├── BYVENUE.rst
├── LICENSE
└── README.rst
/BYVENUE.rst:
--------------------------------------------------------------------------------
1 | Literature of Deep Learning for Graphs
2 | **************************************
3 |
4 | This is a paper list about deep learning for graphs.
5 |
6 | .. raw:: html
7 |
8 |
9 |
10 |
11 | .. contents::
12 | :local:
13 | :depth: 4
14 |
15 | .. sectnum::
16 | :depth: 4
17 |
18 | .. role:: authors(emphasis)
19 |
20 | .. role:: venue(strong)
21 |
22 | .. role:: keywords(emphasis)
23 |
24 | 2008
25 | ====
26 |
27 | JMLR
28 | ----
29 |
30 | `Visualizing Data Using T-sne
31 | `_
32 | | :authors:`Laurens, van, der, Maaten, Geoffrey, Hinton`
33 | | :venue:`JMLR 2008`
34 |
35 | 2011
36 | ====
37 |
38 | ICML
39 | ----
40 |
41 | `A Three-way Model for Collective Learning on Multi-relational Data.
42 | `_
43 | | :authors:`Maximilian, Nickel, Volker, Tresp, Hans-Peter, Kriegel`
44 | | :venue:`ICML 2011`
45 |
46 | 2012
47 | ====
48 |
49 | ML
50 | --
51 |
52 | `Visualizing Non-metric Similarities in Multiple Maps
53 | `_
54 | | :authors:`Laurens, van, der, Maaten, Geoffrey, Hinton`
55 | | :venue:`ML 2012`
56 |
57 | 2013
58 | ====
59 |
60 | NIPS
61 | ----
62 |
63 | `Translating Embeddings for Modeling Multi-relational Data
64 | `_
65 | | :authors:`Antoine, Bordes, Nicolas, Usunier, Alberto, Garcia-Duran, Jason, Weston, Oksana, Yakhnenko`
66 | | :venue:`NIPS 2013`
67 |
68 | 2014
69 | ====
70 |
71 | WSDM
72 | ----
73 |
74 | `Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks
75 | `_
76 | | :authors:`Yann, Jacob, Ludovic, Denoyer, Patrick, Gallinari`
77 | | :venue:`WSDM 2014`
78 |
79 | AAAI
80 | ----
81 |
82 | `Knowledge Graph Embedding by Translating on Hyperplanes
83 | `_
84 | | :authors:`Zhen, Wang, Jianwen, Zhang, Jianlin, Feng, Zheng, Chen`
85 | | :venue:`AAAI 2014`
86 |
87 | KDD
88 | ---
89 |
90 | `Deepwalk: Online Learning of Social Representations
91 | `_
92 | | :authors:`Bryan, Perozzi, Rami, Al-Rfou, Steven, Skiena`
93 | | :venue:`KDD 2014`
94 | | :keywords:`Node, classification, Random, walk, Skip-gram`
95 |
96 | NIPS
97 | ----
98 |
99 | `Reducing the Rank of Relational Factorization Models by Including Observable Patterns
100 | `_
101 | | :authors:`Maximilian, Nickel, Xueyan, Jiang, Volker, Tresp`
102 | | :venue:`NIPS 2014`
103 |
104 | 2015
105 | ====
106 |
107 | AAAI
108 | ----
109 |
110 | `Network Representation Learning with Rich Text Information
111 | `_
112 | | :authors:`Cheng, Yang, Zhiyuan, Liu, Deli, Zhao, Maosong, Sun, Edward, Chang`
113 | | :venue:`AAAI 2015`
114 |
115 | `Learning Entity and Relation Embeddings for Knowledge Graph Completion
116 | `_
117 | | :authors:`Yankai, Lin, Zhiyuan, Liu, Maosong, Sun, Yang, Liu, Xuan, Zhu`
118 | | :venue:`AAAI 2015`
119 |
120 | ACL
121 | ---
122 |
123 | `Knowledge Graph Embedding via Dynamic Mapping Matrix
124 | `_
125 | | :authors:`Guoliang, Ji, Shizhu, He, Liheng, Xu, Kang, Liu, Jun, Zha`
126 | | :venue:`ACL 2015`
127 |
128 | CIKM
129 | ----
130 |
131 | `Grarep: Learning Graph Representations with Global Structural Information
132 | `_
133 | | :authors:`Shaosheng, Cao, Wei, Lu, Qiongkai, Xu`
134 | | :venue:`CIKM 2015`
135 | | :keywords:`High-order, SVD`
136 |
137 | EMNLP
138 | -----
139 |
140 | `Modeling Relation Paths for Representation Learning of Knowledge Bases
141 | `_
142 | | :authors:`Yankai, Lin, Zhiyuan, Liu, Huanbo, Luan, Maosong, Sun, Siwei, Rao, Song, Liu`
143 | | :venue:`EMNLP 2015`
144 |
145 | ICLR
146 | ----
147 |
148 | `Embedding Entities and Relations for Learning and Inference in Knowledge Bases
149 | `_
150 | | :authors:`Bishan, Yang, Wen-tau, Yih, Xiaodong, He, Jianfeng, Gao, Li, Deng`
151 | | :venue:`ICLR 2015`
152 |
153 | IEEE
154 | ----
155 |
156 | `A Review of Relational Machine Learning for Knowledge Graph
157 | `_
158 | | :authors:`Maximilian, Nickel, Kevin, Murphy, Volker, Tresp, Evgeniy, Gabrilovich`
159 | | :venue:`IEEE 2015`
160 |
161 | KDD
162 | ---
163 |
164 | `Pte: Predictive Text Embedding through Large-scale Heterogeneous Text Networks
165 | `_
166 | | :authors:`Jian, Tang, Meng, Qu, Qiaozhu, Mei`
167 | | :venue:`KDD 2015`
168 | | :keywords:`Text, Embedding, Heterogeneous, Text, Graphs`
169 |
170 | `Heterogeneous Network Embedding via Deep Architectures
171 | `_
172 | | :authors:`Shiyu, Chang, Wei, Han, Jiliang, Tang, Guo-Jun, Qi, Charu, C., Aggarwal, Thomas, S., Huang`
173 | | :venue:`KDD 2015`
174 |
175 | WWW
176 | ---
177 |
178 | `Line: Large-scale Information Network Embedding
179 | `_
180 | | :authors:`Jian, Tang, Meng, Qu, Mingzhe, Wang, Ming, Zhang, Jun, Yan, Qiaozhu, Mei`
181 | | :venue:`WWW 2015`
182 | | :keywords:`First-order, Second-order, Node, classification`
183 |
184 | 2016
185 | ====
186 |
187 | arXiv
188 | -----
189 |
190 | `Variational Graph Auto-encoders
191 | `_
192 | | :authors:`Thomas, N., Kipf, Max, Welling`
193 | | :venue:`arXiv 2016`
194 |
195 | `Meta-path Guided Embedding for Similarity Search in Large-scale Heterogeneous Information Networks
196 | `_
197 | | :authors:`Jingbo, Shang, Meng, Qu, Jialu, Liu, Lance, M., Kaplan, Jiawei, Han, Jian, Peng`
198 | | :venue:`arXiv 2016`
199 |
200 | IJCAI
201 | -----
202 |
203 | `Max-margin Deepwalk: Discriminative Learning of Network Representation
204 | `_
205 | | :authors:`Cunchao, Tu, Weicheng, Zhang, Zhiyuan, Liu, Maosong, Sun`
206 | | :venue:`IJCAI 2016`
207 |
208 | AAAI
209 | ----
210 |
211 | `Holographic Embeddings of Knowledge Graphs
212 | `_
213 | | :authors:`Maximilian, Nickel, Lorenzo, Rosasco, Tomaso, Poggio`
214 | | :venue:`AAAI 2016`
215 |
216 | ICML
217 | ----
218 |
219 | `Complex Embeddings for Simple Link Prediction
220 | `_
221 | | :authors:`Théo, Trouillon, Johannes, Welbl, Sebastian, Riedel, Éric, Gaussier, Guillaume, Bouchard`
222 | | :venue:`ICML 2016`
223 |
224 | `Revisiting Semi-supervised Learning with Graph Embeddings
225 | `_
226 | | :authors:`Zhilin, Yang, William, W., Cohen, Ruslan, Salakhutdinov`
227 | | :venue:`ICML 2016`
228 |
229 | WWW
230 | ---
231 |
232 | `Visualizing Large-scale and High-dimensional Data
233 | `_
234 | | :authors:`Jian, Tang, Jingzhou, Liu, Ming, Zhang, Qiaozhu, Mei`
235 | | :venue:`WWW 2016`
236 |
237 | KDD
238 | ---
239 |
240 | `Node2vec: Scalable Feature Learning for Networks
241 | `_
242 | | :authors:`Aditya, Grover, Jure, Leskovec`
243 | | :venue:`KDD 2016`
244 | | :keywords:`Breadth-first, Search, Depth-first, Search, Node, Classification, Link, Prediction`
245 |
246 | 2017
247 | ====
248 |
249 | AAAI
250 | ----
251 |
252 | `Scalable Graph Embedding for Asymmetric Proximity
253 | `_
254 | | :authors:`Chang, Zhou, Yuqiong, Liu, Xiaofei, Liu, Zhongyi, Liu, Jun, Gao`
255 | | :venue:`AAAI 2017`
256 |
257 | ACL
258 | ---
259 |
260 | `Cane: Context-aware Network Embedding for Relation Modeling
261 | `_
