├── BYVENUE.rst ├── LICENSE └── README.rst /BYVENUE.rst: -------------------------------------------------------------------------------- 1 | Literature of Deep Learning for Graphs 2 | ************************************** 3 | 4 | This is a paper list about deep learning for graphs. 5 | 6 | .. raw:: html 7 | 8 |
Sort by topic
9 |
Sort by venue
10 | 11 | .. contents:: 12 | :local: 13 | :depth: 4 14 | 15 | .. sectnum:: 16 | :depth: 4 17 | 18 | .. role:: authors(emphasis) 19 | 20 | .. role:: venue(strong) 21 | 22 | .. role:: keywords(emphasis) 23 | 24 | 2008 25 | ==== 26 | 27 | JMLR 28 | ---- 29 | 30 | `Visualizing Data Using T-sne 31 | `_ 32 | | :authors:`Laurens, van, der, Maaten, Geoffrey, Hinton` 33 | | :venue:`JMLR 2008` 34 | 35 | 2011 36 | ==== 37 | 38 | ICML 39 | ---- 40 | 41 | `A Three-way Model for Collective Learning on Multi-relational Data. 42 | `_ 43 | | :authors:`Maximilian, Nickel, Volker, Tresp, Hans-Peter, Kriegel` 44 | | :venue:`ICML 2011` 45 | 46 | 2012 47 | ==== 48 | 49 | ML 50 | -- 51 | 52 | `Visualizing Non-metric Similarities in Multiple Maps 53 | `_ 54 | | :authors:`Laurens, van, der, Maaten, Geoffrey, Hinton` 55 | | :venue:`ML 2012` 56 | 57 | 2013 58 | ==== 59 | 60 | NIPS 61 | ---- 62 | 63 | `Translating Embeddings for Modeling Multi-relational Data 64 | `_ 65 | | :authors:`Antoine, Bordes, Nicolas, Usunier, Alberto, Garcia-Duran, Jason, Weston, Oksana, Yakhnenko` 66 | | :venue:`NIPS 2013` 67 | 68 | 2014 69 | ==== 70 | 71 | WSDM 72 | ---- 73 | 74 | `Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks 75 | `_ 76 | | :authors:`Yann, Jacob, Ludovic, Denoyer, Patrick, Gallinari` 77 | | :venue:`WSDM 2014` 78 | 79 | AAAI 80 | ---- 81 | 82 | `Knowledge Graph Embedding by Translating on Hyperplanes 83 | `_ 84 | | :authors:`Zhen, Wang, Jianwen, Zhang, Jianlin, Feng, Zheng, Chen` 85 | | :venue:`AAAI 2014` 86 | 87 | KDD 88 | --- 89 | 90 | `Deepwalk: Online Learning of Social Representations 91 | `_ 92 | | :authors:`Bryan, Perozzi, Rami, Al-Rfou, Steven, Skiena` 93 | | :venue:`KDD 2014` 94 | | :keywords:`Node, classification, Random, walk, Skip-gram` 95 | 96 | NIPS 97 | ---- 98 | 99 | `Reducing the Rank of Relational Factorization Models by Including Observable Patterns 100 | `_ 101 | | :authors:`Maximilian, Nickel, Xueyan, Jiang, Volker, Tresp` 102 | | :venue:`NIPS 2014` 103 | 104 | 2015 105 | ==== 106 | 107 | AAAI 108 | ---- 109 | 110 | `Network Representation Learning with Rich Text Information 111 | `_ 112 | | :authors:`Cheng, Yang, Zhiyuan, Liu, Deli, Zhao, Maosong, Sun, Edward, Chang` 113 | | :venue:`AAAI 2015` 114 | 115 | `Learning Entity and Relation Embeddings for Knowledge Graph Completion 116 | `_ 117 | | :authors:`Yankai, Lin, Zhiyuan, Liu, Maosong, Sun, Yang, Liu, Xuan, Zhu` 118 | | :venue:`AAAI 2015` 119 | 120 | ACL 121 | --- 122 | 123 | `Knowledge Graph Embedding via Dynamic Mapping Matrix 124 | `_ 125 | | :authors:`Guoliang, Ji, Shizhu, He, Liheng, Xu, Kang, Liu, Jun, Zha` 126 | | :venue:`ACL 2015` 127 | 128 | CIKM 129 | ---- 130 | 131 | `Grarep: Learning Graph Representations with Global Structural Information 132 | `_ 133 | | :authors:`Shaosheng, Cao, Wei, Lu, Qiongkai, Xu` 134 | | :venue:`CIKM 2015` 135 | | :keywords:`High-order, SVD` 136 | 137 | EMNLP 138 | ----- 139 | 140 | `Modeling Relation Paths for Representation Learning of Knowledge Bases 141 | `_ 142 | | :authors:`Yankai, Lin, Zhiyuan, Liu, Huanbo, Luan, Maosong, Sun, Siwei, Rao, Song, Liu` 143 | | :venue:`EMNLP 2015` 144 | 145 | ICLR 146 | ---- 147 | 148 | `Embedding Entities and Relations for Learning and Inference in Knowledge Bases 149 | `_ 150 | | :authors:`Bishan, Yang, Wen-tau, Yih, Xiaodong, He, Jianfeng, Gao, Li, Deng` 151 | | :venue:`ICLR 2015` 152 | 153 | IEEE 154 | ---- 155 | 156 | `A Review of Relational Machine Learning for Knowledge Graph 157 | `_ 158 | | :authors:`Maximilian, Nickel, Kevin, Murphy, Volker, Tresp, Evgeniy, Gabrilovich` 159 | | :venue:`IEEE 2015` 160 | 161 | KDD 162 | --- 163 | 164 | `Pte: Predictive Text Embedding through Large-scale Heterogeneous Text Networks 165 | `_ 166 | | :authors:`Jian, Tang, Meng, Qu, Qiaozhu, Mei` 167 | | :venue:`KDD 2015` 168 | | :keywords:`Text, Embedding, Heterogeneous, Text, Graphs` 169 | 170 | `Heterogeneous Network Embedding via Deep Architectures 171 | `_ 172 | | :authors:`Shiyu, Chang, Wei, Han, Jiliang, Tang, Guo-Jun, Qi, Charu, C., Aggarwal, Thomas, S., Huang` 173 | | :venue:`KDD 2015` 174 | 175 | WWW 176 | --- 177 | 178 | `Line: Large-scale Information Network Embedding 179 | `_ 180 | | :authors:`Jian, Tang, Meng, Qu, Mingzhe, Wang, Ming, Zhang, Jun, Yan, Qiaozhu, Mei` 181 | | :venue:`WWW 2015` 182 | | :keywords:`First-order, Second-order, Node, classification` 183 | 184 | 2016 185 | ==== 186 | 187 | arXiv 188 | ----- 189 | 190 | `Variational Graph Auto-encoders 191 | `_ 192 | | :authors:`Thomas, N., Kipf, Max, Welling` 193 | | :venue:`arXiv 2016` 194 | 195 | `Meta-path Guided Embedding for Similarity Search in Large-scale Heterogeneous Information Networks 196 | `_ 197 | | :authors:`Jingbo, Shang, Meng, Qu, Jialu, Liu, Lance, M., Kaplan, Jiawei, Han, Jian, Peng` 198 | | :venue:`arXiv 2016` 199 | 200 | IJCAI 201 | ----- 202 | 203 | `Max-margin Deepwalk: Discriminative Learning of Network Representation 204 | `_ 205 | | :authors:`Cunchao, Tu, Weicheng, Zhang, Zhiyuan, Liu, Maosong, Sun` 206 | | :venue:`IJCAI 2016` 207 | 208 | AAAI 209 | ---- 210 | 211 | `Holographic Embeddings of Knowledge Graphs 212 | `_ 213 | | :authors:`Maximilian, Nickel, Lorenzo, Rosasco, Tomaso, Poggio` 214 | | :venue:`AAAI 2016` 215 | 216 | ICML 217 | ---- 218 | 219 | `Complex Embeddings for Simple Link Prediction 220 | `_ 221 | | :authors:`Théo, Trouillon, Johannes, Welbl, Sebastian, Riedel, Éric, Gaussier, Guillaume, Bouchard` 222 | | :venue:`ICML 2016` 223 | 224 | `Revisiting Semi-supervised Learning with Graph Embeddings 225 | `_ 226 | | :authors:`Zhilin, Yang, William, W., Cohen, Ruslan, Salakhutdinov` 227 | | :venue:`ICML 2016` 228 | 229 | WWW 230 | --- 231 | 232 | `Visualizing Large-scale and High-dimensional Data 233 | `_ 234 | | :authors:`Jian, Tang, Jingzhou, Liu, Ming, Zhang, Qiaozhu, Mei` 235 | | :venue:`WWW 2016` 236 | 237 | KDD 238 | --- 239 | 240 | `Node2vec: Scalable Feature Learning for Networks 241 | `_ 242 | | :authors:`Aditya, Grover, Jure, Leskovec` 243 | | :venue:`KDD 2016` 244 | | :keywords:`Breadth-first, Search, Depth-first, Search, Node, Classification, Link, Prediction` 245 | 246 | 2017 247 | ==== 248 | 249 | AAAI 250 | ---- 251 | 252 | `Scalable Graph Embedding for Asymmetric Proximity 253 | `_ 254 | | :authors:`Chang, Zhou, Yuqiong, Liu, Xiaofei, Liu, Zhongyi, Liu, Jun, Gao` 255 | | :venue:`AAAI 2017` 256 | 257 | ACL 258 | --- 259 | 260 | `Cane: Context-aware Network Embedding for Relation Modeling 261 | `_ 262 | | :authors:`Cunchao, Tu, Han, Liu, Zhiyuan, Liu, Maosong, Sun` 263 | | :venue:`ACL 2017` 264 | 265 | CIKM 266 | ---- 267 | 268 | `Hin2vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning 269 | `_ 270 | | :authors:`Tao-yang, Fu, Wang-Chien, Lee, Zhen, Lei` 271 | | :venue:`CIKM 2017` 272 | 273 | `An Attention-based Collaboration Framework for Multi-view Network Representation Learning 274 | `_ 275 | | :authors:`Meng, Qu, Jian, Tang, Jingbo, Shang, Xiang, Ren, Ming, Zhang, Jiawei, Han` 276 | | :venue:`CIKM 2017` 277 | 278 | `Multi-view Clustering with Graph Embedding for Connectome Analysis 279 | `_ 280 | | :authors:`Guixiang, Ma, Lifang, He, Chun-Ta, Lu, Weixiang, Shao, Philip, S., Yu, Alex, D., Leow, Ann, B., Ragin` 281 | | :venue:`CIKM 2017` 282 | 283 | `Attributed Signed Network Embedding 284 | `_ 285 | | :authors:`Suhang, Wang, Charu, Aggarwal, Jiliang, Tang, Huan, Liu` 286 | | :venue:`CIKM 2017` 287 | 288 | `Attributed Network Embedding for Learning in a Dynamic Environment 289 | `_ 290 | | :authors:`Jundong, Li, Harsh, Dani, Xia, Hu, Jiliang, Tang, Yi, Chang, Huan, Liu` 291 | | :venue:`CIKM 2017` 292 | 293 | CoNLL 294 | ----- 295 | 296 | `Graph-based Neural Multi-document Summarization 297 | `_ 298 | | :authors:`Michihiro, Yasunaga, Rui, Zhang, Kshitijh, Meelu, Ayush, Pareek, Krishnan, Srinivasan, Dragomir, Radev` 299 | | :venue:`CoNLL 2017` 300 | 301 | EMNLP 302 | ----- 303 | 304 | `Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling 305 | `_ 306 | | :authors:`Diego, Marcheggiani, Ivan, Titov` 307 | | :venue:`EMNLP 2017` 308 | 309 | `Graph Convolutional Encoders for Syntax-aware Neural Machine Translation 310 | `_ 311 | | :authors:`Joost, Bastings, Ivan, Titov, Wilker, Aziz, Diego, Marcheggiani, Khalil, Sima’an` 312 | | :venue:`EMNLP 2017` 313 | 314 | ICCV 315 | ---- 316 | 317 | `3d Graph Neural Networks for Rgbd Semantic Segmentation 318 | `_ 319 | | :authors:`Xiaojuan, Qi, Renjie, Liao, Jiaya, Jia, Sanja, Fidler, Raquel, Urtasun` 320 | | :venue:`ICCV 2017` 321 | 322 | `Situation Recognition With Graph Neural Networks 323 | `_ 324 | | :authors:`Ruiyu, Li, Makarand, Tapaswi, Renjie, Liao, Jiaya, Jia, Raquel, Urtasun, Sanja, Fidler` 325 | | :venue:`ICCV 2017` 326 | 327 | `Graph-based Classification of Omnidirectional Images 328 | `_ 329 | | :authors:`Renata, Khasanova, Pascal, Frossard` 330 | | :venue:`ICCV 2017` 331 | 332 | ICLR 333 | ---- 334 | 335 | `Dyngem: Deep Embedding Method for Dynamic Graphs 336 | `_ 337 | | :authors:`Palash, Goyal, Nitin, Kamra, Xinran, He, Yan, Liu` 338 | | :venue:`ICLR 2017 Workshop` 339 | 340 | `Semi-supervised Classification with Graph Convolutional Networks 341 | `_ 342 | | :authors:`Thomas, N., Kipf, Max, Welling` 343 | | :venue:`ICLR 2017` 344 | 345 | ICML 346 | ---- 347 | 348 | `Know-evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs 349 | `_ 350 | | :authors:`Rakshit, Trivedi, Hanjun, Dai, Yichen, Wang, Le, Song` 351 | | :venue:`ICML 2017` 352 | 353 | `Neural Message Passing for Quantum Chemistry 354 | `_ 355 | | :authors:`Justin, Gilmer, Samuel, S., Schoenholz, Patrick, F., Riley, Oriol, Vinyals, George, E., Dahl` 356 | | :venue:`ICML 2017` 357 | 358 | IJCAI 359 | ----- 360 | 361 | `Fast Network Embedding Enhancement via High Order Proximity Approximation 362 | `_ 363 | | :authors:`Cheng, Yang, Maosong, Sun, Zhiyuan, Liu, Cunchao, Tu` 364 | | :venue:`IJCAI 2017` 365 | 366 | `Motif-aware Graph Embeddings 367 | `_ 368 | | :authors:`Hoang, Nguyen, Tsuyoshi, Murata` 369 | | :venue:`IJCAI 2017` 370 | 371 | KDD 372 | --- 373 | 374 | `Struc2vec: Learning Node Representations from Structural Identity 375 | `_ 376 | | :authors:`Leonardo, F., R., Ribeiro, Pedro, H., P., Savarese, Daniel, R., Figueiredo` 377 | | :venue:`KDD 2017` 378 | | :keywords:`Structural, Identity` 379 | 380 | `Metapath2vec: Scalable Representation Learning for Heterogeneous Networks 381 | `_ 382 | | :authors:`Yuxiao, Dong, Nitesh, V., Chawla, Ananthram, Swami` 383 | | :venue:`KDD 2017` 384 | 385 | NIPS 386 | ---- 387 | 388 | `Poincaré Embeddings for Learning Hierarchical Representations 389 | `_ 390 | | :authors:`Maximilian, Nickel, Douwe, Kiela` 391 | | :venue:`NIPS 2017` 392 | 393 | `Learning Graph Representations with Embedding Propagation 394 | `_ 395 | | :authors:`Alberto, Garcia-Duran, Mathias, Niepert` 396 | | :venue:`NIPS 2017` 397 | 398 | `Inductive Representation Learning on Large Graphs 399 | `_ 400 | | :authors:`William, L., Hamilton, Rex, Ying, Jure, Leskovec` 401 | | :venue:`NIPS 2017` 402 | 403 | NeurIPS 404 | ------- 405 | 406 | `Learning Combinatorial Optimization Algorithms over Graphs 407 | `_ 408 | | :authors:`Hanjun, Dai, Elias, B., Khalil, Yuyu, Zhang, Bistra, Dilkina, Le, Song` 409 | | :venue:`NeurIPS 2017` 410 | 411 | `Protein Interface Prediction Using Graph Convolutional Networks 412 | `_ 413 | | :authors:`Alex, Fout, Jonathon, Byrd, Basir, Shariat, Asa, Ben-Hur` 414 | | :venue:`NeurIPS 2017` 415 | 416 | `Premise Selection for Theorem Proving by Deep Graph Embedding 417 | `_ 418 | | :authors:`Mingzhe, Wang, Yihe, Tang, Jian, Wang, Jia, Deng` 419 | | :venue:`NeurIPS 2017` 420 | 421 | arXiv 422 | ----- 423 | 424 | `Modeling Relational Data with Graph Convolutional Networks 425 | `_ 426 | | :authors:`Michael, Schlichtkrull, Thomas, N., Kipf, Peter, Bloem, Rianne, Van, Den, Berg, Ivan, Titov, Max, Welling` 427 | | :venue:`arXiv 2017` 428 | 429 | `Fast Linear Model for Knowledge Graph Embeddings 430 | `_ 431 | | :authors:`Armand, Joulin, Edouard, Grave, Piotr, Bojanowski, Maximilian, Nickel, Tomas, Mikolov` 432 | | :venue:`arXiv 2017` 433 | 434 | 2018 435 | ==== 436 | 437 | AAAI 438 | ---- 439 | 440 | `Adversarial Network Embedding 441 | `_ 442 | | :authors:`Quanyu, Dai, Qiang, Li, Jian, Tang, Dan, Wang` 443 | | :venue:`AAAI 2018` 444 | 445 | `Graphgan: Graph Representation Learning with Generative Adversarial Nets 446 | `_ 447 | | :authors:`Hongwei, Wang, Jia, Wang, Jialin, Wang, Miao, Zhao, Weinan, Zhang, Fuzheng, Zhang, Xing, Xie, Minyi, Guo` 448 | | :venue:`AAAI 2018` 449 | 450 | `Starspace: Embed All The Things 451 | `_ 452 | | :authors:`Ledell, Wu, Adam, Fisch, Sumit, Chopra, Keith, Adams, Antoine, Bordes, Jason, Weston` 453 | | :venue:`AAAI 2018` 454 | 455 | `Generative Adversarial Network Based Heterogeneous Bibliographic Network Representation for Personalized Citation Recommendation 456 | `_ 457 | | :authors:`Xiaoyan, Cai, Junwei, Han, Libin, Yang` 458 | | :venue:`AAAI 2018` 459 | 460 | `Dynamic Network Embedding by Modeling Triadic Closure Process 461 | `_ 462 | | :authors:`Lekui, Zhou, Yang, Yang, Xiang, Ren, Fei, Wu, Yueting, Zhuang` 463 | | :venue:`AAAI 2018` 464 | 465 | `Depthlgp: Learning Embeddings of Out-of-sample Nodes in Dynamic Networks 466 | `_ 467 | | :authors:`Jianxin, Ma, Peng, Cui, Wenwu, Zhu` 468 | | :venue:`AAAI 2018` 469 | 470 | `Timers: Error-bounded Svd Restart on Dynamic Networks 471 | `_ 472 | | :authors:`Ziwei, Zhang, Peng, Cui, Jian, Pei, Xiao, Wang, Wenwu, Zhu` 473 | | :venue:`AAAI 2018` 474 | 475 | `Convolutional 2d Knowledge Graph Embeddings 476 | `_ 477 | | :authors:`Tim, Dettmers, Pasquale, Minervini, Pontus, Stenetorp, Sebastian, Riedel` 478 | | :venue:`AAAI 2018` 479 | 480 | `Knowledge Graph Embedding With Iterative Guidance From Soft Rules 481 | `_ 482 | | :authors:`Shu, Guo, Quan, Wang, Lihong, Wang, Bin, Wang, Li, Guo` 483 | | :venue:`AAAI 2018` 484 | 485 | `Spatial Temporal Graph Convolutional Networks for Skeleton-based Action Recognition 486 | `_ 487 | | :authors:`Sijie, Yan, Yuanjun, Xiong, Dahua, Lin` 488 | | :venue:`AAAI 2018` 489 | 490 | `Socialgcn: An Efficient Graph Convolutional Network Based Model for Social Recommendation 491 | `_ 492 | | :authors:`Le, Wu, Peijie, Sun, Richang, Hong, Yanjie, Fu, Xiting, Wang, Meng, Wang` 493 | | :venue:`AAAI 2018` 494 | | :keywords:`GCN, Social, recommendation` 495 | 496 | `Link Prediction via Subgraph Embedding-based Convex Matrix Completion 497 | `_ 498 | | :authors:`Zhu, Cao, Linlin, Wang, Gerard, de, Melo` 499 | | :venue:`AAAI 2018` 500 | 501 | `Action Schema Networks: Generalised Policies with Deep Learning 502 | `_ 503 | | :authors:`Sam, Toyer, Felipe, Trevizan, Sylvie, Thiebaux, Lexing, Xie` 504 | | :venue:`AAAI 2018` 505 | 506 | ACL 507 | --- 508 | 509 | `Improving Knowledge Graph Embedding Using Simple Constraints 510 | `_ 511 | | :authors:`Boyang, Ding, Quan, Wang, Bin, Wang, Li, Guo` 512 | | :venue:`ACL 2018` 513 | 514 | `A Graph-to-sequence Model for Amr-to-text Generation 515 | `_ 516 | | :authors:`Linfeng, Song, Yue, Zhang, Zhiguo, Wang, Daniel, Gildea` 517 | | :venue:`ACL 2018` 518 | 519 | `Graph-to-sequence Learning Using Gated Graph Neural Networks 520 | `_ 521 | | :authors:`Daniel, Beck, Gholamreza, Haffari, Trevor, Cohn` 522 | | :venue:`ACL 2018` 523 | 524 | Bioinformatics 525 | -------------- 526 | 527 | `Modeling Polypharmacy Side Effects with Graph Convolutional Networks 528 | `_ 529 | | :authors:`Marinka, Zitnik, Monica, Agrawal, Jure, Leskovec` 530 | | :venue:`Bioinformatics 2018` 531 | 532 | `Neodti: Neural Integration of Neighbor Information from a Heterogeneous Network for Discovering New 533 | `_ 534 | | :authors:`Fangping, Wan, Lixiang, Hong, An, Xiao, Tao, Jiang, Jianyang, Zeng` 535 | | :venue:`Bioinformatics 2018` 536 | 537 | CIKM 538 | ---- 539 | 540 | `Regal: Representation Learning-based Graph Alignment 541 | `_ 542 | | :authors:`Mark, Heimann, Haoming, Shen, Tara, Safavi, Danai, Koutra` 543 | | :venue:`CIKM 2018` 544 | 545 | COLING 546 | ------ 547 | 548 | `Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering 