├── 2021autumn ├── ML012_terms_202102a.pdf ├── ML013_introclassreg_202102a.pdf ├── ML022_optimization_202105a______________.pdf ├── ML030_metric_202110a_____.pdf ├── ML040_control_202110a_______.pdf ├── ML051_linear_202115a______linreg.pdf ├── ML051_linear_202116a______logreg.pdf ├── ML052_SVM_202112a______.pdf ├── ML061_nonlinear_202113a_________.pdf ├── ML062_tree_202113a.pdf ├── ML081_complexity_202106a.pdf ├── MMO_lec3_kNN.ipynb ├── MMO_lec6_MS.ipynb ├── PZAD031_err_regression_202012n____.pdf ├── PZAD043_featureselection_202109___.pdf ├── PZAD051_ensemble_202102a____part1.pdf ├── PZAD052_rf_202101a_____+adaboost.pdf ├── PZAD053_gradboosting_202106n___.pdf └── README.md ├── 2022-23new ├── ML015_python_202207a.pdf ├── ML093_USL_202202a_part_2.pdf ├── PZAD034_err_multirankcluster_202204____sm.pdf └── README.md ├── 2022spring ├── DL_03archiall.pdf ├── DL_1NN_03_nn_202201a.pdf ├── DL_1NN_04learning_202201a___.pdf ├── ML082_bayes_202115n.pdf ├── ML091_cluster_202112n____.pdf ├── ML092_EM_202201a.pdf ├── ML093_USL_202201a___.pdf ├── ML094_anomaly_202201a.pdf ├── ML095_apriory_202204a.pdf ├── ML101_special_202202a___.pdf ├── ML105_range_202202a.pdf ├── PZAD071_RecSys_202201a____.pdf └── README.md └── README.md /2021autumn/ML012_terms_202102a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML012_terms_202102a.pdf -------------------------------------------------------------------------------- /2021autumn/ML013_introclassreg_202102a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML013_introclassreg_202102a.pdf -------------------------------------------------------------------------------- /2021autumn/ML022_optimization_202105a______________.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML022_optimization_202105a______________.pdf -------------------------------------------------------------------------------- /2021autumn/ML030_metric_202110a_____.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML030_metric_202110a_____.pdf -------------------------------------------------------------------------------- /2021autumn/ML040_control_202110a_______.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML040_control_202110a_______.pdf -------------------------------------------------------------------------------- /2021autumn/ML051_linear_202115a______linreg.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML051_linear_202115a______linreg.pdf -------------------------------------------------------------------------------- /2021autumn/ML051_linear_202116a______logreg.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML051_linear_202116a______logreg.pdf -------------------------------------------------------------------------------- /2021autumn/ML052_SVM_202112a______.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML052_SVM_202112a______.pdf -------------------------------------------------------------------------------- /2021autumn/ML061_nonlinear_202113a_________.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML061_nonlinear_202113a_________.pdf -------------------------------------------------------------------------------- /2021autumn/ML062_tree_202113a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML062_tree_202113a.pdf -------------------------------------------------------------------------------- /2021autumn/ML081_complexity_202106a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/ML081_complexity_202106a.pdf -------------------------------------------------------------------------------- /2021autumn/MMO_lec3_kNN.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "MMO_lec3_kNN.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [] 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "code", 21 | "metadata": { 22 | "id": "j1jkC_Kj9paP" 23 | }, 24 | "source": [ 25 | "import matplotlib.pyplot as plt\n", 26 | "import numpy as np\n", 27 | "import pandas as pd\n", 28 | "from mlxtend.plotting import plot_decision_regions" 29 | ], 30 | "execution_count": 42, 31 | "outputs": [] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "metadata": { 36 | "colab": { 37 | "base_uri": "https://localhost:8080/", 38 | "height": 400 39 | }, 40 | "id": "gfnr9BFR9xNw", 41 | "outputId": "65030583-2a5c-4e64-dd51-610dfafc68da" 42 | }, 43 | "source": [ 44 | "from sklearn.datasets import make_moons\n", 45 | "\n", 46 | "n_samples=1000\n", 47 | "\n", 48 | "X, y = make_moons(n_samples=n_samples, shuffle=False, noise=0.3, random_state=1)\n", 49 | "\n", 50 | "# прореживаем, чтобы был дисбаланс\n", 51 | "i = (y==0) | (np.random.rand(n_samples) > 0.75)\n", 52 | "X = X[i, :]\n", 53 | "y = y[i]\n", 54 | "\n", 55 | "plt.figure(figsize=(7, 3))\n", 56 | "plt.scatter(X[:,0], X[:,1], 40, y)\n", 57 | "pd.DataFrame(X[:5,:])" 58 | ], 59 | "execution_count": 65, 60 | "outputs": [ 61 | { 62 | "output_type": "execute_result", 63 | "data": { 64 | "text/html": [ 65 | "
\n", 66 | "\n", 79 | "\n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | "
01
01.487304-0.183527
10.841529-0.315595
21.259543-0.677870
31.523265-0.209476
41.095395-0.049631
\n", 115 | "
" 116 | ], 117 | "text/plain": [ 118 | " 0 1\n", 119 | "0 1.487304 -0.183527\n", 120 | "1 0.841529 -0.315595\n", 121 | "2 1.259543 -0.677870\n", 122 | "3 1.523265 -0.209476\n", 123 | "4 1.095395 -0.049631" 124 | ] 125 | }, 126 | "metadata": {}, 127 | "execution_count": 65 128 | }, 129 | { 130 | "output_type": "display_data", 131 | "data": { 132 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAADCCAYAAAAhODcuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gUVReH3zuzPYUAIfTeVIpUEQRBFEUEQUVQERvKh1JEUVBQVFQEEQRBbIBIkS5SRETpvfceSiAEQiAJadv3fn9siCy7m0YAxXmfJw/slHvvTDZz5p77O+cIKSUaGhoaGhr/dpSbPQANDQ0NDY2CQDNoGhoaGhq3BJpB09DQ0NC4JdAMmoaGhobGLYFm0DQ0NDQ0bgk0g6ahoaGhcUugu9kDCEZkZKSsUKHCzR6GhoaGhsY/iO3bt1+QUhYLtO8fa9AqVKjAtm3bbvYwNDQ0NDT+QQghYoLt01yOGhoaGhq3BP/YGZrGvwtrmpXVszdy5tg5KtYsR9PHG2Ew6m/2sDQ0NP5DaAZN45o5se8U/Vp8gNPuxJZuxxxq4ocBU/lqw1CKlSl6s4enoaHxH0FzOWpcE1JKhjw5krSkNGzpdgCsaTYSzyYz4sWvb/LoNDQ0/ktoBk3jmjhz9CwJpy9wdY5rj9vD3rUHSU/JuDkD09DQ+M+hGTSNa8KWYUdRg3+NnHbnDRyNhobGfxnNoGlcExVqlEVV1YD7SlQoRqHI8Bs8Ig0Njf8qmkHTuCZ0eh2vf/MKRosBIbzbFEVgtBjp++3/EJc3amhoaFxnNJWjxjXTovM9RJWLZObwX4k9HEeVepV4+t3HqFiz3M0emoaGxn8Ica0Vq4UQZYEpQHFAAt9LKcdcdYwAxgBtgAzgBSnljuzabdCggdQyhWhoaGhoXIkQYruUskGgfQUxQ3MB/aSUO4QQYcB2IcSfUsoDVxzzMFA186cR8E3mvxoaGhoaGgXCNa+hSSnPXp5tSSlTgYNA6asOaw9MkV42ARFCiJLX2reGhoaGhsZlClQUIoSoANQFNl+1qzRw+orPsfgbPQ0NDQ0NjXxTYAZNCBEKzAP6SilT8tlGdyHENiHEtoSEhIIamoaGhobGf4ACMWhCCD1eYzZdSvlLgEPOAGWv+Fwmc5sPUsrvpZQNpJQNihULWO5GQ0NDQ0MjINds0DIVjBOBg1LKUUEOWwg8J7zcDVySUp691r41NDQ0NDQuUxAqx3uArsBeIcSuzG0DgXIAUspvgSV4JfvReGX7LxZAvxoaGhoaGllcs0GTUq4Dsk0HIb3Bbj2vtS8NDQ0NDY1gaKmvNDQ0NDRuCTSDpqGhoaFxS6AZNA0NDQ2NWwLNoGloaGho3BJoBk1DQ0ND45ZAM2gaGhoaGrcEmkHT0NDQ0Lgl0AyahoaGhsYtgWbQNDQ0NDRuCTSDpqGhoaFxS1AQuRw1/uVIKdm5fC/rft2Cwajn/i7NqFqv0s0e1i2FlBJvHu/AxByMJTUxjcp1KmAOMd3AkWlo3DpoBu0/jtvt5sPHv2DXir3Y0u0oimDxd8t4om9bXvzk6Zs9vH89f/y0kimDZ3M+9gJFikfwzKDHefS11lnG7ezxeAa3H87ZE+dRdSpul5uuHzxJ57fb3+SRa2j8+9Bcjv9xVs5Yn2XMADweiT3DwbzRi4nedeImj+6fg9vlZton83ii2Es8qOtEt5pvsOX3ndmes3D8Usb2nMj50xdAQuK5ZCYMmM60j+dmtflmi8HEHIzFnmEnIyUDe4adaR/NYc3cjTfisjQ0bim0Gdp/nKWTVmQZsytx2l2snLmeKnUq3oRR3RiklKybv4XF3y4jPSWDpo81ol2PVoQUCsHldLFhwVb2rT9EsTJFObztGJsWbcOe4QDg1IFYhnT8gvfn9KNRm3p+bbtdbn58fyb2DN97a8uw8/PQX5BSYgoxkZacgfRIv2OmfzqPezs29ms3LTmdU4fOEFmqMFHltCK4GhpXohm0/zhOuzPgdunxBN13qzC6x3es+HldlkE/sfcUv333J58vH8ygNkO5cCYRa5oNvVEf8F7YrQ6+f3tKQIN28WxS0PvncriY9vFcr4vR6Q54TMLpiwBkpFqZPWIBy6etJSUxFVu6HVOIEZfDxR1NqvP+7DcJLxKW31ugoXFLUSAuRyHEJCHEeSHEviD7WwghLgkhdmX+DC6IfjWunZbPNMVoMfhtN1qMNHv87pswohvD8T0xLJ+21md26rA6uHg2iY+e+IKzJ85jTbMBwY0+wKlDZ/CW+/MlrEgoHrf/9stIj8TlcAU8F6BirXI4bA76NB7I7C8Wcu7keTJSrHjcHjJSrDhsTvatO8jg9p/n9pI1NG55CmoNbTLQOodj1kop62T+DCmgfjWukdYvtaRMtVIYLcasbaYQI3e1qUfNprfdxJFdX34ZvRi71eG33Wl3cmzXSVwOV67aCY0ICaheNIeYaP5kY/TGvDtBjGYDLwx5ihUz1hMfk4DTFmym5yZ6x3FOHz6T5z40NG5FCsTlKKVcI4SoUBBtadxYjGYjY9Z/wrKfVrNyxjr0Jj1tXn6AZk80ylZm/m9my+87WT597TW3YzQb6ND74YD7rGlWMtKsuIK4FK9Eb9SDlHikJKpsJL3GdqNWs9uZ++WigOubV6Iz6Dh3MoGy1Uvn6xo0NG4lbuQaWmMhxG4gDnhLSrn/6gOEEN2B7gDlypW7gUP7b2M0G2nX40Ha9XjwZg+lQEhLTmfm8PmsmrkBoQhaPdecJ996NCu+67u3puTK0PghwGA24HF5cDld6PQqoREhnD0ez8pZ60k+f4m6LWtxV5u6fPLUl+xcvs9P8HE1iqrQvFNj3vyhBw6rA0u4JetFIrxoGEIR2bbhsDspf7tmzDQ0AEQwH36eG/LO0BZLKWsG2BcOeKSUaUKINsAYKWXV7Npr0KCB3LZtW4GMTeO/QUaqlZ3L9zC210QuXUjB5fAaLYNJT5nqpRi3+TNUncpD+s6Qx6+90WLkqQHtmf/VEtIuZeBxeQDQGVTcLg86vYrT7sIcaqJEhShij8bhtGfvtlT1KuZQE99s/5wSFaL89h/acpS3Wn6Ypay8GoPZQKNH6jF4dr+8XYyGxr8YIcR2KWWDQPtuyAxNSplyxf+XCCHGCyEipZQXbkT/GgVP7JE4Jg+exc7lewkpZKF9z4fo0LsNqk4tsD7On76A2+WmRIWoHN2fC8cv5fu3pyKlxHHVmpPD5iTuWDzThszlzymrc23MSlYqjjnMRLEyRen4Zju2/7kba5oty5gBWUbzsvGyptk4fSQuaJtCCCrXrUBaUjoNW9fhqXceI6psZMBjb7urKg8+34LF3/3pM0tTVAWdQcdDL95Hj5HP5+5iNDT+A9wQgyaEKAHESymlEOIuvGKUizeib42CJ/boWXre9Q7WNBvSI0m5mMqP789k/4YjDJ5z7bOF43tiGPrMaM4ej0cIQUTxQvSf3Iva994R8Pjdq/fzff9pAUUel7Gl2ZgxfD4yG+XhlRgtBvr/1Iua9/wtjBnbe2KOsy4gW0FJWNFQxm8dnqv1yT1rDrDsp1U+xsxg0tP2tYd4eegz6A36HNvQ0PgvUVCy/RnARqC6ECJWCNFNCNFDCNEj85COwL7MNbSvgKdkQfk6NW44Uz6YhS3TmF3GnuFgy+87OLE35praTrmYypvNBxNzIBaHzYnd6iD+ZAKD2gzlTPTZgOfMHbnIL4A5EMGMmapXUVQFo8WIJdyMOdRE73EvZxmzcyfPM3vEAhy56OMyOoMOg8nX4JhCjHQZ9ESuxTbj+/7o52502JwsHv9HVkiBhobG3xSUyjHbpH9SynHAuILoS+Pms3PFPjwBhArSI9m9+gAVa5XPd9tLf1wZcIbjdLqY/9USen3VzW9f/MmEfPcHUO+BWny88B2O7TqJw+qgWoPKGEze2LxhXb9i+c9r87Tmpuq8Qg+hKKyevQFVVRCK4Ol3H+exPm1y1Ybb7eb47pMB97mcbrb8vpMHutwLQHxMAskJKZS/owymK8IvTh06w+rZG3A5XDRp35DqDavk/iI0NP6FaJlCNPJMaISF5POX/LarOpWwwqF+20/sO8XMYb9ybNcJyt5WmqcGdAj6cD2+52RA16Hb6ebY7sCzv4jihSBgSH/OCEVwKSGFE3tiuHQhleTzl4goHkGZqiVZ/N2ybOX9OoMOj9uDqio4M42w3qjDEm6h29AuFCtTlN5ju3HpQgpFSxXBYMzZRXhoy1HWzN2I9Eh0Bl1AF6fH7eG7t6ZQq9ntDH16NNE7T2SN5dn3O9K5fwemfjyHmcN+xe104/F4mDf6N1p0bkK/Ca/esuEYGhqaQdPIMx16P8wPA6YHdPM1ae8rPtq9aj8DH/kUp82JlBBzIJbNS3bw7tQ+NHvCPxNJpdoVWGvejOMqo6bqVSrf6T/z++2HP9m//nC+r0V6JEe2H+fV+gMwmA2oqoLb5aZJ+4bsXXswh5Mlb07oQUSxQvw69neSz1+iYes6PPb6IxSOKgSAJcyMJcyc8zik5KueE/hzyiocVq+oRSjBDU/y+Uv0avQuKRdS8bg9WUKYaUPm4nK4mTXsV597aM+ws3r2Bpo82pAm7RvmOB4NjX8jBSbbL2g02f4/F7fbzfDnxrL+160IQNEpIGHIggHUue/vqA0pJc9X7c3Z4/F+bRgtBhZcmoKq+qoiUy6m8lyVXqRfyvDZbgox8t2uLyhVuYTPODqVeJmUi2kFe4GZ43M53Lhd2cerlb2tNJMOjL7m/nau2Mvg9sNzDKT2QRDQFRoaEUJGSkZAt/Bdberx6eJ38z9QDY2bzE2X7WvcWqiqysDpfYk5cJo9qw8QWjiUu9vV9ytMmRSfzLmT5wO2Yc9w8PnzX5N4NoniFYrRodfDVKlbkfCiYYxaPYTPuowh7tg5hBAULhFB/8m9fIwZQNK5ZGxBYrSuFXuGA0XNWTN15mhgoUpe+ePHlXkzZhB0XS8j1RrQmIFX7Xm9yKmIqYbG9UYzaBr5pvwdZSl/R9mg+4/tisk2y8WqWevxuD0oimDVzPX0+eYVHnyuBZVql+eHvaNIiL2I2+WmePliAR+UIREhOWbiuBYUVeDJIaFIocjwHNuxW+38Mvo3/pi8EpfTTfMnm9B5QPusLPmbFm9n46KC80ZElStKckKqn/EyWgw0eawhu1fvxxRiolr9StdsgNxuNzOH/covoxeTkphGsdJFqVKvIuXvKMN9TzWlUu38C4Q0NPKK5nK8Bdm79iALxy8l8WwyDR+uS737a7Jsympij5zljsbVaNfjQQoXj8hVW1JKLl1IwWAy5Got6Er6txrCzuV7c3280WJgTvxEv5ledgx/biyr52y8LqVuat97BwaLgW1LdwXcLxRB98+70vHNdkHbcLvd9G36Psf3xGStaekMOgxGPcUrFMNg0nN8T0yu4ttyg9FiYMDUPvw46Gdij5zNMvgGk57QwqGkJqb6pNb66Nf+VKtfOd/9je7xHX9NW+u/nirAaDLwxJttefFjrfK5RsGRnctRM2i3GLNGLGDqR3NwWO1I6X14upwuFEXB4/ZgMOnRm/SMWf8p5W8vk21bO/7aw+ge33PhzEWkhLr31aTfpNcoWrIwqUlpqDoVS5gZKSWr52xgzheLyEi1ck/7hjzxRlu639mP5PMp2fZxJZZwMwN/7huwvthlkhMuMf2TeaybvxmdXsf9zzZj39pD7F130CeDR0Hw7s+vM/a1CaQlpwceb5iZ+UmTUZTgrsn1v25h2HNjr6ur7zKqTuGVz7uydt5mju44nmVAhRCER4Zx6UKKn5vSHGZiZuz3WS8rdqudeaN/Y9nklbhdHpp3akzn/h0CqleT4pPpUuG1bF8mjBYDo1YPuSajqaFxJZpB+4+QeC6JZyv1DFpu5DJCwB1NbmP02o+DHnN0x3HeuPd9n8BeVacQUawQYUVDiT3sTe90293VSE9O58TeU1d0AOFFQoksExk0lioQlnAz7816k4YP1Qm4PzUpLctIXo5VM5j0CEXBYXUErS2WH4qVLUpy/KUsOX4gFJ3CrDPfE1GsUNBjRnX/lt8nLL+msegMOoQgx1mcogjCioRhy7AFzf/oh4A+X79CocgwTh+K48+pq0iITcwyhnqjjqKlivDdri/8Zujblu3mk86j/AQ8Ps0rgg69Hua10S/mbjwaGjmgiUL+I2z7YzeqTiEn55uUcGjzEWwZdp9A3CuZ/sncLPn4ZdwuDxfPJnHxbFLWtn2BpO0SUi6mUbVeJUwWI7ar3FGqXgUpcV81o5JScmfzwOmt3G43E96dTnL8JZ9M+VfnbSwoLiWkZGvMAPQGHZsWbaf1Sy2DHhNWODTHjPk5IT0SVw5qSwCPR5KWnOZ3X7NvHL7tNxlVp2JLt/uN02l3kXQumd8nLueJvm199kWWLpJj1QLpkditeRS7XEF6SgYbFmwl/VIGde+vlaNXQeO/TUEV+NT4B6CoCoLcL/Jnpwc4tivmmmc8O1fso3CJCFSdgtFswGgxUKFmWUat+ojCxSMwhXiNqU6vYjQbeGdqn6wMHXarnQ0Lt7Jq1no2L9nB02X+x+8Tluev7Es+yI2hdLs8/DLmN966/0MWfbss4IP7ga73XrNwJafQgSvJz6/MYXViTbUFHafd6mD9/C1+2yvUKEvZ6qWyVYOaQk00zWfl861Ld/JUqe6M7TmBH/pPpWeDAQx/fiweT8G6ljVuHbQZ2i1Eo0fq5eqBLxRBzaa3YzQHnp0BlKpaIqjkPrd43J6sGDRVJylTrRRjNw7FYDIw6eBolk9fx57V+yleIYo2L99PyUrFAdj6xy4+7jQSIQQej7wh60/5weVwZbla9645wMxh8/lh70gsYRbAW5ft6z4Tb+iYdHoV9GqBz1zDivivoQF8vOgdBrUZSuyROL8+Vb1KzXuqU79V7Tz3l5aczkcdR/qJTdbN20ytprfT5pUH8twmwJnos0z7eC67VuwjPDKMJ/q2pdVzzbVwg1sEbYb2D8TtdrN16U4WfbuMAxsP53qmFFY4lPa9W2d7jFftFkLf7/6X7XHPvPs4Rosh12POCYfNyfE9MXQs3o3Pun5FUvwl2v6vFQN/7ku3oc9kGbPVczYw6JGhWFNtZKRYr8mYqTo1W8FGQeJxS86fukCfJoPweDxIKXmr5YfsXXso2/N0ehVTiIn2vVtjNF/b/dYbdVSpW5GHX74fo8WAUARCERgtRpq0b4jOeFVpH5H5kwOmECPtXn0o4L7IUkUYvf6TgGWDFCFo1bV5vn4Ha+dtCuhBsGXY+XXc73luD+D04TO81mAAK6av5cKZRI7vjmFsrwl89doP+WpP45+HNkP7h3H2RDz9WnxAWnI6HpcHoQjK1yjL8GXvExJuyfH8ex5tyOJvlgUM0hVC8NxHnWnz8v0BVWtXcmeLGrz+TXe+7jMJ6ZG43W6KlCgcMOtHrpFgTbWxasY6Ni/eztdbh1G6Ssms3X9NX8PIl8bn2kUnhEBv1FGhZjlOHYzNumYhoHTVkrz9Y0++6jmBY7tO5nmoiqqg6tQsBZ+qUzGFGClRMQq71ZElirmaUwfPsGnxdixhZuKiz+FxB3ePCSF44dOneej5Flw4k8gfk1bmemyXg5ivbL901ZJ8tvQ9LGFmWj3XgrVzNwLQrGNjqjeozIFNR/hhwFT2rzuElGSm+Qo+PkWnoNOptHv1IRo8eGfQ4zb8ujXgdqfDxdwvF9PymWa5uq4rSUtKD1qGJy0psOo0JyYO/NnrWr3iBdGWbmfZT6vo1L89JSsWz1e7Gv8cNIP2D2Nw++FcOJPo81A/vuskY3tN5J0pvXM8//bG1TCaDX4GTdWrNHu8EZ3fbp/rsbTq2pwWnZtwct9pzGFmylQtSfe6b3EiSJLg3OLxSKypVn76YBatujZnzshFJJy+QHzMhVyvkQlFUKNxdQbP7UdEVCH2rj3I2nmb0Bt1tHy6GVXqVgTgy7Uf83jRF7OtURYIVafQrOPdHNhwOCsD/7Pvd6R6wypM+Wg2U4fMCZipQ3okK6av5Y7G1XPss/uIv2PYCkWGU6pyCU7uPx3UCKo6hfDIcBo8WIeVM9f5tR8XfY5LCSlYwsxUrVeRpHPJrJm70bv26HBRo0l1zKFmVJ2Ky+nOUTxye6NqvDXpNcpULem3z5puY/L7M1k2eVVmZpLAbSWeTc62j2DUblEDVa/z+z6oOoX6D+bdhQmwc/m+gN4ORVXYveqAZtBuAQrEoAkhJgFtgfNSypoB9gtgDNAGyABekFLuKIi+byViDsZy9ni8v9LM4WLN7A30m9Ajx6KOqqry4fz+DHz4UzxuD3arA3OoiYioQvT86qU8j0lv0FO1XiUADm+N5syRgkn15PFINi7cxsaF2/Ke8gkwWYw82vMhvuo5gfOnLnBnizvoPKADkaWK+BxnMOkJKWThUkLgeDhFEQHTRDntLpLjk0k6l4xQBNuX7Wbnir00bteAZwY+zvRP5gU1PEJRiCofiWpQAyolhSLoN+FVHnrhvqxtGalWeo/rxrg+k4g9chadXsVhdVCiUhQX45JAQpMODen2WRf63D0wqLHc/NsO2r36IIPafsb+DYexpdkQQvDXtDU89EILdi7fm+uXhpSLqX7GTErJrpX7+KLbeC6eScpWsCIUwR1NquWqr6up3qAyde+vyc7le7NCEBRFYAo10eW9jvlq0xxqIiPFP8RAKAoh4XlLGqDxz6SgZmiT8dY7mxJk/8NA1cyfRsA3mf9qXEFqYhqqTgf4xxB5PBKHzZmrKsU177mNaSfHs+LndcTHJHBbwyrc89hd6PTX9uteMH5pgWbkyI8hA2/Kq7sersMX3b7BaXMgJZzYE8PvE1YwdvNnPg/h7cv24LAFj8kKlvMQYNfK/b5GywEbF23nzhY1ad6pCStnrPM7xxhi5P4uzYg5cDrg9RnNBt6Z1oemj3m//g67k3G9JrB8+loUVcFhd2Iw6HHYnJSvWZYeXzzPnS1q+LSh6v3Xq8BrQFS9yi9jfmPP6v1ZcWtSSuwZdpb+uDJbZevVxEWfw5pmxRzqfdinJqXx9v0fcfpwnF81hEAYzQae+6BT7ju8ig/nvc38r5aw6Js/yEi1Uf/BO3n+o06UqBDlc1zKxVR2rz6A0WygTsuaQcv0tP3fA8wc9mvA8kR3tamb73Fq/HMoqAKfa4QQFbI5pD0wJbNK9SYhRIQQoqSUsmBe928RKt9ZHrcz8Jt3VLnIPKWeCi8SRodeD1/TeDweD/NGLWbuqEUkX0hBVdUCy52oN+ggF8HCgci4lMHKGet9tjkdLlxON9++OZlPFv2dTT7+5Pm8xWVdQSDlmz3DzoKvf+e7XV8QF32Ww1uP+ewvUiKCc8fjmTpkrp9LUlEUnh/SOcuYAXzZ/VvWzt3koxC0ubyGMHrHCQY9MpQP5/f3WcN68IUWzBj6i9+9kx7J1qU72bR4e8Dfk8Pm8N73PKCoCnvXHuT04ThWzVpPzIHYbF2pQggUVXBHk+q8OuoFKtQInuszJ1SdSsc322WbWmzW578y5cPZ6DKvSyAYPLcf9R7wd0t2HtCBfesOsX/DYVwOFzqjDoHg4wUDslX8avx7uFFraKWB01d8js3cphm0KzCHmnl2cEemfTIP+xVv90azgZ5fvXTDpcVje03kzymrs6TTBZlaSuJdDyEfk7Rgqk8pJduX7fH5LATZCjOyI5g7LT05gy+7f+dnzADOHo9nwrvTsFv9Z7KqXuFiXCKDOwynQo2yNO/chDVzNmYrsbdbHXzzxo9M3O8tUeN2u4neccLPbajTq9S693Z2/Lkn+EuHDHIvApShUVSF2s1vp+dd7xIfk4DMdF/nxG2NqvDVhqEApCSmMv3TuWxduosiJQrToffD1L43cOB8ftj+526mDpmLw+b0uYcfPPY5U49/7ZfBRW/Q89nS9zi0JZp9aw8SHhlGsyfuznOOUo1/Lv8oUYgQojvQHaBcuXI3eTQ3h6cGPEaJClH8PPQXEk5fpGKtcjw/pDN3Nq+R88kFSOK5JP74ceV1SfoL3gdrfg1Ndqh6lYObj/J9/6kc2HAY6ZHIYHVW8tO+TsESbmbZlFWBD5AENGbgnY0uGLcUl9PNtqW7mDf6t1yVqDl96AxulxtVp/LnlDXs+Cuw0dq//nCORufybFUIgapXqFS7Ai2facaUD2fhdnmwZ9gxh5oILRyCy+Em9kgc7jwEsxcuEYGUkotnk3itfn/SL2VkGZstv++k6+COdHyzHbFHzxISbiaydNFct301c0ctClhk1uP2sOLndTz++iMc3XGcY7tOElW+GHXuq4GiKNzeqCq3N6qa73418oZ07EBmTAF3PBiaIEK6IJQiOZ+YDwosl2Omy3FxEFHId8AqKeWMzM+HgRbZuRy1XI55x+V0se6XzaybvwVLuJnWL7XkjrsDL8q7XW5vZpEgs74tv+/k06dHB1xEvxKhCgxGPU6bE6PFSGSZIiiKQsyB2BzHq9OrqHpdViLlQPsVnYqqU7GmWnPVXp2Wtdi79kDucxnmEUu4Gafddd0MfSCMFgOvDO/K+vmbObDpaMCHuKpXvTPKPPw56416ZsV9T1jhUNIvpbPi53WcORZPtXoVqXXvHTxftXeer9NoMfLysC4c3X6c5dPX+Ll7FVXBHGbC4/LgdrmpXLci7818g6iykXnqB+CVWm9ycv/pgPse69OG6F0nOLLtOEJ41xfDi4bxxYoP/dbgNK4fnvQpkDoSsOH9chpBWBCR8xFqqXy1+U/I5bgQ6CWEmIlXDHJJWz8rWBw2B/1afMCJ/aez3JXLp6+hY79HeXHIU1nH7Vt/iK/7TOTYrhh0Bh0tn2nKq1++4BfjVrh4ITzunN/MVUWhRMUoIooVonrDKjw7uCPmEBOHt0bzQYfPSUtJx54e2LjojHqGL3uPZZNXs3TSCh8XnxACS7iZ7iOex2jR8+N7M4mLPhd8HHqVyDJFuRB78boZMwRUa1CZw1uis33QC0WgN+pzJZxQdEq2rlyhCnR6Hd/3n+KXW/NK3E43RosxoLELhs6gI/FcMmGFQwkpFOITPB17JM6bFzSPLmF7hp1Zw3/FlmEPuHbpcXtIT/77JenwlmjeaPY+U6LHBQzOzrrzLI8AACAASURBVI7iFYsFNGhCCE7uO8Whzb6/J3u6ncHth/P97pF56kcjf0hPMqSOwHddwQ7SiUz9HBFx7ZXer6agZPszgBZApBAiFvgA0ANIKb8FluCV7Efjle1rqbcLmEXf/MGx3TE+f8AOq5OfP53HliU7KFEhivqtavNtv5+yHvhOu5MVP6/l+J4Yvt4yzGe2VqVuRYqVjeTMkbhslYAup5uY/bHEEMvhrcdYOmk5I1cNoXrDKvx8+lsObj7KoDZDA2Zk1xt0VG9QhTvurp41tvOnLgDe9a+Ui2mMfHk8OoOOsCKhqDo1W5l4eGQYRwKsa+UVRVUCu0Ol90Gfk6u0SMnCPPR8C+Z9udgbnO1wBhW/qDoV6fYEzcGo06tY0225Wr8MpuYMdj1OmwOXw8mGBVsJKxJKjXuqZ2X1KFExKlMVG2A2qFMxWgxY0wLnf0yKTyY0h8D9y3jcHlKT0ti6dBd3t62fq3Muk3DqYtB9e9ce9Ftn9HgkccfiiTlwOtvCtBoFhGMjCB3Iq79DHrDnLolAXikolWO2Ffwy1Y09C6IvjcD8MXlV4FmD9KrlonecYMOCrX4PNqfdxenDcexZfcBHHi6EYOiSgQx48GMunknMlSDAlm7DngEfPTGCSQfHID2S47tjAibtVVSFVs83z/rc7Im7iT16lqkfzfZ5+EuPxGlzkhiXlHWelNLvQep2ujl98Ax6oz7/7kABUeWKcSE2+IOyaMnCNO/YmIXfLAvaT9K5ZLq835Gn3n2ME3tP8fMn89i8JHDYpaoqeNTghtppy70KNJgYpGKtcsTsP+33gHc53fSo2x9TqAkBmMPNPPLKA6z7ZTPJ5y8RWtiCPcPuE0tntHgFSjXvuY0e9foHnIWWqlyCBq3rsPjbZblSsTrtLmKPxAF5NGhBfk86oy6oElOnV7l0ITVP/Wjkl+xm3HmbjecWLZfjLUJOa10QXO3ncjg5uuO43/YSFaKYfPgrhv85mN5fv0zd+2uiKNkrLaWEhNhEdq3cT9fKPRnXawIuh//D2uP2MH/0Eh4t9Bxrf9kEwOrZG3J8AHrcnqws/VdjTbNRsVY5DKacY/UCoTfqSTybGPQ+Gc16nnzrUV75vCtNH7sraDtCCBRFYA4xMfWj2Wz/a3fQY23p9jxl088PiqJkmw/UlmbDmmYjMS6JqR/N4cTeUyTFX+LciQRcLjfmMBOWMDOV76zAwJ/78vBL91O2emnubFHD714bLQa6fdaF5z/sRMlKxTGHequP6/QqIsh3R2/UUS4PZWEcNgdnj8dTukqJgPt1OjVoRXan3UnlO8vnui+Na8BwD8hAf0s6MD1yXbr8R6kcNfJPlXqViI+5kK9z9UY9BpOeDQu2sHLWBs7HJFC7+R080LU5aUnpRJYuQo0m1anRuBo973oXPNk/gJ0OJ590HklKYlq2IgUpJQ6rg487jeKtSa+hDxIQezW2tMALOwazgfueuof1C/Qc2hLtVVLmIdQgWGHUiEgnPYbE0eyRFHT6bpByN0++8Sxrf9nsNxNQVG9qJikly6evYeeKvbidN6/cicGkx5pmzXcsnvRIXA43/Sf3pEXne3z2fTC3H+PfmMxfU1bj8UgKRYbRfURX7ungNfbf7hzB2nmb2fnXHgqXLEyFO8ow8pVvfWZ1qk6hcFShXKWz8ng8TPloNvNGLQYhcNmdfmuQqk6lWLlIXhnWhU86f+njWTBZjHR8qx0hhULydS808oZQQpCFPodLbwNuwAnCAkokIqzf9elTq1h9a7B33UH6Nf8g3zXMri5CqSgKHo8Hc6gJl9OF0WLElm7Pc07E3GIOM9F9xPN8129yjhlEDGYDiiL8jjNaDLz9Y09GvfJtVliA2+UGQb6Nit7oYeKaQxQt4USXaW89HoE1TeHlFtVJPPe3ETZaDFjCzDzz3hNMfn8mLofr+glUcovwPsjzm5XlMg0frsvQ3wYG3OdyurCl2wkpZMk2VnLV7PUM7zrWx/UZWaYIYzd95peyLBDTP5nLjGG/+ghfVL2KmqnW9Xg81LmvFv1/6klEsULsXLGXSYNmELP/NEVKFubpdx/jwedbaKVibjDSdRppnQeecwjD3WB6GCHyH8j+T1A5alxnajW9nZrNbuPAxiPZxg0Fq5589bbLyWatmeVb8pPRIy9ICRVrlqFizXIc3Hw022NrNKlG9QZVmDfmN2+JGCGQUtJn/CuMeP5r7FeJI/RGPWFRYaRfSkdKqHN/LarUqcDGhduICSL7vkzzdsmEFXZnGTMARZHojR46vJTApKF/S49Dwi2kJqXzde9Jeb8B1wvpTa8VKHg6b+1IpJQ47U70Rr2PUdDpdYRGZP8ouRCXyIgXx/ut46UlpbN//WGaP9k42/PdLjezv1jop+J0O90IRfDV+k8oUSHKp4pE3Za1GLuxVm6vUOM6IXRlEWF9b0hfmkG7zng8HpZPW8uib//Ammaj6eONePz1R3Is35IfPvt9EBPemc7SSSuwZ9jRGw0gwGF1oOpUdHqVGk1vY8+q/Tes8nNucbtcSAnH92afyV8IQae3O6A36ogsXQRruo2SlUtwbNcJRr3yTUDD67Q7qVa/Em/92BOTxYA51My2ZbuZM2JhjuOq0SgdS6j/7M5glNRu7FvGJPFc/jLL5wvhvReXX0S8MX0qAoHtqof+tWZ4MZj0qDqVR8O74rA6KFY2klc+75qjEbrMuZPnWTj+j4Brk7Z0OwvG/Z5jW6lJaUFfqgwmAy6H+7r8TWn8u9AM2nVESsnQZ0az+bcdWS6fM0fPsWzyKr7Z8TnhRcIKtD+j2UjPMS/Rc8xLeDxel9v6X7eydelOIoqF89CL9/Feu2H/OGMGXjXfsp9WZTuLUFSFstVL8eX/viX1YprXlejyEFW2KAmxF7OdRZ4/fYHCUX+nQpr60exciTHOnTJgtwmMpqtmsG6IP11wBVDzisB/pl2/1Z3sXL43+DmZM9lgmEKNOKxOH8Oj6hRCClnY/teerDXG+JgERrw4DlWn+OSlBDh/KgGPR1K8fDFij8TxSecvvdlGXMHL1aRczFl1GBoRgk6vBlSWuuxOSlQolmMbGrc+mkG7jhzaEs2mxTt83CROu5Ok+GR++XIxL3ycbbTDNaEoCoqi0PzJxj5vv5Z/cJmMP35cgccd/IFbtX4lUi6kkHD6os/DPDYXJW2uXkM6dehMrsb05+wiPPO6f1FTh13wyw95z25RUFxtmFxON9uW7UYGqUsGmUHaSuCSNqYQIwOn98USZmbOyIXEHj1LZKnCNO90D+P7TvJTqtozHPwwYFqWQYveeYLPnh3DuZMJCLyB+SlJaWRcyj7Di86g46429fy2b16yg/ljl3DmcBw6g47iFaIoXDICa/Q5n5ceg0lP4/YNMZj0RO88QWSZIn45HDX+O2gG7Tqy7Y9dAYNdnXYXa3/ZfF0NWjDav9aacX0m5SmjxI0iO2MGcHx3DIjg8VbZcTEuiXMnz2elPSpRIYropBMBj1VUhanHv+azLmOI3nmCj16qyKDvTmaVXlF1kvHvlebwTq9azmgxemPtbrK+SqdXqd2iNlsWbw8YDK8oCs2fuoddK/Zy8UxiVjC3KcTIPY814u629RFCULJycXZnuqUzLqUHndHHRZ9DSklyQgr97vuAjJS/jde5kwk5jldRFUILWXiy39/Z9J0OJ/3u+5CDG4/4HBvopUUIQdPHGxFSyEKnkq+gM+hw2l3c3a4+b//YE3OIKccxaNxaaAbtOmKyGNHpAr8RGy3Xv1yFw+5k/pjf+O2Hv3BYHTRp35CnBz5O5TrlObDhSPATr1qfyS+KIkARBZal32l3Bo1lygmDSc/pw3FZBq3bZ1149+FPAhqhOxpXI6psJCOWf8C6Xzbz+Qtf07l2CDUbpaPTS/ZtDsGW4Q0MLV+jDB3ffJSNC7dmvsD4usSEAIM5bympskVkFiUNYPzdLg/terRi86LtAU91OVxsWbKDEX99gC3dxsqZ65EeD806Ns7Kgv/tWz+xYNxS3C53jr9/c5gJIQS/T/gr25pzwahQsxyf/vauT8zYoLaf+RmzYBgtBqSULPtptU/G/c2LtzO861g+/OXtPI9J49+NFlh9HWneqXHAB7DRYqRdjweva98ej4d3W3/C1I/mcPZYPBfjklgyYTmv1R8QMND5MopOoXTVkgVS98zjkVS+swKdBrT3yquDFKbMC8HGlZMU2+lw+QTiNnjwThq381f+WsLN9J/cC/Cq96rUrYjT7sTlVNi1LoxtK8OzjBnAPR3uovWL9/Hu9Ndp1LY+BpMeS7gZg0nPI/9rxRcrP8wxGD07ipZwUvOuNIpEZRpKGXwmG1LIwi+jl2S7TpZyIZW+zd6jZKXi9BzzEr3GvsydzWsghGD17A0s/mYZLocrV7//MtVLIaVk7qjF2X6nglGjSTUfuX7MgdPsXX0g1+fb0u2smbsJe4adiEgnbZ+7wGOvJFC8TCpbft/JxbNJeR6Txr8bbYZ2HYkqV4xXR7/IN31/xOORuJwuTBYj9R6ozYMvtLiufe9asY8j24/7BJa6nW7Sk9OJz2adxePycO64/5pRfjm6/TjxJxPwuDwIRVCmWimqNqjEyp/9qz3r9GqOghW9UY+iKj4zHoNJT537arJz5T6Q0k8cojfqqNn0NkpV/tug7VlzgB1/+QsopJSEFflbLbf0x+xzzl0OIjZZjAye3Y+k85dIOH2BkpWKE1Y4lFWz1nsl83lBQESkgdeHH6F+ixScdoHBKNnwRzhf9C2H0x74PTT1YhrblwXPSnIZa6qNie9O561Jvtno5n65OFcpzsA786x7f23mf/UbqYlpuTrnSkyhJr8XioObo8lLSW29UYfb5eGBJxPpMzwW6QFFgRffOcuK+VHEx5ynaMnCeR6bxr8XzaBdZ9p2b0WDB+9k1az1WNNsNGxdl9vuqoKqXp9cZpfZuXwvtswYsitxOlw5PjRyzCqRy5imYqUchBZyE3vMg5QK0i05eyIeoXjzRH7ffxpx0Wdx2p3oMkvQZIfRYqDzgA5YwszMHbmI5IQUzKFGLGEWTKEmhi4ZiCXMzKpZG1j0zR8IRcHlcHFXm7pZs67LzB6xIGgtrZUz1mVlnt+//lDQ8RhMeqrVr+yzrXBUIR81ZeU6FXKVpUPVq1nxg4qi8OqQaBq2TEVvkFkKy8YPptB7aCyj+gWuFeh05D6H5Z9T19B9xHOEF/1baZscfynX5+tNBtp0a0m/Fh/k+pwrKX9HGepfUYUboGjJCPSG4HkYr0YIQdmqkj7DYv1UqC3aJ0DYAaB6wHOltALKNQX4/lOQ7jhvrTFdZYQSfrOHc1PRXI43gBIVoujQuw2pF9MY8ODHtDE9wyu132TniuASa/BW/L0QlxjQhRRz4DTLflrF9j934w5Q5iW0SCh6Y+D3FUUR6E15f5fRGXUULl4IvT77c4uWcPLlgqNMXHeIUb9GM2vvfh55zpuWy+10kxB7EZfTzYufPIVQFKQMnnbqSspUK0Wnt9vzRN+2vDXpNVSdQlpyBvExCaydt4n32n5G4tlkun/elTnxE/lqw6fMjP2ON7/vQeyROB95+LkT5wP2Yc9wEB+T4PM5GGVvK+23LXrnCcb2msDHnUfx55TVFC9fjLota6IzBL9nkaWL+Lj4LKEOmjyUjN7gawiNZkmLx5Ixh1x72IUQsGKG7yy5aOkcsnUIr5BDp1fpPa4bqYlpXIzLn1vvpU+fzsrsf5l6D9RGqNm/bCmKgtFixGDS02/iq/QeWRwR4N3QHOLBrP7it106D+K52BEZXw8ZXwdP4kteg/AvRHqS8Vzsikx4CJnUDXn+HjwpQ5EB8ydeh/6lC0/6TDwXOuBJaI0ndTTSk/uXouuBNkO7QQx6ZCgHNx3NiqM5ue8077cbxvA/B1Ojie9bZHxMAsOe+4pDm6NRFEHhEhG8+X0P6j1QG6fDycdPjmLHX3sQikBRFMzhZkb8NZiy1f9+wLZ8uik/DZ4ZcCxJ8Ze4/e6qHN97Kqt2WjBUnUrdB2pS4+7qlLujDFXrV6JP40Eknw/8xRVC8sW8aKLKOLzZNTLfnLsPjiPxvJ6NSwthS7Mxvu+PnD91IU9Vq08dPMNb933IFys+YOTL3/gYG+mR2DMcjOr+LTNjv8NkMVKqSgm+/N93rJ61AX1mBvZ7n2zMG9/34PbG1Th92L8UjDnURNV6lbI+V6lXkeidJ/xfKgQ0buebHf6XMYuZNHAGTocLj9vDliU7mPX5r3yx8kOmfzKPBV8v9VubuixsuHIcRaJcuJwCg8n/RcbjEhQq6sKafm0zfLfLw8UziVe1nYOhlN4ZrN5oZO+ag8wZuSjf/QeqGG23OnAFiSUsd3tpOg/oQMrFVMwhJpo+3ohCkeF4UtYh04O4C2SK70d3HDLxGZBXBMQ7NiAvdoTIvxCKhX8D0pOITP0arDOAzPt1uURLxiykUhQR+r/rOwYpkUmvgmMLkKluTZ+AtC6AyAU3baaozdBuAIe3HePg5qN+QaF2q4NJg3722eawOejTZBAH1h/G5XDhsDmJP5nA4A7DObb7JJMGzWDL0p3YrQ5s6XYyUq0kxiXybutPfR66xcoUpVamci0QBzcdxZEL5Z3b5SY0IpTW3VoSXjSM7rX7kZbkv2aiM+gIKxpGvebpRBRz+aSKAjBZJM++8XeBznMnzufJmIFX5XhiTwwzhs0nJUgJEGuqNasQ6LheE1g7ZyNOu5OMFCsOm5O1czcxrtcEOvfvgMHsGxit6lTubCZp2vJ7PPH18SS04rkBbgxm//c+k8XkUxDzQlwiE9/9GbvVkXVdtnQ7ccfimT9mCT3HvMT8xMnc/2wz9CY9Or1KVLlI3pnaxy9GLj7WgKIGEb8ogqKlq2MMUnEgt5hDTdze2LeaeW5FFPYMO6vnbOBMLuL/AlHnPm+Zos2/bWfrFaEtW3/fiRpk9p+ckMKDz7Wg4xvteKR7KwpFeh+YwtgsiCEygPH+rE9OhxNP6qTAtbk8GUhr/o3zjUR60pAXHvc1Zj5YIX3C9R+IYws4t5JlzLwbwXMBmTHt+vcfhAIxaEKI1kKIw0KIaCHEOwH2vyCESBBC7Mr8ebkg+s0OKSWHt0az/c/dpF9Kz/mE64TD5mDEC+OCutSO7T7p83ntvM1YU61+cUR2q4NxvScyd+Qiv1yNUnrdkweukjtbwrIPos5tHuPVszfwbMXXeOehj70JigMIN1xOFxHFwrm9gSnow7hEuWtP1Gu3Olg3b3NWrsmr8bg9GMwGMlKt/DV9rZ/IwW518Ne0NRQuXoiRKz/ktkZVURSBqld5sm85Ppy4B+HaADIV3DEUCfmeHzZEEFYkFHOYGXOoiaKlCvPZ0kEUKfG34GDjwm0BFa1Ou5O/pq4BvLke35nShwXJPzEnfiLTToyn6WON/Mqg2K0K8ydEYs3wbc+WobBr892MXDOMIfP7U6dlTVSdmq9ku8XKFqXRI38HNLucrjyl7rJbHfkue3N46zHaF3qeDx4bwUePj+CJqJfYuGibd303yJfyyu/8zhV76dXoHR6xPEPX26ZxIb4UcGXMmR6UCERIV6J3nqB344G0tXTh0Ia5BDYCGeDKWUzzT0Ba54InkcDXcfmgS0h5nXOv2leDDFSyyg62P65r39lxzS5HIYQKfA20AmKBrUKIhVLKq/W3s6SUvfwauA6c2HeK99oNI/ViKkIRuBwuurz3BM8MfOJGdO/DpPdmcCb6XND9Vz4UAU4eOJ2VENgHCfvWBRcoCCH83IANW9dl/a9brlmCLz0Sd05tSDh96Ay7I+x0/F9g1cjp6NwHumaXpklRFSrXqcjhrdE+1yaEoGz10kSVjST2SJw3BhD/Fwmn3UWnEi/T+qWWjFj+AapOQVEVRHIXcF59760Uj1rDnDPLiN5rRdUpVKpd3m/9BymDCmWuvg69QY/e8PcUtvOADnzcaZTPMT8NL4ktQ+XJV89jNEtsGQqzxhZjwWQ7Q0seot4Dtan3QG0Ob41m3ujfOHs8noTTF3K1pqXqFAbN6OsjTDpz9Cy6K4QpOXINX6nL329vOixvf5889SUjV32IK4CRVFSFRm3rc/5UAtM/nccfk1dljTM+5iLdW0Tw1riyNGl1wjsDMz2ICOnBuZMO3mw+OKu/2GMGqtXOQPV76hlBrZD/C7qR2FcCAZ4PV6KURIjrvJokQvGajwCGU9y88jwFMUO7C4iWUh6XUjqAmUD7Amg3XzjsTt5q+SHnYxKwptmyXE0zPpvP2nmbbvh4lvzwV1DVlsGo56kBHXy2lalaElNo3jMcOGxObrtqXaLlM01R1BvrVd67ycLZGAPOqyZjtgzBz6OjqHCblcLFchaABDNmBrOBB7rey7vT+lAoMiyrgKQp1ERY0VAGzfRm9Y4sUzRbl6bD5mTppBW81/Yz9Aa99+HuDCLSEQYUuYfqDSpTpU5Ff2MGNGpbP+CY9UYdLZ66x2/7laxfsNVvm5SCmV8V58kaNelcuwZP1qjBnG+K47A6WTZlVdZx1RtWYeD01xm7cSgfzHubkAhLjvF+phCTX0HNkIiQHDO1XE8cVgd973nf+4JyxYRTb9QTVjiEcreX5oXqfVjyw3I/o5ue7OSzl1NJYQ5K1GqU8EEItShzvljoE+j+y/dROB0BZrNCRZgfDzwuu5OZw3/lheq96VLhVb55czLJCTdR+KAUJfs4EBOEvnHdhyHMbQlYdVqYEZZnrnv/wSiIp11p4MoaHLGZ267mCSHEHiHEXCFE2UANCSG6CyG2CSG2JSTknDonEBsXbgvo3rOl25k5bH6+2swvUsqgxSgB7n60Aa2ea+6zrXmnJhhM+ryE4wDQ9PFGfjE3Uspsc/tdHwT9n6zM9lXhuJwKdqsgMV5lw9JwBn57ii8XRDNl80E+/fkYYYXz5hYxhRgpW70Uj77WmlKVSzD1+Hh6fvUST77Vjp6jX2TaifFZwhiTxUj7Xq2zzcjisDk5vDWaw9uOZQ49iChAukFEcGDjYT58/HNeqf0mI1/5htijf68hRZWNpMt7T2C0GLN+d0aLgWJlivL0u49le11r5wZ/0fJ4BOkpKlL+/YW4lJDid9zvE5fz1n0feCtgO93o9CpFS0VgtPiuExotRp4f0hlVp3Ji3ykObDqCw+YgslQRqtavlO9MLAWB2+X2vvxdtqsCospF8tGv/fn5k3nZJp/WG/Uc3e5bdX3/xsM+btHj+82M6FOOtEsKdrvBO5NQiiEKT0So/nk53W43/R8YwrQhczhz9BznT11g4fg/eLV+f1IDrCPfCLzGIsgLrygE4YNQLB0C7y/IcejKQdg7gBEw4DUlZjC2AlOb695/MG6UynERMENKaRdC/A/4CWh59UFSyu+B78Fb4DM/HSWcvhAw1RRAwlWqruuNEIKKtct5cxBehd6op9fYbn7rHyaLkS/XfMzHnUYRd+wcArz1vbK5G+ZQE/1/CuDNlRIhFLzVYn1R9d61F13mvy6XmzYv38+CcUvzeJX+pCbp+OilSrR4qg6HN++m1l3n6fFxHGbL3xdxZ5M0Ppl6nNfbVsumJS+KKrj97uo83K0l9z3dFENmZWuTxchDL9wX8ByX08XTAx9HNeiYP2ZJwJg88LpTo3ccp3qDymB+EjICLahb2fjbCYY+NxaH1YGUXsXlqpkbGLF8MLfd5Z0ZPzPwCWo3v4PY3SNp1GIb4YWtSKU0imkV0Dbo9XkChF1kR737fas7XzhzkXG9J/rMRlxON6lJGdzToSF71xzkYlwSxcoW5bkPO1GtQWVeqNaHxHNJKKqC9Eh6jHqe92a+Qd9m73E+n5XPCxwJF+MSmf3FwoCuyCtxu9xERPkmJS5ZqTgn9sT4LMutWxLBznWR9P36Hpp3ag66Gpl/I/5s+2M3x3ef9FmHdTlcpFxIZeH4pXQZ1DH/15ZPhKEBMvQ1SBsLqJkxoS4IfRMR8mLQa7mMdJ9BpgzLdF0qXvds2DsBDXpOKCFdkKYWYFsK0gbG5gh9zfxcVoFREDO0M8CVM64ymduykFJelDJLXjQB8NU7FyBV61UKGPMjBN6H1nXE7Xazc8VeVsxYx5lo79v7q6NewGj2f0tu16OVTwDuZQ5tOcq0IXMwhRi5v0sz3pv1BgZT8DIlBrOBtyf3yooNO7HvFJsWb+fcyfOYQ81UrV8p4HkhhSz8eHgMPce8xCPdW1GkeAQLvym4xVy9Sc9jrz+J3RbBM2+c9zFmAHoDlL/NRqUa2WdjB0B6ZdsPvXBfljELhjXdxqhXvqV9oefoWKwbK6at5a1Jr1K6WnE6dEvgxw0HmbN/Hx9MOkH5ajZUnUrk5fgrXSUC/UlIBGlx47BnOLIejh63B1u6jTGv/eBz7B21l/Hg41spVCQDISSKjIVLA/FkzAo65jota+V6Rq7qVNq+6ps2bU2QGZ7D6uDUgVhmnP6O8duH07B1XdbO20Tvu98l7tg5r0o2xYo1zcb4vpM5fTiOKdHjaP3SfSg5xIMFQxck9jG/2NLt7Ft7MMd8oJGli1KlbkWfbZ3eehSD2X+G7vHoqNf6eYS+VrYGYOvSXQHXsx02JxsCuIlvFEro/xDF/kKED0SEvY8otgYltFvOxsyT5FVI2v8EHIANbEuQFx9HegIJPHJGqKURId0QoT1vujGDgpmhbQWqCiEq4jVkTwE+TlQhREkp5WX/zKPAwQLoNyC1m99BudtKcWLvKR8XhcFs5LkPO12vbjl9+Az9Ww0h/VIGIHA7XTRp35B3pvZh2LL3mfjudI7tOklEVCE6vf0oj3Rv5dfGH5NXMrbXBBxWJ1JKju08wZo5G2nV9V7+mrbWJ7OFEFCpTgVeH9+d2xtVJTnhEgMe/JiT+05nKQAr1ChLeNGrih4Kb4aLAT/1pkT5KEpWKs64PhOzDSDOK6YQ78zptoZVGbP+EwqrTQMe53EJSlWwc3x/9mpMj0eSmEtJKI/T9gAAIABJREFU+eD2w9m/4bBv7a4XvmbkwgzKVjiHyeK9N3e3SqFu0zQGv1iPBg/V8Z7sOgr4PzgFkiq1AruYTuyJwZpuwxxiQnrSIX0i/ov2NkgdhTR3RASIAu455kV63z3QG4flcCGEN4+k2+NBuj1ZRlRnUBnwU28/o27PcARNGWZNt7Pwmz/4/q0pWfFxgbBn2Jk57BdSL6aycub6fK2nKYoIGkd2LaQmZq9SVvUqQ5cM9PN23NG4Or3HdWNcn0koildkZAox8eG8t7IypMQeiSM1KZ2Ktcphuso9HV4kNGg6ttwUE5XucyAdoJbNlxI1O4RaAiyd83SOzJiRqUy88jvgAk8K0roQEfJUgY7xZnDNBk1K6RJC9AL+wLtKOElKuV8IMQTYJqVcCPQRQjyKVxKTCLxwrf0GQwjB5399wLdvTGb5z+twOVxUurM8vb56ySdgtiDxeDwMePBjn5IcABsXbWPGsF959r0n+HLNx9m2YcuwM663r2FxOly4nC7ijp3jleFdmDnsVxLPJVOyUnFe+vRp7u34d52z99p+5ufaPLnvNH5IaPJoQ+56uC4AP7w7vWCMWWaG/tCIEPpNeJUm7RsC3nyWnoSy4D7ld4qqk5w+mrMARtEpNMwcb3Zs+2MXe1bt9wt5KFYyhfKVj2Iw/v2HrKhgtHgYMt1bjRlA6MojhRmk76xRSkHciWDrFiLrfNwnQegCuoelJx3huQhqlM92W4adxd/+idvlweVwoTPo8Hg8SLxZMSLLRqIz6Ch/e2k6D3gsYEByg4fuZPqn8/xSeemNOhq1qcd3/X7yqwIQiLPHzzPhnfx9H4QiApasKQiyS7asN+rp0Odhvuo5gYObjhBWJJTHX29D+14PoygKD71wHy06N+HQlmgMJgPVG1ZGURTOnojnw8dGcCb6LKpOxe3y8MKQznR88+9SNg90vZdZIxbAVQbNFGLk0ddaBx+v8yjy0pvgOok3vUphKPQZwtjkWm/FteHYDARa08/4P3vnHeZE1YXx3530ZHuj9yZNuiCKIGABRMRCUVRU7CBWbAgqooAdbKiogA0EBRSkqiCIKKiANOld2F7T535/TDa72Uyyi6yofLzP4yObmblTMrnnnnPe8x7w/ojmi/y3USnxASnlImBRmc/GlPr3o8CjlXGuisARZ+eBaXdx/7t34vf5MZYj1XSy2Pz9NgpyCsNKaNxFHua/togho8svF9iyZrsuI1FK+O3bLUxY8gT97u6le+zRvcfY+cse3W16+P7zdezbepApd7/LjnU7K3xcVEht4inIKeT7z38MivYCEHMv5D5Gac/F4xbs+NXO/j+smCwmqtZL5eB2fQkig8HAxWXIM2WRl5XPuAEv6U6qLToWouo4MIoCNsvvJR9YL4P8F8L2E8LCktn1KUtRNhgV2l/SOugxSRGvU7irwevxsnnJLjr0LjFoUkoe6z2eHT/tChqcYkasGlhFZx3NplW35jz5+aiI996obX3O638OP8z7KVikbbIYiU+No0bjagGDW45BE5CQFsf2dbui7xcBJ1saIhShGcUTaDUkFEGts6oz/7XFeAJ5rsLcIqY99gm7N+7nwWl3AVon91ZdmweP8/v9PNBtLJmHs0Lelw/GzKJK3TS6XKk1La3eoCrDp9zMh0++xYC7j9KxZzZul4EDezvTqW9oHrMYUs1DZg3W6hiLVzbqUWTOnZA8F2FseCKPJXRs6QbfHyBiEca6Jz6AoRpaSL3sMzaCQY/H99/Daa0UopEe/n7eS87xPEQEKm1BdsWKuqNp/SmKEjVkkXkkmxORb/N7/dzX5Qk2f1/5kV+pSr75eDU+b8nkr9gug9hH8KsxuJwKHrfgh8VxjB1aD4PRQJ1mNek68DzM1vD8mFAEF9/YDVtM9LDkV1OXRRTnzcsyokr951eYb2Tk+aN5rM941n61AxJnglIThE2rtRGxEP8cQ55+BnucLcgatMVYSaqWyH1TNYkh1bkIMvsB/vCFjUuwcn4Cz1z7Vsg1blu3k50b9kT1njwuLxu/2xLCqJTeHai5j6BmDkDNewbpO8TD04cz8s3baNa5CXVb1GLAqCuY+usL2GNsQYcxNtHHuZfk0uq8/PDidxnBoz9JGM0Vl+iy2Mz0u/tSWnVtRtNOjaP+JkB71/ZuPhA0ZsVwF7n59pPVHN2r3zVi/ZKNFOQUhosXFLn56Jk5IZ9dOrQN0386SO8hGaTV8FKrgYvzev4AObfreo7SuQCklzA3XXqQhe9HvZ9oUAveQx7rgMy8AZlxOWpGX6QvPOoRDcJ+PRojsSyMCNvfl445lTij5VgJOOuchiETeGk0KJOojoTmnZuUhK5KwWBU6HxFh6gGrU6zmsgTrHStqKH9K5CqxFngJDaxRMldNQ9gSPvlGAyZFOQYglqERovg4qFd6TbwfD5/6auwyd1iMzPw4fLLGo/+sZp+Nx3B7VJYvTCe7PQS47hhVTwm8zFCZXo0RY5PJzvY+sMOADav2kbP67tyz+srAvk0FxibIoSJJu3ho31v8s3Hqzmy508at63P+Vd1wmwxIb2bIfcRij3Q4q9KSs0T3bTWwZRHa2AwacXxbbq3BGDHT7sqpMRvMhs5sO0QNRtVQ7pWIHPuQ0vqq+DdgnTOQSTNpOeQC+g55IKQY8/p3QbV52fwyGMMHnkMn0eAAJ9HMHZoPbZtKCmCLSvBVRlo3L5B9GayAUhV4veppNRIYviUWwAYffkEflq4IaqiTSTP0GA0sGXNDqrVqxK27di+dPxe/ed+/EAow1MWTEMhBwyl93eB51dN/snSMXQA3w7Kvmca/OA+8TpYKf3I7LvAU6aNke8PTZcy9VuEiE6UKoYwNUfGjYW8p7TQOAAqxE1EGOuc8LX9G3Fae2inClXqpNJ1QOfwmh+bmdufv6FCYxhNRkbPuj+oJA5arD6pWiJ3v3pzyL4Hth9m+thZvD1qJpu/30ZMgoM2PVpWzs1UAIoiyu3x9eG4ubhK5XQ2LN2Iq9BH+mFziLCuz+3j81cWkZgWzwvfPkmts6pjtpmx2M1UrZfGs4se152UiiGlRM19jOFPLWboI0cZ9sQRpv+4jYuuKSnRqN+qEaa09zVvSzgAKz6fkZ+/iWfOmyUK865CN8tmfMe+LQcRpsYI09khk0VMgoPL77qEO164kQsHn4fR/wVqxuXIzOvQU2/w+2Du1BRGX9cAt9MQ+KyUCHG1xAp5MD6fn2r1qyClD5n7aOBcxeN4QRYhc0frHhufEscTH7Zm0IjjWKwSR5yKI1YlPtnPpDkHiInSLuxkG7LWblaT6x6vuDqPx+nhl+Wbgn/fOnEI1hjbXxIHEIogPiVWd1u9lrUxGEPHTKvhofuV2fS63oCmDxGAcw56RCFwIj0/hH9sbEJEP0E9jFQrLi8GIPNfBs93els0kWW33rbIUOxXIdJ+QMQ/j4h/EZH2I4rtkvIP/I/gjIdWSXhg2p3UblqTLyYvIj+rgIZt6nLrxOtp2aVphcdo26Ml03dOYekH33J073Gad25Ct4GdsZSiHs96fj4znpyN3+tH9fv58s0ltLu4FeO+fJh+cTdWXLroJBCfFk9uem5UJtxXby1ly5rtTF77LIqikH0sN6L+YnFblxqNqnF21+Ysm74St8tDUtWEMAHhMLgWgnMhJrPmIZsCnuqICYfY+EMM6Uct3P/OnSiWWsi0NdoEoObw1FVL+WlJuMCxz+3jxy83UK+Ffs+xYsjcR7X6G93VuAajCXpenc3MF6qh+gWqX6Vll7OC28/t267ckLjRbKD+2XWp16I20vs7EXNhvp1INU9X5fycrr+CrkciOe/STJZ8kqw7pBBw3zt38Mmzn5P1Z05YaC8aDEaFkW/cSmFeOB08tYaH+CQfB3Za8bhKDIuiCKyxVt64933SD2XSpntLXvn+aea+vJBfVmwm83BmhfVHTWYTbXvq57lanH8WNRpVY9+Wg/g8XkY8d4iLB2bj8wkstnTk8fMg8R0wnQ0ymipI+G9N2Poh8yMRwMzg/gYiqJKUhZQecH5IZE01N/gPhX/sO6B5j0qsVhsmQglNQokBa4+w404HnDFolQSDwcCgh68Ik7I6USRXS2Two9oLv3XtDt68bzpup5suV3aiesOqzBg7O6hODppXsWHpRlbN/pH2l7Rm3VcbTur8FUFRXhEmiykqG87j8nJg22F+XvwbHXu35ayOjSKy4Jp0aIiUkge7P8m+30vKLbau/YMHLxzLlB+fo25zXXEZZNFH6BkVoUC3K7KZ/XoV7j1vNANH9ePqB/pismrstPQjPwPhBk0xKOXnbny7wPU15WrqAQkpfrr2y+WHxWncO/X2kMWJ2Wpm0vIxPN7n2WC9k7vIgxACi82M1+ujZZemPP7JvYEjjEQXUYzgyaj6uSSjyUdSWkmovHGrIm55/AhN2jjJzzGw4IM0mnVqwIxdr5F+KJP3H/+E72atKberOGgeUmrNZN4f+knws6Q0L0+8s48GLZ34vAJFgZkvVGHuVI0oIwwK6xdvRPX78ftU1i/5jdikGF7/aQKJVRK4+5yH2fnLXt0wY3Enc4NBwWAy8Nzix3VD+KDl1p9fMZZX73wbu2khPa7OwWyVmJGAE6QTmX0LpC6PfpPG8MWqUGKRIi6CIRQajb+iUPM0lZqIMICxRJhASonMewKc8wFF+xEgIOFNRNnQ6GmKMwbtX4q3R81k3pRFwcn9u0/XkFg1QTdX5yp0s+id5dz+wg389s3mSq0p00P1BlVp3K4+383+Ieq5nAUuNn63hY6921K3eS3aXXQ2G5ZtClnpm20mbnn2Wn795ncO7jgSJm/kcXr4cNwcRn8aQZ9O6teHGU1aeA005ttHz8zl1xWbmbhsDEIIet3SnWmPfRx2/UIRdLmqnB+/ey0VVec1WyQDhisMfGI8DVrVDdvesHU9Pj7wFlvW7KAgu5Cm5zbGajdzeOefJFSJJ6V6qaabxiaavFGYyrkCpjbaylsPpnbgP0pZj8JVJNjxmyb31bhVEc/P3YU1UABvc6gMue8IwvYSQkwmrVYKd0++mR8XbqhQ/tVgNLB0+nel5Kgkk+bsplodN0YTwQ7TNzx0jPxcB99+EY/fp+L1lnigrkI3XrePd0Z9yKjpwxk9636GNb9Pl0Rji7Fy0/jBJFVJoEOv1iHiz3pwxObz6NsgCzMQuiFFFVxrQEkBVa8ZrAKuxaiFb4PpLIR9GMIUKKmwXgLOzwkX7lXBcgFq0RdQOBn8f4JSBWJGoNh1QrNKAghTROYsSjUwl5TuSOcccH1JkJofeEVlzu2Qujry+3Ea4UwO7V+I3Rv38fkrX4VM7j6vn/SDmRELYzOPZtOobX3Gznmw3PxWWRjMhrD8XyRY7FqB+r1v30H/Eb2p0ahaxLCgyWIisUqJGsoTs++n++DzgnqBiiIwWUzkpOfxx/rdeF3hxlFVJVvX7ohyQT3QY265ixR+WVmSQ3E7PWz7aRebVmlNIC6742KatG8YFII2GBXMNjM3jb+WqnXTwsYLgRKDrjBrBNRvVV/XmBXDYDBw9gXN6NyvA4lp8dhibDRsUy/UmKF5FiJhciAPWOzp2UAkIOKfizi+iLkLRGjRsMclOLzXwq+rtElu2OgjQWNWDKtdYhHfBtl0tlhrhcOOiqKQm5GPEshVtehYSHJVr06fPJVbx+YhhKL7bvt9flZ/sQ7QctWRSDRej5f6Z9ehc78O5Roz6fkNmXEpFE5DEEEhQ3oRMguskXQ4VU1xw7cNnAuQmVcj3VpOTcTcoxmj0u+lsIF9KNK1HPKeBP9hwA/qEch7GrVwWtgZhDCC41bt2DBYAC8yZ7hGSgIomh5WQ6ndC+BeGuE+Ti+cMWinGF6Pl02rtrJx5ZaINPNF766oEPutNNIPZjC08T3UO7sOhgom0YUiSKqWwPDJt0RkixWH4GwxVhzxdm5/4XoatqnHjQ2HM/+NxaQfykRKqStqqyiC7td2Cf5dkFPEytlrg+dSVUlhThHjBryIVFVMESS+Mo9k08s6mAcuHMsfG3aH3oPjRlASkLIk2OAqEmzdYGfjD6FtLFyFLjat1AyayWxi0ooxjP7kXi67/SKuvr8vb/w8gavvi6y5GISlJxXvn2JH2KKLE58IhLkVInUFxIwE29UQ+7Amg2SMnPMTxnqIpE9QDR3w+6CoQGHxp0k8dGWDoOhxkzYRJnZhAO+vgNZ2pyLhRtC0NM+7okPwMVWv64m4zjKbMkPC6GVRTI+XqgzLw7a9IJ9xM/fw8rzNJMVMRfr1w6ulx5K59we83GjG2QDmtuCL3LKphCziB5zI3Me034IhDZGyEBy3g7ElmLsiEqYgYkdAwSuEh8idUPBaKBklAOG4QxsnQGYCk3ZtuEE9DO4VyMzrtP5kEQkn3ijbTi+cCTmeQqxbuIHnrp8cnNCFEIz6YHhQVaMYR6L0T0NoorxlKdY+j5/jBzOYeMMUWl/Ygl+Wb4qYQFcUgcVhYdLSMTQ5pyFCCHau382KMg0xrXYLgx/rT69bepCXVUD1BlUwmU3c0fYhMg5lhuTEigtjLTZzQDXdT2LVBL6f+yN9buuJyWxiyfvf6jaF9Lp9HPrjaERDrPpVVL/KppVbub/rWMYvfJSzL2imeSxKIqQsgIK3yTsyl5zjHr6akchXM1Io66qareYQySKDwUDHPu3o2OfEpEWFEguJk5HZ9wTEYb2AUVuVy1xNqBWpqfebzw8YwMqDUJIQMSfWI1eYmvLHrjE82ms8RXnhq/jCPANWu17picDni0N1urHaLVSpm8rR3dGNBmjvTqN29UmpmczhnUfZv8MaMXJweG/kjggGo8K5l3cI/NtAkw4N2R4QAxg44hiD7zmOzaEZFsliZMZKSP48soH3HwR/eeLLVjB3QJhaIP37ytm3FNQszeMy1EAoiZoBix1Rstm7Hz0iCYGrx38QjKF6s0IIRMxdSMcwpD8dMvoDOaHH4ULmjgFzR40kVTaEKoxa2Pn/AGc8tFOEw7uOMm7gSxTmFFGU56Qoz0lhbhHPXvsKB3eEaDnTrFNkBXp7nI2bnhmsW5em+lW2rN7ODU8NwBZrC2HQGc2ackR8ahwXXHMur3w/juqlOiWPeH0YfW7ricVuxmIzY4+1MejR/gx+9EoSqyRgtph464Hp3N76AfZuPhBG8JCq5qU54u2oqkRKyZ97j/PuIx/y8EXj8Pv9HNh2SDf/ofpVDu86ysRlY0isEo891obFoT/JuYvcPNTjKYbUv4t1CzUCjFCSUOIeIb7JT+w6MIUfVzTF79efPbsOrBz5IWHpikhbiYh9DBFzHyJpJiJ1JSLhbc1zsvXXVuUJU8D3B2reRNTcsUj3KuSJVMFXAFKqyKjkAQ22GGvEkPW8aSm4ynTIVlXIz/HTL+1NLo+7gXs6P8YFV3Wkam0vCSnRlUeKClxMHzubScueoGGbuuzdHseBnTY87rLnsPDxq/qEHwBHvINWXZux9cc/kFIy4rVbsMZYSUzzM+S+Y0FjBiDwgixA5j9f3qOIDJEIjlsRiW9ofxubUfFpUkUv/C2lRC2cCZlX64cEQVPMV5L0twFCmBE4QUTwKtVssA8KhCdLP2MrmNojzK0qeA8nDylVpPNz1Iz+qOk9UHOf1nQtTwFENJ20fxLt27eX69ev/6cvo9Lw1oPTmT/l67CQjcGo0PeOS7h7ckmtWUFOAVel3hI++QgY9Eh/el7XhRGdHtNVAjfbzLy//VUA5rz4JRtXbqFK7VSufqAvZ1/QjPzsAl6+fSprF2jPNqlaAiOmDKPTZdoKzuPykJdVQEJqHEIRfPvJGua89CV7Nmk6kdEkjoQiMBiUsHu0xlh5ZMYIju0/zpv3T9eN1nXs05Zxc7qj5r+A6tlOfo6VmZPi+WpGApGW9habmQlLRtPi/FC2mZSSyXe/y9IPvkUIgWLQ8jOPfXxvmDf8d0MteAsK3iBYCC3sGoEj8e0KF8Tu23KQbz9djdetCV4379xE6+jtP47MeyrQCkQFUzv8ttHMf2sXi95dwfH96cQmxdD/nt5cdf9lKIrC0MYjOKLjYSkGycOv7efci/O0xYAEj1vhscEN2L1FyzO27ZrP/S8cJDbJh6LAni1WJtxdh6P79RcfccmxzE1/jzkvf8UHoz/BEefnrmf20umiXISi4Coys35tL14efjBiUbfRbMBsNaOqkpQaSUxcMhqP28evCyfQve9SbA4dQy5sKFU26o4npURm9NClu2NogJL6dej+3u3IzIFEK88InBSMzVBSwnsuqoXTIH9ylDFMYDkfJXFq1DNI/xFk+iXo6zGaEGmrQc1G5r8Inh+1MKV9EMIxDCEqliOvDKi5j2gs4KDxNoKIQaTMRxiqnfT4QogNUsr2utvOGLRTg7FXTOKHBfotJ87p1YbxCx8L+ez7z3/k2Wtfxe/zI1WJyWKk3tl1eOm7pzCajFxTdRj5WeEMv+TqiXx84C3drspSSu5sN4r9Ww+FdNG22M08u+hxzr6gGaCJLeek5/HKbVP59ZvNlaIgUbdFLSw2Mzt+3q27vdcNZu6dsJnSVHivR7DqyzgmjahDJKPWpkcLJi0bq7vt0M6j/LJsE7YYK537tccRf2pbw0vfHmRGP8InIBvEPo7iKF9uaOa4z5g1YR4+rw+/X8Vqt9Cpb3senXkbZFwCMp3iEJOUgqIChdu6NSbjaMkEZrGbOe+Kjjz0/l28MfJ9vpy6NLioMNlMOOLsOPO1MGlatXxadvbgdsWw5mszrgLNE6vfzMnLC3aGEEf8fk1W7IaOTUPqyYoRk+Dg/nfvZOINU0KEky02P444lezjRo1aLqMLEBdDMSjUPqsGb296EdzLkbmjtOLishBxKFUizx3S8wsy+2bNK8IDmEGYNC9bpwWKdK9D5o0JGEEJOIDStHyL1qk5+VOEMVQAXUov8njHiGxcDUZIfA/F0inKPhrUjCsCeb3Si10FTO1Qkj8q9