└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # 60 Important Array Data Structure Interview Questions in 2025
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 | #### You can also find all 60 answers here 👉 [Devinterview.io - Array Data Structure](https://devinterview.io/questions/data-structures-and-algorithms/array-data-structure-interview-questions)
10 |
11 |
12 |
13 | ## 1. What is an _Array_?
14 |
15 | An **array** is a fundamental data structure used for storing a **sequence** of elements that can be accessed via an **index**.
16 |
17 | ### Key Characteristics
18 |
19 | - **Homogeneity**: All elements are of the same data type.
20 | - **Contiguous Memory**: Elements are stored in adjacent memory locations for quick access.
21 | - **Fixed Size**: Arrays are generally static in size, although dynamic arrays exist in modern languages.
22 | - **Indexing**: Usually zero-based, though some languages use one-based indexing.
23 |
24 | ### Time Complexity of Basic Operations
25 |
26 | - **Access**: $O(1)$
27 | - **Search**: $O(1)$, $O(n)$ assuming unsorted array
28 | - **Insertion**: $O(1)$ for the end, $O(n)$ for beginning/middle
29 | - **Deletion**: $O(1)$ for the end, $O(n)$ for beginning/middle
30 | - **Append**: $O(1)$ amortized, $O(n)$ during resizing
31 |
32 | ### Code Example: Basic Array Operations
33 |
34 | Here is the Java code:
35 |
36 | ```java
37 | public class ArrayExample {
38 | public static void main(String[] args) {
39 | // Declare and Initialize Arrays
40 | int[] myArray = new int[5]; // Declare an array of size 5
41 | int[] initializedArray = {1, 2, 3, 4, 5}; // Direct initialization
42 |
43 | // Access Elements
44 | System.out.println(initializedArray[0]); // Output: 1
45 |
46 | // Update Elements
47 | initializedArray[2] = 10; // Modify the third element
48 |
49 | // Check Array Length
50 | int length = initializedArray.length; // Retrieve array length
51 | System.out.println(length); // Output: 5
52 | }
53 | }
54 | ```
55 |
56 |
57 | ## 2. What are _Dynamic Arrays_?
58 |
59 | **Dynamic arrays** start with a preset capacity and **automatically resize** as needed. When full, they allocate a larger memory block—often doubling in size—and copy existing elements.
60 |
61 | ### Key Features
62 |
63 | - **Adaptive Sizing**: Dynamic arrays adjust their size based on the number of elements, unlike fixed-size arrays.
64 | - **Contiguous Memory**: Dynamic arrays, like basic arrays, keep elements in adjacent memory locations for efficient indexed access.
65 | - **Amortized Appending**: Append operations are typically constant time. However, occasional resizing might take longer, but averaged over multiple operations, it's still $O(1)$ amortized.
66 |
67 | ### Time Complexity of Basic Operations
68 |
69 | - **Access**: $O(1)$
70 | - **Search**: $O(1)$ for exact matches, $O(n)$ linearly for others
71 | - **Insertion**: $O(1)$ amortized, $O(n)$ during resizing
72 | - **Deletion**: $O(1)$ amortized, $O(n)$ during shifting or resizing
73 | - **Append**: $O(1)$ amortized, $O(n)$ during resizing
74 |
75 | ### Code Example: Java's 'ArrayList': Simplified Implementation
76 |
77 | Here is the Java code:
78 |
79 | ```java
80 | import java.util.Arrays;
81 |
82 | public class DynamicArray
{
83 | private Object[] data;
84 | private int size = 0;
85 | private int capacity;
86 |
87 | public DynamicArray(int initialCapacity) {
88 | this.capacity = initialCapacity;
89 | data = new Object[initialCapacity];
90 | }
91 |
92 | public T get(int index) {
93 | return (T) data[index];
94 | }
95 |
96 | public void add(T value) {
97 | if (size == capacity) {
98 | resize(2 * capacity);
99 | }
100 | data[size++] = value;
101 | }
102 |
103 | private void resize(int newCapacity) {
104 | Object[] newData = new Object[newCapacity];
105 | for (int i = 0; i < size; i++) {
106 | newData[i] = data[i];
107 | }
108 | data = newData;
109 | capacity = newCapacity;
110 | }
111 |
112 | public int size() {
113 | return size;
114 | }
115 |
116 | public boolean isEmpty() {
117 | return size == 0;
118 | }
119 |
120 | public static void main(String[] args) {
121 | DynamicArray dynArray = new DynamicArray<>(2);
122 | dynArray.add(1);
123 | dynArray.add(2);
124 | dynArray.add(3); // This will trigger a resize
125 | System.out.println("Size: " + dynArray.size()); // Output: 3
126 | System.out.println("Element at index 2: " + dynArray.get(2)); // Output: 3
127 | }
128 | }
129 | ```
130 |
131 |
132 | ## 3. What is an _Associative Array_ (Dictionary)?