262 | | :authors:`Cunchao, Tu, Han, Liu, Zhiyuan, Liu, Maosong, Sun`
263 | | :venue:`ACL 2017`
264 |
265 | CIKM
266 | ----
267 |
268 | `Hin2vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning
269 | `_
270 | | :authors:`Tao-yang, Fu, Wang-Chien, Lee, Zhen, Lei`
271 | | :venue:`CIKM 2017`
272 |
273 | `An Attention-based Collaboration Framework for Multi-view Network Representation Learning
274 | `_
275 | | :authors:`Meng, Qu, Jian, Tang, Jingbo, Shang, Xiang, Ren, Ming, Zhang, Jiawei, Han`
276 | | :venue:`CIKM 2017`
277 |
278 | `Multi-view Clustering with Graph Embedding for Connectome Analysis
279 | `_
280 | | :authors:`Guixiang, Ma, Lifang, He, Chun-Ta, Lu, Weixiang, Shao, Philip, S., Yu, Alex, D., Leow, Ann, B., Ragin`
281 | | :venue:`CIKM 2017`
282 |
283 | `Attributed Signed Network Embedding
284 | `_
285 | | :authors:`Suhang, Wang, Charu, Aggarwal, Jiliang, Tang, Huan, Liu`
286 | | :venue:`CIKM 2017`
287 |
288 | `Attributed Network Embedding for Learning in a Dynamic Environment
289 | `_
290 | | :authors:`Jundong, Li, Harsh, Dani, Xia, Hu, Jiliang, Tang, Yi, Chang, Huan, Liu`
291 | | :venue:`CIKM 2017`
292 |
293 | CoNLL
294 | -----
295 |
296 | `Graph-based Neural Multi-document Summarization
297 | `_
298 | | :authors:`Michihiro, Yasunaga, Rui, Zhang, Kshitijh, Meelu, Ayush, Pareek, Krishnan, Srinivasan, Dragomir, Radev`
299 | | :venue:`CoNLL 2017`
300 |
301 | EMNLP
302 | -----
303 |
304 | `Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling
305 | `_
306 | | :authors:`Diego, Marcheggiani, Ivan, Titov`
307 | | :venue:`EMNLP 2017`
308 |
309 | `Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
310 | `_
311 | | :authors:`Joost, Bastings, Ivan, Titov, Wilker, Aziz, Diego, Marcheggiani, Khalil, Sima’an`
312 | | :venue:`EMNLP 2017`
313 |
314 | ICCV
315 | ----
316 |
317 | `3d Graph Neural Networks for Rgbd Semantic Segmentation
318 | `_
319 | | :authors:`Xiaojuan, Qi, Renjie, Liao, Jiaya, Jia, Sanja, Fidler, Raquel, Urtasun`
320 | | :venue:`ICCV 2017`
321 |
322 | `Situation Recognition With Graph Neural Networks
323 | `_
324 | | :authors:`Ruiyu, Li, Makarand, Tapaswi, Renjie, Liao, Jiaya, Jia, Raquel, Urtasun, Sanja, Fidler`
325 | | :venue:`ICCV 2017`
326 |
327 | `Graph-based Classification of Omnidirectional Images
328 | `_
329 | | :authors:`Renata, Khasanova, Pascal, Frossard`
330 | | :venue:`ICCV 2017`
331 |
332 | ICLR
333 | ----
334 |
335 | `Dyngem: Deep Embedding Method for Dynamic Graphs
336 | `_
337 | | :authors:`Palash, Goyal, Nitin, Kamra, Xinran, He, Yan, Liu`
338 | | :venue:`ICLR 2017 Workshop`
339 |
340 | `Semi-supervised Classification with Graph Convolutional Networks
341 | `_
342 | | :authors:`Thomas, N., Kipf, Max, Welling`
343 | | :venue:`ICLR 2017`
344 |
345 | ICML
346 | ----
347 |
348 | `Know-evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
349 | `_
350 | | :authors:`Rakshit, Trivedi, Hanjun, Dai, Yichen, Wang, Le, Song`
351 | | :venue:`ICML 2017`
352 |
353 | `Neural Message Passing for Quantum Chemistry
354 | `_
355 | | :authors:`Justin, Gilmer, Samuel, S., Schoenholz, Patrick, F., Riley, Oriol, Vinyals, George, E., Dahl`
356 | | :venue:`ICML 2017`
357 |
358 | IJCAI
359 | -----
360 |
361 | `Fast Network Embedding Enhancement via High Order Proximity Approximation
362 | `_
363 | | :authors:`Cheng, Yang, Maosong, Sun, Zhiyuan, Liu, Cunchao, Tu`
364 | | :venue:`IJCAI 2017`
365 |
366 | `Motif-aware Graph Embeddings
367 | `_
368 | | :authors:`Hoang, Nguyen, Tsuyoshi, Murata`
369 | | :venue:`IJCAI 2017`
370 |
371 | KDD
372 | ---
373 |
374 | `Struc2vec: Learning Node Representations from Structural Identity
375 | `_
376 | | :authors:`Leonardo, F., R., Ribeiro, Pedro, H., P., Savarese, Daniel, R., Figueiredo`
377 | | :venue:`KDD 2017`
378 | | :keywords:`Structural, Identity`
379 |
380 | `Metapath2vec: Scalable Representation Learning for Heterogeneous Networks
381 | `_
382 | | :authors:`Yuxiao, Dong, Nitesh, V., Chawla, Ananthram, Swami`
383 | | :venue:`KDD 2017`
384 |
385 | NIPS
386 | ----
387 |
388 | `Poincaré Embeddings for Learning Hierarchical Representations
389 | `_
390 | | :authors:`Maximilian, Nickel, Douwe, Kiela`
391 | | :venue:`NIPS 2017`
392 |
393 | `Learning Graph Representations with Embedding Propagation
394 | `_
395 | | :authors:`Alberto, Garcia-Duran, Mathias, Niepert`
396 | | :venue:`NIPS 2017`
397 |
398 | `Inductive Representation Learning on Large Graphs
399 | `_
400 | | :authors:`William, L., Hamilton, Rex, Ying, Jure, Leskovec`
401 | | :venue:`NIPS 2017`
402 |
403 | NeurIPS
404 | -------
405 |
406 | `Learning Combinatorial Optimization Algorithms over Graphs
407 | `_
408 | | :authors:`Hanjun, Dai, Elias, B., Khalil, Yuyu, Zhang, Bistra, Dilkina, Le, Song`
409 | | :venue:`NeurIPS 2017`
410 |
411 | `Protein Interface Prediction Using Graph Convolutional Networks
412 | `_
413 | | :authors:`Alex, Fout, Jonathon, Byrd, Basir, Shariat, Asa, Ben-Hur`
414 | | :venue:`NeurIPS 2017`
415 |
416 | `Premise Selection for Theorem Proving by Deep Graph Embedding
417 | `_
418 | | :authors:`Mingzhe, Wang, Yihe, Tang, Jian, Wang, Jia, Deng`
419 | | :venue:`NeurIPS 2017`
420 |
421 | arXiv
422 | -----
423 |
424 | `Modeling Relational Data with Graph Convolutional Networks
425 | `_
426 | | :authors:`Michael, Schlichtkrull, Thomas, N., Kipf, Peter, Bloem, Rianne, Van, Den, Berg, Ivan, Titov, Max, Welling`
427 | | :venue:`arXiv 2017`
428 |
429 | `Fast Linear Model for Knowledge Graph Embeddings
430 | `_
431 | | :authors:`Armand, Joulin, Edouard, Grave, Piotr, Bojanowski, Maximilian, Nickel, Tomas, Mikolov`
432 | | :venue:`arXiv 2017`
433 |
434 | 2018
435 | ====
436 |
437 | AAAI
438 | ----
439 |
440 | `Adversarial Network Embedding
441 | `_
442 | | :authors:`Quanyu, Dai, Qiang, Li, Jian, Tang, Dan, Wang`
443 | | :venue:`AAAI 2018`
444 |
445 | `Graphgan: Graph Representation Learning with Generative Adversarial Nets
446 | `_
447 | | :authors:`Hongwei, Wang, Jia, Wang, Jialin, Wang, Miao, Zhao, Weinan, Zhang, Fuzheng, Zhang, Xing, Xie, Minyi, Guo`
448 | | :venue:`AAAI 2018`
449 |
450 | `Starspace: Embed All The Things
451 | `_
452 | | :authors:`Ledell, Wu, Adam, Fisch, Sumit, Chopra, Keith, Adams, Antoine, Bordes, Jason, Weston`
453 | | :venue:`AAAI 2018`
454 |
455 | `Generative Adversarial Network Based Heterogeneous Bibliographic Network Representation for Personalized Citation Recommendation
456 | `_
457 | | :authors:`Xiaoyan, Cai, Junwei, Han, Libin, Yang`
458 | | :venue:`AAAI 2018`
459 |
460 | `Dynamic Network Embedding by Modeling Triadic Closure Process
461 | `_
462 | | :authors:`Lekui, Zhou, Yang, Yang, Xiang, Ren, Fei, Wu, Yueting, Zhuang`
463 | | :venue:`AAAI 2018`
464 |
465 | `Depthlgp: Learning Embeddings of Out-of-sample Nodes in Dynamic Networks
466 | `_
467 | | :authors:`Jianxin, Ma, Peng, Cui, Wenwu, Zhu`
468 | | :venue:`AAAI 2018`
469 |