549 | `_ 550 | | :authors:`Daniil, Sorokin, Iryna, Gurevych` 551 | | :venue:`COLING 2018` 552 | 553 | CVPR 554 | ---- 555 | 556 | `Image Generation from Scene Graphs 557 | `_ 558 | | :authors:`Justin, Johnson, Agrim, Gupta, Li, Fei-Fei` 559 | | :venue:`CVPR 2018` 560 | 561 | `Foldingnet: Point Cloud Auto-encoder via Deep Grid Deformation 562 | `_ 563 | | :authors:`Yaoqing, Yang, Chen, Feng, Yiru, Shen, Dong, Tian` 564 | | :venue:`CVPR 2018` 565 | 566 | `Ppfnet: Global Context Aware Local Features for Robust 3d Point Matching 567 | `_ 568 | | :authors:`Haowen, Deng, Tolga, Birdal, Slobodan, Ilic` 569 | | :venue:`CVPR 2018` 570 | 571 | `Iterative Visual Reasoning Beyond Convolutions 572 | `_ 573 | | :authors:`Xinlei, Chen, Li-Jia, Li, Li, Fei-Fei, Abhinav, Gupta` 574 | | :venue:`CVPR 2018` 575 | 576 | `Surface Networks 577 | `_ 578 | | :authors:`Ilya, Kostrikov, Zhongshi, Jiang, Daniele, Panozzo, Denis, Zorin, Joan, Bruna` 579 | | :venue:`CVPR 2018` 580 | 581 | `Feastnet: Feature-steered Graph Convolutions for 3d Shape Analysis 582 | `_ 583 | | :authors:`Nitika, Verma, Edmond, Boyer, Jakob, Verbeek` 584 | | :venue:`CVPR 2018` 585 | 586 | `Learning to Act Properly: Predicting and Explaining Affordances From Images 587 | `_ 588 | | :authors:`Ching-Yao, Chuang, Jiaman, Li, Antonio, Torralba, Sanja, Fidler` 589 | | :venue:`CVPR 2018` 590 | 591 | `Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling 592 | `_ 593 | | :authors:`Yiru, Shen, Chen, Feng, Yaoqing, Yang, Dong, Tian` 594 | | :venue:`CVPR 2018` 595 | 596 | `Deformable Shape Completion With Graph Convolutional Autoencoders 597 | `_ 598 | | :authors:`Or, Litany, Alex, Bronstein, Michael, Bronstein, Ameesh, Makadia` 599 | | :venue:`CVPR 2018` 600 | 601 | ECCV 602 | ---- 603 | 604 | `Pixel2mesh: Generating 3d Mesh Models from Single Rgb Images 605 | `_ 606 | | :authors:`Nanyang, Wang, Yinda, Zhang, Zhuwen, Li, Yanwei, Fu, Wei, Liu, Yu-Gang, Jiang` 607 | | :venue:`ECCV 2018` 608 | 609 | `Learning Human-object Interactions by Graph Parsing Neural Networks 610 | `_ 611 | | :authors:`Siyuan, Qi, Wenguan, Wang, Baoxiong, Jia, Jianbing, Shen, Song-Chun, Zhu` 612 | | :venue:`ECCV 2018` 613 | 614 | `Generating 3d Faces Using Convolutional Mesh Autoencoders 615 | `_ 616 | | :authors:`Anurag, Ranjan, Timo, Bolkart, Soubhik, Sanyal, Michael, J., Black` 617 | | :venue:`ECCV 2018` 618 | 619 | `Learning So(3) Equivariant Representations with Spherical Cnns 620 | `_ 621 | | :authors:`Carlos, Esteves, Christine, Allen-Blanchette, Ameesh, Makadia, Kostas, Daniilidis` 622 | | :venue:`ECCV 2018` 623 | 624 | `Neural Graph Matching Networks for Fewshot 3d Action Recognition 625 | `_ 626 | | :authors:`Michelle, Guo, Edward, Chou, De-An, Huang, Shuran, Song, Serena, Yeung, Li, Fei-Fei` 627 | | :venue:`ECCV 2018` 628 | 629 | `Multi-kernel Diffusion Cnns for Graph-based Learning on Point Clouds 630 | `_ 631 | | :authors:`Lasse, Hansen, Jasper, Diesel, Mattias, P., Heinrich` 632 | | :venue:`ECCV 2018` 633 | 634 | `Hierarchical Video Frame Sequence Representation with Deep Convolutional Graph Network 635 | `_ 636 | | :authors:`Feng, Mao, Xiang, Wu, Hui, Xue, Rong, Zhang` 637 | | :venue:`ECCV 2018` 638 | 639 | `Graph R-cnn for Scene Graph Generation 640 | `_ 641 | | :authors:`Jianwei, Yang, Jiasen, Lu, Stefan, Lee, Dhruv, Batra, Devi, Parikh` 642 | | :venue:`ECCV 2018` 643 | 644 | `Exploring Visual Relationship for Image Captioning 645 | `_ 646 | | :authors:`Ting, Yao, Yingwei, Pan, Yehao, Li, Tao, Mei` 647 | | :venue:`ECCV 2018` 648 | 649 | EMNLP 650 | ----- 651 | 652 | `Linguistically-informed Self-attention for Semantic Role Labeling 653 | `_ 654 | | :authors:`Emma, Strubell, Patrick, Verga, Daniel, Andor, David, Weiss, Andrew, McCallum` 655 | | :venue:`EMNLP 2018` 656 | 657 | `Graph Convolution over Pruned Dependency Trees Improves Relation Extraction 658 | `_ 659 | | :authors:`Yuhao, Zhang, Peng, Qi, Christopher, D., Manning` 660 | | :venue:`EMNLP 2018` 661 | 662 | `Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks 663 | `_ 664 | | :authors:`Zhichun, Wang, Qingsong, Lv, Xiaohan, Lan, Yu, Zhang` 665 | | :venue:`EMNLP 2018` 666 | 667 | ICDM 668 | ---- 669 | 670 | `Meta-graph Based Hin Spectral Embedding: Methods, Analyses, and Insights 671 | `_ 672 | | :authors:`Carl, Yang, Yichen, Feng, Pan, Li, Yu, Shi, Jiawei, Han` 673 | | :venue:`ICDM 2018` 674 | 675 | ICLR 676 | ---- 677 | 678 | `Graph Attention Networks 679 | `_ 680 | | :authors:`Petar, Veličković, Guillem, Cucurull, Arantxa, Casanova, Adriana, Romero, Pietro, Liò, Yoshua, Bengio` 681 | | :venue:`ICLR 2018` 682 | 683 | `Fastgcn: Fast Learning with Graph Convolutional Networks via Importance Sampling 684 | `_ 685 | | :authors:`Jie, Chen, Tengfei, Ma, Cao, Xiao` 686 | | :venue:`ICLR 2018` 687 | 688 | `Qanet: Combining Local Convolution with Global Self-attention for Reading Comprehension 689 | `_ 690 | | :authors:`Adams, Wei, Yu, David, Dohan, Minh-Thang, Luong, Rui, Zhao, Kai, Chen, Mohammad, Norouzi, Quoc, V., Le` 691 | | :venue:`ICLR 2018` 692 | 693 | `A Structured Self-attentive Sentence Embedding 694 | `_ 695 | | :authors:`Zhouhan, Lin, Minwei, Feng, Cicero, Nogueira, dos, Santos, Mo, Yu, Bing, Xiang, Bowen, Zhou, Yoshua, Bengio` 696 | | :venue:`ICLR 2018` 697 | 698 | `Nervenet: Learning Structured Policy with Graph Neural Networks 699 | `_ 700 | | :authors:`Tingwu, Wang, Renjie, Liao, Jimmy, Ba, Sanja, Fidler` 701 | | :venue:`ICLR 2018` 702 | 703 | `Few-shot Learning with Graph Neural Networks 704 | `_ 705 | | :authors:`Victor, Garcia, Joan, Bruna` 706 | | :venue:`ICLR 2018` 707 | 708 | ICML 709 | ---- 710 | 711 | `Representation Learning on Graphs with Jumping Knowledge Networks 712 | `_ 713 | | :authors:`Keyulu, Xu, Chengtao, Li, Yonglong, Tian, Tomohiro, Sonobe, Ken-ichi, Kawarabayashi, Stefanie, Jegelka` 714 | | :venue:`ICML 2018` 715 | 716 | `Stochastic Training of Graph Convolutional Networks with Variance Reduction 717 | `_ 718 | | :authors:`Jianfei, Chen, Jun, Zhu, Le, Song` 719 | | :venue:`ICML 2018` 720 | 721 | `Graph Networks As Learnable Physics Engines for Inference and Control 722 | `_ 723 | | :authors:`Alvaro, Sanchez-Gonzalez, Nicolas, Heess, Jost, Tobias, Springenberg, Josh, Merel, Martin, Riedmiller` 724 | | :venue:`ICML 2018` 725 | 726 | `Learning Policy Representations in Multiagent Systems 727 | `_ 728 | | :authors:`Aditya, Grover, Maruan, Al-Shedivat, Jayesh, K., Gupta, Yura, Burda, Harrison, Edwards` 729 | | :venue:`ICML 2018` 730 | 731 | `Adversarial Attack on Graph Structured Data 732 | `_ 733 | | :authors:`Hanjun, Dai, Hui, Li, Tian, Tian, Xin, Huang, Lin, Wang, Jun, Zhu, Le, Song` 734 | | :venue:`ICML 2018` 735 | 736 | `Learning Steady-states of Iterative Algorithms over Graphs 737 | `_ 738 | | :authors:`Hanjun, Dai, Zornitsa, Kozareva, Bo, Dai, Alex, Smola, Le, Song` 739 | | :venue:`ICML 2018` 740 | 741 | `Neural Relational Inference for Interacting Systems 742 | `_ 743 | | :authors:`Thomas, Kipf, Ethan, Fetaya, Kuan-Chieh, Wang, Max, Welling, Richard, Zemel` 744 | | :venue:`ICML 2018` 745 | 746 | `Graphrnn: Generating Realistic Graphs with Deep Auto-regressive Models 747 | `_ 748 | | :authors:`Jiaxuan, You, Rex, Ying, Xiang, Ren, William, L., Hamilton, Jure, Leskovec` 749 | | :venue:`ICML 2018` 750 | 751 | `Netgan: Generating Graphs via Random Walks 752 | `_ 753 | | :authors:`Aleksandar, Bojchevski, Oleksandr, Shchur, Daniel, Zügner, Stephan, Günnemann` 754 | | :venue:`ICML 2018` 755 | 756 | `Learning Deep Generative Models of Graphs 757 | `_ 758 | | :authors:`Yujia, Li, Oriol, Vinyals, Chris, Dyer, Razvan, Pascanu, Peter, Battaglia` 759 | | :venue:`ICML 2018` 760 | 761 | `Junction Tree Variational Autoencoder for Molecular Graph Generation 762 | `_ 763 | | :authors:`Wengong, Jin, Regina, Barzilay, Tommi, Jaakkola` 764 | | :venue:`ICML 2018` 765 | 766 | IJCAI 767 | ----- 768 | 769 | `Anrl: Attributed Network Representation Learning via Deep Neural Networks 770 | `_ 771 | | :authors:`Zhen, Zhang, Hongxia, Yang, Jiajun, Bu, Sheng, Zhou, Pinggang, Yu, Jianwei, Zhang, Martin, Ester, Can, Wang` 772 | | :venue:`IJCAI 2018` 773 | 774 | `Efficient Attributed Network Embedding via Recursive Randomized Hashing 775 | `_ 776 | | :authors:`Wei, Wu, Bin, Li, Ling, Chen, Chengqi, Zhang` 777 | | :venue:`IJCAI 2018` 778 | 779 | `Deep Attributed Network Embedding 780 | `_ 781 | | :authors:`Hongchang, Gao, Heng, Huang` 782 | | :venue:`IJCAI 2018` 783 | 784 | `Dynamic Network Embedding : An Extended Approach for Skip-gram Based Network Embedding 785 | `_ 786 | | :authors:`Lun, Du, Yun, Wang, Guojie, Song, Zhicong, Lu, Junshan, Wang` 787 | | :venue:`IJCAI 2018` 788 | 789 | KDD 790 | --- 791 | 792 | `Learning Structural Node Embeddings via Diffusion Wavelets 793 | `_ 794 | | :authors:`Claire, Donnat, Marinka, Zitnik, David, Hallac, Jure, Leskovec` 795 | | :venue:`KDD 2018` 796 | 797 | `Pme: Projected Metric Embedding on Heterogeneous Networks for Link Prediction 798 | `_ 799 | | :authors:`Hongxu, Chen, Hongzhi, Yin, Weiqing, Wang, Hao, Wang, Quoc, Viet, Hung, Nguyen, Xue, Li` 800 | | :venue:`KDD 2018` 801 | 802 | `Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks 803 | `_ 804 | | :authors:`Yu, Shi, Qi, Zhu, Fang, Guo, Chao, Zhang, Jiawei, Han` 805 | | :venue:`KDD 2018` 806 | 807 | `Dynamic Embeddings for User Profiling in Twitter 808 | `_ 809 | | :authors:`Shangsong, Liang, Xiangliang, Zhang, Zhaochun, Ren, Evangelos, Kanoulas` 810 | | :venue:`KDD 2018` 811 | 812 | `Large-scale Learnable Graph Convolutional Networks 813 | `_ 814 | | :authors:`Hongyang, Gao, Zhengyang, Wang, Shuiwang, Ji` 815 | | :venue:`KDD 2018` 816 | 817 | `Graph Convolutional Neural Networks for Web-scale Recommender Systems 818 | `_ 819 | | :authors:`Rex, Ying, Ruining, He, Kaifeng, Chen, Pong, Eksombatchai, William, L., Hamilton, Jure, Leskovec` 820 | | :venue:`KDD 2018` 821 | | :keywords:`P, i, n, S, a, g, e` 822 | 823 | `Graph Convolutional Matrix Completion 824 | `_ 825 | | :authors:`Rianne, van, den, Berg, Thomas, N., Kipf, Max, Welling` 826 | | :venue:`KDD 2018 Workshop` 827 | 828 | `Deepinf: Social Influence Prediction with Deep Learning 829 | `_ 830 | | :authors:`Jiezhong, Qiu, Jian, Tang, Hao, Ma, Yuxiao, Dong, Kuansan, Wang, Jie, Tang` 831 | | :venue:`KDD 2018` 832 | 833 | `Adversarial Attacks on Neural Networks for Graph Data 834 | `_ 835 | | :authors:`Daniel, Zügner, Amir, Akbarnejad, Stephan, Günnemann` 836 | | :venue:`KDD 2018` 837 | 838 | NAACL 839 | ----- 840 | 841 | `Kbgan: Adversarial Learning for Knowledge Graph Embeddings 842 | `_ 843 | | :authors:`Liwei, Cai, William, Yang, Wang` 844 | | :venue:`NAACL 2018` 845 | 846 | `A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network 847 | `_ 848 | | :authors:`Dai, Quoc, Nguyen, Tu, Dinh, Nguyen, Dat, Quoc, Nguyen, Dinh, Phung` 849 | | :venue:`NAACL 2018` 850 | 851 | `Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks 852 | `_ 853 | | :authors:`Diego, Marcheggiani, Joost, Bastings, Ivan, Titov` 854 | | :venue:`NAACL 2018` 855 | 856 | NeurIPS 857 | ------- 858 | 859 | `Simple Embedding for Link Prediction in Knowledge Graphs 860 | `_ 861 | | :authors:`Seyed, Mehran, Kazemi, David, Poole` 862 | | :venue:`NeurIPS 2018` 863 | 864 | `Adaptive Sampling Towards Fast Graph Representation Learning 865 | `_ 866 | | :authors:`Wenbing, Huang, Tong, Zhang, Yu, Rong, Junzhou, Huang` 867 | | :venue:`NeurIPS 2018` 868 | 869 | `Hierarchical Graph Representation Learning with Differentiable Pooling 870 | `_ 871 | | :authors:`Rex, Ying, Jiaxuan, You, Christopher, Morris, Xiang, Ren, William, L., Hamilton, Jure, Leskovec` 872 | | :venue:`NeurIPS 2018` 873 | 874 | `Bayesian Semi-supervised Learning with Graph Gaussian Processes 875 | `_ 876 | | :authors:`Yin, Cheng, Ng, Nicolò, Colombo, Ricardo, Silva` 877 | | :venue:`NeurIPS 2018` 878 | 879 | `Beyond Grids: Learning Graph Representations for Visual Recognition 880 | `_ 881 | | :authors:`Yin, Li, Abhinav, Gupta` 882 | | :venue:`NeurIPS 2018` 883 | 884 | `Learning Conditioned Graph Structures for Interpretable Visual Question Answering 885 | `_ 886 | | :authors:`Will, Norcliffe-Brown, Efstathios, Vafeias, Sarah, Parisot` 887 | | :venue:`NeurIPS 2018` 888 | 889 | `Linknet: Relational Embedding for Scene Graph 890 | `_ 891 | | :authors:`Sanghyun, Woo, Dahun, Kim, Donghyeon, Cho, In, So, Kweon` 892 | | :venue:`NeurIPS 2018` 893 | 894 | `Flexible Neural Representation for Physics Prediction 895 | `_ 896 | | :authors:`Damian, Mrowca, Chengxu, Zhuang, Elias, Wang, Nick, Haber, Li, Fei-Fei, Joshua, B., Tenenbaum, Daniel, L., K., Yamins` 897 | | :venue:`NeurIPS 2018` 898 | 899 | `Link Prediction Based on Graph Neural Networks 900 | `_ 901 | | :authors:`Muhan, Zhang, Yixin, Chen` 902 | | :venue:`NeurIPS 2018` 903 | 904 | `Relational Recurrent Neural Networks 905 | `_ 906 | | :authors:`Adam, Santoro, Ryan, Faulkner, David, Raposo, Jack, Rae, Mike, Chrzanowski, Théophane, Weber, Daan, Wierstra, Oriol, Vinyals, Razvan, Pascanu, Timothy, Lillicrap` 907 | | :venue:`NeurIPS 2018` 908 | 909 | `Transfer of Deep Reactive Policies for Mdp Planning 910 | `_ 911 | | :authors:`Aniket, Bajpai, Sankalp, Garg, Mausam` 912 | | :venue:`NeurIPS 2018` 913 | 914 | `Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search 915 | `_ 916 | | :authors:`Zhuwen, Li, Qifeng, Chen, Vladlen, Koltun` 917 | | :venue:`NeurIPS 2018` 918 | 919 | `Reinforcement Learning for Solving the Vehicle Routing Problem 920 | `_ 921 | | :authors:`Mohammadreza, Nazari, Afshin, Oroojlooy, Lawrence, V., Snyder, Martin, Takáč` 922 | | :venue:`NeurIPS 2018` 923 | 924 | `Generative Modeling for Protein Structures 925 | `_ 926 | | :authors:`Namrata, Anand, Po-Ssu, Huang` 927 | | :venue:`NeurIPS 2018` 928 | 929 | `Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders 930 | `_ 931 | | :authors:`Tengfei, Ma, Jie, Chen, Cao, Xiao` 932 | | :venue:`NeurIPS 2018` 933 | 934 | `Graph Convolutional Policy Network for Goal-directed Molecular Graph Generation 935 | `_ 936 | | :authors:`Jiaxuan, You, Bowen, Liu, Rex, Ying, Vijay, Pande, Jure, Leskovec` 937 | | :venue:`NeurIPS 2018` 938 | 939 | `Constrained Graph Variational Autoencoders for Molecule Design 940 | `_ 941 | | :authors:`Qi, Liu, Miltiadis, Allamanis, Marc, Brockschmidt, Alexander, L., Gaunt` 942 | | :venue:`NeurIPS 2018` 943 | 944 | SIGIR 945 | ----- 946 | 947 | `Bine: Bipartite Network Embedding 948 | `_ 949 | | :authors:`Ming, Gao, Leihui, Chen, Xiangnan, He, Aoying, Zhou` 950 | | :venue:`SIGIR 2018` 951 | 952 | WSDM 953 | ---- 954 | 955 | `Network Embedding As Matrix Factorization: Unifying Deepwalk, Line, Pte, and Node2vec 956 | `_ 957 | | :authors:`Jiezhong, Qiu, Yuxiao, Dong, Hao, Ma, Jian, Li, Kuansan, Wang, Jie, Tang` 958 | | :venue:`WSDM 2018` 959 | 960 | `Exploring Expert Cognition for Attributed Network Embedding 961 | `_ 962 | | :authors:`Xiao, Huang, Qingquan, Song, Jundong, Li, Xia, Hu` 963 | | :venue:`WSDM 2018` 964 | 965 | `Shine: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction 966 | `_ 967 | | :authors:`Hongwei, Wang, Fuzheng, Zhang, Min, Hou, Xing, Xie, Minyi, Guo, Qi, Liu` 968 | | :venue:`WSDM 2018` 969 | 970 | `Multidimensional Network Embedding with Hierarchical Structures 971 | `_ 972 | | :authors:`Yao, Ma, Zhaochun, Ren, Ziheng, Jiang, Jiliang, Tang, Dawei, Yin` 973 | | :venue:`WSDM 2018` 974 | 975 | `Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning 976 | `_ 977 | | :authors:`Meng, Qu, Jian, Tang, Jiawei, Han` 978 | | :venue:`WSDM 2018` 979 | 980 | WWW 981 | --- 982 | 983 | `Verse: Versatile Graph Embeddings from Similarity Measures 984 | `_ 985 | | :authors:`Anton, Tsitsulin, Davide, Mottin, Panagiotis, Karras, Emmanuel, Müller` 986 | | :venue:`WWW 2018` 987 | 988 | `Co-regularized Deep Multi-network Embedding 989 | `_ 990 | | :authors:`Jingchao, Ni, Shiyu, Chang, Xiao, Liu, Wei, Cheng, Haifeng, Chen, Dongkuan, Xu, Xiang, Zhang` 991 | | :venue:`WWW 2018` 992 | 993 | `Side: Representation Learning in Signed Directed Networks 994 | `_ 995 | | :authors:`Junghwan, Kim, Haekyu, Park, Ji-Eun, Lee, U, Kang` 996 | | :venue:`WWW 2018` 997 | 998 | arXiv 999 | ----- 1000 | 1001 | `Pitfalls of Graph Neural Network Evaluation 1002 | `_ 1003 | | :authors:`Oleksandr, Shchur, Maximilian, Mumme, Aleksandar, Bojchevski, Stephan, Günnemann` 1004 | | :venue:`arXiv 2018` 1005 | 1006 | `Molgan: An Implicit Generative Model for Small Molecular Graphs 1007 | `_ 1008 | | :authors:`Nicola, De, Cao, Thomas, Kipf` 1009 | | :venue:`arXiv 2018` 1010 | 1011 | 2019 1012 | ==== 1013 | 1014 | WSDM 1015 | ---- 1016 | 1017 | `A General View for Network Embedding As Matrix Factorization 1018 | `_ 1019 | | :authors:`Xin, Liu, Tsuyoshi, Murata, Kyoung-Sook, Kim, Chatchawan, Kotarasu, Chenyi, Zhuang` 1020 | | :venue:`WSDM 2019` 1021 | 1022 | `Session-based Social Recommendation via Dynamic Graph Attention Networks 1023 | `_ 1024 | | :authors:`Weiping, Song, Zhiping, Xiao, Yifan, Wang, Laurent, Charlin, Ming, Zhang, Jian, Tang` 1025 | | :venue:`WSDM 2019` 1026 | | :keywords:`Social, recommendation, session-based, GAT` 1027 | 1028 | ICLR 1029 | ---- 1030 | 1031 | `Deep Graph Infomax 1032 | `_ 1033 | | :authors:`Petar, Veličković, William, Fedus, William, L., Hamilton, Pietro, Liò, Yoshua, Bengio, R, Devon, Hjelm` 1034 | | :venue:`ICLR 2019` 1035 | 1036 | `Dyrep: Learning Representations over Dynamic Graphs 1037 | `_ 1038 | | :authors:`Rakshit, Trivedi, Mehrdad, Farajtabar, Prasenjeet, Biswal, Hongyuan, Zha` 1039 | | :venue:`ICLR 2019` 1040 | 1041 | `Rotate: Knowledge Graph Embedding by Relational Rotation in Complex Space 1042 | `_ 1043 | | :authors:`Zhiqing, Sun, Zhi-Hong, Deng, Jian-Yun, Nie, Jian, Tang` 1044 | | :venue:`ICLR 2019` 1045 | 1046 | `How Powerful Are Graph Neural Networks? 