└── k-means-cluster (1).ipynb /k-means-cluster (1).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "95f5b1f4", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np\n", 11 | "import pandas as pd\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "from sklearn.cluster import KMeans" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 2, 19 | "id": "32bcf9ce", 20 | "metadata": { 21 | "scrolled": true 22 | }, 23 | "outputs": [ 24 | { 25 | "data": { 26 | "text/html": [ 27 | "
\n", 28 | "\n", 41 | "\n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | "
CountryLatitudeLongitudeLanguage
0USA44.97-103.77English
1Canada62.40-96.80English
2France46.752.40French
3UK54.01-2.53English
4Germany51.1510.40German
5Australia-25.45133.11English
\n", 96 | "
" 97 | ], 98 | "text/plain": [ 99 | " Country Latitude Longitude Language\n", 100 | "0 USA 44.97 -103.77 English\n", 101 | "1 Canada 62.40 -96.80 English\n", 102 | "2 France 46.75 2.40 French\n", 103 | "3 UK 54.01 -2.53 English\n", 104 | "4 Germany 51.15 10.40 German\n", 105 | "5 Australia -25.45 133.11 English" 106 | ] 107 | }, 108 | "execution_count": 2, 109 | "metadata": {}, 110 | "output_type": "execute_result" 111 | } 112 | ], 113 | "source": [ 114 | "data = pd.read_csv(\"D:\\\\Jeyashri\\\\IBM\\\\Datasets\\\\Country clusters.csv\")\n", 115 | "data" 116 | ] 117 | }, 118 | { 119 | "cell_type": "code", 120 | "execution_count": 3, 121 | "id": "bab378b4", 122 | "metadata": {}, 123 | "outputs": [ 124 | { 125 | "data": { 126 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWtElEQVR4nO3dfZQdd33f8fcHGdsRYGxjGRvLQjKxE2zC46LwUBLABlMCyC0lR9ROlcCpziGEQhoSbNRTkkPV40BKQ0oJVYBWFAXXDQbrUAjYDrgHGmNW2Ab8hAXCtrBiLw8BtyrCMt/+cUf1teautJL27ty79/06Z8/M/GZm7+dqr/a785uZ36SqkCSp3yO6DiBJGj0WB0lSi8VBktRicZAktVgcJEktR3UdYD6cdNJJtXLlyq5jSNJY2bZt2/eqatmgdYuiOKxcuZLp6emuY0jSWEly52zr7FaSJLVYHCRJLRYHSVKLxUGS1GJxkCS1WBwkSS0WB0lSS6fFIcnvJrk5yTeSfCzJsUlOTHJVkjua6QldZpSkSdRZcUhyGvAvgKmqegqwBFgLXAxcU1VnAtc0y5KkBdR1t9JRwM8lOQpYCtwDrAE2N+s3Axd0E02SJldnxaGqvgv8CXAXsAv4UVV9Dnh8Ve1qttkFnDxo/yTrk0wnmZ6ZmVmo2JI0EbrsVjqB3lHCKuAJwKOSXDTX/atqU1VNVdXUsmUDx42SJB2mLruVzgN2VNVMVT0AXAE8D7g3yakAzfS+DjNK0kTqsjjcBTwnydIkAc4FbgW2AuuabdYBV3aUT5ImVmdDdlfVl5P8FfBVYC9wA7AJeDRweZLX0ysgr+kqoyRNqk6f51BV7wDesV/zHnpHEZKkjnR9KaskaQRZHCRJLRYHSVKLxUGS1GJxkCS1WBwkSS0WB0lSi8VBktRicZAktVgcJEktFgdJUovFQZLUYnGQJLVYHCbRji3wyZXwl4/oTXds6TqRpBHT6ZDd6sCOLXD9enhwd2959529ZYBVF3aXS9JI6fTIIcnxSf4qyW1Jbk3y3CQnJrkqyR3N9IQuMy46N214qDDs8+DuXrskNbruVnov8NdV9YvA0+g9JvRi4JqqOhO4plnWfNl916G1S5pInRWHJMcBvwJ8CKCqflpVfw+sATY3m20GLugi36K1dMWhtUuaSF0eOZwBzAD/OckNST6Y5FHA46tqF0AzPbnDjIvP0zbCkqUPb1uytNcuSY0ui8NRwDOBP6+qZwD/h0PoQkqyPsl0kumZmZlhZVx8Vl0IqzfB0icC6U1Xb/JktKSHSVV188LJKcB1VbWyWX4BveLw88ALq2pXklOBL1TVLxzoe01NTdX09PSwI0vSopJkW1VNDVrX2ZFDVf0dcHeSfb/4zwVuAbYC65q2dcCVHcSTpInW9X0ObwK2JDka+DbwW/QK1uVJXg/cBbymw3ySNJE6LQ5VdSMw6JDm3AWOIs2PHVt694zsvqt3BdjTNno+R2Op6yMHafHw7nMtIl3fBCctHt59rkXE4iDNl8O5+9xBEDWiLA7SfDnUu8/3dUPtvhOoh7qhLBAaARYHab4c6t3ndkNphFkcpPlyqHefOwiiRphXK0nzadWFc78yaemKpktpQLvUMY8cpK44CKJGmMVBGrbZrkhyEESNMLuVpGE62I1xh9INJS0gjxwWK6+fHw1ekaQx5ZHDYuQwDqPDK5I0pjxyWIz8a3V0+FhWjSmLw2LkX6ujwyuSNKYsDouRf62ODq9I0pjynMNi9LSNDz/nAP612iWvSNIY6vzIIcmSJDck+VSzfGKSq5Lc0UxP6Drj2PGvVUlHaBSOHN4M3Aoc1yxfDFxTVZcmubhZfltX4caWf61KOgKdHjkkWQ78GvDBvuY1wOZmfjNwwQLHkqSJ13W30p8CfwD8rK/t8VW1C6CZnjxoxyTrk0wnmZ6ZmRl6UEmaJJ0VhySvAO6rqm2Hs39VbaqqqaqaWrZs2Tynk6TJ1uU5h+cDr0rycuBY4LgkHwXuTXJqVe1KcipwX4cZJWkidXbkUFWXVNXyqloJrAX+pqouArYC65rN1gFXdhRRkiZW1+ccBrkUeEmSO4CXNMuSpAU0CpeyUlVfAL7QzH8fOLfLPJI06UbxyEGS1DGLgySpxeIgSWqxOEiSWiwOkqQWi4MkqcXiIElqsThIklosDpKkFouDJKnF4iBJarE4SJJaLA6SpBaLgySpxeIgSWrp8hnSpyf5fJJbk9yc5M1N+4lJrkpyRzM9oauMkjSpujxy2Av8XlU9GXgO8MYkZwMXA9dU1ZnANc2yJGkBdfkM6V1V9dVm/n7gVuA0YA2wudlsM3BBJwElaYKNxDmHJCuBZwBfBh5fVbugV0CAk2fZZ32S6STTMzMzC5ZVkiZB58UhyaOBjwNvqaofz3W/qtpUVVNVNbVs2bLhBZSkCdRpcUjySHqFYUtVXdE035vk1Gb9qcB9XeWTpEnV5dVKAT4E3FpV7+lbtRVY18yvA65c6GySNOmO6vC1nw/8BvD1JDc2bW8HLgUuT/J64C7gNd3Ek6TJ1VlxqKovApll9bkLmUWS9HBz6lZKz0VJ/nWzvCLJ6uFGkyR1Za7nHN4PPBd4bbN8P/Afh5JIktS5uXYr/XJVPTPJDQBV9cMkRw8xlySpQ3M9cnggyRKgAJIsA342tFSSpE7NtTj8GfAJ4OQkG4EvAv92aKkkSZ2aU7dSVW1Jso3eVUQBLqiqW4eaTJLUmQMWhyQn9i3eB3ysf11V/WBYwSRJ3TnYkcM2eucZAqwAftjMH0/vBrVVwwwnSerGAc85VNWqqjoD+Czwyqo6qaoeB7wCuOJA+0qSxtdcT0g/u6o+vW+hqj4D/OpwIkmSujbX+xy+l+RfAR+l1810EfD9oaWSJHVqrkcOrwWW0buc9ZP0HsDz2gPtIEkaX3O9lPUHwJuHnEWSNCLmVBySfJ7m7uh+VfXieU8kSercXM85vLVv/ljg1cDe+Y8jSRoFc+1W2rZf