470 | `Timers: Error-bounded Svd Restart on Dynamic Networks
471 | `_
472 | | :authors:`Ziwei, Zhang, Peng, Cui, Jian, Pei, Xiao, Wang, Wenwu, Zhu`
473 | | :venue:`AAAI 2018`
474 |
475 | `Convolutional 2d Knowledge Graph Embeddings
476 | `_
477 | | :authors:`Tim, Dettmers, Pasquale, Minervini, Pontus, Stenetorp, Sebastian, Riedel`
478 | | :venue:`AAAI 2018`
479 |
480 | `Knowledge Graph Embedding With Iterative Guidance From Soft Rules
481 | `_
482 | | :authors:`Shu, Guo, Quan, Wang, Lihong, Wang, Bin, Wang, Li, Guo`
483 | | :venue:`AAAI 2018`
484 |
485 | `Spatial Temporal Graph Convolutional Networks for Skeleton-based Action Recognition
486 | `_
487 | | :authors:`Sijie, Yan, Yuanjun, Xiong, Dahua, Lin`
488 | | :venue:`AAAI 2018`
489 |
490 | `Socialgcn: An Efficient Graph Convolutional Network Based Model for Social Recommendation
491 | `_
492 | | :authors:`Le, Wu, Peijie, Sun, Richang, Hong, Yanjie, Fu, Xiting, Wang, Meng, Wang`
493 | | :venue:`AAAI 2018`
494 | | :keywords:`GCN, Social, recommendation`
495 |
496 | `Link Prediction via Subgraph Embedding-based Convex Matrix Completion
497 | `_
498 | | :authors:`Zhu, Cao, Linlin, Wang, Gerard, de, Melo`
499 | | :venue:`AAAI 2018`
500 |
501 | `Action Schema Networks: Generalised Policies with Deep Learning
502 | `_
503 | | :authors:`Sam, Toyer, Felipe, Trevizan, Sylvie, Thiebaux, Lexing, Xie`
504 | | :venue:`AAAI 2018`
505 |
506 | ACL
507 | ---
508 |
509 | `Improving Knowledge Graph Embedding Using Simple Constraints
510 | `_
511 | | :authors:`Boyang, Ding, Quan, Wang, Bin, Wang, Li, Guo`
512 | | :venue:`ACL 2018`
513 |
514 | `A Graph-to-sequence Model for Amr-to-text Generation
515 | `_
516 | | :authors:`Linfeng, Song, Yue, Zhang, Zhiguo, Wang, Daniel, Gildea`
517 | | :venue:`ACL 2018`
518 |
519 | `Graph-to-sequence Learning Using Gated Graph Neural Networks
520 | `_
521 | | :authors:`Daniel, Beck, Gholamreza, Haffari, Trevor, Cohn`
522 | | :venue:`ACL 2018`
523 |
524 | Bioinformatics
525 | --------------
526 |
527 | `Modeling Polypharmacy Side Effects with Graph Convolutional Networks
528 | `_
529 | | :authors:`Marinka, Zitnik, Monica, Agrawal, Jure, Leskovec`
530 | | :venue:`Bioinformatics 2018`
531 |
532 | `Neodti: Neural Integration of Neighbor Information from a Heterogeneous Network for Discovering New
533 | `_
534 | | :authors:`Fangping, Wan, Lixiang, Hong, An, Xiao, Tao, Jiang, Jianyang, Zeng`
535 | | :venue:`Bioinformatics 2018`
536 |
537 | CIKM
538 | ----
539 |
540 | `Regal: Representation Learning-based Graph Alignment
541 | `_
542 | | :authors:`Mark, Heimann, Haoming, Shen, Tara, Safavi, Danai, Koutra`
543 | | :venue:`CIKM 2018`
544 |
545 | COLING
546 | ------
547 |
548 | `Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering
549 | `_
550 | | :authors:`Daniil, Sorokin, Iryna, Gurevych`
551 | | :venue:`COLING 2018`
552 |
553 | CVPR
554 | ----
555 |
556 | `Image Generation from Scene Graphs
557 | `_
558 | | :authors:`Justin, Johnson, Agrim, Gupta, Li, Fei-Fei`
559 | | :venue:`CVPR 2018`
560 |
561 | `Foldingnet: Point Cloud Auto-encoder via Deep Grid Deformation
562 | `_
563 | | :authors:`Yaoqing, Yang, Chen, Feng, Yiru, Shen, Dong, Tian`
564 | | :venue:`CVPR 2018`
565 |
566 | `Ppfnet: Global Context Aware Local Features for Robust 3d Point Matching
567 | `_
568 | | :authors:`Haowen, Deng, Tolga, Birdal, Slobodan, Ilic`
569 | | :venue:`CVPR 2018`
570 |
571 | `Iterative Visual Reasoning Beyond Convolutions
572 | `_
573 | | :authors:`Xinlei, Chen, Li-Jia, Li, Li, Fei-Fei, Abhinav, Gupta`
574 | | :venue:`CVPR 2018`
575 |
576 | `Surface Networks
577 | `_
578 | | :authors:`Ilya, Kostrikov, Zhongshi, Jiang, Daniele, Panozzo, Denis, Zorin, Joan, Bruna`
579 | | :venue:`CVPR 2018`
580 |
581 | `Feastnet: Feature-steered Graph Convolutions for 3d Shape Analysis
582 | `_
583 | | :authors:`Nitika, Verma, Edmond, Boyer, Jakob, Verbeek`
584 | | :venue:`CVPR 2018`
585 |
586 | `Learning to Act Properly: Predicting and Explaining Affordances From Images
587 | `_
588 | | :authors:`Ching-Yao, Chuang, Jiaman, Li, Antonio, Torralba, Sanja, Fidler`
589 | | :venue:`CVPR 2018`
590 |
591 | `Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling
592 | `_
593 | | :authors:`Yiru, Shen, Chen, Feng, Yaoqing, Yang, Dong, Tian`
594 | | :venue:`CVPR 2018`
595 |
596 | `Deformable Shape Completion With Graph Convolutional Autoencoders
597 | `_
598 | | :authors:`Or, Litany, Alex, Bronstein, Michael, Bronstein, Ameesh, Makadia`
599 | | :venue:`CVPR 2018`
600 |
601 | ECCV
602 | ----
603 |
604 | `Pixel2mesh: Generating 3d Mesh Models from Single Rgb Images
605 | `_
606 | | :authors:`Nanyang, Wang, Yinda, Zhang, Zhuwen, Li, Yanwei, Fu, Wei, Liu, Yu-Gang, Jiang`
607 | | :venue:`ECCV 2018`
608 |
609 | `Learning Human-object Interactions by Graph Parsing Neural Networks
610 | `_
611 | | :authors:`Siyuan, Qi, Wenguan, Wang, Baoxiong, Jia, Jianbing, Shen, Song-Chun, Zhu`
612 | | :venue:`ECCV 2018`
613 |
614 | `Generating 3d Faces Using Convolutional Mesh Autoencoders
615 | `_
616 | | :authors:`Anurag, Ranjan, Timo, Bolkart, Soubhik, Sanyal, Michael, J., Black`
617 | | :venue:`ECCV 2018`
618 |
619 | `Learning So(3) Equivariant Representations with Spherical Cnns
620 | `_
621 | | :authors:`Carlos, Esteves, Christine, Allen-Blanchette, Ameesh, Makadia, Kostas, Daniilidis`
622 | | :venue:`ECCV 2018`
623 |
624 | `Neural Graph Matching Networks for Fewshot 3d Action Recognition
625 | `_
626 | | :authors:`Michelle, Guo, Edward, Chou, De-An, Huang, Shuran, Song, Serena, Yeung, Li, Fei-Fei`
627 | | :venue:`ECCV 2018`
628 |
629 | `Multi-kernel Diffusion Cnns for Graph-based Learning on Point Clouds
630 | `_
631 | | :authors:`Lasse, Hansen, Jasper, Diesel, Mattias, P., Heinrich`
632 | | :venue:`ECCV 2018`
633 |
634 | `Hierarchical Video Frame Sequence Representation with Deep Convolutional Graph Network
635 | `_
636 | | :authors:`Feng, Mao, Xiang, Wu, Hui, Xue, Rong, Zhang`
637 | | :venue:`ECCV 2018`
638 |
639 | `Graph R-cnn for Scene Graph Generation
640 | `_
641 | | :authors:`Jianwei, Yang, Jiasen, Lu, Stefan, Lee, Dhruv, Batra, Devi, Parikh`
642 | | :venue:`ECCV 2018`
643 |
644 | `Exploring Visual Relationship for Image Captioning
645 | `_
646 | | :authors:`Ting, Yao, Yingwei, Pan, Yehao, Li, Tao, Mei`
647 | | :venue:`ECCV 2018`
648 |
649 | EMNLP
650 | -----
651 |
652 | `Linguistically-informed Self-attention for Semantic Role Labeling
653 | `_
654 | | :authors:`Emma, Strubell, Patrick, Verga, Daniel, Andor, David, Weiss, Andrew, McCallum`
655 | | :venue:`EMNLP 2018`
656 |
657 | `Graph Convolution over Pruned Dependency Trees Improves Relation Extraction
658 | `_
659 | | :authors:`Yuhao, Zhang, Peng, Qi, Christopher, D., Manning`
660 | | :venue:`EMNLP 2018`
661 |
662 | `Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks
663 | `_
664 | | :authors:`Zhichun, Wang, Qingsong, Lv, Xiaohan, Lan, Yu, Zhang`