1047 | `_ 1048 | | :authors:`Keyulu, Xu, Weihua, Hu, Jure, Leskovec, Stefanie, Jegelka` 1049 | | :venue:`ICLR 2019` 1050 | 1051 | `Lanczosnet: Multi-scale Deep Graph Convolutional Networks 1052 | `_ 1053 | | :authors:`Renjie, Liao, Zhizhen, Zhao, Raquel, Urtasun, Richard, S., Zemel` 1054 | | :venue:`ICLR 2019` 1055 | 1056 | `Graph Wavelet Neural Network 1057 | `_ 1058 | | :authors:`Bingbing, Xu, Huawei, Shen, Qi, Cao, Yunqi, Qiu, Xueqi, Cheng` 1059 | | :venue:`ICLR 2019` 1060 | 1061 | `Supervised Community Detection with Line Graph Neural Networks 1062 | `_ 1063 | | :authors:`Zhengdao, Chen, Xiang, Li, Joan, Bruna` 1064 | | :venue:`ICLR 2019` 1065 | 1066 | `Predict Then Propagate: Graph Neural Networks Meet Personalized Pagerank 1067 | `_ 1068 | | :authors:`Johannes, Klicpera, Aleksandar, Bojchevski, Stephan, Günnemann` 1069 | | :venue:`ICLR 2019` 1070 | 1071 | `Invariant and Equivariant Graph Networks 1072 | `_ 1073 | | :authors:`Haggai, Maron, Heli, Ben-Hamu, Nadav, Shamir, Yaron, Lipman` 1074 | | :venue:`ICLR 2019` 1075 | 1076 | `Capsule Graph Neural Network 1077 | `_ 1078 | | :authors:`Zhang, Xinyi, Lihui, Chen` 1079 | | :venue:`ICLR 2019` 1080 | 1081 | `Differentiable Perturb-and-parse: Semi-supervised Parsing with a Structured Variational Autoencoder 1082 | `_ 1083 | | :authors:`Caio, Corro, Ivan, Titov` 1084 | | :venue:`ICLR 2019` 1085 | 1086 | `Structured Neural Summarization 1087 | `_ 1088 | | :authors:`Patrick, Fernandes, Miltiadis, Allamanis, Marc, Brockschmid` 1089 | | :venue:`ICLR 2019` 1090 | 1091 | `Learning Localized Generative Models for 3d Point Clouds via Graph Convolution 1092 | `_ 1093 | | :authors:`Diego, Valsesia, Giulia, Fracastoro, Enrico, Magli` 1094 | | :venue:`ICLR 2019` 1095 | 1096 | `Graph Hypernetworks for Neural Architecture Search 1097 | `_ 1098 | | :authors:`Chris, Zhang, Mengye, Ren, Raquel, Urtasun` 1099 | | :venue:`ICLR 2019` 1100 | 1101 | `Neural Graph Evolution: Towards Efficient Automatic Robot Design 1102 | `_ 1103 | | :authors:`Tingwu, Wang, Yuhao, Zhou, Sanja, Fidler, Jimmy, Ba` 1104 | | :venue:`ICLR 2019` 1105 | 1106 | `Attention, Learn to Solve Routing Problems! 1107 | `_ 1108 | | :authors:`Wouter, Kool, Herke, van, Hoof, Max, Welling` 1109 | | :venue:`ICLR 2019` 1110 | 1111 | `Learning a Sat Solver from Single-bit Supervision 1112 | `_ 1113 | | :authors:`Daniel, Selsam, Matthew, Lamm, Benedikt, Bünz, Percy, Liang, Leonardo, de, Moura, David, L., Dill` 1114 | | :venue:`ICLR 2019` 1115 | 1116 | `Adversarial Attacks on Graph Neural Networks via Meta Learning 1117 | `_ 1118 | | :authors:`Daniel, Zügner, Stephan, Günnemann` 1119 | | :venue:`ICLR 2019` 1120 | 1121 | `Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning 1122 | `_ 1123 | | :authors:`Yanbin, Liu, Juho, Lee, Minseop, Park, Saehoon, Kim, Eunho, Yang, Sung, Ju, Hwang, Yi, Yang` 1124 | | :venue:`ICLR 2019` 1125 | 1126 | `Learning Multimodal Graph-to-graph Translation for Molecule Optimization 1127 | `_ 1128 | | :authors:`Wengong, Jin, Kevin, Yang, Regina, Barzilay, Tommi, Jaakkola` 1129 | | :venue:`ICLR 2019` 1130 | 1131 | `Generative Code Modeling with Graphs 1132 | `_ 1133 | | :authors:`Marc, Brockschmidt, Miltiadis, Allamanis, Alexander, L., Gaunt, Oleksandr, Polozov` 1134 | | :venue:`ICLR 2019` 1135 | 1136 | `Graphtsne: A Visualization Technique for Graph-structured Data 1137 | `_ 1138 | | :authors:`Yao, Yang, Leow, Thomas, Laurent, Xavier, Bresson` 1139 | | :venue:`ICLR 2019 Workshop` 1140 | 1141 | WWW 1142 | --- 1143 | 1144 | `Netsmf: Large-scale Network Embedding As Sparse Matrix Factorization 1145 | `_ 1146 | | :authors:`Jiezhong, Qiu, Yuxiao, Dong, Hao, Ma, Jian, Li, Chi, Wang, Kuansan, Wang, Jie, Tang` 1147 | | :venue:`WWW 2019` 1148 | 1149 | `Adversarial Training Methods for Network Embedding 1150 | `_ 1151 | | :authors:`Quanyu, Dai, Xiao, Shen, Liang, Zhang, Qiang, Li, Dan, Wang` 1152 | | :venue:`WWW 2019` 1153 | 1154 | `Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning 1155 | `_ 1156 | | :authors:`Wen, Zhang, Bibek, Paudel, Liang, Wang, Jiaoyan, Chen, Hai, Zhu, Wei, Zhang, Abraham, Bernstein, Huajun, Chen` 1157 | | :venue:`WWW 2019` 1158 | 1159 | `Heterogeneous Graph Attention Network 1160 | `_ 1161 | | :authors:`Xiao, Wang, Houye, Ji, Chuan, Shi, Bai, Wang, Peng, Cui, P., Yu, Yanfang, Ye` 1162 | | :venue:`WWW 2019` 1163 | 1164 | `Learning Graph Pooling and Hybrid Convolutional Operations for Text Representations 1165 | `_ 1166 | | :authors:`Hongyang, Gao, Yongjun, Chen, Shuiwang, Ji` 1167 | | :venue:`WWW 2019` 1168 | 1169 | `Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in 1170 | `_ 1171 | | :authors:`Qitian, Wu, Hengrui, Zhang, Xiaofeng, Gao, Peng, He, Paul, Weng, Han, Gao, Guihai, Chen` 1172 | | :venue:`WWW 2019` 1173 | | :keywords:`Social, recommendation, GAT` 1174 | 1175 | `Graph Neural Networks for Social Recommendation 1176 | `_ 1177 | | :authors:`Wenqi, Fan, Yao, Ma, Qing, Li, Yuan, He, Eric, Zhao, Jiliang, Tang, Dawei, Yin` 1178 | | :venue:`WWW 2019` 1179 | | :keywords:`Social, recommendation, GNN` 1180 | 1181 | `Graphvite: A High-performance Cpu-gpu Hybrid System for Node Embedding 1182 | `_ 1183 | | :authors:`Zhaocheng, Zhu, Shizhen, Xu, Meng, Qu, Jian, Tang` 1184 | | :venue:`WWW 2019` 1185 | 1186 | AAAI 1187 | ---- 1188 | 1189 | `Bayesian Graph Convolutional Neural Networks for Semi-supervised Classification 1190 | `_ 1191 | | :authors:`Yingxue, Zhang, Soumyasundar, Pal, Mark, Coates, Deniz, Üstebay` 1192 | | :venue:`AAAI 2019` 1193 | 1194 | `Graph Convolutional Networks for Text Classification 1195 | `_ 1196 | | :authors:`Liang, Yao, Chengsheng, Mao, Yuan, Luo` 1197 | | :venue:`AAAI 2019` 1198 | 1199 | `Multi-task Learning over Graph Structures 1200 | `_ 1201 | | :authors:`Pengfei, Liu, Jie, Fu, Yue, Dong, Xipeng, Qiu, Jackie, Chi, Kit, Cheung` 1202 | | :venue:`AAAI 2019` 1203 | 1204 | `Session-based Recommendation with Graph Neural Networks 1205 | `_ 1206 | | :authors:`Shu, Wu, Yuyuan, Tang, Yanqiao, Zhu, Liang, Wang, Xing, Xie, Tieniu, Tan` 1207 | | :venue:`AAAI 2019` 1208 | | :keywords:`Session-based, recommendation, GNN` 1209 | 1210 | `Atomic: an Atlas of Machine Commonsense for If-then Reasoning 1211 | `_ 1212 | | :authors:`Maarten, Sap, Ronan, Le, Bras, Emily, Allaway, Chandra, Bhagavatula, Nicholas, Lourie, Hannah, Rashkin, Brendan, Roof, Noah, A., Smith, Yejin, Choi` 1213 | | :venue:`AAAI 2019` 1214 | 1215 | ICML 1216 | ---- 1217 | 1218 | `Mixhop: Higher-order Graph Convolutional Architectures via Sparsified Neighborhood Mixing 1219 | `_ 1220 | | :authors:`Sami, Abu-El-Haija, Bryan, Perozzi, Amol, Kapoor, Nazanin, Alipourfard, Kristina, Lerman, Hrayr, Harutyunyan, Greg, Ver, Steeg, Aram, Galstyan` 1221 | | :venue:`ICML 2019` 1222 | 1223 | `Graph U-nets 1224 | `_ 1225 | | :authors:`Hongyang, Gao, Shuiwang, Ji` 1226 | | :venue:`ICML 2019` 1227 | 1228 | `Disentangled Graph Convolutional Networks 1229 | `_ 1230 | | :authors:`Jianxin, Ma, Peng, Cui, Kun, Kuang, Xin, Wang, Wenwu, Zhu` 1231 | | :venue:`ICML 2019` 1232 | 1233 | `Gmnn: Graph Markov Neural Networks 1234 | `_ 1235 | | :authors:`Meng, Qu, Yoshua, Bengio, Jian, Tang` 1236 | | :venue:`ICML 2019` 1237 | 1238 | `Simplifying Graph Convolutional Networks 1239 | `_ 1240 | | :authors:`Felix, Wu, Tianyi, Zhang, Amauri, Holanda, de, Souza, Jr., Christopher, Fifty, Tao, Yu, Kilian, Q., Weinberger` 1241 | | :venue:`ICML 2019` 1242 | 1243 | `Position-aware Graph Neural Networks 1244 | `_ 1245 | | :authors:`Jiaxuan, You, Rex, Ying, Jure, Leskovec` 1246 | | :venue:`ICML 2019` 1247 | 1248 | `Self-attention Graph Pooling 1249 | `_ 1250 | | :authors:`Junhyun, Lee, Inyeop, Lee, Jaewoo, Kang` 1251 | | :venue:`ICML 2019` 1252 | 1253 | `Relational Pooling for Graph Representations 1254 | `_ 1255 | | :authors:`Ryan, L., Murphy, Balasubramaniam, Srinivasan, Vinayak, Rao, Bruno, Ribeiro` 1256 | | :venue:`ICML 2019` 1257 | 1258 | `Graph Learning Network: A Structure Learning Algorithm 1259 | `_ 1260 | | :authors:`Darwin, Saire, Pilco, Adín, Ramírez, Rivera` 1261 | | :venue:`ICML 2019 Workshop` 1262 | 1263 | `Learning Discrete Structures for Graph Neural Networks 1264 | `_ 1265 | | :authors:`Luca, Franceschi, Mathias, Niepert, Massimiliano, Pontil, Xiao, He` 1266 | | :venue:`ICML 2019` 1267 | 1268 | `Graphite: Iterative Generative Modeling of Graphs 1269 | `_ 1270 | | :authors:`Aditya, Grover, Aaron, Zweig, Stefano, Ermon` 1271 | | :venue:`ICML 2019` 1272 | 1273 | `Drug-drug Adverse Effect Prediction with Graph Co-attention 1274 | `_ 1275 | | :authors:`Andreea, Deac, Yu-Hsiang, Huang, Petar, Veličković, Pietro, Liò, Jian, Tang` 1276 | | :venue:`ICML 2019 Workshop` 1277 | 1278 | `Dag-gnn: Dag Structure Learning with Graph Neural Networks 1279 | `_ 1280 | | :authors:`Yue, Yu, Jie, Chen, Tian, Gao, Mo, Yu` 1281 | | :venue:`ICML 2019` 1282 | 1283 | arXiv 1284 | ----- 1285 | 1286 | `Continuous Graph Neural Networks 1287 | `_ 1288 | | :authors:`Louis-Pascal, A., C., Xhonneux, Meng, Qu, Jian, Tang` 1289 | | :venue:`arXiv 2019` 1290 | 1291 | `An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem 1292 | `_ 1293 | | :authors:`Chaitanya, K., Joshi, Thomas, Laurent, Xavier, Bresson` 1294 | | :venue:`arXiv 2019` 1295 | 1296 | `Brain Signal Classification via Learning Connectivity Structure 1297 | `_ 1298 | | :authors:`Soobeom, Jang, Seong-Eun, Moon, Jong-Seok, Lee` 1299 | | :venue:`arXiv 2019` 1300 | 1301 | `Joint Embedding of Structure and Features via Graph Convolutional Networks 1302 | `_ 1303 | | :authors:`Sébastien, Lerique, Jacob, Levy, Abitbol, Márton, Karsai` 1304 | | :venue:`arXiv 2019` 1305 | 1306 | `Variational Spectral Graph Convolutional Networks 1307 | `_ 1308 | | :authors:`Louis, Tiao, Pantelis, Elinas, Harrison, Nguyen, Edwin, V., Bonilla` 1309 | | :venue:`arXiv 2019` 1310 | 1311 | `Selfies: a Robust Representation of Semantically Constrained Graphs with an Example Application in Chemistry 1312 | `_ 1313 | | :authors:`Mario, Krenn, Florian, Häse, AkshatKumar, Nigam, Pascal, Friederich, Alán, Aspuru-Guzik` 1314 | | :venue:`arXiv 2019` 1315 | 1316 | `Detecting Drug-drug Interactions Using Artificial Neural Networks and Classic Graph Similarity Measures 1317 | `_ 1318 | | :authors:`Guy, Shtar, Lior, Rokach, Bracha, Shapira` 1319 | | :venue:`arXiv 2019` 1320 | 1321 | NAACL 1322 | ----- 1323 | 1324 | `Imposing Label-relational Inductive Bias for Extremely Fine-grained Entity Typing 1325 | `_ 1326 | | :authors:`Wenhan, Xiong, Jiawei, Wu, Deren, Lei, Mo, Yu, Shiyu, Chang, Xiaoxiao, Guo, William, Yang, Wang` 1327 | | :venue:`NAACL 2019` 1328 | 1329 | `Single Document Summarization As Tree Induction 1330 | `_ 1331 | | :authors:`Yang, Liu, Ivan, Titov, Mirella, Lapata` 1332 | | :venue:`NAACL 2019` 1333 | 1334 | `Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks 1335 | `_ 1336 | | :authors:`Ningyu, Zhang, Shumin, Deng, Zhanlin, Sun, Guanying, Wang, Xi, Chen, Wei, Zhang, Huajun, Chen` 1337 | | :venue:`NAACL 2019` 1338 | 1339 | CVPR 1340 | ---- 1341 | 1342 | `Graph-based Global Reasoning Networks 1343 | `_ 1344 | | :authors:`Yunpeng, Chen, Marcus, Rohrbach, Zhicheng, Yan, Shuicheng, Yan, Jiashi, Feng, Yannis, Kalantidis` 1345 | | :venue:`CVPR 2019` 1346 | 1347 | `Deep Graph Laplacian Regularization for Robust Denoising of Real Images 1348 | `_ 1349 | | :authors:`Jin, Zeng, Jiahao, Pang, Wenxiu, Sun, Gene, Cheung` 1350 | | :venue:`CVPR 2019` 1351 | 1352 | `Learning Context Graph for Person Search 1353 | `_ 1354 | | :authors:`Yichao, Yan, Qiang, Zhang, Bingbing, Ni, Wendong, Zhang, Minghao, Xu, Xiaokang, Yang` 1355 | | :venue:`CVPR 2019` 1356 | 1357 | `Graphonomy: Universal Human Parsing via Graph Transfer Learning 1358 | `_ 1359 | | :authors:`Ke, Gong, Yiming, Gao, Xiaodan, Liang, Xiaohui, Shen, Meng, Wang, Liang, Lin` 1360 | | :venue:`CVPR 2019` 1361 | 1362 | `Masked Graph Attention Network for Person Re-identification 1363 | `_ 1364 | | :authors:`Liqiang, Bao, Bingpeng, Ma, Hong, Chang, Xilin, Chen` 1365 | | :venue:`CVPR 2019` 1366 | 1367 | `Learning to Cluster Faces on an Affinity Graph 1368 | `_ 1369 | | :authors:`Lei, Yang, Xiaohang, Zhan, Dapeng, Chen, Junjie, Yan, Chen, Change, Loy, Dahua, Lin` 1370 | | :venue:`CVPR 2019` 1371 | 1372 | `Actional-structural Graph Convolutional Networks for Skeleton-based Action Recognition 1373 | `_ 1374 | | :authors:`Maosen, Li, Siheng, Chen, Xu, Chen, Ya, Zhang, Yanfeng, Wang, Qi, Tian` 1375 | | :venue:`CVPR 2019` 1376 | 1377 | `Adaptively Connected Neural Networks 1378 | `_ 1379 | | :authors:`Guangrun, Wang, Keze, Wang, Liang, Lin` 1380 | | :venue:`CVPR 2019` 1381 | 1382 | `Reasoning Visual Dialogs with Structural and Partial Observations 1383 | `_ 1384 | | :authors:`Zilong, Zheng, Wenguan, Wang, Siyuan, Qi, Song-Chun, Zhu` 1385 | | :venue:`CVPR 2019` 1386 | 1387 | SIGGRAPH 1388 | -------- 1389 | 1390 | `Meshcnn: A Network with an Edge 1391 | `_ 1392 | | :authors:`Rana, Hanocka, Amir, Hertz, Noa, Fish, Raja, Giryes, Shachar, Fleishman, Daniel, Cohen-Or` 1393 | | :venue:`SIGGRAPH 2019` 1394 | | :keywords:`h, t, t, p, s, :, /, /, r, a, n, a, h, a, n, o, c, k, a, ., g, i, t, h, u, b, ., i, o, /, M, e, s, h, C, N, N, /` 1395 | 1396 | SIGIR 1397 | ----- 1398 | 1399 | `A Neural Influence Diffusion Model for Social Recommendation 1400 | `_ 1401 | | :authors:`Le, Wu, Peijie, Sun, Yanjie, Fu, Richang, Hong, Xiting, Wang, Meng, Wang` 1402 | | :venue:`SIGIR 2019` 1403 | | :keywords:`Social, Recommendation, diffusion` 1404 | 1405 | `Neural Graph Collaborative Filtering 1406 | `_ 1407 | | :authors:`Xiang, Wang, Xiangnan, He, Meng, Wang, Fuli, Feng, Tat-Seng, Chua` 1408 | | :venue:`SIGIR 2019` 1409 | | :keywords:`Collaborative, Filtering, GNN` 1410 | 1411 | IJCAI 1412 | ----- 1413 | 1414 | `Binarized Collaborative Filtering with Distilling Graph Convolutional Networks 1415 | `_ 1416 | | :authors:`Haoyu, Wang, Defu, Lian, Yong, Ge` 1417 | | :venue:`IJCAI 2019` 1418 | 1419 | bioRxiv 1420 | ------- 1421 | 1422 | `Pgcn: Disease Gene Prioritization by Disease and Gene Embedding through Graph Convolutional Neural Networks 1423 | `_ 1424 | | :authors:`Yu, Li, Hiroyuki, Kuwahara, Peng, Yang, Le, Song, Xin, Gao` 1425 | | :venue:`bioRxiv 2019` 1426 | 1427 | ICSC 1428 | ---- 1429 | 1430 | `Identifying Protein-protein Interaction Using Tree Lstm and Structured Attention 1431 | `_ 1432 | | :authors:`Mahtab, Ahmed, Jumayel, Islam, Muhammad, Rifayat, Samee, Robert, E., Mercer` 1433 | | :venue:`ICSC 2019` 1434 | 1435 | Nature 1436 | ------ 1437 | 1438 | `Towards Perturbation Prediction of Biological Networks Using Deep Learning 1439 | `_ 1440 | | :authors:`Diya, Li, Jianxi, Gao` 1441 | | :venue:`Nature 2019` 1442 | 1443 | AISTATS 1444 | ------- 1445 | 1446 | `Graph to Graph: a Topology Aware Approach for Graph Structures Learning and Generation 1447 | `_ 1448 | | :authors:`Mingming, Sun, Ping, Li` 1449 | | :venue:`AISTATS 2019` 1450 | 1451 | SysML 1452 | ----- 1453 | 1454 | `Pytorch-biggraph: A Large-scale Graph Embedding System 1455 | `_ 1456 | | :authors:`Adam, Lerer, Ledell, Wu, Jiajun, Shen, Timothee, Lacroix, Luca, Wehrstedt, Abhijit, Bose, Alex, Peysakhovich` 