├── README.md ├── figures ├── component.png ├── e-step.png ├── m-step.png └── problem.png ├── semisupervised ├── codes │ ├── gnn.py │ ├── layer.py │ ├── loader.py │ ├── run_citeseer.py │ ├── run_cora.py │ ├── run_pubmed.py │ ├── train.py │ └── trainer.py └── data │ ├── citeseer │ ├── dev.txt │ ├── feature.txt │ ├── label.txt │ ├── net.txt │ ├── test.txt │ └── train.txt │ ├── cora │ ├── dev.txt │ ├── feature.txt │ ├── label.txt │ ├── net.txt │ ├── test.txt │ └── train.txt │ └── pubmed │ ├── dev.txt │ ├── feature.txt │ ├── label.txt │ ├── net.txt │ ├── test.txt │ └── train.txt └── unsupervised ├── codes ├── gnn.py ├── layer.py ├── loader.py ├── run_citeseer.py ├── run_cora.py ├── train.py └── trainer.py └── data ├── citeseer ├── dev.txt ├── feature.txt ├── label.true ├── label.txt ├── net.txt ├── test.txt ├── train.true └── train.txt └── cora ├── dev.txt ├── feature.txt ├── label.true ├── label.txt ├── net.txt ├── test.txt ├── train.true └── train.txt /README.md: -------------------------------------------------------------------------------- 1 | # GMNN 2 | This is an implementation of the [GMNN (Graph Markov Neural Networks)](https://arxiv.org/abs/1905.06214) model. 3 | 4 | Table of Contents 5 | ================= 6 | 7 | * [Introduction](#introduction) 8 | * [Illustration](#illustration) 9 | * [Semi-supervised Object Classification](#Semi-supervised-Object-Classification) 10 | * [Two Graph Neural Networks](#Two-Graph-Neural-Networks) 11 | * [Optimization](#optimization) 12 | * [Data](#data) 13 | * [Usage](#usage) 14 | * [Further Improvement](#further-improvement) 15 | * [Acknowledgement](#acknowledgement) 16 | * [Citation](#citation) 17 | 18 | 19 | ## Introduction 20 | GMNN integrates **statistical relational learning methods** (e.g., relational Markov networks and Markov logic networks) and **graph neural networks** (e.g., graph convolutional networks and graph attention networks) for semi-supervised object classification. GMNN uses a conditional random field to define the joint distribution of all the object labels conditioned on object features, and the framework can be optimized with a **pseudolikelihood variational EM algorithm**, which alternates between an E-step and M-step. In the E-step, we **infer** the labels of unlabeled objects, and in the M-step, we **learn** the parameters to maximize the pseudolikelihood. 21 | 22 | To benefit training such a model, we introduce two graph neural networks in GMNN, i.e., GNNp and GNNq. GNNq is used to improve inference by learning effective object representations through **feature propagation**. GNNp is used to model local label dependency through local **label propagation**. The variational EM algorithm for optimizing GMNN is similar to the **co-training** framework. In the E-step, GNNp annotates unlabeled objects for updating GNNq, and in the M-step, GNNq annotates unlabeled objects for optimizing GNNp. 23 | 24 | GMNN can also be applied to many other applications, such as unsupervised node representation learning and link classification. In this repo, we provide codes for both **semi-supervised object classification** and **unsupervised node representation learning**. 25 | 26 | ## Illustration 27 | ### Semi-supervised Object Classification 28 | We focus on the problem of semi-supervised object classification. Given some labeled objects in a graph, we aim at classifying the unlabeled objects. 29 |

30 | 31 | ### Two Graph Neural Networks 32 | GMNN uses two graph neural networks, one for learning object representations through feature propagation to improve inference, and the other one for modeling local label dependency through label propagation. 33 |

34 | 35 | ### Optimization 36 | Both GNNs are optimized with the variational EM algorithm, which is similar to the co-training framework. 37 | 38 | #### E-Step 39 |

40 | 41 | #### M-Step 42 |

43 | 44 | ## Data 45 | For semi-supervised object classification, we provide the Cora, Citeseer and Pubmed datasets. For unsupervised node representation learning, we provide the Cora and Citeseer datasets. The datasets are constructed by [Yang et al., 2016](https://arxiv.org/abs/1603.08861), and we preprocess the datasets into our format by using the [codes](https://github.com/tkipf/gcn) from Thomas N. Kipf. Users can also use their own datasets by following the format of the provided datasets. 46 | 47 | ## Usage 48 | The codes for semi-supervised object classification can be found in the folder ```semisupervised```. The implementation corresponds to the variant ```GMNN W/o Attr. in p``` in the Table 2 of the original paper. To run the codes, go to the folder ```semisupervised/codes``` and execute ```python run_cora.py```. Then the program will print the results over 100 runs with seeds 1~100. 49 | 50 | The mean accuracy and standard deviation are summarized in the following tables: 51 | 52 | | Dataset | Cora | Citeseer | Pubmed | 53 | | -------- |----------|----------|----------| 54 | | GMNN | 83.4 (0.8) | 73.0 (0.8) | 81.3 (0.5) | 55 | 56 | The codes for unsupervised node representation learning are in the folder ```unsupervised```. The implementation corresponds to the variant ```GMNN With q and p``` in the Table 3 of the original paper. To run the codes, go to the folder ```unsupervised/codes``` and execute ```python run_cora.py```. Then the program will print the results over 50 runs. 57 | 58 | The mean accuracy and standard deviation are summarized in the following tables: 59 | 60 | | Dataset | Cora | Citeseer | 61 | | -------- |----------|----------| 62 | | GMNN | 82.6 (0.5) | 71.4 (0.5) | 63 | 64 | Note that the numbers are slightly different from those in the paper, since we make some changes to the codes before release. In addition, the above experiment was conducted with ```PyTorch 0.4.1```, and the results might be slightly different if different versions of PyTorch are used. 65 | 66 | ## Further Improvement 67 | The results reported in the previous section are not carefully tuned, and there is still a lot of room for further improvement. For example, by slightly tuning the model, the results on semi-supervised object classification can easily reach ```83.675 (Cora)```, ```73.576 (Citeseer)```, ```81.922 (Pubmed)```, as reported in the appendix of the paper. Some potential ways for further improving the results include: 68 | 69 | 1. Train the model for longer iterations. 70 | 71 | 2. Use more complicated architectures for GNNp and GNNq. 72 | 73 | 3. Use different learning rate and number of training epochs for GNNp and GNNq. 74 | 75 | 4. Draw more samples to approximate the expectation terms in objective functions. 76 | 77 | 5. Integrate GNNp and GNNq for final prediction. 78 | 79 | 6. Adjust the annealing temperature when using GNNp to annotate unlabeled objects. 80 | 81 | 7. Use more effective strategies for early stopping in training. 82 | 83 | 8. Tune the weight of the unsupervised objective function for training GNNq. 84 | 85 | ## Acknowledgement 86 | Some codes of the project are from the following repo: [pygcn](https://github.com/tkipf/pygcn). 87 | 88 | ## Citation 89 | Please consider citing the following paper if you find our codes helpful. Thank you! 90 | ``` 91 | @inproceedings{qu2019gmnn, 92 | title={GMNN: Graph Markov Neural Networks}, 93 | author={Qu, Meng and Bengio, Yoshua and Tang, Jian}, 94 | booktitle={International Conference on Machine Learning}, 95 | pages={5241--5250}, 96 | year={2019} 97 | } 98 | ``` 99 | 100 | 101 | -------------------------------------------------------------------------------- /figures/component.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DeepGraphLearning/GMNN/e8a2232bca60b8b6a43e97a9c5d8121ed83780a1/figures/component.png -------------------------------------------------------------------------------- /figures/e-step.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DeepGraphLearning/GMNN/e8a2232bca60b8b6a43e97a9c5d8121ed83780a1/figures/e-step.png -------------------------------------------------------------------------------- /figures/m-step.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DeepGraphLearning/GMNN/e8a2232bca60b8b6a43e97a9c5d8121ed83780a1/figures/m-step.png -------------------------------------------------------------------------------- /figures/problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/DeepGraphLearning/GMNN/e8a2232bca60b8b6a43e97a9c5d8121ed83780a1/figures/problem.png -------------------------------------------------------------------------------- /semisupervised/codes/gnn.py: -------------------------------------------------------------------------------- 1 | import math 2 | import numpy as np 3 | import torch 4 | from torch import nn 5 | from torch.nn import init 6 | from torch.autograd import Variable 7 | import torch.nn.functional as F 8 | from layer import GraphConvolution 9 | 10 | class GNNq(nn.Module): 11 | def __init__(self, opt, adj): 12 | super(GNNq, self).__init__() 13 | self.opt = opt 14 | self.adj = adj 15 | 16 | opt_ = dict([('in', opt['num_feature']), ('out', opt['hidden_dim'])]) 17 | self.m1 = GraphConvolution(opt_, adj) 18 | 19 | opt_ = dict([('in', opt['hidden_dim']), ('out', opt['num_class'])]) 20 | self.m2 = GraphConvolution(opt_, adj) 21 | 22 | if opt['cuda']: 23 | self.cuda() 24 | 25 | def reset(self): 26 | self.m1.reset_parameters() 27 | self.m2.reset_parameters() 28 | 29 | def forward(self, x): 30 | x = F.dropout(x, self.opt['input_dropout'], training=self.training) 31 | x = self.m1(x) 32 | x = F.relu(x) 33 | x = F.dropout(x, self.opt['dropout'], training=self.training) 34 | x = self.m2(x) 35 | return x 36 | 37 | class GNNp(nn.Module): 38 | def __init__(self, opt, adj): 39 | super(GNNp, self).__init__() 40 | self.opt = opt 41 | self.adj = adj 42 | 43 | opt_ = dict([('in', opt['num_class']), ('out', opt['hidden_dim'])]) 44 | self.m1 = GraphConvolution(opt_, adj) 45 | 46 | opt_ = dict([('in', opt['hidden_dim']), ('out', opt['num_class'])]) 47 | self.m2 = GraphConvolution(opt_, adj) 48 | 49 | if opt['cuda']: 50 | self.cuda() 51 | 52 | def reset(self): 53 | self.m1.reset_parameters() 54 | self.m2.reset_parameters() 55 | 56 | def forward(self, x): 57 | x = F.dropout(x, self.opt['input_dropout'], training=self.training) 58 | x = self.m1(x) 59 | x = F.relu(x) 60 | x = F.dropout(x, self.opt['dropout'], training=self.training) 61 | x = self.m2(x) 62 | return x 63 | -------------------------------------------------------------------------------- /semisupervised/codes/layer.py: -------------------------------------------------------------------------------- 1 | import math 2 | import numpy as np 3 | import torch 4 | from torch import nn 5 | from torch.nn import init 6 | from torch.autograd import Variable 7 | import torch.nn.functional as F 8 | from torch.nn.parameter import Parameter 9 | 10 | class GraphConvolution(nn.Module): 11 | 12 | def __init__(self, opt, adj): 13 | super(GraphConvolution, self).__init__() 14 | self.opt = opt 15 | self.in_size = opt['in'] 16 | self.out_size = opt['out'] 17 | self.adj = adj 18 | self.weight = Parameter(torch.Tensor(self.in_size, self.out_size)) 19 | self.reset_parameters() 20 | 21 | def reset_parameters(self): 22 | stdv = 1. / math.sqrt(self.out_size) 23 | self.weight.data.uniform_(-stdv, stdv) 24 | 25 | def forward(self, x): 26 | m = torch.mm(x, self.weight) 27 | m = torch.spmm(self.adj, m) 28 | return m 29 | -------------------------------------------------------------------------------- /semisupervised/codes/loader.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import math 4 | import numpy as np 5 | import torch 6 | from torch.autograd import Variable 7 | 8 | class Vocab(object): 9 | 10 | def __init__(self, file_name, cols, with_padding=False): 11 | self.itos = [] 12 | self.stoi = {} 13 | self.vocab_size = 0 14 | 15 | if with_padding: 16 | string = '' 17 | self.stoi[string] = self.vocab_size 18 | self.itos.append(string) 19 | self.vocab_size += 1 20 | 21 | fi = open(file_name, 'r') 22 | for line in fi: 23 | items = line.strip().split('\t') 24 | for col in cols: 25 | item = items[col] 26 | strings = item.strip().split(' ') 27 | for string in strings: 28 | string = string.split(':')[0] 29 | if string not in self.stoi: 30 | self.stoi[string] = self.vocab_size 31 | self.itos.append(string) 32 | self.vocab_size += 1 33 | fi.close() 34 | 35 | def __len__(self): 36 | return self.vocab_size 37 | 38 | class EntityLabel(object): 39 | 40 | def __init__(self, file_name, entity, label): 41 | self.vocab_n, self.col_n = entity 42 | self.vocab_l, self.col_l = label 43 | self.itol = [-1 for k in range(self.vocab_n.vocab_size)] 44 | 45 | fi = open(file_name, 'r') 46 | for line in fi: 47 | items = line.strip().split('\t') 48 | sn, sl = items[self.col_n], items[self.col_l] 49 | n = self.vocab_n.stoi.get(sn, -1) 50 | l = self.vocab_l.stoi.get(sl, -1) 51 | if n == -1: 52 | continue 53 | self.itol[n] = l 54 | fi.close() 55 | 56 | class EntityFeature(object): 57 | 58 | def __init__(self, file_name, entity, feature): 59 | self.vocab_n, self.col_n = entity 60 | self.vocab_f, self.col_f = feature 61 | self.itof = [[] for k in range(len(self.vocab_n))] 62 | self.one_hot = [] 63 | 64 | fi = open(file_name, 'r') 65 | for line in fi: 66 | items = line.strip().split('\t') 67 | sn, sf = items[self.col_n], items[self.col_f] 68 | n = self.vocab_n.stoi.get(sn, -1) 69 | if n == -1: 70 | continue 71 | for s in sf.strip().split(' '): 72 | f = self.vocab_f.stoi.get(s.split(':')[0], -1) 73 | w = float(s.split(':')[1]) 74 | if f == -1: 75 | continue 76 | self.itof[n].append((f, w)) 77 | fi.close() 78 | 79 | def to_one_hot(self, binary=False): 80 | self.one_hot = [[0 for j in range(len(self.vocab_f))] for i in range(len(self.vocab_n))] 81 | for k in range(len(self.vocab_n)): 82 | sm = 0 83 | for fid, wt in self.itof[k]: 84 | if binary: 85 | wt = 1.0 86 | sm += wt 87 | for fid, wt in self.itof[k]: 88 | if binary: 89 | wt = 1.0 90 | self.one_hot[k][fid] = wt / sm 91 | 92 | class Graph(object): 93 | def __init__(self, file_name, entity, weight=None): 94 | self.vocab_n, self.col_u, self.col_v = entity 95 | self.col_w = weight 96 | self.edges = [] 97 | 98 | self.node_size = -1 99 | 100 | self.eid2iid = None 101 | self.iid2eid = None 102 | 103 | self.adj_w = None 104 | self.adj_t = None 105 | 106 | with open(file_name, 'r') as fi: 107 | 108 | for line in fi: 109 | items = line.strip().split('\t') 110 | 111 | su, sv = items[self.col_u], items[self.col_v] 112 | sw = items[self.col_w] if self.col_w != None else None 113 | 114 | u, v = self.vocab_n.stoi.get(su, -1), self.vocab_n.stoi.get(sv, -1) 115 | w = float(sw) if sw != None else 1 116 | 117 | if u == -1 or v == -1 or w <= 0: 118 | continue 119 | 120 | self.edges += [(u, v, w)] 121 | 122 | def get_node_size(self): 123 | return self.node_size 124 | 125 | def get_edge_size(self): 126 | return len(self.edges) 127 | 128 | def to_symmetric(self, self_link_weight=1.0): 129 | vocab = set() 130 | for u, v, w in self.edges: 131 | vocab.add(u) 132 | vocab.add(v) 133 | 134 | pair2wt = dict() 135 | for u, v, w in self.edges: 136 | pair2wt[(u, v)] = w 137 | 138 | edges_ = list() 139 | for (u, v), w in pair2wt.items(): 140 | if u == v: 141 | continue 142 | w_ = pair2wt.get((v, u), -1) 143 | if w > w_: 144 | edges_ += [(u, v, w), (v, u, w)] 145 | elif w == w_: 146 | edges_ += [(u, v, w)] 147 | for k in vocab: 148 | edges_ += [(k, k, self_link_weight)] 149 | 150 | d = dict() 151 | for u, v, w in edges_: 152 | d[u] = d.get(u, 0.0) + w 153 | 154 | self.edges = [(u, v, w/math.sqrt(d[u]*d[v])) for u, v, w in edges_] 155 | 156 | def get_sparse_adjacency(self, cuda=True): 157 | shape = torch.Size([self.vocab_n.vocab_size, self.vocab_n.vocab_size]) 158 | 159 | us, vs, ws = [], [], [] 160 | for u, v, w in self.edges: 161 | us += [u] 162 | vs += [v] 163 | ws += [w] 164 | index = torch.LongTensor([us, vs]) 165 | value = torch.Tensor(ws) 166 | if cuda: 167 | index = index.cuda() 168 | value = value.cuda() 169 | adj = torch.sparse.FloatTensor(index, value, shape) 170 | if cuda: 171 | adj = adj.cuda() 172 | 173 | return adj 174 | -------------------------------------------------------------------------------- /semisupervised/codes/run_citeseer.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import copy 4 | import json 5 | import datetime 6 | 7 | opt = dict() 8 | 9 | opt['dataset'] = '../data/citeseer' 10 | opt['hidden_dim'] = 16 11 | opt['input_dropout'] = 0.5 12 | opt['dropout'] = 0 13 | opt['optimizer'] = 'rmsprop' 14 | opt['lr'] = 0.05 15 | opt['decay'] = 5e-4 16 | opt['self_link_weight'] = 1.0 17 | opt['pre_epoch'] = 200 18 | opt['epoch'] = 100 19 | opt['iter'] = 1 20 | opt['use_gold'] = 1 21 | opt['draw'] = 'smp' 22 | opt['tau'] = 0.1 23 | 24 | def generate_command(opt): 25 | cmd = 'python3 train.py' 26 | for opt, val in opt.items(): 27 | cmd += ' --' + opt + ' ' + str(val) 28 | return cmd 29 | 30 | def run(opt): 31 | opt_ = copy.deepcopy(opt) 32 | os.system(generate_command(opt_)) 33 | 34 | for k in range(100): 35 | seed = k + 1 36 | opt['seed'] = seed 37 | run(opt) 38 | -------------------------------------------------------------------------------- /semisupervised/codes/run_cora.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import copy 4 | import json 5 | import datetime 6 | 7 | opt = dict() 8 | 9 | opt['dataset'] = '../data/cora' 10 | opt['hidden_dim'] = 16 11 | opt['input_dropout'] = 0.5 12 | opt['dropout'] = 0 13 | opt['optimizer'] = 'rmsprop' 14 | opt['lr'] = 0.05 15 | opt['decay'] = 5e-4 16 | opt['self_link_weight'] = 1.0 17 | opt['pre_epoch'] = 100 18 | opt['epoch'] = 100 19 | opt['iter'] = 1 20 | opt['use_gold'] = 1 21 | opt['draw'] = 'smp' 22 | opt['tau'] = 0.1 23 | 24 | def generate_command(opt): 25 | cmd = 'python3 train.py' 26 | for opt, val in opt.items(): 27 | cmd += ' --' + opt + ' ' + str(val) 28 | return cmd 29 | 30 | def run(opt): 31 | opt_ = copy.deepcopy(opt) 32 | os.system(generate_command(opt_)) 33 | 34 | for k in range(100): 35 | seed = k + 1 36 | opt['seed'] = seed 37 | run(opt) 38 | -------------------------------------------------------------------------------- /semisupervised/codes/run_pubmed.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import copy 4 | import json 5 | import datetime 6 | 7 | opt = dict() 8 | 9 | opt['dataset'] = '../data/pubmed' 10 | opt['hidden_dim'] = 16 11 | opt['input_dropout'] = 0.5 12 | opt['dropout'] = 0 13 | opt['optimizer'] = 'adam' 14 | opt['lr'] = 0.01 15 | opt['decay'] = 5e-4 16 | opt['self_link_weight'] = 1.0 17 | opt['pre_epoch'] = 200 18 | opt['epoch'] = 100 19 | opt['iter'] = 1 20 | opt['use_gold'] = 1 21 | opt['draw'] = 'smp' 22 | opt['tau'] = 0.1 23 | 24 | def generate_command(opt): 25 | cmd = 'python3 train.py' 26 | for opt, val in opt.items(): 27 | cmd += ' --' + opt + ' ' + str(val) 28 | return cmd 29 | 30 | def run(opt): 31 | opt_ = copy.deepcopy(opt) 32 | os.system(generate_command(opt_)) 33 | 34 | for k in range(100): 35 | seed = k + 1 36 | opt['seed'] = seed 37 | run(opt) 38 | -------------------------------------------------------------------------------- /semisupervised/codes/train.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import copy 4 | from datetime import datetime 5 | import time 6 | import numpy as np 7 | import random 8 | import argparse 9 | from shutil import copyfile 10 | import torch 11 | import torch.nn as nn 12 | import torch.optim as optim 13 | import torch.nn.functional as F 14 | 15 | from trainer import Trainer 16 | from gnn import GNNq, GNNp 17 | import loader 18 | 19 | parser = argparse.ArgumentParser() 20 | parser.add_argument('--dataset', type=str, default='data') 21 | parser.add_argument('--save', type=str, default='/') 22 | parser.add_argument('--hidden_dim', type=int, default=16, help='Hidden dimension.') 23 | parser.add_argument('--input_dropout', type=float, default=0.5, help='Input dropout rate.') 24 | parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate.') 25 | parser.add_argument('--optimizer', type=str, default='adam', help='Optimizer.') 26 | parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.') 27 | parser.add_argument('--decay', type=float, default=5e-4, help='Weight decay for optimization') 28 | parser.add_argument('--self_link_weight', type=float, default=1.0, help='Weight of self-links.') 29 | parser.add_argument('--pre_epoch', type=int, default=200, help='Number of pre-training epochs.') 30 | parser.add_argument('--epoch', type=int, default=200, help='Number of training epochs per iteration.') 31 | parser.add_argument('--iter', type=int, default=10, help='Number of training iterations.') 32 | parser.add_argument('--use_gold', type=int, default=1, help='Whether using the ground-truth label of labeled objects, 1 for using, 0 for not using.') 33 | parser.add_argument('--tau', type=float, default=1.0, help='Annealing temperature in sampling.') 34 | parser.add_argument('--draw', type=str, default='max', help='Method for drawing object labels, max for max-pooling, smp for sampling.') 35 | parser.add_argument('--seed', type=int, default=1) 36 | parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available()) 37 | parser.add_argument('--cpu', action='store_true', help='Ignore CUDA.') 38 | args = parser.parse_args() 39 | 40 | torch.manual_seed(args.seed) 41 | np.random.seed(args.seed) 42 | random.seed(args.seed) 43 | if args.cpu: 44 | args.cuda = False 45 | elif args.cuda: 46 | torch.cuda.manual_seed(args.seed) 47 | 48 | opt = vars(args) 49 | 50 | net_file = opt['dataset'] + '/net.txt' 51 | label_file = opt['dataset'] + '/label.txt' 52 | feature_file = opt['dataset'] + '/feature.txt' 53 | train_file = opt['dataset'] + '/train.txt' 54 | dev_file = opt['dataset'] + '/dev.txt' 55 | test_file = opt['dataset'] + '/test.txt' 56 | 57 | vocab_node = loader.Vocab(net_file, [0, 1]) 58 | vocab_label = loader.Vocab(label_file, [1]) 59 | vocab_feature = loader.Vocab(feature_file, [1]) 60 | 61 | opt['num_node'] = len(vocab_node) 62 | opt['num_feature'] = len(vocab_feature) 63 | opt['num_class'] = len(vocab_label) 64 | 65 | graph = loader.Graph(file_name=net_file, entity=[vocab_node, 0, 1]) 66 | label = loader.EntityLabel(file_name=label_file, entity=[vocab_node, 0], label=[vocab_label, 1]) 67 | feature = loader.EntityFeature(file_name=feature_file, entity=[vocab_node, 0], feature=[vocab_feature, 1]) 68 | graph.to_symmetric(opt['self_link_weight']) 69 | feature.to_one_hot(binary=True) 70 | adj = graph.get_sparse_adjacency(opt['cuda']) 71 | 72 | with open(train_file, 'r') as fi: 73 | idx_train = [vocab_node.stoi[line.strip()] for line in fi] 74 | with open(dev_file, 'r') as fi: 75 | idx_dev = [vocab_node.stoi[line.strip()] for line in fi] 76 | with open(test_file, 'r') as fi: 77 | idx_test = [vocab_node.stoi[line.strip()] for line in fi] 78 | idx_all = list(range(opt['num_node'])) 79 | 80 | inputs = torch.Tensor(feature.one_hot) 81 | target = torch.LongTensor(label.itol) 82 | idx_train = torch.LongTensor(idx_train) 83 | idx_dev = torch.LongTensor(idx_dev) 84 | idx_test = torch.LongTensor(idx_test) 85 | idx_all = torch.LongTensor(idx_all) 86 | inputs_q = torch.zeros(opt['num_node'], opt['num_feature']) 87 | target_q = torch.zeros(opt['num_node'], opt['num_class']) 88 | inputs_p = torch.zeros(opt['num_node'], opt['num_class']) 89 | target_p = torch.zeros(opt['num_node'], opt['num_class']) 90 | 91 | if opt['cuda']: 92 | inputs = inputs.cuda() 93 | target = target.cuda() 94 | idx_train = idx_train.cuda() 95 | idx_dev = idx_dev.cuda() 96 | idx_test = idx_test.cuda() 97 | idx_all = idx_all.cuda() 98 | inputs_q = inputs_q.cuda() 99 | target_q = target_q.cuda() 100 | inputs_p = inputs_p.cuda() 101 | target_p = target_p.cuda() 102 | 103 | gnnq = GNNq(opt, adj) 104 | trainer_q = Trainer(opt, gnnq) 105 | 106 | gnnp = GNNp(opt, adj) 107 | trainer_p = Trainer(opt, gnnp) 108 | 109 | def init_q_data(): 110 | inputs_q.copy_(inputs) 111 | temp = torch.zeros(idx_train.size(0), target_q.size(1)).type_as(target_q) 112 | temp.scatter_(1, torch.unsqueeze(target[idx_train], 1), 1.0) 113 | target_q[idx_train] = temp 114 | 115 | def update_p_data(): 116 | preds = trainer_q.predict(inputs_q, opt['tau']) 117 | if opt['draw'] == 'exp': 118 | inputs_p.copy_(preds) 119 | target_p.copy_(preds) 120 | elif opt['draw'] == 'max': 121 | idx_lb = torch.max(preds, dim=-1)[1] 122 | inputs_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 123 | target_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 124 | elif opt['draw'] == 'smp': 125 | idx_lb = torch.multinomial(preds, 1).squeeze(1) 126 | inputs_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 127 | target_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 128 | if opt['use_gold'] == 1: 129 | temp = torch.zeros(idx_train.size(0), target_q.size(1)).type_as(target_q) 130 | temp.scatter_(1, torch.unsqueeze(target[idx_train], 1), 1.0) 131 | inputs_p[idx_train] = temp 132 | target_p[idx_train] = temp 133 | 134 | def update_q_data(): 135 | preds = trainer_p.predict(inputs_p) 136 | target_q.copy_(preds) 137 | if opt['use_gold'] == 1: 138 | temp = torch.zeros(idx_train.size(0), target_q.size(1)).type_as(target_q) 139 | temp.scatter_(1, torch.unsqueeze(target[idx_train], 1), 1.0) 140 | target_q[idx_train] = temp 141 | 142 | def pre_train(epoches): 143 | best = 0.0 144 | init_q_data() 145 | results = [] 146 | for epoch in range(epoches): 147 | loss = trainer_q.update_soft(inputs_q, target_q, idx_train) 148 | _, preds, accuracy_dev = trainer_q.evaluate(inputs_q, target, idx_dev) 149 | _, preds, accuracy_test = trainer_q.evaluate(inputs_q, target, idx_test) 150 | results += [(accuracy_dev, accuracy_test)] 151 | if accuracy_dev > best: 152 | best = accuracy_dev 153 | state = dict([('model', copy.deepcopy(trainer_q.model.state_dict())), ('optim', copy.deepcopy(trainer_q.optimizer.state_dict()))]) 154 | trainer_q.model.load_state_dict(state['model']) 155 | trainer_q.optimizer.load_state_dict(state['optim']) 156 | return results 157 | 158 | def train_p(epoches): 159 | update_p_data() 160 | results = [] 161 | for epoch in range(epoches): 162 | loss = trainer_p.update_soft(inputs_p, target_p, idx_all) 163 | _, preds, accuracy_dev = trainer_p.evaluate(inputs_p, target, idx_dev) 164 | _, preds, accuracy_test = trainer_p.evaluate(inputs_p, target, idx_test) 165 | results += [(accuracy_dev, accuracy_test)] 166 | return results 167 | 168 | def train_q(epoches): 169 | update_q_data() 170 | results = [] 171 | for epoch in range(epoches): 172 | loss = trainer_q.update_soft(inputs_q, target_q, idx_all) 173 | _, preds, accuracy_dev = trainer_q.evaluate(inputs_q, target, idx_dev) 174 | _, preds, accuracy_test = trainer_q.evaluate(inputs_q, target, idx_test) 175 | results += [(accuracy_dev, accuracy_test)] 176 | return results 177 | 178 | base_results, q_results, p_results = [], [], [] 179 | base_results += pre_train(opt['pre_epoch']) 180 | for k in range(opt['iter']): 181 | p_results += train_p(opt['epoch']) 182 | q_results += train_q(opt['epoch']) 183 | 184 | def get_accuracy(results): 185 | best_dev, acc_test = 0.0, 0.0 186 | for d, t in results: 187 | if d > best_dev: 188 | best_dev, acc_test = d, t 189 | return acc_test 190 | 191 | acc_test = get_accuracy(q_results) 192 | 193 | print('{:.3f}'.format(acc_test * 100)) 194 | 195 | if opt['save'] != '/': 196 | trainer_q.save(opt['save'] + '/gnnq.pt') 197 | trainer_p.save(opt['save'] + '/gnnp.pt') 198 | 199 | -------------------------------------------------------------------------------- /semisupervised/codes/trainer.py: -------------------------------------------------------------------------------- 1 | import math 2 | import numpy as np 3 | import torch 4 | from torch import nn 5 | from torch.nn import init 6 | from torch.autograd import Variable 7 | import torch.nn.functional as F 8 | from torch.optim import Optimizer 9 | 10 | def get_optimizer(name, parameters, lr, weight_decay=0): 11 | if name == 'sgd': 12 | return torch.optim.SGD(parameters, lr=lr, weight_decay=weight_decay) 13 | elif name == 'rmsprop': 14 | return torch.optim.RMSprop(parameters, lr=lr, weight_decay=weight_decay) 15 | elif name == 'adagrad': 16 | return torch.optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay) 17 | elif name == 'adam': 18 | return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay) 19 | elif name == 'adamax': 20 | return torch.optim.Adamax(parameters, lr=lr, weight_decay=weight_decay) 21 | else: 22 | raise Exception("Unsupported optimizer: {}".format(name)) 23 | 24 | def change_lr(optimizer, new_lr): 25 | for param_group in optimizer.param_groups: 26 | param_group['lr'] = new_lr 27 | 28 | class Trainer(object): 29 | def __init__(self, opt, model): 30 | self.opt = opt 31 | self.model = model 32 | self.criterion = nn.CrossEntropyLoss() 33 | self.parameters = [p for p in self.model.parameters() if p.requires_grad] 34 | if opt['cuda']: 35 | self.criterion.cuda() 36 | self.optimizer = get_optimizer(self.opt['optimizer'], self.parameters, self.opt['lr'], self.opt['decay']) 37 | 38 | def reset(self): 39 | self.model.reset() 40 | self.optimizer = get_optimizer(self.opt['optimizer'], self.parameters, self.opt['lr'], self.opt['decay']) 41 | 42 | def update(self, inputs, target, idx): 43 | if self.opt['cuda']: 44 | inputs = inputs.cuda() 45 | target = target.cuda() 46 | idx = idx.cuda() 47 | 48 | self.model.train() 49 | self.optimizer.zero_grad() 50 | 51 | logits = self.model(inputs) 52 | loss = self.criterion(logits[idx], target[idx]) 53 | 54 | loss.backward() 55 | self.optimizer.step() 56 | return loss.item() 57 | 58 | def update_soft(self, inputs, target, idx): 59 | if self.opt['cuda']: 60 | inputs = inputs.cuda() 61 | target = target.cuda() 62 | idx = idx.cuda() 63 | 64 | self.model.train() 65 | self.optimizer.zero_grad() 66 | 67 | logits = self.model(inputs) 68 | logits = torch.log_softmax(logits, dim=-1) 69 | loss = -torch.mean(torch.sum(target[idx] * logits[idx], dim=-1)) 70 | 71 | loss.backward() 72 | self.optimizer.step() 73 | return loss.item() 74 | 75 | def evaluate(self, inputs, target, idx): 76 | if self.opt['cuda']: 77 | inputs = inputs.cuda() 78 | target = target.cuda() 79 | idx = idx.cuda() 80 | 81 | self.model.eval() 82 | 83 | logits = self.model(inputs) 84 | loss = self.criterion(logits[idx], target[idx]) 85 | preds = torch.max(logits[idx], dim=1)[1] 86 | correct = preds.eq(target[idx]).double() 87 | accuracy = correct.sum() / idx.size(0) 88 | 89 | return loss.item(), preds, accuracy.item() 90 | 91 | def predict(self, inputs, tau=1): 92 | if self.opt['cuda']: 93 | inputs = inputs.cuda() 94 | 95 | self.model.eval() 96 | 97 | logits = self.model(inputs) / tau 98 | 99 | logits = torch.softmax(logits, dim=-1).detach() 100 | 101 | return logits 102 | 103 | def save(self, filename): 104 | params = { 105 | 'model': self.model.state_dict(), 106 | 'optim': self.optimizer.state_dict() 107 | } 108 | try: 109 | torch.save(params, filename) 110 | except BaseException: 111 | print("[Warning: Saving failed... continuing anyway.]") 