665 | | :venue:`EMNLP 2018`
666 |
667 | ICDM
668 | ----
669 |
670 | `Meta-graph Based Hin Spectral Embedding: Methods, Analyses, and Insights
671 | `_
672 | | :authors:`Carl, Yang, Yichen, Feng, Pan, Li, Yu, Shi, Jiawei, Han`
673 | | :venue:`ICDM 2018`
674 |
675 | ICLR
676 | ----
677 |
678 | `Graph Attention Networks
679 | `_
680 | | :authors:`Petar, Veličković, Guillem, Cucurull, Arantxa, Casanova, Adriana, Romero, Pietro, Liò, Yoshua, Bengio`
681 | | :venue:`ICLR 2018`
682 |
683 | `Fastgcn: Fast Learning with Graph Convolutional Networks via Importance Sampling
684 | `_
685 | | :authors:`Jie, Chen, Tengfei, Ma, Cao, Xiao`
686 | | :venue:`ICLR 2018`
687 |
688 | `Qanet: Combining Local Convolution with Global Self-attention for Reading Comprehension
689 | `_
690 | | :authors:`Adams, Wei, Yu, David, Dohan, Minh-Thang, Luong, Rui, Zhao, Kai, Chen, Mohammad, Norouzi, Quoc, V., Le`
691 | | :venue:`ICLR 2018`
692 |
693 | `A Structured Self-attentive Sentence Embedding
694 | `_
695 | | :authors:`Zhouhan, Lin, Minwei, Feng, Cicero, Nogueira, dos, Santos, Mo, Yu, Bing, Xiang, Bowen, Zhou, Yoshua, Bengio`
696 | | :venue:`ICLR 2018`
697 |
698 | `Nervenet: Learning Structured Policy with Graph Neural Networks
699 | `_
700 | | :authors:`Tingwu, Wang, Renjie, Liao, Jimmy, Ba, Sanja, Fidler`
701 | | :venue:`ICLR 2018`
702 |
703 | `Few-shot Learning with Graph Neural Networks
704 | `_
705 | | :authors:`Victor, Garcia, Joan, Bruna`
706 | | :venue:`ICLR 2018`
707 |
708 | ICML
709 | ----
710 |
711 | `Representation Learning on Graphs with Jumping Knowledge Networks
712 | `_
713 | | :authors:`Keyulu, Xu, Chengtao, Li, Yonglong, Tian, Tomohiro, Sonobe, Ken-ichi, Kawarabayashi, Stefanie, Jegelka`
714 | | :venue:`ICML 2018`
715 |
716 | `Stochastic Training of Graph Convolutional Networks with Variance Reduction
717 | `_
718 | | :authors:`Jianfei, Chen, Jun, Zhu, Le, Song`
719 | | :venue:`ICML 2018`
720 |
721 | `Graph Networks As Learnable Physics Engines for Inference and Control
722 | `_
723 | | :authors:`Alvaro, Sanchez-Gonzalez, Nicolas, Heess, Jost, Tobias, Springenberg, Josh, Merel, Martin, Riedmiller`
724 | | :venue:`ICML 2018`
725 |
726 | `Learning Policy Representations in Multiagent Systems
727 | `_
728 | | :authors:`Aditya, Grover, Maruan, Al-Shedivat, Jayesh, K., Gupta, Yura, Burda, Harrison, Edwards`
729 | | :venue:`ICML 2018`
730 |
731 | `Adversarial Attack on Graph Structured Data
732 | `_
733 | | :authors:`Hanjun, Dai, Hui, Li, Tian, Tian, Xin, Huang, Lin, Wang, Jun, Zhu, Le, Song`
734 | | :venue:`ICML 2018`
735 |
736 | `Learning Steady-states of Iterative Algorithms over Graphs
737 | `_
738 | | :authors:`Hanjun, Dai, Zornitsa, Kozareva, Bo, Dai, Alex, Smola, Le, Song`
739 | | :venue:`ICML 2018`
740 |
741 | `Neural Relational Inference for Interacting Systems
742 | `_
743 | | :authors:`Thomas, Kipf, Ethan, Fetaya, Kuan-Chieh, Wang, Max, Welling, Richard, Zemel`
744 | | :venue:`ICML 2018`
745 |
746 | `Graphrnn: Generating Realistic Graphs with Deep Auto-regressive Models
747 | `_
748 | | :authors:`Jiaxuan, You, Rex, Ying, Xiang, Ren, William, L., Hamilton, Jure, Leskovec`
749 | | :venue:`ICML 2018`
750 |
751 | `Netgan: Generating Graphs via Random Walks
752 | `_
753 | | :authors:`Aleksandar, Bojchevski, Oleksandr, Shchur, Daniel, Zügner, Stephan, Günnemann`
754 | | :venue:`ICML 2018`
755 |
756 | `Learning Deep Generative Models of Graphs
757 | `_
758 | | :authors:`Yujia, Li, Oriol, Vinyals, Chris, Dyer, Razvan, Pascanu, Peter, Battaglia`
759 | | :venue:`ICML 2018`
760 |
761 | `Junction Tree Variational Autoencoder for Molecular Graph Generation
762 | `_
763 | | :authors:`Wengong, Jin, Regina, Barzilay, Tommi, Jaakkola`
764 | | :venue:`ICML 2018`
765 |
766 | IJCAI
767 | -----
768 |
769 | `Anrl: Attributed Network Representation Learning via Deep Neural Networks
770 | `_
771 | | :authors:`Zhen, Zhang, Hongxia, Yang, Jiajun, Bu, Sheng, Zhou, Pinggang, Yu, Jianwei, Zhang, Martin, Ester, Can, Wang`
772 | | :venue:`IJCAI 2018`
773 |
774 | `Efficient Attributed Network Embedding via Recursive Randomized Hashing
775 | `_
776 | | :authors:`Wei, Wu, Bin, Li, Ling, Chen, Chengqi, Zhang`
777 | | :venue:`IJCAI 2018`
778 |
779 | `Deep Attributed Network Embedding
780 | `_
781 | | :authors:`Hongchang, Gao, Heng, Huang`
782 | | :venue:`IJCAI 2018`
783 |
784 | `Dynamic Network Embedding : An Extended Approach for Skip-gram Based Network Embedding
785 | `_
786 | | :authors:`Lun, Du, Yun, Wang, Guojie, Song, Zhicong, Lu, Junshan, Wang`
787 | | :venue:`IJCAI 2018`
788 |
789 | KDD
790 | ---
791 |
792 | `Learning Structural Node Embeddings via Diffusion Wavelets
793 | `_
794 | | :authors:`Claire, Donnat, Marinka, Zitnik, David, Hallac, Jure, Leskovec`
795 | | :venue:`KDD 2018`
796 |
797 | `Pme: Projected Metric Embedding on Heterogeneous Networks for Link Prediction
798 | `_
799 | | :authors:`Hongxu, Chen, Hongzhi, Yin, Weiqing, Wang, Hao, Wang, Quoc, Viet, Hung, Nguyen, Xue, Li`
800 | | :venue:`KDD 2018`
801 |
802 | `Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks
803 | `_
804 | | :authors:`Yu, Shi, Qi, Zhu, Fang, Guo, Chao, Zhang, Jiawei, Han`
805 | | :venue:`KDD 2018`
806 |
807 | `Dynamic Embeddings for User Profiling in Twitter
808 | `_
809 | | :authors:`Shangsong, Liang, Xiangliang, Zhang, Zhaochun, Ren, Evangelos, Kanoulas`
810 | | :venue:`KDD 2018`
811 |
812 | `Large-scale Learnable Graph Convolutional Networks
813 | `_
814 | | :authors:`Hongyang, Gao, Zhengyang, Wang, Shuiwang, Ji`
815 | | :venue:`KDD 2018`
816 |
817 | `Graph Convolutional Neural Networks for Web-scale Recommender Systems
818 | `_
819 | | :authors:`Rex, Ying, Ruining, He, Kaifeng, Chen, Pong, Eksombatchai, William, L., Hamilton, Jure, Leskovec`
820 | | :venue:`KDD 2018`
821 | | :keywords:`P, i, n, S, a, g, e`
822 |
823 | `Graph Convolutional Matrix Completion
824 | `_
825 | | :authors:`Rianne, van, den, Berg, Thomas, N., Kipf, Max, Welling`
826 | | :venue:`KDD 2018 Workshop`
827 |
828 | `Deepinf: Social Influence Prediction with Deep Learning
829 | `_
830 | | :authors:`Jiezhong, Qiu, Jian, Tang, Hao, Ma, Yuxiao, Dong, Kuansan, Wang, Jie, Tang`
831 | | :venue:`KDD 2018`
832 |
833 | `Adversarial Attacks on Neural Networks for Graph Data
834 | `_
835 | | :authors:`Daniel, Zügner, Amir, Akbarnejad, Stephan, Günnemann`
836 | | :venue:`KDD 2018`
837 |
838 | NAACL
839 | -----
840 |
841 | `Kbgan: Adversarial Learning for Knowledge Graph Embeddings
842 | `_
843 | | :authors:`Liwei, Cai, William, Yang, Wang`
844 | | :venue:`NAACL 2018`
845 |
846 | `A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network
847 | `_
848 | | :authors:`Dai, Quoc, Nguyen, Tu, Dinh, Nguyen, Dat, Quoc, Nguyen, Dinh, Phung`
849 | | :venue:`NAACL 2018`
850 |
851 | `Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks
852 | `_
