├── in
├── organic.txt
├── sites.txt
├── initial.txt
├── mineral.txt
├── grid.txt
├── rsnow.txt
├── snow.txt
└── bound.txt
├── results.png
├── gipl.yml
├── Makefile
├── gipl_config.cfg
├── LICENSE.md
├── compare.m
├── gipl_mods.f90
├── README.md
├── gipl.f90
├── plot_input_data.ipynb
└── mesres.txt
/in/organic.txt:
--------------------------------------------------------------------------------
1 | 1
2 | 1 0
3 |
--------------------------------------------------------------------------------
/in/sites.txt:
--------------------------------------------------------------------------------
1 | 1
2 | 246 1 1 1 1 0.00
3 |
--------------------------------------------------------------------------------
/results.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Elchin/GIPL/HEAD/results.png
--------------------------------------------------------------------------------
/gipl.yml:
--------------------------------------------------------------------------------
1 | # Build GIPL from source.
2 | name: gipl
3 | channels:
4 | - conda-forge
5 | dependencies:
6 | - python =3
7 | - fortran-compiler
8 | - make
9 |
--------------------------------------------------------------------------------
/in/initial.txt:
--------------------------------------------------------------------------------
1 | 1 13
2 | DEPTH TEMP
3 | -1.5 14.9
4 | 0.0 13.8
5 | 0.087 10.6
6 | 0.137 9.0
7 | 0.213 6.5
8 | 0.289 4.63
9 | 0.363 2.74
10 | 0.44 1.12
11 | 0.517 -0.367
12 | 0.594 -1.09
13 | 0.745 -2.28
14 | 0.89 -3.33
15 | 1.11 -4.71
16 |
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | CC=gfortran
2 |
3 | CFLAGS=-c
4 |
5 | all: gipl
6 |
7 | gipl: gipl_mods.o gipl.o
8 | $(CC) gipl_mods.o gipl.o -o gipl
9 |
10 | gipl_mods.o: gipl_mods.f90
11 | $(CC) $(CFLAGS) gipl_mods.f90
12 |
13 | gipl.o: gipl.f90
14 | $(CC) $(CFLAGS) gipl.f90
15 |
16 | clean:
17 | rm *o gipl
18 |
--------------------------------------------------------------------------------
/in/mineral.txt:
--------------------------------------------------------------------------------
1 | 1
2 | 1 6
3 | 0.39 0.07 -0.19 2000000.0 1600000.0 1.05 2.05 0.21
4 | 0.41 0.001 -0.9 2600000.0 2400000.0 0.812 2.03 0.15
5 | 0.38 0.06 -0.6 2600000.0 2400000.0 1.21 2.13 0.60
6 | 0.35 0.06 -0.324 2900000.0 2000000.0 1.42 2.52 7.04
7 | 0.28 0.018 -0.109 3100000.0 2000000.0 1.78 2.04 17.0
8 | 0.05 0.067 -0.215 3000000.0 2500000.0 2.45 2.62 8.0
9 |
--------------------------------------------------------------------------------
/gipl_config.cfg:
--------------------------------------------------------------------------------
1 | input files
2 | in/sites.txt
3 | in/bound.txt
4 | in/snow.txt
5 | in/rsnow.txt
6 | in/initial.txt
7 | in/grid.txt
8 | in/organic.txt
9 | in/mineral.txt
10 |
11 | output files
12 | out/mean.txt
13 | out/result.txt
14 | out/start.txt
15 |
16 | 0/1: start from previous time step / start from the beginning
17 | 1
18 | step | taum | tmin :
19 | 1.0 0.1 0.0010
20 | begin end : start and end, in the example it runs over one year from 0 to 1
21 | 0 2
22 | smoothing factor | unfrozen water parameter | max number of iterations
23 | 0.0100 0.0100 5
24 | number of second in a day [sec] | number of time steps (in the example number of days in a year )
25 | 86400.0 365
26 | sea level | max number of freezing fronts [integer number]
27 | 0.000 4
28 | freezing front min and max depth [meters]
29 | 0.05 10.00
30 | saturation coefficient (fraction of 1)
31 | 0.95
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 GIPL
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/compare.m:
--------------------------------------------------------------------------------
1 | function compare(k);
2 | % s: sight
3 | % k: 0 turn off, 1 turn on
4 | %clear all
5 | if k==1, status = dos('./gipl'); end
6 | m1=load('dump/result.txt');
7 | m2=load('mesres.txt');
8 |
9 |
10 | calc=m1(:,5:end);
11 | mes=m2(:,2:end);
12 |
13 | Depths=[0.001 0.072 0.125 0.2 0.277 0.354 0.424 0.506 0.583 0.741 0.885 1.1];
14 | num=[3,5,8,11]; % indexes
15 |
16 | n=length(calc(1:end,1));
17 | % 1 2 3 4 5 6 7 8 9 10 11 12
18 | % J F M A M J J A S O N D
19 | mon=[31 28 31 30 31 30 31 31 30 31 30 31];
20 | beg=6; k=1;
21 | for i=1+beg:12+beg
22 | if i==12, curr=i; else curr=rem(i,12); end
23 | if k==1, month(k)=mon(curr);
24 | else month(k)=month(k-1)+mon(curr);
25 | end
26 | k=k+1;
27 | end
28 |
29 | yy=fix(n/365);
30 | for i=1:yy
31 | for j=1:12
32 | k=j+(i-1)*12;
33 | xtick(k)=month(j)+365*(i-1);
34 | end
35 | xxtick(i)=(365-182)+365*(i-1);
36 | end
37 |
38 | nx=length(xtick);
39 | xmonth={ 'A' 'S' 'O' 'N' 'D' 'J' 'F' 'M' 'A' 'M' 'J' 'J'};
40 | xyear={ '2008' '2009' '2010' '2011' '2012'};
41 | figure(1);
42 | for i=1:4
43 | subplot(4,1,i);
44 | depth=num(i);
45 | plot(1:n,calc(:,depth),'b-','LineWidth',2); hold on % calculated
46 | plot(1:n,mes(1:n,depth),'r-','LineWidth',2); % mesaured
47 | err(i)=mean(abs(calc(:,depth)-mes(1:n,depth)));
48 | set(gca,'XTick',xtick); set(gca,'XTickLabel',xmonth)
49 | title(['Depth=',strcat(num2str(Depths(depth)),' m'), ', MAE=',num2str(err(i))]);
50 | ylabel 'Temperature (^oC)'; hold off; grid on;
51 | axis([1 n min(mes(1:n,depth))-3 max(mes(1:n,depth))+3])
52 | end
53 | xlabel 'Time (day)'
54 | err(5)=sum(err(:))/4; disp([err]);
55 | legend('Simulated','Observed',1);
56 |
--------------------------------------------------------------------------------
/in/grid.txt:
--------------------------------------------------------------------------------
1 | 176
2 | -1.5
3 | -1.45
4 | -1.4
5 | -1.35
6 | -1.3
7 | -1.25
8 | -1.2
9 | -1.15
10 | -1.1
11 | -1.05
12 | -1
13 | -0.95
14 | -0.9
15 | -0.85
16 | -0.8
17 | -0.75
18 | -0.7
19 | -0.65
20 | -0.6
21 | -0.55
22 | -0.5
23 | -0.45
24 | -0.4
25 | -0.35
26 | -0.3
27 | -0.25
28 | -0.2
29 | -0.15
30 | -0.1
31 | -0.08
32 | -0.06
33 | -0.04
34 | -0.03
35 | -0.02
36 | -0.01
37 | -0.005
38 | -0.002
39 | -0.001
40 | 0
41 | 0.001
42 | 0.002
43 | 0.005
44 | 0.01
45 | 0.02
46 | 0.03
47 | 0.04
48 | 0.05
49 | 0.08
50 | 0.1
51 | 0.12
52 | 0.14
53 | 0.16
54 | 0.18
55 | 0.2
56 | 0.22
57 | 0.24
58 | 0.26
59 | 0.28
60 | 0.3
61 | 0.32
62 | 0.34
63 | 0.36
64 | 0.38
65 | 0.4
66 | 0.42
67 | 0.44
68 | 0.46
69 | 0.48
70 | 0.5
71 | 0.52
72 | 0.54
73 | 0.56
74 | 0.58
75 | 0.6
76 | 0.62
77 | 0.64
78 | 0.66
79 | 0.68
80 | 0.7
81 | 0.72
82 | 0.74
83 | 0.76
84 | 0.78
85 | 0.8
86 | 0.82
87 | 0.84
88 | 0.86
89 | 0.88
90 | 0.9
91 | 0.92
92 | 0.94
93 | 0.96
94 | 0.98
95 | 1
96 | 1.05
97 | 1.1
98 | 1.15
99 | 1.2
100 | 1.25
101 | 1.3
102 | 1.35
103 | 1.4
104 | 1.45
105 | 1.5
106 | 1.55
107 | 1.6
108 | 1.65
109 | 1.7
110 | 1.75
111 | 1.8
112 | 1.85
113 | 1.9
114 | 1.95
115 | 2
116 | 2.1
117 | 2.2
118 | 2.3
119 | 2.4
120 | 2.5
121 | 2.6
122 | 2.7
123 | 2.8
124 | 2.9
125 | 3
126 | 3.1
127 | 3.2
128 | 3.3
129 | 3.4
130 | 3.5
131 | 3.6
132 | 3.7
133 | 3.8
134 | 3.9
135 | 4
136 | 4.1
137 | 4.2
138 | 4.3
139 | 4.4
140 | 4.5
141 | 4.6
142 | 4.7
143 | 4.8
144 | 5
145 | 5.3
146 | 5.7
147 | 6
148 | 6.5
149 | 7
150 | 7.5
151 | 8
152 | 8.5
153 | 9
154 | 9.5
155 | 10
156 | 10.5
157 | 11
158 | 11.5
159 | 12
160 | 12.5
161 | 13
162 | 14
163 | 15
164 | 16
165 | 17
166 | 18
167 | 19
168 | 20
169 | 21
170 | 23
171 | 28
172 | 33
173 | 50
174 | 60
175 | 70
176 | 80
177 | 90
178 | 12
179 | 39
180 | 48
181 | 51
182 | 55
183 | 58
184 | 62
185 | 66
186 | 70
187 | 74
188 | 81
189 | 89
190 | 97
191 |
--------------------------------------------------------------------------------
/gipl_mods.f90:
--------------------------------------------------------------------------------
1 | module const
2 |
3 | real*8, parameter :: hcap_snow=840000.0 ! heat capacity of snow (constant)
4 | real*8, parameter :: Lf=333.2*1.D+6 ! Latent of water fusion
5 | integer, parameter :: lbound=2 ! 1 const temp, 2 heat flux condition at the bottom boundary
6 | integer, parameter :: n_lay=10 ! total allowed number of soil layer
7 |
8 | end module const
9 |
10 | module bnd
11 | integer :: n_temp ! number of upper boundary points for temperature (input)
12 | real*8,allocatable:: utemp_time(:), utemp(:,:) ! upper boundary time and temperature (input)
13 | real*8,allocatable:: utemp_time_i(:), utemp_i(:,:) ! time and upper boundary temprature (interpolated)
14 | integer :: n_snow ! number of upper boundary points for snow (input)
15 | real*8 ,allocatable:: snd_time(:),snd(:,:) ! upper boundary snow time and snow depth (input)
16 | integer :: n_stcon
17 | real*8 ,allocatable:: stcon_time(:),stcon(:,:) ! snow thermal conductivity time and itself (input)
18 | real*8 ,allocatable:: snd_i (:,:), stcon_i (:,:) ! snow depth and thermal conductivity (interpolated)
19 | real*8 :: TINIR
20 | real*8 :: time_restart ! restart time in restart file
21 |
22 |
23 | ! Parameter read from cmd file
24 | integer :: restart ! 0/1 start from previous time step / start from the begining
25 | real*8 :: time_step ! step is the timestep in the example it is 1 yr
26 | real*8 :: TAUM ! taum is the convergence parameter used by the stefan subroutine
27 | real*8 :: TMIN ! tmin minimal timestep used in the Stefan subroutine
28 | real*8 :: time_beg,time_end ! inbegin time, end time
29 | integer :: itmax ! maximum number of iterations in Stefan subroutine
30 | integer :: n_time ! number of time steps that temp will be averaged over
31 | integer :: n_frz_max ! maximum number of freezing fronts
32 | real*8 :: smooth_coef ! smoothing factor
33 | real*8 :: unf_water_coef ! unfrozen water coefficient
34 | real*8 :: n_sec_day ! number of second in a day
35 | real*8 :: frz_frn_max,frz_frn_min ! freezing front min and max depth [meters]
36 | real*8 :: sat_coef ! saturation coefficient [dimensionless, fraction of 1]
37 | ! output file names
38 | character(64) :: restart_file,result_file,aver_res_file
39 |
40 | type site_gipl
41 | real*8 :: time
42 | end type site_gipl
43 |
44 | end module bnd
45 |
46 | module thermo
47 | real*8 L_fus ! Latent heat of fusion [W/mK]
48 | real*8 sea_level ! how many meter above the sea level the borehole is
49 |
50 | ! thermo physical parameters of soil for each soil layer
51 | real*8,allocatable:: vwc(:,:) ! volumetric water content
52 | real*8,allocatable:: a_coef(:,:),b_coef(:,:) ! a and b unfrozen water curve coefficients
53 | real*8,allocatable:: temp_frz(:,:) ! temperature freezing depression
54 | real*8,allocatable:: EE(:,:)
55 | real*8,allocatable:: hcap_frz(:,:),hcap_thw(:,:) ! soil layer heat capacity thawed/frozen
56 | real*8,allocatable:: tcon_frz(:,:),tcon_thw(:,:) ! soil layer thermal conductivity thawed/frozen
57 |
58 |
59 | real*8 :: hcap_s ! heat capacity of snow (constant) nondimentional
60 |
61 | real*8, allocatable :: temp(:,:) ! soil temperature
62 | real, allocatable:: n_bnd_lay(:,:) ! number of boundaries between layer in soil
63 | integer k0
64 |
65 |
66 | integer, allocatable :: snow_code(:),veg_code(:) ! (not necccessary) required for runing in parallel
67 | integer, allocatable :: geo_code(:),gt_zone_code(:) ! (not necccessary) required for runing in parallel
68 | real*8, allocatable :: temp_grd(:) ! temprature gradient at the lower boundary
69 |
70 | real*8 ,allocatable:: RES(:,:) ! unified variable for the writing results into the file
71 |
72 | end module thermo
73 |
74 | module grd
75 |
76 | integer,allocatable:: n_lay_cur(:) ! current number of soil layers <= n_lay
77 | ! calclulated as a sum of organic and mineral soil layers
78 | integer :: n_site ! number of sites
79 | integer :: n_grd ! total number of grid points with depth (grid.txt)
80 | real*8,allocatable:: zdepth(:),dz(:) ! vertical grid and distance between grid point 'zdepth(n_grd)'
81 | integer,allocatable:: lay_id(:,:) ! layer index
82 | integer :: m_grd ! number of grid points to store in res file
83 | integer,allocatable:: zdepth_id(:) ! index vector of stored grid points 'zdepth_id(m_grid)'
84 | integer :: n_ini ! number of vertical grid cells in init file
85 | real*8, allocatable :: zdepth_ini(:),ztemp_ini(:,:) ! depth and correspoding initial temperature (time=0) 'zdepth_ini(n_ini)'
86 | character(210) :: FMT1,FMT2 ! results formating type
87 |
88 | end module grd
89 |
90 | module alt
91 | integer,allocatable::n_frz_frn(:,:) ! number of freezing front (e.g. when freezup is about to happened)
92 | integer,allocatable::i_time(:) ! internal time step with the the main loop
93 | real*8 ,allocatable::z_frz_frn(:,:,:) ! depth of the freezing front
94 | end module alt
95 |
96 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # GIPL (Geophysical Institute Permafrost Laboratory) Model
2 |
3 | GIPL is a permafrost numerical model that employs phase changes and the effect of unfrozen volumetric water content in non-homogeneous soil texture.
4 | The original version of the model was originally developed by Romanovsky and Tipenko (2004) at the University of Alaska Fairbanks, and described in Marchenko et al., (2008). This version has been significantly modified from its predecessor and was adapted to the IRF (Initialize, Run, Finalize) coding standard structure (see [Basic Model Interface](http://csdms.colorado.edu/wiki/BMI_Description)).
5 | This version is maintained by [Elchin Jafarov](https://www.woodwellclimate.org/staff/elchin-jafarov/). Please cite Jafarov et al., (2012) when using the model. This model is a part of [permamodel project](https://github.com/permamodel/permamodel).
6 |
7 | # References:
8 | Jafarov, E. E., Marchenko, S. S., and Romanovsky, V. E.: Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset, The Cryosphere, 6, 613–624, https://doi.org/10.5194/tc-6-613-2012, 2012.
9 |
10 | Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire A., D., Marchenko, S. S.: The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate, Environmental Research Letters, 8, 035030, 2013. https://doi.org/10.1088/1748-9326/8/3/035030
11 |
12 | Jafarov, E.E., Nicolsky, D.J., Romanovsky, V.E., Walsh, J.E., Panda, S.K., Serreze, M.C. 2014. The effect of snow: How to better model ground surface temperatures. Cold Regions Science and Technology, Volume 102, Pages 63-77, ISSN 0165-232X, [doi: 10.1016/j.coldregions.2014.02.007](http://www.sciencedirect.com/science/article/pii/S0165232X1400038X).
13 |
14 | Zlotnik, V.A., Harp, D.R., Jafarov, E.E., Abolt, C.J. A Model of Ice Wedge Polygon Drainage in Changing Arctic Terrain. Water 2020, 12, 3376. [https://doi.org/10.3390/w12123376](https://www.mdpi.com/2073-4441/12/12/3376)
15 |
16 | # Installation:
17 |
18 | **Windows**: Compile the `gipl.f90` using [gfortran](https://gcc.gnu.org/wiki/GFortran) or similar compiler and name the executable file `gipl.exe`.
19 |
20 | **Linux**: Use Makefile to create an executable. Navigate to the GIPL folde and type `make` in the terminal.
21 |
22 | **Mac**:
23 | ```bash
24 | conda env create --file gipl.yml
25 | source activate gipl
26 | make
27 | ```
28 | # Run:
29 | Make sure to create a folder called `out` before running the executable file (see [`gipl_config.cfg`](https://github.com/Elchin/GIPL/blob/master/gipl_config.cfg)).
30 |
31 | # Visualize:
32 | The file with measured temperatures is [`mesres.txt`](https://github.com/Elchin/GIPL/blob/master/mesres.txt). The header for the `mesres.txt` can be found in the `compare.m` script. Type the command `>>compare(0)` to execute the script in the [Matlab](https://www.mathworks.com/products/matlab.html). The script plots the daily measured against calculated ground temperatures at four specified depth as shown in the figure below. Also checkout the jupyter notebook [example](https://github.com/Elchin/GIPL/blob/master/plot_results.ipynb).
33 | 
34 |
35 | # Input/Output Setup:
36 | [`gipl_config.cfg`](https://github.com/Elchin/GIPL/blob/master/gipl_config.cfg) configuration file that includes paths to input and output files. All input files stored in `in` folder. The path for the output files is prescribed in the config file. The model outputs three files: `results.txt` file with daily output, `mean.txt` with the yearly averaged data such as active layer thickness and freeze-up day, and the file `start.txt` includes the temperature profile with depth for the last day of simulation. The `result.txt` has the structure: `time`, `upper_bnd_temperature`, `snow_depth, ground_temperatures`, where 'ground_temperatures' assigned in [`grid.txt`](https://github.com/Elchin/GIPL/blob/master/in/grid.txt) (see below). The `mean.txt` file has the same configuration and includes 3 more columns. Everything in `mean.txt` is averaged yearly (see `number_of_time_steps` in `gipl_config.cfg`).
37 |
38 | ## Input data:
39 | All input files are located in the [`in`](https://github.com/Elchin/GIPL/tree/master/in) folder.
40 |
41 | ### **gipl_config.cfg**
42 | Includes paths for input and output files and the correspoding setup paramteres.
43 | ```
44 | 0/1: start from previous time step / start from the begining
45 | step | taum | tmin :
46 | step is the timestep in the example it is 1
47 | taum is the convergence parameter used by the stefan subroutine
48 | tmin minimal timestep used in the Stefan subroutine
49 | begin | end : start and end, in the example it runs over one year from 0 to 1
50 | smoothing_factor | unfrozen_water_parameter | max number of iterations
51 | number_of_second_per_day [sec] | number_of_time_steps (in the example number of days in a year )
52 | sea_level | max_number_of_freezing_fronts [integer number]
53 | freezing_front_min | freezing_front_max depth [meters]
54 | saturation_coefficient (fraction of 1)
55 | ```
56 |
57 | ### **input.txt**
58 | Includes the total number of sites and the corresponding ids for the organic and mineral soils. In the current version, the number of sites is equal to 1.
59 |
60 | ### **bound.txt**
61 | Include upper boundary condition (in the example it is an air temperature)
62 | ```
63 | First row is a number of observations (in the example number of day)
64 | Column 1: Time parameter (day number)
65 | Column 2: Temperature (daily averaged temperature [Celsius])
66 | ```
67 |
68 | ### **snow.txt**
69 | Include snow depth (in the example it is daily snow depth)
70 | ```
71 | First row is a number of observations (in the example number of day)
72 | Column 1: Time parameter (day number)
73 | Column 2: Snow depth (daily averaged [m])
74 | ```
75 |
76 | ### **rsnow.txt**
77 | Include snow thermal conductivity (in the example it is daily snow conductivity)
78 | ```
79 | First row is a number of observations (in the example number of day)
80 | Column 1: Time parameter (day number)
81 | Column 2: Snow conductivity (daily averaged [W/(mK)])
82 | ```
83 |
84 | ### **grid.txt**
85 | Includes number of grid point (`n`),
86 | In the example, the vertical grid starts from the 1.5 meters above the ground up to 90 meters deep.
87 | The minus sign corresponds to the values above the ground surface and plus corresponds to the values below the surface.
88 | For more clarity, copy and paste the grid into the excel file. The `n+1` element of the grid corresponds to the number of output points (in the example it is 12). The rest of the grid file correspond to indexes of the grid points (e.g. the number 40 below the 12 is the index of the gr(40)=0.001).
89 |
90 | ### **initial.txt**
91 | Includes the initial temperatures with depth profile.
92 | The model reads `initial.txt` file when in `cmd.txt` the first element is equal to 1 (e.i. start from the initial time step).
93 | The first parameter in `initial.txt` can be ignored, the second parameter is the number of points (in the example it is equal 13).
94 | The first column corresponds to the depth [m] and the second column to the temperature [Celsius] measured at that depth at time=0.
95 |
96 | ### **mineral.txt**
97 | Includes all thermo-physical properties of the multilayered soil column.
98 |
99 | The first row can be ignored.
100 | In the second row, the first element can be also ignored. The second element in this row corresponds to the number of layers,
101 | starting from row 3 to row 8 are thermo-physical properties of each layer.