112 | 113 | def load(self, filename): 114 | try: 115 | checkpoint = torch.load(filename) 116 | except BaseException: 117 | print("Cannot load model from {}".format(filename)) 118 | exit() 119 | self.model.load_state_dict(checkpoint['model']) 120 | self.optimizer.load_state_dict(checkpoint['optim']) 121 | -------------------------------------------------------------------------------- /semisupervised/data/citeseer/dev.txt: -------------------------------------------------------------------------------- 1 | 120 2 | 121 3 | 122 4 | 123 5 | 124 6 | 125 7 | 126 8 | 127 9 | 128 10 | 129 11 | 130 12 | 131 13 | 132 14 | 133 15 | 134 16 | 135 17 | 136 18 | 137 19 | 138 20 | 139 21 | 140 22 | 141 23 | 142 24 | 143 25 | 144 26 | 145 27 | 146 28 | 147 29 | 148 30 | 149 31 | 150 32 | 151 33 | 152 34 | 153 35 | 154 36 | 155 37 | 156 38 | 157 39 | 158 40 | 159 41 | 160 42 | 161 43 | 162 44 | 163 45 | 164 46 | 165 47 | 166 48 | 167 49 | 168 50 | 169 51 | 170 52 | 171 53 | 172 54 | 173 55 | 174 56 | 175 57 | 176 58 | 177 59 | 178 60 | 179 61 | 180 62 | 181 63 | 182 64 | 183 65 | 184 66 | 185 67 | 186 68 | 187 69 | 188 70 | 189 71 | 190 72 | 191 73 | 192 74 | 193 75 | 194 76 | 195 77 | 196 78 | 197 79 | 198 80 | 199 81 | 200 82 | 201 83 | 202 84 | 203 85 | 204 86 | 205 87 | 206 88 | 207 89 | 208 90 | 209 91 | 210 92 | 211 93 | 212 94 | 213 95 | 214 96 | 215 97 | 216 98 | 217 99 | 218 100 | 219 101 | 220 102 | 221 103 | 222 104 | 223 105 | 224 106 | 225 107 | 226 108 | 227 109 | 228 110 | 229 111 | 230 112 | 231 113 | 232 114 | 233 115 | 234 116 | 235 117 | 236 118 | 237 119 | 238 120 | 239 121 | 240 122 | 241 123 | 242 124 | 243 125 | 244 126 | 245 127 | 246 128 | 247 129 | 248 130 | 249 131 | 250 132 | 251 133 | 252 134 | 253 135 | 254 136 | 255 137 | 256 138 | 257 139 | 258 140 | 259 141 | 260 142 | 261 143 | 262 144 | 263 145 | 264 146 | 265 147 | 266 148 | 267 149 | 268 150 | 269 151 | 270 152 | 271 153 | 272 154 | 273 155 | 274 156 | 275 157 | 276 158 | 277 159 | 278 160 | 279 161 | 280 162 | 281 163 | 282 164 | 283 165 | 284 166 | 285 167 | 286 168 | 287 169 | 288 170 | 289 171 | 290 172 | 291 173 | 292 174 | 293 175 | 294 176 | 295 177 | 296 178 | 297 179 | 298 180 | 299 181 | 300 182 | 301 183 | 302 184 | 303 185 | 304 186 | 305 187 | 306 188 | 307 189 | 308 190 | 309 191 | 310 192 | 311 193 | 312 194 | 313 195 | 314 196 | 315 197 | 316 198 | 317 199 | 318 200 | 319 201 | 320 202 | 321 203 | 322 204 | 323 205 | 324 206 | 325 207 | 326 208 | 327 209 | 328 210 | 329 211 | 330 212 | 331 213 | 332 214 | 333 215 | 334 216 | 335 217 | 336 218 | 337 219 | 338 220 | 339 221 | 340 222 | 341 223 | 342 224 | 343 225 | 344 226 | 345 227 | 346 228 | 347 229 | 348 230 | 349 231 | 350 232 | 351 233 | 352 234 | 353 235 | 354 236 | 355 237 | 356 238 | 357 239 | 358 240 | 359 241 | 360 242 | 361 243 | 362 244 | 363 245 | 364 246 | 365 247 | 366 248 | 367 249 | 368 250 | 369 251 | 370 252 | 371 253 | 372 254 | 373 255 | 374 256 | 375 257 | 376 258 | 377 259 | 378 260 | 379 261 | 380 262 | 381 263 | 382 264 | 383 265 | 384 266 | 385 267 | 386 268 | 387 269 | 388 270 | 389 271 | 390 272 | 391 273 | 392 274 | 393 275 | 394 276 | 395 277 | 396 278 | 397 279 | 398 280 | 399 281 | 400 282 | 401 283 | 402 284 | 403 285 | 404 286 | 405 287 | 406 288 | 407 289 | 408 290 | 409 291 | 410 292 | 411 293 | 412 294 | 413 295 | 414 296 | 415 297 | 416 298 | 417 299 | 418 300 | 419 301 | 420 302 | 421 303 | 422 304 | 423 305 | 424 306 | 425 307 | 426 308 | 427 309 | 428 310 | 429 311 | 430 312 | 431 313 | 432 314 | 433 315 | 434 316 | 435 317 | 436 318 | 437 319 | 438 320 | 439 321 | 440 322 | 441 323 | 442 324 | 443 325 | 444 326 | 445 327 | 446 328 | 447 329 | 448 330 | 449 331 | 450 332 | 451 333 | 452 334 | 453 335 | 454 336 | 455 337 | 456 338 | 457 339 | 458 340 | 459 341 | 460 342 | 461 343 | 462 344 | 463 345 | 464 346 | 465 347 | 466 348 | 467 349 | 468 350 | 469 351 | 470 352 | 471 353 | 472 354 | 473 355 | 474 356 | 475 357 | 476 358 | 477 359 | 478 360 | 479 361 | 480 362 | 481 363 | 482 364 | 483 365 | 484 366 | 485 367 | 486 368 | 487 369 | 488 370 | 489 371 | 490 372 | 491 373 | 492 374 | 493 375 | 494 376 | 495 377 | 496 378 | 497 379 | 498 380 | 499 381 | 500 382 | 501 383 | 502 384 | 503 385 | 504 386 | 505 387 | 506 388 | 507 389 | 508 390 | 509 391 | 510 392 | 511 393 | 512 394 | 513 395 | 514 396 | 515 397 | 516 398 | 517 399 | 518 400 | 519 401 | 520 402 | 521 403 | 522 404 | 523 405 | 524 406 | 525 407 | 526 408 | 527 409 | 528 410 | 529 411 | 530 412 | 531 413 | 532 414 | 533 415 | 534 416 | 535 417 | 536 418 | 537 419 | 538 420 | 539 421 | 540 422 | 541 423 | 542 424 | 543 425 | 544 426 | 545 427 | 546 428 | 547 429 | 548 430 | 549 431 | 550 432 | 551 433 | 552 434 | 553 435 | 554 436 | 555 437 | 556 438 | 557 439 | 558 440 | 559 441 | 560 442 | 561 443 | 562 444 | 563 445 | 564 446 | 565 447 | 566 448 | 567 449 | 568 450 | 569 451 | 570 452 | 571 453 | 572 454 | 573 455 | 574 456 | 575 457 | 576 458 | 577 459 | 578 460 | 579 461 | 580 462 | 581 463 | 582 464 | 583 465 | 584 466 | 585 467 | 586 468 | 587 469 | 588 470 | 589 471 | 590 472 | 591 473 | 592 474 | 593 475 | 594 476 | 595 477 | 596 478 | 597 479 | 598 480 | 599 481 | 600 482 | 601 483 | 602 484 | 603 485 | 604 486 | 605 487 | 606 488 | 607 489 | 608 490 | 609 491 | 610 492 | 611 493 | 612 494 | 613 495 | 614 496 | 615 497 | 616 498 | 617 499 | 618 500 | 619 501 | -------------------------------------------------------------------------------- /semisupervised/data/citeseer/label.txt: -------------------------------------------------------------------------------- 1 | 0 3 2 | 1 1 3 | 2 5 4 | 3 5 5 | 4 3 6 | 5 1 7 | 6 3 8 | 7 0 9 | 8 3 10 | 9 5 11 | 10 2 12 | 11 4 13 | 12 2 14 | 13 1 15 | 14 2 16 | 15 3 17 | 16 2 18 | 17 4 19 | 18 4 20 | 19 0 21 | 20 1 22 | 21 5 23 | 22 5 24 | 23 3 25 | 24 5 26 | 25 2 27 | 26 5 28 | 27 2 29 | 28 4 30 | 29 2 31 | 30 2 32 | 31 2 33 | 32 4 34 | 33 5 35 | 34 2 36 | 35 3 37 | 36 4 38 | 37 5 39 | 38 3 40 | 39 3 41 | 40 2 42 | 41 1 43 | 42 2 44 | 43 1 45 | 44 5 46 | 45 1 47 | 46 1 48 | 47 4 49 | 48 2 50 | 49 3 51 | 50 3 52 | 51 2 53 | 52 5 54 | 53 2 55 | 54 5 56 | 55 1 57 | 56 4 58 | 57 1 59 | 58 4 60 | 59 2 61 | 60 2 62 | 61 3 63 | 62 4 64 | 63 5 65 | 64 5 66 | 65 1 67 | 66 3 68 | 67 3 69 | 68 4 70 | 69 2 71 | 70 4 72 | 71 1 73 | 72 1 74 | 73 5 75 | 74 0 76 | 75 2 77 | 76 0 78 | 77 3 79 | 78 5 80 | 79 2 81 | 80 4 82 | 81 1 83 | 82 1 84 | 83 4 85 | 84 4 86 | 85 0 87 | 86 4 88 | 87 4 89 | 88 5 90 | 89 3 91 | 90 5 92 | 91 5 93 | 92 4 94 | 93 5 95 | 94 3 96 | 95 1 97 | 96 4 98 | 97 4 99 | 98 3 100 | 99 1 101 | 100 3 102 | 101 0 103 | 102 1 104 | 103 1 105 | 104 1 106 | 105 3 107 | 106 0 108 | 107 0 109 | 108 0 110 | 109 0 111 | 110 0 112 | 111 0 113 | 112 0 114 | 113 0 115 | 114 0 116 | 115 0 117 | 116 0 118 | 117 0 119 | 118 0 120 | 119 0 121 | 120 3 122 | 121 1 123 | 122 2 124 | 123 2 125 | 124 2 126 | 125 2 127 | 126 0 128 | 127 2 129 | 128 0 130 | 129 0 131 | 130 4 132 | 131 3 133 | 132 1 134 | 133 4 135 | 134 3 136 | 135 3 137 | 136 3 138 | 137 2 139 | 138 1 140 | 139 5 141 | 140 1 142 | 141 2 143 | 142 4 144 | 143 2 145 | 144 2 146 | 145 1 147 | 146 2 148 | 147 2 149 | 148 3 150 | 149 1 151 | 150 1 152 | 151 1 153 | 152 2 154 | 153 2 155 | 154 2 156 | 155 3 157 | 156 5 158 | 157 2 159 | 158 1 160 | 159 4 161 | 160 0 162 | 161 2 163 | 162 2 164 | 163 3 165 | 164 3 166 | 165 2 167 | 166 3 168 | 167 5 169 | 168 5 170 | 169 2 171 | 170 3 172 | 171 4 173 | 172 3 174 | 173 4 175 | 174 3 176 | 175 5 177 | 176 4 178 | 177 3 179 | 178 4 180 | 179 3 181 | 180 2 182 | 181 2 183 | 182 4 184 | 183 3 185 | 184 2 186 | 185 5 187 | 186 3 188 | 187 3 189 | 188 5 190 | 189 3 191 | 190 5 192 | 191 5 193 | 192 3 194 | 193 2 195 | 194 4 196 | 195 3 197 | 196 3 198 | 197 2 199 | 198 0 200 | 199 3 201 | 200 2 202 | 201 0 203 | 202 3 204 | 203 4 205 | 204 0 206 | 205 4 207 | 206 2 208 | 207 1 209 | 208 1 210 | 209 1 211 | 210 1 212 | 211 1 213 | 212 4 214 | 213 2 215 | 214 5 216 | 215 4 217 | 216 1 218 | 217 3 219 | 218 1 220 | 219 3 221 | 220 2 222 | 221 1 223 | 222 5 224 | 223 3 225 | 224 2 226 | 225 5 227 | 226 4 228 | 227 5 229 | 228 4 230 | 229 2 231 | 230 5 232 | 231 2 233 | 232 5 234 | 233 3 235 | 234 4 236 | 235 2 237 | 236 5 238 | 237 1 239 | 238 2 240 | 239 1 241 | 240 1 242 | 241 3 243 | 242 2 244 | 243 2 245 | 244 5 246 | 245 3 247 | 246 2 248 | 247 0 249 | 248 1 250 | 249 5 251 | 250 3 252 | 251 0 253 | 252 5 254 | 253 5 255 | 254 5 256 | 255 3 257 | 256 2 258 | 257 0 259 | 258 2 260 | 259 4 261 | 260 3 262 | 261 3 263 | 262 0 264 | 263 2 265 | 264 3 266 | 265 4 267 | 266 5 268 | 267 2 269 | 268 3 270 | 269 1 271 | 270 1 272 | 271 1 273 | 272 4 274 | 273 3 275 | 274 5 276 | 275 3 277 | 276 0 278 | 277 3 279 | 278 3 280 | 279 3 281 | 280 3 282 | 281 1 283 | 282 1 284 | 283 4 285 | 284 4 286 | 285 4 287 | 286 3 288 | 287 1 289 | 288 3 290 | 289 2 291 | 290 3 292 | 291 5 293 | 292 1 294 | 293 4 295 | 294 4 296 | 295 2 297 | 296 2 298 | 297 1 299 | 298 2 300 | 299 2 301 | 300 4 302 | 301 4 303 | 302 2 304 | 303 2 305 | 304 4 306 | 305 5 307 | 306 3 308 | 307 2 309 | 308 5 310 | 309 3 311 | 310 3 312 | 311 2 313 | 312 1 314 | 313 3 315 | 314 2 316 | 315 1 317 | 316 4 318 | 317 4 319 | 318 1 320 | 319 4 321 | 320 1 322 | 321 2 323 | 322 2 324 | 323 5 325 | 324 5 326 | 325 5 327 | 326 0 328 | 327 3 329 | 328 1 330 | 329 1 331 | 330 5 332 | 331 5 333 | 332 4 334 | 333 4 335 | 334 0 336 | 335 1 337 | 336 3 338 | 337 3 339 | 338 5 340 | 339 4 341 | 340 2 342 | 341 0 343 | 342 4 344 | 343 3 345 | 344 5 346 | 345 3 347 | 346 2 348 | 347 2 349 | 348 1 350 | 349 5 351 | 350 2 352 | 351 2 353 | 352 5 354 | 353 3 355 | 354 5 356 | 355 1 357 | 356 3 358 | 357 3 359 | 358 1 360 | 359 4 361 | 360 0 362 | 361 2 363 | 362 3 364 | 363 2 365 | 364 1 366 | 365 2 367 | 366 2 368 | 367 1 369 | 368 5 370 | 369 2 371 | 370 1 372 | 371 4 373 | 372 5 374 | 373 2 375 | 374 5 376 | 375 0 377 | 376 4 378 | 377 2 379 | 378 5 380 | 379 4 381 | 380 5 382 | 381 1 383 | 382 3 384 | 383 4 385 | 384 5 386 | 385 4 387 | 386 3 388 | 387 5 389 | 388 2 390 | 389 0 391 | 390 3 392 | 391 4 393 | 392 4 394 | 393 4 395 | 394 2 396 | 395 2 397 | 396 2 398 | 397 4 399 | 398 1 400 | 399 0 401 | 400 3 402 | 401 3 403 | 402 3 404 | 403 1 405 | 404 1 406 | 405 4 407 | 406 2 408 | 407 3 409 | 408 1 410 | 409 1 411 | 410 5 412 | 411 4 413 | 412 4 414 | 413 3 415 | 414 2 416 | 415 1 417 | 416 5 418 | 417 2 419 | 418 1 420 | 419 4 421 | 420 3 422 | 421 0 423 | 422 3 424 | 423 2 425 | 424 1 426 | 425 4 427 | 426 2 428 | 427 0 429 | 428 2 430 | 429 4 431 | 430 4 432 | 431 3 433 | 432 5 434 | 433 2 435 | 434 2 436 | 435 2 437 | 436 2 438 | 437 0 439 | 438 1 440 | 439 2 441 | 440 4 442 | 441 4 443 | 442 4 444 | 443 2 445 | 444 2 446 | 445 1 447 | 446 2 448 | 447 5 449 | 448 3 450 | 449 5 451 | 450 0 452 | 451 2 453 | 452 4 454 | 453 2 455 | 454 3 456 | 455 4 457 | 456 1 458 | 457 3 459 | 458 3 460 | 459 3 461 | 460 2 462 | 461 1 463 | 462 4 464 | 463 3 465 | 464 2 466 | 465 4 467 | 466 3 468 | 467 3 469 | 468 2 470 | 469 4 471 | 470 0 472 | 471 0 473 | 472 0 474 | 473 5 475 | 474 5 476 | 475 4 477 | 476 4 478 | 477 1 479 | 478 4 480 | 479 2 481 | 480 3 482 | 481 0 483 | 482 5 484 | 483 3 485 | 484 4 486 | 485 4 487 | 486 1 488 | 487 4 489 | 488 3 490 | 489 4 491 | 490 1 492 | 491 3 493 | 492 2 494 | 493 2 495 | 494 4 496 | 495 2 497 | 496 3 498 | 497 5 499 | 498 3 500 | 499 2 501 | 500 5 502 | 501 1 503 | 502 1 504 | 503 1 505 | 504 4 506 | 505 5 507 | 506 1 508 | 507 1 509 | 508 5 510 | 509 1 511 | 510 3 512 | 511 5 513 | 512 3 514 | 513 1 515 | 514 1 516 | 515 5 517 | 516 4 518 | 517 1 519 | 518 1 520 | 519 4 521 | 520 2 522 | 521 2 523 | 522 3 524 | 523 1 525 | 524 3 526 | 525 0 527 | 526 4 528 | 527 2 529 | 528 2 530 | 529 2 531 | 530 3 532 | 531 4 533 | 532 2 534 | 533 1 535 | 534 1 536 | 535 1 537 | 536 3 538 | 537 1 539 | 538 5 540 | 539 5 541 | 540 4 542 | 541 4 543 | 542 4 544 | 543 2 545 | 544 3 546 | 545 4 547 | 546 5 548 | 547 4 549 | 548 2 550 | 549 2 551 | 550 4 552 | 551 2 553 | 552 4 554 | 553 0 555 | 554 5 556 | 555 4 557 | 556 5 558 | 557 2 559 | 558 1 560 | 559 2 561 | 560 5 562 | 561 3 563 | 562 4 564 | 563 4 565 | 564 4 566 | 565 3 567 | 566 4 568 | 567 4 569 | 568 3 570 | 569 2 571 | 570 3 572 | 571 3 573 | 572 1 574 | 573 4 575 | 574 1 576 | 575 3 577 | 576 3 578 | 577 2 579 | 578 5 580 | 579 4 581 | 580 2 582 | 581 1 583 | 582 4 584 | 583 1 585 | 584 4 586 | 585 2 587 | 586 2 588 | 587 4 589 | 588 1 590 | 589 1 591 | 590 2 592 | 591 1 593 | 592 3 594 | 593 3 595 | 594 1 596 | 595 2 597 | 596 3 598 | 597 5 599 | 598 3 600 | 599 3 601 | 600 3 602 | 601 1 603 | 602 5 604 | 603 3 605 | 604 1 606 | 605 4 607 | 606 1 608 | 607 2 609 | 608 3 610 | 609 2 611 | 610 4 612 | 611 3 613 | 612 5 614 | 613 5 615 | 614 1 616 | 615 4 617 | 616 2 618 | 617 2 619 | 618 5 620 | 619 2 621 | 2312 4 622 | 2313 5 623 | 2314 4 624 | 2315 4 625 | 2316 4 626 | 2317 1 627 | 2318 4 628 | 2319 2 629 | 2320 3 630 | 2321 3 631 | 2322 3 632 | 2323 3 633 | 2324 2 634 | 2325 3 635 | 2326 3 636 | 2327 4 637 | 2328 2 638 | 2329 0 639 | 2330 1 640 | 2331 2 641 | 2332 0 642 | 2333 3 643 | 2334 3 644 | 2335 4 645 | 2336 2 646 | 2337 4 647 | 2338 0 648 | 2339 4 649 | 2340 3 650 | 2341 3 651 | 2342 3 652 | 2343 5 653 | 2344 4 654 | 2345 5 655 | 2346 4 656 | 2347 5 657 | 2348 1 658 | 2349 1 659 | 2350 3 660 | 2351 3 661 | 2352 3 662 | 2353 3 663 | 2354 3 664 | 2355 1 665 | 2356 2 666 | 2357 3 667 | 2358 3 668 | 2359 3 669 | 2360 1 670 | 2361 2 671 | 2362 2 672 | 2363 3 673 | 2364 3 674 | 2365 1 675 | 2366 5 676 | 2367 5 677 | 2368 5 678 | 2369 3 679 | 2370 2 680 | 2371 3 681 | 2372 3 682 | 2373 3 683 | 2374 3 684 | 2375 3 685 | 2376 3 686 | 2377 3 687 | 2378 5 688 | 2379 1 689 | 2380 3 690 | 2381 1 691 | 2382 1 692 | 2383 4 693 | 2384 1 694 | 2385 3 695 | 2386 3 696 | 2387 1 697 | 2388 3 698 | 2389 3 699 | 2390 2 700 | 2391 4 701 | 2392 3 702 | 2393 3 703 | 2394 3 704 | 2395 1 705 | 2396 2 706 | 2397 2 707 | 2398 2 708 | 2399 3 709 | 2400 5 710 | 2401 2 711 | 2402 1 712 | 2403 3 713 | 2404 2 714 | 2405 2 715 | 2406 2 716 | 2408 4 717 | 2409 3 718 | 2410 3 719 | 2411 4 720 | 2412 0 721 | 2413 3 722 | 2414 1 723 | 2415 2 724 | 2416 2 725 | 2417 2 726 | 2418 2 727 | 2419 3 728 | 2420 2 729 | 2421 2 730 | 2422 2 731 | 2423 1 732 | 2424 1 733 | 2425 5 734 | 2426 2 735 | 2427 2 736 | 2428 1 737 | 2429 2 738 | 2430 4 739 | 2431 3 740 | 2432 1 741 | 2433 1 742 | 2434 3 743 | 2435 2 744 | 2436 3 745 | 2437 4 746 | 2438 3 747 | 2439 3 748 | 2440 4 749 | 2441 4 750 | 2442 3 751 | 2443 2 752 | 2444 2 753 | 2445 1 754 | 2446 3 755 | 2447 4 756 | 2448 4 757 | 2449 4 758 | 2450 4 759 | 2451 4 760 | 2452 4 761 | 2453 5 762 | 2454 0 763 | 2455 3 764 | 2456 1 765 | 2457 1 766 | 2458 3 767 | 2459 1 768 | 2460 3 769 | 2461 1 770 | 2462 3 771 | 2463 4 772 | 2464 4 773 | 2465 3 774 | 2466 2 775 | 2467 3 776 | 2468 5 777 | 2469 3 778 | 2470 3 779 | 2471 3 780 | 2472 4 781 | 2473 2 782 | 2474 2 783 | 2475 2 784 | 2476 5 785 | 2477 3 786 | 2478 1 787 | 2479 0 788 | 2480 3 789 | 2481 2 790 | 2482 5 791 | 2483 2 792 | 2484 3 793 | 2485 2 794 | 2486 4 795 | 2487 2 796 | 2488 2 797 | 2490 2 798 | 2491 0 799 | 2492 5 800 | 2493 1 801 | 2494 3 802 | 2495 4 803 | 2496 4 804 | 2497 4 805 | 2498 1 806 | 2499 1 807 | 2500 5 808 | 2501 1 809 | 2502 2 810 | 2503 0 811 | 2504 1 812 | 2505 0 813 | 2506 2 814 | 2507 2 815 | 2508 3 816 | 2509 3 817 | 2510 3 818 | 2511 3 819 | 2512 5 820 | 2513 4 821 | 2514 4 822 | 2515 3 823 | 2516 1 824 | 2517 1 825 | 2518 2 826 | 2519 1 827 | 2520 2 828 | 2521 2 829 | 2522 2 830 | 2523 2 831 | 2524 5 832 | 2525 0 833 | 2526 1 834 | 2527 2 835 | 2528 2 836 | 2529 4 837 | 2530 0 838 | 2531 4 839 | 2532 1 840 | 2533 1 841 | 2534 2 842 | 2535 3 843 | 2536 1 844 | 2537 1 845 | 2538 2 846 | 2539 3 847 | 2540 3 848 | 2541 5 849 | 2542 2 850 | 2543 5 851 | 2544 5 852 | 2545 3 853 | 2546 1 854 | 2547 0 855 | 2548 5 856 | 2549 5 857 | 2550 5 858 | 2551 5 859 | 2552 3 860 | 2554 3 861 | 2555 3 862 | 2556 0 863 | 2557 4 864 | 2558 5 865 | 2559 3 866 | 2560 4 867 | 2561 5 868 | 2562 4 869 | 2563 5 870 | 2564 2 871 | 2565 0 872 | 2566 5 873 | 2567 5 874 | 2568 5 875 | 2569 1 876 | 2570 1 877 | 2571 3 878 | 2572 1 879 | 2573 2 880 | 2574 2 881 | 2575 2 882 | 2576 3 883 | 2577 2 884 | 2578 4 885 | 2579 5 886 | 2580 3 887 | 2581 3 888 | 2582 1 889 | 2583 3 890 | 2584 1 891 | 2585 2 892 | 2586 2 893 | 2587 1 894 | 2588 3 895 | 2589 1 896 | 2590 3 897 | 2591 1 898 | 2592 2 899 | 2593 1 900 | 2594 2 901 | 2595 1 902 | 2596 2 903 | 2597 2 904 | 2598 2 905 | 2599 2 906 | 2600 5 907 | 2601 4 908 | 2602 4 909 | 2603 5 910 | 2604 0 911 | 2605 3 912 | 2606 4 913 | 2607 5 914 | 2608 4 915 | 2609 4 916 | 2610 4 917 | 2611 4 918 | 2612 4 919 | 2613 0 920 | 2614 0 921 | 2615 1 922 | 2616 4 923 | 2617 1 924 | 2618 1 925 | 2619 5 926 | 2620 0 927 | 2621 2 928 | 2622 2 929 | 2623 3 930 | 2624 3 931 | 2625 2 932 | 2626 2 933 | 2627 0 934 | 2628 0 935 | 2629 3 936 | 2630 2 937 | 2631 4 938 | 2632 1 939 | 2633 1 940 | 2634 0 941 | 2635 0 942 | 2636 1 943 | 2637 2 944 | 2638 2 945 | 2639 2 946 | 2640 2 947 | 2641 2 948 | 2642 0 949 | 2643 4 950 | 2644 0 951 | 2645 1 952 | 2646 4 953 | 2647 1 954 | 2648 1 955 | 2649 2 956 | 2650 2 957 | 2651 3 958 | 2652 3 959 | 2653 1 960 | 2654 3 961 | 2655 2 962 | 2656 4 963 | 2657 4 964 | 2658 0 965 | 2659 0 966 | 2660 3 967 | 2661 4 968 | 2662 4 969 | 2663 2 970 | 2664 2 971 | 2665 2 972 | 2666 5 973 | 2667 5 974 | 2668 2 975 | 2669 5 976 | 2670 5 977 | 2671 5 978 | 2672 5 979 | 2673 4 980 | 2674 0 981 | 2675 2 982 | 2676 2 983 | 2677 0 984 | 2678 2 985 | 2679 4 986 | 2680 5 987 | 2681 4 988 | 2683 0 989 | 2684 3 990 | 2685 3 991 | 2686 5 992 | 2687 3 993 | 2688 3 994 | 2689 4 995 | 2690 2 996 | 2691 1 997 | 2692 5 998 | 2693 5 999 | 2694 0 1000 | 2695 1 1001 | 2696 3 1002 | 2697 3 1003 | 2698 3 1004 | 2699 5 1005 | 2700 3 1006 | 2701 3 1007 | 2702 1 1008 | 2703 1 1009 | 2704 1 1010 | 2705 1 1011 | 2706 1 1012 | 2707 1 1013 | 2708 1 1014 | 2709 1 1015 | 2710 1 1016 | 2711 1 1017 | 2712 1 1018 | 2713 4 1019 | 2714 2 1020 | 2715 2 1021 | 2716 0 1022 | 2717 2 1023 | 2718 2 1024 | 2719 2 1025 | 2720 2 1026 | 2721 4 1027 | 2722 3 1028 | 2723 3 1029 | 2724 5 1030 | 2725 5 1031 | 2726 4 1032 | 2727 5 1033 | 2728 2 1034 | 2729 4 1035 | 2730 4 1036 | 2731 4 1037 | 2732 5 1038 | 2733 5 1039 | 2734 4 1040 | 2735 2 1041 | 2736 2 1042 | 2737 3 1043 | 2738 3 1044 | 2739 4 1045 | 2740 4 1046 | 2741 3 1047 | 2742 1 1048 | 2743 3 1049 | 2744 2 1050 | 2745 0 1051 | 2746 5 1052 | 2747 5 1053 | 2748 5 1054 | 2749 3 1055 | 2750 4 1056 | 2751 1 1057 | 2752 4 1058 | 2753 0 1059 | 2754 5 1060 | 2755 5 1061 | 2756 0 1062 | 2757 3 1063 | 2758 0 1064 | 2759 2 1065 | 2760 3 1066 | 2761 5 1067 | 2762 3 1068 | 2763 4 1069 | 2764 2 1070 | 2765 2 1071 | 2766 3 1072 | 2767 5 1073 | 2768 1 1074 | 2769 5 1075 | 2770 3 1076 | 2771 4 1077 | 2772 5 1078 | 2773 5 1079 | 2774 2 1080 | 2775 2 1081 | 2776 4 1082 | 2777 3 1083 | 2778 3 1084 | 2779 3 1085 | 2780 3 1086 | 2782 2 1087 | 2783 2 1088 | 2784 2 1089 | 2785 2 1090 | 2786 2 1091 | 2787 3 1092 | 2788 0 1093 | 2789 0 1094 | 2790 5 1095 | 2791 1 1096 | 2792 2 1097 | 2793 3 1098 | 2794 3 1099 | 2795 1 1100 | 2796 3 1101 | 2797 2 1102 | 2798 4 1103 | 2799 3 1104 | 2800 1 1105 | 2801 3 1106 | 2802 3 1107 | 2803 3 1108 | 2804 3 1109 | 2805 3 1110 | 2806 1 1111 | 2807 0 1112 | 2808 5 1113 | 2809 4 1114 | 2810 4 1115 | 2811 1 1116 | 2812 1 1117 | 2813 3 1118 | 2814 4 1119 | 2815 4 1120 | 2816 4 1121 | 2817 4 1122 | 2818 5 1123 | 2819 4 1124 | 2820 2 1125 | 2821 2 1126 | 2822 2 1127 | 2823 2 1128 | 2824 2 1129 | 2825 2 1130 | 2826 2 1131 | 2827 3 1132 | 2828 2 1133 | 2829 2 1134 | 2830 2 1135 | 2831 1 1136 | 2832 4 1137 | 2833 0 1138 | 2834 1 1139 | 2835 4 1140 | 2836 4 1141 | 2837 4 1142 | 2838 1 1143 | 2839 2 1144 | 2840 1 1145 | 2841 5 1146 | 2842 5 1147 | 2843 2 1148 | 2844 4 1149 | 2845 4 1150 | 2846 2 1151 | 2847 2 1152 | 2848 3 1153 | 2849 1 1154 | 2850 1 1155 | 2851 0 1156 | 2852 0 1157 | 2853 2 1158 | 2854 1 1159 | 2855 0 1160 | 2856 1 1161 | 2857 5 1162 | 2858 1 1163 | 2859 2 1164 | 2860 2 1165 | 2861 3 1166 | 2862 2 1167 | 2863 0 1168 | 2864 0 1169 | 2865 3 1170 | 2866 3 1171 | 2867 3 1172 | 2868 2 1173 | 2869 2 1174 | 2870 2 1175 | 2871 1 1176 | 2872 1 1177 | 2873 1 1178 | 2874 3 1179 | 2875 3 1180 | 2876 3 1181 | 2877 5 1182 | 2878 3 1183 | 2879 5 1184 | 2880 2 1185 | 2881 3 1186 | 2882 2 1187 | 2883 3 1188 | 2884 1 1189 | 2885 5 1190 | 2886 2 1191 | 2887 2 1192 | 2888 3 1193 | 2889 3 1194 | 2890 3 1195 | 2891 1 1196 | 2892 1 1197 | 2893 1 1198 | 2894 3 1199 | 2895 3 1200 | 2896 3 1201 | 2897 3 1202 | 2898 4 1203 | 2899 4 1204 | 2900 1 1205 | 2901 4 1206 | 2902 4 1207 | 2903 1 1208 | 2904 3 1209 | 2905 3 1210 | 2906 1 1211 | 2907 0 1212 | 2908 3 1213 | 2909 5 1214 | 2910 4 1215 | 2911 4 1216 | 2912 2 1217 | 2913 4 1218 | 2914 1 1219 | 2915 0 1220 | 2916 3 1221 | 2917 1 1222 | 2918 4 1223 | 2919 1 1224 | 2920 4 1225 | 2921 4 1226 | 2922 0 1227 | 2923 5 1228 | 2924 3 1229 | 2925 2 1230 | 2926 2 1231 | 2927 2 1232 | 2928 5 1233 | 2929 5 1234 | 2930 0 1235 | 2931 4 1236 | 2932 4 1237 | 2933 1 1238 | 2934 2 1239 | 2935 2 1240 | 2936 3 1241 | 2937 3 1242 | 2938 3 1243 | 2939 5 1244 | 2940 5 1245 | 2941 5 1246 | 2942 1 1247 | 2943 5 1248 | 2944 1 1249 | 2945 4 1250 | 2946 3 1251 | 2947 1 1252 | 2948 5 1253 | 2949 5 1254 | 2950 4 1255 | 2951 4 1256 | 2952 2 1257 | 2954 3 1258 | 2955 1 1259 | 2956 0 1260 | 2957 0 1261 | 2958 5 1262 | 2959 3 1263 | 2960 1 1264 | 2961 2 1265 | 2962 1 1266 | 2963 4 1267 | 2964 1 1268 | 2965 4 1269 | 2966 1 1270 | 2967 2 1271 | 2968 2 1272 | 2969 5 1273 | 2970 1 1274 | 2971 2 1275 | 2972 1 1276 | 2973 4 1277 | 2974 5 1278 | 2975 5 1279 | 2976 1 1280 | 2977 4 1281 | 2978 5 1282 | 2979 5 1283 | 2980 1 1284 | 2981 1 1285 | 2982 5 1286 | 2983 5 1287 | 2984 3 1288 | 2985 1 1289 | 2986 0 1290 | 2987 0 1291 | 2988 1 1292 | 2989 0 1293 | 2990 0 1294 | 2991 2 1295 | 2992 0 1296 | 2993 4 1297 | 2994 3 1298 | 2995 4 1299 | 2996 3 1300 | 2997 3 1301 | 2998 1 1302 | 2999 2 1303 | 3000 3 1304 | 3001 5 1305 | 3002 3 1306 | 3003 5 1307 | 3004 5 1308 | 3005 5 1309 | 3006 5 1310 | 3007 5 1311 | 3008 3 1312 | 3009 4 1313 | 3010 4 1314 | 3011 5 1315 | 3012 4 1316 | 3013 2 1317 | 3014 2 1318 | 3015 5 1319 | 3016 1 1320 | 3017 4 1321 | 3018 4 1322 | 3019 4 1323 | 3020 3 1324 | 3021 1 1325 | 3022 5 1326 | 3023 3 1327 | 3024 1 1328 | 3025 3 1329 | 3026 4 1330 | 3027 2 1331 | 3028 2 1332 | 3029 4 1333 | 3030 2 1334 | 3031 1 1335 | 3032 5 1336 | 3033 2 1337 | 3034 2 1338 | 3035 5 1339 | 3036 5 1340 | 3037 3 1341 | 3038 3 1342 | 3039 4 1343 | 3040 1 1344 | 3041 1 1345 | 3043 2 1346 | 3044 5 1347 | 3045 3 1348 | 3046 4 1349 | 3047 4 1350 | 3048 4 1351 | 3049 5 1352 | 3050 5 1353 | 3051 1 1354 | 3052 5 1355 | 3053 5 1356 | 3054 1 1357 | 3055 5 1358 | 3056 5 1359 | 3057 1 1360 | 3058 1 1361 | 3059 1 1362 | 3060 4 1363 | 3061 2 1364 | 3062 3 1365 | 3064 5 1366 | 3065 4 1367 | 3066 1 1368 | 3067 1 1369 | 3068 4 1370 | 3069 5 1371 | 3070 2 1372 | 3071 3 1373 | 3072 1 1374 | 3073 2 1375 | 3074 1 1376 | 3075 4 1377 | 3076 1 1378 | 3077 4 1379 | 3078 1 1380 | 3079 1 1381 | 3080 1 1382 | 3081 0 1383 | 3082 0 1384 | 3083 1 1385 | 3084 5 1386 | 3085 0 1387 | 3086 2 1388 | 3087 1 1389 | 3088 1 1390 | 3089 5 1391 | 3090 1 1392 | 3091 1 1393 | 3092 3 1394 | 3093 2 1395 | 3094 3 1396 | 3095 3 1397 | 3096 1 1398 | 3097 1 1399 | 3098 2 1400 | 3099 3 1401 | 3100 2 1402 | 3101 3 1403 | 3102 5 1404 | 3103 5 1405 | 3104 5 1406 | 3105 5 1407 | 3106 5 1408 | 3107 5 1409 | 3108 5 1410 | 3109 5 1411 | 3110 5 1412 | 3111 3 1413 | 3112 3 1414 | 3113 5 1415 | 3114 2 1416 | 3115 2 1417 | 3116 3 1418 | 3117 4 1419 | 3118 4 1420 | 3119 4 1421 | 3120 4 1422 | 3121 0 1423 | 3122 3 1424 | 3123 0 1425 | 3124 3 1426 | 3125 4 1427 | 3126 1 1428 | 3127 1 1429 | 3128 3 1430 | 3129 3 1431 | 3130 0 1432 | 3131 4 1433 | 3132 5 1434 | 3133 0 1435 | 3134 0 1436 | 3135 0 1437 | 3136 2 1438 | 3137 1 1439 | 3138 3 1440 | 3139 4 1441 | 3140 5 1442 | 3141 2 1443 | 3142 1 1444 | 3143 1 1445 | 3144 3 1446 | 3145 3 1447 | 3146 4 1448 | 3147 4 1449 | 3148 4 1450 | 3149 2 1451 | 3150 2 1452 | 3151 1 1453 | 3152 5 1454 | 3153 4 1455 | 3154 0 1456 | 3155 5 1457 | 3156 5 1458 | 3157 4 1459 | 3158 3 1460 | 3159 4 1461 | 3160 5 1462 | 3161 0 1463 | 3162 3 1464 | 3163 0 1465 | 3164 3 1466 | 3165 4 1467 | 3166 4 1468 | 3167 3 1469 | 3168 3 1470 | 3169 3 1471 | 3170 3 1472 | 3171 3 1473 | 3172 3 1474 | 3173 3 1475 | 3174 5 1476 | 3175 2 1477 | 3176 0 1478 | 3177 0 1479 | 3178 1 1480 | 3179 0 1481 | 3180 0 1482 | 3181 0 1483 | 3182 3 1484 | 3183 1 1485 | 3184 5 1486 | 3185 3 1487 | 3186 2 1488 | 3187 3 1489 | 3188 5 1490 | 3189 3 1491 | 3190 3 1492 | 3191 3 1493 | 3192 1 1494 | 3193 5 1495 | 3194 5 1496 | 3195 5 1497 | 3196 5 1498 | 3197 1 1499 | 3198 2 1500 | 3199 1 1501 | 3200 4 1502 | 3201 5 1503 | 3202 4 1504 | 3203 3 1505 | 3204 3 1506 | 3205 5 1507 | 3206 5 1508 | 3207 1 1509 | 3208 4 1510 | 3209 2 1511 | 3210 5 1512 | 3211 4 1513 | 3213 1 1514 | 3215 4 1515 | 3216 4 1516 | 3217 4 1517 | 3218 4 1518 | 3219 5 1519 | 3220 5 1520 | 3221 4 1521 | 3222 3 1522 | 3223 4 1523 | 3224 3 1524 | 3225 5 1525 | 3226 3 1526 | 3227 3 1527 | 3228 1 1528 | 3229 1 1529 | 3230 0 1530 | 3231 4 1531 | 3232 4 1532 | 3233 3 1533 | 3234 1 1534 | 3235 1 1535 | 3236 1 1536 | 3237 1 1537 | 3238 3 1538 | 3239 3 1539 | 3240 3 1540 | 3241 4 1541 | 3242 3 1542 | 3243 1 1543 | 3244 4 1544 | 3245 1 1545 | 3246 1 1546 | 3247 3 1547 | 3248 5 1548 | 3249 5 1549 | 3251 5 1550 | 3252 4 1551 | 3253 4 1552 | 3254 1 1553 | 3255 3 1554 | 3256 1 1555 | 3257 4 1556 | 3258 3 1557 | 3259 3 1558 | 3260 3 1559 | 3261 1 1560 | 3262 2 1561 | 3263 2 1562 | 3264 5 1563 | 3265 3 1564 | 3266 2 1565 | 3267 5 1566 | 3268 1 1567 | 3269 3 1568 | 3270 3 1569 | 3271 5 1570 | 3272 5 1571 | 3273 4 1572 | 3274 0 1573 | 3275 3 1574 | 3276 5 1575 | 3277 5 1576 | 3278 5 1577 | 3279 1 1578 | 3280 2 1579 | 3281 2 1580 | 3282 