853 | | :authors:`Diego, Marcheggiani, Joost, Bastings, Ivan, Titov`
854 | | :venue:`NAACL 2018`
855 |
856 | NeurIPS
857 | -------
858 |
859 | `Simple Embedding for Link Prediction in Knowledge Graphs
860 | `_
861 | | :authors:`Seyed, Mehran, Kazemi, David, Poole`
862 | | :venue:`NeurIPS 2018`
863 |
864 | `Adaptive Sampling Towards Fast Graph Representation Learning
865 | `_
866 | | :authors:`Wenbing, Huang, Tong, Zhang, Yu, Rong, Junzhou, Huang`
867 | | :venue:`NeurIPS 2018`
868 |
869 | `Hierarchical Graph Representation Learning with Differentiable Pooling
870 | `_
871 | | :authors:`Rex, Ying, Jiaxuan, You, Christopher, Morris, Xiang, Ren, William, L., Hamilton, Jure, Leskovec`
872 | | :venue:`NeurIPS 2018`
873 |
874 | `Bayesian Semi-supervised Learning with Graph Gaussian Processes
875 | `_
876 | | :authors:`Yin, Cheng, Ng, Nicolò, Colombo, Ricardo, Silva`
877 | | :venue:`NeurIPS 2018`
878 |
879 | `Beyond Grids: Learning Graph Representations for Visual Recognition
880 | `_
881 | | :authors:`Yin, Li, Abhinav, Gupta`
882 | | :venue:`NeurIPS 2018`
883 |
884 | `Learning Conditioned Graph Structures for Interpretable Visual Question Answering
885 | `_
886 | | :authors:`Will, Norcliffe-Brown, Efstathios, Vafeias, Sarah, Parisot`
887 | | :venue:`NeurIPS 2018`
888 |
889 | `Linknet: Relational Embedding for Scene Graph
890 | `_
891 | | :authors:`Sanghyun, Woo, Dahun, Kim, Donghyeon, Cho, In, So, Kweon`
892 | | :venue:`NeurIPS 2018`
893 |
894 | `Flexible Neural Representation for Physics Prediction
895 | `_
896 | | :authors:`Damian, Mrowca, Chengxu, Zhuang, Elias, Wang, Nick, Haber, Li, Fei-Fei, Joshua, B., Tenenbaum, Daniel, L., K., Yamins`
897 | | :venue:`NeurIPS 2018`
898 |
899 | `Link Prediction Based on Graph Neural Networks
900 | `_
901 | | :authors:`Muhan, Zhang, Yixin, Chen`
902 | | :venue:`NeurIPS 2018`
903 |
904 | `Relational Recurrent Neural Networks
905 | `_
906 | | :authors:`Adam, Santoro, Ryan, Faulkner, David, Raposo, Jack, Rae, Mike, Chrzanowski, Théophane, Weber, Daan, Wierstra, Oriol, Vinyals, Razvan, Pascanu, Timothy, Lillicrap`
907 | | :venue:`NeurIPS 2018`
908 |
909 | `Transfer of Deep Reactive Policies for Mdp Planning
910 | `_
911 | | :authors:`Aniket, Bajpai, Sankalp, Garg, Mausam`
912 | | :venue:`NeurIPS 2018`
913 |
914 | `Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search
915 | `_
916 | | :authors:`Zhuwen, Li, Qifeng, Chen, Vladlen, Koltun`
917 | | :venue:`NeurIPS 2018`
918 |
919 | `Reinforcement Learning for Solving the Vehicle Routing Problem
920 | `_
921 | | :authors:`Mohammadreza, Nazari, Afshin, Oroojlooy, Lawrence, V., Snyder, Martin, Takáč`
922 | | :venue:`NeurIPS 2018`
923 |
924 | `Generative Modeling for Protein Structures
925 | `_
926 | | :authors:`Namrata, Anand, Po-Ssu, Huang`
927 | | :venue:`NeurIPS 2018`
928 |
929 | `Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
930 | `_
931 | | :authors:`Tengfei, Ma, Jie, Chen, Cao, Xiao`
932 | | :venue:`NeurIPS 2018`
933 |
934 | `Graph Convolutional Policy Network for Goal-directed Molecular Graph Generation
935 | `_
936 | | :authors:`Jiaxuan, You, Bowen, Liu, Rex, Ying, Vijay, Pande, Jure, Leskovec`
937 | | :venue:`NeurIPS 2018`
938 |
939 | `Constrained Graph Variational Autoencoders for Molecule Design
940 | `_
941 | | :authors:`Qi, Liu, Miltiadis, Allamanis, Marc, Brockschmidt, Alexander, L., Gaunt`
942 | | :venue:`NeurIPS 2018`
943 |
944 | SIGIR
945 | -----
946 |
947 | `Bine: Bipartite Network Embedding
948 | `_
949 | | :authors:`Ming, Gao, Leihui, Chen, Xiangnan, He, Aoying, Zhou`
950 | | :venue:`SIGIR 2018`
951 |
952 | WSDM
953 | ----
954 |
955 | `Network Embedding As Matrix Factorization: Unifying Deepwalk, Line, Pte, and Node2vec
956 | `_
957 | | :authors:`Jiezhong, Qiu, Yuxiao, Dong, Hao, Ma, Jian, Li, Kuansan, Wang, Jie, Tang`
958 | | :venue:`WSDM 2018`
959 |
960 | `Exploring Expert Cognition for Attributed Network Embedding
961 | `_
962 | | :authors:`Xiao, Huang, Qingquan, Song, Jundong, Li, Xia, Hu`
963 | | :venue:`WSDM 2018`
964 |
965 | `Shine: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction
966 | `_
967 | | :authors:`Hongwei, Wang, Fuzheng, Zhang, Min, Hou, Xing, Xie, Minyi, Guo, Qi, Liu`
968 | | :venue:`WSDM 2018`
969 |
970 | `Multidimensional Network Embedding with Hierarchical Structures
971 | `_
972 | | :authors:`Yao, Ma, Zhaochun, Ren, Ziheng, Jiang, Jiliang, Tang, Dawei, Yin`
973 | | :venue:`WSDM 2018`
974 |
975 | `Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning
976 | `_
977 | | :authors:`Meng, Qu, Jian, Tang, Jiawei, Han`
978 | | :venue:`WSDM 2018`
979 |
980 | WWW
981 | ---
982 |
983 | `Verse: Versatile Graph Embeddings from Similarity Measures
984 | `_
985 | | :authors:`Anton, Tsitsulin, Davide, Mottin, Panagiotis, Karras, Emmanuel, Müller`
986 | | :venue:`WWW 2018`
987 |
988 | `Co-regularized Deep Multi-network Embedding
989 | `_
990 | | :authors:`Jingchao, Ni, Shiyu, Chang, Xiao, Liu, Wei, Cheng, Haifeng, Chen, Dongkuan, Xu, Xiang, Zhang`
991 | | :venue:`WWW 2018`
992 |
993 | `Side: Representation Learning in Signed Directed Networks
994 | `_
995 | | :authors:`Junghwan, Kim, Haekyu, Park, Ji-Eun, Lee, U, Kang`
996 | | :venue:`WWW 2018`
997 |
998 | arXiv
999 | -----
1000 |
1001 | `Pitfalls of Graph Neural Network Evaluation
1002 | `_
1003 | | :authors:`Oleksandr, Shchur, Maximilian, Mumme, Aleksandar, Bojchevski, Stephan, Günnemann`
1004 | | :venue:`arXiv 2018`
1005 |
1006 | `Molgan: An Implicit Generative Model for Small Molecular Graphs
1007 | `_
1008 | | :authors:`Nicola, De, Cao, Thomas, Kipf`
1009 | | :venue:`arXiv 2018`
1010 |
1011 | 2019
1012 | ====
1013 |
1014 | WSDM
1015 | ----
1016 |
1017 | `A General View for Network Embedding As Matrix Factorization
1018 | `_
1019 | | :authors:`Xin, Liu, Tsuyoshi, Murata, Kyoung-Sook, Kim, Chatchawan, Kotarasu, Chenyi, Zhuang`
1020 | | :venue:`WSDM 2019`
1021 |
1022 | `Session-based Social Recommendation via Dynamic Graph Attention Networks
1023 | `_
1024 | | :authors:`Weiping, Song, Zhiping, Xiao, Yifan, Wang, Laurent, Charlin, Ming, Zhang, Jian, Tang`
1025 | | :venue:`WSDM 2019`
1026 | | :keywords:`Social, recommendation, session-based, GAT`
1027 |
1028 | ICLR
1029 | ----
1030 |
1031 | `Deep Graph Infomax
1032 | `_
1033 | | :authors:`Petar, Veličković, William, Fedus, William, L., Hamilton, Pietro, Liò, Yoshua, Bengio, R, Devon, Hjelm`
1034 | | :venue:`ICLR 2019`
1035 |
1036 | `Dyrep: Learning Representations over Dynamic Graphs
1037 | `_
1038 | | :authors:`Rakshit, Trivedi, Mehrdad, Farajtabar, Prasenjeet, Biswal, Hongyuan, Zha`
1039 | | :venue:`ICLR 2019`
1040 |
1041 | `Rotate: Knowledge Graph Embedding by Relational Rotation in Complex Space
1042 | `_
1043 | | :authors:`Zhiqing, Sun, Zhi-Hong, Deng, Jian-Yun, Nie, Jian, Tang`
1044 | | :venue:`ICLR 2019`
1045 |
1046 | `How Powerful Are Graph Neural Networks?
