSPporFBSEiI2rZtq5CQkMs+1sUkJydr6dKl6tKli/z9/T0+ZpPyj9uki7837lC1alW1bdtWfn5+Jd0UoFQjKQUgX7kBzeTJkxUbG6u5c+faBQD5dS3PO3ztrrvu0ltvvSVJdl3pc7sznz17VmPHjlVUVJR8fX115ZVX6oEHHnD67dzHH3+smJgYBQcHKzg4WFdffbVD4DVjxgw1a9ZM/v7+qly5sm688Ub9/PPPdmXuuusuBQcH64cfflBcXJwqVqyorl272to4YsQITZs2TQ0aNJCfn59mz54tSdq9e7cGDRqkatWqyc/PTw0aNLCdW0F+/fVX3X333brqqqsUGBioK6+8Utddd51++OEHu+t5zTXXSJLuvvtu23XK7U7ubPheTk6Opk6dqvr168vPz0/VqlXTnXfeqT/++MOuXKdOndS4cWNt2bJF7du3V2BgoOrUqaPJkycrJyfnou0HAMAT5H658/vvv0uSJkyYoDZt2qhy5coKCQlRixYtNH36dBlj7ParXbu2+vbtqwULFqh58+by9/fXhAkTZLFYdPr0ac2ePdv2d7tTp06SnMdJW7du1cCBA1W7dm0FBASodu3auu2222ztuVSzZ89WVlaWHn74Yd10001atWqVQ50FTS+QN974v//7P0lSVFSU7bxyz6OwsYckLV++XF27dpXValVgYKAaNGigSZMm2ZVZvHixYmJiFBgYqIoVK6p79+4OPcNzY6Dvv/9et9xyiypVqqS6detKyv+9kc4n64YPH67q1avL19dXUVFRmjBhgrKysgq8nkeOHNH999+vhg0bKjg4WNWqVVOXLl20fv16u+tZtWpVSbLdCxaLRXfddZek/IfvFSVO/fXXX9W7d28FBwerRo0aeuSRRy57aCZQ2niXdAMAlE7p6emaM2eOrrnmGjVu3Fj//Oc/NXToUH366acaPHhwkep6+umndfr0aX322Wd2QUZERISMMbrhhhu0atUqjR07Vu3bt9eOHTs0btw4JSQkKCEhwfYN0zPPPKNnn31WN910kx555BFZrVbt3LnTLuiaNGmSnnjiCd12222aNGmSjh07pvHjxysmJkZbtmzRVVddZSt77tw59evXT8OHD9fjjz9uF6AsWrRI69ev1zPPPKPw8HBVq1ZNP/30k2JjY1WzZk299NJLCg8P11dffaWRI0fq6NGjGjduXL7X4ODBg6pSpYomT56sqlWr6vjx45o9e7batGmjxMRERUdHq0WLFpo5c6buvvtuPfXUU7YeatWrV8+33vvuu0/vvfeeRowYob59+2rfvn16+umntWbNGn3//fcKDQ21lU1OTtbtt9+uRx55ROPGjdPChQs1duxYRUZG6s477yzCOwoAQNn066+/SpItmbBv3z4NHz5cNWvWlCRt3LhRDz74oP78808988wzdvt+//33+vnnn/XUU08pKipKQUFBuuGGG9SlSxd17txZTz/9tCQV2DNq3759io6O1sCBA1W5cmUlJSXpnXfe0TXXXKOffvrJ7u92UcyYMUMRERHq1auXAgIC9PHHH2vWrFkFxib5GTp0qI4fP6433nhDCxYssA0/a9iwoaTCxx7Tp0/XsGHD1LFjR02bNk3VqlXTL7/8op07d9qO9fHHH+v2229XXFyc5syZo4yMDE2dOlWdOnXSqlWrdO2119q17aabbtLAgQN177332g3BdPbeJCcnq3Xr1qpQoYKeeeYZ1a1bVwkJCXruuee0b98+zZw5M99rcPz4cUnSuHHjFB4erlOnTmnhwoW2dnXq1EkRERFavny5evbsqSFDhmjo0KGS/r63nClKnJqZmal+/fppyJAheuSRR7Ru3To9++yzslqtDvcmUKYZAHDi/fffN5LMtGnTjDHGpKWlmeDgYNO+fXtbmdWrVxtJZvXq1Xb77t2710gyM2fOtG174IEHjLNfOcuXLzeSzNSpU+22z5s3z0gy7733njHGmD179hgvLy9z++2359vmEydOmICAANO7d2+77fv37zd+fn5m0KBBtm2DBw82ksyMGTMc6pFkrFarOX78uN32Hj16mOrVq5uUlBS77SNGjDD+/v628s7OP6+srCxz7tw5c9VVV5mHH37Ytn3Lli357jtu3Di7a/jzzz8bSeb++++3K7dp0yYjyTzxxBO2bR07djSSzKZNm+zKNmzY0PTo0SPfdgIAUBbNnDnTSDIbN240mZmZJi0tzSxZssRUrVrVVKxY0SQnJzvsk52dbTIzM83EiRNNlSpVTE5Oju21WrVqGS8vL7Nr1y6H/YKCgszgwYMdtucXJ10oKyvLnDp1ygQFBZnXXnutSPvmWrdunZFkHn/8cWOMMTk5OSYqKsrUqlXL7hwKik8kmXHjxtmev/DCC0aS2bt3r125wsYeaWlpJiQkxFx77bV2bbhQdna2iYyMNE2aNDHZ2dm27WlpaaZatWomNjbWti03BnrmmWcc6snvvRk+fLgJDg42v//+u932F1980UgyP/74Y77nn1dWVpbJzMw0Xbt2NTfeeKNt+5EjR/LdN/cezL2GlxKnfvLJJ3Zle/fubaKjo/NtJ1AWMXwPgFPTp09XQECABg4cKEkKDg7WrbfeqvXr12v37t3Fdpyvv/5akmxdnXPdeuutCgoK0qpVqyRJK1asUHZ2th544IF860pISFB6erpDXTVq1FCXLl1sdV3o5ptvdlpXly5dVKlSJdvzs2fPatWqVbrxxhsVGBiorKws26N37946e/asNm7cmG/bsrKy9Pzzz6thw4by9fWVt7e3fH19tXv3bocu24W1evVqSY7XrnXr1mrQoIHD+YaHh6t169Z225o2bXrZQwYAACit2rZtKx8fH1WsWFF9+/ZVeHi4li1bprCwMEnn45Bu3brJarXKy8tLPj4+euaZZ3Ts2DEdPnzYrq6mTZuqXr16l9WeU6dOacyYMfrHP/4hb29veXt7Kzg4WKdPn77keCB3GoN//vOfkmQbQvb77787jX0uR2Fjjw0bNig1NVX3339/visH79q1SwcPHlR8fLwqVPj7Y2lwcLBuvvlmbdy40WHeqPziNmfvzZIlS9S5c2dFRkbaxW29evWSJK1du7bAc502bZpatGghf39/eXt7y8fHR6tWrbrk96mocarFYtF1113ncJ7EbfA0JKUAOPj111+1bt069enTR8YYnTx5UidPntQtt9wi6e8V+YrDsWPH5O3t7dDV2WKxKDw8XMeOHZN0fmy/VPBQttyyzlY5iYyMtL2eKzAwMN8u9nnrOHbsmLKysvTGG2/Ix8fH7tG7d29J0tGjR/Nt2+jRo/X000/rhhtu0BdffKFNmzZpy5Ytatas2SVPxlnU861SpYpDOT8/v1IxGSgAAK7w/vvva8uWLUpMTNTBgwe1Y8cOtWvXTpK0efNmxcXFSZL+/e9/69tvv9WWLVv05JNPSnKcLLs4VlEbNGiQ3nzzTQ0dOlRfffWVNm/erC1btqhq1aqX9Pc4LS1Nn376qVq3bq2qVavaYrYbb7xRFoul2Cc8L2zsURxxW05Ojk6cOGG3Pb/3wNn2Q4cO6YsvvnCI2xo1aiSp4Ljt5Zdf1n333ac2bdpo/vz52rhxo7Zs2aKePXu6LW4LDAyUv7+/3TY/Pz+dPXv2ko4PlFbMKQXAwYwZM2SM0WeffabPPvvM4fXZs2frueees/2hzDvhYkF/5POqUqWKsrKydOTIEbvElDFGycnJtom/c1/7448/VKNGjXzrkqSkpCSH1w4ePOgwT0N+39w5e61SpUry8vJSfHx8vr21oqKi8q3vww8/1J133qnnn3/ebvvRo0d1xRVX5LtfQS4837xBn7PzBQCgvGnQoIFatWrl9LW5c+fKx8dHS5Yssfvwn9/KfAXFDYWRkpKiJUuWaNy4cXr88cdt2zMyMmxzGBXVnDlzdObMGW3evNmuh3euhQsX6sSJE6pUqVK+cVveZEhBCht7XBi3FaauvA4ePKgKFSo4nFN+74Gz7aGhoWratKn+9a9/Od0nMjIy37Z9+OGH6tSpk9555x277WlpafnuczFFjVOB8oKeUgDsZGdna/bs2apbt65Wr17t8HjkkUeUlJSkZcuWqXbt2pKkHTt22NWxePFih3pzJyvP++1S7op3H374od32+fPn6/Tp07bX4+Li5OXl5RAcXCgmJkYBAQEOdf3xxx/6+uuvbXVdisDAQHXu3FmJiYlq2rSpWrVq5fBw1hMpl8VicVgS+Msvv9Sff/5pty2/6+RMly5dJDleuy1btujnn3++rPMFAMDTWSwWeXt7y8vLy7YtPT1dH3zwQZHqKWyvY4vFImOMQzzwn//8R9nZ2UU6Zq7p06erYsWKWrVqlUPM9sILLygjI0MfffSRJCksLEz+/v4Ocdvnn3/u9Jwkx3iksLFHbGysrFarpk2b5rCSYa7o6GhdeeWV+vjjj+3KnD59WvPnz7etyHep+vbtq507d6pu3bpO47aCklLO4rYdO3Y4rApYlLjNlXEqUJbRUwqAnWXLlungwYOaMmWKbUnjCzVu3Fhvvvmmpk+frr59+6pbt26aNGmSKlWqpFq1amnVqlVasGCBw35NmjSRJE2ZMkW9evWSl5eXmjZtqu7du6tHjx4aM2aMUlNT1a5dO9vqe82bN1d8fLyk88v9PvHEE3r22WeVnp6u2267TVarVT/99JOOHj2qCRMm6IorrtDTTz+tJ554Qnfeeaduu+02HTt2TBMmTJC/v/8lrUBzoddee03XXnut2rdvr/vuu0+1a9dWWlqafv31V33xxRe2+bGc6du3r2bNmqX69euradOm+u677/TCCy84fMtYt25dBQQE6KOPPlKDBg0UHBysyMhIp4FTdHS07rnnHr3xxhuqUKGCevXqZVsBp0aNGnr44Ycv63wBAPBkffr00csvv6xBgwbpnnvu0bFjx/Tiiy86JCMupkmTJlqzZo2++OILRUREqGLFioqOjnYoFxISog4dOuiFF15QaGioateurbVr12r69OmX1Gt6586d2rx5s+677z5bsuhC7dq100svvaTp06drxIgRslgsuuOOOzRjxgzVrVtXzZo10+bNm/Xxxx87PSfpfOwzePBg+fj4KDo6utCxR3BwsF566SUNHTpU3bp107BhwxQWFqZff/1V27dv15tvvqkKFSpo6tSpuv3229W3b18NHz5cGRkZeuGFF3Ty5ElNnjy5yNfkQhMnTtSKFSsUGxurkSNHKjo6WmfPntW+ffu0dOlSTZs2Ld/hhX379tWzzz6rcePGqWPHjtq1a5cmTpyoqKgou9WaK1asqFq1aunzzz9X165dVblyZdt7m5er41SgzCrJWdYBlD433HCD8fX1NYcPH863zMCBA423t7dJTk42SUlJ5pZbbjGVK1c2VqvV3HHHHWbr1q0Oq7tkZGSYoUOHmqpVqxqLxWK3Gkl6eroZM2aMqVWrlvHx8TERERHmvvvuMydOnHA49vvvv2+uueYa4+/vb4KDg03z5s0dVpH5z3/+Y5o2bWp8fX2N1Wo1119/vd0KK8acX9UkKCjI6flJMg888IDT1/bu3Wv++c9/miuvvNL4+PiYqlWrmtjYWPPcc8/Zlcl7/idOnDBDhgwx1apVM4GBgebaa68169evNx07djQdO3a0O8acOXNM/fr1jY+Pj92KLnlX3zPm/Mo1U6ZMMfXq1TM+Pj4mNDTU3HHHHebAgQN25Tp27GgaNWrkcD6DBw82tWrVcnquAACUVbkrn23ZsqXAcjNmzDDR0dHGz8/P1KlTx0yaNMlMnz7dYeW5WrVqmT59+jitY9u2baZdu3YmMDDQSLL9XXe2gt4ff/xhbr75ZlOpUiVTsWJF07NnT7Nz505Tq1YtuxX8CrP63qhRo4wks23btnzLPP7440aS+e6774wxxqSkpJihQ4easLAwExQUZK677jqzb98+pyvIjR071kRGRpoKFSrYtaWwsYcxxixdutR07NjRBAUFmcDAQNOwYUMzZcoUuzKLFi0ybdq0Mf7+/iYoKMh07drVfPvtt3ZlcmOgI0eOOByjoPfmyJEjZuTIkSYqKsr4+PiYypUrm5YtW5onn3zSnDp1ylYu7/lnZGSYRx991Fx55ZXG39/ftGjRwixatMhp3LRy5UrTvHlz4+fnZyTZ3se8q+/lupw41VksCJR1FmPy6U8JAAAAAAAAuAhzSgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1cmpRat26drrvuOkVGRspisWjRokUX3Wft2rVq2bKl/P39VadOHU2bNs2hzPz589WwYUP5+fmpYcOGWrhwoQtaDwAAUDKIoQAAQHng0qTU6dOn1axZM7355puFKr9371717t1b7du3V2Jiop544gmNHDlS8+fPt5VJSEjQgAEDFB8fr+3btys+Pl79+/fXpk2bXHUaAAAAbkUMBQAAygO3rb5nsVi0cOFC3XDDDfmWGTNmjBYvXqyff/7Ztu3ee+/V9u3blZCQIEkaMGCAUlNTtWzZMluZnj17qlKlSpozZ47L2g8AAFASiKEAAICn8i7pBlwoISFBcXFxdtt69Oih6dOnKzMzUz4+PkpISNDDDz/sUObVV1/Nt96MjAxlZGTYnufk5Oj48eOqUqWKLBZLsZ4DAADwLMYYpaWlKTIyUhUqlM7pOImhAABAaVLY+KlUJaWSk5MVFhZmty0sLExZWVk6evSoIiIi8i2TnJycb72TJk3ShAkTXNJmAABQPhw4cEDVq1cv6WY4RQwFAABKo4vFT6UqKSXJ4Vu33NGFF253Vqagb+vGjh2r0aNH256npKSoZs2aOnDggEJCQoqj2XplxS+atWGfsnMcR0N6VbDortjaerh7vWI5FgAAcJ/U1FTVqFFDFStWLOmmFIgYCgAAlBaFjZ9KVVIqPDzc4du6w4cPy9vbW1WqVCmwTN5v/i7k5+cnPz8/h+0hISHFFlDd2bGBZm89pApOZuiyWKTBHRsoJCSoWI4FAADcrzQPVyOGAgAApdHF4qdSNTFCTEyMVqxYYbftv//9r1q1aiUfH58Cy8TGxrqtnc5EhQZpys1NVeGC6+1lsaiCRZpyc1PVDiWYAgAArkEMBQAAyiKX9pQ6deqUfv31V9vzvXv3atu2bapcubJq1qypsWPH6s8//9T7778v6fwqMW+++aZGjx6tYcOGKSEhQdOnT7dbEeahhx5Shw4dNGXKFF1//fX6/PPPtXLlSn3zzTeuPJVCubVVDTW+MkS9Xjvflruvra072tQimAIAAEVCDEUMBQBAeeDSnlJbt25V8+bN1bx5c0nS6NGj1bx5cz3zzDOSpKSkJO3fv99WPioqSkuXLtWaNWt09dVX69lnn9Xrr7+um2++2VYmNjZWc+fO1cyZM9W0aVPNmjVL8+bNU5s2bVx5KoVWq8rfwdPo7vUIpgAAQJERQxFDAQBQHlhM7iyY5UhqaqqsVqtSUlKKbT6EXGfOZanhM19Jkn6a2EOBvqVq2i4AAFBErowbyhpiKAAAUBiFjRlK1ZxSAAAAAAAAKB9ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtSEoBAAAAAADA7UhKAQAAAAAAwO1ISgEAAAAAAMDtXJ6UevvttxUVFSV/f3+1bNlS69evz7fsXXfdJYvF4vBo1KiRrcysWbOcljl79qyrTwUAAMBtiKEAAICnc2lSat68eRo1apSefPJJJSYmqn379urVq5f279/vtPxrr72mpKQk2+PAgQOqXLmybr31VrtyISEhduWSkpLk7+/vylMBAABwG2IoAABQHrg0KfXyyy9ryJAhGjp0qBo0aKBXX31VNWrU0DvvvOO0vNVqVXh4uO2xdetWnThxQnfffbddOYvFYlcuPDzclacBAADgVsRQAACgPHBZUurcuXP67rvvFBcXZ7c9Li5OGzZsKFQd06dPV7du3VSrVi277adOnVKtWrVUvXp19e3bV4mJiQXWk5GRodTUVLsHAABAaUQMBQAAyguXJaWOHj2q7OxshYWF2W0PCwtTcnLyRfdPSkrSsmXLNHToULvt9evX16xZs7R48WLNmTNH/v7+ateunXbv3p1vXZMmTZLVarU9atSocWknBQAA4GLEUAAAoLxw+UTnFovF7rkxxmGbM7NmzdIVV1yhG264wW5727Ztdccdd6hZs2Zq3769PvnkE9WrV09vvPFGvnWNHTtWKSkptseBAwcu6VwAAADchRgKAAB4Om9XVRwaGiovLy+Hb/QOHz7s8M1fXsYYzZgxQ/Hx8fL19S2wbIUKFXTNNdcU+C2fn5+f/Pz8Ct94AACAEkIMBQAAyguX9ZTy9fVVy5YttWLFCrvtK1asUGxsbIH7rl27Vr/++quGDBly0eMYY7Rt2zZFRERcVnsBAABKA2IoAABQXrisp5QkjR49WvHx8WrVqpViYmL03nvvaf/+/br33nslne8S/ueff+r999+322/69Olq06aNGjdu7FDnhAkT1LZtW1111VVKTU3V66+/rm3btumtt95y5akAAAC4DTEUAAAoD1yalBowYICOHTumiRMnKikpSY0bN9bSpUttK8EkJSVp//79dvukpKRo/vz5eu2115zWefLkSd1zzz1KTk6W1WpV8+bNtW7dOrVu3dqVpwIAAOA2xFAAAKA8sBhjTEk3wt1SU1NltVqVkpKikJCQYq37zLksNXzmK0nSTxN7KNDXpXk/AADgYq6MG8oaYigAAFAYhY0ZXL76HgAAAAAAAJAXSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4HUkpAAAAAAAAuB1JKQAAAAAAALgdSSkAAAAAAAC4ncuTUm+//baioqLk7++vli1bav369fmWXbNmjSwWi8Pjf//7n125+fPnq2HDhvLz81PDhg21cOFCV58GAACAWxFDAQAAT+fSpNS8efM0atQoPfnkk0pMTFT79u3Vq1cv7d+/v8D9du3apaSkJNvjqquusr2WkJCgAQMGKD4+Xtu3b1d8fLz69++vTZs2ufJUAAAA3IYYCgAAlAcWY4xxVeVt2rRRixYt9M4779i2NWjQQDfccIMmTZrkUH7NmjXq3LmzTpw4oSuuuMJpnQMGDFBqaqqWLVtm29azZ09VqlRJc+bMKVS7UlNTZbValZKSopCQkKKd1EWcOZelhs98JUn6aWIPBfp6F2v9AADAvVwZN+SHGIoYCgCAsqywMYPLekqdO3dO3333neLi4uy2x8XFacOGDQXu27x5c0VERKhr165avXq13WsJCQkOdfbo0aPAOjMyMpSammr3AAAAKI2IoQAAQHnhsqTU0aNHlZ2drbCwMLvtYWFhSk5OdrpPRESE3nvvPc2fP18LFixQdHS0unbtqnXr1tnKJCcnF6lOSZo0aZKsVqvtUaNGjcs4MwAAANchhgIAAOWFy/tFWywWu+fGGIdtuaKjoxUdHW17HhMTowMHDujFF19Uhw4dLqlOSRo7dqxGjx5te56amkpQBQAASjViKAAA4Olc1lMqNDRUXl5eDt++HT582OFbuoK0bdtWu3fvtj0PDw8vcp1+fn4KCQmxewAAAJRGxFAAAKC8cFlSytfXVy1bttSKFSvstq9YsUKxsbGFricxMVERERG25zExMQ51/ve//y1SnQAAAKUVMRQAACgvXDp8b/To0YqPj1erVq0UExOj9957T/v379e9994r6XyX8D///FPvv/++JOnVV19V7dq11ahRI507d04ffvih5s+fr/nz59vqfOihh9ShQwdNmTJF119/vT7//HOtXLlS33zzjStPBQAAwG2IoQAAQHng0qTUgAEDdOzYMU2cOFFJSUlq3Lixli5dqlq1akmSkpKStH//flv5c+fO6dFHH9Wff/6pgIAANWrUSF9++aV69+5tKxMbG6u5c+fqqaee0tNPP626detq3rx5atOmjStPBQAAwG2IoQAAQHlgMcaYkm6Eu6WmpspqtSolJaXY50Y4cy5LDZ/5SpL008QeCvR1+VzyAADAhVwZN5Q1xFAAAKAwChszuGxOKQAAAAAAACA/JKUAAAAAAADgdiSlAAAAAAAA4HYkpQAAAAAAAOB2JKUAAAAAAADgdiSlAAAAAAAA4HYkpQAAAAAAAOB2JKUAAAAAAADgdiSlAAAAAAAA4HYkpQAAAAAAAOB23iXdAAAAUDg5OUZGkjHGts3kX1ymgBdNgXs67pv73MjIGNnaYXJfM/avKc/r5nwBu+d/1/lXWfP3sZwd5+92XPiaFBLgrQhrQIHnAwAAgNKHpBQAlEN2CQDln+S4MDGRmxbIL9HhrOyF2wtOgbiOXeLkr4Y4TYjYyv+dQPn7dfvzv/CaOUuk5Ngd0yjH/P16To798XOMffIl54Kky/n98rQfDrwqWEq6CQAAALgEJKUAN8nt4fD3B1Bj/yH+gl4I9s8v+PCbp6yc7HNhD4UL98mrsB9wL9ab4oKCHu/CxEB+1/xi72neHiQXlpPyJkou6C2Szz2Tb6+VC+qz1UVyAwAAAEApQlIKZZIxjj0L7Ho+5PmwnpsIyju8JPdDeo75e1hJTm595u8eD7nPL+y1kGPO93jI+eug+ZbLye35AAAAAAAAcpGUQqFlZGUrJT1TmdnG6dwfjsNM8vTSyKfHR8G9PS4Y9kIvDwAAAAAAPAZJKeQrJ8co9WymUtIzdfJMps6cyy7pJgEAAAAAAA9BUgp2zpzLsiWhUtMzGXYGAAAAAABcgqRUOZeZnaOU9L97Q53LyinpJgEAAAAAgHKApFQ5Y4xRWkaWUs6cT0SdyshijiYAAAAAAOB2JKXKgbOZ2UpNz9TJv3pEZWWThQIAAAAAACWLpJQHys4xSs0dkpeeqXQmKAcAAAAAAKUMSSkPcTrj7wnK084yQTkAAAAAACjdSEqVUZnZOTr517xQKenndC6LLBQAAAAAACg7SEqVEcYYpZ7NOj831JnzE5QDAAAAAACUVSSlSrGzmdm2IXkp6ZnKZkweAAAAAADwECSlShFjjE6eOT85+ckz53Q2M6ekmwQAAAAAAOASLk9Kvf3223rhhReUlJSkRo0a6dVXX1X79u2dll2wYIHeeecdbdu2TRkZGWrUqJHGjx+vHj162MrMmjVLd999t8O+6enp8vf3d9l5uENGVo7+l5xW0s0AAAClADFU4SX8dqykmwAAQJkTU7dKSTdBFVxZ+bx58zRq1Cg9+eSTSkxMVPv27dWrVy/t37/fafl169ape/fuWrp0qb777jt17txZ1113nRITE+3KhYSEKCkpye5R1oMpAADKs6SUdM3ZvF+vf71bczbvV1JKekk3qUQRQwEAgPLApT2lXn75ZQ0ZMkRDhw6VJL366qv66quv9M4772jSpEkO5V999VW7588//7w+//xzffHFF2revLltu8ViUXh4uCubDgAA3GTNrsN6b/0eWSQZSRZJX+w4qOEd6qhjvWol3LqSQQwFAADKA5f1lDp37py+++47xcXF2W2Pi4vThg0bClVHTk6O0tLSVLlyZbvtp06dUq1atVS9enX17dvX4VvAvDIyMpSammr3AAAAJS8pJV3vrd8jY6QcI7t/3123R8kpZ0u6iW5HDAUAAMoLlyWljh49quzsbIWFhdltDwsLU3JycqHqeOmll3T69Gn179/ftq1+/fqaNWuWFi9erDlz5sjf31/t2rXT7t27861n0qRJslqttkeNGjUu7aQAAECxWrPriCz5vGaRtHrXYXc2p1QghgIAAOWFS+eUks53E7+QMcZhmzNz5szR+PHjNW/ePFWr9nfX/bZt2+qOO+5Qs2bN1L59e33yySeqV6+e3njjjXzrGjt2rFJSUmyPAwcOXPoJAQCAYnPkVIZMPq+Zv14vr4ihAACAp3PZnFKhoaHy8vJy+Ebv8OHDDt/85TVv3jwNGTJEn376qbp161Zg2QoVKuiaa64p8Fs+Pz8/+fn5Fb7xAADALaoG+9nmksrL8tfr5Q0xFAAAKC9c1lPK19dXLVu21IoVK+y2r1ixQrGxsfnuN2fOHN111136+OOP1adPn4sexxijbdu2KSIi4rLbDAAA3KtTdNUCe0p1ji5/E50TQwEAgPLCpavvjR49WvHx8WrVqpViYmL03nvvaf/+/br33nslne8S/ueff+r999+XdD6YuvPOO/Xaa6+pbdu2tm8IAwICZLVaJUkTJkxQ27ZtddVVVyk1NVWvv/66tm3bprfeesuVpwIAAFwgwhqg4R3q6N115yc7l6QKlvMJqeEd6ijc6l+i7SspxFAAAKA8cGlSasCAATp27JgmTpyopKQkNW7cWEuXLlWtWrUkSUlJSdq/f7+t/LvvvqusrCw98MADeuCBB2zbBw8erFmzZkmSTp48qXvuuUfJycmyWq1q3ry51q1bp9atW7vyVAAAgIt0rFdNtasE6fEFP0iSejYOV/cG4eU2ISURQwEAgPLBYozJr9e8x0pNTZXValVKSopCQkKKte4z57LU8JmvJEk/TeyhQN/C5/3OZmYrcf/JYm0PAABlwdnMbN09a4skaeZd18jfx6vQ+1at6Kd/VAt2VdNcGjeUNaU1hkr47VixtgUAgPIgpm4Vl9Vd2JjB5avvAQAAAAAAAHm5dPgeAAAAAAAAil9SSrrW7DqiI6cyVDXYT52iqyrCGlDSzSoSklIAAAAAAABlyJpdh/Xe+j2y6PwCMRZJX+w4qOEd6qhjvbKzejHD9wAAAAAAAMqIpJR0vbf+/MrFOUZ2/767bo+SU86WdBMLjZ5SKPc8ocsjAAAAAKB8WLPriK2HVF4WSat3HdZtrWu6uVWXhqQUyjVP6fIIAAAAACgfjpzKcJqQks5/rj1yKsOdzbksDN9DueVJXR4BAAAAAOVD1WA/WfJ5zfLX62UFPaVQbnlSl0cAJYchwAAAAKWbp8VrnaKr6osdB52+ZiR1ji47o35ISqHc8qQujwBKBkOAAQAASjdPjNcirAEa3qGO3l13fuSPJFWwnD+/4R3qKNzqX6LtKwqSUig0T8su53Z5zK+nVFnq8gjA/S4cApz7eyT333fX7VF0WEiZCggAAAA8jSfHax3rVVPtKkF6fMEPkqSejcPVvUF4mTsf5pRCoazZdViPfLpdS3Yc1MY9x7Rkx0E98ul2rf3lcEk37ZJ1iq5aYE+pstTlEYD75Q4BdiZ3CDAAAABKjqfHa2Ehfyegbm1Zo8wlpCSSUigET50QPLfLo+WC31IVLJLFUva6PAJwP4YAAwAAlG7Ea6UfSSlclCdnlzvWq6ZJNzaxPe/ZOFwv33p1mR1bDMB9PGnVEwAAAE9EvFb6kZTCRXl6dtkTujzCtZJS0jVn8369/vVuzdm8X0kp6SXdJJQCDAEGAAAo3YjXSj+SUrgosssozzxxPjUUD4YAAwAAlG7Ea6Ufq+/hojpFV9UXOw46fY3sMjyZJ6/WgeLhKaueAAAAeCritdKNpBQuKje7/O668x/OpfPZZSOyy/BsufOpOevymzuf2m2ta7q5VcUnKSVda3Yd0ZFTGaoa7KdO0VUVYQ0o6WaVOXmHAPv7eJVgawAAgCchXisexGulF0kpFArZZZRHnjyf2ppdh/Xe+j22pJtF0hc7Dmp4hzpM9A8AAFAKEK+hPGBOKRQaE4KjvPHU+dQuHJaYY2T377vr9ig55WxJNxEAAKBcI15DeUFSCgDy4amrdeQOS3Qmd1giAAAASk55iNdY4RoSw/cAIF+eOp+aJw9LBAAA8ASeHq8xNBG5SEoBQAE8cT613GGJ+U3gXlaHJQIAAHgKT47XWOEaF2L4HgBchKfNp+apwxIBAAA8hSfHa+VhaCIKj6QUAJQzucMSLRdEAxUsksVStoclAgAAeApPjtc8fWgiiobhewCKRVJKutbsOqIjpzJUNdhPnaKrKsIaUNLNQj48cVgiAACAJ/HUeM2Thyai6EhKAbhsTFRYNuUdlujv4+XS45G4BAAAKBp3x2vu0Cm6qr7YcdDpa2V9aCKKzuXD995++21FRUXJ399fLVu21Pr16wssv3btWrVs2VL+/v6qU6eOpk2b5lBm/vz5atiwofz8/NSwYUMtXLjQVc0HcBEXTlSYY2T377vr9ig55axLjsnysWXLml2H9cin27Vkx0Ft3HNMS3Yc1COfbtfaX5gzAMgPMRQAwBN58tBEFJ1Lk1Lz5s3TqFGj9OSTTyoxMVHt27dXr169tH//fqfl9+7dq969e6t9+/ZKTEzUE088oZEjR2r+/Pm2MgkJCRowYIDi4+O1fft2xcfHq3///tq0aZMrTwVAPtw9USHJjbKnJBKXQFlHDAUA8GQd61XTpBub2J73bByul2+9mlEW5ZBLh++9/PLLGjJkiIYOHSpJevXVV/XVV1/pnXfe0aRJkxzKT5s2TTVr1tSrr74qSWrQoIG2bt2qF198UTfffLOtju7du2vs2LGSpLFjx2rt2rV69dVXNWfOnCK178y5LHmfy7qMM3Rep7P/F8bZzGydzcwu1vYUp4wL2pZRittZVJ56Xu5yKPVsgRMVHko9W2z3dXLq2QKXj61dJciui3Nx8dR7xF3ntfLnQwXOG7Di52Td2rKGy47vap56f7jb5VzH9MzsIv/NLQpX1p0fYqiix1AASpfk1LNav/uIjp06pyrBvmp/VVWFuyBO83SeHGdcEeBj+3+/ppHy8/Fy2e9zT72Ol3tepSF+shhj8vs8eVnOnTunwMBAffrpp7rxxhtt2x966CFt27ZNa9euddinQ4cOat68uV577TXbtoULF6p///46c+aMfHx8VLNmTT388MN6+OGHbWVeeeUVvfrqq/r999+dtiUjI0MZGX/P4J+amqoaNWqoxqhPVMEvsDhOFwAAeKicjDM68Gp/paSkKCQkxOXHI4YCAABlXWHjJ5cN3zt69Kiys7MVFhZmtz0sLEzJyclO90lOTnZaPisrS0ePHi2wTH51StKkSZNktVptjxo1yu438gAAwLMRQwEAgPLC5avvWSz2s80YYxy2Xax83u1FrXPs2LEaPXq07Xnut3ybn+zqlm88C+tsZra2H0gpdPmMzGzd+9H3kqRpt7eQnwesxJCLcytbx/pm91HN2LDXbvU9I+mfsVG69qrQYjvOp98d0PKdycpx0r+zguX8WPSyPAxM8sx7Pzn1rJ5Y+IOc9cu1WKRJNzYp9mGXnngdJfefV1m5jqEV/VS3apDL6k9NTVXEqy6rPl/EUIW3ac/xIpX3xL/FJXE8jlX2jueOY5VUvOaOcyuJmMadysrf/dKuLF3HNnUqu6zuwsZPLktKhYaGysvLy+Hbt8OHDzt8S5crPDzcaXlvb29VqVKlwDL51SlJfn5+8vPzc9ge6OutQF+X5+UKrYLFcslLfPr5eHnE8qDOcG6XLjn17wmkF+84qG4NwhRhDSj243RrGKbGV1q1etdhHTmVoarBfuocXa3YV87o1iBMy3Y6/0bfSOreINyj7hVPufdrVwnS8A519O66PQ6Jy+Ed6qhWFdclEyTPuY55ufu8SvN1DPDxcunf8yw3xwrEUEV3OfemO+9tT/655Vhl73iuOtaJM5kFzjd64kymy8/RVeeW8NuxAufJ3PDbMd3WumaxH7cklOa/+2VJab+OpSF+ctnwPV9fX7Vs2VIrVqyw275ixQrFxsY63ScmJsah/H//+1+1atVKPj4+BZbJr06gvFqz67CeWPiD7fnynckuXaUu3Oqv21rX1MguV+m21jVdspTrhcvH5i4by/KxZUPHetX08q1Xq2/TSLWtU0V9m0aywsoluDDR/Ol3B5SUkl6CrYGrEEMBKMuqBvsVuDJz1WDHRHdZceRURoEJtyOnMvJ5FUB+XPoV1+jRoxUfH69WrVopJiZG7733nvbv3697771X0vku4X/++afef/99SdK9996rN998U6NHj9awYcOUkJCg6dOn260I89BDD6lDhw6aMmWKrr/+en3++edauXKlvvnmG1eeClCmJKWk21apy5XbhfrddXsUHRZSZhM4HetVU3RYiMt7ZaH45SYucWnW7Dqs99bvsT1fvjNZy3Yma3iHOiT3PBAxFICyqlN0VX2x46DT14ykztGu+ZuV94sbV4wQyE245ddTqiwn3ICS4tKk1IABA3Ts2DFNnDhRSUlJaty4sZYuXapatWpJkpKSkrR//35b+aioKC1dulQPP/yw3nrrLUVGRur111+3LWUsSbGxsZo7d66eeuopPf3006pbt67mzZunNm3auPJUgDJlza4jBf7BXL3rcJlODpDcQHnjyYlmOEcMBaCsyu3Znt+wfVf8vXLXFzcllXADPJnLJwO4//77df/99zt9bdasWQ7bOnbsqO+//77AOm+55RbdcsstxdE8wCPRtRjwLJ6eaIZzxFAAyip39mx35xc3JZFwAzxd6ZmhEkCxoWsx4FlINAMo79wxNAvFy1092939xQ1TSQDFi6QU4IHoWgx4FhLNAMoz5tRDQUriixumkgCKj8tW3wPgnDtWz2KVOsCzdIquWmDATaIZgKfKb2iWMeeHZiWnnM1/Z5QLnrzaH1Ae0FMKcCN3ftNH12LAczCHBYDyijn1cDGMEADKNpJSgJuUxOpZdC1GeeWJc4+QaAZQHjGnHi6GL26Aso2kFOAmfNMHuIcnzz1CohlAaeKOLwCYUw+FwRc3QNlFUgpwE77pQ2F4Yg8fdyqJHokAUB656wsAhmahsPjiBiibmOgcpZI7JgN3NyZhxMWs2XVYTyz8wfZ8+c5kPfLpdq395XAJtqpsye2R6Exuj0QAwOVx5+TjLN4CuI8nfgZD6UdPKZQ6njr0hm/6UBB6+BQPeiQCgOu5e0oChmYBruepn8FQ+tFTCqWKJy/7yzd9KAg9fIoHPRIBwPVK4guA3KFZI7tcpdta1yRuAoqRJ38GQ+lHUgqliqd/MO9Yr5pevvVq9W0aqbZ1qqhv00i9fOvVfPsAevgUk07RVQu8jvRILBq68QNwhi8AAM/i6Z/BULoxfA+lSnn4YM4kjHCG1YWKB8tCFx+68QPID1MSAJ6lPHwGQ+lFUgqlCh/MUV4R4Bcf5h65fMxxBqAgfAEAeBY+g6EkkZRCqcIHc5RXBPjFix6Jl8fdkxgDKHv4AgDwHHwGQ0kiKYVShQ/mKM8I8FFa0I0fQGF46hcAeefT69YgTBHWAI85HpAXn8FQkkhKodThgznKM08N8FG20I0fQHnl7vn0mL8PpQWfwYoPieaiISmFUokP5gBQcujGD6A8cvd8eszfh9KGz2CXj0Rz0VUo6QYAAIDSJbcbv8UiVbDI7l+68QPwVLnz6TmTO59eWT6e5NiDIyklvdiPAZRX+SWajTmfaE5OOZv/zuUYPaUAAIADuvEDKG/cPZ+eu49HDw7AtVgo5tKQlAIAAE7RjR9AeeLu+fTceTyGCgKux0Ixl4bhewAAAADKvU7RVQv8QFnc8+m583glMVQQKG9yE83OsFBM/khKAQAAACj33D2fnjuPRw8OwPXcndj2FAzfAwAAAAC5fz49dx3P3UMTgfIoN9H87ro9tp+33H9ZKCZ/JKUAAAAA4C/unk/PHcfrFF1VX+w46PQ1enAAxYeFYoqOpBQAAAAAeDB6cADuw0IxRUNSCgAAAAA8HD04AJRGLp3o/MSJE4qPj5fVapXValV8fLxOnjyZb/nMzEyNGTNGTZo0UVBQkCIjI3XnnXfq4EH7rqadOnWSxWKxewwcONCVpwIAAOAWxE8AXCW3B8fILlfpttY1SUgBKHEuTUoNGjRI27Zt0/Lly7V8+XJt27ZN8fHx+ZY/c+aMvv/+ez399NP6/vvvtWDBAv3yyy/q16+fQ9lhw4YpKSnJ9nj33XddeSoAAABuQfwEAADKC5cN3/v555+1fPlybdy4UW3atJEk/fvf/1ZMTIx27dql6Ohoh32sVqtWrFhht+2NN95Q69attX//ftWs+fe4zMDAQIWHh7uq+QAAAG5H/AQAAMoTl/WUSkhIkNVqtQVUktS2bVtZrVZt2LCh0PWkpKTIYrHoiiuusNv+0UcfKTQ0VI0aNdKjjz6qtLS0fOvIyMhQamqq3QMAAKC0KU3xk0QMBQAAXMtlPaWSk5NVrZrj0qLVqlVTcnJyoeo4e/asHn/8cQ0aNEghISG27bfffruioqIUHh6unTt3auzYsdq+fbvDt4S5Jk2apAkTJlzaiQAAALhJaYqfJGIoAADgWkXuKTV+/HiHSTLzPrZu3SpJslgsDvsbY5xuzyszM1MDBw5UTk6O3n77bbvXhg0bpm7duqlx48YaOHCgPvvsM61cuVLff/+907rGjh2rlJQU2+PAgQNFPW0AAIBLVhbjJ4kYqjgkp561/f/T7w4oKSW9BFsDAEDpUuSeUiNGjLjoSi21a9fWjh07dOjQIYfXjhw5orCwsAL3z8zMVP/+/bV37159/fXXdt/yOdOiRQv5+Pho9+7datGihcPrfn5+8vPzK7AOAAAAVymL8ZNEDHW51uw6rPfW77E9X74zWct2Jmt4hzrqWM+xRxwAAOVNkZNSoaGhCg0NvWi5mJgYpaSkaPPmzWrdurUkadOmTUpJSVFsbGy+++UGVLt379bq1atVpUqVix7rxx9/VGZmpiIiIgp/IgAAAG5C/FT+JKWk6731e2TM39ty/vr/u+v2KDosROFW/5JpHAAApYTLJjpv0KCBevbsqWHDhmnjxo3auHGjhg0bpr59+9qtHFO/fn0tXLhQkpSVlaVbbrlFW7du1UcffaTs7GwlJycrOTlZ586dkyT99ttvmjhxorZu3ap9+/Zp6dKluvXWW9W8eXO1a9fOVafjFhaL5Ot98a75AADAMxE/eY41u44ov6jOImn1rsPubA4AAKWSyyY6l86v8DJy5EjFxcVJkvr166c333zTrsyuXbuUkpIiSfrjjz+0ePFiSdLVV19tV2716tXq1KmTfH19tWrVKr322ms6deqUatSooT59+mjcuHHy8vJy5em4nJ+3l1rWqqzTGVk6mZ6pk2fO6dTZLNu3agAAwPMRPxVdTN2L9wy70JlzWbb/t6lTWYG+xR8Sf7x5f4GvGxW93YXxU1KK7f/f/nZUt7eppajQoGI/DgAAxcGlSanKlSvrww8/LLCMuaBPc+3ate2eO1OjRg2tXbu2WNpXWgX5eSvIz1tXXhGg7Byj1PRMW5LqbGZOSTcPAAC4EPGTZ6heKeD85PRO3huLxaLqlQKK/ZifbD2gx+fvsD2f+c0+zfhmr6bc3FS3tqpR7McDAOByuWz4HoqHVwWLKgX5Kio0SM1rVlLzmleoTtUgVQ7ylbcXQ/0AAABKo/6tauSbLDTGaEAxJ4n2Hj2tx+fvsOthn22Mcow0Zv4O7Tt6uliPBwBAcSApVcb4+3gpLMRf0eEV1aLmFbbtwX7eKsRK0QAAAHCDqNAgTbm5qSpYzn/JeOG/U25uqtrFPKTuk60HzvfMcsJisWje1gPFejwAAIqDS4fvwbUuDDwaXRkiH68KSknP1MkzmUpJz9S5LIb6AQAAlJRbW9XQNbUra97WA/rjRLqqVwrQgFY1ij0hJUl/nEgvsGfWHyfSi/2YAABcLpJSHsTHq4JCg/0UGuwn6fwknifPnE9SpZ3NZMJ0AAAAN6sdGqQxPeu7/DglMYcVAACXi6SUBwv09Vagr7cirwhQTo5R6tm/e1GdOZdd0s0DAABAMenfqobeXfub09dcMYcVAADFgTmlyokKFSy6ItBXtUOD1KzGFWpR6wrVrRqkKsFMmA4AAFDWuXsOKwAAigM9pcopP28vVQvxUrUQfxljdCojy9aL6lRGlrOe3wAAACjF3DmHFQAAxYGkFGSxWFTR30cV/X1UQ1JWds75CdPTzyepMjKZMB0AAKAscNccVgAAFAeSUnDg7VVBVYL9VOWvCdPTz2XrZPq5vyZMz1I2M6YDAAAAAIDLRFIKFxXg66UA3wBFWANkjFFWjpExkpGxDfO78LnR+Qk1Te52k892nd9o8ts/T905xn5/2ZWXckzB7copYF9jDKsTAgAAAADgRiSlUCQWi0U+Hjwxem5yKjfBZfev/vo35+8kmS0R9td+tu0XJO7yK3f++V/Hlfnr+Be2xflr5oK2mjxl5aTsxeYHM4WYQKww+TrmIQMAAAAAFAVJKeACFotFXhbJS56bePM0hUmqFe/x/vr3guNfmBy8WIKxUMlFJz0Hc/e5WC9DW50X6cX49/Ec25S3zXm3Ofw/nzIXK+su+V3HC5O4FyZwnSd8AQAAABQ3klIAyjSLxb0JRMfDkcD0dHZJPjkmrQozZDjvMObcHpO5ycWcC17PyTF2deUdunzh8XVBO/JtfwGJwAL3y5NMzJuUzG/ItrNkn/3rAAAAwHkkpQAAKIDFYsmTjCQReTkuTNDZnqvgBJ/kJPl1weu+3hXcfh4AAAC4fCSlAACA25DkAwAAQC6+WgQAAAAAAIDbkZQCAAAAAACA25GUAgAAAAAAgNuRlAIAAAAAAIDbkZQCAAAAAACA25GUAgAAAAAAgNuRlAIAAAAAAIDbkZQCAAAAAACA25GUAgAAAAAAgNuRlAIAAAAAAIDbkZQCAAAAAACA27k0KXXixAnFx8fLarXKarUqPj5eJ0+eLHCfu+66SxaLxe7Rtm1buzIZGRl68MEHFRoaqqCgIPXr109//PGHC88EAADAPYifAABAeeHSpNSgQYO0bds2LV++XMuXL9e2bdsUHx9/0f169uyppKQk22Pp0qV2r48aNUoLFy7U3Llz9c033+jUqVPq27evsrOzXXUqAAAAbkH8BAAAygtvV1X8888/a/ny5dq4caPatGkjSfr3v/+tmJgY7dq1S9HR0fnu6+fnp/DwcKevpaSkaPr06frggw/UrVs3SdKHH36oGjVqaOXKlerRo0fxnwwAAIAbED8BAIDyxGU9pRISEmS1Wm0BlSS1bdtWVqtVGzZsKHDfNWvWqFq1aqpXr56GDRumw4cP21777rvvlJmZqbi4ONu2yMhINW7cON96MzIylJqaavcAAAAobUpT/CQRQwEAANdyWVIqOTlZ1apVc9herVo1JScn57tfr1699NFHH+nrr7/WSy+9pC1btqhLly7KyMiw1evr66tKlSrZ7RcWFpZvvZMmTbLNy2C1WlWjRo3LODMAAADXKE3xk0QMBQAAXKvISanx48c7TKSZ97F161ZJksVicdjfGON0e64BAwaoT58+aty4sa677jotW7ZMv/zyi7788ssC21VQvWPHjlVKSortceDAgSKcMQAAwOUpi/GTRAwFAABcq8hzSo0YMUIDBw4ssEzt2rW1Y8cOHTp0yOG1I0eOKCwsrNDHi4iIUK1atbR7925JUnh4uM6dO6cTJ07Yfdt3+PBhxcbGOq3Dz89Pfn5+hT4mAABAcSqL8ZNEDAUAAFyryEmp0NBQhYaGXrRcTEyMUlJStHnzZrVu3VqStGnTJqWkpBQY/OR17NgxHThwQBEREZKkli1bysfHRytWrFD//v0lSUlJSdq5c6emTp1a1NMBAABwOeInAAAARy6bU6pBgwbq2bOnhg0bpo0bN2rjxo0aNmyY+vbta7dyTP369bVw4UJJ0qlTp/Too48qISFB+/bt05o1a3TdddcpNDRUN954oyTJarVqyJAheuSRR7Rq1SolJibqjjvuUJMmTWyryQAAAJRFxE8AAKA8cVlSSpI++ugjNWnSRHFxcYqLi1PTpk31wQcf2JXZtWuXUlJSJEleXl764YcfdP3116tevXoaPHiw6tWrp4SEBFWsWNG2zyuvvKIbbrhB/fv3V7t27RQYGKgvvvhCXl5erjydUmffsdO2/7+84hftPXq6gNIAAKAsIH5yPWIoAABKB4sxxpR0I9wtNTVVVqtVKSkpCgkJKenmXJJPth7Q4/N3KOevd8/LYpGR0ZSbm+rWVqyMAwBAcfGEuKG4eMK1IIYCAMD1ChszuLSnFFxj79HTdsGUJGUboxwjjZm/Q/v4tg8AAMABMRQAAKULSaky6JOtB/JdvtlisWjeVpZrBgAAyIsYCgCA0oWkVBn0x4l05Tfq0hijP06ku7lFAAAApR8xFAAApQtJqTKoeqWAAr/lq14pwM0tAgAAKP2IoQAAKF1ISpVB/VvVKPBbvgFM0gkAAOCAGAoAgNKFpFQZFBUapCk3N1UFi+RVwWL375Sbm6p2aFBJNxEAAKDUIYYCAKB08S7pBuDS3Nqqhq6pXVnzth7QHyfSVb1SgAa0qkEwBQAAUABiKAAASg+SUmVY7dAgjelZv6SbAQAAUKYQQwEAUDowfA8AAAAAAABuR1IKAAAAAAAAbkdSCgAAAAAAAG5HUgoAAAAAAABuR1IKAAAAAAAAbkdSCgAAAAAAAG5HUgoAAAAAAABuR1IKAAAAAAAAbkdSCgAAAAAAAG5HUgoAAAAAAABuR1IKAAAAAAAAbkdSCgAAAAAAAG5HUgoAAAAAAABuR1IKAAAAAAAAbkdSCgAAAAAAAG5HUgoAAAAAAABuR1IKAAAAAAAAbkdSCgAAAAAAAG7n0qTUiRMnFB8fL6vVKqvVqvj4eJ08ebLAfSwWi9PHCy+8YCvTqVMnh9cHDhzoylMBAABwC+InAABQXni7svJBgwbpjz/+0PLlyyVJ99xzj+Lj4/XFF1/ku09SUpLd82XLlmnIkCG6+eab7bYPGzZMEydOtD0PCAgoxpYDAACUDOInAABQXrgsKfXzzz9r+fLl2rhxo9q0aSNJ+ve//62YmBjt2rVL0dHRTvcLDw+3e/7555+rc+fOqlOnjt32wMBAh7IAAABlGfETAAAoT1w2fC8hIUFWq9UWUElS27ZtZbVatWHDhkLVcejQIX355ZcaMmSIw2sfffSRQkND1ahRIz366KNKS0vLt56MjAylpqbaPQAAAEqb0hQ/ScRQAADAtVzWUyo5OVnVqlVz2F6tWjUlJycXqo7Zs2erYsWKuummm+y233777YqKilJ4eLh27typsWPHavv27VqxYoXTeiZNmqQJEyYU/SQAAADcqDTFTxIxFAAAcK0i95QaP358vpNp5j62bt0q6fykm3kZY5xud2bGjBm6/fbb5e/vb7d92LBh6tatmxo3bqyBAwfqs88+08qVK/X99987rWfs2LFKSUmxPQ4cOFDEswYAALh0ZTF+koihAACAaxW5p9SIESMuulJL7dq1tWPHDh06dMjhtSNHjigsLOyix1m/fr127dqlefPmXbRsixYt5OPjo927d6tFixYOr/v5+cnPz++i9QAAALhCWYyfJGIoAADgWkVOSoWGhio0NPSi5WJiYpSSkqLNmzerdevWkqRNmzYpJSVFsbGxF91/+vTpatmypZo1a3bRsj/++KMyMzMVERFx8RMAAABwM+InAAAARy6b6LxBgwbq2bOnhg0bpo0bN2rjxo0aNmyY+vbta7dyTP369bVw4UK7fVNTU/Xpp59q6NChDvX+9ttvmjhxorZu3ap9+/Zp6dKluvXWW9W8eXO1a9fOVacDAADgcsRPAACgPHFZUko6v8JLkyZNFBcXp7i4ODVt2lQffPCBXZldu3YpJSXFbtvcuXNljNFtt93mUKevr69WrVqlHj16KDo6WiNHjlRcXJxWrlwpLy8vV54OAACAyxE/AQCA8sJijDEl3Qh3S01NldVqVUpKikJCQkq6OQAAoBQjbvgb1wIAABRGYWMGl/aUAgAAAAAAAJwhKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpBQAAAAAAALcjKQUAAAAAAAC3c2lS6l//+pdiY2MVGBioK664olD7GGM0fvx4RUZGKiAgQJ06ddKPP/5oVyYjI0MPPvigQkNDFRQUpH79+umPP/5wwRkAAAC4F/ETAAAoL1yalDp37pxuvfVW3XfffYXeZ+rUqXr55Zf15ptvasuWLQoPD1f37t2VlpZmKzNq1CgtXLhQc+fO1TfffKNTp06pb9++ys7OdsVpAAAAuA3xEwAAKC8sxhjj6oPMmjVLo0aN0smTJwssZ4xRZGSkRo0apTFjxkg6/61eWFiYpkyZouHDhyslJUVVq1bVBx98oAEDBkiSDh48qBo1amjp0qXq0aPHRduTmpoqq9WqlJQUhYSEXPb5AQAAz1VScUNpi58kYigAAFA4hY0ZvN3Ypovau3evkpOTFRcXZ9vm5+enjh07asOGDRo+fLi+++47ZWZm2pWJjIxU48aNtWHDBqdBVUZGhjIyMmzPU1JSJJ2/SAAAAAXJjRfc8D3eJXFV/CQRQwEAgEtT2PipVCWlkpOTJUlhYWF228PCwvT777/byvj6+qpSpUoOZXL3z2vSpEmaMGGCw/YaNWoUR7MBAEA5kJaWJqvVWtLNcOCq+EkihgIAAJfnYvFTkZNS48ePdxqcXGjLli1q1apVUau2sVgsds+NMQ7b8iqozNixYzV69Gjb85ycHB0/flxVqlS5aL2XIjU1VTVq1NCBAwfo2i6uhzNcE3tcD3tcD3tcD3tcD0euvibGGKWlpSkyMvKS6yiL8ZNEDFXSuB72uB72uB6OuCb2uB72uB72Skv8VOSk1IgRIzRw4MACy9SuXbuo1UqSwsPDJZ3/Ni8iIsK2/fDhw7Zv/8LDw3Xu3DmdOHHC7tu+w4cPKzY21mm9fn5+8vPzs9tW2NVsLkdISAg3+wW4Ho64Jva4Hva4Hva4Hva4Ho5ceU0ut4dUWYyfJGKo0oLrYY/rYY/r4YhrYo/rYY/rYa+k46ciJ6VCQ0MVGhp6SQ26mKioKIWHh2vFihVq3ry5pPMr0Kxdu1ZTpkyRJLVs2VI+Pj5asWKF+vfvL0lKSkrSzp07NXXqVJe0CwAA4HIQPwEAADhy6ZxS+/fv1/Hjx7V//35lZ2dr27ZtkqR//OMfCg4OliTVr19fkyZN0o033iiLxaJRo0bp+eef11VXXaWrrrpKzz//vAIDAzVo0CBJ5zNtQ4YM0SOPPKIqVaqocuXKevTRR9WkSRN169bNlacDAADgcsRPAACgvHBpUuqZZ57R7Nmzbc9zv71bvXq1OnXqJEnatWuXbSUXSXrssceUnp6u+++/XydOnFCbNm303//+VxUrVrSVeeWVV+Tt7a3+/fsrPT1dXbt21axZs+Tl5eXK0yk0Pz8/jRs3zqG7e3nF9XDENbHH9bDH9bDH9bDH9XDkadekvMZPkue9l5eL62GP62GP6+GIa2KP62GP62GvtFwPiymt6xsDAAAAAADAY1Uo6QYAAAAAAACg/CEpBQAAAAAAALcjKQUAAAAAAAC3IykFAAAAAAAAtyMpdYnefvttRUVFyd/fXy1bttT69esLLL927Vq1bNlS/v7+qlOnjqZNm+amlrrWpEmTdM0116hixYqqVq2abrjhBu3atavAfdasWSOLxeLw+N///uemVrvW+PHjHc4tPDy8wH089f6QpNq1azt9vx944AGn5T3t/li3bp2uu+46RUZGymKxaNGiRXavG2M0fvx4RUZGKiAgQJ06ddKPP/540Xrnz5+vhg0bys/PTw0bNtTChQtddAbFq6DrkZmZqTFjxqhJkyYKCgpSZGSk7rzzTh08eLDAOmfNmuX0njl79qyLz+byXez+uOuuuxzOq23bthett6zeH9LFr4mz99piseiFF17It86yfI94ImKo84ih7BE/2Svv8ZNEDJUXMZQ9Yih7ZTl+Iil1CebNm6dRo0bpySefVGJiotq3b69evXpp//79Tsvv3btXvXv3Vvv27ZWYmKgnnnhCI0eO1Pz5893c8uK3du1aPfDAA9q4caNWrFihrKwsxcXF6fTp0xfdd9euXUpKSrI9rrrqKje02D0aNWpkd24//PBDvmU9+f6QpC1btthdixUrVkiSbr311gL385T74/Tp02rWrJnefPNNp69PnTpVL7/8st58801t2bJF4eHh6t69u9LS0vKtMyEhQQMGDFB8fLy2b9+u+Ph49e/fX5s2bXLVaRSbgq7HmTNn9P333+vpp5/W999/rwULFuiXX35Rv379LlpvSEiI3f2SlJQkf39/V5xCsbrY/SFJPXv2tDuvpUuXFlhnWb4/pItfk7zv84wZM2SxWHTzzTcXWG9ZvUc8DTHU34ihHBE//a28x08SMVRexFD2iKHslen4yaDIWrdube699167bfXr1zePP/640/KPPfaYqV+/vt224cOHm7Zt27qsjSXl8OHDRpJZu3ZtvmVWr15tJJkTJ064r2FuNG7cONOsWbNCly9P94cxxjz00EOmbt26Jicnx+nrnnx/SDILFy60Pc/JyTHh4eFm8uTJtm1nz541VqvVTJs2Ld96+vfvb3r27Gm3rUePHmbgwIHF3mZXyns9nNm8ebORZH7//fd8y8ycOdNYrdbibVwJcHY9Bg8ebK6//voi1eMp94cxhbtHrr/+etOlS5cCy3jKPeIJiKHyV95jKOKngpXn+MkYYqi8iKHsEUPZK2vxEz2liujcuXP67rvvFBcXZ7c9Li5OGzZscLpPQkKCQ/kePXpo69atyszMdFlbS0JKSookqXLlyhct27x5c0VERKhr165avXq1q5vmVrt371ZkZKSioqI0cOBA7dmzJ9+y5en+OHfunD788EP985//lMViKbCsJ98fufbu3avk5GS799/Pz08dO3bM9/eJlP89U9A+ZVVKSoosFouuuOKKAsudOnVKtWrVUvXq1dW3b18lJia6p4FusGbNGlWrVk316tXTsGHDdPjw4QLLl6f749ChQ/ryyy81ZMiQi5b15HukrCCGKhgxFPFTfoifHBFDXRwxFDFUfkpb/ERSqoiOHj2q7OxshYWF2W0PCwtTcnKy032Sk5Odls/KytLRo0dd1lZ3M8Zo9OjRuvbaa9W4ceN8y0VEROi9997T/PnztWDBAkVHR6tr165at26dG1vrOm3atNH777+vr776Sv/+97+VnJys2NhYHTt2zGn58nJ/SNKiRYt08uRJ3XXXXfmW8fT740K5vzOK8vskd7+i7lMWnT17Vo8//rgGDRqkkJCQfMvVr19fs2bN0uLFizVnzhz5+/urXbt22r17txtb6xq9evXSRx99pK+//lovvfSStmzZoi5duigjIyPffcrL/SFJs2fPVsWKFXXTTTcVWM6T75GyhBgqf8RQxE8FIX5yRAxVMGIoYqiClLb4ybtYaytH8n5LYYwp8JsLZ+WdbS/LRowYoR07duibb74psFx0dLSio6Ntz2NiYnTgwAG9+OKL6tChg6ub6XK9evWy/b9JkyaKiYlR3bp1NXv2bI0ePdrpPuXh/pCk6dOnq1evXoqMjMy3jKffH84U9ffJpe5TlmRmZmrgwIHKycnR22+/XWDZtm3b2k1c2a5dO7Vo0UJvvPGGXn/9dVc31aUGDBhg+3/jxo3VqlUr1apVS19++WWBgYSn3x+5ZsyYodtvv/2icxt48j1SFhFDOSKGIn4qCPFT/oihHBFDnUcMlb/SFj/RU6qIQkND5eXl5ZAtPXz4sENWNVd4eLjT8t7e3qpSpYrL2upODz74oBYvXqzVq1erevXqRd6/bdu2HpGRdyYoKEhNmjTJ9/zKw/0hSb///rtWrlypoUOHFnlfT70/clcVKsrvk9z9irpPWZKZman+/ftr7969WrFiRYHf8DlToUIFXXPNNR55z0RERKhWrVoFnpun3x+51q9fr127dl3S7xRPvkdKM2Io54ihnCN+Oo/4yTliKOeIofJHDHVeaYyfSEoVka+vr1q2bGlbASPXihUrFBsb63SfmJgYh/L//e9/1apVK/n4+Lisre5gjNGIESO0YMECff3114qKirqkehITExUREVHMrSsdMjIy9PPPP+d7fp58f1xo5syZqlatmvr06VPkfT31/oiKilJ4eLjd+3/u3DmtXbs2398nUv73TEH7lBW5wdTu3bu1cuXKS/pgYYzRtm3bPPKeOXbsmA4cOFDguXny/XGh6dOnq2XLlmrWrFmR9/Xke6Q0I4ayRwxVMOKn84ifnCOGckQMVTBiqPNKZfzk8qnUPdDcuXONj4+PmT59uvnpp5/MqFGjTFBQkNm3b58xxpjHH3/cxMfH28rv2bPHBAYGmocfftj89NNPZvr06cbHx8d89tlnJXUKxea+++4zVqvVrFmzxiQlJdkeZ86csZXJez1eeeUVs3DhQvPLL7+YnTt3mscff9xIMvPnzy+JUyh2jzzyiFmzZo3Zs2eP2bhxo+nbt6+pWLFiubw/cmVnZ5uaNWuaMWPGOLzm6fdHWlqaSUxMNImJiUaSefnll01iYqJtJZTJkycbq9VqFixYYH744Qdz2223mYiICJOammqrIz4+3m5lqm+//dZ4eXmZyZMnm59//tlMnjzZeHt7m40bN7r9/IqqoOuRmZlp+vXrZ6pXr262bdtm9zslIyPDVkfe6zF+/HizfPly89tvv5nExERz9913G29vb7Np06aSOMUiKeh6pKWlmUceecRs2LDB7N2716xevdrExMSYK6+80mPvD2Mu/jNjjDEpKSkmMDDQvPPOO07r8KR7xNMQQ/2NGMoe8ZOj8hw/GUMMlRcxlD1iKHtlOX4iKXWJ3nrrLVOrVi3j6+trWrRoYbd87+DBg03Hjh3tyq9Zs8Y0b97c+Pr6mtq1a+d7I5Q1kpw+Zs6caSuT93pMmTLF1K1b1/j7+5tKlSqZa6+91nz55Zfub7yLDBgwwERERBgfHx8TGRlpbrrpJvPjjz/aXi9P90eur776ykgyu3btcnjN0++P3CWa8z4GDx5sjDm/pPG4ceNMeHi48fPzMx06dDA//PCDXR0dO3a0lc/16aefmujoaOPj42Pq169fZoLOgq7H3r178/2dsnr1alsdea/HqFGjTM2aNY2vr6+pWrWqiYuLMxs2bHD/yV2Cgq7HmTNnTFxcnKlatarx8fExNWvWNIMHDzb79++3q8OT7g9jLv4zY4wx7777rgkICDAnT550Wocn3SOeiBjqPGIoe8RPjspz/GQMMVRexFD2iKHsleX4yWLMXzMCAgAAAAAAAG7CnFIAAAAAAABwO5JSAAAAAAAAcDuSUgAAAAAAAHA7klIAAAAAAABwO5JSAAAAAAAAcDuSUgAAAAAAAHA7klIAAAAAAABwO5JSAAAAAAAAcDuSUgAAAAAAAHA7klIAAAAAAABwO5JSAAAAAAAAcDuSUgAAAAAAAHC7/wfIaIeVdrGsZQAAAABJRU5ErkJggg==", 2095 | "text/plain": [ 2096 | "
" 2097 | ] 2098 | }, 2099 | "metadata": {}, 2100 | "output_type": "display_data" 2101 | } 2102 | ], 2103 | "source": [ 2104 | "import pandas as pd\n", 2105 | "import matplotlib.pyplot as plt\n", 2106 | "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n", 2107 | "import numpy as np # Import numpy for creating longer series\n", 2108 | "\n", 2109 | "# --- Your original code (with corrected date format from previous issue) ---\n", 2110 | "# Assuming 'data' DataFrame is already loaded and contains 'Date' and 'Demand' columns\n", 2111 | "# Let's create a *very small* sample DataFrame to reproduce the error:\n", 2112 | "# This DataFrame only has 5 data points\n", 2113 | "data_small = pd.DataFrame({\n", 2114 | " 'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],\n", 2115 | " 'Demand': [10, 12, 15, 13, 16]\n", 2116 | "})\n", 2117 | "\n", 2118 | "data_small['Date'] = pd.to_datetime(data_small['Date'], format='%Y-%m-%d')\n", 2119 | "time_series_small = data_small.set_index('Date')['Demand']\n", 2120 | "\n", 2121 | "differenced_series_small = time_series_small.diff().dropna()\n", 2122 | "print(f\"Number of observations in differenced_series_small: {len(differenced_series_small)}\")\n", 2123 | "# For data_small: len(differenced_series_small) will be 4.\n", 2124 | "# 4 // 2 - 1 = 2 - 1 = 1.\n", 2125 | "# The default nlags calculation will try to be larger than 1, causing the error.\n", 2126 | "\n", 2127 | "\n", 2128 | "# --- How to fix: Use more data! ---\n", 2129 | "# Create a larger sample DataFrame (e.g., 50 data points)\n", 2130 | "dates = pd.date_range(start='2023-01-01', periods=50, freq='D')\n", 2131 | "demand = np.random.randint(50, 100, size=50) + np.arange(50) * 0.5 # Adding a trend for illustration\n", 2132 | "data_larger = pd.DataFrame({\n", 2133 | " 'Date': dates,\n", 2134 | " 'Demand': demand\n", 2135 | "})\n", 2136 | "\n", 2137 | "data_larger['Date'] = pd.to_datetime(data_larger['Date'], format='%Y-%m-%d') # Format should be correct now\n", 2138 | "time_series_larger = data_larger.set_index('Date')['Demand']\n", 2139 | "\n", 2140 | "differenced_series_larger = time_series_larger.diff().dropna()\n", 2141 | "print(f\"Number of observations in differenced_series_larger: {len(differenced_series_larger)}\")\n", 2142 | "# For data_larger: len(differenced_series_larger) will be 49.\n", 2143 | "# 49 // 2 - 1 = 24 - 1 = 23. Default nlags will be fine.