4 1581 | 3283 1 1582 | 3284 4 1583 | 3285 5 1584 | 3286 5 1585 | 3287 5 1586 | 3288 4 1587 | 3289 5 1588 | 3290 2 1589 | 3291 1 1590 | 3293 5 1591 | 3294 4 1592 | 3295 4 1593 | 3296 0 1594 | 3297 3 1595 | 3298 5 1596 | 3299 4 1597 | 3300 1 1598 | 3301 3 1599 | 3302 3 1600 | 3303 5 1601 | 3304 4 1602 | 3307 2 1603 | 3308 1 1604 | 3310 0 1605 | 3311 1 1606 | 3312 3 1607 | 3313 2 1608 | 3314 4 1609 | 3315 3 1610 | 3316 2 1611 | 3317 4 1612 | 3318 4 1613 | 3319 1 1614 | 3320 1 1615 | 3321 0 1616 | 3322 3 1617 | 3323 3 1618 | 3324 3 1619 | 3325 1 1620 | 3326 5 1621 | -------------------------------------------------------------------------------- /semisupervised/data/citeseer/test.txt: -------------------------------------------------------------------------------- 1 | 2312 2 | 2313 3 | 2314 4 | 2315 5 | 2316 6 | 2317 7 | 2318 8 | 2319 9 | 2320 10 | 2321 11 | 2322 12 | 2323 13 | 2324 14 | 2325 15 | 2326 16 | 2327 17 | 2328 18 | 2329 19 | 2330 20 | 2331 21 | 2332 22 | 2333 23 | 2334 24 | 2335 25 | 2336 26 | 2337 27 | 2338 28 | 2339 29 | 2340 30 | 2341 31 | 2342 32 | 2343 33 | 2344 34 | 2345 35 | 2346 36 | 2347 37 | 2348 38 | 2349 39 | 2350 40 | 2351 41 | 2352 42 | 2353 43 | 2354 44 | 2355 45 | 2356 46 | 2357 47 | 2358 48 | 2359 49 | 2360 50 | 2361 51 | 2362 52 | 2363 53 | 2364 54 | 2365 55 | 2366 56 | 2367 57 | 2368 58 | 2369 59 | 2370 60 | 2371 61 | 2372 62 | 2373 63 | 2374 64 | 2375 65 | 2376 66 | 2377 67 | 2378 68 | 2379 69 | 2380 70 | 2381 71 | 2382 72 | 2383 73 | 2384 74 | 2385 75 | 2386 76 | 2387 77 | 2388 78 | 2389 79 | 2390 80 | 2391 81 | 2392 82 | 2393 83 | 2394 84 | 2395 85 | 2396 86 | 2397 87 | 2398 88 | 2399 89 | 2400 90 | 2401 91 | 2402 92 | 2403 93 | 2404 94 | 2405 95 | 2406 96 | 2408 97 | 2409 98 | 2410 99 | 2411 100 | 2412 101 | 2413 102 | 2414 103 | 2415 104 | 2416 105 | 2417 106 | 2418 107 | 2419 108 | 2420 109 | 2421 110 | 2422 111 | 2423 112 | 2424 113 | 2425 114 | 2426 115 | 2427 116 | 2428 117 | 2429 118 | 2430 119 | 2431 120 | 2432 121 | 2433 122 | 2434 123 | 2435 124 | 2436 125 | 2437 126 | 2438 127 | 2439 128 | 2440 129 | 2441 130 | 2442 131 | 2443 132 | 2444 133 | 2445 134 | 2446 135 | 2447 136 | 2448 137 | 2449 138 | 2450 139 | 2451 140 | 2452 141 | 2453 142 | 2454 143 | 2455 144 | 2456 145 | 2457 146 | 2458 147 | 2459 148 | 2460 149 | 2461 150 | 2462 151 | 2463 152 | 2464 153 | 2465 154 | 2466 155 | 2467 156 | 2468 157 | 2469 158 | 2470 159 | 2471 160 | 2472 161 | 2473 162 | 2474 163 | 2475 164 | 2476 165 | 2477 166 | 2478 167 | 2479 168 | 2480 169 | 2481 170 | 2482 171 | 2483 172 | 2484 173 | 2485 174 | 2486 175 | 2487 176 | 2488 177 | 2490 178 | 2491 179 | 2492 180 | 2493 181 | 2494 182 | 2495 183 | 2496 184 | 2497 185 | 2498 186 | 2499 187 | 2500 188 | 2501 189 | 2502 190 | 2503 191 | 2504 192 | 2505 193 | 2506 194 | 2507 195 | 2508 196 | 2509 197 | 2510 198 | 2511 199 | 2512 200 | 2513 201 | 2514 202 | 2515 203 | 2516 204 | 2517 205 | 2518 206 | 2519 207 | 2520 208 | 2521 209 | 2522 210 | 2523 211 | 2524 212 | 2525 213 | 2526 214 | 2527 215 | 2528 216 | 2529 217 | 2530 218 | 2531 219 | 2532 220 | 2533 221 | 2534 222 | 2535 223 | 2536 224 | 2537 225 | 2538 226 | 2539 227 | 2540 228 | 2541 229 | 2542 230 | 2543 231 | 2544 232 | 2545 233 | 2546 234 | 2547 235 | 2548 236 | 2549 237 | 2550 238 | 2551 239 | 2552 240 | 2554 241 | 2555 242 | 2556 243 | 2557 244 | 2558 245 | 2559 246 | 2560 247 | 2561 248 | 2562 249 | 2563 250 | 2564 251 | 2565 252 | 2566 253 | 2567 254 | 2568 255 | 2569 256 | 2570 257 | 2571 258 | 2572 259 | 2573 260 | 2574 261 | 2575 262 | 2576 263 | 2577 264 | 2578 265 | 2579 266 | 2580 267 | 2581 268 | 2582 269 | 2583 270 | 2584 271 | 2585 272 | 2586 273 | 2587 274 | 2588 275 | 2589 276 | 2590 277 | 2591 278 | 2592 279 | 2593 280 | 2594 281 | 2595 282 | 2596 283 | 2597 284 | 2598 285 | 2599 286 | 2600 287 | 2601 288 | 2602 289 | 2603 290 | 2604 291 | 2605 292 | 2606 293 | 2607 294 | 2608 295 | 2609 296 | 2610 297 | 2611 298 | 2612 299 | 2613 300 | 2614 301 | 2615 302 | 2616 303 | 2617 304 | 2618 305 | 2619 306 | 2620 307 | 2621 308 | 2622 309 | 2623 310 | 2624 311 | 2625 312 | 2626 313 | 2627 314 | 2628 315 | 2629 316 | 2630 317 | 2631 318 | 2632 319 | 2633 320 | 2634 321 | 2635 322 | 2636 323 | 2637 324 | 2638 325 | 2639 326 | 2640 327 | 2641 328 | 2642 329 | 2643 330 | 2644 331 | 2645 332 | 2646 333 | 2647 334 | 2648 335 | 2649 336 | 2650 337 | 2651 338 | 2652 339 | 2653 340 | 2654 341 | 2655 342 | 2656 343 | 2657 344 | 2658 345 | 2659 346 | 2660 347 | 2661 348 | 2662 349 | 2663 350 | 2664 351 | 2665 352 | 2666 353 | 2667 354 | 2668 355 | 2669 356 | 2670 357 | 2671 358 | 2672 359 | 2673 360 | 2674 361 | 2675 362 | 2676 363 | 2677 364 | 2678 365 | 2679 366 | 2680 367 | 2681 368 | 2683 369 | 2684 370 | 2685 371 | 2686 372 | 2687 373 | 2688 374 | 2689 375 | 2690 376 | 2691 377 | 2692 378 | 2693 379 | 2694 380 | 2695 381 | 2696 382 | 2697 383 | 2698 384 | 2699 385 | 2700 386 | 2701 387 | 2702 388 | 2703 389 | 2704 390 | 2705 391 | 2706 392 | 2707 393 | 2708 394 | 2709 395 | 2710 396 | 2711 397 | 2712 398 | 2713 399 | 2714 400 | 2715 401 | 2716 402 | 2717 403 | 2718 404 | 2719 405 | 2720 406 | 2721 407 | 2722 408 | 2723 409 | 2724 410 | 2725 411 | 2726 412 | 2727 413 | 2728 414 | 2729 415 | 2730 416 | 2731 417 | 2732 418 | 2733 419 | 2734 420 | 2735 421 | 2736 422 | 2737 423 | 2738 424 | 2739 425 | 2740 426 | 2741 427 | 2742 428 | 2743 429 | 2744 430 | 2745 431 | 2746 432 | 2747 433 | 2748 434 | 2749 435 | 2750 436 | 2751 437 | 2752 438 | 2753 439 | 2754 440 | 2755 441 | 2756 442 | 2757 443 | 2758 444 | 2759 445 | 2760 446 | 2761 447 | 2762 448 | 2763 449 | 2764 450 | 2765 451 | 2766 452 | 2767 453 | 2768 454 | 2769 455 | 2770 456 | 2771 457 | 2772 458 | 2773 459 | 2774 460 | 2775 461 | 2776 462 | 2777 463 | 2778 464 | 2779 465 | 2780 466 | 2782 467 | 2783 468 | 2784 469 | 2785 470 | 2786 471 | 2787 472 | 2788 473 | 2789 474 | 2790 475 | 2791 476 | 2792 477 | 2793 478 | 2794 479 | 2795 480 | 2796 481 | 2797 482 | 2798 483 | 2799 484 | 2800 485 | 2801 486 | 2802 487 | 2803 488 | 2804 489 | 2805 490 | 2806 491 | 2807 492 | 2808 493 | 2809 494 | 2810 495 | 2811 496 | 2812 497 | 2813 498 | 2814 499 | 2815 500 | 2816 501 | 2817 502 | 2818 503 | 2819 504 | 2820 505 | 2821 506 | 2822 507 | 2823 508 | 2824 509 | 2825 510 | 2826 511 | 2827 512 | 2828 513 | 2829 514 | 2830 515 | 2831 516 | 2832 517 | 2833 518 | 2834 519 | 2835 520 | 2836 521 | 2837 522 | 2838 523 | 2839 524 | 2840 525 | 2841 526 | 2842 527 | 2843 528 | 2844 529 | 2845 530 | 2846 531 | 2847 532 | 2848 533 | 2849 534 | 2850 535 | 2851 536 | 2852 537 | 2853 538 | 2854 539 | 2855 540 | 2856 541 | 2857 542 | 2858 543 | 2859 544 | 2860 545 | 2861 546 | 2862 547 | 2863 548 | 2864 549 | 2865 550 | 2866 551 | 2867 552 | 2868 553 | 2869 554 | 2870 555 | 2871 556 | 2872 557 | 2873 558 | 2874 559 | 2875 560 | 2876 561 | 2877 562 | 2878 563 | 2879 564 | 2880 565 | 2881 566 | 2882 567 | 2883 568 | 2884 569 | 2885 570 | 2886 571 | 2887 572 | 2888 573 | 2889 574 | 2890 575 | 2891 576 | 2892 577 | 2893 578 | 2894 579 | 2895 580 | 2896 581 | 2897 582 | 2898 583 | 2899 584 | 2900 585 | 2901 586 | 2902 587 | 2903 588 | 2904 589 | 2905 590 | 2906 591 | 2907 592 | 2908 593 | 2909 594 | 2910 595 | 2911 596 | 2912 597 | 2913 598 | 2914 599 | 2915 600 | 2916 601 | 2917 602 | 2918 603 | 2919 604 | 2920 605 | 2921 606 | 2922 607 | 2923 608 | 2924 609 | 2925 610 | 2926 611 | 2927 612 | 2928 613 | 2929 614 | 2930 615 | 2931 616 | 2932 617 | 2933 618 | 2934 619 | 2935 620 | 2936 621 | 2937 622 | 2938 623 | 2939 624 | 2940 625 | 2941 626 | 2942 627 | 2943 628 | 2944 629 | 2945 630 | 2946 631 | 2947 632 | 2948 633 | 2949 634 | 2950 635 | 2951 636 | 2952 637 | 2954 638 | 2955 639 | 2956 640 | 2957 641 | 2958 642 | 2959 643 | 2960 644 | 2961 645 | 2962 646 | 2963 647 | 2964 648 | 2965 649 | 2966 650 | 2967 651 | 2968 652 | 2969 653 | 2970 654 | 2971 655 | 2972 656 | 2973 657 | 2974 658 | 2975 659 | 2976 660 | 2977 661 | 2978 662 | 2979 663 | 2980 664 | 2981 665 | 2982 666 | 2983 667 | 2984 668 | 2985 669 | 2986 670 | 2987 671 | 2988 672 | 2989 673 | 2990 674 | 2991 675 | 2992 676 | 2993 677 | 2994 678 | 2995 679 | 2996 680 | 2997 681 | 2998 682 | 2999 683 | 3000 684 | 3001 685 | 3002 686 | 3003 687 | 3004 688 | 3005 689 | 3006 690 | 3007 691 | 3008 692 | 3009 693 | 3010 694 | 3011 695 | 3012 696 | 3013 697 | 3014 698 | 3015 699 | 3016 700 | 3017 701 | 3018 702 | 3019 703 | 3020 704 | 3021 705 | 3022 706 | 3023 707 | 3024 708 | 3025 709 | 3026 710 | 3027 711 | 3028 712 | 3029 713 | 3030 714 | 3031 715 | 3032 716 | 3033 717 | 3034 718 | 3035 719 | 3036 720 | 3037 721 | 3038 722 | 3039 723 | 3040 724 | 3041 725 | 3043 726 | 3044 727 | 3045 728 | 3046 729 | 3047 730 | 3048 731 | 3049 732 | 3050 733 | 3051 734 | 3052 735 | 3053 736 | 3054 737 | 3055 738 | 3056 739 | 3057 740 | 3058 741 | 3059 742 | 3060 743 | 3061 744 | 3062 745 | 3064 746 | 3065 747 | 3066 748 | 3067 749 | 3068 750 | 3069 751 | 3070 752 | 3071 753 | 3072 754 | 3073 755 | 3074 756 | 3075 757 | 3076 758 | 3077 759 | 3078 760 | 3079 761 | 3080 762 | 3081 763 | 3082 764 | 3083 765 | 3084 766 | 3085 767 | 3086 768 | 3087 769 | 3088 770 | 3089 771 | 3090 772 | 3091 773 | 3092 774 | 3093 775 | 3094 776 | 3095 777 | 3096 778 | 3097 779 | 3098 780 | 3099 781 | 3100 782 | 3101 783 | 3102 784 | 3103 785 | 3104 786 | 3105 787 | 3106 788 | 3107 789 | 3108 790 | 3109 791 | 3110 792 | 3111 793 | 3112 794 | 3113 795 | 3114 796 | 3115 797 | 3116 798 | 3117 799 | 3118 800 | 3119 801 | 3120 802 | 3121 803 | 3122 804 | 3123 805 | 3124 806 | 3125 807 | 3126 808 | 3127 809 | 3128 810 | 3129 811 | 3130 812 | 3131 813 | 3132 814 | 3133 815 | 3134 816 | 3135 817 | 3136 818 | 3137 819 | 3138 820 | 3139 821 | 3140 822 | 3141 823 | 3142 824 | 3143 825 | 3144 826 | 3145 827 | 3146 828 | 3147 829 | 3148 830 | 3149 831 | 3150 832 | 3151 833 | 3152 834 | 3153 835 | 3154 836 | 3155 837 | 3156 838 | 3157 839 | 3158 840 | 3159 841 | 3160 842 | 3161 843 | 3162 844 | 3163 845 | 3164 846 | 3165 847 | 3166 848 | 3167 849 | 3168 850 | 3169 851 | 3170 852 | 3171 853 | 3172 854 | 3173 855 | 3174 856 | 3175 857 | 3176 858 | 3177 859 | 3178 860 | 3179 861 | 3180 862 | 3181 863 | 3182 864 | 3183 865 | 3184 866 | 3185 867 | 3186 868 | 3187 869 | 3188 870 | 3189 871 | 3190 872 | 3191 873 | 3192 874 | 3193 875 | 3194 876 | 3195 877 | 3196 878 | 3197 879 | 3198 880 | 3199 881 | 3200 882 | 3201 883 | 3202 884 | 3203 885 | 3204 886 | 3205 887 | 3206 888 | 3207 889 | 3208 890 | 3209 891 | 3210 892 | 3211 893 | 3213 894 | 3215 895 | 3216 896 | 3217 897 | 3218 898 | 3219 899 | 3220 900 | 3221 901 | 3222 902 | 3223 903 | 3224 904 | 3225 905 | 3226 906 | 3227 907 | 3228 908 | 3229 909 | 3230 910 | 3231 911 | 3232 912 | 3233 913 | 3234 914 | 3235 915 | 3236 916 | 3237 917 | 3238 918 | 3239 919 | 3240 920 | 3241 921 | 3242 922 | 3243 923 | 3244 924 | 3245 925 | 3246 926 | 3247 927 | 3248 928 | 3249 929 | 3251 930 | 3252 931 | 3253 932 | 3254 933 | 3255 934 | 3256 935 | 3257 936 | 3258 937 | 3259 938 | 3260 939 | 3261 940 | 3262 941 | 3263 942 | 3264 943 | 3265 944 | 3266 945 | 3267 946 | 3268 947 | 3269 948 | 3270 949 | 3271 950 | 3272 951 | 3273 952 | 3274 953 | 3275 954 | 3276 955 | 3277 956 | 3278 957 | 3279 958 | 3280 959 | 3281 960 | 3282 961 | 3283 962 | 3284 963 | 3285 964 | 3286 965 | 3287 966 | 3288 967 | 3289 968 | 3290 969 | 3291 970 | 3293 971 | 3294 972 | 3295 973 | 3296 974 | 3297 975 | 3298 976 | 3299 977 | 3300 978 | 3301 979 | 3302 980 | 3303 981 | 3304 982 | 3307 983 | 3308 984 | 3310 985 | 3311 986 | 3312 987 | 3313 988 | 3314 989 | 3315 990 | 3316 991 | 3317 992 | 3318 993 | 3319 994 | 3320 995 | 3321 996 | 3322 997 | 3323 998 | 3324 999 | 3325 1000 | 3326 1001 | -------------------------------------------------------------------------------- /semisupervised/data/citeseer/train.txt: -------------------------------------------------------------------------------- 1 | 0 2 | 1 3 | 2 4 | 3 5 | 4 6 | 5 7 | 6 8 | 7 9 | 8 10 | 9 11 | 10 12 | 11 13 | 12 14 | 13 15 | 14 16 | 15 17 | 16 18 | 17 19 | 18 20 | 19 21 | 20 22 | 21 23 | 22 24 | 23 25 | 24 26 | 25 27 | 26 28 | 27 29 | 28 30 | 29 31 | 30 32 | 31 33 | 32 34 | 33 35 | 34 36 | 35 37 | 36 38 | 37 39 | 38 40 | 39 41 | 40 42 | 41 43 | 42 44 | 43 45 | 44 46 | 45 47 | 46 48 | 47 49 | 48 50 | 49 51 | 50 52 | 51 53 | 52 54 | 53 55 | 54 56 | 55 57 | 56 58 | 57 59 | 58 60 | 59 61 | 60 62 | 61 63 | 62 64 | 63 65 | 64 66 | 65 67 | 66 68 | 67 69 | 68 70 | 69 71 | 70 72 | 71 73 | 72 74 | 73 75 | 74 76 | 75 77 | 76 78 | 77 79 | 78 80 | 79 81 | 80 82 | 81 83 | 82 84 | 83 85 | 84 86 | 85 87 | 86 88 | 87 89 | 88 90 | 89 91 | 90 92 | 91 93 | 92 94 | 93 95 | 94 96 | 95 97 | 96 98 | 97 99 | 98 100 | 99 101 | 100 102 | 101 103 | 102 104 | 103 105 | 104 106 | 105 107 | 106 108 | 107 109 | 108 110 | 109 111 | 110 112 | 111 113 | 112 114 | 113 115 | 114 116 | 115 117 | 116 118 | 117 119 | 118 120 | 119 121 | -------------------------------------------------------------------------------- /semisupervised/data/cora/dev.txt: -------------------------------------------------------------------------------- 1 | 140 2 | 141 3 | 142 4 | 143 5 | 144 6 | 145 7 | 146 8 | 147 9 | 148 10 | 149 11 | 150 12 | 151 13 | 152 14 | 153 15 | 154 16 | 155 17 | 156 18 | 157 19 | 158 20 | 159 21 | 160 22 | 161 23 | 162 24 | 163 25 | 164 26 | 165 27 | 166 28 | 167 29 | 168 30 | 169 31 | 170 32 | 171 33 | 172 34 | 173 35 | 174 36 | 175 37 | 176 38 | 177 39 | 178 40 | 179 41 | 180 42 | 181 43 | 182 44 | 183 45 | 184 46 | 185 47 | 186 48 | 187 49 | 188 50 | 189 51 | 190 52 | 191 53 | 192 54 | 193 55 | 194 56 | 195 57 | 196 58 | 197 59 | 198 60 | 199 61 | 200 62 | 201 63 | 202 64 | 203 65 | 204 66 | 205 67 | 206 68 | 207 69 | 208 70 | 209 71 | 210 72 | 211 73 | 212 74 | 213 75 | 214 76 | 215 77 | 216 78 | 217 79 | 218 80 | 219 81 | 220 82 | 221 83 | 222 84 | 223 85 | 224 86 | 225 87 | 226 88 | 227 89 | 228 90 | 229 91 | 230 92 | 231 93 | 232 94 | 233 95 | 234 96 | 235 97 | 236 98 | 237 99 | 238 100 | 239 101 | 240 102 | 241 103 | 242 104 | 243 105 | 244 106 | 245 107 | 246 108 | 247 109 | 248 110 | 249 111 | 250 112 | 251 113 | 252 114 | 253 115 | 254 116 | 255 117 | 256 118 | 257 119 | 258 120 | 259 121 | 260 122 | 261 123 | 262 124 | 263 125 | 264 126 | 265 127 | 266 128 | 267 129 | 268 130 | 269 131 | 270 132 | 271 133 | 272 134 | 273 135 | 274 136 | 275 137 | 276 138 | 277 139 | 278 140 | 279 141 | 280 142 | 281 143 | 282 144 | 283 145 | 284 146 | 285 147 | 286 148 | 287 149 | 288 150 | 289 151 | 290 152 | 291 153 | 292 154 | 293 155 | 294 156 | 295 157 | 296 158 | 297 159 | 298 160 | 299 161 | 300 162 | 301 163 | 302 164 | 303 165 | 304 166 | 305 167 | 306 168 | 307 169 | 308 170 | 309 171 | 310 172 | 311 173 | 312 174 | 313 175 | 314 176 | 315 177 | 316 178 | 317 179 | 318 180 | 319 181 | 320 182 | 321 183 | 322 184 | 323 185 | 324 186 | 325 187 | 326 188 | 327 189 | 328 190 | 329 191 | 330 192 | 331 193 | 332 194 | 333 195 | 334 196 | 335 197 | 336 198 | 337 199 | 338 200 | 339 201 | 340 202 | 341 203 | 342 204 | 343 205 | 344 206 | 345 207 | 346 208 | 347 209 | 348 210 | 349 211 | 350 212 | 351 213 | 352 214 | 353 215 | 354 216 | 355 217 | 356 218 | 357 219 | 358 220 | 359 221 | 360 222 | 361 223 | 362 224 | 363 225 | 364 226 | 365 227 | 366 228 | 367 229 | 368 230 | 369 231 | 370 232 | 371 233 | 372 234 | 373 235 | 374 236 | 375 237 | 376 238 | 377 239 | 378 240 | 379 241 | 380 242 | 381 243 | 382 244 | 383 245 | 384 246 | 385 247 | 386 248 | 387 249 | 388 250 | 389 251 | 390 252 | 391 253 | 392 254 | 393 255 | 394 256 | 395 257 | 396 258 | 397 259 | 398 260 | 399 261 | 400 262 | 401 263 | 402 264 | 403 265 | 404 266 | 405 267 | 406 268 | 407 269 | 408 270 | 409 271 | 410 272 | 411 273 | 412 274 | 413 275 | 414 276 | 415 277 | 416 278 | 417 279 | 418 280 | 419 281 | 420 282 | 421 283 | 422 284 | 423 285 | 424 286 | 425 287 | 426 288 | 427 289 | 428 290 | 429 291 | 430 292 | 431 293 | 432 294 | 433 295 | 434 296 | 435 297 | 436 298 | 437 299 | 438 300 | 439 301 | 440 302 | 441 303 | 442 304 | 443 305 | 444 306 | 445 307 | 446 308 | 447 309 | 448 310 | 449 311 | 450 312 | 451 313 | 452 314 | 453 315 | 454 316 | 455 317 | 456 318 | 457 319 | 458 320 | 459 321 | 460 322 | 461 323 | 462 324 | 463 325 | 464 326 | 465 327 | 466 328 | 467 329 | 468 330 | 469 331 | 470 332 | 471 333 | 472 334 | 473 335 | 474 336 | 475 337 | 476 338 | 477 339 | 478 340 | 479 341 | 480 342 | 481 343 | 482 344 | 483 345 | 484 346 | 485 347 | 486 348 | 487 349 | 488 350 | 489 351 | 490 352 | 491 353 | 492 354 | 493 355 | 494 356 | 495 357 | 496 358 | 497 359 | 498 360 | 499 361 | 500 362 | 501 363 | 502 364 | 503 365 | 504 366 | 505 367 | 506 368 | 507 369 | 508 370 | 509 371 | 510 372 | 511 373 | 512 374 | 513 375 | 514 376 | 515 377 | 516 378 | 517 379 | 518 380 | 519 381 | 520 382 | 521 383 | 522 384 | 523 385 | 524 386 | 525 387 | 526 388 | 527 389 | 528 390 | 529 391 | 530 392 | 531 393 | 532 394 | 533 395 | 534 396 | 535 397 | 536 398 | 537 399 | 538 400 | 539 401 | 540 402 | 541 403 | 542 404 | 543 405 | 544 406 | 545 407 | 546 408 | 547 409 | 548 410 | 549 411 | 550 412 | 551 413 | 552 414 | 553 415 | 554 416 | 555 417 | 556 418 | 557 419 | 558 420 | 559 421 | 560 422 | 561 423 | 562 424 | 563 425 | 564 426 | 565 427 | 566 428 | 567 429 | 568 430 | 569 431 | 570 432 | 571 433 | 572 434 | 573 435 | 574 436 | 575 437 | 576 438 | 577 439 | 578 440 | 579 441 | 580 442 | 581 443 | 582 444 | 583 445 | 584 446 | 585 447 | 586 448 | 587 449 | 588 450 | 589 451 | 590 452 | 591 453 | 592 454 | 593 455 | 594 456 | 595 457 | 596 458 | 597 459 | 598 460 | 599 461 | 600 462 | 601 463 | 602 464 | 603 465 | 604 466 | 605 467 | 606 468 | 607 469 | 608 470 | 609 471 | 610 472 | 611 473 | 612 474 | 613 475 | 614 476 | 615 477 | 616 478 | 617 479 | 618 480 | 619 481 | 620 482 | 621 483 | 622 484 | 623 485 | 624 486 | 625 487 | 626 488 | 627 489 | 628 490 | 629 491 | 630 492 | 631 493 | 632 494 | 633 495 | 634 496 | 635 497 | 636 498 | 637 499 | 638 500 | 639 501 | -------------------------------------------------------------------------------- /semisupervised/data/cora/label.txt: -------------------------------------------------------------------------------- 1 | 0 3 2 | 1 4 3 | 2 4 4 | 3 0 5 | 4 3 6 | 5 2 7 | 6 0 8 | 7 3 9 | 8 3 10 | 9 2 11 | 10 0 12 | 11 0 13 | 12 4 14 | 13 3 15 | 14 3 16 | 15 3 17 | 16 2 18 | 17 3 19 | 18 1 20 | 19 3 21 | 20 5 22 | 21 3 23 | 22 4 24 | 23 6 25 | 24 3 26 | 25 3 27 | 26 6 28 | 27 3 29 | 28 2 30 | 29 4 31 | 30 3 32 | 31 6 33 | 32 0 34 | 33 4 35 | 34 2 36 | 35 0 37 | 36 1 38 | 37 5 39 | 38 4 40 | 39 4 41 | 40 3 42 | 41 6 43 | 42 6 44 | 43 4 45 | 44 3 46 | 45 3 47 | 46 2 48 | 47 5 49 | 48 3 50 | 49 4 51 | 50 5 52 | 51 3 53 | 52 0 54 | 53 2 55 | 54 1 56 | 55 4 57 | 56 6 58 | 57 3 59 | 58 2 60 | 59 2 61 | 60 0 62 | 61 0 63 | 62 0 64 | 63 4 65 | 64 2 66 | 65 0 67 | 66 4 68 | 67 5 69 | 68 2 70 | 69 6 71 | 70 5 72 | 71 2 73 | 72 2 74 | 73 2 75 | 74 0 76 | 75 4 77 | 76 5 78 | 77 6 79 | 78 4 80 | 79 0 81 | 80 0 82 | 81 0 83 | 82 4 84 | 83 2 85 | 84 4 86 | 85 1 87 | 86 4 88 | 87 6 89 | 88 0 90 | 89 4 91 | 90 2 92 | 91 4 93 | 92 6 94 | 93 6 95 | 94 0 96 | 95 0 97 | 96 6 98 | 97 5 99 | 98 0 100 | 99 6 101 | 100 0 102 | 101 2 103 | 102 1 104 | 103 1 105 | 104 1 106 | 105 2 107 | 106 6 108 | 107 5 109 | 108 6 110 | 109 1 111 | 110 2 112 | 111 2 113 | 112 1 114 | 113 5 115 | 114 5 116 | 115 5 117 | 116 6 118 | 117 5 119 | 118 6 120 | 119 5 121 | 120 5 122 | 121 1 123 | 122 6 124 | 123 6 125 | 124 1 126 | 125 5 127 | 126 1 128 | 127 6 129 | 128 5 130 | 129 5 131 | 130 5 132 | 131 1 133 | 132 5 134 | 133 1 135 | 134 1 136 | 135 1 137 | 136 1 138 | 137 1 139 | 138 1 140 | 139 1 141 | 140 4 142 | 141 3 143 | 142 0 144 | 143 3 145 | 144 6 146 | 145 6 147 | 146 0 148 | 147 3 149 | 148 4 150 | 149 0 151 | 150 3 152 | 151 4 153 | 152 4 154 | 153 1 155 | 154 2 156 | 155 2 157 | 156 2 158 | 157 3 159 | 158 3 160 | 159 3 161 | 160 3 162 | 161 0 163 | 162 4 164 | 163 5 165 | 164 0 166 | 165 3 167 | 166 4 168 | 167 3 169 | 168 3 170 | 169 3 171 | 170 2 172 | 171 3 173 | 172 3 174 | 173 2 175 | 174 2 176 | 175 6 177 | 176 1 178 | 177 4 179 | 178 3 180 | 179 3 181 | 180 3 182 | 181 6 183 | 182 3 184 | 183 3 185 | 184 3 186 | 185 3 187 | 186 0 188 | 187 4 189 | 188 2 190 | 189 2 191 | 190 6 192 | 191 5 193 | 192 3 194 | 193 5 195 | 194 4 196 | 195 0 197 | 196 4 198 | 197 3 199 | 198 4 200 | 199 4 201 | 200 3 202 | 201 3 203 | 202 2 204 | 203 4 205 | 204 0 206 | 205 3 207 | 206 2 208 | 207 3 209 | 208 3 210 | 209 4 211 | 210 4 212 | 211 0 213 | 212 3 214 | 213 6 215 | 214 0 216 | 215 3 217 | 216 3 218 | 217 4 219 | 218 3 220 | 219 3 221 | 220 5 222 | 221 2 223 | 222 3 224 | 223 2 225 | 224 4 226 | 225 1 227 | 226 3 228 | 227 2 229 | 228 2 230 | 229 3 231 | 230 3 232 | 231 3 233 | 232 3 234 | 233 5 235 | 234 1 236 | 235 3 237 | 236 1 238 | 237 3 239 | 238 5 240 | 239 0 241 | 240 3 242 | 241 5 243 | 242 0 244 | 243 4 245 | 244 2 246 | 245 4 247 | 246 2 248 | 247 4 249 | 248 4 250 | 249 5 251 | 250 4 252 | 251 3 253 | 252 5 254 | 253 3 255 | 254 3 256 | 255 4 257 | 256 3 258 | 257 0 259 | 258 4 260 | 259 5 261 | 260 0 262 | 261 3 263 | 262 6 264 | 263 2 265 | 264 5 266 | 265 5 267 | 266 5 268 | 267 3 269 | 268 2 270 | 269 3 271 | 270 0 272 | 271 4 273 | 272 5 274 | 273 3 275 | 274 0 276 | 275 4 277 | 276 0 278 | 277 3 279 | 278 3 280 | 279 0 281 | 280 0 282 | 281 3 283 | 282 5 284 | 283 4 285 | 284 4 286 | 285 3 287 | 286 4 288 | 287 3 289 | 288 3 290 | 289 2 291 | 290 2 292 | 291 3 293 | 292 0 294 | 293 3 295 | 294 1 296 | 295 3 297 | 296 2 298 | 297 3 299 | 298 3 300 | 299 4 301 | 300 5 302 | 301 2 303 | 302 1 304 | 303 1 305 | 304 0 306 | 305 0 307 | 306 1 308 | 307 6 309 | 308 1 310 | 309 3 311 | 310 3 312 | 311 3 313 | 312 2 314 | 313 3 315 | 314 3 316 | 315 0 317 | 316 3 318 | 317 4 319 | 318 1 320 | 319 3 321 | 320 4 322 | 321 3 323 | 322 2 324 | 323 0 325 | 324 0 326 | 325 4 327 | 326 2 328 | 327 3 329 | 328 2 330 | 329 1 331 | 330 4 332 | 331 6 333 | 332 3 334 | 333 2 335 | 334 0 336 | 335 3 337 | 336 3 338 | 337 2 339 | 338 3 340 | 339 4 341 | 340 4 342 | 341 2 343 | 342 1 344 | 343 3 345 | 344 5 346 | 345 3 347 | 346 2 348 | 347 0 349 | 348 4 350 | 349 5 351 | 350 1 352 | 351 3 353 | 352 3 354 | 353 2 355 | 354 0 356 | 355 2 357 | 356 4 358 | 357 2 359 | 358 2 360 | 359 2 361 | 360 5 362 | 361 4 363 | 362 4 364 | 363 2 365 | 364 2 366 | 365 0 367 | 366 3 368 | 367 2 369 | 368 4 370 | 369 4 371 | 370 5 372 | 371 5 373 | 372 1 374 | 373 0 375 | 374 3 376 | 375 4 377 | 376 5 378 | 377 3 379 | 378 4 380 | 379 5 381 | 380 3 382 | 381 4 383 | 382 3 384 | 383 3 385 | 384 1 386 | 385 4 387 | 386 3 388 | 387 3 389 | 388 5 390 | 389 2 391 | 390 3 392 | 391 2 393 | 392 5 394 | 393 5 395 | 394 4 396 | 395 3 397 | 396 3 398 | 397 3 399 | 398 3 400 | 399 1 401 | 400 5 402 | 401 3 403 | 402 3 404 | 403 2 405 | 404 6 406 | 405 0 407 | 406 1 408 | 407 3 409 | 408 0 410 | 409 1 411 | 410 5 412 | 411 3 413 | 412 6 414 | 413 3 415 | 414 6 416 | 415 0 417 | 416 3 418 | 417 3 419 | 418 3 420 | 419 5 421 | 420 4 422 | 421 3 423 | 422 4 424 | 423 0 425 | 424 5 426 | 425 2 427 | 426 1 428 | 427 2 429 | 428 4 430 | 429 4 431 | 430 4 432 | 431 4 433 | 432 3 434 | 433 3 435 | 434 0 436 | 435 4 437 | 436 3 438 | 437 0 439 | 438 5 440 | 439 2 441 | 440 0 442 | 441 5 443 | 442 4 444 | 443 4 445 | 444 4 446 | 445 3 447 | 446 0 448 | 447 6 449 | 448 5 450 | 449 2 451 | 450 4 452 | 451 5 453 | 452 1 454 | 453 3 455 | 454 5 456 | 455 3 457 | 456 0 458 | 457 3 459 | 458 5 460 | 459 1 461 | 460 1 462 | 461 0 463 | 462 3 464 | 463 4 465 | 464 2 466 | 465 6 467 | 466 2 468 | 467 0 469 | 468 5 470 | 469 3 471 | 470 4 472 | 471 6 473 | 472 5 474 | 473 3 475 | 474 5 476 | 475 0 477 | 476 1 478 | 477 3 479 | 478 0 480 | 479 5 481 | 480 2 482 | 481 2 483 | 482 3 484 | 483 5 485 | 484 1 486 | 485 0 487 | 486 3 488 | 487 1 489 | 488 4 490 | 489 2 491 | 490 5 492 | 491 6 493 | 492 4 494 | 493 2 495 | 494 2 496 | 495 6 497 | 496 0 498 | 497 0 499 | 498 4 500 | 499 6 501 | 500 3 502 | 501 2 503 | 502 0 504 | 503 3 505 | 504 6 506 | 505 1 507 | 506 6 508 | 507 3 509 | 508 1 510 | 509 3 511 | 510 3 512 | 511 3 513 | 512 3 514 | 513 2 515 | 514 5 516 | 515 4 517 | 516 5 518 | 517 5 519 | 518 3 520 | 519 1 521 | 520 3 522 | 521 3 523 | 522 4 524 | 523 4 525 | 524 2 526 | 525 0 527 | 526 2 528 | 527 0 529 | 528 5 530 | 529 4 531 | 530 0 532 | 531 0 533 | 532 3 534 | 533 2 535 | 534 2 536 | 535 2 537 | 536 2 538 | 537 6 539 | 538 4 540 | 539 6 541 | 540 5 542 | 541 5 543 | 542 1 544 | 543 0 545 | 544 0 546 | 545 4 547 | 546 3 548 | 547 3 549 | 548 1 550 | 549 3 551 | 550 6 552 | 551 6 553 | 552 2 554 | 553 3 555 | 554 3 556 | 555 3 557 | 556 1 558 | 557 2 559 | 558 2 560 | 559 5 561 | 560 4 562 | 561 3 563 | 562 2 564 | 563 1 565 | 564 2 566 | 565 2 567 | 566 3 568 | 567 2 569 | 568 3 570 | 569 2 571 | 570 3 572 | 571 3 573 | 572 0 574 | 573 5 575 | 574 3 576 | 575 3 577 | 576 3 578 | 577 4 579 | 578 5 580 | 579 3 581 | 580 2 582 | 581 1 583 | 582 4 584 | 583 4 585 | 584 4 586 | 585 4 587 | 586 0 588 | 587 5 589 | 588 4 590 | 589 1 591 | 590 3 592 | 591 0 593 | 592 3 594 | 593 4 595 | 594 6 596 | 595 3 597 | 596 6 598 | 597 3 599 | 598 3 600 | 599 3 601 | 600 6 602 | 601 3 603 | 602 4 604 | 603 3 605 | 604 6 606 | 605 3 607 | 606 0 608 | 607 3 609 | 608 1 610 | 609 2 611 | 610 5 612 | 611 6 613 | 612 5 614 | 613 2 615 | 614 0 616 | 615 2 617 | 616 2 618 | 617 3 619 | 618 3 620 | 619 0 621 | 620 3 622 | 621 5 623 | 622 3 624 | 623 4 625 | 624 0 626 | 625 3 627 | 626 2 628 | 627 4 629 | 628 5 630 | 629 2 631 | 630 3 632 | 631 2 633 | 632 2 634 | 633 3 635 | 634 5 636 | 635 2 637 | 636 0 638 | 637 3 639 | 638 4 640 | 639 3 641 | 1708 3 642 | 1709 2 643 | 1710 2 644 | 1711 2 645 | 1712 2 646 | 1713 0 647 | 1714 2 648 | 1715 2 649 | 1716 2 650 | 1717 2 651 | 1718 2 652 | 1719 2 653 | 1720 2 654 | 1721 2 655 | 1722 2 656 | 1723 2 657 | 1724 2 658 | 1725 2 659 | 1726 2 660 | 1727 2 661 | 1728 3 662 | 1729 2 663 | 1730 2 664 | 1731 2 665 | 1732 2 666 | 1733 2 667 | 1734 2 668 | 1735 1 669 | 1736 2 670 | 1737 2 671 | 1738 2 672 | 1739 2 673 | 1740 2 674 | 1741 3 675 | 1742 2 676 | 1743 2 677 | 1744 2 678 | 1745 2 679 | 1746 2 680 | 1747 2 681 | 1748 2 682 | 1749 2 683 | 1750 2 684 | 1751 2 685 | 1752 2 686 | 1753 2 687 | 1754 2 688 | 1755 2 689 | 1756 2 690 | 1757 2 691 | 1758 2 692 | 1759 2 693 | 1760 2 694 | 1761 2 695 | 1762 2 696 | 1763 2 697 | 1764 5 698 | 1765 2 699 | 1766 2 700 | 1767 1 701 | 1768 1 702 | 1769 1 703 | 1770 1 704 | 1771 1 705 | 1772 1 706 | 1773 1 707 | 1774 4 708 | 1775 1 709 | 1776 1 710 | 1777 1 711 | 1778 1 712 | 1779 1 713 | 1780 1 714 | 1781 1 715 | 1782 1 716 | 1783 1 717 | 1784 1 718 | 1785 4 719 | 1786 1 720 | 1787 1 721 | 1788 1 722 | 1789 1 723 | 1790 1 724 | 1791 1 725 | 1792 3 726 | 1793 4 727 | 1794 4 728 | 1795 4 729 | 1796 4 730 | 1797 1 731 | 1798 1 732 | 1799 3 733 | 1800 1 734 | 1801 0 735 | 1802 3 736 | 1803 0 737 | 1804 2 738 | 1805 1 739 | 1806 3 740 | 1807 3 741 | 1808 3 742 | 1809 3 743 | 1810 3 744 | 1811 3 745 | 1812 3 746 | 1813 3 747 | 1814 3 748 | 1815 3 749 | 1816 3 750 | 1817 3 751 | 1818 3 752 | 1819 3 753 | 1820 3 754 | 1821 3 755 | 1822 3 756 | 1823 3 757 | 1824 5 758 | 1825 5 759 | 1826 5 760 | 1827 5 761 | 1828 5 762 | 1829 5 763 | 1830 2 764 | 1831 2 765 | 1832 2 766 | 1833 2 767 | 1834 1 768 | 1835 6 769 | 1836 6 770 | 1837 3 771 | 1838 0 772 | 1839 0 773 | 1840 5 774 | 1841 0 775 | 1842 5 776 | 1843 0 777 | 1844 3 778 | 1845 5 779 | 1846 3 780 | 1847 0 781 | 1848 0 782 | 1849 6 783 | 1850 0 784 | 1851 6 785 | 1852 3 786 | 1853 3 787 | 1854 1 788 | 1855 3 789 | 1856 1 790 | 1857 3 791 | 1858 3 792 | 1859 3 793 | 1860 3 794 | 1861 3 795 | 1862 3 796 | 1863 3 797 | 1864 3 798 | 1865 3 799 | 1866 3 800 | 1867 3 801 | 1868 3 802 | 1869 3 803 | 1870 3 804 | 1871 3 805 | 1872 3 806 | 1873 3 807 | 1874 3 808 | 1875 3 809 | 1876 3 810 | 1877 3 811 | 1878 5 812 | 1879 5 813 | 1880 5 814 | 1881 5 815 | 1882 5 816 | 1883 5 817 | 1884 5 818 | 1885 5 819 | 1886 2 820 | 1887 2 821 | 1888 2 822 | 1889 4 823 | 1890 4 824 | 1891 4 825 | 1892 0 826 | 1893 3 827 | 1894 3 828 | 1895 2 829 | 1896 5 830 | 1897 5 831 | 1898 5 832 | 1899 5 833 | 1900 6 834 | 1901 5 835 | 1902 5 836 | 1903 5 837 | 1904 5 838 | 1905 0 839 | 1906 4 840 | 1907 4 841 | 1908 4 842 | 1909 0 843 | 1910 0 844 | 1911 5 845 | 1912 0 846 | 1913 0 847 | 1914 6 848 | 1915 6 849 | 1916 6 850 | 1917 6 851 | 1918 6 852 | 1919 6 853 | 1920 0 854 | 1921 0 855 | 1922 