102 | The first column is the volumetric water content (WVC) is a fraction of 1.
103 | The second and the third columns are "a" and "b" coefficients of the unfrozen water curve (obtained from unfrozen water curve fitting) [dimensionless].
104 | The forth and the fifth columns are the thawed and frozen volumetric heat capacities [J/(m^3K)].
105 | The six and the seven columns are thawed and frozen heat conductivities [W/(mK)].
106 | The eighths column is the thickness of the corresponding layer.
107 |
108 |
109 | ### **organic.txt**
110 | Includes a similar structure to `mineral.txt` and carries the parameters for the organic soil layer/s.
111 |
112 | ### **sites.txt**
113 | This file includes `site_id`, `snow_code`, `veg_code`, `geo_code`, `gt_zone_code`, and `temp_grd`. This file is useful when we run multiple sites at the same time and have multiple organic and mineral soils, snow parameters, and so on. The current setup uses a temperature gradient equal 0.0 at the lower boundary of the grid.
114 |
--------------------------------------------------------------------------------
/in/rsnow.txt:
--------------------------------------------------------------------------------
1 | 757
2 | 1 0.3
3 | 2 0.3
4 | 3 0.3
5 | 4 0.3
6 | 5 0.3
7 | 6 0.3
8 | 7 0.3
9 | 8 0.3
10 | 9 0.3
11 | 10 0.3
12 | 11 0.3
13 | 12 0.3
14 | 13 0.3
15 | 14 0.3
16 | 15 0.3
17 | 16 0.3
18 | 17 0.3
19 | 18 0.3
20 | 19 0.3
21 | 20 0.3
22 | 21 0.3
23 | 22 0.3
24 | 23 0.3
25 | 24 0.3
26 | 25 0.3
27 | 26 0.3
28 | 27 0.3
29 | 28 0.3
30 | 29 0.3
31 | 30 0.3
32 | 31 0.3
33 | 32 0.3
34 | 33 0.3
35 | 34 0.3
36 | 35 0.3
37 | 36 0.3
38 | 37 0.3
39 | 38 0.3
40 | 39 0.3
41 | 40 0.3
42 | 41 0.3
43 | 42 0.3
44 | 43 0.3
45 | 44 0.3
46 | 45 0.3
47 | 46 0.3
48 | 47 0.3
49 | 48 0.3
50 | 49 0.3
51 | 50 0.3
52 | 51 0.3
53 | 52 0.3
54 | 53 0.3
55 | 54 0.3
56 | 55 0.3
57 | 56 0.3
58 | 57 0.3
59 | 58 0.3
60 | 59 0.3
61 | 60 0.3
62 | 61 0.3
63 | 62 0.3
64 | 63 0.3
65 | 64 0.3
66 | 65 0.3
67 | 66 0.3
68 | 67 0.3
69 | 68 0.3
70 | 69 0.3
71 | 70 0.3
72 | 71 0.3
73 | 72 0.3
74 | 73 0.3
75 | 74 0.3
76 | 75 0.3
77 | 76 0.3
78 | 77 0.3
79 | 78 0.3
80 | 79 0.3
81 | 80 0.3
82 | 81 0.3
83 | 82 0.3
84 | 83 0.3
85 | 84 0.3
86 | 85 0.3
87 | 86 0.3
88 | 87 0.3
89 | 88 0.3
90 | 89 0.3
91 | 90 0.3
92 | 91 0.3
93 | 92 0.3
94 | 93 0.3
95 | 94 0.3
96 | 95 0.3
97 | 96 0.3
98 | 97 0.3
99 | 98 0.3
100 | 99 0.3
101 | 100 0.3
102 | 101 0.3
103 | 102 0.3
104 | 103 0.3
105 | 104 0.3
106 | 105 0.3
107 | 106 0.3
108 | 107 0.3
109 | 108 0.3
110 | 109 0.3
111 | 110 0.3
112 | 111 0.3
113 | 112 0.3
114 | 113 0.3
115 | 114 0.3
116 | 115 0.3
117 | 116 0.3
118 | 117 0.3
119 | 118 0.3
120 | 119 0.3
121 | 120 0.3
122 | 121 0.3
123 | 122 0.3
124 | 123 0.3
125 | 124 0.3
126 | 125 0.3
127 | 126 0.3
128 | 127 0.3
129 | 128 0.3
130 | 129 0.3
131 | 130 0.3
132 | 131 0.3
133 | 132 0.3
134 | 133 0.3
135 | 134 0.3
136 | 135 0.3
137 | 136 0.3
138 | 137 0.3
139 | 138 0.3
140 | 139 0.3
141 | 140 0.3
142 | 141 0.3
143 | 142 0.3
144 | 143 0.3
145 | 144 0.3
146 | 145 0.3
147 | 146 0.3
148 | 147 0.3
149 | 148 0.3
150 | 149 0.3
151 | 150 0.3
152 | 151 0.3
153 | 152 0.3
154 | 153 0.3
155 | 154 0.3
156 | 155 0.3
157 | 156 0.3
158 | 157 0.3
159 | 158 0.3
160 | 159 0.3
161 | 160 0.3
162 | 161 0.3
163 | 162 0.3
164 | 163 0.3
165 | 164 0.3
166 | 165 0.3
167 | 166 0.3
168 | 167 0.3
169 | 168 0.3
170 | 169 0.3
171 | 170 0.3
172 | 171 0.3
173 | 172 0.3
174 | 173 0.3
175 | 174 0.3
176 | 175 0.3
177 | 176 0.3
178 | 177 0.3
179 | 178 0.3
180 | 179 0.3
181 | 180 0.3
182 | 181 0.3
183 | 182 0.3
184 | 183 0.3
185 | 184 0.3
186 | 185 0.3
187 | 186 0.3
188 | 187 0.3
189 | 188 0.3
190 | 189 0.3
191 | 190 0.3
192 | 191 0.3
193 | 192 0.3
194 | 193 0.3
195 | 194 0.3
196 | 195 0.3
197 | 196 0.3
198 | 197 0.3
199 | 198 0.3
200 | 199 0.3
201 | 200 0.3
202 | 201 0.3
203 | 202 0.3
204 | 203 0.3
205 | 204 0.3
206 | 205 0.3
207 | 206 0.3
208 | 207 0.3
209 | 208 0.3
210 | 209 0.3
211 | 210 0.3
212 | 211 0.3
213 | 212 0.3
214 | 213 0.3
215 | 214 0.3
216 | 215 0.3
217 | 216 0.3
218 | 217 0.3
219 | 218 0.3
220 | 219 0.3
221 | 220 0.3
222 | 221 0.3
223 | 222 0.3
224 | 223 0.3
225 | 224 0.3
226 | 225 0.3
227 | 226 0.3
228 | 227 0.3
229 | 228 0.3
230 | 229 0.3
231 | 230 0.3
232 | 231 0.3
233 | 232 0.3
234 | 233 0.3
235 | 234 0.3
236 | 235 0.3
237 | 236 0.3
238 | 237 0.3
239 | 238 0.3
240 | 239 0.3
241 | 240 0.3
242 | 241 0.3
243 | 242 0.3
244 | 243 0.3
245 | 244 0.3
246 | 245 0.3
247 | 246 0.3
248 | 247 0.3
249 | 248 0.3
250 | 249 0.3
251 | 250 0.3
252 | 251 0.3
253 | 252 0.3
254 | 253 0.3
255 | 254 0.3
256 | 255 0.3
257 | 256 0.3
258 | 257 0.3
259 | 258 0.3
260 | 259 0.3
261 | 260 0.3
262 | 261 0.3
263 | 262 0.3
264 | 263 0.3
265 | 264 0.3
266 | 265 0.3
267 | 266 0.3
268 | 267 0.3
269 | 268 0.3
270 | 269 0.3
271 | 270 0.3
272 | 271 0.3
273 | 272 0.3
274 | 273 0.3
275 | 274 0.3
276 | 275 0.3
277 | 276 0.3
278 | 277 0.3
279 | 278 0.3
280 | 279 0.3
281 | 280 0.3
282 | 281 0.3
283 | 282 0.3
284 | 283 0.3
285 | 284 0.3
286 | 285 0.3
287 | 286 0.3
288 | 287 0.3
289 | 288 0.3
290 | 289 0.3
291 | 290 0.3
292 | 291 0.3
293 | 292 0.3
294 | 293 0.3
295 | 294 0.3
296 | 295 0.3
297 | 296 0.3
298 | 297 0.3
299 | 298 0.3
300 | 299 0.3
301 | 300 0.3
302 | 301 0.3
303 | 302 0.3
304 | 303 0.3
305 | 304 0.3
306 | 305 0.3
307 | 306 0.3
308 | 307 0.3
309 | 308 0.3
310 | 309 0.3
311 | 310 0.3
312 | 311 0.3
313 | 312 0.3
314 | 313 0.3
315 | 314 0.3
316 | 315 0.3
317 | 316 0.3
318 | 317 0.3
319 | 318 0.3
320 | 319 0.3
321 | 320 0.3
322 | 321 0.3
323 | 322 0.3
324 | 323 0.3
325 | 324 0.3
326 | 325 0.3
327 | 326 0.3
328 | 327 0.3
329 | 328 0.3
330 | 329 0.3
331 | 330 0.3
332 | 331 0.3
333 | 332 0.3
334 | 333 0.3
335 | 334 0.3
336 | 335 0.3
337 | 336 0.3
338 | 337 0.3
339 | 338 0.3
340 | 339 0.3
341 | 340 0.3
342 | 341 0.3
343 | 342 0.3
344 | 343 0.3
345 | 344 0.3
346 | 345 0.3
347 | 346 0.3
348 | 347 0.3
349 | 348 0.3
350 | 349 0.3
351 | 350 0.3
352 | 351 0.3
353 | 352 0.3
354 | 353 0.3
355 | 354 0.3
356 | 355 0.3
357 | 356 0.3
358 | 357 0.3
359 | 358 0.3
360 | 359 0.3
361 | 360 0.3
362 | 361 0.3
363 | 362 0.3
364 | 363 0.3
365 | 364 0.3
366 | 365 0.3
367 | 366 0.3
368 | 367 0.3
369 | 368 0.3
370 | 369 0.3
371 | 370 0.3
372 | 371 0.3
373 | 372 0.3
374 | 373 0.3
375 | 374 0.3
376 | 375 0.3
377 | 376 0.3
378 | 377 0.3
379 | 378 0.3
380 | 379 0.3
381 | 380 0.3
382 | 381 0.3
383 | 382 0.3
384 | 383 0.3
385 | 384 0.3
386 | 385 0.3
387 | 386 0.3
388 | 387 0.3
389 | 388 0.3
390 | 389 0.3
391 | 390 0.3
392 | 391 0.3
393 | 392 0.3
394 | 393 0.3
395 | 394 0.3
396 | 395 0.3
397 | 396 0.3
398 | 397 0.3
399 | 398 0.3
400 | 399 0.3
401 | 400 0.3
402 | 401 0.3
403 | 402 0.3
404 | 403 0.3
405 | 404 0.3
406 | 405 0.3
407 | 406 0.3
408 | 407 0.3
409 | 408 0.3
410 | 409 0.3
411 | 410 0.3
412 | 411 0.3
413 | 412 0.3
414 | 413 0.3
415 | 414 0.3
416 | 415 0.3
417 | 416 0.3
418 | 417 0.3
419 | 418 0.3
420 | 419 0.3
421 | 420 0.3
422 | 421 0.3
423 | 422 0.3
424 | 423 0.3
425 | 424 0.3
426 | 425 0.3
427 | 426 0.3
428 | 427 0.3
429 | 428 0.3
430 | 429 0.3
431 | 430 0.3
432 | 431 0.3
433 | 432 0.3
434 | 433 0.3
435 | 434 0.3
436 | 435 0.3
437 | 436 0.3
438 | 437 0.3
439 | 438 0.3
440 | 439 0.3
441 | 440 0.3
442 | 441 0.3
443 | 442 0.3
444 | 443 0.3
445 | 444 0.3
446 | 445 0.3
447 | 446 0.3
448 | 447 0.3
449 | 448 0.3
450 | 449 0.3
451 | 450 0.3
452 | 451 0.3
453 | 452 0.3
454 | 453 0.3
455 | 454 0.3
456 | 455 0.3
457 | 456 0.3
458 | 457 0.3
459 | 458 0.3
460 | 459 0.3
461 | 460 0.3
462 | 461 0.3
463 | 462 0.3
464 | 463 0.3
465 | 464 0.3
466 | 465 0.3
467 | 466 0.3
468 | 467 0.3
469 | 468 0.3
470 | 469 0.3
471 | 470 0.3
472 | 471 0.3
473 | 472 0.3
474 | 473 0.3
475 | 474 0.3
476 | 475 0.3
477 | 476 0.3
478 | 477 0.3
479 | 478 0.3
480 | 479 0.3
481 | 480 0.3
482 | 481 0.3
483 | 482 0.3
484 | 483 0.3
485 | 484 0.3
486 | 485 0.3
487 | 486 0.3
488 | 487 0.3
489 | 488 0.3
490 | 489 0.3
491 | 490 0.3
492 | 491 0.3
493 | 492 0.3
494 | 493 0.3
495 | 494 0.3
496 | 495 0.3
497 | 496 0.3
498 | 497 0.3
499 | 498 0.3
500 | 499 0.3
501 | 500 0.3
502 | 501 0.3
503 | 502 0.3
504 | 503 0.3
505 | 504 0.3
506 | 505 0.3
507 | 506 0.3
508 | 507 0.3
509 | 508 0.3
510 | 509 0.3
511 | 510 0.3
512 | 511 0.3
513 | 512 0.3
514 | 513 0.3
515 | 514 0.3
516 | 515 0.3
517 | 516 0.3
518 | 517 0.3
519 | 518 0.3
520 | 519 0.3
521 | 520 0.3
522 | 521 0.3
523 | 522 0.3
524 | 523 0.3
525 | 524 0.3
526 | 525 0.3
527 | 526 0.3
528 | 527 0.3
529 | 528 0.3
530 | 529 0.3
531 | 530 0.3
532 | 531 0.3
533 | 532 0.3
534 | 533 0.3
535 | 534 0.3
536 | 535 0.3
537 | 536 0.3
538 | 537 0.3
539 | 538 0.3
540 | 539 0.3
541 | 540 0.3
542 | 541 0.3
543 | 542 0.3
544 | 543 0.3
545 | 544 0.3
546 | 545 0.3
547 | 546 0.3
548 | 547 0.3
549 | 548 0.3
550 | 549 0.3
551 | 550 0.3
552 | 551 0.3
553 | 552 0.3
554 | 553 0.3
555 | 554 0.3
556 | 555 0.3
557 | 556 0.3
558 | 557 0.3
559 | 558 0.3
560 | 559 0.3
561 | 560 0.3
562 | 561 0.3
563 | 562 0.3
564 | 563 0.3
565 | 564 0.3
566 | 565 0.3
567 | 566 0.3
568 | 567 0.3
569 | 568 0.3
570 | 569 0.3
571 | 570 0.3
572 | 571 0.3
573 | 572 0.3
574 | 573 0.3
575 | 574 0.3
576 | 575 0.3
577 | 576 0.3
578 | 577 0.3
579 | 578 0.3
580 | 579 0.3
581 | 580 0.3
582 | 581 0.3
583 | 582 0.3
584 | 583 0.3
585 | 584 0.3
586 | 585 0.3
587 | 586 0.3
588 | 587 0.3
589 | 588 0.3
590 | 589 0.3
591 | 590 0.3
592 | 591 0.3
593 | 592 0.3
594 | 593 0.3
595 | 594 0.3
596 | 595 0.3
597 | 596 0.3
598 | 597 0.3
599 | 598 0.3
600 | 599 0.3
601 | 600 0.3
602 | 601 0.3
603 | 602 0.3
604 | 603 0.3
605 | 604 0.3
606 | 605 0.3
607 | 606 0.3
608 | 607 0.3
609 | 608 0.3
610 | 609 0.3
611 | 610 0.3
612 | 611 0.3
613 | 612 0.3
614 | 613 0.3
615 | 614 0.3
616 | 615 0.3
617 | 616 0.3
618 | 617 0.3
619 | 618 0.3
620 | 619 0.3
621 | 620 0.3
622 | 621 0.3
623 | 622 0.3
624 | 623 0.3
625 | 624 0.3
626 | 625 0.3
627 | 626 0.3
628 | 627 0.3
629 | 628 0.3
630 | 629 0.3
631 | 630 0.3
632 | 631 0.3
633 | 632 0.3
634 | 633 0.3
635 | 634 0.3
636 | 635 0.3
637 | 636 0.3
638 | 637 0.3
639 | 638 0.3
640 | 639 0.3
641 | 640 0.3
642 | 641 0.3
643 | 642 0.3
644 | 643 0.3
645 | 644 0.3
646 | 645 0.3
647 | 646 0.3
648 | 647 0.3
649 | 648 0.3
650 | 649 0.3
651 | 650 0.3
652 | 651 0.3
653 | 652 0.3
654 | 653 0.3
655 | 654 0.3
656 | 655 0.3
657 | 656 0.3
658 | 657 0.3
659 | 658 0.3
660 | 659 0.3
661 | 660 0.3
662 | 661 0.3
663 | 662 0.3
664 | 663 0.3
665 | 664 0.3
666 | 665 0.3
667 | 666 0.3
668 | 667 0.3
669 | 668 0.3
670 | 669 0.3
671 | 670 0.3
672 | 671 0.3
673 | 672 0.3
674 | 673 0.3
675 | 674 0.3
676 | 675 0.3
677 | 676 0.3
678 | 677 0.3
679 | 678 0.3
680 | 679 0.3
681 | 680 0.3
682 | 681 0.3
683 | 682 0.3
684 | 683 0.3
685 | 684 0.3
686 | 685 0.3
687 | 686 0.3
688 | 687 0.3
689 | 688 0.3
690 | 689 0.3
691 | 690 0.3
692 | 691 0.3
693 | 692 0.3
694 | 693 0.3
695 | 694 0.3
696 | 695 0.3
697 | 696 0.3
698 | 697 0.3
699 | 698 0.3
700 | 699 0.3
701 | 700 0.3
702 | 701 0.3
703 | 702 0.3
704 | 703 0.3
705 | 704 0.3
706 | 705 0.3
707 | 706 0.3
708 | 707 0.3
709 | 708 0.3
710 | 709 0.3
711 | 710 0.3
712 | 711 0.3
713 | 712 0.3
714 | 713 0.3
715 | 714 0.3
716 | 715 0.3
717 | 716 0.3
718 | 717 0.3
719 | 718 0.3
720 | 719 0.3
721 | 720 0.3
722 | 721 0.3
723 | 722 0.3
724 | 723 0.3
725 | 724 0.3
726 | 725 0.3
727 | 726 0.3
728 | 727 0.3
729 | 728 0.3
730 | 729 0.3
731 | 730 0.3
732 | 731 0.3
733 | 732 0.3
734 | 733 0.3
735 | 734 0.3
736 | 735 0.3
737 | 736 0.3
738 | 737 0.3
739 | 738 0.3
740 | 739 0.3
741 | 740 0.3
742 | 741 0.3
743 | 742 0.3
744 | 743 0.3
745 | 744 0.3
746 | 745 0.3
747 | 746 0.3
748 | 747 0.3
749 | 748 0.3
750 | 749 0.3
751 | 750 0.3
752 | 751 0.3
753 | 752 0.3
754 | 753 0.3
755 | 754 0.3
756 | 755 0.3
757 | 756 0.3
758 | 757 0.3
--------------------------------------------------------------------------------
/in/snow.txt:
--------------------------------------------------------------------------------
1 | 757
2 | 1 0
3 | 2 0
4 | 3 0
5 | 4 0
6 | 5 0
7 | 6 0
8 | 7 0
9 | 8 0
10 | 9 0
11 | 10 0
12 | 11 0
13 | 12 0
14 | 13 0
15 | 14 0
16 | 15 0
17 | 16 0
18 | 17 0
19 | 18 0
20 | 19 0
21 | 20 0
22 | 21 0
23 | 22 0
24 | 23 0
25 | 24 0
26 | 25 0
27 | 26 0
28 | 27 0
29 | 28 0
30 | 29 0
31 | 30 0
32 | 31 0
33 | 32 0
34 | 33 0
35 | 34 0
36 | 35 0
37 | 36 0
38 | 37 0
39 | 38 0
40 | 39 0
41 | 40 0
42 | 41 0
43 | 42 0
44 | 43 0
45 | 44 0
46 | 45 0
47 | 46 0
48 | 47 0
49 | 48 0
50 | 49 0
51 | 50 0
52 | 51 0
53 | 52 0
54 | 53 0
55 | 54 0
56 | 55 0
57 | 56 0
58 | 57 0
59 | 58 0
60 | 59 0
61 | 60 0
62 | 61 0
63 | 62 0
64 | 63 0
65 | 64 0
66 | 65 0
67 | 66 0.017
68 | 67 0
69 | 68 0.013
70 | 69 0.02
71 | 70 0.004
72 | 71 0.007
73 | 72 0.006
74 | 73 0.01
75 | 74 0.013
76 | 75 0.012
77 | 76 0.012
78 | 77 0.008
79 | 78 0.004
80 | 79 0.044
81 | 80 0.032
82 | 81 0.032
83 | 82 0.036
84 | 83 0.034
85 | 84 0.032
86 | 85 0.031
87 | 86 0.027
88 | 87 0.025
89 | 88 0.027
90 | 89 0.028
91 | 90 0.027
92 | 91 0.025
93 | 92 0.026
94 | 93 0.026
95 | 94 0.018
96 | 95 0.023
97 | 96 0.023
98 | 97 0.023
99 | 98 0.022
100 | 99 0.022
101 | 100 0.021
102 | 101 0.023
103 | 102 0.022
104 | 103 0.03
105 | 104 0.056
106 | 105 0.051
107 | 106 0.043
108 | 107 0.045
109 | 108 0.049
110 | 109 0.049
111 | 110 0.046
112 | 111 0.048
113 | 112 0.053
114 | 113 0.052
115 | 114 0.066
116 | 115 0.062
117 | 116 0.061
118 | 117 0.079
119 | 118 0.111
120 | 119 0.11
121 | 120 0.116
122 | 121 0.113
123 | 122 0.109
124 | 123 0.123
125 | 124 0.132
126 | 125 0.131
127 | 126 0.134
128 | 127 0.133
129 | 128 0.131
130 | 129 0.131
131 | 130 0.13
132 | 131 0.131
133 | 132 0.131
134 | 133 0.131
135 | 134 0.131
136 | 135 0.132
137 | 136 0.141
138 | 137 0.138
139 | 138 0.136
140 | 139 0.132
141 | 140 0.131
142 | 141 0.131
143 | 142 0.131
144 | 143 0.131
145 | 144 0.129
146 | 145 0.129
147 | 146 0.129
148 | 147 0.13
149 | 148 0.129
150 | 149 0.129
151 | 150 0.136
152 | 151 0.143
153 | 152 0.129
154 | 153 0.129
155 | 154 0.13
156 | 155 0.129
157 | 156 0.129
158 | 157 0.129
159 | 158 0.128
160 | 159 0.128
161 | 160 0.125
162 | 161 0.125
163 | 162 0.125
164 | 163 0.127
165 | 164 0.128
166 | 165 0.126
167 | 166 0.124
168 | 167 0.122
169 | 168 0.122
170 | 169 0.123
171 | 170 0.126
172 | 171 0.127
173 | 172 0.126
174 | 173 0.126
175 | 174 0.126
176 | 175 0.125
177 | 176 0.124
178 | 177 0.124
179 | 178 0.127
180 | 179 0.127
181 | 180 0.129
182 | 181 0.132
183 | 182 0.134
184 | 183 0.153
185 | 184 0.154
186 | 185 0.156
187 | 186 0.156
188 | 187 0.155
189 | 188 0.154
190 | 189 0.154
191 | 190 0.154
192 | 191 0.154
193 | 192 0.15
194 | 193 0.144
195 | 194 0.143
196 | 195 0.139
197 | 196 0.132
198 | 197 0.134
199 | 198 0.134
200 | 199 0.143
201 | 200 0.155
202 | 201 0.153
203 | 202 0.156
204 | 203 0.155
205 | 204 0.155
206 | 205 0.153
207 | 206 0.153
208 | 207 0.154
209 | 208 0.156
210 | 209 0.151
211 | 210 0.149
212 | 211 0.147
213 | 212 0.149
214 | 213 0.149
215 | 214 0.145
216 | 215 0.15
217 | 216 0.152
218 | 217 0.168
219 | 218 0.183
220 | 219 0.156
221 | 220 0.153
222 | 221 0.155
223 | 222 0.158
224 | 223 0.15
225 | 224 0.147
226 | 225 0.147
227 | 226 0.147
228 | 227 0.148
229 | 228 0.149
230 | 229 0.148
231 | 230 0.147
232 | 231 0.148
233 | 232 0.149
234 | 233 0.148
235 | 234 0.147
236 | 235 0.147
237 | 236 0.15
238 | 237 0.147
239 | 238 0.148
240 | 239 0.148
241 | 240 0.146
242 | 241 0.147
243 | 242 0.148
244 | 243 0.146
245 | 244 0.152
246 | 245 0.145
247 | 246 0.146
248 | 247 0.153
249 | 248 0.172
250 | 249 0.147
251 | 250 0.145
252 | 251 0.146
253 | 252 0.143
254 | 253 0.142
255 | 254 0.141
256 | 255 0.143
257 | 256 0.145
258 | 257 0.144
259 | 258 0.145
260 | 259 0.148
261 | 260 0.144
262 | 261 0.144
263 | 262 0.145
264 | 263 0.144
265 | 264 0.144
266 | 265 0.142
267 | 266 0.143
268 | 267 0.143
269 | 268 0.142
270 | 269 0.143
271 | 270 0.142
272 | 271 0.14
273 | 272 0.139
274 | 273 0.139
275 | 274 0.141
276 | 275 0.143
277 | 276 0.141
278 | 277 0.14
279 | 278 0.138
280 | 279 0.139
281 | 280 0.141
282 | 281 0.14
283 | 282 0.141
284 | 283 0.142
285 | 284 0.143
286 | 285 0.144
287 | 286 0.143
288 | 287 0.136
289 | 288 0.138
290 | 289 0.138
291 | 290 0.141
292 | 291 0.141
293 | 292 0.139
294 | 293 0.141
295 | 294 0.141
296 | 295 0.136
297 | 296 0.141
298 | 297 0.141
299 | 298 0.134
300 | 299 0.128
301 | 300 0.125
302 | 301 0.127
303 | 302 0.139
304 | 303 0.122
305 | 304 0.127
306 | 305 0.129
307 | 306 0.128
308 | 307 0.128
309 | 308 0.175
310 | 309 0.176
311 | 310 0.175
312 | 311 0.174
313 | 312 0.174
314 | 313 0.171
315 | 314 0.172
316 | 315 0.175
317 | 316 0.174
318 | 317 0.177
319 | 318 0.178
320 | 319 0.173
321 | 320 0.172
322 | 321 0.17
323 | 322 0.169
324 | 323 0.176
325 | 324 0.177
326 | 325 0.184
327 | 326 0.177
328 | 327 0.173
329 | 328 0.175
330 | 329 0.171
331 | 330 0.172
332 | 331 0.171
333 | 332 0.172
334 | 333 0.166
335 | 334 0.151
336 | 335 0.141
337 | 336 0.124
338 | 337 0.108
339 | 338 0.096
340 | 339 0.087
341 | 340 0.069
342 | 341 0.03
343 | 342 0.006
344 | 343 0
345 | 344 0
346 | 345 0
347 | 346 0
348 | 347 0
349 | 348 0
350 | 349 0
351 | 350 0
352 | 351 0.003
353 | 352 0.005
354 | 353 0.006
355 | 354 0.006
356 | 355 0.005
357 | 356 0.003
358 | 357 0
359 | 358 0
360 | 359 0.001
361 | 360 0.002
362 | 361 0.004
363 | 362 0.001
364 | 363 0
365 | 364 0
366 | 365 0.001
367 | 366 0
368 | 367 0
369 | 368 0
370 | 369 0
371 | 370 0
372 | 371 0
373 | 372 0
374 | 373 0
375 | 374 0.002
376 | 375 0.002
377 | 376 0.003
378 | 377 0.002
379 | 378 0
380 | 379 0
381 | 380 0
382 | 381 0
383 | 382 0
384 | 383 0
385 | 384 0
386 | 385 0
387 | 386 0
388 | 387 0
389 | 388 0
390 | 389 0
391 | 390 0
392 | 391 0
393 | 392 0
394 | 393 0
395 | 394 0
396 | 395 0
397 | 396 0
398 | 397 0
399 | 398 0
400 | 399 0
401 | 400 0
402 | 401 0
403 | 402 0
404 | 403 0
405 | 404 0
406 | 405 0
407 | 406 0
408 | 407 0
409 | 408 0
410 | 409 0
411 | 410 0
412 | 411 0
413 | 412 0
414 | 413 0
415 | 414 0
416 | 415 0
417 | 416 0
418 | 417 0
419 | 418 0
420 | 419 0
421 | 420 0
422 | 421 0
423 | 422 0
424 | 423 0
425 | 424 0
426 | 425 0
427 | 426 0
428 | 427 0
429 | 428 0
430 | 429 0
431 | 430 0
432 | 431 0
433 | 432 0
434 | 433 0
435 | 434 0
436 | 435 0
437 | 436 0
438 | 437 0
439 | 438 0.002
440 | 439 0.006
441 | 440 0.007
442 | 441 0.006
443 | 442 0.002
444 | 443 0.001
445 | 444 0.001
446 | 445 0.004
447 | 446 0.005
448 | 447 0.004
449 | 448 0.011
450 | 449 0.013
451 | 450 0.015
452 | 451 0.017
453 | 452 0.016
454 | 453 0.017
455 | 454 0.015
456 | 455 0.014
457 | 456 0.014
458 | 457 0.016
459 | 458 0.02
460 | 459 0.018
461 | 460 0.016
462 | 461 0.019
463 | 462 0.039
464 | 463 0.06
465 | 464 0.015
466 | 465 0.014
467 | 466 0.014
468 | 467 0.013
469 | 468 0.012
470 | 469 0.012
471 | 470 0.011
472 | 471 0.011
473 | 472 0.011
474 | 473 0.011
475 | 474 0.015
476 | 475 0.016
477 | 476 0.049
478 | 477 0.06
479 | 478 0.056
480 | 479 0.055
481 | 480 0.055
482 | 481 0.036
483 | 482 0.027
484 | 483 0.017
485 | 484 0.019
486 | 485 0.026
487 | 486 0.026
488 | 487 0.025
489 | 488 0.037
490 | 489 0.097
491 | 490 0.101
492 | 491 0.102
493 | 492 0.103
494 | 493 0.101
495 | 494 0.098
496 | 495 0.112
497 | 496 0.1
498 | 497 0.098
499 | 498 0.098
500 | 499 0.1
501 | 500 0.099
502 | 501 0.099
503 | 502 0.099
504 | 503 0.101
505 | 504 0.099
506 | 505 0.101
507 | 506 0.1
508 | 507 0.1
509 | 508 0.098
510 | 509 0.088
511 | 510 0.085
512 | 511 0.088
513 | 512 0.095
514 | 513 0.093
515 | 514 0.103
516 | 515 0.101
517 | 516 0.098
518 | 517 0.098
519 | 518 0.098
520 | 519 0.091
521 | 520 0.092
522 | 521 0.095
523 | 522 0.093
524 | 523 0.092
525 | 524 0.095
526 | 525 0.098
527 | 526 0.098
528 | 527 0.1
529 | 528 0.098
530 | 529 0.098
531 | 530 0.098
532 | 531 0.096
533 | 532 0.094
534 | 533 0.098
535 | 534 0.098
536 | 535 0.094
537 | 536 0.094
538 | 537 0.101
539 | 538 0.101
540 | 539 0.096
541 | 540 0.092
542 | 541 0.098
543 | 542 0.097
544 | 543 0.097
545 | 544 0.097
546 | 545 0.095
547 | 546 0.095
548 | 547 0.09
549 | 548 0.1
550 | 549 0.12
551 | 550 0.106
552 | 551 0.1
553 | 552 0.099
554 | 553 0.099
555 | 554 0.098
556 | 555 0.097
557 | 556 0.095
558 | 557 0.097