133 |
134 | An **Associative Array**, often referred to as **Map**, **Hash**, or **Dictionary** is an abstract data type that enables **key-based access** to its elements and offers **dynamic resizing** and fast retrieval.
135 |
136 | ### Key Features
137 |
138 | - **Unique Keys**: Each key is unique, and adding an existing key updates its value.
139 |
140 | - **Variable Key Types**: Keys can be diverse types, including strings, numbers, or objects.
141 |
142 | ### Common Implementations
143 |
144 | - **Hash Table**: Efficiency can degrade due to hash collisions.
145 | - Average Case $O(1)$
146 | - Worst Case $O(n)$
147 |
148 | - **Self-Balancing Trees**: Consistent efficiency due to balanced structure.
149 | - Average Case $O(\log n)$
150 | - Worst Case $O(\log n)$
151 |
152 | - **Unbalanced Trees**: Efficiency can vary, making them less reliable.
153 | - Average Case Variable
154 | - Worst Case between $O(\log n)$ and $O(n)$
155 |
156 | - **Association Lists**: Simple structure, not ideal for large datasets.
157 | - Average and Worst Case $O(n)$
158 |
159 | ### Code Example: Associative Arrays vs. Regular Arrays
160 |
161 | Here is the Python code:
162 |
163 | ```python
164 | # Regular Array Example
165 | my_list = ["apple", "banana", "cherry"]
166 | print(my_list[1]) # Outputs: banana
167 |
168 | # Trying to access using non-integer index would cause an error:
169 | # print(my_list["fruit_name"]) # This would raise an error.
170 |
171 | # Associative Array (Dictionary) Example
172 | my_dict = {
173 | "fruit_name": "apple",
174 | 42: "banana",
175 | (1, 2): "cherry"
176 | }
177 |
178 | print(my_dict["fruit_name"]) # Outputs: apple
179 | print(my_dict[42]) # Outputs: banana
180 | print(my_dict[(1, 2)]) # Outputs: cherry
181 |
182 | # Demonstrating key update
183 | my_dict["fruit_name"] = "orange"
184 | print(my_dict["fruit_name"]) # Outputs: orange
185 | ```
186 |
187 |
188 | ## 4. What defines the _Dimensionality_ of an array?
189 |
190 | **Array dimensionality** indicates the number of indices required to select an element within the array. A classic example is the Tic-Tac-Toe board, which is a two-dimensional array, and elements are referenced by their row and column positions.
191 |
192 | ### Code Example: Tic-Tac-Toe Board (2D Array)
193 |
194 | Here is the Python code:
195 |
196 | ```python
197 | # Setting up the Tic-Tac-Toe board
198 | tic_tac_toe_board = [
199 | ['X', 'O', 'X'],
200 | ['O', 'X', 'O'],
201 | ['X', 'O', 'X']
202 | ]
203 |
204 | # Accessing the top-left corner (which contains 'X'):
205 | element = tic_tac_toe_board[0][0]
206 | ```
207 |
208 | ### Code Example: 3D Array
209 |
210 | Here is the Python code:
211 |
212 | ```python
213 | arr_3d = [
214 | [[1, 2, 3], [4, 5, 6]],
215 | [[7, 8, 9], [10, 11, 12]]
216 | ]
217 | ```
218 |
219 | A three-dimensional array can be imagined as a **cube** or a **stack** of matrices.