05eSXDuEPP9fkpcB7wWWAB+sqkuH+XqSpIfMtVup/07pRwDPAk4ZSqLe6y2hNyT4S4CdwFeSbK2qW4b1mpKkh8y1W6n/Tum9wA7g9cMKBawGtlfVtwGSXAasASwOkrQA5locnlxVP+lvSHLMEPLscxpwd9/yTuCX93v99cB6gBUrVgwxiiRNnrne5/C/BrT97XwG2c+gZ0s/7GqpqtpUVVNVNbVs2bIhRpGkyXOwUVlPofdX/M8leQYP/dI+Dlg6xFw7gdP7lpcD9wzx9SRJfQ7WrXQ+8Jv0fjm/p6/9fuDtQ8oE8BXgzCSrgO8Ca4F/OsTXkyT1OWBxqKrNwOYkr66qjy9QJqpqb5LfoTca7BLgw1V180K9viRNuoN1K11UVR8FVib5l/uvr6r3DNhtXjSjwH76oBtKkubdwbqVHtVMHz1gXWs4DUnS4nCwbqX/1MxeXVVf6l+X5PlDSyVJ6tRcL2X9D3NskyQtAgc75/Bc4HnAsv3OORxH70SxJGkROtg5h6PpnW84CnhMX/uPgX8yrFCSpG4d7JzDtcC1Sf5LVd25QJkkSR2b69hKu5O8GziH3vMcAB/2I0mL1VxPSG8BbgNWAX8EfIfeXcySpEVorsXhcVX1IeCBqrq2ql4HPGeIuSRJHZprt9IDzXRXkl+jNwje8uFEkiR1ba7F4d8keSzwe/TubzgOeMuwQkmSujXXZ0h/qpn9EfAigCRvGVImSVLH5nrOYZDWQHySpMXhSIrDoKe1SZIWgSMpDo7KKkmL1AGLQ5L7k/x4wNf9wBMO90WTvDvJbUm+luQTSY7vW3dJku1Jbk9y/uG+hiTp8B2wOFTVY6rquAFfj6mquV7pNMhVwFOq6qnAN4FLAJKcTe+RoOcALwPen8QB/iRpgR1Jt9Jhq6rPVdXeZvE6HrpnYg1wWVXtqaodwHZgdRcZJWmSdVIc9vM64DPN/GnA3X3rdjZtLUnWJ5lOMj0zMzPkiJI0WY6ka+iAklwNnDJg1YaqurLZZgOwl97YTTD4CqiBJ76rahOwCWBqasqT45I0j4ZWHKrqvAOtT7IOeAVwblXt++W+Ezi9b7Pl9IbqkCQtoE66lZK8DHgb8Kqq2t23aiuwNskxSVYBZwLXd5FRkiZZV+cc3kfvyXJXJbkxyQcAqupm4HLgFuCvgTdW1YMdZZSkuduxBT65Ev7yEb3pji0H22OkDa1b6UCq6ucPsG4jsHEB40jSkdmxBa5fDw82HSG77+wtA6y6sLtcR2AUrlaSpPF204aHCsM+D+7utY8pi4MkHanddx1a+xiwOEjSkVq64tDax4DFQZKO1NM2wpKlD29bsrTXPqYsDpJ0pFZdCKs3wdInAulNV28a25PR0NHVSpK06Ky6cKyLwf48cpAktVgcJEktFgdJUovFQZLUYnGQJLVYHCRJLRYHSVKLxUGS1GJxkCS1dFockrw1SSU5qa/tkiTbk9ye5Pwu80nSpOps+IwkpwMvAe7qazsbWAucAzwBuDrJWT4NTpIWVpdHDv8e+AOg+trWAJdV1Z6q2gFsB1Z3EU6SJlknxSHJq4DvVtVN+606Dbi7b3ln0zboe6xPMp1kemZmZkhJJWkyDa1bKcnVwCkDVm0A3g68dNBuA9pqQBtVtQnYBDA1NTVwG0nS4Rlacaiq8wa1J/klYBVwUxKA5cBXk6ymd6Rwet/my4F7hpVRkjTYgncrVdXXq+rkqlpZVSvpFYRnVtXfAVuBtUmOSbIKOBO4fqEzStKkG6mH/VTVzUkuB24B9gJv9EolSVp4nReH5uihf3kjML4PXpWkRcA7pCVJLRYHSVKLxUGS1GJxkCS1WBwkSS0WB0lSi8VBktRicZAktVgcJEktFgdJUovFQZLUYnGQJLVYHCRJLRYHSVKLxUGS1NJZcUjypiS3J7k5ybv62i9Jsr1Zd35X+SRpknXysJ8kLwLWAE+tqj1JTm7azwbWAucATwCuTnKWT4OTpIXV1ZHDG4BLq2oPQFXd17SvAS6rqj1VtQPYDqzuKKMkTayuisNZwAuSfDnJtUme3bSfBtzdt93Opk2StICG1q2U5GrglAGrNjSvewLwHODZwOVJzgAyYPua5fuvB9YDrFixYj4iS5IaQysOVXXebOuSvAG4oqoKuD7Jz4CT6B0pnN636XLgnlm+/yZgE8DU1NTAAiJJOjxddSt9EngxQJKzgKOB7wFbgbVJjkmyCjgTuL6jjJI0sTq5Wgn4MPDhJN8Afgqsa44ibk5yOXALsBd4o1cqSdLC66Q4VNVPgYtmWbcR2LiwiSRJ/bxDWpLUYnGQJLVYHCRJLRYHSVKLxUGS1GJxkCS1WBwkSS0WB0lSi8VBktRicZAktVgcJEktFgdJUovFQZLUYnGQJLVYHCRJLRYHSVJLJ8UhydOTXJfkxiTTSVb3rbskyfYktyc5v4t8kjTpunpM6LuAP6qqzyR5ebP8wiRnA2uBc4AnAFcnOctHhUrSwuqqW6mA45r5xwL3NPNrgMuqak9V7QC2A6sH7C9JGqKujhzeAnw2yZ/QK1DPa9pPA67r225n09aSZD2wHmDFihVDCypJk2hoxSHJ1cApA1ZtAM4FfreqPp7k14EPAecBGbB9Dfr+VbUJ2AQwNTU1cBtJ0uEZWnGoqvNmW5fkI8Cbm8X/Dnywmd8JnN636XIe6nKSJC2Qrs453AP8ajP/YuCOZn4rsDbJMUlWAWcC13eQT5ImWlfnHP458N4kRwE/oTl3UFU3J7kcuAXYC7zRK5UkaeF1Uhyq6ovAs2ZZtxHYuLCJJEn9vENaktRicZAktVgcJEktFgdJUovFQZLUYnGQJLWkavxHnkgyA9y5gC95EvC9BXy9+TSu2cc1N4xv9nHNDeObfaFzP7Gqlg1asSiKw0JLMl1VU13nOBzjmn1cc8P4Zh/X3DC+2Ucpt91KkqQWi4MkqcXicHg2dR3gCIxr9nHNDeObfVxzw/hmH5ncnnOQJLV45CBJarE4SJJaLA4HkeQ1SW5O8rMkU33tK5P83yQ3Nl8f6Fv3rCRfT7I9yZ8lGfT4005yN+suabLdnuT8Ucq9vyR/mOS7ff/OL+9bN/B9jIokL2uybU9ycdd5DibJd5qf/41Jppu2E5NcleSOZnrCCOT8cJL7knyjr23WnKP0OZkl+2h+xqvKrwN8AU8GfgH4AjDV174S+MYs+1wPPJfeM7E/A/zDEcp9NnATcAywCvgWsGRUcg94H38IvHVA+6zvYxS+gCVNpjOAo5usZ3ed6yCZvwOctF/bu4CLm/mLgT8egZy/Ajyz///fbDlH7XMyS/aR/Ix75HAQVXVrVd0+1+2TnAocV1V/W72f8EeAC4aVbzYHyL0GuKyq9lTVDmA7sHpUch+Cge+j40z9VgPbq+rbVfVT4DJ6mcfNGmBzM7+ZEfhMVNX/BH6wX/NsOUfqczJL9tl0mt3icGRWJbkhybVJXtC0nQbs7NtmZ9M2Kk4D7u5b3pdvlHP/TpKvNYfk+7oLZnsfo2LU8w1SwOeSbEuyvml7fFXtAmimJ3eW7sBmyzkuP4eR+4x39QzpkZLkauCUAas2VNWVs+y2C1hRVd9P8izgk0nOodcls7+hXC98mLlny7dgufd3oPcB/DnwzibLO4F/B7yODvPO0ajnG+T5VXVPkpOBq5Lc1nWgeTAOP4eR/IxbHICqOu8w9tkD7GnmtyX5FnAWveq+vG/T5cA985FzQIZDzk0v3+l9y/vyLVju/c31fST5C+BTzeJs72NUjHq+lqq6p5nel+QT9Low7k1yalXtaroe7+s05OxmyznyP4equnff/Ch9xu1WOkxJliVZ0syfAZwJfLs5pL0/yXOaq33+GTDbX/Fd2AqsTXJMklX0cl8/qrmb/+j7/CNg31UeA9/HQuc7gK8AZyZZleRoYC29zCMpyaOSPGbfPPBSev/WW4F1zWbrGIHPxCxmyznqn5PR/Yx3ddZ+XL6aH9ZOekcJ9wKfbdpfDdxM72qCrwKv7NtnqvkBfwt4H82d6KOQu1m3ocl2O31XJI1C7gHv478CXwe+Ru8/y6kHex+j8gW8HPhmk3FD13kOkvWM5rN8U/O53tC0Pw64BrijmZ44Alk/Rq9b94HmM/76A+Ucpc/JLNlH8jPu8BmSpBa7lSRJLRYHSVKLxUGS1GJxkCS1WBwkSS0WB028JP97yN//00mOb75++zD2f2GSTx18S2n+WBykIauql1fV3wPHA4dcHKQuWBykAZI8Pcl1zWBon9g3GFqSLyT54yTXJ/nmvgEXkyxNcnmz/X9L8uU0z9FonpNwEnAp8KRmzP53739EkOR9SX6zmX9ZktuSfBH4x33bPKoZnO0rzaCP4zjSq8aAxUEa7CPA26rqqfTuXn1H37qjqmo18Ja+9t8Gfths/07gWQO+58XAt6rq6VX1+7O9cJJjgb8AXgm8gIcPSrgB+JuqejbwIuDdzXAX0ryyOEj7SfJY4PiqurZp2kzvIS37XNFMt9F76BPAP6D3zAaq6hv0hkI4XL8I7KiqO6o3hMFH+9a9FLg4yY30HuR0LLDiCF5LGshRWaVDt6eZPshD/4cO55Gqe3n4H2jH9s3PNq5NgFfXITyASjocHjlI+6mqHwE/7HuA028A1x5gF4AvAr8OkORs4JcGbHM/8Ji+5TuBs5tRNx8LnNu030bvQVJPapZf27fPZ4E3NSPnkuQZc3tX0qHxyEGCpUn6n4L3HnrDPn8gyVLg28BvHeR7vB/YnORrwA30upV+1L9B9R4M9aXm4fKfqarfT3J5s+0dzX5U1U+aJ7H9jyTfo1d4ntJ8m3cCfwp8rSkQ3wFecXhvW5qdo7JK86B5tscjm1/sT6I3bPRZ1Xt+tDR2PHKQ5sdS4PNJHknvvMAbLAwaZx45SJJaPCEtSWqxOEiSWiwOkqQWi4MkqcXiIElq+X+9wCfD1tI8UwAAAABJRU5ErkJggg==\n", 127 | "text/plain": [ 128 | "