559 | 558 0.097
560 | 559 0.098
561 | 560 0.098
562 | 561 0.097
563 | 562 0.097
564 | 563 0.096
565 | 564 0.097
566 | 565 0.095
567 | 566 0.095
568 | 567 0.089
569 | 568 0.089
570 | 569 0.089
571 | 570 0.091
572 | 571 0.09
573 | 572 0.1
574 | 573 0.1
575 | 574 0.095
576 | 575 0.094
577 | 576 0.097
578 | 577 0.099
579 | 578 0.099
580 | 579 0.102
581 | 580 0.096
582 | 581 0.096
583 | 582 0.094
584 | 583 0.094
585 | 584 0.093
586 | 585 0.089
587 | 586 0.091
588 | 587 0.094
589 | 588 0.095
590 | 589 0.097
591 | 590 0.1
592 | 591 0.1
593 | 592 0.101
594 | 593 0.096
595 | 594 0.1
596 | 595 0.125
597 | 596 0.118
598 | 597 0.116
599 | 598 0.115
600 | 599 0.115
601 | 600 0.114
602 | 601 0.115
603 | 602 0.114
604 | 603 0.115
605 | 604 0.116
606 | 605 0.119
607 | 606 0.124
608 | 607 0.124
609 | 608 0.124
610 | 609 0.124
611 | 610 0.117
612 | 611 0.137
613 | 612 0.115
614 | 613 0.115
615 | 614 0.115
616 | 615 0.116
617 | 616 0.116
618 | 617 0.118
619 | 618 0.12
620 | 619 0.134
621 | 620 0.143
622 | 621 0.136
623 | 622 0.138
624 | 623 0.139
625 | 624 0.128
626 | 625 0.137
627 | 626 0.146
628 | 627 0.142
629 | 628 0.142
630 | 629 0.142
631 | 630 0.142
632 | 631 0.141
633 | 632 0.139
634 | 633 0.137
635 | 634 0.137
636 | 635 0.137
637 | 636 0.134
638 | 637 0.135
639 | 638 0.141
640 | 639 0.134
641 | 640 0.134
642 | 641 0.133
643 | 642 0.134
644 | 643 0.137
645 | 644 0.134
646 | 645 0.131
647 | 646 0.13
648 | 647 0.132
649 | 648 0.138
650 | 649 0.16
651 | 650 0.154
652 | 651 0.165
653 | 652 0.134
654 | 653 0.136
655 | 654 0.179
656 | 655 0.139
657 | 656 0.127
658 | 657 0.131
659 | 658 0.128
660 | 659 0.133
661 | 660 0.129
662 | 661 0.132
663 | 662 0.133
664 | 663 0.132
665 | 664 0.132
666 | 665 0.129
667 | 666 0.128
668 | 667 0.127
669 | 668 0.127
670 | 669 0.127
671 | 670 0.146
672 | 671 0.166
673 | 672 0.167
674 | 673 0.157
675 | 674 0.16
676 | 675 0.155
677 | 676 0.128
678 | 677 0.126
679 | 678 0.126
680 | 679 0.126
681 | 680 0.125
682 | 681 0.125
683 | 682 0.125
684 | 683 0.123
685 | 684 0.125
686 | 685 0.125
687 | 686 0.124
688 | 687 0.122
689 | 688 0.117
690 | 689 0.102
691 | 690 0.067
692 | 691 0.018
693 | 692 0.009
694 | 693 0.01
695 | 694 0.008
696 | 695 0.007
697 | 696 0.008
698 | 697 0.008
699 | 698 0.006
700 | 699 0.005
701 | 700 0.006
702 | 701 0.006
703 | 702 0.005
704 | 703 0.006
705 | 704 0.005
706 | 705 0.006
707 | 706 0.006
708 | 707 0.006
709 | 708 0.006
710 | 709 0.007
711 | 710 0.006
712 | 711 0.007
713 | 712 0.006
714 | 713 0.007
715 | 714 0.007
716 | 715 0.007
717 | 716 0.007
718 | 717 0.009
719 | 718 0.006
720 | 719 0.005
721 | 720 0.005
722 | 721 0.004
723 | 722 0.005
724 | 723 0.003
725 | 724 0.007
726 | 725 0.009
727 | 726 0.009
728 | 727 0.009
729 | 728 0.008
730 | 729 0.009
731 | 730 0.008
732 | 731 0.007
733 | 732 0.007
734 | 733 0.006
735 | 734 0.005
736 | 735 0.005
737 | 736 0.006
738 | 737 0.005
739 | 738 0.007
740 | 739 0.006
741 | 740 0.007
742 | 741 0.006
743 | 742 0.006
744 | 743 0.006
745 | 744 0.005
746 | 745 0.005
747 | 746 0.006
748 | 747 0.006
749 | 748 0.007
750 | 749 0.009
751 | 750 0.009
752 | 751 0.008
753 | 752 0.008
754 | 753 0.009
755 | 754 0.007
756 | 755 0.006
757 | 756 0.008
758 | 757 0.008
--------------------------------------------------------------------------------
/in/bound.txt:
--------------------------------------------------------------------------------
1 | 757
2 | 1 14.907
3 | 2 8.415
4 | 3 4.514
5 | 4 3.823
6 | 5 6.232
7 | 6 11.674
8 | 7 12.45
9 | 8 6.709
10 | 9 10.954
11 | 10 6.795
12 | 11 7.149
13 | 12 3.066
14 | 13 1.493
15 | 14 3.861
16 | 15 2.56
17 | 16 9.726
18 | 17 9.7
19 | 18 9.324
20 | 19 8.672
21 | 20 5.607
22 | 21 4.208
23 | 22 1.499
24 | 23 2.775
25 | 24 2.066
26 | 25 1.195
27 | 26 1.661
28 | 27 3.774
29 | 28 5.912
30 | 29 6.959
31 | 30 4.621
32 | 31 0.393
33 | 32 0.879
34 | 33 2.088
35 | 34 0.917
36 | 35 -1.192
37 | 36 -0.733
38 | 37 -0.759
39 | 38 -0.628
40 | 39 0.025
41 | 40 3.168
42 | 41 4.85
43 | 42 6.806
44 | 43 6.238
45 | 44 3.198
46 | 45 1.387
47 | 46 2.26
48 | 47 4.986
49 | 48 7.203
50 | 49 4.82
51 | 50 3.109
52 | 51 5.061
53 | 52 8.633
54 | 53 10.057
55 | 54 8.027
56 | 55 6.812
57 | 56 6.449
58 | 57 6.339
59 | 58 4.904
60 | 59 5.975
61 | 60 5.145
62 | 61 0.398
63 | 62 -0.211
64 | 63 -1.303
65 | 64 1.463
66 | 65 0.597
67 | 66 -0.411
68 | 67 1.991
69 | 68 -1.93
70 | 69 -3.341
71 | 70 -3.053
72 | 71 -3.64
73 | 72 -5.725
74 | 73 -8.692
75 | 74 -4.157
76 | 75 -0.779
77 | 76 0.487
78 | 77 -0.175
79 | 78 -1.201
80 | 79 -2.525
81 | 80 -10.877
82 | 81 -14.367
83 | 82 -7.521
84 | 83 -2.45
85 | 84 -2.608
86 | 85 -3.949
87 | 86 -1.055
88 | 87 -3.106
89 | 88 -2.705
90 | 89 -0.481
91 | 90 -0.102
92 | 91 -3.058
93 | 92 -11.412
94 | 93 -7.894
95 | 94 -5.897
96 | 95 -9.432
97 | 96 -9.835
98 | 97 -6.738
99 | 98 -11.99
100 | 99 -18.486
101 | 100 -16.818
102 | 101 -15.601
103 | 102 -14.828
104 | 103 -12.819
105 | 104 -18.01
106 | 105 -13.348
107 | 106 -23.577
108 | 107 -13.94
109 | 108 -9.743
110 | 109 -9.308
111 | 110 -9.49
112 | 111 -10.512
113 | 112 -12.925
114 | 113 -17.113
115 | 114 -15.68
116 | 115 -20.584
117 | 116 -19.388
118 | 117 -9.312
119 | 118 -9.924
120 | 119 -13.718
121 | 120 -19.829
122 | 121 -28.997
123 | 122 -21.715
124 | 123 -6.396
125 | 124 -14.572
126 | 125 -21.773
127 | 126 -23.08
128 | 127 -23.483
129 | 128 -24.671
130 | 129 -31.405
131 | 130 -34.452
132 | 131 -22.354
133 | 132 -16.753
134 | 133 -14.724
135 | 134 -12.742
136 | 135 -12.663
137 | 136 -17.532
138 | 137 -23.265
139 | 138 -21.689
140 | 139 -20.14
141 | 140 -22.881
142 | 141 -20.866
143 | 142 -21.093
144 | 143 -24.821
145 | 144 -28.425
146 | 145 -30.642
147 | 146 -29.367
148 | 147 -26.586
149 | 148 -28.943
150 | 149 -22.805
151 | 150 -17.858
152 | 151 -28.618
153 | 152 -34.16
154 | 153 -38.661
155 | 154 -38.729
156 | 155 -32.757
157 | 156 -25.52
158 | 157 -32.106
159 | 158 -37.519
160 | 159 -33.521
161 | 160 -31.941
162 | 161 -39.288
163 | 162 -41.77
164 | 163 -42.853
165 | 164 -42.058
166 | 165 -42.673
167 | 166 -42.077
168 | 167 -39.147
169 | 168 -37.852
170 | 169 -30.025
171 | 170 -26.22
172 | 171 -31.676
173 | 172 -33.345
174 | 173 -37.357
175 | 174 -34.323
176 | 175 -32.772
177 | 176 -29.558
178 | 177 -27.415
179 | 178 -31.165
180 | 179 -39.261
181 | 180 -29.992
182 | 181 -23.233
183 | 182 -18.499
184 | 183 -18.113
185 | 184 -24.274
186 | 185 -30.2
187 | 186 -35.809
188 | 187 -34.4
189 | 188 -28.751
190 | 189 -27.51
191 | 190 -28.939
192 | 191 -31.783
193 | 192 -37.614
194 | 193 -43.211
195 | 194 -43.812
196 | 195 -41.022
197 | 196 -36.845
198 | 197 -33.436
199 | 198 -32.553
200 | 199 -34.755
201 | 200 -36.848
202 | 201 -35.478
203 | 202 -38
204 | 203 -28.445
205 | 204 -23.98
206 | 205 -23.125
207 | 206 -25.606
208 | 207 -21.849
209 | 208 -24.052
210 | 209 -32.23
211 | 210 -40.256
212 | 211 -38.685
213 | 212 -30.348
214 | 213 -36.968
215 | 214 -29.62
216 | 215 -27.946
217 | 216 -25.401
218 | 217 -28.47
219 | 218 -38.17
220 | 219 -42.61
221 | 220 -41.045
222 | 221 -39.698
223 | 222 -38.944
224 | 223 -35.82
225 | 224 -35.171
226 | 225 -44.24
227 | 226 -46.409
228 | 227 -35.728
229 | 228 -37.462
230 | 229 -40.677
231 | 230 -37.815
232 | 231 -42.891
233 | 232 -40.642
234 | 233 -35.541
235 | 234 -35.399
236 | 235 -33.499
237 | 236 -38.262
238 | 237 -39.713
239 | 238 -38.021
240 | 239 -36.373
241 | 240 -29.492
242 | 241 -35.268
243 | 242 -31.905
244 | 243 -38.003
245 | 244 -40.795
246 | 245 -43.987
247 | 246 -37.88
248 | 247 -34.942
249 | 248 -30.334
250 | 249 -33.093
251 | 250 -42.797
252 | 251 -38.115
253 | 252 -35.638
254 | 253 -39.497
255 | 254 -37.924
256 | 255 -33.334
257 | 256 -37.545
258 | 257 -37.7
259 | 258 -29.09
260 | 259 -38.653
261 | 260 -34.849
262 | 261 -34.351
263 | 262 -36.518
264 | 263 -33.132
265 | 264 -34.198
266 | 265 -38.175
267 | 266 -36.355
268 | 267 -27.01
269 | 268 -24.008
270 | 269 -23.907
271 | 270 -27.792
272 | 271 -29.218
273 | 272 -30.67
274 | 273 -25.431
275 | 274 -21.376
276 | 275 -23.784
277 | 276 -20.858
278 | 277 -18.646
279 | 278 -16.936
280 | 279 -21.145
281 | 280 -29.017
282 | 281 -21.05
283 | 282 -18.271
284 | 283 -19.505
285 | 284 -24.587
286 | 285 -23.667
287 | 286 -21.25
288 | 287 -23.754
289 | 288 -26.224
290 | 289 -27.065
291 | 290 -25.154
292 | 291 -22.828
293 | 292 -22.318
294 | 293 -24.658
295 | 294 -22.354
296 | 295 -21.429
297 | 296 -19.102
298 | 297 -18.752
299 | 298 -17.584
300 | 299 -17.938
301 | 300 -18.693
302 | 301 -14.269
303 | 302 -11.913
304 | 303 -13.506
305 | 304 -16.888
306 | 305 -19.237
307 | 306 -19.368
308 | 307 -16.265
309 | 308 -7.456
310 | 309 -6.823
311 | 310 -10.693
312 | 311 -12.333
313 | 312 -14.937
314 | 313 -12.676
315 | 314 -16.11
316 | 315 -13.919
317 | 316 -13.539
318 | 317 -15.496
319 | 318 -12.324
320 | 319 -13.707
321 | 320 -14.487
322 | 321 -10.94
323 | 322 -3.98
324 | 323 -4.738
325 | 324 -6.715
326 | 325 -10.067
327 | 326 -8.426
328 | 327 -7.854
329 | 328 -9.183
330 | 329 -7.897
331 | 330 -8.985
332 | 331 -3.933
333 | 332 -2.09
334 | 333 -0.048
335 | 334 0.611
336 | 335 0.732
337 | 336 0.542
338 | 337 0.399
339 | 338 -0.336
340 | 339 0.009
341 | 340 0.504
342 | 341 1.093
343 | 342 1.816
344 | 343 0.996
345 | 344 -0.042
346 | 345 1.573
347 | 346 2.09
348 | 347 6.276
349 | 348 5.118
350 | 349 1.585
351 | 350 1.077
352 | 351 3.316
353 | 352 3.712
354 | 353 5.192
355 | 354 7.193
356 | 355 10.303
357 | 356 6.28
358 | 357 5.181
359 | 358 8.979
360 | 359 2.446
361 | 360 2.327
362 | 361 5.106
363 | 362 10.279
364 | 363 13.172
365 | 364 13.603
366 | 365 12.004
367 | 366 9.295
368 | 367 3.036
369 | 368 6.131
370 | 369 5.954
371 | 370 4.387
372 | 371 1.203
373 | 372 2.21
374 | 373 3.122
375 | 374 3.59
376 | 375 4.811
377 | 376 4.459
378 | 377 5.963
379 | 378 4.63
380 | 379 4.888
381 | 380 6.978
382 | 381 11.296
383 | 382 5.281
384 | 383 7.893
385 | 384 7.301
386 | 385 8.25
387 | 386 6.347
388 | 387 12.26
389 | 388 7.722
390 | 389 4.209
391 | 390 4.951
392 | 391 5.128
393 | 392 6.315
394 | 393 5.736
395 | 394 3.246
396 | 395 2.198
397 | 396 1.684
398 | 397 4.715
399 | 398 8.222
400 | 399 9.274
401 | 400 7.608
402 | 401 8.74
403 | 402 8.195
404 | 403 2.863
405 | 404 3.677
406 | 405 2.832
407 | 406 2.189
408 | 407 0.857
409 | 408 2.406
410 | 409 4.895
411 | 410 4.415
412 | 411 5.84
413 | 412 4.023
414 | 413 0.173
415 | 414 0.423
416 | 415 -0.345
417 | 416 0.89
418 | 417 0.94
419 | 418 0.766
420 | 419 3.495
421 | 420 5.035
422 | 421 -0.061
423 | 422 0.238
424 | 423 2.308
425 | 424 -0.604
426 | 425 -0.011
427 | 426 -0.675
428 | 427 -2.418
429 | 428 -3.98
430 | 429 -1.814
431 | 430 -2.039
432 | 431 -2.714
433 | 432 -4.725
434 | 433 -7.675
435 | 434 -7.977
436 | 435 -6.161
437 | 436 -8.778
438 | 437 -10.23
439 | 438 -3.862
440 | 439 -7.287
441 | 440 -7.263
442 | 441 -2.6
443 | 442 -1.729
444 | 443 -3.358
445 | 444 -3.39
446 | 445 -5.607
447 | 446 -7.368
448 | 447 -11.463
449 | 448 -9.949
450 | 449 -9.515
451 | 450 -9.743
452 | 451 -8.94
453 | 452 -13.096
454 | 453 -12.273
455 | 454 -8.569
456 | 455 -9.908
457 | 456 -14.315
458 | 457 -18.434
459 | 458 -20.524
460 | 459 -15.428
461 | 460 -19.479
462 | 461 -12.271
463 | 462 -13.855
464 | 463 -18
465 | 464 -16.778
466 | 465 -15.22
467 | 466 -14.073
468 | 467 -16.511
469 | 468 -22.403
470 | 469 -24.558
471 | 470 -21.297
472 | 471 -23.598
473 | 472 -17.91
474 | 473 -15.506
475 | 474 -16.891
476 | 475 -13.643
477 | 476 -14.778
478 | 477 -17.159
479 | 478 -22.871
480 | 479 -22.703
481 | 480 -24.393
482 | 481 -26.873
483 | 482 -26.835
484 | 483 -31.397
485 | 484 -27.133
486 | 485 -20.395
487 | 486 -22.847
488 | 487 -17.841
489 | 488 -14.172
490 | 489 -10.068
491 | 490 -11.804
492 | 491 -16.696
493 | 492 -18.742
494 | 493 -19.149
495 | 494 -21.107
496 | 495 -25.989
497 | 496 -30.242
498 | 497 -29.23
499 | 498 -30.462
500 | 499 -28.725
501 | 500 -13.722
502 | 501 -14.716
503 | 502 -17.96
504 | 503 -19.132
505 | 504 -23.178
506 | 505 -22.372
507 | 506 -25.647
508 | 507 -30.046
509 | 508 -32.39
510 | 509 -35.586
511 | 510 -38.902
512 | 511 -35.191
513 | 512 -30.714
514 | 513 -37.275
515 | 514 -33.709
516 | 515 -31.128
517 | 516 -29.157
518 | 517 -28.888
519 | 518 -28.08
520 | 519 -30.713
521 | 520 -31.741
522 | 521 -34.334
523 | 522 -31.149
524 | 523 -36.827
525 | 524 -29.527
526 | 525 -37.408
527 | 526 -41.08
528 | 527 -36.728
529 | 528 -35.694
530 | 529 -38.11
531 | 530 -38.571
532 | 531 -38.51
533 | 532 -35.088
534 | 533 -33.093
535 | 534 -28.105
536 | 535 -30.663
537 | 536 -21.689
538 | 537 -23.026
539 | 538 -31.347
540 | 539 -33.075
541 | 540 -31.698
542 | 541 -27.225
543 | 542 -28.592
544 | 543 -29.634
545 | 544 -35.01
546 | 545 -36.531
547 | 546 -37.877
548 | 547 -28.025
549 | 548 -15.947
550 | 549 -17.244
551 | 550 -19.02
552 | 551 -23.294
553 | 552 -27.584
554 | 553 -24.005
555 | 554 -32.928
556 | 555 -36.942
557 | 556 -39.526
558 | 557 -32.425
559 | 558 -35.745
560 | 559 -31.173
561 | 560 -31.321
562 | 561 -32.585
563 | 562 -37.092
564 | 563 -29.567
565 | 564 -25.395
566 | 565 -33.203
567 | 566 -36.625
568 | 567 -39.436
569 | 568 -42.55
570 | 569 -36.905
571 | 570 -30.93
572 | 571 -30.288
573 | 572 -22.6
574 | 573 -28.736
575 | 574 -40.213
576 | 575 -45.528
577 | 576 -43.678
578 | 577 -46.35
579 | 578 -36.172
580 | 579 -33.752
581 | 580 -36.334
582 | 581 -38.585
583 | 582 -44.874
584 | 583 -43.541
585 | 584 -42.852
586 | 585 -32.813
587 | 586 -34.119
588 | 587 -35.1
589 | 588 -36.829
590 | 589 -32.971
591 | 590 -33.92
592 | 591 -38.451
593 | 592 -38.135
594 | 593 -36.267
595 | 594 -28.043
596 | 595 -23.368
597 | 596 -25.953
598 | 597 -31.006
599 | 598 -29.863
600 | 599 -41.237
601 | 600 -43.091
602 | 601 -44.045
603 | 602 -41.242
604 | 603 -41.676
605 | 604 -37.503
606 | 605 -37.622
607 | 606 -43.232
608 | 607 -44.236
609 | 608 -43.538
610 | 609 -30.994
611 | 610 -31.965
612 | 611 -35.969
613 | 612 -30.484
614 | 613 -35.125
615 | 614 -27.592
616 | 615 -30.599
617 | 616 -34.663
618 | 617 -21.552
619 | 618 -20.145
620 | 619 -22.472
621 | 620 -24.315
622 | 621 -30.184
623 | 622 -25.506
624 | 623 -27.057
625 | 624 -28.032
626 | 625 -20.636
627 | 626 -16.102
628 | 627 -23.794
629 | 628 -30.956
630 | 629 -34.533
631 | 630 -30.225
632 | 631 -23.396
633 | 632 -23.01
634 | 633 -27.873
635 | 634 -32.006
636 | 635 -33.23
637 | 636 -33.916
638 | 637 -27.4
639 | 638 -20.202
640 | 639 -16.7
641 | 640 -16.642
642 | 641 -16.345
643 | 642 -11.097
644 | 643 -11.211
645 | 644 -25.133
646 | 645 -28.172
647 | 646 -28.68
648 | 647 -19.76
649 | 648 -17.23
650 | 649 -23.916
651 | 650 -20.87
652 | 651 -21.181
653 | 652 -22.889
654 | 653 -20.835
655 | 654 -16.865
656 | 655 -16.472
657 | 656 -18.812
658 | 657 -14.621
659 | 658 -14.791
660 | 659 -9.32
661 | 660 -12.533
662 | 661 -12.121
663 | 662 -14.865
664 | 663 -13.705
665 | 664 -6.371
666 | 665 -6.145
667 | 666 -11.217
668 | 667 -15.465
669 | 668 -18.576
670 | 669 -16.362
671 | 670 -13.12
672 | 671 -12.407
673 | 672 -15.215
674 | 673 -17.114
675 | 674 -18.543
676 | 675 -14.113
677 | 676 -13.082
678 | 677 -12.085
679 | 678 -13.939
680 | 679 -11.733
681 | 680 -10.414
682 | 681 -8.93
683 | 682 -7.757
684 | 683 -10.016
685 | 684 -5.095
686 | 685 -2.337
687 | 686 -3.724
688 | 687 -1.627
689 | 688 0.106
690 | 689 0.824
691 | 690 2.005
692 | 691 2.604
693 | 692 1.193
694 | 693 1.287
695 | 694 1.026
696 | 695 -0.919
697 | 696 -0.708
698 | 697 0.851
699 | 698 2.398
700 | 699 1.97
701 | 700 2.144
702 | 701 3.32
703 | 702 6.165
704 | 703 7.193
705 | 704 8.99
706 | 705 9.56
707 | 706 3.834
708 | 707 3.151
709 | 708 2.584
710 | 709 2.39
711 | 710 2.567
712 | 711 5.846
713 | 712 3.416
714 | 713 3.633
715 | 714 2.78
716 | 715 2.284
717 | 716 2.343
718 | 717 3.108
719 | 718 4.995
720 | 719 3.452
721 | 720 4.651
722 | 721 3.416
723 | 722 3.83
724 | 723 8.84
725 | 724 7.108
726 | 725 1.82
727 | 726 2.464
728 | 727 5.56
729 | 728 8.291
730 | 729 5.961
731 | 730 6.11
732 | 731 6.911
733 | 732 6.548
734 | 733 5.478
735 | 734 9.289
736 | 735 9.727
737 | 736 7.202
738 | 737 3.074
739 | 738 3.605
740 | 739 3.804
741 | 740 2.805
742 | 741 5.156
743 | 742 7.362
744 | 743 2.719
745 | 744 1.829
746 | 745 2.341
747 | 746 2.454
748 | 747 2.659
749 | 748 4.791
750 | 749 7.665
751 | 750 7.648
752 | 751 5.596
753 | 752 7.297
754 | 753 7.071
755 | 754 8.131
756 | 755 8.083
757 | 756 2.516
758 | 757 1.597
--------------------------------------------------------------------------------
/gipl.f90:
--------------------------------------------------------------------------------
1 | ! Geophysical Instatitue Permafrost Laboratory model version 2 GIPLv2
2 | ! version 2 is a numerical transient model that employs phase changes and the effect of the unfrozen volumetric water content in the non-homogeniuos soil texture
3 | ! Original version of the model developed by Romanovsky and Tipenko 2004 and described in Marchenko et al., (2008)
4 | ! Current version been significanlty modefied from its predicessor and using the IRF coding design
5 | ! This version is maintained by E. Jafarov at INSTAAR, CU Boulder
6 | ! Please cite Jafarov et al., (2012) work when using it.
7 |
8 | program gipl2
9 | use bnd
10 | use thermo
11 | use grd
12 | use alt
13 |
14 | call initialize
15 | call run_model
16 | call finalize
17 |
18 | end ! end of main program
19 |
20 |
21 | subroutine run_model
22 | use const
23 | use bnd
24 | use thermo
25 | use grd
26 | use alt
27 |
28 | implicit none
29 |
30 | ! variables
31 | real*8 :: res_save(m_grd+3,n_site) ! save results into 2D array
32 | real*8 :: dfrz_frn(n_time) ! depth of the freezing front
33 | real :: frz_up_time_cur ! freezeup time current (within a year)
34 | real :: frz_up_time_tot ! freezeup time global
35 | ! counters (time,steps)
36 | real*8 :: time_s,time_e ! internal start and end times
37 | real*8 :: time_loop ! main looping time
38 | real*8 :: time_cur ! current time (e.g. current day)
39 | integer :: i_site,j_time,i_grd,i_lay
40 |
41 | time_s=time_step*DBLE(n_time*time_beg)
42 | time_e=time_step*DBLE(n_time*time_end)
43 | i_time=1
44 | time_loop=0.0D0
45 | TINIR=0.0D0
46 | do while (time_loop.LT.time_e)
47 | do i_site=1,n_site
48 | time_cur=time_loop+time_restart
49 | call save_results(i_site,time_cur,time_loop)
50 | 6666 continue
51 |
52 | !do while (i_time(i_site).LT.n_time)
53 | !write(*,*)time_loop, i_site, i_time, n_time
54 | call stefan1D(temp(i_site,:),n_grd,dz,time_loop,i_site,lay_id(i_site,:), &
55 | temp_grd(i_site))
56 | time_loop=time_loop+time_step
57 | time_cur=time_loop+time_restart
58 | if(i_time(i_site).LT.n_time) then
59 | i_time(i_site)=i_time(i_site)+1
60 | call save_results(i_site,time_cur,time_loop)
61 | call active_layer(i_site)
62 | ! write(*,*) 'goto', i_time,time_loop
63 | GOTO 6666
64 | endif
65 | !enddo
66 | if(time_s.LT.time_e.AND.time_loop.GT.time_s)then
67 | do j_time=1,n_time ! WRITTING RESULTS
68 | write(1,FMT1) i_site, (RES(j_time,i_grd),i_grd=1,m_grd+3)
69 | enddo
70 | endif
71 | do i_grd=1,m_grd+3
72 | res_save(i_grd,i_site)=sum((RES(:,i_grd)))
73 | enddo
74 | enddo
75 |
76 | i_time=1
77 | do i_site=1,n_site
78 | frz_up_time_cur=-7777.D0
79 | frz_up_time_tot=frz_up_time_cur
80 | do j_time=2,n_time
81 | if((n_frz_frn(j_time,i_site)-n_frz_frn(j_time-1,i_site)).EQ.-2)then
82 | if(z_frz_frn(j_time-1,n_frz_frn(j_time-1,i_site),i_site).GE.frz_frn_min) frz_up_time_cur=SNGL(RES(j_time,1))
83 | endif
84 | enddo
85 |
86 | if(frz_up_time_cur.GT.0.0)then
87 | frz_up_time_tot=AMOD(frz_up_time_cur,REAL(n_time))
88 | if(frz_up_time_tot.EQ.0.0)frz_up_time_tot=REAL(n_time)
89 | endif
90 | dfrz_frn=z_frz_frn(:,1,i_site)
91 |
92 | call save_results(i_site,time_cur,time_loop)
93 | call active_layer(i_site)
94 |
95 | !____WRITTING MEAN
96 | write(2,FMT2) i_site,(res_save(i_grd,i_site)/DBLE(n_time),i_grd=1,m_grd+3), &
97 | dfrz_frn(n_time),frz_up_time_cur,frz_up_time_tot
98 | do j_time=1,n_time+2
99 | utemp_time_i(j_time)=time_cur+DBLE(j_time-1)*time_step
100 | enddo
101 | call interpolate(utemp_time,utemp(:,i_site),n_temp,utemp_time_i,utemp_i(:,i_site),n_time+2)
102 | call interpolate(snd_time,snd(:,i_site),n_snow,utemp_time_i,snd_i(:,i_site),n_time+2)