220 |
221 | ### Mathematical Perspective
222 |
223 | Mathematically, an array's dimensionality aligns with the Cartesian product of sets, each set corresponding to an axis. A 3D array, for instance, is formed from the Cartesian product of three distinct sets.
224 |
225 | #### Beyond 3D: N-Dimensional Arrays
226 |
227 | Arrays can extend into N dimensions, where $N$ can be any positive integer. The total count of elements in an N-dimensional array is:
228 |
229 | $$
230 | \text{Number of Elements} = S_1 \times S_2 \times \ldots \times S_N
231 | $$
232 |
233 | Where $S_k$ signifies the size of the $k$-th dimension.
234 |
235 |
236 | ## 5. Name some _Advantages_ and _Disadvantages_ of arrays.
237 |
238 | **Arrays** have very specific **strengths** and **weaknesses**, making them better suited for some applications over others.
239 |
240 | ### Advantages
241 |
242 | - **Speed**: Arrays provide $O(1)$ access and append operations when appending at a known index (like the end).
243 |
244 | - **Cache Performance**: Arrays, with their contiguous memory layout, are efficient for tasks involving sequential data access.
245 |
246 | ### Disadvantages
247 |
248 | - **Size Limitations**: Arrays have a fixed size after allocation. Resizing means creating a new array, leading to potential memory overhead or data transfer costs.
249 |
250 | - **Mid-Array Changes**: Operations like insertions or deletions are $O(n)$ due to necessary element shifting.
251 |
252 | ### Considerations
253 |
254 | - **When to Use**: Arrays are optimal for **known data sizes** and when rapid access or appends are critical. They're popular in numerical algorithms and cache-centric tasks.
255 |
256 | - **When to Rethink**: Their static nature and inefficiency for **frequent mid-array changes** make alternatives like linked lists or hash tables sometimes more suitable.
257 |
258 |
259 | ## 6. Explain _Sparse_ and _Dense_ arrays.
260 |
261 | **Sparse arrays** are data structures optimized for arrays where most values are default (e.g., zero or null). They save memory by storing only non-default values and their indices. In contrast, **dense arrays** allocate memory for every element, irrespective of it being a default value.
262 |
263 | ### Example
264 |
265 | - **Sparse Array**: `[0, 0, 3, 0, 0, 0, 0, 9, 0, 0]`
266 | - **Dense Array**: `[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]`
267 |
268 | ### Advantages of Sparse Arrays
269 |
270 | Sparse arrays offer **optimized memory usage**.
271 |
272 | For example, in a million-element array where 90% are zeros:
273 |
274 | - **Dense Array**: Allocates memory for every single element, even if the majority are zeros.
275 | - **Sparse Array**: Drastically conserves memory by only allocating for non-zero elements.
276 |
277 | ### Practical Application
278 |
279 | 1. **Text Processing**: Efficiently represent term-document matrices in analytics where not all words appear in every document.
280 |
281 | 2. **Computer Graphics**: Represent 3D spaces in modeling where many cells may be empty.
282 |
283 | 3. **Scientific Computing**: Handle linear systems with sparse coefficient matrices, speeding up computations.
284 |
285 | 4. **Databases**: Store tables with numerous missing values efficiently.
286 |
287 | 5. **Networking**: Represent sparsely populated routing tables in networking equipment.
288 |
289 | 6. **Machine Learning**: Efficiently handle high-dimensional feature vectors with many zeros.
290 |
291 | 7. **Recommendation Systems**: Represent user-item interaction matrices where many users haven't interacted with most items.