" 129 | ] 130 | }, 131 | "metadata": { 132 | "needs_background": "light" 133 | }, 134 | "output_type": "display_data" 135 | } 136 | ], 137 | "source": [ 138 | "plt.scatter(data['Longitude'],data['Latitude'],color='orange')\n", 139 | "plt.xlim(-180,180)\n", 140 | "plt.ylim(-90,90)\n", 141 | "plt.xlabel(\"Longitude\")\n", 142 | "plt.ylabel(\"Latitude\")\n", 143 | "plt.show()\n" 144 | ] 145 | }, 146 | { 147 | "cell_type": "code", 148 | "execution_count": 4, 149 | "id": "268b883c", 150 | "metadata": {}, 151 | "outputs": [ 152 | { 153 | "data": { 154 | "text/html": [ 155 | "
\n", 156 | "\n", 169 | "\n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | "
LatitudeLongitude
044.97-103.77
162.40-96.80
246.752.40
354.01-2.53
451.1510.40
5-25.45133.11
\n", 210 | "
" 211 | ], 212 | "text/plain": [ 213 | " Latitude Longitude\n", 214 | "0 44.97 -103.77\n", 215 | "1 62.40 -96.80\n", 216 | "2 46.75 2.40\n", 217 | "3 54.01 -2.53\n", 218 | "4 51.15 10.40\n", 219 | "5 -25.45 133.11" 220 | ] 221 | }, 222 | "execution_count": 4, 223 | "metadata": {}, 224 | "output_type": "execute_result" 225 | } 226 | ], 227 | "source": [ 228 | "x = data.iloc[:,1:3] # 1t for rows and second for columns\n", 229 | "x" 230 | ] 231 | }, 232 | { 233 | "cell_type": "code", 234 | "execution_count": 10, 235 | "id": "b343e1cc", 236 | "metadata": {}, 237 | "outputs": [ 238 | { 239 | "data": { 240 | "text/plain": [ 241 | "KMeans(n_clusters=3)" 242 | ] 243 | }, 244 | "execution_count": 10, 245 | "metadata": {}, 246 | "output_type": "execute_result" 247 | } 248 | ], 249 | "source": [ 250 | "kmeans = KMeans(3)\n", 251 | "kmeans.fit(x)" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": 11, 257 | "id": "964016f5", 258 | "metadata": {}, 259 | "outputs": [ 260 | { 261 | "data": { 262 | "text/plain": [ 263 | "array([2, 2, 0, 0, 0, 1])" 264 | ] 265 | }, 266 | "execution_count": 11, 267 | "metadata": {}, 268 | "output_type": "execute_result" 269 | } 270 | ], 271 | "source": [ 272 | "identified_clusters = kmeans.fit_predict(x)\n", 273 | "identified_clusters" 274 | ] 275 | }, 276 | { 277 | "cell_type": "code", 278 | "execution_count": 12, 279 | "id": "0b039cf4", 280 | "metadata": {}, 281 | "outputs": [], 282 | "source": [ 283 | "data_with_clusters = data.copy()" 284 | ] 285 | }, 286 | { 287 | "cell_type": "code", 288 | "execution_count": 13, 289 | "id": "240d3ab3", 290 | "metadata": {}, 291 | "outputs": [ 292 | { 293 | "data": { 294 | "text/html": [ 295 | "
\n", 296 | "\n", 309 | "\n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | "
CountryLatitudeLongitudeLanguage
0USA44.97-103.77English
1Canada62.40-96.80English
2France46.752.40French
3UK54.01-2.53English
4Germany51.1510.40German
5Australia-25.45133.11English
\n", 364 | "
" 365 | ], 366 | "text/plain": [ 367 | " Country Latitude Longitude Language\n", 368 | "0 USA 44.97 -103.77 English\n", 369 | "1 Canada 62.40 -96.80 English\n", 370 | "2 France 46.75 2.40 French\n", 371 | "3 UK 54.01 -2.53 English\n", 372 | "4 Germany 51.15 10.40 German\n", 373 | "5 Australia -25.45 133.11 English" 374 | ] 375 | }, 376 | "execution_count": 13, 377 | "metadata": {}, 378 | "output_type": "execute_result" 379 | } 380 | ], 381 | "source": [ 382 | "data_with_clusters" 383 | ] 384 | }, 385 | { 386 | "cell_type": "code", 387 | "execution_count": 14, 388 | "id": "28e511f5", 389 | "metadata": {}, 390 | "outputs": [ 391 | { 392 | "data": { 393 | "text/plain": [ 394 | "" 395 | ] 396 | }, 397 | "execution_count": 14, 398 | "metadata": {}, 399 | "output_type": "execute_result" 400 | }, 401 | { 402 | "data": { 403 