\n", 2144 | "\n", 2145 | "\n", 2146 | "# Plot ACF and PACF of differenced time series with sufficient data\n", 2147 | "fig, axes = plt.subplots(1, 2, figsize=(12, 4))\n", 2148 | "plot_acf(differenced_series_larger, ax=axes[0])\n", 2149 | "plot_pacf(differenced_series_larger, ax=axes[1])\n", 2150 | "plt.suptitle('ACF and PACF of Differenced Time Series (with sufficient data)', y=1.02)\n", 2151 | "plt.tight_layout()\n", 2152 | "plt.show()" 2153 | ] 2154 | }, 2155 | { 2156 | "cell_type": "code", 2157 | "execution_count": 10, 2158 | "id": "8d479fe3", 2159 | "metadata": {}, 2160 | "outputs": [ 2161 | { 2162 | "name": "stdout", 2163 | "output_type": "stream", 2164 | "text": [ 2165 | "2023-03-02 74\n", 2166 | "2023-03-03 74\n", 2167 | "2023-03-04 74\n", 2168 | "2023-03-05 74\n", 2169 | "2023-03-06 74\n", 2170 | "2023-03-07 74\n", 2171 | "2023-03-08 74\n", 2172 | "2023-03-09 74\n", 2173 | "2023-03-10 74\n", 2174 | "2023-03-11 74\n", 2175 | "Freq: D, Name: predicted_mean, dtype: int32\n" 2176 | ] 2177 | }, 2178 | { 2179 | "data": { 2180 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIhCAYAAABE54vcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hTZfbHvze9TKY3ZihDL4KIoigWYBUU0EXRVde1oKvrWnbXiro2cNe+q7iisqtg17Uhq8hPwYIoinSU3geYGZg+k0wm/f7+SN6bZCbJ3CQ3yU1yPs8zj5Lc3LxJbnnPe77nezie53kQBEEQBEEQBEEQolGkegAEQRAEQRAEQRDpBgVSBEEQBEEQBEEQUUKBFEEQBEEQBEEQRJRQIEUQBEEQBEEQBBElFEgRBEEQBEEQBEFECQVSBEEQBEEQBEEQUUKBFEEQBEEQBEEQRJRQIEUQBEEQBEEQBBElFEgRBEEQBEEQBEFECQVSBEHEBMdxov5WrlyJWbNmoaqqKtVDDuLw4cO4+eabMWTIEOj1ehQWFmLUqFG44YYbcPjwYUnf67XXXgPHcTh48KCk+xXznqH+7rrrrqSNI1UsW7YMc+bMifp1Z599Nv74xz8K/165cqXwvf3444/dtp81axZycnLiGWpcNDU14b777sOIESNgNBqRl5eHYcOG4aqrrsLPP/+csnGlGva7rVy5UvRrPvnkE3Ach6KiItjt9pDbVFVVBZ1LRqMRJ554IubPnw+e50OO4cMPPxQeCzwvQ42N53kMGjQIHMdh4sSJIcfQ2NgIrVYLjuOwfv36kNtcddVVuPDCC0V9boIgYkeV6gEQBJGedJ1U/u1vf8M333yDr7/+OujxESNGoE+fPvjLX/6SzOFF5MiRIzjxxBORn5+PO++8E0OHDkVbWxu2b9+O999/H/v370efPn0ke7/p06fjxx9/RK9evSTbp1heffVVDBs2LOixioqKpI8j2SxbtgwvvPBCVMHU//73P6xevRpvvPFGyOdnz56N7777TqIRxo/FYsGpp54Ki8WCu+++G6NHj0ZnZyd2796NxYsXY/PmzTj++ONTPcy0YeHChQCA5uZmLFmyBJdddlnI7U4//XT84x//AADU1tbimWeewZ/+9Ce0t7fjr3/9q6j3MplMWLhwYbdg6dtvv8W+fftgMpnCvvbNN9+Ew+EQxjx27Nhu28yZMwfDhg3D119/jV/96leixkQQRPRQIEUQREyceuqpQf8uKSmBQqHo9jgA5ObmJmtYonj55ZfR2NiItWvXon///sLjF154If7617/C4/FI8j6dnZ3Q6XQoKSlBSUmJJPuMlpEjR4acaMWL1WqFwWCQfL+p5LHHHsNFF12EysrKbs+dd955+Pzzz/Hpp5/iggsuSMHouvPBBx9g7969+PrrrzFp0qSg5+644w7JjuNs4OjRo1i2bBl+9atf4YcffsDChQvDBlL5+flB17lzzjkHffv2xb///W/RgdRll12Gt99+Gy+88ELQ9XHhwoU47bTT0N7eHva1ixYtQmlpKfr164d3330XzzzzDPR6fdA2AwcOxHnnnYcnnniCAimCSCAk7SMIIuGEkvZxHIdbb70Vr776KoYOHQq9Xo+xY8dizZo14HkeTz/9NPr374+cnBz86le/wt69e7vt98svv8TZZ5+N3NxcGAwGnH766fjqq696HE9TUxMUCgVKS0tDPq9QBF8a169fj1//+tcoLCyETqfDmDFj8P777wdtwyQ7y5cvx3XXXYeSkhIYDAbY7faw0j4x429oaMAf/vAH9OnTB1qtFiUlJTj99NPx5Zdf9vg5xfDJJ5/gtNNOg8FggMlkwuTJk7tlG+fMmQOO47Bx40ZccsklKCgowMCBAwF4pUgvvvgiTjjhBOj1ehQUFOCSSy7B/v37u73X559/jrPPPht5eXkwGAwYPnw4Hn/8ceH59evX4/LLL0dVVRX0ej2qqqrw29/+FtXV1UH7sVqtuOuuu9C/f3/odDoUFhZi7NixePfddwF4j7cXXngBQLAENZK0ctOmTVi7di2uuuqqkM/PmjULI0aMwH333Qe32x3xO/V4PHjqqacwbNgwaLValJaW4uqrr8aRI0eCtps4cSJGjhyJdevW4cwzz4TBYMCAAQPwxBNPiAqCmpqaACBsprPrcbxnzx5cccUVKC0thVarxfDhw4XviWGz2XDnnXfihBNOQF5eHgoLC3Haaafhf//7X7f9f/DBBxg3bpzwew4YMADXXXdd0DaHDh3ClVdeGfSe//znP4M+38GDB8FxHP7xj3/gmWeeEc770047DWvWrAnan9hjJFpef/11uFwu3H777Zg5cya++uor0fvMzc3FkCFDcOzYMdHv99vf/hYAhGMWANra2vDRRx91+w4D+emnn7B161ZcddVVuOGGG4TXhOKqq67Cl19+iX379okeF0EQ0UGBFEEQKWPp0qV45ZVX8MQTT+Ddd9+F2WzG9OnTceedd2L16tWYP38+/vOf/2D79u24+OKLg2oQ3nrrLUyZMgW5ubl4/fXX8f7776OwsBDnnntuj8HUaaedBo/Hg5kzZ+KLL76IuPr7zTff4PTTT0draysWLFiA//3vfzjhhBNw2WWX4bXXXuu2/XXXXQe1Wo0333wTH374IdRqdcj9ih3/VVddhSVLluChhx7C8uXL8corr+Ccc84RJtE94Xa74XK5gv4Y77zzDmbMmIHc3Fy8++67WLhwIVpaWjBx4kR8//333fY1c+ZMDBo0CB988AEWLFgAALjxxhtx22234ZxzzsGSJUvw4osvYtu2bRg/fnzQxHLhwoWYNm0aPB4PFixYgE8//RR//vOfg4KLgwcPYujQoZg3bx6++OILPPnkk6irq8PJJ5+MxsZGYbs77rgDL730Ev785z/j888/x5tvvonf/OY3wnfy4IMP4pJLLgHglaCyv0jSyqVLl0KpVOKss84K+bxSqcTjjz+Obdu24fXXX4/4nd9000245557MHnyZHzyySf429/+hs8//xzjx48P+hyANxPyu9/9DldeeSU++eQTTJ06Fffddx/eeuutiO8BeI9jALj66quxZMmSiMfE9u3bcfLJJ2Pr1q345z//iaVLl2L69On485//jLlz5wrb2e12NDc346677sKSJUvw7rvv4owzzsDMmTODJI8//vgjLrvsMgwYMAD//e9/8dlnn+Ghhx4KOr4aGhowfvx4LF++HH/729/wySef4JxzzsFdd92FW2+9tdsYX3jhBaxYsQLz5s3D22+/jY6ODkybNg1tbW3CNmKPkWhZtGgRevXqhalTp+K6666Dx+MJeX6HwuVy4fDhwxgyZIjo98vNzcUll1yCRYsWCY+9++67UCgUYTNhgF9+eN111+Hyyy+HwWAQHuvKxIkTwfM8li1bJnpcBEFECU8QBCEB11xzDW80GsM+169fv6DHAPDl5eW8xWIRHluyZAkPgD/hhBN4j8cjPD5v3jweAP/zzz/zPM/zHR0dfGFhIX/BBRcE7dPtdvOjR4/mTznllIhj9Xg8/I033sgrFAoeAM9xHD98+HD+9ttv5w8cOBC07bBhw/gxY8bwTqcz6PHzzz+f79WrF+92u3me5/lXX32VB8BfffXV3d6PPcf2Hc34c3Jy+Ntuuy3i5wkFe89Qf06nk3e73XxFRQU/atQo4TPwPM+bzWa+tLSUHz9+vPDYww8/zAPgH3rooaD3+PHHH3kA/D//+c+gxw8fPszr9Xp+9uzZwj5zc3P5M844I+h37QmXy8VbLBbeaDTyzz33nPD4yJEj+QsvvDDia2+55RY+mlvc1KlT+WHDhnV7/JtvvuEB8B988AHP8zx/xhln8L179+Y7Ozt5nu9+3O/YsYMHwN98881B+/npp594APxf//pX4bEJEybwAPiffvopaNsRI0bw5557rqhxP/LII7xGoxF+2/79+/N//OMf+S1btgRtd+655/K9e/fm29ragh6/9dZbeZ1Oxzc3N4fcv8vl4p1OJ//73/+eHzNmjPD4P/7xDx4A39raGnZs9957b8jPd9NNN/Ecx/G7du3ieZ7nDxw4wAPgR40axbtcLmG7tWvX8gD4d999N+x7hDtG2O/2zTffhH0tY9WqVTwA/t577+V53nt96N+/P9+vX79ux2u/fv34adOm8U6nk3c6nXx1dTV/ww038Gq1ml+6dGnQtl2PHZ73n5fr1q0Tnt+6dSvP8zx/8skn87NmzeJ5nuePO+44fsKECUH76+jo4HNzc/lTTz1VeOyaa67hOY7j9+7dG/KzVVZW8pdddlmP3wFBELFBGSmCIFLGpEmTYDQahX8PHz4cADB16lRwHNftcSa1+eGHH9Dc3IxrrrkmKNPi8Xhw3nnnYd26dejo6Aj7vhzHYcGCBdi/fz9efPFFXHvttXA6nXj22Wdx3HHH4dtvvwUA7N27Fzt37sTvfvc7AAh6r2nTpqGurg67du0K2vfFF1/c4+eOZvynnHIKXnvtNfz973/HmjVr4HQ6e9x/IG+88QbWrVsX9KdSqbBr1y7U1tbiqquuCpKA5eTk4OKLL8aaNWtgtVojfralS5eC4zhceeWVQZ+jvLwco0ePFlzJfvjhB7S3t+Pmm28O+l27YrFYcM8992DQoEFQqVRQqVTIyclBR0cHduzYIWx3yimn4P/+7/9w7733YuXKlejs7IzqOwlFbW1tWKlnIE8++SSOHDmC5557LuTz33zzDQCvFDCQU045BcOHD++WLS0vL8cpp5wS9Njxxx8fJCvrmlUMlMU9+OCDOHToEBYtWoQbb7wROTk5WLBgAU466SRBNmaz2fDVV1/hoosugsFg6HYc22y2IAndBx98gNNPPx05OTlQqVRQq9VYuHBh0G9w8sknAwAuvfRSvP/++6ipqen2XXz99dcYMWJEt883a9Ys8DzfzZhm+vTpUCqVQd8DgKDvQuwxEg2BWR7Ae32YNWsWqqurQ2a3ly1bBrVaDbVajX79+uHll1/G888/j+nTp0f1vhMmTMDAgQOxaNEi/PLLL1i3bl1EWd/777+P9vb2oG2uu+468DyPV199NeRrSktLQ/42BEFIAwVSBEGkjMLCwqB/azSaiI/bbDYAECRjl1xyiTChYX9PPvkkeJ5Hc3Nzj+/fr18/3HTTTVi4cCH27NmD9957DzabDXfffXfQ+9x1113d3ufmm28GgG5yIjHOfNGM/7333sM111yDV155BaeddhoKCwtx9dVX4+jRoz2+D+ANQseOHRv0B0Sur6moqIDH40FLS0vEz3bs2DHwPI+ysrJun2PNmjXCd9PQ0AAA6N27d8SxXnHFFZg/fz6uv/56fPHFF1i7di3WrVuHkpKSoGDpX//6F+655x4sWbIEkyZNQmFhIS688ELs2bNH1HcSCmYM0hPjx4/HhRdeiCeeeKLb9wP0/L12ld8VFRV1206r1QZ93oEDBwZ9t4888kjQ9mVlZbj22muxYMEC/Pzzz/j222+h0WgEp8ympia4XC48//zz3X6nadOmAfAfx4sXL8all16KyspKvPXWW/jxxx+FCT47/wDgrLPOwpIlS+ByuXD11Vejd+/eGDlyZFDNT1NTU9jvIfC7CvddaLVaAAj6LsQeI2Ixm8344IMPcMopp6CkpAStra1obW3FRRddBI7jQsrmzjjjDKxbtw5r1qzBm2++iaqqKtx6660h5bCR4DgO1157Ld566y0sWLAAQ4YMwZlnnhl2+4ULF0Kn0+G8884Txnn88cejqqoKr732WsjaPZ1OJ8lCA0EQoSHXPoIg0o7i4mIAwPPPPx/SJRDwTi6j5dJLL8Xjjz+OrVu3Br3Pfffdh5kzZ4Z8zdChQ4P+HSnjwohm/MXFxZg3bx7mzZuHQ4cO4ZNPPsG9996L+vp6fP755+I+WAjYpLWurq7bc7W1tVAoFCgoKAh6vOtnKy4uBsdx+O6774RJbyDsMeZY2NVsIZC2tjYsXboUDz/8MO69917hcVazE4jRaMTcuXMxd+5cHDt2TMhOXXDBBdi5c2ekjx2W4uJiUcE3ADz++OMYOXIkHnvssW7PBX6vXQPH2tpa4bePhk8//TSor1FP9vVnnXUWpkyZgiVLlqC+vh4FBQVQKpW46qqrcMstt4R8DXOvfOutt9C/f3+89957Qb93qL5KM2bMwIwZM2C327FmzRo8/vjjuOKKK1BVVYXTTjsNRUVFYY8vAFF/F9EcI2J59913YbVasXbt2m7HOwB8/PHHaGlpCXouLy9PWJAYN24cxo0bh9GjR+Pmm2/G5s2bu5l8RGLWrFl46KGHsGDBAjz66KNht9u9e7cQqPXt2zfkNl988YUQGDOam5tl18OPIDIJCqQIgkg7Tj/9dOTn52P79u0hi9Z7oq6uLuRKucViweHDh4WJ6tChQzF48GBs2bIl5KQ5VmIdf9++fXHrrbfiq6++wurVq+Maw9ChQ1FZWYl33nkHd911lzBp7ujowEcffSQ4+UXi/PPPxxNPPIGamhpceumlYbcbP3488vLysGDBAlx++eUhg02O48DzfLeA7JVXXonokldWVoZZs2Zhy5YtmDdvnmDLHpjN6GoNHYphw4ZhyZIlPW7Htr3uuuvw/PPPY/z48UHPMavpt956S5C/AcC6deuwY8cO3H///aLeI5BRo0aFfPzYsWNC24FA3G439uzZA4PBgPz8fGg0GkyaNAmbNm3C8ccfL2R4Q8FxHDQaTdBvdPTo0ZCufQytVosJEyYgPz8fX3zxBTZt2oTTTjsNZ599Nh5//HFs3LgRJ554orD9G2+8AY7julm290Ssx0gkFi5cCJPJhCVLloR067z77rvx9ttvRzxPBw8ejNmzZ2Pu3Ll47733BEc+MVRWVuLuu+/Gzp07cc0110QcJ+Bt3TBo0KCg5zo7OzFjxgwsWrQoKJBiJhhdgyuCIKSDAimCINKOnJwcPP/887jmmmvQ3NyMSy65BKWlpWhoaMCWLVvQ0NCAl156KezrH330UaxevRqXXXaZYNt94MABzJ8/H01NTXj66aeFbf/9739j6tSpOPfcczFr1ixUVlaiubkZO3bswMaNG/HBBx8kbPxtbW2YNGkSrrjiCgwbNgwmkwnr1q3D559/HjZDJhaFQoGnnnoKv/vd73D++efjxhtvhN1ux9NPP43W1lY88cQTPe7j9NNPxx/+8Adce+21WL9+Pc466ywYjUbU1dXh+++/x6hRo3DTTTchJycH//znP3H99dfjnHPOwQ033ICysjLs3bsXW7Zswfz585Gbm4uzzjoLTz/9NIqLi1FVVYVvv/0WCxcuRH5+ftD7jhs3Dueffz6OP/54FBQUYMeOHXjzzTeDgj8WfDz55JOYOnUqlEplxCBi4sSJWLRoEXbv3i3KfW3OnDl4++238c033wTV+Q0dOhR/+MMf8Pzzz0OhUGDq1Kk4ePAgHnzwQfTp0we33357j/sWy5tvvol///vfuOKKK3DyyScjLy8PR44cwSuvvIJt27bhoYceEj7vc889hzPOOANnnnkmbrrpJlRVVcFsNmPv3r349NNPhXql888/H4sXL8bNN9+MSy65BIcPH8bf/vY39OrVK0g6+dBDD+HIkSM4++yz0bt3b7S2tuK5556DWq3GhAkTAAC333473njjDUyfPh2PPPII+vXrh88++wwvvvgibrrppqhc7gBEdYyIYevWrVi7di1uuummkL2WTj/9dPzzn//EwoULe1zwuOuuu7BgwQLMnTsXl156aVCtV0/0dK65XC688cYbGD58OK6//vqQ21xwwQX45JNP0NDQIGSAf/75Z1it1qgDVoIgoiCFRhcEQWQQsbj23XLLLUGPMfeup59+OujxUO5XPM/z3377LT99+nS+sLCQV6vVfGVlJT99+vRu23VlzZo1/C233MKPHj2aLyws5JVKJV9SUsKfd955/LJly7ptv2XLFv7SSy/lS0tLebVazZeXl/O/+tWv+AULFgjbBLpxdaWra5/Y8dtsNv6Pf/wjf/zxx/O5ubm8Xq/nhw4dyj/88MN8R0dHxM8YaTyBLFmyhB83bhyv0+l4o9HIn3322fzq1auDtmGufQ0NDSH3sWjRIn7cuHG80Wjk9Xo9P3DgQP7qq6/m169fH7TdsmXL+AkTJvBGo5E3GAz8iBEj+CeffFJ4/siRI/zFF1/MFxQU8CaTiT/vvPP4rVu38v369eOvueYaYbt7772XHzt2LF9QUMBrtVp+wIAB/O233843NjYK29jtdv7666/nS0pKeI7jQn7/gbS1tfE5OTn8U089FfR4uGOP53n+r3/9Kw+g23Hvdrv5J598kh8yZAivVqv54uJi/sorr+QPHz4ctN2ECRP44447rtt+Q50vodi+fTt/55138mPHjuVLSkp4lUrFFxQU8BMmTODffPPNbtsfOHCAv+666/jKykperVbzJSUl/Pjx4/m///3vQds98cQTfFVVFa/Vavnhw4fzL7/8snAMMJYuXcpPnTqVr6ys5DUaDV9aWspPmzaN/+6774L2VV1dzV9xxRV8UVERr1ar+aFDh/JPP/10kFNkuPOe573XiYcfflj4t9hjRIxr32233cYD4Ddv3hx2G+Y8uGHDBp7nva5906dPD7ntCy+8wAPgX3/99aAxhHPti0Sgax9zM503b17Y7T///PNuDpoPPvggX1xczNtstojvRRBE7HA8H9CYhSAIgiCylD/96U/46quvsG3bNlG1bgQhV9xuNwYNGoQrrrgiYu0VQRDxQa59BEEQBAHggQceQE1NDT766KNUD4Ug4uKtt96CxWIRHEgJgkgMFEgRBEEQBLzGFW+//TbZRRNpj8fjwdtvvx1T7RhBEOIhaR9BEARBEARBEESUUEaKIAiCIAiCIAgiSiiQIgiCIAiCIAiCiBIKpAiCIAiCIAiCIKKEGvLCW5RZW1sLk8lElrcEQRAEQRAEkcXwPA+z2YyKigooFOHzThRIAaitrUWfPn1SPQyCIAiCIAiCIGTC4cOH0bt377DPUyAFwGQyAfB+Wbm5uSkdi9PpxPLlyzFlyhSo1eqUjoVIL+jYIdIROm6JWKFjh4gVOnaInmhvb0efPn2EGCEcFEgBgpwvNzdXFoGUwWBAbm4undxEVNCxQ6QjdNwSsULHDhErdOwQYump5IfMJgiCIAiCIAiCIKKEAimCIAiCIAiCIIgooUCKIAiCIAiCIAgiSqhGiiAIgiAIgpAlPM/D5XLB7XZLtk+n0wmVSgWbzSbpfon0QalUQqVSxd32iAIpgiAIgiAIQnY4HA7U1dXBarVKul+e51FeXo7Dhw9T/9AsxmAwoFevXtBoNDHvgwIpgiAIgiAIQlZ4PB4cOHAASqUSFRUV0Gg0kgU9Ho8HFosFOTk5EZutEpkJz/NwOBxoaGjAgQMHMHjw4JiPAwqkCIIgCIIgCFnhcDjg8XjQp08fGAwGSfft8XjgcDig0+kokMpS9Ho91Go1qqurhWMhFujoIQiCIAiCIGQJBTpEopDi2KKjkyAIgiAIgiAIIkookCIIgiAIgiAIgogSCqQIgiAIgiAIIom89tpryM/PT8l7z5o1CxdeeKFk+5szZw5OOOEEyfaXTlAgRRAEQRAEQRASEC5IWblyJTiOQ2trKwDgsssuw+7du0XtU+qg67nnnsNrr70m2f564uDBg+A4TvgzmUw47rjjcMstt2DPnj1R76+qqgrz5s2TfqAxQIEUQRAEQRAEQSQRvV6P0tLSpL6n2+2Gx+NBXl5eSrJhX375Jerq6rBlyxY89thj2LFjB0aPHo2vvvoq6WORCgqkCIIgCIIgCNnD8zysDpckf50Ot+hteZ6X/LN0zTJt2bIFkyZNgslkQm5uLk466SSsX78eK1euxLXXXou2tjYhozNnzhwAQEtLC66++moUFBTAYDBg6tSpQRke9h5Lly7FiBEjoNVqUV1d3S1r5vF48OSTT2LQoEHQarXo27cvHn30UeH5e+65B0OGDIHBYMCAAQPw4IMPwul0Rv2Zi4qKUF5ejgEDBmDGjBn48ssvMW7cOPz+97+H2+0GAOzbtw8zZsxAWVkZcnJycPLJJ+PLL78U9jFx4kRUV1fj9ttvF74PAGhqasJvf/tb9O7dGwaDAaNGjcK7774b9RijhfpIEQRBEARBELKn0+nGiIe+SPr7bn/kXBg0iZ0y/+53v8OYMWPw0ksvQalUYvPmzVCr1Rg/fjzmzZuHhx56CLt27QIA5OTkAPDKCPfs2YNPPvkEubm5uOeeezBt2jRs374darUaAGC1WvH444/jlVdeQVFRUcgs2H333YeXX34Zzz77LM444wzU1dVh586dwvMmkwmvvfYaKioq8Msvv+CGG26AyWTC7Nmz4/rMCoUCf/nLX3DRRRdhw4YNOOWUU2CxWDBt2jT8/e9/h06nw+uvv44LLrgAu3btQt++fbF48WKMHj0af/jDH3DDDTcI+7LZbDjppJNwzz33IDc3F5999hmuuuoqDBgwAOPGjYtrnJGgQIogCIIgCIIgJGLp0qVCsMNgGZdwHDp0CHfffTeGDRsGABg8eLDwXF5eHjiOQ3l5ufAYC6BWr16N8ePHAwDefvtt9OnTB0uWLMFvfvMbAIDT6cSLL76I0aNHh3xfs9mM5557DvPnz8c111wDABg4cCDOOOMMYZsHHnhA+P+qqirceeedeO+99+IOpAAIn/fgwYM45ZRTMHr06KCx/v3vf8fHH3+MTz75BLfeeisKCwuhVCphMpmCvo/Kykrcddddwr//9Kc/4fPPP8cHH3xAgRQROy63B1uOtGJkZR60KmWqh0MQBEEQBBETerUS2x85N+79eDwemNvNMOWaRDVl1aujmz9NmjQJL730UtBjP/30E6688sqwr7njjjtw/fXX480338Q555yD3/zmNxg4cGDY7Xfs2AGVShUUJBQVFWHo0KHYsWOH8JhGo8Hxxx8fcT92ux1nn3122G0+/PBDzJs3D3v37oXFYoHL5UJubm7Y7aOBySaZRK+jowNz587F0qVLUVtbC5fLhc7OThw6dCjiftxuN5544gm89957qKmpgd1uh91uh9FolGSc4aAaqQzn3bWHcPFLP+KFb/aleigEQRAEQRAxw3EcDBqVJH96jVL0tmySLxaj0YhBgwYF/VVWVkZ8zZw5c7Bt2zZMnz4dX3/9NUaMGIGPP/447Pbh6rZ4ng8ar16vjzh+vV4fcVxr1qzB5ZdfjqlTp2Lp0qXYtGkT7r//fjgcjoivEwsL+vr37w8AuPvuu/HRRx/h0UcfxXfffYfNmzdj1KhRPb7fP//5Tzz77LOYPXs2vv76a2zevBnnnnuuZOMMBwVSGc6P+5sAAHvrzSkeCUEQBEEQBBGOIUOG4Pbbb8fy5csxc+ZMvPrqqwC8WaWu0sARI0bA5XLhp59+Eh5ramrC7t27MXz4cNHvOXjwYOj1+rDOeatXr0a/fv1w//33Y+zYsRg8eDCqq6tj+HTd8Xg8+Ne//oX+/ftjzJgxAIDvvvsOs2bNwkUXXYRRo0ahvLwcBw8eDHpdqO/ju+++w4wZM3DllVdi9OjRGDBgQEzW6tFCgVSG8/ORNgBAg9me4pEQBEEQBEEQXens7MStt96KlStXorq6GqtXr8a6deuEgKiqqgoWiwVfffUVGhsbYbVaMXjwYMyYMQM33HADvv/+e2zZsgVXXnklKisrMWPGDNHvrdPpcM8992D27Nl44403sG/fPqxZswYLFy4EAAwaNAiHDh3Cf//7X+zbtw//+te/ImbKItHU1ISjR49i//79+OSTT3DOOedg7dq1WLhwIZRKpfB+ixcvxubNm7FlyxZcccUV8Hg8QfupqqrCqlWrUFNTg8bGRuF1K1aswA8//IAdO3bgxhtvxNGjR2MaZzRQIJXBtHQ4cKSlEwAFUgRBEARBEHJEqVSiqakJV199NYYMGYJLL70UU6dOxdy5cwEA48ePxx//+EdcdtllKCkpwVNPPQUAePXVV3HSSSfh/PPPx2mnnQae57Fs2TLBsU8sDz74IO6880489NBDGD58OC677DLU19cDAGbMmIHbb78dt956K0444QT88MMPePDBB2P6nOeccw569eqFUaNG4d5778Xw4cPx888/Y9KkScI2zz77LAoKCjB+/HhccMEFOPfcc3HiiScG7eeRRx7BwYMHMXDgQJSUlAif4cQTT8S5556LiRMnory8PGRjZKnh+ESY46cZ7e3tyMvLQ1tbm2TFc7HidDqxbNkyTJs2LeoToSurdjfg6kVrAQBGjRLbHjlPiiESMkXKY4cgkgUdt0Ss0LGT2dhsNhw4cAD9+/eHTqeTdN8ejwft7e3Izc0VZTZBZCaRjjGxsQEdPRnMLzVtwv93ONzosLtSOBqCILIFt4fH3npzQppYEgRBEIRcoEAqg/nlSFvQvxstJO8jCCLx/HvVPpzzzCp8uOFIqodCEARBEAmDAqkMJjAjBVCdFEEQyWFbbTsA4EBjR4pHQhAEQRCJgwKpDKXJYkdNayc4DhhaZgJAgRRBEMmhod17rel0unvYkiAIgiDSFwqkMhSWjepfbERVsQEA0EDSPoIgkgC71tgokCIIgiAyGFWqB0AkBlYfdXxlHnJ03p+ZMlIEQSQDdq3pdFAgRRAEQWQuFEhlKCwjNbIyDx1272SGAimCIBKN1eGCxecQStI+giAIIpMhaV+GwgKp43vno8SkBUCufQRBJJ7ABZtOpyfClgRBEASR3lBGKgNpMNtR12YDxwHHVeSirdMpPE4QBJFIAq8zNpL2EQRBEBkMZaQykK2+bNTAkhwYtSohI0WBFEEQiaY+KCNFgRRBEASRuVAglYH8HGA0AcAfSFns4Hk+ZeMiCCLzaaBAiiCILGfWrFngOK7b3969e1M9tJh47bXXkJ+fn+phyBIKpDKQQKMJACjO0QAAnG5ekPkRBEEkgqBAiqR9BEFkKeeddx7q6uqC/vr37x/1fhwORwJGR0gFBVIZyC81rQCA43t7AymtSok8vRoAyfsIgkgs9Wab8P/UR4ogiITg6Aj/57SJ29ZpBZydPW8bI1qtFuXl5UF/SqUS3377LU455RRotVr06tUL9957L1wul/C6iRMn4tZbb8Udd9yB4uJiTJ48GQCwfft2TJs2DTk5OSgrK8NVV12FxsZG4XUejwdPPvkkBg0aBK1Wi759++LRRx8Vnr/nnnswZMgQGAwGDBgwAA8++CCcTv/i+pYtWzBp0iSYTCbk5ubipJNOwvr167Fy5Upce+21aGtrEzJrc+bMifl7yTTIbCLDqG+34Vi7HQoOGFGRKzxeYtKirdOJBrMdg8tMKRwhQRCZDEn7CIJIOI9VhH9u8BTgdx/4//30IG/QFIACQD4Avt/pwLXL/E/MGwVYm4L3N6ct3tEK1NTUYNq0aZg1axbeeOMN7Ny5EzfccAN0Ol1QcPL666/jpptuwurVq8HzPOrq6jBhwgTccMMNeOaZZ9DZ2Yl77rkHl156Kb7++msAwH333YeXX34Zzz77LM444wzU1dVh586dwj5NJhNee+01VFRU4JdffsENN9wAk8mE2bNnAwB+97vfYcyYMXjppZegVCqxefNmqNVqjB8/HvPmzcNDDz2EXbt2AQBycnIk+07SHQqkMgwm6xtUmgODxv/zluRosbfeggayQCcIIoF0NZvgeR4cx6VwRARBEMln6dKlQQHH1KlTMWTIEPTp0wfz588Hx3EYNmwYamtrcc899+Chhx6CQuEVig0aNAhPPfWU8NqHHnoIJ554Ih577DHhsUWLFqFPnz7YvXs3evXqheeeew7z58/HNddcAwAYOHAgzjjjDGH7Bx54QPj/qqoq3HnnnXjvvfeEQOrQoUO4++67MWzYMADA4MGDhe3z8vLAcRzKy8ul/IoygpQGUqtWrcLTTz+NDRs2oK6uDh9//DEuvPBC4Xme5zF37lz85z//QUtLC8aNG4cXXngBxx13nLCN3W7HXXfdhXfffRednZ04++yz8eKLL6J3794p+ESphxlNjKrMD3qcnPsIgkgGgdcYngfsLg90amUKR0QQRMbx19rwz3Fdrjd3dzd48Hg8aDebkZubh6Blntt+kWR4ADBp0iS89NJLwr+NRiNuueUWnHbaaUGLS6effjosFguOHDmCvn37AgDGjh0btK8NGzbgm2++CZkJ2rdvH1pbW2G323H22WeHHc+HH36IefPmYe/evbBYLHC5XMjN9SuX7rjjDlx//fV48803cc455+A3v/kNBg4cGPPnzxZSWiPV0dGB0aNHY/78+SGff+qpp/DMM89g/vz5WLduHcrLyzF58mSYzWZhm9tuuw0ff/wx/vvf/+L777+HxWLB+eefD7c7OyUlzPp8VGVu0OPFORRIEQSRWNweHk0dwYXRVCdFEITkaIzh/9Q6cduqDYBa3/O2MWI0GjFo0CDhr1evXiEz9MxNOfBxozH4fT0eDy644AJs3rw56G/Pnj0466yzoNd3+RxdWLNmDS6//HJMnToVS5cuxaZNm3D//fcHGVnMmTMH27Ztw/Tp0/H1119jxIgR+Pjjj2P+/NlCSjNSU6dOxdSpU0M+x/M85s2bh/vvvx8zZ84E4NWMlpWV4Z133sGNN96ItrY2LFy4UIieAeCtt95Cnz598OWXX+Lcc88NuW+73Q673R9QtLe3AwCcTmdQ4V0qYO8f6zh+PtIKABhRnhO0j0KD96c+1taZ8s9IJIZ4jx2CiJdGix1uDw+OAxQcB7eHR7vVDqM6vLSPjlsiVujYyWycTid4nofH44HH45F03yx4YfuXGp7nQ+57+PDhWLx4MdxutxA4rV69GiaTCb169RK27/raMWPGYPHixejbty9Uqu5T94EDB0Kv12PFihW4/vrruz3//fffo1+/frjvvvuExw4ePAgAQe8zaNAg/OUvf8Ff/vIXXHHFFVi0aBFmzJgBlUoFt9udkO8qlXg8HvA8D6fTCaUyOJMp9roi2xqpAwcO4OjRo5gyZYrwmFarxYQJE/DDDz/gxhtvxIYNG+B0OoO2qaiowMiRI/HDDz+EDaQef/xxzJ07t9vjy5cvh8FgkP7DxMCKFSuifk2bA2iwqMCBR/WWH1C31f9cXT0HQImdB2uwbNlh6QZKyI5Yjh2CkIKaDgBQwaji4fbw6ASHL778GqWRF0sB0HFLxA4dO5mJSqVCeXk5LBZLwizAAxVOUuJ0OuFyuYSFesaVV16J5557Dn/84x9xww03YO/evXj44Ydx8803w2KxAABcLhccDkfQa6+66iq8/PLLuPTSS/GnP/0JRUVF2L9/PxYvXoznnnsOSqUSf/nLX3DPPffA4/Fg3LhxaGxsxM6dO3HVVVehoqIChw4dwquvvooTTzwRy5cvx8cffwye59He3o7Ozk489NBDmDFjBvr27Yva2lqsXbsWF1xwAdrb21FSUgKLxYJPP/0UI0eOhF6vl818OR4cDgc6OzuxatWqIOdEALBarWFeFYxsA6mjR48CAMrKyoIeLysrQ3V1tbCNRqNBQUFBt23Y60Nx33334Y477hD+3d7ejj59+mDKlClBetFU4HQ6sWLFCkyePBlqtTqq1361ox7YsBlDyky48ILxQc+Z9jTi7X0bAV0upk0bH2YPRDoTz7FDEFLw3Z5G4OeN6F1oQrPViU6zHaeMPwMjeoW/rtJxS8QKHTuZjc1mw+HDh5GTkwOdTtfzC6KA53mYzWaYTKaEmOGo1WqoVKpuc8rc3FwsXboU99xzD84880wUFhbi97//PR555BEh06RSqaDRaIJem5ubi++//x733nsvLrnkEtjtdvTr1w/nnnsu8vPzwXEc/va3v8FoNOKJJ55AbW0tevXqhRtvvBG5ubm4/PLLsWnTJtxzzz2w2+2YNm0aHnzwQcydOxe5ubnQ6XQwm824+eabcezYMRQXF+Oiiy7C448/Dp1Oh8mTJ+PGG2/E73//ezQ1NeGhhx7Cww8/LPn3lmxsNhv0ej3OOuusbsdY1yA4HLINpBihtKQ9HfQ9baPVaqHVars9rlarZXMxjmUs2496VzOO753f7bXl+V69bWOHQzafkUgMcjqOieyiyepd0SvJ1aHT5ZWAuHhO1PFIxy0RK3TsZCZM/qZQKAQ3O6lgEjW2f6l5/fXXwz43adIkrF27NuzzK1euDPn40KFDI9YsKRQKPPDAA0HufIE8/fTTePrpp4Meu/322wEAOp0O//3vf8PuGwAWLFiABQsWRNwm3VAoFOA4LuQ1ROw1RbYNeZnFYtfMUn19vZClKi8vh8PhQEtLS9htsglmfT7K14g3EOba19ThgMudWRpXgiDkAWuvUGrSQe9z6rM56XpDEARBZCayDaT69++P8vLyIO2zw+HAt99+i/HjvdK0k046CWq1Omiburo6bN26VdgmW+B53h9IVXYPpAqNGig4rx1xc0ditMYEQWQ3zBW0xKQVLM87HeTaRxAEQWQmKZX2WSwW7N3r9/c/cOAANm/ejMLCQvTt2xe33XYbHnvsMQwePBiDBw/GY489BoPBgCuuuAKAt0HY73//e9x5550oKipCYWEh7rrrLowaNUpw8csWjrbb0GhxQKngMDxEPYJSwaEoR4sGsx31ZjtKc6XVGxMEQdQHBFIsI9VJ9ucEQRBEhpLSQGr9+vWYNGmS8G9mAHHNNdfgtddew+zZs9HZ2Ymbb75ZaMi7fPlymEwm4TXPPvssVCoVLr30UqEh72uvvdbNxjDTYY14h5SZwja/LPEFUkx+QxAEISUsI1Vq0kKvoUCKIAiCyGxSGkhNnDhR8PIPBcdxmDNnDubMmRN2G51Oh+effx7PP/98AkaYPvxyJHQj3kBKTFqgjpryEgSRGBpDZKSoIS9BEPEQaZ5IEPEgxbEl2xopIjr8RhP5YbdhhhMUSBEEkQjqAzJSWrX39kI1UgRBxAJzTRPbz4cgooUdW/G4fsre/pzomUCjieNDGE0wKJAiCCJRWB0uWOw++3OqkSIIIk6USiXy8/NRX18PADAYDJL1fPJ4PHA4HLDZbAmxPyfkDc/zsFqtqK+vR35+flzlQBRIZQC1bTY0dzigUnAYWm4Ku11Jji+QohopgiAkptHsdQPVqRXI0aookCIIIm5YKxwWTEkFz/Po7OyEXq9PSENeIj3Iz88XjrFYoUAqA/jlSCsAYGh5eKMJACj2ZaQaKSNFEITE1JttALw9pDiOE8wmbCTtIwgiRjiOQ69evVBaWgqn0ynZfp1OJ1atWoWzzjqLmjlnKWq1WhJjOgqkMoCfj4TvHxUIZaQIgkgUgT2kAPj7SFFGiiCIOFEqlZK6MSuVSrhcLuh0OgqkiLggYWgG4Dea6CGQohopgiASBFugYQs2fmmfJ2VjIgiCIIhEQoFUmhNoNNFjRsoXSJltLrIkJghCUurbfY59ub5AivWRImkfQRAEkaFQIJXmHGnpRKvVCbUystEEAOTqVNCovD85ZaUIgpASQdrXJSNFizYEQRBEpkKBVJrDslHDynOhVUXWD3McR3VSBEEkBEHaRzVSBEEQRJZAgVSaw4wmRvYg62NQnRRBEIlAcO0jaR9BEASRJVAgleZsZY14ezCaYFAglV7wPI9nVuzG0p9rUz0UgoiIX9qnA0DSPoIgCCLzIfvzNCYaowkGBVLpxb6GDvzrqz0oztHi/OMrUj0cggiJx8Oj0eJtyMuuMdSQlyAIgsh0KCOVxhxu7kRbpxMapQJDyiIbTTCoRiq9sNhdAIDmDjs8Hj7FoyGI0DRbHXB7eHAcUJSjAQDoNd7bCwVSBEEQRKZCgVQa83NNKwBgWC+T4MbXE5SRSi/svkmoh/fa1hOEHGHXk0KDBmql91okmE1QjRRBEASRoVAglcZEK+sD/IFUI2Wk0gK7y9/MtLXTkcKREER4hPoo3/UF8Ev77C4PZVMJgiCIjIQCqTTmlyPRGU0AlJFKN4ICKaszhSMhiPDUhwqkNP52DDYXZaUIgiCIzIMCqTQl0GhCrPU5EFAjZbaD52mVWO7YAyagrZ0USBHyJFRGShfQ147kfQRBEEQmQoFUmlLdZIXZ5oJGJd5oAgCKfYGU3eWB2U41N3LH7gzMSJG0j5AnoQIphYKDVkWGEwRBEETmQoFUmvKzLxs1vFeuUNwtBr1GCZPW63pP8j75Q9I+Ih0QmvGadEGPM3kf9ZIiCIIgMhEKpNIUoRFvFLI+BtVJpQ9B0j4KpAiZEiojBQT0knJ4ur2GIAiCINIdCqTSlL31FgBe6/NoKaZAKm0g1z4iHWB96VgNJoOa8hIEQRCZDAVSaYrF11MoX6+J+rWUkUofgmukKCNFyJOGdu+1pDQ3OJDSUSBFEARBZDAUSKUpHQ5vIGXUKnvYsjuCcx/1kpI9wdI+ykgR8qPT4RaMa7pJ+zTUlJcgCILIXCiQSlM67CyQUkX9WspIpQ/B0j7KSBHygzX31qoUgpENg0n7yGyCIAiCyEQokEpTOnwrvEYNBVKZTGBGqo2kfYQMERz7crXgOC7oOZL2EQRBEJkMBVJpij8jFYO0zxdINZK0T/YE1UhRRoqQIYJjXxejCYCkfQRBEERmQ4FUGuLx8LD6JiaGWDJSOZSRSheC+0g54PHwKRwNQXQnnPU5AOjV1JCXIIjQrNnfJLRyIYh0hQKpNCRwUpITQ41UqW/C09ThgJsm5rImUNrn4SEU9ROEXKj3BVJdm/EC/hopOwVSQfxvcw1W7W5I9TAIImW0dDhw5Ss/Ydara1M9FIKICwqk0hAm6+M4QKeO/icsNGrAcYDbw6OFnOBkTWBGCqA6KUJ+RMpI6TRUI9WVBrMdt723Gbe+szHVQyGIlFHT2gmXh0ejhRZ0ifSGAqk0JNBoomtxtxhUSgUKDd7+UyTvkzeBNVIANeUl5EdkaR8FUl1ptNjB80C7zQVHl4USgsgWmjr89zJy9STSGQqk0pB4jCYY5NyXHgRK+wCghTJShMzwS/siBFIOChgYbQGmMR0k1SWylKYAsysKpIh0hgKpNEQIpGIwmmBQIJUedJX2UVNeQm5EzEhpqI9UV9oDAikLBVJEltJk8d/LKGNNpDMUSKUhzLEvlma8DMG5jyzQZQ2bgBYavVLMNrJAJ2SEx8MLbRRC1kipSNrXlXabP3jqcFAgRWQnjR2BGSnKWBPpCwVSaQi7+Ro0JO3LdFhGismmWknaR8iIFqsDLl+heHGIPlI66iPVjXaS9hFEUEaKMtZEOkOBVBrir5EiaV+mwwKpslyvtTQFUoScYBntQqMGamX32wmZTXSnLUjaR98LkZ00Uo0UkSFQIJWGdNglkPZRIJUWsP47ZbksI0U1UoR8EOqjQmSjAH8gRRMlP+02ykgRRHBGiqR9RPpCgVQa4jebiEPa55v4NFKNlKxhGalylpGiGilCRtS3+xz7csMEUhrvLYYyUn7aO/3BE5lNENlKoGsfXR+IdIYCqTSE9ZEySOHaR4GUbOF53l8jJUj7KCNFyAd2/QiXkdKpqUaqK2R/TmQ7PM+jkfpIERkCBVJpiNVnNpEjQR+pVquzW68iQh443H65QxllpAgZEsn6HKAaqVCQtI/Idiz24GbUFEgR6QwFUmkIk4MY4qiRytOroVZyAIK1yoR8COwhxWqk2shsgpAR9T0FUtRHqhuBrn1mCqSILKSxy5yDrg9EOkOBVBpiZWYTcdRIcRzn7yVFhhOyxB5QgCtkEDud4Hk+VUMiiCAazDYAPWeknG4eTjcVlANkf04QTV1KCshsgkhnKJBKQ1gfqXhc+wCgmJz7ZA2TXGpVChQYvA153R6eVrEJ2dCTtI/VSAG06swIashL9udEFkIZKSKToEAqDWGrmPGYTQD+AnEynJAnTNqnVSmgUyuhU3tPV5L3EXKBSftKTbqQz2tVCnBeBTHVSQFwuT1BTn3k2kdkI00dwXMOujYQ6QwFUmmI1eeAlRNnRop6SckbJu3T+lb18/XerBQ15SXkgM3phtmXXQmXkeI4zt9LykHyHbMtOHAiaR+RjXStyyZpH5HOUCCVhvjNJmKvkQIokJI7gdI+AMg3qAEALWSBTsgAdt3QqBTI1YVf1CHnPj+Bjn0ABVJEdsL6VyooW01kABRIpSEsI2WMV9pHgZSsCZT2Af5AiizQCTngl/VpwTH9Xgh0FEgJBDbjBUjaR2QnLCPFGs3b6dpApDEUSKUhbBXTGG9GimqkZI0/kAqW9rVRRoqQAT0ZTTCYBTo15Q1uxguQ2QSRnbCMVO8CAwDARr0siTSGAqk0w+X2CBNsqTJSjRRIyRK2SqdVd8lIUY0UIQPYAgxbkAmHUCNFq86CtK/Y952RtI/IRpo6vIuBlQV6ALTIQqQ3FEilGR0BFxyqkcpsukr78kjaR8iIhnZvD6nSXHGBFEn7/D2kKvO9kqYOh4v6whFZR5OQkfIGUmQ2QaQzFEilGVZfDym1khMkX7HCVkWtDjetjMqQcNI+Mpsg5IA/IxXa+pyhI2mfAJP29crzTiA9PAWYRHbhdHvQ4lNVCIEUSfuINIYCqTRDqh5SgLehr9E3yYkmK7XzaDt2HTXH/f5EZLq69hX4MlLUR4qQA/XtImukfNJUChj80r6yXK3gWEaGE0Q20eKT9Sk4oMxnNkGLLEQ6Q4FUmsGKk1kAFC+CvE9kndSxdhsufGE1zp23Co8v2wGHi1LyiaJbHymS9hEygl0zSnsMpKhGisFc+/L0aqHGlQwniGyi0efYV2jUCgvCdppHEGkMBVJpRoeDOfbFn5ECoq+T+nhTjaBn/veq/bj4pR9woLFDkrEQwXSrkRIa8pK0j0g95NoXPUzal6tXC9dwi40yUkT20NThvW4U52j89ZN0bSDSGAqk0gy2emlIQSDF8zw+3HAEADBzTCXyDWr8UtOG6f/6Dh+sP0xF0xITriFvVwtlgkg2Hg8vOpCiPlJ+mLTPG0h5vxeS9hHZBOshVZSjgc4n+6UaKSKdoUAqzWBmEzlxOvYxmOGEmEDq5yNt2FtvgValwJwZx+H//nImTh1QCKvDjbs//Bl//u9mYaJAxA/LSLGJaIGBZaScFLQSKaW10wmXx3sMFou0P6dAyu/al6tTI0fLpH0USBHZA2u3UpyjFe5tJPsl0hnZB1Jmsxm33XYb+vXrB71ej/Hjx2PdunXC8zzPY86cOaioqIBer8fEiROxbdu2FI44sVgkNJsAApryigikWDbq3OPKkatTo1eeHm9ffyruPncolAoOn26pxbTnvsOG6hZJxpbtCDVSXTJSLg9Pq9hESmHXiwKDGhpV5NsI1Uj5YdnkvABpH5NrE0Q2wGqkioyBgZSHFgeJtEX2gdT111+PFStW4M0338Qvv/yCKVOm4JxzzkFNTQ0A4KmnnsIzzzyD+fPnY926dSgvL8fkyZNhNmemq5w1RWYTdpcbn2ypBQBcclJv4XGlgsMtkwbhwz+ehj6Fehxp6cSl//4R//pqD9weujDGg1/a5/2tdWqlEFRRU97sxen24H+ba1La/63e7O0h1ZOsD6AaqUDaffVQuXqVkJGiRREim2A9pAKlfQAZThDpi6wDqc7OTnz00Ud46qmncNZZZ2HQoEGYM2cO+vfvj5deegk8z2PevHm4//77MXPmTIwcORKvv/46rFYr3nnnnVQPPyGkymzi6x31aOt0ojxXh9MHFXd7fkzfAiz785m48IQKuD08nlmxG7/9zxrUtHZKMs5sRDCbCLjZyLVOilYTk8c/lu/CX/67GfO+3J2yMbDrRakpcg8pgGqkAiFpH5HtNPnsz4tzNMK1AaCMNZG+SDMbTxAulwtutxs6XfDNWq/X4/vvv8eBAwdw9OhRTJkyRXhOq9ViwoQJ+OGHH3DjjTeG3K/dbofd7g8c2tvbAQBOpxNOZ2onqOz9w43D3Om9COlUnCRjLdCzPlK2iPt7f/0hAMCM0b3gcbvgCXHN0ymBpy8eidMHFmLOpzuw9mAzfv3891hx2+kw6dRxjzXb6PQFzSqOF36bPJ0ax9rtaGjvhLPUELR9T8dOojjUbMVv/vMTrhzXF3+aNDCp751t1LXZ8NrqgwCAI83WlF2vjrZZAQBFRnWPY9D41gGsdlfIbVN13CYbu9MtLI4Y1f7+Wu1WR8Z/9kSRLcdOJtHoy2bn6ZSAxw2VgoPLw6PdaodRzSVtHHTsED0h9tiQdSBlMplw2mmn4W9/+xuGDx+OsrIyvPvuu/jpp58wePBgHD16FABQVlYW9LqysjJUV1eH3e/jjz+OuXPndnt8+fLlMBgMIV6RfFasWBHy8R37FQAUqKnej2XL9sX9Pq12AFChwWzD0s+WCU0iA2l3AN/uUgLgUGTeg2XL9kTcpwbAHccBz/yiRFOHA4s+/hKD8yhjES2Hjnh/6z07t2NZi7fuz2Pz/g4rf1iL9t2hv9Nwx06iWNfAoblDiY9/2ouBnbuS+t7Zxrv7FLC7vBPw6roGLFu2LCXjWHvQe2ya62uwbNnhiNvuaOIAKFF7rDHieJN93CabdgcAqMCBx7dfrcBR3/m9dddeLLOnLruYCWT6sZNJHGn03sN2bVkP+35AySnhAocvvvwapfrkj4eOHSIcVqtV1HayDqQA4M0338R1112HyspKKJVKnHjiibjiiiuwceNGYRuOC5798zzf7bFA7rvvPtxxxx3Cv9vb29GnTx9MmTIFubm50n+IKHA6nVixYgUmT54Mtbp7FuerD34BjtVhzMjhmHZ6Vdzv53B58PDGL+HmOZw+6RzBGS6QRasPwoPdGN07D9dePE70vhcf+xHbas0YfdJYTBxSEvdYs42PGjcALU046YTRmDamAgCwtHUz9rbXo/+wkZh2Sp+g7Xs6dhJFy0+HgL07AY0B06admbT3BXw23BY7ynJ7lpilO3vrLVi75gfh3yp9DqZNOz0lY1nx/s9A3VGMGz2sx+uQYXcDXt29CYbcPEybdmq351N13CabfQ0dwIbVMOnUOH/6uTi0cj++qt2L0oo+mDbtuFQPLy3JlmMnkLUHm1Fs1GJAiTHVQ4kanucxe91XADz49ZRJ6F2gx99+WQm7xYFx48/E8F6mpI0lG48dIjqYWq0nZB9IDRw4EN9++y06OjrQ3t6OXr164bLLLkP//v1RXl4OADh69Ch69eolvKa+vr5blioQrVYLrbZ7kbRarZbNCRVuLFafk5tJr5VkrGq113mrxepEq82D0rzgffI8j4831wEALhnbJ6r3NGq82zrcnGy+13TC4fZmnAw6/7FQaPQetxa7O+x3muzj2OryjrOt05n03/lvS7dj4fcH8N8/nIpTBxQl9b2TzbNf7YOHB6qKDDjYZIXZ7krZedXU4ZU8lOcbehxDjs57zNqcnojbyun6mwg6nN7zJM/g/Zy5vkUraw/fC9EzmX7sMI6123DlovXoV2jAyrsnpXo4UWOxuwR5a1m+AWq1SqiTciE184RsOXaI6BF7XMjabCIQo9GIXr16oaWlBV988QVmzJghBFOBqVmHw4Fvv/0W48ePT+FoE4dVMJuQxrUPiGw4sa22HTuPmqFRKvDr4yui2i9z67KSvW9MCGYTKv9vzcwm5OTaZ/E5kbXbXEl3alx/sBkAsKfektT3TTYbqluwfPsxKDjgwfNHAADaO1N3XgmufT30kAICXPuyvJhcaMbrqxc1ktkEESW1rZ3geeBgkxVOd/q53DHHPoNGKbRwofYIRLoj+4zUF198AZ7nMXToUOzduxd33303hg4dimuvvRYcx+G2227DY489hsGDB2Pw4MF47LHHYDAYcMUVV6R66Amhw8Hsz6X76UpMWuw+ZgkZSH200ds7avKIMuQZolu1oUac8dG1jxQA5PtWsVvkFEgFTATbO50oMHaXhyaKIy1eV0h7Bh9jPM/jyc93AvC2HjixbwEA73nldHugViZ/PUxw7csVEUjRRAlAsGMfgADXvuz+XgjxBF5rmywOlOell6RZ6CGV479HUFNeIt2RfSDV1taG++67D0eOHEFhYSEuvvhiPProo0LKbfbs2ejs7MTNN9+MlpYWjBs3DsuXL4fJlDytbTJhq5cGKTNSYZryOlwe/G9z995RYjFQ/5i4sAl9pELZnztSMqZQsIwUALQmMZCyOlyClW4m34RX7mrA2gPN0KoUuO2cIcjR+S/bZpsLhUkMXAHvd836IZXk9DyRExZUsvw60B7QjBfwZ6SojxQhlsBrbb3ZlnaBlNBDyuhfgGG9pGzO9MuwEQSQBoHUpZdeiksvvTTs8xzHYc6cOZgzZ07yBpVCrL6bbo5EfaSA8E15V+6qR3OHAyUmLc4c3L13VE/4pX3ZPYGKFSEjFdBrI18vP2mfOWAi2Gp1AEhOEXRNi79HWabehN0efzZq1vgqVOR7ba0MGiWsDjfaO51JD6TYgotGpUCuvufrEJsodTrdPRoBZTKBzXgBIMe3GEaBFCGWwGttKhtyxwrLSBXnBAZSlJEi0pu0qZEivLCbrkFiaR/Q/cL84QavrO+iMZVQxSAfMlBtRFz4a6T83z2TV7bKqCFv14xUsjjSGhhIZeYx9r/NNdh51IxcnQo3TfT36GLyMLMt+ZNwtuBSkqMVFRTpfNcBDw840rCuQyq6SvuoRoqIluCMVPoFUiwjVRxC2kfzBCJdoUAqjeB5XsjuSGk2URxC2tdksePrnfUAgItPjF7WB/glPWQ2ERv2UNI+vfcG5M38yIOuNVLJ4khARooFnZmE3eXGP5d7+wv9ceJAoT4OAEw+eR8zMEgm7DrBFmB6Qh+QUbU5Mu93Egv7rQRpn4akfUR0BB4r9e3JDaTqzTb866s9ONZui3kfTIodukYqe68NRHpDgVQa4XB74PK5ohkTIe0LCKQ+2VILl4fHqMo8DC2Prd5M75sodGbx5CkehIxUwES0wOiX9vG8PJocW4KkfckMpPzN8jIxI/X2mkOoae1EWa4W147vH/Rcrp5lpJIfSNVHGUiplQqofJ2+s3nVuY1lpPTBZhN2lweuLM7UEeIJvNY2WGIPaGJh0fcH8cyK3Xh51f6Y99EYokZKL9RIZe+1gUhvKJBKIwLdnQxq6e3PGwNqpJhb38UnVsa8X7+0j1Zco4XneThCSPtYRsrl4QUHx1QTKC9LbiAVIO3LsIyU2ebE/G/2AgBuO2eIUG/IEDJSKbBAFxz7RAZSADl4Av7fitVIBS6GkXMfIYbAa22yM1J7fS0mDjR2xLyPJnLtIzIQCqTSCKal16oUMdUshYO59jVbHXC6Pdh5tB1ba9qhVnL49QmxB1JkNhE7gVK1wEBKp1ZA4/u3XOR9Frs/eGpNoptgUCCVYTfhl1ftR3OHAwNKjPhNCMdMVmeTDtI+wF8nlc3OfV37SGlU/nPZQvJnQgRB0r4k10gdbPIGUIearT1sGZ7GgPpKBrVHINIdCqTSCBaQSOnYBwAFBg2UCg48DzR3OPCRz2TiV8NK43IE89dI0QUyWoIDKX82guM4WTn3Od2eIG17WxLHVJOh0r4Gsx2vfH8AAHD3lKEhF01YVqM9FWYTvma8pSbx1suUkfJL+1iNFBDYS4oCKaJnLAELJ8l07XN7eBxq8l5vDzVbY5aV+2uk/IGUlq4NRJpDgVQaYUlADykAUCg4wUWnrs2Gjzex3lF94tovk/Zl0iQ3WTCjCY4D1MpgZ7QCAzOcSH0g1XUCmCzXvk6HW7DSBfxW8ZnA81/vgdXhxug++ThvZHnIbUwsI5UC98ZYMlK06hzg2hcQSBnJAp2IAksX+/Nk1cnWtXUKjpt2lyemIM7l9qDFGkraR32kiPSGAqk0grnfGSW0PmewSdFHG46g0WJHkVGDiUNL4tonSftiR+ghpVJ0s5j2W6CnXtrX1X47WXLDmtZgeQlrXixHalo78dnPddh9zNyjqUB1Uwfe+ekQAODe84aFtRcnaV96wfO8v4+ULiCQ0lBGihBP4PXW4fYkrUayuin4ehuLvK/F6gTPexcHCwIcSGmRhUh3ZN+Ql/DDbrZSOvYxmGb5/fWHAQAzTqiEOs46LIPg2kcXyGjx95Dqnn2Uk7Sv60p6sjJShwPqowB534T//O4mbKhuAeANjIf3ysVxFbkYWZmHkRV5GFKeI/zO/1i+Gy4PjwlDSnDawKKw+2TSvmT3keJ5XugjFZ3ZhL8pbzbS4XDD7XNcJWkfEStdz/d6s01YWEskXQ0mDjVbMbaqMKp9NHV4rxuFvlICBplNEOkOBVJpBHN2MmiklfYB/tVlNoG/+KTYTSYY1EcqdkL1kGLk+26cbTJoyts1kEpWjRQzmigyatDU4ZB1Hym2eqtRKmB3ebD5cCs2H24VnlcpOAwuM2FIWQ4+3eKV1c4+b2jEfaZK2tdqdcLp9gYEgfKcnsj2Gin2O6mVnCBlAvyLYhZy7SNEwK63KgUHl4dHvdmOwWWxtSeJhuqm7oFUtDSau8v6AJL2EekPBVJpBAtIpDabAIJlOt4V87y49+m3P6dJQrT4e0iFCqTk05TX4lshLc7RotFiR2unt79VOEmaVLAeUgNLc9B0oFnWq5ks2/DF7WeB53lsq23H1to2bKtpx7baNrRYndhR144dde0AgBknVPR4/uXqUpORYtmofIM6ZLY0HPosr5cMdOwLPDcoI0WIhed5IZDqW2TA/oaOpBlOHGj0Xm/Lc3U42m6LKZBiGaninOBMdrYvshDpDwVSaYRFyEglTtoHxNc7KhD/5MkDj4eHQpHYyXUm4a+RCiHt82WkWmQg7TP7buy9C/RotNjh9nhv9iZdYuUmLCM1sCQHaw80y3Y10+PhhRpBk06F4hwtBpTk4ILRFQC8k6PaNhu21bRha207mix23D55SI/7NaWoRor1rolG1gf45TvZKvNlmdpAWR9AZhOEeGxOjyAPHVCcg/0NHag3J6cpL8tInTm4GB9sOILDsWSkLN0d+wC/a1+2LrIQ6Q8FUmmEYDYhsWsfAJT4rIxVCg4XjpEmkAqUIHY63Qmp7cpUIkr79PJx7QvMSGlVXulaq9WZxEDKCEC+N+GOAFlrqEwyx3GozNejMl+PKceFdugLRR6zP0+ytK/B4p24RWM0AdCqMzOaMHULpJi0jwIpIjJmX78+jgOqigwAktOU1+PhUe0LnM4aUoIPNhyJLSPly2YXdWmpQmYTRLpDrn1pBKuRSkRAcnJVAYpzNLjy1H7dUu+xogvIppBzX3T4zSYi1UjJQNrnu7mbdKqk1m6xHlKDSnMAeL+vZFkBRwM7Z5UKLuRvGSvM+c1id8HjSd7nFhz7orxGZH0gxazPdcHXbpL2EWJhi1Y5GhXKcr0Ln0xqm0jq2m1wuDxQKTicOsBrgHOs3R514NPky0gVd6uR8itXCCIdoRRBGiG49iXAbKI0V4d1958j6T4VCm9htc3podWmKEkb1z6bv24vX6/BsXZ7wscV2EOKBVKA9ztjN2W50OHwn7NS1o2xjJ+H975HojOADEHalyu+GS8QIPPN0gWVUM14AcpIEeJhx4hJpxIywsnISB30Ofb1LTSgOEcDk1YFs92FIy1WDCoVb3TRyDJSXRZh/GYT2XltINIfykilEWxSlogaKcArM5LaJICNlTJS0WH33VQimU3IqUYqR6dKWn+rmlavrM+k9a/MAvK8EbPFD6kNYnRqhdCoOZmGE2wFPNqMlC7bM1K27s14AX8gRRkpoieERSudSqhRTEZG6qCvPqpfkQEcx6FPoVdWGK28r7GDZaRCm03I8fpNEGKgQCqNYMFIIlz7EgVZoMeGWGlfquVswRmp5GTKmGNfZYEeaqVC6EkiRwt0S4J6v3Ecl5KmvLE04wUCpX3y+42SAWucmtslc5jjq3ftIPtzogfMAYsypbksI5V4swmWkaoq9taj9mWBVFN0gZRQIxVG2tfpdKf8fkYQsUCBVBrBJmWGBJhNJAom6clWt65YiSjt8wVSTjef8kxfoNwkWTVSzGiid4H3hq5TyVcaIvR+S8Dih0nHDCeSs0hhc7rxy5E2AN7V6WjI9utAWGmfhqR9hDj8GSk1SnK8mfh2myvh172DvoCpPwukilhGqjPsa0Ih1EgZu0j7fPc4Dw+hRx1BpBMUSKURfte+9MlIUS+p2GCufboQ0j69WgmN0vt4a4qb8loCVkmT1d/KH0jpAci7WNkv7ZN+8YPJxMxJykit3NUAs92FXnk6jO6dH9Vrs12+45f2dTGb0JG0jxCHsGilVSFXr4LGt4CU6F5SLCPVr8gbSMUi7bM6XMIcoFtGSuO/x9E8gUhHKJBKIwTXvgTVSCUCv7SPLpDREKmPFMdx/nqkFDflNQdI+/KSLO1jgZRWxhkpQdqXgHM22dK+T3+uBQBcMLoi6p5wWV8j1elvyBsIufYRYglctOI4TqiTqk9gIBVofd6/KFjaF00vKZaN0qkVQW1RAECjVICVZtuz9PpApDcUSKUR7Gbb9UIkZwxZLumJlUg1UgBQYJCHc58lwGwiXzCbSLK0T8bZjkSZTQDJlfZ12F34ascxAMAFx1dE/XqS9pFrHxEfbMGEZTFZnWJDApvyBlqfV+R75YR9AzJSYmuamClGcY62m6EVx3EBGWv5qQoIoicokEoj0tFswu/aRxOFaBAa8oaQ9gHyacrLdPsmrVoYU1vCM1LB0j4tuwnL0GyiI0FmE4A/u5EMad+XO47B5vSgf7ERIytzo359tkv7WOa2q2ufkJFyUKE9EZlAYx8Afue+BGakqgOsz1U+OXllvh4c580uszYUPcEyUl2tzxnZnrEm0hsKpNIEnuf99udpZDahy3K3rliJZDYBIGlW4z0ROiOVuDHZnG6hH0kfISMlZ2lf4ppoCxmpJNiff7LZJ+s7vldMLRKoIW/ohrzsuHB7eFm6ThLyIdDYB/BnpBIp7TsQYH3O0KgUqMjzLmKJrZNijn3FRk3I5+VsGEQQPUGBVJrgtQb1/n861Uj5pX2UkYoGf41UuIxU6qV9Hg8fpNtPRo0Uy0axgmvA7/okx4loJphNtFodWLWnAYC3PioW9L6C8mwMpNweXrCu7irtMwQ0kCZ5HxGJ7hkpr9QuoRkpn2Mfsz5n9Cn0BlJi66SaOlhGKkwgpcnujDWR3lAglSYwowmO86/upgMskCKziegQpH3haqSMyXHIi0RHQHBs6lIjlSiZUmAPKZYZkXVGKoFOm7lJqpH6fOtRON08hpWbMLjMFNM+hMx0Fl4HAgNdUxezCYWCg1HDeklRIEWEJ7D5OYCkmE0cYD2kioIDqb5ROvc1Cj2kwkj7VNmdsSbSGwqk0gTBaEKtjNoxK5WwInMrXSCjQpD2hQmak+WQFwm2gq5ScNCqFIL9ucPlSVjRcNf6KMA/SZej41Mia6RMSXLtY259vz4htmwU4F/8sbs88HiyqxaIBbp6tVKwrA6EHRvmJEg0xeL28Hhm+S78sLcx1UMhfHTNSPmlfYkzm6huCm7Gy4g+kPL1kApbI8UWw+SnKiCInqBAKk3w10elj6wPCCgyz8KV6HjoybUvWQ55kfA3iPTa8Ro1Sqh8QX6i6qS6OvYBgfbn8rsJJ9K1j0n7ElkjVW+24cd9TQBic+tj6AOcRuUowUwk4Rz7GHK0QF+1pwH/+novZn/0c6qHQvjw10h5j6NES/s8Ht4v7evSgDvaXlJCjVQYaR+7PjAlBkGkExRIpQnp6NgHkLQvVlh2JZzZRLIc8iJh7hIkcBznD/ASNK6uPaQAedufJ9Jsgkn7zAkMppf9XAcPD4zpmy9MnmJBF3AcZ5t8J1wzXoZRcO6TTyDFmrAeaelEXVtnikdDAN3NJkpzvdmdRosD7gRkeY+222D3WZ9X5uuDnou2l5Tg2mfsQdpH8wQiDaFAKk2wpGEPKQDQM/vzLJs8xYv4jFTqaqS6Sk2AxEsOI0n7bDJczUyk2UQypH2fbGFufbFnowBvLRA7lrMukArTjJdh9B0bLOiWA4eb/cHT+oMtKRwJweh6vS0yasBxXhlmc4f09wEWTPcJsD5nsEDqaLtN1AJWUwerkSKzCSLzoEAqTbAmcGU7kZBrX2z4a6QiB1ItMqiRMgVYOrM6qbZkSvtkrK9PaB8pfWLtzw83W7HxUCs4Djj/+F5x7y9bm/Kmo7TvcIs/07ChmgKpVGN3ueFwe69vzGxCpVSgyGc6lAh538Ewsj4AKDRqYNQowfNATWvkjGVgoBc2kFJRmxQifaFAKk0QJmTplpHK8v4xsdKjtM/gl/alqpFnqIxUIm3ZA3tIBWWkVPJdzWRyrUS0LGAZKa+5h/SffenPdQCAU/sXoTRXF/f+srUpr1/aFy4jJcNAKkCyte5gcwpHQgD+ay0QfC1h5g2JMJw4KPSQMnZ7juM40XVSLVYHPLzXcbjQECaQkrHzKkH0BAVSaULamk1QjVRM9Cjt803KHG5PyoJUvx2vf4KYl0ATDLbyGdizCghw7ZOZiYHL7XcvTERto0mrAuuNmwjHt0+3xO/WF4guSxdVmGtf12a8DBZIyaWPFM/zQYHUjrp22YwtW2Hnt1GjhDLAtZctcCQkI+WT9vUv7h5IAeLrpFh9VIFB000iyNDLWJ5NED1BgVSaIJhNpFEzXiBQ2kcXyGgQ+kiFkfYZNEqolT6HvBTJ+0JnpFh/K+nHFFgfxXpIAfJdzewIOOYNCaiRUig44buXuk5qb70F2+vaoVJwOO+4ckn2ma29pNhvE07aZ5JZRqrF6hSO3bJcLTw8sOkQyftSiaVLDylGIntJ+TNSoU1mBAv0pp4CKV99lDF0NgoIqHPNsmsDkRlQIJUmCGYTCZiQJRIhkJLZJFfu2J0sIxX69+Y4DnkJDFrEYLF73ze4Rso7WUxEjVQoxz4g0LVPXhkpNjFWK7mwv2O8MAODdokzgCwbddaQEqH5c7zo1dlpNsFqpHqS9snFbIJlGEpNWowfWAwAWEeGEynFHGLRCvD3kpI6IxVofR42I1UkTtrX2EN9FEB9pIj0hgKpNMFqT1ytRSJhk1yS9kVHT9I+ACgQrMZT49xnCdEjKZH256GMJgD/dyS3HiSJNJpgsCBWSmkfz/NCIHXB6PhNJhj6LHXm6tm1T14ZKWY00afQgJP6FQAANlRTnVQqsYSQUQP+jJTUgVQk63OG2BopISMVphkvIG/nVYLoCQqk0gQmtUg/1z7veB0uT0J6XWQiHg8vODRFCqRS3ZQ31CppIu3PQ1mfA/LtI2VJwuKHvymvdN/3ttp27G