0 856 | 1923 0 857 | 1924 3 858 | 1925 0 859 | 1926 0 860 | 1927 0 861 | 1928 3 862 | 1929 3 863 | 1930 0 864 | 1931 3 865 | 1932 3 866 | 1933 3 867 | 1934 3 868 | 1935 3 869 | 1936 3 870 | 1937 3 871 | 1938 3 872 | 1939 3 873 | 1940 3 874 | 1941 3 875 | 1942 3 876 | 1943 3 877 | 1944 3 878 | 1945 3 879 | 1946 3 880 | 1947 3 881 | 1948 3 882 | 1949 3 883 | 1950 3 884 | 1951 3 885 | 1952 3 886 | 1953 5 887 | 1954 5 888 | 1955 5 889 | 1956 5 890 | 1957 3 891 | 1958 5 892 | 1959 5 893 | 1960 5 894 | 1961 5 895 | 1962 5 896 | 1963 5 897 | 1964 4 898 | 1965 4 899 | 1966 4 900 | 1967 4 901 | 1968 4 902 | 1969 4 903 | 1970 4 904 | 1971 4 905 | 1972 6 906 | 1973 6 907 | 1974 5 908 | 1975 6 909 | 1976 6 910 | 1977 3 911 | 1978 5 912 | 1979 5 913 | 1980 5 914 | 1981 0 915 | 1982 5 916 | 1983 0 917 | 1984 4 918 | 1985 4 919 | 1986 3 920 | 1987 3 921 | 1988 3 922 | 1989 2 923 | 1990 2 924 | 1991 1 925 | 1992 3 926 | 1993 3 927 | 1994 3 928 | 1995 3 929 | 1996 3 930 | 1997 3 931 | 1998 5 932 | 1999 3 933 | 2000 3 934 | 2001 4 935 | 2002 4 936 | 2003 3 937 | 2004 3 938 | 2005 3 939 | 2006 3 940 | 2007 3 941 | 2008 3 942 | 2009 3 943 | 2010 0 944 | 2011 3 945 | 2012 3 946 | 2013 6 947 | 2014 3 948 | 2015 6 949 | 2016 0 950 | 2017 5 951 | 2018 0 952 | 2019 0 953 | 2020 4 954 | 2021 0 955 | 2022 6 956 | 2023 5 957 | 2024 5 958 | 2025 0 959 | 2026 1 960 | 2027 3 961 | 2028 3 962 | 2029 5 963 | 2030 6 964 | 2031 5 965 | 2032 3 966 | 2033 3 967 | 2034 4 968 | 2035 3 969 | 2036 3 970 | 2037 3 971 | 2038 3 972 | 2039 3 973 | 2040 4 974 | 2041 3 975 | 2042 3 976 | 2043 4 977 | 2044 3 978 | 2045 1 979 | 2046 1 980 | 2047 0 981 | 2048 1 982 | 2049 0 983 | 2050 6 984 | 2051 0 985 | 2052 0 986 | 2053 0 987 | 2054 0 988 | 2055 0 989 | 2056 0 990 | 2057 0 991 | 2058 5 992 | 2059 0 993 | 2060 5 994 | 2061 5 995 | 2062 5 996 | 2063 3 997 | 2064 3 998 | 2065 3 999 | 2066 3 1000 | 2067 3 1001 | 2068 0 1002 | 2069 0 1003 | 2070 0 1004 | 2071 2 1005 | 2072 0 1006 | 2073 0 1007 | 2074 0 1008 | 2075 3 1009 | 2076 3 1010 | 2077 3 1011 | 2078 3 1012 | 2079 1 1013 | 2080 1 1014 | 2081 1 1015 | 2082 1 1016 | 2083 2 1017 | 2084 1 1018 | 2085 1 1019 | 2086 1 1020 | 2087 1 1021 | 2088 1 1022 | 2089 0 1023 | 2090 1 1024 | 2091 3 1025 | 2092 1 1026 | 2093 1 1027 | 2094 1 1028 | 2095 1 1029 | 2096 1 1030 | 2097 0 1031 | 2098 0 1032 | 2099 0 1033 | 2100 5 1034 | 2101 5 1035 | 2102 5 1036 | 2103 5 1037 | 2104 3 1038 | 2105 5 1039 | 2106 1 1040 | 2107 1 1041 | 2108 3 1042 | 2109 6 1043 | 2110 6 1044 | 2111 5 1045 | 2112 6 1046 | 2113 2 1047 | 2114 3 1048 | 2115 3 1049 | 2116 0 1050 | 2117 3 1051 | 2118 3 1052 | 2119 3 1053 | 2120 4 1054 | 2121 4 1055 | 2122 4 1056 | 2123 4 1057 | 2124 3 1058 | 2125 3 1059 | 2126 3 1060 | 2127 4 1061 | 2128 3 1062 | 2129 3 1063 | 2130 4 1064 | 2131 0 1065 | 2132 6 1066 | 2133 0 1067 | 2134 6 1068 | 2135 6 1069 | 2136 0 1070 | 2137 0 1071 | 2138 3 1072 | 2139 3 1073 | 2140 3 1074 | 2141 3 1075 | 2142 3 1076 | 2143 1 1077 | 2144 1 1078 | 2145 1 1079 | 2146 3 1080 | 2147 3 1081 | 2148 3 1082 | 2149 3 1083 | 2150 5 1084 | 2151 6 1085 | 2152 3 1086 | 2153 4 1087 | 2154 6 1088 | 2155 0 1089 | 2156 0 1090 | 2157 6 1091 | 2158 6 1092 | 2159 6 1093 | 2160 6 1094 | 2161 6 1095 | 2162 3 1096 | 2163 3 1097 | 2164 6 1098 | 2165 6 1099 | 2166 5 1100 | 2167 2 1101 | 2168 1 1102 | 2169 2 1103 | 2170 1 1104 | 2171 0 1105 | 2172 0 1106 | 2173 6 1107 | 2174 6 1108 | 2175 2 1109 | 2176 3 1110 | 2177 3 1111 | 2178 5 1112 | 2179 0 1113 | 2180 0 1114 | 2181 0 1115 | 2182 0 1116 | 2183 0 1117 | 2184 5 1118 | 2185 5 1119 | 2186 0 1120 | 2187 3 1121 | 2188 5 1122 | 2189 0 1123 | 2190 6 1124 | 2191 3 1125 | 2192 6 1126 | 2193 0 1127 | 2194 0 1128 | 2195 0 1129 | 2196 0 1130 | 2197 0 1131 | 2198 0 1132 | 2199 0 1133 | 2200 0 1134 | 2201 0 1135 | 2202 0 1136 | 2203 0 1137 | 2204 3 1138 | 2205 3 1139 | 2206 3 1140 | 2207 3 1141 | 2208 1 1142 | 2209 6 1143 | 2210 1 1144 | 2211 0 1145 | 2212 3 1146 | 2213 3 1147 | 2214 3 1148 | 2215 3 1149 | 2216 3 1150 | 2217 6 1151 | 2218 1 1152 | 2219 0 1153 | 2220 2 1154 | 2221 2 1155 | 2222 4 1156 | 2223 4 1157 | 2224 4 1158 | 2225 4 1159 | 2226 4 1160 | 2227 5 1161 | 2228 6 1162 | 2229 3 1163 | 2230 3 1164 | 2231 0 1165 | 2232 0 1166 | 2233 0 1167 | 2234 0 1168 | 2235 5 1169 | 2236 4 1170 | 2237 4 1171 | 2238 4 1172 | 2239 4 1173 | 2240 4 1174 | 2241 3 1175 | 2242 3 1176 | 2243 3 1177 | 2244 3 1178 | 2245 3 1179 | 2246 0 1180 | 2247 3 1181 | 2248 4 1182 | 2249 4 1183 | 2250 4 1184 | 2251 1 1185 | 2252 1 1186 | 2253 3 1187 | 2254 1 1188 | 2255 1 1189 | 2256 5 1190 | 2257 1 1191 | 2258 3 1192 | 2259 4 1193 | 2260 4 1194 | 2261 4 1195 | 2262 4 1196 | 2263 4 1197 | 2264 4 1198 | 2265 4 1199 | 2266 0 1200 | 2267 0 1201 | 2268 0 1202 | 2269 5 1203 | 2270 5 1204 | 2271 5 1205 | 2272 5 1206 | 2273 5 1207 | 2274 0 1208 | 2275 5 1209 | 2276 3 1210 | 2277 0 1211 | 2278 6 1212 | 2279 2 1213 | 2280 0 1214 | 2281 5 1215 | 2282 3 1216 | 2283 3 1217 | 2284 5 1218 | 2285 5 1219 | 2286 5 1220 | 2287 5 1221 | 2288 5 1222 | 2289 4 1223 | 2290 4 1224 | 2291 0 1225 | 2292 4 1226 | 2293 0 1227 | 2294 4 1228 | 2295 0 1229 | 2296 3 1230 | 2297 4 1231 | 2298 4 1232 | 2299 4 1233 | 2300 1 1234 | 2301 3 1235 | 2302 3 1236 | 2303 3 1237 | 2304 3 1238 | 2305 3 1239 | 2306 4 1240 | 2307 2 1241 | 2308 3 1242 | 2309 3 1243 | 2310 3 1244 | 2311 0 1245 | 2312 0 1246 | 2313 2 1247 | 2314 3 1248 | 2315 3 1249 | 2316 3 1250 | 2317 3 1251 | 2318 1 1252 | 2319 1 1253 | 2320 3 1254 | 2321 0 1255 | 2322 1 1256 | 2323 4 1257 | 2324 1 1258 | 2325 1 1259 | 2326 1 1260 | 2327 1 1261 | 2328 1 1262 | 2329 1 1263 | 2330 0 1264 | 2331 1 1265 | 2332 0 1266 | 2333 0 1267 | 2334 2 1268 | 2335 4 1269 | 2336 4 1270 | 2337 4 1271 | 2338 3 1272 | 2339 3 1273 | 2340 3 1274 | 2341 4 1275 | 2342 0 1276 | 2343 3 1277 | 2344 3 1278 | 2345 3 1279 | 2346 3 1280 | 2347 0 1281 | 2348 3 1282 | 2349 3 1283 | 2350 4 1284 | 2351 4 1285 | 2352 4 1286 | 2353 4 1287 | 2354 4 1288 | 2355 4 1289 | 2356 0 1290 | 2357 4 1291 | 2358 3 1292 | 2359 2 1293 | 2360 0 1294 | 2361 3 1295 | 2362 4 1296 | 2363 5 1297 | 2364 0 1298 | 2365 2 1299 | 2366 2 1300 | 2367 3 1301 | 2368 3 1302 | 2369 3 1303 | 2370 3 1304 | 2371 3 1305 | 2372 2 1306 | 2373 3 1307 | 2374 5 1308 | 2375 5 1309 | 2376 4 1310 | 2377 1 1311 | 2378 4 1312 | 2379 4 1313 | 2380 4 1314 | 2381 3 1315 | 2382 4 1316 | 2383 4 1317 | 2384 0 1318 | 2385 4 1319 | 2386 4 1320 | 2387 4 1321 | 2388 5 1322 | 2389 2 1323 | 2390 2 1324 | 2391 2 1325 | 2392 2 1326 | 2393 4 1327 | 2394 6 1328 | 2395 6 1329 | 2396 6 1330 | 2397 6 1331 | 2398 3 1332 | 2399 4 1333 | 2400 4 1334 | 2401 4 1335 | 2402 1 1336 | 2403 3 1337 | 2404 0 1338 | 2405 3 1339 | 2406 3 1340 | 2407 5 1341 | 2408 0 1342 | 2409 2 1343 | 2410 3 1344 | 2411 3 1345 | 2412 3 1346 | 2413 3 1347 | 2414 3 1348 | 2415 2 1349 | 2416 4 1350 | 2417 4 1351 | 2418 0 1352 | 2419 0 1353 | 2420 3 1354 | 2421 2 1355 | 2422 6 1356 | 2423 6 1357 | 2424 0 1358 | 2425 3 1359 | 2426 3 1360 | 2427 3 1361 | 2428 5 1362 | 2429 1 1363 | 2430 3 1364 | 2431 4 1365 | 2432 4 1366 | 2433 2 1367 | 2434 4 1368 | 2435 4 1369 | 2436 4 1370 | 2437 3 1371 | 2438 3 1372 | 2439 2 1373 | 2440 2 1374 | 2441 2 1375 | 2442 2 1376 | 2443 2 1377 | 2444 2 1378 | 2445 2 1379 | 2446 2 1380 | 2447 2 1381 | 2448 2 1382 | 2449 0 1383 | 2450 2 1384 | 2451 2 1385 | 2452 2 1386 | 2453 0 1387 | 2454 6 1388 | 2455 6 1389 | 2456 5 1390 | 2457 6 1391 | 2458 6 1392 | 2459 3 1393 | 2460 2 1394 | 2461 6 1395 | 2462 3 1396 | 2463 4 1397 | 2464 4 1398 | 2465 4 1399 | 2466 2 1400 | 2467 6 1401 | 2468 6 1402 | 2469 0 1403 | 2470 0 1404 | 2471 3 1405 | 2472 0 1406 | 2473 4 1407 | 2474 4 1408 | 2475 3 1409 | 2476 2 1410 | 2477 3 1411 | 2478 1 1412 | 2479 6 1413 | 2480 6 1414 | 2481 5 1415 | 2482 3 1416 | 2483 4 1417 | 2484 3 1418 | 2485 5 1419 | 2486 3 1420 | 2487 1 1421 | 2488 1 1422 | 2489 3 1423 | 2490 4 1424 | 2491 5 1425 | 2492 2 1426 | 2493 3 1427 | 2494 3 1428 | 2495 3 1429 | 2496 4 1430 | 2497 5 1431 | 2498 4 1432 | 2499 0 1433 | 2500 3 1434 | 2501 3 1435 | 2502 0 1436 | 2503 2 1437 | 2504 1 1438 | 2505 1 1439 | 2506 5 1440 | 2507 2 1441 | 2508 3 1442 | 2509 3 1443 | 2510 5 1444 | 2511 0 1445 | 2512 2 1446 | 2513 3 1447 | 2514 2 1448 | 2515 2 1449 | 2516 5 1450 | 2517 5 1451 | 2518 4 1452 | 2519 3 1453 | 2520 4 1454 | 2521 3 1455 | 2522 2 1456 | 2523 2 1457 | 2524 4 1458 | 2525 2 1459 | 2526 4 1460 | 2527 5 1461 | 2528 5 1462 | 2529 3 1463 | 2530 2 1464 | 2531 3 1465 | 2532 1 1466 | 2533 0 1467 | 2534 3 1468 | 2535 3 1469 | 2536 4 1470 | 2537 5 1471 | 2538 4 1472 | 2539 3 1473 | 2540 3 1474 | 2541 3 1475 | 2542 3 1476 | 2543 3 1477 | 2544 0 1478 | 2545 1 1479 | 2546 2 1480 | 2547 4 1481 | 2548 4 1482 | 2549 4 1483 | 2550 3 1484 | 2551 3 1485 | 2552 3 1486 | 2553 5 1487 | 2554 2 1488 | 2555 3 1489 | 2556 2 1490 | 2557 2 1491 | 2558 2 1492 | 2559 3 1493 | 2560 2 1494 | 2561 2 1495 | 2562 0 1496 | 2563 4 1497 | 2564 4 1498 | 2565 3 1499 | 2566 3 1500 | 2567 3 1501 | 2568 3 1502 | 2569 3 1503 | 2570 3 1504 | 2571 3 1505 | 2572 3 1506 | 2573 3 1507 | 2574 3 1508 | 2575 0 1509 | 2576 0 1510 | 2577 3 1511 | 2578 0 1512 | 2579 3 1513 | 2580 0 1514 | 2581 2 1515 | 2582 3 1516 | 2583 4 1517 | 2584 1 1518 | 2585 2 1519 | 2586 5 1520 | 2587 4 1521 | 2588 3 1522 | 2589 3 1523 | 2590 3 1524 | 2591 1 1525 | 2592 5 1526 | 2593 3 1527 | 2594 4 1528 | 2595 3 1529 | 2596 2 1530 | 2597 2 1531 | 2598 1 1532 | 2599 3 1533 | 2600 3 1534 | 2601 3 1535 | 2602 3 1536 | 2603 3 1537 | 2604 6 1538 | 2605 3 1539 | 2606 3 1540 | 2607 3 1541 | 2608 6 1542 | 2609 3 1543 | 2610 3 1544 | 2611 3 1545 | 2612 2 1546 | 2613 3 1547 | 2614 2 1548 | 2615 4 1549 | 2616 2 1550 | 2617 4 1551 | 2618 2 1552 | 2619 2 1553 | 2620 1 1554 | 2621 5 1555 | 2622 6 1556 | 2623 4 1557 | 2624 3 1558 | 2625 3 1559 | 2626 3 1560 | 2627 2 1561 | 2628 5 1562 | 2629 3 1563 | 2630 3 1564 | 2631 4 1565 | 2632 3 1566 | 2633 3 1567 | 2634 3 1568 | 2635 3 1569 | 2636 3 1570 | 2637 4 1571 | 2638 6 1572 | 2639 0 1573 | 2640 3 1574 | 2641 2 1575 | 2642 2 1576 | 2643 2 1577 | 2644 5 1578 | 2645 4 1579 | 2646 4 1580 | 2647 4 1581 | 2648 4 1582 | 2649 6 1583 | 2650 3 1584 | 2651 2 1585 | 2652 2 1586 | 2653 0 1587 | 2654 2 1588 | 2655 2 1589 | 2656 2 1590 | 2657 2 1591 | 2658 2 1592 | 2659 3 1593 | 2660 4 1594 | 2661 4 1595 | 2662 4 1596 | 2663 3 1597 | 2664 3 1598 | 2665 4 1599 | 2666 4 1600 | 2667 3 1601 | 2668 3 1602 | 2669 3 1603 | 2670 4 1604 | 2671 4 1605 | 2672 4 1606 | 2673 4 1607 | 2674 4 1608 | 2675 4 1609 | 2676 3 1610 | 2677 4 1611 | 2678 4 1612 | 2679 4 1613 | 2680 4 1614 | 2681 4 1615 | 2682 4 1616 | 2683 4 1617 | 2684 4 1618 | 2685 2 1619 | 2686 3 1620 | 2687 3 1621 | 2688 3 1622 | 2689 2 1623 | 2690 6 1624 | 2691 2 1625 | 2692 3 1626 | 2693 3 1627 | 2694 4 1628 | 2695 4 1629 | 2696 3 1630 | 2697 3 1631 | 2698 3 1632 | 2699 3 1633 | 2700 3 1634 | 2701 3 1635 | 2702 0 1636 | 2703 3 1637 | 2704 3 1638 | 2705 3 1639 | 2706 3 1640 | 2707 3 1641 | -------------------------------------------------------------------------------- /semisupervised/data/cora/test.txt: -------------------------------------------------------------------------------- 1 | 1708 2 | 1709 3 | 1710 4 | 1711 5 | 1712 6 | 1713 7 | 1714 8 | 1715 9 | 1716 10 | 1717 11 | 1718 12 | 1719 13 | 1720 14 | 1721 15 | 1722 16 | 1723 17 | 1724 18 | 1725 19 | 1726 20 | 1727 21 | 1728 22 | 1729 23 | 1730 24 | 1731 25 | 1732 26 | 1733 27 | 1734 28 | 1735 29 | 1736 30 | 1737 31 | 1738 32 | 1739 33 | 1740 34 | 1741 35 | 1742 36 | 1743 37 | 1744 38 | 1745 39 | 1746 40 | 1747 41 | 1748 42 | 1749 43 | 1750 44 | 1751 45 | 1752 46 | 1753 47 | 1754 48 | 1755 49 | 1756 50 | 1757 51 | 1758 52 | 1759 53 | 1760 54 | 1761 55 | 1762 56 | 1763 57 | 1764 58 | 1765 59 | 1766 60 | 1767 61 | 1768 62 | 1769 63 | 1770 64 | 1771 65 | 1772 66 | 1773 67 | 1774 68 | 1775 69 | 1776 70 | 1777 71 | 1778 72 | 1779 73 | 1780 74 | 1781 75 | 1782 76 | 1783 77 | 1784 78 | 1785 79 | 1786 80 | 1787 81 | 1788 82 | 1789 83 | 1790 84 | 1791 85 | 1792 86 | 1793 87 | 1794 88 | 1795 89 | 1796 90 | 1797 91 | 1798 92 | 1799 93 | 1800 94 | 1801 95 | 1802 96 | 1803 97 | 1804 98 | 1805 99 | 1806 100 | 1807 101 | 1808 102 | 1809 103 | 1810 104 | 1811 105 | 1812 106 | 1813 107 | 1814 108 | 1815 109 | 1816 110 | 1817 111 | 1818 112 | 1819 113 | 1820 114 | 1821 115 | 1822 116 | 1823 117 | 1824 118 | 1825 119 | 1826 120 | 1827 121 | 1828 122 | 1829 123 | 1830 124 | 1831 125 | 1832 126 | 1833 127 | 1834 128 | 1835 129 | 1836 130 | 1837 131 | 1838 132 | 1839 133 | 1840 134 | 1841 135 | 1842 136 | 1843 137 | 1844 138 | 1845 139 | 1846 140 | 1847 141 | 1848 142 | 1849 143 | 1850 144 | 1851 145 | 1852 146 | 1853 147 | 1854 148 | 1855 149 | 1856 150 | 1857 151 | 1858 152 | 1859 153 | 1860 154 | 1861 155 | 1862 156 | 1863 157 | 1864 158 | 1865 159 | 1866 160 | 1867 161 | 1868 162 | 1869 163 | 1870 164 | 1871 165 | 1872 166 | 1873 167 | 1874 168 | 1875 169 | 1876 170 | 1877 171 | 1878 172 | 1879 173 | 1880 174 | 1881 175 | 1882 176 | 1883 177 | 1884 178 | 1885 179 | 1886 180 | 1887 181 | 1888 182 | 1889 183 | 1890 184 | 1891 185 | 1892 186 | 1893 187 | 1894 188 | 1895 189 | 1896 190 | 1897 191 | 1898 192 | 1899 193 | 1900 194 | 1901 195 | 1902 196 | 1903 197 | 1904 198 | 1905 199 | 1906 200 | 1907 201 | 1908 202 | 1909 203 | 1910 204 | 1911 205 | 1912 206 | 1913 207 | 1914 208 | 1915 209 | 1916 210 | 1917 211 | 1918 212 | 1919 213 | 1920 214 | 1921 215 | 1922 216 | 1923 217 | 1924 218 | 1925 219 | 1926 220 | 1927 221 | 1928 222 | 1929 223 | 1930 224 | 1931 225 | 1932 226 | 1933 227 | 1934 228 | 1935 229 | 1936 230 | 1937 231 | 1938 232 | 1939 233 | 1940 234 | 1941 235 | 1942 236 | 1943 237 | 1944 238 | 1945 239 | 1946 240 | 1947 241 | 1948 242 | 1949 243 | 1950 244 | 1951 245 | 1952 246 | 1953 247 | 1954 248 | 1955 249 | 1956 250 | 1957 251 | 1958 252 | 1959 253 | 1960 254 | 1961 255 | 1962 256 | 1963 257 | 1964 258 | 1965 259 | 1966 260 | 1967 261 | 1968 262 | 1969 263 | 1970 264 | 1971 265 | 1972 266 | 1973 267 | 1974 268 | 1975 269 | 1976 270 | 1977 271 | 1978 272 | 1979 273 | 1980 274 | 1981 275 | 1982 276 | 1983 277 | 1984 278 | 1985 279 | 1986 280 | 1987 281 | 1988 282 | 1989 283 | 1990 284 | 1991 285 | 1992 286 | 1993 287 | 1994 288 | 1995 289 | 1996 290 | 1997 291 | 1998 292 | 1999 293 | 2000 294 | 2001 295 | 2002 296 | 2003 297 | 2004 298 | 2005 299 | 2006 300 | 2007 301 | 2008 302 | 2009 303 | 2010 304 | 2011 305 | 2012 306 | 2013 307 | 2014 308 | 2015 309 | 2016 310 | 2017 311 | 2018 312 | 2019 313 | 2020 314 | 2021 315 | 2022 316 | 2023 317 | 2024 318 | 2025 319 | 2026 320 | 2027 321 | 2028 322 | 2029 323 | 2030 324 | 2031 325 | 2032 326 | 2033 327 | 2034 328 | 2035 329 | 2036 330 | 2037 331 | 2038 332 | 2039 333 | 2040 334 | 2041 335 | 2042 336 | 2043 337 | 2044 338 | 2045 339 | 2046 340 | 2047 341 | 2048 342 | 2049 343 | 2050 344 | 2051 345 | 2052 346 | 2053 347 | 2054 348 | 2055 349 | 2056 350 | 2057 351 | 2058 352 | 2059 353 | 2060 354 | 2061 355 | 2062 356 | 2063 357 | 2064 358 | 2065 359 | 2066 360 | 2067 361 | 2068 362 | 2069 363 | 2070 364 | 2071 365 | 2072 366 | 2073 367 | 2074 368 | 2075 369 | 2076 370 | 2077 371 | 2078 372 | 2079 373 | 2080 374 | 2081 375 | 2082 376 | 2083 377 | 2084 378 | 2085 379 | 2086 380 | 2087 381 | 2088 382 | 2089 383 | 2090 384 | 2091 385 | 2092 386 | 2093 387 | 2094 388 | 2095 389 | 2096 390 | 2097 391 | 2098 392 | 2099 393 | 2100 394 | 2101 395 | 2102 396 | 2103 397 | 2104 398 | 2105 399 | 2106 400 | 2107 401 | 2108 402 | 2109 403 | 2110 404 | 2111 405 | 2112 406 | 2113 407 | 2114 408 | 2115 409 | 2116 410 | 2117 411 | 2118 412 | 2119 413 | 2120 414 | 2121 415 | 2122 416 | 2123 417 | 2124 418 | 2125 419 | 2126 420 | 2127 421 | 2128 422 | 2129 423 | 2130 424 | 2131 425 | 2132 426 | 2133 427 | 2134 428 | 2135 429 | 2136 430 | 2137 431 | 2138 432 | 2139 433 | 2140 434 | 2141 435 | 2142 436 | 2143 437 | 2144 438 | 2145 439 | 2146 440 | 2147 441 | 2148 442 | 2149 443 | 2150 444 | 2151 445 | 2152 446 | 2153 447 | 2154 448 | 2155 449 | 2156 450 | 2157 451 | 2158 452 | 2159 453 | 2160 454 | 2161 455 | 2162 456 | 2163 457 | 2164 458 | 2165 459 | 2166 460 | 2167 461 | 2168 462 | 2169 463 | 2170 464 | 2171 465 | 2172 466 | 2173 467 | 2174 468 | 2175 469 | 2176 470 | 2177 471 | 2178 472 | 2179 473 | 2180 474 | 2181 475 | 2182 476 | 2183 477 | 2184 478 | 2185 479 | 2186 480 | 2187 481 | 2188 482 | 2189 483 | 2190 484 | 2191 485 | 2192 486 | 2193 487 | 2194 488 | 2195 489 | 2196 490 | 2197 491 | 2198 492 | 2199 493 | 2200 494 | 2201 495 | 2202 496 | 2203 497 | 2204 498 | 2205 499 | 2206 500 | 2207 501 | 2208 502 | 2209 503 | 2210 504 | 2211 505 | 2212 506 | 2213 507 | 2214 508 | 2215 509 | 2216 510 | 2217 511 | 2218 512 | 2219 513 | 2220 514 | 2221 515 | 2222 516 | 2223 517 | 2224 518 | 2225 519 | 2226 520 | 2227 521 | 2228 522 | 2229 523 | 2230 524 | 2231 525 | 2232 526 | 2233 527 | 2234 528 | 2235 529 | 2236 530 | 2237 531 | 2238 532 | 2239 533 | 2240 534 | 2241 535 | 2242 536 | 2243 537 | 2244 538 | 2245 539 | 2246 540 | 2247 541 | 2248 542 | 2249 543 | 2250 544 | 2251 545 | 2252 546 | 2253 547 | 2254 548 | 2255 549 | 2256 550 | 2257 551 | 2258 552 | 2259 553 | 2260 554 | 2261 555 | 2262 556 | 2263 557 | 2264 558 | 2265 559 | 2266 560 | 2267 561 | 2268 562 | 2269 563 | 2270 564 | 2271 565 | 2272 566 | 2273 567 | 2274 568 | 2275 569 | 2276 570 | 2277 571 | 2278 572 | 2279 573 | 2280 574 | 2281 575 | 2282 576 | 2283 577 | 2284 578 | 2285 579 | 2286 580 | 2287 581 | 2288 582 | 2289 583 | 2290 584 | 2291 585 | 2292 586 | 2293 587 | 2294 588 | 2295 589 | 2296 590 | 2297 591 | 2298 592 | 2299 593 | 2300 594 | 2301 595 | 2302 596 | 2303 597 | 2304 598 | 2305 599 | 2306 600 | 2307 601 | 2308 602 | 2309 603 | 2310 604 | 2311 605 | 2312 606 | 2313 607 | 2314 608 | 2315 609 | 2316 610 | 2317 611 | 2318 612 | 2319 613 | 2320 614 | 2321 615 | 2322 616 | 2323 617 | 2324 618 | 2325 619 | 2326 620 | 2327 621 | 2328 622 | 2329 623 | 2330 624 | 2331 625 | 2332 626 | 2333 627 | 2334 628 | 2335 629 | 2336 630 | 2337 631 | 2338 632 | 2339 633 | 2340 634 | 2341 635 | 2342 636 | 2343 637 | 2344 638 | 2345 639 | 2346 640 | 2347 641 | 2348 642 | 2349 643 | 2350 644 | 2351 645 | 2352 646 | 2353 647 | 2354 648 | 2355 649 | 2356 650 | 2357 651 | 2358 652 | 2359 653 | 2360 654 | 2361 655 | 2362 656 | 2363 657 | 2364 658 | 2365 659 | 2366 660 | 2367 661 | 2368 662 | 2369 663 | 2370 664 | 2371 665 | 2372 666 | 2373 667 | 2374 668 | 2375 669 | 2376 670 | 2377 671 | 2378 672 | 2379 673 | 2380 674 | 2381 675 | 2382 676 | 2383 677 | 2384 678 | 2385 679 | 2386 680 | 2387 681 | 2388 682 | 2389 683 | 2390 684 | 2391 685 | 2392 686 | 2393 687 | 2394 688 | 2395 689 | 2396 690 | 2397 691 | 2398 692 | 2399 693 | 2400 694 | 2401 695 | 2402 696 | 2403 697 | 2404 698 | 2405 699 | 2406 700 | 2407 701 | 2408 702 | 2409 703 | 2410 704 | 2411 705 | 2412 706 | 2413 707 | 2414 708 | 2415 709 | 2416 710 | 2417 711 | 2418 712 | 2419 713 | 2420 714 | 2421 715 | 2422 716 | 2423 717 | 2424 718 | 2425 719 | 2426 720 | 2427 721 | 2428 722 | 2429 723 | 2430 724 | 2431 725 | 2432 726 | 2433 727 | 2434 728 | 2435 729 | 2436 730 | 2437 731 | 2438 732 | 2439 733 | 2440 734 | 2441 735 | 2442 736 | 2443 737 | 2444 738 | 2445 739 | 2446 740 | 2447 741 | 2448 742 | 2449 743 | 2450 744 | 2451 745 | 2452 746 | 2453 747 | 2454 748 | 2455 749 | 2456 750 | 2457 751 | 2458 752 | 2459 753 | 2460 754 | 2461 755 | 2462 756 | 2463 757 | 2464 758 | 2465 759 | 2466 760 | 2467 761 | 2468 762 | 2469 763 | 2470 764 | 2471 765 | 2472 766 | 2473 767 | 2474 768 | 2475 769 | 2476 770 | 2477 771 | 2478 772 | 2479 773 | 2480 774 | 2481 775 | 2482 776 | 2483 777 | 2484 778 | 2485 779 | 2486 780 | 2487 781 | 2488 782 | 2489 783 | 2490 784 | 2491 785 | 2492 786 | 2493 787 | 2494 788 | 2495 789 | 2496 790 | 2497 791 | 2498 792 | 2499 793 | 2500 794 | 2501 795 | 2502 796 | 2503 797 | 2504 798 | 2505 799 | 2506 800 | 2507 801 | 2508 802 | 2509 803 | 2510 804 | 2511 805 | 2512 806 | 2513 807 | 2514 808 | 2515 809 | 2516 810 | 2517 811 | 2518 812 | 2519 813 | 2520 814 | 2521 815 | 2522 816 | 2523 817 | 2524 818 | 2525 819 | 2526 820 | 2527 821 | 2528 822 | 2529 823 | 2530 824 | 2531 825 | 2532 826 | 2533 827 | 2534 828 | 2535 829 | 2536 830 | 2537 831 | 2538 832 | 2539 833 | 2540 834 | 2541 835 | 2542 836 | 2543 837 | 2544 838 | 2545 839 | 2546 840 | 2547 841 | 2548 842 | 2549 843 | 2550 844 | 2551 845 | 2552 846 | 2553 847 | 2554 848 | 2555 849 | 2556 850 | 2557 851 | 2558 852 | 2559 853 | 2560 854 | 2561 855 | 2562 856 | 2563 857 | 2564 858 | 2565 859 | 2566 860 | 2567 861 | 2568 862 | 2569 863 | 2570 864 | 2571 865 | 2572 866 | 2573 867 | 2574 868 | 2575 869 | 2576 870 | 2577 871 | 2578 872 | 2579 873 | 2580 874 | 2581 875 | 2582 876 | 2583 877 | 2584 878 | 2585 879 | 2586 880 | 2587 881 | 2588 882 | 2589 883 | 2590 884 | 2591 885 | 2592 886 | 2593 887 | 2594 888 | 2595 889 | 2596 890 | 2597 891 | 2598 892 | 2599 893 | 2600 894 | 2601 895 | 2602 896 | 2603 897 | 2604 898 | 2605 899 | 2606 900 | 2607 901 | 2608 902 | 2609 903 | 2610 904 | 2611 905 | 2612 906 | 2613 907 | 2614 908 | 2615 909 | 2616 910 | 2617 911 | 2618 912 | 2619 913 | 2620 914 | 2621 915 | 2622 916 | 2623 917 | 2624 918 | 2625 919 | 2626 920 | 2627 921 | 2628 922 | 2629 923 | 2630 924 | 2631 925 | 2632 926 | 2633 927 | 2634 928 | 2635 929 | 2636 930 | 2637 931 | 2638 932 | 2639 933 | 2640 934 | 2641 935 | 2642 936 | 2643 937 | 2644 938 | 2645 939 | 2646 940 | 2647 941 | 2648 942 | 2649 943 | 2650 944 | 2651 945 | 2652 946 | 2653 947 | 2654 948 | 2655 949 | 2656 950 | 2657 951 | 2658 952 | 2659 953 | 2660 954 | 2661 955 | 2662 956 | 2663 957 | 2664 958 | 2665 959 | 2666 960 | 2667 961 | 2668 962 | 2669 963 | 2670 964 | 2671 965 | 2672 966 | 2673 967 | 2674 968 | 2675 969 | 2676 970 | 2677 971 | 2678 972 | 2679 973 | 2680 974 | 2681 975 | 2682 976 | 2683 977 | 2684 978 | 2685 979 | 2686 980 | 2687 981 | 2688 982 | 2689 983 | 2690 984 | 2691 985 | 2692 986 | 2693 987 | 2694 988 | 2695 989 | 2696 990 | 2697 991 | 2698 992 | 2699 993 | 2700 994 | 2701 995 | 2702 996 | 2703 997 | 2704 998 | 2705 999 | 2706 1000 | 2707 1001 | -------------------------------------------------------------------------------- /semisupervised/data/cora/train.txt: -------------------------------------------------------------------------------- 1 | 0 2 | 1 3 | 2 4 | 3 5 | 4 6 | 5 7 | 6 8 | 7 9 | 8 10 | 9 11 | 10 12 | 11 13 | 12 14 | 13 15 | 14 16 | 15 17 | 16 18 | 17 19 | 18 20 | 19 21 | 20 22 | 21 23 | 22 24 | 23 25 | 24 26 | 25 27 | 26 28 | 27 29 | 28 30 | 29 31 | 30 32 | 31 33 | 32 34 | 33 35 | 34 36 | 35 37 | 36 38 | 37 39 | 38 40 | 39 41 | 40 42 | 41 43 | 42 44 | 43 45 | 44 46 | 45 47 | 46 48 | 47 49 | 48 50 | 49 51 | 50 52 | 51 53 | 52 54 | 53 55 | 54 56 | 55 57 | 56 58 | 57 59 | 58 60 | 59 61 | 60 62 | 61 63 | 62 64 | 63 65 | 64 66 | 65 67 | 66 68 | 67 69 | 68 70 | 69 71 | 70 72 | 71 73 | 72 74 | 73 75 | 74 76 | 75 77 | 76 78 | 77 79 | 78 80 | 79 81 | 80 82 | 81 83 | 82 84 | 83 85 | 84 86 | 85 87 | 86 88 | 87 89 | 88 90 | 89 91 | 90 92 | 91 93 | 92 94 | 93 95 | 94 96 | 95 97 | 96 98 | 97 99 | 98 100 | 99 101 | 100 102 | 101 103 | 102 104 | 103 105 | 104 106 | 105 107 | 106 108 | 107 109 | 108 110 | 109 111 | 110 112 | 111 113 | 112 114 | 113 115 | 114 116 | 115 117 | 116 118 | 117 119 | 118 120 | 119 121 | 120 122 | 121 123 | 122 124 | 123 125 | 124 126 | 125 127 | 126 128 | 127 129 | 128 130 | 129 131 | 130 132 | 131 133 | 132 134 | 133 135 | 134 136 | 135 137 | 136 138 | 137 139 | 138 140 | 139 141 | -------------------------------------------------------------------------------- /semisupervised/data/pubmed/dev.txt: -------------------------------------------------------------------------------- 1 | 60 2 | 61 3 | 62 4 | 63 5 | 64 6 | 65 7 | 66 8 | 67 9 | 68 10 | 69 11 | 70 12 | 71 13 | 72 14 | 73 15 | 74 16 | 75 17 | 76 18 | 77 19 | 78 20 | 79 21 | 80 22 | 81 23 | 82 24 | 83 25 | 84 26 | 85 27 | 86 28 | 87 29 | 88 30 | 89 31 | 90 32 | 91 33 | 92 34 | 93 35 | 94 36 | 95 37 | 96 38 | 97 39 | 98 40 | 99 41 | 100 42 | 101 43 | 102 44 | 103 45 | 104 46 | 105 47 | 106 48 | 107 49 | 108 50 | 109 51 | 110 52 | 111 53 | 112 54 | 113 55 | 114 56 | 115 57 | 116 58 | 117 59 | 118 60 | 119 61 | 120 62 | 121 63 | 122 64 | 123 65 | 124 66 | 125 67 | 126 68 | 127 69 | 128 70 | 129 71 | 130 72 | 131 73 | 132 74 | 133 75 | 134 76 | 135 77 | 136 78 | 137 79 | 138 80 | 139 81 | 140 82 | 141 83 | 142 84 | 143 85 | 144 86 | 145 87 | 146 88 | 147 89 | 148 90 | 149 91 | 150 92 | 151 93 | 152 94 | 153 95 | 154 96 | 155 97 | 156 98 | 157 99 | 158 100 | 159 101 | 160 102 | 161 103 | 162 104 | 163 105 | 164 106 | 165 107 | 166 108 | 167 109 | 168 110 | 169 111 | 170 112 | 171 113 | 172 114 | 173 115 | 174 116 | 175 117 | 176 118 | 177 119 | 178 120 | 179 121 | 180 122 | 181 123 | 182 124 | 183 125 | 184 126 | 185 127 | 186 128 | 187 129 | 188 130 | 189 131 | 190 132 | 191 133 | 192 134 | 193 135 | 194 136 | 195 137 | 196 138 | 197 139 | 198 140 | 199 141 | 200 142 | 201 143 | 202 144 | 203 145 | 204 146 | 205 147 | 206 148 | 207 149 | 208 150 | 209 151 | 210 152 | 211 153 | 212 154 | 213 155 | 214 156 | 215 157 | 216 158 | 217 159 | 218 160 | 219 161 | 220 162 | 221 163 | 222 164 | 223 165 | 224 166 | 225 167 | 226 168 | 227 169 | 228 170 | 229 171 | 230 172 | 231 173 | 232 174 | 233 175 | 234 176 | 235 177 | 236 178 | 237 179 | 238 180 | 239 181 | 240 182 | 241 183 | 242 184 | 243 185 | 244 186 | 245 187 | 246 188 | 247 189 | 248 190 | 249 191 | 250 192 | 251 193 | 252 194 | 253 195 | 254 196 | 255 197 | 256 198 | 257 199 | 258 200 | 259 201 | 260 202 | 261 203 | 262 204 | 263 205 | 264 206 | 265 207 | 266 208 | 267 209 | 268 210 | 269 211 | 270 212 | 271 213 | 272 214 | 273 215 | 274 216 | 275 217 | 276 218 | 277 219 | 278 220 | 279 221 | 280 222 | 281 223 | 282 224 | 283 225 | 284 226 | 285 227 | 286 228 | 287 229 | 288 230 | 289 231 | 290 232 | 291 233 | 292 234 | 293 235 | 294 236 | 295 237 | 296 238 | 297 239 | 298 240 | 299 241 | 300 242 | 301 243 | 302 244 | 303 245 | 304 246 | 305 247 | 306 248 | 307 249 | 308 250 | 309 251 | 310 252 | 311 253 | 312 254 | 313 255 | 314 256 | 315 257 | 316 258 | 317 259 | 318 260 | 319 261 | 320 262 | 321 263 | 322 264 | 323 265 | 324 266 | 325 267 | 326 268 | 327 269 | 328 270 | 329 271 | 330 272 | 331 273 | 332 274 | 333 275 | 334 276 | 335 277 | 336 278 | 337 279 | 338 280 | 339 281 | 340 282 | 341 283 | 342 284 | 343 285 | 344 286 | 345 287 | 346 288 | 347 289 | 348 290 | 349 291 | 350 292 | 351 293 | 352 294 | 353 295 | 354 296 | 355 297 | 356 298 | 357 299 | 358 300 | 359 301 | 360 302 | 361 303 | 362 304 | 363 305 | 364 306 | 365 307 | 366 308 | 367 309 | 368 310 | 369 311 | 370 312 | 371 313 | 372 314 | 373 315 | 374 316 | 375 317 | 376 318 | 377 319 | 378 320 | 379 321 | 380 322 | 381 323 | 382 324 | 383 325 | 384 326 | 385 327 | 386 328 | 387 329 | 388 330 | 389 331 | 390 332 | 391 333 | 392 334 | 393 335 | 394 336 | 395 337 | 396 338 | 397 339 | 398 340 | 399 341 | 400 342 | 401 343 | 402 344 | 403 345 | 404 346 | 405 347 | 406 348 | 407 349 | 408 350 | 409 351 | 410 352 | 411 353 | 412 354 | 413 355 | 414 356 | 415 357 | 416 358 | 417 359 | 418 360 | 419 361 | 420 362 | 421 363 | 422 364 | 423 365 | 424 366 | 425 367 | 426 368 | 427 369 | 428 370 | 429 371 | 430 372 | 431 373 | 432 374 | 433 375 | 434 376 | 435 377 | 436 378 | 437 379 | 438 380 | 439 381 | 440 382 | 441 383 | 442 384 | 443 385 | 444 386 | 445 387 | 446 388 | 447 389 | 448 390 | 449 391 | 450 392 | 451 393 | 452 394 | 453 395 | 454 396 | 455 397 | 456 398 | 457 399 | 458 400 | 459 401 | 460 402 | 461 403 | 462 404 | 463 405 | 464 406 | 465 407 | 466 408 | 467 409 | 468 410 | 469 411 | 470 412 | 471 413 | 472 414 | 473 415 | 474 416 | 475 417 | 476 418 | 477 419 | 478 420 | 479 421 | 480 422 | 481 423 | 482 424 | 483 425 | 484 426 | 485 427 | 486 428 | 487 429 | 488 430 | 489 431 | 490 432 | 491 433 | 492 434 | 493 435 | 494 436 | 495 437 | 496 438 | 497 439 | 498 440 | 499 441 | 500 442 | 501 443 | 502 444 | 503 445 | 504 446 | 505 447 | 506 448 | 507 449 | 508 450 | 509 451 | 510 452 | 511 453 | 512 454 | 513 455 | 514 456 | 515 457 | 516 458 | 517 459 | 518 460 | 519 461 | 520 462 | 521 463 | 522 464 | 523 465 | 524 466 | 525 467 | 526 468 | 527 469 | 528 470 | 529 471 | 530 472 | 531 473 | 532 474 | 533 475 | 534 476 | 535 477 | 536 478 | 537 479 | 538 480 | 539 481 | 540 482 | 541 483 | 542 484 | 543 485 | 544 486 | 545 487 | 546 488 | 547 489 | 548 490 | 549 491 | 550 492 | 551 493 | 552 494 | 553 495 | 554 496 | 555 497 | 556 498 | 557 499 | 558 500 | 559 501 | -------------------------------------------------------------------------------- /semisupervised/data/pubmed/label.txt: -------------------------------------------------------------------------------- 1 | 0 1 2 | 1 1 3 | 2 0 4 | 3 2 5 | 4 1 6 | 5 2 7 | 6 2 8 | 7 1 9 | 8 2 10 | 9 1 11 | 10 2 12 | 11 2 13 | 12 2 14 | 13 2 15 | 14 2 16 | 15 0 17 | 16 1 18 | 17 2 19 | 18 1 20 | 19 2 21 | 20 2 22 | 21 1 23 | 22 2 24 | 23 2 25 | 24 2 26 | 25 1 27 | 26 2 28 | 27 2 29 | 28 2 30 | 29 1 31 | 30 1 32 | 31 1 33 | 32 2 34 | 33 1 35 | 34 0 36 | 35 0 37 | 36 1 38 | 37 1 39 | 38 0 40 | 39 2 41 | 40 0 42 | 41 1 43 | 42 0 44 | 43 1 45 | 44 1 46 | 45 1 47 | 46 1 48 | 47 0 49 | 48 0 50 | 49 0 51 | 50 0 52 | 51 0 53 | 52 0 54 | 53 0 55 | 54 0 56 | 55 0 57 | 56 0 58 | 57 0 59 | 58 0 60 | 59 0 61 | 60 2 62 | 61 2 63 | 62 1 64 | 63 2 65 | 64 1 66 | 65 1 67 | 66 2 68 | 67 1 69 | 68 0 70 | 69 1 71 | 70 0 72 | 71 2 73 | 72 0 74 | 73 2 75 | 74 1 76 | 75 2 77 | 76 2 78 | 77 0 79 | 78 0 80 | 79 0 81 | 80 0 82 | 81 0 83 | 82 1 84 | 83 2 85 | 84 1 86 | 85 2 87 | 86 1 88 | 87 2 89 | 88 1 90 | 89 1 91 | 90 0 92 | 91 2 93 | 92 1 94 | 93 2 95 | 94 0 96 | 95 0 97 | 96 1 98 | 97 2 99 | 98 1 100 | 99 1 101 | 100 1 102 | 101 0 103 | 102 2 104 | 103 2 105 | 104 2 106 | 105 1 107 | 106 0 108 | 107 2 109 | 108 2 110 | 109 2 111 | 110 0 112 | 111 2 113 | 112 1 114 | 113 1 115 | 114 1 116 | 115 0 117 | 116 2 118 | 117 2 119 | 118 1 120 | 119 1 121 | 120 1 122 | 121 0 123 | 122 2 124 | 123 0 125 | 124 2 126 | 125 2 127 | 126 0 128 | 127 0 129 | 128 2 130 | 129 2 131 | 130 0 132 | 131 2 133 | 132 0 134 | 133 0 135 | 134 1 136 | 135 2 137 | 136 0 138 | 137 2 139 | 138 1 140 | 139 0 141 | 140 1 142 | 141 0 143 | 142 0 144 | 143 2 145 | 144 2 146 | 145 2 147 | 146 2 148 | 147 1 149 | 148 2 150 | 149 2 151 | 150 1 152 | 151 0 153 | 152 2 154 | 153 0 155 | 154 1 156 | 155 0 157 | 156 2 158 | 157 1 159 | 158 1 160 | 159 1 161 | 160 1 162 | 161 1 163 | 162 2 164 | 163 2 165 | 164 1 166 | 165 1 167 | 166 1 168 | 167 2 169 | 168 1 170 | 169 0 171 | 170 1 172 | 171 1 173 | 172 1 174 | 173 0 175 | 174 0 176 | 175 2 177 | 176 2 178 | 177 2 179 | 178 1 180 | 179 2 181 | 180 1 182 | 181 2 183 | 182 1 184 | 183 1 185 | 184 1 186 | 185 1 187 | 186 2 188 | 187 2 189 | 188 1 190 | 189 2 191 | 190 2 192 | 191 1 193 | 192 2 194 | 193 1 195 | 194 0 196 | 195 2 197 | 196 1 198 | 197 1 199 | 198 2 200 | 199 2 201 | 200 2 202 | 201 2 203 | 202 1 204 | 203 1 205 | 204 1 206 | 205 2 207 | 206 0 208 | 207 0 209 | 208 2 210 | 209 2 211 | 210 2 212 | 211 2 213 | 212 1 214 | 213 2 215 | 214 1 216 | 215 1 217 | 216 1 218 | 217 1 219 | 218 2 220 | 219 1 221 | 220 2 222 | 221 1 223 | 222 1 224 | 223 0 225 | 224 2 226 | 225 2 227 | 226 2 228 | 227 2 229 | 228 2 230 | 229 2 231 | 230 0 232 | 231 1 233 | 232 1 234 | 233 0 235 | 234 0 236 | 235 1 237 | 236 2 238 | 237 2 239 | 238 2 240 | 239 2 241 | 240 0 242 | 241 1 243 | 242 2 244 | 243 1 245 | 244 0 246 | 245 1 247 | 246 2 248 | 247 2 249 | 248 0 250 | 249 2 251 | 250 1 252 | 251 2 253 | 252 0 254 | 253 1 255 | 254 1 256 | 255 0 257 | 256 2 258 | 257 0 259 | 258 2 260 | 259 2 261 | 260 2 262 | 261 0 263 | 262 0 264 | 263 1 265 | 264 2 266 | 265 2 267 | 266 1 268 | 267 1 269 | 268 2 270 | 269 0 271 | 270 2 272 | 271 2 273 | 272 2 274 | 273 1 275 | 274 2 276 | 275 1 277 | 276 1 278 | 277 1 279 | 278 2 280 | 279 1 281 | 280 1 282 | 281 2 283 | 282 2 284 | 283 2 285 | 284 1 286 | 285 0 287 | 286 2 288 | 287 2 289 | 288 2 290 | 289 2 291 | 290 1 292 | 291 1 293 | 292 2 294 | 293 2 295 | 294 2 296 | 295 2 297 | 296 0 298 | 297 0 299 | 298 2 300 | 299 1 301 | 300 1 302 | 301 0 303 | 302 1 304 | 303 2 305 | 304 1 306 | 305 0 307 | 306 2 308 | 307 1 309 | 308 2 310 | 309 0 311 | 310 1 312 | 311 2 313 | 312 2 314 | 313 1 315 | 314 1 316 | 315 2 317 | 316 2 318 | 317 2 319 | 318 0 320 | 319 1 321 | 320 2 322 | 321 1 323 | 322 2 324 | 323 0 325 | 324 1 326 | 325 1 327 | 326 2 328 | 327 1 329 | 328 0 330 | 329 1 331 | 330 2 332 | 331 2 333 | 332 1 334 | 333 2 335 | 334 0 336 | 335 1 337 | 336 2 338 | 337 2 339 | 338 2 340 | 339 2 341 | 340 1 342 | 341 2 343 | 342 2 344 | 343 2 345 | 344 2 346 | 345 2 347 | 346 1 348 | 347 1 349 | 348 2 350 | 349 2 351 | 350 1 352 | 351 1 353 | 352 1 354 | 353 2 355 | 354 1 356 | 355 1 357 | 356 1 358 | 357 1 359 | 358 2 360 | 359 1 361 | 360 1 362 | 361 2 363 | 362 2 364 | 363 0 365 | 364 0 366 | 365 2 367 | 366 1 368 | 367 2 369 | 368 2 370 | 369 1 371 | 370 1 372 | 371 1 373 | 372 0 374 | 373 1 375 | 374 2 376 | 375 2 377 | 376 1 378 | 377 1 379 | 378 2 380 | 379 1 381 | 380 1 382 | 381 1 383 | 382 2 384 | 383 0 385 | 384 1 386 | 385 0 387 | 386 2 388 | 387 2 389 | 388 2 390 | 389 1 391 | 390 2 392 | 391 1 393 | 392 1 394 | 393 1 395 | 394 1 396 | 395 2 397 | 396 2 398 | 397 1 399 | 398 0 400 | 399 1 401 | 400 1 402 | 401 1 403 | 402 2 404 | 403 1 405 | 404 1 406 | 405 1 407 | 406 0 408 | 407 1 409 | 408 1 410 | 409 0 411 | 410 2 412 | 411 1 413 | 412 2 414 | 413 0 415 | 414 1 416 | 415 0 417 | 416 1 418 | 417 1 419 | 418 2 420 | 419 2 421 | 420 2 422 | 421 2 423 | 422 2 424 | 423 1 425 | 424 2 426 | 425 1 427 | 426 1 428 | 427 2 429 | 428 1 430 | 429 0 431 | 430 1 432 | 431 1 433 | 432 1 434 | 433 1 435 | 434 1 436 | 435 1 437 | 436 2 438 | 437 0 439 | 438 1 440 | 439 1 441 | 440 1 442 | 441 2 443 | 442 2 444 | 443 2 445 | 444 2 446 | 445 1 447 | 446 1 448 | 447 1 449 | 448 1 450 | 449 0 451 | 450 2 452 | 451 1 453 | 452 1 454 | 453 0 455 | 454 0 456 | 455 1 457 | 456 2 458 | 457 2 459 | 458 2 460 | 459 2 461 | 460 1 462 | 461 1 463 | 462 2 464 | 463 2 465 | 464 2 466 | 465 1 467 | 466 2 468 | 467 1 469 | 468 2 470 | 469 2 471 | 470 0 472 | 471 2 473 | 472 2 474 | 473 2 475 | 474 2 476 | 475 2 477 | 476 0 478 | 477 1 479 | 478 1 480 | 479 2 481 | 480 0 482 | 481 2 483 | 482 0 484 | 483 2 485 | 484 0 486 | 485 2 487 | 486 1 488 | 487 1 489 | 488 2 490 | 489 2 491 | 490 1 492 | 491 2 493 | 492 0 494 | 493 2 495 | 494 1 496 | 495 0 497 | 496 1 498 | 497 2 499 | 498 1 500 | 499 1 501 | 500 2 502 | 501 0 503 | 502 1 504 | 503 2 505 | 504 2 506 | 505 2 507 | 506 2 508 | 507 0 509 | 508 2 510 | 509 0 511 | 510 1 512 | 511 1 513 | 512 2 514 | 513 1 515 | 514 2 516 | 515 2 517 | 516 0 518 | 517 0 519 | 518 1 520 | 519 0 521 | 520 2 522 | 521 1 523 | 522 1 524 | 523 2 525 | 524 1 526 | 525 2 527 | 526 1 528 | 527 0 529 | 528 0 530 | 529 0 531 | 530 1 532 | 531 0 533 | 532 2 534 | 533 2 535 | 534 1 536 | 535 2 537 | 536 0 538 | 537 0 539 | 538 1 540 | 539 0 541 | 540 1 542 | 541 1 543 | 542 0 544 | 543 1 545 | 544 1 546 | 545 2 547 | 546 1 548 | 547 1 549 | 548 2 550 | 549 0 551 | 550 0 552 | 551 2 553 | 552 2 554 | 553 0 555 | 554 2 556 | 555 1 557 | 556 1 558 | 557 2 559 | 558 2 560 | 559 0 561 | 18717 2 562 | 18718 1 563 | 18719 2 564 | 18720 1 565 | 18721 1 566 | 18722 2 567 | 18723 2 568 | 18724 2 569 | 18725 2 570 | 18726 2 571 | 18727 1 572 | 18728 2 573 | 18729 1 574 | 18730 1 575 | 18731 0 576 | 18732 0 577 | 18733 1 578 | 18734 2 579 | 18735 0 580 | 18736 2 581 | 18737 0 582 | 18738 2 583 | 18739 1 584 | 18740 2 585 | 18741 2 586 | 18742 2 587 | 18743 1 588 | 18744 2 589 | 18745 1 590 | 18746 0 591 | 18747 1 592 | 18748 1 593 | 18749 0 594 | 18750 2 595 | 18751 0 596 | 18752 2 597 | 18753 2 598 | 18754 1 599 | 18755 1 600 | 18756 1 601 | 18757 2 602 | 18758 0 603 | 18759 1 604 | 18760 2 605 | 18761 1 606 | 18762 1 607 | 18763 1 608 | 18764 1 609 | 18765 1 610 | 18766 0 611 | 18767 0 612 | 18768 1 613 | 18769 2 614 | 18770 2 615 | 18771 2 616 | 18772 1 617 | 18773 2 618 | 18774 2 619 | 18775 1 620 | 18776 0 621 | 18777 2 622 | 18778 2 623 | 18779 2 624 | 18780 0 625 | 18781 0 626 | 18782 2 627 | 18783 0 628 | 18784 1 629 | 18785 2 630 | 18786 1 631 | 18787 1 632 | 18788 0 633 | 18789 1 634 | 18790 2 635 | 18791 0 636 | 18792 1 637 | 18793 2 638 | 18794 2 639 | 18795 0 640 | 18796 1 641 | 18797 1 642 | 18798 1 643 | 18799 1 644 | 18800 2 645 | 18801 2 646 | 18802 2 647 | 18803 2 648 | 18804 2 649 | 18805 2 650 | 18806 0 651 | 18807 1 652 | 18808 2 653 | 18809 1 654 | 18810 1 655 | 18811 2 656 | 18812 2 657 | 18813 1 658 | 18814 1 659 | 18815 1 660 | 18816 1 661 | 18817 1 662 | 18818 1 663 | 18819 1 664 | 18820 2 665 | 18821 0 666 | 18822 1 667 | 18823 0 668 | 18824 1 669 | 18825 1 670 | 18826 1 671 | 18827 1 672 | 18828 2 673 | 18829 0 674 | 18830 2 675 | 18831 2 676 | 18832 2 677 | 18833 2 678 | 18834 0 679 | 18835 1 680 | 18836 1 681 | 18837 1 682 | 18838 0 683 | 18839 0 684 | 18840 2 685 | 18841 2 686 | 18842 2 687 | 18843 2 688 | 18844 1 689 | 18845 0 690 | 18846 2 691 | 18847 2 692 | 18848 2 693 | 18849 2 694 | 18850 2 695 | 18851 1 696 | 18852 1 697 | 18853 1 698 | 18854 0 699 | 18855 2 700 | 18856 2 701 | 18857 2 702 | 18858 1 703 | 18859 1 704 | 18860 0 705 | 18861 1 706 | 18862 2 707 | 18863 0 708 | 18864 2 709 | 18865 2 710 | 18866 1 711 | 18867 1 712 | 18868 2 713 | 18869 0 714 | 18870 0 715 | 18871 1 716 | 18872 2 717 | 18873 2 718 | 18874 2 719 | 18875 0 720 | 18876 2 721 | 18877 1 722 | 18878 1 723 | 18879 2 724 | 18880 1 725 | 18881 2 726 | 18882 2 727 | 18883 1 728 | 18884 0 729 | 18885 2 730 | 18886 0 731 | 18887 1 732 | 18888 2 733 | 18889 2 734 | 18890 0 735 | 18891 1 736 | 18892 1 737 | 18893 0 738 | 18894 2 739 | 18895 2 740 | 18896 2 741 | 18897 1 742 | 18898 1 743 | 18899 2 744 | 18900 1 745 | 18901 0 746 | 18902 2 747 | 18903 2 748 | 18904 2 749 | 18905 2 750 | 18906 2 751 | 18907 1 752 | 18908 2 753 | 18909 1 754 | 18910 2 755 | 18911 0 756 | 18912 2 757 | 18913 1 758 | 18914 2 759 | 18915 0 760 | 18916 1 761 | 18917 2 762 | 18918 2 763 | 18919 1 764 | 18920 1 765 | 18921 1 766 | 18922 1 767 | 18923 2 768 | 18924 2 769 | 18925 2 770 | 18926 1 771 | 18927 2 772 | 18928 1 773 | 18929 2 774 | 18930 2 775 | 18931 1 776 | 18932 1 777 | 18933 2 778 | 18934 2 779 | 18935 2 780 | 18936 0 781 | 18937 1 782 | 18938 2 783 | 18939 1 784 | 18940 1 785 | 18941 1 786 | 18942 1 787 | 18943 1 788 | 18944 1 789 | 18945 1 790 | 18946 1 791 | 18947 0 792 | 18948 0 793 | 18949 2 794 | 18950 0 795 | 18951 2 796 | 18952 0 797 | 18953 1 798 | 18954 1 799 | 18955 2 800 | 18956 0 801 | 18957 1 802 | 18958 2 803 | 18959 2 804 | 18960 1 805 | 18961 2 806 | 18962 2 807 | 18963 1 808 | 18964 0 809 | 18965 2 810 | 18966 2 811 | 18967 0 812 | 18968 1 813 | 18969 2 814 | 18970 2 815 | 18971 2 816 | 18972 2 817 | 18973 1 818 | 18974 1 819 | 18975 2 820 | 18976 1 821 | 18977 1 822 | 18978 2 823 | 18979 2 824 | 18980 0 825 | 18981 2 826 | 18982 0 827 | 18983 0 828 | 18984 1 829 | 18985 1 830 | 18986 1 831 | 18987 1 832 | 18988 2 833 | 18989 2 834 | 18990 2 835 | 18991 0 836 | 18992 2 837 | 18993 0 838 | 18994 1 839 | 18995 1 840 | 18996 0 841 | 18997 1 842 | 18998 1 843 | 18999 0 844 | 19000 0 845 | 19001 2 846 | 19002 2 847 | 19003 1 848 | 19004 1 849 | 19005 1 850 | 19006 1 851 | 19007 1 852 | 19008 2 853 | 19009 2 854 | 19010 1 855 | 19011 1 856 | 19012 1 857 | 19013 0 858 | 19014 2 859 | 19015 1 860 | 19016 2 861 | 19017 1 862 | 19018 1 863 | 19019 2 864 | 19020 2 865 | 19021 0 866 | 19022 2 867 | 19023 0 868 | 19024 1 869 | 19025 1 870 | 19026 2 871 | 19027 0 872 | 19028 1 873 | 19029 2 874 | 19030 2 875 | 19031 1 876 | 19032 1 877 | 19033 1 878 | 19034 2 879 | 19035 2 880 | 19036 0 881 | 19037 2 882 | 19038 1 883 | 19039 2 884 | 19040 0 885 | 19041 0 886 | 19042 1 887 | 19043 1 888 | 19044 2 889 | 19045 1 890 | 19046 1 891 | 19047 1 892 | 19048 1 893 | 19049 1 894 | 19050 2 895 | 19051 0 896 | 19052 0 897 | 19053 0 898 | 19054 1 899 | 19055 1 900 | 19056 2 901 | 19057 1 902 | 19058 2 903 | 19059 2 904 | 19060 2 905 | 19061 2 906 | 19062 1 907 | 19063 2 908 | 19064 2 909 | 19065 2 910 | 19066 1 911 | 19067 2 912 | 19068 2 913 | 19069 2 914 | 19070 1 915 | 19071 1 916 | 19072 2 917 | 19073 0 918 | 19074 1 919 | 19075 2 920 | 19076 2 921 | 19077 1 922 | 19078 2 923 | 19079 2 924 | 19080 1 925 | 19081 1 926 | 19082 1 927 | 19083 2 928 | 19084 1 929 | 19085 2 930 | 19086 2 931 | 19087 2 932 | 19088 1 933 | 19089 1 934 | 19090 1 935 | 19091 1 936 | 19092 0 937 | 19093 2 938 | 19094 2 939 | 19095 0 940 | 19096 0 941 | 19097 1 942 | 19098 2 943 | 19099 0 944 | 19100 1 945 | 19101 1 946 | 19102 1 947 | 19103 2 948 | 19104 2 949 | 19105 1 950 | 19106 1 951 | 19107 0 952 | 19108 2 953 | 19109 0 954 | 19110 2 955 | 19111 1 956 | 19112 1 957 | 19113 1 958 | 19114 1 959 | 19115 1 960 | 19116 2 961 | 19117 0 962 | 19118 0 963 | 19119 2 964 | 19120 1 965 | 19121 1 966 | 19122 0 967 | 19123 2 968 | 19124 2 969 | 19125 2 970 | 19126 1 971 | 19127 1 972 | 19128 1 973 | 19129 2 974 | 19130 1 975 | 19131 2 976 | 19132 0 977 | 19133 2 978 | 19134 0 979 | 19135 1 980 | 19136 1 981 | 19137 0 982 | 19138 1 983 | 19139 0 984 | 19140 1 985 | 19141 1 986 | 19142 1 987 | 19143 1 988 | 19144 1 989 | 19145 1 990 | 19146 2 991 | 19147 1 992 | 19148 2 993 | 19149 0 994 | 19150 1 995 | 19151 1 996 | 19152 2 997 | 19153 1 998 | 19154 1 999 | 19155 0 1000 | 19156 2 1001 | 19157 0 1002 | 19158 1 1003 | 19159 2 1004 | 19160 0 1005 | 19161 0 1006 | 19162 1 1007 | 19163 2 1008 | 19164 1 1009 | 19165 1 1010 | 19166 2 1011 | 19167 2 1012 | 19168 2 1013 | 19169 1 1014 | 19170 0 1015 | 19171 1 1016 | 19172 2 1017 | 19173 1 1018 | 19174 2 1019 | 19175 0 1020 | 19176 1 1021 | 19177 1 1022 | 19178 0 1023 | 19179 2 1024 | 19180 1 1025 | 19181 2 1026 | 19182 2 1027 | 19183 1 1028 | 19184 1 1029 | 19185 1 1030 | 19186 1 1031 | 19187 1 1032 | 19188 1 1033 | 19189 2 1034 | 19190 2 1035 | 19191 1 1036 | 19192 2 1037 | 19193 2 1038 | 19194 0 1039 | 19195 2 1040 | 19196 1 1041 | 19197 1 1042 | 19198 2 1043 | 19199 2 1044 | 19200 0 1045 | 19201 0 1046 | 19202 1 1047 | 19203 0 1048 | 19204 2 1049 | 19205 1 1050 | 19206 1 1051 | 19207 2 1052 | 19208 0 1053 | 19209 1 1054 | 19210 0 1055 | 19211 2 1056 | 19212 2 1057 | 19213 2 1058 | 19214 2 1059 | 19215 2 1060 | 19216 1 1061 | 19217 0 1062 | 19218 1 1063 | 19219 1 1064 | 19220 2 1065 | 19221 0 1066 | 19222 2 1067 | 19223 2 1068 | 19224 2 1069 | 19225 1 1070 | 19226 1 1071 | 19227 1 1072 | 19228 2 1073 | 19229 1 1074 | 19230 1 1075 | 19231 0 1076 | 19232 2 1077 | 19233 1 1078 | 19234 2 1079 | 19235 1 1080 | 19236 1 1081 | 19237 1 1082 | 19238 2 1083 | 19239 2 1084 | 19240 1 1085 | 19241 0 1086 | 19242 0 1087 | 19243 1 1088 | 19244 1 1089 | 19245 2 1090 | 19246 1 1091 | 19247 2 1092 | 19248 2 1093 | 19249 2 1094 | 19250 1 1095 | 19251 2 1096 | 19252 0 1097 | 19253 0 1098 | 19254 0 1099 | 19255 1 1100 | 19256 0 1101 | 19257 1 1102 | 19258 2 1103 | 19259 2 1104 | 19260 0 1105 | 19261 1 1106 | 19262 1 1107 | 19263 1 1108 | 19264 1 1109 | 19265 0 1110 | 19266 2 1111 | 19267 0 1112 | 19268 1 1113 | 19269 1 1114 | 19270 1 1115 | 19271 2 1116 | 19272 2 1117 | 19273 1 1118 | 19274 1 1119 | 19275 2 1120 | 19276 1 1121 | 19277 1 1122 | 19278 2 1123 | 19279 0 1124 | 19280 2 1125 | 19281 1 1126 | 19282 2 1127 | 19283 1 1128 | 19284 1 1129 | 19285 2 1130 | 19286 1 1131 | 19287 2 1132 | 19288 1 1133 | 19289 2 1134 | 19290 2 1135 | 19291 0 1136 | 19292 2 1137 | 19293 2 1138 | 19294 1 1139 | 19295 1 1140 | 19296 2 1141 | 19297 2 1142 | 19298 0 1143 | 19299 1 1144 | 19300 1 1145 | 19301 1 1146 | 19302 1 1147 | 19303 2 1148 | 19304 0 1149 | 19305 2 1150 | 19306 2 1151 | 19307 2 1152 | 19308 1 1153 | 19309 1 1154 | 19310 1 1155 | 19311 1 1156 | 19312 0 1157 | 19313 1 1158 | 19314 2 1159 | 19315 1 1160 | 19316 0 1161 | 19317 2 1162 | 19318 2 1163 | 19319 2 1164 | 19320 1 1165 | 19321 1 1166 | 19322 2 1167 | 19323 1 1168 | 19324 2 1169 | 19325 2 1170 | 19326 1 1171 | 19327 0 1172 | 19328 2 1173 | 19329 2 1174 | 19330 2 1175 | 19331 2 1176 | 19332 2 1177 | 19333 2 1178 | 19334 2 1179 | 19335 2 1180 | 19336 2 1181 | 19337 2 1182 | 19338 1 1183 | 19339 0 1184 | 19340 2 1185 | 19341 2 1186 | 19342 1 1187 | 19343 1 1188 | 19344 2 1189 | 19345 2 1190 | 19346 1 1191 | 19347 1 1192 | 19348 2 1193 | 19349 1 1194 | 19350 1 1195 | 19351 2 1196 | 19352 1 1197 | 19353 1 1198 | 19354 2 1199 | 19355 0 1200 | 19356 0 1201 | 19357 0 1202 | 19358 1 1203 | 19359 2 1204 | 19360 1 1205 | 19361 1 1206 | 19362 2 1207 | 19363 2 1208 | 19364 0 1209 | 19365 1 1210 | 19366 1 1211 | 19367 2 1212 | 19368 2 1213 | 19369 2 1214 | 19370 1 1215 | 19371 2 1216 | 19372 1 1217 | 19373 1 1218 | 19374 1 1219 | 19375 0 1220 | 19376 1 1221 | 19377 2 1222 | 19378 1 1223 | 19379 1 1224 | 19380 1 1225 | 19381 1 1226 | 19382 1 1227 | 19383 0 1228 | 19384 2 1229 | 19385 2 1230 | 19386 2 1231 | 19387 2 1232 | 19388 2 1233 | 19389 0 1234 | 19390 1 1235 | 19391 0 1236 | 19392 2 1237 | 19393 2 1238 | 19394 1 1239 | 19395 0 1240 | 19396 0 1241 | 19397 2 1242 | 19398 1 1243 | 19399 2 1244 | 19400 2 1245 | 19401 2 1246 | 19402 2 1247 | 19403 1 1248 | 19404 1 1249 | 19405 1 1250 | 19406 2 1251 | 19407 2 1252 | 19408 1 1253 | 19409 0 1254 | 19410 2 1255 | 19411 0 1256 | 19412 2 1257 | 19413 1 1258 | 19414 1 1259 | 19415 1 1260 | 19416 1 1261 | 19417 1 1262 | 19418 0 1263 | 19419 0 1264 | 19420 1 1265 | 19421 2 1266 | 19422 1 1267 | 19423 2 1268 | 19424 2 1269 | 19425 2 1270 | 19426 2 1271 | 19427 1 1272 | 19428 2 1273 | 19429 1 1274 | 19430 1 1275 | 19431 1 1276 | 19432 1 1277 | 19433 1 1278 | 19434 2 1279 | 19435 0 1280 | 19436 1 1281 | 19437 2 1282 | 19438 2 1283 | 19439 2 1284 | 19440 1 1285 | 19441 0 1286 | 19442 2 1287 | 19443 2 1288 | 19444 2 1289 | 19445 2 1290 | 19446 2 1291 | 19447 1 1292 | 19448 0 1293 | 19449 2 1294 | 19450 0 1295 | 19451 2 1296 | 19452 1 1297 | 19453 1 1298 | 19454 2 1299 | 19455 1 1300 | 19456 0 1301 | 19457 2 1302 | 19458 2 1303 | 19459 2 1304 | 19460 2 1305 | 19461 2 1306 | 19462 1 1307 | 19463 2 1308 | 19464 0 1309 | 19465 2 1310 | 19466 0 1311 | 19467 0 1312 | 19468 1 1313 | 19469 0 1314 | 19470 1 1315 | 19471 2 1316 | 19472 2 1317 | 19473 1 1318 | 19474 0 1319 | 19475 2 1320 | 19476 1 1321 | 19477 1 1322 | 19478 0 1323 | 19479 1 1324 | 19480 2 1325 | 19481 1 1326 | 19482 1 1327 | 19483 2 1328 | 19484 1 1329 | 19485 2 1330 | 19486 0 1331 | 19487 1 1332 | 19488 1 1333 | 19489 1 1334 | 19490 2 1335 | 19491 1 1336 | 19492 1 1337 | 19493 1 1338 | 19494 2 1339 | 19495 2 1340 | 19496 2 1341 | 19497 1 1342 | 19498 2 1343 | 19499 1 1344 | 19500 0 1345 | 19501 1 1346 | 19502 0 1347 | 19503 2 1348 | 19504 1 1349 | 19505 2 1350 | 19506 1 1351 | 19507 0 1352 | 19508 0 1353 | 19509 2 1354 | 19510 2 1355 | 19511 2 1356 | 19512 1 1357 | 19513 0 1358 | 19514 2 1359 | 19515 1 1360 | 19516 1 1361 | 19517 2 1362 | 19518 2 1363 | 19519 0 1364 | 19520 1 1365 | 19521 1 1366 | 19522 2 1367 | 19523 2 1368 | 19524 2 1369 | 19525 2 1370 | 19526 1 1371 | 19527 2 1372 | 19528 1 1373 | 19529 1 1374 | 19530 2 1375 | 19531 1 1376 | 19532 2 1377 | 19533 1 1378 | 19534 2 1379 | 19535 1 1380 | 19536 1 1381 | 19537 2 1382 | 19538 1 1383 | 19539 2 1384 | 19540 1 1385 | 19541 1 1386 | 19542 1 1387 | 19543 2 1388 | 19544 1 1389 | 19545 1 1390 | 19546 1 1391 | 19547 1 1392 | 19548 2 1393 | 19549 2 1394 | 19550 1 1395 | 19551 2 1396 | 19552 1 1397 | 19553 2 1398 | 19554 2 1399 | 19555 2 1400 | 19556 0 1401 | 19557 1 1402 | 19558 1 1403 | 19559 2 1404 | 19560 0 1405 | 19561 2 1406 | 19562 1 1407 | 19563 0 1408 | 19564 1 1409 | 19565 1 1410 | 19566 2 1411 | 19567 0 1412 | 19568 1 1413 | 19569 2 1414 | 19570 1 1415 | 19571 2 1416 | 19572 0 1417 | 19573 1 1418 | 19574 1 1419 | 19575 0 1420 | 19576 2 1421 | 19577 1 1422 | 19578 1 1423 | 19579 1 1424 | 19580 1 1425 | 19581 1 1426 | 19582 2 1427 | 19583 0 1428 | 19584 1 1429 | 19585 1 1430 | 19586 1 1431 | 19587 2 1432 | 19588 1 1433 | 19589 1 1434 | 19590 1 1435 | 19591 1 1436 | 19592 2 1437 | 19593 0 1438 | 19594 1 1439 | 19595 1 1440 | 19596 1 1441 | 19597 0 1442 | 19598 2 1443 | 19599 2 1444 | 19600 1 1445 | 19601 1 1446 | 19602 0 1447 | 19603 1 1448 | 19604 2 1449 | 19605 1 1450 | 19606 2 1451 | 19607 2 1452 | 19608 2 1453 | 19609 0 1454 | 19610 1 1455 | 19611 2 1456 | 19612 2 1457 | 19613 1 1458 | 19614 2 1459 | 19615 1 1460 | 19616 2 1461 | 19617 0 1462 | 19618 0 1463 | 19619 1 1464 | 19620 1 1465 | 19621 0 1466 | 19622 2 1467 | 19623 1 1468 | 19624 1 1469 | 19625 2 1470 | 19626 0 1471 | 19627 1 1472 | 19628 1 1473 | 19629 2 1474 | 19630 2 1475 | 19631 0 1476 | 19632 2 1477 | 19633 0 1478 | 19634 2 1479 | 19635 1 1480 | 19636 0 1481 | 19637 0 1482 | 19638 2 1483 | 19639 1 1484 | 19640 2 1485 | 19641 2 1486 | 19642 1 1487 | 19643 2 1488 | 19644 0 1489 | 19645 2 1490 | 19646 2 1491 | 19647 0 1492 | 19648 2 1493 | 19649 1 1494 | 19650 0 1495 | 19651 1 1496 | 19652 1 1497 | 19653 2 1498 | 19654 0 1499 | 19655 2 1500 | 19656 2 1501 | 19657 1 1502 | 19658 2 1503 | 19659 2 1504 | 19660 2 1505 | 19661 2 1506 | 19662 1 1507 | 19663 1 1508 | 19664 0 1509 | 19665 0 1510 | 19666 2 1511 | 19667 1 1512 | 19668 1 1513 | 19669 2 1514 | 19670 2 1515 | 19671 1 1516 | 19672 0 1517 | 19673 1 1518 | 19674 0 1519 | 19675 1 1520 | 19676 0 1521 | 19677 1 1522 | 19678 0 1523 | 19679 2 1524 | 19680 2 1525 | 19681 2 1526 | 19682 1 1527 | 19683 1 1528 | 19684 2 1529 | 19685 2 1530 | 19686 1 1531 | 19687 1 1532 | 19688 0 1533 | 19689 2 1534 | 19690 2 1535 | 19691 2 1536 | 19692 1 1537 | 19693 1 1538 | 19694 2 1539 | 19695 1 1540 | 19696 2 1541 | 19697 2 1542 | 19698 2 1543 | 19699 0 1544 | 19700 1 1545 | 19701 1 1546 | 19702 1 1547 | 19703 2 1548 | 19704 1 1549 | 19705 0 1550 | 19706 0 1551 | 19707 2 1552 | 19708 2 1553 | 19709 2 1554 | 19710 2 1555 | 19711 0 1556 | 19712 2 1557 | 19713 0 1558 | 19714 2 1559 | 19715 0 1560 | 19716 2 1561 | -------------------------------------------------------------------------------- /semisupervised/data/pubmed/test.txt: -------------------------------------------------------------------------------- 1 | 18717 2 | 18718 3 | 18719 4 | 18720 5 | 18721 6 | 18722 7 | 18723 8 | 18724 9 | 18725 10 | 18726 11 | 18727 12 | 18728 13 | 18729 14 | 18730 15 | 18731 16 | 18732 17 | 18733 18 | 18734 19 | 18735 20 | 18736 21 | 18737 22 | 18738 23 | 18739 24 | 18740 25 | 18741 26 | 18742 27 | 18743 28 | 18744 29 | 18745 30 | 18746 31 | 18747 32 | 18748 33 | 18749 34 | 18750 35 | 18751 36 | 18752 37 | 18753 38 | 18754 39 | 18755 40 | 18756 41 | 18757 42 | 18758 43 | 18759 44 | 18760 45 | 18761 46 | 18762 47 | 18763 48 | 18764 49 | 18765 50 | 18766 51 | 18767 52 | 18768 53 | 18769 54 | 18770 55 | 18771 56 | 18772 57 | 18773 58 | 18774 59 | 18775 60 | 18776 61 | 18777 62 | 18778 63 | 18779 64 | 18780 65 | 18781 66 | 18782 67 | 18783 68 | 18784 69 | 18785 70 | 18786 71 | 18787 72 | 18788 73 | 18789 74 | 18790 75 | 18791 76 | 18792 77 | 18793 78 | 18794 79 | 18795 80 | 18796 81 | 18797 82 | 18798 83 | 18799 84 | 18800 85 | 18801 86 | 18802 87 | 18803 88 | 18804 89 | 18805 90 | 18806 91 | 18807 92 | 18808 93 | 18809 94 | 18810 95 | 18811 96 | 18812 97 | 18813 98 | 18814 99 | 18815 100 | 18816 101 | 18817 102 | 18818 103 | 18819 104 | 18820 105 | 18821 106 | 18822 107 | 18823 108 | 18824 109 | 18825 110 | 18826 111 | 18827 112 | 18828 113 | 18829 114 | 18830 115 | 18831 116 | 18832 117 | 18833 118 | 18834 119 | 18835 120 | 18836 121 | 18837 122 | 18838 123 | 18839 124 | 18840 125 | 18841 126 | 18842 127 | 18843 128 | 18844 129 | 18845 130 | 18846 131 | 18847 132 | 18848 133 | 18849 134 | 18850 135 | 18851 136 | 18852 137 | 18853 138 | 18854 139 | 18855 140 | 18856 141 | 18857 142 | 18858 143 | 18859 144 | 18860 145 | 18861 146 | 18862 147 | 18863 148 | 18864 149 | 18865 150 | 18866 151 | 18867 152 | 18868 153 | 18869 154 | 18870 155 | 18871 156 | 18872 157 | 18873 158 | 18874 159 | 18875 160 | 18876 161 | 18877 162 | 18878 163 | 18879 164 | 18880 165 | 18881 166 | 18882 167 | 18883 168 | 18884 169 | 18885 170 | 18886 171 | 18887 172 | 18888 173 | 18889 174 | 18890 175 | 18891 176 | 18892 177 | 18893 178 | 18894 179 | 18895 180 | 18896 181 | 18897 182 | 18898 183 | 18899 184 | 18900 185 | 18901 186 | 18902 187 | 18903 188 | 18904 189 | 18905 190 | 18906 191 | 18907 192 | 18908 193 | 18909 194 | 18910 195 | 18911 196 | 18912 197 | 18913 198 | 18914 199 | 18915 200 | 18916 201 | 18917 202 | 18918 203 | 18919 204 | 18920 205 | 18921 206 | 18922 207 | 18923 208 | 18924 209 | 18925 210 | 18926 211 | 18927 212 | 18928 213 | 18929 214 | 18930 215 | 18931 216 | 18932 217 | 18933 218 | 18934 219 | 18935 220 | 18936 221 | 18937 222 | 18938 223 | 18939 224 | 18940 225 | 18941 226 | 18942 227 | 18943 228 | 18944 229 | 18945 230 | 18946 231 | 18947 232 | 18948 233 | 18949 234 | 18950 235 | 18951 236 | 18952 237 | 18953 238 | 18954 239 | 18955 240 | 18956 241 | 18957 242 | 18958 243 | 18959 244 | 18960 245 | 18961 246 | 18962 247 | 18963 248 | 18964 249 | 18965 250 | 18966 251 | 18967 252 | 18968 253 | 18969 254 | 18970 255 | 18971 256 | 18972 257 | 18973 258 | 18974 259 | 18975 260 | 18976 261 | 18977 262 | 18978 263 | 18979 264 | 18980 265 | 18981 266 | 18982 267 | 18983 268 | 18984 269 | 18985 270 | 18986 271 | 18987 272 | 18988 273 | 18989 274 | 18990 275 | 18991 276 | 18992 277 | 18993 278 | 18994 279 | 18995 280 | 18996 281 | 18997 282 | 18998 283 | 18999 284 | 19000 285 | 19001 286 | 19002 287 | 19003 288 | 19004 289 | 19005 290 | 19006 291 | 19007 292 | 19008 293 | 19009 294 | 19010 295 | 19011 296 | 19012 297 | 19013 298 | 19014 299 | 19015 300 | 19016 301 | 19017 302 | 19018 303 | 19019 304 | 19020 305 | 19021 306 | 19022 307 | 19023 308 | 19024 309 | 19025 310 | 19026 311 | 19027 312 | 19028 313 | 19029 314 | 19030 315 | 19031 316 | 19032 317 | 19033 318 | 19034 319 | 19035 320 | 19036 321 | 19037 322 | 19038 323 | 19039 324 | 19040 325 | 19041 326 | 19042 327 | 19043 328 | 19044 329 | 19045 330 | 19046 331 | 19047 332 | 19048 333 | 19049 334 | 19050 335 | 19051 336 | 19052 337 | 19053 338 | 19054 339 | 19055 340 | 19056 341 | 19057 342 | 19058 343 | 19059 344 | 19060 345 | 19061 346 | 19062 347 | 19063 348 | 19064 349 | 19065 350 | 19066 351 | 19067 352 | 19068 353 | 19069 354 | 19070 355 | 19071 356 | 19072 357 | 19073 358 | 19074 359 | 19075 360 | 19076 361 | 19077 362 | 19078 363 | 19079 364 | 19080 365 | 19081 366 | 19082 367 | 19083 368 | 19084 369 | 19085 370 | 19086 371 | 19087 372 | 19088 373 | 19089 374 | 19090 375 | 19091 376 | 19092 377 | 19093 378 | 19094 379 | 19095 380 | 19096 381 | 19097 382 | 19098 383 | 19099 384 | 19100 385 | 19101 386 | 19102 387 | 19103 388 | 19104 389 | 19105 390 | 19106 391 | 19107 392 | 19108 393 | 19109 394 | 19110 395 | 19111 396 | 19112 397 | 19113 398 | 19114 399 | 19115 400 | 19116 401 | 19117 402 | 19118 403 | 19119 404 | 19120 405 | 19121 406 | 19122 407 | 19123 408 | 19124 409 | 19125 410 | 19126 411 | 19127 412 | 19128 413 | 19129 414 | 19130 415 | 19131 416 | 19132 417 | 19133 418 | 19134 419 | 19135 420 | 19136 421 | 19137 422 | 19138 423 | 19139 424 | 19140 425 | 19141 426 | 19142 427 | 19143 428 | 19144 429 | 19145 430 | 19146 431 | 19147 432 | 19148 433 | 19149 434 | 19150 435 | 19151 436 | 19152 437 | 19153 438 | 19154 439 | 19155 440 | 19156 441 | 19157 442 | 19158 443 | 19159 444 | 19160 445 | 19161 446 | 19162 447 | 19163 448 | 19164 449 | 19165 450 | 19166 451 | 19167 452 | 19168 453 | 19169 454 | 19170 455 | 19171 456 | 19172 457 | 19173 458 | 19174 459 | 19175 460 | 19176 461 | 19177 462 | 19178 463 | 19179 464 | 19180 465 | 19181 466 | 19182 467 | 19183 468 | 19184 469 | 19185 470 | 19186 471 | 19187 472 | 19188 473 | 19189 474 | 19190 475 | 19191 476 | 19192 477 | 19193 478 | 19194 479 | 19195 480 | 19196 481 | 19197 482 | 19198 483 | 19199 484 | 19200 485 | 19201 486 | 19202 487 | 19203 488 | 19204 489 | 19205 490 | 19206 491 | 19207 492 | 19208 493 | 19209 494 | 19210 495 | 19211 496 | 19212 497 | 19213 498 | 19214 499 | 19215 500 | 19216 501 | 19217 502 | 19218 503 | 19219 504 | 19220 505 | 19221 506 | 19222 507 | 19223 508 | 19224 509 | 19225 510 | 19226 511 | 19227 512 | 19228 513 | 19229 514 | 19230 515 | 19231 516 | 19232 517 | 19233 518 | 19234 519 | 19235 520 | 19236 521 | 19237 522 | 19238 523 | 19239 524 | 19240 525 | 19241 526 | 19242 527 | 19243 528 | 19244 529 | 19245 530 | 19246 531 | 19247 532 | 19248 533 | 19249 534 | 19250 535 | 19251 536 | 19252 537 | 19253 538 | 19254 539 | 19255 540 | 19256 541 | 19257 542 | 19258 543 | 19259 544 | 19260 545 | 19261 546 | 19262 547 | 19263 548 | 19264 549 | 19265 550 | 19266 551 | 19267 552 | 19268 553 | 19269 554 | 19270 555 | 19271 556 | 19272 557 | 19273 558 | 19274 559 | 19275 560 | 19276 561 | 19277 562 | 19278 563 | 19279 564 | 19280 565 | 19281 566 | 19282 567 | 19283 568 | 19284 569 | 19285 570 | 19286 571 | 19287 572 | 19288 573 | 19289 574 | 19290 575 | 19291 576 | 19292 577 | 19293 578 | 19294 579 | 19295 580 | 19296 581 | 19297 582 | 19298 583 | 19299 584 | 19300 585 | 19301 586 | 19302 587 | 19303 588 | 19304 