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAP9ElEQVR4nO3df5BdZX3H8feX3STIT6HZhDQxBDBUIv5eqZVphxYtgTKAOszEkTZtHCOtduxMOy1UHR0dR22rtYpIU6GNv0rRyhAtqDGVYZwquBFEQ6BJNUCaSBZxLD8CySbf/nFPZJPcTbK55+7Jfe77NbNz73nOvef5Picnnz177rnnRGYiSSrTUU0XIEnqHkNekgpmyEtSwQx5SSqYIS9JBRtsuoDxZs6cmQsWLGi6DEnqKWvXrn00M4fazTuiQn7BggWMjIw0XYYk9ZSIeHCieR6ukaSCGfKSVDBDXpIKZshLUsH6J+S3bIE77oCtW5uuRJKmTPkhv3MnvOlNcMYZcMklcPrpcMUVrXZJKlz5If/ud8PNN8PTT8MvftF6/PKX4T3vaboySeq68kP+uutg+/a927Zvh2uvbaYeSZpC5Yf844+3b3/iiamtQ5IaUH7Iv/KVk2uXpILUEvIR8dyI+FJE3B8R6yPiNyLi5IhYHREbqseT6uhr0q65Bo49FgarKzgMDsJxx7XaJalwde3J/wPwtcx8AfASYD1wFbAmMxcCa6rpqTc8DHffDcuWtfbely2D738fXvGKRsqRpKkUnd7jNSJOAH4AnJ7jFhYRDwDnZebWiJgD3J6Zv3agZQ0PD6cXKJOkyYmItZk53G5eHXvypwOjwD9HxN0R8emIOBaYnZlbAarHWTX0JUmahDpCfhB4OfCpzHwZ8CSTODQTEcsjYiQiRkZHR2soR5K0Rx0hvxnYnJl3VtNfohX6j1SHaaget7V7c2auyMzhzBweGmp7zXtJ0mHqOOQz86fAwxGx53j7+cB9wCpgadW2FLil074kSZNT152h/hT4fERMB34M/BGtXyA3RcSbgYeAy2vqS5J0iGoJ+cy8B2j3ye75dSxfknR4yv/GqyT1MUNekgpmyEtSwQx5SSpYXWfXSI0bvQ+2rIUT58OpvwURTVckNc+QV8/bPQZfWgIbboUYgACOnwtLvwXHz2m6OqlZHq5Rz/vux2DDbTC2HXY+ATuegMf+B26+ounKpOYZ8up5I9fB2FN7t+UYPPRt2P7zZmqSjhSGvHrezqcmmBEw9vSUliIdcQx59byzXg9HTdu//cT5cNwpU1+PdCQx5NXzznsvHP+rMO3Y1vTADJh+HFy20jNsJM+uUc87Zib8yY/g3s/Bg3fAr5wJL38LnDD30Jexexf819/BXR+Hp38B838TLvgoDJ3VvbqlqdDx7f/q5O3/1JSvvBV++Llxx/cDZhwPV94Lzz210dKkg+r27f+knvbEI/CDlft8gJuwczt85yONlSXVwpBX33t0PQwevX/77p2w+c7926VeYsir7510Oux6Zv/2GIBZZ099PVKdDHn1vRPnwxmL99+bHzwaXv0XzdQk1cWQl4A3fAFesrQV7DEAM8+CN93m2TXqfZ5CKQHTngMXXwcXfRJ27WhNSyUw5KVxjhqAowx4FcTDNeoLu8daX3iS+o178iraz38CX3kLbLq9dYmDhRfBxf/oNW3UP9yTV7F2PAnXvwo2fQtyV2tvfsOtcMO5redSPzDkVax1/9YK+tz9bNvuMXhytHWTEakflBHymbBjR+tRqjx6P+x8cv/2Xc/AYxumvh6pCb0f8p/9LMybB0cfDbNmwSc+YdgLgNkvaV1yeF8D02HWi6a+HqkJvR3yX/wiXHklbNnSCvZHH4Wrr4Zrrmm6Mh0BFr0BnjMTjhp3esHA9NZlDE4/v7m6pKnU2yH/rnfBU/vc++3JJ+F973NvXgweDW+5E85+Y2uPfsaJ8NJl8Id3QPT2li8dst4+hfLBB9u3P/YYPPNM6xCO+tqxs+B1n2m6Cqk5vb0/c+aZ7dtnz4YZM6a2Fkk6AvV2yH/4w3DMMXu3HXMMfPCD3txTkuj1kL/wwtaHr2ef3dpzf/7z4frrYenSpiuTpCNCbx+TB7jootaPJGk/vb0nL0k6IENekgpmyEtSwWoL+YgYiIi7I+Kr1fTJEbE6IjZUjyfV1Zck6dDUuSf/DmD9uOmrgDWZuRBYU01LkqZQLSEfEfOA3wM+Pa75UmBl9XwlcFkdfUmSDl1de/IfA/4SGHflbmZn5laA6nFWTX1Jkg5RxyEfERcD2zJz7WG+f3lEjETEyOjoaKflSJLGqWNP/lzgkojYBNwI/E5EfA54JCLmAFSP29q9OTNXZOZwZg4PDQ3VUI4kaY+OQz4zr87MeZm5AFgC/GdmXgGsAvZcX2ApcEunfUmSJqeb58l/CHhtRGwAXltNS5KmUK3XrsnM24Hbq+c/A7z/jiQ1yG+8SlLBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalgHYd8RDwvIr4VEesjYl1EvKNqPzkiVkfEhurxpM7LlSRNRh178mPAn2fmWcCrgLdFxCLgKmBNZi4E1lTTkqQp1HHIZ+bWzPx+9fxxYD0wF7gUWFm9bCVwWad9SZImp9Zj8hGxAHgZcCcwOzO3QusXATCrzr4kSQdXW8hHxHHAvwN/lpn/N4n3LY+IkYgYGR0drascSRI1hXxETKMV8J/PzC9XzY9ExJxq/hxgW7v3ZuaKzBzOzOGhoaE6ypEkVeo4uyaA64H1mfnRcbNWAUur50uBWzrtS5I0OYM1LONc4PeBH0bEPVXbXwMfAm6KiDcDDwGX19CXJGkSOg75zPw2EBPMPr/T5UuSDp/feJWkghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwboe8hGxOCIeiIiNEXFVt/uTJD2rqyEfEQPAJ4ELgUXAGyNiUTf7lCQ9q9t78ucAGzPzx5m5A7gRuLTLfUqSKt0O+bnAw+OmN1dtkqQp0O2QjzZtudcLIpZHxEhEjIyOjna5HEnqL90O+c3A88ZNzwO2jH9BZq7IzOHMHB4aGupyOZLUX7od8t8DFkbEaRExHVgCrOpyn5KkymA3F56ZYxHxduDrwABwQ2au62afkqRndTXkATLzVuDWbvcjSdqf33iVpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBXMkJekghnyklQwQ16SCmbIS1LBDHlJKpghL0kFM+QlqWCGvCQVzJCXpIIZ8pJUMENekgpmyEtSwQx5SSqYIS9JBTPkJalghrwkFcyQl6SCGfKSVDBDXpIKZshLUsE6CvmI+NuIuD8i7o2ImyPiuePmXR0RGyPigYi4oONKJUmT1ume/Grg7Mx8MfDfwNUAEbEIWAK8EFgMXBsRAx32JUmapI5CPjO/kZlj1eR3gXnV80uBGzPzmcz8CbAROKeTviRJk1fnMfllwG3V87nAw+Pmba7aJElTaPBgL4iIbwKntJn1zsy8pXrNO4Ex4PN73tbm9TnB8pcDywHmz59/CCVLkg7VQUM+M19zoPkRsRS4GDg/M/cE+WbgeeNeNg/YMsHyVwArAIaHh9v+IpAkHZ5Oz65ZDPwVcElmPjVu1ipgSUTMiIjTgIXAXZ30JUmavIPuyR/ENcAMYHVEAHw3M6/MzHURcRNwH63DOG/LzF0d9iVJmqSOQj4zn3+AeR8APtDJ8iVJnfEbr5JUMENekgpmyEtSwTr94FWSdJiSZBM/435+yjQGeBFzmc0JtfZhyEtSA5LkFn7Aen7KTnYRwF1s4nxewK9zWm39eLhGkhqwiZ/9MuChdUmAMXazhvt5gqdr68eQl6QGrGfrLwN+vCDYyGht/RjyktSAQQbaXuQrqnl1MeQlqQEvZh4DbSI4gYXMqq0fQ16SGnAKJ3AeZzLIUUxjgOkMMI0BLuflzKjxnBjPrpGkhryaM3gRc9nIKIMcxZnMYgbTau3DkJekBh3P0bxsryuz18vDNZJUMENekgpmyEtSwQx5SSqYIS9JBYtn773dvIgYBR6scZEzgUdrXF4v6vd14Pgdfz+M/9TMHGo344gK+bpFxEhmDjddR5P6fR04fsffz+MHD9dIUtEMeUkqWOkhv6LpAo4A/b4OHH9/6/fxl31MXpL6Xel78pLU1wx5SSpYMSEfEZdHxLqI2B0Rw/vMuzoiNkbEAxFxwbj2V0TED6t5H4+Idjdq6TkR8d6I+N+IuKf6uWjcvLbrojQRsbga48aIuKrpeqZKRGyqtul7ImKkajs5IlZHxIbq8aSm66xLRNwQEdsi4kfj2iYcb79s/+MVE/LAj4DXA3eMb4yIRcAS4IXAYuDaiNhzb61PAcuBhdXP4imrtvv+PjNfWv3cCgddF8WoxvRJ4EJgEfDGauz94rerf/c9OztXAWsycyGwppouxb+w///btuPtl+1/X8WEfGauz8wH2sy6FLgxM5/JzJ8AG4FzImIOcEJmfidbnz5/Brhs6ipuRNt10XBN3XAOsDEzf5yZO4AbaY29X10KrKyer6Sg7Twz7wAe26d5ovH2y/a/l2JC/gDmAg+Pm95ctc2tnu/bXoq3R8S91Z+ze/5cnWhdlKZfxtlOAt+IiLURsbxqm52ZWwGqx/puIHpkmmi8fbld9NSdoSLim8ApbWa9MzNvmehtbdryAO094UDrgtZhqPfTGs/7gY8Ay+jxMU9Cv4yznXMzc0tEzAJWR8T9TRd0BOnL7aKnQj4zX3MYb9sMe91bax6wpWqf16a9JxzquoiIfwK+Wk1OtC5K0y/j3E9mbqket0XEzbQORzwSEXMyc2t1mHJbo0V230Tj7cvtoh8O16wClkTEjIg4jdYHrHdVf8Y9HhGvqs6q+QNgor8Gekq1Ye/xOlofSsME62Kq65sC3wMWRsRpETGd1odtqxquqesi4tiIOH7Pc+B3af3brwKWVi9bSiHb+QFMNN5+2f730lN78gcSEa8DPgEMAf8REfdk5gWZuS4ibgLuA8aAt2Xmruptf0zr0/nnALdVPyX4m4h4Ka0/RTcBbwU4yLooRmaORcTbga8DA8ANmbmu4bKmwmzg5upM4EHgC5n5tYj4HnBTRLwZeAi4vMEaaxUR/wqcB8yMiM3Ae4AP0Wa8/bL978vLGkhSwfrhcI0k9S1DXpIKZshLUsEMeUkqmCEvSQUz5CWpYIa8JBXs/wHHLQqqydboJAAAAABJRU5ErkJggg==\n", 404 | "text/plain": [ 405 | "