1457 | | :venue:`SysML 2019` 1458 | 1459 | VLDB 1460 | ---- 1461 | 1462 | `Aligraph: A Comprehensive Graph Neural Network Platform 1463 | `_ 1464 | | :authors:`Rong, Zhu, Kun, Zhao, Hongxia, Yang, Wei, Lin, Chang, Zhou, Baole, Ai, Yong, Li, Jingren, Zhou` 1465 | | :venue:`VLDB 2019` 1466 | 1467 | ACL 1468 | --- 1469 | 1470 | `Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs 1471 | `_ 1472 | | :authors:`Deepak, Nathani, Jatin, Chauhan, Charu, Sharma, Manohar, Kaul` 1473 | | :venue:`ACL 2019` 1474 | 1475 | `Graph Neural Networks with Generated Parameters for Relation Extraction 1476 | `_ 1477 | | :authors:`Hao, Zhu, Yankai, Lin, Zhiyuan, Liu, Jie, Fu, Tat-seng, Chua, Maosong, Sun` 1478 | | :venue:`ACL 2019` 1479 | 1480 | `Dynamically Fused Graph Network for Multi-hop Reasoning 1481 | `_ 1482 | | :authors:`Yunxuan, Xiao, Yanru, Qu, Lin, Qiu, Hao, Zhou, Lei, Li, Weinan, Zhang, Yong, Yu` 1483 | | :venue:`ACL 2019` 1484 | 1485 | `Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection 1486 | `_ 1487 | | :authors:`Chang, Li, Dan, Goldwasser` 1488 | | :venue:`ACL 2019` 1489 | 1490 | `Attention Guided Graph Convolutional Networks for Relation Extraction 1491 | `_ 1492 | | :authors:`Zhijiang, Guo, Yan, Zhang, Wei, Lu` 1493 | | :venue:`ACL 2019` 1494 | 1495 | `Incorporating Syntactic and Semantic Information in Word Embeddings Using Graph Convolutional Networks 1496 | `_ 1497 | | :authors:`Shikhar, Vashishth, Manik, Bhandari, Prateek, Yadav, Piyush, Rai, Chiranjib, Bhattacharyya, Partha, Talukdar` 1498 | | :venue:`ACL 2019` 1499 | 1500 | `Graphrel: Modeling Text As Relational Graphs for Joint Entity and Relation Extraction 1501 | `_ 1502 | | :authors:`Tsu-Jui, Fu, Peng-Hsuan, Li, Wei-Yun, Ma` 1503 | | :venue:`ACL 2019` 1504 | 1505 | `Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs 1506 | `_ 1507 | | :authors:`Ming, Tu, Guangtao, Wang, Jing, Huang, Yun, Tang, Xiaodong, He, Bowen, Zhou` 1508 | | :venue:`ACL 2019` 1509 | 1510 | `Cognitive Graph for Multi-hop Reading Comprehension at Scale 1511 | `_ 1512 | | :authors:`Ming, Ding, Chang, Zhou, Qibin, Chen, Hongxia, Yang, Jie, Tang` 1513 | | :venue:`ACL 2019` 1514 | 1515 | `Coherent Comment Generation for Chinese Articles with a Graph-to-sequence Model 1516 | `_ 1517 | | :authors:`Wei, Li, Jingjing, Xu, Yancheng, He, Shengli, Yan, Yunfang, Wu, Xu, Sun` 1518 | | :venue:`ACL 2019` 1519 | 1520 | `Matching Article Pairs with Graphical Decomposition and Convolutions 1521 | `_ 1522 | | :authors:`Bang, Liu, Di, Niu, Haojie, Wei, Jinghong, Lin, Yancheng, He, Kunfeng, Lai, Yu, Xu` 1523 | | :venue:`ACL 2019` 1524 | 1525 | `Embedding Imputation with Grounded Language Information 1526 | `_ 1527 | | :authors:`Ziyi, Yang, Chenguang, Zhu, Vin, Sachidananda, Eric, Darve` 1528 | | :venue:`ACL 2019` 1529 | 1530 | `Encoding Social Information with Graph Convolutional Networks Forpolitical Perspective Detection in News Media 1531 | `_ 1532 | | :authors:`Chang, Li, Dan, Goldwasser` 1533 | | :venue:`ACL 2019` 1534 | 1535 | `A Neural Multi-digraph Model for Chinese Ner with Gazetteers 1536 | `_ 1537 | | :authors:`Ruixue, Ding, Pengjun, Xie, Xiaoyan, Zhang, Wei, Lu, Linlin, Li, Luo, Si` 1538 | | :venue:`ACL 2019` 1539 | 1540 | `Tree Communication Models for Sentiment Analysis 1541 | `_ 1542 | | :authors:`Yuan, Zhang, Yue, Zhang` 1543 | | :venue:`ACL 2019` 1544 | 1545 | `A2n: Attending to Neighbors for Knowledge Graph Inference 1546 | `_ 1547 | | :authors:`Trapit, Bansal, Da-Cheng, Juan, Sujith, Ravi, Andrew, McCallum` 1548 | | :venue:`ACL 2019` 1549 | 1550 | `Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension 1551 | `_ 1552 | | :authors:`Daesik, Kim, Seonhoon, Kim, Nojun, Kwak` 1553 | | :venue:`ACL 2019` 1554 | 1555 | `Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution 1556 | `_ 1557 | | :authors:`Yinchuan, Xu, Junlin, Yang` 1558 | | :venue:`ACL 2019 Workshop` 1559 | | :keywords:`h, t, t, p, s, :, /, /, g, i, t, h, u, b, ., c, o, m, /, i, a, n, y, c, x, u, /, R, G, C, N, -, w, i, t, h, -, B, E, R, T` 1560 | 1561 | KDD 1562 | --- 1563 | 1564 | `Progan: Network Embedding via Proximity Generative Adversarial Network 1565 | `_ 1566 | | :authors:`Hongchang, Gao, Jian, Pei, Heng, Huang` 1567 | | :venue:`KDD 2019` 1568 | 1569 | `Learning Network-to-network Model for Content-rich Network Embedding 1570 | `_ 1571 | | :authors:` Zhicheng, He, Jie, Liu, Na, Li, Yalou, Huang` 1572 | | :venue:`KDD 2019` 1573 | 1574 | `Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks 1575 | `_ 1576 | | :authors:`Srijan, Kumar, Xikun, Zhang, Jure, Leskovec` 1577 | | :venue:`KDD 2019` 1578 | 1579 | `Graph Representation Learning via Hard and Channel-wise Attention Networks 1580 | `_ 1581 | | :authors:`Hongyang, Gao, Shuiwang, Ji` 1582 | | :venue:`KDD 2019` 1583 | 1584 | `Conditional Random Field Enhanced Graph Convolutional Neural Networks 1585 | `_ 1586 | | :authors:`Hongchang, Gao, Jian, Pei, Heng, Huang` 1587 | | :venue:`KDD 2019` 1588 | 1589 | `Cluster-gcn: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks 1590 | `_ 1591 | | :authors:`Wei-Lin, Chiang, Xuanqing, Liu, Si, Si, Yang, Li, Samy, Bengio, Cho-Jui, Hsieh` 1592 | | :venue:`KDD 2019` 1593 | 1594 | `Demo-net: Degree-specific Graph Neural Networks for Node and Graph Classification 1595 | `_ 1596 | | :authors:`Jun, Wu, Jingrui, He, Jiejun, Xu` 1597 | | :venue:`KDD 2019` 1598 | 1599 | `Hetgnn: Heterogeneous Graph Neural Network 1600 | `_ 1601 | | :authors:`Chuxu, Zhang, Dongjin, Song, Chao, Huang, Ananthram, Swami, Nitesh, V., Chawla` 1602 | | :venue:`KDD 2019` 1603 | 1604 | `Graph Recurrent Networks with Attributed Random Walks 1605 | `_ 1606 | | :authors:`Xiao, Huang, Qingquan, Song, Yuening, Li, Xia, Hu` 1607 | | :venue:`KDD 2019` 1608 | 1609 | `Graph Convolutional Networks with Eigenpooling 1610 | `_ 1611 | | :authors:`Yao, Ma, Suhang, Wang, Charu, Aggarwal, Jiliang, Tang` 1612 | | :venue:`KDD 2019` 1613 | 1614 | `Intentgc: A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation 1615 | `_ 1616 | | :authors:`Jun, Zhao, Zhou, Zhou, Ziyu, Guan, Wei, Zhao, Wei, Ning, Guang, Qiu, Xiaofei, He` 1617 | | :venue:`KDD 2019` 1618 | 1619 | `An End-to-end Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation 1620 | `_ 1621 | | :authors:`Yanru, Qu, Ting, Bai, Weinan, Zhang, Jianyun, Nie, Jian, Tang` 1622 | | :venue:`KDD 2019 Workshop` 1623 | 1624 | `Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks 1625 | `_ 1626 | | :authors:`Namyong, Park, Andrey, Kan, Xin, Luna, Dong, Tong, Zhao, Christos, Faloutsos` 1627 | | :venue:`KDD 2019` 1628 | 1629 | `Robust Graph Convolutional Networks Against Adversarial Attacks 1630 | `_ 1631 | | :authors:`Dingyuan, Zhu, Ziwei, Zhang, Peng, Cui, Wenwu, Zhu` 1632 | | :venue:`KDD 2019` 1633 | 1634 | `Certifiable Robustness and Robust Training for Graph Convolutional Networks 1635 | `_ 1636 | | :authors:`Daniel, Zügner, Stephan, Günnemann` 1637 | | :venue:`KDD 2019` 1638 | 1639 | `Gcn-mf: Disease-gene Association Identification By Graph Convolutional Networks and Matrix Factorization 1640 | `_ 1641 | | :authors:`Peng, Han, Peng, Yang, Peilin, Zhao, Shuo, Shang, Yong, Liu, Jiayu, Zhou, Xin, Gao, Panos, Kalnis` 1642 | | :venue:`KDD 2019` 1643 | 1644 | `Gcn-mf: Disease-gene Association Identification By Graph Convolutional Networks and Matrix Factorization 1645 | `_ 1646 | | :authors:`Peng, Han, Peng, Yang, Peilin, Zhao, Shuo, Shang, Yong, Liu, Jiayu, Zhou, Xin, Gao, Panos, Kalnis` 1647 | | :venue:`KDD 2019` 1648 | 1649 | ICCV 1650 | ---- 1651 | 1652 | `Deepgcns: Can Gcns Go As Deep As Cnns? 1653 | `_ 1654 | | :authors:`Guohao, Li, Matthias, Muller, Ali, Thabet, Bernard, Ghanem` 1655 | | :venue:`ICCV 2019` 1656 | 1657 | `Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning 1658 | `_ 1659 | | :authors:`Jiwoong, Park, Minsik, Lee, Hyung, Jin, Chang, Kyuewang, Lee, Jin, Young, Choi` 1660 | | :venue:`ICCV 2019` 1661 | 1662 | `Pixel2mesh++: Multi-view 3d Mesh Generation via Deformation 1663 | `_ 1664 | | :authors:`Chao, Wen, Yinda, Zhang, Zhuwen, Li, Yanwei, Fu` 1665 | | :venue:`ICCV 2019` 1666 | 1667 | `Learning Trajectory Dependencies for Human Motion Prediction 1668 | `_ 1669 | | :authors:`Wei, Mao, Miaomiao, Liu, Mathieu, Salzmann, Hongdong, Li` 1670 | | :venue:`ICCV 2019` 1671 | 1672 | `Graph-based Object Classification for Neuromorphic Vision Sensing 1673 | `_ 1674 | | :authors:`Yin, Bi, Aaron, Chadha, Alhabib, Abbas, Eirina, Bourtsoulatze, Yiannis, Andreopoulos` 1675 | | :venue:`ICCV 2019` 1676 | 1677 | `Fashion Retrieval via Graph Reasoning Networks on a Similarity Pyramid 1678 | `_ 1679 | | :authors:`Zhanghui, Kuang, Yiming, Gao, Guanbin, Li, Ping, Luo, Yimin, Chen, Liang, Lin, Wayne, Zhang` 1680 | | :venue:`ICCV 2019` 1681 | 1682 | `Understanding Human Gaze Communication by Spatio-temporal Graph Reasoning 1683 | `_ 1684 | | :authors:`Lifeng, Fan, Wenguan, Wang, Siyuan, Huang, Xinyu, Tang, Song-Chun, Zhu` 1685 | | :venue:`ICCV 2019` 1686 | 1687 | `Visual Semantic Reasoning for Image-text Matching 1688 | `_ 1689 | | :authors:`Kunpeng, Li, Yulun, Zhang, Kai, Li, Yuanyuan, Li, Yun, Fu` 1690 | | :venue:`ICCV 2019` 1691 | 1692 | `Graph Convolutional Networks for Temporal Action Localization 1693 | `_ 1694 | | :authors:`Runhao, Zeng, Wenbing, Huang, Mingkui, Tan, Yu, Rong, Peilin, Zhao, Junzhou, Huang, Chuang, Gan` 1695 | | :venue:`ICCV 2019` 1696 | 1697 | `Learning Combinatorial Embedding Networks for Deep Graph Matching 1698 | `_ 1699 | | :authors:`Runzhong, Wang, Junchi, Yan, Xiaokang, Yang` 1700 | | :venue:`ICCV 2019` 1701 | 1702 | EMNLP 1703 | ----- 1704 | 1705 | `Learning to Create Sentence Semantic Relation Graphs for Multi-document Summarization 1706 | `_ 1707 | | :authors:`Diego, Antognini, Boi, Faltings` 1708 | | :venue:`EMNLP 2019` 1709 | 1710 | `Dependency-guided Lstm-crf for Named Entity Recognition 1711 | `_ 1712 | | :authors:`Zhanming, Jie, Wei, Lu` 1713 | | :venue:`EMNLP 2019` 1714 | 1715 | `Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity 1716 | `_ 1717 | | :authors:`Penghui, Wei, Nan, Xu, Wenji, Mao` 1718 | | :venue:`EMNLP 2019` 1719 | 1720 | `Dialoguegcn: A Graph Convolutional Neural Network for Emotion Recognition in Conversation 1721 | `_ 1722 | | :authors:`Deepanway, Ghosal, Navonil, Majumder, Soujanya, Poria, Niyati, Chhaya, Alexander, Gelbukh` 1723 | | :venue:`EMNLP 2019` 1724 | 1725 | `Modeling Graph Structure in Transformer for Better Amr-to-text Generation 1726 | `_ 1727 | | :authors:`Jie, Zhu, Junhui, Li, Muhua, Zhu, Longhua, Qian, Min, Zhang, Guodong, Zhou` 1728 | | :venue:`EMNLP 2019` 1729 | 1730 | `Kagnet: Knowledge-aware Graph Networks for Commonsense Reasoning 1731 | `_ 1732 | | :authors:`Bill, Yuchen, Lin, Xinyue, Chen, Jamin, Chen, Xiang, Ren` 1733 | | :venue:`EMNLP 2019` 1734 | 1735 | NeurIPS 1736 | ------- 1737 | 1738 | `Vgraph: A Generative Model for Joint Community Detection and Node Representation Learning 1739 | `_ 1740 | | :authors:`Fan-Yun, Sun, Meng, Qu, Jordan, Hoffmann, Chin-Wei, Huang, Jian, Tang` 1741 | | :venue:`NeurIPS 2019` 1742 | 1743 | `Variational Graph Recurrent Neural Networks 1744 | `_ 1745 | | :authors:`Ehsan, Hajiramezanali, Arman, Hasanzadeh, Nick, Duffield, Krishna, R, Narayanan, Mingyuan, Zhou, Xiaoning, Qian` 1746 | | :venue:`NeurIPS 2019` 1747 | 1748 | `Social-bigat: Multimodal Trajectory Forecasting Using Bicycle-gan and Graph Attention Networks 1749 | `_ 1750 | | :authors:`Vineet, Kosaraju, Amir, Sadeghian, Roberto, Martín-Martín, Ian, Reid, S., Hamid, Rezatofighi, Silvio, Savarese` 1751 | | :venue:`NeurIPS 2019` 1752 | 1753 | `Probabilistic Logic Neural Networks for Reasoning 1754 | `_ 1755 | | :authors:`Meng, Qu, Jian, Tang` 1756 | | :venue:`NeurIPS 2019` 1757 | 1758 | `Quaternion Knowledge Graph Embeddings 1759 | `_ 1760 | | :authors:`Shuai, Zhang, Yi, Tay, Lina, Yao, Qi, Liu` 1761 | | :venue:`NeurIPS 2019` 1762 | 1763 | `Quantum Embedding of Knowledge for Reasoning 1764 | `_ 1765 | | :authors:`Dinesh, Garg, Santosh, K., Srivastava, Hima, Karanam` 1766 | | :venue:`NeurIPS 2019` 1767 | 1768 | `Multi-relational Poincaré Graph Embeddings 1769 | `_ 1770 | | :authors:`Ivana, Balaževic, Carl, Allen, Timothy, Hospedales` 1771 | | :venue:`NeurIPS 2019` 1772 | 1773 | `Dfnets: Spectral Cnns for Graphs with Feedback-looped Filters 1774 | `_ 1775 | | :authors:`Asiri, Wijesinghe, Qing, Wang` 1776 | | :venue:`NeurIPS 2019` 1777 | 1778 | `Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology 1779 | `_ 1780 | | :authors:`Nima, Dehmamy, Albert-László, Barabási, Rose, Yu` 1781 | | :venue:`NeurIPS 2019` 1782 | 1783 | `A Flexible Generative Framework for Graph-based Semi-supervised Learning 1784 | `_ 1785 | | :authors:`Jiaqi, Ma, Weijing, Tang, Ji, Zhu, Qiaozhu, Mei` 1786 | | :venue:`NeurIPS 2019` 1787 | 1788 | `Rethinking Kernel Methods for Node Representation Learning on Graphs 1789 | `_ 1790 | | :authors:`Yu, Tian, Long, Zhao, Xi, Peng, Dimitris, N., Metaxas` 1791 | | :venue:`NeurIPS 2019` 1792 | 1793 | `Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks 1794 | `_ 1795 | | :authors:`Sitao, Luan, Mingde, Zhao, Xiao-Wen, Chang, Doina, Precup` 1796 | | :venue:`NeurIPS 2019` 1797 | 1798 | `N-gram Graph: A Simple Unsupervised Representation for Molecules 1799 | `_ 1800 | | :authors:`Shengchao, Liu, Thevaa, Chandereng, Yingyu, Liang` 1801 | | :venue:`NeurIPS 2019` 1802 | 1803 | `Semantically-regularized Logic Graph Embeddings 1804 | `_ 1805 | | :authors:`Yaqi, Xie, Ziwei, Xu, Kuldeep, Meel, Mohan, S, Kankanhalli, Harold, Soh` 1806 | | :venue:`NeurIPS 2019` 1807 | 1808 | `Semi-implicit Graph Variational Auto-encoders 1809 | `_ 1810 | | :authors:`Arman, Hasanzadeh, Ehsan, Hajiramezanali, Nick, Duffield, Krishna, Narayanan, Mingyuan, Zhou, Xiaoning, Qian` 1811 | | :venue:`NeurIPS 2019` 1812 | 1813 | `D-vae: A Variational Autoencoder for Directed Acyclic Graphs 1814 | `_ 1815 | | :authors:`Muhan, Zhang, Shali, Jiang, Zhicheng, Cui, Roman, Garnett, Yixin, Chen` 1816 | | :venue:`NeurIPS 2019` 1817 | 1818 | `No Press Diplomacy: Modeling Multi-agent Gameplay 1819 | `_ 1820 | | :authors:`Philip, Paquette, Yuchen, Lu, Steven, Bocco, Max, O., Smith, Satya, Ortiz-Gagne, Jonathan, K., Kummerfeld, Satinder, Singh, Joelle, Pineau, Aaron, Courville` 1821 | | :venue:`NeurIPS 2019` 1822 | 1823 | `Approximation Ratios of Graph Neural Networks for Combinatorial Problems 1824 | `_ 1825 | | :authors:`Ryoma, Sato, Makoto, Yamada, Hisashi, Kashima` 1826 | | :venue:`NeurIPS 2019` 1827 | 1828 | `Exact Combinatorial Optimization with Graph Convolutional Neural Networks 1829 | `_ 1830 | | :authors:`Maxime, Gasse, Didier, Chételat, Nicola, Ferroni, Laurent, Charlin, Andrea, Lodi` 1831 | | :venue:`NeurIPS 2019` 1832 | 1833 | `On Learning Paradigms for the Travelling Salesman Problem 1834 | `_ 1835 | | :authors:`Chaitanya, K., Joshi, Thomas, Laurent, Xavier, Bresson` 1836 | | :venue:`NeurIPS 2019 Workshop` 1837 | 1838 | `Learning to Propagate for Graph Meta-learning 1839 | `_ 1840 | | :authors:`Lu, Liu, Tianyi, Zhou, Guodong, Long, Jing, Jiang, Chengqi, Zhang` 1841 | | :venue:`NeurIPS 2019` 1842 | 1843 | `A Flexible Generative Framework for Graph-based Semi-supervised Learning 1844 | `_ 1845 | | :authors:`Jiaqi, Ma, Weijing, Tang, Ji, Zhu, Qiaozhu, Mei` 1846 | | :venue:`NeurIPS 2019` 1847 | 1848 | `Graph Normalizing Flows 1849 | `_ 1850 | | :authors:`Jenny, Liu, Aviral, Kumar, Jimmy, Ba, Jamie, Kiros, Kevin, Swersky` 1851 | | :venue:`NeurIPS 2019` 1852 | 1853 | `Conditional Structure Generation through Graph Variational Generative Adversarial Nets 1854 | `_ 1855 | | :authors:`Carl, Yang, Peiye, Zhuang, Wenhan, Shi, Alan, Luu, Pan, Li` 1856 | | :venue:`NeurIPS 2019` 1857 | 1858 | `Efficient Graph Generation with Graph Recurrent Attention Networks 1859 | `_ 1860 | | :authors:`Renjie, Liao, Yujia, Li, Yang, Song, Shenlong, Wang, Charlie, Nash, William, L., Hamilton, David, Duvenaud, Raquel, Urtasun, Richard, Zemel` 1861 | | :venue:`NeurIPS 2019` 1862 | 1863 | 2020 1864 | ==== 1865 | 1866 | ICLR 1867 | ---- 1868 | 1869 | `Graphzoom: A Multi-level Spectral Approach for Accurate and Scalable Graph Embedding 1870 | `_ 1871 | | :authors:`Chenhui, Deng, Zhiqiang, Zhao, Yongyu, Wang, Zhiru, Zhang, Zhuo, Feng` 1872 | | :venue:`ICLR 2020` 1873 | 1874 | `Dynamically Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning 1875 | `_ 1876 | | :authors:`Xiaoran, Xu, Wei, Feng, Yunsheng, Jiang, Xiaohui, Xie, Zhiqing, Sun, Zhi-Hong, Deng` 1877 | | :venue:`ICLR 2020` 1878 | 1879 | `Curvature Graph Network 1880 | `_ 1881 | | :authors:`Ze, Ye, Kin, Sum, Liu, Tengfei, Ma, Jie, Gao, Chao, Chen` 1882 | | :venue:`ICLR 2020` 1883 | 1884 | `Memory-based Graph Networks 1885 | `_ 1886 | | :authors:`Amir, hosein, Khasahmadi, Kaveh, Hassani, Parsa, Moradi, Leo, Lee, Quaid, Morris` 1887 | | :venue:`ICLR 2020` 1888 | 1889 | `Strategies for Pre-training Graph Neural Networks 1890 | `_ 1891 | | :authors:`Weihua, Hu, Bowen, Liu, Joseph, Gomes, Marinka, Zitnik, Percy, Liang, Vijay, Pande, Jure, Leskovec` 1892 | | :venue:`ICLR 2020` 1893 | 1894 | `Deep Graph Matching Consensus 1895 | `_ 1896 | | :authors:`Matthias, Fey, Jan, E., Lenssen, Christopher, Morris, Jonathan, Masci, Nils, M., Kriege` 1897 | | :venue:`ICLR 2020` 1898 | 1899 | `Few-shot Learning on Graphs via Super-classes Based on Graph Spectral Measures 1900 | `_ 1901 | | :authors:`Jatin, Chauhan, Deepak, Nathani, Manohar, Kaul` 1902 | | :venue:`ICLR 2020` 1903 | 1904 | `Automated Relational Meta-learning 1905 | `_ 1906 | | :authors:`Huaxiu, Yao, Xian, Wu, Zhiqiang, Tao, Yaliang, Li, Bolin, Ding, Ruirui, Li, Zhenhui, Li` 1907 | | :venue:`ICLR 2020` 1908 | 1909 | `Directional Message Passing for Molecular Graphs 1910 | `_ 1911 | | :authors:`Johannes, Klicpera, Janek, Groß, Stephan, Günnemann` 1912 | | :venue:`ICLR 2020` 1913 | 1914 | `Neural Execution of Graph Algorithms 1915 | `_ 1916 | | :authors:`Petar, Veličković, Rex, Ying, Matilde, Padovano, Raia, Hadsell, Charles, Blundell` 1917 | | :venue:`ICLR 2020` 1918 | 1919 | `Graphaf: a Flow-based Autoregressive Model for Molecular Graph Generation 1920 | `_ 1921 | | :authors:`Chence, Shi, Minkai, Xu, Zhaocheng, Zhu, Weinan, Zhang, Ming, Zhang, Jian, Tang` 1922 | | :venue:`ICLR 2020` 1923 | 1924 | Others 1925 | ====== 1926 | 1927 | `Deep Graph Library 1928 | `_ 1929 | | :authors:`DGL, Team` 1930 | 1931 | `Ampligraph 1932 | `_ 1933 | | :authors:`Luca, Costabello, Sumit, Pai, Chan, Le, Van, Rory, McGrath, Nicholas, McCarthy, Pedro, Tabacof` 1934 | 1935 | `Euler 1936 | `_ 1937 | | :authors:`Alimama, Engineering, Platform, Team, Alimama, Search, Advertising, Algorithm, Team` 1938 | 1939 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2019 MilaGraph 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.rst: -------------------------------------------------------------------------------- 1 | Literature of Deep Learning for Graphs 2 | ************************************** 3 | 4 | This is a paper list about deep learning for graphs. 5 | 6 | .. raw:: html 7 | 8 | 9 | 10 | 11 | .. contents:: 12 | :local: 13 | :depth: 2 14 | 15 | .. sectnum:: 16 | :depth: 2 17 | 18 | .. role:: authors(emphasis) 19 | 20 | .. role:: venue(strong) 21 | 22 | .. role:: keywords(emphasis) 23 | 24 | Node Representation Learning 25 | ============================ 26 | 27 | Unsupervised Node Representation Learning 28 | ----------------------------------------- 29 | 30 | `DeepWalk: Online Learning of Social Representations 31 | `_ 32 | | :authors:`Bryan Perozzi, Rami Al-Rfou, Steven Skiena` 33 | | :venue:`KDD 2014` 34 | | :keywords:`Node classification, Random walk, Skip-gram` 35 | 36 | `LINE: Large-scale Information Network Embedding 37 | `_ 38 | | :authors:`Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei` 39 | | :venue:`WWW 2015` 40 | | :keywords:`First-order, Second-order, Node classification` 41 | 42 | `GraRep: Learning Graph Representations with Global Structural Information 43 | `_ 44 | | :authors:`Shaosheng Cao, Wei Lu, Qiongkai Xu` 45 | | :venue:`CIKM 2015` 46 | | :keywords:`High-order, SVD` 47 | 48 | `node2vec: Scalable Feature Learning for Networks 49 | `_ 50 | | :authors:`Aditya Grover, Jure Leskovec` 51 | | :venue:`KDD 2016` 52 | | :keywords:`Breadth-first Search, Depth-first Search, Node Classification, Link Prediction` 53 | 54 | `Variational Graph Auto-Encoders 55 | `_ 56 | | :authors:`Thomas N. Kipf, Max Welling` 57 | | :venue:`arXiv 2016` 58 | 59 | `Scalable Graph Embedding for Asymmetric Proximity 60 | `_ 61 | | :authors:`Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, Jun Gao` 62 | | :venue:`AAAI 2017` 63 | 64 | `Fast Network Embedding Enhancement via High Order Proximity Approximation 65 | `_ 66 | | :authors:`Cheng Yang, Maosong Sun, Zhiyuan Liu, Cunchao Tu` 67 | | :venue:`IJCAI 2017` 68 | 69 | `struc2vec: Learning Node Representations from Structural Identity 70 | `_ 71 | | :authors:`Leonardo F. R. Ribeiro, Pedro H. P. Savarese, Daniel R. Figueiredo` 72 | | :venue:`KDD 2017` 73 | | :keywords:`Structural Identity` 74 | 75 | `Poincaré Embeddings for Learning Hierarchical Representations 76 | `_ 77 | | :authors:`Maximilian Nickel, Douwe Kiela` 78 | | :venue:`NIPS 2017` 79 | 80 | `VERSE: Versatile Graph Embeddings from Similarity Measures 81 | `_ 82 | | :authors:`Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Emmanuel Müller` 83 | | :venue:`WWW 2018` 84 | 85 | `Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec 86 | `_ 87 | | :authors:`Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, Jie Tang` 88 | | :venue:`WSDM 2018` 89 | 90 | `Learning Structural Node Embeddings via Diffusion Wavelets 91 | `_ 92 | | :authors:`Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec` 93 | | :venue:`KDD 2018` 94 | 95 | `Adversarial Network Embedding 96 | `_ 97 | | :authors:`Quanyu Dai, Qiang Li, Jian Tang, Dan Wang` 98 | | :venue:`AAAI 2018` 99 | 100 | `GraphGAN: Graph Representation Learning with Generative Adversarial Nets 101 | `_ 102 | | :authors:`Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, Minyi Guo` 103 | | :venue:`AAAI 2018` 104 | 105 | `A General View for Network Embedding as Matrix Factorization 106 | `_ 107 | | :authors:`Xin Liu, Tsuyoshi Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, Chenyi Zhuang` 108 | | :venue:`WSDM 2019` 109 | 110 | `Deep Graph Infomax 111 | `_ 112 | | :authors:`Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm` 113 | | :venue:`ICLR 2019` 114 | 115 | `NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization 116 | `_ 117 | | :authors:`Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, Jie Tang` 118 | | :venue:`WWW 2019` 119 | 120 | `Adversarial Training Methods for Network Embedding 121 | `_ 122 | | :authors:`Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, Dan Wang` 123 | | :venue:`WWW 2019` 124 | 125 | `vGraph: A Generative Model for Joint Community Detection and Node Representation Learning 126 | `_ 127 | | :authors:`Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang` 128 | | :venue:`NeurIPS 2019` 129 | 130 | `ProGAN: Network Embedding via Proximity Generative Adversarial Network 131 | `_ 132 | | :authors:`Hongchang Gao, Jian Pei, Heng Huang` 133 | | :venue:`KDD 2019` 134 | 135 | `GraphZoom: A Multi-level Spectral Approach for Accurate and Scalable Graph Embedding 136 | `_ 137 | | :authors:`Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, Zhuo Feng` 138 | | :venue:`ICLR 2020` 139 | 140 | Node Representation Learning in Heterogeneous Graphs 141 | ---------------------------------------------------- 142 | 143 | `Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks 144 | `_ 145 | | :authors:`Yann Jacob, Ludovic Denoyer, Patrick Gallinari` 146 | | :venue:`WSDM 2014` 147 | 148 | `PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks 149 | `_ 150 | | :authors:`Jian Tang, Meng Qu, Qiaozhu Mei` 151 | | :venue:`KDD 2015` 152 | | :keywords:`Text Embedding, Heterogeneous Text Graphs` 153 | 154 | `Heterogeneous Network Embedding via Deep Architectures 155 | `_ 156 | | :authors:`Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, Thomas S. Huang` 157 | | :venue:`KDD 2015` 158 | 159 | `Network Representation Learning with Rich Text Information 160 | `_ 161 | | :authors:`Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Chang` 162 | | :venue:`AAAI 2015` 163 | 164 | `Max-Margin DeepWalk: Discriminative Learning of Network Representation 165 | `_ 166 | | :authors:`Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, Maosong Sun` 167 | | :venue:`IJCAI 2016` 168 | 169 | `metapath2vec: Scalable Representation Learning for Heterogeneous Networks 170 | `_ 171 | | :authors:`Yuxiao Dong, Nitesh V. Chawla, Ananthram Swami` 172 | | :venue:`KDD 2017` 173 | 174 | `Meta-Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous Information Networks 175 | `_ 176 | | :authors:`Jingbo Shang, Meng Qu, Jialu Liu, Lance M. Kaplan, Jiawei Han, Jian Peng` 177 | | :venue:`arXiv 2016` 178 | 179 | `HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning 180 | `_ 181 | | :authors:`Tao-yang Fu, Wang-Chien Lee, Zhen Lei` 182 | | :venue:`CIKM 2017` 183 | 184 | `An Attention-based Collaboration Framework for Multi-View Network Representation Learning 185 | `_ 186 | | :authors:`Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, Jiawei Han` 187 | | :venue:`CIKM 2017` 188 | 189 | `Multi-view Clustering with Graph Embedding for Connectome Analysis 190 | `_ 191 | | :authors:`Guixiang Ma, Lifang He, Chun-Ta Lu, Weixiang Shao, Philip S. Yu, Alex D. Leow, Ann B. Ragin` 192 | | :venue:`CIKM 2017` 193 | 194 | `Attributed Signed Network Embedding 195 | `_ 196 | | :authors:`Suhang Wang, Charu Aggarwal, Jiliang Tang, Huan Liu` 197 | | :venue:`CIKM 2017` 198 | 199 | `CANE: Context-Aware Network Embedding for Relation Modeling 200 | `_ 201 | | :authors:`Cunchao Tu, Han Liu, Zhiyuan Liu, Maosong Sun` 202 | | :venue:`ACL 2017` 203 | 204 | `PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction 205 | `_ 206 | | :authors:`Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen, Xue Li` 207 | | :venue:`KDD 2018` 208 | 209 | `BiNE: Bipartite Network Embedding 210 | `_ 211 | | :authors:`Ming Gao, Leihui Chen, Xiangnan He, Aoying Zhou` 212 | | :venue:`SIGIR 2018` 213 | 214 | `StarSpace: Embed All The Things 215 | `_ 216 | | :authors:`Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, Jason Weston` 217 | | :venue:`AAAI 2018` 218 | 219 | `Exploring Expert Cognition for Attributed Network Embedding 220 | `_ 221 | | :authors:`Xiao Huang, Qingquan Song, Jundong Li, Xia Hu` 222 | | :venue:`WSDM 2018` 223 | 224 | `SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction 225 | `_ 226 | | :authors:`Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, Qi Liu` 227 | | :venue:`WSDM 2018` 228 | 229 | `Multidimensional Network Embedding with Hierarchical Structures 230 | `_ 231 | | :authors:`Yao Ma, Zhaochun Ren, Ziheng Jiang, Jiliang Tang, Dawei Yin` 232 | | :venue:`WSDM 2018` 233 | 234 | `Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning 235 | `_ 236 | | :authors:`Meng Qu, Jian Tang, Jiawei Han` 237 | | :venue:`WSDM 2018` 238 | 239 | `Generative Adversarial Network based Heterogeneous Bibliographic Network Representation for Personalized Citation Recommendation 240 | `_ 241 | | :authors:`Xiaoyan Cai, Junwei Han, Libin Yang` 242 | | :venue:`AAAI 2018` 243 | 244 | `ANRL: Attributed Network Representation Learning via Deep Neural Networks 245 | `_ 246 | | :authors:`Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, Can Wang` 247 | | :venue:`IJCAI 2018` 248 | 249 | `Efficient Attributed Network Embedding via Recursive Randomized Hashing 250 | `_ 251 | | :authors:`Wei Wu, Bin Li, Ling Chen, Chengqi Zhang` 252 | | :venue:`IJCAI 2018` 253 | 254 | `Deep Attributed Network Embedding 255 | `_ 256 | | :authors:`Hongchang Gao, Heng Huang` 257 | | :venue:`IJCAI 2018` 258 | 259 | `Co-Regularized Deep Multi-Network Embedding 260 | `_ 261 | | :authors:`Jingchao Ni, Shiyu Chang, Xiao Liu, Wei Cheng, Haifeng Chen, Dongkuan Xu, Xiang Zhang` 262 | | :venue:`WWW 2018` 263 | 264 | `Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks 265 | `_ 266 | | :authors:`Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, Jiawei Han` 267 | | :venue:`KDD 2018` 268 | 269 | `Meta-Graph Based HIN Spectral Embedding: Methods, Analyses, and Insights 270 | `_ 271 | | :authors:`Carl Yang, Yichen Feng, Pan Li, Yu Shi, Jiawei Han` 272 | | :venue:`ICDM 2018` 273 | 274 | `SIDE: Representation Learning in Signed Directed Networks 275 | `_ 276 | | :authors:`Junghwan Kim, Haekyu Park, Ji-Eun Lee, U Kang` 277 | | :venue:`WWW 2018` 278 | 279 | `Learning Network-to-Network Model for Content-rich Network Embedding 280 | `_ 281 | | :authors:` Zhicheng He, Jie Liu, Na Li, Yalou Huang` 282 | | :venue:`KDD 2019` 283 | 284 | Node Representation Learning in Dynamic Graphs 285 | ---------------------------------------------- 286 | 287 | `Know-evolve: Deep temporal reasoning for dynamic knowledge graphs 288 | `_ 289 | | :authors:`Rakshit Trivedi, Hanjun Dai, Yichen Wang, Le Song` 290 | | :venue:`ICML 2017` 291 | 292 | `Dyngem: Deep embedding method for dynamic graphs 293 | `_ 294 | | :authors:`Palash Goyal, Nitin Kamra, Xinran He, Yan Liu` 295 | | :venue:`ICLR 2017 Workshop` 296 | 297 | `Attributed network embedding for learning in a dynamic environment 298 | `_ 299 | | :authors:`Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, Huan Liu` 300 | | :venue:`CIKM 2017` 301 | 302 | `Dynamic Network Embedding by Modeling Triadic Closure Process 303 | `_ 304 | | :authors:`Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, Yueting Zhuang` 305 | | :venue:`AAAI 2018` 306 | 307 | `DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks 308 | `_ 309 | | :authors:`Jianxin Ma, Peng Cui, Wenwu Zhu` 310 | | :venue:`AAAI 2018` 311 | 312 | `TIMERS: Error-Bounded SVD Restart on Dynamic Networks 313 | `_ 314 | | :authors:`Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, Wenwu Zhu` 315 | | :venue:`AAAI 2018` 316 | 317 | `Dynamic Embeddings for User Profiling in Twitter 318 | `_ 319 | | :authors:`Shangsong Liang, Xiangliang Zhang, Zhaochun Ren, Evangelos Kanoulas` 320 | | :venue:`KDD 2018` 321 | 322 | `Dynamic Network Embedding : An Extended Approach for Skip-gram based Network Embedding 323 | `_ 324 | | :authors:`Lun Du, Yun Wang, Guojie Song, Zhicong Lu, Junshan Wang` 325 | | :venue:`IJCAI 2018` 326 | 327 | `DyRep: Learning Representations over Dynamic Graphs 328 | `_ 329 | | :authors:`Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha` 330 | | :venue:`ICLR 2019` 331 | 332 | `Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks 333 | `_ 334 | | :authors:`Srijan Kumar, Xikun Zhang, Jure Leskovec` 335 | | :venue:`KDD 2019` 336 | 337 | `Variational Graph Recurrent Neural Networks 338 | `_ 339 | | :authors:`Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna R Narayanan, Mingyuan Zhou, Xiaoning Qian` 340 | | :venue:`NeurIPS 2019` 341 | 342 | `Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks 343 | `_ 344 | | :authors:`Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid Rezatofighi, Silvio Savarese` 345 | | :venue:`NeurIPS 2019` 346 | 347 | Knowledge Graph Embedding 348 | ========================= 349 | 350 | `A Three-Way Model for Collective Learning on Multi-Relational Data. 351 | `_ 352 | | :authors:`Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel` 353 | | :venue:`ICML 2011` 354 | 355 | `Translating Embeddings for Modeling Multi-relational Data 356 | `_ 357 | | :authors:`Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, Oksana Yakhnenko` 358 | | :venue:`NIPS 2013` 359 | 360 | `Knowledge Graph Embedding by Translating on Hyperplanes 361 | `_ 362 | | :authors:`Zhen Wang, Jianwen Zhang, Jianlin Feng, Zheng Chen` 363 | | :venue:`AAAI 2014` 364 | 365 | `Reducing the Rank of Relational Factorization Models by Including Observable Patterns 366 | `_ 367 | | :authors:`Maximilian Nickel, Xueyan Jiang, Volker Tresp` 368 | | :venue:`NIPS 2014` 369 | 370 | `Learning Entity and Relation Embeddings for Knowledge Graph Completion 371 | `_ 372 | | :authors:`Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, Xuan Zhu` 373 | | :venue:`AAAI 2015` 374 | 375 | `A Review of Relational Machine Learning for Knowledge Graph 376 | `_ 377 | | :authors:`Maximilian Nickel, Kevin Murphy, Volker Tresp, Evgeniy Gabrilovich` 378 | | :venue:`IEEE 2015` 379 | 380 | `Knowledge Graph Embedding via Dynamic Mapping Matrix 381 | `_ 382 | | :authors:`Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, Jun Zha` 383 | | :venue:`ACL 2015` 384 | 385 | `Modeling Relation Paths for Representation Learning of Knowledge Bases 386 | `_ 387 | | :authors:`Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao, Song Liu` 388 | | :venue:`EMNLP 2015` 389 | 390 | `Embedding Entities and Relations for Learning and Inference in Knowledge Bases 391 | `_ 392 | | :authors:`Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng` 393 | | :venue:`ICLR 2015` 394 | 395 | `Holographic Embeddings of Knowledge Graphs 396 | `_ 397 | | :authors:`Maximilian Nickel, Lorenzo Rosasco, Tomaso Poggio` 398 | | :venue:`AAAI 2016` 399 | 400 | `Complex Embeddings for Simple Link Prediction 401 | `_ 402 | | :authors:`Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, Guillaume Bouchard` 403 | | :venue:`ICML 2016` 404 | 405 | `Modeling Relational Data with Graph Convolutional Networks 406 | `_ 407 | | :authors:`Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, Max Welling` 408 | | :venue:`arXiv 2017` 409 | 410 | `Fast Linear Model for Knowledge Graph Embeddings 411 | `_ 412 | | :authors:`Armand Joulin, Edouard Grave, Piotr Bojanowski, Maximilian Nickel, Tomas Mikolov` 413 | | :venue:`arXiv 2017` 414 | 415 | `Convolutional 2D Knowledge Graph Embeddings 416 | `_ 417 | | :authors:`Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel` 418 | | :venue:`AAAI 2018` 419 | 420 | `Knowledge Graph Embedding With Iterative Guidance From Soft Rules 421 | `_ 422 | | :authors:`Shu Guo, Quan Wang, Lihong Wang, Bin Wang, Li Guo` 423 | | :venue:`AAAI 2018` 424 | 425 | `KBGAN: Adversarial Learning for Knowledge Graph Embeddings 426 | `_ 427 | | :authors:`Liwei Cai, William Yang Wang` 428 | | :venue:`NAACL 2018` 429 | 430 | `Improving Knowledge Graph Embedding Using Simple Constraints 431 | `_ 432 | | :authors:`Boyang Ding, Quan Wang, Bin Wang, Li Guo` 433 | | :venue:`ACL 2018` 434 | 435 | `SimplE Embedding for Link Prediction in Knowledge Graphs 436 | `_ 437 | | :authors:`Seyed Mehran Kazemi, David Poole` 438 | | :venue:`NeurIPS 2018` 439 | 440 | `A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network 441 | `_ 442 | | :authors:`Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung` 443 | | :venue:`NAACL 2018` 444 | 445 | `Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning 446 | `_ 447 | | :authors:`Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein, Huajun Chen` 448 | | :venue:`WWW 2019` 449 | 450 | `RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space 451 | `_ 452 | | :authors:`Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang` 453 | | :venue:`ICLR 2019` 454 | 455 | `Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs 456 | `_ 457 | | :authors:`Deepak Nathani, Jatin Chauhan, Charu Sharma, Manohar Kaul` 458 | | :venue:`ACL 2019` 459 | 460 | `Probabilistic Logic Neural Networks for Reasoning 461 | `_ 462 | | :authors:`Meng Qu, Jian Tang` 463 | | :venue:`NeurIPS 2019` 464 | 465 | `Quaternion Knowledge Graph Embeddings 466 | `_ 467 | | :authors:`Shuai Zhang, Yi Tay, Lina Yao, Qi Liu` 468 | | :venue:`NeurIPS 2019` 469 | 470 | `Quantum Embedding of Knowledge for Reasoning 471 | `_ 472 | | :authors:`Dinesh Garg, Santosh K. Srivastava, Hima Karanam` 473 | | :venue:`NeurIPS 2019` 474 | 475 | `Multi-relational Poincaré Graph Embeddings 476 | `_ 477 | | :authors:`Ivana Balaževic, Carl Allen, Timothy Hospedales` 478 | | :venue:`NeurIPS 2019` 479 | 480 | `Dynamically Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning 481 | `_ 482 | | :authors:`Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, Zhi-Hong Deng` 483 | | :venue:`ICLR 2020` 484 | 485 | Graph Neural Networks 486 | ===================== 487 | 488 | `Revisiting Semi-supervised Learning with Graph Embeddings 489 | `_ 490 | | :authors:`Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov` 491 | | :venue:`ICML 2016` 492 | 493 | `Semi-Supervised Classification with Graph Convolutional Networks 494 | `_ 495 | | :authors:`Thomas N. Kipf, Max Welling` 496 | | :venue:`ICLR 2017` 497 | 498 | `Neural Message Passing for Quantum Chemistry 499 | `_ 500 | | :authors:`Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl` 501 | | :venue:`ICML 2017` 502 | 503 | `Motif-Aware Graph Embeddings 504 | `_ 505 | | :authors:`Hoang Nguyen, Tsuyoshi Murata` 506 | | :venue:`IJCAI 2017` 507 | 508 | `Learning Graph Representations with Embedding Propagation 509 | `_ 510 | | :authors:`Alberto Garcia-Duran, Mathias Niepert` 511 | | :venue:`NIPS 2017` 512 | 513 | `Inductive Representation Learning on Large Graphs 514 | `_ 515 | | :authors:`William L. Hamilton, Rex Ying, Jure Leskovec` 516 | | :venue:`NIPS 2017` 517 | 518 | `Graph Attention Networks 519 | `_ 520 | | :authors:`Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio` 521 | | :venue:`ICLR 2018` 522 | 523 | `FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling 524 | `_ 525 | | :authors:`Jie Chen, Tengfei Ma, Cao Xiao` 526 | | :venue:`ICLR 2018` 527 | 528 | `Representation Learning on Graphs with Jumping Knowledge Networks 529 | `_ 530 | | :authors:`Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka` 531 | | :venue:`ICML 2018` 532 | 533 | `Stochastic Training of Graph Convolutional Networks with Variance Reduction 534 | `_ 535 | | :authors:`Jianfei Chen, Jun Zhu, Le Song` 536 | | :venue:`ICML 2018` 537 | 538 | `Large-Scale Learnable Graph Convolutional Networks 539 | `_ 540 | | :authors:`Hongyang Gao, Zhengyang Wang, Shuiwang Ji` 541 | | :venue:`KDD 2018` 542 | 543 | `Adaptive Sampling Towards Fast Graph Representation Learning 544 | `_ 545 | | :authors:`Wenbing Huang, Tong Zhang, Yu Rong, Junzhou Huang` 546 | | :venue:`NeurIPS 2018` 547 | 548 | `Hierarchical Graph Representation Learning with Differentiable Pooling 549 | `_ 550 | | :authors:`Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec` 551 | | :venue:`NeurIPS 2018` 552 | 553 | `Bayesian Semi-supervised Learning with Graph Gaussian Processes 554 | `_ 555 | | :authors:`Yin Cheng Ng, Nicolò Colombo, Ricardo Silva` 556 | | :venue:`NeurIPS 2018` 557 | 558 | `Pitfalls of Graph Neural Network Evaluation 559 | `_ 560 | | :authors:`Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, Stephan Günnemann` 561 | | :venue:`arXiv 2018` 562 | 563 | `Heterogeneous Graph Attention Network 564 | `_ 565 | | :authors:`Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P. Yu, Yanfang Ye` 566 | | :venue:`WWW 2019` 567 | 568 | `Bayesian graph convolutional neural networks for semi-supervised classification 569 | `_ 570 | | :authors:`Yingxue Zhang, Soumyasundar Pal, Mark Coates, Deniz Üstebay` 571 | | :venue:`AAAI 2019` 572 | 573 | `How Powerful are Graph Neural Networks? 574 | `_ 575 | | :authors:`Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka` 576 | | :venue:`ICLR 2019` 577 | 578 | `LanczosNet: Multi-Scale Deep Graph Convolutional Networks 579 | `_ 580 | | :authors:`Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard S. Zemel` 581 | | :venue:`ICLR 2019` 582 | 583 | `Graph Wavelet Neural Network 584 | `_ 585 | | :authors:`Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng` 586 | | :venue:`ICLR 2019` 587 | 588 | `Supervised Community Detection with Line Graph Neural Networks 589 | `_ 590 | | :authors:`Zhengdao Chen, Xiang Li, Joan Bruna` 591 | | :venue:`ICLR 2019` 592 | 593 | `Predict then Propagate: Graph Neural Networks meet Personalized PageRank 594 | `_ 595 | | :authors:`Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann` 596 | | :venue:`ICLR 2019` 597 | 598 | `Invariant and Equivariant Graph Networks 599 | `_ 600 | | :authors:`Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman` 601 | | :venue:`ICLR 2019` 602 | 603 | `Capsule Graph Neural Network 604 | `_ 605 | | :authors:`Zhang Xinyi, Lihui Chen` 606 | | :venue:`ICLR 2019` 607 | 608 | `MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing 609 | `_ 610 | | :authors:`Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan` 611 | | :venue:`ICML 2019` 612 | 613 | `Graph U-Nets 614 | `_ 615 | | :authors:`Hongyang Gao, Shuiwang Ji` 616 | | :venue:`ICML 2019` 617 | 618 | `Disentangled Graph Convolutional Networks 619 | `_ 620 | | :authors:`Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu` 621 | | :venue:`ICML 2019` 622 | 623 | `GMNN: Graph Markov Neural Networks 624 | `_ 625 | | :authors:`Meng Qu, Yoshua Bengio, Jian Tang` 626 | | :venue:`ICML 2019` 627 | 628 | `Simplifying Graph Convolutional Networks 629 | `_ 630 | | :authors:`Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, Kilian Q. Weinberger` 631 | | :venue:`ICML 2019` 632 | 633 | `Position-aware Graph Neural Networks 634 | `_ 635 | | :authors:`Jiaxuan You, Rex Ying, Jure Leskovec` 636 | | :venue:`ICML 2019` 637 | 638 | `Self-Attention Graph Pooling 639 | `_ 640 | | :authors:`Junhyun Lee, Inyeop Lee, Jaewoo Kang` 641 | | :venue:`ICML 2019` 642 | 643 | `Relational Pooling for Graph Representations 644 | `_ 645 | | :authors:`Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, Bruno Ribeiro` 646 | | :venue:`ICML 2019` 647 | 648 | `Graph Representation Learning via Hard and Channel-Wise Attention Networks 649 | `_ 650 | | :authors:`Hongyang Gao, Shuiwang Ji` 651 | | :venue:`KDD 2019` 652 | 653 | `Conditional Random Field Enhanced Graph Convolutional Neural Networks 654 | `_ 655 | | :authors:`Hongchang Gao, Jian Pei, Heng Huang` 656 | | :venue:`KDD 2019` 657 | 658 | `Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks 659 | `_ 660 | | :authors:`Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh` 661 | | :venue:`KDD 2019` 662 | 663 | `DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification 664 | `_ 665 | | :authors:`Jun Wu, Jingrui He, Jiejun Xu` 666 | | :venue:`KDD 2019` 667 | 668 | `HetGNN: Heterogeneous Graph Neural Network 669 | `_ 670 | | :authors:`Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, Nitesh V. Chawla` 671 | | :venue:`KDD 2019` 672 | 673 | `Graph Recurrent Networks with Attributed Random Walks 674 | `_ 675 | | :authors:`Xiao Huang, Qingquan Song, Yuening Li, Xia Hu` 676 | | :venue:`KDD 2019` 677 | 678 | `Graph Convolutional Networks with EigenPooling 679 | `_ 680 | | :authors:`Yao Ma, Suhang Wang, Charu Aggarwal, Jiliang Tang` 681 | | :venue:`KDD 2019` 682 | 683 | `DFNets: Spectral CNNs for Graphs with Feedback-Looped Filters 684 | `_ 685 | | :authors:`Asiri Wijesinghe, Qing Wang` 686 | | :venue:`NeurIPS 2019` 687 | 688 | `Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology 689 | `_ 690 | | :authors:`Nima Dehmamy, Albert-László Barabási, Rose Yu` 691 | | :venue:`NeurIPS 2019` 692 | 693 | `A Flexible Generative Framework for Graph-based Semi-supervised Learning 694 | `_ 695 | | :authors:`Jiaqi Ma, Weijing Tang, Ji Zhu, Qiaozhu Mei` 696 | | :venue:`NeurIPS 2019` 697 | 698 | `Rethinking Kernel Methods for Node Representation Learning on Graphs 699 | `_ 700 | | :authors:`Yu Tian, Long Zhao, Xi Peng, Dimitris N. Metaxas` 701 | | :venue:`NeurIPS 2019` 702 | 703 | `Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks 704 | `_ 705 | | :authors:`Sitao Luan, Mingde Zhao, Xiao-Wen Chang, Doina Precup` 706 | | :venue:`NeurIPS 2019` 707 | 708 | `N-Gram Graph: A Simple Unsupervised Representation for Molecules 709 | `_ 710 | | :authors:`Shengchao Liu, Thevaa Chandereng, Yingyu Liang` 711 | | :venue:`NeurIPS 2019` 712 | 713 | `DeepGCNs: Can GCNs Go as Deep as CNNs? 714 | `_ 715 | | :authors:`Guohao Li, Matthias Muller, Ali Thabet, Bernard Ghanem` 716 | | :venue:`ICCV 2019` 717 | 718 | `Continuous Graph Neural Networks 719 | `_ 720 | | :authors:`Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang` 721 | | :venue:`arXiv 2019` 722 | 723 | `Curvature Graph Network 724 | `_ 725 | | :authors:`Ze Ye, Kin Sum Liu, Tengfei Ma, Jie Gao, Chao Chen` 726 | | :venue:`ICLR 2020` 727 | 728 | `Memory-based Graph Networks 729 | `_ 730 | | :authors:`Amir hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, Quaid Morris` 731 | | :venue:`ICLR 2020` 732 | 733 | `Strategies for Pre-training Graph Neural Networks 734 | `_ 735 | | :authors:`Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, Jure Leskovec` 736 | | :venue:`ICLR 2020` 737 | 738 | Applications of Graph Deep Learning 739 | ================================= 740 | 741 | Natural Language Processing 742 | --------------------------- 743 | 744 | `Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling 745 | `_ 746 | | :authors:`Diego Marcheggiani, Ivan Titov` 747 | | :venue:`EMNLP 2017` 748 | 749 | `Graph Convolutional Encoders for Syntax-aware Neural Machine Translation 750 | `_ 751 | | :authors:`Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, Khalil Sima’an` 752 | | :venue:`EMNLP 2017` 753 | 754 | `Graph-based Neural Multi-Document Summarization 755 | `_ 756 | | :authors:`Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srinivasan, Dragomir Radev` 757 | | :venue:`CoNLL 2017` 758 | 759 | `QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension 760 | `_ 761 | | :authors:`Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, Quoc V. Le` 762 | | :venue:`ICLR 2018` 763 | 764 | `A Structured Self-attentive Sentence Embedding 765 | `_ 766 | | :authors:`Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio` 767 | | :venue:`ICLR 2018` 768 | 769 | `Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering 770 | `_ 771 | | :authors:`Daniil Sorokin, Iryna Gurevych` 772 | | :venue:`COLING 2018` 773 | 774 | `Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks 775 | `_ 776 | | :authors:`Diego Marcheggiani, Joost Bastings, Ivan Titov` 777 | | :venue:`NAACL 2018` 778 | 779 | `Linguistically-Informed Self-Attention for Semantic Role Labeling 780 | `_ 781 | | :authors:`Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, Andrew McCallum` 782 | | :venue:`EMNLP 2018` 783 | 784 | `Graph Convolution over Pruned Dependency Trees Improves Relation Extraction 785 | `_ 786 | | :authors:`Yuhao Zhang, Peng Qi, Christopher D. Manning` 787 | | :venue:`EMNLP 2018` 788 | 789 | `A Graph-to-Sequence Model for AMR-to-Text Generation 790 | `_ 791 | | :authors:`Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea` 792 | | :venue:`ACL 2018` 793 | 794 | `Graph-to-Sequence Learning using Gated Graph Neural Networks 795 | `_ 796 | | :authors:`Daniel Beck, Gholamreza Haffari, Trevor Cohn` 797 | | :venue:`ACL 2018` 798 | 799 | `Graph Convolutional Networks for Text Classification 800 | `_ 801 | | :authors:`Liang Yao, Chengsheng Mao, Yuan Luo` 802 | | :venue:`AAAI 2019` 803 | 804 | `Differentiable Perturb-and-Parse: Semi-Supervised Parsing with a Structured Variational Autoencoder 805 | `_ 806 | | :authors:`Caio Corro, Ivan Titov` 807 | | :venue:`ICLR 2019` 808 | 809 | `Structured Neural Summarization 810 | `_ 811 | | :authors:`Patrick Fernandes, Miltiadis Allamanis, Marc Brockschmid` 812 | | :venue:`ICLR 2019` 813 | 814 | `Multi-task Learning over Graph Structures 815 | `_ 816 | | :authors:`Pengfei Liu, Jie Fu, Yue Dong, Xipeng Qiu, Jackie Chi Kit Cheung` 817 | | :venue:`AAAI 2019` 818 | 819 | `Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing 820 | `_ 821 | | :authors:`Wenhan Xiong, Jiawei Wu, Deren Lei, Mo Yu, Shiyu Chang, Xiaoxiao Guo, William Yang Wang` 822 | | :venue:`NAACL 2019` 823 | 824 | `Single Document Summarization as Tree Induction 825 | `_ 826 | | :authors:`Yang Liu, Ivan Titov, Mirella Lapata` 827 | | :venue:`NAACL 2019` 828 | 829 | `Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks 830 | `_ 831 | | :authors:`Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang, Huajun Chen` 832 | | :venue:`NAACL 2019` 833 | 834 | `Graph Neural Networks with Generated Parameters for Relation Extraction 835 | `_ 836 | | :authors:`Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun` 837 | | :venue:`ACL 2019` 838 | 839 | `Dynamically Fused Graph Network for Multi-hop Reasoning 840 | `_ 841 | | :authors:`Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu` 842 | | :venue:`ACL 2019` 843 | 844 | `Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection 845 | in News Media 846 | `_ 847 | | :authors:`Chang Li, Dan Goldwasser` 848 | | :venue:`ACL 2019` 849 | 850 | `Attention Guided Graph Convolutional Networks for Relation Extraction 851 | `_ 852 | | :authors:`Zhijiang Guo, Yan Zhang, Wei Lu` 853 | | :venue:`ACL 2019` 854 | 855 | `Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks 856 | `_ 857 | | :authors:`Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar` 858 | | :venue:`ACL 2019` 859 | 860 | `GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction 861 | `_ 862 | | :authors:`Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma` 863 | | :venue:`ACL 2019` 864 | 865 | `Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs 866 | `_ 867 | | :authors:`Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen Zhou` 868 | | :venue:`ACL 2019` 869 | 870 | `Cognitive Graph for Multi-Hop Reading Comprehension at Scale 871 | `_ 872 | | :authors:`Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang` 873 | | :venue:`ACL 2019` 874 | 875 | `Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model 876 | `_ 877 | | :authors:`Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu Sun` 878 | | :venue:`ACL 2019` 879 | 880 | `Matching Article Pairs with Graphical Decomposition and Convolutions 881 | `_ 882 | | :authors:`Bang Liu, Di Niu, Haojie Wei, Jinghong Lin, Yancheng He, Kunfeng Lai, Yu Xu` 883 | | :venue:`ACL 2019` 884 | 885 | `Embedding Imputation with Grounded Language Information 886 | `_ 887 | | :authors:`Ziyi Yang, Chenguang Zhu, Vin Sachidananda, Eric Darve` 888 | | :venue:`ACL 2019` 889 | 890 | `Encoding Social Information with Graph Convolutional Networks forPolitical Perspective Detection in News Media 891 | `_ 892 | | :authors:`Chang Li, Dan Goldwasser` 893 | | :venue:`ACL 2019` 894 | 895 | `A Neural Multi-digraph Model for Chinese NER with Gazetteers 896 | `_ 897 | | :authors:`Ruixue Ding, Pengjun Xie, Xiaoyan Zhang, Wei Lu, Linlin Li, Luo Si` 898 | | :venue:`ACL 2019` 899 | 900 | `Tree Communication Models for Sentiment Analysis 901 | `_ 902 | | :authors:`Yuan Zhang, Yue Zhang` 903 | | :venue:`ACL 2019` 904 | 905 | `A2N: Attending to Neighbors for Knowledge Graph Inference 906 | `_ 907 | | :authors:`Trapit Bansal, Da-Cheng Juan, Sujith Ravi, Andrew McCallum` 908 | | :venue:`ACL 2019` 909 | 910 | `Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension 911 | `_ 912 | | :authors:`Daesik Kim, Seonhoon Kim, Nojun Kwak` 913 | | :venue:`ACL 2019` 914 | 915 | `Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution 916 | `_ 917 | | :authors:`Yinchuan Xu, Junlin Yang` 918 | | :venue:`ACL 2019 Workshop` 919 | | :keywords:`https://github.com/ianycxu/RGCN-with-BERT` 920 | 921 | `Learning Graph Pooling and Hybrid Convolutional Operations for Text Representations 922 | `_ 923 | | :authors:`Hongyang Gao, Yongjun Chen, Shuiwang Ji` 924 | | :venue:`WWW 2019` 925 | 926 | `Learning to Create Sentence Semantic Relation Graphs for Multi-Document Summarization 927 | `_ 928 | | :authors:`Diego Antognini, Boi Faltings` 929 | | :venue:`EMNLP 2019` 930 | 931 | `Dependency-Guided LSTM-CRF for Named Entity Recognition 932 | `_ 933 | | :authors:`Zhanming Jie, Wei Lu` 934 | | :venue:`EMNLP 2019` 935 | 936 | `Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity 937 | `_ 938 | | :authors:`Penghui Wei, Nan Xu, Wenji Mao` 939 | | :venue:`EMNLP 2019` 940 | 941 | `DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation 942 | `_ 943 | | :authors:`Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, Alexander Gelbukh` 944 | | :venue:`EMNLP 2019` 945 | 946 | `Modeling Graph Structure in Transformer for Better AMR-to-Text Generation 947 | `_ 948 | | :authors:`Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min Zhang, Guodong Zhou` 949 | | :venue:`EMNLP 2019` 950 | 951 | `KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning 952 | `_ 953 | | :authors:`Bill Yuchen Lin, Xinyue Chen, Jamin Chen, Xiang Ren` 954 | | :venue:`EMNLP 2019` 955 | 956 | Computer Vision 957 | --------------- 958 | 959 | `3D Graph Neural Networks for RGBD Semantic Segmentation 960 | `_ 961 | | :authors:`Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, Raquel Urtasun` 962 | | :venue:`ICCV 2017` 963 | 964 | `Situation Recognition With Graph Neural Networks 965 | `_ 966 | | :authors:`Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, Sanja Fidler` 967 | | :venue:`ICCV 2017` 968 | 969 | `Graph-Based Classification of Omnidirectional Images 970 | `_ 971 | | :authors:`Renata Khasanova, Pascal Frossard` 972 | | :venue:`ICCV 2017` 973 | 974 | `Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 975 | `_ 976 | | :authors:`Sijie Yan, Yuanjun Xiong, Dahua Lin` 977 | | :venue:`AAAI 2018` 978 | 979 | `Image Generation from Scene Graphs 980 | `_ 981 | | :authors:`Justin Johnson, Agrim Gupta, Li Fei-Fei` 982 | | :venue:`CVPR 2018` 983 | 984 | `FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation 985 | `_ 986 | | :authors:`Yaoqing Yang, Chen Feng, Yiru Shen, Dong Tian` 987 | | :venue:`CVPR 2018` 988 | 989 | `PPFNet: Global Context Aware Local Features for Robust 3D Point Matching 990 | `_ 991 | | :authors:`Haowen Deng, Tolga Birdal, Slobodan Ilic` 992 | | :venue:`CVPR 2018` 993 | 994 | `Iterative Visual Reasoning Beyond Convolutions 995 | `_ 996 | | :authors:`Xinlei Chen, Li-Jia Li, Li Fei-Fei, Abhinav Gupta` 997 | | :venue:`CVPR 2018` 998 | 999 | `Surface Networks 1000 | `_ 1001 | | :authors:`Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, Joan Bruna` 1002 | | :venue:`CVPR 2018` 1003 | 1004 | `FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis 1005 | `_ 1006 | | :authors:`Nitika Verma, Edmond Boyer, Jakob Verbeek` 1007 | | :venue:`CVPR 2018` 1008 | 1009 | `Learning to Act Properly: Predicting and Explaining Affordances From Images 1010 | `_ 1011 | | :authors:`Ching-Yao Chuang, Jiaman Li, Antonio Torralba, Sanja Fidler` 1012 | | :venue:`CVPR 2018` 1013 | 1014 | `Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling 1015 | `_ 1016 | | :authors:`Yiru Shen, Chen Feng, Yaoqing Yang, Dong Tian` 1017 | | :venue:`CVPR 2018` 1018 | 1019 | `Deformable Shape Completion With Graph Convolutional Autoencoders 1020 | `_ 1021 | | :authors:`Or Litany, Alex Bronstein, Michael Bronstein, Ameesh Makadia` 1022 | | :venue:`CVPR 2018` 1023 | 1024 | `Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images 1025 | `_ 1026 | | :authors:`Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, Yu-Gang Jiang` 1027 | | :venue:`ECCV 2018` 1028 | 1029 | `Learning Human-Object Interactions by Graph Parsing Neural Networks 1030 | `_ 1031 | | :authors:`Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, Song-Chun Zhu` 1032 | | :venue:`ECCV 2018` 1033 | 1034 | `Generating 3D Faces using Convolutional Mesh Autoencoders 1035 | `_ 1036 | | :authors:`Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, Michael J. Black` 1037 | | :venue:`ECCV 2018` 1038 | 1039 | `Learning SO(3) Equivariant Representations with Spherical CNNs 1040 | `_ 1041 | | :authors:`Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, Kostas Daniilidis` 1042 | | :venue:`ECCV 2018` 1043 | 1044 | `Neural Graph Matching Networks for Fewshot 3D Action Recognition 1045 | `_ 1046 | | :authors:`Michelle Guo, Edward Chou, De-An Huang, Shuran Song, Serena Yeung, Li Fei-Fei` 1047 | | :venue:`ECCV 2018` 1048 | 1049 | `Multi-Kernel Diffusion CNNs for Graph-Based Learning on Point Clouds 1050 | `_ 1051 | | :authors:`Lasse Hansen, Jasper Diesel, Mattias P. Heinrich` 1052 | | :venue:`ECCV 2018` 1053 | 1054 | `Hierarchical Video Frame Sequence Representation with Deep Convolutional Graph Network 1055 | `_ 1056 | | :authors:`Feng Mao, Xiang Wu, Hui Xue, Rong Zhang` 1057 | | :venue:`ECCV 2018` 1058 | 1059 | `Graph R-CNN for Scene Graph Generation 1060 | `_ 1061 | | :authors:`Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, Devi Parikh` 1062 | | :venue:`ECCV 2018` 1063 | 1064 | `Exploring Visual Relationship for Image Captioning 1065 | `_ 1066 | | :authors:`Ting Yao, Yingwei Pan, Yehao Li, Tao Mei` 1067 | | :venue:`ECCV 2018` 1068 | 1069 | `Beyond Grids: Learning Graph Representations for Visual Recognition 1070 | `_ 1071 | | :authors:`Yin Li, Abhinav Gupta` 1072 | | :venue:`NeurIPS 2018` 1073 | 1074 | `Learning Conditioned Graph Structures for Interpretable Visual Question Answering 1075 | `_ 1076 | | :authors:`Will Norcliffe-Brown, Efstathios Vafeias, Sarah Parisot` 1077 | | :venue:`NeurIPS 2018` 1078 | 1079 | `LinkNet: Relational Embedding for Scene Graph 1080 | `_ 1081 | | :authors:`Sanghyun Woo, Dahun Kim, Donghyeon Cho, In So Kweon` 1082 | | :venue:`NeurIPS 2018` 1083 | 1084 | `Flexible Neural Representation for Physics Prediction 1085 | `_ 1086 | | :authors:`Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, Daniel L. K. Yamins` 1087 | | :venue:`NeurIPS 2018` 1088 | 1089 | `Learning Localized Generative Models for 3D Point Clouds via Graph Convolution 1090 | `_ 1091 | | :authors:`Diego Valsesia, Giulia Fracastoro, Enrico Magli` 1092 | | :venue:`ICLR 2019` 1093 | 1094 | `Graph-Based Global Reasoning Networks 1095 | `_ 1096 | | :authors:`Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis` 1097 | | :venue:`CVPR 2019` 1098 | 1099 | `Deep Graph Laplacian Regularization for Robust Denoising of Real Images 1100 | `_ 1101 | | :authors:`Jin Zeng, Jiahao Pang, Wenxiu Sun, Gene Cheung` 1102 | | :venue:`CVPR 2019` 1103 | 1104 | `Learning Context Graph for Person Search 1105 | `_ 1106 | | :authors:`Yichao Yan, Qiang Zhang, Bingbing Ni, Wendong Zhang, Minghao Xu, Xiaokang Yang` 1107 | | :venue:`CVPR 2019` 1108 | 1109 | `Graphonomy: Universal Human Parsing via Graph Transfer Learning 1110 | `_ 1111 | | :authors:`Ke Gong, Yiming Gao, Xiaodan Liang, Xiaohui Shen, Meng Wang, Liang Lin` 1112 | | :venue:`CVPR 2019` 1113 | 1114 | `Masked Graph Attention Network for Person Re-Identification 1115 | `_ 1116 | for_Person_Re-Identification_CVPRW_2019_paper.html>`_ 1117 | | :authors:`Liqiang Bao, Bingpeng Ma, Hong Chang, Xilin Chen` 1118 | | :venue:`CVPR 2019` 1119 | 1120 | `Learning to Cluster Faces on an Affinity Graph 1121 | `_ 1122 | | :authors:`Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan, Chen Change Loy, Dahua Lin` 1123 | | :venue:`CVPR 2019` 1124 | 1125 | `Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition 1126 | `_ 1127 | | :authors:`Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, Qi Tian` 1128 | | :venue:`CVPR 2019` 1129 | 1130 | `Adaptively Connected Neural Networks 1131 | `_ 1132 | | :authors:`Guangrun Wang, Keze Wang, Liang Lin` 1133 | | :venue:`CVPR 2019` 1134 | 1135 | `Reasoning Visual Dialogs with Structural and Partial Observations 1136 | `_ 1137 | | :authors:`Zilong Zheng, Wenguan Wang, Siyuan Qi, Song-Chun Zhu` 1138 | | :venue:`CVPR 2019` 1139 | 1140 | `MeshCNN: A Network with an Edge 1141 | `_ 1142 | | :authors:`Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, Daniel Cohen-Or` 1143 | | :venue:`SIGGRAPH 2019` 1144 | | :keywords:`https://ranahanocka.github.io/MeshCNN/` 1145 | 1146 | `Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning 1147 | `_ 1148 | | :authors:`Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, Jin Young Choi` 1149 | | :venue:`ICCV 2019` 1150 | 1151 | `Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation 1152 | `_ 1153 | | :authors:`Chao Wen, Yinda Zhang, Zhuwen Li, Yanwei Fu` 1154 | | :venue:`ICCV 2019` 1155 | 1156 | `Learning Trajectory Dependencies for Human Motion Prediction 1157 | `_ 1158 | | :authors:`Wei Mao, Miaomiao Liu, Mathieu Salzmann, Hongdong Li` 1159 | | :venue:`ICCV 2019` 1160 | 1161 | `Graph-Based Object Classification for Neuromorphic Vision Sensing 1162 | `_ 1163 | | :authors:`Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, Yiannis Andreopoulos` 1164 | | :venue:`ICCV 2019` 1165 | 1166 | `Fashion Retrieval via Graph Reasoning Networks on a Similarity Pyramid 1167 | `_ 1168 | | :authors:`Zhanghui Kuang, Yiming Gao, Guanbin Li, Ping Luo, Yimin Chen, Liang Lin, Wayne Zhang` 1169 | | :venue:`ICCV 2019` 1170 | 1171 | `Understanding Human Gaze Communication by Spatio-Temporal Graph Reasoning 1172 | `_ 1173 | | :authors:`Lifeng Fan, Wenguan Wang, Siyuan Huang, Xinyu Tang, Song-Chun Zhu` 1174 | | :venue:`ICCV 2019` 1175 | 1176 | `Visual Semantic Reasoning for Image-Text Matching 1177 | `_ 1178 | | :authors:`Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, Yun Fu` 1179 | | :venue:`ICCV 2019` 1180 | 1181 | `Graph Convolutional Networks for Temporal Action Localization 1182 | `_ 1183 | | :authors:`Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan` 1184 | | :venue:`ICCV 2019` 1185 | 1186 | `Semantically-Regularized Logic Graph Embeddings 1187 | `_ 1188 | | :authors:`Yaqi Xie, Ziwei Xu, Kuldeep Meel, Mohan S Kankanhalli, Harold Soh` 1189 | | :venue:`NeurIPS 2019` 1190 | 1191 | Recommender Systems 1192 | ------------------- 1193 | 1194 | `Graph Convolutional Neural Networks for Web-Scale Recommender Systems 1195 | `_ 1196 | | :authors:`Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec` 1197 | | :venue:`KDD 2018` 1198 | | :keywords:`PinSage` 1199 | 1200 | `SocialGCN: An Efficient Graph Convolutional Network based Model for Social Recommendation 1201 | `_ 1202 | | :authors:`Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting Wang, Meng Wang` 1203 | | :venue:`AAAI 2018` 1204 | | :keywords:`GCN, Social recommendation` 1205 | 1206 | `Session-based Social Recommendation via Dynamic Graph Attention Networks 1207 | `_ 1208 | | :authors:`Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, Jian Tang` 1209 | | :venue:`WSDM 2019` 1210 | | :keywords:`Social recommendation, session-based, GAT` 1211 | 1212 | `Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in 1213 | Recommender Systems 1214 | `_ 1215 | | :authors:`Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen` 1216 | | :venue:`WWW 2019` 1217 | | :keywords:`Social recommendation, GAT` 1218 | 1219 | `Graph Neural Networks for Social Recommendation 1220 | `_ 1221 | | :authors:`Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin` 1222 | | :venue:`WWW 2019` 1223 | | :keywords:`Social recommendation, GNN` 1224 | 1225 | `Session-based Recommendation with Graph Neural Networks 1226 | `_ 1227 | | :authors:`Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan` 1228 | | :venue:`AAAI 2019` 1229 | | :keywords:`Session-based recommendation, GNN` 1230 | 1231 | `A Neural Influence Diffusion Model for Social Recommendation 1232 | `_ 1233 | | :authors:`Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, Meng Wang` 1234 | | :venue:`SIGIR 2019` 1235 | | :keywords:`Social Recommendation, diffusion` 1236 | 1237 | `Neural Graph Collaborative Filtering 1238 | `_ 1239 | | :authors:`Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua` 1240 | | :venue:`SIGIR 2019` 1241 | | :keywords:`Collaborative Filtering, GNN` 1242 | 1243 | `Binarized Collaborative Filtering with Distilling Graph Convolutional Networks 1244 | `_ 1245 | | :authors:`Haoyu Wang, Defu Lian, Yong Ge` 1246 | | :venue:`IJCAI 2019` 1247 | 1248 | `IntentGC: A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation 1249 | `_ 1250 | | :authors:`Jun Zhao, Zhou Zhou, Ziyu Guan, Wei Zhao, Wei Ning, Guang Qiu, Xiaofei He` 1251 | | :venue:`KDD 2019` 1252 | 1253 | `An End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation 1254 | `_ 1255 | | :authors:`Yanru Qu, Ting Bai, Weinan Zhang, Jianyun Nie, Jian Tang` 1256 | | :venue:`KDD 2019 Workshop` 1257 | 1258 | Link Prediction 1259 | --------------- 1260 | 1261 | `Link Prediction Based on Graph Neural Networks 1262 | `_ 1263 | | :authors:`Muhan Zhang, Yixin Chen` 1264 | | :venue:`NeurIPS 2018` 1265 | 1266 | `Link Prediction via Subgraph Embedding-Based Convex Matrix Completion 1267 | `_ 1268 | | :authors:`Zhu Cao, Linlin Wang, Gerard de Melo` 1269 | | :venue:`AAAI 2018` 1270 | 1271 | `Graph Convolutional Matrix Completion 1272 | `_ 1273 | | :authors:`Rianne van den Berg, Thomas N. Kipf, Max Welling` 1274 | | :venue:`KDD 2018 Workshop` 1275 | 1276 | `Semi-Implicit Graph Variational Auto-Encoders 1277 | `_ 1278 | | :authors:`Arman Hasanzadeh, Ehsan Hajiramezanali, Nick Duffield , Krishna Narayanan, Mingyuan Zhou, Xiaoning Qian` 1279 | | :venue:`NeurIPS 2019` 1280 | 1281 | Influence Prediction 1282 | -------------------- 1283 | 1284 | `DeepInf: Social Influence Prediction with Deep Learning 1285 | `_ 1286 | | :authors:`Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, Jie Tang` 1287 | | :venue:`KDD 2018` 1288 | 1289 | `Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks 1290 | `_ 1291 | | :authors:`Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos` 1292 | | :venue:`KDD 2019` 1293 | 1294 | Neural Architecture Search 1295 | -------------------------- 1296 | 1297 | `Graph HyperNetworks for Neural Architecture Search 1298 | `_ 1299 | | :authors:`Chris Zhang, Mengye Ren, Raquel Urtasun` 1300 | | :venue:`ICLR 2019` 1301 | 1302 | `D-VAE: A Variational Autoencoder for Directed Acyclic Graphs 1303 | `_ 1304 | | :authors:`Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen` 1305 | | :venue:`NeurIPS 2019` 1306 | 1307 | Reinforcement Learning 1308 | ---------------------- 1309 | 1310 | `Action Schema Networks: Generalised Policies with Deep Learning 1311 | `_ 1312 | | :authors:`Sam Toyer, Felipe Trevizan, Sylvie Thiebaux, Lexing Xie` 1313 | | :venue:`AAAI 2018` 1314 | 1315 | `NerveNet: Learning Structured Policy with Graph Neural Networks 1316 | `_ 1317 | | :authors:`Tingwu Wang, Renjie Liao, Jimmy Ba, Sanja Fidler` 1318 | | :venue:`ICLR 2018` 1319 | 1320 | `Graph Networks as Learnable Physics Engines for Inference and Control 1321 | `_ 1322 | | :authors:`Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller` 1323 | | :venue:`ICML 2018` 1324 | 1325 | `Learning Policy Representations in Multiagent Systems 1326 | `_ 1327 | | :authors:`Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yura Burda, Harrison Edwards` 1328 | | :venue:`ICML 2018` 1329 | 1330 | `Relational recurrent neural networks 1331 | `_ 1332 | | :authors:`Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski,Théophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, Timothy Lillicrap` 1333 | | :venue:`NeurIPS 2018` 1334 | 1335 | `Transfer of Deep Reactive Policies for MDP Planning 1336 | `_ 1337 | | :authors:`Aniket Bajpai, Sankalp Garg, Mausam` 1338 | | :venue:`NeurIPS 2018` 1339 | 1340 | `Neural Graph Evolution: Towards Efficient Automatic Robot Design 1341 | `_ 1342 | | :authors:`Tingwu Wang, Yuhao Zhou, Sanja Fidler, Jimmy Ba` 1343 | | :venue:`ICLR 2019` 1344 | 1345 | `No Press Diplomacy: Modeling Multi-Agent Gameplay 1346 | `_ 1347 | | :authors:`Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kummerfeld, Satinder Singh, Joelle Pineau, Aaron Courville` 1348 | | :venue:`NeurIPS 2019` 1349 | 1350 | Combinatorial Optimization 1351 | -------------------------- 1352 | 1353 | `Learning Combinatorial Optimization Algorithms over Graphs 1354 | `_ 1355 | | :authors:`Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song` 1356 | | :venue:`NeurIPS 2017` 1357 | 1358 | `Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search 1359 | `_ 1360 | | :authors:`Zhuwen Li, Qifeng Chen, Vladlen Koltun` 1361 | | :venue:`NeurIPS 2018` 1362 | 1363 | `Reinforcement Learning for Solving the Vehicle Routing Problem 1364 | `_ 1365 | | :authors:`Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takáč` 1366 | | :venue:`NeurIPS 2018` 1367 | 1368 | `Attention, Learn to Solve Routing Problems! 