/sgFalwOQR0sj6gADjmSxbVGGuiuEyUswaXy6BFJsY9ynQ4+SqQgDApkOtcLkpW5AqhOy/tqu0z1sjJbXZBJP1hbI+ZwTWSEUyPGIGQcUipH3Zdm0gMgMKpNIE/+p2ekr7AMBKFuiicARMWLTq8L936qV93XX7zE0wEcFdeGmfPGUhHfbEN9FmBgbM0EAKWDbq7OGlko49W80m/NK+9DCbYD2k+hQaMLg0B7k6FawON3bUmVM8suwlVD0q4Jf2SV0jdbDRe60NVx8FAJX5enCcd5E3Uh8rZjZRHCEj5TebkNc1nCDEQIFUmiBkpNJM2qdVKQRnsWybQMWKPSAgEJeRSpG0z3dzN4WwP29LgNyQZaQq84Nv7nK1P7ckYfGDycXMEmWkPB5esD3/9Whp3PoY2doKQbS0TyYLTUcCpH0KBSfI+8gGPXWYezCbkFraV+3LSFWFsD5n6NRKlPkyYpHkfY0WViMlQtpHGSkiDaFAKk2wpmlGiuO4rJX0xAqr9VFwgCrA6rYrBQmsRxJD6IxUYuSGNqdbmCx0zUhpZWp/nswaKamkfRsPtaCmtRM5WhUmDi2VZJ8MoUYqy64DPbn2+RvyyuN7OSxI+7wLFmN98j5qzJs6hEUrXeiMlNXhljSjeaCRBVLhM1JAgHNfhECqqYPVSIkwm6AaKSINoUAqTRBc+9IsIwX45X1kOCEOv9GEMsjmuyuCjC5FZhOhaqSY/bnV4ZbU/IH1kDJqlEKwxpCv/XloOY6UsLobqcwmPvHJ+qaMKBNWiaUiGzNSdpdbkJyGde3TSG8YEituDy+ca30KvQsWYwMyUslo/v3+usMY+/cvsWZ/U8LfK11g9/+uNVJGrQpG3/1VyqwUc+yrCuPYx+gjopeUX9oXPpDK1mbdRGZAgVSaYE1TswmAmvJGS089pBiJNHYQg3BzD1glNen8TWLbJMxKBTr2dQ0uZW82kdAaKensz11uD5b94pX1XSBRE95AsrFGitWucVz3STAjR0aufUfbbXC6eagUHHrleQOp0X3yoVZyqDfbhfMwUXg8PP719R40Wux4YMlWMrjwIdRIhWjqzJry1rdLYzjh8fCC2UQkaR8gMiMl9JEKL+3TZuG1gcgcKJBKE9LVbAIADGrvxV9uE125YnP27NgHpNa1j+f5APtz/0q7QsEJAV6bhAFeOKMJwP89ya1QuSOEPbzU+KV98U/Cf9zfhEaLAwUGNc4YVBz3/rqiF5pzy+t3SiRM1mfSqqAII9Nl1/ROpzvlzqYss1BZoIfSN16dWomRlXkAEl8nte5gsxCs7a234P31RxL6fumCOcS1llGSI63hxDGz3/o81PU2kL5F3ufDBVKdDrdQ311silQjJU/DIIIQAwVSaQKTCaWb2QQA6CgjFRWB0r5IMBmdlAGLWGxOv51911VSZjghZYAXzvoc8Gc6HC4PPDKy2Gc1Lwk1m9BLZzbB3PqmjuoFdRjL43jIRvlOT814geCMZaoNJ7rWRzGYDfr6BNdJLd5YA8Dv8PbMit2yyNSlmkgZqZJcaQ0nWH1U7wJ9WOtzht8CPXSmklmfa1UKQYIYimy8NhCZAwVSaYDbwwsrNeko7TMITXnphigGQdonMiPVkoIaKbOvrwnH+X9fRp5Belv2cM14AQTV8sjJcCK50r74zi27y43/23oUAHDB8dLL+oDsrJHqybEP8J7nzFQm1UHD4Zbg+igGc+5bn8CMlM3pFqSlz142GlVFBjRa7PjPqv0Je890wRymjxTgd+6TKiMltj4K8NdI1bZ1whHi2tvU4bc+j1TvK1d5NkGIgQKpNCBwldIQYVVHrhg05NoXDUJGqocaqUBpXzKKwAMRVkg13SVLQkZKwgAvkrRPFxBwyulGnFxpX3xB66rdjTDbXCjL1eKU/oVSDK0buiy8DjDJZTjHPsDrbGqUSZ0Uy0h1XbBghhO7j1kSlgFfsf0YzHYXKvP1OH1gMWafNwwA8J9V+3FMovqfdCViRkoIpKT5jg42iquPAryyQp1aAZ73GwIFItRHRTCaAPyLLE43T3VxRNpBgVQaYPVJhJQKrscshRwRaiNkNMmVM3anSGmfL/PjcHmSri0PZX3uH5evRkpCaV9NhIyUSulf0ZdTRioZvd+kcu1jbn3TR1UItTFSk40ZqZ6a8TJyhKa8qf1uBGlfYfB5VpSjxQBfhmLDocRkpRZv9NZDXTSmEgoFh6kjy3Fi33x0Ot14dsXuhLxnumCJsChT6uvlJJW0z280Edn6HPAuAkQynGCOfUXGyIFUoKpAbrWuBNET6Tcrz0L89VGR7bDlil5NNVLRIFbaZ9QohQAi2U15LSGszxn5ErsJ2pxuQbYSrvhZjtKQZPaRsthdMRsVuD08vtpxDABwweheko2tK9lYByFG2gfIx7nvsC/z27ew+yR6bBWzQZe+TqrBbMeqPY0AgItOrATgnaTfP304AOD99Yex+5hZ8vdNF0K1mmCUSNyU92Cj9xjoJ0LaBwTWSXUPpBp8GaniCM14geB7XTZdH4jMgAKpNCAZE7JEQtK+6PCbTUQ+PTmOE7JSLR3JNZwwR8hICTVSEgV3tRF6SDHk2NAxmdI+wB/cRkuL1QGrww2OA0b53NkSgV7j/Y2yKSPVUzNeBjMkkbKparTYnG4ca/dOfPuEWLAY28/XmDcBgdQnW2rh9vA4oU8+BpbkCI+f1K8QU0eWw8MDjy/bIfn7pgMOl0e4J3RtyAv4a6SkCKQ8Hh7Vzd6MVH8R0j4gci8pISPVQyClCFDbUCBFpBsUSKUBfvev9Ayk9D5pE2WkxMFummIaovrrpDI3IxWphxSDySDlZJ8rNNFOoGufVqUUgshY66SYs1aBQdOjS1c8CH2ksug60C7CtQ+ALGqkWI2LQaNEYQgpFstIbT7SKmmzbcAv65vpy0YFMvu8YVApOHyzqwGr9zZK+r7pQOAxEWoOwAKppg4HnHHWFx0z22BzeqBUcKjswfqcEVHa18EyUpGlfYA8VQUEIQYKpNIAISOVhkYTQEBGii6QorA7xUn7AH/QkmwL9FDNeIUxSVwjFcn6nKFVy281MxkZKQAw6eL7vtlKdkkPq8bxko01UsxNMTfEeRKIHKR9hwKsz0MtWPQvNqLIqIHD5cHWmnbJ3nfXUTO21bZDreRwfgjHyP7FRlx5aj8AwGPLdsiqxUEyYNdanVoRsi1BgUEjSLzZokisMFlfnwK96BYIomqkRAVS1EuKSE8okEoDWI2UIQ17SAEBEyiyPxeF2D5SQOqa8kYqfhbGJFlGyt8kNBw6lfxWM5OVSWaT9FgNJ9jkq9jU82QnHpjpjJx+o0QjSPvCSFIZRhmYTRwJYzTB4DguITboizd5s1GThpaGzIQBwJ/PHgyTVoVtte1YsrlGsvdOB9h5bQpTZ6dQcEINUrzyPmY00U+krA8ICKSarN3cY9m1pcjY8yJNNtZQEpkBBVJpAJPEpa+0j8wmokGs/TkA5Oml79kkBn/xc/ebuzAmieSGYjJSclvNdLg8cPhkNjkJXgBhsrGYpX1mf6+XRBJocRyvBCldaEsjs4lwPaQCYfI+qRrzuj08lmzyBkYzT+wddrtCowY3TxoEAPjHF7uyarItZP8j3P9LfU1569ulCaT6izSaAPxOqma7q1tWvDGqjFT2ZayJzIACqTTAbzZB0r5sQKxrHwAUGKTv2SQGi69BZCT7c6kzUqGszxnsJix17UasBNc1JPa8NQlNeWOU9lmSI+0LsjjOkmuB+Bqp1JtNHA6Q9oVjbJXPcKK6RZLedT/sa8Sxdjvy9GpMGlYScdtrT69CRZ4OtW02LFp9IO73ThciXWsZ7NyNtykv6yHVT4T1OUOvUQp1WoHyPo+HR3OH+GuLv0YqOxZZiMyBAqk0gEmE0lXaR6590SG2jxQgfdAiFmY2EWqVND+gt5EUzRXFZaR8gZRMbsJsQqxVKRJq4ABIIO0zM2lfYgMprUoBVnqTLYsqYhryAoHSvlRmpCJL+wBgZEUetCoFmjsc2O+bdMfDxxu92agLRvfq8XqnUytx17lDAQAvfbNPaPaa6USyPmewjFS80r7qJu8xUBVFRgoIXSfV2ukEK2cr6KGPFOBXFWTLtYHIHCiQSgOsDnYhTc+MlI76SEWFWPtzQHqrcbFEasgbOGlsj7NRbHAPqUgZKXnZn3c4kmM0AQRkpGKU9ont9RIvHMf56yAc8gh4EwnP82kl7TvUxAKp8AsWGpUCo/vkA4i/TqrD7sL/bT0KILKsL5ALT6jEcRW5MNtdeP7rvXG9f7oQqR6V4c9I2WJ+H4+HD2jGG38gxQLdfINalHEFufYR6QoFUmmAYKOcthkp77hppUkcgrRPRI2U1FbjYom0SqpSKoRMVbySw9oAS+aCCAX7cjObSGbvt1x9fBkpwbUvwRkpILuc+6wOt9Akmf1G4TBqUpuRaut0CosekaR9AHAyq5OKs5/U51uPotPpRv9iI8b4grOeUCg43D/N26T3rTXVOCBBVkzuCNfaSNK+XB2A+DJS9Wa7YH0eKfsfilC9pIT6KBHZKMB/bbBnwbWByCxkHUi5XC488MAD6N+/P/R6PQYMGIBHHnkEHo9/NZPnecyZMwcVFRXQ6/WYOHEitm3blsJRS4/fbCI9M1IGwWyCXPvEEI1rX4EvIyWV1bhYImWkAL9LWbxugoGyvnA9pIBA+3N5ZDosSez9lhtnjRSb8Ijp9RIv2VRQzjKEaqU/ExeOVPeRYhPgIqOmx2OWNeaN13CCufVdNKYy4rndlfGDijFpaAlcHh7/WLEnrjGkA5Fk1AxWoxRPjRQLSntHYX3OCJWREhz7RGa6s+naQGQWsg6knnzySSxYsADz58/Hjh078NRTT+Hpp5/G888/L2zz1FNP4ZlnnsH8+fOxbt06lJeXY/LkyTCbzSkcubQkc3U7EeipRioq/DVSIjJSvoClJelmE5Fv7kIvqTgzZYHNeCOhlWlGKhlyXFYjFYu0zx1lQXi8ZJMFeqCsr6dAwS/tS833Ihi6RKiPYpzYtwAc5514x9q3qK6tEz/sawLgDaSi5b5pw6HggOXb67FfupZWsqSnRSvAn02OJyNVHaOsDwD6FoWX9om9rsjNeZUgxCLrmfmPP/6IGTNmYPr06QCAqqoqvPvuu1i/fj0AbzZq3rx5uP/++zFz5kwAwOuvv46ysjK88847uPHGG0Pu1263w273X3Da271XYqfTCaczuSv7XWHvHzgOi2+CpFVyKR9fLKg5r7yl0+lOy/EnG5vTe+NUcXyP35dR7Z2gtVqdIY+dRGH2HZM6Zej3Y5P7JostrvEcarIAACrytBH3w3pVW+2pP4cBoM3qvb4Y1MqEj8fgm4C0d0b/2Rstdnh4gOMAkybx1xedb3HA0mnvdrzK4XeTkmZfvYpJp+rxs2mV3mukJUXH78FG73nWO0/X4/sb1MDgkhzsrrfgp30NmDKiLOr3+2j9YfC8VyZYblJH/Zn7F+pwyYmVeH9DDb6tU+DGDDt2Amnz1b/qVYqw31Oh3nsBrDfb4HA4osrwMfbVexef+xb0fAx0pZfJu3BW22qD1WaHWqlAfbv3+C8w9Hz8A4BG6R1zsq7hmXrdIaRD7LEh60DqjDPOwIIFC7B7924MGTIEW7Zswffff4958+YBAA4cOICjR49iypQpwmu0Wi0mTJiAH374IWwg9fjjj2Pu3LndHl++fDkMBvG2n4lkxYoVwv/X1CsBcNj5y2aoazalblAx0uEEABWcbh6fLl2GBJuYpT11x7y/97ZftkBduznitl7Vhwp2lweffb4CGmXwsZMo2q3eMa778TvsC7Hg2NmqAKDAj+vjO2bX7fHux3z0IJYtC295fOgwB0CJ3fsPYtmy/TG/n1Ssq/OOp725HsuWLUvoe+1q8b7X4WNNUb9XTQcAqGBU8lj+xeeJGF4QnWbvcbP6p/Xo2Btsn52M4zaZbG32/i68vaPH3+WoFQBUaLF0Jvx4CcX3+73nmb2lFsuWHelx+xJOgd1Q4MOVm+A6GF0GgeeBt7Z4j4OBisaYP2+5DQBU2GfmsHz5CsQQO6QF+6q9v0313p1YZtkRchuvGtx7j/3wk/+DMbK3SUh+2uV9n45jka+1ofDwgJpTwukB3v3f5yjWAZv3effXVCNufzW+z7lj9z4scyZPsplp1x1COqxWa88bQeaB1D333IO2tjYMGzYMSqUSbrcbjz76KH77298CAI4e9Tr+lJUFr4iVlZWhuro67H7vu+8+3HHHHcK/29vb0adPH0yZMgW5ubkJ+CTicTqdWLFiBSZPngy12ns1fH7vasDSgbPGn4LTBhSldHyxYHd58Nf1XwIAJpw9uceeKtnOwsNrAHM7Tj1lLH41NHJvFZ7ncf+GL+Hy8Bg7/iz8/NOqoGMnEdhdHrh+9P6eF5w3OaS18xrXdmxqOoLK/kMw7VcDY36v119eC6AVZ586BlNHlofd7sh3B/D5kT0oq+iNadNGxvx+UnFw5X7g4F4MquqDadOOS+h7lVW34D8710GhNWDatDOjeu33e5uAnzegotCEadPGJ2iEfj5s2IB95iaMGDUa006oABD6mpcJ2DfVAru2ok95MaZNOynitnVtNjy+ZRWcvALTpp2bpBH6WfzGRuBYIyaOHYlpY3t20HNursXqj7aiWVmAadPGRfVe22rbcXTNGmhVCsz+7STBdTJa7E43Xtr5NcxOYNjYMzCwLLX37kTx3rH1QHMzxp10AqaN7hV2u0d+/hptnS6ccOpZGFyWE/X7vLj/BwAWTD1zLCYOiXzfCcX8fauxr6EDA0ePw+kDi7D0nc1AfT1OHTMS007p0+Pr93+zD1/W7kN5776YNm1E1O8fLZl63SGkg6nVekLWgdR7772Ht956C++88w6OO+44bN68GbfddhsqKipwzTXXCNt1TWPzPB+5MF2rhVbbfRldrVbL5oQKHEunTzOca9DJZnzRoFLxUCo4uD08XFCk5WdIJg6Xd6XeqNWI+q7yDWo0WhywOL2vS/RxbHb467HyjbqQfZIKfbr4drs7rrHU+Fz7qkpMEfdj1Hqfc7h5WRxfNrf3tzDpxP2G8VBo8jpsmW2uqN+r1VfIXpKrTcr3ZvDVAjk86PZ+crr+SkGH77qdZ+j5GMj3zXudbh4eTiHKaEZKjrDzrDjyecYYN9A70d5W2w4XrxBq38Twv5+9C6CTR5Sh0BS7AkStVmNUZR42HmrFllozhvVOv0VGMXT4aovzDZHP0VKTDm2dFrTYor/m8jyPal9906CyvJjOw35FRuxr6EBtmwNqtRpNHd77RFmeXtT+jLrUXMMz7bpDSIfY40LWIqu7774b9957Ly6//HKMGjUKV111FW6//XY8/vjjAIDycu8KNctMMerr67tlqdKZjjTvIxXYP4Z6SfWM4Nonwv4c8PdtSpZzH3OR0quVYZvN5uvjdxO0u9w41t5zDykgsCGvPI6vZJpNmASzCRd4nu9h62AE6/MkGE0AAfbnWXAdaO8U14wX8NufA8k3nOB5XjB1idRDKpDeBXqU5Wrh8vDYcqRV9Hs53R58srkWAHCxyN5RkTipbz4AYEO1+DGkG2Zm7BPBbALwG07E0kvqWHvs1ueMrs59LJAS25+O+kgR6YqsAymr1QqFIniISqVSsD/v378/ysvLgzSuDocD3377LcaPT7xMJVl0pHkfKcDv1kUW6D3DggExrn0AkM+a8iapl5TZ7n2fSC5Sgv15HG6Cta3eCUFPPaQAOdqf+87ZJNqfuz181NbBfuvz5ARS2TRZEtuMFwCUCv9iU7It0BvMdthdHig4oCJf3CSa4ziMrfLZoEfRmHfV7gY0dThQnKPBmYOLYxpvIEIgdag17n3JFYuIPlKA3wI9Fuc+1og3FutzRtdeUk2sjxQFUkSGI+tA6oILLsCjjz6Kzz77DAcPHsTHH3+MZ555BhdddBEA78X8tttuw2OPPYaPP/4YW7duxaxZs2AwGHDFFVekePTS4HB54PTJhIxpHEgZyAJdNNH0kQL8TXmTnZGK1NdEaBQcx5iYJXNlfuQeUkB2N+Q1aJRQKrzfD8uCiKXRN+kqTkIzXiC7esUwO/qemvEy2LGS7Ka8LIPQKy+6SfTYfr7GvFH0k1q8qQYA8OvRlWGz2dEwxhdI7WvoQHNHcltAJAt/q4nIAXmprylvfXsMgVRj7NbnjMCMlM3pFsZdJLI/XTZdG4jMQtYz8+effx4PPvggbr75ZtTX16OiogI33ngjHnroIWGb2bNno7OzEzfffDNaWlowbtw4LF++HCaTKYUjl47ADI4hTaV9QICkhy6SPeIPpKLMSHU6EX2JcfSI6WvCxhRPH6nAZrw9IaxmuuRxfDF5VjKkfRzHwaRTodXqRLvNifI8nejXNkTZ6yVe/D3l5JE5TCSsQbIYaR/gPVYaLckPpA77FizEyvoYJ/syUhuqW+Dx8FAoIi92tHU6sWL7MQDAzBOj7x0VikKjBmV6Hsc6OWyobsHkGKzY5Yzbwwty+J4yUuwcjqUp78Em7zFQVRR7zVpgIMVkfRqlIuKCWyCsNYJcVAUEIRZZB1Imkwnz5s0T7M5DwXEc5syZgzlz5iRtXMmE3VQ1KkXMKXc54Jf2yWOiK2fsvmBAbI1UviCjcyL+qoOeEQKpSBkpg3QZqZ7qowD5SvuSlUXO1anRanUK/b3E0pDkjFQ2LagIGSmRrnSpykgdbvbVR4k4zwIZVm6CUaOE2ebC7nozhpVHds1b9ksdHC4PhpaZcFyFdA57A0zeQGp9dXPGBVIs+w8Axh4WZUpz45D2sYxUcewZKRaIt3U6sb/B25esKEcjuqdVNjXrJjILWQdShD/wiDRpTQdI2icOt4cXpJwxSfvEqSjiwmwTEUjp/TVSYlarQxFLRsoum4xUz9+RlDD5WNTSPqFGKgkHDvyBVDZMltp8v4XYdg8skEp2jRSraWE1LmJRKRUY07cA3+9txLqDLd0CqZYOBzYeasGG6hasr27BlsOtAICLTqyMqWFsOAaYePxYD6w/KF5imC6welSNqmcnx3jMJliNVDzSPoNGheIcLRotdmzy1ayJlfUBya2ROtRkxY66VrREH3MSRDfSe3aeBfiNJtJX1gcAerX3UKOMVGQcLn9GRby0LyD7k4T5sBhpH5s8enjA4nCJXpUPxB9I9TzB89dIySMjlcwaKcBfP9EeRUbK7eHR3OGT9iWrRiqLFlSil/alKJDyZX77RhlIAcDYKl8gdaAZpw0oxIZqf+C0v6Gj2/aV+XpJ3PoCGZDrXXj65UgbbE63MCHPBPz1UT1fR0pNsUn7eJ5HNZP2xZGRAoC+hXpfIOUNaqMxsfEvsiT+Gr58+1H8/bMdOKFQgd8l/N2ITIcCKZnDai3S2WgCCMhIZcFKdDwEZlTEBlJ5hgCr8byEDCsIMWYTOrUSerUSnU432qzOGAMpJu0Tk5Fi0j55HF+WJAdSQkbKJn4S3tzhgIcHOA4oNCQ3I5UN1wG/tC9as4nkfjeCtC/KGikAGNvPWyf1yZZafLKlttvzA0uMOKlfge+vEAOKjTFlpyNRpPVmVBstDvxS0ybUbmUCYh37AKDE5K2NNNtcUQWU9WY7Op3uuKzPGX0LDdh4qBWbfNnHIqP4QIpdw5Nxbdh9zAwAKI+9JIwgBNJ7dp4FsB5SPemj5Y6/fwzZn0eCGU0oFZxoV6uCgBqpZCAmIwV4M2WdbW60Wp3oE+XcJriHVBTSPhlkpHieF5poJkvaZ/IFqu1R1KQ1+owmCg0aSRzUxJAtgZTbwwsSWLHSPmZMksyMlNPtQV1bbDVSgNc1L9/grc/TqRUY3TtfCJzG9C1AoTHxATrHeW3Qv9hej3UHmzMqkDJHIRHO1amgUSngcHnQYLaLlmoeaIzf+pzBsprsXhSNZFibROfVPfXeGq5yfXR99wgiFBRIyZxkS4QSBZlNiIMFAmKzUYC/+W08xg7R4K+RijxBzNOrUddmQ2tn9LbErIeUXq0UNRlj35fD7YHbwwt24KnA7vKOAUjeAgjL+JmjyEgJRhNJcuwDAL1GXpnDRBFoEiDabEITu7Rv8+FWfLjhMGafNyyq7G9tayc8vPf8iUXeadSq8Nmfz0SzxYFhvUwpM0Q6qV8Bvthen3F1UhYR9agMjuNQatLiSEsn6qMIpKp99VH94qiPYnR9z2hqpNgcwe7yxFxXKwae57H3mC+QMlAgRcRP+trAZQlsZTvda6QMFEiJQnDsiyaQMiS5j5SIhryAvzYklkxZoKxPTGF6oIwl1YYTga5rSXPtE6R90WekklUfBQT0isnw6wD7HfRqJTQiz+V4XPue+3I33lpzCAu/OxDV65isT+x5ForKfD1G9c5Lqaus0JjXZ8WeKQg1UiLlof6mvOINJw40eq+1/eOwPmd0rbOLTtoXeA1PnLKgrs0Gs90FlYJDifhOEQQRFgqkZI41QzJSBrI2FUW0zXgBIM8XSNmcHiRjfiq2ADoeC/RoHPuA4Jtwqg0nAg1iErWq2pV4pH3JcuwDskfaxxY1xDbjBfyT5VgyUux8YX2axBKP0YScGN7LBL1aibZOJ/b6rLczgWgyUkCgc594wwlmfS5FRqpvl2AsmrYKuoAFh0TOE5isr1+RAVGsVxJEWOgwkjkdSe5HkyjYRJcyUpGJtocU4A1omJStMxmBlMibO5Mctlmjl/bVROHYB3hrytRK73eQ6mA92UYTgN/QIBppn9/6PJnSvuxYUInWsQ+Iz2yirs2bgdhe1y7YmYvhUIzW53JDrVRgjC8rte5gc2oHIyFmISMl7jgq9RlOiO0lZXO6sXpvIwBI0turzKSDJiAzWRRFjZxKqfBfwxOoKtjjM5oYXJqM9vVENkCBlMwRpH1pbjZh0JD9uRhiqZHiOE7o29SRBHWfOQqzCSB+aZ9YmAV6ImUhYmBOm8ns/cYMDaKR9rHJVjKlffosk/ZFU68Uax+pdpszSA4YTVZK6CEVg9GE3BjbrwAAsCGD6qSice0DAizQ28UFUiu2H4PZ7kJlvl4Skw6FgkPvAPfHaBdp2DU8kdcH5tg3qCT+DBxBABRIyR6rz+UuJ80zUn77c3Lti0Qs0j7AL++zJuHrFZuRypNE2id+gqeVSbPXVDhtmmLKSKXAbCJA2sfzmVPL0hW/tE98ICW49kXpbFrXGlwPE1Ug1RK79bncGOsLBNZVZ05GSqhHjVraJ65GavHGIwCAi8ZUSiZDDpSJRuvaqBMy1olbDGPSPspIEVJBgZTMYTIPQ5rXSOmzqBFnPMRiNgHAn5FyJb4mR2wBtOAmGENGikmOKqPJSMmkl1Qq5Li5MdRICa59yTSb8F0HPLzXYTFTae/0HgNRSfs0sZlN1Prsy5mMau3BZrR0iJPTHskQaR/gtWJXcF4DjWPt4s0W5EzUZhO5PrMJS88ZqXqzDav2eGV9F51YGeMIu8Oym8yOPRoS3Usq0LFvUCllpAhpoEBK5liFPhLpLe3TU42UKFhGSmwzRUa+r6FqojNSbg8v/IY91kgJboLR1Ui1dTqFYun+xeJvdiz4lIvZRFKlfbropX2Ca18KMlIAYHNkcCAVZTNeIKBGKoqsIuDPSJ3QJx/Dyk1we3h8vbO+x9d12F1o8gVcmRBImXRqDCv31vlkig26OVqziRxvjZQYad8nm2vh9vAY0zcfA0uky86wjFQsCzSCPDtBgdTRdr9jX5UE5hoEAVAgJXssggNYemek/NI+CqQiEUuNFOAPWhIdSAWulvdYIxWj/fneel/X+VxdVCv6LPhMZKGyGFKRRWbucDanBw4RNWJuD49m3yS62JQ81z61UgEVM0bJ4GtBbNK+2GqkWEPdXvk6TBlRBgBYvv1oj69jjn15enVUtVxy5uQqb51UphhORBtIsYxUU4dD6GUXjo821gAAZp7YO44RdmdYLxMAoF8MwblgRpOga/huXzaqqtgYdbaMIMJBR5LMYav/yay3SATUkFccsbj2AX4ZXaKlfSyQ0igVPdZxxVojxW52g8uiWyVlgVSiVjPF0pGCLHLgRMssIivV3OGAhwc4Dig0JC+QArLDAj0e174OhzuqXkiseXWvPD2mHFcOAFi1u7FHiSvrIZUJ9VEMVie1PkPqpCwijX0YRUYNOC54oSQU22vbsaOuHRqlAhcc30uSsTLOGFSMl353Ih69aFTUr/WbTSQmW02OfUQioEBK5giF62mfkfKtmFMgFZFYzSaSlpGKwkWKyQ3brM6ojAV2HfXe7IaWmaIam79GSh7SvmSesyqlAkbfYkW7CGkYq48qMmqgSnIjVV0W1Euy3yCaTE9gMGyNIshkGamKfB2Oq8hFRZ4OnU43vvfVv4Qjkxz7GGN9Gantte0xNTaWG+x6a9KKO45USoVQKxfJcIKZTJw9vFS4TksFx3GYOqoXKvKjD9C1Ca5z3SMs0kV3byGISFAgJXM6MqQhr1AjleFuXfHiD6TkKu0T7yLFpH0Otyeq7MMen7RvSLSBlGB/nmppX2rOWSYjE5ORSoVjHyMbMlKxNOTVqRVgxmnRyPtYD6leeXpwHCdkpXqS92VKM95AeuXpUZmvh4cHNh9qTfVw4ibajBQAlPTQS8rl9mDJ5loA0sv64kWfYHn2buHeQhkpQjookJI5VlZvockMaZ/bw2e0W1e8MFla9IFUcswmotHsGzRKocFiNHVS8Ur75JKRSqbZBBDo3NfzQSCHQCrV7oqJhEn7oslIcRwX0JRX3InM8zxqW30ZqTxvBoDVSX25oz5inQzLSPXOoEAKyJw6KY+H9wdSUVxLhF5SYQKp7/Y2otFiR6FRgwlDSuIfqIToEthnLtCxb3ApZaQI6aBASsbwPC9I+5I9KZOawEAwkyU98SJkpKJ17UuS/Xk0K6QcxyEvSgv0VqtDWEmNVn6RaFmIWJjZRLIzUv5eUj1/14L1eU5y66OAbJH2RW82AURvONFidQrXjLI87wT65P6FyNWp0NzhwIbq8O51Qo1UFC0G0oGTfHVSkT57OhDYT0ys/Tng7yUVLiP10QavrO/XoytkZ7jAFlkS0VSdOfYpFVxUbrAE0RPyOouIIGxOD9iCYrr3kVIrFUJ2IpMlPfEie2mfoNkXdzzmC4YT4izQWTaqMl8f9eIBqyuTS0Yq2QYxbNIuxgJdsD5PYg8phj7BvWLkQFsMZhMAos5IsWxUcY5WOP7VSgXOHu5z79sWWt7H87wg7csE6/NAWEZq46EWuNJY/cCOAZWCi+p+UBohkGrrdGK5r2HzxTKT9QEBfaQSsMgiOPYVGWQXQBLpDR1NMiZwRcoQZYZCjuiol1SPxN6QNznSvmg1+yxT1iYyI7WbuSrFoGEXzCZSXCOVqiwyW7UWJ+3zWZ9TjZTk2F1uIZiP1lZccO6zi/tuWH1URb4u6HEm71ux41jImtTmDgesDjc4zrtokUkMKTXBpFPB6nBjR5051cOJGWHRSqcCx4lXGpQI0r7uZhP/90sdHC4PBpfmYGRlrjQDlRBdAmW/zLEv2tpbgugJCqRkTGB9lEKRWMlWMjBkgaQnXvx9pKILnJnVuMPDJdT+O9q+JvlRWqDHc7NL5E04GlJmNqFLE7MJjTx+p0TBzhGOi06SBfgzvWKlfUIPqbzgQOqsISXQqBSobrIKK/GBHG7xvq7MpIu6+bfcUSg4nNTPm5VKZxt0cwxGEwBQagrflPcjn1vfzBN7RxWcJYtE9gIkxz4iUVAgJWMypRkvg30OykiFx18jFd2pmatTQekLtlui7NsUDdFmpKKtkRKMJmLo86GTmbQv6WYTPoe4aOzPUyHtS2RBuRxgsr4crSrqBTAmBxUv7fM79gXvR4UzBxUDCC3vO8SszzOoh1QgJ7N+UgfTt05KaDUh0vqcwZryNliCA6nqpg6sO9gCjgMuGlMpzSAlxn9tkP4aztxgqYcUITWi7/QzZ84UvdPFixfHNBgiGKsgEcqMFcNMl/RIQazSPo7j0CtPhyMtnahusqJPUWJW3RJdIxWr9Tngl/alviFvqswmmGufzDNSMnFXTBSxOPYxjDFmpLpK+wBg8ogyfLWzHsu3H8Ofzh4c9Fwm9pAKZGxARorneVlmX3qCBdNir7WMEt85Xd9uD/rsH2+qAeBtmFue1/14kQOJkmfzPC9kpEjaR0iN6NlaXl6e8Jebm4uvvvoK69evF57fsGEDvvrqK+Tl5SVkoNlIpmWk9IK0L/0bJSaKWBvyAsCgEq8T0d767lIeqYjWjjeaGqnmDodQuzMoloxUAh2fxBLotJl0swkWSPWQkXJ7eDR3+GqkTMl37cv0BRX2/UdrNAFE79pXFyYjBQBnDy8DxwG/1LQJphSMIy2ZaX3OGN0nH2olh2Ptdhxp6ez5BTKESXSjlvb5MlKdTjc6fFlfnuexeKM3kJp5ojyzUUCAa5/E14ZAx76q4sw85onUITqQevXVV4W/srIyXHrppThw4AAWL16MxYsXY//+/bj88stRXFycyPFmFUwCl+wJWaJgNVIk7QuPv0YqetUtkyzsbeiQdEyB+HX74iaJQkZKRCDFjCZ6F+hjyuboZGB/bnW4wWr7Uyfti/xdN3XY4eEBBQcUGalGSmpiacbLYMe9Way0L0JGqsSkxUl9vZmZL3ccC3qOWZ9nUjPeQHRqJUZWehd107WfVLT1qAyDRiW8pr7dG2ivr27BoWYrjBolzvU1bJYjugQtsuwJcOyLZZGSICIRU43UokWLcNddd0Gp9B+QSqUSd9xxBxYtWiTZ4LKdjhQVrScKPbn29Ygg7YuyRgrwB1J7EpmRsvnrP8SQ52sULEbaF6+rUiILlcXCslEKzn+8JwuTYDYReRLeaPb+FoVGjVBXl0wyvUYqHmlfNBkpj4fHsfbwGSkAmHIcs0HvEkgx6/MM6yEViFAnlab9pKKtRw2kpEtT3sU+k4mpo3rJWuGSqKbqu8mxj0ggMQVSLpcLO3bs6Pb4jh074PFkpu49FQiBlIwvfNFgyPCVaCmIR9qXlECK6fajtD8Xl5FirkqxFQOzLF4qa2+E+ihNdJbFUpAr2J9H/q5TWR8FZIO0L7YeUgBg9F0jxdifN1rscLp5KDh/76CuTB7hzT6s2d8kyGvdHh41PrlbpvWQCkRw7kvTjFS09aiBBDbltTndWLqlDoC8ZX1A4vpIMbk7GU0QiSCmGfq1116L6667Dnv37sWpp54KAFizZg2eeOIJXHvttZIOMJth+mYWgKQ7epL29QgLMmOR9g0o8U6KmjucaLLYUZSAibIlRvvzNhEGCGzVcGiMq4ZaGdifs8UPQwrkuILZRA/SvlQ69gEBtZIZGkj5pX2xm02Ice2r9fWQKsvVQaUMfb3oX2zE4NIc7Km34Jtd9bhwTCXq2jrh8vBQKzmU5crTdEAKmOHE7mMWtFodyDckvx4wHqKtRw0kMCO1YvsxmO0uVObrcWr/IknHKDWJUhX4+xNSRoqQnpgCqX/84x8oLy/Hs88+i7o670pHr169MHv2bNx5552SDjCbsToyTdqXHPtznuex8PsDGFGRi/ED06tmL56MlEGjQpGWR5Odw556S0ICqWh7m+SLtD/neT5u+YXf/jx1E/RU9ZAC/DU5FrsLHg8f1npbLhmpTM1Ms4bIiZb21bWG7iHVlSnHlWFPvQUrth/DhWMqhfqo3gWGlEg7k0VRjhYDSozY39CBjYda8KthZakeUlTE2kcK8Gco6802fL+nAYDX8lzu/Sj9ZhPSqQoCHftiVTsQRCRikvYpFArMnj0bNTU1aG1tRWtrK2pqajB79uyguikiPvw2ypnxnRqS5Nq35Ugb/v7ZDtz01kah5ihdiLWPFKPc4HU6YPVGUsLzfNSWvKxRcKfTHXHi3GhxoMXqBMcBA0tiu9n5zSZSKe1LTQ8pwD9x53nAEuEc8wdSqVmhT5R8Ry74pX2xm01Ek5HqlR+5zmmKT963clc9bE63UB/VO4ProxgsK7UuDftJRZv9