" 406 | ] 407 | }, 408 | "metadata": { 409 | "needs_background": "light" 410 | }, 411 | "output_type": "display_data" 412 | } 413 | ], 414 | "source": [ 415 | "data_with_clusters['C'] = identified_clusters \n", 416 | "plt.scatter(data_with_clusters['Longitude'],data_with_clusters['Latitude'],c=data_with_clusters['C'],cmap='rainbow')" 417 | ] 418 | }, 419 | { 420 | "cell_type": "code", 421 | "execution_count": 36, 422 | "id": "1e41fed6", 423 | "metadata": {}, 424 | "outputs": [ 425 | { 426 | "data": { 427 | "text/html": [ 428 | "
\n", 429 | "\n", 442 | "\n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | "
CountryLatitudeLongitudeLanguageC
0USA44.97-103.77English0
1Canada62.40-96.80English0
2France46.752.40French1
3UK54.01-2.53English1
4Germany51.1510.40German1
5Australia-25.45133.11English2
\n", 504 | "
" 505 | ], 506 | "text/plain": [ 507 | " Country Latitude Longitude Language C\n", 508 | "0 USA 44.97 -103.77 English 0\n", 509 | "1 Canada 62.40 -96.80 English 0\n", 510 | "2 France 46.75 2.40 French 1\n", 511 | "3 UK 54.01 -2.53 English 1\n", 512 | "4 Germany 51.15 10.40 German 1\n", 513 | "5 Australia -25.45 133.11 English 2" 514 | ] 515 | }, 516 | "execution_count": 36, 517 | "metadata": {}, 518 | "output_type": "execute_result" 519 | } 520 | ], 521 | "source": [ 522 | "data_with_clusters" 523 | ] 524 | }, 525 | { 526 | "cell_type": "code", 527 | "execution_count": 8, 528 | "id": "6241c343", 529 | "metadata": {}, 530 | "outputs": [ 531 | { 532 | "name": "stderr", 533 | "output_type": "stream", 534 | "text": [ 535 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1332: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", 536 | " warnings.warn(\n", 537 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1332: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", 538 | " warnings.warn(\n", 539 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1332: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", 540 | " warnings.warn(\n" 541 | ] 542 | }, 543 | { 544 | "data": { 545 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAn50lEQVR4nO3deXxV5b3v8c8vM5AwJwwZRBBFEJmSQKjWtlytWlt6GCRxwqMWoXa6x9Pbes6153S4p/a8alttK4OUl2g1YbRaFVuLswkkAUFkktEkjIEwJAECSZ77x1453dJAAiR77STf9+u1X9l51nr2/u3lku9+1lpPljnnEBERifC7ABERCQ8KBBERARQIIiLiUSCIiAigQBAREY8CQUREAAWCiIh4FAjS4ZnZbjM7aWZVQY/fmdm9Zvb+Ofq8bWanvHWPmdm7Zjb8rHVuM7NCM6s2s8Nm9ryZpXjLory+mUHr32lmrpG2La312UWCKRBEAr7qnIsPenyrGX2+5ZyLB3oBbwPPNSwwsynAC8ATQG9gGFADvG9mPZxztUABcEPQ630e2NJI27sX/7FEmk+BIHKJvH/c84ChAGZmwOPAz5xzzzvnTjrn9gMPAFXA//a6vkvgH/wG1wO/aKRNgSAhoUAQuURmFgPcCazymq4C0oAlwes55+qBZcCNXtO7wOfMLMLMegNdgMVAZlDbEBQIEiJRfhcgEib+ZGa1Qb9/HzjTRJ8nzeyXQGfgJDDJa+/t/dzXSJ99QctXe32HAwOB951zJ8xsV1Dbp865kgv9MCIXQyMEkYCvO+e6Bz2ebkaf7zjnugNxwG3AUjO7FjjkLe/XSJ9+Dcudc6eAQgKHiD4PvOet835Qm0YHEjIKBJFL5Jyrd869B2wHbgK2AmXA1OD1zCwCmAysDGpuOI9wPX8PhPeC2hQIEjI6ZCRyfmZmccEN3jf7s1fKInBSeaNzzpnZvwJPm1kZ8CLQDfgvoCvw66Cu7wIzgTpgk9f2PjAf6IECQUJIIwSRgD+fNQ/hRa99PIHzA//zMLOGL1K/a1ifwCWn/9c5twLAObcIuJvAFUWHCPxj3wn4nHPucND75hMIi9XOuzmJt7wcOOic29aKn1nkM0w3yBEREdAIQUREPAoEEREBFAgiIuJRIIiICNCGLzvt3bu3GzBggN9liIi0KWvWrDnknEtsbFmbDYQBAwZQXFzsdxkiIm2KmX16rmU6ZCQiIoACQUREPAoEEREBFAgiIuJRIIiICKBAEBERjwJBRESADhgIuw9V89+vb6GuXn/lVUQkWIcLhL9u2s9Tb+/g27lrOXWmzu9yRETCRpudqXyxZnx+EBFm/OzVzRyuKuTp6el0jYv2uywREd91uBECwAPXD+SJ7JGsLTnC7XMKOHD8H+6IKCLS4XTIQACYODKZBfdmUFpxgklP5bOjvMrvkkREfNVhAwHg+sGJ5M3I4tSZOqbMzufDkiN+lyQi4psOHQgAw1O6sWzWeBLiornj6dW8tfWg3yWJiPiiwwcCwIDeXVg6K4uBiV34xsJilq0p87skEZGQUyB4khLiyJsxjrEDe/LwkvXMeWcHzmmugoh0HAqEIAlx0Sy4N4Pbru3HYyu28NNXNlOvCWwi0kE0OxDMLNLMPjSzV7zfe5rZG2a2zfvZI2jdR8xsu5ltNbMvB7WPMbMN3rInzcy89lgzW+S1rzazAS34GS9IbFQkT2aP4p8/N4AFH+zie4vWcbq23q9yRERC5kJGCN8FNgf9/kNgpXNuMLDS+x0zGwpkA8OAm4GnzCzS6zMbmAEM9h43e+33A0ecc1cAvwZ+cVGfpoVERBg/um0oP7h5CC+v38t9zxRRVVPrZ0kiIq2uWYFgZinAV4D5Qc0TgYXe84XA14Pa85xzNc65XcB2INPM+gFdnXMFLnBw/tmz+jS81lJgQsPowS9mxqwvDOKXU0dQsPMw2fMKKK+s8bMkEZFW1dwRwm+A/wMEHzvp45zbB+D9TPLak4HSoPXKvLZk7/nZ7Z/p45yrBY4Bvc4uwsxmmFmxmRWXl5c3s/RLM2VMCvPvSWfHwWqmzMnn08PVIXlfEZFQazIQzOw24KBzbk0zX7Oxb/buPO3n6/PZBufmOefSnXPpiYmJzSzn0n1xSBIvfGMsx0+eYfLsfD7ecyxk7y0iEirNGSF8Dviame0G8oAvmdkfgQPeYSC8nw0zusqA1KD+KcBerz2lkfbP9DGzKKAbUHERn6fVjErrwdJZ44mNimTa3ALe33bI75JERFpUk4HgnHvEOZfinBtA4GTxm865u4CXgeneatOBl7znLwPZ3pVDlxM4eVzoHVaqNLNx3vmBe87q0/BaU7z3CLvrPQclxrP8m+NJ7dmZf36mkJfX7226k4hIG3Ep8xAeA240s23Ajd7vOOc2AouBTcDrwEPOuYYbD8wicGJ6O7ADWOG1/wHoZWbbgX/Bu2IpHPXpGseiB7MYldaD7+R+yB/e3+V3SSIiLcLC8It4s6Snp7vi4mLf3v/UmTq+l7eO1zfu58EbBvLDm4fg84VRIiJNMrM1zrn0xpZppvJFiouO5Pd3juaucWnMfWcnDy9Zz5k6TWATkbarw90xrSVFRhg/nXgNSQlx/OqNT6ioPs1Td46mc4w2q4i0PRohXCIz4zsTBvPzScN595Nycp5eTUX1ab/LEhG5YAqEFpKTmcacu8awZd9xpszOp7TihN8liYhcEAVCC7ppWF/++MBYDlXVMHl2Ppv3Hfe7JBGRZlMgtLCMAT1ZOms8kRHG7XMKKNhx2O+SRESaRYHQCq7sk8CyWePp0y2O6QsKeW3DPr9LEhFpkgKhlfTv3omlM7O4JrkrD72wlucKdvtdkojIeSkQWlH3zjE8/8A4JgxJ4tGXNvL4X7fqtpwiErYUCK2sU0wkc+4aw7T0VH775nYeWb6BWk1gE5EwpBlUIRAVGcFjk4eT1DWW3765nUNVp/ltzig6xUQ23VlEJEQ0QggRM+Phm67iJxOHsXLLAe76w2qOntAENhEJHwqEELsnawC/v2M0G8qOMXVOAXuPnvS7JBERQIHgi1uH92PhfZnsP3aKybPz+eRApd8liYgoEPySNagXix7MorbeMXVOAcW7w+oGcSLSASkQfDS0f1eWzxpPry4x3Dl/NW9sOuB3SSLSgSkQfJbaszNLZmYxpF9XHnyumLzCEr9LEpEOSoEQBnrFx/LCA2O5fnAiP1y+gSdXbtMENhEJOQVCmOgSG8X86elMGp3Mr974hB+9tJG6eoWCiISOJqaFkejICB6fOoLEhFjmvrOTQ1U1/HraSOKiNYFNRFqfAiHMmBmP3HI1ifGx/OzVzVRUFzLvnnS6dYr2uzQRaed0yChMPXD9QJ7IHsnakiNMm1vAgeOn/C5JRNo5BUIYmzgymQX3ZlBacYJJT+Wzo7zK75JEpB1TIIS56wcnkjcji1Nn6pgyO58PS474XZKItFMKhDZgeEo3ls0aT0JcNHc8vZq3th70uyQRaYcUCG3EgN5dWDZrPAMTu/DAwmKWrinzuyQRaWcUCG1IYkIseTPGMW5gT/51yXrmvLNDE9hEpMUoENqYhLhoFtybwVdH9OexFVv46SubqdcENhFpAZqH0AbFRkXyxLSRJMbHsuCDXZRX1fDLqdcSG6UJbCJy8RQIbVREhPHobVeT1DWWx1ZsoaK6hjl3jSEhThPYROTi6JBRG2ZmzLxhEL+cOoJVOyvInreK8soav8sSkTZKgdAOTBmTwvzp6ewsr2by7Hx2H6r2uyQRaYMUCO3EF69K4oVvjKXy1BmmzMlnQ9kxv0sSkTZGgdCOjErrwdJZ44mNiiR7XgHvbSv3uyQRaUMUCO3MoMR4ln9zPKk9O3PfM0W8tG6P3yWJSBuhQGiH+nSNY9GDWYxK68F389Yx/72dfpckIm2AAqGd6tYpmmfvy+TmYX352aub+fmKzZrVLCLnpUBox+KiI/n9naO5a1wac9/ZycNL1nOmrt7vskQkTDUZCGYWZ2aFZrbezDaa2Y+99p5m9oaZbfN+9gjq84iZbTezrWb25aD2MWa2wVv2pJmZ1x5rZou89tVmNqAVPmuHFBlh/HTiNfzLjVeyfO0eHlhYTHVNrd9liUgYas4IoQb4knNuBDASuNnMxgE/BFY65wYDK73fMbOhQDYwDLgZeMrMGv6mwmxgBjDYe9zstd8PHHHOXQH8GvjFpX80aWBmfGfCYH4+aTjvbSvnjqdXcbhKE9hE5LOaDAQX0HCrrmjv4YCJwEKvfSHwde/5RCDPOVfjnNsFbAcyzawf0NU5V+ACB7OfPatPw2stBSY0jB6k5eRkpjHnrjFs2V/JlDkFlFac8LskEQkjzTqHYGaRZrYOOAi84ZxbDfRxzu0D8H4measnA6VB3cu8tmTv+dntn+njnKsFjgG9GqljhpkVm1lxebmusb8YNw3ry/MPjOVwVQ2TZuezae9xv0sSkTDRrEBwztU550YCKQS+7V9zntUb+2bvztN+vj5n1zHPOZfunEtPTExsomo5l/QBPVk6azxREca0uQUU7Djsd0kiEgYu6Coj59xR4G0Cx/4PeIeB8H423NexDEgN6pYC7PXaUxpp/0wfM4sCugEVF1KbXJgr+ySwbNZ4+nSLY/qCQl7bsM/vkkTEZ825yijRzLp7zzsB/wvYArwMTPdWmw685D1/Gcj2rhy6nMDJ40LvsFKlmY3zzg/cc1afhteaArzpdNF8q+vfvRNLZ2YxPKUbD72wlucKdvtdkoj4qDn3Q+gHLPSuFIoAFjvnXjGzAmCxmd0PlABTAZxzG81sMbAJqAUecs7Vea81C3gG6ASs8B4AfwCeM7PtBEYG2S3x4aRp3TvH8Mf7x/Lt3LU8+tJGDhyv4eGbrkTn9EU6HmurX8TT09NdcXGx32W0G7V19fz7ix+zqLiUaemp/L9/uoaoSM1bFGlvzGyNcy69sWW6Y5oAEBUZwWOTh5PUNZbfvrmdw9Wn+W3OKDrF6LacIh2FvgLK/zAzHr7pKn46cRgrtxzgrj+s5uiJ036XJSIhokCQf3B31gB+f8doNpQdY8qcAvYePel3SSISAgoEadStw/ux8L5MDhw7xaSn8vnkQKXfJYlIK1MgyDllDerFogezqHOOKbPzKd6tqSEi7ZkCQc5raP+uLJ81nt7xsdw5fzV/3bjf75JEpJUoEKRJqT07s2RmFkP6dWXmH9eQW1jid0ki0goUCNIsveJjyf3GWK4fnMgjyzfw5MptugObSDujQJBm6xwTxfzp6Uwancyv3viER1/6mLp6hYJIe6GJaXJBoiMjeHzqCBITYpn7zk4OVZ7mN9kjiYvWBDaRtk4jBLlgZsYjt1zNo7cN5fWN+5m+oJBjJ8/4XZaIXCIFgly0+6+7nCeyR7K25AjT5hZw4Pgpv0sSkUugQJBLMnFkMgvuzaC04gSTnspn+8GqpjuJSFhSIMglu35wInkzsqiprWPqnHw+LDnid0kichEUCNIihqd0Y+nM8STERXPH06t5a8vBpjuJSFhRIEiLGdC7C8tmjWdQUhceeLaYJcWlfpckIhdAgSAtKjEhlrwZWWQN7MX3l37E7Ld3aAKbSBuhQJAWFx8bxYJ7M/jqiP784vUt/OSVTdRrAptI2NPENGkVMVERPDFtJInxsSz4YBfllTU8fvsIYqM0gU0kXCkQpNVERBiP3nY1SV1jeWzFFo6cOM2cu8aQEBftd2ki0ggdMpJWZWbMvGEQj08dwaqdFWTPW0V5ZY3fZYlIIxQIEhKTx6Qwf3o6O8urmTw7n92Hqv0uSUTOokCQkPniVUm88I2xVJ46w+TZ+WwoO+Z3SSISRIEgITUqrQdLZ40nLjqS7HkFvLet3O+SRMSjQJCQG5QYz/Jvjie1Z2fue6aIl9bt8bskEUGBID7p0zWORQ9mMTqtB9/NW8f893b6XZJIh6dAEN906xTNwvsyueWavvzs1c38/LXNmsAm4iMFgvgqLjqS390xmrvGpTH33Z3865L1nKmr97sskQ5JE9PEd5ERxk8nXkOfhDgef+MTDlWfZvado+kSq91TJJQ0QpCwYGZ8e8JgHps0nPe3lXPH06s4XKUJbCKhpECQsJKdmcacu8awZX8lU+YUUFpxwu+SRDoMBYKEnZuG9eX5B8ZSUX2aSbPz2bT3uN8liXQICgQJS+kDerJkZhZREca0uQUU7Djsd0ki7Z4CQcLWlX0SWDZrPH26xTF9