├── .gitignore ├── README.md ├── SectionB └── RW_Softmax.mlx ├── SectionC ├── FLUX Workshop Section C.pptx ├── MLE_fmincon.m └── log_lik.m ├── SectionD ├── .DS_Store ├── Flux_GroupD_combined.pdf ├── Flux_GroupD_combined.pptx ├── model_recovery │ ├── .DS_Store │ ├── README.md │ ├── fit_simulated_data.m │ ├── lik_funs │ │ ├── .DS_Store │ │ ├── decay_lik.m │ │ ├── null_lik.m │ │ ├── one_LR_lik.m │ │ └── two_LR_lik.m │ ├── model_recovery.m │ ├── models │ │ ├── .DS_Store │ │ ├── sim_decay.m │ │ ├── sim_null.m │ │ ├── sim_oneLR.m │ │ └── sim_twoLR.m │ ├── parameter_recovery.m │ ├── simulate_choice_data.m │ └── simulated_data │ │ ├── .DS_Store │ │ ├── 200_trials_data_10-Sep-2021.mat │ │ ├── 200_trials_fits_10-Sep-2021.mat │ │ ├── 20_trials_data_10-Sep-2021.mat │ │ ├── 20_trials_fits_10-Sep-2021.mat │ │ ├── data_10-Sep-2021.mat │ │ ├── data_27-Aug-2021.mat │ │ ├── data_28-Aug-2021.mat │ │ ├── data_30-Aug-2021.mat │ │ ├── fits_10-Sep-2021.mat │ │ ├── fits_27-Aug-2021.mat │ │ ├── fits_28-Aug-2021.mat │ │ └── fits_30-Aug-2021.mat └── parameter_recovery │ ├── Palminteri_Wyart_Koechlin_Trends_2017.pdf │ ├── alpha0.5_100trials.png │ ├── alpha0.5_300trials.png │ ├── decay_learningrate.png │ ├── model_falsification.m │ ├── model_falsification.mlx │ ├── model_falsification.png │ ├── parameter_recovery_simulate.m │ ├── parameter_recovery_simulate.mlx │ └── sampleFromArbitraryP.m ├── TutorialMaterials ├── README.md └── Tutorial1 │ ├── README.md │ ├── estimate_QnLL_gridsearch.m │ ├── fullrecovery_QnLL_fmincon.m │ ├── simulateQ_one.m │ ├── simulateQ_sess.m │ └── simulateQ_sub.m ├── archive └── Example_Live_Script.mlx ├── general_functions ├── learn_RescWagn.m └── softmax.m └── slides_morning ├── 2021_09_17_Welcome_FLUX_workshop.pdf ├── FLUXMorningSession_Introduction.pdf └── FLUXSectionB_How to develop a computational model.pptx.pdf /.gitignore: -------------------------------------------------------------------------------- 1 | *.asv 2 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 2021 Flux Computational Modelling in Development Workshop 2 | 3 | This repository contains slides, code, and further information on all the sessions that took place in this workshop. 4 | 5 | 6 | Programme: 7 |
time (GMT) | |
13:00 | Welcome from the Organisers (Ali Cohen & Tobias Hauser) |
Computational modelling in development: Past, current, and future directions (Cate Hartley) | |
13:30 | What is Computational Modelling? Introduction and examples a. What is a computational model and why do we use it? (Nadescha Trudel & Alisa Loosen) b. How to develop a computational model? (Tricia Seow, Sam Hewitt, & Noam Goldway) c. Principles of modelling and model fitting (Magda Dubois, Naiti Bhatt, Greer Bizzell-Hatcher, & Vasilisa Skvortsova) d. Model comparison, selection & validation (Kate Nussenbaum, Johanna Habicht, & Vasilisa Skvortsova) |
16:00 | Break |
17:00 | Parallel modelling tutorials: a. Inferring cognitive models of reinforcement learning from choice data (Maël Lebreton & Stefano Palminteri) b. Computational modeling of goal-directed and habitual reinforcement-learning strategies (Claire Smid & Wouter Kool) c. Computational models of human gaze data (Angela Radulescu) d. Uncovering heterogeneity in preferences and behavior with finite mixture models (Adrian Bruhin) e. An introduction to drift diffusion modeling (Wenjia Joyce Zhao & Ian Krajbich) |
19:00 | Panel discussion: Promises and Pitfalls in Developmental Computational Modelling |
19:30 | virtual drinks / find-a-modeler & find-an-experimentalist session |