292 |
293 | ### Code Example: Sparse Array
294 |
295 | Here is a Python code:
296 |
297 | ```python
298 | class SparseArray:
299 | def __init__(self):
300 | self.data = {}
301 |
302 | def set(self, index, value):
303 | if value != 0: # Only store non-zero values
304 | self.data[index] = value
305 | elif index in self.data:
306 | del self.data[index]
307 |
308 | def get(self, index):
309 | return self.data.get(index, 0) # Return 0 if index is not in the data
310 |
311 | # Usage
312 | sparse_array = SparseArray()
313 | sparse_array.set(2, 3)
314 | sparse_array.set(7, 9)
315 |
316 | print(sparse_array.get(2)) # Output: 3
317 | print(sparse_array.get(7)) # Output: 9
318 | print(sparse_array.get(3)) # Output: 0
319 | ```
320 |
321 |
322 | ## 7. What are advantages and disadvantages of _Sorted Arrays_?
323 |
324 | A **sorted array** is a data structure where elements are stored in a specific, **predetermined sequence**, usually in ascending or descending order.
325 |
326 | This ordering provides various benefits, such as **optimized search operations**, at the cost of more complex insertions and deletions.
327 |
328 | ### Advantages
329 |
330 | - **Efficient Searches**: Sorted arrays are optimized for search operations, especially when using algorithms like Binary Search, which has a $O(\log n)$ time complexity.
331 |
332 | - **Additional Query Types**: They support other specialized queries, like bisection to find the closest element and range queries to identify elements within a specified range.
333 |
334 | - **Cache Efficiency**: The contiguous memory layout improves cache utilization, which can lead to faster performance.
335 |
336 | ### Disadvantages
337 |
338 | - **Slow Updates**: Insertions and deletions generally require shifting elements, leading to $O(n)$ time complexity for these operations.
339 |
340 | - **Memory Overhead**: The need to maintain the sorted structure can require extra memory, especially during updates.
341 |
342 | - **Lack of Flexibility**: Sorted arrays are less flexible for dynamic resizing and can be problematic in parallel computing environments.
343 |
344 | ### Practical Applications
345 |
346 | - **Search-Heavy Applications**: Suitable when rapid search operations are more common than updates, such as in financial analytics or in-memory databases.
347 | - **Static or Semi-Static Data**: Ideal for datasets known in advance or that change infrequently.
348 | - **Memory Constraints**: They are efficient for small, known datasets that require quick search capabilities.
349 |
350 | ### Time Complexity of Basic Operations
351 |
352 | - **Access**: $O(1)$.
353 | - **Search**: $O(1)$ for exact matches, $O(\log n)$ with binary search for others.
354 | - **Insertion**: $O(1)$ for the end, but usually $O(n)$ to maintain order.
355 | - **Deletion**: $O(1)$ for the end, but usually $O(n)$ to maintain order.
356 | - **Append**: $O(1)$ if appending a larger value, but can spike to $O(n)$ if resizing or inserting in order.
357 |
358 |
359 | ## 8. What are the advantages of _Heaps_ over _Sorted Arrays_?
360 |
361 | While both **heaps** and **sorted arrays** have their strengths, heaps are often preferred when dealing with dynamic data requiring frequent insertions and deletions.
362 |
363 | ### Advantages of Heaps Over Sorted Arrays
364 |
365 | - **Dynamic Operations**: Heaps excel in scenarios with frequent insertions and deletions, maintaining their structure efficiently.
366 | - **Memory Allocation**: Heaps, especially when implemented as binary heaps, can be efficiently managed in memory as they're typically backed by arrays. Sorted arrays, on the other hand, might require periodic resizing or might have wasted space if over-allocated.
367 | - **Predictable Time Complexity**: Heap operations have consistent time complexities, while sorted arrays can vary based on specific data scenarios.
368 | - **No Overhead for Sorting**: Heaps ensure parents are either always smaller or larger than children, which suffices for many tasks without the overhead of maintaining full order as in sorted arrays.