103 | call snowfix(utemp_i(:,i_site),snd_i(:,i_site),n_time+2)
104 | call interpolate(stcon_time,stcon(:,i_site),n_stcon,utemp_time_i,stcon_i(:,i_site),n_time+2)
105 | enddo
106 | call save_restart
107 |
108 | TINIR=time_loop
109 | enddo
110 |
111 | end subroutine run_model
112 |
113 |
114 | subroutine save_restart
115 | use bnd
116 | use thermo
117 | use grd
118 | implicit none
119 | integer :: i_site,i_grd
120 |
121 | rewind(3)
122 | write(3, * ) time_restart
123 | do i_grd=1,n_grd
124 | write (3,* ) ( temp(i_site,i_grd),i_site=1,n_site)
125 | enddo
126 |
127 | end subroutine save_restart
128 |
129 |
130 | subroutine finalize
131 |
132 | close(1);close(2);close(3)
133 |
134 | end subroutine finalize
135 |
136 |
137 | subroutine initialize
138 | use const
139 | use bnd
140 | use thermo
141 | use grd
142 | use alt
143 |
144 | implicit none
145 |
146 | integer IREAD,ierr
147 | integer :: i,j,k,z_num,i_grd,j_time,i_site,i_lay
148 |
149 |
150 | real*8 ,allocatable ::gtzone(:,:)
151 | character*64 stdummy
152 | character*64 fconfig
153 |
154 | character*64 file_sites,file_bound,file_snow,file_rsnow,file_init
155 | character*64 file_grid,file_organic,file_mineral
156 |
157 | real*8,allocatable:: A1(:,:),A2(:,:),A3(:,:),A4(:,:),A5(:,:)
158 | real*8,allocatable:: A6(:,:),A7(:,:),A8(:,:),A9(:,:),A10(:,:)
159 | integer, allocatable :: veg_class(:), num_vl(:)
160 | integer :: vln
161 |
162 | real*8,allocatable:: B1(:,:),B2(:,:),B3(:,:),B4(:,:),B5(:,:)
163 | real*8,allocatable:: B6(:,:),B7(:,:),B8(:,:)
164 | integer, allocatable :: geo_class(:), num_gl(:)
165 | real*8 :: layer_thick
166 | integer :: gln
167 | real*8, allocatable :: z(:) ! vertical grid
168 | real*8 :: hcscale
169 |
170 | fconfig='gipl_config.cfg'
171 | call filexist(fconfig)
172 | open(60,file=fconfig)
173 | !read input files
174 | read(60,'(A)')stdummy
175 | read(60,'(A)')file_sites
176 | read(60,'(A)')file_bound
177 | read(60,'(A)')file_snow
178 | read(60,'(A)')file_rsnow
179 | read(60,'(A)')file_init
180 | !read(60,'(A)')cmdf
181 | read(60,'(A)')file_grid
182 | read(60,'(A)')file_organic
183 | read(60,'(A)')file_mineral
184 |
185 | ! read output files
186 | read(60,'(A)')stdummy
187 | read(60,'(A)')stdummy
188 | read(60,'(A)')aver_res_file
189 | read(60,'(A)')result_file
190 | read(60,'(A)')restart_file
191 |
192 | ! read input parameters
193 | read(60,'(A)')stdummy
194 | read(60,'(A)')stdummy
195 | read(60,*)restart
196 | read(60,'(A)')stdummy
197 | read(60,*)time_step,TAUM,TMIN
198 | read(60,'(A)')stdummy
199 | read(60,*) time_beg,time_end
200 | read(60,'(A)')stdummy
201 | read(60,*) smooth_coef,unf_water_coef,itmax
202 | !smoothing factor | unfrozen water parameter | max number of iterations
203 | read(60,'(A)')stdummy
204 | read(60,*) n_sec_day,n_time
205 | ! number of second in a day [sec] | number of time steps (in the example number of days in a year )
206 | read(60,'(A)')stdummy
207 | read(60,*) sea_level,n_frz_max
208 | read(60,'(A)')stdummy
209 | read(60,*) frz_frn_min,frz_frn_max
210 | read(60,'(A)')stdummy
211 | read(60,*) sat_coef
212 |
213 | close(60)
214 |
215 | call filexist(file_sites)
216 | call filexist(file_bound)
217 | call filexist(file_snow)
218 | call filexist(file_rsnow)
219 | call filexist(file_grid)
220 | call filexist(file_init)
221 | call filexist(file_mineral)
222 | call filexist(file_organic)
223 |
224 | open(60,FILE=file_sites)
225 | read(60,*)n_site
226 | allocate(snow_code(n_site),STAT=IERR)
227 | allocate(veg_code(n_site),STAT=IERR)
228 | allocate(geo_code(n_site),STAT=IERR)
229 | allocate(gt_zone_code(n_site),STAT=IERR)
230 | allocate(temp_grd(n_site),STAT=IERR)
231 | do i_site=1,n_site
232 | read(60,*) IREAD,snow_code(i_site),veg_code(i_site),geo_code(i_site),&
233 | gt_zone_code(i_site),temp_grd(i_site)
234 | enddo
235 | close(60)
236 | ! print*, trim(file_sites),' has been read'
237 |
238 | open(60,file=file_bound)
239 | read(60,*)n_temp
240 | allocate(utemp_time(n_temp),STAT=IERR)
241 | allocate(utemp(n_temp,n_site),STAT=IERR)
242 | do i=1,n_temp
243 | read(60,*) utemp_time(I),(utemp(I,i_site),i_site=1,n_site)
244 | enddo
245 | close(60)
246 | ! print*,trim(file_bound),' has been read'
247 |
248 | open(60,file=file_rsnow)
249 | read(60,*)n_stcon
250 | allocate(stcon_time(n_stcon),STAT=IERR)
251 | allocate(stcon(n_stcon,n_site),STAT=IERR)
252 | do i=1,n_stcon
253 | read(60,*) stcon_time(i),(stcon(i,i_site),i_site=1,n_site)
254 | enddo
255 | close(60)
256 | ! print*,trim(file_rsnow),' has been read'
257 |
258 | open(60,file=file_snow)
259 | read(60,*)n_snow
260 | allocate(snd_time(n_snow),STAT=IERR)
261 | allocate(snd(n_snow,n_site),STAT=IERR)
262 | do I=1,n_snow
263 | read(60,*) snd_time(i),(snd(i,i_site),i_site=1,n_site)
264 | enddo
265 | close(60)
266 | ! print*,trim(file_snow),' has been read'
267 |
268 | open(60,file=file_init,action='read')
269 | read(60,*)z_num,n_ini!,time_restart
270 | allocate(zdepth_ini(n_ini),STAT=IERR)
271 | allocate(ztemp_ini(n_ini,n_site),STAT=IERR)
272 | allocate(gtzone(n_ini,z_num+1),STAT=IERR)
273 | read(60,*)stdummy
274 | do i=1,n_ini
275 | read(60,*) (gtzone(i,j),j=1,z_num+1)
276 | enddo
277 | close(60)
278 | ! print*,trim(file_init),'has been read'
279 |
280 | time_restart=utemp_time(1)
281 | zdepth_ini(:)=gtzone(:,1)
282 | do i=1,n_site
283 | k=gt_zone_code(i)
284 | ztemp_ini(:,I)=gtzone(:,k+1)
285 | enddo
286 |
287 | open(60,file=file_grid)
288 | read(60,*)n_grd
289 | allocate(zdepth(n_grd),STAT=IERR)
290 | do i=1,n_grd
291 | read(60,*) zdepth(i)
292 | enddo
293 | read(60,*)m_grd
294 | allocate(zdepth_id(m_grd),STAT=IERR)
295 | do j=1,m_grd
296 | read(60,*)zdepth_id(j)
297 | enddo
298 | close(60)
299 | ! print*,trim(file_grid),' has been read'
300 |
301 | ! note: that all max n_lay_cur layers has to be read or it will a give segmantation error
302 | ! n_lay=10!MAXVAL(n_lay_cur)
303 | !----------------------------------------------------
304 | open (60, file=file_organic)
305 | read(60,*) vln ! reads numbers of classes
306 | allocate(A1(n_lay,vln),STAT=IERR) ! vwc
307 | allocate(A2(n_lay,vln),STAT=IERR) ! a_coef
308 | allocate(A3(n_lay,vln),STAT=IERR) ! b_coef
309 | allocate(A4(n_lay,vln),STAT=IERR) ! hcap_frz
310 | allocate(A5(n_lay,vln),STAT=IERR) !hcap_thw
311 | allocate(A6(n_lay,vln),STAT=IERR) !tcon_frz
312 | allocate(A7(n_lay,vln),STAT=IERR) !tcon_thw
313 | allocate(A8(vln,n_lay),STAT=IERR) !bot_cond
314 | allocate(veg_class(vln),STAT=IERR) !veg_class
315 | allocate(num_vl(vln),STAT=IERR) !num_vl number of vegetation layers
316 | do I = 1,vln
317 | read(60,*)veg_class(i),num_vl(i)
318 | do j=1,num_vl(i)
319 | read(60,*)A1(J,I),A2(J,I),A3(J,I), &
320 | A4(J,I),A5(J,I),A6(J,I),A7(J,I),A8(I,J)
321 | enddo
322 | enddo
323 | close(60)
324 | ! print*,trim(file_organic),' has been read'
325 |
326 | open (60, file=file_mineral)
327 | read(60,*) gln ! reads numbers of classes
328 | allocate(B1(n_lay,gln),STAT=IERR) ! vwc
329 | allocate(B2(n_lay,gln),STAT=IERR) ! a_coef
330 | allocate(B3(n_lay,gln),STAT=IERR) ! b_coef
331 | allocate(B4(n_lay,gln),STAT=IERR) ! hcap_frz
332 | allocate(B5(n_lay,gln),STAT=IERR) !hcap_thw
333 | allocate(B6(n_lay,gln),STAT=IERR) !tcon_frz
334 | allocate(B7(n_lay,gln),STAT=IERR) !tcon_thw
335 | allocate(B8(gln,n_lay),STAT=IERR) !bot_cond
336 | allocate(geo_class(gln),STAT=IERR) !geo_class
337 | allocate(num_gl(gln),STAT=IERR) !num_vl number of lithologic layers
338 | do I = 1,gln
339 | read(60,*)geo_class(i),num_gl(i)
340 | do j=1,num_gl(i)
341 | read(60,*)B1(J,I),B2(J,I),B3(J,I), &
342 | B4(J,I),B5(J,I),B6(J,I),B7(J,I),B8(I,J)
343 | enddo
344 | enddo
345 | close(60)
346 | ! print*,trim(file_mineral),' has been read'
347 |
348 |
349 | allocate(vwc(n_lay,n_site),STAT=IERR)
350 | allocate(a_coef(n_lay,n_site),STAT=IERR)
351 | allocate(b_coef(n_lay,n_site),STAT=IERR)
352 | allocate(EE(n_lay,n_site),STAT=IERR)
353 | allocate(hcap_frz(n_lay,n_site),STAT=IERR)
354 | allocate(hcap_thw(n_lay,n_site),STAT=IERR)
355 | allocate(tcon_frz(n_lay,n_site),STAT=IERR)
356 | allocate(tcon_thw(n_lay,n_site),STAT=IERR)
357 | allocate(n_lay_cur(n_site),STAT=IERR)
358 | allocate(n_bnd_lay(n_site,n_lay+1),STAT=IERR)
359 |
360 | do i = 1,n_site
361 | layer_thick=0
362 | n_bnd_lay(i,1)=layer_thick
363 | layer_thick=0
364 | n_bnd_lay(i,1)=layer_thick
365 | do j=1,num_vl(veg_code(i))
366 | vwc(J,I)=A1(j,veg_code(i));
367 | a_coef(J,I)=A2(j,veg_code(i));
368 | b_coef(J,I)=A3(j,veg_code(i));
369 | hcap_thw(J,I)=A4(j,veg_code(i));
370 | hcap_frz(J,I)=A5(j,veg_code(i));
371 | tcon_thw(J,I)=A6(j,veg_code(i));
372 | tcon_frz(J,I)=A7(j,veg_code(i));
373 | if (j.eq.1) then
374 | layer_thick=A8(veg_code(i),j)
375 | else
376 | layer_thick=layer_thick+A8(veg_code(i),j);
377 | endif
378 | n_bnd_lay(i,j+1)=layer_thick
379 | EE(J,I)=0
380 | ! write(*,'(3(f8.3),2(f12.1),3(f8.3))') vwc(J,I),a_coef(J,I),b_coef(J,I), &
381 | ! hcap_thw(J,I),hcap_frz(J,I),tcon_thw(J,I),tcon_frz(J,I),n_bnd_lay(i,j+1)
382 | enddo
383 | k=1
384 | n_lay_cur(I)=num_vl(veg_code(i))+num_gl(geo_code(i)) ! maximum number of soil layer = organic layers + mineral layers
385 | do j=num_vl(veg_code(i))+1,n_lay_cur(I)
386 | vwc(J,I)=B1(k,geo_code(i));
387 | a_coef(J,I)=B2(k,geo_code(i));
388 | b_coef(J,I)=B3(k,geo_code(i));
389 | hcap_thw(J,I)=B4(k,geo_code(i));
390 | hcap_frz(J,I)=B5(k,geo_code(i));
391 | tcon_thw(J,I)=B6(k,geo_code(i));
392 | tcon_frz(J,I)=B7(k,geo_code(i));
393 | EE(J,I)=0
394 | layer_thick=layer_thick+B8(geo_code(i),k);
395 | n_bnd_lay(i,j+1)=layer_thick!B8(geo_code(i),j)
396 | k=k+1
397 | enddo
398 | n_bnd_lay(i,n_lay_cur(I)+1)=zdepth(n_grd)
399 | enddo
400 |
401 | allocate(z(n_grd),STAT=IERR)
402 | allocate(dz(n_grd),STAT=IERR)
403 | allocate(temp(n_site,n_grd),STAT=IERR)
404 | allocate(lay_id(n_site,n_grd),STAT=IERR)
405 | allocate(i_time(n_site),STAT=IERR)
406 | allocate(z_frz_frn(n_time,n_frz_max,n_site),STAT=IERR)
407 | allocate(n_frz_frn(n_time,n_site),STAT=IERR)
408 | allocate(temp_frz(n_lay,n_site),STAT=IERR)
409 | allocate(RES(n_time,m_grd+3),STAT=IERR)
410 | i_time=1 ! active_layer uses it below, needs to be initialized here
411 |
412 | z=zdepth/zdepth(n_grd)
413 | do i_grd=2,n_grd
414 | dz(i_grd)=z(i_grd)-z(i_grd-1)
415 | enddo
416 |
417 | hcscale=zdepth(n_grd)*zdepth(n_grd)/n_sec_day
418 | hcap_frz=hcap_frz*hcscale
419 | hcap_thw=hcap_thw*hcscale
420 | hcap_s=hcap_snow*hcscale
421 | L_fus=hcscale*Lf
422 | call assign_layer_id(n_lay,n_lay_cur,n_site,n_grd,zdepth,n_bnd_lay,lay_id)
423 | call init_cond(restart,n_site)
424 |
425 | allocate(utemp_time_i(n_time+2),STAT=IERR) ! allocating interval varialbe after interation
426 | allocate(utemp_i(n_time+2,n_site),STAT=IERR)
427 | allocate(snd_i(n_time+2,n_site),STAT=IERR)
428 | allocate(stcon_i(n_time+2,n_site),STAT=IERR)
429 |
430 | do j_time=1,n_time+2
431 | utemp_time_i(j_time)=time_restart+DBLE(j_time-1)*time_step
432 | enddo
433 | do i_site=1,n_site
434 | if (lbound.EQ.2)temp_grd(i_site)=temp_grd(i_site)*zdepth(n_grd)
435 | do i_lay=1,n_lay_cur(i_site)
436 | temp_frz(i_lay,i_site)=-(vwc(i_lay,i_site)/a_coef(i_lay,i_site))**(1.d0/b_coef(i_lay,i_site))
437 | enddo
438 | call interpolate(utemp_time,utemp(:,i_site),n_temp,utemp_time_i,utemp_i(:,i_site),n_time+2)
439 | call interpolate(snd_time,snd(:,i_site),n_snow,utemp_time_i,snd_i(:,i_site),n_time+2)
440 | call snowfix(utemp_i(:,i_site),snd_i(:,i_site),n_time+2)
441 | call interpolate(stcon_time,stcon(:,i_site),n_stcon,utemp_time_i,stcon_i(:,i_site),n_time+2)
442 | call active_layer(i_site)
443 | enddo
444 |
445 | open(1,file=result_file,STATUS='unknown')
446 | open(2,file=aver_res_file,STATUS='unknown')
447 | open(3,file=restart_file,STATUS='unknown')
448 | write(FMT1,'(A30,I0,A12)')'(1x,I10,1x,F12.3,2(1x,F16.12),',m_grd,'(1x,F16.12))'
449 | write(FMT2,'(A28,I0,A40)')'(1x,I10,1x,F12.3,2(1x,F8.3),',m_grd,'(1x,F8.3),(1x,F8.3,1x,F12.3),(1x,F12.3))'
450 |
451 | end subroutine initialize
452 |
453 | subroutine init_cond(q,last)
454 |
455 | use bnd
456 | use thermo
457 | use grd
458 |
459 | implicit none
460 | integer q,last
461 | integer i,j
462 | character*64 file_init
463 |
464 | if(q.EQ.1)then !restart=1 means reading initial data from
465 | do I=1,last
466 | call interpolate(zdepth_ini,ztemp_ini(:,I),n_ini,zdepth,temp(I,:),n_grd)
467 | enddo
468 | elseif(restart.EQ.0)then !restart=0 enbales spinup
469 | write(file_init,'(A14)') 'dump/start.txt'
470 | open(60,file=file_init,action='READ')
471 | read(60,*)time_restart ! day number in restart file
472 | do J=1,n_grd
473 | read (60,* ) ( temp(i,j),i=1,last)
474 | enddo
475 | close(60)
476 | endif
477 |
478 | end subroutine init_cond
479 |
480 | subroutine active_layer(k)
481 |
482 | use bnd
483 | use thermo
484 | use grd
485 | use alt
486 |
487 | implicit none
488 |
489 | integer :: k,j,jj
490 | real*8 GA,GB,YFRON,GX,GY
491 | real*8 fsat_unf_water
492 |
493 | z_frz_frn(i_time(k),:,k)=sea_level
494 | n_frz_frn(i_time(k),k)=0
495 | do 1329 JJ=1,n_grd-1
496 | J=n_grd-JJ
497 | if (zdepth(J).GE.sea_level.AND.zdepth(J+1).LE.frz_frn_max)then
498 | GA=fsat_unf_water(temp(k,J),lay_id(k,J),k)
499 | GB=fsat_unf_water(temp(k,J+1),lay_id(k,J+1),k)
500 | if((GA-sat_coef)*(GB-sat_coef).LE.0.D0) then
501 | GY=(GA-GB)/(zdepth(J)-zdepth(J+1))
502 | GX=(GA+GB-GY*(zdepth(J)+zdepth(J+1)))/2.D0
503 | if(GY.EQ.0.D0) then
504 | YFRON=(zdepth(J)+zdepth(J+1))/2.D0
505 | else
506 | YFRON=(sat_coef-GX)/GY
507 | endif
508 | else
509 | GOTO 1329
510 | endif
511 | if(n_frz_frn(i_time(k),k).LT.n_frz_max)then
512 | n_frz_frn(i_time(k),k)=n_frz_frn(i_time(k),k)+1
513 | z_frz_frn(i_time(k),n_frz_frn(i_time(k),k),k)=YFRON
514 | endif
515 | endif
516 | 1329 CONTINUE
517 |
518 | end subroutine active_layer
519 |
520 | subroutine save_results(k,time1,time2)
521 | use thermo
522 | use grd
523 | use alt
524 |
525 | implicit none
526 | integer :: k,j
527 | real*8 :: time1,time2
528 | real*8 :: futemp,fsnow_level
529 |
530 | RES(i_time(k),1)=time1
531 | RES(i_time(k),2)=futemp(time2,k)
532 | RES(i_time(k),3)=fsnow_level(k,time2)
533 | do J=1,m_grd
534 | RES(i_time(k),J+3)=temp(k,zdepth_id(J))
535 | enddo
536 |
537 | end subroutine save_results
538 |
539 | !________________________________________________
540 | !__________________FUNCTIONS_____________________
541 | !________________________________________________
542 | real*8 function funf_water(T,NNN,I)
543 | use thermo
544 | implicit none
545 | real*8, intent(in) :: T ! temprature
546 | integer, intent(in) :: NNN, I
547 | real*8 :: temp_dep
548 | real*8 :: a,b,e
549 | real*8 :: theta
550 |
551 | temp_dep=temp_frz(NNN,I) ! change I to k0 everywhere except temp_dep
552 | e=EE(NNN,I)
553 | theta=vwc(NNN,I)
554 | a=a_coef(NNN,I)
555 | b=b_coef(NNN,I)
556 |
557 | IF(T.LE.temp_dep-e)THEN
558 | funf_water=a*((DABS(T))**b)
559 | ELSEIF(T.GT.temp_dep)THEN
560 | funf_water=theta
561 | ELSE
562 | funf_water=a*((DABS(temp_dep-e))**b)
563 | funf_water=funf_water+(theta-funf_water)*(T+e-temp_dep)/e
564 | endif
565 | return
566 | end function funf_water
567 | !-----------------------------------------------
568 | real*8 function fsat_unf_water(T,NNN,I)!Saturated unforzen water
569 | use thermo
570 |
571 | !IMPLICIT REAL*8(A-H,O-Z)
572 | implicit none
573 | real*8, intent(in) :: T
574 | integer, intent(in) :: NNN, I
575 | real*8 :: temp_dep
576 | real*8 :: a,b,e
577 | real*8 :: theta
578 |
579 | temp_dep=temp_frz(NNN,I) ! freezing temprature depression
580 | e=EE(NNN,I)
581 | theta=vwc(NNN,I)
582 | a=a_coef(NNN,I)
583 | b=b_coef(NNN,I)
584 | IF(T.LE.temp_dep-e)THEN
585 | fsat_unf_water=a*((DABS(T))**b)
586 | ELSEIF(T.GT.temp_dep)THEN
587 | fsat_unf_water=theta
588 | ELSE
589 | fsat_unf_water=a*((DABS(temp_dep-e))**b)
590 | fsat_unf_water=fsat_unf_water+(theta-fsat_unf_water)*(T+e-temp_dep)/e
591 | ENDIF
592 | fsat_unf_water=fsat_unf_water/theta
593 | return
594 |
595 | end function fsat_unf_water
596 | !-----------------------------------------------
597 | real*8 function fdunf_water(T,NNN,I)
598 | use thermo
599 | implicit none
600 | real*8, intent(in) :: T ! temprature
601 | integer, intent(in) :: NNN, I
602 | real*8 :: temp_dep
603 | real*8 :: a,b,e
604 | real*8 :: theta
605 |
606 | temp_dep=temp_frz(NNN,I)
607 | e=EE(NNN,I)
608 | theta=vwc(NNN,I)
609 | a=a_coef(NNN,I)
610 | b=b_coef(NNN,I)
611 |
612 | if(T.LE.temp_dep-e)THEN
613 | fdunf_water=-b*a*((DABS(T))**(b-1.0D0))
614 | elseif(T.GT.temp_dep)THEN
615 | fdunf_water=0.0D0
616 | else
617 | fdunf_water=a*((DABS(temp_dep-e))**b)
618 | fdunf_water=(b-fdunf_water)/e
619 | endif
620 | return
621 |
622 | end function fdunf_water
623 | !----------------------------------------
624 | real*8 function futemp(T,I)
625 | use bnd
626 | implicit none
627 | real*8 T
628 | integer I,II
629 |
630 | II=1+IDINT((T-TINIR)/time_step)
631 | futemp=utemp_i(II,I)+(T+time_restart-utemp_time_i(II)) &
632 | *(utemp_i(II+1,I)-utemp_i(II,I))/(utemp_time_i(II+1)-utemp_time_i(II))
633 | return
634 | end function futemp
635 | !----------------------------------------
636 | subroutine snowfix(air_temp,stcon,n)
637 |
638 | real*8, intent (in) :: air_temp(n)
639 | real*8, intent (out) :: stcon(n)
640 | integer :: n
641 |
642 | if(air_temp(1).gt.0.and.stcon(1).gt.0)stcon(1)=0
643 | do i=2,n
644 | if(air_temp(i).gt.0.and.stcon(i).gt.0)then
645 | if (stcon(i-1).eq.0)stcon(i)=0 ! puts zeros only at the begining of the year
646 | endif
647 | enddo
648 |
649 | return
650 | end subroutine snowfix
651 |
652 | !----------------------------------------
653 | subroutine interpolate(XIN,YIN,NIN,XOUT,YOUT,n_itime)
654 | ! Linear interpolation
655 | real*8, intent(in) :: XIN(NIN),YIN(NIN)
656 | real*8, intent(out) :: XOUT(n_itime),YOUT(n_itime)
657 | integer :: NIN,n_itime
658 | do I=1,n_itime
659 | if(XOUT(I).LE.XIN(1))THEN
660 | YOUT(I)=YIN(1)
661 | GOTO 1
662 | elseif(XOUT(I).GT.XIN(NIN))THEN
663 | YOUT(I)=YIN(NIN)
664 | GOTO 1
665 | else
666 | do J=1,NIN-1
667 | if (XIN(J).LT.XOUT(I).AND.XOUT(I).LE.XIN(J+1))THEN
668 | YOUT(I)=YIN(J)+(XOUT(I)-XIN(J))*(YIN(J+1)-YIN(J))/(XIN(J+1)-XIN(J))
669 | GOTO 1
670 | endif
671 | enddo
672 | endif
673 | 1 continue
674 | enddo
675 | return
676 | end
677 |
678 | !----------------------------------------
679 | subroutine assign_layer_id(n_lay,n_lay_cur,n_site,n_grd,zdepth,n_bnd_lay,lay_id)
680 | !assigns correspond layer id to the grid point
681 | !starting from surface to the bottom
682 | implicit none
683 |
684 | integer :: n_site,n_grd,n_lay
685 | integer :: lay_id(n_site,n_grd),n_lay_cur(n_site)
686 | real*8 :: zdepth(n_grd)
687 | real :: n_bnd_lay(n_site,n_lay+1)
688 | integer :: isite,igrd,ilay
689 |
690 | do isite=1,n_site
691 | do 6 igrd=1,n_grd
692 | lay_id(isite,igrd)=n_lay_cur(isite)
693 | do ilay=1,n_lay_cur(isite)-1
694 | if ( n_bnd_lay(isite,ilay).LE.zdepth(igrd).AND.zdepth(igrd).LT.n_bnd_lay(isite,ilay+1))then
695 | lay_id(isite,igrd)=ilay
696 | GOTO 6
697 | endif
698 | enddo
699 | 6 continue
700 | enddo
701 | return
702 | end
703 | !----------------------------------------
704 | real*8 function fsnow_level(site_id,time)
705 | use bnd
706 | real*8 :: time
707 | integer :: site_id,II
708 |
709 | II=1+IDINT((time-TINIR)/time_step)
710 | fsnow_level=snd_i(II,site_id)+(time+time_restart-utemp_time_i(II))* &
711 | (snd_i(II+1,site_id)-snd_i(II,site_id))/(utemp_time_i(II+1)-utemp_time_i(II))
712 | return
713 | end function fsnow_level
714 | !-----------------------------------------------
715 | real*8 function ftcon(T,id,j,time_cur)
716 | use bnd
717 | use grd
718 | use thermo
719 |
720 | implicit real*8(A-H,O-Z)
721 | integer :: II
722 |
723 | gr_sur=sea_level
724 | dsnow=sea_level-fsnow_level(id,time_cur)
725 | NS=lay_id(id,j)
726 | if(zdepth(j).le.dsnow)then !atmosphere
727 | ftcon=1.d4
728 | elseif (zdepth(j).Lt.gr_sur)then !snow
729 | II=1+IDINT((time_cur-tinir)/time_step)
730 | ftcon=stcon_i(II,id)+(time_cur+time_restart-utemp_time_i(II))* &
731 | (stcon_i(II+1,id)-stcon_i(II,id))/(utemp_time_i(II+1)-utemp_time_i(II))
732 | else !ground
733 | WC=funf_water(T,NS,id)/vwc(NS,id)