1047 | `_
1048 | | :authors:`Keyulu, Xu, Weihua, Hu, Jure, Leskovec, Stefanie, Jegelka`
1049 | | :venue:`ICLR 2019`
1050 |
1051 | `Lanczosnet: Multi-scale Deep Graph Convolutional Networks
1052 | `_
1053 | | :authors:`Renjie, Liao, Zhizhen, Zhao, Raquel, Urtasun, Richard, S., Zemel`
1054 | | :venue:`ICLR 2019`
1055 |
1056 | `Graph Wavelet Neural Network
1057 | `_
1058 | | :authors:`Bingbing, Xu, Huawei, Shen, Qi, Cao, Yunqi, Qiu, Xueqi, Cheng`
1059 | | :venue:`ICLR 2019`
1060 |
1061 | `Supervised Community Detection with Line Graph Neural Networks
1062 | `_
1063 | | :authors:`Zhengdao, Chen, Xiang, Li, Joan, Bruna`
1064 | | :venue:`ICLR 2019`
1065 |
1066 | `Predict Then Propagate: Graph Neural Networks Meet Personalized Pagerank
1067 | `_
1068 | | :authors:`Johannes, Klicpera, Aleksandar, Bojchevski, Stephan, Günnemann`
1069 | | :venue:`ICLR 2019`
1070 |
1071 | `Invariant and Equivariant Graph Networks
1072 | `_
1073 | | :authors:`Haggai, Maron, Heli, Ben-Hamu, Nadav, Shamir, Yaron, Lipman`
1074 | | :venue:`ICLR 2019`
1075 |
1076 | `Capsule Graph Neural Network
1077 | `_
1078 | | :authors:`Zhang, Xinyi, Lihui, Chen`
1079 | | :venue:`ICLR 2019`
1080 |
1081 | `Differentiable Perturb-and-parse: Semi-supervised Parsing with a Structured Variational Autoencoder
1082 | `_
1083 | | :authors:`Caio, Corro, Ivan, Titov`
1084 | | :venue:`ICLR 2019`
1085 |
1086 | `Structured Neural Summarization
1087 | `_
1088 | | :authors:`Patrick, Fernandes, Miltiadis, Allamanis, Marc, Brockschmid`
1089 | | :venue:`ICLR 2019`
1090 |
1091 | `Learning Localized Generative Models for 3d Point Clouds via Graph Convolution
1092 | `_
1093 | | :authors:`Diego, Valsesia, Giulia, Fracastoro, Enrico, Magli`
1094 | | :venue:`ICLR 2019`
1095 |
1096 | `Graph Hypernetworks for Neural Architecture Search
1097 | `_
1098 | | :authors:`Chris, Zhang, Mengye, Ren, Raquel, Urtasun`
1099 | | :venue:`ICLR 2019`
1100 |
1101 | `Neural Graph Evolution: Towards Efficient Automatic Robot Design
1102 | `_
1103 | | :authors:`Tingwu, Wang, Yuhao, Zhou, Sanja, Fidler, Jimmy, Ba`
1104 | | :venue:`ICLR 2019`
1105 |
1106 | `Attention, Learn to Solve Routing Problems!
1107 | `_
1108 | | :authors:`Wouter, Kool, Herke, van, Hoof, Max, Welling`
1109 | | :venue:`ICLR 2019`
1110 |
1111 | `Learning a Sat Solver from Single-bit Supervision
1112 | `_
1113 | | :authors:`Daniel, Selsam, Matthew, Lamm, Benedikt, Bünz, Percy, Liang, Leonardo, de, Moura, David, L., Dill`
1114 | | :venue:`ICLR 2019`
1115 |
1116 | `Adversarial Attacks on Graph Neural Networks via Meta Learning
1117 | `_
1118 | | :authors:`Daniel, Zügner, Stephan, Günnemann`
1119 | | :venue:`ICLR 2019`
1120 |
1121 | `Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning
1122 | `_
1123 | | :authors:`Yanbin, Liu, Juho, Lee, Minseop, Park, Saehoon, Kim, Eunho, Yang, Sung, Ju, Hwang, Yi, Yang`
1124 | | :venue:`ICLR 2019`
1125 |
1126 | `Learning Multimodal Graph-to-graph Translation for Molecule Optimization
1127 | `_
1128 | | :authors:`Wengong, Jin, Kevin, Yang, Regina, Barzilay, Tommi, Jaakkola`
1129 | | :venue:`ICLR 2019`
1130 |
1131 | `Generative Code Modeling with Graphs
1132 | `_
1133 | | :authors:`Marc, Brockschmidt, Miltiadis, Allamanis, Alexander, L., Gaunt, Oleksandr, Polozov`
1134 | | :venue:`ICLR 2019`
1135 |
1136 | `Graphtsne: A Visualization Technique for Graph-structured Data
1137 | `_
1138 | | :authors:`Yao, Yang, Leow, Thomas, Laurent, Xavier, Bresson`
1139 | | :venue:`ICLR 2019 Workshop`
1140 |
1141 | WWW
1142 | ---
1143 |
1144 | `Netsmf: Large-scale Network Embedding As Sparse Matrix Factorization
1145 | `_
1146 | | :authors:`Jiezhong, Qiu, Yuxiao, Dong, Hao, Ma, Jian, Li, Chi, Wang, Kuansan, Wang, Jie, Tang`
1147 | | :venue:`WWW 2019`
1148 |
1149 | `Adversarial Training Methods for Network Embedding
1150 | `_
1151 | | :authors:`Quanyu, Dai, Xiao, Shen, Liang, Zhang, Qiang, Li, Dan, Wang`
1152 | | :venue:`WWW 2019`
1153 |
1154 | `Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning
1155 | `_
1156 | | :authors:`Wen, Zhang, Bibek, Paudel, Liang, Wang, Jiaoyan, Chen, Hai, Zhu, Wei, Zhang, Abraham, Bernstein, Huajun, Chen`
1157 | | :venue:`WWW 2019`
1158 |
1159 | `Heterogeneous Graph Attention Network
1160 | `_
1161 | | :authors:`Xiao, Wang, Houye, Ji, Chuan, Shi, Bai, Wang, Peng, Cui, P., Yu, Yanfang, Ye`
1162 | | :venue:`WWW 2019`
1163 |
1164 | `Learning Graph Pooling and Hybrid Convolutional Operations for Text Representations
1165 | `_
1166 | | :authors:`Hongyang, Gao, Yongjun, Chen, Shuiwang, Ji`
1167 | | :venue:`WWW 2019`
1168 |
1169 | `Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in
1170 | `_
1171 | | :authors:`Qitian, Wu, Hengrui, Zhang, Xiaofeng, Gao, Peng, He, Paul, Weng, Han, Gao, Guihai, Chen`
1172 | | :venue:`WWW 2019`
1173 | | :keywords:`Social, recommendation, GAT`
1174 |
1175 | `Graph Neural Networks for Social Recommendation
1176 | `_
1177 | | :authors:`Wenqi, Fan, Yao, Ma, Qing, Li, Yuan, He, Eric, Zhao, Jiliang, Tang, Dawei, Yin`
1178 | | :venue:`WWW 2019`
1179 | | :keywords:`Social, recommendation, GNN`
1180 |
1181 | `Graphvite: A High-performance Cpu-gpu Hybrid System for Node Embedding
1182 | `_
1183 | | :authors:`Zhaocheng, Zhu, Shizhen, Xu, Meng, Qu, Jian, Tang`
1184 | | :venue:`WWW 2019`
1185 |
1186 | AAAI
1187 | ----
1188 |
1189 | `Bayesian Graph Convolutional Neural Networks for Semi-supervised Classification
1190 | `_
1191 | | :authors:`Yingxue, Zhang, Soumyasundar, Pal, Mark, Coates, Deniz, Üstebay`
1192 | | :venue:`AAAI 2019`
1193 |
1194 | `Graph Convolutional Networks for Text Classification
1195 | `_
1196 | | :authors:`Liang, Yao, Chengsheng, Mao, Yuan, Luo`
1197 | | :venue:`AAAI 2019`
1198 |
1199 | `Multi-task Learning over Graph Structures
1200 | `_
1201 | | :authors:`Pengfei, Liu, Jie, Fu, Yue, Dong, Xipeng, Qiu, Jackie, Chi, Kit, Cheung`
1202 | | :venue:`AAAI 2019`
1203 |
1204 | `Session-based Recommendation with Graph Neural Networks
1205 | `_
1206 | | :authors:`Shu, Wu, Yuyuan, Tang, Yanqiao, Zhu, Liang, Wang, Xing, Xie, Tieniu, Tan`
1207 | | :venue:`AAAI 2019`
1208 | | :keywords:`Session-based, recommendation, GNN`
1209 |
1210 | `Atomic: an Atlas of Machine Commonsense for If-then Reasoning
1211 | `_
1212 | | :authors:`Maarten, Sap, Ronan, Le, Bras, Emily, Allaway, Chandra, Bhagavatula, Nicholas, Lourie, Hannah, Rashkin, Brendan, Roof, Noah, A., Smith, Yejin, Choi`
1213 | | :venue:`AAAI 2019`
1214 |
1215 | ICML