369 |
370 | ### Time Complexities of Key Operations
371 |
372 | #### Heaps
373 |
374 | - **find-min**: $O(1)$ – The root node always contains the minimum value.
375 | - **delete-min**: $O(\log n)$ – Removal of the root is followed by the heapify process to restore order.
376 | - **insert**: $O(\log n)$ – The newly inserted element might need to be bubbled up to its correct position.
377 |
378 | #### Sorted Arrays
379 |
380 | - **find-min**: $O(1)$ – The first element is the minimum if the array is sorted in ascending order.
381 | - **delete-min**: $O(n)$ – Removing the first element requires shifting all other elements.
382 | - **insert**: $O(n)$ – Even though we can find the insertion point in $O(\log n)$ with binary search, we may need to shift elements, making it $O(n)$ in the worst case.
383 |
384 |
385 | ## 9. How does _Indexing_ work in arrays?
386 |
387 | **Indexing** refers to accessing specific elements in an array using unique indices, which range from 0 to $n-1$ for an array of $n$ elements.
388 |
389 | ### Key Concepts
390 |
391 | #### Contiguous Memory and Fixed Element Size
392 |
393 | Arrays occupy adjacent memory locations, facilitating fast random access. All elements are uniformly sized. For example, a 32-bit integer consumes 4 bytes of memory.
394 |
395 | #### Memory Address Calculation
396 |
397 | The memory address of the $i$-th element is computed as:
398 |
399 | $$
400 | \text{Memory Address}_{i} = P + (\text{Element Size}) \times i
401 | $$
402 |
403 | Here, $P$ represents the pointer to the array's first element.
404 |
405 | ### Code Example: Accessing Memory Address
406 |
407 | Here is the Python code:
408 |
409 | ```python
410 | # Define an array
411 | arr = [10, 20, 30, 40, 50, 60]
412 |
413 | # Calculate memory address of the third element
414 | element_index = 2
415 | element_address = arr.__array_interface__['data'][0] + element_index * arr.itemsize
416 |
417 | # Retrieve the element value
418 | import ctypes
419 | element_value = ctypes.cast(element_address, ctypes.py_object).value
420 |
421 | # Output
422 | print(f"The memory address of the third element is: {element_address}")
423 | print(f"The value at that memory address is: {element_value}")
424 | ```
425 |
426 |
427 | ## 10. _Merge_ two _Sorted Arrays_ into one _Sorted Array_.
428 |
429 | ### Problem Statement
430 |
431 | The task is to **merge two sorted arrays** into one combined, sorted array.
432 |
433 | ### Solution
434 |
435 | #### Algorithm Steps
436 |
437 | 1. Initialize the result array **C**, with counters `i=0` for array **A** and `j=0` for array **B**.
438 | 2. While `i` is within the bounds of array **A** and `j` is within the bounds of array **B**:
439 | a. If `A[i]` is less than `B[j]`, append `A[i]` to `C` and increment `i`.
440 | b. If `A[i]` is greater than `B[j]`, append `B[j]` to `C` and increment `j`.
441 | c. If `A[i]` is equal to `B[j]`, append both `A[i]` and `B[j]` to `C` and increment both `i` and `j`.
442 | 3. If any elements remain in array **A**, append them to `C`.
443 | 4. If any elements remain in array **B**, append them to `C`.
444 | 5. Return the merged array `C`.
445 |
446 | ### Visual Representation
447 |
448 | .png?alt=media&token=580caabc-2bc4-4928-9780-ba7bb13d0cb1&_gl=1*14yao85*_ga*OTYzMjY5NTkwLjE2ODg4NDM4Njg.*_ga_CW55HF8NVT*MTY5NzM3MjYxNC4xNjAuMS4xNjk3MzcyNjQ2LjI8LjAuMA..)
449 |
450 | #### Complexity Analysis
451 |
452 | - **Time Complexity**: $O(n)$, where $n$ is the combined length of Arrays A and B.
453 | - **Space Complexity**: $O(n)$, considering the space required for the output array.