1369 | `_ 1370 | | :authors:`Wouter Kool, Herke van Hoof, Max Welling` 1371 | | :venue:`ICLR 2019` 1372 | 1373 | `Learning a SAT Solver from Single-Bit Supervision 1374 | `_ 1375 | | :authors:`Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, David L. Dill` 1376 | | :venue:`ICLR 2019` 1377 | 1378 | `An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem 1379 | `_ 1380 | | :authors:`Chaitanya K. Joshi, Thomas Laurent, Xavier Bresson` 1381 | | :venue:`arXiv 2019` 1382 | 1383 | `Approximation Ratios of Graph Neural Networks for Combinatorial Problems 1384 | `_ 1385 | | :authors:`Ryoma Sato, Makoto Yamada, Hisashi Kashima` 1386 | | :venue:`NeurIPS 2019` 1387 | 1388 | `Exact Combinatorial Optimization with Graph Convolutional Neural Networks 1389 | `_ 1390 | | :authors:`Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, Andrea Lodi` 1391 | | :venue:`NeurIPS 2019` 1392 | 1393 | `On Learning Paradigms for the Travelling Salesman Problem 1394 | `_ 1395 | | :authors:`Chaitanya K. Joshi, Thomas Laurent, Xavier Bresson` 1396 | | :venue:`NeurIPS 2019 Workshop` 1397 | 1398 | Adversarial Attack and Robustness 1399 | ------------------ 1400 | 1401 | `Adversarial Attack on Graph Structured Data 1402 | `_ 1403 | | :authors:`Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, Le Song` 1404 | | :venue:`ICML 2018` 1405 | 1406 | `Adversarial Attacks on Neural Networks for Graph Data 1407 | `_ 1408 | | :authors:`Daniel Zügner, Amir Akbarnejad, Stephan Günnemann` 1409 | | :venue:`KDD 2018` 1410 | 1411 | `Adversarial Attacks on Graph Neural Networks via Meta Learning 1412 | `_ 1413 | | :authors:`Daniel Zügner, Stephan Günnemann` 1414 | | :venue:`ICLR 2019` 1415 | 1416 | `Robust Graph Convolutional Networks Against Adversarial Attacks 1417 | `_ 1418 | | :authors:`Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu` 1419 | | :venue:`KDD 2019` 1420 | 1421 | `Certifiable Robustness and Robust Training for Graph Convolutional Networks 1422 | `_ 1423 | | :authors:`Daniel Zügner, Stephan Günnemann` 1424 | | :venue:`KDD 2019` 1425 | 1426 | Graph Matching 1427 | ------------- 1428 | 1429 | `REGAL: Representation Learning-based Graph Alignment 1430 | `_ 1431 | | :authors:`Mark Heimann, Haoming Shen, Tara Safavi, Danai Koutra` 1432 | | :venue:`CIKM 2018` 1433 | 1434 | `Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks 1435 | `_ 1436 | | :authors:`Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang` 1437 | | :venue:`EMNLP 2018` 1438 | 1439 | `Learning Combinatorial Embedding Networks for Deep Graph Matching 1440 | `_ 1441 | | :authors:`Runzhong Wang, Junchi Yan, Xiaokang Yang` 1442 | | :venue:`ICCV 2019` 1443 | 1444 | `Deep Graph Matching Consensus 1445 | `_ 1446 | | :authors:`Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege` 1447 | | :venue:`ICLR 2020` 1448 | 1449 | Meta Learning and Few-shot Learning 1450 | --------------------------------- 1451 | 1452 | `Few-Shot Learning with Graph Neural Networks 1453 | `_ 1454 | | :authors:`Victor Garcia, Joan Bruna` 1455 | | :venue:`ICLR 2018` 1456 | 1457 | `Learning Steady-States of Iterative Algorithms over Graphs 1458 | `_ 1459 | | :authors:`Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, Le Song` 1460 | | :venue:`ICML 2018` 1461 | 1462 | `Learning to Propagate for Graph Meta-Learning 1463 | `_ 1464 | | :authors:`Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang` 1465 | | :venue:`NeurIPS 2019` 1466 | 1467 | `Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral Measures 1468 | `_ 1469 | | :authors:`Jatin Chauhan, Deepak Nathani, Manohar Kaul` 1470 | | :venue:`ICLR 2020` 1471 | 1472 | `Automated Relational Meta-learning 1473 | `_ 1474 | | :authors:`Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, Zhenhui Li` 1475 | | :venue:`ICLR 2020` 1476 | 1477 | Structure Learning 1478 | ------------------ 1479 | 1480 | `Neural Relational Inference for Interacting Systems 1481 | `_ 1482 | | :authors:`Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel` 1483 | | :venue:`ICML 2018` 1484 | 1485 | `Brain Signal Classification via Learning Connectivity Structure 1486 | `_ 1487 | | :authors:`Soobeom Jang, Seong-Eun Moon, Jong-Seok Lee` 1488 | | :venue:`arXiv 2019` 1489 | 1490 | `A Flexible Generative Framework for Graph-based Semi-supervised Learning 1491 | `_ 1492 | | :authors:`Jiaqi Ma, Weijing Tang, Ji Zhu, Qiaozhu Mei` 1493 | | :venue:`NeurIPS 2019` 1494 | 1495 | `Joint embedding of structure and features via graph convolutional networks 1496 | `_ 1497 | | :authors:`Sébastien Lerique, Jacob Levy Abitbol, Márton Karsai` 1498 | | :venue:`arXiv 2019` 1499 | 1500 | `Variational Spectral Graph Convolutional Networks 1501 | `_ 1502 | | :authors:`Louis Tiao, Pantelis Elinas, Harrison Nguyen, Edwin V. Bonilla` 1503 | | :venue:`arXiv 2019` 1504 | 1505 | `Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning 1506 | `_ 1507 | | :authors:`Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, Yi Yang` 1508 | | :venue:`ICLR 2019` 1509 | 1510 | `Graph Learning Network: A Structure Learning Algorithm 1511 | `_ 1512 | | :authors:`Darwin Saire Pilco, Adín Ramírez Rivera` 1513 | | :venue:`ICML 2019 Workshop` 1514 | 1515 | `Learning Discrete Structures for Graph Neural Networks 1516 | `_ 1517 | | :authors:`Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He` 1518 | | :venue:`ICML 2019` 1519 | 1520 | `Graphite: Iterative Generative Modeling of Graphs 1521 | `_ 1522 | | :authors:`Aditya Grover, Aaron Zweig, Stefano Ermon` 1523 | | :venue:`ICML 2019` 1524 | 1525 | Bioinformatics and Chemistry 1526 | -------------- 1527 | 1528 | `Protein Interface Prediction using Graph Convolutional Networks 1529 | `_ 1530 | | :authors:`Alex Fout, Jonathon Byrd, Basir Shariat, Asa Ben-Hur` 1531 | | :venue:`NeurIPS 2017` 1532 | 1533 | `Modeling Polypharmacy Side Effects with Graph Convolutional Networks 1534 | `_ 1535 | | :authors:`Marinka Zitnik, Monica Agrawal, Jure Leskovec` 1536 | | :venue:`Bioinformatics 2018` 1537 | 1538 | `NeoDTI: Neural Integration of Neighbor Information from a Heterogeneous Network for Discovering New 1539 | Drug–target Interactions 1540 | `_ 1541 | | :authors:`Fangping Wan, Lixiang Hong, An Xiao, Tao Jiang, Jianyang Zeng` 1542 | | :venue:`Bioinformatics 2018` 1543 | 1544 | `SELFIES: a Robust Representation of Semantically Constrained Graphs with an Example Application in Chemistry 1545 | `_ 1546 | | :authors:`Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, Alán Aspuru-Guzik` 1547 | | :venue:`arXiv 2019` 1548 | 1549 | `Drug-Drug Adverse Effect Prediction with Graph Co-Attention 1550 | `_ 1551 | | :authors:`Andreea Deac, Yu-Hsiang Huang, Petar Veličković, Pietro Liò, Jian Tang` 1552 | | :venue:`ICML 2019 Workshop` 1553 | 1554 | `GCN-MF: Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization 1555 | `_ 1556 | | :authors:`Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu, Jiayu Zhou, Xin Gao, Panos Kalnis` 1557 | | :venue:`KDD 2019` 1558 | 1559 | `Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures 1560 | `_ 1561 | | :authors:`Guy Shtar, Lior Rokach, Bracha Shapira` 1562 | | :venue:`arXiv 2019` 1563 | 1564 | `PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks 1565 | `_ 1566 | | :authors:`Yu Li, Hiroyuki Kuwahara, Peng Yang, Le Song, Xin Gao` 1567 | | :venue:`bioRxiv 2019` 1568 | 1569 | `Identifying Protein-Protein Interaction using Tree LSTM and Structured Attention 1570 | `_ 1571 | | :authors:`Mahtab Ahmed, Jumayel Islam, Muhammad Rifayat Samee, Robert E. Mercer` 1572 | | :venue:`ICSC 2019` 1573 | 1574 | `GCN-MF: Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization 1575 | `_ 1576 | | :authors:`Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu, Jiayu Zhou, Xin Gao, Panos Kalnis` 1577 | | :venue:`KDD 2019` 1578 | 1579 | `Towards perturbation prediction of biological networks using deep learning 1580 | `_ 1581 | | :authors:`Diya Li, Jianxi Gao` 1582 | | :venue:`Nature 2019` 1583 | 1584 | `Directional Message Passing for Molecular Graphs 1585 | `_ 1586 | | :authors:`Johannes Klicpera, Janek Groß, Stephan Günnemann` 1587 | | :venue:`ICLR 2020` 1588 | 1589 | Graph Algorithms 1590 | --------------- 1591 | 1592 | `Neural Execution of Graph Algorithms 1593 | `_ 1594 | | :authors:`Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, Charles Blundell` 1595 | | :venue:`ICLR 2020` 1596 | 1597 | Theorem Proving 1598 | --------------- 1599 | 1600 | `Premise Selection for Theorem Proving by Deep Graph Embedding 1601 | `_ 1602 | | :authors:`Mingzhe Wang, Yihe Tang, Jian Wang, Jia Deng` 1603 | | :venue:`NeurIPS 2017` 1604 | 1605 | Graph Generation 1606 | ================ 1607 | 1608 | `GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models 1609 | `_ 1610 | | :authors:`Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec` 1611 | | :venue:`ICML 2018` 1612 | 1613 | `NetGAN: Generating Graphs via Random Walks 1614 | `_ 1615 | | :authors:`Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, Stephan Günnemann` 1616 | | :venue:`ICML 2018` 1617 | 1618 | `Learning Deep Generative Models of Graphs 1619 | `_ 1620 | | :authors:`Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter Battaglia` 1621 | | :venue:`ICML 2018` 1622 | 1623 | `Junction Tree Variational Autoencoder for Molecular Graph Generation 1624 | `_ 1625 | | :authors:`Wengong Jin, Regina Barzilay, Tommi Jaakkola` 1626 | | :venue:`ICML 2018` 1627 | 1628 | `MolGAN: An implicit generative model for small molecular graphs 1629 | `_ 1630 | | :authors:`Nicola De Cao, Thomas Kipf` 1631 | | :venue:`arXiv 2018` 1632 | 1633 | `Generative Modeling for Protein Structures 1634 | `_ 1635 | | :authors:`Namrata Anand, Po-Ssu Huang` 1636 | | :venue:`NeurIPS 2018` 1637 | 1638 | `Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders 1639 | `_ 1640 | | :authors:`Tengfei Ma, Jie Chen, Cao Xiao` 1641 | | :venue:`NeurIPS 2018` 1642 | 1643 | `Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation 1644 | `_ 1645 | | :authors:`Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec` 1646 | | :venue:`NeurIPS 2018` 1647 | 1648 | `Constrained Graph Variational Autoencoders for Molecule Design 1649 | `_ 1650 | | :authors:`Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, Alexander L. Gaunt` 1651 | | :venue:`NeurIPS 2018` 1652 | 1653 | `Learning Multimodal Graph-to-Graph Translation for Molecule Optimization 1654 | `_ 1655 | | :authors:`Wengong Jin, Kevin Yang, Regina Barzilay, Tommi Jaakkola` 1656 | | :venue:`ICLR 2019` 1657 | 1658 | `Generative Code Modeling with Graphs 1659 | `_ 1660 | | :authors:`Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, Oleksandr Polozov` 1661 | | :venue:`ICLR 2019` 1662 | 1663 | `DAG-GNN: DAG Structure Learning with Graph Neural Networks 1664 | `_ 1665 | | :authors:`Yue Yu, Jie Chen, Tian Gao, Mo Yu` 1666 | | :venue:`ICML 2019` 1667 | 1668 | `Graph to Graph: a Topology Aware Approach for Graph Structures Learning and Generation 1669 | `_ 1670 | | :authors:`Mingming Sun, Ping Li` 1671 | | :venue:`AISTATS 2019` 1672 | 1673 | `Graph Normalizing Flows 1674 | `_ 1675 | | :authors:`Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky` 1676 | | :venue:`NeurIPS 2019` 1677 | 1678 | `Conditional Structure Generation through Graph Variational Generative Adversarial Nets 1679 | `_ 1680 | | :authors:`Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, Pan Li` 1681 | | :venue:`NeurIPS 2019` 1682 | 1683 | `Efficient Graph Generation with Graph Recurrent Attention Networks 1684 | `_ 1685 | | :authors:`Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David Duvenaud, Raquel Urtasun, Richard Zemel` 1686 | | :venue:`NeurIPS 2019` 1687 | 1688 | `GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation 1689 | `_ 1690 | | :authors:`Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang` 1691 | | :venue:`ICLR 2020` 1692 | 1693 | Graph Layout and High-dimensional Data Visualization 1694 | ==================================================== 1695 | 1696 | `Visualizing Data using t-SNE 1697 | `_ 1698 | | :authors:`Laurens van der Maaten, Geoffrey Hinton` 1699 | | :venue:`JMLR 2008` 1700 | 1701 | `Visualizing non-metric similarities in multiple maps 1702 | `_ 1703 | | :authors:`Laurens van der Maaten, Geoffrey Hinton` 1704 | | :venue:`ML 2012` 1705 | 1706 | `Visualizing Large-scale and High-dimensional Data 1707 | `_ 1708 | | :authors:`Jian Tang, Jingzhou Liu, Ming Zhang, Qiaozhu Mei` 1709 | | :venue:`WWW 2016` 1710 | 1711 | `GraphTSNE: A Visualization Technique for Graph-Structured Data 1712 | `_ 1713 | | :authors:`Yao Yang Leow, Thomas Laurent, Xavier Bresson` 1714 | | :venue:`ICLR 2019 Workshop` 1715 | 1716 | Graph Representation Learning Systems 1717 | ===================================== 1718 | 1719 | `GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding 1720 | `_ 1721 | | :authors:`Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang` 1722 | | :venue:`WWW 2019` 1723 | 1724 | `PyTorch-BigGraph: A Large-scale Graph Embedding System 1725 | `_ 1726 | | :authors:`Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, Alex Peysakhovich` 1727 | | :venue:`SysML 2019` 1728 | 1729 | `AliGraph: A Comprehensive Graph Neural Network Platform 1730 | `_ 1731 | | :authors:`Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, Jingren Zhou` 1732 | | :venue:`VLDB 2019` 1733 | 1734 | `Deep Graph Library 1735 | `_ 1736 | | :authors:`DGL Team` 1737 | 1738 | `AmpliGraph 1739 | `_ 1740 | | :authors:`Luca Costabello, Sumit Pai, Chan Le Van, Rory McGrath, Nicholas McCarthy, Pedro Tabacof` 1741 | 1742 | `Euler 1743 | `_ 1744 | | :authors:`Alimama Engineering Platform Team, Alimama Search Advertising Algorithm Team` 1745 | 1746 | Datasets 1747 | ======== 1748 | 1749 | `ATOMIC: an atlas of machine commonsense for if-then reasoning 1750 | `_ 1751 | | :authors:`Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi` 1752 | | :venue:`AAAI 2019` 1753 | 1754 | 1755 | --------------------------------------------------------------------------------