/i/G9K3S2tRE1bSYgDblSjx40/6HNEM2pkc2ilC8/PPYsOyjSE5KtA8qubnnxW2f5crOzFzT2O+/WQ1uel5nN21Oe0vaRU0VHdPvpmXb3srhHZusZm5541bdY0ZaCLKB7YfDjFmoNU+vTZiGm9vfJEl07/l3Yc/Ij+7oFKLtPdvORR10rr61k2UnfhNZkn3K3Np1HIHD1zZkLys8Nd17+bI+oM1G1WjZiNtRSjVAtT8VwM1OhJsl2srV0VfTaIyIJ1fo58zcYJzFpRj0PZs2s+sCfNC3hlXoRtv/nLchz7EYgntXC2ExGz2039YOu+MKxGbdRd5WP35j2Qfz2Hrmh2hHrJf8tTnD1GvZW1WzfmRzCPZNOnQgKUzvsNVsDq424C7j2OyhH5/BgNYbCoX9M1h+Weh4TKD0cB5/c/ho2fmhHUBcDsNQeWUCldKo4Wm/9x3nD2b9lP/7PPRJ+aYwBpdKk2Y20LK18iij8G7HUzNEfbBCIO+Io2wdISUxUj1OGRcDbJsDk6FxBlhxkzblBE5zBiED7KHotpvRcQMQyjhfRKD15LwKjJrkDamLNK8MBGDSCg/zCqlVyOReLciDDXA2qfyqfzuH9BXVvGfsKrJX8EZg3aK0OuW7syeNA+v2xvMPwlFYLGb6XNrCWlg/7ZDfPb8fHb+spfaTWsw4KF+um1velzbheRqiXw0fi6HdhyhbotaDHniGpp3bhLxGn6Y/3OwT1hZ7N18gCnD32XJB99WuI5NCK0YtiIK6VFbgJhVqtfV9wKFgOr13Tz4ygHG3BD+HKrVK4dij6ZSLrMGgu8AQaNZOA3pWgwp8xC6tOjKgBf9H3fxtuLr8yEL34WiGVoxrak5InYUKz7cGtZ9vV3XPEa9ug+LRf95mizQolO41yIUwaaVW8MWKV6Pj/dHf8LzK54M6f69bd1OTBYTXrd2nfWaOTHoVCrYY1TqNA5djVtsZhwJDm4eP5hhLe6PcP9/DQajgayj2VoZRMIrGjFH46Vrk7uhBiI2Qs1iKQhDNUTsAxU+rxACPOuQ5BO+SFHB+RGYwxVCpIjX2V8PKhRNQ7q/guT5uoovoLU4IvU7cC3V2hUZGoC1Z7khRenPQGYN0HJtshCJDfInQdIMhKl51GNPCMKBZlZ05hBhr7zzREClGDQhxKXAq2h80nellBPKbLcAM9A6VWcCA6WU+yrj3JWN4wfSWTZjJdnHcmh1YUs6X94+ouLAiSA2MYYp655jyl3vsiGgV9emewvueeNW4lO0l3fTqq081vtZzej5Vfb+foC1X67nsY/0cz+tL2xB6wv1u8RKKTmw7RCqKqnTrCaKovD76mgUZPjyzaUVCv2UnAPkCZYX6MHnFXg8AqtN/9xGI7TpUoAjzk9hXsl3YbFbuK4CrXlwLQyEi0obTY9W2OqcryXT/wYIa4+AwnrZFboFrCV9t2TuKHAtJxim8f6KzLqJxOQrw/Kot4w+GlYvVhqqH/4sldOKS/JRrY6b7HTITjfh15lc9cLAl97cnVkT5+ENPLJ9263UaugOM2rOQgWfrMPwKdezde0fZB3NocOlrel9a09iEhzUa1E7WPtXGfC4vMHO1MLSDVJXIJ3zQE1HmDuA5UKtfutvgPRu1ilqB/CD9zfdY4Qwn4BsuA/8GciimYiYu0vOK33g+QH8x8DUAmFqCra+UcbRufa8Mdr7Hiz2dmqh3uy7IPW7ymtAau2piR+HbwDb4Mo5RxSc9DcvtBa8rwMXAYeAn4UQC6SUpd/iW4BsKWVDIcQgYCJwYu1WTwG+n/sjE26YglRVvG4fS6evpFr9Krz8/TjssSe/iq9WrwrPfv04fr82qRhKzQ5SSl4a9mZIeEaqEneRh5dufZOOl7UN2T8aNizfxPiBL1FU4EJRBLGJMTzy4T3k50SL41csj/F3QErB0llJXDooE3OEPpqqH+yxJQbNGmPl1olDKkS5l65vI4R9nEjXCsTfZdBrLXQQAAAgAElEQVRMLZG2S8G1pNREaNW8CLvW1F36DoBrGeF5NhcXX72B6c/Eh+Qwy3pDZeFxCz5/OxWjSWXkpEN065eDxy0wWyU/rUhk4vAaYfmuOB0R35TqSfQb0YvZk+YjVclnb6TR6aI8DKWMqeoHn9fA5fe9Qlxymm6/vhufHshjvcdXinqNyWLkkqHdSKySEPxMGFIRMbee9NgVgqEWWi1Y2e9AgEFfrV4II1KpB+reCp7Erb0vAYMmfXuQWddr749UAYk0t0MkvoUQkcsdSkNKTyDcp1OWIXO14nBTswpeX3QIJR4Z/yLkFnu/HsCilUE4rq+Uc0RDZdD2zwF2SSn3SK0y8FOgbBC7HzA98O85QA9R2T3JK4C8rHy+fGspM5/+jF+/2RwygRfmFTHxxil4nJ6gQoezwMXBHYeZ+fRnlXodBoMhzDjlHM/l+EH9+hiPy8uBrTqsLB1sXr2VRy4eR352IX6vH6/bR9afOYzuOyGYT/pLEFpS/kRUSIQh8s5NOzXCZClZT73zdHW2/OSImFJxFhrIPBroQmC3MOvwVC6/s4Iq4UoC+q+6iEqVrgyIuAmI+Ilg7qLVAsU+iEiei1ACBBXvplKtPEIR49hHqwtbYC1VwpCXFZkZ6fUYeGNMHXb8ZueOp45wweWaRmFMvIrZIunQPYd7nw/NOVrsFq66t0/YWN/NWsO8yV8HWa27NtuZOKI+edlWPB4jXo+B/PwaWKrPIS45cti3Qas6dLmqE8YKKPebrWbikiPnNK+89zJGvK5ffyelRLrXauUR+a+fcK+w3Iw8fl+zPeJvEEDYLtcKzcNgQTgi1wWK+DFohrCCCITmpJTIrGGBPFwhmqfvAs96ZP5LFR8PP1GFAHS9zr8OxXYRIu07ROwoRMxIRNL7iMR3KszqPRlUhm9eAyj9KzkElBXDC+4jpfQJIXKBZCDk7RFC3AbcBlC7dnS18xPFL8s3Mbb/JKQEt9ONzWGlXsvaTFo+BovNws9f/6rbpsLr9rF8xsoKt4H5qzCajREnc1VVdeWlpJRhoYJnBr2iO4bH6SE2KQbFWLGcV2nYYqz0vrUn+7YeZMMSfTp0GASc3aUpm1Zt06X6t+7eArPVzJY12/F5/XhcCo8MasjQh49zzd3HMBpLrtFVJHhrTHVUVWCxWxj0yBXYYysejxf2AUjnfMJX1haE/e8NFAghwHoJwhrB+Cr6SvfFeOrzkaz4aB2L3l2O1+3l8OHaJFZZhgi5FwFKGsaqX1O71QpqrPuKiwdtCuolFsNiVelyWS7vTzRRkGvA7/XT49rz6Tc81LOS/gx+XjCF6nUK2LutJDLxw9cxbPiuOe9svI+q9WphMVTD7XSz+L1vWL90Iyk1kuh9a09qn6URUgpzC7mz3cNkHsmqkMKIz+cDLFjs5hCPzmzVlPOHPXed7nFSepHZt2mKJrIIMCIL30LGjUYp5/v1+/xMvvtdls1Yidmq5QxbdmnKE7PvD2PFCiUBEj9A5twdYC0qgITYsQhza53r8iALpmktaIQdiAUKND1OBKhHw45B2EoiBt5NILMIN0ZucM6GuEej3ltwSGFDGhvpq57IImTueEh+X7u/SoJQksAxpNLGqyj+VYXVUsq3pZTtpZTtU1NTK21ct9PNk1c9j6vQrYX0pOZ97fp1Lx+O0zrUet2+iAalonI/J4PYxBjOOqeh1musDFJrpVC9QUkR9MaVW7ijzUNcYhzI5XHX88Z97+NxeTh2IIOso9kRz5F+MJPug7tE3K4HoQjufHkod7x4I60uaKbbVVrbseSfJquJ68dcg7PAHbFuLS+jgNGz7qNeyzpYHRatG7TNzMb1PZAxL4OxOVLEcuxwNZ67qxFrl1XFFmNl4Kh+XHsCPbZAC/0Rcw+a/p018H8LxNyhMd4iQKqFqIUzUDNvQM0ejnSvOaHzVgjmc0BEYpr5EIXPcfGN3Xjl+2d4/aeJnN3reYTtSrQC3hg0KSQrGKqg+BZxzYO9eH/bWCw2fY/AZDEz5tMBPPDOnby/YzL3vX1HkBUrpYqaOwaZ3o3bx/7Gywt28ebyHaRWLzEuBpOJPb9rpIq8zHyGtbif10e+x8rZPzBvytfc1W4Uyz9cCcC8174m80hW1I7cpaH6VNxON50ua489zobVbsFkMXHBNefyeCRxakAWfQqeDaU8DR/ghrxnyi3o/eCJT1nx0Sq8bi+FuUV4XF42rdzK0wP0PSBNemyVRvFPfBuRtg7FHt5hQ/UdRx4/HwpfBvWgZphkFggHImUeStpKiB2D9i6a0NTxbWC+EKyXBwbJIuIULYtOKEUg4p4GIqRN/H8gcyqXvPNPoTI8tMNA6VL/moHP9PY5JLSMbTwaOeSU4OfFvyF0YmUel5fF733LLc9eR9uLztalqSsGhY6XnRrZmFHThzOy8+M4C924ClxY7BZA0qR9fRa9s5wLB5/Pvt8P8HjvZ4NUbmeBi4VTl7F93S4O7zwaNbJQ66waXHVvH1Z99kOFJxmr3UKPQBfkS2/uzifPfUHZnlwWm5nrnxzAH+t344i30+uWHjTt2IjsP3PY/dveMF1Ki81Mwzb1SEiN5431E9n5yx6O7jlGnea1qNO0ZmAvzWuoVgVGf+EmL7OAhLS4coVnI0GJGYa09QmQLyRYe2jU5QiQaj4y80otER/whqTne6TtWpS4h//SNehBCAMy/mXIvlZnqx+cXyDjHgv2tBJCQcQ/ieq4C3LuCHTWdoJ3E9K3U/MGEt8jUmxY4KZx/Wdo0mEmwpQSes+F7wTKGjzEBEh2tRu7GP/xHm7r1gQQ+H0qVQPM0vce/4SMQ5nBBZ/f58fv8/PSbVM5t297Vn62tsLvWTG09jkwN/09Mo9kE5ccgy0mfCIuynfy597jpNRIIkbOImIrH9cScNyou8nv9zP/9cVh+T2vx8fv32/j2P50qtQJX1gLoYApckNdKb2QdQXIsvqJflBzkYXTEbH3oTiGIC3dwL0YqToRlgtCFT1MZxOx3YzxrBMicghza2TSTMgaQDjz1guen5D+TIQhesTg347KMGg/A42EEPXQDNcgoOyvcwFwI7AWuBr4Rp5CBoKzwBVxNVNMwkiulsi1j/Vn1qT5wSS8yWLCHmvl5vF/PzsHNNLIjN2vs3L2D2xcuYXv565DqpIVH61mzbyfmfbYx1RrUCWsls3j8rJ93c5yV2xNOzaiVpMaDBlzDR+Nm4PX44sohQSAgKHjBuHz+Pji1YV8N/sHqtZLI/1QJl6PF0VRMJlNPPT+3UGlkdK4+oG+LJu5Cr+vbB2SB6VUKqJR2/q6pQnFsNgspNasWAI8GoShGlQwMS0L3w20XCn1rKUTimaimloiLJ0rLUQjFDsSB6DXlkWAmguGMk0a/VuR/j2EkEmkE7w7EO7lSMctUPAu+uoUecjsO8LZbTqMTKMR0mp4adzKyZ6tsdRuWiPYOWDlZz/oRi+8Li8jz3uCxDSVtl3zycsysGtzWUkmfRiMCsnVkzCajLrGxO/3885DM/nyrWUYzQa8Hh8z1v1Jkm5AxxfQ1dSHq8AVLEsoC5PFxPEDGbrXIKUfPOs0QoWpDcJQNXQH9wrtO9OFV2vyGSgtEMaaYBym+2SEIRlpvw6cn5YhNVkRsY/pHBEdQklCCos+QUqYNI/w/92gBXJiw4ElaLT996SUW4QQTwPrpZQLgGnATCHELiALzeidMrS+sAU+HVFcIQRtLyrpajvkiWto2qkxX0xeRPafObS/pDVX3NObxLTIhY6VDavdwiVDL+SrqctwF5WE7IrDpTs36Peiqsj6YPP327hk6IUMfqQ/nS5rx4qPvsdV6GLXb/vY9sOOMH1Gi9VM1wGduav9w6QfzAiutq0OC03PacywidfRsE29iOzLGg2rccHVnVg2c2WY5/j6Pe9zfv9OUUkA/yhcX6Gvxu6B3IeRSKTtakTcEwhdosAJwFCbiLVKwqSbZ5OuryMk851I5wJE4jSkVKDwVf1xZa6WoyntEYR5FBpUP6RU83LsiIPRs0pCf5Fl0CQ9+6/jilsy8HoUFIMk46iJJ66vF1EmqxhGk5Hepeoyy2LGk7P56u3leFwePAFbtWKOnf7DCjCayi7OTGC5IOJYtlgbjng7uRnhjV49bi81m1QPvzPvVmT2sBKjIL2B92BscHEgvduI2FkcQOjXmOnuGvsI0lAfit4FNROMTRGxD0QNlUeEoSpaeFNvkSMhSseG/woqJYcmpVwkpWwspWwgpRwf+GxMwJghpXRJKa+RUjaUUp4jpdwTfcTKRWrNZK4Y3iuELWYwKtjjbGGJ5nYXteKZLx/l9Z8nctMzg0+pMStGTnouu38L78wrKygRpAdFEdgcJav8ei1qM+y56xg++RaGPXddWPsXo9nIiNeHsXzmStIPZYaEjlyFbrb/tBOP01tuKcFPi37RDYMqBoW1X/6bpc2irfXcgAecnyMLXjvpMwklBuzXEp7jEGBqj/7kaCaixyMsAZX226KcVQmXYzLU093TaJbs3mKlKM/JxOunBD8/74pzdIlUva7L5PKbMjBbJY44PzaHSvV6biZ9thtFkcGuDC3Oa4LRorUmssVaMdvMjHhjWJBUUhrS9Q3+jEH0umI8973wB7UblXhes15LJjvdgAwRBraBrY9Ws6UDv9/P93PXkVw9KeweLHYz3QefH/bbl9KDzBpawjqUhWjvwRfIotnB/bRQdiRWo3JC9HUhBIpjIErqMpQqv6Akf/TXjBlaCQEx9+tcmw0cwytcBvBvxv+NUsitE4dw1jkNmfvyV+Qcz6VNj5YMeqR/+c0c/wF4XF5EBPkqo8mAYjCENFoUonwFIZPVxEU3dg373Of1MX7Qy2GhR6EIqtWvwvzXF+s2dXQVuln75XpadtGfMAA+HPeZ7uoXNMNcVoLrXwVb/4CocLS6LxcUTUfGjNDyKicBETsKKWKg8HVKvDUJnrXIzAGQ/FkwjwYgbFcgXQvCw0fCjrBdXfK3UhNUnZIP6QNTqAK7iB2FzBlJ6Xt2FQnWLY/j2EGtoeSeTfv5Y8NuGrdrwM3PXsua+T9RmBPqKQ64Oz2s+NtggMQ0wcwdNxBb9WLM5lwU72qKCpryy8pEfP54OlzampiEUGahlB5kzsPgXoLAR1oNSK7iodNFeTx0VQN2brKTn23k/v6teXFxE9JSN4CI1er8rOF1caDl+h7r/Sxb1+4I1SkVYDIb6XVzd25/MTTvlpuRx+blr9GuUyGWMFvlhKJp4AgwKq29IX+ifrjTfCFYKlhu8jdAcVyLqsRrfdn8hzWvzTECxV55Pfv+SfyrWI5/J4QQXHD1uby6ZjzTd77GvW/d/q80ZqB5lJE8w5jEGPreeTEmiwlHnA1bjJW02qlc+/iVARJJKBSDthq+6v6+NG7XIGz72i83UJhXFGYQvS4vH42fiyVCN2qD0YBV53zF+HPf8QCBRB+qX9KhV5uI2/9JSKmCsQkocei1Awnd2VkBrb7yIYSCMDWjpBN1MVzgO4AsWhC6v7kd2K5B8+qE9p+wgaU7WLprSvwZl2jeRBhsEDMyTMdPWC9EJLwMhjqoKhTlK8yblsLE4aWKhoVg3+9alU5ytUSeW/R4mIeTmKq/UDFZjKRW82HhU0RmT2T+OGzyec7r8jBd++4LN2ZqlqYu715I6aJggxFsDpW7ninhnmWnS6wpI1FS5qMkf4iw9Y5Imlj52dpwYwbBSMLX733LhmWbgh/v/GUPNzQczq/Lv0WqERZhagm7WCgxiKSZoFRH+34sgBkc96IkvXlCZA7p3YIs+hTp/k5TDKkEKLY+msdXdStK6jenjTGD/yMP7b8EIQQPTLuTJy6fgNetETeEIjBbTTz47p107NOOQQ9fwY6fdhGXEsdZgSadzTo15uNnP+fY/gyq1E2lZqOqpNZKoeuAztRrER4fL8wrYv2S38LEY4uxd/N+IrXuMpgMXDj4vIj38OOXG6LcIFzz0OWk1UqJvM8/BCmdyKwbNPagLCJIqUaiHztNqDSNOuleCujnxXAvDBMzVuJGI619ka6FIL0IWy8wdUAIgZr7eIDUUjY3Z4H4l1BsPXSvQVh7IKw9uLX5CA5sO0pxWDM+2cvFA7Ooe5aPpq03INX2CCWGpp0a07pbc35ZsZmqtd1c0DeXglwlpE9ZyQ2qSGGCvJcAd+jjzJ+INLcNCRHKvGf0a7UCOKttkSbIbLXQ5ZpzSUjVXwRKqQnjSve3IGLZ9E16xA4SmqiCj3EDXuTTQ2/jiLfzzKCXKcpz8vu6SAs4Ee7tmppB6reaCod0afqcJxDSk9Kl1dZ5NgJSK+gWdkiaqS+CfAbAGYP2r0Wb7i15bd0EZk2ax+7f9lGneS0GjupHw9ZaniMhNT5M9ql09+WMw5l8+eZSdv6yB9WvEnPnJaTW1MgFUko+fGYOnz43D6Fo3pIe8jMLdDtMG81GbnxqILWaRKa9C0VosVAdJFZJ4KanTykvqMKQBa9pCuxB9mBx/soY+K90GMkGjntCVtzSvQaZPwl8u0BJBMctCPuNgADPT+BdrxlBa2+t23YI7GjGU8cYRDCawtwqrHmjlE5N+0+XaKIgTPoyTaUx6JGrmXznO7iK3DRtV8izn+xBMciA3uYMZPpnWhjUWItxXz7CnGcH0v+mHSgGicGghcBLf/1ul8AS1zZwXfpkG1k0GxE/NnAPUqPcRxR31toLma1mLh7ajTtfHqq7j5b3uhG829AWCwbueAKsxjTmTtUiNCaLSp8hmVw0MAsh4Ju5iSz9rDqrP19Hiy5NyTySBcCeLTY2rY3h7M4FZXRHrYjY8DouIcRflpSS+c+D51eC76FEqz3LGgapKypPe/E0wxmD9i9G3ea1eHj6iPJ3DGDv5v0seGMJuzfuY+cvGu/G5/Hz64rNzJvyNROXjaFpx0Z88/FqZk+aj8cVWV/PaNbkufRo2Q1a1WHAg5dHvZbO/Trw9kMzwj43W01RWWz/OIrmot9A0QyWjuBeS7BRZ8zIEB1I6V6JzB5B0OipxyH/FaR3D/j3gG9LIDxpgbyJkDgFYSnJawp7f6RzDmF5O2FH2MrvnVZyIR4iFiQKA6j6TNnS6DmkMya5EId5OS06FZZRHXGCdCPzHkckzcBkPMI1t/2BwRh6TjVgizwuwfeLanLx3W8Fno+ekVJBTS99E0RTqZcYkaZLmZP+HFa7JVBT9jVfTP6agpxCzu7ajJvGDaJGzWXg3ULJM/VjNsPQR46yemEC6UdNTPpsN/WbOYN5vxr1/6T7VTls3pyD3+dHCEFsgo+GLZ3MfLEK5/5upc/1WdhjVDC3wpw8OhAurhxIKbV6wrD3UGrF2WXZqWcQxBmDdppg+UereOW2qbq1ZV63D6/bx8TrJ/P+jsl8/OzciCEXk8VIbGIMrXu05LtP9ZUxso9FqrEpQWrNZG58ehAzxs4KtsyxOixUrZdWrjH8ZxGBBCIEwtobEl7T2IEiPowIIvMm6BzvBNdnhLbUCBRq54yE1DVBXUdhaqnVjxVOQ/MMJWAGax+wdKvwHQglHqlU0xQq9BCB+Re8D+lFZg2lY5dfsNgiGRUV6f5ZC9E6v0IxhBspRYHN6+yMuqoRd02+BSGsSMsFWg1X2HOyIQIUe43JKzXtS69+U1xhqI8t7WmEooXxJt34Omvm/RQMn6/+fB3rl/zG7C3HMRvDv1OTGa4flc66pQ7qneUKIbFYbZLqdd3E1cwgtWE1bnrkKL2uO4TXIzAYIOOIiZF9GmG01uO9bRHKIk4KMkr9nBKxvOIMzhi00wLOQhev3P52WMF1WaQfzuL4gQwyDmfpbjfbTAwZfQ0DH+7Hz4t/Y+2CnwOdjEsghIhaBF0aAx68nNYXNufraSvIzcjn3Mva03VgZ8yWv1+k9C/D3FkrjC3r4Ug30tgOoeaBomPMpF/zwnQh0Q+zCXCvBFvv4CdK7EiktbfWqw0fwtpTk+46AUj3SlCP6WwxQezocntn4VqE6tkcxZhp8PtUlkxbyqUDihBCf1+bXaXjZe3pe8fFmqFSjxPueZjAkIa0XqqJ7hZ9qC0alOpohAo/JaQQI9gGI+IeD34HB7YfZvUX60LYuFKVuArc5GVkkVKm7hm0cGiPK3OoWicWW0y4MbY5VGzmn8CdSN+hxzEYZNBLrV7fzfNz95DpnhB2XGVACAVpbAy+HeEbpSeqSsn/O84YtNMAm77bgsFYAcJqgMpYt0Vttv4Q/mNRFIU2PVqgKArtL2lFcvUk/txzLCTsaLaZGfLE1WHHRkLjdg102ZX/VojYUUjPugAhpPQkrUJmDyRGEBakYxjCcWepXIaihSGlXjgvQvhPqrr7C1MjhKnRX7p+Kb3InAfQN6A+cM5FWi+O2qlYOhegiOhtagD2bLXy+j2z6NDjBpJtNsoW7EoJidUb8vQ8TSpMLfoCCmcQ/jzMkDQb8saCawUlIdsjaK1Hzgf1T63tjuNmre9ZKWxetVU3XSulZMXcGAberR9RUBQzLc+rjXTvQ4gyNZ8E6gML38ZgCDXABgMkVzOSlhRZN/VkIWJHI7NvJSxna79OE/4tA+k7pPXe8/6qaYOaW2ker6n9/1W+7f+Gtn9ao4IvbGqtFNJqp3Dz+MFY7KGrdJPFSINWdWnSoSGgtbh55ftxnNuvA0azEYPRQO1mNRm/8NFgg8XTEcJYF5GyAIxtCS1c1npRgVfzHgqmIgtfLzlOCLANIrxoVQEc6P/U/GA+t9KuXXp+1gp/yxZMl+wB3o3I3MfLGUl/Wigu7fB6oKhA4dVRNVH9Kos/zAMdXUwhIDl5Z0krl8K30FOp8KsquL8PbXIahBv8B1FSFqAkvhlmzABSqhUyaMRRhj1xhFbn5VPaYH4zr2Hk2xQKWLrosg+FsCFs15TJ65VAETLAIv17ICwdEUnTwXQOiFit6D3uCUTsQ2H7Su9WZGZfcH4Cvt/B+yMUTkVmDUVmXoFU/39ClGc8tNMArbo1j6rJaLKYMJoNPDJzBEIIWnVtzhOzH+CNke9xbH86isFA98HncderN4es5uJT4hgz+wE8bi8+j69Smpz+FyAMNZDyOBE9KwCcUDgN6bgtGMITsfch/fu1yRkjCAlKCsQ9Czl3Bby+4tCZDezXaFp+USB9+8EdEFS29EAY9RcTauF7kP8K0QvBATzgXoFUC8K8NCklsmBygIkYDr8PDu628OuqWL54J5Xjh82An8JcZ4Q+YQAquJeCcViEMCh4nG4O7ZhLo2YmkDq5XX94c0ypFoJ3A9K1ivYdPqV1Ky8Go+SyGzL5/ScHY2+sh9Fs4eKhfcGsgmc14d+nirAPRKqZUPgeJd+NCWwDtPCzsYnm9YRfQaU1xYwEYW6DSP6w3P1k3pgIkQEv+HYic0cjEk9e0ea/gDMG7TSA1W7hwffu5vmhr+HzaornFpsZxaDQrHNjzjqnEZfdcTEp1UtCFR17t6Vj77Y4C5yYrWYMxsgSVmaL6d+d9/o7oFakGUSAmRfwToQwIxLfQPr2gncrGKqAqZ1WF5a8APLHa4QI4QDHMIQ9er8oteA1KJhKkBWY/yrScRNKgCIupR9Z9JEmKqyWbXARDQrIfLT2MyWQRdMDE3uJ1FaxV+YqUvjm8wQmP1yT0p6rLcbKOb3agvw00l2ADIxnbATe8H56QkgWvHOU+1/06wcbRGh9mVo0C/KeDVxHEQKN5AFa7qtlxwKuvTed4+k9uHJkHwRtkJlXBxYUbjTJWRPEPYsQFm0hYuuLdC4FVIT1IoSpiTZg7APIrFsIzfuZwdS6UpmNfxVSugIszkjwgftbpFpY0lT2NMYZg3aaoOs159KgVR2+mrqUP/el0/rCFlx8Y7dyvSq91hxnABibgfen6PtIVbfjtTDWg1KelJR+zZi5VwMujbqfPwkpzBEbjErPRih4mzACRdF0pKULwtwBmTsqEKY7QaUSYQVFRyWncGrYWJqBMaDEP8Wnr3+DyZIb7OhusVto2qkxbbq3QBb2CRhfHcKH5UJtrJj7cR29CYu1JJrgcQkO7LQCAmeRDbvDQ2ju0gKOm4J/Sc8vkDeeaJ6o1S657r4/EWI25P4O8S8hUhcji2ZptYCGWgj7kJA8pTA2RMTqhSeLF3KCEg9PQNwTEc9/aqFQfhcDBendCv7dmjCy9UKEOD1/9+IUdnE5IbRv316uX/9vFq89g9MZ0vOrVpAbceK0gq0/SvxT5Y9VNAeZN45ww2NBpC5BGMJV3dXc0YFapLKhZAHWyxExdyAzrkC/Zq4cmM5FJL4SUtgtpYo8dpb+/iIGEf8i+UXtmfPil6z6bC1mm5k+t/Wkz20XYTQZkWoBMvOqQF6p+JnZwHZFyDOadO1VXDdSaxqqqpCbaSQu0Y/fLzBbjAHFfD8lxkMBcw9E4ksIYUHNHg7uZUQPB5eGAkoKIvWb8tmdZSClikzvqhMqVcDUASV55gmN93dBzRoGnjVErtsrzhGKYGhYJE5FmM85FZdX6RBCbJBSttfbdoYUcgZnoANhboNIeheMTdFWwAa0n0sMWm1YL0RceeQKDbLoEyK27HB9rX+Qmod+AbLUem151lOR/mK68K5HZl6JVEvII0IooOjw20ELGRobEJcUy83jr+WDP6bw9sYX6Xd3L4wmLcgjlBhE8hcQ+6DWIcB8ISLhFUTckyFDJdXuz63dWnJV0xZ8/VEycYl+LDaJPUbFaPKg5bFKGysVPKuQec9pf/oPU3FjFjheFgZKMU4Qvu2B0KzOmN4NSFVPpuzUQ8SPC0QK9NICRrTn5UaLDmhdAmT27f+a669MnJRBE0IkCSGWCSF2Bv5fVsuneD+/EOK3wH8L9PY5gzP4t0GYz0FJmY+osh2l6jZE6mpE0vuItFUoCRMrvuLX7VsG4Is4qQhrTzQprLIbbAjrJaDERyFilAcv+LMCqiSlEDOScJamBcydEBXolSUUO4rjBpTkj1GSpmpix2WSYoMfu5Jq9bItiZcAABBXSURBVKsgFBuXDMrCYquIcXJrrXqkB8wdOOFMiXSCb9+JHQNoHk+0RUOU5rinEMJQDZG6HBH3FJjPA5EKxICpdaCXXoT6VPc3p/IyTwlO1kN7BFghpWwErAj8rQenlLJ14L9/s0zEGZxBGIonZWFI0bQTdfJmUWG9GH3VfktQHSP8mEvBWJdQ9X0LGGqB7bKAcojeZGuoYANJJ7i/DflEsV8FsaMCJAyrdj5bH0Ti5JD9pO8Aat4E1Ow7UAumItWK12M54uy8uWESI167CbP1RD2tAoTjJi0HGHLvCtrzjUB6ELbAszxBGJsS0Xgam0St5TvVEMKGsF+NkvQ+SpU1KFV/QUmeTcRGo9IX0iHgdMHJGrR+wPTAv6cDV5zkeGdwBv9KSOlD+o/+pTCNcNwUWCmXaUBpuQBMZ+sfI8yI5E8gZjgY6mt1SDF3IpJmacw8YUUkvqMV0QoHmgGyguUiTZ4rYoPJ4Bl0O2ErjiGItLWI1KWItHWIuGfB8xvS+QXSuxPpXoXMuAyKZmor/ILXkekXI0/AAzJbzfQc4EVRTsDTEjEgEjRvJHk2mDuhTV8msPZBpK1CJL2nc9+KdqxFv7tA1FMKIyJ+QmDM4qnSBMKBiH/mhMf7R2Aqfk5lIeA/mkOLhpMihQghcqSUCYF/CyC7+O8y+/mA39AC5BOklPPKG/sMKeQM/i1QCz/UGiJKD6BqSvnxT50QU0yqOcjCD8C1FBQ7wnYt2K446cagUro0T0vN0VQhAsw9rS7tZbTJTC9/Z0MkvatbqBwc23dAI8bIHDR9QR9amK1sXy5tclSSKkaSUAumQ8FEnXFAy1WKMtusEPc4ShlGaPHcVTqsqTqXQf7YgACzH0wtEAkvBrpI/zVI7w5k0Qfg2wOmVgjHUF0iz78R0rcXmXllQBS7OERqBcsFKP/R2rRopJByDZoQYjmgly1+HJhe2oAJIbKllGF5NCFEDSnlYSFEfeAboIeUcrfOfrcBtwHUrl273f79+6Ne2xmcwd8NtWgOhDEUtbySkvTOP3VZFYJUs8G9FuleC64vtJxbsfBvzJ0oMXdFPlZKZMal4N9PxXJFBkSVjeXmFaX0II+1IWIozDEahEsTaJbZaB5RHFh7Ihy3IYy1yr0SKVXwH9K6FBi0nnset5d5U75m8Xvf4Pf66TawM9c8eHlYU9HTEdK3B5n/slYDqcSAbQjCcQNC/Dertk7KoJUz8A6gm5TyqBCiGvCdlLJJOcd8AHwlpZwTbb//dw9t98Z9zHz6M3b8vJu0WskMeqQ/5/bV/Q7P4G+EevwCTUcwDBZEysIKkSX+DZD+jAAJQAVLN4QhAqOxeH/vFmTmdeg3HNVDxQya6tkOWVHS6MlzUUwtUfNf0QrGgwsJg0aISf4MYSzRBpW+vVp9mfdX8B3RVOrNTREx9yLMbQHw+/080G0su37ZGxTwNlmMJFdPYupvL/zfKOCcLvg7afsLgBsD/74RmK9z8kQREEsTQqQA5wFbT/K8pzV+X7OdkeeN5od5P5NxKJOta/9g/OBXmP3CGYLoqYSUagRjBggT+MKCDP9aCEMKwj4AYR9UrjEDQM3StA4rNnpABDeyMZO+XajZd0BWOX3d/FlIfzoUvkuoV+zX6Ob5k0ou0fkVMqMfFAVEeeUxIBc8P2o6hu7VAPy06Ff2bNwf0o3C6/aR9WcOi95ZXsF7PIP/Ak7WoE0ALhJC7AR6Bv5GCNFeCPFuYJ+mwHohxEbgW7Qc2hmDFgWv3zMNd5Gb0t6zu8jNjLGzKMo/QVWIM/jL0GqzUvQ3Sh/8R7yzvwRT8xLJqjAISth/FhCx/2vv3oOcqq8Ajn/PTbJJNvvi5aAWKFYFqVOLIigUHyB1S1WUkar4qojaio+OOPVVa0fL6Khl6vior9qqg4921JZSEbCjQy0+sKgFRYQ6qFgVWeS5zySnf9zALuRBzGZzc8P5zOzMJjd7c/jNsie/3/3dc5D6m7OeSuMfo01TUrsqc9WadNxrgO2vux8Y0s+UarCKew/d5utT58u0ytSKbnFjeuP5ZbRsS3/f+l7b+Nbg2SQ/P9T9+uoKNJHlA4zxhW4toqpqE5C2fUhV3wSmp75fAlgDnzzFO+L8953M1w4DoQDvv7GGw8fbcJZM7BLYOptdZwshd7NB0D9tcb4ucXqj1VOh5anUhoIdIlB3k9urK74WqoYj1WfkvJVBt92bOkeuyxsCVaOQwH6orCLr/V8S5t0lq1i3/FGObUxSlV4ov1PiEzTZTKy+mkDQIRHvvBYYq0tw9/zV1PXuUpWkbRHa9Cb0XVhWW/JN/vx5VbCCOQGHQDBAvD19B5gmlVidrfeXklSf57bf2P5IalNFu3ujccNsr0PrcVJ7LRoYBM0PQaIJQkOQmplI+KisP6Oq0LYQ3f64uzsyfBy0/YvsG0uCuMlsLNJwp/tUeHSW11ax9OXB/Hr6LYw47gtGj4vnTmgEQKqYcN6xPHf3fBLxziXHxrOaiNYkCQS6JtnUsmbLM0js/PTTmbJnCa3MOI7DcWeM5uWnl6QltdreNRw8onJnBeVIRJDaK9HYRe6OP6cvEujndVglISJIbCrEpub9M7p1FrT8uXNWF19L9hqDUYhNQ6qn7jKmImFouA/ddElq8tQCUs22rf254/IArdvbeOuftQSDuWZ8qfJkEmTQsAFMv+1sHr7GbcWSTCQZPraZSDRDktUWaH8NLKH5kiW0MjTjrml8+M5HfPbhF7S3dlAVCRGsCnLL3Gv3qu6z5UScanAO8TqMsqbxj6D5aXYtmNyOe6k+QFpiE3E7UDu1aeeS8FHQbzG0Pg/JDRAazh0XLWbzBrc32fYtAe67cX9+evOnhMJKYJcqYBEIHoTU3bTzmdMun8iYU0fyyrOvE2+PM3T0K8C89JgIZGxWavzBEloZqmmI8btlt/PWP5az5q219BvQhzGnHkk4mnN9xRhvtb+S5UASiAIJkNQSI4L0uj9jMttBnHqoPmvn49bmXQsMv/BEH9Ysj3LKBRsYemQNg749AoIHutv1Q4enffjbZ0BfJl/5QwC0YxjatID0hBZCurxnMWlys1tcObAf4qTVnzBFYAmtTDmOwxETDuOICYd5HYoxeYqkrjNmOOT0QfrMcfuRSQ2Ev0fqbp68HX/GGFa+tpq25s4Z4Jrl1dz3y4O58emrGNwwPO9zSeggtH4WbP5FlyLPCai7teibfVTb0S2/gpa/ubs3tQONTETqb/naLW1MbpbQjDHFERkPWzL1h4tA9RQksC9EJxV8+hPOPYZ5Dyzk4/c/pa3Z3eARiYU5dMwQRpz49T/4OdGT0fD4zkauVaN6pPGlbpkFLfOANtBUMm6dj4qD1N9a9Pfbm1mDT2NM0SRbnofN1+BO09pBqiF4CNL70aLMRtpa2njhDy/x4uOLCYYCNE4bxwnnHEMgWGgrnZ6lyWZ0/SgyN2KtcgtB51h2NelyVQqxGZoxpltUFeLLIb4GCQxE+y6E1nmQ3ISER0PV0d0uwrxDOBpm0qWNTLq0sSjn63HJDdmXYSXkdsO2hFY0ltCMMQXT5FZ04zSIfwA7NmE4+yK9H9trbm/IKbBPqiB0BhoHZ9/SxlPhivOxyRhT0dxajDNIfjGS5JcTSG5/HNUkuvl6iL8HtLidubUZEmvRTVd4HXJZEIlA9Tm4uzy7HohC9ZmIU/nV/kvJZmjGmJy0YzW6cUpn+arEJth6J9q+LFXBf/eajwnoWIEmPs+vEHKZ0cR6aJ0Pug2qRkPou926/1NqZ6ISgObHQJPuTDZ6NlI7s4hRG7CEZozZA932mwy1GFugbRHZay4G3Yr9PktoyZZ5sPm61KMO4EEIHw0N9xTcP0zEQWqvQmsuc8fE6W3b9XuILTkaY3JrX0qWm8uyVMXHfX3wgB4Mqvg00ZRKZm2pryRu4l6CNj/V7fOLVCGB/pbMepAlNGNMbpJlF54EIHI6ENntQBRqLnevH/lJ2wIyzzhbofmJUkdjCmAJzRiTW/XZpCctAAepuxppuAuCQ4EoBA5A6mfhxC7c+SpNfoW2vYp2rC5VxIXRZiC9y0XnMVPuupXQRGSKiLwrIkkRyXijW+p1jSKySkTWiMi13XlPY0xpSewCCB+Dm9QiIDGQGqTXQ4iEkcjxOH3n4vR/B6ffC0j0JMC9Py255TZ0/Vh002Vo0+kkN5yMJv7n6b8nq6rRZN5WEHSroJiy191NISuAycAD2V4gIgHgXmACsA5YKiJzrWu1Mf4gEkR63YN2rIKOf4PTC8LH73FJUZvnQMuTQLvbRw4gvhrdeL7bRLPMOkdIaBga+b672WVnU9MQOHVI7Ceexmby092O1SuBPf1ijgTWqOqHqdc+BUwCLKEZ4yMSGgKhIfn/wPaHdut2DZCE5JfQsQyqjihqfMUg9bdD61/Q7XNAt0J4HBKbjgT6eh2ayUMptu3vD3zS5fE6YFSmF4rIxcDFAAMHDuz5yIwxPSfZlOWAQOKzkoaSLxEHopOR6GSvQzEF2OM1NBF5UURWZPgqvGx2Fqr6oKqOUNUR/fpZ2RxjfC1bGxZNQGhoaWMxe4U9ztBU9YRuvsenwIAuj7+Res4YU8Gk9mr0qxlAa5dnw1A1Egke6FVYpoKVYtv+UuAgERks7h2FZwJzS/C+xhgPSXgs0vBbCAzE/VMTgeofIb3u9To0U6G6dQ1NRE4D7gb6AX8XkbdV9UQR2Q94WFUnqmpcRC4DFgAB4BFVfbfbkRtjyp5ExiGRcai2AaGitZExJhNr8GmMMcY3cjX4tI9LxhhjKoIlNGOMMRWhbJccReRL4KMsh/sCG0oYTiWxsSucjV3hbOwKZ2O3q0GqmvG+rrJNaLmIyJvZ1lBNbjZ2hbOxK5yNXeFs7PJnS47GGGMqgiU0Y4wxFcGvCe1BrwPwMRu7wtnYFc7GrnA2dnny5TU0Y4wxZnd+naEZY4wxu/BtQhORO0TkfRH5j4g8JyINXsfkF/l2GjedrOt6YUTkERFZLyIrvI7Fb0RkgIi8JCLvpf6/Xul1TOXOtwkNWAQcqqrfAT4ArvM4Hj/Z0Wl8sdeB+EGXrus/AIYBZ4nIMG+j8o0/Ao1eB+FTcWCmqg4DjgJm2O9dbr5NaKq6UFXjqYev4balMXlQ1ZWqusrrOHxkZ9d1VW0HdnRdN3ugqouBjV7H4Ueq+pmqLkt9vxVYidsw2WTh24S2m2nAfK+DMBUrU9d1+8NiSkZEvgkMB173NpLy1q32MT1NRF4E+mc4dIOq/jX1mhtwp+ZzShlbuctn7Iwx5U9EaoBngJ+p6hav4ylnZZ3Q9tQtW0R+DJwEjFe7/2AXReg0bjpZ13XjCREJ4SazOar6rNfxlDvfLjmKSCPwc+AUVW32Oh5T0azruik5ERHg98BKVZ3tdTx+4NuEBtwD1AKLRORtEbnf64D8QkROE5F1wNG4ncYXeB1TOUttPtrRdX0l8Cfrup4fEXkSeBUYIiLrRORCr2PykTHAucC41N+4t0VkotdBlTOrFGKMMaYi+HmGZowxxuxkCc0YY0xFsIRmjDGmIlhCM8YYUxEsoRljjKkIltCMMcZUBEtoxhhjKoIlNGOMMRXh/9q/uxBFt3UNAAAAAElFTkSuQmCC\n", 133 | "text/plain": [ 134 | "