454 |
455 | #### Implementation
456 |
457 | Here is the Python code:
458 |
459 | ```python
460 | def merge_sorted_arrays(a, b):
461 | merged_array, i, j = [], 0, 0
462 |
463 | while i < len(a) and j < len(b):
464 | if a[i] < b[j]:
465 | merged_array.append(a[i])
466 | i += 1
467 | elif a[i] > b[j]:
468 | merged_array.append(b[j])
469 | j += 1
470 | else:
471 | merged_array.extend([a[i], b[j]])
472 | i, j = i + 1, j + 1
473 |
474 | merged_array.extend(a[i:])
475 | merged_array.extend(b[j:])
476 |
477 | return merged_array
478 |
479 | # Sample Test
480 | array1 = [1, 3, 5, 7, 9]
481 | array2 = [2, 4, 6, 8, 10]
482 | print(merge_sorted_arrays(array1, array2)) # Expected Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
483 | ```
484 |
485 |
486 | ## 11. Implement three _Stacks_ with one _Array_.
487 |
488 | ### Problem Statement
489 |
490 | The task is to implement **three stacks** using a **single dynamic array**.
491 |
492 | ### Solution
493 |
494 | To solve the task we can **divide** the array into twelve portions, with four sections for each stack, allowing each of them to **grow** and **shrink** without affecting the others.
495 |
496 | #### Algorithm Steps
497 |
498 | 1. Initialize Stack States:
499 | - Set `size` as the full array length divided by 3.
500 | - Set `stackPointers` as `[ start, start + size - 1, start + 2*size - 1 ]`, where `start` is the array's beginning index.
501 |
502 | 2. Implement `Push` Operation: For stack 1, check if `stackPointers[0]` is less than `start + size - 1` before pushing.
503 |
504 | #### Complexity Analysis
505 |
506 | - **Time Complexity**: $O(1)$ for all stack operations.
507 | - **Space Complexity**: $O(1)$
508 |
509 | #### Implementation
510 |
511 | Here is the Python code:
512 |
513 | ```python
514 | class MultiStack:
515 | def __init__(self, stack_size):
516 | self.stack_size = stack_size
517 | self.array = [None] * (3 * stack_size)
518 | self.stack_pointers = [-1, -1, -1]
519 |
520 | def push(self, stack_number, value):
521 | if self.stack_pointers[stack_number] >= self.stack_size - 1:
522 | print("Stack Overflow!")
523 | return
524 |
525 | self.stack_pointers[stack_number] += 1
526 | self.array[self.stack_pointers[stack_number]] = value
527 |
528 | def pop(self, stack_number):
529 | if self.stack_pointers[stack_number] < 0:
530 | print("Stack Underflow!")
531 | return None
532 |
533 | value = self.array[self.stack_pointers[stack_number]]
534 | self.stack_pointers[stack_number] -= 1
535 | return value
536 |
537 | def peek(self, stack_number):
538 | if self.stack_pointers[stack_number] < 0:
539 | print("Stack Underflow!")
540 | return None
541 |
542 | return self.array[self.stack_pointers[stack_number]]
543 | ```
544 |
545 |
546 | ## 12. How do you perform _Array Rotation_ and what are its applications?
547 |
548 | **Array rotation** involves moving elements within an array to shift its position. This operation can be beneficial in various scenarios, from data obfuscation to algorithmic optimizations.
549 |
550 | ### Types of Array Rotation
551 |
552 | 1. **Left Rotation**: Shifts elements to the left.
553 | 2. **Right Rotation**: Shifts elements to the right.
554 |
555 | ### Algorithms for Array Rotation
556 |
557 | 1. **Naive Method**: Directly shifting each element one at a time, $d$ times, where $d$ is the rotation factor.
558 | 2. **Reversal Algorithm**: Involves performing specific **reversals** within the array to achieve rotation more efficiently.