1216 | ----
1217 |
1218 | `Mixhop: Higher-order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
1219 | `_
1220 | | :authors:`Sami, Abu-El-Haija, Bryan, Perozzi, Amol, Kapoor, Nazanin, Alipourfard, Kristina, Lerman, Hrayr, Harutyunyan, Greg, Ver, Steeg, Aram, Galstyan`
1221 | | :venue:`ICML 2019`
1222 |
1223 | `Graph U-nets
1224 | `_
1225 | | :authors:`Hongyang, Gao, Shuiwang, Ji`
1226 | | :venue:`ICML 2019`
1227 |
1228 | `Disentangled Graph Convolutional Networks
1229 | `_
1230 | | :authors:`Jianxin, Ma, Peng, Cui, Kun, Kuang, Xin, Wang, Wenwu, Zhu`
1231 | | :venue:`ICML 2019`
1232 |
1233 | `Gmnn: Graph Markov Neural Networks
1234 | `_
1235 | | :authors:`Meng, Qu, Yoshua, Bengio, Jian, Tang`
1236 | | :venue:`ICML 2019`
1237 |
1238 | `Simplifying Graph Convolutional Networks
1239 | `_
1240 | | :authors:`Felix, Wu, Tianyi, Zhang, Amauri, Holanda, de, Souza, Jr., Christopher, Fifty, Tao, Yu, Kilian, Q., Weinberger`
1241 | | :venue:`ICML 2019`
1242 |
1243 | `Position-aware Graph Neural Networks
1244 | `_
1245 | | :authors:`Jiaxuan, You, Rex, Ying, Jure, Leskovec`
1246 | | :venue:`ICML 2019`
1247 |
1248 | `Self-attention Graph Pooling
1249 | `_
1250 | | :authors:`Junhyun, Lee, Inyeop, Lee, Jaewoo, Kang`
1251 | | :venue:`ICML 2019`
1252 |
1253 | `Relational Pooling for Graph Representations
1254 | `_
1255 | | :authors:`Ryan, L., Murphy, Balasubramaniam, Srinivasan, Vinayak, Rao, Bruno, Ribeiro`
1256 | | :venue:`ICML 2019`
1257 |
1258 | `Graph Learning Network: A Structure Learning Algorithm
1259 | `_
1260 | | :authors:`Darwin, Saire, Pilco, Adín, Ramírez, Rivera`
1261 | | :venue:`ICML 2019 Workshop`
1262 |
1263 | `Learning Discrete Structures for Graph Neural Networks
1264 | `_
1265 | | :authors:`Luca, Franceschi, Mathias, Niepert, Massimiliano, Pontil, Xiao, He`
1266 | | :venue:`ICML 2019`
1267 |
1268 | `Graphite: Iterative Generative Modeling of Graphs
1269 | `_
1270 | | :authors:`Aditya, Grover, Aaron, Zweig, Stefano, Ermon`
1271 | | :venue:`ICML 2019`
1272 |
1273 | `Drug-drug Adverse Effect Prediction with Graph Co-attention
1274 | `_
1275 | | :authors:`Andreea, Deac, Yu-Hsiang, Huang, Petar, Veličković, Pietro, Liò, Jian, Tang`
1276 | | :venue:`ICML 2019 Workshop`
1277 |
1278 | `Dag-gnn: Dag Structure Learning with Graph Neural Networks
1279 | `_
1280 | | :authors:`Yue, Yu, Jie, Chen, Tian, Gao, Mo, Yu`
1281 | | :venue:`ICML 2019`
1282 |
1283 | arXiv
1284 | -----
1285 |
1286 | `Continuous Graph Neural Networks
1287 | `_
1288 | | :authors:`Louis-Pascal, A., C., Xhonneux, Meng, Qu, Jian, Tang`
1289 | | :venue:`arXiv 2019`
1290 |
1291 | `An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem
1292 | `_
1293 | | :authors:`Chaitanya, K., Joshi, Thomas, Laurent, Xavier, Bresson`
1294 | | :venue:`arXiv 2019`
1295 |
1296 | `Brain Signal Classification via Learning Connectivity Structure
1297 | `_
1298 | | :authors:`Soobeom, Jang, Seong-Eun, Moon, Jong-Seok, Lee`
1299 | | :venue:`arXiv 2019`
1300 |
1301 | `Joint Embedding of Structure and Features via Graph Convolutional Networks
1302 | `_
1303 | | :authors:`Sébastien, Lerique, Jacob, Levy, Abitbol, Márton, Karsai`
1304 | | :venue:`arXiv 2019`
1305 |
1306 | `Variational Spectral Graph Convolutional Networks
1307 | `_
1308 | | :authors:`Louis, Tiao, Pantelis, Elinas, Harrison, Nguyen, Edwin, V., Bonilla`
1309 | | :venue:`arXiv 2019`
1310 |
1311 | `Selfies: a Robust Representation of Semantically Constrained Graphs with an Example Application in Chemistry
1312 | `_
1313 | | :authors:`Mario, Krenn, Florian, Häse, AkshatKumar, Nigam, Pascal, Friederich, Alán, Aspuru-Guzik`
1314 | | :venue:`arXiv 2019`
1315 |
1316 | `Detecting Drug-drug Interactions Using Artificial Neural Networks and Classic Graph Similarity Measures
1317 | `_
1318 | | :authors:`Guy, Shtar, Lior, Rokach, Bracha, Shapira`
1319 | | :venue:`arXiv 2019`
1320 |
1321 | NAACL
1322 | -----
1323 |
1324 | `Imposing Label-relational Inductive Bias for Extremely Fine-grained Entity Typing
1325 | `_
1326 | | :authors:`Wenhan, Xiong, Jiawei, Wu, Deren, Lei, Mo, Yu, Shiyu, Chang, Xiaoxiao, Guo, William, Yang, Wang`
1327 | | :venue:`NAACL 2019`
1328 |
1329 | `Single Document Summarization As Tree Induction
1330 | `_
1331 | | :authors:`Yang, Liu, Ivan, Titov, Mirella, Lapata`
1332 | | :venue:`NAACL 2019`
1333 |
1334 | `Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks
1335 | `_
1336 | | :authors:`Ningyu, Zhang, Shumin, Deng, Zhanlin, Sun, Guanying, Wang, Xi, Chen, Wei, Zhang, Huajun, Chen`
1337 | | :venue:`NAACL 2019`
1338 |
1339 | CVPR
1340 | ----
1341 |
1342 | `Graph-based Global Reasoning Networks
1343 | `_
1344 | | :authors:`Yunpeng, Chen, Marcus, Rohrbach, Zhicheng, Yan, Shuicheng, Yan, Jiashi, Feng, Yannis, Kalantidis`
1345 | | :venue:`CVPR 2019`
1346 |
1347 | `Deep Graph Laplacian Regularization for Robust Denoising of Real Images
1348 | `_
1349 | | :authors:`Jin, Zeng, Jiahao, Pang, Wenxiu, Sun, Gene, Cheung`
1350 | | :venue:`CVPR 2019`
1351 |
1352 | `Learning Context Graph for Person Search
1353 | `_
1354 | | :authors:`Yichao, Yan, Qiang, Zhang, Bingbing, Ni, Wendong, Zhang, Minghao, Xu, Xiaokang, Yang`
1355 | | :venue:`CVPR 2019`
1356 |
1357 | `Graphonomy: Universal Human Parsing via Graph Transfer Learning
1358 | `_
1359 | | :authors:`Ke, Gong, Yiming, Gao, Xiaodan, Liang, Xiaohui, Shen, Meng, Wang, Liang, Lin`
1360 | | :venue:`CVPR 2019`
1361 |
1362 | `Masked Graph Attention Network for Person Re-identification
1363 | `_
1364 | | :authors:`Liqiang, Bao, Bingpeng, Ma, Hong, Chang, Xilin, Chen`
1365 | | :venue:`CVPR 2019`
1366 |
1367 | `Learning to Cluster Faces on an Affinity Graph
1368 | `_
1369 | | :authors:`Lei, Yang, Xiaohang, Zhan, Dapeng, Chen, Junjie, Yan, Chen, Change, Loy, Dahua, Lin`
1370 | | :venue:`CVPR 2019`
1371 |
1372 | `Actional-structural Graph Convolutional Networks for Skeleton-based Action Recognition
1373 | `_
1374 | | :authors:`Maosen, Li, Siheng, Chen, Xu, Chen, Ya, Zhang, Yanfeng, Wang, Qi, Tian`
1375 | | :venue:`CVPR 2019`
1376 |
1377 | `Adaptively Connected Neural Networks
1378 | `_
1379 | | :authors:`Guangrun, Wang, Keze, Wang, Liang, Lin`
1380 | | :venue:`CVPR 2019`
1381 |
1382 | `Reasoning Visual Dialogs with Structural and Partial Observations
1383 | `_
1384 | | :authors:`Zilong, Zheng, Wenguan, Wang, Siyuan, Qi, Song-Chun, Zhu`
1385 | | :venue:`CVPR 2019`
1386 |
1387 | SIGGRAPH
1388 | --------
1389 |
1390 | `Meshcnn: A Network with an Edge