" 135 | ] 136 | }, 137 | "metadata": { 138 | "needs_background": "light" 139 | } 140 | } 141 | ] 142 | }, 143 | { 144 | "cell_type": "code", 145 | "metadata": { 146 | "id": "6i2Z0UE195ns" 147 | }, 148 | "source": [ 149 | "from sklearn.model_selection import train_test_split" 150 | ], 151 | "execution_count": 46, 152 | "outputs": [] 153 | }, 154 | { 155 | "cell_type": "code", 156 | "metadata": { 157 | "id": "ZCnKP43V92ml" 158 | }, 159 | "source": [ 160 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42)" 161 | ], 162 | "execution_count": 74, 163 | "outputs": [] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "metadata": { 168 | "id": "iZ56DvXT-hja" 169 | }, 170 | "source": [ 171 | "from sklearn.neighbors import KNeighborsClassifier" 172 | ], 173 | "execution_count": 75, 174 | "outputs": [] 175 | }, 176 | { 177 | "cell_type": "code", 178 | "metadata": { 179 | "id": "8ceAPc2J-soC" 180 | }, 181 | "source": [ 182 | "model = KNeighborsClassifier(n_neighbors=3, weights='uniform',\n", 183 | " algorithm='auto', leaf_size=30,\n", 184 | " p=2, metric='minkowski', metric_params=None)" 185 | ], 186 | "execution_count": 83, 187 | "outputs": [] 188 | }, 189 | { 190 | "cell_type": "code", 191 | "metadata": { 192 | "colab": { 193 | "base_uri": "https://localhost:8080/" 194 | }, 195 | "id": "CEeohsWK-9P6", 196 | "outputId": "3542fc9b-4431-4c3a-e4bd-e806db1e7f4f" 197 | }, 198 | "source": [ 199 | "model.fit(X_train, y_train)" 200 | ], 201 | "execution_count": 84, 202 | "outputs": [ 203 | { 204 | "output_type": "execute_result", 205 | "data": { 206 | "text/plain": [ 207 | "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n", 208 | " metric_params=None, n_jobs=None, n_neighbors=3, p=2,\n", 209 | " weights='uniform')" 210 | ] 211 | }, 212 | "metadata": {}, 213 | "execution_count": 84 214 | } 215 | ] 216 | }, 217 | { 218 | "cell_type": "code", 219 | "metadata": { 220 | "colab": { 221 | "base_uri": "https://localhost:8080/", 222 | "height": 397 223 | }, 224 | "id": "NPNzmPqX_AqZ", 225 | "outputId": "2b30cd4c-7673-497d-f1bf-10ca612acaa0" 226 | }, 227 | "source": [ 228 | "plot_decision_regions(X_train, y_train, model, colors=\"#FFAAAA,#55AA55\")\n", 229 | "plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], 5, c='red', alpha=0.7)\n", 230 | "plt.scatter(X_test[y_test > 0, 0], X_test[y_test > 0, 1], 5, c='green', alpha=0.7)\n", 231 | "plt.axis('equal')" 232 | ], 233 | "execution_count": 85, 234 | "outputs": [ 235 | { 236 | "output_type": "stream", 237 | "name": "stderr", 238 | "text": [ 239 | "/usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.\n", 240 | " ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())\n" 241 | ] 242 | }, 243 | { 244 | "output_type": "execute_result", 245 | "data": { 246 | "text/plain": [ 247 | "(-2.2425519989173113,\n", 248 | " 3.112141222103753,\n", 249 | " -1.6067286213635377,\n", 250 | " 2.5779172936028725)" 251 | ] 252 | }, 253 | "metadata": {}, 254 | "execution_count": 85 255 | }, 256 | { 257 | "output_type": "display_data", 258 | "data": { 259 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhURfb+P9XZSNKdlRBWFxZlXwNhUREcHXUEFxyVmbgM+ENBx2EUwXEdxXEEmRH5KpuAuMyIGyo6iBugIhAIaySgsimEAAkJ6XQC2bp+f1Tf9O01naSTkOS+z8PT3bfvrap7m7x16pxT7xFSSgwYMGDAQPOHqbEHYMCAAQMGGgYG4RswYMBAC4FB+AYMGDDQQmAQvgEDBgy0EBiEb8CAAQMtBKGNPYBq0HApRBUVkJvbYN0ZMGCg6aO0tJQX33uDq9Ku83lOnzZ9CAsJa8BRIXx9UWfCF0J0At4AklEEvVhK+ZLbOZcDHwOHHIdWSimfqWvfQYXdDlZrY4/CgAEDTQibt2zhbGwl2dZsn+f0TOpJGA1K+D4RDAu/AnhISrldCGEBtgkhvpRSZrmd952U0vc0aMCAAQNNCMUlJSz6/GNumnZbYw8lYNTZhy+lzJFSbne8LwL2Ah3q2q4BAwYMnKuorKzkL/Ne4Op7xxIRGdHYwwkYQQ3aCiEuAAYA6V6+HiaE2CWE+EwI0ctPG5OEEBlCiIzFixcHc3gGDBgwEBQ8vng+A24aTnxSfGMPpUYQwZJWEEKYgW+Af0gpV7p9FwPYpZQ2IcS1wEtSym4BNNtwQduyMjh0qPrzDBgw0Oxhl5JiKakUnvHPbT/u5biphE7dOgXUVo+kHvUStA0JCSE6OhqTycNur7+gLYAQIgz4APiPO9kDSCmtuverhRDzhRCtpZR5wejfgAEDBoKJYikJi4zEHBKC0JG+BPYcOkDKDcMJDQ2MPmPjYgkPCQ/q+KSUlJaWUlxcjMViCfi6Ort0hHoaS4G9Usp/+zinreM8hBBDHP2eqmvfBgwYMFAfqBSCCDeyB/hw/Vo6DugcMNnXF4QQREREUFlZWaPrgjHqEcDtQKYQYqfj2KPAeQBSyoXAzcBkIUQFcAa4TRoynQYMGDiH4U723+3agc0i6d6lYyONyBXu4wsEdSZ8KeUG/PiMHOe8DLxc174MGDBgoDFQXlFB+oEsLrtpVGMPpU4wpBUMGDBgoBqs257B+T0vbPB+16xZw8UXX0zXrl15/vnn69yeQfgGDBgw4Ae7f/6Zw2dOcX73Cxq038rKSu677z4+++wzsrKyePvtt8nKct/PWjOc61o6BgwYMNBoOHryBGv37WDYmBE+z/nzzfdSYi32OB4VE83/vb+w1n1v2bKFrl270rlzZwBuu+02Pv74Y3r27FnrNg3CN2DAgAEvsJWU8Pb6L7h03CiEnzBlibWYzXNmexwfOm16nfrPzs6mUydnrn/Hjh1JT/e2pzVwGC4dAwYMGPCCXT//SOdBF2EKaT402XzuxIABAwaChEKbjc37s+jQufFkwTp06MCRI0eqPh89epQOHeo2HoPwDRgwYECHkjNn+OC7tQwdcwkm0XgUOXjwYH7++WcOHTpEWVkZK1asYOzYsXVq0yB8AwYMGHDAbrfzwEsv0PPSvoSFN66GfWhoKC+//DK//e1v6dGjB7fccgu9evnUnQyszSCNzYABAwaaPP7vvbfpd+NQosxRAV8TFRPtNUAbFRNd5/Fce+21XHvttXVuR4NB+AYMGDAAlJeXs+XHLG695Y4aXVeX1MuGhuHSMRAcSKlKRBoSSQaaIKSUPDz/JUbecWWtNGqaCgzCN1B3SAmzZsGdd6pXg/QNNDH8++23aD+iG+0uaN/YQ6lXGIRvoO4oKoL0dGjdWr0WFTX2iAwYCBgfrPuKvJhyeqT0aOyh1DsMwjdQd1gskJoKeXnqtQYFGQwYaGx8viOd4ddd0tjDaBAYQVsDdYcQMGOGsuwtFvXZgIEmgNf+9zHt+13Q2MNoMBgWvoHgQAiIiTHI3kCTwfptW9l5+lcGXTG4sYfiFRMmTKBNmzb07t07aG0ahG/AgIEWh59/+YXlGz7nij9c1dhD8Ym77rqLNWvWBLXNYNS07SSEWCeEyBJC7BFC/MXLOUIIMU8IsV8IsVsIMbCu/RowYMBAbfHUG4u5fspNQU3BPJ1/mml3T6OwoDAo7V122WUkJCQEpS0NwbDwK4CHpJQ9gaHAfUIId8Hma4Bujn+TgAVB6NeAAQMGaoxdP/5IUue2hIYFN4S56r1V/HLiFz5+9+OgthtM1JnwpZQ5UsrtjvdFwF7AXdLteuANqbAZiBNCtKtr3wYMGDBQExzPzWX2h28xevyVQW33dP5pvlrzFZdOvpSv1nwVNCs/2AiqD18IcQEwAHBX6e8AHNF9PornpKC1MUkIkSGEyFi8eHEwh2fAgIEWjJIzZ3ho4VxueOD3mEzBDV+uem8VyQOSie8YT/KA5HPWyg/aXQshzMAHwFQppbW27UgpF0spU6SUKZMmTQrW8AwYMNCCYbfbmTpvDldOuo5WUa2C2rZm3Xcb1Q2AbqO6nbNWflAIXwgRhiL7/0gpV3o5JRvopPvc0XHMgAEDBuodmT/9RHyPdiQmJwa9bc26j4yNBCAyNjIoVv748eMZNmwYP/74Ix07dmTp0qV1HmudoxZChbmXAnullP/2cdoq4H4hxAogFSiUUubUtW8DBgwYqA4VFRXMXfk2V06pW/EQX8jYmMHxnOP8suEXl+Ol7Uq5456aKW/q8fbbb9d1aB4IRph6BHA7kCmE2Ok49ihwHoCUciGwGrgW2A+UAH8KQr8GDBgw4BdSSmYseIlhfxiNJa5+JD/mvT6vXtqtD9SZ8KWUG8BPSXd1jgTuq2tfBgwYMFATvPjOf0ge2oV2FxhJgWDstDVgwEAzxbqtW8hpVUKPwe7bggLEOa7yLWshQ24QvgEDBpolVm38loGjU2p1bbksR1bKc5b0pZSUlpYSEhJSo+sMtUwDBgw0O7y++hNierXFHGOu1fUlogTOQJioeyHzwtOFhIUEvyB6SEgI0dE1q5trEL4BAwaaFdZv28q2/MNcmfbb2jciHKQfBFhiLbQKDW7uf21huHQMGDDQbLD/119Z/t0afvPHc1cFszFhEL4BAwaaDV5auYLr7xvXrAuR1wUG4RswYKBZYPdPP1IWSdBVMJsTDMI3YMBAk8eJvDyeX/kW19w9prGHck7DIHwDBgw0aZw5e5YHF8zlxgd+X+M0xZYGg/ANGDDQpDF94TyunPS7oKtgNkcYhG/AgIEmC6vNRklIRb2oYDZHGIRvwICBJomKigr+Mu8FRqcZKZiBwiB8AwYMNDlIKZmxcB6pt11OTHxMYw+nycDIXzLQIjE6LQ1rUZHH8RiLhbVvvdUIIzJQE7z0zn9oM/gCOnT2WinVgA8YhG/AN6SEoiKwWKCZbWSxFhWRMWeOx/GUadPUm2Z8700dBYWFZOYf4YbbxjX2UJocDJeOAe+QEmbNgjvvVK+1kGI9JyAlWK01G39zufdmilc+fI/+owY29jCaJAzCN+AdRUWQng6tW6tXL+6Pcx61Je7mcO/NFG9+9j/KOrTigh4XNvZQmiSC4tIRQiwDrgNOSil7e/n+cuBj4JDj0Eop5TPB6NtAPcFigdRURXipqerzuQhvrhftmJSexB3jJ8AnJebKSjCbXe599OTJWG021/Psdkyxsaz9z3/q9/4MVOHbHdvZkneAq26/urGH0mQRLB/+cuBl4A0/53wnpbwuSP0ZqG8IATNmnNt+bM2C1yalGTPUce3YkCGBT1pSwtKlLDxyBGbPhunTwWYDiwXrDTc4/f2O88jM5K2DB9Xnc/HZNDP8mpPD0vWfMm7qrY09lCaNoBC+lPJbIcQFwWjLwDkEIfxbxI0NX64X7diWLbB8OUyZ4jFpxVgszgAtYK6sZOGRI5yOiFDX22ze7724GDIzIT6elOzs6lcNBoKCT7//jtSxIwwVzDqiIbN0hgkhdgHHgGlSyj3eThJCTAImASxatIhJkyY14BANNCmYzdC/P+zYoSx4KT1dUTExXi1wj9RL99WCr9VAdDT06QOZmWRERdH9XHV1NSNk/vwT208e5Pou/Rt7KE0eDUX424HzpZQ2IcS1wEdAN28nSikXA4u1jw00PgNNDVIq18vOnTBggDp2112KrHXumGrdLfoYQCAuLCFg4kQoLmbuU0+RZlic9Y7Fn37IdQ9c39jDaBZokCwdKaVVSmlzvF8NhAkhWjdE3waaCdzTK/XunG3bYNMmp2tHc8fog7jeUjPds3jA54rABUKo1YVB9vWOzZm7qYwLN1Qwg4QGsfCFEG2BE1JKKYQYgppoTjVE3waaAbwFZ/Wum2HDFPl6c8e4X6u3/r3FALz44939/frjBuoXL3/6Prc88sfGHkazQbDSMt8GLgdaCyGOAk8BYQBSyoXAzcBkIUQFcAa4TUpjN0uzQH3vSJUSjh2DzZshKclJzBYLTJ6s/mkk7W0c7qQ+c6ZyA2nkH0AWT5W/39h926D4ems67bt3MgK1QYQ4x3m34QZXVgaHDlV/ngEnvFneNfnjrI5ApeTdkSPpW1iIHTBJSUZ0NHNbt2Z6YSG3JCZW369+jAMGwPbtauLIy4PXX3da+tWReF3v1UCNcCIvj+lvzmfc1FubPOFf2eVKWoU2qFa/zwdmaOkYqD0CdIl4RSAEWlRE38JCuvfuDQUF8OijdG/ThrTiYvbddRdcfHH1/er3E5jNKtCrt+gDTT2ty70aqDG+SN9Er0v7NnmyP9dgEL6B2qMuu3EDIVCLRaU+FhSoVMg2bRRBR0er43l5vvt1Xz1obdd2M1lT2XncTLBu305u/J2xySrYMAjfQO1Rl924gRCoEMxNSiLt6adV/rvWvnZcc8m49yslPP+8ytwZNgweecTl2lpZ5tq9Wq3+zzP8/HXGW2v+R6d+nRt7GM0ShniagbpBI1AfPnifSpUagb7+um9/uEOzporspVQZNpqcgeZ/l9K1L6sVVq2C7Gzna21jVe73sGAB3H67U4xN/72hslln5BUUsHb/LlJ+M7ixh9IsYVj4BuoH/qxsDf6sbQd5LjxyRGnXTJgAy5YpWYM+fcBud9XM0adl3nuvs6+SEpXJM2JE7YLK+jjDvfeqCaS0VL3eey8sXOj8fvJkw89fR6z46nN6X9q3sYfRbGFY+AbqB+5WdnWuEHc4fPynIyLYt2YN102dyr41a/ju+HH2rVlDV03zpnVrNals2OAkWiFg7Fho2xZatVK+/9rIHGtxhsRE2LjRuZoA52pDT/CgiN9fbMGAT3y7YzsHZQHd+l3U2ENptjAI30D9QHNxaO6XmhYicfj4h3boQPfx4/n000/pPm4cl55/Pt3Hj2fFu+86yTUkBE6dgj17nPo506cryz8kBLKy1PuaErDFoq7bs0f189ZbMGYMdOigJpT27V0JPiamejeVAZ/46Nt1DLlmaGMPo1nDyMPXYOThBw+aK2TVKuV6GTsWTKaa57BrAVCzGWbN4sCKFWRERPBCcrJqz26nS2kpz544QbfBg+HkSXjzTYiNVZPLnXcq6/vECedxf/1409S32+GOOyA5WRH78uXO+IE2kdVHkLaFBX/f/foLdpZmM+zaEY09lKDjXMrDNyx8A8GH5grp1Uu5U+64o3YVpDQff1ERrFpFm7IybgUynn6ajBdeIKNnT94JDaVcSkXqw4c7feZaFlBenutxd3gLtOqPLVigrtdb8RaLmlAKC1Ub/vR36lJi8Y474Jln1KTTzPHlzi3NkuzPNRhB25YMvRUJ1VuUXqzO0WlpWN0JXEqmnz7NLaDIUnN91CaHXesTh9mijU2nS9/28GFFiu6keu+9kJam+vd1T+77AaxW5ZvXpBzcNfVBBaNXrVLvx4yB++5zkr7+GUkJzz7rlG8OdGVTVKT6t1ph5Up1zRNPNFtLf9mnH9NpYJfGHkaLgEH4LRXuGShSKnLzRUxedsaOTksj58ABohMSADDb7dhMJmKio5kdF8ct+jz5QPP13Qlz5kxFmO3accxmY2dICPP/9jdsJhNT8/MZcuQI8XY7m0+eZOiWLU4X0DPPwOefOwO4vsjWfT/A/PnqOZhMkJsLQ4e6WvCFhYrsT59W56xapch5+HAVN9Dv5D17Fj780HvWjj+XjcWiZCBWrlTX7tjRrDN+vs7axm3T0xp7GC0CBuG3VOgt240b1bHkZN/phF4s4QkHDzIuOprIHj3UOVlZ0LMnKVlZEBbm2kYgG57cJ5XSUkV6iYkQE8ODHTpwW34+600m5S66/XYoKeHUsmUkaOmZZrOyqleuVFZ/eLgzw8Zb/0Iooj52TPX/wAPqHvPy4JVXXFcHutUGoaFQUaG+055bTo7rM5VSjT0vD0aOVGOzWj0lHtwnI71Fr60OmmnGz7x3/8uAKwY19jBaDAzCb6nQLNvNm2HQIEXQW7f6Jhd3SxhIKS6monVr2L1bkVNiIuzZg1lKbJ4t+Iemiuk+CWnkO3Ikti1bSDl7VhHmDz/AmTNqU5bJEYoSQhHyjh3quuPHISJCWd++CFMrpLJqlXrftq3TX9++vTpHT9KbN6tzKith4EDVvrYyatfO+YyGD3cWUR85Eh57zEnyehE3XxOsyaRIvzaB2yYS8P3om3Vkh5dwyaCUxh5Ki4FB+C0VmmWr9zEvX+47AOnulpESuxBEHz6s0hR79aqy8MnMxFxRUX2Bb30WjkamJpMz0Kq5mUaOhMcfx5SWRumhQ9j37qU0KYlDeXmYysq44MABskJDuSg9XW1+0kh35Ej4y1+c2TlWq3f55I0b1WoClNW+cKGT7L0pbebmqmCudo6eXPXPSP+dtkKKj1fPe8AAp0yzr8moNjIQTUTVc8e+vazet5Ux99zQ2ENpUTAIvyXDZnNaw+npKjDpjxz0BFRUhAkoufBCzGVlcPPN6vj777Py6FH1/vnnve+wBd+yxbm5TleKox+NTNcuXMi+ESMwxcYSmZdHz7VrGf3LL0woKqJfaSlvHT/O3NtvB6BdVBSfPPmkM5Cq7+vxx52rArNZrXDy8tR5WpBZCDVBaCsOPUkPHerq6vHnutLeaxWytm2DLl3UGIqLaxwkrxa1VfVswFVBXkEBcz76L7dMNwqbNDQMwm/JqIsCpEPJ8oKSEk516cKJ/HxCT5/mvO3bCbXbMZlMynI+dsx7lozVqr5v0yZwMrVY2BUVRXerVVnK+/Zht9tJe/VV9u3fT1rv3lU1ZlOmTXO2oZGg1QoffKDI7ckn1XezZ6v+f/tb52pAu879+bjXyq0JSdpsKqYwcKCSei4u9k/EtbXUa/ObNvCqYP22rfS5YoD6P2KgQWEQfnNEoERUF7VLIVjWuTNLCguxHTvG1GefJaW4mINAu9BQVf4vNBTuv9+TRKSEBQsoOHgQuX8/q2NimFtRoXz/GzcSc/vtzipTbn0u6tIFDhygX2EhGeXl/AxkZWcT4q/GrJb18sEHKs6gZb2AIrmkJDXZmEyewVP356PPsgmUJLXc/tRU5aIaOFBZ/P5QW0u9Nr9pA2r9Hzx6lE92b2LcX2+rl/YN+EewShwuA64DTkope3v5XgAvAdcCJcBdUsrtwejbgBtqaq3VVi4YR+k//W7UXr2US2bWLBVM1TJe9GUJNT2a9HR+CA/n0jZtSHvuOdJ0lqi3+rFVff7nP1W6PN1jYph7ww307NrV/0CFUC4UKRXZDx3qtHwDkGj2+nwCJUn97zFkCPTrp9xXs2f7Tn/V4hq1XX3V9DdtIK3/wqIiHl++gJun/8EobNJICJaFvxx4GXjDx/fXAN0c/1KBBY5XA8FGQ1lrGpHpA625uSqD5ZFHoH9/RXBaBovZXFWuMCMyEoB+paWcOv988nJzubg2rofJk33vYNV2uGpWrsmk3Djulm+w9fzdV1f632PTJnWOr/RXfwXX65Mg67LSCxDl5eU8MO8Frrv/JsLCw4LevoHAEBQnmpTyWyDfzynXA29Ihc1AnBCiXTD6NuAGvaRAfeZv67NODhyA7t2Vu6SiQhHthx8qfaLlyxWZ2GxV5QrTEhJImz+fP3fqROJ991HpLh3gS45AT56rVsHttzP15ElXFUvH9VNzcz116d21+/25vqqTRPCm5+9NpsFd4mHYMN+/jRbX0CZrm82/bEMw4a+uQR0hpWT6/HmMSBuNJa557idoKmgoH34H4Iju81HHsRz3E4UQk4BJAIsWLWLSpEkNMsBmgwaw1gDXPP4uXVQg8pJLXHeX7typ+neIjbmUKzSbsYWEuI7PITk89eRJRZruLimtT21TU1ISvztwgJ/uuostUVEsSUzEFhKC2W7n1bNnPVc57lISvlxfeku7f3/PYK7+WestdH0gWt+vr1RN93ufP1+tkvLy1O7gYE7WjZSbv+fAfmateIM+Vw+i3fntG6xfA95xzgVtpZSLgcXax8YcS5NFHfzy1UKzfMHpcjCbna4HKZX7RMvt13aXWizeyxXq2126FHbt4lqrFXr39nR7aJOZ1arIcdMm4mNjie/Zk4v27CEtJMS7xIHFouIMM2eqtMjhw/0XK9FWEoWF8M47sGYNXH+956SgJ1BHILrKtTV2rMu9e03V1Lej7Tno1Uupfk6eDEJ41yoCYiwW74FtX79ZI+Tm5+bn8493l3PLI38kJCSk3vszUD0aivCzgU66zx0dxww0JWhVrFat8tSo0ZOytkPUXUIAXLJTYqKiSHnkEXIKCuiWkMDCI0fIDQmht8mkSM99h6xGjjExKk6gEf+GDep7zTdus3la1TNnwrvvqvHl5SlhNb0PXk/OWlbP+++ryau01FWewRuB6hVCT5xQhO1PPkG7H307WsxDp+5pLSoiY84cj5/CX2DbAw2YhaNh1bfreXv9F9zw4C0G2Z9DaCjCXwXcL4RYgQrWFkopPdw5Bs5xFBWpwGNZmfrsS6NGmwD0G5fS01V9Wh3WPvccoMhr/UcfwaxZdNcHZPUKlBq5b9nCu6dOMTsuDoCpJ08ypKSECiBs61a63XabIm+99W21QkaGel9Zqax9vevLm7bN44+r8zQBNv3k441A9UHc4cPVNdWRrHs7y5cr5U39+HUY/eijWEtKAMgpKCDl+uuBAKz9QAPMQcIH675i0+mD3DzjD4RHhAet3WBDSklxeTHRYdEtJmsoWGmZbwOXA62FEEeBp4AwACnlQmA1KiVzPyot80/B6NdAHVCbP3aLBYYNo+Ctt5DA6pMnmZuWVnW9B/G4EY0pM9OrZRrjT1FTs4I3blSukl696HvwIBlz56p6tc89VxVDuE5KPnV358yYodobPlxdL6VamWiTiZeJqYqcn3wS7r5bEbDmw5dSTQT9+zvdQ75kFapLdXQnYm1CcFcxdcBaUkLG888DkHX0aFU6arXWviajkZOj9H7cdx8Hyc1TXl7Oum1b+erATq69e2yd2qpvSClZtnMZmScz6dOmDxP6T2gRpB8UwpdSjq/mewncF4y+DAQB/v7Y/U0EQsAjj3Djhg2snzmTNLO5amcreCEeNxJc6x6kdO9HI2B9SqVmBWsVp06cYFdEBN3fflsJqAmhAsZ9+nB8717POrP6wGlpqSJp3ThGp6VhtVqZmptLysGDZERFMTctTU1effq4PiN9JS+bDSIjXWvc1jTl09skV82qqFbQBOK8uaCC5OaRUvLASy+Q0Ks910wcU/cx1zOKy4vJPJlJfKt4Mk9mUlxejDm8ms1wzQDnXNDWQANAK7ARH+8stCFE9bK9AEJgCw319K0XF3tPYfQWQPaXbw6e32lW8JgxUFbGgA8+gG++ga5dFdk/9pjKjHn4YXUP/ft7brCy2WDXLrVPwKGbP3rKFH48eJAvn3hCjensWQa2asV/QkO5Z94871W6Nm5UmUjl5ape7oYNKri7cKHncwskeO5+jpvVb9NUQ+uC6lxQQUjfnfnaq3S/egCdezeNQibRYdH0adOnysKPDotu7CE1CAzCb4kwm1Uwcvt26NzZWfSjf3+VSlkTq0/LrsnMZGpBgatCpq/VgjsBPfGEKhQ+dKhn9ow+ACsl3HUXJ0JDuUgIVbi8f39F9pqbYvZsdQ8DB6rJwpcujsWCtaiIdvHx9OzY0eWWso4exWYyOc8fMkRNiu3aqTz6VavUfgO7XU04L72kJhh3uWN9RpPFEtgmKjerP+b226tWTjkFBWQ5hOlqFAj1Ru5BSt/NPnGC6a/Oo8dlfZsM2QMIIZjQf4LhwzfQAmCzKTLSVCI3bVIukx07FFHWpOiGzaYINjGRlOxsJ9nZ7a7Sy/ogrJ6A7HZFoK1bq9WGXt5YT04agaamknTwIFx5JWN++omczEz4618BKM7L46f//pf8Vq0Yqo3NPaUzwKpb5spKlclzzz0wYQKsWKEmx8GDFbGPGqVcSsnJ6v7d5Y7dM5ratlX3OnSomoi0FYO3zU46q18fE0m5/vrqZSS8wde91zF911ZczMOL53HTw7cR0Sqi1u00FoQQLcKNo4dB+C0ResIdNsyZUaKRkZsl6p4LnpObS9b+/YQIwcWffw75+ZCfT0ZkJN31pQlXroSEBPj4Y/j+e0hJUda8yaQIKDvbKat84oTSr9dtVBo9eTLWG9z00qWkOCqK6L17ycnLU+4Yx/G2q1aRsH07+cXFkJqKNJspLLMSG2ZRFpwvgpNSBYCjogBI/ugjVh46BNdeq4j9wAG1d+DAAeXKaddOaf+npDgnNPfnZrU6M5rsdti/X02w6emBl190Q4zF4jvo7Qv6VVYQUzFXrl/Le99+xTVTrm+SZN9SYRB+S4S3jBJfipBWK/aCAjJefNE5Afztb0yZO5c7jx2jS3k5dsAmBJ/27EmalCobZPt2pZZ5/Lh6bdXKsyC3xaLIPzxc/Zs61Ul8MTFYbTafOegZH3/savHabPDrr9C1K3k//ED8H//ItJ2zWZebzqg2qczpNx3h7lKRUhVqef11ReC9esG4cUT9/DMVUqogb2YmXHABHD4MF16oVkCajLM7yWtBZi2Xf+hQtXGrokI901On1CSxdWv1qa1eUGXtB5phVU8brr7ZnsG6Iz/whyfvqnNbBhoWBuG3VCbv3bQAACAASURBVLhbu+67P61WVYhk1SpWWq3KTz9xIgBru3SBnTspqKggNCwMKipICA9nhVYIRQvelpUpl0dJiVoFuBfktliUDr2W3qhVpqoNoqOVZENmJhVCUPjgFNZdd4q2F/Ri3Yl0CufMJG7TTifxAVNzcxlWUkL+kSPsiYggKTubezMzGX/qFLeYTKp84bBh6n7Ky9XktHWrcutMn64++5NLvu8+ZeXbbIrsr7jCWepQc/X4K7/oDTUh8SBn4lRWVvLeV1/yWdYWxk29tdbtGGg8GIRvwBX6vPfDh6G8HLOUKsOluFidk5kJiYnIX39VRAuKdDSt+UGDYO9eZdWfOaNkCSoqPH3cWvGRQYNcA6w1Ha/NUUF3wgTIzcU0ZQqxccmMOpTHuqQTjEpIIXbTdmid5CyEYrORevYsx0wm4oHkykp2REZiCwvj0x49uGfRImcg+Jpr1ORVXKxSMfPz1WpEP0H5ItfBg5UOf+vWyudfXKx2CU+Zoq6rqWBZTUg8yJk4jy+ej7l/W264/+YWE+RsbjAIvymiPoWw9ISyfz+YTJgqK1WtWo3cHZb06thY0tasUccc2jZ07qwCwaCygfLzFdk/9pjygXft6ppvrhUf0QdY9fdps3nX3tG+X7IE1q9X319+OUyYQEZ0NN3zTjGny1gKr5iifPipunTT+fMhPZ1uF15INylhyBASysq4aPt2bg0JUeS+cKGyngsLnX3ps4+0V70LRxOTGzDAWdLQmw6/EK6TRU1+z5qQeBCF9BasfA9zn7b0Hdav1m0YaHwYhN/UUN9CWHpC6d4dysr44ORJbr3nHmc/EydCcTFzn3ySNJPJmeYphEphnDwZ5s51qmZu3w7jxqkVQ5cuSqOmuu3+ZrOSOH7sMSWkpkkm6O61XVQUP61ZQ7vycgRw7LPPmLRnD6bOnUlbsABhNhNns0G48EjtdKmfazarYwkJaqyDBinizs6GNxwlHiIi4Pzz1eSluWHcfwd9UXitwIkvHf6a/p7eROsCIfEgCOntO3iQH2zZXH3TtXVqx0DjQ0hfet/nBhpucGVlcOhQg3VXa1itSjq4dWtlSb/+evCFsPRa8EIwesoUrI5UTnNlJQA2k4nphYXckpjIh7m59CgqIjckhKTKSu7t1AmbEDx2+jQ3tm6tVgeffqqyYEpKYPVqVbdW14eHrED//vz80UccB3qVlpIXGsqW6GjmJiURExOjApj+xNx8Eam341q/WjEXu129VlSoSaFnT/X6xhvquBacdf8doOa/jfZ7xsernH79NfrqV5rfX5OG0BWHr8qikhKz3Y5NCMx2OxazmU9WrKizQfBdRgbflh8yrPta4souV9IqtFVDdunzBzcs/KaGBipHV+WiGTbMmR2iyQpICVdfrSzZ1q3pceAA3X/zG7rv2wd9+rB+4kQQgpSHHuLG119XLpm9e5VLp0sXlZOuka4Qzvx0/aarHTvoduONdMvIgLw8Enr14qK8PNL0hOiQevDqD/fl6/bl5tC0Ztq2VZlF99/vlHPIzXUGlf1s5EJK77t8dfCQO7bbeePXX+lcVkarHj2caqL6imK9eqm4SWmp+m7TJhffvbWoiIwXXqjaAAdAbi75hw+rNvSTXS3dO+VlFTU638C5CYPwmxqC6JetgjsRWK2K2MvK1OuUKer4xo1O0tm2Tbk+du5UPvN77lHWu97frrfc33/fKd6l6d3Ex6t2Bg5Un/WbrvQblBYs8D3BufvD0enjnDzJkAMH2KLp42grA3c3h15rZsAA5UbSxjF2rHPTGLiWTXRPbdXv8n34Ya+/URU5FxerZ1VcDI8+ysbjxxlutztjGZr8hfZbnH++Sl0FlTnk/hyKixXZx8SoXcshIYTb7c60T28uqAD/76T27cuiFz5m0MhBAZ1v4NyFQfhNEUHwy1bBl4tDT9rgVJzULPxhw6oIb8kf/qBE1Mxm10CrHiYTdOgAwOjJk5lw/DgpBw9iB0zbtpERHc2yKVOchdH1wU1/E5wXq7VKQ37JEti1i4v69SPt7rtJefhh789AWw1YrSqjRkq1V0DnJ8/Lz+e7225hTKsoQocPZ/Tu3ditViXBIATmykoWHjnC6YgIhlZWKl/+zp2e5KqToqBPH5VZ1LcvCceOua4KoqPhootU8ZXwcDhyBEaPVuOKj/d8Drq0VDp1gtxcysrLnfGGOqRohoeH0yYuPqBzDZzbMAi/pcMXEYwdq6xDPWFMn66sXXCSxYIFLDx6VJHYhAmwbJmTzOx2V4vYAavNplwzxcVVfv3u0dHMffhh75OZvx2yvqzW4mKVBqlPh/QFreDJBx84U0vdsobeevs//ObkCX5p14EumzdzT04OtyYmKneLY38CS5aQ/+mnqnjL6tXK9795swu5mu129Xzi49VrSQlMnMi9e/awXhu/3Q6//z38/LN6PmfPKh3/NWvg4EEVDPcmx+AIphMVBcXF3PTEE842LRZk6hAKt28iNnUYor5cgQbOaRiE39LhT1hLC6r6UtB0pFbmhoTQPTNT+bo1Mtu9m8dOnfKsTasL/Fb5q8211DPxZ7XqLd4+fTxXHHq4pU++m5/P7LQ0NTS7ndN2O7/YcunQty29M3M4c83v6HfokJO0NfdMeTlRdrvae1BaqgTpLr7Y5f5sJpOaJHbvhh49FDkL4VrfNydHxTu00pEjR8LXXytL/9Ah9b1jteRxH1pfFotSNXW0KYFpVwnW9YVRbQVz8BPZa0RYC6zMe2IeD8x8gJj4+q3K1RJhEH5Lh57c3bFggbLy8/IUSbmTqmOyaHv4MG8VFDB31iymFhQwKPsoReGSq23lYLW4SvLOmsXCI0ecO3d9pSAGEqPwF8DWW7y6uILfGrFvvglFRcxOS1MuIYfrZUtkK564pA9v9Y8j5OJCUtucTwd9QXbNF5+VRQUoshdCpXJWVHiKuE2YAIsWKTmHZcucKwQNbdsqOYdDh6BbN3jxRbWD+dAhtY+hXTuPsadMm+bM0nG4mfQaO4XlRazLTadtdDLrctMpLC8iLvzcI9QvV37JsdxjfLnyS8ZNHNfYw2l2MAi/qaKmGRfVna/LyuGRR5zWc5s2ynI/ccJTBsAxWXSbMoVuFgtpQiDtdqZteJJ1P3zCqKPRzPlfLuKyy1z8yFUrguJip99f09OvyT6D6gLYeovXAb81YjXXkRBVQdAys5m4H/fR/56b2FdZRMff9mLFv9cgExJIe/ZZ52TiEF6LAhWvAEX4bs8sxmLh8gcfZOXhw4Tb7ZQdOcJNmZm009RAAV54QbVx9dWqoldoqHLjaEFvrX0HqlJU/Ty32DALo9qksu6k0haKDXN16UgpKSwvcgrNucFeaUdKWa87bK0FVjZ8vYER945gw6sbuPKmK4Ni5bfEUoa+EKwSh1cDLwEhwBIp5fNu398FvICzcPnLUsolwei7RaI6UnQn9+rOd8/KmTzZuYlqyxZVeOSOO1TuvGYp//GP2AsLq6xJDZHxkRTfVkrbVq1Z1zaHwjgzceHhTjLX5I01y9hdT99XuUFv9wVe/fv+VCW9Wfde4XAJlX++hiTs/O7zPey7ohNRsZG0GZhM1qdZrpNJSQmYTBwPCaG9lOq73/7WQzJi7VtvwenT6rvycggPZ31qqgrwzprlTE21WpWiZnS02rilC3p7RTVBWSEEc/rP8ErqUkqm7ZxVNRnM6T/DgxhvHXUV77+/jst/Pzqw51cLfLHyC1oPak1sh1jaDmwbFCu/pZYy9IU6E74QIgR4BbgSOApsFUKsklJmuZ36jpTy/rr2ZwD/f9zeyN1qVa6Z5GTfGRp6An3pJWeGyWuvKZmB++9XgU2H0uWEgwdJi493Bi0d1w+a9hCjkoezzr6RUekxxF7UW00aM2eqNocM4eHu3cnZuxcefrgquyU3JIRUzcL1tQO3Gstfs1K/fvNNn3/UWuHvaiEE3Horx7/4nCOYSPpyH9s27Odo0g8UmUycrSh3nVSkZOrp0wwLDVV6O717K/0hd8kIKdXz1AqYXH21a9GZyZM9A8haRTJ/q7kA9mcIIby6cQrLi1h3Ml1N0ie9u3uG9enLsm9XB/bsaoHC/EI+zvkYU08TJUdL6D+yPxterLuV31JLGfpCMCz8IcB+KeVBACHECuB6wJ3wDQQLZrMiBW+FStwnA6tVuWtyc5UvfuxYTzKIiVFW/PffK7EvffWm22935oOvXKnOnziRlJISpZujD1oWFyMkypLsaSV293zEiU3Kmt++XRHYli184r6bdNYsuusLeXtz01RjwQZipdYY0dF0GTWaLo4NZc9/8w1pYdG+XU3aDmV/+wa0+4iMdGoOuRP1Aw+46u9oFck03X1NIkLvgvLl3qrOlSclsWcko5JSq6Sk3d09DYHVH66m4rwKElolcKzoGIPaDQqKld9SSxn6QjAIvwNwRPf5KJDq5bxxQojLgJ+Av0opj3g5ByHEJGASwKJFi5g0aVIQhtgIqC+BMy1rZvt2RfruKpPulp6Uyjffq5dKF9TcNd6gadOnpjoJpl07V4tzzRrIyMAOSgqgd2+VRrhkCfzwA1MLChCgLES7VL7/kydV2wcPqkkiMlLp1Gj+aG9E5b4C0d/XkCFOF5Hj/ECs1EARY7HQ94EHGH/qFEPPnOFkVBQLdu9mSWmp/zz2QPYNuKeA7tzJmIgIisrLsX3/PVNHjCClpISMyEjeOf98Ppk8Wen8aBXBZs6Ezz6DM2coqKjgfxYLc7USj7rxB+LX174X6enMSR1C4V+XExse0yguj71b9iLaCY7bjhNxMoIvl32JQFDStqROhN9SSxn6QkMFbT8B3pZSlgoh7gFeB7w6A6WUi4HF2scGGl9wUZ8CZ5qF6EtlUm/pmc1qHHrr3ls+e1GRIvjkZPW6fLnSctcI6/HH1QRz+LA6v00bTL/8An/7m9LIeewxpYrZtauzzCEogqqocOrJJySoNi67TK0KunZVO3D1uvK+oM8mWrBAkaDu2VYXlNQQSNWoL5YvZ9zfptJhewmrYqO5zRTO+qFD1WS3Z4/3VZL7WH3dj1sKKEOHkrNxoyowY7OpZ9m5M90LClhSXKza0Sa6AQMU2Z8+DUA4kBYXR9rTT7vEE6rur7AQvvtOTazeJindqkmkbyGu9D6I8PH/VEpEaamramgQ8cyiZ+otuNoSSxn6QjAIPxvopPvcEWdwFgAp5SndxyXA7CD0e+4iyIUnXBCIlo5GOFarIvDqrHv3Nt012ouLFSkPGgT79sHJk+xq1YruUlZp41NQAKdOkREVpcocAgwbhlz1MYUREBvbEXH4F4iLU2OxWJT88rFj4FZE3Cc014WXZ6sFJU+XeUkv1UHTBcorKOBPTzzK8pnPkRjvuovUbreT3PU8RiRGM2bzbh4XIbTbupXz/D3Hmqzo3BU0b7jBuWLR7R2w7d3rOtH9619OuWYgQmsrKsqZ6aTtN7DbVfrn4cNw9KhSG3X/vxKoLpPDgGn96ef0LCsha8aEeiF9g5jrH8Eg/K1ANyHEhSiivw34g/4EIUQ7KWWO4+NYYG8Q+j13UZ8CZzXR0tGPY/hw/1ZndW6IIUOUa+i666CsjKvee4/8e+7heFgYpuxsMiIjWRIaqqSJtc0+M2YwbVQZ605tY1TCQOZ8MRCxc5fKBioshLAwePNNF+XHalHNs302a4GrHx+83tfSle+TlXuQJSvfZ8bE/+f2OARnz5wla8YEQouK6ZdfyKqnl3P/qVPen2NNs6a0Z+5IxTRXVFS5xOjdW8kymM1Kj0c7F+DLL51ZV8AJk4kOdrsi+nfecW4y08pMHjig+jxzRsVivKWtBvJ/yWHAVEZFkpieSWhRMRUxjUPMRopl3VBnwpdSVggh7gc+R6VlLpNS7hFCPANkSClXAQ8IIcYCFUA+cFdd+z2nURNSrm37gawYajIOb23q5Xm1a8vLISOD+AhVuDqhQwdYuJDu7dtXEb2Gwgob607vpO2JYtb98iGFkTcRt3y5sj5vv125pbZsqdkKyM89efjxy6zEvbjAg4jzCgpY8fVqRt87khWvrubum252sfLDwsJoHx5LYYGV2IRY2sWY+WjQxWRd9jt69unr+RxrmjWlD6jOmsXiI0eU2+2CCxRpjx/vGXTVXCkREWpjV3IyicePK/kGcJFrMJtMyo3TpYtTobR9e9/Ps7pn75hkQz5dxanRKVRYGifwaaRY1h1B8eFLKVcDq92OPal7/zfgb8Hoq8kgUFIOBDVxF7if62scUjJm/HhySkoAPHZorn3zTRdtenbuVD7+nTtVSmFpqdoQNGyYS36+HrFhFkbFDWDdwQ8YVZRI7OYdcK8jsBkeruICXbpUL63gdk8SKGwFsbjKA3j48c/ilYiXrnyfNgOTSewYT5uByV6t/Avbd+BsyVliE5QS55h7b2T+/63i5b5eNOH9FXM5dkzFMrSsJ20y0H13KiRE6eXs3auEzxybuDwmCy2TyiHD8HFJibMwjd4VlJWl4gHvvaeknr1s1qoRhGDNyEsxdYkl6+bR9eLOCQRGimXdYey0PddRkwBwTaonzZrFv7KyuOjqq9WxH36oyqlP0aR9ddr0DByoXgcMUESdmqoCwffdp673IpImhGDOkMcp/FYSu3kHInWoc8et3a7aLCjwXt7Qxz3J6dOZtmu21/RLj81F4EHEmnV/6YOXAnDx5Rex4t+eVn6oMHGm5GzV55DQECpjQsnYu4eUHr1cx+ht1aEft8mkLHhNDVP/3cmTDDhzhjPAzvBwEo8eZdKDD2ILCaFreLjrZPHaa2qF5fgdFu3bxwvTp1c9J7PJhC0ri+mFhZ4aRjXAmbNnOeUIDK/a8A07jh3AnBTL6PFX1qidYMNIsaw7DMI/11GTAHCg5zp21rYvL1f1YOPj1TVaTj14Wq2aSiaojUNaXKAanXVhMhH3sFuJP4tFkZ+me+8vxqFtGmvTBtLTKSzI8Zt+6bG5yI2INes+KjYSpCQhxESbAW08rPzxV17NfS/+g/P/djuhthIqLNFc/affMXfO28xKmEKH5GTXcbqvpPS/RV6eKqWorYS03cTx8XDwIK0GD4aff2YYgMnE+ksucQan9ZOFEIrs4+Nhxw7Wequopa+IFshOZQfWb8vgcE42SPhyy/e07XchIGjdMYmxN9/s+/fRob7960aKZd1hEP65jpoEgGtyrpTOnNeePeHHHz1VJSdPhnvugXnzVBqkyaRIY8gQlbqpZQJt3Fh9frqv1FF/biopVQqmVnVq7Fhi49sFlH7pq++vt2zm8PFjHPr2MI/k5pNacpbzolqxok+5k/ClJGrePJI/W8f2z9dTardT1rEd1kuGYBKC/23awKQbqskNd/8t9G4v/XdduqjncM01kJGhnuPGjepcreKWNllofvxt29R10dGeKyv3fs1mdY5WJtFxvPjPf+ap1xZjF5KKikpIiqTn0J50ffUDnt9zgLJo4ZGN44/QG8q/bmTy1A0G4Z/rqGngNZBzHXr3Of/9L5YRIxSpnznjFALTuxzsdqXSmJiocu0HDVKBVs2V88or8MsvKjjoJgVchQA1cDygWcm9eqkNXFOmIEwmT7eNF3eSL3yxaKmSYMg/Ruzd9yFaJ9ErL48Jc+Z69HtRXDxDf/mVnikpKvf9jilVY65ObMz9t+hwySVgtxMjJVbH+dr7bE0z5/e/V+6yzp2dOkb6yaKoSOni9+2rspz+8Q/nbmttZeW+D0Mj+f79kTt28NSZEio/XcUxaWPU3WOIT9K5saw2UvYd4mxyIha3bJzqCL22/nUj66ZhUYdIjoEGg0aOgfxBBHKugxR2REUpy/6111zIvm15udPlcPiw2jB16pTKIsnPV0Fcs9lZhi8kRGWPlJcrf7we2uRx553qVUpvI/IOzVrNy3NJh9TcNgJq3LYmwTB66/1Mu9qEzMv1XA05+p0QFk7Pbt1UnEF3TlUb6+5k2s5ZSB/9SuB0K8fuQbud7BEj2BsfT/aIEWQvWsTeV191/l6aWuigQeriKVNUQXO9i8xsVs96926ne0e/stKgtamVknTEYeZERXKZqGDCdZdy0yO3u5A9QIUlmlOpfWiVV8Cp1D4u2TjF5cXsPrEbS7iF3Sd2U1zuWlAmOiya3km9ySvJo3dS74D861JKlu5YyqNfP8rSHUt9PkcDwYNh4bdU2GwMLCvju+PHScrO5t49e7CZTEzNzeXFM2eUlVlQoFwHlZUwapTaBfrcc4poZs9Wsg7DhimFTSEUKbtJHtRlE5oECv86mdizkxHeJrEatK1Z5FJKFQOIbM268/MoXPIKcQluWUbuVrKu1CEEJuPgru1jkXa1SzcuTr1q9X81eHPHuU+eNptzUsjP962n5KXNFW2Tsd4wgvLhvcmyRHs3CISo2ntQ4XZOVGgUQgj25u2lY0xHokKjvD5nUYOyKrYyG9/88g1llWV888s33NrrViwRRiWu+oRB+C0Fbm6V0ZMnM6FVK6XbEhWFTQjalpeTevYs3QYPVj7zV15RxTi01D6bzdWqtNnUpqkpU5z+djfJA78pi35cTy6EmZTKnC5eSD/AmIW+rcuTUhnZejBfn9zMb5KHEetO9hr0Lie3SSQQGQePSSEC5Zras0e9RrkRpi9XjP5Zms1qdaWJqk2f7jEZeWtzw6bv+e6nrVx99VBVoMUfhKAixqxcLWW2KldLSUUJSOjRugdFpUWUVJS4uGyKy4v5IfcHEqMS+SH3h8BdOo5IkmyiKipNDQbhNzN4regkJdNPn+aWxMQqAtHXle0eFUXasmWwezdZdrtyoQwdqkheTzzTp3svhxgb65RxcLe2q0tZ9JE66EKYmasofH4jcQOHu57rI2Zx4MgRsg4dcN5+iJ11No18NzM8cYDDDq2dz9iftrwG90nh7bKPYNw49S/ah4WtwdvKxWJRv8XOnciBAyicei+xQqhJ0PEbe5tAD2Vn8+o3nzFuxu0B3583f310WDR9kh0pkcmeKZG1SZk0h5u5/PzL2XViF/2S+3lMEIZ/P/gwCL+ZwWtFJ5uNfXfdpYKqen+vZjXabColMyEBU3Y2vPyyChS6E4/N5jsoXF25QV8piz5cMVWEmbORUYcksbFtVPaK1aomGGDzD5m8v/4rDzI4UVpIv98Mqvqce+QEMXtiON4vj+GtB7ApbycdopJZX4dSf7605fXfV00KoWa6Fv8X+9//TmXPnpSPH0+hPEOsKYpKrb6vfhIcPNjVktdVC5OtE5lmX8O6tdsY1W64Uz7CywRaaLXy7J8n84KsoGh2RcAaOL4CsH/q9ydyS3JJikqi6HSRS+3Z2qRMCiGYOGCi12uMXbX1A4Pwmyv0YlrR0UrULC/Pu+tDV/A7Izqa7lpWiDcS95Vd4y9DyN36DLBYh4uu/p5PVDvz58Mjj3Ds5EkWfPEh4/56a7VEcFHfi5AVkj4hbbml71XM2D2H9XlbGJ08tF6136smhcJCLi0vZ93RoyQdPcLloV9T1KmSiKOhhFU4CqFok2BiInzyidpslZLilL92PLPC7RtZd4lQtWm1+MEZ6bJXQZtAv/xmPWlnSrB3ahuQBo5mUUeFRnlY61JKXtv1WtWx2O2xHrVnvaVMVmela9e4Fy83dtXWDwzCb47QlQ2kTx+YOJG5SUmkLV/u/Xwhqgp+z33qKacmTiBpnu5kHqiw2IwZStph40alFqmDpucuhCAuIhYmT4GNmxShObR3sg4epMdlfQK2+i65/jI2frqB+5a9CITQM7cn11xxGWs3b64654IOHehy3nkBtRcwHJNUeyHobTZz+ooRXJC6j7Zh8Rw/vwD7QUeinDYJ6nPwd+xw7kJ2PLNYq5VRBxY4i5WEmmHBbJe9ClUTaGQrbH260Wr/rx5ZN57DdLWo/9TvT5RUlFQRta3MVkXAO4/tRHwjqq09WxMr3b14ubGrtn5gEH5zhKMAtyamVbV7Vl+JyT0FTnPvuP9B+suXD0TKwZf7Rghyzpwh41//8mjWQ68+JkZlAOlWBB3atOHD79PpldLL43pfGH7dJVXv80/ms/WXYy7fv7HyS5JCzJhMJhJjYnn4j3diqosGDVTVGtgTEcGlcXHEjvsjowrfZV1RJqMsfVhf7hCO1SbXwkJnickBA1z3NQiBiI1lzgBd/MDLXgXtNzi/bXv+O7gvoU9Motwc5dfSdreo3YOyegKOzo8mrm8ccR3j/FalCtRK91W83NhVG3wYhN+U4SvTReei0XbPmu12F+JtFxVVbSGQauEruFhD90218LLS6NGlC/1/OI/M73fTZ0TfGjeZ0CaBhDYJLsd6D+5d9f7w3kM8tXQhM//flJqPVw/H/ScdPAj9+yMsFuZYJlJYWUxsSDSDedj1/IULlWUvpdpRO3u2p1yFPn7gRwJ7cO/eLP1iFWXmKBd3jDdLuzqLWvPRH889zqyps+j6YFcAulzehQ3/9m7lB2qlf7nyS9oObOsxgRi7aoMPg/CbKnxY1zEWixI/08S0HMXCY2JjFfk7zv+kLlW49LLJ7tv4vVn806crffZ27fz3qcUdvG3A8bLS+H/X38QfZz1ZK8J37dbTz3xBjwvJzc5l1bfrGXvZ5bVv3DFZ3bthA+sdxd4FEBdq1jp3Sh/k5KiNbAkJiuwHDqx+70I1z3fciNGs+XQ9mRH+Le1Agq5CCDZ+spF2A9sRGRsJQGRspFcrX3um7q4hd1RZ9w+OAPxPIMFCS87+MQi/qcKHq0Sr6OQVgcgs+ztHIyf3otpaLrib0JlLOqHbJCClpCKsEiml+qPTxR2mFhQEXErvugHD2bJmM0OuHlqDh6e/Jd9+5t7D+rD6lU+Zu3iJZ6orajX09ZtvuqZn+pCRMMXFqYnY7XlOP30a7rwTKaAwpIJYUygiP19teCsocBWX89a2VuNYnzqry80fnTKYV5/7mN6/680PuT/4tbQDsah3b9lN7vFcfvnuF5fj+tqzNfXdtx3YttoJJFhokatWVwAAIABJREFU6dk/BuE3VdTGVeLPHw8BFetg40YVHOzVy5mqqem7O4TOCg4cUMW109Iw2+0sPHKEoxUVJP/0E3/esIGiEBNHB+SSf5mV81b8iV9vew2hiztU1cUNYEfu+Kuu5p5/PwdXB/jc3ODPzxwZHYlMCCf/9Gl2vviix7WDpj3kspt2Tt+HEc8+60ynnDFDnVhUpOoLuBOLQ9lSxscxLTaddd1bMSongjl3v4do3951U5X7b6MRu5SuE//Mmcr/7/j9QkJCuPTivoQntuO23rfV2ap9etHT1VrIxeXFZJ7IxBJhYffx3ZwsPkmb6DZezw1kAgkmWnr2j0H4TRWBZNDUEGPGj+eFrCzyQ0JIOHCAezdswBYSQozZzNrZs5W7QVNwPHnSKY8MTuu+Vy9y09NJmz+fNE37felS+OwzkoYNY/1DD3G6spjRPz3GRWXJbBI/0f9vU4k/K7g7P5+U7Gx2x8Y66+IGgN+lDGfrl1sYfOWQGt9zdX7m1GuH88nyjzyuk1JSFlXO2hObaReZxLoT6RT+8yniVn6iUis3b3YWXPcV1NanWg4Oo60N1l0oKEyyEOde2N19RTdzpnL7DB3qnPj791eKm8nJLqu+W0ZfyV9fm8f4h9Nq/Hy83Xd1FnJUaBQIyMrNIjIskn9u+Cd9kr2f+/Sip+s8ppqgpWf/BIXwhRBXAy+hShwukVI+7/Z9BPAGMAg4BdwqpTwcjL5bNKqz2GuInOJiunfsqIped+zI+n/9C4TgrTvvhPvvd2qzjx2rpJO1dEEtP/7kScjLY0tUFBdp2SWOlM97d+1i/vXXkygEsSHRXG7uzVv56xFmuOKqVvxrjR1xww0weTLdqxF/c1eqvGbYCP77wt9J+c3gGluv1fmuIyIjsLvFFKSUTDu6lAOXHqOH6ELOmVxGxw0kdtt2p/79yJHqZH8bzFxSLeez7vgmRrUdTqy3DV36FV3//vDZZ0qs7pNP1PvJk9VvcOqU6l+Xnjn/o/cY9rvhNXouvhCIhVxSUYKUkosTL+anUz9hibOw6/gubGW2Omvl1NX/3tI19euslimECAFeAa4BegLjhRA93U6bCBRIKbsCLwKz6tqvAR/Q/Oy1UB40a9dodVJLSqC4mJSSEkVaUip9nRkzqna7YrWqVMJPPlHFye12liQkeIiR2Rxl+dRHwRPtbqNdWAKWUxGsrzxAYdt4RWZCVEv27kqVYWFh3PvbG1i74qsa37M2HnO42eOPX0rJ+o/W0iYuzuV4YWUx64oyCTsTgpSSjy55hTlDHlcVvWJilHzCE0+o95rapy+3W1Wq5SOs/c1bzBkwwzsJaSu611+Hv/zFWbJQe15CqLhKr15q05YjPXPpJx8R0iWOC3p2rtWzcYdmIRecLfBpIUeHRdM3uS/F5cV0jOnI4dOHyT+bzzt73qmTIqa2unh83eMs27ms1m35+r1bAoJh4Q8B9kspDwIIIVYA1wNZunOuB/7ueP8+8LIQQsiWrodak1q1gbYXaDlEL2OwmUyKMHbvhh49lMCXEGRERtL9xAnX+rX6vvr3V7r5evLR2tZ2+7ohLtTMb2L6sSBqDaNCuhB7vABSq6l+hW+lyssHDeY/6z7Hbrdz4tcTvPPif5n60kO1fZJV5PLdrm8x9ZfO4DIQGxLNKEsf9kVmMyo5lfOi26vvHC42aTZTWGFTK5AA3W7VSTU4TnLGS8aOVS40fSqmW3rm11vTybQd5YoxV9X6OXgbZyDZPNo5drudx9Y9RmKkd1G1mljsLd3/HgwEg/A7AEd0n48Cqb7OkVJWCCEKgUQgz70xIcQkYBLAokWLmDRpUhCGeA6iNuRcHWoqRWy3gxZkTHX8ZBMmwKJFsG8fLFumPmvQj0/f186dqmLTtm0wbBi2TZs8d/u6ze1CCOZ0nMjX8/cw5933EeP9qD7q4E+p8p7f3cicWW/Syh7KlQNTObL/CJ26dgr48elRXF7Mrl92EWMyk9cpjwGPPkhoeUjV9xLJoPgezJmss8iFQFosroHc/jOcAmfuqO2E7yt+ozu27/Ah3tr4JTc+8HuXS90lDGqDQLJ5tHOklPRv29+rz7ymGTMt3f8eDJxzQVsp5WJgsfaxMccSNHj7w66DTrxP1LDEITNnwsqVVWMw2+3KjbNvn3OX7smTDCkp8QgEevSlSweMuf12Ln/wQRYeOUJuSAhJ2dlYIyL47T/+QXJiosswEixxCPcApR/4U6pM6dGLRR0fIapVK0wmE3fPe45Of721Vo8yOiyaxIMJWC86xaTUW5lzjw9XixsC0coHar8as1rVe+030P+/cqwAThUU8Mzby7hl+h89xuwuYVDf8LciqKnF3tL978FAMAg/G9CbUR0dx7ydc1QIEQrEooK3zR++/rCDsQPVHTXJ3CkqUpZ9YmJVkNH044+kPPUUUwsKSMnOJiMyEqZN43eVlUrHXa/T4q0vB2mvfeutqvvu7ri/n4Kxgqm6Td/uj1jdczzP3Jpjh4/R/oL2teqjr70H9//mJgDyCgpISkio5qrAtPIB/xO+r3z75593FpsZM0a9epkwpi+ax/UP3ExIaIhLl74kDDwgpdciKIHAm4vG14qgNha7EILosGiD9GuJYBD+VqCbEOJCFLHfBvzB7ZxVwJ3AJuBmYG2L8d/70ZIJdlol4Dtzx0EioydPxurI356am0tKcTFZrVrx8t69rH37bZdzu0upCpokJqoMnMmTPYKxfneA1sf9BQAti+fWUVey4PvVtSJ8gME3jeCeT//Jr9ZfiTsVy31DxxMeHs6Y4ZfSITnZpS9ttRGIVr6UksIISWzqEET6Fs/CMN4MhKIi2LRJBcYBNmxQ5Q7dVl7HTpwgND6SKLNnRSpfEgZug6PnrGUkpmdyKrVPwJLK2n0t3bG0St9+4oCJfgm5NhZ7S984VVfUmfAdPvn7gc9RaZnLpJR7hBDPABlSylXAUuBNIcR+IB81KbQM1EQnvr6gI5EJx4+rwidCKB/+okV037uXksOHnbtb9cFBHzot/uC1CAtOFcz6hHtpwfIce63biusYR/7F+XRq1Yn8knzokUhIaCQvvPMmcx+Y5tHXnP4zqkg/NszilfRdrrkqlTmTl7tU8hozfjwv7N2rXGEHD7ruhdCXk7zkElcL32KhuKSEh1+dx40Pef55BSphEFpUTGJ6JmdbxwckqayHrczG+l/WU15Zzvpf1gdUsrCmejlG4LZuCIoPX0q5GljtduxJ3fuzwO/dr2sRaCxLV+8W0K0yUg4eVJkzZrPTX5+QQMqxYz7zxGs6dq9FWPCiglkPcPehT+3zJx4c91f+vuTpGgcp9S6Hvm37csH5FyCEYJMo49iJE0TFR3r11/uaCDzGl5tOYe8pxOmea05JCbvNZvoWFZERGYnNbgcp+fHQIUYDa9esUSdqv5Pjt7FLyV/mzeG394wlIjLCeRMO98yXH3wRkISBVshcs/D9SSp7g6iqJVY//8+NwG3dcM4FbZslGsqS1+BtG77DUs+IiqK7liapL3wSFeWyu9Wvlf7mm43iqgkE7j70Y9uPc+L4Cb744AtuvvvmGrXly+XQe2RfPt+8ibvGXu/VX+8vcOsyvqRUYs9ICNPpBgnB7NhYMv71L1V6UijdofSj+7lv0XLn/gcNjv9Xr7y3gn43DiU+Kd75nc49k2ct4uvo8OolDITvQubOZr2nUprDzYw8fyS7T+ymb3LferG8jcBt3WAQfnOEn9KEc9PSXAuceCt8gh8r/aGH/GaXjE5LIyc3l6z9+12uCwkJcW+qXqD3oZfbKrjqhYlcPvFSPvvvaq4ad1WNrXxvLodufS/igy/e5k/iBq/+en+B26rxlVmJfXE+Iv0uz+coRNXeBSkl046/wWe2HZwaUOKyH0CPE6fzGXihq2qo3j0zBmj9+rOBuWeE8HmePx+6v5KFwYQhm1x7GITfHOGvNKH7H6EQ3guf+IC7rr67G8haVES7+Hh6duzocl3W0aN1vq1AoWXxzPrwVdoMTKbnpRex+8s9tU5F9GbRtops5dKXe//+ArdCCOJKBaR7KfruwNmyMqSUnK4s5mtbJomY+TnhOJf9aTzfLV/hMcYQYaL0bClh4WFVYz4dIclL7U3r9B8Cd894ydB5Ku0xSotKAKgMq+Tw6GOEngkhJ/oYt/a61YV8DTI+t2EQfnOEH997jMVSp8InNpMp+Omk9YC8ggJWfL2aSx+8FGmXWJItbPi65jrrtckKcc/c8Ypq0nKllESGh9PKHsoVERfzWcUeEvLMlBSUeO3jvptu4dE3F3P9feOw2+0s3r6YvXl76XtVHyZNnkllTACTuj5DZ0hvfppyKxUxZkqLSvh+zvNV/T5+9A02FO3h6I58w4fexGAQfnOFj7hBnbNkAgjkxkRFkfLIIy7HcgoKuLhzcPRc/EEjwiUr36PNwGSiYiP5/r0tdL+2Bzm7c2ps5XvLCjGVmaiwlfrs31fA1gU+nmOMxcKPBw/yU04OtpISsv/vJf4eFs79vbpw88FjiDDl05/y7dOsXPklncztGdluGACtLJFIKVm8fTFfHfqKuIg4dp/MpLD3bZgDWMFVuYAS4+iwaj2tN+0mb3g/l13SQgie7XgH1soSrln2TK3dNi25CEljwiB8AzVDAHIAa597zuNYyrRpDZqSeerUacK/j+Dgt4c5eSqfw+lK/aOmOuveskJ2btnJnVdc6/X8wvIiPlz3FRVHJa/bV3H6uwoiQlTWTFKEhb9PvMdFioEYldVTWGYlNkylrY5OS+Paf/6TOBO8bS1kixR0+Daf9l27klNZyQlbHu+8+Rnn//5CCrCSMuryKjeKrczGvrx9xEXEcbr0NCntU/xa4Xri1TJ0Wm/ciRCCM8mJJKZnYrG7prYKIYgNja51Jo6RS994MAi/pcPHrs52kZEqQKv/Q9RVaAqa/k8Qoc+OoR98/ZflPLNwCT2uT6HdBe1cznW3MH1ZnL6yQkJ8FDePDbMQ9Ws0Z64p55I2Kf+/vXuPjrI+Ezj+fXIjJBAgEMJVULmG+0VRocpFrdp6r9XtabcL7aG12tM9rVtprXv0lLMH2912u6e6Nq1atR4vSFlUqHKTm4gRIRBIAAEl3EIIhMuES5LJs39kJiSTmWTIO8k7l+dzjseZ4U3e5w3kmd/8fs/7/Lh7/AMNX1PyaTG/f/M1fvrQpb70wT4RrP7b3xj/ta8h6VA2OoeBm75g0IxZvPvww0x67DGeej6fax6awl7v3maliZmpmYzJHUPRsSIm95vM3IlzQybTYIm3+PE5pJzxMPR/3yB1y3Y8U8ZxduOOtv2FhGC19O6xhJ+ogm1X6N+h6ZlnePfixfqbrRondd8OTS31/3G6RuBEYHXM/s8Pknplt6DJvnGimz1udoubfAcuRB4qPkC/O6YGjSF/ySIevO9bDLluaLM3j5HX5LHh6DoWr13NvTfNRFUp9Rzmw6Mb6ZOZ26SE80TVWfKmDWX110azp293pqT35nERyipPMvL2idwx6qrLeoNqdPENi7L+xNu9U3cKywob+tXXZHXhsVuFHWOF0X1AP3byt9Kc1dK7xxJ+Igq1XaG/7j5UFU4Y/X/ae9qmJY2rY7JSuvDI7xZw3T/PbHZc4Ajz+LnjlzXi7HwhicEBVUgAaz77lN3V5cy48eaQXzvtrht5789LGNg7l9fPv8uij14ls9ZLcfJezp/IYtZz38Zb6+VUbRUyJIOSw4e4mJfFgj8u5tll75PeLZOrRl8N0CTGwC6YQeMPaJuw8+ezGZ0zmjUH1iAIb+58s6Gssuj4Dnpk9qTo+A4ye6Qz9bF5KEpdah1JNUkIQqeuzds3hMNq6d1jCT8R+ev0Q21X2FIrCJf644TLXyb5x4VvMOKr48nu3bzhWeAIMycj57JGnCkh7ilYtGYV0x/9Op5qT4uJ7I7v3cn8p//MgWv3cMXpOs72SmfZyhyu+OUzyLe78sziRbxybBPjx1/aR6jqpjNUl9fxq+efDDr9FE4XzMC2Cameczw46kG2H9tOz4xL/eoDfz5zXqpvkR3JeXcr33SHJfxE1HikHrhdIbSc1Dv6ruE2qK2tZe2OLXz7/jlBk2+wEWa4I87Sz0vJ7daj2etvr15Bl+G9ebX4VYqOFTGi1wjmTpxLUpC5/qSkJIZNHEHaaS8FWfu5/3AaV1w9AfFtC7mqaDul+w6yaO+ShhH1hfMXSe+WGXTe/eyps2F1wQzWNqELMK7PuCZvdsF+Hp5qj827xwFL+ImotZF6DCT1UFSVOe/9knWpm9iyYgeqytjcsa3Oy4c74tzyfgH5P3q82esfFBYw89HbeWv123iqPaz8on67xR9M+kHQN5Bpd91I2X8fpfPq/vzn0wvqk73vuOX//jSTHvsZ05+6oWE94j69lVXnPg+64BlWF8z6i2zWNkEg6Jtd4M+jo+fdVRVPtQcgYbcjbA+O97Q1MSrUnbcx7nTNWZYtX0/vCb05dOYQWZ2yGhJjJCQlJTVrE/HS0iX0HzeoYePuUxdP0b1Td0oqSoKe1z8lc88j93P8+GkkyJuuN7WuST+efeWHSOuUemlP2fOVjOs2Au/ZWjas2sDV0+vn9a+efjUbVm3gTOWZoOf11FRRE9AjJ5w9Xv2j/vkz5rd7GaW/zfKPlv2Ih5c9zAtbX3C0F665xBK+iSvdUrvSv0c/ziWfY0DWAM5cPBOxEamqUu292CT5rNlcwNZTpRRmF/HkmidJTU5l1uBZZKbVb+QdeN7GG3G/svMVUtNSKTpwIPBUJNckMaP3FMouVDCj9xRWbN1M3uRR9Yl33Gze3j6CF54poddPFtBnQm7QLpj+83mqPdTV1TneALyjNv+uqqli+7HtVHurqfHWsO3Ytoi9YSc6m9IxcaWgeCfTR83gupk3kJGSwbnac2FVgrR256c/UW86v4k7/1LGu99/DhHh9bUrmTx3Gks/+gc9Ovdg29FtZC/PZt4T8+iT06fZ9wqckul1ZQ4znvwVA3r2arIY3K1rVkPF0abPivhwZEnD90r1nOPKj3dxoVc2g7YWU3mqB0s3lDY5z7k+57hvzn0N8/0jeo6gpKKE7M7ZbZ6D76i7YzNT698s1x5Yi6KMyx1npZsRYgnfxJXlBR9zwwPTyEirLxkMJ6mFc+enP1EPuG4Am97ZRtGXu/nyYBlbkney4qP1iAiV5yvJPJlJeVk5G9/dGHQevVkFzF/nUPJZMUNOd+H+Wbc0Oba2tpaCzUUs3LqOex4J3rM+7Ru3ssC3K1VgaWbjhdZdFbsY2Wsku07sYnTOaFQ1ZOfNtv6MIsXfdfPBUfX7ETe+i9jKOJ2xKR0Tdy43IQRbCA3UMHd+oZIx08aypmALr6xbxsmRlWR3zkZV+fGYH3PhHxeY9sNprF+1nqPlR5tNnQSbCx85KY8lhRspPXKk4ThV5d+e/QNrPfu484f3BF4gxY/P4eOX57Pz57Px1FShqk1KM5vFnDuGuRPn8uvpvwbgyTVPXtbUTjg/o0gSEbp26tqwY5bT6ShTz9EIX0SygTeBwcCXwDdVtTLIcV6gyPe0VFXvcnJeY4Kpqalh18EvGdNp2mV9XTgVKIGlimsXrmbstAnUdpP6HbFyx7L1/a30ndiXbv27cX7GeX6x4hd8Je8rYVUI3fPjbzDvN8/x55/+ksyMDH73xt/oO3UIIyePDB60CDVdMxtG3cOzhrN71e5mpZmBFTgiwo7jOy67vNLNu2OtFUPkOJ3SmQesUtUFIjLP97x5zRqcV9XxDs9lTIsqKivpPbw/ySmXt9lKuHX4jRP19G/OAmC8TqSqpgqvx8tTv32KqT+dSrW3mgs9L3Ch9AKFRwqpGtV6gkpNS2XI9SNYuPwD3t9WQN5N45gQKtn7NE6En+z/hKGThjYrzYxUeaWbd8daK4bIcZrw7wam+x6/DKwheMI3pt1t+3wPXXu27f6Btt756f+6RYsXNewZq6oM6D6A/Z79ZJ7MDDtBTbxpEp+t2cy9P3uQjC6tty3wJ8LCI4V4v/Ay7KvDgNAblPvjbWviduvuWGvFEDlO5/BzVfWo73EZkBviuHQR2Swim0TknhDHACAic33Hbs7Pz3cYnkkkiz9Zx+RZ17hy7u0F2zmw/gBLH1vKsn9bxsk/nKTbO91I25AWdoJKSk4i78ZRdM7s3Oqx/oqZ2eNmc0PZDYxKH0VG9/o3icDSzEAdVV4ZSbEYczRqdYQvIiuBPkH+6InGT1RVRSTUasogVT0sIlcBq0WkSFX3BTtQVfMBf6a31RkTFlWlVr1NEkJHbrLx9J+ebtPX+WPMSMlosWNn4Ne8sPWFhs3CSwtKqSiroHR989LMtmzpaOJXqwlfVUO2/hORYyLSV1WPikhfoDzE9zjs+/9+EVkDTACCJnxj2uLtVSu4euqlOe9Y2GSjcYwjeo5gV8UuenRufWHSU+1h7YG1VHurWXtgLc/9z3MN1SzGtMTplM47wHd9j78LLAk8QER6iEgn3+NewFSg2OF5jWmi/NRJ+gy61Pe+o8sI26JxjCUVJYzoNaK+hDKMhUn1ffjVgA/B/jtrg5Uunqk8w/xH5zdvu6BKyhlPk60MTXxymvAXALeIyOfAzb7niMhkEfmL75iRwGYR2QZ8CCxQVUv47c2/wUkC/BJ7vV42FG8nO+dSK+QmNehRWtnROMaxuWOZO3FuWL1quqR1Yfqg6fTO7M30QZe2N2zctiGwXl1VWfr3pRw+frjp3L6vR/713/0Vec+8mBD/XhKZoyodVT0BzAry+mbg+77HG4ExTs5jLpN/gxN/T/so24ow0qpraujWL7tJOWYsVHYEi7G1Khj/nP+c8XOatY0IVa+uqjy/6XlW1axi8LcGs/7N9Q0VPIE98lPOVlGbZTXu8crutI1H/g1OGu9aFcfe+2gd/Yb0b/Z6LFR2XE6MjUfwL217qdkbWahPNVU1VXyy/xMyOmVwghPkTMppGOX72zSkV1RyYsoYarpkhJwSMrHPeunEozC2Iown60u2c8uj8X/zdmt3nIb6VOP1ePF+4SUpL4l+Xfsx7MZhbPj9pTp9f4/8mi4ZvBhmpZCJTZbw41EMbEUYSfGclBqXlobbAqLJtJAqG19fxqhOeQwbOZy05Pr7AppslCJCbVYXqmxXq7hnCT9exfCuVZfj5KlTnL4YfRU4kRCstPSy1iV8C7JD3l7O+tRkfr2+tMmbf2CdvrUwiH+W8E1MW1GwiQm3X+t2GO0i1BROuKPuhgXZCXl8s6KSgS/Pb3FBNhYWuo0ztmhrYlppeVlYrQhikdPS0sAF2dqurX99LCx0m7azEb6JaYVH9vPQFTe4HUa7cDziDrJpeUfpyLYWJnyW8E3MqqmpIT0j3e0w2pXjDpW+BdmOFAttLRKVTemYmPUfr77ElDvjc3Qfy2KhrUWisoRvYtbp8x76DurndhgmQCy0tUhUNqVjYlLZ8eNU1pxzOwwThFX7RC8b4ZuYtGPvXoZPG+V2GO2mpa6XscCqfaKTjfBNTPp0TzHdv3Kl22FERGBFiy16mvZiI3wTkz6vPMqAqwa4HYZjwVoa26KnaS+W8E1MSkmNjw+nwZJ7NC16xvrUkmkqPn5rTELZd/AgyempbocREcH610TLoqdNLcUfS/gm5jz3fwu55Qe3uR1GRIRK7o5vuIqA1toxm9jjaEpHRB4QkZ0iUicik1s47jYR2S0ie0VknpNzGlN14TypafExwoforWiJpqklExlOR/g7gPuAP4U6QESSgWeBW4BDwKci8o7ta2vaYs8XX5DaN743dIkW0TK1ZCLH0QhfVUtUdXcrh10L7FXV/apaDbwB3O3kvCZxnfZ4yO7f0+0wXOHGAmq0fvowbdMRVTr9gYONnh/yvRaUiMwVkc0isjk/P7/dgzOx5cXl7zJs/HC3w+hwwco3jblcrU7piMhKoE+QP3pCVZdEOiBVzQf8md7+VZum0lPI6hH/O3kFsgVUEwmtJnxVvdnhOQ4DAxs9H+B7zZjLsnX3LlKz4rsdcii2/aCJhI4oy/wUGCoiV1Kf6B8CvtUB5zVxZuHqFcz4vtPxR2yyBVQTCU7LMu8VkUPA9cBSEfnA93o/EVkGoKq1wKPAB0AJ8Jaq7nQWtklE5adOkpScuDeH2wKqccrRCF9VFwOLg7x+BLij0fNlwDIn5zKJ7cDhw3Qe2IOkpMRN+MY4Zb89JibUer1kZGW4HYYxMc0SvokJ+44cIj2zs9thGBPTLOGbmPDm+lVMmhmye4cxJgyW8E3UU1WSUpJssdIYhyzhm6j31srlDL52mNthGBPzLOGbqFd6rIzBefGxnaExbrKEb6JaTU0NW/bvIbOr3VlqjFOW8E1UO1tVRa+rcklOSXY7FGNiniV8E9XWbdtKr3693A7DmLhgCd9EteWFBUy0ckxjIsISvoladXV1nL94we0wjIkblvBN1Hp71QpGzhjrdhjGxA1L+CZqnT1/nu652W6HYUzcsIRvolbFqUpSUjpiywZjEoMlfBOV6urqKDyyj5x+OW6HYkzcsIRvopLX6yUzy/ZsNSaSLOGbqPSb115m4q3XuB2GMXHF6RaHD4jIThGpE5GQxdIi8qWIFIlIoYhsdnJOkxiOV51h4JCBbodhTFxxuiK2A7gP+FMYx85Q1QqH5zMJoPzECU5XV7kdhjFxx+metiWA9Sk3EbVxWyFjbp7odhjGxJ2OmsNXYLmIfCYic1s6UETmishmEdmcn5/fQeGZaLLr4AEys6w7pjGR1uoIX0RWAn2C/NETqrokzPNMU9XDItIbWCEiu1R1XbADVTUf8Gd6DfP7mzhSXHGQBwZNczsMY+JOqwlfVW92ehJVPez7f7mILAauBYImfGM6pXdyOwRj4lK7T+mISKaIdPU/Bm6lfrHXmGYOlZWR1MnurjWmPTgty7xXRA4B1wNLReQD3+v9RGSZ77BcYIOIbAMKgKWq+r6T85r49V8LX+PUobjIAAAC6klEQVTW79zmdhjGxCWnVTqLgcVBXj8C3OF7vB8Y5+Q8HUIE0tPdjiLh9e/fn5xu1k7BxI8kiZ77W0XV1kXbSkTm+haZ44JdT3Sz64lusXA90fPWE5taLDGNQXY90c2uJ7pF/fVYwjfGmARhCd8YYxKEJXxnonq+rg3seqKbXU90i/rrsUVbY4xJEDbCN8aYBGEJ3xhjEoQlfIdE5LcisktEtovIYhHp7nZMToS7qU20E5HbRGS3iOwVkXlux+OEiLwoIuUiEhctSURkoIh8KCLFvn9rP3E7JidEJF1ECkRkm+96nnY7plAs4Tu3AhitqmOBPcAvXI7HKf+mNjHb3E5EkoFngduBPOCfRCTP3agc+SsQT/0maoGfqWoecB3wSIz//VwEZqrqOGA8cJuIXOdyTEFZwndIVZeraq3v6SZggJvxOKWqJaq62+04HLoW2Kuq+1W1GngDuNvlmNrM10r8pNtxRIqqHlXVLb7HZ4ESoL+7UbWd1vP4nqb6/ovKahhL+JE1B/iH20EY+gMHGz0/RAwnlHgmIoOBCcAn7kbijIgki0ghUA6sUNWovB7rQxuGcDaBEZEnqP+o+lpHxtYWEdrUxhhHRKQLsAj4V1U943Y8TqiqFxjvW8NbLCKjVTXq1lws4YehtU1gRORfgK8DszQGbmyIxKY2Ue4wMLDR8wG+10yUEJFU6pP9a6r6d7fjiRRVPSUiH1K/5hJ1Cd+mdBwSkduAnwN3qeo5t+MxAHwKDBWRK0UkDXgIeMflmIyPiAjwAlCiqr9zOx6nRCTHX50nIp2BW4Bd7kYVnCV85/4IdKV+r95CEXne7YCcCLWpTSzxLaI/CnxA/YLgW6q6092o2k5EXgc+BoaLyCER+Z7bMTk0FfgOMNP3O1MoIne4HZQDfYEPRWQ79YONFar6nssxBWWtFYwxJkHYCN8YYxKEJXxjjEkQlvCNMSZBWMI3xpgEYQnfGGMShCV8Y4xJEJbwjTEmQfw/uvSXLlz2dlQAAAAASUVORK5CYII=\n", 260 | "text/plain": [ 261 | "