D4Q15d1e245VexoBABfJXNYHJMZs4li7XXDs619slGy/BMGI+26fm5srxTiIEGSc2USSJD1HfROMtk4nvtlZj/NG9kro+0mJPQ5pHwCU64FtLf56IykJcqQTuUpq0qqg4AAP763d0YUxYGCBX99Cg3CcRIsc7M8tKaxr1KmV0CgVcLg9aO90hs2IMGlfqjJSiXLmkgvtEkj7OkQsNrGMVEUPGalRlXkoz9XhaLsNP+5rwhGhGW/m1kcxxlYV4v31R9KyTiraetRAmLTvO18QNaZvfswLVMkkEc6rTOkQl2OfI4ITLqcE1DqR2yoAtT7Gba0A+HAbAxpDbNs6OwE+wj1TY4xxWxvAR/gdI22rSa+AN6a7/bFjx3DXXXfhq6++Qn19PXg++AdzuzPzBplsBPvzDDGbSJZrX6vV7xD30caa9Aqk4pD2AUAvX0ZqdwIyUuzGHo0jnULBIU+vRovVidZOJ0rD1GQIGvbS2DXsugT1IImGVDXjZeTqVWi0OCI697FeXSmrkcqWQCouaV/P301dW2THPoZCwWHyiDK8uaYay7cfFTKBmdqMNxDm3LflSBvsLndaWV8LZhMxHEddzUdmnthbkjElmkDZr1SNlPcIRhNx1Ec9VhH+ucFTgN994P/304MApzX0tv3OAK79zP/veaMAa1PobSvGAH9Y6f/3C+OAtkOhty0ZBtzyk//fL08CGnaG3javL3D7L/5/vzoVqN0UeltDETB7v//fb10CVH8felu1Abi/zv/v968C9iwPvS0AzGnz///HfwC2/y/0c2lATHf7WbNm4dChQ3jwwQfRq1evtOwang74G/Kmz8U/En5pX2InUM0BgdTKXfVo7nCg0Cj/QmOX2wOXxxsIxZ6R8kn7EuDcF9jXJJpzPt+g8QZSEeqkdtezrvOxr5oKq5mptD8XpH2pOWdzdWo0WhwRnftSXiPF3DszVtrna8hriCUj5f1uxEn7wveQ6sqU47yB1Irt9ehT6A282H8zmaoiA4qMGjR1OLC1pg0n9StM9ZBEE4/ZBGvKCwAapQIXHJ8ei4nMMMjDAw63R5LA199WQ/4ZOSI9iSmQ+v777/Hdd9/hhBNOkHg4RCDMbCIV9RaJIFmufS0d/kDK6eax9OdaXH1aVULfUwocbn/KPNYaqTI9wHFAc4dDcuc+v9QkuglinmCBHr6XVLw9pAB/Fs/p5uH28CkppE+l2QTglwFFzkjJw2yCMlLdYdd6h8sDp9sDdRg3PgCoaxWXkQKAcf2LYNKq0Gixo6nD+/tnajPeQDiOw9iqAnyx7RjWHWxJq0DKzHr2xSLtCzi3zx5emjaOhYFKB5tTmkBKEse+v9aGf47rMsa790bYtsv5fNsvobcLte0tPyGiXC+QG74Rv+21/xdZrhfIlR+K3/bSNyNL+wK56D/AhS+J21aGxHS379OnTzc5HyE9Fp+8w5AhgRRrBJjoCVSLL/PB6gIWb6xJi0Aq0KlIE2ECFQmNEuidr8fhlk7sPmbBaVIGUjEWPzML9NYwWRKvY1/8rkq6gODT5nSnJJhJpdkE4K/LCWeB7nJ70NSRWmlfJtdI8TwfYH8eu9kE4D2Wwk2AXW4P6s3MbKLnjJRGpcCkYaX4ZEutUOeYDdI+wCvv+2LbMaw/2AJMSPVoxBGLsU8gBQYN1EoOTjefNrI+AFArOaGm1uZ0x9SLLRCe5/3SvngyUtHU7CRs2yjO12i2VUeRmY5q2yhaK0SzrQyJabY2b9483HvvvTh48KDEwyECEezPM0TaJ6xEJykjdeWpfaHggM2HW7GvIXFNaqWC1UepFFzYvjBi8DfmlbZOymKPbYWUNeVtCyPtazDb0dbphCIOxz7Ab38OpM5auyPFLQtMPTTlbbY6wPPeOrdUyV0FaZ/TA48nsxbkOp1uQZ4byyRQrVQIst5I8r5jZjs8vHfiWWwUFxBPOc5v/52jVQkLHJnOmL75AIDttelTd2F1uOGJ0tgnEIWCw11ThuKKcX0xcWiJxKNLHBzH+XtJSXANP9Zuh9lGjn1EYonpbn/ZZZfBarVi4MCBMBgMUKuDL8jNzennkCNHUl24LjWCtM+ZWPtzViM1uMyEs4aUYOWuBizZVIM7pwxN6PvGC7Nqj7U+ijGo1IivdzVIbjhhjjkj5esl1Rla2seyUf2KjGFd/cSgUHCCa50tRc59llSbTfjkZOGkfY1m729QaNSkrIdQoHzH7vJAlUEltqyHlErBiTZk6UqOVgW7yxHRcII59pXn6UT3BpowpEQ4P3oX6LOmtrncJ31ssNglMzBINLEY+3TlxgkDpRxS0tCrlbA63JK0sWD3wH7xOPYRRA/EdLefN2+exMMgQtGRQivlRJAsswmWkSo0anDRmEqs3NWAjzfV4PZzhsi6IaG/h1R8F3whIyWxBbolxgaR/hqp0FkSv2Nf/MXAWrV3opgq576Um030IO1rSHF9FICgYLnT6YZJI99zMlraAqzPY52wG7UqNHU4ImakakU69gVi0qkxflARVu5qyArrcwbrl+Z0e2WX6VAvFKuxTyYgpfSXyfqGxOPYRxA9ENMM/ZprrpF6HEQX3B5euJAYMq4hb3JqpAoMaoysyEOOVoUjLZ1Yd7AZ4wYUJfS944HVSMWbkfJL+yQOpGyxafZ7qpFiEsR4jCYYOrUSZpsrZU15U242oY1sNtHo6yGVqvooAFAqOGhUCjhcHl8glRkLRUBgM97YZXNimvKK7SHVlatP64dVuxvwq2GlMY8v3dCqlMjTq9HW6USD2Z4WgVSsxj6ZgFbCXlLk2Eckg/hmbAA6OzvR3t4e9EfET+BqTMa49rE+Ur4eEYnA5fYIq8IFBg30GiWmjiwHAHy8qSYh7ykVUkn7BhQbBec+5tAmBbHa8bJAKlyNFJP2DSmXIpBKrQV6qpto95SRSrVjHyNZ9ZLJxu/YF/vvz7KZHZECKZaRyo/OwvxXw8qw6+9T8dtT+sY8vnSELRw0SHg9TCSxGvtkAnoJa6TYYuIgCRbpCCIcMc3YOjo6cOutt6K0tBQ5OTkoKCgI+iPipyNAIx3vxFousBopnvfL2KSGZT04zr8qzFyLPvu5LmUmBGKItxkvQ69RCtbGUtZJmWOU9uXrw9dIeR37pFs1ZN9dyswmUu7ax8wmQk/CG2SQkQKknSzJiUBpX6yIyUjVxpiRAhDRUj1TYXbg7PiXO7Ea+2QCUplNSH1vIYhwxHRFnT17Nr7++mu8+OKL0Gq1eOWVVzB37lxUVFTgjTfekHqMWQnrtWTMII20IUDCk6heUqxXUZ5eLTjfjetfiMp8Pcx2F77ccSwh7ysFLCOli7GHVCCJqJOKdZWUNSYNVSMltasS++7sKZL2dbDzNkVyNZOWmU30lJFKrbyJLapkmgV6u4SBlKiMVBQ1UtlMsSm9AqlYjX0yAf8iS3zXcHLsI5JFTDO2Tz/9FC+++CIuueQSqFQqnHnmmXjggQfw2GOP4e2335Z6jFmJ4NiXQfUDrDYCSNwEqrnDL+tjKBQcLhxTAQD4eKN85X3+Gqn4a+JY80EpLdD9un3p7M93+VYMqyRyVdLJJCNlTLnZRJgaKYt3oSHV0j5dpkr7fN97LM14GTkaMYGUNyMlpocUEZCRShdpX4zX2kyALYbFO0dg9z5y7CMSTUyBVHNzM/r37w8AyM3NFezOzzjjDKxatUq60WUxrB9NphhNMPy1EYmxQG/2OfYVdOmRctEYr7xv5e4GSeuGpMTv2hd/RopJGXYnJCMV3SSRFXeb7S443cGrjP5iYGk07IIsJAU1Uh4PH5RJTgU99ZFiK/KpDqT0MUyWjrRYBemcXImnGS/DL+0L/d3YXW4hIK6gjJQoStIsIyUY+2RhIKWVSNon1N6SYx+RYGKasQ0YMEBoxjtixAi8//77ALyZqvz8fKnGltWwCVmmpfaZc1+ipH0tVr/1eSCDSnNwfO88uD08Pt1Sm5D3jhepzCYAYLDv5rHnmFkyY49Ya6QCC++7TvAF63PJAinm+JR8aV9HwOJA6mqk/H2kQv3ubBEh5TVSmugmS/VmG87+57f43StrEjmsuGHHdzyufT2ZTRz1yfp0akXWNNWNF3a8swBU7sRq7JMJSCXt21vP7i1UH0UklphmbNdeey22bNkCALjvvvuEWqnbb78dd999t6QDzFbYTZQFHpmCPkmBVCiL25ljKgEAi2Uq75PKbAIABpbkgOO8VvBSTR6EAugob+4qpUJYWe1qgS6sGkp0s2OrmanoI8XkuEoFlzKDGBa0OtyeboYuLrdHaFad+oxUdNK+LYfbYHd5sFdiS3+pYW6J8Uj7eqqRqm31BlIVednTVDde0i0jJSxaRZn9zwSkkvaxe4tUi3QEEY6Yljtuv/124f8nTZqEnTt3Yv369Rg4cCBGjx4t2eCyGWuKi9YThSHBReaBzXi7csHoCvz9sx34paYNe+vNGCSzlL9UfaQAv3NfdZMVe+rNkmQg4pGb5BvUMNtcQYYTPM8LE2PJpH2sRipBrpCREHpIaZQpm+AaNSpwnNcZs93mDGp+22x1gOe9TqChzo9kEm3TTZa5tDk9cLg8Qq2l3EiGax/VR0UPM1dJm0DKFlv2PxNg1/B4FsMCHfukaPROEJGQ5G7Ut29fzJw5k4IoCelIca1Fokh0/5hQZhOMohwtJg4tASDPrJQg7ZOgRgoIlPdJs4rPMi6xyE2YBXpbgAV6bZsNFrsLKgWHqiJpXJV0EjZzjJZUW58DXmMV1pS3qwU6m0QWGrVQKlKbydDHGEgB4R0J5QD7zuOT9vkyUmHqSMmxL3rYQlJzhx1uT2J6GEqJxXeMR9v8PBOIVvYbinqz37FvQAk59hGJJeazdO3atVi5ciXq6+vh8QSv/j7zzDNxDyzbSbX7V6LQ+zJsibY/LzSGnshcNKY3vtxRjyWbanDXlKFQpHhCGYiU0j7AK5f7cscxSXpJ2V1uOHxGEbGskgpNeQOkfWxc/YuNkmUY/H2kUlAjleJmvIxcvRrtNle3prx+x77UZqOAgMmSyOvArqP+Y7jd5kKRBNLElg4HdtS147SBRZJlEP3Svnga8kY2m4inh1S2UmTUQsEBHh5o6rCj1CTv784SYz1qJhBttjoU7N5Cjn1EMojpLH3sscfwwAMPYOjQoSgrKwu6CZFmWxpYoGHINGlfol37ItRIAcDZw0th0qlQ22bDmgNNGD+wOCHjiAV/ICVNUMHkclJkpCwBdtqxyE3ZCn2gtE9qxz4gtRkpi0wCKZNODaBTkAcxGmXSjBeILiPlcnuwv6FD+LdUGakHlmzFZ7/U4Z0bxkl2HZBS2heuRkrISOVTRkosSgWHQqMWjRY7Gs0O2QdS2dxHSieB2QS755Gsj0gGMZ2lzz33HBYtWoRZs2ZJPByCkWob5USRyhopwHuRPv/4Xnh37WEs3lgjr0DKKZ1rH+B1KgSA3fVe5754FjkC639ikYXlh2jK6y8Glu5mx27C9hTYnzMpVqonP7lhLNBZD52SFBtNANGtOlc3W4VsKNBdshgr1c3e4OxIS6ck+/N4eOE8kUTaF9ZswlcjRRmpqCgxeQOpdOglld0ZqfjNJlgPKSkX6QgiHDHN2BQKBU4//XSpx0IE0BEwcc0kdAl27fP3kQovX5p5oren1P/9UierhqD+PlLS/OaDSnOg4LzBS7zOffEWP/trpJKVkUqF2QRb/EjtOWvSsaa8XaR9rIeUHDJSbEHF0fPvtPtosDRVqowUC8giNb6NBrPdBeY4H0//H3b8WMI0VWYZqQrKSEVFOhlOCA15M2whVQxSNFUnxz4imcQUSN1+++144YUXpB4LEUCmmk0YEmg24XJ70O6bfHRtyBvI2H4F6FOoR4fDjeXbj0o+jliRWtqnU3ud+wB/0BIr8fY18WekvAGdx8Njj8SOfUCKM1IykfaxZrDdpH0W1oxXBjVSUTTd7NpUumuAGCtsP1It6rAMoE6tiKsuI9BsomsvMKvDJSxGUEYqOtLFAp3neX/z8yzMSLFFFnuMi2E8zwv3O5L2EckgprP0rrvuwvTp0zFw4ECMGDECanXwpHXx4sWSDC6bYTKhVK9uS00iG/KyHkUcF1law3EcLjqhEv/6ei8Wb6zBjBMqJR9LLEjZkJcxuMyEg01W7D5mxvhBscsY/Tf22CRLQo2U7zeqae2E1eGGRqlAVZEh5nF1RScDs4nUS/t8Galw0j45ZKSikPZ1NUuRQtrH87zw/YSzGY+WNgma8QL+QNzDe7+fwDpZ1kPKpFUJmUdCHOkSSNldHrh8zoKpvpakgnilffVmO9ptLig4kGMfkRRimrH96U9/wjfffIMhQ4agqKgIeXl5QX9E/GSq2QRz7UtEjRSrj8rTq6FSRj60L/LJ+77b04B6s03yscSCv4+UdMHzYKFOKj7DiXilJsz8g9VIMQ37gBJjj79VNGjJbEKokepuNiGPZryAX+IrLiPlPVZYdlUKaV+Hww3mgm2VKJCSohkv4F1sYuWMXYM86iEVO6w2sFHmNVLsvOW4zOsjKYZ4pX3MaKKqyEiOfURSiOksfeONN/DRRx9h+vTpUo+nG1VVVaiuru72+M0334wXXngBPM9j7ty5+M9//oOWlhaMGzcOL7zwAo477riEjy2RWOPo2SNn9Gy1KQEZqRZr+B5SXelfbMSYvvnYdKgVn2yuxfVnDpB8PNHir5GSLrDwO/fFJ+0zSyTtY6v2idKwayXQ18eKbDJS+jA1UoK0L/WBlNiMlMPlwYFGrynE2H4FONRsFeS78RCYrQtnMx79Pr3jisexD/BmzI0aFSx2l7d3W8ApUtdKPaRiJV0yUoKMWqOSVXuOZCEsssQozxYa8UpoYkQQkYhpxlZYWIiBAwdKPZaQrFu3DnV1dcLfihUrAAC/+c1vAABPPfUUnnnmGcyfPx/r1q1DeXk5Jk+eDLM5/t45qYRJ+wwZZjZhEPpISW9/7jeaEDeRYaYT7607LGSzUklipH2+jNQxS7d6i2iIV7Ofrw+ukWIGAkMk1rCn0mxCqGtM8TkbStrncnuE1gCyCqR6WFA50NgBl4eHSavCkHJvRCFFjVTgPqQym4i3jjAQJunuOrZaX0aqgjJSUcMyUnJ37cvm+ijAn5ESY0QTCnLsI5JNTDO2OXPm4OGHH4bVapV6PN0oKSlBeXm58Ld06VIMHDgQEyZMAM/zmDdvHu6//37MnDkTI0eOxOuvvw6r1Yp33nkn4WNLJJlqf65PYI1UizWy9XlXLji+F3RqBfbUW3DWU99g/td7EhLgiUXqhrwAMLDE69zX1umMawJhsXsnnrFOEvMCMlIeD4/d9WzVUNqbndCDJA6ziXabd4zRIhezCVMIaV9zhwM8Dyg48edHItFrxEkwA1eX/QGiFBkp/z46JDrnpcxIGoWmvF2kfZSRipl0yUiZ47zWpjt+s4n4pH2DyGiCSBIxnan/+te/sG/fPpSVlaGqqqqb2cTGjRslGVxXHA4H3nrrLdxxxx3gOA779+/H0aNHMWXKFGEbrVaLCRMm4IcffsCNN94Ycj92ux12u/9i2t7eDgBwOp1wOqVxhIoV9v4dPrmJVsGnfExSwhbrOx0uyT9XY7t3tTZPrxK1b6Oaw8KrT8TfPtuFnUfN+Mfy3Xjth4O4ZeIAXHpSb2gkzAyJweYLLpWcJ6bvhr0m8LVKeGtLDjZZsaOmFQUDi2IaW7svSDWoFTGNzaDySlQ8PNBk7sReX83WgCKdpMeBivMGQDaHO6b9Hmq24rx/rcZ5x5Xhmd8cH9VrLb4sh1aJlJ6zBrX3u27rdAjjqGv1yuMKjRp43C54Uuz6z36nzoDfKdR3tqO2DQAwqMQIo+9ztQd8rlhptvh7R1ls0lz3263ee4o+xnMkEJbVbLPag/ZV0+pdvCzNUWfUfSFWIh07XcnX+b7TTicsnXZJM/9S0upb8DJqlVn5GyvhXVDsdEZ/Ded5Xlh8GVCkj/j6aI4dIjsRe2zEFEhdeOGFsbwsbpYsWYLW1lahEfDRo17r6rKysqDtysrKQtZVMR5//HHMnTu32+PLly+HwSCdg1isuD0QGlCu/vYbGDPInGl3GwdAifrmNixbtkzSfW88qACgQEvdESxbdkj0626sAjaZOHx2SIFGiwNzl+7E/BU7MLWPBycV80iWTL25TQmAw8Z1P6FlZ+z7YfJXhsnj/V7+t3ItWnfFJu/bud+7jyMH9mDZst0x7UOjUMLh4bBoyZewOZVQcTy2/fQtdkj4/dZ2AIAK7dbOmI6vLU0cnG4lVu2sw7JlR6J6bV2D9/fb/vMm8Idil1HGyyELAKhQ32oRvoMdrd7zTuOxS37exUJ9J+D9nWzC8dr1uAWA73d5jztn0yHstB4CoERNfXPcn2Fdg/f7AICjja2SfCdbDnnH2lB7GMuWhb//iMFm9u5r9U/rYdvnP5b21HiPsUO7fsayo1vieo9MItSx0xWeB5ScEm6ewweffo7C1CtcQ7LWd2za2ltkca4mmw4nAKjg8vD49LNlUEZxf2hzAO02FTjw2LX+O+wXESuLOXaI7ESs6i6mQOrhhx+O5WVxs3DhQkydOhUVFRVBj3Nc8JnG83y3xwK57777cMcddwj/bm9vR58+fTBlyhTk5uZKO+gocTqd+N//+U/sGdPPS3pmJJFUHG7FC9vXQqnVY9q0syTd98rFW4G6Wpw4ciimndU/qteeD+AelwcfbKzBC9/sQ4PFgbf2KrHOnIM7Jg/GpCHFEY8pKXhs27eA3Y6JZ56B4yqiPw6dTidWrFiByZMnB2WJd6r34JdVB6Ap6Ydp00bENLal72wGGuox9oSRmHZyn5j28cT2Vahrs0FRNhjYsR+DynJx/vTTYtpXOKqbrHjy5+/BK1SYNu3cqF9v3VgD7N6GdieHc6ZEd+79Y+d3gLUTk844DSf2zY/6vaWiusmKf/7yPVzwfwe2TTXAjm0YUFGMadNOStnYGHVtNjy6eRVcUGDy5F+FPG4BYN7u7wFYMWPiKTBqlHhpx1pAE/+1o3HNIWCvd7VCqmvR+qU7gJrDOG7oIEw7Z1Bc+/qkZRP2tDdg8PBRmHayt5aT53n8dcPXANy4cPJZ6F9M1s7hrnnheHKH9xp0/Mmn4/je8nQYbvIdm1W9e2HatNGpHk7SsTnd+Ov6rwAAk86ZEpXEcfW+JmDDBlQVGTHj/DMibhvtsUNkH0yt1hMxi3BbW1vx4YcfYt++fbj77rtRWFiIjRs3oqysDJWV0vflqa6uxpdffhnUo6q8vByANzPVq1cv4fH6+vpuWapAtFottNruy1FqtVoWJxQzkdIoFTDqZbpsFiO5Bm+RdKfTI/l33eareyjJ1cW0b7UamHX6AFx6cl+89sNBLFi5D7uOWXDjW5twUr8C3Dt1GE6uKpR0zIE4fDVSRp0mru+m63E8rMI7YdjX0BHzfpmRQp5BG/M+8g0a1LXZsOFQKwBgaLlJ8mMgx3e+2GM8vjp8Bc48DzR3utEnimVrVveXZ4z9O5KCQpO3fqbD4QanUEKlVKCl0zu2UlNs54bUmPTeLIvTzYNTeDNDXY9bm9ON6mbviuCIinzBOdJsc8X9GToCCtk7HG5JvhOr0/uZcg3xnb8AhB5RNhcv7Kut0ymch32KTFCrM8uIKB7E3rtLTFrUtdnQ0inNb54IOl2+40gvj/lIslGp/NNSF6+I6jvY3+iV7A6J4t4il3kfIT/EHhcxpTp+/vlnDBkyBE8++ST+8Y9/oLW1FQDw8ccf47777otllz3y6quvorS0NMhyvX///igvLw9KzTocDnz77bcYP358QsaRDFggZciwZryA34UwMfbn3jqefBH255EwaFS4eeIgfDf7V7hp4kDo1ApsqG7Bb/+zBjuPiluhiIVEmE0AwOBSr6FDPM59Qh+pOJykmHPfJl8glQhXJVb34PLwcLmjd30KtNY+0tIZYcvuCH2kUtz7JfA3YmNq9BXYF8ugGS/gLygHAJsr9O+0r8ECD++1zi8xaf0mGnZXTGYggQQ6GnZIdC2S0myEObYFmk2wHlIFBnXQ90eIJx2c+5hJTI42Oyf3HMcJ1/Fo21js8dXesnseQSSDmAKpO+64A7NmzcKePXug0/ltWKdOnYpVq1ZJNjiGx+PBq6++imuuuSZotYLjONx222147LHH8PHHH2Pr1q2YNWsWDAYDrrjiCsnHkSxYIJXqCVki0AX0j4l3MtQVZmEulStZnkGNe84bhm/vnoQxffPh8vD4ake9JPsORSL6SAHepreCc1+MjlUWCW7urJcU+5yDE+CqpFP3PEGPROAEu6ZVfCDlcnuEz5Vqty21UiHYizN3OjZxLJGB9TkQbPEfbrLEisaHlJrAcZzg2sfz8TvtBdqfO1weOGMIurvCxpQjwQIYC8YC7c/JsS9+0sG5T3BIzVL7cyDAuS9K99UjLd4MdhXJXokkEtOMbd26dSEd8SorKwUDCCn58ssvcejQIVx33XXdnps9ezZuu+023HzzzRg7dixqamqwfPlymEzpuyJh83hrcYwZnJEC4rOoDoW/j5S09s5luTpccLy3Lm/dwWZJ981wuT1w+wJLqd2kdGol+hV5byysEW60xNuQF/AHUoxEZqSA2JryBk6wa6LISHUENHVNtf05AOTqvWNgn0doxmtKvfU54F0E66kpLztWh5R7A26dWgmN0vv7xtuUt60z2I1Jil5SUmYkczTdM1LUQyp+0iKQ8h3bJhlcR1JFrL2k2O9aKpPMO5EdxDRj0+l0IYuwdu3ahZKSkrgH1ZUpU6aA53kMGTKk23Mcx2HOnDmoq6uDzWbDt99+i5EjR0o+hmTClCaGDMxI6QMyBlL2knK5PcLkKhF9ck7p762N2nCwRQh4pMQekD2RWtoH+LM/rFlhtAg39zhWSfP0/t9Fp1agT6H0DpkKBScYRMQSSAX2XmJW02Kw+LIRGqVCFuYwrMZGCKTM8mnGy2CrzrYwk6U9LCMVEHCzANH8/+3deZhcZZk//O+pvarXLJ1eshOSIEkIeyCoASUxBHAbHQUciKNeILhEdBiVeS+COonyQoZXcbmc3wj4Gxb1FYTfa8BEAwnLgAEaEwImAbKQpdPpJN1dXd21n/ePquecU9W1nFN1qs6pqu/nurxm6KVS3XX61LnPfT/fp8xNebP3ojJjvK/S+0ixI1U+UUgN2Hi0T9nYmR0pwzdbxevawUKKqqikd/yPfexj+N73vqdkrEuShIMHD+Lb3/42/uEf/sHUJ9iIxM1tq0eEKsHhkOBLj66ZuU5qcEwci0Cb3/zZ8jO6WtDkcSIYiWN3X2nFSCHaQqoSF+LiYrSUjlQ8kVS6BuUck9rX5fQpzXBWKFfepxRS1RvtU9fH2KOL3Jq+CBs32mejC4xiHandYjNezXoHszblHQ6b35ESXUlT1kjlGO0THaludqRKJm4k2LkjFTThplWtE5MFRq4R4okkToTsd8OI6l9JV2x33303jh8/jilTpmBsbAzLli3D6aefjpaWFvz7v/+72c+x4YSVjpQ9LsrMVuwCqhRifVSb312RC3SX04FzZ04AUJnxPjEL7nZKFXn+czvTHaljxotAs8bWtKN98yq4GFiskzI6Xw9kjowdSXcA9BgxMWjADNqOVDyRVIJY7HSBodxQyXEeGI3G8d7JdAJXp7qWrkUpEMvsSGUVUiNmjvaZ2JHS/u2JjlQPO1IlU0b7aqEjZZNziRXEOdzIVMHJUBSyDDikykylEOVT0l9qa2srnn/+eTzzzDN49dVXkUwmce655+Lyyy83+/k1JDHpYpeLMrMFPC6cGo2ZOton1kdNNHl9lNaFsybiub0D+Ov+k7hh6SxTHzsSq0xin6Am9wWL7rOWLZhe/Ox1lTe21q7pSM2twPooQX0TLr8jlUzKcOgobM0c6zJDa/p3HQzHMy4wzF4/WA5lfCfHxdLedOd0crMHkzTFn/JzRcwZ7XM7JcQSMkYj5Z2LZFk2ebQv9bvJldrX3caOVKk6aqAjZUZCaq0TN1uNBAaJ4nhSs7di0w5EuRj+S00mk3jggQfw2GOPYf/+/ZAkSYkhN3qBRrlFEvUbNgGoF1CjZSZvaZ0aTV1YZQcamOmC9Dqp7ftOmn6sq9HnlVlfI5L7hsNxHA9GMKVV/8WYWW/sbdqOlKbLYDbR6YiUGTYRjScxEIpgSkvx35WZ0ddmaNV0bvrTF40Tm+x1gaF2psdfLO3JsT4K0HakSj93JJOyssaqq82H906Old2RisSTiKfXTppx3lZG+9LnSFmWcXQo3ZFqZ0eqVKIjNRpNIBSJ2+bvVcuMhNRaJ87hYQM3W0VxbKeuOzUGQ1dtsizjox/9KL74xS/i8OHDWLRoERYsWIADBw5g9erV+MQnPlGp59lQxGhfPcafA+rIYilhAPmI0aVKtvTPnt4Ot1NCfzCCgyf1BxHoIcbQfBXaZNPndmJWicl96ht7ecdjuyZsohKJfYLo6hldqJxMysoFtSho9Sb3jZi4PsYMYrQvGI7bdgF2ofGdfIVUq/Jzld6RCkXjEHkxIrih3DVS2u8347ydHX9+MhRFJJ6EJKVSRKk0TV6X8v5j18AJZR+pBu5IKecGA+dwUUjZ7TxH9c9QIfXAAw9g27Zt+Mtf/oLe3l488sgjePTRR/G3v/0Nf/7zn7Flyxb8+te/rtRzbRjiJoxdLsrMJk6SlRjtq+Toks/txKKpbQCA7ftPmfrYle5IAeo6qT0G10kFTUqR6m7zweWQMKnJg6kVvKuu3M00ONoXjMQh9iue35W6gNcbOKGOddmji6yNPx8YEeuj7DPWBxReK6lEn2cXUn6x9qv0wkd8r8flwKT0jZdyu+NiLVPA49Q1ClpMc1Zqn+hGTW722iIVspbZOXAiEk8gmrDHfnRW8pewRkqc5+yyVx41DkNn5EceeQTf/e53cdlll4373Ic+9CF8+9vfxkMPPWTak2tU9R42EfCYX0iZvRlvPtrxPjOJNVKVvEgSF6VGI9DN6khNaPLg4S9dhIe+tMSUi818SlmoDKhdDo/LgdnpDR31dqTECJZdushqul1M7UjZ7AJDXSM1vuBVo88zR0DF3jrlhE2I7231uZUtJkbKXCNldtiIeJxwLIl4Iokj6YK+h+ujymbnvaRGNDcIGrmQ8oqbLAb2kVJG+2yyVx41DkNXbTt27MDKlSvzfv6KK67A3/72t7KfVKOr/7AJcZI0c7RPrJGq7En0wlnpQsrk5D4x2uet0GgfkIocB0oY7YuYN7N/4eyJOKOrtezHKUQZ7TPYkRLrblp9bqVjdsRgR8ouf7NiLVEwvSYOsN/Ii9KRyjoPDIdjOJLuwGSHkmhDNEqlFFJ+l9JBLLsjFTU3bES7zioUTSgdKe4hVT4lcMKGo33iXBvwOG21nrHalKkCI6N9Nr1hRPXPUCF18uRJdHZ25v18Z2cnTp0yd+SpEUXqfLTP7079XKbGnytrpCq7QPf8mRMhScC7AyFT72hWY7RP6Uilk/v0MmMz3mpSwiYMrpESQROtfhemTkhdsOof7RNrpOzRRVZH4NSOlN0WYefrHIrEvq5W37g94ZSwiTLWSInRvlafG4EcG9+WYsTkfcS8LifcztSFdCgS5x5SJrJzRypoUve/1pU02mfTG0ZU/wxdtSUSCbhc+f/AnU4n4nHzktgaVVik9tXpaJ/fkzrsam2NFJBKnpufLkheMbErpXSkKlhIndbRBKdDwnA4riS56RG0WbR3MaXGn2tHvkRH6pDusAl7daRaNR0ppZCy2ciLGO3LvqEi1vDNzZHsqIwsmtKRcufc+LYUSkfSxNFObeAE95Ayj7jQtmPYxIhJ61FrXSnj2exIkVUM/bXKsozVq1fD6819oEYi9jsx1SIx2hewyXoLs4mfa8zE+PPBdEdqQhU24jt/1gT8vS+I7ftP4YpF3aY8ZqX3kRKPPXNSAO8eD2HPsaDu9K+RGkuRUsMmjHak0p0Kv1pIGQ+bsMfvqFWzIe/xYOr30dFsr25GRvy5pvEkCqn5OZIdlZHFctZIic6jz6XcrAqVeVOnEq9/s9eFwdEYRiJxdQ8pdqTKZuewCaX7b5PziFX8JdwMs+sIM9U/Q3+tN9xwQ9Gvuf7660t+MpQiRvvsclFmNn+NpvYJF8yaiP9+6aCp66SU0T53ZRO55k5pThdSI/jA3A5d3zOS3vy0Vo7HUuPP1Y6UOtoXDMcxHI4phUk+IxXoSJRDu5ZIrLSwXUdKe9dZ8+vdmyexDzAptW9MLZgDJnWkKhF/r03uOzLINVJmsfNoHztSKeJmmN511JF4AkPp8zcLKao2Q3+t999/f6WeB2mIQipgk/UWZgvkGekpVSyRVC6sKp3aB6QCEwBg15EhjETiphQY1RjtA1IXp3/adQxvG0juM2tD3mpRN+Q1ONqX7lS0pNPcJgTcODUaw+FTY2jtLlxI2TVsIpGUlSAW262RynMe2F1otE+z9qtUakeqAqN9Jr7+4rGC4TiODYvNeNmRKpedCykxRt3SwJvxAmrokt6bYSfS0edupzRuXSVRpXFDCpuRZVkNm7DJ3W2z+U1O7RtMXyhKEqpyEu1u82PaBD+SMvDaAXPCVaox2geoKWhGkvtqbQG0z2V8vh5Qf06xB5PoSulJ7hNhE3b5HfndTrg0qV9Oh1SVbq0RuRaUnwpFlQvc7MQ+QC0Qo/FkyRt6a1P71HVIZo32mff3K57b/hMhxJMynA4JU1pYSJVLXSMVNRS6Uw21NkZdKUbDJpTo82YvJKlx0w7JGiykbCYaTyKZHsaxSwKY2cwe7RPro9r87qpFxpodg16N1D5A3Zdnj4HkvhGbrf8pptR9pLRhEwAMrZMyO7WtXJIkKd0bINWptVuccsYaqTSxPmpquz/n8dbscUFcJ5Uaga7tSKlrpMxK7TNztC/13N5O3/TobPHa7jWsRWJj6mgiqYx52kWtjVFXii/HuaEQro8iK7GQspkRTXFR92ETJo32ifVRE6t4x/180wspsY9UZf8kZ09OJfelxoX0jbbU2l1SNWyitNE+UYD0iEJKR3Kf2fsImUE7imm3sT5ATe/UFrx7+lNFw/yu8d0oAHA4JOV3XOp4n3aNlPkdKRNH+9Lnyb3p30l3O9dHmcHrciqplsdHwhY/m0zBGttqolLU8Wx9f5d23XScGgMLKZsRG0P63Y66vfto9oa8p6qY2CdcOHsCAKD34CCicWMX7LmoHanKdjREch8A/L1vWNf3jNTY3L6Yrze8j5SyIW96tE9EoOsa7bPXGikAGQEZ4i68nfhybMi7t8D6KEH8XOV3pFxKsWLHsAnxWG+LQqqNY31mEZ0LI9tAVMNIjY1RV0o5o31E1cZCymbEndF67UYB6gXUqEnx52Ix/YRA9S7053Q0Y2KTB5F4EjsPD5X9eOoaqcr/SZ47I1UEbvl7v66vr72OVIn7SGV1pKZN0NeRisQTiCVSY5J2KqS0d7XtOPKS62Jpd1/+6HNB2ZS3xAh07essRjHHYgkkkqWvl6lEIS0upkXnvocdKdPYNXAiyNQ+ANrRPp2F1AhH+8g6LKRsRqwbCtTpZryA+R2pakafC5Ik4fyZqYLEjPG+aqX2AcCVZ6X2vtq48yjiicLFRjIpY8SGY2uFiN+h4fjzcPYaqVTnrtgaKe1YmJ020dZ2pOw48qJuyJs6BmVZVtZI5Yo+F7TR7qVQO4/ujMKnnBs76min+WETAjtS5ulIh3bYrZBiRyrF6M2wARZSZCEWUjYj3pDtdGfbbGbHn58Sa6SqONoHqDHo2/eZUUiJfaQqfyH+/tMnoz3gxsBIFC8Xee6jsQREJkWtzO2X3JHKHu1Ld6SOByMFxwRFN8LndsDltM8pVaQPAvYcecnuSJ0IRXFqNAZJSnV889FuNmxUMikjGFZT+7wudYS6nHVSldhHLLso4x5S5hE3FgbSsdl2UWtbTVSKso8UR/uoBtjnXZ8AqG/mdrqzbTZxJ9qs1L6TFqyRAtTAiVcOnEKyjLEgoHqpfQDgdjpwxcJUV+r//O1Iwa8Vd0hdDqkqz80MPpexhcpAqhsSzBrtmxBwKxf7RwfzL0q3a6phi7YjZcM7tUohFU9CltVQhZkTA8o5IpfWMkb7RqJxiD/VVp8bkiQp59qRMtZJVXIfKYF7SJlHbE5tu46Uci6pjfWolSJuhkXjSV3vrUztIyvVxpVRAxHjJfU82udXwgCSZa1LEAYtWCMFAAt6WuF3OzE0FlMuAktVzdE+ALg6Pd731Bt9BcMylDhen6tm9ucoJf48FE1kXGADqfFNcfFaaLxv1KZd5MywCftdYIgNeRNJGQkZ2NsfApB7/yitckb7RPHldTmU40QUwGWN9lVgH7Hxo33sSJlFdKTE2hq7qLU9+yrFr5nMiOgIcxKdRRZSZAUWUjYjujR2uygzkzZIw4zxPivWSAGpzs65M9sBAH8tc51UtTbkFZacNgmTm70YGovhhbcH8n5dLb6x+zSdDr3EBbbbKSljJQAwdUJ6nVSBwAklsc1mATEZo30t9kvt014sRZPqJtGFgiYATdhECaN92uhzIZA+tkvtSMmyXJGRbO3fnMfpwKQqd9zrmV3DJsSNK472qeeGYtcIo9G48rdrx3RSqn8spGxGTe2r346Uz+1QNtU0I3BCxJ9Xe40UAFwwy5x1Uuoaqer8STodEq46q/h4n13H1goxugcJkBk0oe286YlAD9lsM16hxeZhE26nA670+qRYUo35LhR9DpQXf66NPhdE8TNa4hqp0ai6jrBSHamuNh8cdbodhhXsWEjFEkllXWctnW8rwemQ4HamjvdikwUDwdT7v8/taPjfG1mDhZTNKHc267iQkiRJuRttSiGV7ki1V7kjBQAXajbmleXSxxSrPdoHQCmkNr15LO+b1UgNbhBZWkdqfKcC0BeBPmLDPaQAtVhwOqSqd2v1UsZ8E+pmvIUS+wC101bKGinxPdrXWYQ6hEoc7ROFtENCRjezXNqLQib2mUsUUidDEVPGy82g3cus0ePPAf0j2tro81oZP6f6wkLKZhphtA9QO26jsfL2koolkhhOX+xb0ZE6e0Y7XA4JR4fCOFRkv6FCqrUhr9a5Myagp82HkUgcz+4+nvNrgrXYkXKpa29iReLdBeUCO+sCRnSkjujqSNnrdySKhYlNHtt2M8Q6qYGwhGA4DqdDwmkdTQW/p6WM1D5xrtCuHxOjxqWO9mkLaTMv5LR/c9xDylwTAx5IEpCU1dFwq4kOq8/tgNtG6Z9W0buXFBP7yGr8a7WZRhjtA7Sb8pbXkRJBE5IEtPmrn3QU8LiwYGobAOCVA6WP94m7btXsSDkcEq5a3AMA+D87co/3qZvx1k6KlHY8Um/gRFBZm5D5c4oI9EJhE6KQarbZGqmzprXhvJkTcN2SGVY/lbxER+pgOqtl1qRA0ZsJZY325exIlTfaV4mgCSBzVJQdKXO5NGvO7DLex8S+TH6d21goHSkWUmQRFlI2Y9cEMLOJQjFcZiEl1ke1+93KfjDVduGs1Ma8f913quTHEB0pM0eD9BDjfVve6s+ZWlaLa6S0xajevaTU0b7syOlUIXV0aCxvDK8SNmGz31HA48Lvv7wUay6fZ/VTyUsc7wdGUn+787sKj/UBmrCJUkb7cqyRCpQZf16p0U5teEk3O1Kmm2yz5L5gDY5RV5I4NxRfI8Xoc7IWCymbaZSOlN8jIofLLKQsSuzTukCzTqpU1U7tExZNbcPMSQGMxRL481v94z5fixtESpK655XejpQ62pd5N7izxQunQ0IsIaM/z51rpSNls7CJWqB0pEKpQmrulOKFVHnx5+PXwombBKESC6lKjXY6HJLyPtDDjpTp7BY4oWw1YbMbMlYxukaKo31kFRZSNtMIYRMAEBCjfWXGn5+yaDNeLbEx79v9IyXN28uybEnYBJAqOgql99Vi/DmgvgmL32sxw+HxI19AagSoq1XsJTWa83vtukaqFojXaSSWKqSKBU0AalEfjMQNBwVo0xkF8bqFSrypI87ZlSikp6Qv9mdNLrxujIyzWyFVq+faSvHpHe1jR4osxkLKZholbMLvEal95YVNnAyJzXitK6QmNnlw+pRUZHMpXal4UlY2g612RwoArk6vk9q6+/i4Bfy1ONoHaMdCDI725ei8iXVS+cJE7JraVwv8WTeM5ncVjj4HMrujRsfx1DVS40f7Su1IKa9/BdbI/fiac3DftedgTkfx3wsZI9bUDNhktE8519ZQ97+S9IZNDIywkCJrsZCymcYZ7TMn/lzpSAWsXaArxvteKaGQ0u7cXq19pLTmd7Zg7pRmRBNJbNp1LONzI+nCqtbe3M3qSAHANCW5L5zze9WORG39juxAuymv2ylh5qTinRevy6kUykbXSeXqSClhE2XGn1fi9T9rWjuuOqvH9Mcl+3WklK0meB4BAPh0jmcztY+sxkLKZsSbeb0XUqaN9oWs24xX68LZ6cCJ/cYDJ7Qbx3osiL1Njfel0/uyxvuUNVI19uYuItB1d6RyXGALInAi32ifXcMmaoG2kDptcpPu2OdSI9BzrZESr1vpYRN8/WtROYXUf790ANf9r5cwVELgST7sSGUSN1sLFVKyLCuv3xR2pMgiLKRs5rSOJnT65ZwXdPUkYFJH6qQN1kgBakdq1+Ehw3e2RUfK43RYtt/PVYtT66ReeHsgY52XMrdfY2/uXp2JT0KhxKypRTblVddI1ffNj0rwaW4YifFYPcQIptHAiVypfeJ1C5Ucf87RzlrUUWJqnyzL+H/+shcvvH0Cz/x9fEBPqbhGKpN6Myz/3+VIJK68f7IjRVZhIWUz//3PF+C7ZycwbUJ9x92KCyizUvsmWrhGCgCmTQigp82HeFJG78FBQ9+rbMZrwVifMKejGQt6WhFPynj6jT7l4zW7RspoRyrH/kLC1PbCe0lVcrSr3mk7UvMMFFJKR8roaF+O11msbQqVPdrHQrqWlNqROjw4pnzPO8dHTHs+7EhlUjtS+c/h4nVo8brGrbckqhYWUmSJgDv1ZlFsIWkxp9Ib8rZbvEYKUNP7/rrP2DopNbHP2jeCXON9tRh/DhjvSA2HRdhEjkJK05GS5fEpcQybKJ22kJprpCNVQgR6MikjGBn/OjeVGX/O1782iQ7G0FhM91pKAHhNc6PM1EKKa6QyiHN4oWsEZX0Ux/rIQiykyBJmjfaJsAmr10gBwAWz04ETBwwWUsoeUtb+OYoY9Jf2nUD/cBiyLCtv7s1e6wtVI5ToXB0XSLIs50xzE0RHKhRNjFsTIcsyO1Jl0N5FntupP+Jb2ZTXwBqpkWgcog5uyRjtE4UUR/saSZvfDbczNUp9YkT/thWvHVDXwb7THzLt+ag3rWrrXFspekb7xFhmB8f6yEIspMgSfmW0r9z4c3uskQKAC9MdqdcODCKW0DdSBthjtA8Apk8M4JwZ7ZBlYOPOo4jEk4inc9lrbdxE7x4kQOqOp/g5c3WkfG4nJjenjq/s8b5IPKlE1/NC2jjxOrklGdMnBHR/n3idjHSkRLHsdTmUfxfQrJGKxnN2HIsRBRgL6dricEhKV8rIeF/vQbWQ2jcQMryXWT5B3pDJoGe0b4B7SJENsJAiS4iRnnLWSMUSSeVCysp9pIS5U5rR5ndjLJbAriPDur/PLqN9gDre9//tOKr8biVJTVmsFSI6V8/IjkhyczqkvGmZSnJfVuCENumt1n5HdiDOA52B1O9fL9E5NLJGKldiH6CukZLl0kaNOdpXu4yukwprzu2SBEQTSRw6lTvN06ha3WqiUvTEn4uOlLjRRWQFFlJkiYCOaNNiBtProyQpNaZhNYdDwgWzUjHoRvaTsstoHwBcuagbkgS8cuAU9hwLAgCaPS7L0gRLZaQjpU1yk6TcP2e+wAkx1hXwOGvud2QH582cgHa/G+dO0t/BBdSOlJHRvlyJfUDqtRMveynjfeo+Yiyka43R5L43Dg8hnpQxudmL+Z0tAIB3j5sz3sfUvkzqObz4Gil2pMhK1l+5UUPym5DaJ9ZHtfvdhu5mV9LpU1JvrofyRGXnooz22aCQ6mrzKVHuj25/D0Bt3iEVv8uIjkI9mL7ALrQ2YWqRjhS7EaWZ39WCv37nUnx4qrHxqFLiz/MlM0qSpCb3lRA4wTVStUuM9g3o7Ei9lh7rO3dGO+akw1HMCpyo1WCfSlFG+wpMFQyk17axkCIrWX/lRg0pkL5wKSdswk7ro4Su1tQJ/dhwWPf3KKN9NhkNu3pxarzvT+kY9Fq8Q6rnbqagjnzl/zmV5L5xHSmujylXvi5gIaVsyFsomVF0yEvZlFcppj08BmqNMtqnsyP12oFBAMA5MyZgzuRUOIoZhVQiKSs3FXkuSRGj7oWuEZTUPoZNkIVYSJElzFgjNSg247XB+iihq80HAOgzVEjZpyMFAFcs7ILTISGaDsyoxY6UT4k/NzLaV7wjdSTPaB83460uUfQa6UgNFdgrTFy8Gj0fxRNJ5RjjBXDtMbJGSpbl3B0pE5L7tAV8LZ5vK8HIPlLsSJGV7HHlRg1HnCTL2UfqZCh1YWSnQmpKa6qQOjZkoJCKibAJe/w5Tm72YumcScp/1+IFopH4c2Xkq1AhlacjxW6ENUrZkFd9nce/VgGR3GewIxXSFF4c7as9RgqpI0Nh9AcjcDkknDWtHXM6zBvtE+cRj9Nhi9AhOygWNpFMyjgRYiFF1rPHlRs1HDP2kVL3kLI+aELoShdS/cEIkjpjcdWOlH3eQK9Op/cBtTmz7zUy2hfWMdqX7kgNjEQzHpN7SFlDDZswsEYq3XnMFUwjCmGjo30hzQWwxyY3Qkg/I6N9Yv+o93W3wu9xYnZ6tO9EKIpTIf37UOWi7NdXg+faSik2nj00FkMskXqPndTEQoqswzM/WUIUUtFEEnEDey5piTcvO3WkOlq8kCQgnpRxQuebq132kdL6yIIuZbPKWiwS1PhzHaN9OjpSbX43mtLHrLYrxbAJa6ijfTHdez/liz8HtKN9pRVSHO2sTUbCJsRY3zkz2gGk/uZ70qPc7w6U15UaiaSjz3keUahhE7nP4aL4bQ+4eRODLMWjjyyh3RBztMTxvpOj9gubcDsdyt0xvYET6j5S9vlzbAu48cG5HQAKp9nZlaGwiXD+tTOCJEnqeJ8muU+ETbCQqi5xTMYSsq51cEDhtXABr+hIGTsXsZCubaIjFYomio51vnZwEABw7owJysfMWifF6PPxfEXCJpTNeBk0QRazz5UbNRSvywGRWB4ucbxPdKQm2qgjBQBdbQYLqZj9RvsA4F9Wzsdl8zvw6fOnWf1UDDO2j5S+2OFce0lxDyFrNHmcyvkjqDO5T40/H/86i9dv1PBoH5PWalmTx6kEHw0UGO8LxxJ488gQgKxCyqR1UqIg52ifSgkMiidydp3VzXhZSJG1WEiRJSRJUiLQS03uO5nekNdOHSlAXSelN7nPbql9whldrbj/8xfijK5Wq5+KYd4iC5W19Iz2AWrgxBGO9llOkiTDEeiF4s+VNVIGR/v4+tc2SZJ0BU7sOjKEWELG5GYPpk/0Kx+f0yEi0MvrSIlzyuRme72XWcmXHu2TZSgJslpM7CO7sNeVGzWUcjflVePP7TV6ZjS5T91Hin+OZhEdKV1rpML5185oTW0PAMge7eNIjlVEZ0lv4ES+DXkBdbTPcGofC6map6eQ0u4fpd33THSk3i2zI7XjUKrbtaCnrazHqSc+zYRGOJqjkBphIUX2wCs3sowYqRiLGd8EE7DnhryA2pE6Nqxvk0c7pvbVOnUfqeJFerBALLZWT3vqdT00OL6Q4oV09bUajEBX10gVGu0zdlOHo521T3SBCo32ZQdNCKelC6kDJ0cR1XHTJp83DqcKqbOmsZAS3E4JzvT8bq5tLLgZL9kFCymyjBqBbvwNKJZIKgt0bbdGyuhoX8yeo321zOywCQCYliNsgqNd1hFr2vR0pJJJWXmtcnakSow/5z5itU9PR6o3R9AEAHS2etHkcSKRlHHwZGnjfUOjMew/MQoAWMiOlEKSJCV9NVfgBEf7yC545UaWUUf7jHekBtProySp+AVwtXW2iY5U7ab21ToxFqIv/tzYaF/fcFiJ7FfDBtiRqDbRkdITNhGMxCHWq+cKFRGjmaGS489ZSNWqjubU+TrfXlJHBsfQNxyG0yGN6xhJkqQk971dYnLfG+kQi+kT/babrrBaoY3VB0ZSEykspMhqvHIjyygdqRLiz8VmvO1+t9L+t4vOVqPx52IfKV6Mm0U72ldon6FwLKEsZC422jelxQu3U0IiKeNY+m6ouPBmR6L6lLCJseLFjxj/87kdOUdom5Q1UgZH+5jaV/OKdaTEWN/7uluUzqVWucl9Yn3UWVPbS/r+elYofVUd7WPxSdZiIUWWEWukSgmbsOv6KEAd7Ts1GtM1WmbX1L5aJorSpJzaaygfMdYnScWLIYdDQndbZnIfOxLW0W7KW0yhPaQAKJstGw2b4Ghn7StaSKWDJrLH+gQ1ua+0Qmrn4dTjL+L6qHHEDbHs0b5EUsbJEEf7yB5sf+V2+PBhfO5zn8OkSZMQCARw9tln49VXX1U+L8sy1q5di56eHvj9flx66aXYtWuXhc+Y9PKnL1zzbbhXiF33kAKANr9bKYr6dQROcLTPfNrfZa6xEEF0M1q8Ljh0dDZF4IRYJ8UNea1jJP682PimeP2M3tRRUxvZTa5VathENOfne9/LHTQhqB2p0kb7doqgiakspLLlG+07GYoiKQMOCZjUxEKKrGXrK7dTp07hkksugdvtxlNPPYU333wT99xzD9rb25Wvueuuu7Bhwwbcd9992L59O7q6urB8+XIEg0HrnjjpEnCXM9qXunhqt2EhJUkSOkVyX7D4eJ9dN+StZV6XAyKluFBXUG/QhKBEoA+OQZZldbSPF9JVJ0YxgzrCJgol9gFqIVVy2AQL6Zql7UhljwFH4gnsOjwMoEBHKr1G6t3+kYJjxLmcCkXx3snUTZkFLKTGEVMrkaxzuOgeTmzy2m60nxqPrc/+P/rRjzB9+nTcf//9ysdmzZql/P+yLOPee+/F7bffjk9+8pMAgAcffBCdnZ14+OGHceONN1b7KZMB5YRNiDVSE5vsFTQhdLX6cPDkKPp07CWlrpGy9X2NmiJJErwuB8KxpFKo5qJ3M15BbMp76NQYRqMJJcCAa2SqTxS/euLPC+0hBaiFcCgShyzLGXsFFcLRzton4rOjiSSGx+Jo0+xL+MbhYUQTSUxq8mDGxEDO7585KQCHlAo0OT4SwZQWn+5/W3SjZk0KoM1moUl24Mtzs1UEg3B9FNmBrc/+Tz75JD7ykY/g05/+NLZu3YqpU6fi5ptvxpe+9CUAwL59+9DX14cVK1Yo3+P1erFs2TK8+OKLeQupSCSCSEQduRoeTt1xisViiMX07UlSKeLft/p5VIPXmbpYGQkb/70PpDs9bT6XLX9XHS2pE/yRU6Giz090TJxIlvWzNNKxo4fP5UQ4lkRwLIJYLPdFyqmR1HHU4nPq+r11pV/XQydDGAylvtchAa4yX7tGVupxG3Clzh9DY8XPH6fS6ymaPblfZ68jVRHHkzJC4ajuMduRdDfM5+TfnRXMOOc5kepUDofjOHJqBAF3s/K5V/YNAADOnt6GeDz3DT8HUlsjHDw5hj1HhzDBp787/frBkwCABT2tPH5y8Kb/xkNZ1wh9g6kxysnNnpJ/b3y/pGL0Hhu2LqTeffdd/PznP8ett96K7373u/jrX/+Kr33ta/B6vbj++uvR19cHAOjs7Mz4vs7OThw4cCDv465fvx533nnnuI9v2rQJgUDuu07VtnnzZqufQsW9d0gC4MSed/Zj48Z3DX3vG287ADhw7OA72Ljx7Yo8v3KEBlLP76W//R1dQ28W/NqRUScACS+/+Dz2+8v/txvh2NFDTqR+r1ue3Ya9zbm/5sW+1DE4OngCGzduLPqYh4bSx+zhAWzc9BcALngcMp566ikTn3ljMnrc7km/FkeOnyr62r32Xurv8VT/EWzceGjc51N5JKm3wyf++DSadTYHBoZSx9jfXnkZg7uNPHsyU7nnPL/kxDAk/PEvz2Fumzqe99Se1HHjH+0reIw1J1Nf98QzL+PEW/rH+/68O/V9ruHDOY/LRnfyeOr38+rfdqKlf4fy8RcOp/72I0PHdZ23C+H7JeUzOjqq6+tsXUglk0mcf/75WLduHQDgnHPOwa5du/Dzn/8c119/vfJ12WMYxUYzvvOd7+DWW29V/nt4eBjTp0/HihUr0NraavJPYUwsFsPmzZuxfPlyuN313eo/9uIBbHxvNyZ39WDVqrMMfe9j//s14PgALjr3LKw6b2qFnmHp+l7Yj2eP7kFgcvGf7V9f+TOQSGL5hy5TNn0tRSMdO3ps2P08hk6O4vwlF+O8mbnXN7y3bR+wby/mzpqGVasWFn3MBSdG8bM3n8dw3InzL7oYeP0ltDX5sGrVMrOffsMo9bidcXgYP33zJcju4r//1zb+HTh0EIvmz8Gq5XNzfs13X/0zwrEkLv7gpZg+Qd8NtTtefwZADMsv+yBOn5KnWqeKMeuc99DR7Ti2/xTmLDgbq87qVj6+ftdWABF89vIlWDJ7Yt7v3+HYjTdfOIBA12ysWnWG7n/3R29uAxDGpz9c+PEb1dbwG+g9cQRz5p6BVR+crXz89ad2AwcPYPH807DqI/NKemy+X1IxYlqtGFsXUt3d3TjzzDMzPva+970Pv//97wEAXV1dAIC+vj50d6snv/7+/nFdKi2v1wuvd3zSi9vtts0flJ2eS6U0+1JjUuG4bPhnHUyncHW0+m35e+qZkIrEPR6MFnx+siwra6Sa/B5TfpZGOHb0EGvw4rIj7+8jlF4/1RbQ97ufNil1sTwWS6IvmFqn1+x18fdtAqPH7cT0WpSRcLzo941EUq9ze5M379c2e10Ix6KIJiXdz0OEjbQ3+3gMWKjcc96UdDjQybGE8jhHh8bQNxyB0yHh3FmT4Hbnv1ya25m6AbvvxJju5zEwEsGR9BraxTMm8vjJocmb+p1Ek8j4/ZwIpUauutrKf//n+yXlo/e4sPXq9ksuuQS7d2fOS+zZswczZ84EAMyePRtdXV0ZrdloNIqtW7di6dKlVX2uZJzfk3uPCD2U+HObhk2I1L6+IpvyxhKyEljA1D5ziXUuBVP7DIZN+NxOJeVr97FUMiiDJqwh4s9D0QTiifyBIkDxfaQAKJut6t1LKhJPKHuUMWyituXaS0rsH3VGV+6NeLVEct87/fr3khJBE6d1NCnHMmXSbqyuNTDCPaTIPmxdSH3jG9/ASy+9hHXr1uHtt9/Gww8/jF/+8pe45ZZbAKRG+tasWYN169bh8ccfxxtvvIHVq1cjEAjg2muvtfjZUzH+9B2+0uLPU4WUHePPAXVT3mPD4YKRuBHN/hjcR8pc3jx7kGgNhwvvL5TL1PbU+OWedCHFi2hrtGiizItFoKupfflfKzUCXd/5KKT5umKbOZO95Sqkeg+m9o/KF3uuJfaSOjw4pvvG4M5D3D+qGGUfqTzx5yJxkchKtr5yu+CCC/D444/jkUcewcKFC/H9738f9957L6677jrla2677TasWbMGN998M84//3wcPnwYmzZtQktLi4XPnPQIKPHnxgqpWCKpXDjZcUNeAJjSmjrBR+JJDBWIZxZjfQALKbOpb8J64s/1XwiLCPTdfSykrOR2OpRzSLFCakhH51FsqjuqsyMlOld+t5N72dS4jvQFuYjVBoDXDhbeiFdrYpMHE9Kx6e8O6OtKiY7UomnFH79R5S2k2JEiG7H9FcBVV12Fq666Ku/nJUnC2rVrsXbt2uo9KTKFuAgaM7iPlOhGOSRjnYRq8rmdaA+4MTgaQ99wOG/nTNlDyuXQvXcN6ePTM9pncENeAJiW7kjtP5FK9OFon3VafC6MRhPK65hPUEfnUYxv6d2Ul5vx1o/JWR2pSDyBN4psxJttTkczXjlwCu8cD2FBT/Euk9KRmsaOVD7qPlLqzbBoPInB0dTfewc7UmQDvAVOlhEnSaMdKXESbfO7bX0nWB3vi+T9GrFjO7tR5st3N1PL6BopQO1IJZJifQzXtllFvG7FCinxOhfa9FQUxHrPR6Ij1czXv+aJC3Kx9mbXkdRGvBObPJg5SV+C42kdqYChd48X70j1D4fRNxyGJAFndlubFGxn/hzn8BPpPeFcDombGJMt8OqNLKN0pAyukTqZDpqY0GTPsT5BBE4cG8ofOKF0pNy8GDObWKisHZ/MpnYq9HcVetoyI+rZkbCOWCc1PJa/i5RIygimi55CI5yiIGZHqvFMSXekToxEkEjK6D04CAA4d0a77kkBsU7qneOhol8rxvpO72jm8VNArrAJ7fooh41vpFLjYCFFlhGjNEZT+5TEPpuujxI60+ukCiX3aUf7yFyiIxXRM9pXQkdKaGbQgGXEqF6wQEdqRLN+qlA6mtHUPhE2wQvh2jexyQNJApJy6kaduj5K31gfoCmkdCT3qeujONZXSK6pAib2kd3w6o0so+zzk5QRLdA1yHZytDY6Utrkvnw42lc5yptwnmMrEk8oQRTlFFIBXkhbRh3ty1/8iGLZ73bCU+DvrPTRPr7+tc7ldGBS+v3keDCC3gP6gyYEEYH+7sAIksn8Sa0AE/v08ucIDFI7UvZ+/6fGwas3soxfM85mpCsl1kiJlCS76mzTUUgpHSmO9pmt2D5S2qS3ZgOpfa0+d0b0NtfIWEcd7cvfkRrSEX0OAAGO9jU0EaX9xuEhHBkKwyEBiw0k6k2f4IfbKSEcS+LI0Fjer5NlGTuY2KeLNz3aN5ZjtI8dKbILFlJkGY/LAVd6xtnIOqlaWSPVpWNTXnWNFP8UzVYsbEJcfLd4XYZDS8ReUgAvpK2kjvYV70gV6zqKzpL+0T6GTdQTcWG+6c1jAIAzuloN/W27nA7MmpQKnCi0TurYcATHgxE4GDRRVO7RvtT7PwspsgtevZGl/MpeUvoj0GtnjZSO1L44R/sqRe1I5R7tK2UzXoGFlD0oHakCa6REEEWx11lsqhvS2R0fSZ+zuBlvfRDJfc/tPQ4AOHdmu+HH0LNOasehQQDAvM4W5f2Pcis82sdCiuyBV29kqVI25RX7SE2okUJqYCSCWCLPOp0YR/sqRXdHysBYn6BdJ8U1MtYRXaZCYRNqR6rw6yRS+4x2pFhI1wfR4RBTAudM1x80IcyZIjpS+QupN8RYH9dHFZXrHM7RPrIbFlJkKb/beAT6SbFGyuajfZOaPHA5JMiyevLPxtS+ylFS+/KETejZpDWfjI4UOxKW0RN/ruwVVqwjZXi0L3XOYiFdH7IvzM+dabyQOm2yiEAv0JE6zI149cq1j5SS2seOFNkEr97IUv4SItCV0b4me4dNOBySsj9JvsAJZbSP+0iZLtceJFp6OxW5sCNlD6I4KjjaJwrmImuklEJK55gxwybqi3ZUbGKTB7N0bsSrpST35VkjJcuyktjHoInixDk8npSVqQ5ltI8dKbIJFlJkqZJG+0K1MdoHFE/uY0eqcnyuwvHnSqfCQPS5kLlGikWwVdTRPj0dqSKjfco+Usbiz/n61wdtR+qc6fo34tU6rSM12tcfjOQs7o8MhXEiFIXLIeGMrpbSn2yD8GluMIZjCYRjCWVzbY72kV3w6o0sJQqpsZi+u8CxRFI5kdZCIaUk9w3lKaRiLKQqRSQh5tuQV+lIlTDaN21C6m61JLEjYaVWPWETOlP7Sl0jxY5kfcgopAzsH6XV6nMrUwi5ulI7NUETPk4hFKV9XwzHkko3yutyoIV/d2QTPBLJUuLNRG9HSgRNOKTSLoCrTUnuy7tGSqT28U3VbMXDJsTIl/HTYEeLF99aMQ8el4MXRBbSxp/Lspyzi2A0tS8STyKeSMLlLHxzg6N99UW75ubcGcbXRwlzOprRH4zgnf4RnD29PeNzO7k+yhBJkuBzOxCOJRGOJXB8RA2aKKVjSFQJfAcgSykdKb2FVCh1d7k94DG8948VlEIqX0eK+0hVjDLalzf+vPSOFAB85UNzS3tiZBoRNpFIyhiNJnIWNfo7Uur3hiIJtAUK/00ybKK+tAfcmNrux2g0jsVZBZARc6Y04X/ePZEzcGKHsj6KhZRePrdTLaQYfU42xHcAspThQirdkWoP2L8bBQBdbakTfr5NebmPVOUoYRPx3MdWUGcIAdmX3+2EyyEhnpQRDMdzF1I610h5XA54nA5EE0mEonG0FTnHMP68vkiShI1f+wASslzWa6rsJZVVSMmyrHakpraX/PiNxu92YhCxjNE+ro8iO+HVG1nK7069YY3qjD+vlc14hc6WImET3EeqYiq5jxTZgyRJRTflNVIwB3Suk5JlWUn3Y9hE/WgLuDGxzG011EIqc43UoVNjGByNwe2UMK+ruax/o5H4NFukDIywkCL7YSFFlvJ7Uoeg3o7USbEZr833kBLU1D7uI1VtSthEPAlZlsd9vtzRPrIHJQJ9LHchpXcfKUCT3FfkfDQWSyCZPqQ42kdaIgL9wIlQxkbsoht1Rlcrb5wZoL0hxtE+siNevZGlAgb3kaq5jlR6jdRIJK4sTtdS95Hin6LZxBuwLAPRxPh1UmrYBAupWlYoAj2RlJWUTz2hIs06N+UVf8sOSd00lAgAult98LkdiCVkvHdyVPk410eVRoxoj2kKKXakyE549UaWEhchukf7RtNhEzbfjFdo9rqUi7Nc431qR4oXY2bLjs7Npnak2FGoZYVG+0Y0xVWLgdG+XDc9tETQRJPHxfQwyuBwSDht8viNeXceHgQAnDWVhZQRamiQZrSPHSmyERZSZCk1bELf3i211pECgM7W1Ek/V3If95GqHI/TAXGNm72XVCyRVCL32ZGqbeL1G87RkRpKj/X53U54dPyNiZseo0XORwyaoELEeJ8InJBlmR2pEvnT1wiRWFITf1477/9U/3j1RpYSJ0m9+0jV2hopAOhKr5PKldzH1L7KkSQpbwR6MKNTwYvhWqZ0pHKskTLadRQ3dkYihc9H6h5S7CTTeHM6mgCohdSBE6MIhuPwuByY19li5VOrOTlH+5p9Vj4logy8eiNL+TWJPHqI0b4JtdSRaskfOKHuI8ULskrIF4EeTF9gN3mcRTdeJXvTbsqbTQma0Nl1bNK5Rkp8nkETlEt2cp8ImnhfdyvcPN8YIm6GnRiJKDfEJrMjRTbCv2iyVMlhEzWyRgrQJvcVWiPFP8VKyBeBLoIm9KybIXsrtEbKaDKjMtqnM2yCo32Uiyik3u4fydo/imN9RvnSXeL3To0BSN38EtcNRHbAqzeylNHRPlFI1VJHqiud3NeXa40UR/sqShRSomAVGDRRP5Q1UrlG+9IFc5vOQkpcoBUb7VPCJlhIUQ6zJzdBklJr9E6GothxaBAA10eVQnSkRAIiE/vIbnj1RpZSUvt0FFLReFKJMi5308RqEhHox4LjC6kwN+StKFGgju9IGRv5IvsqONonCmad6+CaveJ8xNE+Kp3f48TUdj8AYG//CN44PAwAOIuFlGFir8n3TrGQIntiIUWWEou7sy90cxkcS3WjHFJtXQAXTu3jPlKVpI725etI1c5xRLkVHO0zsBkvoHaYisWfM2yCijktPd635e/9GInE4XM7cHr6Y6Sf6EiJNcbcjJfshldvZKmAR70DLMtywa89FUrvIRXwwOGonb1bRGpffzCCZDLzZ+QaqcrK35HSv0kr2VuhDXlFJLrusAmPsbAJjvZRPiK574nXDwMAzuxuZbBNCXxZQUzsSJHd8K+aLCXWSCXl8etYsp1U1kfVVheho9kLSQLiSRkDITW5T5ZlbshbYXnDJtiRqhsF48/HjK2FU1L7iowah9Kjf81c9E55iMAJ0Uk5a1q7hc+mdomwCYGb8ZLdsJAiS/k1d5uKJfcNjtZe0AQAuJwOZRyhXxOBHk2ohaOPo30Vocaf595HqpZGRCk3ESRRMLVP5+scSI/qFetIjTBsgoqYkzXGt4iJfSXxZU1rTGZHimyGV29kKZfTAY9T3XAvn1giiWd29wOorc14hVzJfdoOHDtSlaGk9uUJm+BmvLVPFEnhWBLR7HRGMcJpMP6c+0hRueZMacr4bwZNlGbcaB87UmQzLKTIcsUi0N89PoJP/fxF/PaVQwCAD58xpWrPzSwiua9Ps5dUJB2AIEmA21k7a75qiViozNG++tWsKYaDWV0pox0pZY1Uke4495GiYjqavcqNmoDHqYRPkDF+rpEim2MhRZYTgRPZo32yLOPhlw/iyh8/j78dGkKrz4X7rj0Hn71whhVPsywiua9fW0hp9pCSJBZSlSBG+8btIzXG0b564XRISmcoO3DC+BopfaN9Iab2URGSJCnjfQt6WuGsoYAkO8nuSHG0j+yGt9PIcupeUurFy4mRCP719zvx57eOAQCWzpmEe/5xMbrb/JY8x3J15epIMWii4oqHTfAUWA9afC6MROLj1kkZTu1LF2Sj0QSSSTlvOihH+0iP06c04/X3BrFoarvVT6VmiX2khMnNtTfaT/WN7wJkOTHaJ9ZIPfP3fvzL/7sDAyMReJwO3LZyPv75ktk1FXmerbNNFFJq2EQkxujzSlPjz7M7UtyQt560+tw4OhTO6EjFE0llBM/oGikAGI0l8hZKDJsgPb586RxIAG5cdprVT6VmaW80tvndvPFItsN3AbKcGO07GYri//rDG/jfLx0AAMzrbMa9nzkHZ/a0Wvn0TCHWSOUc7WNiX8V483akjF1gk73likDXbqqrN1TE63LAIaW2YwhF4nkLKXakSI85Hc34vz+92OqnUdO0o31cH0V2xHcBspw/vcD7O4/tVMbd/vmS2bht5fxx89G1iqN91lBG+zRrpBJJWe1UMLWvLrTmiEAX6+ACHifcOjdClSQJTV4XguF43nVSiaSsdM/ZkSKqLL9mHymO9ZEd8V2ALOfXBAJ0tnpx96cX4wNzOyx+VuYShdTgaAzhWAI+t1NTSLEjVSnKPlKajtRIWNupYEeqHoiCWDvaZzSxT2jyiEIqd3JfSLOWk2ETRJWl3Ueqo8Vn4TMhyo1XcGS5eZ0tAIArFnbh6a9/sO6KKCAVaiAKJrEpr9jbiIVU5eSKPxcX2D63Ax7+7uuCKIi1o31GE/sEURyN5OlIiU6V2ymxm0xUYRmjfdxDimyIHSmy3Dcun4d/PH86pk3w120MuCRJ6Grz4cCJUfQNhzFjUoCjfVWgbMirGe0bYtBE3RHF0rAJHalmJbmvcCHFsT6iytMWUpNbONpH9sPbsWQ5h0PC9ImBui2ihOxNeZVCimETFaPsI5WjI8WgifqhdKRyrJEy+joH0ms283WklMQ+DwspokpzOiR40msc2ZEiO+IVHFGVZCf3aTfkpcrwKqN9akdK3YyXF8L1QnSdcq+RMjrap+4llQsT+4iqS9wQY2of2RGv4IiqpKs19SbQN5QupGIc7as0JWwirl4UB9mRqju54s+VEU6Dr3Nzeo1UvtS+EWW0j3+3RNUwKd2JmjYhYPEzIRqPt9SIqiTvaB87UhXjy7GPlLKHFNdI1Q01/lzTkSpxLVzAW3i0j2ukiKrr7k8vxv6BEE6f0mz1UyEah+8ERFWijvalU/u4IW/FqfHn2tG+1AW23k1ayf7U+HPNGill02Vjr3MzR/uIbOW8mRNw3swJVj8Nopx4BUdUJV1t+TpSHBGqFG+B+HOO9tWPgvHnJewjBegIm2AhRUTU8FhIEVVJl2a0T5ZlzRop/hlWijb+XJZlANqwCRZS9UJ0nUYicSST6de5xIK5qcgaKXakiIhI4BUcUZVMSYdNRONJDI3FNKl97EhVik8zNik6gOoFNi+E64UoipMyEErv/yQK5jbDhVTquAhFco/2MWyCiIgEFlJEVeJ1OTEhkLqo6xsOcx+pKtBu5ig6gKWOfJF9eV0OZa8ZsTaq1A15Ax