559 |
560 | ### Code Example: Array Rotation using the Reversal Algorithm
561 |
562 | Here is the Python code:
563 |
564 | ```python
565 | def reverse(arr, start, end):
566 | while start < end:
567 | arr[start], arr[end] = arr[end], arr[start]
568 | start += 1
569 | end -= 1
570 |
571 | def rotate_array(arr, d):
572 | n = len(arr)
573 | reverse(arr, 0, d-1)
574 | reverse(arr, d, n-1)
575 | reverse(arr, 0, n-1)
576 |
577 | # Example
578 | my_array = [1, 2, 3, 4, 5, 6, 7]
579 | rotate_array(my_array, 3)
580 | print(my_array) # Output: [4, 5, 6, 7, 1, 2, 3]
581 | ```
582 |
583 | ### Applications of Array Rotation
584 |
585 | 1. **Obfuscation of Data**: By performing secure operations, such as circular permutations on sensitive arrays, it ensures data confidentiality.
586 |
587 | 2. **Cryptography**: Techniques like the Caesar cipher use array rotation to encrypt and decrypt messages. Modern ciphers similarly rely on advanced versions of this concept.
588 |
589 | 3. **Memory Optimization**: It ensures that data in the array is arranged for optimal memory access, which is crucial in large datasets or when working with limited memory resources.
590 |
591 | 4. **Algorithm Optimization**: Certain algorithms, such as search and sorting algorithms, might perform better on a particular range of elements within an array. Rotation allows for tailoring the array to these algorithms for enhanced performance.
592 |
593 |
594 | ## 13. _Reverse_ an _Array_ in place.
595 |
596 | ### Problem Statement
597 |
598 | Given an array, the objective is to **reverse the sequence of its elements**.
599 |
600 | ### Solution
601 |
602 | Two elements are selected from each end of the array and are swapped. This process continues, with the selected elements moving towards the center, until the entire array is reversed.
603 |
604 | #### Algorithm Steps
605 |
606 | 1. Begin with two pointers: `start` at index 0 and `end` at the last index.
607 | 2. Swap the elements at `start` and `end` positions.
608 | 3. Increment `start` and decrement `end`.
609 | 4. Repeat Steps 2 and 3 until the pointers meet at the center of the array.
610 |
611 | This algorithm **reverses the array in place, with a space complexity of $O(1)$**.
612 |
613 | #### Complexity Analysis
614 |
615 | - **Time Complexity**: $O(n/2)$ as the swapping loop only runs through half of the array.
616 | - **Space Complexity**: Constant, $O(1)$, as no additional space is required.
617 |
618 | #### Implementation
619 |
620 | Here is the Python code:
621 |
622 | ```python
623 | def reverse_array(arr):
624 | start = 0
625 | end = len(arr) - 1
626 |
627 | while start < end:
628 | arr[start], arr[end] = arr[end], arr[start]
629 | start += 1
630 | end -= 1
631 |
632 | # Example
633 | arr = [1, 2, 3, 4, 5]
634 | reverse_array(arr)
635 | print("Reversed array:", arr) # Output: [5, 4, 3, 2, 1]
636 | ```
637 |
638 |
639 | ## 14. _Remove Duplicates_ from a sorted array without using extra space.
640 |
641 | ### Problem Statement
642 |
643 | Given a **sorted array**, the task is to **remove duplicate elements** in place (using constant space) and return the new length.
644 |
645 | ### Solution
646 |
647 | A two-pointer method provides an efficient solution that removes duplicates **in place** while also recording the new length of the array.
648 |
649 | **Algorithm steps**:
650 |
651 | 1. Initialize `i=0` and `j=1`.
652 | 2. Iterate through the array.
653 | - If `array[i] == array[j]`, move `j` to the next element.
654 | - If `array[i] != array[j]`, update `array[i+1]` and move both `i` and `j` to the next element.
655 |
656 | #### Complexity Analysis
657 |
658 | - **Time Complexity**: $O(n)$. Here, $n$ represents the array's length.