QSGvbdjnd0ki7ZoCQcJa/+6dWDozi+Ep3XjohbU8W7Db75JE2i0FgoS97p1jeP6BsUwY0ocfvbSRX/5lq27LKdIKFAjSJsRFRzLnrtFkZ6Tyu7e284NlH1GrCWwiLUozf6TNiIqM4OeThpOYEMtv39xORfVpfpszmk4xui2nSEtocoRgZqlm9paZbTazjWb2Xa+9p5m9YWbbvJ89gvo8YmbbzWyrmX05qH2MmW3wlj1pZua1x5rZIq99tZkNaIXPKu2AmfHwTVfx04nDWLnlIHfOX8WR6tN+lyXSLjTnkFEt8LBz7mpgHPCQmQ0FfgisdM4NBlZ6v+MtywaGATcDT5lZw1e42cAMYLD3uNlrvx844py7Avg18IsW+GzSjt2dNYDf3zGaj/ccZ+rcAvYePel3SSJtXpOB4Jzb55xb6z2vBDYDycBEYKG32kLg697ziUCec67GObcL2A5kmlk/oKtzrsAFzgg+e1afhtdaCkxoGD2InMutw/ux8L5MDhw7xaSn8vnkQKXfJYm0aRd0Utk7lDMKWA30cc7tg0BoAEneaslAaVC3Mq8t2Xt+dvtn+jjnaoFjQK9G3n+GmRWbWXF5ue60JZA1qBeLHsyi3jmmzM6naHeF3yWJtFnNDgQziweWAd9zzp3vbwk09s3enaf9fH0+2+DcPOdcunMuPTExsamSpYMY2r8ry2aNp3d8LHfNX81fN+73uySRNqlZgWBm0QTC4Hnn3HKv+YB3GAjv50GvvQxIDeqeAuz12lMaaf9MHzOLAroB+qonzZbaszNLZmYxpF9XZv5xDbmFJX6XJNLmNOcqIwP+AGx2zv0qaNHLwHTv+XTgpaD2bO/KocsJnDwu9A4rVZrZOO817zmrT8NrTQHedJp5JBeoV3wsud8Yy+evTOSR5Rt44m/bNIFN5AI0Zx7C54C7gQ1mts5r+zfgMWCxmd0PlABTAZxzG81sMbCJwBVKDznn6rx+s4BngE7ACu8BgcB5zsy2ExgZZF/ax5KOqnNMFE/fk84Pln3Er//2CQcrT/GTidcQGaFrFESaYm31G1R6erorLi72uwwJU845Hnt9C3Pf2cnNw/rym+yRxEVrApuIma1xzqU3tkx/ukLaJTPjkVuu5tHbhvL6xv3cs6CQYyfP+F2WSFhTIEi7dv91l/NE9kg+LDnCtLkF7D92yu+SRMKWAkHavYkjk1lwbwalFSeYPDuf7Qer/C5JJCwpEKRDuH5wInkzsqiprWPqnHzWlhzxuySRsKNAkA5jeEo3ls0aT9dO0dzx9Cre3HLA75JEwooCQTqUy3p1YenM8VyRFM83nl3DkuLSpjuJdBAKBOlwEhNiyZuRRdbAXnx/6Uc89fZ2TWATQYEgHVR8bBQL7s3gayP689+vb+XHf95Efb1CQTo23TFNOqyYqAh+M20kveNjWfDBLsqravjV7SOIjdIENumYFAjSoUVEGI/edjVJXWN5bMUWjlSfZu7dY0iIi/a7NJGQ0yEj6fDMjJk3DOLxqSNYvauC7HmrOFipCWzS8SgQRDyTx6Qwf3o6O8urmTw7n12Hqv0uSSSkFAgiQb54VRIvfGMsVadqmTI7n4/KjvpdkkjIKBBEzjIqrQdLZ40nLjqS7HmrePcT3a5VOgYFgkgjBiXGs/yb40nr2Zn7niniTx/u8bskkVanQBA5hz5d41j0YBZjLuvB9xatY/57O/0uSaRVKRBEzqNbp2gW3pfJLdf05Wevbua/XtusCWzSbikQRJoQFx3J7+4Yzd3jLmPeuzt5eMl6ztTV+12WSIvTxDSRZoiMMH4ycRhJCbE8/sYnHK4+zew7R9MlVv8LSfuhEYJIM5kZ354wmMcmDef9beXc8fQqDlfV+F2WSItRIIhcoOzMNObenc6W/ZVMmVNAacUJv0sSaREKBJGLcOPQPjz/wFgqqk8zaXY+G/ce87skkUumQBC5SOkDerJkZhZREca0uavI33HI75JELokCQeQSXNkngWWzxtOvWxz3Liji1Y/2+V2SyEVTIIhcov7dO7FkZhbXpnTjW7lreeaDXboDm7RJCgSRFtC9cwx/fGAsE4b04T//vImbfv0uf3h/F0eqT/tdmkizWVv9JpOenu6Ki4v9LkPkM2rr6lm2towXCktZX3qUmKgIbrmmLzmZaYy9vCdm5neJ0sGZ2RrnXHqjyxQIIq1j097j5BWV8OKHe6g8VcvA3l3Izkxl8ugUesXH+l2edFAKBBEfnTxdx6sb9pFbWMKaT48QHWncNKwvORlpjB/Ui4gIjRokdBQIImHikwOV5BaWsHztHo6dPENaz85My0hlanoKSQlxfpcnHYACQSTMnDpTx+sf7ye3sITVuyqIijAmXJ1ETmYa1w9OJFKjBmklCgSRMLajvIpFRaUsXVNGRfVpkrt3YlpGKrenp9K3m0YN0rIUCCJtQE1tHW9sOkBuYQkfbD9MhMGXhiSRnZHGF65KJCpSV4nLpVMgiLQxnx6uJq+olCXFZRyqqqFv1zhuT0/h9oxUUnp09rs8acMUCCJt1Jm6elZuPkBuYSnvbisH4IYrE8nOSGPC1UlEa9QgF0iBINIOlFacYElxKYuKSzlwvIbEhFimjkkhOyONtF4aNUjzKBBE2pHaunre3lpObmEJb209SL2D667oTXZmKjcN7UtMlEYNcm6XFAhmtgC4DTjonLvGa+sJLAIGALuB251zR7xljwD3A3XAd5xzf/HaxwDPAJ2A14DvOuecmcUCzwJjgMPANOfc7qY+lAJBBPYdO8niojIWF5ey5+hJenWJYcqYFKZlpDIwMd7v8iQMXWogfB6oAp4NCoT/Biqcc4+Z2Q+BHs65H5jZUCAXyAT6A38DrnTO1ZlZIfBdYBWBQHjSObfCzL4JXOucm2lm2cA/OeemNfWhFAgif1dX73h3Wzl5hSX8bfNB6uod4wb2JCczjS8P60tcdKTfJUqYuORDRmY2AHglKBC2Al9wzu0zs37A2865q7zRAc65n3vr/QX4TwKjiLecc0O89hyv/4MN6zjnCswsCtgPJLomClMgiDTu4PFTLFlTRl5RCaUVJ+neOZpJo1LIyUxlcJ8Ev8sTn50vEKIu8jX7OOf2AXihkOS1JxMYATQo89rOeM/Pbm/oU+q9Vq2ZHQN6Abr9lMhFSOoax0NfvIJZNwwif8dhcgtLeG7VbhZ8sIv0y3qQk5nGrcP70SlGowb5rIsNhHNpbL69O0/7+fr844ubzQBmAKSlpV1MfSIdRkSEcd3g3lw3uDeHqmpYtqaMvKJSHl6ynv/880YmjUomOzONq/t19btUCRMXGwgHzKxf0CGjg157GZAatF4KsNdrT2mkPbhPmXfIqBtQ0dibOufmAfMgcMjoImsX6XB6x8fy4A2DmPH5gazaWUFeUQm5haUsLPiUkandyclM5bZr+9MltqW/I0pbcrHXp70MTPeeTwdeCmrPNrNYM7scGAwUeoeXKs1snAXuEHLPWX0aXmsK8GZT5w9E5OKYGVmDevFE9ihW/9sEHr1tKFU1tfxg2QbG/tdK/u3FDXy855jfZYpPmnOVUS7wBaA3cAD4D+BPwGIgDSgBpjrnKrz1/x24D6gFvuecW+G1p/P3y05XAN/2LjuNA54DRhEYGWQ753Y2VbhOKou0DOccxZ8eIbewhFc/2kdNbT3Dk7uRnZnK10b0JyEu2u8SpQVpYpqINMuxE2f407o95BaWsGV/JZ1jIvnqtf3JzkxlZGp33QK0HVAgiMgFcc6xrvQouYUl/Hn9Pk6eqWNI3wTuGJvGxJHJdOukUUNbpUAQkYtWeeoML63bS15RCR/vOU5cdARfGd6fnMxUxlzWQ6OGNkaBICItYkPZMXKLSnjpwz1Un65jcFI82ZlpTBqVTI8uMX6XJ82gQBCRFlVdU8srH+3lhcJS1pceJSYqgluu6UtOZhpjL++pUUMYUyCISKvZtPc4eUUlvPjhHipP1TKwdxeyM1OZPDqFXvGxfpcnZ1EgiEirO3m6jlc37COvsITiT48QHWncNKwvORlpjB/Ui4gIjRrCgQJBRELqkwOV5BWWsmxtGcdOniGtZ2emZaQyNT2FpIQ4v8vr0BQIIuKLU2fq+MvG/bywuoTVuyqIijAmXJ1ETmYa1w9OJFKjhpBTIIiI73aUV7GoqJSla8qoqD5NcvdOTMtI5fb0VPp206ghVBQIIhI2amrreGPTAfIKS3l/+yEiDL40JInsjDS+cFUiUZG6BWhrUiCISFj69HA1i4pKWVxcxqGqGvp2jeP29BRuz0glpUdnv8trlxQIIhLWztTVs3LzQXILS3h3WzkAN1yZSHZGGhOuTiJao4YWo0AQkTaj7MgJFnujhv3HT5GYEMvUMSlkZ6SR1kujhkulQBCRNqe2rp63t5aTW1jCW1sPUu/guit6k5OZxo1D+xATpVHDxVAgiEibtu/YSZYUl7GoqJQ9R0/Sq0sMU8akMC0jlYGJ8X6X16YoEESkXaird7y3LTBq+Nvmg9TVO8YN7ElOZhpfHtaXuOhIv0sMewoEEWl3Dh4/xZI1gVFDScUJuneOZtKoFHIyUxncJ8Hv8sKWAkFE2q36ekf+jsPkFpbw1037OVPnSL+sBzmZadw6vB+dYjRqCKZAEJEO4VBVDcvWlJFXVMquQ9UkxEUxaVQy2ZlpXN2vq9/lhQUFgoh0KM45Vu2sIK+ohBUf7+d0bT0jU7uTk5nKbdf2p0tslN8l+kaBICId1pHq0yz/cA+5hSVsP1hFfGwUXxvZnzsy07gmuZvf5YWcAkFEOjznHGs+PcILhSW8+tE+amrrGZ7cjezMVL42oj8JcdF+lxgSCgQRkSDHTpzhT+sCo4Yt+yvpHBPJV6/tT87YNEakdGvXtwBVIIiINMI5x7rSo+QVlvLy+r2cPFPHkL4J3DE2jYkjk+nWqf2NGhQIIiJNqDx1hpfX7yW3sISP9xwnLjqCrwzvT05mKmMu69FuRg0KBBGRC7Ch7Bi5RSW8vG4vVTW1DE6KJzszjUmjkunRJcbv8i6JAkFE5CJU19Tyykd7yS0sZV3pUWKiIrjlmr7kZKYx9vKebXLUoEAQEblEm/cdJ6+whOUf7qHyVC0De3chOzOVyaNT6BUf63d5zaZAEBFpISdP1/Hahn3kFpZQ/OkRoiONm4b1JScjjfGDehEREd6jBgWCiEgr2HagktzCUpZ/WMbRE2dI69mZaRmpTE1PISkhzu/yGqVAEBFpRafO1PGXjfvJLSxh1c4KoiKMCVcnkZOZxvWDE4kMo1GDAkFEJER2llexqKiUJWvKqKg+TXL3TkzLSOX29FT6dvN/1KBAEBEJsdO19byx6QC5hSW8v/0QEQZfGhIYNdxwZSJRkf7cAlSBICLio08PV7OoqJTFxWUcqqqhb9c4bs9IZVpGKsndO4W0FgWCiEgYOFNXz8rNB8krKuGdT8oBuOHKRLIz0phwdRLRIRg1KBBERMJM2ZETLC4uY3FRKfuPnyIxIZapY1LIzkgjrVfnVntfBYKISJiqravn7a3l5BWV8OaWg9Q7uO6K3uRkpnHj0D7ERLXsqEGBICLSBuw7dpIlxWUsKiplz9GT9OoSw5QxKUzLSGVgYnyLvEebCAQzuxl4AogE5jvnHjvf+goEEWmv6uod720rJ7ewhL9tPkhdvWPcwJ7kZKbx5WF9iYuOvOjXDvtAMLNI4BPgRqAMKAJynHObztVHgSAiHcHB46dYsiYwaiipOEH3ztH8+GvDmDgy+aJe73yBEC53ms4EtjvndgKYWR4wEThnIIiIdARJXeN46ItXMOuGQeTvOExuUQkpPVrnUtVwCYRkoDTo9zJg7NkrmdkMYAZAWlpaaCoTEQkDERHGdYN7c93g3q33Hq32yhemsT/08Q/Hspxz85xz6c659MTExBCUJSLScYRLIJQBqUG/pwB7fapFRKRDCpdAKAIGm9nlZhYDZAMv+1yTiEiHEhbnEJxztWb2LeAvBC47XeCc2+hzWSIiHUpYBAKAc+414DW/6xAR6ajC5ZCRiIj4TIEgIiKAAkFERDxh8acrLoaZlQOfXmT33sChFiynpaiuC6O6Lly41qa6Lsyl1HWZc67RiVxtNhAuhZkVn+tvefhJdV0Y1XXhwrU21XVhWqsuHTISERFAgSAiIp6OGgjz/C7gHFTXhVFdFy5ca1NdF6ZV6uqQ5xBEROQfddQRgoiInEWBICIiQDsLBDNbYGYHzezjcyw3M3vSzLab2UdmNjpo2c1mttVb9sMQ13WnV89HZpZvZiOClu02sw1mts7MWvSeoc2o6wtmdsx773Vm9qOgZX5ur+8H1fSxmdWZWU9vWWtur1Qze8vMNpvZRjP7biPrhHwfa2ZdId/HmllXyPexZtYV8n3MzOLMrNDM1nt1/biRdVp3/3LOtZsH8HlgNPDxOZbfCqwgcEOeccBqrz0S2AEMBGKA9cDQENY1HujhPb+loS7v991Ab5+21xeAVxpp93V7nbXuV4E3Q7S9+gGjvecJBO4DPvSsdUK+jzWzrpDvY82sK+T7WHPq8mMf8/aZeO95NLAaGBfK/atdjRCcc+8CFedZZSLwrAtYBXQ3s34E3dPZOXcaaLinc0jqcs7lO+eOeL+uInCDoFbXjO11Lr5ur7PkALkt9d7n45zb55xb6z2vBDYTuP1rsJDvY82py499rJnb61x83V5nCck+5u0zVd6v0d7j7Kt+WnX/aleB0AyN3bs5+TztfrifwDeABg74q5mtscA9pUMtyxvCrjCzYV5bWGwvM+sM3AwsC2oOyfYyswHAKALf4oL5uo+dp65gId/HmqjLt32sqe0V6n3MzCLNbB1wEHjDORfS/Sts7ocQIue6d3Oz7unc2szsiwT+Z70uqPlzzrm9ZpYEvGFmW7xv0KGwlsDfPakys1uBPwGDCZPtRWAo/4FzLng00erby8ziCfwD8T3n3PGzFzfSJST7WBN1NawT8n2sibp828eas70I8T7mnKsDRppZd+BFM7vGORd8Lq1V96+ONkI4172bfb+ns5ldC8wHJjrnDje0O+f2ej8PAi8SGBqGhHPueMMQ1gVuYBRtZr0Jg+3lyeasoXxrby8ziybwj8jzzrnljaziyz7WjLp82ceaqsuvfaw528sT8n3Me+2jwNsERifBWnf/aomTIeH0AAZw7pOkX+GzJ2QKvfYoYCdwOX8/ITMshHWlAduB8We1dwESgp7nAzeHsK6+/H3yYiZQ4m07X7eXt7wbgfMMXUK1vbzP/izwm/OsE/J9rJl1hXwfa2ZdId/HmlOXH/sYkAh09553At4Dbgvl/tWuDhmZWS6BqxZ6m1kZ8B8ETszgnJtD4BadtxL4H+ME8M/esla9p3Mz6voR0At4yswAal3gLxn2ITBshMB/8Becc6+HsK4pwCwzqwVOAtkusPf5vb0A/gn4q3OuOqhrq24v4HPA3cAG7zgvwL8R+MfWz32sOXX5sY81py4/9rHm1AWh38f6AQvNLJLA0ZvFzrlXzGxmUF2tun/pT1eIiAjQ8c4hiIjIOSgQREQEUCCIiIhHgSAiIoACQUREPAoEEREBFAgiIuL5/6EVUJ17V144AAAAAElFTkSuQmCC\n", 546 | "text/plain": [ 547 | "
" 548 | ] 549 | }, 550 | "metadata": { 551 | "needs_background": "light" 552 | }, 553 | "output_type": "display_data" 554 | } 555 | ], 556 | "source": [ 557 | "individual_clustering_score=[]\n", 558 | "for i in range(1,4):\n", 559 | " kmeans=KMeans(n_clusters=i,init='random',random_state=42)\n", 560 | " kmeans.fit(x)\n", 561 | " individual_clustering_score.append(kmeans.inertia_)\n", 562 | "plt.plot(range(1,4),individual_clustering_score)\n", 563 | "plt.title(\"ELBOW\")\n", 564 | "plt.show()" 565 | ] 566 | } 567 | ], 568 | "metadata": { 569 | "kernelspec": { 570 | "display_name": "Python 3 (ipykernel)", 571 | "language": "python", 572 | "name": "python3" 573 | }, 574 | "language_info": { 575 | "codemirror_mode": { 576 | "name": "ipython", 577 | "version": 3 578 | }, 579 | "file_extension": ".py", 580 | "mimetype": "text/x-python", 581 | "name": "python", 582 | "nbconvert_exporter": "python", 583 | "pygments_lexer": "ipython3", 584 | "version": "3.9.12" 585 | } 586 | }, 587 | "nbformat": 4, 588 | "nbformat_minor": 5 589 | } 590 | --------------------------------------------------------------------------------