" 262 | ] 263 | }, 264 | "metadata": { 265 | "needs_background": "light" 266 | } 267 | } 268 | ] 269 | }, 270 | { 271 | "cell_type": "code", 272 | "metadata": { 273 | "colab": { 274 | "base_uri": "https://localhost:8080/" 275 | }, 276 | "id": "ShjxL9Fu_I-B", 277 | "outputId": "c37d9024-dd9a-4099-9ded-d96b30b22006" 278 | }, 279 | "source": [ 280 | "model.score(X_train, y_train)" 281 | ], 282 | "execution_count": 52, 283 | "outputs": [ 284 | { 285 | "output_type": "execute_result", 286 | "data": { 287 | "text/plain": [ 288 | "1.0" 289 | ] 290 | }, 291 | "metadata": {}, 292 | "execution_count": 52 293 | } 294 | ] 295 | }, 296 | { 297 | "cell_type": "code", 298 | "metadata": { 299 | "colab": { 300 | "base_uri": "https://localhost:8080/" 301 | }, 302 | "id": "x2e2jBzK_RG5", 303 | "outputId": "e0a2a32d-91bd-4cd3-8f1c-73dd6e7ecb5a" 304 | }, 305 | "source": [ 306 | "model.score(X_test, y_test)" 307 | ], 308 | "execution_count": 59, 309 | "outputs": [ 310 | { 311 | "output_type": "execute_result", 312 | "data": { 313 | "text/plain": [ 314 | "0.8663157894736843" 315 | ] 316 | }, 317 | "metadata": {}, 318 | "execution_count": 59 319 | } 320 | ] 321 | }, 322 | { 323 | "cell_type": "code", 324 | "metadata": { 325 | "id": "DqLvgxPu_TsI" 326 | }, 327 | "source": [ 328 | "a = model.predict(X_train)" 329 | ], 330 | "execution_count": 54, 331 | "outputs": [] 332 | }, 333 | { 334 | "cell_type": "code", 335 | "metadata": { 336 | "colab": { 337 | "base_uri": "https://localhost:8080/" 338 | }, 339 | "id": "3JIvm5tA_XH4", 340 | "outputId": "0513c88d-566f-4448-f267-727d13063869" 341 | }, 342 | "source": [ 343 | "np.mean(a == y_train)" 344 | ], 345 | "execution_count": 56, 346 | "outputs": [ 347 | { 348 | "output_type": "execute_result", 349 | "data": { 350 | "text/plain": [ 351 | "1.0" 352 | ] 353 | }, 354 | "metadata": {}, 355 | "execution_count": 56 356 | } 357 | ] 358 | }, 359 | { 360 | "cell_type": "code", 361 | "metadata": { 362 | "colab": { 363 | "base_uri": "https://localhost:8080/" 364 | }, 365 | "id": "bucKNgjP_Zcw", 366 | "outputId": "fca27a58-2508-4692-c41d-594d231a9db1" 367 | }, 368 | "source": [ 369 | "y_train" 370 | ], 371 | "execution_count": 58, 372 | "outputs": [ 373 | { 374 | "output_type": "execute_result", 375 | "data": { 376 | "text/plain": [ 377 | "array([1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0,\n", 378 | " 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,\n", 379 | " 0, 0, 0, 1, 0, 0])" 380 | ] 381 | }, 382 | "metadata": {}, 383 | "execution_count": 58 384 | } 385 | ] 386 | }, 387 | { 388 | "cell_type": "code", 389 | "metadata": { 390 | "id": "AXAYXerC-P27" 391 | }, 392 | "source": [ 393 | "e = []\n", 394 | "for k in range(1, 21):\n", 395 | " model = KNeighborsClassifier(n_neighbors=k, weights='uniform',\n", 396 | " algorithm='auto', leaf_size=30,\n", 397 | " p=2, metric='minkowski', metric_params=None)\n", 398 | " model.fit(X_train, y_train)\n", 399 | " a = model.predict(X_test)\n", 400 | " # e.append(model.score(X_test, y_test))\n", 401 | " e.append(np.mean(a == y_test))" 402 | ], 403 | "execution_count": 81, 404 | "outputs": [] 405 | }, 406 | { 407 | "cell_type": "code", 408 | "metadata": { 409 | "colab": { 410 | "base_uri": "https://localhost:8080/" 411 | }, 412 | "id": "5OV3fzdufaX1", 413 | "outputId": "ae6dd9c5-c891-45de-a663-96e72eb70a12" 414 | }, 415 | "source": [ 416 | "e" 417 | ], 418 | "execution_count": 63, 419 | "outputs": [ 420 | { 421 | "output_type": "execute_result", 422 | "data": { 423 | "text/plain": [ 424 | "[0.8663157894736843,\n", 425 | " 0.8421052631578947,\n", 426 | " 0.8842105263157894,\n", 427 | " 0.8326315789473684,\n", 428 | " 0.8789473684210526,\n", 429 | " 0.8494736842105263,\n", 430 | " 0.8652631578947368,\n", 431 | " 0.8473684210526315,\n", 432 | " 0.8736842105263158,\n", 433 | " 0.8326315789473684]" 434 | ] 435 | }, 436 | "metadata": {}, 437 | "execution_count": 63 438 | } 439 | ] 440 | }, 441 | { 442 | "cell_type": "code", 443 | "metadata": { 444 | "colab": { 445 | "base_uri": "https://localhost:8080/", 446 | "height": 298 447 | }, 448 | "id": "75HEiUFzfbPj", 449 | "outputId": "633982e5-94d8-4169-c50f-d48b5555e7b3" 450 | }, 451 | "source": [ 452 | "plt.plot(range(1, 11), e)\n", 453 | "plt.xlabel('k')\n", 454 | "plt.ylabel('точность')" 455 | ], 456 | "execution_count": 64, 457 | "outputs": [ 458 | { 459 | "output_type": "execute_result", 460 | "data": { 461 | "text/plain": [ 462 | "Text(0, 0.5, 'точность')" 463 | ] 464 | }, 465 | "metadata": {}, 466 | "execution_count": 64 467 | }, 468 | { 469 | "output_type": "display_data", 470 | "data": { 471 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXTcd3no//czM9o10tiWNJIledfq2JZMEgIJS6wASRwITjfScltaLhQuBPqD20ILpbTn0sO5F7pAoS3d4ActHOCGksbOQhYggbAksSVb8iIvsSWNZMvLzGhfZj73j5lRZGVsj6z5zvc7M8/rHJ1I39k+nkh69Pk8z+f5iDEGpZRSaimX3QNQSinlTBoglFJKJaUBQimlVFIaIJRSSiWlAUIppVRSHrsHkC5VVVVmw4YNdg9DKaWyygsvvHDeGFOd7LacCRAbNmzg+eeft3sYSimVVUTk9JVu0yUmpZRSSWmAUEoplZQGCKWUUklpgFBKKZWUBgillFJJaYBQSimVlAYIpZRSSWmAUJc5fWGCp46ctXsYSikH0AChLvPXPzjG+77xIvORqN1DUUrZTAOEukz3YIjZ+SinL07aPRSllM00QKgFwclZTp2fAODYyJjNo1FK2U0DhFrQMxha+PzoWQ0QSuU7DRBqQc9gEIBqbxHHNEAolfdyppurWrkDAyE2VZexpbqcY2fH7R6OUspmOoNQABhj6B4M0tHgo6XWy6nzE8zMR+wellLKRhogFAAj4WlGx2bY3lBJs99LJGo4OTph97CUUjbSAKEA6B6I5R92NPpo9nsBNA+hVJ7THIQCYvmHArfQVleBSwSPSziqpa5K5TUNEAqIVTC11lZQXOAGYFN1mSaqlcpzusSkiEYNBwdD7GisXLjW7PfqEpNSeU4DhOLk+QnGZubZ0eBbuNbi93Lm4iSTs/M2jkwpZSdLA4SI3CkiR0XkuIh8PMnt60TkaRHZLyI9InJ3/HqBiHxNRA6KyGER+WMrx5nvFieoE5riiep+XWZSKm9ZFiBExA18CbgLaAfuF5H2JXf7JPBtY0wn8A7gy/HrvwYUGWO2Aa8Cfl9ENlg11nzXPRikrNDN5uryhWsttbEAoS03lMpfVs4gbgaOG2NOGmNmgW8B9y65jwEq4p9XAoFF18tExAOUALNA2MKx5rXuwRDbGipxu2Th2rrVpRR5XPRrgFAqb1kZIOqBgUVfD8avLfZp4J0iMgjsAx6IX/8uMAEMA2eAzxljLi59ARF5r4g8LyLPj46Opnn4+WFmPsLhQPiy/AOA2yU0+cs5qktMSuUtu5PU9wNfNcY0AHcDXxcRF7HZRwRYC2wEPioim5Y+2BjzFWPMjcaYG6urqzM57pxxZHiM2Uj0svxDQrPfq22/lcpjVgaIIaBx0dcN8WuLvRv4NoAx5jmgGKgCfhN41BgzZ4w5B/wEuNHCseatRAfXKwWIkfA0ocm5TA9LKeUAVgaIXwJNIrJRRAqJJaEfWnKfM0AXgIi0EQsQo/Hru+LXy4BbgCMWjjVvHRgIUVVeyNrK4lfc1pJouXEuf2cR/WfHNECqvGVZgDDGzAMfBB4DDhOrVuoVkb8QkbfF7/ZR4D0i0g18E3iXMcYQq34qF5FeYoHm34wxPVaNNZ91DwbZ0eBDRF5xW3NtfvdkikQN9/39T/nMvj67h6KULSxttWGM2Ucs+bz42qcWfd4H3JrkcePESl2Vhcam5zgxOs7bdqxNevvaymLKizx5m4c4dX6csel5njh8jkjUXFblpVQ+sDtJrWx0cCiEMbC9oTLp7SKJSqb8DBC9gVhl9cWJWQ7ENxMqlU80QOSx7oHYGdRLS1wXa/F7OToyRmzlL7/0BcIUuAW3S3jy8Fm7h6NUxmmAyGM9g0HWryllVVnhFe/T7PdyaXKO8+OzGRyZM/QGwrTUerlx/SqeOnLO7uEolXEaIPJY90CQ7VeZPcDLLTfybUe1MYbeQIitdZXc0ebnyMgYg5cm7R6WUhmlASJPnRubJhCaZscV8g8JidPl8i0PMRya5tLkHFvrK+hqqwHgycM6i1D5RQNEnuqJ5x86kmyQW6yqvJBVpQV5V+raF09Qb11bwabqcjZWlfGkLjOpPKMBIk91DwZxu4Sta68+gxARmuOJ6nzSGwgjAq21sV6SXa01/OzEBcZn9HwMlT80QOSp7sEQzX4vJYXua963pdZL/9nxvKpk6g2E2LimjLKi2FahrjY/s5Eoz/ZrU0iVPzRA5CFjDN0DQToarz57SGj2exmbmWc4NG3xyJyjNxCmfW3Fwtc3bliFt9ijeQiVVzRA5KHTFyYJTc1ds4IpId8ODwpNzjEUnLps+a3A7eKNLTU8ffQc0Wj+zKRUftMAkYe6Ex1cUwwQzTXxnkx5kofoHY4l8LcumkEA3NFWw/nxWQ4M6q5qlR80QOSh7oEQxQUumv3l174zUFlagL+iKG9mEIkKpvYlAeINzdW4XcJTusyk8oQGiDzUPRjkhrWVeNyp/+9v9nvzptS1NxDGX1FEVXnRZdd9pYW8av0qntC2GypPaIDIM3ORKL2BUNIDgq6mxe/l+LlxInmw/t4XCF+x/PeOthrdVa3yhgaIPHPs7BjTc9ErdnC9kuZaL9NzUQYu5vYvxum5CMdHx1+Rf0jY1eoH4GndNKfygAaIPNOd4g7qpfKl5cbRkTEiUUN7XfIAsbm6jA1rSnlC8xAqD2iAyDM9g0F8pQWsW126rMc11cQS2rleydS70GLjymdk7Gr189yJC0zormqV4zRA5JkD8Q6uyY4YvZqyIg+Nq0tyfgbRGwjhLY79W6/kjraa2K7q4+czODLlNDPzESZnc/uPBA0QeWRydp5jZ8foWGb+IaHFH2u5kcv6hsO011VcNYDetHE13iKPHiKU5z723R7u/8rP7B6GpTRA5JHeQJioYdkVTAnNfi8nRseZnY+meWTOEIkajgyPXbOBYYHbxetbqnnqyKjuqs5TEzPzPHJohJ6hEOHpObuHYxkNEHmkO36ucqotNpZq9nuZjxpeujCRzmE5xqnz40zNRV6xQS6Z2K7qGXqGQhkYmXKaJ4+cY2Y+ijEvt87PRRog8siBgSD1vhKqvUXXvnMSC5VMOZqo7l10BsS1vLG5Bpegy0x5am9PgDXxo3oPDFyyeTTW0QCRR3oGQ+xIsYNrMpuqy3C7JGd3VPcFwhR6XGypuXYLklVlsV3V2t01/4zPzPP00VHeumMtm6vLODCQu725NEDkiYsTs5y5OHndy0sAxQVuNqwpzdkA0RsI0+L3UpBiC5KuNj99w2ECwSmLR6ac5MnDZ5mdj3LP9jo6GldxYCCYs2elaIDIE8vt4HolLbVejuVgJZMxht5A6Iob5JK5I3FWte6qzisP9wxTW1HMznWr6Fjn4/z4LIOXcvOPBA0QeaJnIIQIbLvOEteEphovL12YYHoukqaROcNwaJpLk3NsrU89QGyuLmfd6lKe0jxE3hibnuNHx0a5e1sdLpfQGa8IzNVlJg0QeaJ7MMiW6nLK40doXq+WWi/GwPFzuTWL6FtGgjpBROhqq+EnJy7k/IYpFfPk4XPMzkfZvb0OiP08FHlcGiBU9jLG0DMYvO79D4vlaiVTbyCMCLTWph4gAO5o8zM7H+Unxy9YNDLlJA/3DLO2snhh5lDgdrGtvlIDhMpeQ8Epzo/PpiVAbFhTSqHbxbFzuRYgQmysKqNsmTOsmzborup8EZ6e48fHRrkrvryU0NHo49BQiLlI7m0g1QCRBxIdXHesMP8A4HG72FxTnnNN+3oD4WUlqBMKPS5e31zNk0f0rOpc90TfWWYjLy8vJXSs8zEzH+XIcG79TIDFAUJE7hSRoyJyXEQ+nuT2dSLytIjsF5EeEbk7fv23ROTAoo+oiHRYOdZc1jMYpNDtWvbyyZU0+8tzqpIpODnLUHDqmi02rmRXaw2jYzMcCuTujloFe3uGqfeVLCwvJXQsJKpzb8OcZQFCRNzAl4C7gHbgfhFpX3K3TwLfNsZ0Au8AvgxgjPl3Y0yHMaYD+G/AKWPMAavGmusODARpX1tBoSc9/7ub/V6GglOM5UgPmr7h5SeoF7u9NbarWs+IyF2hqTl+3D/K3dtqX9HIsd5XQlV5EftzMA9h5QziZuC4MeakMWYW+BZw75L7GCDxU1kJBJI8z/3xx6rrEIkaDg6F0rK8lNAST1TnyiwiUcGUSg+mZFaXFbJz3SrNQ+SwH/SdZS5i2L197StuExE6Gn05mai2MkDUAwOLvh6MX1vs08A7RWQQ2Ac8kOR5fgP4ZrIXEJH3isjzIvL86Ojoykecg06MjjM5G0lLgjqhpTYWIPpzZEd1byCMv6KIqvLr61EFsKutht5AmJHQdBpHppxi38HY8tKV/tDqXOfj5OgEocncmFUn2J2kvh/4qjGmAbgb+LqILIxJRF4NTBpjDiV7sDHmK8aYG40xN1ZXV2dmxFkm8VdNOgNEva+E0kJ3zhwe1BsIXXf+IeGOtthZ1U8e0VlErglNzvFM/yi7t9dd8ZyQhTzEYG7NIqwMEENA46KvG+LXFns38G0AY8xzQDFQtej2d3CF2YNKTfdAEG+Rh41rytL2nC6X0FRTnhM9mabnIpwYnbju/ENCU005jatLtHlfDnq8byS2vLSt7or32d5QiQgcOKMBIlW/BJpEZKOIFBL7Zf/QkvucAboARKSNWIAYjX/tAn4dzT+sSM9giO2NlZfVbadDs9/L0ZHsz0EcHRkjEjUrDhAiQlern58cP8/UbG61Icl3ew8O07CqhO1XyeN5iwvYUl2ec5VMlgUIY8w88EHgMeAwsWqlXhH5CxF5W/xuHwXeIyLdxGYK7zIvt0V8PTBgjDlp1Rhz3fRchMPD4RU36EumpdbL+fEZLk7Mpv25MylxBkR73cqT+F1tNczMR/mJnlWdM4KTszzbf/6qy0sJiUR1LnV2tTQHYYzZZ4xpNsZsNsZ8Jn7tU8aYh+Kf9xljbjXG7IiXtT6+6LE/NMbcYuX4cl3fcJj5qFlRi+8raV6oZMruZabeQAhvsYfG1SUrfq5Xb1xDWaFb8xA55PHes8xHDfdse2X10lId63xcmpzjzMXJDIwsM+xOUisL9cQT1B1pTFAn5E6AiO2gvtZfh6lY2FV9+FxO/RWZzx4+OMy61aXckEKX344c7OyqASKHdQ+GqPEWUVtZnPbn9lcUUVHsyeqmfZGo4chIeMUVTIt1tfk5NzbDoaFw2p5T2ePSxCw/PZ7a8hLE9geVFLjZn0OJag0QOax7ID0dXJMRkfjhQdkbIE6dH2d6LrriBPVit7dUI6Llrrng8b4R5qNXr15azJODnV01QOSo0NQcJ89PWLK8lBCrZBrL2uWU3hXuoE5mTXkRnY0+LXfNAQ/3DLN+Temy/oDoWOejLxBmZj43Ktk0QOSog4OxxnFXK81bqZZaL+Hpec6NzVj2GlbqDYQp9LjYUlOe1uftavNzcCjE2bDuqs5WFydm+emJC+zeltryUkJHo4/ZSJTDOdLZVQNEjkqcQb293roZRFNNdh8e1BcI0+L3UuBO749BV/ys6qf0rOqs9VjvCJGoeUVr72tZSFSfyY39EBoggJn5SNYuk1xJ90CQTVVlVJYWWPYazf7YX97ZmIcwxsRbbKRveSmhxe+l3leizfuy2N6eYTZWlS37jJC6ymJqvEU5k4fI+wDxwulL3PS/nuDFHKo8gNgMwsrlJYitt1eVF2XlDGI4NM2lybm05h8SRIQ72mp49vh5pudyYy06n1wYn+G5k8tfXoLc6+ya9wGipdbLbCTKgy8O2j2UtBkJTXM2PGNZBdNiLbXZ2ZMpkaC2YgYBsKvNz/RclJ+e0F3V2eax3rNEooa7U6xeWqpjnY+XLkxyKcu7DIAGCMqLPLy5vZaHe4ZzpvIgkX/IRIBo9nvpPzeedcdt9gXCiJC2U/aWumXTasoK3XqIUBbaezDApqoy2uq81/X4XOrsmvcBAuC+nfWEpuZ4+khunCnRPRDE45LrOmN5uZr9XiZnIwwFpyx/rXTqDYTYWFVGWZHHkucv8rh5XVM1T+mu6qxyfnyG505cSHlzXDLbG3w509lVAwRw25YqqsqL+N7+3Fhm6hkM0VrnpbjAbflrJVpuZFseItFiw0q72moYCU8vLGdlu0NDId76xWcZvJQ7vYaWevTQCFHDsquXFisv8tBc482JPIQGCGI7IO/tWMtTR85l/bphNGroHgxa0sE1mUQlUzYdHhScnGUoOJXWFhvJ7Gqtie2qzoFlJmMMf/ZQLweHQnzp6eN2D8cye3uG2VxdtnCs7vXqaPTRPZj9nV01QMTdt7OeuYjh4YPDdg9lRU5dmGBsej5jAcJbXEC9rySrEtV9FieoE6rKi+ho9OVE241HDo3wwulLbKwq4zvPD+bkLGJ0bIafn7rA7u1rV9y8sWOdj+DkHC9dyO73SQNEXHtdBS1+L9/L8mqmngwmqBOa/eUcO5s9hwf1DWcmQAB0tdbQMxjiXBbvqp6Zj/DZR47QWuvl6+++GZcIf//DE3YPK+0e7Y0tL92zguWlhJc7u2b3hjkNEHEiwp6d9bx4Jsip8xN2D+e6dQ+EKC10p719xNU0+72cODfOfCSasddcid5AmNqKYtaUF1n+Wl3xs6qzeVf11587zZmLk/zJ3W00rCrl125s4NvPDxDIssKEa9nbE2BLTflCXm0lmv1eSgvdWZ+o1gCxyNs76hGB7+1fenR29jgwEOSG+krcaT5i9Gqa/bG9JNkyne4NhCzZIJdMa218V3WWBohLE7N84cl+3tBczeubqwF4/xs3Ywz8449yZxZxbmyan5+6mHLn1mtxu4TtDdnf2VUDxCK1lcXcurmK7+0fzMrk0ux8lL7hsKUdXJNpqc2ew4Om5yKcGJ3IyPISxGamu1preLY/O3dVf+GpfsZn5vnE7raFaw2rSvnVVzXwzV8O5ExDwkcPjWBWWL20VEfjKvqGw1n5/z1hWQFCRHaLyKCIDIvIb1k1KDvt6axn4OIUz5/OvrXDoyNjzM5HM5agTthSU45IdpS6Hh0ZIxI1GQsQEGveNzUX4bkTFzL2mulwcnScrz93mt+4ad0rll0+cPsWIlHDP+TILOLhnmGa/elZXkroaPQxFzELOa9stNwZxKeANwI3AB9N+2gc4M4baikpcPPgi9m3zJTYuWl1D6aligvcbFhTRv855weIl1tsZO49umXTGkqz8Kzqzz5yhCKPi4+8qfkVtzWuLuW+znr+4+dnODeW3bOIs+FpfvnSRXancO70cnSuS3R2zd5lpuUGiAJjzHFjzAUge8pWlqGsyMOdN9SytyeQdVPDnoEga8oKaVhVkvHXbqopz4oZRG8ghLfYk9H3qLjAzW1bqrJqV/XPTl7g8b6zvP+Nm6n2Jk/mf+D2LcxFovzTj09meHTp9cjB4fjyUm1an9dfUUxdZXFW5yFSChAi8kUR+QLQICJfEJEvApusHZp99nTWE56ez7rKk+7B2BGjK63hvh4ttV5eujDp+KCa2EGd6ffojjY/gdB0Viw3RKOGz+w9TF1lMe++7co/5huqynh7Rz1f/9lpzo9n56FRAPsOjtDi97KlJn3LSwnZ3tk11RnE88ALwB/G//s88AmrBmW3W7dUUeMtyqplpvGZefrPjWd8eSmh2e8lEjWcHHVuiXAkajgyEs7o8lLCG1tjFUBPZcGu6u93D3FwKMQfvqWFksKrt2v5wK4tzM5H+adnsnMWMRKa5penL6Y1Ob1YR6OPMxcnuZClATTVAFFkjPna0g9LR2Yjt0t4e2c9Pzx6jotZ0nrj0FAIYzK7QW6xbKhkOnV+nOm5aEYT1Ak13mJ2NPp4wuGz0um5CP/n0aNsq6/k7R3117z/5upy3rpjLV9/7nTW/Kws9sih2PLS9bb2vpZERWF3lnZ2TTVAvM/SUTjQns565qOG/+oO2D2UlHTHp7GZrmBK2LCmjAK3ODpAJBLUmdoDsdQdrTV0DwQdndT9l2dPEQhN84ndbbhS3Evzwdu3MDUX4V+ezb5ZxN6eYVprvZZtLN3WENuTlK2J6lQDhE9E7lv6YenIbNZWV0FrrZcHs2TTXM9giMbVJawuK7Tl9Qs9LjZWlTk+QBR6XBndZb7YrvhZ1T90aFv50bEZvvz0cd7U7ueWTWtSflyT38vd2+r42k9PE5zMnlnEcChWzp6O1hpXUlroodnvZX+W5iFSDRCVwD3AWxd93GPVoJziV3Y20D0Q5MSo8wu2DgxkroPrlTT7vY7u6tobCNHi91Lgtmd/aHtdBWsri3nCoWdV//UTx5iZj/LHd7Uu+7EP7NrC+Mw8//rsKQtGZo19B0cA65aXEjoafXQPBLPuUC1IPUCcMcb8njHmdxd9/J6lI3OAezvW4hL4T4fPIs6PzzAUnMr4DuqlWvxeBi5OMTEzb+s4kjHG0BcI25J/SBARdrXV8IwDd1UfOzvGt35xhnfesp5N1cufYbXWVnDXDbX8209eIjQ1Z8EI029vT4D2uorr+vcuR2ejj/D0PKcuOLeA40pSDRC9lo7CoWoqirl1SxUPvjjk6Ojfs7BBzuYZRDxR3X/OeTOu4dA0lybnbA0QAF2tfqbmIvzspLN2Vf/lvsOUF3n4cFfTdT/HB3dtYWxmnq/+5KX0DcwigeAUL54JWla9tFhHFm+YSzVA/KmIFCe+EJESEdlwrQeJyJ0iclREjovIx5Pcvk5EnhaR/SLSIyJ3L7ptu4g8JyK9InJw8etn0n076xkKTvHLly7a8fIpOTAQwiVwQ729v/wSh6w4MQ9hd4I64TWb11BS4HbUIULP9I/yw6OjPLCriVUryGFtXVvJm9r9/MuzJxmbdvYsYl/83Berl5cgVulVXuTJyv0QqQaI7wCLezlH4teuSETcwJeAu4B24H4RaV9yt08C3zbGdALvAL4cf6wH+AbwPmPMVmLtPWz5jnvL1lpKC92O7vDaPRCMtxe25nzlVDWuLqXI4+KYA3dU9wZCiMSWQuxUXODmtqYqnjrijF3VkfimuHWrS/nt165f8fN9aFcT4el5vvbTl1Y+OAvtPTjM1rUVbKwqs/y1srmza6oBwmOMWShPiH9+rT81bgaOG2NOxu//LeDeJfcxQOInthJI1JS+GegxxnTHX++CMcaWRdvSwkTrjWHHrRtDbG29J4NHjF6N2yU0+csdmajuC4TZWFVGWZG9QRRihwgNBac44oBA+t0XBjgyMsbH7mylyLPyM8y3NVTS1VrDPz97inEH5qIABi9Nsj9Dy0sJHY0+DmdhZ9dUA8SoiLwt8YWI3Aucv8Zj6oGBRV8Pxq8t9mngnSIyCOwDHohfbwaMiDwmIi+KyB8lewERea+IPC8iz4+OWlc6eF9nA2Mz846sPhm4OMWlyTnbNsgt1ez3OnaJyY4d1Mnsao2Vuz5p8/fTxMw8n3v8GK9av4q7t6WvD9EDXU0EJ+f4+nOn0/ac6fRIvHopXWc/pKKj0cd81HBoKJSx10yH5WyU+xMRGRCRAeBjwHvT8Pr3A181xjQAdwNfFxEX4AFuA34r/t89ItK19MHGmK8YY240xtxYXV2dhuEk95rNa6itKOZ7Dmy9YVcH1ytp8Xs5G54hNOmcNejg5CxDwSna6+xdXkqoqShme0Ol7YcI/eOPTjA6NsMndreltTdVR6OPNzRX80/PnGRy1nmziIcPDrOtvpL1a6xfXkpYSFRn2TJTSgHCGHPCGHML0Aa0GWNea4y5ViP4IaBx0dcN8WuLvRv4dvw1ngOKgSpis40fG2POG2Mmic0udqYyViu4XcK9nWv54bFRxzUl6xkIUuRxLbS6sFuikumYg1p/9wUydwZ1qrpa/RwYCNr2/TQcmuIrz5zknu117Fy3Ku3P/6GuJi5OzPKNnzlrFjFwcZLugWBGktOL1XiLqfeVZN2GuVS7uVaKyF8BPwR+KCKfF5Fr/cn6S6BJRDaKSCGxJPRDS+5zBuiKv0YbsQAxCjwGbBOR0njC+g1AX4r/Jkvc19lAxIGtN7oHY0eM2rX5a6nEgStOav2d6KDqqADRVoMx9p1V/bnHjhGNwsfuXP6muFS8av0qXtdUxVd+fJKpWeesuz9yKFa9lMnlpYSORl/Wlbqm+lvlX4Ex4NfjH2Hg3672AGPMPPBBYr/sDxOrVuoVkb9YlM/4KPAeEekGvgm8y8RcAv6KWJA5ALxojNm7vH9aerXUetm6tsJR1UzzkSgHh0KOWV4CWFtZTHmRx1F5iN5AmNqKYtaUJz/XwA5b11ZQW1FsS3fXQ0MhHtw/yO/euoHG1aWWvc6Hupo4Pz7Lf/zijGWvsVx7e4bZ3lDJujXW/buvpKPRx1BwitExZ61CXE2qAWKzMebP4hVJJ40xf04K50EYY/YZY5qNMZuNMZ+JX/uUMeah+Od9xphbjTE7jDEdxpjHFz32G8aYrcaYG4wxSZPUmbans56ewRDHHbJ80n8u1p3U7h3Ui4kIzX5nHR7UGwg5avYAi3dVjzIzn7m/sI2JlbX6Sgr4H7dvsfS1btqwmtdsWsM//OiEI6p3Bi5O0j0YsmX2ANmZh0g1QEyJyG2JL0TkVmDKmiE519virTecck6E3R1cr6SlNlbJ5IQ6/+m5CCdGJ2zfIJfMHW01TMxG+NnJzG3CfPLwOZ47eYE/uKOZypICy1/vQ11NjI7N8C0HzCL2ZnBzXDI3rI13dh3InvPuUw0Q7we+JCIvichp4O/IwxbgNd5iXtdUzfcPBBzReqN7MEhlSQHrbZguX01TjZdLk3OcH7e/s+eRkTEiUeO4GQTAazdXUVzg4qkMlbvORaL85SOH2VRdxm++el1GXvM1m9dw88bV/L0DZhF7e4bZ0eizdFntakoK3bTWenNvBmGMOWCM2QFsB7YZYzoTm9jyTaL1xs9P2d96o3sgln+w44jRq3HS4UEvVzA5J0+TkDir+okMnVX9zV+c4eToBH98V1tGixo+3NXE2fAM33lhMGOvudSZC5McHApxj02zh4SORh89AyFH/IGZilSrmD4lIp8C/gD4g0Vf5503t9dSXuThwRft+2YHmJqNcPTsmKPyDwlOqmTqDYTwFntoWFVi91CS6mrzMxScsoOlNJ4AAB/RSURBVHz3eXh6jr95op9bNq3mjvi5FJny2s1reNX6Vfz908eZnY9e+wEWSCwv3ZXGDYHXo6PRx9jMfFYcIQCpLzFNxD/es+jz7OtdmwYlhW7uvKGWRw6N2Fq+1zccIhI1tndwTaaqvJDVZYWOmEH0BsK011U4bpaV8PKuamurmb709HEuTc7yyd3tGX8vRIQPdTURCE3zXZtmEXsPBuho9NGwyt7l2M54ojpb9kOkusT0eWPM54Hzic/jX+el+3bWMz4zzw9sbJVwYCC2ZX+Hg0pcExYqmWwOEJGo4ciIc1psJOOvKGZbfaWlbTcGLk7yb8++xH2dDdxQb8978fqmKjoafXzp6ePMRTI7i3jp/ASHhsKWnhyXqk1V5XiLs6ez63IXIrNj4cxit2xcw9rKYluXmboHgqytLKamwpYu6NfU7PfSf3bc1kqmU+djZcBOTFAv1tVWw/6BIBcs2lX9vx87issFf/iWFkuePxUiwoe7mhgKTmW8Zc3Ly0v2BwiXS9jRkD0b5lLNQfyXiDwEbBKRhxIfFo/NsVwu4d7Oep7pP2/bppeewaAjl5cSmv1exmfmCYSmbRtD4gyIrTafk3EtXa1+jIGnj6a/4eT+M5f4r+4A733dJmor7f1j4o0t1Wyrr+Tvnj7OfAZnEXt7htm5zke9zxl5qI5GH0fPjjlqh/mVpDqD+BzweWLtuj+/6CNv3ddZTyRqeMiG1hvByVleujDpmA6uySxUMtmYqO4NhCn0uNhs8ZGSK3VDfQX+iqK0LzMZY/hfew9T7S3i99+wOa3PfT0SuYgzFyf5/oHM/NycHB2nbzjM7u1rM/J6qeho9BGJGg5mQWfXVHMQP0r2YfXgnKzJ72VbfaUty0zdg/H8Q6Nz19aba+KVTDbmIXoDIVr8Xsf0qboSEWFXq58fHxtNa5XPvoMjvHD6Eh99U7MjzsGA2ObA9rqKjM0iXj45zt7qpcVe3lHt/A1zqS4xjYlIeNHHmIiErR6c0+3prKc3EM54tU7PQBAR2GZTwjEVlaUF1FYU2zaDMMbQFwg7Pv+Q0NUa21X981PpOat6Zj7CZx89TGutl1+7sfHaD8iQxCzi1PkJHu4Ztvz19h4c4VXrV1FX6YzlJYCq8iIaVpVkRaI61RmE1xhTYYypAE4kvrZ4bI73to61uF2S8dYb3YNBNleX4y22vlXCSjT5y21r+z0cmubS5FzWBIhbt1RR5HGlrdz1///paQYuTvEnd7fhdjmrxPfN7X5aa7188al+IhZuGDsxOs7h4bBtvZeuJls6u17P3NsZc1UHqCov4g3N1fzn/iFLv9EXM8ZwYCDkuP5LybTEK5ky9d4slkhQtzu4xHWxkkI3t26p4skjZ1dc+XVpYpYvPtXPG5qreX2zdQdpXS+XS3hgVxMnRicWloCssK/H3t5LV9O5bhWB0DTnwvYVcaQi1SWmL8Y/fgz83OIxZZU9nfWMhKf52cn0LA1cy3BomvPjM47OPyQ013qZmY9y5uJkxl+7NxBCBFodcpBSKrraahi4OEX/uZXtsv3bJ/sZn5nnE7vb0jSy9Lvrhlqaasr54lP9lrWd2HtwmJs2rLK9