589 | 19305 590 | 19306 591 | 19307 592 | 19308 593 | 19309 594 | 19310 595 | 19311 596 | 19312 597 | 19313 598 | 19314 599 | 19315 600 | 19316 601 | 19317 602 | 19318 603 | 19319 604 | 19320 605 | 19321 606 | 19322 607 | 19323 608 | 19324 609 | 19325 610 | 19326 611 | 19327 612 | 19328 613 | 19329 614 | 19330 615 | 19331 616 | 19332 617 | 19333 618 | 19334 619 | 19335 620 | 19336 621 | 19337 622 | 19338 623 | 19339 624 | 19340 625 | 19341 626 | 19342 627 | 19343 628 | 19344 629 | 19345 630 | 19346 631 | 19347 632 | 19348 633 | 19349 634 | 19350 635 | 19351 636 | 19352 637 | 19353 638 | 19354 639 | 19355 640 | 19356 641 | 19357 642 | 19358 643 | 19359 644 | 19360 645 | 19361 646 | 19362 647 | 19363 648 | 19364 649 | 19365 650 | 19366 651 | 19367 652 | 19368 653 | 19369 654 | 19370 655 | 19371 656 | 19372 657 | 19373 658 | 19374 659 | 19375 660 | 19376 661 | 19377 662 | 19378 663 | 19379 664 | 19380 665 | 19381 666 | 19382 667 | 19383 668 | 19384 669 | 19385 670 | 19386 671 | 19387 672 | 19388 673 | 19389 674 | 19390 675 | 19391 676 | 19392 677 | 19393 678 | 19394 679 | 19395 680 | 19396 681 | 19397 682 | 19398 683 | 19399 684 | 19400 685 | 19401 686 | 19402 687 | 19403 688 | 19404 689 | 19405 690 | 19406 691 | 19407 692 | 19408 693 | 19409 694 | 19410 695 | 19411 696 | 19412 697 | 19413 698 | 19414 699 | 19415 700 | 19416 701 | 19417 702 | 19418 703 | 19419 704 | 19420 705 | 19421 706 | 19422 707 | 19423 708 | 19424 709 | 19425 710 | 19426 711 | 19427 712 | 19428 713 | 19429 714 | 19430 715 | 19431 716 | 19432 717 | 19433 718 | 19434 719 | 19435 720 | 19436 721 | 19437 722 | 19438 723 | 19439 724 | 19440 725 | 19441 726 | 19442 727 | 19443 728 | 19444 729 | 19445 730 | 19446 731 | 19447 732 | 19448 733 | 19449 734 | 19450 735 | 19451 736 | 19452 737 | 19453 738 | 19454 739 | 19455 740 | 19456 741 | 19457 742 | 19458 743 | 19459 744 | 19460 745 | 19461 746 | 19462 747 | 19463 748 | 19464 749 | 19465 750 | 19466 751 | 19467 752 | 19468 753 | 19469 754 | 19470 755 | 19471 756 | 19472 757 | 19473 758 | 19474 759 | 19475 760 | 19476 761 | 19477 762 | 19478 763 | 19479 764 | 19480 765 | 19481 766 | 19482 767 | 19483 768 | 19484 769 | 19485 770 | 19486 771 | 19487 772 | 19488 773 | 19489 774 | 19490 775 | 19491 776 | 19492 777 | 19493 778 | 19494 779 | 19495 780 | 19496 781 | 19497 782 | 19498 783 | 19499 784 | 19500 785 | 19501 786 | 19502 787 | 19503 788 | 19504 789 | 19505 790 | 19506 791 | 19507 792 | 19508 793 | 19509 794 | 19510 795 | 19511 796 | 19512 797 | 19513 798 | 19514 799 | 19515 800 | 19516 801 | 19517 802 | 19518 803 | 19519 804 | 19520 805 | 19521 806 | 19522 807 | 19523 808 | 19524 809 | 19525 810 | 19526 811 | 19527 812 | 19528 813 | 19529 814 | 19530 815 | 19531 816 | 19532 817 | 19533 818 | 19534 819 | 19535 820 | 19536 821 | 19537 822 | 19538 823 | 19539 824 | 19540 825 | 19541 826 | 19542 827 | 19543 828 | 19544 829 | 19545 830 | 19546 831 | 19547 832 | 19548 833 | 19549 834 | 19550 835 | 19551 836 | 19552 837 | 19553 838 | 19554 839 | 19555 840 | 19556 841 | 19557 842 | 19558 843 | 19559 844 | 19560 845 | 19561 846 | 19562 847 | 19563 848 | 19564 849 | 19565 850 | 19566 851 | 19567 852 | 19568 853 | 19569 854 | 19570 855 | 19571 856 | 19572 857 | 19573 858 | 19574 859 | 19575 860 | 19576 861 | 19577 862 | 19578 863 | 19579 864 | 19580 865 | 19581 866 | 19582 867 | 19583 868 | 19584 869 | 19585 870 | 19586 871 | 19587 872 | 19588 873 | 19589 874 | 19590 875 | 19591 876 | 19592 877 | 19593 878 | 19594 879 | 19595 880 | 19596 881 | 19597 882 | 19598 883 | 19599 884 | 19600 885 | 19601 886 | 19602 887 | 19603 888 | 19604 889 | 19605 890 | 19606 891 | 19607 892 | 19608 893 | 19609 894 | 19610 895 | 19611 896 | 19612 897 | 19613 898 | 19614 899 | 19615 900 | 19616 901 | 19617 902 | 19618 903 | 19619 904 | 19620 905 | 19621 906 | 19622 907 | 19623 908 | 19624 909 | 19625 910 | 19626 911 | 19627 912 | 19628 913 | 19629 914 | 19630 915 | 19631 916 | 19632 917 | 19633 918 | 19634 919 | 19635 920 | 19636 921 | 19637 922 | 19638 923 | 19639 924 | 19640 925 | 19641 926 | 19642 927 | 19643 928 | 19644 929 | 19645 930 | 19646 931 | 19647 932 | 19648 933 | 19649 934 | 19650 935 | 19651 936 | 19652 937 | 19653 938 | 19654 939 | 19655 940 | 19656 941 | 19657 942 | 19658 943 | 19659 944 | 19660 945 | 19661 946 | 19662 947 | 19663 948 | 19664 949 | 19665 950 | 19666 951 | 19667 952 | 19668 953 | 19669 954 | 19670 955 | 19671 956 | 19672 957 | 19673 958 | 19674 959 | 19675 960 | 19676 961 | 19677 962 | 19678 963 | 19679 964 | 19680 965 | 19681 966 | 19682 967 | 19683 968 | 19684 969 | 19685 970 | 19686 971 | 19687 972 | 19688 973 | 19689 974 | 19690 975 | 19691 976 | 19692 977 | 19693 978 | 19694 979 | 19695 980 | 19696 981 | 19697 982 | 19698 983 | 19699 984 | 19700 985 | 19701 986 | 19702 987 | 19703 988 | 19704 989 | 19705 990 | 19706 991 | 19707 992 | 19708 993 | 19709 994 | 19710 995 | 19711 996 | 19712 997 | 19713 998 | 19714 999 | 19715 1000 | 19716 1001 | -------------------------------------------------------------------------------- /semisupervised/data/pubmed/train.txt: -------------------------------------------------------------------------------- 1 | 0 2 | 1 3 | 2 4 | 3 5 | 4 6 | 5 7 | 6 8 | 7 9 | 8 10 | 9 11 | 10 12 | 11 13 | 12 14 | 13 15 | 14 16 | 15 17 | 16 18 | 17 19 | 18 20 | 19 21 | 20 22 | 21 23 | 22 24 | 23 25 | 24 26 | 25 27 | 26 28 | 27 29 | 28 30 | 29 31 | 30 32 | 31 33 | 32 34 | 33 35 | 34 36 | 35 37 | 36 38 | 37 39 | 38 40 | 39 41 | 40 42 | 41 43 | 42 44 | 43 45 | 44 46 | 45 47 | 46 48 | 47 49 | 48 50 | 49 51 | 50 52 | 51 53 | 52 54 | 53 55 | 54 56 | 55 57 | 56 58 | 57 59 | 58 60 | 59 61 | -------------------------------------------------------------------------------- /unsupervised/codes/gnn.py: -------------------------------------------------------------------------------- 1 | import math 2 | import numpy as np 3 | import torch 4 | from torch import nn 5 | from torch.nn import init 6 | from torch.autograd import Variable 7 | import torch.nn.functional as F 8 | from layer import GraphConvolution 9 | 10 | class GNNq(nn.Module): 11 | def __init__(self, opt, adj): 12 | super(GNNq, self).__init__() 13 | self.opt = opt 14 | self.adj = adj 15 | 16 | opt_ = dict([('in', opt['num_feature']), ('out', opt['hidden_dim'])]) 17 | self.m1 = GraphConvolution(opt_, adj) 18 | 19 | opt_ = dict([('in', opt['hidden_dim']), ('out', opt['hidden_dim'])]) 20 | self.m2 = GraphConvolution(opt_, adj) 21 | 22 | self.m3 = nn.Linear(opt['hidden_dim'], opt['num_class']) 23 | 24 | if opt['cuda']: 25 | self.cuda() 26 | 27 | def reset(self): 28 | self.m1.reset_parameters() 29 | self.m2.reset_parameters() 30 | 31 | def forward(self, x): 32 | x = F.dropout(x, self.opt['input_dropout'], training=self.training) 33 | x = self.m1(x) 34 | x = F.relu(x) 35 | x = F.dropout(x, self.opt['dropout'], training=self.training) 36 | x = self.m2(x) 37 | x = F.relu(x) 38 | x = self.m3(x) 39 | return x 40 | 41 | def predict(self, x): 42 | x = F.dropout(x, self.opt['input_dropout'], training=self.training) 43 | x = self.m1(x) 44 | x = F.relu(x) 45 | x = F.dropout(x, self.opt['dropout'], training=self.training) 46 | x = self.m2(x) 47 | x = F.relu(x) 48 | return x 49 | 50 | class GNNp(nn.Module): 51 | def __init__(self, opt, adj): 52 | super(GNNp, self).__init__() 53 | self.opt = opt 54 | self.adj = adj 55 | 56 | opt_ = dict([('in', opt['num_class']), ('out', opt['hidden_dim'])]) 57 | self.m1 = GraphConvolution(opt_, adj) 58 | 59 | opt_ = dict([('in', opt['hidden_dim']), ('out', opt['hidden_dim'])]) 60 | self.m2 = GraphConvolution(opt_, adj) 61 | 62 | self.m3 = nn.Linear(opt['hidden_dim'], opt['num_class']) 63 | 64 | if opt['cuda']: 65 | self.cuda() 66 | 67 | def reset(self): 68 | self.m1.reset_parameters() 69 | self.m2.reset_parameters() 70 | 71 | def forward(self, x): 72 | x = F.dropout(x, self.opt['input_dropout'], training=self.training) 73 | x = self.m1(x) 74 | x = F.relu(x) 75 | x = F.dropout(x, self.opt['dropout'], training=self.training) 76 | x = self.m2(x) 77 | x = F.relu(x) 78 | x = F.dropout(x, self.opt['dropout'], training=self.training) 79 | x = self.m3(x) 80 | return x 81 | 82 | def predict(self, x): 83 | x = F.dropout(x, self.opt['input_dropout'], training=self.training) 84 | x = self.m1(x) 85 | x = F.relu(x) 86 | x = F.dropout(x, self.opt['dropout'], training=self.training) 87 | x = self.m2(x) 88 | x = F.relu(x) 89 | return x 90 | -------------------------------------------------------------------------------- /unsupervised/codes/layer.py: -------------------------------------------------------------------------------- 1 | import math 2 | import numpy as np 3 | import torch 4 | from torch import nn 5 | from torch.nn import init 6 | from torch.autograd import Variable 7 | import torch.nn.functional as F 8 | from torch.nn.parameter import Parameter 9 | 10 | class GraphConvolution(nn.Module): 11 | 12 | def __init__(self, opt, adj): 13 | super(GraphConvolution, self).__init__() 14 | self.opt = opt 15 | self.in_size = opt['in'] 16 | self.out_size = opt['out'] 17 | self.adj = adj 18 | self.weight = Parameter(torch.Tensor(self.in_size, self.out_size)) 19 | self.reset_parameters() 20 | 21 | def reset_parameters(self): 22 | stdv = 1. / math.sqrt(self.out_size) 23 | self.weight.data.uniform_(-stdv, stdv) 24 | 25 | def forward(self, x): 26 | m = torch.mm(x, self.weight) 27 | m = torch.spmm(self.adj, m) 28 | return m 29 | -------------------------------------------------------------------------------- /unsupervised/codes/loader.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import math 4 | import numpy as np 5 | import torch 6 | from torch.autograd import Variable 7 | 8 | class Vocab(object): 9 | 10 | def __init__(self, file_name, cols, with_padding=False): 11 | self.itos = [] 12 | self.stoi = {} 13 | self.vocab_size = 0 14 | 15 | if with_padding: 16 | string = '' 17 | self.stoi[string] = self.vocab_size 18 | self.itos.append(string) 19 | self.vocab_size += 1 20 | 21 | fi = open(file_name, 'r') 22 | for line in fi: 23 | items = line.strip().split('\t') 24 | for col in cols: 25 | item = items[col] 26 | strings = item.strip().split(' ') 27 | for string in strings: 28 | string = string.split(':')[0] 29 | if string not in self.stoi: 30 | self.stoi[string] = self.vocab_size 31 | self.itos.append(string) 32 | self.vocab_size += 1 33 | fi.close() 34 | 35 | def __len__(self): 36 | return self.vocab_size 37 | 38 | class EntityLabel(object): 39 | 40 | def __init__(self, file_name, entity, label): 41 | self.vocab_n, self.col_n = entity 42 | self.vocab_l, self.col_l = label 43 | self.itol = [-1 for k in range(self.vocab_n.vocab_size)] 44 | 45 | fi = open(file_name, 'r') 46 | for line in fi: 47 | items = line.strip().split('\t') 48 | sn, sl = items[self.col_n], items[self.col_l] 49 | n = self.vocab_n.stoi.get(sn, -1) 50 | l = self.vocab_l.stoi.get(sl, -1) 51 | if n == -1: 52 | continue 53 | self.itol[n] = l 54 | fi.close() 55 | 56 | class EntityFeature(object): 57 | 58 | def __init__(self, file_name, entity, feature): 59 | self.vocab_n, self.col_n = entity 60 | self.vocab_f, self.col_f = feature 61 | self.itof = [[] for k in range(len(self.vocab_n))] 62 | self.one_hot = [] 63 | 64 | fi = open(file_name, 'r') 65 | for line in fi: 66 | items = line.strip().split('\t') 67 | sn, sf = items[self.col_n], items[self.col_f] 68 | n = self.vocab_n.stoi.get(sn, -1) 69 | if n == -1: 70 | continue 71 | for s in sf.strip().split(' '): 72 | f = self.vocab_f.stoi.get(s.split(':')[0], -1) 73 | w = float(s.split(':')[1]) 74 | if f == -1: 75 | continue 76 | self.itof[n].append((f, w)) 77 | fi.close() 78 | 79 | def to_one_hot(self, binary=False): 80 | self.one_hot = [[0 for j in range(len(self.vocab_f))] for i in range(len(self.vocab_n))] 81 | for k in range(len(self.vocab_n)): 82 | sm = 0 83 | for fid, wt in self.itof[k]: 84 | if binary: 85 | wt = 1.0 86 | sm += wt 87 | for fid, wt in self.itof[k]: 88 | if binary: 89 | wt = 1.0 90 | self.one_hot[k][fid] = wt / sm 91 | 92 | class Graph(object): 93 | def __init__(self, file_name, entity, weight=None): 94 | self.vocab_n, self.col_u, self.col_v = entity 95 | self.col_w = weight 96 | self.edges = [] 97 | 98 | self.node_size = -1 99 | 100 | self.eid2iid = None 101 | self.iid2eid = None 102 | 103 | self.adj_w = None 104 | self.adj_t = None 105 | 106 | with open(file_name, 'r') as fi: 107 | 108 | for line in fi: 109 | items = line.strip().split('\t') 110 | 111 | su, sv = items[self.col_u], items[self.col_v] 112 | sw = items[self.col_w] if self.col_w != None else None 113 | 114 | u, v = self.vocab_n.stoi.get(su, -1), self.vocab_n.stoi.get(sv, -1) 115 | w = float(sw) if sw != None else 1 116 | 117 | if u == -1 or v == -1 or w <= 0: 118 | continue 119 | 120 | self.edges += [(u, v, w)] 121 | 122 | def get_node_size(self): 123 | return self.node_size 124 | 125 | def get_edge_size(self): 126 | return len(self.edges) 127 | 128 | def to_symmetric(self, self_link_weight=1.0): 129 | vocab = set() 130 | for u, v, w in self.edges: 131 | vocab.add(u) 132 | vocab.add(v) 133 | 134 | pair2wt = dict() 135 | for u, v, w in self.edges: 136 | pair2wt[(u, v)] = w 137 | 138 | edges_ = list() 139 | for (u, v), w in pair2wt.items(): 140 | if u == v: 141 | continue 142 | w_ = pair2wt.get((v, u), -1) 143 | if w > w_: 144 | edges_ += [(u, v, w), (v, u, w)] 145 | elif w == w_: 146 | edges_ += [(u, v, w)] 147 | for k in vocab: 148 | edges_ += [(k, k, self_link_weight)] 149 | 150 | d = dict() 151 | for u, v, w in edges_: 152 | d[u] = d.get(u, 0.0) + w 153 | 154 | self.edges = [(u, v, w/math.sqrt(d[u]*d[v])) for u, v, w in edges_] 155 | 156 | def get_sparse_adjacency(self, cuda=True): 157 | shape = torch.Size([self.vocab_n.vocab_size, self.vocab_n.vocab_size]) 158 | 159 | us, vs, ws = [], [], [] 160 | for u, v, w in self.edges: 161 | us += [u] 162 | vs += [v] 163 | ws += [w] 164 | index = torch.LongTensor([us, vs]) 165 | value = torch.Tensor(ws) 166 | if cuda: 167 | index = index.cuda() 168 | value = value.cuda() 169 | adj = torch.sparse.FloatTensor(index, value, shape) 170 | if cuda: 171 | adj = adj.cuda() 172 | 173 | return adj 174 | -------------------------------------------------------------------------------- /unsupervised/codes/run_citeseer.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import copy 4 | import json 5 | import datetime 6 | 7 | opt = dict() 8 | 9 | opt['dataset'] = '../data/citeseer' 10 | opt['hidden_dim'] = 512 11 | opt['input_dropout'] = 0.5 12 | opt['dropout'] = 0 13 | opt['optimizer'] = 'adam' 14 | opt['lr'] = 0.1 15 | opt['decay'] = 5e-4 16 | opt['self_link_weight'] = 1.0 17 | opt['pre_epoch'] = 200 18 | opt['epoch'] = 100 19 | opt['iter'] = 2 20 | opt['use_gold'] = 0 21 | opt['draw'] = 'exp' 22 | opt['tau'] = 0.1 23 | opt['depth'] = 3 24 | 25 | def generate_command(opt): 26 | cmd = 'python3 train.py' 27 | for opt, val in opt.items(): 28 | cmd += ' --' + opt + ' ' + str(val) 29 | return cmd 30 | 31 | def run(opt): 32 | opt_ = copy.deepcopy(opt) 33 | os.system(generate_command(opt_)) 34 | 35 | run(opt) 36 | 37 | -------------------------------------------------------------------------------- /unsupervised/codes/run_cora.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | import copy 4 | import json 5 | import datetime 6 | 7 | opt = dict() 8 | 9 | opt['dataset'] = '../data/cora' 10 | opt['hidden_dim'] = 512 11 | opt['input_dropout'] = 0.5 12 | opt['dropout'] = 0 13 | opt['optimizer'] = 'adam' 14 | opt['lr'] = 0.1 15 | opt['decay'] = 5e-4 16 | opt['self_link_weight'] = 1.0 17 | opt['pre_epoch'] = 200 18 | opt['epoch'] = 100 19 | opt['iter'] = 2 20 | opt['use_gold'] = 0 21 | opt['draw'] = 'smp' 22 | opt['tau'] = 0.1 23 | opt['depth'] = 3 24 | 25 | def generate_command(opt): 26 | cmd = 'python3 train.py' 27 | for opt, val in opt.items(): 28 | cmd += ' --' + opt + ' ' + str(val) 29 | return cmd 30 | 31 | def run(opt): 32 | opt_ = copy.deepcopy(opt) 33 | os.system(generate_command(opt_)) 34 | 35 | run(opt) 36 | 37 | -------------------------------------------------------------------------------- /unsupervised/codes/train.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | from datetime import datetime 4 | import time 5 | import numpy as np 6 | import random 7 | import argparse 8 | from shutil import copyfile 9 | import torch 10 | import torch.nn as nn 11 | import torch.optim as optim 12 | import torch.nn.functional as F 13 | 14 | from trainer import Trainer 15 | from gnn import GNNq, GNNp 16 | import loader 17 | 18 | parser = argparse.ArgumentParser() 19 | parser.add_argument('--dataset', type=str, default='data') 20 | parser.add_argument('--save', type=str, default='/') 21 | parser.add_argument('--hidden_dim', type=int, default=16, help='Hidden dimension.') 22 | parser.add_argument('--input_dropout', type=float, default=0.5, help='Input dropout rate.') 23 | parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate.') 24 | parser.add_argument('--optimizer', type=str, default='adam', help='Optimizer.') 25 | parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.') 26 | parser.add_argument('--decay', type=float, default=5e-4, help='Weight decay for optimization') 27 | parser.add_argument('--self_link_weight', type=float, default=1.0, help='Weight of self-links.') 28 | parser.add_argument('--pre_epoch', type=int, default=200, help='Number of pre-training epochs.') 29 | parser.add_argument('--epoch', type=int, default=200, help='Number of training epochs per iteration.') 30 | parser.add_argument('--iter', type=int, default=10, help='Number of training iterations.') 31 | parser.add_argument('--use_gold', type=int, default=1, help='Whether using the ground-truth label of labeled objects, 1 for using, 0 for not using.') 32 | parser.add_argument('--tau', type=float, default=1.0, help='Annealing temperature in sampling.') 33 | parser.add_argument('--draw', type=str, default='max', help='Method for drawing object labels, max for max-pooling, smp for sampling.') 34 | parser.add_argument('--depth', type=int, default=1, help='Predicting neighbors within [depth] steps.') 35 | parser.add_argument('--seed', type=int, default=1) 36 | parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available()) 37 | parser.add_argument('--cpu', action='store_true', help='Ignore CUDA.') 38 | args = parser.parse_args() 39 | 40 | torch.manual_seed(args.seed) 41 | np.random.seed(args.seed) 42 | random.seed(args.seed) 43 | if args.cpu: 44 | args.cuda = False 45 | elif args.cuda: 46 | torch.cuda.manual_seed(args.seed) 47 | 48 | opt = vars(args) 49 | 50 | net_file = opt['dataset'] + '/net.txt' 51 | pseudo_label_file = opt['dataset'] + '/label.txt' 52 | real_label_file = opt['dataset'] + '/label.true' 53 | feature_file = opt['dataset'] + '/feature.txt' 54 | pseudo_train_file = opt['dataset'] + '/train.txt' 55 | real_train_file = opt['dataset'] + '/train.true' 56 | dev_file = opt['dataset'] + '/dev.txt' 57 | test_file = opt['dataset'] + '/test.txt' 58 | 59 | vocab_node = loader.Vocab(net_file, [0, 1]) 60 | vocab_pseudo_label = loader.Vocab(pseudo_label_file, [1]) 61 | vocab_real_label = loader.Vocab(real_label_file, [1]) 62 | vocab_feature = loader.Vocab(feature_file, [1]) 63 | 64 | opt['num_node'] = len(vocab_node) 65 | opt['num_feature'] = len(vocab_feature) 66 | opt['num_class'] = len(vocab_pseudo_label) 67 | 68 | graph = loader.Graph(file_name=net_file, entity=[vocab_node, 0, 1]) 69 | label_pseudo = loader.EntityLabel(file_name=pseudo_label_file, entity=[vocab_node, 0], label=[vocab_pseudo_label, 1]) 70 | label_real = loader.EntityLabel(file_name=real_label_file, entity=[vocab_node, 0], label=[vocab_real_label, 1]) 71 | feature = loader.EntityFeature(file_name=feature_file, entity=[vocab_node, 0], feature=[vocab_feature, 1]) 72 | graph.to_symmetric(opt['self_link_weight']) 73 | feature.to_one_hot(binary=True) 74 | adj = graph.get_sparse_adjacency(opt['cuda']) 75 | 76 | with open(pseudo_train_file, 'r') as fi: 77 | idx_train_pseudo = [vocab_node.stoi[line.strip()] for line in fi] 78 | with open(real_train_file, 'r') as fi: 79 | idx_train_real = [vocab_node.stoi[line.strip()] for line in fi] 80 | with open(dev_file, 'r') as fi: 81 | idx_dev = [vocab_node.stoi[line.strip()] for line in fi] 82 | with open(test_file, 'r') as fi: 83 | idx_test = [vocab_node.stoi[line.strip()] for line in fi] 84 | idx_all = list(range(opt['num_node'])) 85 | 86 | inputs = torch.Tensor(feature.one_hot) 87 | target_pseudo = torch.LongTensor(label_pseudo.itol) 88 | target_real = torch.LongTensor(label_real.itol) 89 | idx_train_pseudo = torch.LongTensor(idx_train_pseudo) 90 | idx_train_real = torch.LongTensor(idx_train_real) 91 | idx_dev = torch.LongTensor(idx_dev) 92 | idx_test = torch.LongTensor(idx_test) 93 | idx_all = torch.LongTensor(idx_all) 94 | inputs_q = torch.zeros(opt['num_node'], opt['num_feature']) 95 | target_q = torch.zeros(opt['num_node'], opt['num_class']) 96 | inputs_p = torch.zeros(opt['num_node'], opt['num_class']) 97 | target_p = torch.zeros(opt['num_node'], opt['num_class']) 98 | 99 | if opt['cuda']: 100 | inputs = inputs.cuda() 101 | target_pseudo = target_pseudo.cuda() 102 | target_real = target_real.cuda() 103 | idx_train_pseudo = idx_train_pseudo.cuda() 104 | idx_train_real = idx_train_real.cuda() 105 | idx_dev = idx_dev.cuda() 106 | idx_test = idx_test.cuda() 107 | idx_all = idx_all.cuda() 108 | inputs_q = inputs_q.cuda() 109 | target_q = target_q.cuda() 110 | inputs_p = inputs_p.cuda() 111 | target_p = target_p.cuda() 112 | 113 | gnnq = GNNq(opt, adj) 114 | trainer_q = Trainer(opt, gnnq) 115 | 116 | gnnp = GNNp(opt, adj) 117 | trainer_p = Trainer(opt, gnnp) 118 | 119 | def evaluate(): 120 | syn = nn.Linear(opt['hidden_dim'], len(vocab_real_label)) 121 | syn.cuda() 122 | gnnq.eval() 123 | data = trainer_q.model.predict(inputs).detach() 124 | lr = 0.0025 125 | op = optim.RMSprop(syn.parameters(), lr=lr) 126 | best_dev, result = 0, 0 127 | for k in range(100): 128 | logits = syn(F.dropout(data, 0.5, training=True)) 129 | loss = F.cross_entropy(logits[idx_train_real], target_real[idx_train_real]) 130 | op.zero_grad() 131 | loss.backward() 132 | op.step() 133 | 134 | logits = syn(F.dropout(data, 0.5, training=False)) 135 | 136 | preds = torch.max(logits[idx_dev], dim=1)[1] 137 | correct = preds.eq(target_real[idx_dev]).double() 138 | accuracy_dev = correct.sum() / idx_dev.size(0) 139 | 140 | preds = torch.max(logits[idx_test], dim=1)[1] 141 | correct = preds.eq(target_real[idx_test]).double() 142 | accuracy_test = correct.sum() / idx_test.size(0) 143 | 144 | if accuracy_dev > best_dev: 145 | best_dev = accuracy_dev 146 | result = accuracy_test 147 | 148 | print('{:.3f}'.format(result * 100)) 149 | 150 | return result 151 | 152 | def init_q_data(): 153 | inputs_q.copy_(inputs) 154 | temp = torch.zeros(idx_train_pseudo.size(0), target_q.size(1)).type_as(target_q) 155 | temp.scatter_(1, torch.unsqueeze(target_pseudo[idx_train_pseudo], 1), 1.0) 156 | target_q[idx_train_pseudo] = temp 157 | if opt['depth'] > 0: 158 | preds = torch.Tensor(target_q.cpu()).type_as(target_q) 159 | for d in range(opt['depth']): 160 | preds = torch.mm(adj, preds) + target_q 161 | for k in range(preds.size(0)): 162 | ones = torch.ones(preds.size(1)).cuda() 163 | preds[k] = torch.where(preds[k]>0, ones, preds[k]) 164 | target_q.copy_(preds) 165 | 166 | def update_p_data(): 167 | preds = trainer_q.predict(inputs_q, opt['tau']) 168 | if opt['draw'] == 'exp': 169 | inputs_p.copy_(preds) 170 | target_p.copy_(preds) 171 | elif opt['draw'] == 'max': 172 | idx_lb = torch.max(preds, dim=-1)[1] 173 | inputs_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 174 | target_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 175 | elif opt['draw'] == 'smp': 176 | idx_lb = torch.multinomial(preds, 1).squeeze(1) 177 | inputs_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 178 | target_p.zero_().scatter_(1, torch.unsqueeze(idx_lb, 1), 1.0) 179 | if opt['use_gold'] == 1: 180 | temp = torch.zeros(idx_train_pseudo.size(0), target_q.size(1)).type_as(target_q) 181 | temp.scatter_(1, torch.unsqueeze(target_pseudo[idx_train_pseudo], 1), 1.0) 182 | inputs_p[idx_train_pseudo] = temp 183 | target_p[idx_train_pseudo] = temp 184 | 185 | def update_q_data(): 186 | preds = trainer_p.predict(inputs_p) 187 | target_q.copy_(preds) 188 | if opt['use_gold'] == 1: 189 | temp = torch.zeros(idx_train_pseudo.size(0), target_q.size(1)).type_as(target_q) 190 | temp.scatter_(1, torch.unsqueeze(target_pseudo[idx_train_pseudo], 1), 1.0) 191 | target_q[idx_train_pseudo] = temp 192 | 193 | def pre_train(epoches): 194 | init_q_data() 195 | for epoch in range(epoches): 196 | loss = trainer_q.update_soft(inputs_q, target_q, idx_train_pseudo) 197 | 198 | def train_p(epoches): 199 | update_p_data() 200 | for epoch in range(epoches): 201 | loss = trainer_p.update_soft(inputs_p, target_p, idx_all) 202 | 203 | def train_q(epoches): 204 | update_q_data() 205 | for epoch in range(epoches): 206 | loss = trainer_q.update_soft(inputs_q, target_q, idx_all) 207 | 208 | pre_train(opt['pre_epoch']) 209 | for k in range(opt['iter']): 210 | train_p(opt['epoch']) 211 | train_q(opt['epoch']) 212 | 213 | for k in range(50): 214 | evaluate() 215 | 216 | if opt['save'] != '/': 217 | trainer_q.save(opt['save'] + '/gnnq.pt') 218 | trainer_p.save(opt['save'] + '/gnnp.pt') 219 | -------------------------------------------------------------------------------- /unsupervised/codes/trainer.py: -------------------------------------------------------------------------------- 1 | import math 2 | import numpy as np 3 | import torch 4 | from torch import nn 5 | from torch.nn import init 6 | from torch.autograd import Variable 7 | import torch.nn.functional as F 8 | from torch.optim import Optimizer 9 | 10 | def get_optimizer(name, parameters, lr, weight_decay=0): 11 | if name == 'sgd': 12 | return torch.optim.SGD(parameters, lr=lr, weight_decay=weight_decay) 13 | elif name == 'rmsprop': 14 | return torch.optim.RMSprop(parameters, lr=lr, weight_decay=weight_decay) 15 | elif name == 'adagrad': 16 | return torch.optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay) 17 | elif name == 'adam': 18 | return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay) 19 | elif name == 'adamax': 20 | return torch.optim.Adamax(parameters, lr=lr, weight_decay=weight_decay) 21 | else: 22 | raise Exception("Unsupported optimizer: {}".format(name)) 23 | 24 | def change_lr(optimizer, new_lr): 25 | for param_group in optimizer.param_groups: 26 | param_group['lr'] = new_lr 27 | 28 | class Trainer(object): 29 | def __init__(self, opt, model): 30 | self.opt = opt 31 | self.model = model 32 | self.criterion = nn.CrossEntropyLoss() 33 | self.parameters = [p for p in self.model.parameters() if p.requires_grad] 34 | if opt['cuda']: 35 | self.criterion.cuda() 36 | self.optimizer = get_optimizer(self.opt['optimizer'], self.parameters, self.opt['lr'], self.opt['decay']) 37 | 38 | def reset(self): 39 | self.model.reset() 40 | self.optimizer = get_optimizer(self.opt['optimizer'], self.parameters, self.opt['lr'], self.opt['decay']) 41 | 42 | def update(self, inputs, target, idx): 43 | if self.opt['cuda']: 44 | inputs = inputs.cuda() 45 | target = target.cuda() 46 | idx = idx.cuda() 47 | 48 | self.model.train() 49 | self.optimizer.zero_grad() 50 | 51 | logits = self.model(inputs) 52 | loss = self.criterion(logits[idx], target[idx]) 53 | 54 | loss.backward() 55 | self.optimizer.step() 56 | return loss.item() 57 | 58 | def update_soft(self, inputs, target, idx): 59 | if self.opt['cuda']: 60 | inputs = inputs.cuda() 61 | target = target.cuda() 62 | idx = idx.cuda() 63 | 64 | self.model.train() 65 | self.optimizer.zero_grad() 66 | 67 | logits = self.model(inputs) 68 | logits = torch.log_softmax(logits, dim=-1) 69 | loss = -torch.mean(torch.sum(target[idx] * logits[idx], dim=-1)) 70 | 71 | loss.backward() 72 | self.optimizer.step() 73 | return loss.item() 74 | 75 | def evaluate(self, inputs, target, idx): 76 | if self.opt['cuda']: 77 | inputs = inputs.cuda() 78 | target = target.cuda() 79 | idx = idx.cuda() 80 | 81 | self.model.eval() 82 | 83 | logits = self.model(inputs) 84 | loss = self.criterion(logits[idx], target[idx]) 85 | preds = torch.max(logits[idx], dim=1)[1] 86 | correct = preds.eq(target[idx]).double() 87 | accuracy = correct.sum() / idx.size(0) 88 | 89 | return loss.item(), preds, accuracy.item() 90 | 91 | def predict(self, inputs, tau=1): 92 | if self.opt['cuda']: 93 | inputs = inputs.cuda() 94 | 95 | self.model.eval() 96 | 97 | logits = self.model(inputs) / tau 98 | 99 | logits = torch.softmax(logits, dim=-1).detach() 100 | 101 | return logits 102 | 103 | def save(self, filename): 104 | params = { 105 | 'model': self.model.state_dict(), 106 | 'config': self.opt, 107 | } 108 | try: 109 | torch.save(params, filename) 110 | print("model saved to {}".format(filename)) 111 | except BaseException: 112 | print("[Warning: Saving failed... continuing anyway.]") 