659 | - **Space Complexity**: $O(1)$. The process requires only a few additional variables
660 |
661 | #### Implementation
662 |
663 | Here is the Python code:
664 |
665 | ```python
666 | def removeDuplicates(array):
667 | if not array:
668 | return 0
669 |
670 | i = 0
671 | for j in range(1, len(array)):
672 | if array[j] != array[i]:
673 | i += 1
674 | array[i] = array[j]
675 |
676 | return i + 1
677 | ```
678 |
679 |
680 | ## 15. Implement a _Queue_ using an array.
681 |
682 | ### Problem Statement
683 |
684 | Implement a **Queue** data structure using a fixed-size array.
685 |
686 | ### Solution
687 |
688 | While a **dynamic array** is a more efficient choice for this purpose, utilizing a standard array helps in demonstrating the principles of queue operations.
689 |
690 | - The queue's front should always have a lower index than its rear, reflecting the structure's first-in, first-out (FIFO) nature.
691 | - When the rear pointer hits the array's end, it may switch to the beginning if there are available slots, a concept known as **circular or wrapped around arrays**.
692 |
693 | #### Algorithm Steps
694 |
695 | 1. Initialize the queue: Set `front` and `rear` both to -1.
696 | 2. `enqueue(item)`: Check for a full queue then perform the following steps:
697 | - If the queue is empty (`front = -1, rear = -1`), set `front` to 0.
698 | - Increment `rear` (with wrapping if needed) and add the item.
699 | 3. `dequeue()`: Check for an empty queue then:
700 | - Remove the item at the `front`.
701 | - If `front` equals `rear` after the removal, it indicates an empty queue, so set both to -1.
702 |
703 | #### Complexity Analysis
704 |
705 | - **Time Complexity**:
706 | - $\text{enqueue}: O(1)$
707 | - $\text{dequeue}: O(1)$
708 | - **Space Complexity**: $O(n)$
709 |
710 | #### Implementation
711 |
712 | Here is the Python code:
713 |
714 | ```python
715 | class Queue:
716 | def __init__(self, capacity: int):
717 | self.capacity = capacity
718 | self.queue = [None] * capacity
719 | self.front = self.rear = -1
720 |
721 | def is_full(self) -> bool:
722 | return self.front == (self.rear + 1) % self.capacity
723 |
724 | def is_empty(self) -> bool:
725 | return self.front == -1 and self.rear == -1
726 |
727 | def enqueue(self, item):
728 | if self.is_full():
729 | print("Queue is full")
730 | return
731 | if self.is_empty():
732 | self.front = self.rear = 0
733 | else:
734 | self.rear = (self.rear + 1) % self.capacity
735 | self.queue[self.rear] = item
736 |
737 | def dequeue(self):
738 | if self.is_empty():
739 | print("Queue is empty")
740 | return
741 | if self.front == self.rear:
742 | self.front = self.rear = -1
743 | else:
744 | self.front = (self.front + 1) % self.capacity
745 |
746 | def display(self):
747 | if self.is_empty():
748 | print("Queue is empty")
749 | return
750 | temp = self.front
751 | while temp != self.rear:
752 | print(self.queue[temp], end=" ")
753 | temp = (temp + 1) % self.capacity
754 | print(self.queue[self.rear])
755 |
756 | # Usage
757 | q = Queue(5)
758 | q.enqueue(1)
759 | q.enqueue(2)
760 | q.enqueue(3)
761 | q.enqueue(4)
762 | q.enqueue(5)
763 | q.display()
764 | q.enqueue(6) # Queue is full
765 | q.dequeue()
766 | q.dequeue()
767 | q.display()
768 | ```
769 |
770 |
771 |
772 |
773 | #### Explore all 60 answers here 👉 [Devinterview.io - Array Data Structure](https://devinterview.io/questions/data-structures-and-algorithms/array-data-structure-interview-questions)
774 |
775 |
776 |
777 |
778 |
779 |
780 |
781 |
782 |
--------------------------------------------------------------------------------