eiuZRAcEp2+YS3UG8TzwC+DPiO2mVnFvavfjLfJkbJnJqR1ck2mxseVGbyDMxqoyxyRnU9HV6gdY0dnnJ0fH+cbPTvMbN61baHniRC6X8EBXE8fOjvNo70jan//4uTGOjIw5cnkJYueBFLjF8XmIVHMQXwMeB8qA3SKS2WYuDlZc4ObubXU8cmg4I+fvHhgMUuh20Vrn3B/+hCZ/rLzUjpYbsQS182dZi9VWFrN1bcWKDhH67CNHKPK4+MibmtM4Mmvs3lbHpuoyvvBk+mcRe3tGEHHG5rhkigvctNVVOD4PkeoS068Tm0H8GrET5X4uIr9q5cCyyZ6d9UzORni81/rWGz0DIdrqvBR53Ja/1kqVFnpoXF2S8QARnJxlKDiVNQnqxbra/Lx45hIXJ5bfKv1nJy/weN9Z3v/GzVR7nXN63pW4XcIDu7ZwZGQs7W1r9h0c5qb1q/E7tNMAxDu7DgZtydGlKtUlpk8ANxljfscY89vAzcCfWjes7HLzhtXU+0p40OLjSBOba5y8QW6pFr834wEi0eK7vS77AsQdbTVEDfzw6PJmEdFo7KS4uspi3n3bNQ97dIy3bl/LhjWlfOHJ/rS1Zek/O8bRs2PsdkDvpavpaPQxMRvh+ApzTlZKNUC4jDGLv2MvLOOxOc/lEvZ01vNs/6ilVQknR8cZn5l3dIuNpZr9Xk6OTmS0zfNCi40snEHcsLaSam/Rsstdv989xMGhEH/4lhZKCp0/u0zwuF18cFcTvYFw2kp89x4cji0v3eCczXHJJBLVTt4wl+ov+UdE5DEReZeIvAvYC+yzbljZZ8/OeqIGS1sIJHZQd2RBBVNCS62X+ajh1PnMdYfvGw5TW1HMmnLnL7Ms5XIJXa01/GgZu6qn5yL8n0ePsq2+krd31Fs8wvS7t2Mt61aX8oWn0jOL2NszzM0bVju2kWXCxqoyKksKHJ2oTvlMauAfiZ0otx34ijHmY5aNKgttri5nR0OlpctM3QNByos8bKpydm+hxRYOD8rgMlNvIJSVs4eErjY/4zPz/PKl1E4t/JdnTxEITfOJ3W24HLYpLhUFbhcfuH0zPYMhfnhsZQ0Lj50do//cuCNae1+LiLCj0cd+ByeqUw0QbzXGPGiM+Uj843uWjipL3bezgcPDYQ4PW9OFpGcwyLb6yqz6JbCpugy3S+jPUICYnotwYnSC9iwOELduWUOhx5VSuevo2Axffvo4b273c8umNRkYnTX2dDZQ7yvhb59Y2Szi4Z5hXAJvcfjyUkJHo49jZ8eYmLG+AvJ6pBogakTkI0s/LB1ZFnrrjrV4XML3LJhFzMxH6BsOZ1WCGqDI42bDmtKM7YU4MjJGJGqyegZRWujh1s1reDKFs6r/+oljzMxH+fhdrRkanTUKPS4+cPsWDgwEeab//HU9hzGGvT0Bbt64mhqvs5eXEjobfUQNju3smmqAcAPeJB9qkdVlhbyxpZrvH0h/643Dw2PMRUxW5R8SWmozV8nUt5Cgzr73abGuNj9nLk5e9eziY2fH+NYvzvDOW9azyeEtzVPxK6+qZ21lMX97nRVNx86Oc2J0wlGtva9lx0Ki2pnLTKkGiBFjzJ8v/bB0ZFlqT2cDZ8Mz/PTE9f0VdCU9g7FvoGyqYEpo9ns5fXEyIwek9AZCVBR7aFjlnO6d1yNxVvUTV6ns+czew5QXefhwV1OmhmWpIo+b979xMy+cvsRzJ5bfumZvTwCXwJ1bs2N5CWJ/VK5fU+rYDXOpBogfWDqKHNLVVoO3OP2tNw4MBKn2FlHnwL4y19Li92IMGan37g2EaV9bgUj25GmSWesrob2u4oqHCP342Cg/OjbKA7uaWFVWmOHRWefXbmzEX1HE3zzZv6zHGWN4+OAwt2xakxWbBBfraPRl9wzCGPNHVg8kVxQXuLlnex2PHhpJa+KpeyDIjgZfVv7ia4pXMlm9zBSJGo6MhGmvy+7lpYSuthpeOH2JS0t2VUeihr/cd5h1q0v57deut2l01igucPP+N2zmF6cuLqsB5pGRMU6OTjh+c1wyHY0+RsLTjNh4PO+V6GY3C+zpbGBqLsJjaWpCFp6e4+T5CXY0ZOcvvg1rSil0uywPECdHx5mei2Z1gnqxrjZ/bFf1scuXmb7z/ABHRsb42J2tWdFyZbnecfM6qr1FfGEZs4i98eqlbFpeSnDyhjkNEBa4cf0qGleXpG2Z6dBgCGPIugqmBI/bxeaacsv3QvTFy4u31udGgNheX0lVedFleYiJmXk+/4NjvGr9Kkcdo5lOxQVufv/1m/jpiQsp7QUxxrD34DCv2bwmKzdHtq+toNDtcmTrb0sDhIjcKSJHReS4iHw8ye3rRORpEdkvIj0icnf8+gYRmRKRA/GPf7BynOnmcgl7Our5yYnzaZk2HlhIUGfnDAKgxV9u+fGjvYEwhR4Xm3Ogogdi30e7Wqv58dFR5uLnN//jj04wOjbDJ3a3ZeVyY6p+69XrqSovTGkW0Tcc5tT5CXZvy57qpcWKPG7a1jqzs6tlAUJE3MCXgLuAduB+EWlfcrdPAt82xnQC7wC+vOi2E8aYjvjH+6wap1X27GzAGPj+gZXPInoGQmxYU4qvNHuTkc21XgKhacLTc5a9Rm8gRIvfS4E7dybGXW1+xmbm+eWpiwyHpvjKMye5Z3sdO9etsntoliopdPOe123imf7zvHjm6ksv+w4O43YJb9nqz9Do0q+z0UfPYIj5SOZ6lqXCyp+km4HjxpiTxphZ4FvAvUvuY4DEekAlYF0jowzbWFVG5zofD744tOL+Mt2DwaxdXkporoklqvvPWlPJZIyhNxDOmfxDwm1bqij0uHjyyDk+99gxolH42J3ZvSkuVe+8ZT2ry64+i4htjhvmtVm6vJTQ0ehjai7CMYt+Pq6XlQGiHhhY9PVg/NpinwbeKSKDxJr/PbDoto3xpacficjrkr2AiLxXRJ4XkedHR1fWw8UK93XWc/Ts2MLa+PU4F55mODSdFSfIXU1LrbWVTMOhaYKTczkXIMqKPLxm0xoefHGQB/cP8ru3bqBxdandw8qIsiIP//11G/nh0dGFkxSX6g2EeenCpGNPjktVh0M3zNk9F78f+KoxpgG4G/i6iLiAYWBdfOnpI8B/iMgrfvKNMV8xxtxojLmxutp5h7Pfs30tBW7heytIVic6uGbDGdRXU+8robTQbVnLjUSL7/Ys30GdzB1tNVyanMNXUsD/uH2L3cPJqN9+zQZ8pQV88anks4i9C8tL2Z2wX7+mlFWlBY6rZLIyQAwBjYu+bohfW+zdwLcBjDHPAcVAlTFmxhhzIX79BeAE4PwzFJdYVVbIG1tq+H534LrXFrsHgrhdkvWtI1wuocnCw4N6AyFEoC0LjmJdrjva/RQXuPjDt7RSWVJg93AyqrzIw7tv3cgTh89xaEm/osTy0q1bqrJ+s2Cis2s+zSB+CTSJyEYRKSSWhH5oyX3OAF0AItJGLECMikh1PMmNiGwCmoCTFo7VMr+ys57RsRmePX59rTe6B4O01nopLsj+evcWf7mFASLMxqoySgs9ljy/neoqS9j/p2/mN1+9zu6h2OJ3bt1ARbHnFbmIQ0NhzlycZHeOlPt2NProPzfOmIWFHMtlWYAwxswDHwQeAw4Tq1bqFZG/EJG3xe/2UeA9ItINfBN4l4lldF8P9IjIAeC7wPuMMak1x3eY21trqCwpuK4Or8YYugeCWdl/KZlmv5fz47NcGJ9J+3P3BcJZP8u6mmw6JS7dKooL+L3bNvJ439mFZowADx8M4HEJb27PnQBhDBwcdE5nV0tzEMaYfcaYZmPMZmPMZ+LXPmWMeSj+eZ8x5lZjzI54Oevj8ev/1xizNX5tpzHmv6wcp5WKPG52b6/jsd4RxpfZeuOlC5OEp+ezsoNrMs0LLTfSW6kRnJxlKDiVcwlq9bLffe1GvEUe/u7p2CzCGMO+g7mxvJSQSFQ7acOc3UnqvPArO+uZnovyyMHhZT0uUbmR7SWuCVZVMvVl8RnUKjWVpQW869YN7Ds4wtGRMQ4OhRi4OJWVvZeuxFdayMaqMkflITRAZMDOdatYv6Z02ctM3YNBSgrcbMmRncE13iIqSwrS3nJjoYKpTgNELnv3bRspK3Tzxaf62dszTIFbeEuOLC8lJDq7puNs7nTQAJEBIsLbO+p57uQFAsGplB/XPRA7YtSTIzuDRYQWvzftLTd6AyFqK4qzeqOUujZfaSG/89oN7D04zHdeGOS2LVVUluZWVVdHo4/RsRkCDunsmhu/ebLAfTvrMQb+M8XWG3ORKL2BcNbvf1iqKV7JlM6/kPqGc28HtUruv79uEyUFbi5OzHJ3lm+OS2Zhw5xD+jJpgMiQ9WvKeNX6VXwvxdYbR0fGmJmP5kwFU0JLrZfw9Dxnw+mpZJqei3BidEIDRJ5YXVbI7966gbJCd85ULy3WVldBocflmA1zGiAyaE9nPf3nxhfWzK+mO97BtSNHEtQJiUqmdOUhjoyMEYka2jVA5I2PvKmFH/3R7Tm3vARQ6HGxdW2FYxLVGiAy6J7tdRS6XSmdE9EzEGJ1WWHWn6281EKpa5ryEL2BWM14Lu+BUJdzu4SqHM43dTT6ODgUWmjxbicNEBnkKy1kV2sND3UPXbP1RvdgkO0NlTnX8391WSFV5UVpm0H0BcJUFHtyLpCq/NXR6GN6LmpZ37Ll0ACRYXt21nN+fJZn+q/cemNydp5jZ8eyvoPrlbTUltOfpgDRGwjTvrYi5wKpyl+djbGzPpywzKQBIsNub6nBV1rAg1fZE3FoKEzUZH8H1ytp9ns5dnacaHRllUyRqOHISG632FD5p3F1CWvKCjVA5KNCj4u3bl/L470jVzxdLbGDOtcqmBJa/F6m5iIMXkp9T0gyJ0fHmZ6L6gY5lVNEZGHDnN00QNhgz856ZuajPHpwJOntBwaDNKwqydlEXHNteiqZEtVgW+s1QKjc0tHo48TouKVH9KZCA4QNOht9bKwq48H9g0lv7xkM5mz+AaCpJtY6ZKU9mfqGwxR6XGzOkVYkSiV0rIt1du0ZsLezqwYIG4gIezrr+dnJiwxemrzstgvjMwxcnMrZ/AOAt7iAel/JigNEbyBEa62XghxpRaJUQmJ52e4Nc/qTZZM9nbHjub9/IHDZ9Z7EEaM5PIMAaPaXr6iMzxgTq2DS/IPKQZUlBWyutr+zqwYImzSuLuWmDat48MXBy1pvdA8GcQncUJ+7MwiI5SFOjk5c92agQGia4OSctthQOaujcZXtnV01QNhoT2cDJ0YnFmYNEKtgaqrxUlaUe0dnLtbi9zIbiXL6wsR1PT5xBkS7lriqHNWxzsf58dkVV/uthAYIG+3eVkehx7VwToQxhu7BUE7nHxIWejKNXN/pcr2BECLQVudN57CUcozORGdXG5eZNEDYqLK0gDvaanioO8BcJMrgpSkuTszm7P6HxbbUlCNy/ZVMvYEwG6vKKC3M7ZmWyl8ttV6KPC4NEPlsT2cDFydm+dHR0Zzt4JpMcYGbDWvKrjtA9AV0B7XKbQVuF9vqKzVA5LM3NFezuqyQ7+0fomcwRKHHtXB2c65r9pdf12a54OQsQ8EpTVCrnNfR6OOQjZ1dNUDYLNZ6o44fHD7LM/3n2bq2Im/q+lv8Xl46P8H0XGRZj0skqDVAqFzXsc7HzHyUI8P2dHbNj99EDrdnZwOz81EOD4dzfv/DYk1+L1EDJ0aXl6hOtNjQPRAq1y0cQWrThjkNEA6wo6GSTdVlQH7kHxISS2n9Z5cbIELUVhSzJkd7VSmVUO+L9WTbb1MeQgOEA4gIv7KzAcivALFhTRkFbll2HqI3ENblJZUX7O7sqgHCId7zuk18532vYUNVmd1DyZhCj4tNVeXLOn50ei7CidFxDRAqb3Su83FydILQZOY7u2qAcIhCj4ubNqy2exgZ11zrXdYM4sjIGFGjO6hV/kisKiTK4DNJA4SyVXNNOYOXppiYmU/p/r2BWFsSnUGofBE7m96eHdUaIJStEocH9Z9LLVHdGwhTUeyhYVWJlcNSyjG8xQVsqS5n/5nMVzJpgFC2aon3ZEo1D9EXCNO+tgIRsXJYSjlKIlGd6c6ulgYIEblTRI6KyHER+XiS29eJyNMisl9EekTk7iS3j4vI/7RynMo+jatLKS5wpZSHiEQNR0a0xYbKPx3rfFyanOPMxclr3zmNLAsQIuIGvgTcBbQD94tI+5K7fRL4tjGmE3gH8OUlt/8V8IhVY1T2c7uEphpvSj2ZTo6OMz0X1fyDyjsdNnV2tXIGcTNw3Bhz0hgzC3wLuHfJfQyQ+GmvBBaOVxORtwOngF4Lx6gcoCnF0+UWdlBrgFB5psXvpaTAzf4zuRMg6oGBRV8Pxq8t9mngnSIyCOwDHgAQkXLgY8CfX+0FROS9IvK8iDw/OjqarnGrDGvxezk3NkNwcvaq9+sbDlPocbG5ujxDI1PKGTw2dXa1O0l9P/BVY0wDcDfwdRFxEQscf22MuWppizHmK8aYG40xN1ZXV1s/WmWJRCXTsWu03OgNhGit9eZNM0OlFutY56MvEGZmfnnNLVfCyp+0IaBx0dcN8WuLvRv4NoAx5jmgGKgCXg38bxF5CfgD4E9E5IMWjlXZKFHJdLVEtTFGW2yovNbR6GM2EuVwBju7Whkgfgk0ichGESkkloR+aMl9zgBdACLSRixAjBpjXmeM2WCM2QD8DfCXxpi/s3CsykZ1lcV4izxXLXUNhKYJTs5pB1eVtxYS1RncD2FZgDDGzAMfBB4DDhOrVuoVkb8QkbfF7/ZR4D0i0g18E3iXyXShr7KdiMQS1VeZQfQOxXZQa4sNla/qKoup8RZlNA9h6YG+xph9xJLPi699atHnfcCt13iOT1syOOUoLbVeHj00gjEm6Sa4vuEwItBWlx+n7Sm1lB2dXTXbpxyh2e/l0uQco+MzSW/vDYTZVFVGaaGlf9Mo5Wgd63y8dGGSSxNXr/hLFw0QyhFebrmRvJIp1mJDl5dUflvIQ2Sos6sGCOUIiVLXZHmISxOzDAWntIJJ5b3tDb5YZ9cMbZjTAKEcoaq8iNVlhUkrmQ4Px3ZQa4BQ+a68yENzjTdjeQgNEMoxmv3lHDv3ygCRaLGhTfqUip0w1z2Ymc6uGiCUY7T4vRwbGXvFN35vIERdZTGrywptGplSztHR6CM4OcdLF6zv7KoBQjlGc62XidkIQ8Gpy673BsK6QU6puI51ic6u1m+Y0wChHKM5Ucm0KFE9PRfhxOi45h+Uimuq8VJW6M5IoloDhHKM5pp4JdOiUtcjI2NEje6gVirB7RK2NWSms6sGCOUYlaUF1FYU079oBtEbiLXY0BmEUi/raFxF33CY6TlrO7tqgFCO0lzrvWwvRG8gTEWxh4ZVJTaOSiln6Wj0MRcx9MVLwK2iAUI5Sou/nP5z40SisUqm3kCY9rUVSfszKZWvOhOJaovzEBoglKM0+b3Mzkc5fWGC+UiUI8Nh3f+g1BL+imLqKostz0No5zPlKC2LKpkiUcPMfFTzD0olkYnOrjqDUI7S5I+dN33s7PjCDup2DRBKvUJHo48zFye5cIUOyOmgAUI5Smmhh3WrSzl6dozeQIhCj4vN1eV2D0spx0l0du22sLOrBgjlOM3xlht9w2Faa70UuPXbVKmltjVU4naJpYlq/clTjtPsL+fk+QkODoY0/6DUFZQWemj2e9lvYR5CA4RynJZaL5GoITw9rzuolbqKjkYf3QNBolFrOrtqgFCOk+jJBGiTPqWuorPRR3h6nlMXJix5fg0QynE2VZfhdgki0FbnvfYDlMpTHRZvmNMAoRynyONmY1UZm6rKKC3UrTpKXcnm6nLKizyW7YfQnz7lSB95U7PdQ1DK8dwu4Vdf1UDj6lJLnl8DhHKku7fV2T0EpbLCp9+21bLn1iUmpZRSSWmAUEoplZQGCKWUUklpgFBKKZWUBgillFJJaYBQSimVlAYIpZRSSWmAUEoplZQYY00XwEwTkVHgtN3jWKEq4Lzdg3AQfT8up+/Hy/S9uNxK3o/1xpjqZDfkTIDIBSLyvDHmRrvH4RT6flxO34+X6XtxOaveD11iUkoplZQGCKWUUklpgHCWr9g9AIfR9+Ny+n68TN+Ly1nyfmgOQimlVFI6g1BKKZWUBgillFJJaYBwABFpFJGnRaRPRHpF5MN2j8luIuIWkf0i8rDdY7GbiPhE5LsickREDovIa+wek51E5P+L/5wcEpFvikix3WPKJBH5VxE5JyKHFl1bLSI/EJH++H9XpeO1NEA4wzzwUWNMO3AL8AERabd5THb7MHDY7kE4xN8CjxpjWoEd5PH7IiL1wIeAG40xNwBu4B32jirjvgrcueTax4EnjTFNwJPxr1dMA4QDGGOGjTEvxj8fI/YLoN7eUdlHRBqA3cA/2z0Wu4lIJfB64F8AjDGzxhhrTqjPHh6gREQ8QCkQsHk8GWWM+TFwccnle4GvxT//GvD2dLyWBgiHEZENQCfwc3tHYqu/Af4IiNo9EAfYCIwC/xZfcvtnESmze1B2McYMAZ8DzgDDQMgY87i9o3IEvzFmOP75COBPx5NqgHAQESkH/i/wB8aYsN3jsYOI3AOcM8a8YPdYHMID7AT+3hjTCUyQpuWDbBRfW7+XWOBcC5SJyDvtHZWzmNjehbTsX9AA4RAiUkAsOPy7MeZBu8djo1uBt4nIS8C3gF0i8g17h2SrQWDQGJOYUX6XWMDIV3cAp4wxo8aYOeBB4LU2j8kJzopIHUD8v+fS8aQaIBxARITYGvNhY8xf2T0eOxlj/tgY02CM2UAs+fiUMSZv/0I0xowAAyLSEr/UBfTZOCS7nQFuEZHS+M9NF3mctF/kIeB34p//DvD9dDypBghnuBX4b8T+Wj4Q/7jb7kEpx3gA+HcR6QE6gL+0eTy2ic+kvgu8CBwk9jssr9puiMg3geeAFhEZFJF3A58F3iQi/cRmWZ9Ny2tpqw2llFLJ6AxCKaVUUhoglFJKJaUBQimlVFIaIJRSSiWlAUIppVRSGiCUspCIbFjcdVOpbKIBQimlVFIaIJTKEBHZFG+4d5PdY1EqFR67B6BUPoi3yvgW8C5jTLfd41EqFRoglLJeNbHeOPcZY/K5j5LKMrrEpJT1QsSazN1m90CUWg6dQShlvVlgD/CYiIwbY/7D7gEplQoNEEplgDFmIn4Y0g/iQeIhu8ek1LVoN1ellFJJaQ5CKaVUUhoglFJKJaUBQimlVFIaIJRSSiWlAUIppVRSGiCUUkolpQFCKaVUUv8PleZdJVgYFSoAAAAASUVORK5CYII=\n", 472 | "text/plain": [ 473 | "
" 474 | ] 475 | }, 476 | "metadata": { 477 | "needs_background": "light" 478 | } 479 | } 480 | ] 481 | }, 482 | { 483 | "cell_type": "code", 484 | "metadata": { 485 | "colab": { 486 | "base_uri": "https://localhost:8080/", 487 | "height": 298 488 | }, 489 | "id": "T5RoL8h_fjCy", 490 | "outputId": "0f7fe549-ab5e-4487-f724-726333b9e06a" 491 | }, 492 | "source": [ 493 | "plt.plot(range(1, 21), e)\n", 494 | "plt.xlabel('k')\n", 495 | "plt.ylabel('точность')" 496 | ], 497 | "execution_count": 82, 498 | "outputs": [ 499 | { 500 | "output_type": "execute_result", 501 | "data": { 502 | "text/plain": [ 503 | "Text(0, 0.5, 'точность')" 504 | ] 505 | }, 506 | "metadata": {}, 507 | "execution_count": 82 508 | }, 509 | { 510 | "output_type": "display_data", 511 | "data": { 512 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU9bn48c+TnYRskBCysgsEyAIBd8WlFlGw7qC9Fa2ibfXebr8Wa2t7vV3uvfXaVutSahFrq0jVVlQsbiwtohKWhE0grFmAhCUhLNmf3x8zoUOYwCSZM5PA83695pUz53zPmYfJME++57uJqmKMMca0FRLsAIwxxnRPliCMMcZ4ZQnCGGOMV5YgjDHGeGUJwhhjjFdhwQ7AX5KSknTgwIHBDsMYY3qUVatW7VfVZG/HzpoEMXDgQAoLC4MdhjHG9Cgisqu9Y3aLyRhjjFeWIIwxxnhlCcIYY4xXliCMMcZ45WiCEJFJIrJZREpEZJaX4wNE5EMRKRaRJSKS4d6fJyIrRGSD+9jtTsZpjDHmVI4lCBEJBZ4GrgWygekikt2m2OPAH1U1B3gM+IV7/zHgK6o6CpgE/FpEEpyK1RhjzKmcrEFMAEpUdbuqNgDzgBvalMkGPnJvL249rqpbVHWre7sCqAS89tM1xhjjDCcTRDpQ6vG8zL3PUxFwk3v7RiBWRPp6FhCRCUAEsK3tC4jITBEpFJHCqqoqvwUeaG+uLaeqtj7YYRhjzEmC3Uj9XeByEVkDXA6UA82tB0UkFXgJuFtVW9qerKqzVbVAVQuSk3tmBaOi+jj/MW8tv/lwS7BDMcaYkziZIMqBTI/nGe59J6hqharepKr5wCPufdUAIhIHvAM8oqqfOBhnUBWVVgOwcN1eGptPyYHGGBM0TiaIlcAwERkkIhHANGCBZwERSRKR1hgeBua490cAf8XVgP2agzEGXVFZDQAHjzbw8bYDQY7GGGP+xbEEoapNwIPAImATMF9VN4jIYyIy1V1sIrBZRLYAKcDP3PtvAy4DZojIWvcjz6lYg6m4rJrhKbHERoWxYG1FsMMxxpgTHJ2sT1UXAgvb7HvUY/s14JQagqr+CfiTk7F1By0tyrqyGqbmpVHfFM+i9XupaxxNVHhosEMzxpigN1Kf03YcOEptfRO5GQlMzU2jtr6JJZt7bm8sY8zZxRJEEBWXuRqoczMTuGhIX/rGRPBWsd1mMsZ0D5YggqiotIboiFCG9utNWGgIk8ek8uGmfRytbwp2aMYYYwkimIrKqhmdFk9oiAAwNS+NusYWPti0L8iRGWOMJYigaWxuYWPFYXIy4k/sG5eVSGp8lPVmMsZ0C5YggmTz3lrqm1rIyfzXHIQhIcKU3DSWba2i+lhDEKMzxhhLEEFT7B4gl+tRgwCYkpNGY7Py9/V7gxGWMcacYAkiSIrLqkmIDierT/RJ+0enxzEoKcZ6Mxljgs4SRJAUldUwJj0eETlpv4gwJSeVFdsOUFlbF6TojDHGEkRQHG9oZsu+WnIzvK+BNCU3jRaFhcV7AhyZMcb8iyWIINi4p4bmFiU303uCGJYSy4j+sSwosttMxpjgsQQRBEWl3huoPU3NS2P17mpKDx4LVFjGGHMSSxBBUFRWTf+4KPrFRbVbZkpOGgBv220mY0yQWIIIguKympMGyHmT2Sea/KwE3rLbTMaYILEEEWA1xxvZsf9ou+0PnqbkpLFxz2FKKo8EIDJjjDmZJYgAW+ceIHemGgTA9TmpiGC1CGNMUFiCCLAi9xTfOelnrkH0i4vigkF9eauoAlV1OjRjjDmJJYgAKy6rZmDfaOKjw30qPzUvje37j7Kh4rDDkRljzMksQQSYq4H6zLWHVpNG9ScsROw2kzEm4CxBBFBlbR17aup8an9olRgTwWXnJfNWUQUtLXabyRgTOJYgAqjYPUAuz4ceTJ6m5KZSUVPH6t2HnAjLGGO8sgQRQEVl1YSGCKPSfK9BAHwhuz+RYSE29YYxJqAsQQRQUVkNw/r1pldEaIfO6x0ZxlUj+7Fw3R6amlscis4YY05mCSJAVJXisup2Z3A9k6m5aew/0sCK7Qf8HJkxxnhnCSJASg8ep/pYIzmZHbu91Gri8H70jgyz3kzGmICxBBEgrQPkOluDiAoP5ZpRKby7fi/1Tc3+DM0YY7xyNEGIyCQR2SwiJSIyy8vxASLyoYgUi8gSEcnwOHaXiGx1P+5yMs5AKC6rJiIshOH9Yzt9jSm5adTWNbFsy34/RmaMMd45liBEJBR4GrgWyAami0h2m2KPA39U1RzgMeAX7nP7AD8GzgcmAD8WkUSnYg2EorIaslPjCA/t/Ft+ydAkEqPDrTeTMSYgnKxBTABKVHW7qjYA84Ab2pTJBj5yby/2OP5F4H1VPaiqh4D3gUkOxuqo5hZlfXnNaRcI8kV4aAiTx6TywcZ9HGto8lN0xhjjnZMJIh0o9Xhe5t7nqQi4yb19IxArIn19PBcRmSkihSJSWFVV5bfA/W1b1RGONTT7NMX3mUzJTeN4YzMfbKr0Q2TGGNO+YDdSfxe4XETWAJcD5YDPLbCqOltVC1S1IDk52akYu2xtqXsG1042UHuaMLAPKXGR1pvJGOM4JxNEOZDp8TzDve8EVa1Q1ZtUNR94xL2v2pdze5LismpiI8MYnBTT5WuFhAjX56SxdHMVNccb/RCdMcZ452SCWAkME5FBIhIBTAMWeBYQkSQRaY3hYWCOe3sRcI2IJLobp69x7+uRistqGJ0eT0iI+OV6U3PTaGhuYdGGvX65njHGeONYglDVJuBBXF/sm4D5qrpBRB4TkanuYhOBzSKyBUgBfuY+9yDwX7iSzErgMfe+Hqe+qZlNew53eoCcNzkZ8QzoG223mYwxjgpz8uKquhBY2Gbfox7brwGvtXPuHP5Vo+ixPt9TS2OzdnqAnDciwpScNJ5ZUsL+I/Uk9Y7s9LUamlr4ZPsBcjLiSYiO8FuMxpieL9iN1Ge94tYlRrvYxbWtKblptCgsXLenU+eXVNbys3c2cuEvPuQrcz7jludWsO9wnV9jNMb0bJYgHFZUVkPfmAjSE3r59brD+8cyPCW2Q7eZjtQ3Me+z3dz4zHKufmIZLyzfScHARP5z6ij2VB/n9t+toLz6uF/jNMb0XI7eYjKuGkRORjwi/mmg9jQlN5XH39tCefXxdhOQqlK46xDzV5byzro9HGtoZkhyDD+YPIIb8zNIjnXdnhqdHs+MFz7jtudW8PJ95zOgb9d7XBljejarQTjoSH0TWyuP+GX8gzdTctMAeKf41FpEZW0dzy3dxlVPLOXW51awcN0epuSk8frXLuKDb1/OzMuGnEgOAOMGJPLKfRdwrKGJ2363gpLKI47EbIzpOawG4aD15TWodnyJUV8N6BtDbkY8C4oqmHnZEJqaW1i8uYpXV5ayeHMlzS1KwYBEHrhlCNeNSSUm8vS/7tHp8cybeSF3Pv8J02av4E/3ns+I/nGOxG6M6f4sQTjIqQZqT1Ny0/jpO5v44d/WsWjDPqpqXb2a7r10ELcVZDIkuXeHrje8fyyv3n8hd/7+U6bN/oSX7jmfMQ7Gb4zpvuwWk4OKympIT+hF3y50Qz2T63PSCA0RXvmslNyMBGb/2zhWPHwlD187ssPJodWQ5N7Mv/9CYiLCuOP5T1i165CfozbG9ARWg3BQcVk1uX4cIOdN//goFjx4Mcm9I+kXF+W362b1jWb+Axdy5+8/4d/+8ClzZozngsF9/XZ9Y0z3ZzUIhxw82kDpweOONVB7GpUW79fk0Co9oRfz77+QtIRezHjhM5ZtcWbG3MbmFlTVkWsbYzrPEoRDAtH+EAj94qKYN/MCBiX15t4XC/lg4z6/XLelRfnn1v089MoaRv14EU99VOKX6xpj/McShEOKy2oQgTHpPTtBACT1juSV+85nZGosD/xpFe8Ud270NkB59XF+/cEWLv3fxXz5D5+ybEsVKXGR/HHFThqaWvwXtDGmy6wNwiHFZdUMToohNio82KH4RUJ0BC/dez73vLCSh15ZTUNzLjfmZ5z5RFwTFr6/cR+vrizlnyX7UXUtn/r9a0dwTXYKy0v289UXC/lw0z6uHZPq8L/EGOMrSxAOUFXWltZw2bCkYIfiV3FR4bx4zwTufbGQb88vor6xhWkTstotv2nPYV5dWcrf1pZTfayRtPgoHrpyGLeOyyCzT/SJchOH9yM1PoqXP9ttCcKYbsQShAP21NSx/0i9X5YY7W5iIsN44e7x3P/SKma9sY76phbuumjgieM1xxtZUFTBXwpLKS6rISI0hC+MSuH2gkwuHppEqJc1MUJDhNvHZ/LrD7ZSevDYScnDGBM8liCAo/VNZxxl3BFnSwN1e6LCQ5n9lXE8+PIafrxgA8cbm8nNSGB+YSkL1+2hvqmFEf1j+fGUbL6Ul05izJmnEb+tIJMnP9zKvJW7+X9fHBGAf4Ux5kzO+QSxc/9Rbp+9gh9MHskNeel+uWZRWQ1hIcLI1LN3morIsFCeuXMs33p1Lf/97ucAxEaFcWtBBrcVZDImvWMTFKYl9OKK4f2YX1jGN68+j/DQwPSfaGlRvvriSq4cmcK/XTAgIK9pTE9xzieIjMReZCZG84M31pGTkcAgP6wbXVxWzYjUWKLCQ/0QYfcVHhrCb6blMyY9nn5xkUwalUqviM7/m6dPyOLDPxby4aZKJo3u78dI2/fexr0s3lzF2tJqbh6bTnTEOf9fwpgTzvlurmGhITw5PZ/wsBC+8efV1DU2d+l6LS1KcVlNQAbIdQehIcL9lw/hxvyMLiUHgInDk+kf52qsDgRV5Zkl20iIDufQsUbmfVYakNc1pqc45xMEuG5vPH5LLhv3HOYXCzd16Vo7Dxyltq6J3LO0/cFJYaEh3DY+k39sraL04DHHX295yQGKy2r4/qQRTBjYh9//Y7uNxTDGgyUIt6uzU7jn4kG8uGIXf1+/t9PXKS6rAThnahD+dvv4TAR4daXzf80/u7SEfrGR3DQ2na9dMYQ9NXW8ubbc8dc1pqewBOFh1rUjyMmI53uvFXX6L9iismqiwkMY1q9zM6me69ITejFxeD/mF5bS2OzcX/NFpdUsLznAvZcOIjIslInnJTMyNY7nlm6jpcXmhTIGLEGcJCIshKem56MK/z5vTae+oIrLahidFk9YgHrhnI2mT8iisraejz6vdOw1nllSQnyvcO4439VzSUT42sQhbKs6ynsbO1+DNOZsYt9ibQzoG8Mvbh7Dmt3VPP7e5g6d29jcwvryc6eB2ilXDE8mJS6SVxxqrC6prGXRhn3cdeEAenuMf5k8uj8D+kbz7JJtNrusMViC8Or6nDTuOD+L3y3dzuLNvv8Vu2VfLfVNLY6vAXG2CwsN4faCTJZuqaLskP8bq59bup2o8BBmXDzolNe9/7IhFJXV8PG2A35/XWN6GksQ7Xj0+mxG9I/lO/OL2He4zqdzWhuoc60G0WW3jc8EYL6fG6vLq4/ztzXlTBufRR8vI7xvGptOcmwkzyyx6ceNcTRBiMgkEdksIiUiMsvL8SwRWSwia0SkWEQmu/eHi8iLIrJORDaJyMNOxulNVHgov71jLMcbmvn3V9bQ7EPDZXFZNfG9whnQ1+YS6qqMxGguPy+ZVwtLafJjY/Xvl20H4L7LBns9HhUeyr2XDGJ5yQGKSqv99rrG9ESOJQgRCQWeBq4FsoHpIpLdptgPgfmqmg9MA55x778ViFTVMcA44H4RGehUrO0Z2q83//Wl0Xy64yBPfrj1jOWLSmvIyejYFBOmfXdMyGLfYf81Vh882sC8lbv5Un466Qm92n/d87OIiwrj2SXb/PK6xvRUTtYgJgAlqrpdVRuAecANbcoo0DphUTxQ4bE/RkTCgF5AA3DYwVjbdcu4DG4am86TH23l42372y1X19jM5n21Z+0EfcFw5Yh+9Iv1X2P13OU7qG9q4YHLvdceWsVGhfOVCweyaONeSiqP+OW1jemJnEwQ6YDnDeQy9z5PPwG+LCJlwELgIff+14CjwB5gN/C4qh5s+wIiMlNECkWksKrKmfWSAf7rhtEMSorhm/PWsv9IvdcyGyoO09yi1oPJj8JCQ7h9fCZLtlRRXn28S9c6Ut/E3I93ck12CkP7xZ6x/N0XDyQyLITnllotwpy7gt1IPR2Yq6oZwGTgJREJwVX7aAbSgEHAd0TklD/7VHW2qhaoakFycrJjQcZEhvH0HWOpPt7It+cXeR1I1TrFtzVQ+9dtBa7G6q6OrH75010crmviaxOH+lS+b+9Ipo3P4m9ryqnoYnIypqdyMkGUA5kezzPc+zx9FZgPoKorgCggCbgD+LuqNqpqJbAcKHAw1jMamRrHo9dns2xLFbP/sf2U48VlNfSLjaR/fFQQojt7ZfaJ5rJhycxf2fnG6vqmZp7/xw4uGtKXvA4s4nTvpa5usL/38vv2p49L9jvSndeYrnIyQawEhonIIBGJwNUIvaBNmd3AVQAiMhJXgqhy77/SvT8GuAD43MFYfXLn+VlcNyaVXy7azKpdJ9/xKiqttttLDpk+IYu9h+tYsrlztxHfWF1OZW09X/ex9tAqIzGaqXlpzPuslINHGzr12mfyTvEe7nj+U773WrEj1zemKxxLEKraBDwILAI24eqttEFEHhORqe5i3wHuE5Ei4BVghrqGsD4N9BaRDbgSzQuqGvT/QSLCL24eQ1pCFP/+ylqqj7m+NGqON7J9/1HybICcI64a2Y/kTjZWN7cov1u6jZyMeC4e2rfD53/t8iEcb2xm7sc7O3zumazadYhvzV9Lr/BQVmw/0OV2FmP8zdE2CFVdqKrnqeoQVf2Ze9+jqrrAvb1RVS9W1VxVzVPV99z7j6jqrao6SlWzVfWXTsbZEXFR4fx2+lgqa+v43mvFqCrry20GVyeFu0dWL95c2eH2gHfX72HngWN8feKQTnU/HpYSyzXZKbz48U6O1Dd1+Pz27DpwlPv+WEhafBSv3n8BqvDX1WV+u74x/hDsRuoeKTczge9PGsF7G/fx4sc7KTrL16DuDm4fn4nSscZqVeWZxdsYnBzDNdmdX6HuaxOHUHO8kVc+9U932+pjDdw9dyUtqrxw9wRyMhI4f1AfXl9dbnNAmW7FEkQnffWSQVw1oh8/X/g5C9ZWMKBvNAnRp07dYPwjs080lw5LZn4HRlYv3VLFxj2HeeDyIYSEdH7wYn5WIhcO7svz/9xOfVPXVhysb2pm5kurKDt4nN9/peDEErc3j81gx/6jrLHR26YbsQTRSSLC47fm0rd3BJ/vrbXbSwFwx4RM9tTUsXSLb43VzyzZRmp8FF/Kazv8puO+fsUQ9h2u56+rO7+gkKryvdeK+WzHQX55aw7jB/Y5cezaMf2JCg/h9VV2m8l0H5YguiAxJoInp+cTFiJMGNTnzCeYLrlqZApJvX1rrF616yCf7TjIvZcOJiKs6x/zS4YmMTo9jt8t2+7TvFze/Or9Lby5toL/98Xh3NAmacVGhTNpVH/eKqro8rroxviLJYguGj+wD8tnXcn08ZlnLmy6JDw0hNsKMvjo80r21Jy+sfrZJdtIjA5n+gT//F5EhK9PHMqO/Ud5d/2eDp//l8JSnvyohNsLMvn6xCFey9w8LoPDdU18uMm5hZKM6YgOJQgRuU5EykRkj4jc6VRQPU1KXJStIBcg08Zn0aIwf2X7t2I2763lg02VzLhoENERYe2W66gvjurP4KSYDi8otLxkPw+/sY5Lhibx0xtHt9ub6qIhSfSPi+J1681kuomOfqs9CkwERuMaw2BMQGX1jebSYUm8unJ3u7d6nlu6jeiIUO66aIBfXzs0RLj/8sFsqDjMsq3tT9zoaeu+Wh740yqGJPfmmS+PJfw0f0iEhgg3jk1n6ZYqqmq9z/llTCB1NEGEq2qJqh4AbJpLExR3TMiioqaOpVtOvRVTevAYC4oquGNCliO9ym7Mz6B/XBTPLD7zgkKVtXXMeGElUeGhzLl7PHFR4Wc85+ax6TS3KG+u7XxjuDH+4lOCEJGnRORJIENEnhSRp4DTz5lsjEOuznY1Vr/86aljImYv206IwL2XOvPxjAgL4d5LB/HpjoOs2nWo3XLHGpq498VCDh5tYM5d40+7/oSnof1iyc2I5/Uu9JYyxl98rUEUAquA/+f+WQg84lRQxpxOeGgItxZk8NHn+9hb86/lYKtq65