1391 | `_
1392 | | :authors:`Rana, Hanocka, Amir, Hertz, Noa, Fish, Raja, Giryes, Shachar, Fleishman, Daniel, Cohen-Or`
1393 | | :venue:`SIGGRAPH 2019`
1394 | | :keywords:`h, t, t, p, s, :, /, /, r, a, n, a, h, a, n, o, c, k, a, ., g, i, t, h, u, b, ., i, o, /, M, e, s, h, C, N, N, /`
1395 |
1396 | SIGIR
1397 | -----
1398 |
1399 | `A Neural Influence Diffusion Model for Social Recommendation
1400 | `_
1401 | | :authors:`Le, Wu, Peijie, Sun, Yanjie, Fu, Richang, Hong, Xiting, Wang, Meng, Wang`
1402 | | :venue:`SIGIR 2019`
1403 | | :keywords:`Social, Recommendation, diffusion`
1404 |
1405 | `Neural Graph Collaborative Filtering
1406 | `_
1407 | | :authors:`Xiang, Wang, Xiangnan, He, Meng, Wang, Fuli, Feng, Tat-Seng, Chua`
1408 | | :venue:`SIGIR 2019`
1409 | | :keywords:`Collaborative, Filtering, GNN`
1410 |
1411 | IJCAI
1412 | -----
1413 |
1414 | `Binarized Collaborative Filtering with Distilling Graph Convolutional Networks
1415 | `_
1416 | | :authors:`Haoyu, Wang, Defu, Lian, Yong, Ge`
1417 | | :venue:`IJCAI 2019`
1418 |
1419 | bioRxiv
1420 | -------
1421 |
1422 | `Pgcn: Disease Gene Prioritization by Disease and Gene Embedding through Graph Convolutional Neural Networks
1423 | `_
1424 | | :authors:`Yu, Li, Hiroyuki, Kuwahara, Peng, Yang, Le, Song, Xin, Gao`
1425 | | :venue:`bioRxiv 2019`
1426 |
1427 | ICSC
1428 | ----
1429 |
1430 | `Identifying Protein-protein Interaction Using Tree Lstm and Structured Attention
1431 | `_
1432 | | :authors:`Mahtab, Ahmed, Jumayel, Islam, Muhammad, Rifayat, Samee, Robert, E., Mercer`
1433 | | :venue:`ICSC 2019`
1434 |
1435 | Nature
1436 | ------
1437 |
1438 | `Towards Perturbation Prediction of Biological Networks Using Deep Learning
1439 | `_
1440 | | :authors:`Diya, Li, Jianxi, Gao`
1441 | | :venue:`Nature 2019`
1442 |
1443 | AISTATS
1444 | -------
1445 |
1446 | `Graph to Graph: a Topology Aware Approach for Graph Structures Learning and Generation
1447 | `_
1448 | | :authors:`Mingming, Sun, Ping, Li`
1449 | | :venue:`AISTATS 2019`
1450 |
1451 | SysML
1452 | -----
1453 |
1454 | `Pytorch-biggraph: A Large-scale Graph Embedding System
1455 | `_
1456 | | :authors:`Adam, Lerer, Ledell, Wu, Jiajun, Shen, Timothee, Lacroix, Luca, Wehrstedt, Abhijit, Bose, Alex, Peysakhovich`
1457 | | :venue:`SysML 2019`
1458 |
1459 | VLDB
1460 | ----
1461 |
1462 | `Aligraph: A Comprehensive Graph Neural Network Platform
1463 | `_
1464 | | :authors:`Rong, Zhu, Kun, Zhao, Hongxia, Yang, Wei, Lin, Chang, Zhou, Baole, Ai, Yong, Li, Jingren, Zhou`
1465 | | :venue:`VLDB 2019`
1466 |
1467 | ACL
1468 | ---
1469 |
1470 | `Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
1471 | `_
1472 | | :authors:`Deepak, Nathani, Jatin, Chauhan, Charu, Sharma, Manohar, Kaul`
1473 | | :venue:`ACL 2019`
1474 |
1475 | `Graph Neural Networks with Generated Parameters for Relation Extraction
1476 | `_
1477 | | :authors:`Hao, Zhu, Yankai, Lin, Zhiyuan, Liu, Jie, Fu, Tat-seng, Chua, Maosong, Sun`
1478 | | :venue:`ACL 2019`
1479 |
1480 | `Dynamically Fused Graph Network for Multi-hop Reasoning
1481 | `_
1482 | | :authors:`Yunxuan, Xiao, Yanru, Qu, Lin, Qiu, Hao, Zhou, Lei, Li, Weinan, Zhang, Yong, Yu`
1483 | | :venue:`ACL 2019`
1484 |
1485 | `Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection
1486 | `_
1487 | | :authors:`Chang, Li, Dan, Goldwasser`
1488 | | :venue:`ACL 2019`
1489 |
1490 | `Attention Guided Graph Convolutional Networks for Relation Extraction
1491 | `_
1492 | | :authors:`Zhijiang, Guo, Yan, Zhang, Wei, Lu`
1493 | | :venue:`ACL 2019`
1494 |
1495 | `Incorporating Syntactic and Semantic Information in Word Embeddings Using Graph Convolutional Networks
1496 | `_
1497 | | :authors:`Shikhar, Vashishth, Manik, Bhandari, Prateek, Yadav, Piyush, Rai, Chiranjib, Bhattacharyya, Partha, Talukdar`
1498 | | :venue:`ACL 2019`
1499 |
1500 | `Graphrel: Modeling Text As Relational Graphs for Joint Entity and Relation Extraction
1501 | `_
1502 | | :authors:`Tsu-Jui, Fu, Peng-Hsuan, Li, Wei-Yun, Ma`
1503 | | :venue:`ACL 2019`
1504 |
1505 | `Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs
1506 | `_
1507 | | :authors:`Ming, Tu, Guangtao, Wang, Jing, Huang, Yun, Tang, Xiaodong, He, Bowen, Zhou`
1508 | | :venue:`ACL 2019`
1509 |
1510 | `Cognitive Graph for Multi-hop Reading Comprehension at Scale
1511 | `_
1512 | | :authors:`Ming, Ding, Chang, Zhou, Qibin, Chen, Hongxia, Yang, Jie, Tang`
1513 | | :venue:`ACL 2019`
1514 |
1515 | `Coherent Comment Generation for Chinese Articles with a Graph-to-sequence Model
1516 | `_
1517 | | :authors:`Wei, Li, Jingjing, Xu, Yancheng, He, Shengli, Yan, Yunfang, Wu, Xu, Sun`
1518 | | :venue:`ACL 2019`
1519 |
1520 | `Matching Article Pairs with Graphical Decomposition and Convolutions
1521 | `_
1522 | | :authors:`Bang, Liu, Di, Niu, Haojie, Wei, Jinghong, Lin, Yancheng, He, Kunfeng, Lai, Yu, Xu`
1523 | | :venue:`ACL 2019`
1524 |
1525 | `Embedding Imputation with Grounded Language Information
1526 | `_
1527 | | :authors:`Ziyi, Yang, Chenguang, Zhu, Vin, Sachidananda, Eric, Darve`
1528 | | :venue:`ACL 2019`
1529 |
1530 | `Encoding Social Information with Graph Convolutional Networks Forpolitical Perspective Detection in News Media
1531 | `_
1532 | | :authors:`Chang, Li, Dan, Goldwasser`
1533 | | :venue:`ACL 2019`
1534 |
1535 | `A Neural Multi-digraph Model for Chinese Ner with Gazetteers
1536 | `_
1537 | | :authors:`Ruixue, Ding, Pengjun, Xie, Xiaoyan, Zhang, Wei, Lu, Linlin, Li, Luo, Si`
1538 | | :venue:`ACL 2019`
1539 |
1540 | `Tree Communication Models for Sentiment Analysis
1541 | `_
1542 | | :authors:`Yuan, Zhang, Yue, Zhang`
1543 | | :venue:`ACL 2019`
1544 |
1545 | `A2n: Attending to Neighbors for Knowledge Graph Inference
1546 | `_
1547 | | :authors:`Trapit, Bansal, Da-Cheng, Juan, Sujith, Ravi, Andrew, McCallum`
1548 | | :venue:`ACL 2019`
1549 |
1550 | `Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension
1551 | `_
1552 | | :authors:`Daesik, Kim, Seonhoon, Kim, Nojun, Kwak`
1553 | | :venue:`ACL 2019`
1554 |
1555 | `Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution
1556 | `_
1557 | | :authors:`Yinchuan, Xu, Junlin, Yang`
1558 | | :venue:`ACL 2019 Workshop`
1559 | | :keywords:`h, t, t, p, s, :, /, /, g, i, t, h, u, b, ., c, o, m, /, i, a, n, y, c, x, u, /, R, G, C, N, -, w, i, t, h, -, B, E, R, T`
1560 |
1561 | KDD
1562 | ---
1563 |
1564 | `Progan: Network Embedding via Proximity Generative Adversarial Network
1565 |