113 | 114 | def load(self, filename): 115 | try: 116 | checkpoint = torch.load(filename) 117 | except BaseException: 118 | print("Cannot load model from {}".format(filename)) 119 | exit() 120 | self.model.load_state_dict(checkpoint['model']) 121 | self.opt = checkpoint['config'] 122 | -------------------------------------------------------------------------------- /unsupervised/data/citeseer/dev.txt: -------------------------------------------------------------------------------- 1 | 120 2 | 121 3 | 122 4 | 123 5 | 124 6 | 125 7 | 126 8 | 127 9 | 128 10 | 129 11 | 130 12 | 131 13 | 132 14 | 133 15 | 134 16 | 135 17 | 136 18 | 137 19 | 138 20 | 139 21 | 140 22 | 141 23 | 142 24 | 143 25 | 144 26 | 145 27 | 146 28 | 147 29 | 148 30 | 149 31 | 150 32 | 151 33 | 152 34 | 153 35 | 154 36 | 155 37 | 156 38 | 157 39 | 158 40 | 159 41 | 160 42 | 161 43 | 162 44 | 163 45 | 164 46 | 165 47 | 166 48 | 167 49 | 168 50 | 169 51 | 170 52 | 171 53 | 172 54 | 173 55 | 174 56 | 175 57 | 176 58 | 177 59 | 178 60 | 179 61 | 180 62 | 181 63 | 182 64 | 183 65 | 184 66 | 185 67 | 186 68 | 187 69 | 188 70 | 189 71 | 190 72 | 191 73 | 192 74 | 193 75 | 194 76 | 195 77 | 196 78 | 197 79 | 198 80 | 199 81 | 200 82 | 201 83 | 202 84 | 203 85 | 204 86 | 205 87 | 206 88 | 207 89 | 208 90 | 209 91 | 210 92 | 211 93 | 212 94 | 213 95 | 214 96 | 215 97 | 216 98 | 217 99 | 218 100 | 219 101 | 220 102 | 221 103 | 222 104 | 223 105 | 224 106 | 225 107 | 226 108 | 227 109 | 228 110 | 229 111 | 230 112 | 231 113 | 232 114 | 233 115 | 234 116 | 235 117 | 236 118 | 237 119 | 238 120 | 239 121 | 240 122 | 241 123 | 242 124 | 243 125 | 244 126 | 245 127 | 246 128 | 247 129 | 248 130 | 249 131 | 250 132 | 251 133 | 252 134 | 253 135 | 254 136 | 255 137 | 256 138 | 257 139 | 258 140 | 259 141 | 260 142 | 261 143 | 262 144 | 263 145 | 264 146 | 265 147 | 266 148 | 267 149 | 268 150 | 269 151 | 270 152 | 271 153 | 272 154 | 273 155 | 274 156 | 275 157 | 276 158 | 277 159 | 278 160 | 279 161 | 280 162 | 281 163 | 282 164 | 283 165 | 284 166 | 285 167 | 286 168 | 287 169 | 288 170 | 289 171 | 290 172 | 291 173 | 292 174 | 293 175 | 294 176 | 295 177 | 296 178 | 297 179 | 298 180 | 299 181 | 300 182 | 301 183 | 302 184 | 303 185 | 304 186 | 305 187 | 306 188 | 307 189 | 308 190 | 309 191 | 310 192 | 311 193 | 312 194 | 313 195 | 314 196 | 315 197 | 316 198 | 317 199 | 318 200 | 319 201 | 320 202 | 321 203 | 322 204 | 323 205 | 324 206 | 325 207 | 326 208 | 327 209 | 328 210 | 329 211 | 330 212 | 331 213 | 332 214 | 333 215 | 334 216 | 335 217 | 336 218 | 337 219 | 338 220 | 339 221 | 340 222 | 341 223 | 342 224 | 343 225 | 344 226 | 345 227 | 346 228 | 347 229 | 348 230 | 349 231 | 350 232 | 351 233 | 352 234 | 353 235 | 354 236 | 355 237 | 356 238 | 357 239 | 358 240 | 359 241 | 360 242 | 361 243 | 362 244 | 363 245 | 364 246 | 365 247 | 366 248 | 367 249 | 368 250 | 369 251 | 370 252 | 371 253 | 372 254 | 373 255 | 374 256 | 375 257 | 376 258 | 377 259 | 378 260 | 379 261 | 380 262 | 381 263 | 382 264 | 383 265 | 384 266 | 385 267 | 386 268 | 387 269 | 388 270 | 389 271 | 390 272 | 391 273 | 392 274 | 393 275 | 394 276 | 395 277 | 396 278 | 397 279 | 398 280 | 399 281 | 400 282 | 401 283 | 402 284 | 403 285 | 404 286 | 405 287 | 406 288 | 407 289 | 408 290 | 409 291 | 410 292 | 411 293 | 412 294 | 413 295 | 414 296 | 415 297 | 416 298 | 417 299 | 418 300 | 419 301 | 420 302 | 421 303 | 422 304 | 423 305 | 424 306 | 425 307 | 426 308 | 427 309 | 428 310 | 429 311 | 430 312 | 431 313 | 432 314 | 433 315 | 434 316 | 435 317 | 436 318 | 437 319 | 438 320 | 439 321 | 440 322 | 441 323 | 442 324 | 443 325 | 444 326 | 445 327 | 446 328 | 447 329 | 448 330 | 449 331 | 450 332 | 451 333 | 452 334 | 453 335 | 454 336 | 455 337 | 456 338 | 457 339 | 458 340 | 459 341 | 460 342 | 461 343 | 462 344 | 463 345 | 464 346 | 465 347 | 466 348 | 467 349 | 468 350 | 469 351 | 470 352 | 471 353 | 472 354 | 473 355 | 474 356 | 475 357 | 476 358 | 477 359 | 478 360 | 479 361 | 480 362 | 481 363 | 482 364 | 483 365 | 484 366 | 485 367 | 486 368 | 487 369 | 488 370 | 489 371 | 490 372 | 491 373 | 492 374 | 493 375 | 494 376 | 495 377 | 496 378 | 497 379 | 498 380 | 499 381 | 500 382 | 501 383 | 502 384 | 503 385 | 504 386 | 505 387 | 506 388 | 507 389 | 508 390 | 509 391 | 510 392 | 511 393 | 512 394 | 513 395 | 514 396 | 515 397 | 516 398 | 517 399 | 518 400 | 519 401 | 520 402 | 521 403 | 522 404 | 523 405 | 524 406 | 525 407 | 526 408 | 527 409 | 528 410 | 529 411 | 530 412 | 531 413 | 532 414 | 533 415 | 534 416 | 535 417 | 536 418 | 537 419 | 538 420 | 539 421 | 540 422 | 541 423 | 542 424 | 543 425 | 544 426 | 545 427 | 546 428 | 547 429 | 548 430 | 549 431 | 550 432 | 551 433 | 552 434 | 553 435 | 554 436 | 555 437 | 556 438 | 557 439 | 558 440 | 559 441 | 560 442 | 561 443 | 562 444 | 563 445 | 564 446 | 565 447 | 566 448 | 567 449 | 568 450 | 569 451 | 570 452 | 571 453 | 572 454 | 573 455 | 574 456 | 575 457 | 576 458 | 577 459 | 578 460 | 579 461 | 580 462 | 581 463 | 582 464 | 583 465 | 584 466 | 585 467 | 586 468 | 587 469 | 588 470 | 589 471 | 590 472 | 591 473 | 592 474 | 593 475 | 594 476 | 595 477 | 596 478 | 597 479 | 598 480 | 599 481 | 600 482 | 601 483 | 602 484 | 603 485 | 604 486 | 605 487 | 606 488 | 607 489 | 608 490 | 609 491 | 610 492 | 611 493 | 612 494 | 613 495 | 614 496 | 615 497 | 616 498 | 617 499 | 618 500 | 619 501 | -------------------------------------------------------------------------------- /unsupervised/data/citeseer/label.true: -------------------------------------------------------------------------------- 1 | 0 3 2 | 1 1 3 | 2 5 4 | 3 5 5 | 4 3 6 | 5 1 7 | 6 3 8 | 7 0 9 | 8 3 10 | 9 5 11 | 10 2 12 | 11 4 13 | 12 2 14 | 13 1 15 | 14 2 16 | 15 3 17 | 16 2 18 | 17 4 19 | 18 4 20 | 19 0 21 | 20 1 22 | 21 5 23 | 22 5 24 | 23 3 25 | 24 5 26 | 25 2 27 | 26 5 28 | 27 2 29 | 28 4 30 | 29 2 31 | 30 2 32 | 31 2 33 | 32 4 34 | 33 5 35 | 34 2 36 | 35 3 37 | 36 4 38 | 37 5 39 | 38 3 40 | 39 3 41 | 40 2 42 | 41 1 43 | 42 2 44 | 43 1 45 | 44 5 46 | 45 1 47 | 46 1 48 | 47 4 49 | 48 2 50 | 49 3 51 | 50 3 52 | 51 2 53 | 52 5 54 | 53 2 55 | 54 5 56 | 55 1 57 | 56 4 58 | 57 1 59 | 58 4 60 | 59 2 61 | 60 2 62 | 61 3 63 | 62 4 64 | 63 5 65 | 64 5 66 | 65 1 67 | 66 3 68 | 67 3 69 | 68 4 70 | 69 2 71 | 70 4 72 | 71 1 73 | 72 1 74 | 73 5 75 | 74 0 76 | 75 2 77 | 76 0 78 | 77 3 79 | 78 5 80 | 79 2 81 | 80 4 82 | 81 1 83 | 82 1 84 | 83 4 85 | 84 4 86 | 85 0 87 | 86 4 88 | 87 4 89 | 88 5 90 | 89 3 91 | 90 5 92 | 91 5 93 | 92 4 94 | 93 5 95 | 94 3 96 | 95 1 97 | 96 4 98 | 97 4 99 | 98 3 100 | 99 1 101 | 100 3 102 | 101 0 103 | 102 1 104 | 103 1 105 | 104 1 106 | 105 3 107 | 106 0 108 | 107 0 109 | 108 0 110 | 109 0 111 | 110 0 112 | 111 0 113 | 112 0 114 | 113 0 115 | 114 0 116 | 115 0 117 | 116 0 118 | 117 0 119 | 118 0 120 | 119 0 121 | 120 3 122 | 121 1 123 | 122 2 124 | 123 2 125 | 124 2 126 | 125 2 127 | 126 0 128 | 127 2 129 | 128 0 130 | 129 0 131 | 130 4 132 | 131 3 133 | 132 1 134 | 133 4 135 | 134 3 136 | 135 3 137 | 136 3 138 | 137 2 139 | 138 1 140 | 139 5 141 | 140 1 142 | 141 2 143 | 142 4 144 | 143 2 145 | 144 2 146 | 145 1 147 | 146 2 148 | 147 2 149 | 148 3 150 | 149 1 151 | 150 1 152 | 151 1 153 | 152 2 154 | 153 2 155 | 154 2 156 | 155 3 157 | 156 5 158 | 157 2 159 | 158 1 160 | 159 4 161 | 160 0 162 | 161 2 163 | 162 2 164 | 163 3 165 | 164 3 166 | 165 2 167 | 166 3 168 | 167 5 169 | 168 5 170 | 169 2 171 | 170 3 172 | 171 4 173 | 172 3 174 | 173 4 175 | 174 3 176 | 175 5 177 | 176 4 178 | 177 3 179 | 178 4 180 | 179 3 181 | 180 2 182 | 181 2 183 | 182 4 184 | 183 3 185 | 184 2 186 | 185 5 187 | 186 3 188 | 187 3 189 | 188 5 190 | 189 3 191 | 190 5 192 | 191 5 193 | 192 3 194 | 193 2 195 | 194 4 196 | 195 3 197 | 196 3 198 | 197 2 199 | 198 0 200 | 199 3 201 | 200 2 202 | 201 0 203 | 202 3 204 | 203 4 205 | 204 0 206 | 205 4 207 | 206 2 208 | 207 1 209 | 208 1 210 | 209 1 211 | 210 1 212 | 211 1 213 | 212 4 214 | 213 2 215 | 214 5 216 | 215 4 217 | 216 1 218 | 217 3 219 | 218 1 220 | 219 3 221 | 220 2 222 | 221 1 223 | 222 5 224 | 223 3 225 | 224 2 226 | 225 5 227 | 226 4 228 | 227 5 229 | 228 4 230 | 229 2 231 | 230 5 232 | 231 2 233 | 232 5 234 | 233 3 235 | 234 4 236 | 235 2 237 | 236 5 238 | 237 1 239 | 238 2 240 | 239 1 241 | 240 1 242 | 241 3 243 | 242 2 244 | 243 2 245 | 244 5 246 | 245 3 247 | 246 2 248 | 247 0 249 | 248 1 250 | 249 5 251 | 250 3 252 | 251 0 253 | 252 5 254 | 253 5 255 | 254 5 256 | 255 3 257 | 256 2 258 | 257 0 259 | 258 2 260 | 259 4 261 | 260 3 262 | 261 3 263 | 262 0 264 | 263 2 265 | 264 3 266 | 265 4 267 | 266 5 268 | 267 2 269 | 268 3 270 | 269 1 271 | 270 1 272 | 271 1 273 | 272 4 274 | 273 3 275 | 274 5 276 | 275 3 277 | 276 0 278 | 277 3 279 | 278 3 280 | 279 3 281 | 280 3 282 | 281 1 283 | 282 1 284 | 283 4 285 | 284 4 286 | 285 4 287 | 286 3 288 | 287 1 289 | 288 3 290 | 289 2 291 | 290 3 292 | 291 5 293 | 292 1 294 | 293 4 295 | 294 4 296 | 295 2 297 | 296 2 298 | 297 1 299 | 298 2 300 | 299 2 301 | 300 4 302 | 301 4 303 | 302 2 304 | 303 2 305 | 304 4 306 | 305 5 307 | 306 3 308 | 307 2 309 | 308 5 310 | 309 3 311 | 310 3 312 | 311 2 313 | 312 1 314 | 313 3 315 | 314 2 316 | 315 1 317 | 316 4 318 | 317 4 319 | 318 1 320 | 319 4 321 | 320 1 322 | 321 2 323 | 322 2 324 | 323 5 325 | 324 5 326 | 325 5 327 | 326 0 328 | 327 3 329 | 328 1 330 | 329 1 331 | 330 5 332 | 331 5 333 | 332 4 334 | 333 4 335 | 334 0 336 | 335 1 337 | 336 3 338 | 337 3 339 | 338 5 340 | 339 4 341 | 340 2 342 | 341 0 343 | 342 4 344 | 343 3 345 | 344 5 346 | 345 3 347 | 346 2 348 | 347 2 349 | 348 1 350 | 349 5 351 | 350 2 352 | 351 2 353 | 352 5 354 | 353 3 355 | 354 5 356 | 355 1 357 | 356 3 358 | 357 3 359 | 358 1 360 | 359 4 361 | 360 0 362 | 361 2 363 | 362 3 364 | 363 2 365 | 364 1 366 | 365 2 367 | 366 2 368 | 367 1 369 | 368 5 370 | 369 2 371 | 370 1 372 | 371 4 373 | 372 5 374 | 373 2 375 | 374 5 376 | 375 0 377 | 376 4 378 | 377 2 379 | 378 5 380 | 379 4 381 | 380 5 382 | 381 1 383 | 382 3 384 | 383 4 385 | 384 5 386 | 385 4 387 | 386 3 388 | 387 5 389 | 388 2 390 | 389 0 391 | 390 3 392 | 391 4 393 | 392 4 394 | 393 4 395 | 394 2 396 | 395 2 397 | 396 2 398 | 397 4 399 | 398 1 400 | 399 0 401 | 400 3 402 | 401 3 403 | 402 3 404 | 403 1 405 | 404 1 406 | 405 4 407 | 406 2 408 | 407 3 409 | 408 1 410 | 409 1 411 | 410 5 412 | 411 4 413 | 412 4 414 | 413 3 415 | 414 2 416 | 415 1 417 | 416 5 418 | 417 2 419 | 418 1 420 | 419 4 421 | 420 3 422 | 421 0 423 | 422 3 424 | 423 2 425 | 424 1 426 | 425 4 427 | 426 2 428 | 427 0 429 | 428 2 430 | 429 4 431 | 430 4 432 | 431 3 433 | 432 5 434 | 433 2 435 | 434 2 436 | 435 2 437 | 436 2 438 | 437 0 439 | 438 1 440 | 439 2 441 | 440 4 442 | 441 4 443 | 442 4 444 | 443 2 445 | 444 2 446 | 445 1 447 | 446 2 448 | 447 5 449 | 448 3 450 | 449 5 451 | 450 0 452 | 451 2 453 | 452 4 454 | 453 2 455 | 454 3 456 | 455 4 457 | 456 1 458 | 457 3 459 | 458 3 460 | 459 3 461 | 460 2 462 | 461 1 463 | 462 4 464 | 463 3 465 | 464 2 466 | 465 4 467 | 466 3 468 | 467 3 469 | 468 2 470 | 469 4 471 | 470 0 472 | 471 0 473 | 472 0 474 | 473 5 475 | 474 5 476 | 475 4 477 | 476 4 478 | 477 1 479 | 478 4 480 | 479 2 481 | 480 3 482 | 481 0 483 | 482 5 484 | 483 3 485 | 484 4 486 | 485 4 487 | 486 1 488 | 487 4 489 | 488 3 490 | 489 4 491 | 490 1 492 | 491 3 493 | 492 2 494 | 493 2 495 | 494 4 496 | 495 2 497 | 496 3 498 | 497 5 499 | 498 3 500 | 499 2 501 | 500 5 502 | 501 1 503 | 502 1 504 | 503 1 505 | 504 4 506 | 505 5 507 | 506 1 508 | 507 1 509 | 508 5 510 | 509 1 511 | 510 3 512 | 511 5 513 | 512 3 514 | 513 1 515 | 514 1 516 | 515 5 517 | 516 4 518 | 517 1 519 | 518 1 520 | 519 4 521 | 520 2 522 | 521 2 523 | 522 3 524 | 523 1 525 | 524 3 526 | 525 0 527 | 526 4 528 | 527 2 529 | 528 2 530 | 529 2 531 | 530 3 532 | 531 4 533 | 532 2 534 | 533 1 535 | 534 1 536 | 535 1 537 | 536 3 538 | 537 1 539 | 538 5 540 | 539 5 541 | 540 4 542 | 541 4 543 | 542 4 544 | 543 2 545 | 544 3 546 | 545 4 547 | 546 5 548 | 547 4 549 | 548 2 550 | 549 2 551 | 550 4 552 | 551 2 553 | 552 4 554 | 553 0 555 | 554 5 556 | 555 4 557 | 556 5 558 | 557 2 559 | 558 1 560 | 559 2 561 | 560 5 562 | 561 3 563 | 562 4 564 | 563 4 565 | 564 4 566 | 565 3 567 | 566 4 568 | 567 4 569 | 568 3 570 | 569 2 571 | 570 3 572 | 571 3 573 | 572 1 574 | 573 4 575 | 574 1 576 | 575 3 577 | 576 3 578 | 577 2 579 | 578 5 580 | 579 4 581 | 580 2 582 | 581 1 583 | 582 4 584 | 583 1 585 | 584 4 586 | 585 2 587 | 586 2 588 | 587 4 589 | 588 1 590 | 589 1 591 | 590 2 592 | 591 1 593 | 592 3 594 | 593 3 595 | 594 1 596 | 595 2 597 | 596 3 598 | 597 5 599 | 598 3 600 | 599 3 601 | 600 3 602 | 601 1 603 | 602 5 604 | 603 3 605 | 604 1 606 | 605 4 607 | 606 1 608 | 607 2 609 | 608 3 610 | 609 2 611 | 610 4 612 | 611 3 613 | 612 5 614 | 613 5 615 | 614 1 616 | 615 4 617 | 616 2 618 | 617 2 619 | 618 5 620 | 619 2 621 | 2312 4 622 | 2313 5 623 | 2314 4 624 | 2315 4 625 | 2316 4 626 | 2317 1 627 | 2318 4 628 | 2319 2 629 | 2320 3 630 | 2321 3 631 | 2322 3 632 | 2323 3 633 | 2324 2 634 | 2325 3 635 | 2326 3 636 | 2327 4 637 | 2328 2 638 | 2329 0 639 | 2330 1 640 | 2331 2 641 | 2332 0 642 | 2333 3 643 | 2334 3 644 | 2335 4 645 | 2336 2 646 | 2337 4 647 | 2338 0 648 | 2339 4 649 | 2340 3 650 | 2341 3 651 | 2342 3 652 | 2343 5 653 | 2344 4 654 | 2345 5 655 | 2346 4 656 | 2347 5 657 | 2348 1 658 | 2349 1 659 | 2350 3 660 | 2351 3 661 | 2352 3 662 | 2353 3 663 | 2354 3 664 | 2355 1 665 | 2356 2 666 | 2357 3 667 | 2358 3 668 | 2359 3 669 | 2360 1 670 | 2361 2 671 | 2362 2 672 | 2363 3 673 | 2364 3 674 | 2365 1 675 | 2366 5 676 | 2367 5 677 | 2368 5 678 | 2369 3 679 | 2370 2 680 | 2371 3 681 | 2372 3 682 | 2373 3 683 | 2374 3 684 | 2375 3 685 | 2376 3 686 | 2377 3 687 | 2378 5 688 | 2379 1 689 | 2380 3 690 | 2381 1 691 | 2382 1 692 | 2383 4 693 | 2384 1 694 | 2385 3 695 | 2386 3 696 | 2387 1 697 | 2388 3 698 | 2389 3 699 | 2390 2 700 | 2391 4 701 | 2392 3 702 | 2393 3 703 | 2394 3 704 | 2395 1 705 | 2396 2 706 | 2397 2 707 | 2398 2 708 | 2399 3 709 | 2400 5 710 | 2401 2 711 | 2402 1 712 | 2403 3 713 | 2404 2 714 | 2405 2 715 | 2406 2 716 | 2408 4 717 | 2409 3 718 | 2410 3 719 | 2411 4 720 | 2412 0 721 | 2413 3 722 | 2414 1 723 | 2415 2 724 | 2416 2 725 | 2417 2 726 | 2418 2 727 | 2419 3 728 | 2420 2 729 | 2421 2 730 | 2422 2 731 | 2423 1 732 | 2424 1 733 | 2425 5 734 | 2426 2 735 | 2427 2 736 | 2428 1 737 | 2429 2 738 | 2430 4 739 | 2431 3 740 | 2432 1 741 | 2433 1 742 | 2434 3 743 | 2435 2 744 | 2436 3 745 | 2437 4 746 | 2438 3 747 | 2439 3 748 | 2440 4 749 | 2441 4 750 | 2442 3 751 | 2443 2 752 | 2444 2 753 | 2445 1 754 | 2446 3 755 | 2447 4 756 | 2448 4 757 | 2449 4 758 | 2450 4 759 | 2451 4 760 | 2452 4 761 | 2453 5 762 | 2454 0 763 | 2455 3 764 | 2456 1 765 | 2457 1 766 | 2458 3 767 | 2459 1 768 | 2460 3 769 | 2461 1 770 | 2462 3 771 | 2463 4 772 | 2464 4 773 | 2465 3 774 | 2466 2 775 | 2467 3 776 | 2468 5 777 | 2469 3 778 | 2470 3 779 | 2471 3 780 | 2472 4 781 | 2473 2 782 | 2474 2 783 | 2475 2 784 | 2476 5 785 | 2477 3 786 | 2478 1 787 | 2479 0 788 | 2480 3 789 | 2481 2 790 | 2482 5 791 | 2483 2 792 | 2484 3 793 | 2485 2 794 | 2486 4 795 | 2487 2 796 | 2488 2 797 | 2490 2 798 | 2491 0 799 | 2492 5 800 | 2493 1 801 | 2494 3 802 | 2495 4 803 | 2496 4 804 | 2497 4 805 | 2498 1 806 | 2499 1 807 | 2500 5 808 | 2501 1 809 | 2502 2 810 | 2503 0 811 | 2504 1 812 | 2505 0 813 | 2506 2 814 | 2507 2 815 | 2508 3 816 | 2509 3 817 | 2510 3 818 | 2511 3 819 | 2512 5 820 | 2513 4 821 | 2514 4 822 | 2515 3 823 | 2516 1 824 | 2517 1 825 | 2518 2 826 | 2519 1 827 | 2520 2 828 | 2521 2 829 | 2522 2 830 | 2523 2 831 | 2524 5 832 | 2525 0 833 | 2526 1 834 | 2527 2 835 | 2528 2 836 | 2529 4 837 | 2530 0 838 | 2531 4 839 | 2532 1 840 | 2533 1 841 | 2534 2 842 | 2535 3 843 | 2536 1 844 | 2537 1 845 | 2538 2 846 | 2539 3 847 | 2540 3 848 | 2541 5 849 | 2542 2 850 | 2543 5 851 | 2544 5 852 | 2545 3 853 | 2546 1 854 | 2547 0 855 | 2548 5 856 | 2549 5 857 | 2550 5 858 | 2551 5 859 | 2552 3 860 | 2554 3 861 | 2555 3 862 | 2556 0 863 | 2557 4 864 | 2558 5 865 | 2559 3 866 | 2560 4 867 | 2561 5 868 | 2562 4 869 | 2563 5 870 | 2564 2 871 | 2565 0 872 | 2566 5 873 | 2567 5 874 | 2568 5 875 | 2569 1 876 | 2570 1 877 | 2571 3 878 | 2572 1 879 | 2573 2 880 | 2574 2 881 | 2575 2 882 | 2576 3 883 | 2577 2 884 | 2578 4 885 | 2579 5 886 | 2580 3 887 | 2581 3 888 | 2582 1 889 | 2583 3 890 | 2584 1 891 | 2585 2 892 | 2586 2 893 | 2587 1 894 | 2588 3 895 | 2589 1 896 | 2590 3 897 | 2591 1 898 | 2592 2 899 | 2593 1 900 | 2594 2 901 | 2595 1 902 | 2596 2 903 | 2597 2 904 | 2598 2 905 | 2599 2 906 | 2600 5 907 | 2601 4 908 | 2602 4 909 | 2603 5 910 | 2604 0 911 | 2605 3 912 | 2606 4 913 | 2607 5 914 | 2608 4 915 | 2609 4 916 | 2610 4 917 | 2611 4 918 | 2612 4 919 | 2613 0 920 | 2614 0 921 | 2615 1 922 | 2616 4 923 | 2617 1 924 | 2618 1 925 | 2619 5 926 | 2620 0 927 | 2621 2 928 | 2622 2 929 | 2623 3 930 | 2624 3 931 | 2625 2 932 | 2626 2 933 | 2627 0 934 | 2628 0 935 | 2629 3 936 | 2630 2 937 | 2631 4 938 | 2632 1 939 | 2633 1 940 | 2634 0 941 | 2635 0 942 | 2636 1 943 | 2637 2 944 | 2638 2 945 | 2639 2 946 | 2640 2 947 | 2641 2 948 | 2642 0 949 | 2643 4 950 | 2644 0 951 | 2645 1 952 | 2646 4 953 | 2647 1 954 | 2648 1 955 | 2649 2 956 | 2650 2 957 | 2651 3 958 | 2652 3 959 | 2653 1 960 | 2654 3 961 | 2655 2 962 | 2656 4 963 | 2657 4 964 | 2658 0 965 | 2659 0 966 | 2660 3 967 | 2661 4 968 | 2662 4 969 | 2663 2 970 | 2664 2 971 | 2665 2 972 | 2666 5 973 | 2667 5 974 | 2668 2 975 | 2669 5 976 | 2670 5 977 | 2671 5 978 | 2672 5 979 | 2673 4 980 | 2674 0 981 | 2675 2 982 | 2676 2 983 | 2677 0 984 | 2678 2 985 | 2679 4 986 | 2680 5 987 | 2681 4 988 | 2683 0 989 | 2684 3 990 | 2685 3 991 | 2686 5 992 | 2687 3 993 | 2688 3 994 | 2689 4 995 | 2690 2 996 | 2691 1 997 | 2692 5 998 | 2693 5 999 | 2694 0 1000 | 2695 1 1001 | 2696 3 1002 | 2697 3 1003 | 2698 3 1004 | 2699 5 1005 | 2700 3 1006 | 2701 3 1007 | 2702 1 1008 | 2703 1 1009 | 2704 1 1010 | 2705 1 1011 | 2706 1 1012 | 2707 1 1013 | 2708 1 1014 | 2709 1 1015 | 2710 1 1016 | 2711 1 1017 | 2712 1 1018 | 2713 4 1019 | 2714 2 1020 | 2715 2 1021 | 2716 0 1022 | 2717 2 1023 | 2718 2 1024 | 2719 2 1025 | 2720 2 1026 | 2721 4 1027 | 2722 3 1028 | 2723 3 1029 | 2724 5 1030 | 2725 5 1031 | 2726 4 1032 | 2727 5 1033 | 2728 2 1034 | 2729 4 1035 | 2730 4 1036 | 2731 4 1037 | 2732 5 1038 | 2733 5 1039 | 2734 4 1040 | 2735 2 1041 | 2736 2 1042 | 2737 3 1043 | 2738 3 1044 | 2739 4 1045 | 2740 4 1046 | 2741 3 1047 | 2742 1 1048 | 2743 3 1049 | 2744 2 1050 | 2745 0 1051 | 2746 5 1052 | 2747 5 1053 | 2748 5 1054 | 2749 3 1055 | 2750 4 1056 | 2751 1 1057 | 2752 4 1058 | 2753 0 1059 | 2754 5 1060 | 2755 5 1061 | 2756 0 1062 | 2757 3 1063 | 2758 0 1064 | 2759 2 1065 | 2760 3 1066 | 2761 5 1067 | 2762 3 1068 | 2763 4 1069 | 2764 2 1070 | 2765 2 1071 | 2766 3 1072 | 2767 5 1073 | 2768 1 1074 | 2769 5 1075 | 2770 3 1076 | 2771 4 1077 | 2772 5 1078 | 2773 5 1079 | 2774 2 1080 | 2775 2 1081 | 2776 4 1082 | 2777 3 1083 | 2778 3 1084 | 2779 3 1085 | 2780 3 1086 | 2782 2 1087 | 2783 2 1088 | 2784 2 1089 | 2785 2 1090 | 2786 2 1091 | 2787 3 1092 | 2788 0 1093 | 2789 0 1094 | 2790 5 1095 | 2791 1 1096 | 2792 2 1097 | 2793 3 1098 | 2794 3 1099 | 2795 1 1100 | 2796 3 1101 | 2797 2 1102 | 2798 4 1103 | 2799 3 1104 | 2800 1 1105 | 2801 3 1106 | 2802 3 1107 | 2803 3 1108 | 2804 3 1109 | 2805 3 1110 | 2806 1 1111 | 2807 0 1112 | 2808 5 1113 | 2809 4 1114 | 2810 4 1115 | 2811 1 1116 | 2812 1 1117 | 2813 3 1118 | 2814 4 1119 | 2815 4 1120 | 2816 4 1121 | 2817 4 1122 | 2818 5 1123 | 2819 4 1124 | 2820 2 1125 | 2821 2 1126 | 2822 2 1127 | 2823 2 1128 | 2824 2 1129 | 2825 2 1130 | 2826 2 1131 | 2827 3 1132 | 2828 2 1133 | 2829 2 1134 | 2830 2 1135 | 2831 1 1136 | 2832 4 1137 | 2833 0 1138 | 2834 1 1139 | 2835 4 1140 | 2836 4 1141 | 2837 4 1142 | 2838 1 1143 | 2839 2 1144 | 2840 1 1145 | 2841 5 1146 | 2842 5 1147 | 2843 2 1148 | 2844 4 1149 | 2845 4 1150 | 2846 2 1151 | 2847 2 1152 | 2848 3 1153 | 2849 1 1154 | 2850 1 1155 | 2851 0 1156 | 2852 0 1157 | 2853 2 1158 | 2854 1 1159 | 2855 0 1160 | 2856 1 1161 | 2857 5 1162 | 2858 1 1163 | 2859 2 1164 | 2860 2 1165 | 2861 3 1166 | 2862 2 1167 | 2863 0 1168 | 2864 0 1169 | 2865 3 1170 | 2866 3 1171 | 2867 3 1172 | 2868 2 1173 | 2869 2 1174 | 2870 2 1175 | 2871 1 1176 | 2872 1 1177 | 2873 1 1178 | 2874 3 1179 | 2875 3 1180 | 2876 3 1181 | 2877 5 1182 | 2878 3 1183 | 2879 5 1184 | 2880 2 1185 | 2881 3 1186 | 2882 2 1187 | 2883 3 1188 | 2884 1 1189 | 2885 5 1190 | 2886 2 1191 | 2887 2 1192 | 2888 3 1193 | 2889 3 1194 | 2890 3 1195 | 2891 1 1196 | 2892 1 1197 | 2893 1 1198 | 2894 3 1199 | 2895 3 1200 | 2896 3 1201 | 2897 3 1202 | 2898 4 1203 | 2899 4 1204 | 2900 1 1205 | 2901 4 1206 | 2902 4 1207 | 2903 1 1208 | 2904 3 1209 | 2905 3 1210 | 2906 1 1211 | 2907 0 1212 | 2908 3 1213 | 2909 5 1214 | 2910 4 1215 | 2911 4 1216 | 2912 2 1217 | 2913 4 1218 | 2914 1 1219 | 2915 0 1220 | 2916 3 1221 | 2917 1 1222 | 2918 4 1223 | 2919 1 1224 | 2920 4 1225 | 2921 4 1226 | 2922 0 1227 | 2923 5 1228 | 2924 3 1229 | 2925 2 1230 | 2926 2 1231 | 2927 2 1232 | 2928 5 1233 | 2929 5 1234 | 2930 0 1235 | 2931 4 1236 | 2932 4 1237 | 2933 1 1238 | 2934 2 1239 | 2935 2 1240 | 2936 3 1241 | 2937 3 1242 | 2938 3 1243 | 2939 5 1244 | 2940 5 1245 | 2941 5 1246 | 2942 1 1247 | 2943 5 1248 | 2944 1 1249 | 2945 4 1250 | 2946 3 1251 | 2947 1 1252 | 2948 5 1253 | 2949 5 1254 | 2950 4 1255 | 2951 4 1256 | 2952 2 1257 | 2954 3 1258 | 2955 1 1259 | 2956 0 1260 | 2957 0 1261 | 2958 5 1262 | 2959 3 1263 | 2960 1 1264 | 2961 2 1265 | 2962 1 1266 | 2963 4 1267 | 2964 1 1268 | 2965 4 1269 | 2966 1 1270 | 2967 2 1271 | 2968 2 1272 | 2969 5 1273 | 2970 1 1274 | 2971 2 1275 | 2972 1 1276 | 2973 4 1277 | 2974 5 1278 | 2975 5 1279 | 2976 1 1280 | 2977 4 1281 | 2978 5 1282 | 2979 5 1283 | 2980 1 1284 | 2981 1 1285 | 2982 5 1286 | 2983 5 1287 | 2984 3 1288 | 2985 1 1289 | 2986 0 1290 | 2987 0 1291 | 2988 1 1292 | 2989 0 1293 | 2990 0 1294 | 2991 2 1295 | 2992 0 1296 | 2993 4 1297 | 2994 3 1298 | 2995 4 1299 | 2996 3 1300 | 2997 3 1301 | 2998 1 1302 | 2999 2 1303 | 3000 3 1304 | 3001 5 1305 | 3002 3 1306 | 3003 5 1307 | 3004 5 1308 | 3005 5 1309 | 3006 5 1310 | 3007 5 1311 | 3008 3 1312 | 3009 4 1313 | 3010 4 1314 | 3011 5 1315 | 3012 4 1316 | 3013 2 1317 | 3014 2 1318 | 3015 5 1319 | 3016 1 1320 | 3017 4 1321 | 3018 4 1322 | 3019 4 1323 | 3020 3 1324 | 3021 1 1325 | 3022 5 1326 | 3023 3 1327 | 3024 1 1328 | 3025 3 1329 | 3026 4 1330 | 3027 2 1331 | 3028 2 1332 | 3029 4 1333 | 3030 2 1334 | 3031 1 1335 | 3032 5 1336 | 3033 2 1337 | 3034 2 1338 | 3035 5 1339 | 3036 5 1340 | 3037 3 1341 | 3038 3 1342 | 3039 4 1343 | 3040 1 1344 | 3041 1 1345 | 3043 2 1346 | 3044 5 1347 | 3045 3 1348 | 3046 4 1349 | 3047 4 1350 | 3048 4 1351 | 3049 5 1352 | 3050 5 1353 | 3051 1 1354 | 3052 5 1355 | 3053 5 1356 | 3054 1 1357 | 3055 5 1358 | 3056 5 1359 | 3057 1 1360 | 3058 1 1361 | 3059 1 1362 | 3060 4 1363 | 3061 2 1364 | 3062 3 1365 | 3064 5 1366 | 3065 4 1367 | 3066 1 1368 | 3067 1 1369 | 3068 4 1370 | 3069 5 1371 | 3070 2 1372 | 3071 3 1373 | 3072 1 1374 | 3073 2 1375 | 3074 1 1376 | 3075 4 1377 | 3076 1 1378 | 3077 4 1379 | 3078 1 1380 | 3079 1 1381 | 3080 1 1382 | 3081 0 1383 | 3082 0 1384 | 3083 1 1385 | 3084 5 1386 | 3085 0 1387 | 3086 2 1388 | 3087 1 1389 | 3088 1 1390 | 3089 5 1391 | 3090 1 1392 | 3091 1 1393 | 3092 3 1394 | 3093 2 1395 | 3094 3 1396 | 3095 3 1397 | 3096 1 1398 | 3097 1 1399 | 3098 2 1400 | 3099 3 1401 | 3100 2 1402 | 3101 3 1403 | 3102 5 1404 | 3103 5 1405 | 3104 5 1406 | 3105 5 1407 | 3106 5 1408 | 3107 5 1409 | 3108 5 1410 | 3109 5 1411 | 3110 5 1412 | 3111 3 1413 | 3112 3 1414 | 3113 5 1415 | 3114 2 1416 | 3115 2 1417 | 3116 3 1418 | 3117 4 1419 | 3118 4 1420 | 3119 4 1421 | 3120 4 1422 | 3121 0 1423 | 3122 3 1424 | 3123 0 1425 | 3124 3 1426 | 3125 4 1427 | 3126 1 1428 | 3127 1 1429 | 3128 3 1430 | 3129 3 1431 | 3130 0 1432 | 3131 4 1433 | 3132 5 1434 | 3133 0 1435 | 3134 0 1436 | 3135 0 1437 | 3136 2 1438 | 3137 1 1439 | 3138 3 1440 | 3139 4 1441 | 3140 5 1442 | 3141 2 1443 | 3142 1 1444 | 3143 1 1445 | 3144 3 1446 | 3145 3 1447 | 3146 4 1448 | 3147 4 1449 | 3148 4 1450 | 3149 2 1451 | 3150 2 1452 | 3151 1 1453 | 3152 5 1454 | 3153 4 1455 | 3154 0 1456 | 3155 5 1457 | 3156 5 1458 | 3157 4 1459 | 3158 3 1460 | 3159 4 1461 | 3160 5 1462 | 3161 0 1463 | 3162 3 1464 | 3163 0 1465 | 3164 3 1466 | 3165 4 1467 | 3166 4 1468 | 3167 3 1469 | 3168 3 1470 | 3169 3 1471 | 3170 3 1472 | 3171 3 1473 | 3172 3 1474 | 3173 3 1475 | 3174 5 1476 | 3175 2 1477 | 3176 0 1478 | 3177 0 1479 | 3178 1 1480 | 3179 0 1481 | 3180 0 1482 | 3181 0 1483 | 3182 3 1484 | 3183 1 1485 | 3184 5 1486 | 3185 3 1487 | 3186 2 1488 | 3187 3 1489 | 3188 5 1490 | 3189 3 1491 | 3190 3 1492 | 3191 3 1493 | 3192 1 1494 | 3193 5 1495 | 3194 5 1496 | 3195 5 1497 | 3196 5 1498 | 3197 1 1499 | 3198 2 1500 | 3199 1 1501 | 3200 4 1502 | 3201 5 1503 | 3202 4 1504 | 3203 3 1505 | 3204 3 1506 | 3205 5 1507 | 3206 5 1508 | 3207 1 1509 | 3208 4 1510 | 3209 2 1511 | 3210 5 1512 | 3211 4 1513 | 3213 1 1514 | 3215 4 1515 | 3216 4 1516 | 3217 4 1517 | 3218 4 1518 | 3219 5 1519 | 3220 5 1520 | 3221 4 1521 | 3222 3 1522 | 3223 4 1523 | 3224 3 1524 | 3225 5 1525 | 3226 3 1526 | 3227 3 1527 | 3228 1 1528 | 3229 1 1529 | 3230 0 1530 | 3231 4 1531 | 3232 4 1532 | 3233 3 1533 | 3234 1 1534 | 3235 1 1535 | 3236 1 1536 | 3237 1 1537 | 3238 3 1538 | 3239 3 1539 | 3240 3 1540 | 3241 4 1541 | 3242 3 1542 | 3243 1 1543 | 3244 4 1544 | 3245 1 1545 | 3246 1 1546 | 3247 3 1547 | 3248 5 1548 | 3249 5 1549 | 3251 5 1550 | 3252 4 1551 | 3253 4 1552 | 3254 1 1553 | 3255 3 1554 | 3256 1 1555 | 3257 4 1556 | 3258 3 1557 | 3259 3 1558 | 3260 3 1559 | 3261 1 1560 | 3262 2 1561 | 3263 2 1562 | 3264 5 1563 | 3265 3 1564 | 3266 2 1565 | 3267 5 1566 | 3268 1 1567 | 3269 3 1568 | 3270 3 1569 | 3271 5 1570 | 3272 5 1571 | 3273 4 1572 | 3274 0 1573 | 3275 3 1574 | 3276 5 1575 | 3277 5 1576 | 3278 5 1577 | 3279 1 1578 | 3280 2 1579 | 3281 2 1580 | 3282 4 1581 | 3283 1 1582 | 3284 4 1583 | 3285 5 1584 | 3286 5 1585 | 3287 5 1586 | 3288 4 1587 | 3289 5 1588 | 3290 2 1589 | 3291 1 1590 | 3293 5 1591 | 3294 4 1592 | 3295 4 1593 | 3296 0 1594 | 3297 3 1595 | 3298 5 1596 | 3299 4 1597 | 3300 1 1598 | 3301 3 1599 | 3302 3 1600 | 3303 5 1601 | 3304 4 1602 | 3307 2 1603 | 3308 1 1604 | 3310 0 1605 | 3311 1 1606 | 3312 3 1607 | 3313 2 1608 | 3314 4 1609 | 3315 3 1610 | 3316 2 1611 | 3317 4 1612 | 3318 4 1613 | 3319 1 1614 | 3320 1 1615 | 3321 0 1616 | 3322 3 1617 | 3323 3 1618 | 3324 3 1619 | 3325 1 1620 | 3326 5 1621 | -------------------------------------------------------------------------------- /unsupervised/data/citeseer/test.txt: -------------------------------------------------------------------------------- 1 | 2312 2 | 2313 3 | 2314 4 | 2315 5 | 2316 6 | 2317 7 | 2318 8 | 2319 9 | 2320 10 | 2321 11 | 2322 12 | 2323 13 | 2324 14 | 2325 15 | 2326 16 | 2327 17 | 2328 18 | 2329 19 | 2330 20 | 2331 21 | 2332 22 | 2333 23 | 2334 24 | 2335 25 | 2336 26 | 2337 27 | 2338 28 | 2339 29 | 2340 30 | 2341 31 | 2342 32 | 2343 33 | 2344 34 | 2345 35 | 2346 36 | 2347 37 | 2348 38 | 2349 39 | 2350 40 | 2351 41 | 2352 42 | 2353 43 | 2354 44 | 2355 45 | 2356 46 | 2357 47 | 2358 48 | 2359 49 | 2360 50 | 2361 51 | 2362 52 | 2363 53 | 2364 54 | 2365 55 | 2366 56 | 2367 57 | 2368 58 | 2369 59 | 2370 60 | 2371 61 | 2372 62 | 2373 63 | 2374 64 | 2375 65 | 2376 66 | 2377 67 | 2378 68 | 2379 69 | 2380 70 | 2381 71 | 2382 72 | 2383 73 | 2384 74 | 2385 75 | 2386 76 | 2387 77 | 2388 78 | 2389 79 | 2390 80 | 2391 81 | 2392 82 | 2393 83 | 2394 84 | 2395 85 | 2396 86 | 2397 87 | 2398 88 | 2399 89 | 2400 90 | 2401 91 | 2402 92 | 2403 93 | 2404 94 | 2405 95 | 2406 96 | 2408 97 | 2409 98 | 2410 99 | 2411 100 | 2412 101 | 2413 102 | 2414 103 | 2415 104 | 2416 105 | 2417 106 | 2418 107 | 2419 108 | 2420 109 | 2421 110 | 2422 111 | 2423 112 | 2424 113 | 2425 114 | 2426 115 | 2427 116 | 2428 117 | 2429 118 | 2430 119 | 2431 120 | 2432 121 | 2433 122 | 2434 123 | 2435 124 | 2436 125 | 2437 126 | 2438 127 | 2439 128 | 2440 129 | 2441 130 | 2442 131 | 2443 