lfWMrNYzMcnTRx+oQsEqLD211QqLlF+Y95a1lfXsNT0/MZ08EBlDePy2DTnsNsrAjKEijGnOBrgohU1RfbPhyNzJjTmDY+09VYXfivWsQLy3fQ0NzCzHaWE/WXmMgw7rpwIB9s2sfmvbWnHP/ZO5t4f+M+Hr0+m6uzUzp8/Sk5aYSHijVWm6DzNUE84GgUxnTQgL4xXDI0iVdXltLcohyua+SlFbuYPDqVwcm9HX/9GRcNJDoilN+1WVBo7vIdzFm+g3suHsSMiwd16tqJMRFcNSKFN9eW0+jH9biN6ShfE0SCiNzU9uFoZMacwfQJWZRXH2fZ1ir+9Mkuauub+Fo7Ywz8LTEmgukTsnizqILSg661HD7YuI/H3t7IF7JTeOS6kV26/s3jMth/pIFlPo4aN8YJviaIeOB6YIrH43qngjLGF1/ITiGpdwRzl+9kzj93cumwJEanB27CxHsvHUSIuBYUWldWw0OvrGF0ejy/mZZHaBfmfgK4/Lxk+sRE2G0mE1S+jiLarar3OBqJMR0UERbCLeMyT6wb/fWJ+QF9/dT4XtyYn86rK0t5d/1e+sRE8PxdBX4ZnBcRFsLU3DRe/nQ3NccaiY8+cxdZY/zN1xrEBkejMKaTprmnOMnPSuCCwYGfD+v+y4fQ0NxCXWMzc+8eT79Y//WeumVcBg3NLbxVXOG3axrTEb7+qfMjEYlS1ToAEekFpKjqTsciM8YHA5Ni+OUtOeRkJHRqQaCuGpLcmyen5TMoKYZhKbF+vfaotDiGp8Ty+uoyvnyBf0eFG+MLX2sQfwE8u1M0u/cZE3S3FmQyvL9/v5w7YkpumiNtHyLCzePSWbO7mm1VNnGBCTxfE0SYqp5Ytd29bavjGOOwL+WlEyLwhjVWmyDwNUFUicjU1icicgPg22xlxphO6xcXxaXDkvnr6nJaOrkOhTGd1ZGBcj8QkVIRKQW+D8x0LixjTKubx2VQUVPHiu0Hgh2KOcf41EitqtuAC0Skt/u53RA1JkCuyU4hNiqM11eXcfHQpGCHY84hvs7mGi8iTwBLgCUi8n8iErgRScacw6LCQ7k+J5W/r9/L0fqmYIdjziG+3mKaA9QCt7kfh4EXnArKGHOym8dmcKyhmXfX7w12KOYc4muCGKKqP1bV7e7Hf2LrQRgTMOMGJDKgbzSvr7LeTCZwfE0Qx0XkktYnInIxcPpV440xfiMi3JSfwYrtByg7dCzY4ZhzhK8J4mvA0yKyU0R2Ab/FhynARWSSiGwWkRIRmeXleJaILBaRNSJSLCKTPY7liMgKEdkgIutExLkVYIzpAW4amw7AX221ORMgPiUIVV2rqrlADjBGVfNVteh054hIKPA0cC2QDUwXkew2xX4IzFfVfGAa8Iz73DDgT8ADqjoKmAg0+vyvMuYslNknmvMH9eGNNeWo2pgI4zyfurmKyKNtngOgqo+d5rQJQImqbnefMw+4AdjoUUaBOPd2PNA6K9k1QHFrElJV6wBuDK4xEd97rZjVu6sZNyAx2OGYs5yvt5iOuh/3eWwfPcM56YDnqvJl7n2efgJ8WUTKgIXAQ+795wEqIotEZLWIfM/bC4jITBEpFJHCqipbWMWc/SaPSaVXeKitE2ECwtdbTP+nqv8H7G/ddj/vqunAXFXNACYDL4lICK6azSXAne6fN4rIVV7imq2qBapakJyc7IdwjOneekeGMWl0f94uqqCusbnL12tpURau28PGisN+iM6cbXytQbTqyI3PciDT43mGe5+nrwLzAVR1BRAFJOGqbSxT1f2qegxX7WJsB2M15qx009h0Dtc18cGmfV26zqpdB7nh6eV8/c+rmflSoV8Sjjm7+DqS+i0RWQAMFpEFrY8znLYSGCYig0QkAlcjdNtzdgNXuV9jJK4EUQUsAsaISLS7wfpyTm67MOacddGQJPrHRXV6TMSemuP8x7w13PzsCqpq63nwiqGUHTrOH/65w8+Rmp7O1wWDHnf/9Pm2kqo2iciDuL7sQ4E5qrpBRB4DClV1AfAd4Pci8i1ctZMZ6uqeccg9tcdK9/6FqvqOr69tzNksNES4cWw6s5dtp7K2zudV7Ooam5m9bDvPLtlGiyr/fuVQHpg4hOiIMEoqj/D04hJuGZdBSpz1KDcucrZ0lysoKNDCwsJgh2FMQJRUHuHqJ5byw+tGcu+lp5/UQFVZuG4vP1+4ifLq41w3JpVZ144gs0/0iTK7Dxzj6ieWcn1uKk/clud0+KYbEZFVqlrg7Zivt5hqReSwx6NWRKxVy5ggGdqvN7mZCbx2httMGypquH32J3zj5dXE9Qpn3swLePrOsSclB4CsvtHce+kg3lhdzprdh5wM3fQgvvZiilXVOFWNA7a1Pnc4NmPMadwyNp3P99ayoaLmlGMHjtTz8BvrmPLUPympPMLPbxzD2w9dwgWD+7Z7va9fMZTk2Ej+862NtjiRATreiwl8b7cwxjhoSm4a4aHC66v+1TmwoamF5/+xnYmPL+EvhaXcffEgFn93Inecn0VoiJz2er0jw/j+pBGsLa3mzSKbzsP4PpL6KfdmLvCpc+EYY3yVEB3BVSNSeHNtOQ9PHsHykv089vZGtlcd5fLzkvnR9dkM7de7Q9e8KT+dl1bs5L/f/ZxrsvsTE2l/D57LfK1BFAKfAT/GNZraGNMN3DwugwNHG7jht8uZ8cJKVGHOjALm3j2+w8kBICREeHTKKPYdrue5pdsciPhUB482UFtnU611R762QbwIvAfEANeJSD9HozLG+GTi8GT6xUZSevAYj0weyaJvXsaVI1JOzJfWGeMGJHJDXhq/W7ad0oPOTi2++8AxrvnVUr7/erGjr2M6x9deTLfhqkHcimtFuU9F5BYnAzPGnFl4aAhvPngxy753BfddNpiIsM40K55q1rUjCL546GsAABKwSURBVBXhv9/93C/X86bmWCN3z/2M/Uca+HT7QZuhthvy9dP0CDBeVe9S1a/gmqn1R86FZYzxVWp8LxJjIvx+zQcuH8I76/bwyXb/T6bc0NTC/X8qZPfBY3wpL40DRxsoO2RrkHU3viaIEFWt9Hh+oAPnGmN6oJmXDSY9oRePvbWRZj92e1VVZr1ezCfbD/K/t+ScGOi3prTab69h/MPXL/l33VNvzxCRGcA7uCbQM8acpXpFhDLr2hFs3HOY+YWlZz7BR7/+YCtvrCnn2184jxvzMxjRP5ao8BAboNcN+bwmNfA7XCvK5QCzVfX7jkVljOkWrs9JZfzARB5ftJnDfuhp9PqqMn7z4VZuGZfBQ1cOBSAsNIQx6fGstRpEt+Nrgpiiqm+o6rfdj786GpUxplsQEX48ZRQHjzXw1Idbu3StFdsOMOuNYi4a0pef3zjmpJ5W+VmJbKg4TH2TTTnenfg6CqafiHy77U5VfcLP8RhjupnR6fHcNi6TuR/vZPqELAYnd3x8RUllLfe/VMiAvjE8++Vxp/S2ystMoKGphU17asnLTPBX6KaLfK1BhAKxXh7GmHPAd784nMiwUH72zqYOn1tVW8+MF1YSERbCCzPGE98r/JQyrUlhrbVDdCu+1iD2qup/OhqJMabbSo6N5KErh/KLdz9n6ZYqLj/PtyV+jzc0c+8fC9l/pJ5XZ154yiyyrVLjo0iJi7R2iG7G1xrE+45GYYzp9mZcPJABfaP5r7c30tjccsbyzS3KN19dQ3FZNb+Zlk/uaW4diQh5mQnW1bWb8XWqje85HYgxpnuLDAvlh9dlU1J5hD9/suuM5X+xcBOLNuzjh9dl88VR/c9YPi8zkV0HjnHwaIM/wjV+YIPdjDE+u3pkPy4ZmsSvPtjKodN8kb+0YifP/3MHd104gHsuHujTtfOzXDWMIqtFdBuWIIwxPhMRfnR9Nkfqm/jVB1u8lvno8338eMEGrhrRj0enjPJ54sAx6fGECDZgrhuxBGGM6ZDh/WO58/ws/vTJLjbvrT3p2PryGh58eQ0jU+N4cnr+GRcp8hQTGcZ5KbHWDtGNWIIwxnTYt64+j9iocB57e8OJWVgrqo9zz9yVJPQKZ86M8Z1abCg/K5Gi0mpb8rSbsARhjOmwxJgIvnX1MJaXHOD9jfuorWvknrkrOdbQzJy7x5MSF9Wp6+ZnJnC4rokdB476OWLTGbaeoDGmU+68YAB//nQ3P31nEwOTYthaeYQXZoxnRP+4Tl8zz91QvWZ3NUM6MWLb+JfVIIwxnRIeGsKPrs9m98FjLNtSxc++NJrLfBxA156hyb2JjQxjbak1VHcHVoMwxnTaZecl88DlQ0jqHcG0CVldvl5IiJCTaTO7dheO1iBEZJKIbBaREhGZ5eV4logsFpE1IlIsIpO9HD8iIt91Mk5jTOfNunbEiUV//CEvM4FNe2o53mAzuwabYwlCREKBp4FrgWxguohktyn2Q2C+quYD04Bn2hx/AnjXqRiNMd1PfmYizS3K+oqaYIdyznOyBjEBKFHV7araAMwDbmhTRoHWFq14oKL1gIh8CdgBbHAwRmNMN9PaUL12t91mCjYnE0Q64LlOYZl7n6efAF8WkTJcS5g+BCAivYHvAzaDrDHnmKTekWQk9mKNNVQHXbB7MU0H5qpqBjAZeElEQnAljl+p6pHTnSwiM0WkUEQKq6qqnI/WGBMQ+VmJVoPoBpxMEOVApsfzDPc+T18F5gOo6gogCkgCzgf+V0R2At8EfiAiD7Z9AVWdraoFqlqQnNy17nXGmO4jLzOBipo69h2uC3Yo5zQnE8RKYJiIDBKRCFyN0AvalNkNXAUgIiNxJYgqVb1UVQeq6kDg18DPVfW3DsZqjOlGWleYW2O1iKByLEGoahPwILAI2ISrt9IGEXlMRKa6i30HuE9EioBXgBnaOrGLMeacNSotjvBQsfEQQeboQDlVXYir8dlz36Me2xuBi89wjZ84EpwxptuKCg8lOzXORlQHWbAbqY0xxqu8zASKy2potpldg8YShDGmW8rPSuRYQzNb9tWeubBxhCUIY0y31NpQbe0QwWMJwhjTLQ3oG01idLgtQRpEliCMMd2SiJCXmWA1iCCyBGGM6bbyMhPZWnmE2rrGYIdyTrIEYYzptvKyElCF4jKb2TUYLEEYY7qtvAxrqA4mSxDGmG4rPjqcwckxNuVGkFiCMMZ0a60N1TYLT+BZgjDGdGv5WYnsP1JP2aHjwQ7lnGMJwhjTreXbgLmgsQRhjOnWhvePJTIsxBJEEFiCMMZ0a+GhIeRkxNuI6iCwBGGM6fbyMhNYX3GYhqaWYIdyTrEEYYzp9vIyE2loauHzvYeDHco5xRKEMabby8+yJUiDwRKEMabbS42Pol9spDVUB5glCGNMt2czuwaHJQhjTI+Qn5XIjv1HOXS0IdihnDMsQRhjeoQTK8yVWS0iUCxBGGN6hJyMeEIE1lpDdcBYgjDG9AgxkWGclxLLGmuHCBhLEMaYHiM/K4Eim9k1YCxBGGN6jLzMBGqON7Jj/9Fgh3JOsARhjOkx8rMSARswFyiOJggRmSQim0WkRERmeTmeJSKLRWSNiBSLyGT3/i+IyCoRWef+eaWTcRpjeoYhyb3pHRlm4yECJMypC4tIKPA08AWgDFgpIgtUdaNHsR8C81X1WRHJBhYCA4H9wBRVrRCR0cAiIN2pWI0xPUNoiJCTEW8JIkCcrEFMAEpUdbuqNgDzgBvalFEgzr0dD1QAqOoaVa1w798A9BKRSAdjNcb0EHmZCWzac5i6xuZgh3LWczJBpAOlHs/LOLUW8BPgyyJShqv28JCX69wMrFbV+rYHRGSmiBSKSGFVVZV/ojbGdGv5WYk0tSjry2uCHcpZL9iN1NOBuaqaAUwGXhKREzGJyCjgf4D7vZ2sqrNVtUBVC5KTkwMSsDEmuPJsCdKAcTJBlAOZHs8z3Ps8fRWYD6CqK4AoIAlARDKAvwJfUdVtDsZpjOlBkmMjSU/oZQPmAsDJBLESGCYig0QkApgGLGhTZjdwFYCIjMSVIKpEJAF4B5ilqssdjNEY0wPlZyXYlBsB4FiCUNUm4EFcPZA24eqttEFEHhORqe5i3wHuE5Ei4BVghrqGSD4IDAUeFZG17kc/p2I1xvQseZkJlFcfp7K2LtihnNUc6+YKoKoLcTU+e+571GN7I3Cxl/N+CvzUydiMMT1X6wpza3dXc82o/kGO5uwV7EZqY4zpsFFp8YSHirVDOMwShDGmx4kKD2Vkapy1QzjMEoQxpkfKy0yguKya5hab2dUpliCMMT1SflYCRxua2VpZG+xQzlqWIIwxPVJepmtmV7vN5BxLEMaYHmlg32gSosNtRLWDLEEYY3okESEvM8HWhnCQJQhjTI+Vl5nAlspajtQ3BTuUs5IlCGNMj5WXmYAqFJdZLcIJjo6kNsYYJ7XO7PpxyQGGJvfu9HUSYyIID7W/l9uyBGGM6bESoiMYkhzDbxeX8NvFJZ2+TnpCLx6ePILrxqQiIn6MsGezBGGM6dGenJ7fpZ5MzS3KK5+V8uDLa/jjwF08OiWb0enxfoyw5xLX5Kk9X0FBgRYWFgY7DGNMD9Tcory6spTH39vMoWMNTBufyXeuGU5S77N/pWMRWaWqBd6O2U03Y8w5LzREuOP8LBZ/dyJ3XzSIvxSWccUvl/D8P7bT0NQS7PCCxhKEMca4xfcK59Ep2fz9m5eSPyCRn76ziUm/WcbizZXBDi0oLEEYY0wbQ/vF8uLd45kzowBVuPuFldz9wmdsqzoS7NACyhKEMcZ4ISJcOSKFRd+8jEcmj6Rw5yG++Ktl/PTtjRyuawx2eAFhCcIYY04jIiyE+y4bzEffncgt4zL4w/IdXPHLJbzy2e6zfqpxSxDGGOOD5NhI/vvmHN568BIGJ8fw8BvrmPrbf/LZjoPBDs0x1s3VGGM6SFV5u3gPv1i4iYqaOgYnxxAaxAF2I1LjeGp6fqfOPV03VxsoZ4wxHSQiTMlN4+qRKcxZvoMNFTVBjSczsZcj17UEYYwxndQrIpRvXDE02GE4xtogjDHGeGUJwhhjjFeWIIwxxnjlaIIQkUkisllESkRklpfjWSKyWETWiEixiEz2OPaw+7zNIvJFJ+M0xhhzKscaqUUkFHga+AJQBqwUkQWqutGj2A+B+ar6rIhkAwuBge7tacAoIA34QETOU9Vmp+I1xhhzMidrEBOAElXdrqoNwDzghjZlFIhzb8cDFe7tG4B5qlqvqjuAEvf1jDHGBIiTCSIdKPV4Xube5+knwJdFpAxX7eGhDpxrjDHGQcFupJ4OzFXVDGAy8JKI+ByTiMwUkUIRKayqqnIsSGOMORc5OVCuHMj0eJ7h3ufpq8AkAFVdISJRQJKP56Kqs4HZACJSJSK7/Ba9/yUB+4MdxGlYfF1j8XWNxdc1XYlvQHsHnEwQK4FhIjII15f7NOCONmV2A1cBc0VkJBAFVAELgJdF5AlcjdTDgM9O92Kqmuzf8P1LRArbm++kO7D4usbi6xqLr2ucis+xBKGqTSLyILAICAXmqOoGEXkMKFTVBcB3gN+LyLdwNVjPUNfsgRtEZD6wEWgCvmE9mIwxJrAcnYtJVRfianz23Peox/ZG4OJ2zv0Z8DMn4zPGGNO+YDdSn0tmBzuAM7D4usbi6xqLr2scie+sWQ/CGGOMf1kNwhhjjFeWIIwxxnhlCcJPRCTTPfHgRhHZICL/4aXMRBGpEZG17sej3q7lcJw7RWSd+/VPWaNVXJ50T5RYLCJjAxjbcI/3Zq2IHBaRb7YpE9D3UETmiEiliKz32NdHRN4Xka3un4ntnHuXu8xWEbkrgPH9UkQ+d//+/ioiCe2ce9rPgoPx/UREyj1+h5PbOfe0k306GN+rHrHtFJG17ZwbiPfP6/dKwD6DqmoPPzyAVGCsezsW2AJktykzEXg7yHHuBJJOc3wy8C4gwAXAp0GKMxTYCwwI5nsIXAaMBdZ77PtfYJZ7exbwP17O6wNsd/9MdG8nBii+a4Aw9/b/eIvPl8+Cg/H9BPiuD7//bcBgIAIoavv/yan42hz/P+DRIL5/Xr9XAvUZtBqEn6jqHlVd7d6uBTbRM+ePugH4o7p8AiSISGoQ4rgK2KaqQR0dr6rLgINtdt8AvOjefhH4kpdTvwi8r6oHVfUQ8D7uWQOcjk9V31PVJvfTT3DNRBAU7bx/vvBlss8uO118IiLAbcAr/n5dX53meyUgn0FLEA4QkYFAPvCpl8MXikiRiLwrIqMCGpiLAu+JyCoRmenleHeZKHEa7f/HDPZ7mKKqe9zbe4EUL2W6y/t4D64aoTdn+iw46UH3LbA57dwe6Q7v36XAPlXd2s7xgL5/bb5XAvIZtAThZyLSG3gd+KaqHm5zeDWuWya5wFPA3wIdH3CJqo4FrgW+ISKXBSGG0xKRCGAq8Bcvh7vDe3iCuury3bKvuIg8gmsmgj+3UyRYn4VngSFAHrAH122c7mg6p689BOz9O933ipOfQUsQfiQi4bh+iX9W1TfaHlfVw6p6xL29EAgXkaRAxqiq5e6flcBfOXWdDZ8mSnTYtcBqVd3X9kB3eA+Bfa233dw/K72UCer7KCIzgOuBO91fIKfw4bPgCFXdp6rNqtoC/L6d1w32+xcG3AS82l6ZQL1/7XyvBOQzaAnCT9z3K/8AbFLVJ9op099dDhGZgOv9PxDAGGNEJLZ1G1dj5vo2xRYAX3H3ZroAqPGoygZKu3+5Bfs9dFsAtPYIuQt400uZRcA1IpLovoVyjXuf40RkEvA9YKqqHmunjC+fBafi82zTurGd1z0x2ae7RjkN1/seKFcDn6tqmbeDgXr/TvO9EpjPoJMt8OfSA7gEVzWvGFjrfkwGHgAecJd5ENiAq0fGJ8BFAY5xsPu1i9xxPOLe7xmj4FoqdhuwDigIcIwxuL7w4z32Be09xJWo9gCNuO7hfhXoC3wIbAU+APq4yxYAz3ucew+u1RBLgLsDGF8JrnvPrZ/D59xl04CFp/ssBCi+l9yfrWJcX3SpbeNzP5+Mq9fOtkDG594/t/Uz51E2GO9fe98rAfkM2lQbxhhjvLJbTMYYY7yyBGGMMcYrSxDGGGO8sgRhjDHGK0sQxhhjvLIEYYyDRGSg50yhxvQkliCMMcZ4ZQnCmAARkcEiskZExgc7FmN8ERbsAIw5F4jIcFxTVs9Q1aJgx2OMLyxBGOO8ZFxz5dykqhuDHYwxvrJbTMY4rwbYjWteHWN6DKtBGOO8Blyzli4SkSOq+nKwAzLGF5YgjAkAVT0qItcD77uTRCCnrjamU2w2V2OMMV5ZG4QxxhivLEEYY4zxyhKEMcYYryxBGGOM8coShDHGGK8sQRhjjPHKEoQxxhiv/j9CSV7WanW8oQAAAABJRU5ErkJggg==\n", 513 | "text/plain": [ 514 | "
" 515 | ] 516 | }, 517 | "metadata": { 518 | "needs_background": "light" 519 | } 520 | } 521 | ] 522 | }, 523 | { 524 | "cell_type": "code", 525 | "metadata": { 526 | "id": "FSzldWZbfyDk" 527 | }, 528 | "source": [ 529 | "" 530 | ], 531 | "execution_count": null, 532 | "outputs": [] 533 | } 534 | ] 535 | } -------------------------------------------------------------------------------- /2021autumn/PZAD031_err_regression_202012n____.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/PZAD031_err_regression_202012n____.pdf -------------------------------------------------------------------------------- /2021autumn/PZAD043_featureselection_202109___.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/PZAD043_featureselection_202109___.pdf -------------------------------------------------------------------------------- /2021autumn/PZAD051_ensemble_202102a____part1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/PZAD051_ensemble_202102a____part1.pdf -------------------------------------------------------------------------------- /2021autumn/PZAD052_rf_202101a_____+adaboost.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/PZAD052_rf_202101a_____+adaboost.pdf -------------------------------------------------------------------------------- /2021autumn/PZAD053_gradboosting_202106n___.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2021autumn/PZAD053_gradboosting_202106n___.pdf -------------------------------------------------------------------------------- /2021autumn/README.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /2022-23new/ML015_python_202207a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022-23new/ML015_python_202207a.pdf -------------------------------------------------------------------------------- /2022-23new/ML093_USL_202202a_part_2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022-23new/ML093_USL_202202a_part_2.pdf -------------------------------------------------------------------------------- /2022-23new/PZAD034_err_multirankcluster_202204____sm.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022-23new/PZAD034_err_multirankcluster_202204____sm.pdf -------------------------------------------------------------------------------- /2022-23new/README.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /2022spring/DL_03archiall.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/DL_03archiall.pdf -------------------------------------------------------------------------------- /2022spring/DL_1NN_03_nn_202201a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/DL_1NN_03_nn_202201a.pdf -------------------------------------------------------------------------------- /2022spring/DL_1NN_04learning_202201a___.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/DL_1NN_04learning_202201a___.pdf -------------------------------------------------------------------------------- /2022spring/ML082_bayes_202115n.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML082_bayes_202115n.pdf -------------------------------------------------------------------------------- /2022spring/ML091_cluster_202112n____.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML091_cluster_202112n____.pdf -------------------------------------------------------------------------------- /2022spring/ML092_EM_202201a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML092_EM_202201a.pdf -------------------------------------------------------------------------------- /2022spring/ML093_USL_202201a___.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML093_USL_202201a___.pdf -------------------------------------------------------------------------------- /2022spring/ML094_anomaly_202201a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML094_anomaly_202201a.pdf -------------------------------------------------------------------------------- /2022spring/ML095_apriory_202204a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML095_apriory_202204a.pdf -------------------------------------------------------------------------------- /2022spring/ML101_special_202202a___.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML101_special_202202a___.pdf -------------------------------------------------------------------------------- /2022spring/ML105_range_202202a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/ML105_range_202202a.pdf -------------------------------------------------------------------------------- /2022spring/PZAD071_RecSys_202201a____.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Dyakonov/MSUML/4274d7e256c655df5336440bce691f15660491eb/2022spring/PZAD071_RecSys_202201a____.pdf -------------------------------------------------------------------------------- /2022spring/README.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # курс "Методы машинного обучения" для 3го потока 3го курса ВМК МГУ 2 | 3 | * потоковый курс на факультете ВМК МГУ имени М.В. Ломоносова 4 | * для бакалавров 3 потока 3 курса 5 | * лектор: [Александр Дьяконов](https://dyakonov.org/ag/) 6 | 7 | ### рекомендации 8 | 9 | Для тех, у кого проблемы с Питоном и его библиотеками: 10 | 11 | * [Канал курса "Введение в машинное обучение" (версия 2020 года)](https://www.youtube.com/playlist?list=PLaRUeIuewv8DYqSdw7uVgLpXSKUFl6Ee6) 12 | * [и его гитхаб](https://github.com/Dyakonov/IML/) 13 | * [Гитхаб по всему курсу](https://github.com/MSU-ML-COURSE/ML-COURSE-21-22) (три потока) 14 | 15 | ### видео 16 | 17 | * [канал курса](https://www.youtube.com/playlist?list=PLaRUeIuewv8BFD3UwCDBetM89c2uRPpcj) 18 | * [видео 2022 года](https://www.youtube.com/watch?v=q4BBLoiegW0&list=PLhe7c-LCgl4Ic-FRawaaEhUmDCQmGMtzx) 19 | 20 | ### конспекты 21 | 22 | * Могут появляться [в этом канале](https://t.me/Dyakonovsbook) 23 | 24 | ### слайды лекций 25 | 26 | 1. [Вводная лекция](./2021autumn/ML012_terms_202102a.pdf) (07.09.2021 / 05.09.2022) 27 | 2. [Питон и его библиотеки](./2022-23new/ML015_python_202207a.pdf) (12.09.2022) 28 | 2. [Постановка основных задач](./2021autumn/ML013_introclassreg_202102a.pdf) (14.09.2021) 29 | 3. [Метрические алгоритмы](./2021autumn/ML030_metric_202110a_____.pdf) (21.09.2021) [ноутбук](./2021autumn/MMO_lec3_kNN.ipynb) 30 | 4. [Линейные алгоритмы: линейная регрессия](./2021autumn/ML051_linear_202115a______linreg.pdf) (28.09.2021) 31 | 5. [Оптимизация в ML](./2021autumn/ML022_optimization_202105a______________.pdf) (05.10.2021), [логистическая регрессия](./2021autumn/ML051_linear_202116a______logreg.pdf ) (05.10.2021). 32 | 6. [Выбор модели](./2021autumn/ML040_control_202110a_______.pdf) (12.10.2021) [ноутбук](./2021autumn/MMO_lec6_MS.ipynb) 33 | 7. [Линейные классификаторы, SVM](./2021autumn/ML052_SVM_202112a______.pdf) (19.10.2021) 34 | 8. [Нелинейные методы, трюки с ядрами](./2021autumn/ML061_nonlinear_202113a_________.pdf) (26.10.2021) 35 | 9. [Сложность алгоритмов, переобучение, смещение и разброс](./2021autumn/ML081_complexity_202106a.pdf) (02.11.2021) 36 | 10. [Деревья решений](./2021autumn/ML062_tree_202113a.pdf) (09.11.2021) 37 | 11. [Ансамбли алгоритмов](./2021autumn/PZAD051_ensemble_202102a____part1.pdf) (16.11.2021) 38 | 12. [Случайные леса и AdaBoost](./2021autumn/PZAD052_rf_202101a_____+adaboost.pdf) (23.11.2021) 39 | 13. [Градиентный бустинг](./2021autumn/PZAD053_gradboosting_202106n___.pdf) (30.11.2021) 40 | 14. [Селекция (отбор) признаков](./2021autumn/PZAD043_featureselection_202109___.pdf) (07.12.2021) 41 | 15. [Функции ошибки и функционалы качества](./2021autumn/PZAD031_err_regression_202012n____.pdf) (14.12.2021) 42 | 43 | 16. [Нейронные сети](./2022spring/DL_1NN_03_nn_202201a.pdf) (08.02.2022) 44 | 17. [Борьба с переобучением в нейронных сетях](./2022spring/DL_1NN_04learning_202201a___.pdf) (15.02.2022) 45 | 18. [Архитектуры нейросетей](./2022spring/DL_03archiall.pdf) (22.02.2022) 46 | 19. [Ассоциативные правила](./2022spring/ML095_apriory_202204a.pdf) (01.03.2022) 47 | 20. [Кластеризация](./2022spring/ML091_cluster_202112n____.pdf) (15.03.2022) [Качество кластеризации](./2022-23new/PZAD034_err_multirankcluster_202204____sm.pdf) 48 | 21. [EM-алгоритм](./2022spring/ML092_EM_202201a.pdf), [Обучение без учителя](./2022spring/ML093_USL_202201a___.pdf) (22.03.2022), [Другие методы понижения размерности](./2022-23new/ML093_USL_202202a_part_2.pdf) (new) 49 | 22. [Детектирование аномалий](./2022spring/ML094_anomaly_202201a.pdf) (29.03.2022) 50 | 23. [Байесовский подход](./2022spring/ML082_bayes_202115n.pdf) (05-12.04.2022) 51 | 24. [Рекомендательные системы](./2022spring/PZAD071_RecSys_202201a____.pdf) (19.04.2022) 52 | 25. [Ранжирование](./2022spring/ML105_range_202202a.pdf) (26.04.2022) 53 | 26. [Специальные задачи: многоклассовые, с частичной разметкой, активное обучение](./2022spring/ML101_special_202202a___.pdf) (17.05.2022) 54 | 55 | --------------------------------------------------------------------------------