59HSmO9hEREa/giKpISe4bCjO1rwpcDgmO9D7PIgI9GC5to1ayL0mSlPAQETihFMwlh03kKaSiHO0jIqIUXsERVZEInOgfjiAS42hfpUmSNC4CvdSNWsnelAj0sTjiiSRC6dQ9w2ETReLPlbAJD48fIqJGx0KKqIo6W9TACXakqkMtpDJH+1o42ldXtBHoQc1+UkZj7kWBlG+NFEf7iIhI4BUcURV1tmkLKe4jVQ0+l9hLKoFkUkYwUtr+QmRvSgR6OKZ0HZs8Tricxv6+lNS+fKN9TO0jIqI0XsERVVGXsilvmPtIVYl2tG8kGkc6BZ1hE3VGFMbBcFyNuC9hHVyzktoXVyLztZjaR0REAgspoirqTEeg9w2HuY9UlXg1e0mJsT6Py5GR6Ee1r8WrbspbamIfAATShVRSVsdBtdiRIiIigVdwRFWkpvZFNPtI8c+wksReUuFYgpvx1jHRkRoOx0tO7AOAgKbAzjXeJ9ZOcY0UERHxCo6oikRq34lQRLkg87IzUlGiUA3Hk0o0NtdH1R9RHAfD5XWkHA4p715S0XgS0USqS8VCioiIbF1IrV27FpIkZfyvq6tL+bwsy1i7di16enrg9/tx6aWXYteuXRY+Y6LCJgY8cDslyDJwLBgGwI5UpWnXSInNWtmRqj8inW94rLw1UkD+CHRtYdXk4Q0QIqJGZ/sruAULFuDo0aPK/3bu3Kl87q677sKGDRtw3333Yfv27ejq6sLy5csRDAYtfMZE+TkcEqakI9DFOnYWUpXlS4d5RGIJTfQ5uwn1RtlHKqMjVdrrrG7KmxmBLgorn9thOA2QiIjqj+3fCVwuF7q6upT/dXR0AEh1o+69917cfvvt+OQnP4mFCxfiwQcfxOjoKB5++GGLnzVRfiJwQmDoQWWpa6SS6gV2iZ0Ksi81/ly7Rqq011mM9o3rSEUZNEFERCrbvxvs3bsXPT098Hq9WLJkCdatW4fTTjsN+/btQ19fH1asWKF8rdfrxbJly/Diiy/ixhtvzPuYkUgEkUhE+e/h4WEAQCwWQywWq9wPo4P4961+HlQ5Hc2ejP92IGnK681jJzePUwIAhCIxJNNtwGaPk78nmzDruA2ka6bgWBSDo1EAQJPHUdLjikIqOBrJ+P6hUET5PI8f6/GcR6XisUPF6D02bF1ILVmyBL/+9a8xb948HDt2DD/4wQ+wdOlS7Nq1C319fQCAzs7OjO/p7OzEgQMHCj7u+vXrceedd477+KZNmxAIBMz7AcqwefNmq58CVcjYSQe0zeCtW/4Mn4lNKR47mfoOp37fb/59D6JJAHBg4MhBbNy439onRhnKPW4PhwDAheNDIbydGAHgwP49b2Hj0JuGHys0mDpm/ueVXsgH1b2k3hqUADiRCI9i48aNZT1fMg/PeVQqHjuUz+joqK6vs3UhdcUVVyj//6JFi3DxxRdjzpw5ePDBB3HRRRcBACRJyvgeWZbHfSzbd77zHdx6663Kfw8PD2P69OlYsWIFWltbTfwJjIvFYti8eTOWL18Ot5vjR/Xo0HP7sK1vr/LfV69aCbcJ6y147OT2xp/2YFvffkybORtD4Rhw9AjOPnMeVi07zeqnRjDvuD08OIa7djyHiOyEv7UVODWISy48FysXdBb/5iybgjvw5mAfTpt/JlZdPFP5uPRGH/DWDnR3TMCqVReW/FzJHDznUal47FAxYlqtGFsXUtmampqwaNEi7N27Fx//+McBAH19feju7la+pr+/f1yXKpvX64XX6x33cbfbbZs/KDs9FzJXzwS16+mQAL/XU7T4N4LHTiZ/eqPWaFJGKJKKrm5v9vF3ZDPlHrcTW1L/NxpPYmAkNdo3scTXuSW9tioSlzO+P5zOnmj28W/MTnjOo1Lx2KF89B4Xtg+b0IpEInjrrbfQ3d2N2bNno6urK6MtG41GsXXrVixdutTCZ0lUmNiUFwC8LqepRRSNlzNsgql9dafZ44L4UzoymNpaoNSY+4BHxJ9npvaJ+HPuIUVERIDNC6lvfetb2Lp1K/bt24eXX34Zn/rUpzA8PIwbbrgBkiRhzZo1WLduHR5//HG88cYbWL16NQKBAK699lqrnzpRXl3aQspt6z/BuiDiz1P7SJW+USvZm8MhKWl6YtPcUjdebvbm3pBX/Hezh4UUERHZfLTv0KFDuOaaazAwMICOjg5cdNFFeOmllzBzZmpm/bbbbsPY2BhuvvlmnDp1CkuWLMGmTZvQ0tJi8TMnyi+zI8VCqtLUDXmTmo1abX3qoxK1+twIhuMZ/10K0XESceeC6FCxI0VERIDNC6lHH3204OclScLatWuxdu3a6jwhIhM0eV1o8boQjMThdXEPqUoTo32RODtS9S57o+VSN14OiEIqX0fKy79bIiKy+WgfUb3qbEt1pdiRqjy1I5Uoe6NWsjdtgdzkccJVYhqmKJRGo1wjRURE+fEqjsgCYp0U10hVnuhInQxFkUxvCcSOVH3Sjmy2lVEsNylhE9mjfSykiIhIxas4IgtMaU3F73O0r/JE2ER/MAIAcDslpbii+qItkMvpOjblG+2LitE+FlJERMRCisgSSkeKo30VJ7p+IoSg1edm5Hyd0q6JKqfrqBZSmaN9DJsgIiItXsURWaA7vUZKrN+hysnu+pUaQED2p+1ClZPM2ORJx59Hc4dNNDFsgoiIwEKKyBIrFnThg/M6cO2FM6x+KnUvu1hl0ET9Mr8jlS+1j8U4ERHZPP6cqF51tvrw63++0Oqn0RCy10MxaKJ+mb1GKpaQEY0n4UmP4DJsgoiItNiRIqK6Nr4jxYvgepUx2lfGCKcY7QPULpQsy+xIERFRBhZSRFTXxhVS7EjVrYzRvjI6Ui6nQwmCEeukwrGkEp/PjhQREQEspIiozvmykhG5Rqp+ZYz2lVkwN2cl92n3lAowJIaIiMBCiojqnMvpgNOhxp2XM/JF9pbZkSrvdQ6kk/lEAaUk9nmccDgYn09ERCykiKgBaLtSLRztq1uZa6TKe52bPKlCbDQ92segCSIiysZCiojqnnadFMMm6pdZa6SA8RHoDJogIqJsLKSIqO5lFFLsSNUtr8uJlnShM7HJU9ZjiUJqJL1GSoROsCNFREQC3xGIqO55NXtJMWyivt31qbPQNxxGT7u/rMdpTq+RUkf7UgVVk5dBE0RElMJCiojqns/FjlSjuGJRtymPE/CIjhRH+4iIKDeO9hFR3fNldKR4IUzFiYJpVIz2MWyCiIiysJAiorrn1XSkmNpHejRlxZ8ztY+IiLKxkCKiuic6Ug4ptQ8QUTFitI+pfURElA8LKSKqeyK1r9XvhiRxM1UqThnti6ZG+5SwCQ8LKSIiSmEhRUR1TymkONZHOqnx55kdKab2ERGRwEKKiOqeGO1j0ATpJUZAOdpHRET5sJAioronwibYkSK9REcqpIz2MWyCiIgysZAiorrH0T4ySozwKR2pKDtSRESUiYUUEdW9QHpMq83PQor0aVLCJsRoXyLj40RERHxHIKK6d/XiHuw4NITPXjjd6qdCNUKk843fR4phE0RElMJCiojq3uzJTfhfN5xv9dOgGiI6T+FYEvFEkmETREQ0Dkf7iIiIsmg7T6FIQtlPiqN9REQksJAiIiLK4nU54XamNm8+PhJWPs6OFBERCSykiIiIcgik10kdG44AAJwOCV4X3zaJiCiF7whEREQ5iO7TseFUR6rJ44QkSVY+JSIishEWUkRERDmI2Pz+YKojxbE+IiLSYiFFRESUQ1N2R4qFFBERabCQIiIiykF0oERHioUUERFpsZAiIiLKQRntS3ekONpHRERaLKSIiIhyUMMmREfKWejLiYiowbCQIiIiyqFJGe3jGikiIhqPhRQREVEOgXQHKhxLAuBoHxERZWIhRURElEOzJ7NwYkeKiIi0WEgRERHlEMgqnNiRIiIiLRZSREREOTRnhUs0eRg2QUREKhZSREREOWSP8nG0j4iItFhIERER5dDk4WgfERHlx0KKiIgoB3akiIioEBZSREREOWRvwMtCioiItFhIERER5cDRPiIiKoSFFBERUQ7jR/uY2kdERCoWUkRERDlkF07sSBERkRYLKSIiohz8bicckvrfXCNFRERaLKSIiIhykCRJWSflcTngdvItk4iIVHxXICIiyiOQHu/jWB8REWVjIUVERJSHGOdj0AQREWVjIUVERJSH6ERlR6ETERGxkCIiIsoj4OFoHxER5cZCioiIKA+lI8VCioiIstRUIbV+/XpIkoQ1a9YoH5NlGWvXrkVPTw/8fj8uvfRS7Nq1y7onSUREdSOQHuljR4qIiLLVTCG1fft2/PKXv8RZZ52V8fG77roLGzZswH333Yft27ejq6sLy5cvRzAYtOiZEhFRvWDYBBER5VMThdTIyAiuu+46/Od//icmTJigfFyWZdx77724/fbb8clPfhILFy7Egw8+iNHRUTz88MMWPmMiIqoHrf5UIdXqc1v8TIiIyG5qYlbhlltuwZVXXonLL78cP/jBD5SP79u3D319fVixYoXyMa/Xi2XLluHFF1/EjTfemPPxIpEIIpGI8t/Dw8MAgFgshlgsVqGfQh/x71v9PKj28NihWmT34/ZjZ3Xh4EAInzi7y7bPsVHZ/dgh++KxQ8XoPTZsX0g9+uijeO2117B9+/Zxn+vr6wMAdHZ2Zny8s7MTBw4cyPuY69evx5133jnu45s2bUIgECjzGZtj8+bNVj8FqlE8dqgW2fm4XdkKvP3qYbxt9ROhnOx87JC98dihfEZHR3V9na0Lqffeew9f//rXsWnTJvh8vrxfJ0lSxn/LsjzuY1rf+c53cOuttyr/PTw8jOnTp2PFihVobW0t/4mXIRaLYfPmzVi+fDncbo6SkH48dqgW8bilUvHYoVLx2KFixLRaMbYupF599VX09/fjvPPOUz6WSCSwbds23Hfffdi9ezeAVGequ7tb+Zr+/v5xXSotr9cLr9c77uNut9s2f1B2ei5UW3jsUC3icUul4rFDpeKxQ/noPS5sHTbx4Q9/GDt37sTrr7+u/O/888/Hddddh9dffx2nnXYaurq6Mlqz0WgUW7duxdKlSy185kREREREVM9s3ZFqaWnBwoULMz7W1NSESZMmKR9fs2YN1q1bh7lz52Lu3LlYt24dAoEArr32WiueMhERERERNQBbF1J63HbbbRgbG8PNN9+MU6dOYcmSJdi0aRNaWlqsfmpERERERFSnaq6QevbZZzP+W5IkrF27FmvXrrXk+RARERERUeOx9RopIiIiIiIiO2IhRUREREREZBALKSIiIiIiIoNYSBERERERERnEQoqIiIiIiMggFlJEREREREQGsZAiIiIiIiIyiIUUERERERGRQSykiIiIiIiIDGIhRUREREREZBALKSIiIiIiIoNYSBERERERERnksvoJ2IEsywCA4eFhi58JEIvFMDo6iuHhYbjdbqufDtUQHjtUi3jcUql47FCpeOxQMaImEDVCPiykAASDQQDA9OnTLX4mRERERERkB8FgEG1tbXk/L8nFSq0GkEwmceTIEbS0tECSJEufy/DwMKZPn4733nsPra2tlj4Xqi08dqgW8bilUvHYoVLx2KFiZFlGMBhET08PHI78K6HYkQLgcDgwbdo0q59GhtbWVv5xU0l47FAt4nFLpeKxQ6XisUOFFOpECQybICIiIiIiMoiFFBERERERkUEspGzG6/XijjvugNfrtfqpUI3hsUO1iMctlYrHDpWKxw6ZhWETREREREREBrEjRUREREREZBALKSIiIiIiIoNYSBERERERERnEQoqIiIiIiMighi2k1q9fjwsuuAAtLS2YMmUKPv7xj2P37t0ZXyPLMtauXYuenh74/X5ceuml2LVrl/L5kydP4qtf/Srmz5+PQCCAGTNm4Gtf+xqGhoYyHuejH/0oZsyYAZ/Ph+7ubvzTP/0Tjhw5UvQ57ty5E8uWLYPf78fUqVPxve99D9pskKNHj+Laa6/F/Pnz4XA4sGbNGt0//89+9jPMnj0bPp8P5513Hp577rmMzz/22GP4yEc+gsmTJ0OSJLz++uu6H7veNfKxs23bNlx99dXo6emBJEn4wx/+MO5rVq9eDUmSMv530UUX6Xp8qox6OGYfe+wxLF++HB0dHWhtbcXFF1+MP/3pT7p+fp7vStfIxw7Pd+Wph2Pn+eefxyWXXIJJkybB7/fjjDPOwH/8x3/o+vl53mkMDVtIbd26FbfccgteeuklbN68GfF4HCtWrEAoFFK+5q677sKGDRtw3333Yfv27ejq6sLy5csRDAYBAEeOHMGRI0dw9913Y+fOnXjggQfw9NNP4wtf+ELGv3XZZZfht7/9LXbv3o3f//73eOedd/CpT32q4PMbHh7G8uXL0dPTg+3bt+MnP/kJ7r77bmzYsEH5mkgkgo6ODtx+++1YvHix7p/9N7/5DdasWYPbb78dvb29+MAHPoArrrgCBw8eVL4mFArhkksuwQ9/+EPdj9soGvnYCYVCWLx4Me67776CX7dy5UocPXpU+d/GjRt1/xtkvno4Zrdt24bly5dj48aNePXVV3HZZZfh6quvRm9vb8HH5vmuPI187PB8V556OHaamprwla98Bdu2bcNbb72Ff/u3f8O//du/4Ze//GXBx+Z5p4HIJMuyLPf398sA5K1bt8qyLMvJZFLu6uqSf/jDHypfEw6H5ba2NvkXv/hF3sf57W9/K3s8HjkWi+X9mieeeEKWJEmORqN5v+ZnP/uZ3NbWJofDYeVj69evl3t6euRkMjnu65ctWyZ//etfL/QjKi688EL5pptuyvjYGWecIX/7298e97X79u2TAci9vb26HrsRNdKxowVAfvzxx8d9/IYbbpA/9rGPGX48qp5aP2aFM888U77zzjvzfl6Web4zWyMdO1o835WvXo6dT3ziE/LnPve5vJ+XZZ53GknDdqSyiTbxxIkTAQD79u1DX18fVqxYoXyN1+vFsmXL8OKLLxZ8nNbWVrhcrpyfP3nyJB566CEsXboUbrc77+P8z//8D5YtW5axWdxHPvIRHDlyBPv37zfyo2WIRqN49dVXM34uAFixYkXBn4vya5Rjx4hnn30WU6ZMwbx58/ClL30J/f39Vfl3SZ96OGaTySSCwaDyM+TC8535GuXYMYLnO33q4djp7e3Fiy++iGXLluV9XJ53GgsLKaRmdG+99Va8//3vx8KFCwEAfX19AIDOzs6Mr+3s7FQ+l+3EiRP4/ve/jxtvvHHc5/71X/8VTU1NmDRpEg4ePIgnnnii4HPq6+vL+W9rn1spBgYGkEgkDP1clF8jHTt6XXHFFXjooYewZcsW3HPPPdi+fTs+9KEPIRKJVPzfpuLq5Zi95557EAqF8I//+I95H5fnO3M10rGjF893+tT6sTNt2jR4vV6cf/75uOWWW/DFL34x7+PyvNNYWEgB+MpXvoIdO3bgkUceGfc5SZIy/luW5XEfA1KztldeeSXOPPNM3HHHHeM+/y//8i/o7e3Fpk2b4HQ6cf311ysLGhcsWIDm5mY0NzfjiiuuKPhv5/p4Ps8995zyuM3NzXjooYcM/1xUWCMeO8V85jOfwZVXXomFCxfi6quvxlNPPYU9e/bgj3/8o+7HoMqph2P2kUcewdq1a/Gb3/wGU6ZMAcDzXTU04rFTDM93+tT6sfPcc8/hlVdewS9+8Qvce++9ys/B8w7l7os2kK9+9at48sknsW3bNkybNk35eFdXF4DUXYnu7m7l4/39/ePuMgSDQaxcuRLNzc14/PHHc7aSJ0+ejMmTJ2PevHl43/veh+nTp+Oll17CxRdfjI0bNyIWiwEA/H6/8u9n37kQ4wLZ/34+559/fkYKTGdnJ7xeL5xOZ87H1vu4lNJox06puru7MXPmTOzdu7fkxyBz1MMx+5vf/AZf+MIX8Lvf/Q6XX3658nGe7yqr0Y6dUvF8N149HDuzZ88GACxatAjHjh3D2rVrcc011/C8Q43bkZJlGV/5ylfw2GOPYcuWLcofiTB79mx0dXVh8+bNysei0Si2bt2KpUuXKh8bHh7GihUr4PF48OSTT8Ln8+n6twEorf+ZM2fi9NNPx+mnn46pU6cCAC6++GJs27YN0WhU+b5Nmzahp6cHs2bN0vUz+v1+5XFPP/10tLS0wOPx4Lzzzsv4uQBg8+bNGT8X5deox06pTpw4gffeey/jjZKqq16O2UceeQSrV6/Gww8/jCuvvDLj3+H5rjIa9dgpFc93qno5dnI9tnhcnneoYVP7vvzlL8ttbW3ys88+Kx89elT53+joqPI1P/zhD+W2tjb5sccek3fu3Clfc801cnd3tzw8PCzLsiwPDw/LS5YskRctWiS//fbbGY8Tj8dlWZbll19+Wf7JT34i9/b2yvv375e3bNkiv//975fnzJmTkRSTbXBwUO7s7JSvueYaeefOnfJjjz0mt7a2ynfffXfG1/X29sq9vb3yeeedJ1977bVyb2+vvGvXroI/+6OPPiq73W75v/7rv+Q333xTXrNmjdzU1CTv379f+ZoTJ07Ivb298h//+EcZgPzoo4/Kvb298tGjRw3/rutNIx87wWBQQx6SdwAABbFJREFU+T4A8oYNG+Te3l75wIEDyue/+c1vyi+++KK8b98++ZlnnpEvvvhieerUqcrPTtVXD8fsww8/LLtcLvmnP/1pxr89ODhY8Gfn+a48jXzs8HxXnno4du677z75ySeflPfs2SPv2bNH/tWvfiW3trbKt99+e8GfneedxtGwhRSAnP+7//77la9JJpPyHXfcIXd1dcler1f+4Ac/KO/cuVP5/DPPPJP3cfbt2yfLsizv2LFDvuyyy+SJEyfKXq9XnjVrlnzTTTfJhw4dKvocd+zYIX/gAx+QvV6v3NXVJa9du3ZcJGeuf3vmzJlFH/unP/2pPHPmTNnj8cjnnnuuEkcq3H///Tkf+4477ij62PWukY+dfM/7hhtukGVZlkdHR+UVK1bIHR0dstvtlmfMmCHfcMMN8sGDB3X9bqky6uGYXbZsWcFjrxCe70rXyMcOz3flqYdj58c//rG8YMECORAIyK2trfI555wj/+xnP5MTiUTRx+Z5pzFIsqzZwpmIiIiIiIiKatg1UkRERERERKViIUVERERERGQQCykiIiIiIiKDWEgREREREREZxEKKiIiIiIjIIBZSREREREREBrGQIiIiIiIiMoiFFBERERERkUEspIiIiIiIiAxiIUVERHVl9erVkCQJkiTB7Xajs7MTy5cvx69+9Sskk0ndj/PAAw+gvb29ck+UiIhqGgspIiKqOytXrsTRo0exf/9+PPXUU7jsssvw9a9/HVdddRXi8bjVT4+IiOoACykiIqo7Xq8XXV1dmDp1Ks4991x897vfxRNPPIGnnnoKDzzwAABgw4YNWLRoEZqamjB9+nTcfPPNGBkZAQA8++yz+PznP4+hoSGlu7V27VoAQDQaxW233YapU6eiqakJS5YswbPPPmvND0pERJZhIUVERA3hQx/6EBYvXozHHnsMAOBwOPDjH/8Yb7zxBh588EFs2bIFt912GwBg6dKluPfee9Ha2oqjR4/i6NGj+Na3vgUA+PznP48XXngBjz76KHbs2IFPf/rTWLlyJfbu3WvZz0ZERNUnybIsW/0kiIiIzLJ69WoMDg7iD3/4w7jPffazn8WOHTvw5ptvjvvc7373O3z5y1/GwMAAgNQaqTVr1mBwcFD5mnfeeQdz587FoUOH0NPTo3z88ssvx4UXXoh169aZ/vMQEZE9uax+AkRERNUiyzIkSQIAPPPMM1i3bh3efPNNDA8PIx6PIxwOIxQKoampKef3v/baa5BlGfPmzcv4eCQSwaRJkyr+/ImIyD5YSBERUcN46623MHv2bBw4cACrVq3CTTfdhO9///uYOHEinn/+eXzhC19ALBbL+/3JZBJOpxOvvvoqnE5nxueam5sr/fSJiMhGWEgREVFD2LJlC3bu3IlvfOMbeOWVVxCPx3HPPffA4UgtF/7tb3+b8fUejweJRCLjY+eccw4SiQT6+/vxgQ98oGrPnYiI7IeFFBER1Z1IJIK+vj4kEgkcO3YMTz/9NNavX4+rrroK119/PXbu3Il4PI6f/OQnuPrqq/HCCy/gF7/4RcZjzJo1CyMjI/jLX/6CxYsXIxAIYN68ebjuuutw/fXX45577sE555yDgYEBbNmyBYsWLcKqVass+omJiKjamNpHRER15+mnn0Z3dzdmzZqFlStX4plnnsGPf/xjPPHEE3A6nTj77LOxYcMG/OhHP8LChQvx0EMPYf369RmPsXTpUtx00034zGc+g46ODtx1110AgPvvvx/XX389vvnNb2L+/Pn46Ec/ipdffhnTp0+34kclIiKLMLWPiIiIiIjIIHakiIiIiIiIDGIhRUREREREZBALKSIiIiIiIoNYSBERERERERnEQoqIiIiIiMggFlJEREREREQGsZAiIiIiIiIyiIUUERERERGRQSykiIiIiIiIDGIhRUREREREZBALKSIiIiIiIoP+fzv4TWgY0xX3AAAAAElFTkSuQmCC", 2181 | "text/plain": [ 2182 | "
" 2183 | ] 2184 | }, 2185 | "metadata": {}, 2186 | "output_type": "display_data" 2187 | } 2188 | ], 2189 | "source": [ 2190 | "import pandas as pd\n", 2191 | "import numpy as np\n", 2192 | "import matplotlib.pyplot as plt\n", 2193 | "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", 2194 | "\n", 2195 | "# Assuming 'time_series' is already created and represents your 2 months of data\n", 2196 | "# For demonstration, let's create a time_series that spans exactly 2 months\n", 2197 | "dates = pd.date_range(start='2023-01-01', periods=60, freq='D') # 60 days for 2 months\n", 2198 | "demand = np.random.randint(50, 100, size=60) + np.sin(np.arange(60) * 0.5) * 10\n", 2199 | "time_series = pd.Series(demand, index=dates, name='Demand')\n", 2200 | "\n", 2201 | "# 1. Remove the seasonal_order component\n", 2202 | "order = (1, 1, 1) # Non-seasonal ARIMA (p, d, q)\n", 2203 | "# seasonal_order is removed or set to (0, 0, 0, 0)\n", 2204 | "# model = SARIMAX(time_series, order=order, seasonal_order=(0, 0, 0, 0)) # or simply omit seasonal_order\n", 2205 | "\n", 2206 | "model = SARIMAX(time_series, order=order) # This is equivalent to seasonal_order=(0,0,0,0)\n", 2207 | "model_fit = model.fit(disp=False)\n", 2208 | "\n", 2209 | "future_steps = 10\n", 2210 | "predictions = model_fit.predict(len(time_series), len(time_series) + future_steps - 1)\n", 2211 | "predictions = predictions.astype(int)\n", 2212 | "print(predictions)\n", 2213 | "\n", 2214 | "# Optional: Plotting for visualization\n", 2215 | "plt.figure(figsize=(10, 6))\n", 2216 | "plt.plot(time_series.index, time_series, label='Historical Data')\n", 2217 | "forecast_index = pd.date_range(start=time_series.index[-1], periods=future_steps + 1, freq='D')[1:]\n", 2218 | "plt.plot(forecast_index, predictions, label='Forecast', linestyle='--')\n", 2219 | "plt.title('Time Series Forecast (Non-Seasonal ARIMA)')\n", 2220 | "plt.xlabel('Date')\n", 2221 | "plt.ylabel('Demand')\n", 2222 | "plt.legend()\n", 2223 | "plt.grid(True)\n", 2224 | "plt.show()" 2225 | ] 2226 | }, 2227 | { 2228 | "cell_type": "code", 2229 | "execution_count": 11, 2230 | "id": "c6eddecc", 2231 | "metadata": {}, 2232 | "outputs": [ 2233 | { 2234 | "name": "stdout", 2235 | "output_type": "stream", 2236 | "text": [ 2237 | "Optimal Order Quantity: 148\n", 2238 | "Reorder Point: 148.0\n", 2239 | "Safety Stock: 74.0\n", 2240 | "Total Cost: 557.4\n" 2241 | ] 2242 | } 2243 | ], 2244 | "source": [ 2245 | "# Create date indices for the future predictions\n", 2246 | "future_dates = pd.date_range(start=time_series.index[-1] + pd.DateOffset(days=1), periods=future_steps, freq='D')\n", 2247 | "\n", 2248 | "# Create a pandas Series with the predicted values and date indices\n", 2249 | "forecasted_demand = pd.Series(predictions, index=future_dates)\n", 2250 | "\n", 2251 | "# Initial inventory level\n", 2252 | "initial_inventory = 5500\n", 2253 | "\n", 2254 | "# Lead time (number of days it takes to replenish inventory) \n", 2255 | "lead_time = 1 # it's different for every business, 1 is an example\n", 2256 | "\n", 2257 | "# Service level (probability of not stocking out)\n", 2258 | "service_level = 0.95 # it's different for every business, 0.95 is an example\n", 2259 | "\n", 2260 | "# Calculate the optimal order quantity using the Newsvendor formula\n", 2261 | "z = np.abs(np.percentile(forecasted_demand, 100 * (1 - service_level)))\n", 2262 | "order_quantity = np.ceil(forecasted_demand.mean() + z).astype(int)\n", 2263 | "\n", 2264 | "# Calculate the reorder point\n", 2265 | "reorder_point = forecasted_demand.mean() * lead_time + z\n", 2266 | "\n", 2267 | "# Calculate the optimal safety stock\n", 2268 | "safety_stock = reorder_point - forecasted_demand.mean() * lead_time\n", 2269 | "\n", 2270 | "# Calculate the total cost (holding cost + stockout cost)\n", 2271 | "holding_cost = 0.1 # it's different for every business, 0.1 is an example\n", 2272 | "stockout_cost = 10 # # it's different for every business, 10 is an example\n", 2273 | "total_holding_cost = holding_cost * (initial_inventory + 0.5 * order_quantity)\n", 2274 | "total_stockout_cost = stockout_cost * np.maximum(0, forecasted_demand.mean() * lead_time - initial_inventory)\n", 2275 | "\n", 2276 | "# Calculate the total cost\n", 2277 | "total_cost = total_holding_cost + total_stockout_cost\n", 2278 | "\n", 2279 | "print(\"Optimal Order Quantity:\", order_quantity)\n", 2280 | "print(\"Reorder Point:\", reorder_point)\n", 2281 | "print(\"Safety Stock:\", safety_stock)\n", 2282 | "print(\"Total Cost:\", total_cost)" 2283 | ] 2284 | }, 2285 | { 2286 | "cell_type": "code", 2287 | "execution_count": null, 2288 | "id": "602b3713", 2289 | "metadata": {}, 2290 | "outputs": [], 2291 | "source": [] 2292 | } 2293 | ], 2294 | "metadata": { 2295 | "kernelspec": { 2296 | "display_name": "base", 2297 | "language": "python", 2298 | "name": "python3" 2299 | }, 2300 | "language_info": { 2301 | "codemirror_mode": { 2302 | "name": "ipython", 2303 | "version": 3 2304 | }, 2305 | "file_extension": ".py", 2306 | "mimetype": "text/x-python", 2307 | "name": "python", 2308 | "nbconvert_exporter": "python", 2309 | "pygments_lexer": "ipython3", 2310 | "version": "3.11.7" 2311 | } 2312 | }, 2313 | "nbformat": 4, 2314 | "nbformat_minor": 5 2315 | } 2316 | --------------------------------------------------------------------------------