132 | 2444 133 | 2445 134 | 2446 135 | 2447 136 | 2448 137 | 2449 138 | 2450 139 | 2451 140 | 2452 141 | 2453 142 | 2454 143 | 2455 144 | 2456 145 | 2457 146 | 2458 147 | 2459 148 | 2460 149 | 2461 150 | 2462 151 | 2463 152 | 2464 153 | 2465 154 | 2466 155 | 2467 156 | 2468 157 | 2469 158 | 2470 159 | 2471 160 | 2472 161 | 2473 162 | 2474 163 | 2475 164 | 2476 165 | 2477 166 | 2478 167 | 2479 168 | 2480 169 | 2481 170 | 2482 171 | 2483 172 | 2484 173 | 2485 174 | 2486 175 | 2487 176 | 2488 177 | 2490 178 | 2491 179 | 2492 180 | 2493 181 | 2494 182 | 2495 183 | 2496 184 | 2497 185 | 2498 186 | 2499 187 | 2500 188 | 2501 189 | 2502 190 | 2503 191 | 2504 192 | 2505 193 | 2506 194 | 2507 195 | 2508 196 | 2509 197 | 2510 198 | 2511 199 | 2512 200 | 2513 201 | 2514 202 | 2515 203 | 2516 204 | 2517 205 | 2518 206 | 2519 207 | 2520 208 | 2521 209 | 2522 210 | 2523 211 | 2524 212 | 2525 213 | 2526 214 | 2527 215 | 2528 216 | 2529 217 | 2530 218 | 2531 219 | 2532 220 | 2533 221 | 2534 222 | 2535 223 | 2536 224 | 2537 225 | 2538 226 | 2539 227 | 2540 228 | 2541 229 | 2542 230 | 2543 231 | 2544 232 | 2545 233 | 2546 234 | 2547 235 | 2548 236 | 2549 237 | 2550 238 | 2551 239 | 2552 240 | 2554 241 | 2555 242 | 2556 243 | 2557 244 | 2558 245 | 2559 246 | 2560 247 | 2561 248 | 2562 249 | 2563 250 | 2564 251 | 2565 252 | 2566 253 | 2567 254 | 2568 255 | 2569 256 | 2570 257 | 2571 258 | 2572 259 | 2573 260 | 2574 261 | 2575 262 | 2576 263 | 2577 264 | 2578 265 | 2579 266 | 2580 267 | 2581 268 | 2582 269 | 2583 270 | 2584 271 | 2585 272 | 2586 273 | 2587 274 | 2588 275 | 2589 276 | 2590 277 | 2591 278 | 2592 279 | 2593 280 | 2594 281 | 2595 282 | 2596 283 | 2597 284 | 2598 285 | 2599 286 | 2600 287 | 2601 288 | 2602 289 | 2603 290 | 2604 291 | 2605 292 | 2606 293 | 2607 294 | 2608 295 | 2609 296 | 2610 297 | 2611 298 | 2612 299 | 2613 300 | 2614 301 | 2615 302 | 2616 303 | 2617 304 | 2618 305 | 2619 306 | 2620 307 | 2621 308 | 2622 309 | 2623 310 | 2624 311 | 2625 312 | 2626 313 | 2627 314 | 2628 315 | 2629 316 | 2630 317 | 2631 318 | 2632 319 | 2633 320 | 2634 321 | 2635 322 | 2636 323 | 2637 324 | 2638 325 | 2639 326 | 2640 327 | 2641 328 | 2642 329 | 2643 330 | 2644 331 | 2645 332 | 2646 333 | 2647 334 | 2648 335 | 2649 336 | 2650 337 | 2651 338 | 2652 339 | 2653 340 | 2654 341 | 2655 342 | 2656 343 | 2657 344 | 2658 345 | 2659 346 | 2660 347 | 2661 348 | 2662 349 | 2663 350 | 2664 351 | 2665 352 | 2666 353 | 2667 354 | 2668 355 | 2669 356 | 2670 357 | 2671 358 | 2672 359 | 2673 360 | 2674 361 | 2675 362 | 2676 363 | 2677 364 | 2678 365 | 2679 366 | 2680 367 | 2681 368 | 2683 369 | 2684 370 | 2685 371 | 2686 372 | 2687 373 | 2688 374 | 2689 375 | 2690 376 | 2691 377 | 2692 378 | 2693 379 | 2694 380 | 2695 381 | 2696 382 | 2697 383 | 2698 384 | 2699 385 | 2700 386 | 2701 387 | 2702 388 | 2703 389 | 2704 390 | 2705 391 | 2706 392 | 2707 393 | 2708 394 | 2709 395 | 2710 396 | 2711 397 | 2712 398 | 2713 399 | 2714 400 | 2715 401 | 2716 402 | 2717 403 | 2718 404 | 2719 405 | 2720 406 | 2721 407 | 2722 408 | 2723 409 | 2724 410 | 2725 411 | 2726 412 | 2727 413 | 2728 414 | 2729 415 | 2730 416 | 2731 417 | 2732 418 | 2733 419 | 2734 420 | 2735 421 | 2736 422 | 2737 423 | 2738 424 | 2739 425 | 2740 426 | 2741 427 | 2742 428 | 2743 429 | 2744 430 | 2745 431 | 2746 432 | 2747 433 | 2748 434 | 2749 435 | 2750 436 | 2751 437 | 2752 438 | 2753 439 | 2754 440 | 2755 441 | 2756 442 | 2757 443 | 2758 444 | 2759 445 | 2760 446 | 2761 447 | 2762 448 | 2763 449 | 2764 450 | 2765 451 | 2766 452 | 2767 453 | 2768 454 | 2769 455 | 2770 456 | 2771 457 | 2772 458 | 2773 459 | 2774 460 | 2775 461 | 2776 462 | 2777 463 | 2778 464 | 2779 465 | 2780 466 | 2782 467 | 2783 468 | 2784 469 | 2785 470 | 2786 471 | 2787 472 | 2788 473 | 2789 474 | 2790 475 | 2791 476 | 2792 477 | 2793 478 | 2794 479 | 2795 480 | 2796 481 | 2797 482 | 2798 483 | 2799 484 | 2800 485 | 2801 486 | 2802 487 | 2803 488 | 2804 489 | 2805 490 | 2806 491 | 2807 492 | 2808 493 | 2809 494 | 2810 495 | 2811 496 | 2812 497 | 2813 498 | 2814 499 | 2815 500 | 2816 501 | 2817 502 | 2818 503 | 2819 504 | 2820 505 | 2821 506 | 2822 507 | 2823 508 | 2824 509 | 2825 510 | 2826 511 | 2827 512 | 2828 513 | 2829 514 | 2830 515 | 2831 516 | 2832 517 | 2833 518 | 2834 519 | 2835 520 | 2836 521 | 2837 522 | 2838 523 | 2839 524 | 2840 525 | 2841 526 | 2842 527 | 2843 528 | 2844 529 | 2845 530 | 2846 531 | 2847 532 | 2848 533 | 2849 534 | 2850 535 | 2851 536 | 2852 537 | 2853 538 | 2854 539 | 2855 540 | 2856 541 | 2857 542 | 2858 543 | 2859 544 | 2860 545 | 2861 546 | 2862 547 | 2863 548 | 2864 549 | 2865 550 | 2866 551 | 2867 552 | 2868 553 | 2869 554 | 2870 555 | 2871 556 | 2872 557 | 2873 558 | 2874 559 | 2875 560 | 2876 561 | 2877 562 | 2878 563 | 2879 564 | 2880 565 | 2881 566 | 2882 567 | 2883 568 | 2884 569 | 2885 570 | 2886 571 | 2887 572 | 2888 573 | 2889 574 | 2890 575 | 2891 576 | 2892 577 | 2893 578 | 2894 579 | 2895 580 | 2896 581 | 2897 582 | 2898 583 | 2899 584 | 2900 585 | 2901 586 | 2902 587 | 2903 588 | 2904 589 | 2905 590 | 2906 591 | 2907 592 | 2908 593 | 2909 594 | 2910 595 | 2911 596 | 2912 597 | 2913 598 | 2914 599 | 2915 600 | 2916 601 | 2917 602 | 2918 603 | 2919 604 | 2920 605 | 2921 606 | 2922 607 | 2923 608 | 2924 609 | 2925 610 | 2926 611 | 2927 612 | 2928 613 | 2929 614 | 2930 615 | 2931 616 | 2932 617 | 2933 618 | 2934 619 | 2935 620 | 2936 621 | 2937 622 | 2938 623 | 2939 624 | 2940 625 | 2941 626 | 2942 627 | 2943 628 | 2944 629 | 2945 630 | 2946 631 | 2947 632 | 2948 633 | 2949 634 | 2950 635 | 2951 636 | 2952 637 | 2954 638 | 2955 639 | 2956 640 | 2957 641 | 2958 642 | 2959 643 | 2960 644 | 2961 645 | 2962 646 | 2963 647 | 2964 648 | 2965 649 | 2966 650 | 2967 651 | 2968 652 | 2969 653 | 2970 654 | 2971 655 | 2972 656 | 2973 657 | 2974 658 | 2975 659 | 2976 660 | 2977 661 | 2978 662 | 2979 663 | 2980 664 | 2981 665 | 2982 666 | 2983 667 | 2984 668 | 2985 669 | 2986 670 | 2987 671 | 2988 672 | 2989 673 | 2990 674 | 2991 675 | 2992 676 | 2993 677 | 2994 678 | 2995 679 | 2996 680 | 2997 681 | 2998 682 | 2999 683 | 3000 684 | 3001 685 | 3002 686 | 3003 687 | 3004 688 | 3005 689 | 3006 690 | 3007 691 | 3008 692 | 3009 693 | 3010 694 | 3011 695 | 3012 696 | 3013 697 | 3014 698 | 3015 699 | 3016 700 | 3017 701 | 3018 702 | 3019 703 | 3020 704 | 3021 705 | 3022 706 | 3023 707 | 3024 708 | 3025 709 | 3026 710 | 3027 711 | 3028 712 | 3029 713 | 3030 714 | 3031 715 | 3032 716 | 3033 717 | 3034 718 | 3035 719 | 3036 720 | 3037 721 | 3038 722 | 3039 723 | 3040 724 | 3041 725 | 3043 726 | 3044 727 | 3045 728 | 3046 729 | 3047 730 | 3048 731 | 3049 732 | 3050 733 | 3051 734 | 3052 735 | 3053 736 | 3054 737 | 3055 738 | 3056 739 | 3057 740 | 3058 741 | 3059 742 | 3060 743 | 3061 744 | 3062 745 | 3064 746 | 3065 747 | 3066 748 | 3067 749 | 3068 750 | 3069 751 | 3070 752 | 3071 753 | 3072 754 | 3073 755 | 3074 756 | 3075 757 | 3076 758 | 3077 759 | 3078 760 | 3079 761 | 3080 762 | 3081 763 | 3082 764 | 3083 765 | 3084 766 | 3085 767 | 3086 768 | 3087 769 | 3088 770 | 3089 771 | 3090 772 | 3091 773 | 3092 774 | 3093 775 | 3094 776 | 3095 777 | 3096 778 | 3097 779 | 3098 780 | 3099 781 | 3100 782 | 3101 783 | 3102 784 | 3103 785 | 3104 786 | 3105 787 | 3106 788 | 3107 789 | 3108 790 | 3109 791 | 3110 792 | 3111 793 | 3112 794 | 3113 795 | 3114 796 | 3115 797 | 3116 798 | 3117 799 | 3118 800 | 3119 801 | 3120 802 | 3121 803 | 3122 804 | 3123 805 | 3124 806 | 3125 807 | 3126 808 | 3127 809 | 3128 810 | 3129 811 | 3130 812 | 3131 813 | 3132 814 | 3133 815 | 3134 816 | 3135 817 | 3136 818 | 3137 819 | 3138 820 | 3139 821 | 3140 822 | 3141 823 | 3142 824 | 3143 825 | 3144 826 | 3145 827 | 3146 828 | 3147 829 | 3148 830 | 3149 831 | 3150 832 | 3151 833 | 3152 834 | 3153 835 | 3154 836 | 3155 837 | 3156 838 | 3157 839 | 3158 840 | 3159 841 | 3160 842 | 3161 843 | 3162 844 | 3163 845 | 3164 846 | 3165 847 | 3166 848 | 3167 849 | 3168 850 | 3169 851 | 3170 852 | 3171 853 | 3172 854 | 3173 855 | 3174 856 | 3175 857 | 3176 858 | 3177 859 | 3178 860 | 3179 861 | 3180 862 | 3181 863 | 3182 864 | 3183 865 | 3184 866 | 3185 867 | 3186 868 | 3187 869 | 3188 870 | 3189 871 | 3190 872 | 3191 873 | 3192 874 | 3193 875 | 3194 876 | 3195 877 | 3196 878 | 3197 879 | 3198 880 | 3199 881 | 3200 882 | 3201 883 | 3202 884 | 3203 885 | 3204 886 | 3205 887 | 3206 888 | 3207 889 | 3208 890 | 3209 891 | 3210 892 | 3211 893 | 3213 894 | 3215 895 | 3216 896 | 3217 897 | 3218 898 | 3219 899 | 3220 900 | 3221 901 | 3222 902 | 3223 903 | 3224 904 | 3225 905 | 3226 906 | 3227 907 | 3228 908 | 3229 909 | 3230 910 | 3231 911 | 3232 912 | 3233 913 | 3234 914 | 3235 915 | 3236 916 | 3237 917 | 3238 918 | 3239 919 | 3240 920 | 3241 921 | 3242 922 | 3243 923 | 3244 924 | 3245 925 | 3246 926 | 3247 927 | 3248 928 | 3249 929 | 3251 930 | 3252 931 | 3253 932 | 3254 933 | 3255 934 | 3256 935 | 3257 936 | 3258 937 | 3259 938 | 3260 939 | 3261 940 | 3262 941 | 3263 942 | 3264 943 | 3265 944 | 3266 945 | 3267 946 | 3268 947 | 3269 948 | 3270 949 | 3271 950 | 3272 951 | 3273 952 | 3274 953 | 3275 954 | 3276 955 | 3277 956 | 3278 957 | 3279 958 | 3280 959 | 3281 960 | 3282 961 | 3283 962 | 3284 963 | 3285 964 | 3286 965 | 3287 966 | 3288 967 | 3289 968 | 3290 969 | 3291 970 | 3293 971 | 3294 972 | 3295 973 | 3296 974 | 3297 975 | 3298 976 | 3299 977 | 3300 978 | 3301 979 | 3302 980 | 3303 981 | 3304 982 | 3307 983 | 3308 984 | 3310 985 | 3311 986 | 3312 987 | 3313 988 | 3314 989 | 3315 990 | 3316 991 | 3317 992 | 3318 993 | 3319 994 | 3320 995 | 3321 996 | 3322 997 | 3323 998 | 3324 999 | 3325 1000 | 3326 1001 | -------------------------------------------------------------------------------- /unsupervised/data/citeseer/train.true: -------------------------------------------------------------------------------- 1 | 0 2 | 1 3 | 2 4 | 3 5 | 4 6 | 5 7 | 6 8 | 7 9 | 8 10 | 9 11 | 10 12 | 11 13 | 12 14 | 13 15 | 14 16 | 15 17 | 16 18 | 17 19 | 18 20 | 19 21 | 20 22 | 21 23 | 22 24 | 23 25 | 24 26 | 25 27 | 26 28 | 27 29 | 28 30 | 29 31 | 30 32 | 31 33 | 32 34 | 33 35 | 34 36 | 35 37 | 36 38 | 37 39 | 38 40 | 39 41 | 40 42 | 41 43 | 42 44 | 43 45 | 44 46 | 45 47 | 46 48 | 47 49 | 48 50 | 49 51 | 50 52 | 51 53 | 52 54 | 53 55 | 54 56 | 55 57 | 56 58 | 57 59 | 58 60 | 59 61 | 60 62 | 61 63 | 62 64 | 63 65 | 64 66 | 65 67 | 66 68 | 67 69 | 68 70 | 69 71 | 70 72 | 71 73 | 72 74 | 73 75 | 74 76 | 75 77 | 76 78 | 77 79 | 78 80 | 79 81 | 80 82 | 81 83 | 82 84 | 83 85 | 84 86 | 85 87 | 86 88 | 87 89 | 88 90 | 89 91 | 90 92 | 91 93 | 92 94 | 93 95 | 94 96 | 95 97 | 96 98 | 97 99 | 98 100 | 99 101 | 100 102 | 101 103 | 102 104 | 103 105 | 104 106 | 105 107 | 106 108 | 107 109 | 108 110 | 109 111 | 110 112 | 111 113 | 112 114 | 113 115 | 114 116 | 115 117 | 116 118 | 117 119 | 118 120 | 119 121 | -------------------------------------------------------------------------------- /unsupervised/data/cora/dev.txt: -------------------------------------------------------------------------------- 1 | 140 2 | 141 3 | 142 4 | 143 5 | 144 6 | 145 7 | 146 8 | 147 9 | 148 10 | 149 11 | 150 12 | 151 13 | 152 14 | 153 15 | 154 16 | 155 17 | 156 18 | 157 19 | 158 20 | 159 21 | 160 22 | 161 23 | 162 24 | 163 25 | 164 26 | 165 27 | 166 28 | 167 29 | 168 30 | 169 31 | 170 32 | 171 33 | 172 34 | 173 35 | 174 36 | 175 37 | 176 38 | 177 39 | 178 40 | 179 41 | 180 42 | 181 43 | 182 44 | 183 45 | 184 46 | 185 47 | 186 48 | 187 49 | 188 50 | 189 51 | 190 52 | 191 53 | 192 54 | 193 55 | 194 56 | 195 57 | 196 58 | 197 59 | 198 60 | 199 61 | 200 62 | 201 63 | 202 64 | 203 65 | 204 66 | 205 67 | 206 68 | 207 69 | 208 70 | 209 71 | 210 72 | 211 73 | 212 74 | 213 75 | 214 76 | 215 77 | 216 78 | 217 79 | 218 80 | 219 81 | 220 82 | 221 83 | 222 84 | 223 85 | 224 86 | 225 87 | 226 88 | 227 89 | 228 90 | 229 91 | 230 92 | 231 93 | 232 94 | 233 95 | 234 96 | 235 97 | 236 98 | 237 99 | 238 100 | 239 101 | 240 102 | 241 103 | 242 104 | 243 105 | 244 106 | 245 107 | 246 108 | 247 109 | 248 110 | 249 111 | 250 112 | 251 113 | 252 114 | 253 115 | 254 116 | 255 117 | 256 118 | 257 119 | 258 120 | 259 121 | 260 122 | 261 123 | 262 124 | 263 125 | 264 126 | 265 127 | 266 128 | 267 129 | 268 130 | 269 131 | 270 132 | 271 133 | 272 134 | 273 135 | 274 136 | 275 137 | 276 138 | 277 139 | 278 140 | 279 141 | 280 142 | 281 143 | 282 144 | 283 145 | 284 146 | 285 147 | 286 148 | 287 149 | 288 150 | 289 151 | 290 152 | 291 153 | 292 154 | 293 155 | 294 156 | 295 157 | 296 158 | 297 159 | 298 160 | 299 161 | 300 162 | 301 163 | 302 164 | 303 165 | 304 166 | 305 167 | 306 168 | 307 169 | 308 170 | 309 171 | 310 172 | 311 173 | 312 174 | 313 175 | 314 176 | 315 177 | 316 178 | 317 179 | 318 180 | 319 181 | 320 182 | 321 183 | 322 184 | 323 185 | 324 186 | 325 187 | 326 188 | 327 189 | 328 190 | 329 191 | 330 192 | 331 193 | 332 194 | 333 195 | 334 196 | 335 197 | 336 198 | 337 199 | 338 200 | 339 201 | 340 202 | 341 203 | 342 204 | 343 205 | 344 206 | 345 207 | 346 208 | 347 209 | 348 210 | 349 211 | 350 212 | 351 213 | 352 214 | 353 215 | 354 216 | 355 217 | 356 218 | 357 219 | 358 220 | 359 221 | 360 222 | 361 223 | 362 224 | 363 225 | 364 226 | 365 227 | 366 228 | 367 229 | 368 230 | 369 231 | 370 232 | 371 233 | 372 234 | 373 235 | 374 236 | 375 237 | 376 238 | 377 239 | 378 240 | 379 241 | 380 242 | 381 243 | 382 244 | 383 245 | 384 246 | 385 247 | 386 248 | 387 249 | 388 250 | 389 251 | 390 252 | 391 253 | 392 254 | 393 255 | 394 256 | 395 257 | 396 258 | 397 259 | 398 260 | 399 261 | 400 262 | 401 263 | 402 264 | 403 265 | 404 266 | 405 267 | 406 268 | 407 269 | 408 270 | 409 271 | 410 272 | 411 273 | 412 274 | 413 275 | 414 276 | 415 277 | 416 278 | 417 279 | 418 280 | 419 281 | 420 282 | 421 283 | 422 284 | 423 285 | 424 286 | 425 287 | 426 288 | 427 289 | 428 290 | 429 291 | 430 292 | 431 293 | 432 294 | 433 295 | 434 296 | 435 297 | 436 298 | 437 299 | 438 300 | 439 301 | 440 302 | 441 303 | 442 304 | 443 305 | 444 306 | 445 307 | 446 308 | 447 309 | 448 310 | 449 311 | 450 312 | 451 313 | 452 314 | 453 315 | 454 316 | 455 317 | 456 318 | 457 319 | 458 320 | 459 321 | 460 322 | 461 323 | 462 324 | 463 325 | 464 326 | 465 327 | 466 328 | 467 329 | 468 330 | 469 331 | 470 332 | 471 333 | 472 334 | 473 335 | 474 336 | 475 337 | 476 338 | 477 339 | 478 340 | 479 341 | 480 342 | 481 343 | 482 344 | 483 345 | 484 346 | 485 347 | 486 348 | 487 349 | 488 350 | 489 351 | 490 352 | 491 353 | 492 354 | 493 355 | 494 356 | 495 357 | 496 358 | 497 359 | 498 360 | 499 361 | 500 362 | 501 363 | 502 364 | 503 365 | 504 366 | 505 367 | 506 368 | 507 369 | 508 370 | 509 371 | 510 372 | 511 373 | 512 374 | 513 375 | 514 376 | 515 377 | 516 378 | 517 379 | 518 380 | 519 381 | 520 382 | 521 383 | 522 384 | 523 385 | 524 386 | 525 387 | 526 388 | 527 389 | 528 390 | 529 391 | 530 392 | 531 393 | 532 394 | 533 395 | 534 396 | 535 397 | 536 398 | 537 399 | 538 400 | 539 401 | 540 402 | 541 403 | 542 404 | 543 405 | 544 406 | 545 407 | 546 408 | 547 409 | 548 410 | 549 411 | 550 412 | 551 413 | 552 414 | 553 415 | 554 416 | 555 417 | 556 418 | 557 419 | 558 420 | 559 421 | 560 422 | 561 423 | 562 424 | 563 425 | 564 426 | 565 427 | 566 428 | 567 429 | 568 430 | 569 431 | 570 432 | 571 433 | 572 434 | 573 435 | 574 436 | 575 437 | 576 438 | 577 439 | 578 440 | 579 441 | 580 442 | 581 443 | 582 444 | 583 445 | 584 446 | 585 447 | 586 448 | 587 449 | 588 450 | 589 451 | 590 452 | 591 453 | 592 454 | 593 455 | 594 456 | 595 457 | 596 458 | 597 459 | 598 460 | 599 461 | 600 462 | 601 463 | 602 464 | 603 465 | 604 466 | 605 467 | 606 468 | 607 469 | 608 470 | 609 471 | 610 472 | 611 473 | 612 474 | 613 475 | 614 476 | 615 477 | 616 478 | 617 479 | 618 480 | 619 481 | 620 482 | 621 483 | 622 484 | 623 485 | 624 486 | 625 487 | 626 488 | 627 489 | 628 490 | 629 491 | 630 492 | 631 493 | 632 494 | 633 495 | 634 496 | 635 497 | 636 498 | 637 499 | 638 500 | 639 501 | -------------------------------------------------------------------------------- /unsupervised/data/cora/test.txt: -------------------------------------------------------------------------------- 1 | 1708 2 | 1709 3 | 1710 4 | 1711 5 | 1712 6 | 1713 7 | 1714 8 | 1715 9 | 1716 10 | 1717 11 | 1718 12 | 1719 13 | 1720 14 | 1721 15 | 1722 16 | 1723 17 | 1724 18 | 1725 19 | 1726 20 | 1727 21 | 1728 22 | 1729 23 | 1730 24 | 1731 25 | 1732 26 | 1733 27 | 1734 28 | 1735 29 | 1736 30 | 1737 31 | 1738 32 | 1739 33 | 1740 34 | 1741 35 | 1742 36 | 1743 37 | 1744 38 | 1745 39 | 1746 40 | 1747 41 | 1748 42 | 1749 43 | 1750 44 | 1751 45 | 1752 46 | 1753 47 | 1754 48 | 1755 49 | 1756 50 | 1757 51 | 1758 52 | 1759 53 | 1760 54 | 1761 55 | 1762 56 | 1763 57 | 1764 58 | 1765 59 | 1766 60 | 1767 61 | 1768 62 | 1769 63 | 1770 64 | 1771 65 | 1772 66 | 1773 67 | 1774 68 | 1775 69 | 1776 70 | 1777 71 | 1778 72 | 1779 73 | 1780 74 | 1781 75 | 1782 76 | 1783 77 | 1784 78 | 1785 79 | 1786 80 | 1787 81 | 1788 82 | 1789 83 | 1790 84 | 1791 85 | 1792 86 | 1793 87 | 1794 88 | 1795 89 | 1796 90 | 1797 91 | 1798 92 | 1799 93 | 1800 94 | 1801 95 | 1802 96 | 1803 97 | 1804 98 | 1805 99 | 1806 100 | 1807 101 | 1808 102 | 1809 103 | 1810 104 | 1811 105 | 1812 106 | 1813 107 | 1814 108 | 1815 109 | 1816 110 | 1817 111 | 1818 112 | 1819 113 | 1820 114 | 1821 115 | 1822 116 | 1823 117 | 1824 118 | 1825 119 | 1826 120 | 1827 121 | 1828 122 | 1829 123 | 1830 124 | 1831 125 | 1832 126 | 1833 127 | 1834 128 | 1835 129 | 1836 130 | 1837 131 | 1838 132 | 1839 133 | 1840 134 | 1841 135 | 1842 136 | 1843 137 | 1844 138 | 1845 139 | 1846 140 | 1847 141 | 1848 142 | 1849 143 | 1850 144 | 1851 145 | 1852 146 | 1853 147 | 1854 148 | 1855 149 | 1856 150 | 1857 151 | 1858 152 | 1859 153 | 1860 154 | 1861 155 | 1862 156 | 1863 157 | 1864 158 | 1865 159 | 1866 160 | 1867 161 | 1868 162 | 1869 163 | 1870 164 | 1871 165 | 1872 166 | 1873 167 | 1874 168 | 1875 169 | 1876 170 | 1877 171 | 1878 172 | 1879 173 | 1880 174 | 1881 175 | 1882 176 | 1883 177 | 1884 178 | 1885 179 | 1886 180 | 1887 181 | 1888 182 | 1889 183 | 1890 184 | 1891 185 | 1892 186 | 1893 187 | 1894 188 | 1895 189 | 1896 190 | 1897 191 | 1898 192 | 1899 193 | 1900 194 | 1901 195 | 1902 196 | 1903 197 | 1904 198 | 1905 199 | 1906 200 | 1907 201 | 1908 202 | 1909 203 | 1910 204 | 1911 205 | 1912 206 | 1913 207 | 1914 208 | 1915 209 | 1916 210 | 1917 211 | 1918 212 | 1919 213 | 1920 214 | 1921 215 | 1922 216 | 1923 217 | 1924 218 | 1925 219 | 1926 220 | 1927 221 | 1928 222 | 1929 223 | 1930 224 | 1931 225 | 1932 226 | 1933 227 | 1934 228 | 1935 229 | 1936 230 | 1937 231 | 1938 232 | 1939 233 | 1940 234 | 1941 235 | 1942 236 | 1943 237 | 1944 238 | 1945 239 | 1946 240 | 1947 241 | 1948 242 | 1949 243 | 1950 244 | 1951 245 | 1952 246 | 1953 247 | 1954 248 | 1955 249 | 1956 250 | 1957 251 | 1958 252 | 1959 253 | 1960 254 | 1961 255 | 1962 256 | 1963 257 | 1964 258 | 1965 259 | 1966 260 | 1967 261 | 1968 262 | 1969 263 | 1970 264 | 1971 265 | 1972 266 | 1973 267 | 1974 268 | 1975 269 | 1976 270 | 1977 271 | 1978 272 | 1979 273 | 1980 274 | 1981 275 | 1982 276 | 1983 277 | 1984 278 | 1985 279 | 1986 280 | 1987 281 | 1988 282 | 1989 283 | 1990 284 | 1991 285 | 1992 286 | 1993 287 | 1994 288 | 1995 289 | 1996 290 | 1997 291 | 1998 292 | 1999 293 | 2000 294 | 2001 295 | 2002 296 | 2003 297 | 2004 298 | 2005 299 | 2006 300 | 2007 301 | 2008 302 | 2009 303 | 2010 304 | 2011 305 | 2012 306 | 2013 307 | 2014 308 | 2015 309 | 2016 310 | 2017 311 | 2018 312 | 2019 313 | 2020 314 | 2021 315 | 2022 316 | 2023 317 | 2024 318 | 2025 319 | 2026 320 | 2027 321 | 2028 322 | 2029 323 | 2030 324 | 2031 325 | 2032 326 | 2033 327 | 2034 328 | 2035 329 | 2036 330 | 2037 331 | 2038 332 | 2039 333 | 2040 334 | 2041 335 | 2042 336 | 2043 337 | 2044 338 | 2045 339 | 2046 340 | 2047 341 | 2048 342 | 2049 343 | 2050 344 | 2051 345 | 2052 346 | 2053 347 | 2054 348 | 2055 349 | 2056 350 | 2057 351 | 2058 352 | 2059 353 | 2060 354 | 2061 355 | 2062 356 | 2063 357 | 2064 358 | 2065 359 | 2066 360 | 2067 361 | 2068 362 | 2069 363 | 2070 364 | 2071 365 | 2072 366 | 2073 367 | 2074 368 | 2075 369 | 2076 370 | 2077 371 | 2078 372 | 2079 373 | 2080 374 | 2081 375 | 2082 376 | 2083 377 | 2084 378 | 2085 379 | 2086 380 | 2087 381 | 2088 382 | 2089 383 | 2090 384 | 2091 385 | 2092 386 | 2093 387 | 2094 388 | 2095 389 | 2096 390 | 2097 391 | 2098 392 | 2099 393 | 2100 394 | 2101 395 | 2102 396 | 2103 397 | 2104 398 | 2105 399 | 2106 400 | 2107 401 | 2108 402 | 2109 403 | 2110 404 | 2111 405 | 2112 406 | 2113 407 | 2114 408 | 2115 409 | 2116 410 | 2117 411 | 2118 412 | 2119 413 | 2120 414 | 2121 415 | 2122 416 | 2123 417 | 2124 418 | 2125 419 | 2126 420 | 2127 421 | 2128 422 | 2129 423 | 2130 424 | 2131 425 | 2132 426 | 2133 427 | 2134 428 | 2135 429 | 2136 430 | 2137 431 | 2138 432 | 2139 433 | 2140 434 | 2141 435 | 2142 436 | 2143 437 | 2144 438 | 2145 439 | 2146 440 | 2147 441 | 2148 442 | 2149 443 | 2150 444 | 2151 445 | 2152 446 | 2153 447 | 2154 448 | 2155 449 | 2156 450 | 2157 451 | 2158 452 | 2159 453 | 2160 454 | 2161 455 | 2162 456 | 2163 457 | 2164 458 | 2165 459 | 2166 460 | 2167 461 | 2168 462 | 2169 463 | 2170 464 | 2171 465 | 2172 466 | 2173 467 | 2174 468 | 2175 469 | 2176 470 | 2177 471 | 2178 472 | 2179 473 | 2180 474 | 2181 475 | 2182 476 | 2183 477 | 2184 478 | 2185 479 | 2186 480 | 2187 481 | 2188 482 | 2189 483 | 2190 484 | 2191 485 | 2192 486 | 2193 487 | 2194 488 | 2195 489 | 2196 490 | 2197 491 | 2198 492 | 2199 493 | 2200 494 | 2201 495 | 2202 496 | 2203 497 | 2204 498 | 2205 499 | 2206 500 | 2207 501 | 2208 502 | 2209 503 | 2210 504 | 2211 505 | 2212 506 | 2213 507 | 2214 508 | 2215 509 | 2216 510 | 2217 511 | 2218 512 | 2219 513 | 2220 514 | 2221 515 | 2222 516 | 2223 517 | 2224 518 | 2225 519 | 2226 520 | 2227 521 | 2228 522 | 2229 523 | 2230 524 | 2231 525 | 2232 526 | 2233 527 | 2234 528 | 2235 529 | 2236 530 | 2237 531 | 2238 532 | 2239 533 | 2240 534 | 2241 535 | 2242 536 | 2243 537 | 2244 538 | 2245 539 | 2246 540 | 2247 541 | 2248 542 | 2249 543 | 2250 544 | 2251 545 | 2252 546 | 2253 547 | 2254 548 | 2255 549 | 2256 550 | 2257 551 | 2258 552 | 2259 553 | 2260 554 | 2261 555 | 2262 556 | 2263 557 | 2264 558 | 2265 559 | 2266 560 | 2267 561 | 2268 562 | 2269 563 | 2270 564 | 2271 565 | 2272 566 | 2273 567 | 2274 568 | 2275 569 | 2276 570 | 2277 571 | 2278 572 | 2279 573 | 2280 574 | 2281 575 | 2282 576 | 2283 577 | 2284 578 | 2285 579 | 2286 580 | 2287 581 | 2288 582 | 2289 583 | 2290 584 | 2291 585 | 2292 586 | 2293 587 | 2294 588 | 2295 589 | 2296 590 | 2297 591 | 2298 592 | 2299 593 | 2300 594 | 2301 595 | 2302 596 | 2303 597 | 2304 598 | 2305 599 | 2306 600 | 2307 601 | 2308 602 | 2309 603 | 2310 604 | 2311 605 | 2312 606 | 2313 607 | 2314 608 | 2315 609 | 2316 610 | 2317 611 | 2318 612 | 2319 613 | 2320 614 | 2321 615 | 2322 616 | 2323 617 | 2324 618 | 2325 619 | 2326 620 | 2327 621 | 2328 622 | 2329 623 | 2330 624 | 2331 625 | 2332 626 | 2333 627 | 2334 628 | 2335 629 | 2336 630 | 2337 631 | 2338 632 | 2339 633 | 2340 634 | 2341 635 | 2342 636 | 2343 637 | 2344 638 | 2345 639 | 2346 640 | 2347 641 | 2348 642 | 2349 643 | 2350 644 | 2351 645 | 2352 646 | 2353 647 | 2354 648 | 2355 649 | 2356 650 | 2357 651 | 2358 652 | 2359 653 | 2360 654 | 2361 655 | 2362 656 | 2363 657 | 2364 658 | 2365 659 | 2366 660 | 2367 661 | 2368 662 | 2369 663 | 2370 664 | 2371 665 | 2372 666 | 2373 667 | 2374 668 | 2375 669 | 2376 670 | 2377 671 | 2378 672 | 2379 673 | 2380 674 | 2381 675 | 2382 676 | 2383 677 | 2384 678 | 2385 679 | 2386 680 | 2387 681 | 2388 682 | 2389 683 | 2390 684 | 2391 685 | 2392 686 | 2393 687 | 2394 688 | 2395 689 | 2396 690 | 2397 691 | 2398 692 | 2399 693 | 2400 694 | 2401 695 | 2402 696 | 2403 697 | 2404 698 | 2405 699 | 2406 700 | 2407 701 | 2408 702 | 2409 703 | 2410 704 | 2411 705 | 2412 706 | 2413 707 | 2414 708 | 2415 709 | 2416 710 | 2417 711 | 2418 712 | 2419 713 | 2420 714 | 2421 715 | 2422 716 | 2423 717 | 2424 718 | 2425 719 | 2426 720 | 2427 721 | 2428 722 | 2429 723 | 2430 724 | 2431 725 | 2432 726 | 2433 727 | 2434 728 | 2435 729 | 2436 730 | 2437 731 | 2438 732 | 2439 733 | 2440 734 | 2441 735 | 2442 736 | 2443 737 | 2444 738 | 2445 739 | 2446 740 | 2447 741 | 2448 742 | 2449 743 | 2450 744 | 2451 745 | 2452 746 | 2453 747 | 2454 748 | 2455 749 | 2456 750 | 2457 751 | 2458 752 | 2459 753 | 2460 754 | 2461 755 | 2462 756 | 2463 757 | 2464 758 | 2465 759 | 2466 760 | 2467 761 | 2468 762 | 2469 763 | 2470 764 | 2471 765 | 2472 766 | 2473 767 | 2474 768 | 2475 769 | 2476 770 | 2477 771 | 2478 772 | 2479 773 | 2480 774 | 2481 775 | 2482 776 | 2483 777 | 2484 778 | 2485 779 | 2486 780 | 2487 781 | 2488 782 | 2489 783 | 2490 784 | 2491 785 | 2492 786 | 2493 787 | 2494 788 | 2495 789 | 2496 790 | 2497 791 | 2498 792 | 2499 793 | 2500 794 | 2501 795 | 2502 796 | 2503 797 | 2504 798 | 2505 799 | 2506 800 | 2507 801 | 2508 802 | 2509 803 | 2510 804 | 2511 805 | 2512 806 | 2513 807 | 2514 808 | 2515 809 | 2516 810 | 2517 811 | 2518 812 | 2519 813 | 2520 814 | 2521 815 | 2522 816 | 2523 817 | 2524 818 | 2525 819 | 2526 820 | 2527 821 | 2528 822 | 2529 823 | 2530 824 | 2531 825 | 2532 826 | 2533 827 | 2534 828 | 2535 829 | 2536 830 | 2537 831 | 2538 832 | 2539 833 | 2540 834 | 2541 835 | 2542 836 | 2543 837 | 2544 838 | 2545 839 | 2546 840 | 2547 841 | 2548 842 | 2549 843 | 2550 844 | 2551 845 | 2552 846 | 2553 847 | 2554 848 | 2555 849 | 2556 850 | 2557 851 | 2558 852 | 2559 853 | 2560 854 | 2561 855 | 2562 856 | 2563 857 | 2564 858 | 2565 859 | 2566 860 | 2567 861 | 2568 862 | 2569 863 | 2570 864 | 2571 865 | 2572 866 | 2573 867 | 2574 868 | 2575 869 | 2576 870 | 2577 871 | 2578 872 | 2579 873 | 2580 874 | 2581 875 | 2582 876 | 2583 877 | 2584 878 | 2585 879 | 2586 880 | 2587 881 | 2588 882 | 2589 883 | 2590 884 | 2591 885 | 2592 886 | 2593 887 | 2594 888 | 2595 889 | 2596 890 | 2597 891 | 2598 892 | 2599 893 | 2600 894 | 2601 895 | 2602 896 | 2603 897 | 2604 898 | 2605 899 | 2606 900 | 2607 901 | 2608 902 | 2609 903 | 2610 904 | 2611 905 | 2612 906 | 2613 907 | 2614 908 | 2615 909 | 2616 910 | 2617 911 | 2618 912 | 2619 913 | 2620 914 | 2621 915 | 2622 916 | 2623 917 | 2624 918 | 2625 919 | 2626 920 | 2627 921 | 2628 922 | 2629 923 | 2630 924 | 2631 925 | 2632 926 | 2633 927 | 2634 928 | 2635 929 | 2636 930 | 2637 931 | 2638 932 | 2639 933 | 2640 934 | 2641 935 | 2642 936 | 2643 937 | 2644 938 | 2645 939 | 2646 940 | 2647 941 | 2648 942 | 2649 943 | 2650 944 | 2651 945 | 2652 946 | 2653 947 | 2654 948 | 2655 949 | 2656 950 | 2657 951 | 2658 952 | 2659 953 | 2660 954 | 2661 955 | 2662 956 | 2663 957 | 2664 958 | 2665 959 | 2666 960 | 2667 961 | 2668 962 | 2669 963 | 2670 964 | 2671 965 | 2672 966 | 2673 967 | 2674 968 | 2675 969 | 2676 970 | 2677 971 | 2678 972 | 2679 973 | 2680 974 | 2681 975 | 2682 976 | 2683 977 | 2684 978 | 2685 979 | 2686 980 | 2687 981 | 2688 982 | 2689 983 | 2690 984 | 2691 985 | 2692 986 | 2693 987 | 2694 988 | 2695 989 | 2696 990 | 2697 991 | 2698 992 | 2699 993 | 2700 994 | 2701 995 | 2702 996 | 2703 997 | 2704 998 | 2705 999 | 2706 1000 | 2707 1001 | -------------------------------------------------------------------------------- /unsupervised/data/cora/train.true: -------------------------------------------------------------------------------- 1 | 0 2 | 1 3 | 2 4 | 3 5 | 4 6 | 5 7 | 6 8 | 7 9 | 8 10 | 9 11 | 10 12 | 11 13 | 12 14 | 13 15 | 14 16 | 15 17 | 16 18 | 17 19 | 18 20 | 19 21 | 20 22 | 21 23 | 22 24 | 23 25 | 24 26 | 25 27 | 26 28 | 27 29 | 28 30 | 29 31 | 30 32 | 31 33 | 32 34 | 33 35 | 34 36 | 35 37 | 36 38 | 37 39 | 38 40 | 39 41 | 40 42 | 41 43 | 42 44 | 43 45 | 44 46 | 45 47 | 46 48 | 47 49 | 48 50 | 49 51 | 50 52 | 51 53 | 52 54 | 53 55 | 54 56 | 55 57 | 56 58 | 57 59 | 58 60 | 59 61 | 60 62 | 61 63 | 62 64 | 63 65 | 64 66 | 65 67 | 66 68 | 67 69 | 68 70 | 69 71 | 70 72 | 71 73 | 72 74 | 73 75 | 74 76 | 75 77 | 76 78 | 77 79 | 78 80 | 79 81 | 80 82 | 81 83 | 82 84 | 83 85 | 84 86 | 85 87 | 86 88 | 87 89 | 88 90 | 89 91 | 90 92 | 91 93 | 92 94 | 93 95 | 94 96 | 95 97 | 96 98 | 97 99 | 98 100 | 99 101 | 100 102 | 101 103 | 102 104 | 103 105 | 104 106 | 105 107 | 106 108 | 107 109 | 108 110 | 109 111 | 110 112 | 111 113 | 112 114 | 113 115 | 114 116 | 115 117 | 116 118 | 117 119 | 118 120 | 119 121 | 120 122 | 121 123 | 122 124 | 123 125 | 124 126 | 125 127 | 126 128 | 127 129 | 128 130 | 129 131 | 130 132 | 131 133 | 132 134 | 133 135 | 134 136 | 135 137 | 136 138 | 137 139 | 138 140 | 139 141 | --------------------------------------------------------------------------------