734 | ftcon=(tcon_thw(NS,id)**WC)*(tcon_frz(NS,id)**(1.0-WC))
735 | endif
736 | return
737 | end function ftcon
738 | !----------------------------------------
739 | real*8 function fhcap(T,NNUS,I)
740 | use thermo
741 |
742 | IMPLICIT REAL*8(A-H,O-Z)
743 | DIMENSION NNUS(2),T(2)
744 |
745 | H=1/(T(1)-T(2))
746 | if(DABS(T(1)-T(2)).LT.1.D-6) THEN
747 | fhcap=0.5d0*(fdunf_water(T(1),NNUS(1),I)+fdunf_water(T(2),NNUS(2),I))
748 | else
749 | if (nnus(1).ne.nnus(2))THEN
750 | fhcap=0.5D0*( H*(funf_water(T(1),NNUS(1),I)-funf_water(T(2),NNUS(1),I))+ &
751 | H*(funf_water(T(1),NNUS(2),I)-funf_water(T(2),NNUS(2),I)) )
752 | else
753 | fhcap=H*(funf_water(T(1),NNUS(1),I)-funf_water(T(2),NNUS(2),I))
754 | endif
755 | endif
756 | fhcap=L_fus*DABS(fhcap)
757 | return
758 | end function fhcap
759 | !----------------------------------------
760 | !----------------------------------------
761 | real*8 function fapp_hcap(T,I,J) ! Apparent heat capacity
762 | use thermo
763 | use grd
764 |
765 | implicit real*8(A-H,O-Z)
766 | DIMENSION T(n_grd),WW(2),NN(2)
767 |
768 | li=lay_id(I,J) ! layer index
769 | gr_sur=sea_level ! ground surface
770 | if(zdepth(J).lE.gr_sur)then
771 | fapp_hcap=hcap_s ! heat capacity for snow
772 | else
773 | WC=funf_water(T(J),li,I)/vwc(li,I)
774 | fapp_hcap=hcap_thw(li,I)*WC+hcap_frz(li,I)*(1.0-WC)
775 | if(J.GT.(1).AND.J.LT.n_grd)then
776 | WW(1)=(T(J-1)+T(J))/2.D0
777 | NN(1)=lay_id(I,J-1)
778 | WW(2)=T(J)
779 | NN(2)=lay_id(I,J)
780 | fapp_hcap=fapp_hcap+fhcap(WW,NN,I)*dz(J)/(dz(J+1)+dz(J))
781 | WW(1)=T(J)
782 | NN(1)=lay_id(I,J)
783 | WW(2)=(T(J+1)+T(J))/2.D0
784 | NN(2)=lay_id(I,J+1)
785 | fapp_hcap=fapp_hcap+fhcap(WW,NN,I)*dz(J+1)/(dz(J+1)+dz(J))
786 | elseif(J.EQ.1)then
787 | WW(1)=T(J)
788 | NN(1)=lay_id(I,J)
789 | WW(2)=(T(J+1)+T(J))/2.D0
790 | NN(2)=lay_id(I,J+1)
791 | fapp_hcap=fapp_hcap+fhcap(WW,NN,I)
792 | elseif(J.EQ.n_grd)then
793 | WW(1)=(T(J-1)+T(J))/2.D0
794 | NN(1)=lay_id(I,J-1)
795 | WW(2)=T(J)
796 | NN(2)=lay_id(I,J)
797 | fapp_hcap=fapp_hcap+fhcap(WW,NN,I)
798 | endif
799 | endif
800 |
801 | return
802 | end
803 | !-------------------------------------------------------
804 | subroutine stefan1D(temps,n_grd,dz,time_loop,isite,lay_idx,flux)
805 |
806 | use thermo
807 | use bnd
808 | use const
809 |
810 | implicit none
811 |
812 | integer, intent(inout) :: n_grd
813 | real*8, intent(inout) :: dz(n_grd),temps(n_grd)
814 | integer, intent(inout) :: lay_idx(n_grd)
815 | real*8, intent(inout) :: time_loop
816 | real*8 :: futemp,flux,fapp_hcap,ftcon,fsat_unf_water
817 |
818 | integer :: isite,i_grd,IT
819 |
820 | ! tridiagonal variables
821 | real*8 :: RAB1,RAB2,AKAPA2,AMU2,Q2
822 | real*8 :: A,B,C,D
823 | real*8 :: ALF(n_grd),BET(n_grd)
824 | real*8 :: EEY,EEY1,abs1,abs2
825 |
826 | real*8 :: temp_o(n_grd) ! old temperature before tridiagonal method
827 | real*8 :: temp_n(n_grd) ! new temperature after tridiagonal method
828 |
829 | ! time counter internal to this subroutine
830 | real*8 :: time_l ! loop time in a subroutine
831 | real*8 :: time_p ! present time in a subroutine
832 | real*8 :: timei ! main subroutine timer
833 | real :: time_swith ! for timei
834 |
835 | time_l=time_loop
836 | time_swith=-1.0
837 | timei=TAUM
838 | temps=temp(isite,:)
839 | 64 continue
840 | time_p=time_l+timei
841 | temp_o=temps
842 | IT=1
843 | ALF(2)=0.D0
844 | BET(2)=futemp(time_p,isite)
845 | 22 continue
846 | if(IT.GT.ITMAX) then
847 | timei=timei/2.D0
848 | time_swith=-1.0
849 | GOTO 64
850 | endif
851 |
852 | do i_grd=2,n_grd-1
853 | D=fapp_hcap(temp_o,isite,i_grd)/timei
854 | A=2.D0*ftcon(temp_o(i_grd),isite,i_grd,time_p)/(dz(i_grd)*(dz(i_grd)+dz(i_grd+1)))
855 | B=2.D0*ftcon(temp_o(i_grd+1),isite,i_grd+1,time_p)/(dz(i_grd+1)*(dz(i_grd)+dz(i_grd+1)))
856 | C=A+B+D
857 | ALF(i_grd+1)=B/(C-A*ALF(i_grd))
858 | BET(i_grd+1)=(A*BET(i_grd)+D*temps(i_grd))/(C-A*ALF(i_grd))
859 | enddo
860 |
861 | RAB1=ftcon(temp_o(n_grd),isite,n_grd,time_p)
862 | RAB2=fapp_hcap(temp_o,isite,n_grd)
863 | AKAPA2=2.D0*RAB1/(((RAB2*dz(n_grd)*dz(n_grd))/timei+2.D0*RAB1))
864 | Q2=RAB1*flux
865 | AMU2=(temps(n_grd)*RAB2/timei+2.D0*Q2/dz(n_grd))/(RAB2/timei+2.D0*RAB1 &
866 | /dz(n_grd)**2.D0)
867 | if(DABS(AKAPA2)>1.D0) then
868 | print*,'Tridiagonal method is failed - chang you time step tau'
869 | print*,rab1,rab2,akapa2
870 | STOP
871 | endif
872 |
873 | ! assigns boundary condition check
874 | if (lbound.EQ.2)then
875 | temp_n(n_grd)=(AMU2+AKAPA2*BET(n_grd))/(1.D0-ALF(n_grd)*AKAPA2)
876 | else
877 | temp_n(n_grd)=flux
878 | endif
879 |
880 | ! calculates new tempratures
881 | do i_grd=1,n_grd-1
882 | temp_n(n_grd-i_grd)=ALF(n_grd-i_grd+1)*temp_n(n_grd-i_grd+1)+BET(n_grd-i_grd+1)
883 | enddo
884 |
885 | if(timei>tmin) then
886 | do i_grd=1,n_grd
887 | EEY=fsat_unf_water(temp_n(i_grd),lay_idx(i_grd),isite)
888 | EEY1=fsat_unf_water(temp_o(i_grd),lay_idx(i_grd),isite)
889 | abs1=DABS(EEY-EEY1)
890 | abs2=DABS(temp_o(i_grd)-temp_n(i_grd))
891 | if((abs1.GT.unf_water_coef).or.(abs2.GT.smooth_coef)) then
892 | temp_o=temp_n
893 | IT=IT+1
894 | GOTO 22
895 | endif
896 | enddo
897 | endif
898 |
899 | if(time_p.LT.time_loop+time_step-1.D-12)then
900 | time_l=time_p
901 | temps=temp_n
902 | if(time_swith>0) then
903 | if(timei.LT.TAUM) then
904 | timei=timei*2.D0
905 | time_swith=-1.0
906 | endif
907 | else
908 | time_swith=1.0
909 | endif
910 | GOTO 64
911 | elseif(time_p.GT.time_loop+time_step+1.D-12)then
912 | timei=(time_loop+time_step-time_l)
913 | goto 64
914 | else
915 | temps=temp_n
916 | endif
917 |
918 | end subroutine stefan1D
919 |
920 | subroutine filexist(filename)
921 | character*64 filename
922 | logical chf
923 | inquire(file=filename,exist=chf)
924 | if (.not.chf) then
925 | write(*,'(/'' FILE '',a, '' DOESNT EXIST'')')trim(filename)
926 | stop
927 | endif
928 | end subroutine filexist!-----------------------------------------------
929 |
930 |
--------------------------------------------------------------------------------
/plot_input_data.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "This script visualizes input data from the example folder. Note, that measurements correspond to the beginning of the hydrologic year (July 1). "
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {
14 | "collapsed": true
15 | },
16 | "outputs": [],
17 | "source": [
18 | "%matplotlib inline\n",
19 | "import numpy as np\n",
20 | "from matplotlib import pyplot as plt"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 2,
26 | "metadata": {
27 | "collapsed": true
28 | },
29 | "outputs": [],
30 | "source": [
31 | "def plot_data(input_file,ylabel):\n",
32 | " input_data = np.loadtxt(input_file, skiprows=3, unpack=False)\n",
33 | " data=input_data[:,1]\n",
34 | " plt.plot(data,'b',linewidth=2.0)\n",
35 | " plt.xlim([0, len(data)]);\n",
36 | " plt.ylabel(ylabel, fontsize=16); \n",
37 | " plt.tick_params(labelsize=16)"
38 | ]
39 | },
40 | {
41 | "cell_type": "code",
42 | "execution_count": 3,
43 | "metadata": {
44 | "collapsed": false
45 | },
46 | "outputs": [
47 | {
48 | "data": {
49 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAI6CAYAAACzTH4kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4FNX+xt+TAKF3pKn0DtJBinRE\nqRZUfipYrqBYsVyuIhZEURQ7RRAFREVRELGCNFEEJEjnovSOEEIVSEhyfn+8e+5MNltmNrvZlO/n\neeaZ2Zkzs2d3tpz3fJvSWkMQBEEQBEEQBMENMdHugCAIgiAIgiAIOQ8REoIgCIIgCIIguEaEhCAI\ngiAIgiAIrhEhIQiCIAiCIAiCa0RICIIgCIIgCILgGhESgiAIgiAIgiC4RoSEIAiCIAiCIAiuESEh\nCIIgCIIgCIJrREgIgiAIgiAIguCafNHuQHakbNmyumrVqtHuhiAIgiAIgiBkKWvXrk3QWpdz0laE\nhA+qVq2K+Pj4aHdDEARBEARBELIUpdRep23FtUkQBEEQBEEQBNeIkBAEQRAEQRAEwTUiJLIhhw4B\nx49HuxeCIAiCIAiC4B8REtmM06eBRo2Azp2j3RNBEARBEARB8I8IiWzG778DiYnApk3AgQPR7k3m\nSUgAtI52LwRBEARBEIRwI0Iim/H779b26tXR60c4eOstoFw5oEMHYN26aPdGEARBEARBCCciJKLA\niRPA/v2+j9mFxKpVWdOfSBAfD/z739z+9VegeXMKC0EQBEEQBCF3IEIiCvTqBdStC+zenfHYmjXW\ndk61SJw9C9x6K5CSAgweDDz6KN2bHn0UeOmlaPdOEARBEARBCAciJLKYkyeBlSuBc+eASZPSHzt4\nkBmbChfm47VrORjPaXz8MbB9O9CwIfDOO8AbbwAffggoBYwcCXz+ebR7KAiCIAiCkDdYuxY4ejR4\nu40b3ce1ipBwyaFDQFpa6OevXWttf/ABcP689di4NbVtC1SvTrGxeXPozxUtTFHwwYOBggW5fddd\nFBQA8Oab0emXIAiCIAhCXkFr4PnngRYtgFtusfafOJF+olpr4OWXgSZNgPHj3T2HCAkXLFoEVK7M\nmxIq9hiIxETgs88yHmvVCrjySm7nRPemDRu4btIk/f4hQ4CSJfmaQgm+Xr+eiyAIgiAIghCYhx8G\nRo3i9sqVwMWLtDpccokVx3r+PHDjjcCIERQUp065ew4REi746iuuJ04EkpNDu4aJgejShevx4y0z\nkl1ItG7N7ZwmJFJSmLoWABo3Tn+scGHgjju47e3WFYyDB4E2bYBOnUJ/7yPByZPuv3SCIAiCIAih\ncvw4sHdv4DYbNnCMGRfHSdykJGDbNuDbbzlWmzkTSE3leOyrr4ASJYBvvqELuhtESLhgxQqujx8H\nvv+evv6FCzMj0ciRwIULwa9hxMLrrwOlSgF//MEbm5pquQS1bGkJiZUrw/86Islff/HDWrUqP5Te\nDB3K9Sef0Crh1E1s7Fi+v6dOAX/+GbbuZop//mEcSN26uaPmhyAIgiAI2RutORndsGHguIelS7ke\nMADo3p3bf/xhZQQ9fpzu9l9+yceTJwO9e7vvjwgJh5w6RXOQ4a23OCg+f5435qWXLPORPw4f5sx6\n8eLAFVcwexMA/PAD8NtvrGpdvTpQqRLQtClFyrZtPC+nYFyPvN2aDHXq8Atw7hzQrBlf77Ztga95\n6BAwZYr12H4fosmnn/J+HjlC38OLF6PdI0EQBEEQcjNr1nAcdPasNcHti2XLuO7UiWNKgMLBXlpg\n2jQ+jouzxqRuESHhkFWrqAJr1QJiYoCff2awytVXAzNmsM306YGzLBm3phYteI1rr+Xj77+33Kau\nv57rAgVYyA2wVKUbfviBz+MvFuHzz5mONdyDXyMkvN2a7MyYAQwaRMG0dy/wwAOBswS89hqtHPny\n8bFxnYomWlsBSQUKUAg+/XR0+yQIgiAIQu5m1ixr21+9sbQ0YPlybnfsyIlbAJg3Dzh2zGo3ZQrH\nM927A0WLhtYfERIOMaqvXz+gRw9uFy5MU9DAgXRvOXKEosAfxq2pZUuue/RgStTly4EvvuC+G26w\n2ps4isWL3fU1IYED9bVrgYceSj9IT01lgM2AAbSqfPutu2sHw1+gtZ1LL6WY2LQJKF0aWLIEmDPH\nd9vUVGa3AhgIBGQPi8Svv7If5csDP/7Ife++K1YJQRAEQRAiQ2pq+hT6/oTEpk2c7L78crqaG4uE\nKYbcpQsnQY17uZnEDgUREg759Veu27XjQLxoUQ7Eq1alGPjXv3h86lT/1zCB061acV2mDLMzXbxI\nH/sKFaxsTQDQtSvXixcHz+t76BBn9mfNoqUhIYH7V6ywBrppaRQ948ZZ5y1YEPSlu8KJRcJQurRV\noO7xx+nu5M327cCZM8Bll7HvQPYQEsYaMWQI0LkzUK0aYziCuWkJgiAIgiCEwvLldHevUIGP16yh\nJ8zBg+ljNe1uTUoxS1Plytbxrl0tr5eYGKBPn9D7JELCARcvWiKgbVsOHM+cYZ0Ew6BBdL35/nvf\nMQ3799NFKV8+oH17a3/PntZ2v368oYYmTRiQvXev7yrYdoYNYzapW29lQbi4OOC++3js6aeZ6WjY\nMAqNYsWAV1/lsQULMoqUtDR+CD/4gFH9RsEG48gRBv4UL06B5YTBg/k69+3jc3ljXLNMPEXhwvzC\nJCY6u34kSE6meRCgkAAstR9KWltBEARBEIRgGLemu+8GatZknO4vv3AM0rSpNSH7889cd+xonWvc\nmwBOWl9zDbevugooVy70PgUVEkqp5SEutULvVvZi/XrenFq1qOp8ccklQN++6V1x7EyezGM33pj+\nGnYh4W1aiomhaAECuzdt2kTXqLg4oH597hszhgXgKlbk4LZgQbreFCgAfP018NhjtIjs2cNZf4Cq\ndtIkoF49Pu8991Ag1a9vtQmEiQFp3JgK2AmxscDw4dyeODGjqPnjD66bNuX70bCh9ZqjxZYtFBO1\na9NNy/QPECEhCIIgCEL4OX6cSV4AThobD5bBgxn3kJDAemdpaZaQ6NTJOt+MU2Ji6GJ/773AI49k\nvkiwE4tEewBFAKQ6XNIAtANQLHNdyz4YfzQTs+APk9r0vffSB10nJVlZhx58MP05TZrw5tapY4kG\nO8a9af58/+5NJlvUkCGshH34MIVCoUJ0walShQP7/PmZdrVzZw7gTTqwBQv4oWvcGLj/fqZwrVyZ\nIqJlS2YGGDCAr8MfWjNFq73PTrnhBoqrjRsZtGzHCAmjpBs14jqQkEhKcl/i3Q2mOnnz5tY+u5BI\nSmIlb7fVIQVBEARByF1s307LQWZ55x2mne/RA2jQwBISO3dabb7+mt4viYkc+1WrZh0zY5aGDemZ\nYlz0zfglZLTWARdQGLQK1s7WPp/nnGZOz8luS/PmzbXh3DmtS5fWGtB6zRodkLQ0revUYdsvv7T2\nz5zJfY0bs403Fy9qnZzs+5q7dmmdLx/Pv+cerf/+W+v9+63rrF3LYwULan3woP++JSdrfeZM+n3T\npvHcatWs56hRQ+vZs9knrbU+eZLHAa0ffdT/9efMYZty5bQ+dcp/O3+MGMHzb73V2peWpnWpUtx/\n4AD3vf02Hw8e7Ps6a9ZoXaSI1kOGuO+DU4YOZR9ee83ad/Ag95UoofWnn3Ib0Pq77yLXD0EQBEEQ\nsi+rV2utlNa3356565w6pXXJkhxXLF/OfWvWWGONGjWsMdj113N71Kj017h4Uevhw7VesiT48wGI\n107H/UEbAO8DqOr4goDynHOZ03Oy22IXEjNm8F2y7QrIO++wfadOfHz2rNa1a3Pf++87u4Y38+ZR\nKJgPDKD1tddqfeyY1nXrBh/k+8MMfs3y2GNaX7iQsd3q1VrHxnLZuTPj8aQkrWvW5DUmTHDfD621\n3rNH65gYrfPnt0TD7t3WF8MIpyVLuK9Fi4yiLDmZYg3gF3fbttD6EoxWrfgcixdb+9LStL7kEu6v\nX996T8uUofATBEEQBCFvMXIkxwJxcaFNsmpNAfDYY7zOVVdZ+5OStC5cmPuXLtW6alVr7BEbG3hy\nORhhFRJ5cbELiTZt+C5NnerszT91SuuiRXnOzJla33UXtxs00Pr8eWfX8MVvv1GQlC6tdaFCvKZR\np/XrU7CEghkUjx0buN0dd2i/loAHHuCxunX9W1ac0L8/r3PDDXxsrBw9elhtEhIs60njxlrPnat1\naiqPjR2bXhjdeae75/clorxJTuYPAqD1iRPpj/XoYT13/vxad+jA7euuc9cPQRAEQRByPlddZY0L\nPv7Y+XljxnCM17q1NRkNaL1wYfp2c+dqPWkStx95xGpnxlGhEnYhAcY7FAxwvCCAYk6fNLsvTZtS\nSJjZ7xIl3A3U//Of9APaggW13rTJ+fnB2LJF6/Llee1ChbTevDn0ax05QveoYPz5J2f58+fXeu9e\na//EiexHgQIUO5lh3z5LhM2dayn5J59M327WLK0rVbLe3yuu0Lp7d/YNYJ9iYyk4du/mOSkpWh8+\n7Nu1TGutH36Y5zzySEYXMDsbN/I5qlfPeOypp6w+XXcdZwOMlcVbdAiCIAiCkHs5d45jIzMu6NfP\n2XlLl3K8ZR9HGrfzQJgxqy/B4ZZwuzZ1ApACoFuANt08bdo6feLsvBQs2Fx/953WZcvyHXrmGXc3\nIDVV6ylTLP9+oxbDydatHKzOnx/+a/tjwAC+ntataWZr29b60H70UXiew7iGlSql9aWXctvXl+f8\nea3Hj9e6cuX0X7Zhw3j89tstEVe7tmXFGTMm47WmTk1/jSpVtN6xwzqelKT1vffSXe3ll9mmf/+M\n15k927rG3Lnc17lzeN8fQRAEQRDCT2oq40INixZxrDNpUmgTtkuX8v//sssoDOLiuG/QIK2/+sr3\nOcePW2Of4cPpQj1/vjNvj+RkuuF36GB5aoRKuIXELABfOWj3JYBPnD5xdl6A5v8bEPboYQUeuyUh\nIXiAdk5i82bO2ntbW3wNzkMlJUXrbt3SP8euXf7bnz/P4ObPP6fFwbB9uxUkbl9KlEj/Q7FmjeWq\n9OyzWjdtqv/nNnXuHJeePTNe5+WXM/Zl927+WJQta7lJTZjA9n37pm979Gjmv+iCIAiCIISHgQNp\nQVi+nF4Exn3cuCvv2+fues8/z3Mffljr9u0zjiNuvpnCwc6DD/LYlVeGPvYMB26EhGJ7/yil9gMY\nrrWeFaTdAACvaq0vD5oqKptTtmwLffx4POrUYfnxkiWj3aPsw8aNTHF66BBQowbrYBQtGt7nSEkB\n4uNZlbtCBeC220K/1unTLOhXuTJreCxbxmraI0awNkjTpkx3e999rKFx6hTQogWwYwerPh44AOza\nxZobxYtbhQEXLACuvjrj8337LVCpkpWu9vBhPneBAszzXKwY06099hjQujUwbRpQt27or08QBEEQ\nhMzx1VdMRQ8wPWrPnizc26QJxySbN7PWlUnz74QuXZiK9csvOWZ6+GGm4u/fn8WL//mH6fgXLmSx\n4nPnWPvr9Glgwwbgiisi81qdoJRaq7Vu4aitAyGRDKCL1vrXIO3aA1istY5z3NNsSosWLfQHH8Sj\nWjUOHoXcwaJFrJ1RtiwL8T31FIv0NWhA4VKwINtt3Mj8zCbvc7VqrOMRFwe0acP9+/cDpUs7e972\n7SmKpkxh/Y5//cs6FhcHzJ7NYoaCIAiCIGQtJ06w8O6RIxwHXLhgHVu5Eti6lf/bPXsC333HicaU\nlMCTgMnJQIkSvNbRo5yQHj8eaNuWk4i7dnH77785sfnSS8DHHwMDBwKtWgGrV0f+dQfCjZDI56DN\naQBOhkylAZx18qQ5gcaNo90DIdx07cov6O+/09Jx9ixnAWbOtEQEwFmAr76ieOjXj+fFxvLY5s2c\nLXAqIgDOPqxYwYKBhhdfZJGaGTO4v2NH/ugIgiAIgpB1jB5NEdGuHTB8OP/3AaBPH04qVq3Kx0uW\nAPv2sVDv+fPAmjVWkVxvpk+niKhfHyhXjvsefdQ6Xr068NlnHF+MGcN2H37IY3ffHYlXGTmcWCQW\nAdiltR4SpN37AKpprbuFsX8ho5S6DMCbALqDtS0WARimtd4X7NwWLVro+Pj4CPdQiAbLl7NK9+HD\nfGzcnCLJ8eN0q9q1i1Wvhw2jNSQtje5TK1YADz3EqpWCIAiCIGQNWgOXX0435lWraC245RZaHlau\ntIRCy5b0XGjSBFi/nvsaNKCYKFQo/TXj4+mJkJQEfPQRrQz+ePVV4D//sR4XKsTxSbQnFsNtkZgG\nYJpS6nut9Tw/T3gDgDsA3Om4lxFEKVUYwBIASWC/NIAXASxVSl2htf4nmv0TokeHDvRVPH6c5sas\niE8oU4axGd7ExNDnslkzYMIExlb07Bldv0hBEARByCts3EgRUbEixQIAfPopRUDhwla7Xr0oEIyI\nuPRSYMsWigD7JOCZM/RCSEpi7GUgEQEA//43kD8/8PjjFDX9+0dfRLglJlgDrfUnAL4GMEcp9bVS\n6h6lVHfPco9S6msAX4CZnT6NdIcdMhhAdQDXaa3naa2/BtAXQBUA90a1Z0K2oEwZoF49Bj5Fkyuu\noIUiLY1WisaNgVGjotsnQRAEQcgLfPst1716cXIPoCuzXUQAQO/e1vaAAcC8eXSNHj+eLs+GadOY\n4KVpUyZWCYZSdHmaO5cxnJH2kIgEQV2bAEApFQNgBIDHAJQEZ/gBugydBPA6gJe11mkR6qcrlFKL\nwQJ67bz2/wwAWuuOgc4X1yYhK0lLA774AvjxR5pB09KYQer22/nD5v2DJgiCIAhC5mnThi5N8+ZZ\nsRG+SEsDatWiR8OmTUDNmsCDD9Kb4LrrGFeZmgrUrk035rlzgeuvz7rXEW7cuDa5rK+A/ADaALjZ\ns7QBkN/NNbJiAXAEwGQf+ycCOObgfO1vmTx58v/y7E6ePNlvO761Fs2aNfPbbvDgwf9rFx8fH/Ca\n8fHx/2s7ePBgv+2aNWuW7vnlNeX81zR27GQ9eTKL291yS+54TbnxPslrktckr0lek7ym7P+a/v47\nfK/p99+1njePNSAKFMgV98lxHQknMRL/Q2t9EcBKz5KdKQ3ghI/9iQBK+TpBKTUEQMCAckGIJi+9\nxIxRgiAIgiBkjh9+CN+1BgywsjtecgnjLvIKTrI2dQDwh9bacWpXzzlrdZSCmj21L97QWj/ptf9F\nAE9qrQMKKHFtEqKN1jSTtm3LrBAFCjAvdZMmzBRRoADT0k2eDPzxB1CqFN2i7H6cgiAIgiBkRGvg\nqquYNXH8eOCBB0K7zvHjTJiyz5MPtFgxioicXoPMjWtT0GBrAEsB1Hfx5LGec+o4PScCnIBvy4M/\nS4UgZCuUYiDXtGmWiKhTh3msP/6Y+aaHDGE62379WFCnTx/mwxYEQRCEvMbZs4xNOHIkeNsFCygi\nypQBBg0K/TnLlGGw9XffAc8+C8yZk/NFhFucuDYpAD2VUk4TZToRJ5FmC4AGPvbXB7A1i/siCCHT\noAFFw6efMsVcKS95XKQIfzhfew14+mn+kN1yCwO+DImJwJ9/cuakZUugfPmsfQ2CkJtJSWFShJjs\n8M8nCHmQ8+eBZ54B3n+f7r+NGtFSn8/PCFdrYORIbj/5JK0ImaFYMaZu79kzc9fJqTiNkXg2or0I\nP/MBjFNKVdda7wIApVRVAO0APBngPEHIdtx2Gxd/xMQwl/W2baym+dFHrJwNAAkJQI0aVmxF69bM\nUBEtVq9mjuysqN8hCJEmNZUpm8uWBX7+Odq9EQR37NrFVKWdO0e7J6Fz9Cit8uZ/LS6OWZXGj2dq\ndW+0Zv2mtWuBChWA++/P2v7mRpzESFQJ8dqHPMHZWY5SqgiADQDOAxgJRqCPBlAMwBXB4j0kRkLI\niSxbxj+Eyy4D9uyhwPjoI+COO2iFOHUKuHCBfx7VqmV9/zZtYoxHhQr0JzWBaYKQU0lIAMqV4/bF\ni/5nQAUhO9K6NWPwtm/nhFNOIzERaNUK2LmT1alnzwaOHaObb7FiLBhXtizw+uucZKtalZWjTe2I\n994D7pXKYj4Ja2VrrfXezHcpa9Fa/6OU6gLgTQAzQfesxQCGuQkaF4ScRIcO/KHcswdYuhTo2pV+\nmwDdnlasAD7/nPmuH3vM3bUvXOCfTaNGvo9/8w0rhD7xBGeEDA89BJw8CUydCrzwAnNxHzpEs7Op\nIioIOZWztn+ThASKZEHIKezaxRn633/PmULikUcoIho3ZgamihW5v08f/idVqUJBYSzyO3dyXaQI\n8PbbwN13R6ffuY1c69Wptd6ntb5Ra11ca11Ma32d1npPtPslCJEiJsYKGpsxg77bCxbwca9ewA03\ncHvuXPfXfvFFVuF+9930+7UGXnkF6NuXPqe9egFnzvDYgQM0L3/8MY9/+aV1numXIORkzGcdoIuF\nIOQUUlMZNwcA69dHty+h8M03/G8pWJAFXY2IAFgkrkMHWghPnwYaNuSk2uzZwJgxwIYNwL/+xaQm\nQuYRQ6wg5CIGDeLM/+zZQMeOdGeqUweoXp0uGHFxwG+/AX//7S7o2vifjhjBap1nztBU/MsvwMqV\n/EEuWRJYvBi4+mpmk7L7jC9cyHX9+sDWrazibYLdBCGnYrdIiJAQchKJiZwIAoB166LbF7ecOwfc\ndx+3x4xhxWk7l13G/5+kJODgQVomxJU2cuRai4Qg5EVq1KCYSEqyfD979eK6WDGgWzf+eXz9tbvr\nbt/O9dmzQI8ejHV49VWKiEKFKFzWrAEqV6boWLTIEhLdunFdsCCtIfnysc3Jk5l/vYIQTURICDmV\nY8es7fXrLVHhi19+AWbO5ISQ3QqXFbzwAjMr2fs3Zw5dZJs0AR5+2P+5cXGcRBMREVlESAhCLuOt\nt2jmTU3lY3tKOuPe9Nlnzq934QKwfz8FQNGitCgkJwN33knz8oEDQP/+FDFGvMyezeBvgBW5Fy9m\n3EadOiyyl5rKfYKQkxHXJiGnYhcSx44Bhw/7bnfgAJN4DBrESaS+fTP/3KmpfL6vvmLGpfLlWXuh\nSRNgxw6r3cKFwHPPAWPHMiuh4cMPub7/fhEJ2QEREoKQyyhVihWvAf44t29vHbvhBoqBpUuZ/s4J\nO3dyNqhaNcZedO0K/PQTi+X17g2ULm21vekmrmfPphWjaFFW/ezShZW4AeCaa7j+8cfMvU5BiDZi\nkRByKnYhAfiPk1i6lAP/yy/n499+Y4ayUJkyhVbsSpX4fzR/Pr87Z84wdqFnT8ZupKSkTwryww9c\n79zJSapChVgzSYg+IQkJpVRNpdStSql/e9Y5MN5fEHIvffowAO2bb9JnUSpZ0vItfeUV/nhPnRq4\nEqhxa6pZkz/8ixZZ7kre1K3LoOxz5/i4ffuMKTGvvZbr2bPpv5oZUlKAefNohTEWGMO+fdGtmeGE\nMWNYAyRIFm4hmyIWCSFUfv3VyqoXDRIS0j/2FydhXFQfeohZAZOTrf8Et2hNl9iLF5mWtXVrYNw4\nZo86fJgWie3bOVk1aBDTt5r/DyMkpk3j+qab8l4F6eyKKyGhlCqolPoQwH8BfAxgrGe9TSk1VSkV\nF/ACgiBkGf37M3OFN48+ChQoQD/TJk2AwYOBu+7yfx3zp+Ed0OaPm2+2tjt2zHi8cWNaMk6fpitU\nqIPoZctoJbn+er6mOXPSH+/XD2jTxgr0zm5s2MC0vK++Sh9kIedht0j8/Xf0+iHkLLTm71O/fv5d\niiKNsUhceinX/iwSRkh07Gil/960iam833iDv2NOiY+nRaFiRU5erVoFPP44f8crVGB9h8qVec1Z\ns3jOhAlM5rF8OQPEp0/nfkndmn1wa5EYB+A2AM8BqAkWeKsJ4HkAAwG8Fs7OCYIQfipV4myP1pwJ\nAjjY9meVyIyQ6NQp43GlWAioRAnOyM2c6bjr/+PCBRbaO3CAQdxA+j/CAwesx0OHWhaSaLNzJ7Bk\nCbfHjbP2T5gQnf4ImUMsEkIo7N/PQXFqavSspkZIdO/OtS8hcegQYxaKFQOaNk0vJObNowgYMsT5\nc5rYvJtv9h3bULky+zF9Oq/92muc6GrVipaQXr1oxa5Xz/ckmRAd3AqJAQBGaa3HaK13aa3/8axf\nAvACgFvD30VBEMLNyJFA8+bAAw8wgC4tjcXqfOFWSNSqxUF+9+5ACz91MStXpjsSADz/vHurxMSJ\ndF1q2NAKvNuyxTq+aJG1vWsXMHq0u+sHw9TocOsr3L8/zfYPP8w/1dhYLnPnup+Z3LOHLmazZztr\nv3EjXalSUtw9j+AfiZEQQsH+W+UtJH7/Hfjrr8j3wQiJDh1ood6xwyrYZjDWiHbt6GJkFxI//cTt\n+HimGQ+G/T9mwAD/7cqW5f/HuHEscKqU5Q67ahUfv/++1IDITrgVEnEAfvdzbDWAApnrjiAIWUGV\nKvwDGD/ecmv69FPfbd0KCYAzSgsXZoyPsDNoEK0ju3czdaw/UlJouTAWk5MnmQkKYDaPK67g9ubN\n1jlGSNx6K/9wxo0D9u4N3m9TYG/58sDt3nmHQeOjRgW/puHCBQ7mARb2S0nhzFy/ftx+/33n1wLY\nz8WLgf/7P8bDBGPkSLpSOWkrOEOEhBAKW7da2ytXWtt//smsdh07cgY+khghUbEi3UMB4Lrr+Jk+\nf54pxO1uTUB6IWGy7qWlBf+9BBgTcvAg4yxat3bXVyMkALqxtmvn7nwhsrgVEosAXO3n2NUAlmSu\nO4IgZDV9+jC70u+/ZwyiO3eOP/7581tZO8JFTIyV5cmfNQSgG1Tv3hQ/vXszoDsxkX9u115LgZM/\nPy0P//xDMWCExNNPc6CdkuLMfei334CnngLuuSdwu3nzuJ42LWOQtz+2beOfbvHilln/iSeYwhBg\nNhOnlpnTp1nVFeA1b73Vcpnyx/79XEs8RviwuzadO8fPnyAEwy4k4uMty6ZJGnHkSOSz2plg63Ll\nmOWvTh1OxtSqRVemkiWt3xgjJGrX5m/t7t3p/yuC/fYcPMhgbYCZltxaE1q0YLxbq1bhty4Lmcet\nkHgDwM1KqQlKqU5KqXqe9UQANwMYp5Sqbpbwd1cQhHBTuLBVX+LRR9PPrJqc3tWrB7YuhIpJ3zd7\nNgfEvli6lOvkZFom/v6bf2h5uBs7AAAgAElEQVQTJ/IPqUAB/gkCwH//yz/Dv/+mtaNePWDYMB57\n//3gAz3jUrB9e/qYkVWr+D698QYH8WYW8dAhq3/BMBaT7t050/f111Zq3DJl+GfrNIvVzJl8LZ06\nAY88QqH0+uuBzzGv59dfnT2HEBy7RQIQq4TgDOPapBRn/zdt4sB+xgyrzcyZnFhYuJBujOHGWCTK\nlWO82vz5XJvfiQsX+BtTooTlopo/P39TDRUqcO1LSBw+DDz4IOsNtW5Na2zt2tbvsRtiYjjJY36H\nheyFWyHxM4DLAQwFsBjAZs/6Ps/+nwFsty2CIOQAhg3jD/R33wH16wMrVnB/KG5NbmjdGrjsMgZH\n2038dn73OFN+8w1n7det4+x+/fpWmwYNuN682bJGdOvGP+qWLTmbdfIk8NFHgftj9xE27wEAvPwy\n//DHjGEaQnucgZm1C4YZPDRsSNO8KeykFPeZ/gdDa2DSJG4PHUoLilJ83f6qzqalWQOHzZulqni4\n8H6/9+5lHnzjepdb8Sf6heBobVkkevTgeuVKWgXOn+egXSkO7F94gW0CxRSE2ge7kAA4yF+/nhbL\nU6c4qfHBB/y9y5/fOte4NwGceCpYkCLBuy7F6NG0As+YwWu1a0cxYMRHKEhcRPbErZC4y7bcbVt8\n7ZPkXIKQQ2jalLNi3bqxGNA999DcbqqJ1qwZmeeNibGyPJl0f3YOH6bIKFaMA7TBg5my1vsPxT4Q\n//57bttrXTzyCNdjx/KP0d9AyC4kjAvQnj0UMQDfm8cf5/agQVzPmeMsK5QRCUb02DH77EGY/li9\nmu3Kl6dPc/ny9KtOTvbvDnH8uOWCpbV/0Sa4w1gkypfnetYsfr5ycxausWM5eGzQgDPOSUnR7lHO\n4uBBCtCyZelWCnAy4s03uf3yy0zIkJzMRBQAJ1NOnAhfH06f5u970aJW1juA8Qvt2wNFitCie/fd\nnISxYxcSvXpZ8QrLlln7k5Mtd9Vx4/gbuXgxLa9C7sOVkNBaz3CzRKrTgiCEn+rVaZGoWZMCYuRI\ny12mZcvIPe/tt3M9dWrGrCEmCLtlS4oOfxghMWcOZ+YLFbIqaAN03apTx5oxbt3a9+y9/fmNC9B7\n73HwfcklfGzcjx54gNW6z561cpsHwm6R8Nd/JxaJP/7gulcvunUBFBSAFbvhjXdqX3FvCg/mM1Td\n48j75Zdc//137s2O9d13HIRu3UrBFCi+SciIsUbUr8/fD4AuO8eP082xa1dg4ECrfcGC/P0J53fW\n2xrhBiMkKlTga+jShY/nz7fa/Pgj49gaNeLEyw03pC+MKuQuQqpsLQhC7qRAAc44AiyUduIEA5zD\nbVq306QJxURSEgPy7AHHxq2pVavA1zADceNLfP/96f8k8+enWf2VVzjTFh9Pi4K3ZcIuJNat4x/u\n1Kl8PGsW/YUBoHRpps998EE+fvTRwJlLzp5lgGL+/L6tO6b/TiwSu3dzbb9Ov35cm0GeN6ZYmolz\nsbtt+bp+VqSfzA0Yi0SNGlwnJnKdlha4WnxOxqQpNgkJ/GV7E3xjvuMNGjDjXNmyTL7wzDO0ZikF\n3Hgj0Lkzf8cee4ztTQalcGACrcuWdX9u1678P3j5Zfb1hhv4u/LxxywoB1junmaSSMjlaK1dLQCu\nAfABgIUAlnstP7u9XnZcmjdvrgUhr5KWpvVVV2kNaF2jhtYnTkT+OQ8f1rpECT7n3LnW/u7duW/O\nnMDnp6RoXbAg2xYqpPWRI/7b/vWX9VyjR1v7ExO5r0gRrZs357ZZN2vG92XYMD4eMMA676GHuK9U\nKa23b/f9nKtXs02jRr6PHz/O44ULa52aGvi13nAD286alX5//frc/9NPGc+ZOZPHzPtZsKDWSUkZ\n250+rXWZMloXL85tITBFivD9fPZZru3LqlXR7l1kKFqUr2/nTq3z5dM6Njbw901Izz338P17910+\n3rmTv0n+WLiQ7Vu0CF8f5s/nNXv2DM/1Xn2V1ytblr/VcXFaK6X1/v3hub6Q9QCI1w7HzK4sEkqp\n4QC+B9AbQBEAqV6LhGAJQg5HKQbZ3XUXZ5hKloz8c1aoYKX1e+MNrtPSLNemYBaJ2Fgr+HroUMtn\n3Re1atG6oBSf8/Rp7jfWiOrVraqpa9fSX9hkiHruOeDJJxl0bXjzTfo6nzjBGThfLi2B3JoAWjgq\nVmSsRbAMLcYiUd0rL17v3lz7yiJlLBINGjB97oULlouUnenT6WJx+nR4Z0BzI2lpVhawqlUzHnea\ngSsncfYsl4IFgWrV6D6Ymiq1SZxw6BDw9tvMwgRYv1fVqwdOZtG2LWf8//jDWeE3J2TGtckXjz8O\nXH01LR033kjrcufOwKWXhuf6QvbGrWvTgwAmA6iktW6nte7svUSgj4IgZDG1arFidN26Wfecgwbx\nD3PlSmYV2rGD64oVWQk7GE8+STP7U08Fb3vttQwStAcoGyFRowZw1VXcjotjmlZTQKlkSZr0q1Wz\nrhUby2xQlSszENq4htkJFGhtcBpwvWsX1/Y+AMy6AjA43RsjJMqXZzAlkNG9KS2NAx2DGfAIvjEB\n9oUL8zNqMO5jvu5DTse4a1WsSGF96618LO5Nwbn5ZmbH27ePQqxJE2fnFSnCTE5paYFdEt0QbiER\nEwN88gldsXr0YFrqF14Iz7WF7I9bIVEcwBdaa4clmARBEJxRogRn31JTGTBtggtbtXKW9u+mmxhs\n7dTv1ztA2S4k+vQBnn2Wg+muXYNfq2RJK+D6+ect4TBtGvOuT5zIx/4sEvZjgQKuT5zgrGTRohlf\npxFbhw5lPM8MAO1Cwry/v/wCvPYa+7hzp5XF5aef/PdDsAKtixa1AvEBBvMDudMiYeIjjHDq25cD\n3ZUrOUAW/GMy4L35Jr/jpUs7P9cUhAuXlTDcQgLg79GECZyYWbpUqk/nJdwKiQUAroxERwRBEK69\nlusffmC2JMAamIUbIyS++46WCbuQyJcPGDXKcnFyQrduwL33WsXh/vmHgZLbttGVqGJFaxDvCycB\n13ZrhLe4qlSJa18DWGORqFDB+oNfsYKv+/rrgeHDrcqzzz3HwfG2bblzVj1cmEDrYsUo4mJigFKl\nrPoguVlImFoAZrYcSF/pWEjPhQt0GcyfH3j4YSs43ylGSIQrc5O9qrUgZJZQXJt6KqWeUko1t1ex\nlmrWgiBkFpOyddYsxkeULh25zB81ajA94enTnEGzC4lQeeIJDvBnzQLeeYeuWS1bciC/f3/gPOr2\nonr+8BcfAVgWiUBConx5vr7y5TkrOWkSBzilSwPFi9On+b776N8MiFUiEHaLRPnyTIP69dfA5Zdz\nf24UEnbXJoOJRzKfMSEjxkpYsWLgNNb+MDFi69aFJ62wsUiEkrVJELxx+5HWAM4AeAnA70hfxVqq\nWQuCkCkaN+Zs5/nzfHzvvfRBjxTGKjFnTniERM2aFENJScDTT3PfsGF0fYmNDXxugwZss2WL/6BK\nf/ERAMVAXByFkZktN9hdm5SyrBKm4NWjj3JwsXMn3bS6d+f+6dOBESOsgnyChd0iAQD9+zO2JpCg\ny+l4uzYBIiScYD4LTmK9fFGmDL/z588D//1v5vtjfg/sLnmCECpuhcR0AG0BvAngPmSsZC3VrAVB\nCBmlLKtEvnws+hZJrr+e6/ffpxtPbKw1oxwqpraE1hRF/fs7O69YMbo+paT4r1AdyCKhlOXeZI+T\nSE21ZiDNwMG4WJ08yfUtt7CGiClwZ4TE8uUMLr/99vT1PYT0Fgk7diGR294zb9cmQISEEzIrJADL\nhSw+PnN9SUsD/vyT24GyRQmCU9wKic4AHtFaP661fl9LNWtBEMLMTTdxPXBg5v54ndC0KfDSS/T1\nBvjHmj9/5q55zTXWQH/oUGtw7oQ+fbj2ZwEIZJEAfM+GHz/OwUOZMtZrs8dqNG+ecUBRpw5dnDp2\n5Htz+rQ1iBSIt0XCULw437Nz58KXrjO7IK5NoZGdhMTBg4zfuuQSdwHfguAPt0LiGAD5uRAEIWL0\n7Elf4EmTsub5RowA9u4Fxo8HZoRhKiQmhtWwBw8GHnnE3blGSHz/vW9f6EAWCcC3kLC7NRmaNLFc\nxm65JeN1lOL7v2wZ40gAqXbtjT+LhFK5171JXJtCI6uFRHIya+D4sogZ16h69ULviyDYcSsk3gFw\nv1IqhHAhQRAEZzRpQn//rKJMGbpRBSt855TOnYEpU5jS1g21a3M5cSJjzvjUVKtYna8CaIBv1yZ7\nxiZD/vzAgAGclbzttuB9ArI2K8/u3awjkp0xFglvIQHkfiEhrk3uMJ8D8/0MhebNud6wgUIhEM8+\nS+Hx5JMZjxkhkZU1goTcjVtBUApAQwBblVLvKqVe8FpGRaCPgiAIeQaTPtTbvenQIeDiRQ7i/AWg\nO7VIAKxefvhw8MGNERJZYZFYsoRuV9WrMx1udk4p6s+1CcidQuLiRaYNjYlJH6QrQiI44bBIlCjB\n72JSUuAU0SkprF8DAK++ymxidkw9C7FICOHCrZB4GkAVALUBPABgpI8lIiilaiul3lZKbVRKnVVK\nHVZKzVdKNfbTfrBSaptSKkkp9adS6r5I9U0QBCFc2N2b7ASLjwB8D2DtqV+9cZKK0sRPZMWg/uGH\nLUtMUhLrcWRX/Lk2AblTSBw9SlcZ7wxk5nNljgsZCYeQAJy5Ny1cyHthJhvuvtsKrgbEtUkIP66E\nhNY6JsgSJMFhprgaDPaeAaAPgPsBlAOwSinV3N5QKTUYwGQAcwBcA+ALABOVUkMj2D9BEIRM07o1\nB/h//cXBtMHMJBoLgS+cuja5IassEmlpljuTKbw1fbrvme533wXGjbMG89Egr1kkfLk1AayEXrw4\nLRYnTmR9v7I7Wlvfx3AJiTVr/LeZOZPrp58Gbr2VQf/jxlnHRUgI4SYnxTp8BqCx1vp1rfVSrfVX\noEi4AOB/IY1KqXxgnYuZWuunPW1HgqlrRyulMpmTRRAEIXLExTEGIjXVqm0BOBsA+BrAmkGML4uE\nE2rW5HrnTvYpUhw8SOFUvjzrXPTrx8fjx6dvt3kzLRf//jddoD79NHJ9CoQTi0RuqgzuK2OTQdyb\n/JOQwJiGkiUzXxOndWuuf/nF9/HTp4F587h9222sUg8An3xCkZeYSGtFkSIsPikI4cC1kFCkr1Jq\nnFJqmlKqimd/R6VUJkKJAqO1TtA6veFUa30KwF8A7Dq/DWip+NjrEjMBlAHQHoIgCNmYOnW4trsk\nbN3Kdf36/s+zWyTS0rhtLBmh5owvWpTXTU4G9u0L7RpO8C4IOHw41+PHW9mqAMvlq0gRDtL+85/I\n9SkQTiwSdstQTsdXxiaDCAn/hMutCQBatuTnfts235+tuXOBCxeATp2AKlVoTezenYXspk2zfgvq\n1mV2MUEIB66EhFKqFIDfAMwDMBjAIHBwDs9jHzkCIodSqjQY/G2v9djAs97s1dyEJwX4GxYEQYg+\nvoSEE4tEoUJAqVIMuExIoJgw5zVo4P+8YETKvWnZMuChhzj48RYSbdsyFfDJk8DVV3MmFbCK9U2e\nTF99Y8nIagJZJIz7j+lzbsCfaxMgQiIQ4RQS+fMDHTpwe+nSjMeNpcIU2gSsop4TJ1pB2uLWJIQT\ntxaJ1wBcBqAdKCDsmnYRgK5h6pdT3vX04S3bPlNixdtbM9HreDqUUkOUUvFKqfhjpgysIAhCFDCp\nGY2QOH2abjJxcYGDrYH07k27d3M2slIlulaESiQCrs+dYwra8eOBr77KKCQAYNYsFg3csYNB6ImJ\njJ+IiQGuvZbuGVpH1lLij0DpX8uV4zo3BSCbGXCxSLgjHKlf7XT1jLIWL854bNMmrps0sfb17g1c\nfjm/X8bKJ6lfhXDiVkj0A/C01nolAO+fx32gyHCEUqqbUko7WJb5Of8pALcCeFBrnemM41rrKVrr\nFlrrFuXMv4AgCEIU8LZIGJeEOnXSZ8zxhV1IbPbYZTNjjQAiY5EYP94aeK5ZYwkJe7G94sXpynT5\n5cDvvwM33sig3iuvZFVeI6pMfY2sxFgkfLk2FS5MgZGcnDuqW585A8yZw21fnyUREv4JV6C1oUsX\nrhcvTi9S09Isi0PDhtb+2FgmJyhRgtY9QCwSQnjJ57J9UQD+8lAURHoLRTB+A+Dk43zOe4cnlesY\nACO11h96HTaWiFIADtv2G0tEIgRBELIxRkhs28bBgptMK2bm8+BB4PhxbtsHFqFgLBJbt3LA4iRt\nbCBOnwbGjrUer1lDywmQ3iIB0JXm/feBHj3oCgXQGgFYhfmiISQCWSQApkk9e5ZWicxYg7IDr79O\nV7m2bel/702khERCAp97yJDgljits6fffzhdmwCgcWOK6H37aHE0wnv3blr5KlXicTt9+/I78s47\ntGz26hWevggC4N4i8SeYhtUXHQFscnohrfU5rfU2B0s6o7VSaiCAiQBe11q/5OPSJhbCe97ExEZs\nddpHQRCEaFChAme6T5zgYMqNkDAiZOVKa4YysxYJc83Fi4HLLgM+9J6+cclbb9FNqbGnCtAff1ip\nX72FBMAYidtvtx4bIWEGl/Zg7KwiULA1kL6+Qk7m6FGrnscrr/gerEdKSEyfzud84w3/bZKSgH/9\niwPoaHwOghFuIRETA3TuzO0lS6z9xq2pUSPf55UsyYrXU6bQRVIQwoVbITERwDCl1NMALvfsK6mU\nugvAgwAmhLNz3iilrgcwDcBUrfUTfpqtBJAA4Dav/beD1ogVkeuhIAhC5lEqvXuTERKBMjYZ+vXj\nev58YMMGbodDSIwYwcHQoUPAS76mcBySmGgNTN9+m2Lg3Dm6ABUpkr5qsp033uDz16/PuAkgehYJ\nrQMHWwPW68jpQuKVVyiaevUCrrrKd5tICQnj7ubPpS4xkVmJPvyQ6Wm9qzhnB4xArlIlfNc07k0L\nF1r7ggkJQYgUbgvSTQHwBoBRAExcwk8ApgB4S2v9SXi7Z6GU6gBgFoANAKYrpa60LU1tfbwI4BkA\ndyilXlRKdVJKvQDgbgDPaq2TI9VHQRCEcGEPuDapX51YJOrWZbsTJyyLhBMBEgilKB7MoGjvXmaG\nCoVx4+ja1K0b0LEjU1oaatTw755SrhxdvdautVyrjJDI6pnoEycY/1C0KAuy+cIIiZwcN3DsGLNj\nAcDo0f7bRUpIGIFor6di5557mKnIzLCbjF7ZhXPn+J2JjQ1vgHPPnlz/8AMzngEiJITo4drTVWv9\nJIAaAO4FMBKsMF1Ha/10mPvmTRcAcQCagVaFlbblK68+vgdgKICbASwA8H9gUHZELSaCIAjhwlgk\nNmwAdu3i4NlpLYgbbrC2L7uMQcvhoGBBWgVSU4H9+92ff/QorRAA8OKLXHsLiUB4D9yjFWxthEu1\nav6FT25wbXr7bQ6Ge/WyrEC+sAuJcGap2rvXWnsL13XrmO2rUCFg9WoO1lesiG61c2+2bOH7Ubdu\neN2JqlZlZqazZy33JiMkMhsPJQhucVtHooNSqqjWeq/WeqrWeozWerLWepdSqqjHahARtNbPa62V\nn6Wqj/aTtda1tdZxWutaWuuJkeqbIAhCuDFC4v33GeBco4bzwYg9j3xm3Zq8McGd/maJA/HOOxyY\n9uljVem1Cwl7xiYnVKrE3PpHjljB2lnBrl1cBwoAzimuTXv30mXphx/S7z91yqoqPmJE4GsUKcIl\nKYnWpnCgtSUQU1Iypvh94QWu77uPsTatW7OdPW4g2mzcyPUVV4T/2uY7Pm8erRLbt3OyQTIyCVmN\nW4vEUvgv6FbHc1wQBEHIJCYQ+cIFzrref7/zc5s1Y8pUIPxCwlgNzGDaDaZg1r33WvuaNbNm9YNZ\nJLyJjbVep5m9zgqMRSKQ8MkpQuLDD1mb45130u9/9lmKiU6dmK0pGCZbWLisQ8eOpReHduG6fj0H\n0AULWrURrrmG6+zk3hRJd6PrruP666/p+piaSotloULhfy5BCIRbIREouVocgNRM9EUQBEHwULs2\n8N13HDAlJADDhjk/VylmsgEYixBOzODZrZBIS+MAEKB4MBQrZs2i1qzpvj/RCLi2uzb5I6fESJiU\nuubeAMCECRQW+fIBY8Y4u06LFlyvXOn7+KhRvK5TvIWhERJaA//5D7eHDrUqbffowfWPP2afIoCR\ntEg0asTP39GjwOOPW/sEIasJWkdCKVUVgH3epYVSyjtPRSEwmDkK9UUFQRByJyaoMhRGjgTuuCO8\n2WKA0IXE7t10e6lQIWN15LffBn76ycpG44ZopIB14tqUE2Ikzp8HVq3i9pEjXP76C3j4Ye6bOhVo\n08bZtdq3ZyXyFSvobmTnyBHg+edpQbrjDv+Zrux4C0MjJL74gtmKSpUCnnrKOt68OVCmDM/bscN5\nPFGk0DqyQkIpWiXefNMSgx07hv95BCEYTgrS3QHgObCStQbwLtJbJrTncQqAB8LdQUEQBME9MTHh\nFxFA6EJi3TqufQXtdusWuuUkmhaJnO7atGoVs08Z1q0DPvuM1qPHHuOg3ynt2nH9668ZjxmrTGoq\n8NtvrAsSDHM/K1SgENm5k0LUWOZeeYWZvAyxsezD/Pl8HdEWEocPsyBkyZLApZdG5jkefZSxEbVr\nU1S0bx+Z5xGEQDgREtMBLAPFwhJQLHgXdUsC8JfWWqpGC4Ig5GJMHIPbYOtAQiIzZLVFIjXVcrsx\nIsYXpUtzcGtSxRYoEP6+aA1cvBj6tc1MtlK81rp1wKJF3Hfnne6u1bAhs4Pt2cMibPYCbHYx9fPP\nzoSEeY+7dgU++YSft9de4wC9dWumfvWmXj0KCVN3JZrY4yMiVXH7ssuAb76JzLUFwSlBYyQ8GZp+\n1lovA9AZwEzPY/uySkSEIAhC7qdcOWboOXmSg2SnREpImMF8KMHfbhg+nAPgXbsoDMqX5/vgj5gY\na8b82LHI9Kl3b8aVmFoCbjFCwgTuzprFgoPly7tPIxoba7lBrfAq+2oXEuY5g2EsEl27cr1zJzOY\nAcCrr1q1ROyYWJvsICQi6dYkCNkJtwXpftZan41UZwRBEITsjVKhuTdFSkiYNLnbttElJxJoDUya\nxDiOiZ5E4oHiIwzB3JuOHmU8Qig1OZKTgQULeG4obl0mPkIpKyZi82auu3ULbRbduNZ4uzfZX/+a\nNcA//wS/lnlNTZsyHuKff+giVb++/wrb2UVI7NsHzJnDbRESQm7HdUE6QRAEIW/jVkiYQN7ixZ0N\nwN1QpgyDt//5J3IpYBMTWfwLsGbFwyEkJk0C3n2XgfFu2b6dblZAaBaP336jGGncmLEFdveo7t3d\nXw+w4iQCWSQuXvSf2clgryFRpUr6tMD33utf5NirwadGKYfkZ59R3K5ezaByJ25cgpCTESEhCIIg\nuMJtnISxRjRp4tslJbOYtJfGLz3c2Gf8zWy6k+J5wVLA7tjB9fffux/4brVFKoYiJGbP5vqaa1jU\nz+7KFGrge6tWTBm7fr0lvABLSJQqxfXPPwe+TmIi3+fixRmsbD5vBQsCAwf6P694ccZmJCVlfbVz\ngMHgDz5IV7Obb6Z7U6A4GkHIDYiQEARBEFzh1CJx+jQwejTwxBN8HG63JoMZBBvXnHDja1DqxCIR\nLAWsef8SEqw0rABdtNatYzyBEWHe2N133AqJ5GSmUQWA227j2tyb+vXTB0q7oUgRxmykpaUPfjev\n31RjDiYkzPtdtSqtD8bScMstlhjxRzTdm95+m5ma2rWjZSLc1jdByI44FhJKqVilVGOlVLngrQVB\nEITcihESwSwSEyeyQvLWrZxNNgPJcJNVQsJeNTgcrk32wbY9+84zz7BoX+fOXPsKUM6MReLHHxko\n36iR9d516sS1CbwOFVNpfJ+tqpTpX69eXG/1zvvohd2tCeAs/6hRwLhxwZ8/WkIiMdHq34svRi5T\nkyBkN9xYJDSAeAARmlMSBEEQcgK1a3P955+B25kZ9yee4GAyUgWzskpI3H23tc+Na5MvIXHuHFOZ\nGubPt7aNcDAWjXnzMp7v1iKRmEjf/ZtuAt57j/uMNcJsL18OPPdc8GsFwgz+7fEq5vU3aEDXtuPH\nGSvhD/PaTKXzsmUpSMuWDf78ToTEjBnA558Hv1YgkpMp/szrePddWuC6drVEmSDkBRwLCa11GoD9\nAAIkvBMEQRByO1WrAnFxrBdw5oz/dmag3K6ds2rGoVK/PtfbtgUeoIaKPRXpAw/Q/93MvAciUIyE\nfda9RAkOfHfuZKDxli089u67XP/0U/pzU1PTizgnQmLJElat/vJL4IcfuG/AAOu4UsyGlNl6F74s\nEkZIVKzorFBfZjJ8GTeobdt8H1+/njUybr2V70eovPwy0Lcva1sAltgzbnyCkFdwGyMxGcAwpVQE\nSusIgiAIOYHYWMsq4W/ABrAmAQBUqhTZ/hQpQgvBxYvMZhRu7D7748dzNttJ0LipaOwrvaux1tSp\nw4BnAPj2W75np06xoF2/fhRgW7cCBw5Y5+7ezYBigxMh8ccfXBcrxnWXLpGpfO5tkfjnHy5xcXxu\nY2U5csT/NTIjJOwWCa0zHh87luu0NGDMGPfXN5j0rl9+SVG0fj3d9yJldROE7IpbIVEMQA0Au5RS\nU5VSo5VSL9iWURHooyAIgpDNCDbzC1gWiYoVI9+fSGVusqcidZuBx7TfvZvX0ZruMKdOWUKienUr\nS9Kvv1ruWQ0b0jpg3GRMxWnAijEwrj5OhMTatVx/+CHrT3z2mbvX4hRvi4Tp2yWX0OpRoQIf+xMS\nJ07w/SpY0PqMuaF8eWZ6OnnSErKGnTuZrSpfPorhjz8OrZDh3r3W52zdOrpKAbTo2ONoBCEv4FZI\njABQybPcDeBpACO9FkEQBCGXE8wXPTXVcukxg8dIEqk4CVNDwqQidUPJklzOnWNmpnnz6A7z8MNW\noHX16unrL5j+N2jAtanpsHChdV3znnfowHUwIaG1ZZFo2ZK1DcpFKG2Kt0XCuDAZlybzWfCXEnf9\neq4bNeKA3y1KAW3bcj3J/qwAACAASURBVPull9Ife/11WiJuv51Lairwyivun8MeGA8wuBqQmhFC\n3sRtZeuYIEtspDoqCIIgZB+CWSSOHuWgrVw51imINEZIhNsi4Z2K1C12q0R8PLe//tqKcahene5N\npUvTgvPdd9xvXo8ZnC5aZFXuNhYJu5Dw5cZjOHCAQqZ0aWexHZmhcmW6fR06RFczbyERzLUpHBXQ\nx46lCHnvPRaGA2gFmjaN28OHA08+yW2TBtcN337LtXn/T5/mOtRCfoKQk5E6EoIgCIJrglkkjFtJ\nVrg1AdbAc/XqwINqt5iZ9VALi5k0sXv2WOLh1CkrgLp6dQ68zSz60qVcG4tEnTqMtTh2jLUm7NaF\nZs0YH3LxojWY9YW9faTTkubPz5gYrRmM788iEUxINGsWeh8aNgQef5x9uPdeICWFMQ0XLjClbr16\nfF/j4ugCZS+eF4wzZ3iPlGK8jKF8ecu9ThDyEiIkBEEQBNfUrs3B1I4dvjMlmfiISAda2/tzySUc\noJqK0eEg1PgIg90iYbfepKRwbdLIGvcmgxESSjHDEACMGAHMnUv3p7JlOdg2LkqB3JvsQiIrMFaP\nvXtDFxKZLV747LN87zdsAD76iPEQAF2aAL6vpvDewYPOr7toEVO/tmlD4dCyJfd37x6Zqu2CkN0J\n+rFXSqUqpVp5ttM8j/0tKZHvsiAIghBtChemP3xKiu/CdFkZaA1wYNi+Pbd/+SV8182skDAWiZ07\nM2aUKl2aqV8ByyIBcHbbXjPhqaeAMmVYEdrUshg1itYIN0KiefPQXoNbTJzEvn3uYiTOn6fYio3N\n/Ox+4cJWjMSIEazNUbAgcOONVhuTVcuNkDDxEb17cz10KD97d96Zuf4KQk7FSSjTCwAO2LbDaDQW\nBEEQcip163KgvW1bxgw7WZX61U6HDpyx/+WX9MXjMkO4LBLLlnEmu2JFWnASEtJXx27Zkm5BFy9a\n1ghDyZLA888DDz1EF6b69YEhQ3jMiZAwGZuyg0UiUIzE8uUMgG7QIDzZjwYMYLzExo183LevJdwA\n9xaJtDQrhqVPH67vugu44w6xRgh5l6BCQms9yrb9fER7IwiCIOQY6tUDfvyRcRLXXZf+WFZbJACm\n3wQ4IA0XJrtSqDUXjFgw1oh69TgT/tFH6atjFyrEgf7q1VagtZ177wUmTuR7/cYbVkajYEJi+3be\ni+LFnVXjDgd2i4Q9/Svg37VpwgTGNQAs/BcOYmJYOK5XLz42bk0GIyTsNTp8oTWtDmvWUBhVrZpe\n7ImIEPIyYfv4K6U6KqU+DNf1BEEQhOyNsUK8+SZw7bVMX2qIhkWicWMWPdu1K2MNATunTjHzzqRJ\ndKfxR2qqJQBq1QqtT96WjLp1gfvuo5XBW3z168d1ly4Zr5M/P6tTr1wJ9Ohh7Q8kJFJTgX/9i9t9\n+2bdgDeQRaJUKb6W06eZFhcAfvsNePBBFtkbPDhzheK8ufZauh316GEV/jM4cW1at4736rnn0rs1\nRTpoXRByCiFkabZQStUEMAjAQABVAJwD60sIgiAIuZyOHZn55tgxWibOnaMfPxAdi0RsLGMNFiyg\ne9Mtt2RsM38+cNNNdDMCONt8//2+r7dnDwe3l15qVYR2S9GijHdISODjOnUYqHviRMa2w4cDN9zA\nNr6oUCFjTQ4zQPclJMaN4/tQsSLw1luh9T8U7BYJk03K9NMUpdu/n3ES1apZn5nBg4EpU8LbF6Ws\ntK/eOHFtGjeOr+GFFxinAlhuTYIghGCRUEqVUEoNUUqtAPAnWJTuBIChYKE6QRAEIQ9Qpw4HgytX\ncrZ75UqmxwSiY5EArNz+Y8Zw8GxmvQGKh0ce4dr46geqO2GyLIVSYdmO3SoR6Fqxsf5FhD/8WSSO\nHAGeeYbbH35oDYKzAmOR2LbN+hzYC+CZ994EXJtgcO/MVZEmmGtTQgLw5ZfW4+PHKQw7dox83wQh\np+BISCilYpRSPZVSnwM4DOA90AIxwdNkmNZ6stY6QCZrQRAEIbdRogRw5ZVA69YMFF62LOurWtvp\n3ZuuMxs3Ao8+ykBYw/TptDLUqwe8/z73BUoVa2pkZFZI2IOq3QqFYPgTEnPn8n707p3RpSfSFC/O\ngHCAFoGbb6blyuAdJ2GCwbMqq5QhmGvT9OkUnddea7mTXX11+tciCHkdJ+lfXwdwEMA3AHoD+ArA\nNQAuB/AsAPEUFARByOOYCswLF3JQm5rKWfACBbK2H1dcQbEwbRoHfHPmAH/9RRelF19km+eftwb0\n3ilZ7YTbIlGoEHDZZZm7ljf+hISZSb/55vA+n1NWr2YBvvPngc8/T3/MLiROnGBAe6FCmX+f3VKh\nAoXOkSMZa6GkpQGTJ3N76FDgk09o4Rk7Nmv7KAjZHScWiUcBXALgewCXa61v01ov1FqnQVLBCoIg\nCEgvJLK6GJ03lSoxwHbgQMZAvP46C5Tt38+MSP37c3AfG0s//qQk39cxQsJU8Q4VY5GoXTv8Ac++\nhMTRo4w7yJ8/ev78RYvy9fqavbcLCePW1LixlYkqq8ifn25WWmfMIrV0Ka1Vl15Ki0SZMoyTqFkz\na/soCNkdJz9pHwA4A6AXgD+VUuNNgbpoopQaoJTSSimf3o1KqcFKqW1KqSSl1J9Kqfuyuo+CIAh5\nhVat6Ob011+MlQCyNtDaFyad6NSpwKuvUji89RYH8wUKMChYa2Z58kW4LBKtPP+YpmBeODFC4u+/\ngVmzGPMxbx5n1Lt3Z8ah7IY9RiKrq25748+96b33uB48OOsFjiDkJIIKCa31YAAVANwGIB7AvQBW\nKqX+C+A/iIJVQilVEsBbAHyUtKGIADAZwBzQDesLABOVUkOzrJOCIAh5iHz5rPz/ozzVh6JlkTDU\nrcsZ+bQ0urDMmJG+RoFJ6erLvenYMQbXFiuWeUHUvDmtIZHInFSkCPuYlATceitdu4YP57H+/cP/\nfOHAbpHI6mJ53vgKuD5yhGIsNtZKnysIgm8cGVm11he01rO01iY24ikAqQCeBGMkXlFK3a6UKhi5\nrqbjVQAbACzwPqCUygfgJQAztdZPa62Xaq1HApgOYLRSKn8W9VEQBCFPYdxoTO2ArM7C44vRoxn4\nO2UKcNtt6Y8ZNxVfAdd2a0Q4agZcemlkZraVYlamQYOYOrZQIdbJyJfPqkuR3TBCYvNmYNUqbmd1\noLXBVwrYDz8EUlL4eTbHBUHwjeufNa31YXAg/6pSqgWAOwAMAPARgHcBlAprD71QSrUDcDuAKwCM\n9NGkDYByAD722j8TwF0A2gNYGsk+CoIg5EUGDmTGnsKFGcxsz1YULRo3BrZs8X0skEUiXPERWUH/\n/pb14cgRuuXUqQOULh3dfvnjiivokmUEXIECVpanrMbbtSk11crodZ84RAtCUDI1P6K1jgcQr5R6\nDMzoNCgsvfKDx5owBcBrWusdyvc0kSlcv9lrv/krqQ8REoIgCGEnNpaz4jkFJ0IiqzMJZZYKFZiV\nKjtTvDgtEbfcAsTH060pq7N7Gbxdm2bMYNavatUYYyIIQmDCYmjVWl8E08J+FY7rBeA/AOIAvByg\njZmD8a4bmuh1PB1KqSEAhgDA5aaajiAIgpBr8eXapDUzHs2fz8c5TUjkFKpXB1asYK2Gtm2j1w8j\nJPbvp5h47DE+Hj06/Bm2BCE3ErWviVKqmyfrUrBlmad9TbCK9oNa6wvh7o/WeorWuoXWukU5ewlO\nQRAEIVdiTwF7wfOvMno00LkzxUXZskCbNlHtYq6mQAFgyBCm5I0WVapw/euvQNOmjC/p04eB64Ig\nBCeaevs3APUcLMZd6h0ASwCsUkqV9GRuKgBAeR4X8rQzlgjvWA1jiUiEIAiCkOexp4DdvZvZnSZM\n4LFnnqHLU1ZX5haylho1mGWsaFEgIYEpjCdNCk+AvSDkBaKWHVlrfQ7ANhen1AdQBRldluDZ9zaA\nYbBiIRoAOOx1PgBsdddTQRAEIbdSqxbrSPz1F6swHz3K6tOjRslgMi+gFIsVPvgg8OmnQMuWkqlJ\nENyQk8qsDADgnV72SQDNAdwEwGSBXgkgAax7scjW9nbQGrEist0UBEEQcgrNmgELFrBugAm+vuYa\nERF5jdKlKSYEQXBHjhESWutV3vuUUncCSNJaL7O1u6iUegYsQHcQFBNdANwN4CGtdXLW9FgQBEHI\n7tx9N/Dyy8BnnzFlKkAhIQiCIAQnV+Yk0Fq/B2AogJvBonX/BwZpT4hqxwRBEIRsRc2aTPN54QKw\nYUP6Ct2CIAhCYHK0kNBa36m1vtTPscla69pa6zitdS2t9cSs7p8gCIKQ/Rk61Npu25YBt4IgCEJw\ncrSQEARBEITM0qcPUKkSt8WtSRAEwTkiJARBEIQ8Tb58wBtvAB06AHfeGe3eCIIg5BxyTLC1IAiC\nIESKW27hIgiCIDhHLBKCIAiCIAiCILhGhIQgCIIgCIIgCK4RISEIgiAIgiAIgmtESAiCIAiCIAiC\n4BqltY52H7IdSqkzAP6Mdj/yOGUBJES7E3kcuQfZA7kP0UfuQfZA7kP0kXsQfbLiHlTRWpdz0lCy\nNvnmT611i2h3Ii+jlIqXexBd5B5kD+Q+RB+5B9kDuQ/RR+5B9Mlu90BcmwRBEARBEARBcI0ICUEQ\nBEEQBEEQXCNCwjdTot0BQe5BNkDuQfZA7kP0kXuQPZD7EH3kHkSfbHUPJNhaEARBEARBEATXiEVC\nEARBEARBEATXiJAQBEEQBEEQBME1IiQ8KKUuU0p9qZQ6pZQ6rZSaq5S6PNr9yo0opToppbSP5aRX\nu1JKqalKqQSl1D9KqUVKqUbR6ndORil1qVLqXaXUSqXUOc/7XdVHu4JKqdeUUoeVUuc97Tv4aBej\nlHpKKbVHKXVBKbVBKXVjVryWnIqLe+Dru6GVUk282sk9cIlSqr9Sao5Saq/n8/2nUuplpVQxr3aO\nfnucfl8ECyf3QClVNcD3oKTX9eQehIBSqodSaolS6ohSKkkpdUApNVspVd+rnaOxkfxfu8fJPXA6\nXvK0jco9ECEBQClVGMASAHUB3AFgIIBaAJYqpYpEs2+5nIcBtLEt3cwBpZQC8A2AawA8BOBGAPnB\ne3Jp1nc1x1MTwM0ATgD4JUC7DwAMBvAsgN4ADgNY4D2IBTAawPMAxgO4FsAqAF8opXqGt9u5Cqf3\nAACmI/13ow2Av7zayD1wzxMAUgGMAH9bJgEYCuAnpVQM4Pq3x+n3RbAIeg9svIyM34MzXm3kHoRG\naQBrATwI4GoATwFoAGCVUqoK4HxsJP/XIRP0HtjwO14ConwPtNZ5fgHwCPjDVtO2rxqAFACPRbt/\nuW0B0AmABtAtQJt+njadbftKAEgE8E60X0NOWwDE2Lbv8by3Vb3aNPbsv8u2Lx9Y5X2+bd8lAJIA\njPI6fzGAjdF+rdl1cXIPPMc0gBeDXEvuQWj3oJyPfYM873kXz2NHvz1Ovy+yhHQPqnoe3xPkWnIP\nwntv6njez8c9jx2NjeT/OqL3IOh4Kdr3QCwSpC+AVVrrHWaH1no3gBXgzRGynr4ADmmtl5odWutT\noOKWe+ISrXWag2Z9AVwE8LntvBQAnwHooZSK8+zuAaAAgI+9zv8YQCOlVLXM9zj34fAeOEXuQQho\nrY/52L3Gs67sWTv97XH6fRFsOLwHTpF7EF6Oe9YpnrXTsZH8X4cP73vglKjdAxESpAGAzT72bwFQ\n38d+ITx8opRKVUodV0p96uV3GeieXK6UKpo1XcxTNACwW2t9zmv/FnDQWtPWLgnADh/tAPnOhIOh\nHp/Zcx4f2qu8jss9CB8dPev/etZOf3ucfl+E4HjfA8PLSqkUj3/+fB/+3nIPMolSKlYpVUApVQvA\nZABHAMzyHHY6NpL/60wQ5B4YAo2XgCjeg3yRunAOozTot+xNIoBSWdyXvMApAK8D+BnAaQBNQX/Z\nlUqpplrro+A92ePj3ETPuhSAs5Hvap4i0PfAHDfrk9pjOw3QTgiNjwF8C+AQgCoA/g1giVKqu9Z6\nmaeN3IMwoJSqDOAFAIu01vGe3U5/e5x+X4QA+LkHSeCAaiGAY6CP/ggAvymlWmmtjeCQe5B5VgNo\n7tneAbqXHfU8djo2kv/rzBHoHjgZLwFRvAciJIQsR2u9DsA6266flVLLAfwOBhSNjErHBCEboLUe\naHv4i1Lqa3Cm6UUA7aPTq9yHZ4bua9CF4K4odydP4u8eaK0PA7jP1vQXpdSP4Ozq0wBuz8p+5nIG\nAigOoDoYCP+TUqq91npPVHuVt/B7D3LCeElcm8gJ+LY8+FPjQpjRWv8BZqVp6dkV6J6Y40J4Cfae\nJ9ralfRkiQjUTggDWuszAL6D9d0A5B5kCqVUIdB3uDqAHlrrA7bDTn97nH5fBB8EuQcZ0FrvB/Ar\nMn4P5B5kAq31f7XWq7XWswB0BVAUwJOew07HRvJ/nQmC3ANf7b3HS0AU74EICbIF9C/zpj6ArVnc\nl7yOcdUIdE/2aa3FTBp+tgCo5kn5Z6c+gGRY/vhbAMQBqOGjHSDfmUhhd2OSexAiSqn8AL4E0AJA\nT631Jq8mTn97nH5fBC8c3INAeH8P5B6ECa31SfA9M7ElTsdG8n8dJnzcg4DNbdtRuwciJMh8AFcq\npaqbHYqFotp5jgkRRinVAkx79rtn13wAlZVSHW1tigPoA7knkeIbMO/0TWaHUiofgFsALNRaJ3l2\n/whmSrnN6/zbAWz2ZPUQwoTnc98b1ncDkHsQEp46BZ8A6ALgOq31Kh/NnP72OP2+CDYc3gNf510O\nuvbZvwdyD8KIUqo8GI+y07PL6dhI/q/DhI974KuN93gJiOI9UBlj9fIensIqGwCcB/3NNFjsqRiA\nK0RNhxel1CcAdgP4A8BJ/D979x1mV1kubPx+SOi9i5AQkHYCBo9fQJAqiA0Fz7Eggl0pgooFReQA\nUixIEUUFFFFpVpByVBBBUAQltEDoGHoLJLQAgZDn++PdczKZTFl7Zs2smeT+Xde69t5rv2utZ/Jm\nz6xnv60MHvoq8Dzw+sx8ovXH5u/AGMpg0xmtMhOATVvN3GpDRLy39XRHSv/jT1MGMk7LzCtaZX5J\nmVr0QEod7Uu5iX1jqzm141zfAg6gDPq6nvKHe29gl8y8aEh+oBGorzqIiC9R/kBcztzB1h37dszM\nv3U6l3XQpoj4EeXf/WjKgPbOHszMB9v53VP186K5KtbBcZQvOq+mfD42pNTB8sAbMvOOTuezDvoh\nIs6j/N6YTBnEuwHweeBVwOaZeWfVeyP/XvdPxTro836pda7m6mAwF6kYSRswFvhdqzKfBX5PN4tF\nudXyb/3V1gfnacq3qg8ApwJrdCm3EvBTSj/X5ymLbW3adPwjdaP8Eehu+2unMksCx1Omn3uRMpvE\n9t2caxTlD8t9lBlWJgPvbfpnHO5bX3VA+fboKuCJ1mfjScq3SZtbB7X8+9/bSx0c3qlcpd89VT8v\nbu3VAfBxytoSM1qfg0eBs4ENrYPa6uErlFWVn2r9H7+DMlPWuC7lKt0b+fd6cOqAivdLTdaBLRKS\nJEmS2uYYCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJElt\nM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmS\nJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYT\nCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS\n1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltM5GQJEmS1DYTCUmSJEltG910\nAMPRKquskuPGjWs6DEmSJGlIXXfddU9k5qpVyppIdGPcuHFMmjSp6TAkSZKkIRUR91Uta9cmSZIk\nSW0zkZAkSZLUNrs2SZIkqXZPPQVXXQUvvzx33+KLw0YbwbhxENFYaKrJgBOJiNihn4f+MzNnDvT6\nkiRJGj6uvRa+/W246CKYNav7MiutBO99L3z4w7DVVkMbn+oTmTmwE0TMARKokld2lEtgs8y8fkAX\nHyQTJ05MB1tLkiRVd/fd8LWvwa9/XV5HlCRh5ZXnlnnuObjlFnjssbn73vzmkni8/vVDG6+6FxHX\nZebEKmXr6tq0P3BrxbKjgUtquq4kSZIa9NRTJYE49VSYPRuWWAI++9myrblm98fccguceSacfDJc\neilsthkcfDAceigsuujQxq/+q6tFYovM/FfF8qOAl4GJtkhIkiSNXFddBR/8INx/PyyyCHz0o3D4\n4TBmTLXjp0+Ho46C734XMmGLLeCss2DddQczavWmnRaJOmZtGgPcULVwZr7SOmZyDdeWJElSA045\nBbbdtiQREyfCTTfBaadVTyKgjJU4/ni4/HJYay245hp43evgnHMGL27VZ8CJRGY+lJkv911yvmNm\nD/TakiRJGlqZpdVhn31gzhw48MDSMrHJJv0/53bblUTkv/8bnn22tHKcfnptIWuQDOo6EhGxSNdt\nMK8nSZKkwfPKKyWB+PrXS1emU06BY46BxRYb+LlXWgl++9tyPoBPfhLOO2/g59XgqfXGPiKWjIhv\nRcQ9ETGLMhai8/ZSndeTJEnS0HjppTJl66mnlgHV554Le+1V7zUiSgvHoYeW1o7ddweHrQ5fdS9I\n90NgD+BC4JeYOEiSJC0QvvAF+P3vYcUV4cILB3f9h8MPh4cfhp/8pHR3uu46WHXVwbue+qfuRGIX\n4EuZ+b2azytJkqSG/Oxn8IMflC5Mf/wjvOENg3u9CDjppDJN7DXXwAc+ABdfDKPrvnPVgNQ9ZmEW\ncFvN55QkSVJDrryyjIuAkkwMdhLRYfHFy5iJ1VeHyy6Dgw4amuuquroTiZ8BH6jrZBExJiJ+GxFP\nR8QzEXFuRIytcNzaEXF+RNwXES9ExBMRcUVEvKOu2CRJkhZ0N9wA73oXzJoFn/50GQA9lNZcsyQT\no0fDccc5LexwM+AF6eY5WVls7kfAOOBiYEbXMpn504rnWgq4idLKcQiQwFHAUsCEzJzZy7EbA18A\n/go8CCwHfArYGXhPZp7b27VdkE6SJC3s7r+/rDj9+OPw/vfD2WfDqFHNxPKDH8D++8Myy8Dtt/e8\nYrYGrp0F6epOJDYHLgBW66FIZmal/4IR8TngeGDDzLy7tW8d4C7gy5l5fJuxjQamAjdm5rt6K2si\nIUmSFmYvvgjbbFNmTNpxR/jDH+qZ4rW/MuG//gvOP7/MHPWb3zQXy4JuqFe27uxk4ElgV2BDYJ0u\nWzsLnu8CXNORRABk5lTgqtb529JaAO9pwIXwJEmSepAJ++5bkoh11oFf/7rZJALK4OvvfQ+WXrp0\ndfrDH5qNR0XdicRGwIGZeWFm3pWZ93Xd2jjXxsAt3eyfAoyvcoLWInijI+JVEXEosAFwUhsxSJIk\nLVR+9KMyS9OSS5YF4VZaqemIirFjy0J4ULo5Pf98s/Go/kTiDmDpms61Et2MsQCmAytWPMcxlIXw\nHgEOBD6QmX/prmBE7BURkyJi0rRp0/oTryRJ0oh21VXwuc+V5z/5CWy6abPxdPXZz8KECTB1Khx9\ndNPRqO5E4iDgkIhYu+bz9td3gc2AdwF/BM6OiHd2VzAzT83MiZk5cVVXPJEkSQuZJ5+E970PZs+G\nz38ePvjBpiOa36KLwsknl+ff+Q7cemuz8Szs6k4kDqEMtL4zIm6OiCu7bFe0ca4ZdN/y0FNLxXwy\n88HMnJSZF2Xm+4FrgGPbiEGSJGmBlwl77w2PPAJbbw3HHNN0RD3bckvYay94+WXYb78Su5pRdyLx\nCnA78A/gidbrztucNs41hTJOoqvxQH/zz0nAev08VpIkaYF0xhnwu9/BssuW58N9BelvfrOM3fjr\nX+HCC5uOZuFV63+TzNy+xtNdABwbEetm5r8BImIcsBWlC1VbImIRYGvgnhpjlCRJGtFuu618sw9w\n4okwblyj4VSy0kpw2GFlPMeXvwxvf3vp9qShVXeLRJ1+DNwLnB8Ru0bELsD5wAPAKR2FWqtYz27N\nytSx7/CI+F5E7BYR20XEbsCfgM2Bw4b0p5AkSRqmnnmmrM/w3HOw227w0Y82HVF1++wD660Hd9wB\nP/5x09EsnAacSETEthGxTD+O6XV2p9bK1TsAdwJnAGdRFpTbITOf63w6YBTz/izXA5sA3wcuocze\n9CKwTWb+sp1YJUmSFkSZJXG44w7YZBM47bSyXsNIsdhic8dyHHYYPP10s/EsjAa8snVEvAJsmZn/\nqlh+FPASsFlmXj+giw8SV7aWJEkLutNOg09+EpZbDq67rny7P9Jkwrbbwt//DgcdVMZOaGDaWdm6\njjESAbwjIjaqWH44d6eSJEla4N1zz9z1In74w5GZREBpQTnuOHjDG+CEE8qK3GPHNh3VwqOuwdaH\n9l1EkiRJTXvlFfjwh2HmTHj/+4fnehHt2Hxz2H13OOccOOQQ+MUvmo5o4VFH16b+Lj73cGa+PKCL\nDxK7NkmSpAXVN78JBx8Ma6wBt9xSZkAa6aZOhQ02gDlzYMoU2KhqPxnNZ0i7NmXmfQM9hyRJkgbf\nDTeUgckAp5++YCQRAOusA5/4BJxyChxxBJx9dtMRLRwcryBJkrQQePpp+MAHyorQ++8Pb31r0xHV\n6+CDy1oSv/wl3NrfpYvVFhMJSZKkBdycOWVcxJ13wmtfC9/+dtMR1W/s2DILVSYceWTT0SwcTCQk\nSZIWcEcfDRdcACusAOedB0st1XREg+OrX4XRo+HXvy7jJjS4TCQkSZIWYH/4QxkXEVFmNnrNa5qO\naPCMGVNmoZozp0wLq8FlIiFJkrSAuvvucmPd0d3nbW9rOqLBd+CB5fGnP4Vp05qNZUFnIiFJkrQA\neukl2G23Msj6FECUHQAAIABJREFU3e8u3X4WBptsAjvvDC+8ACed1HQ0C7ZaE4mIWCwiDouI2yPi\n+Yh4pcs2u87rSZIkqXtHHgnXXw/jxsHPfw6LLERfH3/lK+XxpJPKwnsaHHWtbN3hO8B+wB+Bc4FZ\nNZ9fkiRJffjHP+Ab3yjjIn7xC1huuaYjGlpbbw1bbAHXXAOnnQaf/WzTES2Y6k4k3gsclplH13xe\nSZIkVXD77bDrrmXA8Ze/DNts03REQy+itEr813+VQdf77lvWmFC96m7kWga4uuZzSpIkqYIHHoC3\nvAWeeKIMrF6Y11PYZRfYcEO4//4yHazqV3cicSGwbc3nlCRJUh9eeKG0RDzwAGy1Ffzud7DYYk1H\n1ZxFFpk7g9Mxx5SZq1SvAScSEbFuxwZ8H9g9Ig6NiImd3+tURpIkSTXKhL33hhtuKOtEXHjhgrvo\nXDv23BPWWAMmT4aLL246mgVPHS0SdwN3tbZ/AOsDhwP/7LS/8yZJkqQaHXssnHFGSR7OOw9WXLHp\niIaHxReHAw4oz485ptlYFkR1DLb+WA3nkCRJUj+cfnoZVN3x/LWvbTae4WbvveHoo+Hyy+Haa2Gz\nzZqOaMEx4EQiM39eRyCSJElqz1lnwSc/WZ6feCK8//3NxjMcLb887LNPaZE44QQ4++ymI1pw1L0g\n3WURsVEP720QEZfVeT1JkqSF1XHHlTEAc+bA4Ye7VkJv9t8fRo2C3/wGHn646WgWHHXP2rQ90NOS\nJ8sC29V8PUmSpIXO0UfDl75Unh93HBx2WLPxDHdjxpQ1JWbPhpNPbjqaBcdgLJbe0+RarwGeG4Tr\nSZIkLTR+9CM45JCy6NoZZ8AXvtB0RCPDZz5THk85BWbNajaWBUUd079+LCKujIgrKUnEqR2vO23X\nAj8H/tbGecdExG8j4umIeCYizo2IsRWOmxgRp0bE7RHxfETcHxFnRcQ6/f8pJUmSmnfqqbDffuX5\nKaeUrk2qZpttYMIEePxxF6irSx0tEnOAV1pbdHndsT0J/Aj4RJUTRsRSwGXARsBHgA9RppW9PCKW\n7uPwDwAbA98D3g4cBLwemBQRY9r5wSRJkoaDzDIOYu+9y/Nvfxs+9ammoxpZIspYCSgJmQYussZl\n/iLicmDfzLx9gOf5HHA8sGFm3t3atw5lHYovZ+bxvRy7amZO67JvbWAqcFRmHtrX9SdOnJiTJk0a\nyI8gSZJUi2nT4OMfh4suKqs1n3yySUR/PfssvPrV8NxzMGUKjB/fdETDT0Rcl5kTq5StdYxEZr5p\noElEyy7ANR1JROvcU4GrgF37iGFaN/vuA6YBa9YQmyRJ0pD4859Ld5yLLoIVVoDf/94kYiCWXRZ2\n3708/8lPmo1lQVD7YOuIWD8ifh4Rd0bEzNbjzyJivTZOszFwSzf7pwBt544R8R/AasBt7R4rSZI0\n1F56CQ48EN7yFnj0Udh2W5g8Gd71rqYjG/n22qs8/vzn8OKLzcYy0tW9jsT2wE3AO4FrgB+2Ht8F\n3BwRVad/XQmY0c3+6UBbi75HxGjgZEqLxGm9lNsrIiZFxKRp0+Zr1JAkSRoSd9wBW24Jxx5b1j44\n8ki47LIyhakG7v/9P3jd62D6dPjd75qOZmQb8MrWXRwH3AC8NTP/b6rXiFgWuKT1fqU+VzU6CXgj\nsHNmdpecAJCZpwKnQhkjMUSxSZKkPjzzTJn///nnS7/2e+4pi7A9+yzccgvcd18ZgNzVssvCa18L\nY8eWgbYrrli6CW24ISy22ND/HH2ZMaMMoj7xxPJN+bhxZRXmLbdsOrIFS0RZ6XqffeCkk2CPPZqO\naOSqO5EYD+zWOYkAyMxnI+LbwDkVzzOD7lseemqp6FZEfAvYC/hIZl5S9ThJktSc6dPLCsTnnQc3\n3giPPdb/c1188fz7Fl20DLKdMGHebfXVy03mUHvxxXJD+41vlGQC4EMfgu9/H5ZffujjWRjsuScc\ndBBccw1cey1stlnTEY1MdScSDwI95fiLAQ9VPM8UyjiJrsYDt1Y5QUR8DfgK8JnMPKPidSVJ0hCb\nNQv++Ef47W/h+utL1545c+a+v+SSsMQSJQHYaKO5LQqLL14SgvXWg9Hd3NFMm1bGFTz+eGmxeOSR\n8vqee+Cmm8rW2aqrloRip53ggx8c/K5Er7wCZ54J//M/8MADZd/225dWic03H9xrL+yWXho+8Ymy\nKvj3vw+/+EXTEY1MdU//+kng88BOmflwp/1r0uralJk/rXCeA4BjgQ0y89+tfeMo078elJnH9XH8\nZ4ETga9l5jfa/Tmc/lWSpME1Zw784x/lRvrXv577TTyUcQE77li6nGy7Lay9dr0tBc89V7pETZ48\n7/b00/OW23DD+VstBhrLrFlw221w4YVlVeq77ir7J0woCcRb39pMq8jCaOpUeM1rSoJ6//2lRUrt\nTf9adyJxBrA9sCplkPVjwOrAFq3nV3Qqnpn5kR7OszRl0PYLwCGUFbOPBJYFJnR0nWqtD3EPcERm\nHtHa9wHgbOBi4OtdTv1MZvbZomEiIUnS4Lj99pI8nHUW3Hvv3P2bbloShx13hP/4j9IKMZQyS6vA\ntdeWxOaCC7qf0We55cq4i003nZtcbLJJGY/R9XwPPzy3peGmm8rPfPXVZbxHh7XXLoOp99ijrBGh\nofX2t8Of/lSSOlcJL9pJJOru2rQ1MBt4BFi7tdF6DbBNp7I9ZjCZOTMidgBOAM6grJj9F+CALuMv\nAhjFvLNPva21/22trbMrKImOJEkaQn/5CxxySOmT3mGttcoN9B57lJvzJkWUQdljx8J73jO35WDy\n5JIEdDxOmwZXXVW2ztZcc94B3E89NW8rS+frbLABbLFF6T61447dd8vS0Nhoo5JIPPpo05GMTLX+\n183MdWo81/3Ae/oocy8laei876PAR+uKQ5Ik9d8NN5RBrZe0pjxZbjl43/vKt7/bbjt8v4VffPEy\nRejrXjfv/scem79L1K23wkPdjAJdccXSdWbUKFhlFXj/++Hd7y7/BhoeVlutPA5kQP/CzBxYkiTV\nburU0gJx9tnl9XLLlYTic5+DpZZqNraBWH31Mhh7p53m7nv55ZJIdB0g/qpXOd5huOsYF/H4483G\nMVLVnki0xjd8AtgWWBnYKzPvao1duDEzb6/7mpIkaXiYNg2OPhp++MNyg73YYrD//nDwwbDyyk1H\nNzgWXbSs+aCRpyORsEWif2pNJCJiDPBXYC3gdmATygBpgDcBbwY+Wec1JUlS82bOhBNOgGOOKQvF\nRZS1EI48sgwoloajjq5Ntkj0z2CsbD0L2ICyZsRLnd67Ajis5utJkqQGZZY5+A86aO6A1be/Hb75\nzTKzkTSc2SIxMHUnEjtRujLdFxGjurz3ELBmzdeTJEkNmTED9t67rEINZXXgb38b3vSmZuOSqurc\nIpHpmJZ21T1XwmLAsz28tzxlalhJkjSCzZoFJ54I669fkohlloHTT4d//tMkQiPLEkuUiQBmz+5+\nul71ru5EYjI9T9n6duC6mq8nSZKG0C23wMSJcMAB8OSTZQrXG2+Ej37Ub3M1MjlzU//VnUh8B/hE\nRPyYMmsTwPiI+DplJqfv1Hw9SZI0BDLhBz8oScQtt5TWiAsvhL/+tayVII1UriXRf3UvSHduRHwa\n+Bbw8dbuX1C6O+2fmX+q83qSJGnwPfYYfOpTJXEA+MQnStempZduNi6pDg647r/a15HIzJMj4gxg\nS2A14EngH5nZ09gJSZI0DM2cCcceW7bnnoMVVoBTTy0rU0sLCqeA7b9BWdk6M2cClw7GuSVJ0uC7\n/nrYfXe4887y+p3vLF2bxo5tNi6pbrZI9N+AE4mI2LbvUnNl5pUDvaYkSRocc+aUheW++tWyMvXG\nG5dVqrdt66+9NHI42Lr/6miR+CuQrefR6XlPuq4vIUmShoFHH4WPfAQuuaS83m8/+M53YMklm41L\nGkwOtu6/OhKJzjNGrwB8H7gF+CXwGLA6sDuwMbBfDdeTJEk1+9//hY99DKZNg5VXLutCvOtdTUcl\nDT5bJPpvwIlEZl7R8TwifgZckpmf7FLsFxFxGvDfwIUDvaYkSarHiy/CV74C3/teeb3jjvCLX8Cr\nX91sXNJQsUWi/+peR2JX4Fc9vPer1vuSJGkY+Pvf4Q1vKEnE6NFwzDGlW5NJhBYmDrbuv7oTiUWA\n9Xp4b30cHyFJUuMeeAB23RW22QYmTy6Ly119NRx4ICxS952BNMwttxwsvniZ7njmzKajGVnq/nXx\nv8A3I+J9ETEKICJGRcT7gaOAi2q+niRJasPvfgebbgoXXFAWlDv88DLV68SJTUcmNSPCtST6q+51\nJD4LjKF0Y5odETOAFVvX+XvrfUmSNMRmzoTPfx5+/OPyeued4Sc/gVe9qtm4pOFg9dVLS93jj8M6\n6zQdzchRayKRmU8A20TETsAWwBrAI8DVmekCdZIkNeCGG8ricnfcUbpwfOc7sP/+5ZtYSQ647q/B\nWtn6z8CfB+PckiSpmjlz4MQT4aCD4KWXYPx4OOccmDCh6cik4WXVVcvjk082G8dI45AqSZIWQI8+\nCu94B3zhCyWJ2HdfuPZakwipO6usUh6feKLZOEaaYZtIRMSYiPhtRDwdEc9ExLkRMbbisd+IiEsi\n4smIyIj46CCHK0nSsDBrFnz3u7DxxnDxxbDSSvD738MPfwhLLdV0dNLwZCLRP8MykYiIpYDLgI2A\njwAfokwfe3lELF3hFJ8BlsRZoiRJC5F//Qs22aQMqp4+Hd785jK9666u4iT1ykSifwZljEQNPgWs\nC2yYmXcDRMRk4C5gb+D4Po5fPjPnRMR6wIcHNVJJkhr2/PNw7LFw5JEwezb8x3+UxeV23tkB1VIV\nJhL9MyxbJIBdgGs6kgiAzJwKXEWF1bEzc84gxiZJ0rCQCWecARtsAIcdVpKIL3yhzNL0zneaREhV\nmUj0T62JRER8OyLe0uqaNBAbA7d0s38KMH6A55YkacSbMQN22w0+/GF46CH4z/+Ev/wFjjuuTPEq\nqToTif6pu0ViD+BPwIyIuCoijoyIHSKi3V9pKwEzutk/nbLAXe0iYq+ImBQRk6ZNmzYYl5AkacBe\negl+8APYaCP4zW9gmWXgpz+FSZNghx2ajk4amUwk+qfWRCIz16IMkP4c8CCwF3Ap8FREXB4R/1Pn\n9eqUmadm5sTMnLhqx2TCkiQNE3PmwK9+VdaC2H//sgLvVlvBjTfCxz4GiwzXzsrSCLDiiqUr4IwZ\npYugqqn9105m3pmZJ2fmbpm5OrAN8HdgO+DwiqeZQfctDz21VEiStMC67DJ4wxvgAx+Ae+4prRHn\nnQd/+xu85jVNRyeNfKNGlamSM8uMZ6qm9lmbImJJYGtgB+BNwOuB5ylTsV5W8TRTKOMkuhoP3FpD\nmJIkDWtPPQVnnlkGU//rX2XfGmvA179eWiBGD9d5F6URapVVysrWTzwBq63WdDQjQ62/hiLiSmBz\n4GXKDEvnUdZ0uK7NmZQuAI6NiHUz89+tc48DtgIOqjNmSZKGk5kz4eST4eijSzcLgOWXh698BT73\nOReVkwbLKqvAHXc4TqIddX+fsTXwAvAL4GLgisx8uh/n+TGwP3B+RBwCJHAk8ABwSkehiFgbuAc4\nIjOP6LR/O2BV4FWtXRMj4jmAzPxtP+KRJGnQzJ5dui+deSace25JJgC23Rb23Rd22cUEQhpsDrhu\nX92JxATmdmn6GbBsRNxI6dJ0OXBlZj7f10kyc2ZE7ACcAJwBBPAX4IDMfK5T0QBGMf9Yj69TxmR0\n2K+1dRwjSVKjMst6D2eeCeecA48+Ove9N74RDjkE3vY214KQhoqJRPtqTSQy8xbK+g/fi4gA/pOS\nWLwT+BKly9MSFc91P/CePsrcSzeJQWZu307ckiQNlfvug7POKgnEbbfN3b/++rDnnrDHHg6glppg\nItG+QRmqFRGLAm+ktEzsALyBcsPvjEuSpIXGiy+WZGHy5LL9859w1VVz319lFdh995JAbLaZrQ9S\nk0wk2lf3YOuDKYnDlsCSwJPAFcDngcsz87ZeDpckaUTJhEcegZtvhqefLms9TJ06N3G44w545ZV5\nj1liCXj3u0vy8Ja3wKKLNhO7pHmZSLSv7haJA4Erga8Bl2Xm5JrPL0lSWzLhgQfKTX3nhaZmzoQp\nU+Df/y4JQF8ef7wkB9OmzXvu3o5dZJGy5sOECXO37baD5Zbr/88jaXCYSLSv7kRi5TaneZUkacCe\nf74kBR0tAZMnly5Fs2bBSy+V9wfLCiuUBGH11cvrNdaATTct2/jxsOSSg3dtSfUxkWhf3YOt5wBE\nxEqU7k0rAdOBqzPTdQIlSf32+ONlYbaOROHmm+HZZ0uLwMMPl9aBnqy8Mmy88bxTqC66aGkt2Gij\nat2LlluuJAxrrTXvWIZRoxzbIC0ITCTaNxgrWx8FfBFYjLkzKs2KiGMz83/qvp4kacH0zDNwyy1w\n441w/vlw6aU9dyMaNWr+LkSbbALLLlu6Fy23nDf7knpnItG+ugdbHwAcDJwGnAk8SlkUbk/g4IiY\nlpnfq/OakqSR7ZVX4J575u2WNHlyGbTc2aKLlvEFr3tdSRRe+1pYddXy3uqrw+KLD33skhYcyy9f\nvpR49tnSLdLfKX2ru0ViH+DEzPx8p313AFe0Vpb+NGAiIUkLqenT508YbrkFXnhh/rKLLVa6I02Y\nUBZoe+97YaWVhj5mSQuHiNIq8dhj8OST8OpXNx3R8Fd3IjEO+N8e3vtfYN+arydJGoZefhnuvHP+\npOHBB7svP2bMvN2SJkyADTaA0YOy2pEkda8jkXjiCROJKur+Ff0ksAlwaTfvbdx6X5K0AHnssfkT\nhltvLbMldbXUUmXswoQJZVajji5KK6449HFLUlcd3SUfe6zZOEaKuhOJ84AjI+JJ4JzMnB0Ro4H3\nAUcAP6/5epJEJjz0ENx/f3k+fXqZ0efhh3suO3kyPPVU3+eOgHHj5g7c7UnHDEAbbjjvDEBLLVX2\nj+QpQF96CW6/fW43pOeemzuu4aabymxK3Vl33flbGdZdt/RBlqThaK21ymNPraeaV92JxFeBTSkJ\nw08jYjplCthRwN8pA7ElqbJZs8qCYbNnl370ndcK6FhI7JlnqiUF/TV9Olx/ff+PX2SRsrZA5xvo\n5Zcv38SPGTPvbEKrrjrvmgTdiYCxY7tf1OyFF8og5a6rKXfnySfLv+Mjj5TXjz5aXneesaRj5ebO\nC7l1teyycxOFjlaGvhIvSRqOxowpjw880GwcI0Xd60g8GxHbAjsD2zB3HYkrgD9m9jbLt6SFUWZZ\nKfj558vNatd+9bffXu2meKWVYP31y8360kuXG9lx48pNfFcrr1xudl/1qr6nBJ09G+66q3TVmTWr\n53IzZ5Yy99wz73oGTz1VVlR+6KH5j7n55r5/rt6svTYss8zc1y++WJKIKqs0tyOi/Nt2dENaeeWy\nf+zYsm/ttZ1aVdKCwRaJ9tQ+jK2VLFzU2iTp/7zwQrnZ7tqfvrc5uxdZBF7zmtI1aPToedcK6OhG\ntMQSsNpqg3czu9pqsNVW/T9+1qzybX9nHeMKpk2buy+z/PGaPBmefrrn882eXVpj7rtv/vdGjSo3\n/VWmLVxmmZIYrL12+XdefvnuF1xbZZWSnEnSgq6jRcJEoppBmw8jIlYDlui6PzPvH6xrShoeMst4\nha4Jw513dv9t+fLLwworlJvXddaZt0/9+PHzrkY8Ei2+eLlZ72zttWHzzft/zpdfLq0PnQc0jxpV\n/v2WmO83rySpio4WCbs2VVP3gnTLAScCuwE9fR/mMDtpAfLcc2UAbtekobtv1EeNKolB1wG4Xb8B\nV98WXbRMjypJqo9dm9pTd4vED4D3UFa2vhnopUexpJHimWfg8svLDD0diUJHt5rupviE0h2mY+Bt\n59YFvy2XJA1Xq6xSWpGfeqp8UdZ5HJrmV3ci8TbgwMz8Qc3nlTSEZswoA4EnT4Yrr4QLLywDebuz\n6KLdtzKsvrqtDJKkkSWitErcc09pldhoo6YjGt4GY4zEHYNwTkmDoLtZkiZP7r5v6NZbw5ZblsG5\nEybAeuuVwc+jR7sugCRpwTFmTEkkHnjARKIvdScSvwTeRfcrW0tq0LRp8ycMU6Z0P6XpkkvOu/rw\nrruWqT4lSVrQOU6iuroTiUuA70bEssAfKGtIzCMzL6v5mpI6mTVr7irEnbeu0492GDdu3oXEJkwo\n063ayiBJWhi5KF11dScS57ce1wE+2ml/AtF69PZEqkHHisMdiULHQOjbb+9+FeJllpl/HMMmm5Sp\nVyVJUmGLRHV1JxJvqutEETEGOAHYiZKEXAocUGUdiohYAjgS2BNYAbgR+EpmXllXfFJT/vQnOOaY\nkjQ8+eT870eUaUG7Jg0di45JkqSe2SJRXa2JRGZeUcd5ImIp4DLK9LEfobRkHAVcHhETMnNmH6c4\nDdgZOBD4N7AfcHFEbJmZN9YRo9SERx6B97wHnn++vF5xxe6nWHUVYkmS+scWierqXpBuEWCRzJzd\nad9bgU2AyzLzhoqn+hSwLrBhZt7dOs9k4C5gb+D4XmLYFPgg8PHMPL217wpgCnAEsEu7P5c0XBx6\naEkidt4ZTj4Z1lzTKVYlSaqTLRLV1d216RxKK8KHASJiH+CHrfdejoidM7PKjE67ANd0JBEAmTk1\nIq4CdqWXRKJ17MvArzodOzsifgkcFBGLZ2avC+W98EKZzUYaTh58EH760zLd6vHHz/3GRJIk1Wfl\nlcviqU8/DZMmlZkMFxYrr9xe+boTiS2Ar3R6fSDwE+CLwKnA16g2NezGzB243dkU4H0Vjp2amc93\nc+xiwHqt5z269dYyCFUajvbbr4yBkCRJ9etYlO7uu2GzzZqOZmgdeGB75etOJFYDHgKIiPUoszed\nlJnPRsTpwNkVz7MSMKOb/dOBFQdwbMf784mIvYC9ABZddFPWX79aoNJQWmMNOOywpqOQJGnB9sUv\nwkknlRkSFyarr95e+boTiWeAjkaR7YEnMnNy6/UrwBI1X682mXkqpdWEiRMn5qRJDQckSZKkRuyz\nT9kWRl/6UvWydScS/6CMQ5gNHEBZlK7DekDV8e8z6L7loafWhq7Hrt3DsdDNInmSJEmS2lP3rPJf\nprRIXEBpfTi803u7AVdXPM8UyliHrsYDt1Y4dp3WFLJdj30JuHv+QyRJkiS1o9ZEIjPvysz1gVUz\nc73MvLfT25+jJBpVXABsERHrduyIiHHAVq33enMhsCidBmVHxGhKInNJXzM2SZIkSerboKxzm5nz\nrbebmTdn5rSKp/gxcC9wfkTsGhG7UGZxegA4paNQRKwdEbMj4tBO17mBMvXrdyPikxGxI/BLysBv\nh6lKkiRJNah7jEQtMnNmROwAnACcAQTwF+CAzHyuU9EARjF/QvQx4GjKatgrADcBb8vM66tc/7rr\nrnsuIu4Y2E+hAVoFeKLpIBZy1sHwYD00zzoYHqyH5lkHzRuKOuhurHG3Ihe2ea0qiIhJmTmx6TgW\nZtZB86yD4cF6aJ51MDxYD82zDpo33OpgULo2SZIkSVqwmUhIkiRJapuJRPdObToAWQfDgHUwPFgP\nzbMOhgfroXnWQfOGVR04RkKSJElS22yRkCRJktQ2EwlJkiRJbTORaImIMRHx24h4OiKeiYhzI2Js\n03EtiCJi+4jIbranupRbMSJ+EhFPRMTMiLg0Il7bVNwjWUSsFRHfj4irI+L51r/3uG7KLRER34mI\nRyLihVb5bbspt0hEfDUi7o2IFyPipoh4z1D8LCNVG3XQ3WcjI+J1XcpZB22KiPdGxO8i4r7W/+87\nIuKbEbFsl3KVfvdU/bxorip1EBHjevkcrNDlfNZBP0TEWyPisoh4NCJmRcSDEfHriBjfpVyleyP/\nXrevSh1UvV9qlW2kDkwkgIhYCrgM2Aj4CPAhYH3g8ohYusnYFnCfBbbstL25442ICOBC4G3AZ4D3\nAItS6mStoQ91xFsPeD8wA/hbL+VOAz4FHAq8E3gEuLjrTSxwJHA4cBLwduAa4DcR8Y56w16gVK0D\ngJ8x72djS+DOLmWsg/Z9CXgFOJjyu+VHwL7AnyNiEWj7d0/Vz4vm6rMOOvkm838Onu1Sxjron5WA\n64D9gbcAXwU2Bq6JiLWh+r2Rf6/7rc866KTH+yVouA4yc6HfgM9RfrGt12nfOsBs4AtNx7egbcD2\nQAJv7qXMrq0yb+q0b3lgOvC9pn+GkbYBi3R6/snWv+24LmU2be3/WKd9o4E7gAs67VsNmAV8vcvx\nfwEmN/2zDtetSh203kvgqD7OZR30rw5W7Wbfh1v/5ju0Xlf63VP18+LWrzoY13r9yT7OZR3UWzcb\ntv49v9h6XeneyL/Xg1oHfd4vNV0HtkgUuwDXZObdHTsycypwFaVyNPR2AR7OzMs7dmTm05SM2zpp\nU2bOqVBsF+Bl4FedjpsN/BJ4a0Qs3tr9VmAx4Mwux58JvDYi1hl4xAueinVQlXXQD5k5rZvd17Ye\n12w9Vv3dU/Xzok4q1kFV1kG9nmw9zm49Vr038u91fbrWQVWN1YGJRLExcEs3+6cA47vZr3qcFRGv\nRMSTEXF2l36XvdXJ2IhYZmhCXKhsDEzNzOe77J9CuWldr1O5WcDd3ZQDPzN12LfVZ/b5Vh/abbq8\nbx3UZ7vW422tx6q/e6p+XtS3rnXQ4ZsRMbvVP/+Cbvp7WwcDFBGjImKxiFgfOAV4FDin9XbVeyP/\nXg9AH3XQobf7JWiwDkYP1olHmJUo/Za7mg6sOMSxLAyeBo4DrgCeAf6T0l/26oj4z8x8nFIn93Zz\n7PTW44rAc4Mf6kKlt89Bx/sdj09lq+20l3LqnzOBi4CHgbWBA4HLImKnzPxrq4x1UIOIWBM4Arg0\nMye1dlf93VP186Je9FAHsyg3VJcA0yh99A8G/hERm2dmR8JhHQzcP4H/13p+N6V72eOt11Xvjfx7\nPTC91UGxGuwMAAAgAElEQVSV+yVosA5MJDTkMvMG4IZOu66IiCuBf1EGFB3SSGDSMJCZH+r08m8R\ncT7lm6ajgK2biWrB0/qG7nxKF4KPNRzOQqmnOsjMR4B9OhX9W0T8ifLt6teAPYcyzgXch4DlgHUp\nA+H/HBFbZ+a9jUa1cOmxDkbC/ZJdm4oZdN/y0FM2rppl5vWUWWk2a+3qrU463le9+vo3n96p3Aqt\nWSJ6K6caZOazwP8y97MB1sGARMSSlL7D6wJvzcwHO71d9XdP1c+LutFHHcwnMx8A/s78nwPrYAAy\n87bM/GdmngPsCCwDHNR6u+q9kX+vB6CPOuiufNf7JWiwDkwkiimU/mVdjQduHeJYFnYdXTV6q5P7\nM9Nm0vpNAdZpTfnX2XjgJeb2x58CLA68ppty4GdmsHTuxmQd9FNELAr8FpgIvCMzb+5SpOrvnqqf\nF3VRoQ560/VzYB3UJDOfovybdYwtqXpv5N/rmnRTB70W7/S8sTowkSguALaIiHU7dkRZKGqr1nsa\nZBExkTLt2b9auy4A1oyI7TqVWQ54F9bJYLmQMu/0+zp2RMRoYDfgksyc1dr9J8pMKXt0OX5P4JbW\nrB6qSev//TuZ+9kA66BfWusUnAXsALw7M6/ppljV3z1VPy/qpGIddHfcWErXvs6fA+ugRhGxOmU8\nyj2tXVXvjfx7XZNu6qC7Ml3vl6DBOoj5x+otfFoLq9wEvEDpb5aUxZ6WBSaYTdcrIs4CpgLXA09R\nBg99FXgeeH1mPtH6Y/N3YAxlsOmMVpkJwKatZm61ISLe23q6I6X/8acpAxmnZeYVrTK/pEwteiCl\njval3MS+sdWc2nGubwEHUAZ9XU/5w703sEtmXjQkP9AI1FcdRMSXKH8gLmfuYOuOfTtm5t86ncs6\naFNE/Ijy7340ZUB7Zw9m5oPt/O6p+nnRXBXr4DjKF51XUz4fG1LqYHngDZl5R6fzWQf9EBHnUX5v\nTKYM4t0A+DzwKmDzzLyz6r2Rf6/7p2Id9Hm/1DpXc3UwmItUjKQNGAv8rlWZzwK/p5vFotxq+bf+\nauuD8zTlW9UHgFOBNbqUWwn4KaWf6/OUxbY2bTr+kbpR/gh0t/21U5klgeMp08+9SJlNYvtuzjWK\n8oflPsoMK5OB9zb9Mw73ra86oHx7dBXwROuz8STl26TNrYNa/v3v7aUODu9UrtLvnqqfF7f26gD4\nOGVtiRmtz8GjwNnAhtZBbfXwFcqqyk+1/o/fQZkpa1yXcpXujfx7PTh1QMX7pSbrwBYJSZIkSW1z\njIQkSZKktplISJIkSWqbiYQkSZKktplISJIkSWqbiYQkSZKktplISJIkSWqbiYQkSZKktplISJIk\nSWqbiYQkSZKktplISJIkSWqbiYQkSZKktplISJIkSWqbiYQkSZKktplISJIkSWqbiYQkSZKktplI\nSJIkSWrb6J7eiIgr+3nOT2TmXf08VpIkSdII0FuLxNbA0sArFbc5wFbAsoMYryRJkqRhoMcWiZZ9\nM/NfVU4UEaOBlwYekiRJkqThrrcWidOAx9s41yutY6YNKCJJkiRJw15kZtMxSJIkSRphnLVJkiRJ\nUtt6HSMREUsDbwFmAxdn5ksRsRywD7AecDfwk8ycPuiRSpIkSRo2euzaFBFjgL8DY1q7bgF2Ai4F\nxgPTgZWB+4GJmfnEoEcrSZIkaVjorWvTYUAAbwM2B2YAFwCLAetl5qrAa4FRwJcGOU5JkiRJw0hv\nLRJTgaMz8yet1xOAG4GPZ+bPOpX7PGURuk0GP1xJkiRJw0FvLRJrAHd0en176/G2LuVuAsbWGZQk\nSZKk4a23ROIZYIVOr2cDTwLPdym3BGVVa0mSJEkLid4SiTuB/9fxIjPnZOaqmXlzl3IbAfcNRnCS\nJEmShqfeEokfUWZm6st/AZfUE44kSZKkkcCVrSVJkiS1rV8rW0fE2IjodTE7SZIkSQuuthOJiBgF\nTAUm1B+OJEmSpJGgXy0SlIXqJEmSJC2k+ptIOLBCkiRJWojZIiFJkiSpbW0PmM7MVyJiHeDhQYhH\nkiRJ0gjg9K/dWGWVVXLcuHFNhyFJkiQNqeuuu+6JzFy1StnKLRIR8TbgfcAYYIkub2dmblfxPGOA\nE4CdKF2kLgUOyMz7Kxz7DWAiZcXtlYCPZebPeij7KeCLwDrAvcAJmXlylRjHjRvHpEmTqhSVJEmS\nFhgRcV/VspXGSETEl4E/AO8ElgZe6bLNqXiepYDLgI2AjwAfAtYHLo+IpSuc4jPAksBFfVznU8Ap\nwO+AtwG/AX4YEftWiVOSJElS76q2SOxPuTHfPzNfGcD1PgWsC2yYmXcDRMRk4C5gb+D4Po5fPjPn\nRMR6wIe7K9BaKO9o4IzM/Fpr9+UR8WrgyIj4SWa+PICfQZIkSVroVU0klgN+M8AkAmAX4JqOJAIg\nM6dGxFXArvSRSGRmlZaPLYFVgTO77D8D+BiwNXB5byeYPh3OOqvClSRJktSIUaNgp51g5ZWbjmTh\nVTWRuBjYgtItaSA2Bs7vZv8UyviLOmzcerylm2sAjKePRGLqVNhzz5qikSRJ0qB473vhN79pOoqF\nVztdm86LiAQuAWZ0LZCZ/65wnpW6OxaYDqxYMZYq16Cb60zv8v48ImIvYC+ApZbahHe/u6ZoJEmS\nVKtp0+DPf4aHXYygUVUTiQSepYw9OKqHMqNqiaghmXkqcCrAxIkT065NkiRJw9O//lUSiZcd9dqo\nqonEz4A3UqZtvR14qZ/Xm0H3LQ89tVT09xq0rvNIl2vA3JYJSZIkjUCLLVYeX+rvHalqUTWReBOw\nX09rNrRhCnPHMHQ2Hrh1gOfufA1a1+mcSIxvPdZ1HUmSJDVg0UXLoy0Szaq0jgQwDXishutdAGwR\nEet27IiIccBWrffqcDXwBLBHl/17UlojrqrpOpIkSWqALRLDQ9UWie8Bn46IiytOwdqTH1MGbp8f\nEYdQxl4cCTxAWacCgIhYG7gHOCIzj+i0fzvK1K6vau2aGBHPAWTmb1uPL0fE/1AWoHuIsnL2DsDH\ngc9kpv/lJEmSRjBbJIaHqonEisAmwK0R8WfmH8+QmXlYXyfJzJkRsQNlrMUZQAB/AQ7IzOc6FQ3K\n4O2uLSZfB7br9Hq/1tZxTMd1Tm7NMPVF4EDgfspiej/sK0ZJkiQNb7ZIDA+RmX0XiuirFSIzc0TP\n2tTZxIkTc9KkSU2HIUmSpG5MmwarrQarrFKeqz4RcV1mTqxStlKLRGZWHUshSZIkDSpbJIYHEwRJ\nkiSNKI6RGB5MJCRJkjSi2CIxPJhISJIkaUQZ1RqZ+8orMGcg84lqQEwkJEmSNKJEzG2VsHtTc0wk\nJEmSNOJ0jJOwe1NzTCQkSZI04tgi0TwTCUmSJI04tkg0r9I6EhExFehp5bo5wNPAdcD3MvOWmmKT\nJEmSumWLRPOqtkhcAYwC1gCmAte0Hl9NSUbuA94FXBsRbxyEOCVJkqT/Y4tE86omEn+jtDqsk5k7\nZuYHM3NHYB3gGeCPwHrATcDXByVSSZIkqcUWieZVTSS+AhyRmY923pmZjwBHAV/JzJnAicDm9YYo\nSZIkzctF6ZpXNZEYA8zq4b0XgTVbzx8CFhtoUJIkSVJvOro22SLRnKqJxG3AFyNi8c47I2IJ4Eut\n96GMmXisvvAkSZKk+dki0bxKszYBXwYuAu6PiD8AjwOrAe8AVmg9ArwRuKTuICVJkqTObJFoXqVE\nIjMvjYjXA4cA21Jmb3oEuBQ4KjNva5X77GAFKkmSJHWwRaJ5VVskyMxbgQ8OYiySJElSJbZINK/S\nGImI6DWBiIjv1xOOJEmS1DdbJJpXdbD16RHx5u7eiIgTgU/WF5IkSZLUOxeka17VROIo4NzWOIn/\nExHHA/sAH6g7MEmSJKknLkjXvKqDrY+MiFcDf4yIN2bmPRFxLLA/8IHMPH9Qo5QkSZI6sUWieZUH\nWwOfpkz5eklE/BHYG/hgZp47KJFJkiRJPbBFonlVuzaRmUmZtekBYC9gz8z8zWAFJkmSJPXEFonm\n9dgiERFX9vDWssBzwH4RsV9rX2bmdnUHJ0mSJHXHFonm9da1aQ6Q3ex/qrVJkiRJjbBFonk9JhKZ\nuf0QxiFJkiRVZotE8yqPkZAkSZKGC1skmtdjIhER20bEMu2crHXM0gMPS5IkSeqZLRLN661F4nJg\nfNUTRcSo1jEbDjQoSZIkqTcdiYQtEs3pbbB1AO+IiI0qnstuUpIkSRoSHV2bbJFoTl8L0h06JFFI\nkiRJbbBFonm9JRLr9POcD/fzOEmSJKkSB1s3r7fpX+8bykAkSZKkqhxs3TzHNUiSJGnEsUWieSYS\nkiRJGnFskWieiYQkSZJGHFskmmciIUmSpBHHFonmmUhIkiRpxLFFonmVEomIODsithnsYCRJkqQq\nbJFoXtUWiS2Av0bElIj4bESsMJhBSZIkSb2xRaJ5lRKJzFwXeAdwB3As8FBEnB4RWwxmcJIkSVJ3\nbJFoXuUxEpl5cWb+NzAW+BbwJuCqiLghIvaJiGUGK0hJkiSpM1skmtf2YOvMfDQzjwTeCPwN2BT4\nIfBwRHwnIpauOUZJkiRpHrZINK/tRCIidoiIXwNTgdcCJ1CSiu8D+wC/qDVCSZIkqQtbJJo3ukqh\niFgZ+BiwF/Aa4HpK0nBOZr7YKnZNRNwMnDYYgUqSJEkdOlokTCSaUymRAB4C5gC/AvbIzGt7KHc7\n8HgdgUmSJEk9sWtT86omEgcDp2fmjN4KZeaNwDoDjkqSJEnqhV2bmld1jMQywJLdvRERa0TEoVUv\nGBFjIuK3EfF0RDwTEedGxNiKxy7RGtD9SES8EBFXR8S23ZS7NyKym+3dVeOUJEnS8GWLRPOqJhKH\nAWv18N6rW+/3KSKWAi4DNgI+AnwIWB+4vOJsT6cBnwIOBd4JPAJcHBGv66bsxcCWXbYrqsQpSZKk\n4c0WieZV7doUvby3IjCr4nk+BawLbJiZdwNExGTgLmBv4PgeA4jYFPgg8PHMPL217wpgCnAEsEuX\nQ57IzGsqxiVJkqQRpCORmD0bMiF6u1vVoOgxkYiI7YEdOu3aOyLe2aXYksDOlJv5KnYBrulIIgAy\nc2pEXAXsSi+JROvYlykDvjuOnR0RvwQOiojFM7NqQiNJkqQRLAJGjy6JxMsvz+3qpKHTW4vEdsAh\nredJmf61q5eAW4HPVrzexsD53eyfAryvwrFTM/P5bo5dDFiPeROad0XE88Ao4AbgW5n5+4pxSpIk\naZhbbDETiSb1OEYiM7+emYtk5iKUrk1bdLzutC2Rma/PzKsrXm8loLuZn6ZTukj199iO9ztcCHwG\neCuwB/AicF5E7NnTySNir4iYFBGTpk2b1kcokiRJaprjJJpVaYxEK5kYMTLzM51fR8R5wDXAN4Ez\nezjmVOBUgIkTJ+ZgxyhJkqSBceamZvU2RmIs8EhmvlxletbMvL/C9WbQfctDT60NXY9du4djYW7L\nRHexvRIRvwG+HRFrZOYjFWKVJEnSMGaLRLN6a5GYSpky9V/AvZRxEr0ZVeF6UyhjHboaTxlr0dex\n/xURS3UZJzGeMlbj7u4Pm4+tDZIkSQsAWySa1Vsi8XHgnk7P67gBvwA4NiLWzcx/A0TEOGAr4KA+\njr0Q+DplUPbPW8eOBnYDLultxqZO5e7PzEcH+DNIkiRpGLBFolk9JhKZ+fNOz39W0/V+DOwPnB8R\nh1CSkyOBB4BTOgpFxNqUJOaIzDyiFcMNEfEr4LsRsSilxWRfYB3KgOqOY3enTCX7h9Z5Vwf2A14P\n7F7TzyFJkqSGdbRImEg0o+qCdPOJiPHAfwBXZ+bDVY7JzJkRsQNwAnAGZTaovwAHZOZznU9P6SrV\ndZD3x4CjgaOAFYCbgLdl5vWdykwFVgO+Qxk/MROY1Cp3cVs/pCRJkoatjhYJuzY1o1IiEREnAaMz\nc5/W6/+mLAw3CngmInbKzGurnKs1KPs9fZS5l25W087MF4AvtLaejr2GeRfSkyRJ0gLIFolmVZ3W\n9e3APzq9/jpwEbApZTD2YTXHJUmSJPXKwdbNqppIrEGZuYmIWIsy89I3M/Nm4HvAZoMSnSRJktQD\nB1s3q2oi8TywTOv5dsAzlHEHAM8By9YclyRJktQrWySaVXWw9fXAfhFxP2UGpD9n5pzWe+sALvAm\nSZKkIWWLRLOqJhJfA/5EmSXpKWCfTu+9mzJOQpIkSRoytkg0q1IikZnXRsRYYCPgrsx8ptPbpwJ3\nDUZwkiRJUk9skWhW5XUkMnMmcF03+/+31ogkSZKkCmyRaFblRCIilgPeAYwFlujydmbmkXUG9v/b\nu/N4u8Z7j+OfbxJiqJZo0RciIS5NqrilpWY1VOsGNXeiaqjSWS+J9l5TS+sart66pbSquNR0JdpL\nmiZiipYWIaYiiaExRRBCJPzuH8/azc7KPuc85+Tss87Z5/t+vdZr773Ws9b+beexsn/7mczMzMzM\n2uMWiWrlLki3DTCetJp0IwE4kTAzMzOzHuMWiWrlTv96LmkdiS2BFSJiQGkb2LQIzczMzMwacItE\ntXK7Nn0IOCAilhojYWZmZmZWhVqLhBOJauS2SDwFDG5mIGZmZmZmnVFrkXDXpmrkJhInAycUA67N\nzMzMzCrnFolq5XZt2hNYE5ghaSrwcul4RMQh3RqZmZmZmVk73CJRrdxEYlvSzEyvAaMaHI9ui8jM\nzMzMLINbJKqVu7L18GYHYmZmZmbWGW6RqFbuGAkzMzMzs17FLRLVyk4kJK0s6RuSrpE0WdKGxf6D\nJG3cvBDNzMzMzJbmBemqlbuy9brALcA6wCPAh4FVisM7AbsAhzchPjMzMzOzhrwgXbVyWyTOAhYA\n/wR8FFDdsSnAdt0cl5mZmZlZu9wiUa3cWZt2BY6MiFmSBpaOPQus3b1hmZmZmZm1zy0S1cptkVge\nmNfGsfcBi7onHDMzMzOzPG6RqFZuIjEN2LeNY3sAf+mecMzMzMzM8rhFolq5XZvOBK6RBHBFsW+k\npL2ArwCjmxCbmZmZmVmbPP1rtXIXpLtO0teAM4DDit2Xkro7HRsRNzUpPjMzMzOzhrwgXbVyWySI\niJ9L+g2wNbAGMAe4MyLaGjthZmZmZtY0bpGoVnYiARARbwATmxSLmZmZmVk2t0hUq81EQtL2nblQ\nRNy67OGYmZmZmeVxi0S12muRuAWI4rnqnrelvL6EmZmZmVnTuEWiWu0lEjvVPV8V+CnwIHAl8Dyw\nJnAwMAo4plkBmpmZmZk14haJarWZSETElNpzSZcAEyLi8FKxSyVdDHwWGN+UCM3MzMzMGnCLRLVy\nF6TbC7iqjWNXFcfNzMzMzHqMWySqlZtIDABGtHFsQzw+wszMzMx6mFskqpWbSPwOOF3S/pIGAkga\nKOkA4DTgxmYFaGZmZmbWiFskqpW7jsQ3gHVJ3ZgWSZoLrFacf3tx3MzMzMysx9QSCbdIVCMrkYiI\nl4DtJO0KbAV8EJgNTI0IL1BnZmZmZj2u1rXp7bchAqRq4+lvOruy9R+APzQpFjMzMzOzbAMGwMCB\n8M47sGjR4sTCekbuGAkzMzMzs17HA66r40TCzMzMzPosD7iujhMJMzMzM+uz3CJRHScSZmZmZtZn\nuUWiOk4kzMzMzKzPcotEdbISCUk/lrSbpJWaHZCZmZmZWS63SFQnt0Xi88BNwFxJd0g6VdLOkgY3\nMTYzMzMzs3a5RaI6WYlERKwDbAx8E3gGOBKYCLwiabKkHzQvRDMzMzOzxtwiUZ3sMRIR8VhE/Dwi\nDoyINYHtgNuBHYCTmhSfmZmZmVmb3CJRneyVrSWtCGwL7AzsBPwzMB+4EZjUlOjMzMzMzNrhFonq\n5A62vhWYC1wHbA5cD2wDDImI0RFxbu4bSlpX0jWSXpX0mqTrJA3NPHcFSWdKmi3pTUlTJW3foNwA\nSWMkzZT0lqT7Je2bG6OZmZmZ9Q1ukahObtembYF3gEuB84GfR8TdEfFuZ96smPVpEmm8xSHAF4EN\ngcmSVs64xMXAEcC/AXsCs4GbJW1WKncqqbvVfwF7AHcBV0v6dGfiNTMzM7PezS0S1cnt2vQRFndp\nugRYRdJ9pKRgMnBrRMzPuM4RwPrARhHxOICkacDfgKOAs9s6UdKmwOeAwyLiV8W+KcB04BRgdLFv\nDeA44IyI+I/i9MmSRgBnAL/P/MxmZmZm1svVWiScSPS8rEQiIh4EHgTOkyRS96adSa0CxwELgRUy\nLjUauKuWRBTXniHpDmAv2kkkinMXAlfVnbtI0pXACZIGR8QCYHdgeeCy0vmXAb+UNDwiZmTEamZm\nZma9XK1F4uGHYa21qo2lL1t+edh0086dkz3YGkDScsAnSC0TOwMfB0QaP5FjFHBDg/3Tgf0zzp3R\noOVjOilxGFE8HwUsAB5vUA5gJOBEwszMzKwFDC5WNTv++Grj6OvWWQeefrpz52QlEpLGkhKHrYEV\ngTnAFODbwOSIeDjz/YbQOOl4GVhtGc6tHa89vhIR0UG5JUg6krQ+BkOHZo39NjMzM7OKHXFE+gLs\nrk3LZo01On9ObovE94BbgROBSRExrfNv1btFxIXAhQBbbLFFOQkxMzMzs17ok59Mm/W83ERi9c7O\n0NSGuTRueWirtaF87nptnAuLWxzmAqtKUqlVolzOzMzMzMy6KHew9bsAkoaQujcNIX0hnxoRnfli\nXhvDUDYSeCjj3H0krVQaJzESeJvFYyKmA4OBDVhynMTI4rGj9zEzMzMzsw7kriOBpNOAZ4FxwK+B\n8cCzkk7txPuNA7aStH7ddYeRFrcb18G544HlqBuULWkQcCAwoZixCeAm0uxOny+d/wXgQc/YZGZm\nZma27HIHW38LGEtaEO4y4DlgLdKX87GSXoyI8zIu9QvgWOAGSd8HgrR43NPABXXvtx7wBHBKRJwC\nEBH3SroKOLeYPWoGcDQwnLqkISJekHQ2MEbSPOCvpGRjZ4q1JszMzMzMbNlo6cmNGhSSHgH+LyK+\n3eDYOcAeEbFx1htKQ4FzgF1JU8f+EfhWRMysKzOMlCicHBEn1e1fEfghaWG6VYH7geMj4pbSewwE\nxpAWwFsLeJSUlFyTGeO84hzr394PvFR1EFY51wMD1wNzHbCkP9SD9SLiAzkFcxOJt4A9I2Jig2O7\nADdGRM6CdH2CpHsiYouq47BquR4YuB5Y4npgrgMGrgdluWMk5gAfbuPYqOK4mZmZmZn1E7mJxPXA\nqZK+WAxwRtIgSQcDpwDXNitAMzMzMzPrfXITiTHAfaTZmt6U9DzwJnA5aZzC2OaEV5kLqw7AegXX\nAwPXA0tcD8x1wMD1YAlZYyQAJAn4DLAdi9eRmEIahO2VoM3MzMzM+pHsRMLMzMzMzKwmax2JepLW\nAJaaoSkinuqWiMzMzMzMrNfLGiMh6b2SfiVpPjCbtMZDeevTJK0r6RpJr0p6TdJ1xZoX1oIk7Sgp\nGmyvlMqtJukiSS9JekPSREmbVBW3dZ2kdST9VNJUSfOLv/ewBuVWkHSmpNmS3izKb9+g3ABJYyTN\nlPSWpPsl7dsTn8W6rhP1oNH9ISRtVirnetDHSNpP0rWSZhX/jz8q6XRJq5TKZd3/c+8Z1rvk1ANJ\nw9q5F6xaul6/rAe5LRI/A/YlrWz9ALCgaRFVQNJKwCTS5zqEtOL2acBkSR+JiDeqjM+a6hvA3XWv\nF9WeFOOCxgPDgK8Dc0kTD0yWtFlEPNODcdqyGwEcAPwFuA3YrY1yF5PGg30PeBI4BrhZ0tYRcV9d\nuVOB44ATi2seBFwtac+I+H1zPoJ1g9x6AHAJcEFp32Ol164Hfc9xwFOkiWKeATYHTgJ2kvSJiHi3\nk/f/3HuG9S4d1oO6sqcD40rnzyu97p/1ICI63IAXgWNyyvbFDfgm8A4wom7fcNKXyu9UHZ+3pvzN\ndyQljLu0U2avosxOdfveR5po4LyqP4O3Tv/NB9Q9P7z42w4rldm02P/lun2DSCvdj6vbtwbph4eT\nS+f/EZhW9Wf1tmz1oDgWwGkdXMv1oA9uwAca7PtS8TffuXiddf/PvWd4631bZj0YVrw+vINr9dt6\nkDv9K8V/jFY1GrgrIh6v7YiIGcAdpJuJ9U+jgb9HxOTajoh4lfQrletFHxNL/rrUltHAQuCquvMW\nAVcCu0saXOzeHVgeuKx0/mXAJpKGL3vE1gyZ9SCX60EfFBEvNthda5leu3jMvf/n3jOsl8msB7n6\nbT3ITSSuBP6lmYFUbBTwYIP904GRPRyL9azLJb0jaY6kK0rjYtqrF0MlvadnQrQeNAqYERHzS/un\nk74wjqgrtwB4vEE58H2jVRwtaUExlmKSpO1Kx10PWscOxePDxWPu/T/3nmF9Q7ke1JwuaZHSONpx\nDcbK9Nt6kDtGYgJwbjEA5fekpr0lRMSk7gyshw0h9X8sexlYrYdjsZ7xKnAWaS2U10h9I8cCUyVt\nHhEvkOrFzAbn1ur/asDrzQ/VelB794La8drjK1G0X7dTzvquy4Abgb8D65H6PU+StGtE3FKUcT1o\nAZLWBk4BJkbEPcXu3Pt/7j3Derk26sEC0jipCaRu/huTvivcKeljEVFLOPptPchNJG4oHocDh9bt\nD0DF48DuC8usuSLiXuDeul1TJN0K/Jk0APv7lQRmZr1CRHyx7uVtkm4g/UJ9GrBtNVFZdytaFm4g\njYn8csXhWEXaqgcRMRv4al3R2yTdRGppOBH4Qk/G2RvlJhI7NTWK6s2lcctDWxmmtaCI+Kukx4At\ni13t1YvacWstc0m/PpfV/uYv15VbVZJKv0aXy1mLiIh5kn4HfKVut+tBHyZpRdKYh/WBHWLJmZhy\n7/+59wzrpTqoB0uJiKcl3c7i7wrQj+tBViIREVOaHUjFppP6t5WNBB7q4ViserUvBNNpPDXkSOCp\niHC3ptYzHdhH0kqlvq4jgbdZ3Bd+OjAY2IAl+8fX+sT7vtG66hMG14M+StJywDXAFsCuEfFAqUju\n/VYmyw4AAAfQSURBVD/3nmG9UEY9aE/5XtAv60HugnQDJA0q7dtd0nclbd6c0HrUOGArSevXdhQL\nFG3D0vMGW4uStAWwEal7E6S//dqSdqgr817SxAOuF61pPLAcsH9tR3HvOxCYEBG1NXRuIs3Q8fnS\n+V8AHixmfbMWUvy/vyeL7w/getAnSRoAXA7sDOwdEXc1KJZ7/8+9Z1gvk1kPGp03lNS9sf5e0G/r\nQW7Xpv8hDTj5EoCkrwLnF8cWSvpMRExsQnw95RfAscANkr5PyjJPBZ5m6cWIrAVIupy0IvtfgVdI\ng63HAM8C5xXFxgFTgcskfY/FCxIJ+ElPx2zLTtJ+xdOPFo97SHoReDEipkTEvZKuIk0usRypjhxN\nGh/2jy+LEfGCpLOBMZLmkerRgaR/kEb30MexLuqoHkg6jvSjwmQWD7Y+DlgL14NW8DPSF74fAm9I\n2qru2DNF15as+3/uPcN6pQ7rgaSzSD+6TyUNtt6IVA/eLc4D+nk9yFlsApgFHFT3+gngQmAVUpIx\nueoFMZZ1A4YC15Jm8JkH/C8NFiny1hob6UYwjTR700JS0ngh8MFSuSHAL0n9G+eTFpratOr4vXX5\n7x5tbLfUlVkROBt4DngL+BOwY4NrDSQNyp9F+qFlGrBf1Z/R27LXA9KvzncALxX3hzmkL5Yfcz3o\n+xtpNqa26sBJdeWy7v+59wxvvWvLqQfAYaS1JeYW94LngCuAjVwP0qbiw7dL0pvAbhFxm6QRwGPA\nZhExTdJuwBUR8f4OL2RmZmZmZi0hd0G614DVi+c7Ai9FxLTi9TvACt0cl5mZmZmZ9WK5YyTuBE6Q\ntAj4FmlRupoRQLtTZZmZmZmZWWvJ7dq0ISl52AB4EtglImYWxyYBsyLCC7mYmZmZmfUTWYnEPwpL\nq0fEnNK+TYDnIuLF7g7OzMzMzMx6p04lEmZmZmZmZpA/2NrMzMzMzOwfnEiYmbUwSXtL+k6D/TtK\nCkk7VhBWW7HUtmEdlB9WlDu0RwJsHMOiungPryoOM7MqOZEwM2ttewNLJRKkVZi3Lh57i2NIMc2u\nOpAM2wCfrToIM7Mq5U7/amZmLSQiXgPuqjqOkociorfF1FBE/KmjlhMzs1bnFgkzsxYl6RLgEGDt\num44M4tjS3VtknSLpNslfUrSfZLelHSvpI9LGiTpR5JmS3pZ0iWSVi6930qSfixphqS3i8cTJXX5\n35rimudLmiPpdUnjgHUalNtS0jWSninifrSId8W6Mj+V9Lyk5UrnriJpnqQzitfvKco+JWmBpBck\nTZS0cVc/h5lZK3KLhJlZ6zoV+ACwJTC62Legg3NGAGcCPwReB34CjCu2QcChwIeKMi8A/wogaRBw\nMzCyeN8HgK2AHwBDgO928TNcABwInAzcDewKXNGg3FDgPuASYB4wCvg3YH3goKLMfwPHAvsAv607\n93PAysV7AZxD+u81FvgbsDqpK9OqXfwMZmYtyYmEmVmLiognJL0IvN2JLkOrA5+IiCcBitaEG4Dh\nEbFLUeZmSdsD+1MkEsDBwLbADhFxa7Hvj5IA/l3SjyPihc7EL2kj0pf8EyPijGL3BEnvAb5a+qzX\n1p0n4A7gNeBSScdExJyIeEjSFOAolkwkjgImRMSM4vXWwOURcXFdmes7E7uZWX/grk1mZlbvsVoS\nUXikeLy5VO4RYJ3iSzvAp4BZwJ1FN6hBRSvFBGA5UutEZ32c9O/Ub0v7rywXlPTeolvVE6RWl4XA\nbwABG9YVPR/YSdKGxXlbApuzuDUCUsvHoZLGStpC0sAuxG5m1vKcSJiZWb25pddvt7N/EFD7kr0G\nsB7pC3z99ufi+OpdiOWDxePzpf3l1wC/IrVSnEfq/rQlaRYogBXqyl0PPEdqhaA45+/A+LoyXycl\nFoeRkooXJJ0jaaUufAYzs5blrk1mZtYd5gAzgAPaOD6zC9esTQO7JlDfSrJmfSFJKwB7ASdFxH/W\n7d+kfMGIWCjpIuBrkn5CGj9xVkQsqivzOjAGGCNpPWA/4AxS8nR8Fz6HmVlLcouEmVlrWwCs2GGp\nZXcTsC7wekTc02B7qQvX/BPwLksnJweVXg8mtYwsLO0/tI3rXkAaOH11ce4v2gogImZFxFmkweMf\nzorazKyfcIuEmVlrewgYIulo4B7grYh4oAnvcznwZdIA67OA+4HlgQ1IMyDtHRHzO3PBiHhU0hXA\nKcWg77uB3YBPl8q9Kuku4LuSZgMvkbolrd3GdZ8tppHdBxgfEU/XH5c0lTRL1QOkmat2ADYFft2Z\n+M3MWp0TCTOz1nYRaaDzj0i/ws8ChnX3mxRdhnYHTgCOBIYDbwBPAL9j8ViLzjqK9GX+OFJiMok0\nk9PtpXIHk6Z3/RnwJmmA9jeBG9u47tWkROKCBsduJbWCnED6d/JJ4NsRcV4XP4OZWUtSRFQdg5mZ\n9WPFoniTgV2AKfXjFZr4npeT1oZYPyLe7cL5A0kJ2ePAERFxUfdGaGbW+7lFwszMeouJAJKGR8TM\nZryBpK2AzUiL3H2nK0lEYQGLZ6wyM+uX3CJhZmaVkrQKsFHdrmkR0dWuUB29V5C6Sv0WOKqrrR+S\nPkpaowJgZhcHk5uZ9WlOJMzMzMzMrNM8/auZmZmZmXWaEwkzMzMzM+s0JxJmZmZmZtZpTiTMzMzM\nzKzTnEiYmZmZmVmn/T8gPp3vE4HvjAAAAABJRU5ErkJggg==\n",
50 | "text/plain": [
51 | ""
52 | ]
53 | },
54 | "metadata": {},
55 | "output_type": "display_data"
56 | }
57 | ],
58 | "source": [
59 | "fig = plt.figure()\n",
60 | "fig.set_figheight(8); fig.set_figwidth(11)\n",
61 | "\n",
62 | "fig.add_subplot(3,1,1)\n",
63 | "bound_file='in/bound.txt'\n",
64 | "plot_data(bound_file,'Air temp [C]')\n",
65 | "plt.plot(np.zeros(365),'k--',linewidth=2.0)\n",
66 | "\n",
67 | "fig.add_subplot(3,1,2)\n",
68 | "snow_file='in/snow.txt'\n",
69 | "plot_data(snow_file,'snow depth [m]')\n",
70 | "\n",
71 | "fig.add_subplot(3,1,3)\n",
72 | "rsnow_file='in/rsnow.txt'\n",
73 | "plot_data(rsnow_file,'snow density [kg m-3]')\n",
74 | "plt.xlabel('time [days]', fontsize=16);\n",
75 | "fig.tight_layout()"
76 | ]
77 | },
78 | {
79 | "cell_type": "code",
80 | "execution_count": null,
81 | "metadata": {
82 | "collapsed": true
83 | },
84 | "outputs": [],
85 | "source": []
86 | }
87 | ],
88 | "metadata": {
89 | "anaconda-cloud": {},
90 | "kernelspec": {
91 | "display_name": "Python [Root]",
92 | "language": "python",
93 | "name": "Python [Root]"
94 | },
95 | "language_info": {
96 | "codemirror_mode": {
97 | "name": "ipython",
98 | "version": 2
99 | },
100 | "file_extension": ".py",
101 | "mimetype": "text/x-python",
102 | "name": "python",
103 | "nbconvert_exporter": "python",
104 | "pygments_lexer": "ipython2",
105 | "version": "2.7.12"
106 | }
107 | },
108 | "nbformat": 4,
109 | "nbformat_minor": 0
110 | }
111 |
--------------------------------------------------------------------------------
/mesres.txt:
--------------------------------------------------------------------------------
1 | 13.806 10.623 9 6.525 4.626 2.742 1.117 -0.367 -1.085 -2.276 -3.328 -4.712
2 | 9.73 8.418 7.675 6.128 4.644 3.038 1.62 -0.066 -0.711 -1.868 -2.925 -4.339
3 | 6.159 5.512 5.178 4.334 3.408 2.33 1.357 0.107 -0.52 -1.603 -2.619 -4.014
4 | 6.017 4.577 4.061 3.167 2.39 1.605 0.916 0.093 -0.463 -1.467 -2.432 -3.773
5 | 7.742 5.666 4.866 3.587 2.617 1.696 0.938 0.082 -0.465 -1.408 -2.322 -3.603
6 | 11.9 8.592 7.175 5.114 3.641 2.32 1.281 0.16 -0.437 -1.352 -2.234 -3.469
7 | 11.828 9.419 8.196 6.226 4.651 3.1 1.817 0.35 -0.383 -1.281 -2.149 -3.354
8 | 9.528 7.598 6.896 5.549 4.319 3.011 1.881 0.53 -0.299 -1.185 -2.036 -3.228
9 | 11.803 8.85 7.594 5.709 4.287 2.95 1.858 0.623 -0.241 -1.103 -1.94 -3.111
10 | 7.727 7.243 6.807 5.702 4.555 3.289 2.171 0.855 -0.173 -1.024 -1.845 -2.994
11 | 9.375 6.763 5.878 4.532 3.489 2.506 1.669 0.706 -0.123 -0.954 -1.764 -2.891
12 | 4.784 4.726 4.7 4.217 3.499 2.623 1.801 0.808 -0.086 -0.905 -1.69 -2.8
13 | 3.107 2.684 2.6 2.339 1.968 1.519 1.059 0.478 -0.086 -0.86 -1.631 -2.715
14 | 3.877 2.939 2.546 1.972 1.516 1.099 0.714 0.299 -0.125 -0.854 -1.589 -2.642
15 | 3.837 3.007 2.734 2.227 1.723 1.226 0.791 0.307 -0.159 -0.858 -1.587 -2.598
16 | 9.591 6.404 5.154 3.487 2.438 1.603 0.973 0.368 -0.155 -0.857 -1.555 -2.554
17 | 10.427 7.979 6.971 5.314 4.025 2.809 1.817 0.764 -0.108 -0.829 -1.529 -2.508
18 | 9.75 8.093 7.222 5.72 4.455 3.205 2.157 0.981 -0.047 -0.796 -1.492 -2.46
19 | 8.485 7.444 6.748 5.482 4.355 3.214 2.212 1.087 0.037 -0.75 -1.434 -2.399
20 | 6.625 5.538 5.091 4.268 3.472 2.645 1.876 0.978 0.115 -0.699 -1.378 -2.345
21 | 6.098 5.141 4.748 3.961 3.194 2.402 1.691 0.899 0.134 -0.657 -1.326 -2.272
22 | 2.489 2.717 2.841 2.745 2.392 1.904 1.387 0.762 0.131 -0.623 -1.292 -2.228
23 | 2.881 2.089 1.81 1.5 1.233 0.977 0.69 0.371 0.027 -0.622 -1.265 -2.181
24 | 3.002 2.644 2.477 2.059 1.607 1.176 0.788 0.393 0.004 -0.619 -1.262 -2.149
25 | 2.707 1.999 1.788 1.457 1.158 0.873 0.589 0.293 -0.02 -0.622 -1.232 -2.13
26 | 4.079 2.911 2.551 1.954 1.462 1.03 0.662 0.312 -0.036 -0.619 -1.223 -2.096
27 | 6.359 4.028 3.439 2.577 1.935 1.356 0.872 0.412 -0.028 -0.619 -1.225 -2.082
28 | 6.583 4.92 4.336 3.421 2.647 1.909 1.257 0.622 0.016 -0.624 -1.225 -2.053
29 | 7.757 5.496 4.74 3.669 2.845 2.072 1.393 0.713 0.056 -0.609 -1.187 -2.027
30 | 5.987 5.279 4.901 4.082 3.267 2.425 1.664 0.876 0.122 -0.581 -1.173 -2.003
31 | 1.519 1.92 2.168 2.289 2.083 1.701 1.246 0.695 0.108 -0.566 -1.146 -1.964
32 | 1.776 1.381 1.293 1.151 0.961 0.763 0.541 0.289 -0.001 -0.54 -1.123 -1.928
33 | 2.784 1.98 1.711 1.308 0.982 0.694 0.453 0.216 -0.035 -0.572 -1.104 -1.921
34 | 1.258 1.319 1.337 1.242 1.025 0.781 0.513 0.246 -0.036 -0.582 -1.104 -1.899
35 | 0.534 0.393 0.469 0.532 0.466 0.381 0.249 0.108 -0.071 -0.584 -1.106 -1.88
36 | 0.301 0.296 0.335 0.373 0.294 0.223 0.124 0.038 -0.088 -0.592 -1.114 -1.877
37 | -0.029 -0.015 0.044 0.126 0.109 0.09 0.04 -0.01 -0.115 -0.623 -1.151 -1.88
38 | 0.648 0.215 0.184 0.135 0.058 0.024 -0.018 -0.038 -0.141 -0.629 -1.146 -1.885
39 | 2.777 1.242 0.983 0.635 0.392 0.228 0.091 0.003 -0.162 -0.662 -1.147 -1.88
40 | 4.032 2.525 2.075 1.48 1.04 0.669 0.369 0.093 -0.194 -0.66 -1.157 -1.881
41 | 4.749 3.181 2.675 1.989 1.466 0.981 0.574 0.159 -0.195 -0.68 -1.185 -1.881
42 | 6.7 4.798 4.072 2.984 2.177 1.451 0.856 0.271 -0.187 -0.667 -1.163 -1.847
43 | 7.133 5.486 4.806 3.663 2.76 1.891 1.16 0.4 -0.152 -0.658 -1.143 -1.837
44 | 4.563 4.088 3.886 3.308 2.637 1.901 1.23 0.474 -0.129 -0.642 -1.139 -1.832
45 | 2.187 1.839 1.787 1.658 1.415 1.089 0.731 0.292 -0.115 -0.621 -1.106 -1.799
46 | 2.939 2.164 1.889 1.468 1.104 0.78 0.483 0.165 -0.142 -0.619 -1.104 -1.783
47 | 4.175 2.785 2.284 1.665 1.22 0.832 0.504 0.167 -0.153 -0.62 -1.105 -1.757
48 | 6.362 4.626 3.893 2.82 2.046 1.377 0.845 0.309 -0.135 -0.62 -1.098 -1.757
49 | 5.574 4.643 4.214 3.38 2.623 1.856 1.2 0.486 -0.114 -0.602 -1.065 -1.745
50 | 4.546 3.816 3.499 2.874 2.264 1.65 1.08 0.462 -0.089 -0.581 -1.067 -1.717
51 | 5.426 3.958 3.433 2.646 2.028 1.464 0.963 0.419 -0.074 -0.575 -1.031 -1.704
52 | 7.673 5.62 4.773 3.523 2.618 1.833 1.196 0.519 -0.066 -0.544 -1.026 -1.676
53 | 8.565 6.745 5.889 4.517 3.452 2.467 1.649 0.777 -0.005 -0.542 -1.009 -1.666
54 | 7.686 6.336 5.681 4.559 3.599 2.659 1.829 0.929 0.085 -0.509 -0.986 -1.636
55 | 7.094 5.892 5.334 4.324 3.44 2.576 1.805 0.961 0.167 -0.487 -0.953 -1.616
56 | 6.168 5.257 4.785 3.936 3.166 2.402 1.698 0.943 0.221 -0.462 -0.928 -1.592
57 | 6.23 5.128 4.591 3.69 2.929 2.211 1.563 0.884 0.234 -0.424 -0.907 -1.555
58 | 5.629 4.367 3.958 3.299 2.676 2.058 1.476 0.85 0.25 -0.413 -0.874 -1.531
59 | 5.329 4.351 3.883 3.155 2.537 1.947 1.401 0.816 0.258 -0.385 -0.867 -1.515
60 | 5.242 4.43 4.016 3.275 2.62 1.994 1.424 0.839 0.271 -0.382 -0.833 -1.48
61 | 1.077 1.638 1.878 1.998 1.822 1.52 1.152 0.708 0.249 -0.35 -0.829 -1.473
62 | 0.725 0.681 0.736 0.777 0.708 0.606 0.453 0.284 0.064 -0.349 -0.805 -1.435
63 | 0.009 0.144 0.254 0.367 0.329 0.291 0.205 0.113 -0.014 -0.349 -0.789 -1.435
64 | 0.763 0.451 0.317 0.218 0.131 0.095 0.046 0.016 -0.044 -0.384 -0.796 -1.435
65 | 0.57 0.595 0.596 0.546 0.414 0.302 0.179 0.088 -0.038 -0.386 -0.825 -1.427
66 | 0.027 0.038 0.068 0.139 0.116 0.105 0.059 0.025 -0.05 -0.386 -0.83 -1.403
67 | 1.482 0.778 0.561 0.323 0.153 0.082 0.022 -0.01 -0.071 -0.404 -0.829 -1.395
68 | -0.072 0.089 0.228 0.343 0.307 0.246 0.149 0.061 -0.049 -0.425 -0.829 -1.395
69 | -0.159 -0.16 -0.054 0.035 0.019 0.023 -0.003 -0.022 -0.076 -0.425 -0.828 -1.395
70 | -0.29 -0.184 -0.091 -0.022 -0.035 -0.034 -0.039 -0.038 -0.076 -0.428 -0.828 -1.395
71 | -0.376 -0.189 -0.105 -0.048 -0.068 -0.045 -0.039 -0.038 -0.076 -0.464 -0.843 -1.395
72 | -0.696 -0.292 -0.13 -0.048 -0.068 -0.045 -0.039 -0.038 -0.104 -0.464 -0.868 -1.398
73 | -1.833 -0.583 -0.21 -0.049 -0.068 -0.045 -0.043 -0.038 -0.115 -0.476 -0.869 -1.422
74 | -1.143 -0.525 -0.219 -0.059 -0.068 -0.045 -0.054 -0.038 -0.115 -0.503 -0.868 -1.435
75 | -0.388 -0.247 -0.137 -0.048 -0.068 -0.045 -0.047 -0.038 -0.149 -0.503 -0.873 -1.435
76 | -0.132 -0.145 -0.101 -0.048 -0.068 -0.045 -0.058 -0.038 -0.154 -0.525 -0.908 -1.435
77 | -0.042 -0.11 -0.085 -0.048 -0.068 -0.045 -0.071 -0.038 -0.184 -0.543 -0.908 -1.435
78 | -0.159 -0.121 -0.085 -0.048 -0.068 -0.045 -0.071 -0.038 -0.193 -0.544 -0.908 -1.435
79 | -0.096 -0.123 -0.085 -0.048 -0.068 -0.045 -0.078 -0.043 -0.21 -0.579 -0.932 -1.435
80 | -0.39 -0.206 -0.112 -0.048 -0.068 -0.045 -0.078 -0.072 -0.231 -0.582 -0.947 -1.436
81 | -1.614 -0.533 -0.221 -0.054 -0.068 -0.045 -0.078 -0.077 -0.256 -0.605 -0.948 -1.474
82 | -1.515 -0.722 -0.341 -0.085 -0.066 -0.044 -0.076 -0.075 -0.269 -0.62 -0.961 -1.474
83 | -0.792 -0.43 -0.253 -0.08 -0.068 -0.045 -0.078 -0.086 -0.28 -0.621 -0.987 -1.476
84 | -0.81 -0.391 -0.229 -0.086 -0.068 -0.048 -0.078 -0.115 -0.309 -0.649 -0.987 -1.476
85 | -0.953 -0.474 -0.271 -0.086 -0.068 -0.063 -0.078 -0.118 -0.317 -0.66 -0.987 -1.476
86 | -0.562 -0.371 -0.243 -0.086 -0.068 -0.074 -0.078 -0.154 -0.348 -0.663 -1.023 -1.477
87 | -1.094 -0.493 -0.294 -0.086 -0.081 -0.084 -0.078 -0.165 -0.353 -0.7 -1.026 -1.511
88 | -1.234 -0.703 -0.438 -0.122 -0.106 -0.084 -0.078 -0.192 -0.387 -0.7 -1.029 -1.516
89 | -0.631 -0.485 -0.354 -0.125 -0.106 -0.084 -0.081 -0.223 -0.408 -0.732 -1.066 -1.516
90 | -0.125 -0.237 -0.216 -0.101 -0.106 -0.084 -0.116 -0.259 -0.441 -0.752 -1.068 -1.518
91 | -0.649 -0.265 -0.182 -0.086 -0.106 -0.084 -0.139 -0.301 -0.48 -0.783 -1.104 -1.554
92 | -5.116 -2.445 -1.489 -0.549 -0.218 -0.118 -0.193 -0.358 -0.528 -0.819 -1.13 -1.56
93 | -5.255 -3.638 -2.878 -1.721 -0.767 -0.257 -0.249 -0.405 -0.57 -0.858 -1.156 -1.597
94 | -4.733 -3.608 -3.081 -2.208 -1.494 -0.792 -0.504 -0.55 -0.676 -0.922 -1.2 -1.611
95 | -6.768 -5.031 -4.292 -3.303 -2.486 -1.743 -1.245 -1.084 -1.077 -1.151 -1.347 -1.693
96 | -7.481 -6.2 -5.586 -4.725 -3.822 -2.972 -2.291 -1.976 -1.835 -1.675 -1.701 -1.889
97 | -6.067 -5.661 -5.392 -4.895 -4.311 -3.621 -3.074 -2.765 -2.592 -2.313 -2.21 -2.223
98 | -8.196 -6.554 -5.895 -5.139 -4.491 -3.891 -3.414 -3.164 -3.027 -2.778 -2.652 -2.589
99 | -12.94 -10.546 -9.431 -8.068 -6.769 -5.585 -4.506 -4.017 -3.742 -3.309 -3.087 -2.931
100 | -12.603 -11.14 -10.381 -9.344 -8.165 -6.976 -5.836 -5.246 -4.863 -4.207 -3.795 -3.423
101 | -12.472 -11.29 -10.642 -9.75 -8.696 -7.637 -6.626 -6.075 -5.699 -5.022 -4.544 -4.033
102 | -12.088 -11.039 -10.487 -9.721 -8.864 -7.925 -7.096 -6.619 -6.28 -5.64 -5.163 -4.593
103 | -10.967 -10.574 -10.25 -9.677 -9.003 -8.16 -7.45 -7.021 -6.714 -6.109 -5.648 -5.071
104 | -10.048 -9.69 -9.436 -8.987 -8.5 -7.931 -7.428 -7.125 -6.892 -6.402 -6.001 -5.463
105 | -9.351 -9.191 -9.021 -8.676 -8.318 -7.847 -7.434 -7.167 -6.972 -6.557 -6.213 -5.733
106 | -9.991 -9.474 -9.146 -8.655 -8.244 -7.787 -7.397 -7.157 -7.003 -6.646 -6.356 -5.939
107 | -9.898 -9.699 -9.496 -9.078 -8.649 -8.128 -7.679 -7.395 -7.212 -6.818 -6.519 -6.106
108 | -8.833 -8.772 -8.689 -8.455 -8.225 -7.912 -7.624 -7.424 -7.292 -6.967 -6.688 -6.291
109 | -8.407 -8.321 -8.246 -8.054 -7.882 -7.651 -7.439 -7.296 -7.202 -6.951 -6.753 -6.411
110 | -8.134 -8.023 -7.948 -7.781 -7.642 -7.458 -7.294 -7.176 -7.106 -6.906 -6.755 -6.467
111 | -8.57 -8.344 -8.203 -7.933 -7.718 -7.476 -7.262 -7.142 -7.072 -6.894 -6.737 -6.497
112 | -8.203 -8.05 -7.892 -7.684 -7.558 -7.393 -7.243 -7.133 -7.068 -6.894 -6.755 -6.545
113 | -10.095 -9.73 -9.319 -8.729 -8.312 -7.861 -7.492 -7.296 -7.189 -6.956 -6.805 -6.599
114 | -9.718 -9.398 -9.175 -8.782 -8.468 -8.105 -7.77 -7.568 -7.448 -7.173 -6.976 -6.71
115 | -11.474 -10.702 -10.245 -9.577 -9.075 -8.529 -8.056 -7.809 -7.654 -7.349 -7.134 -6.849
116 | -11.85 -11.312 -10.91 -10.246 -9.719 -9.111 -8.552 -8.24 -8.039 -7.652 -7.382 -7.03
117 | -10.18 -10.173 -10.08 -9.806 -9.497 -9.102 -8.716 -8.463 -8.281 -7.922 -7.64 -7.252
118 | -9.27 -9.272 -9.22 -9.063 -8.9 -8.696 -8.474 -8.327 -8.23 -7.962 -7.754 -7.406
119 | -9.296 -9.166 -9.058 -8.847 -8.671 -8.479 -8.295 -8.173 -8.108 -7.9 -7.728 -7.459
120 | -9.595 -9.339 -9.178 -8.912 -8.704 -8.483 -8.281 -8.142 -8.079 -7.866 -7.718 -7.491
121 | -10.885 -10.343 -10.024 -9.536 -9.161 -8.783 -8.46 -8.282 -8.174 -7.952 -7.784 -7.543
122 | -11.603 -11.189 -10.886 -10.361 -9.886 -9.371 -8.911 -8.657 -8.499 -8.178 -7.949 -7.654
123 | -9.986 -10.096 -10.076 -9.904 -9.676 -9.375 -9.074 -8.873 -8.731 -8.42 -8.175 -7.832
124 | -9.636 -9.488 -9.404 -9.237 -9.105 -8.967 -8.8 -8.696 -8.629 -8.425 -8.25 -7.957
125 | -10.999 -10.483 -10.195 -9.76 -9.445 -9.124 -8.848 -8.695 -8.616 -8.409 -8.249 -7.99
126 | -11.774 -11.255 -10.941 -10.437 -10.012 -9.569 -9.182 -8.961 -8.832 -8.554 -8.354 -8.068
127 | -12.385 -11.815 -11.481 -10.94 -10.471 -9.968 -9.525 -9.275 -9.118 -8.787 -8.548 -8.218
128 | -12.938 -12.328 -11.972 -11.396 -10.894 -10.349 -9.858 -9.587 -9.411 -9.044 -8.77 -8.404
129 | -14.54 -13.64 -13.114 -12.366 -11.662 -10.948 -10.327 -9.983 -9.771 -9.341 -9.028 -8.61
130 | -15.512 -14.548 -13.994 -13.191 -12.401 -11.618 -10.895 -10.51 -10.252 -9.734 -9.362 -8.876
131 | -15.196 -14.724 -14.351 -13.7 -12.982 -12.198 -11.455 -11.03 -10.746 -10.179 -9.744 -9.183
132 | -13.763 -13.546 -13.361 -12.962 -12.533 -12.006 -11.497 -11.187 -10.969 -10.467 -10.058 -9.481
133 | -13.2 -12.964 -12.795 -12.454 -12.111 -11.719 -11.33 -11.088 -10.921 -10.513 -10.18 -9.669
134 | -12.428 -12.349 -12.256 -12.017 -11.765 -11.461 -11.16 -10.966 -10.832 -10.502 -10.19 -9.763
135 | -11.96 -11.869 -11.789 -11.588 -11.392 -11.173 -10.939 -10.792 -10.691 -10.424 -10.183 -9.799
136 | -11.83 -11.667 -11.566 -11.354 -11.167 -10.974 -10.769 -10.643 -10.562 -10.329 -10.129 -9.796
137 | -12.632 -12.24 -12.008 -11.643 -11.338 -11.048 -10.771 -10.617 -10.518 -10.296 -10.091 -9.796
138 | -12.968 -12.578 -12.372 -11.988 -11.633 -11.276 -10.943 -10.748 -10.63 -10.355 -10.137 -9.82
139 | -13.56 -13.137 -12.879 -12.412 -11.989 -11.552 -11.152 -10.936 -10.793 -10.478 -10.244 -9.894
140 | -13.273 -12.911 -12.694 -12.333 -11.993 -11.628 -11.303 -11.085 -10.938 -10.629 -10.371 -10.007
141 | -13.885 -13.433 -13.172 -12.715 -12.291 -11.842 -11.436 -11.204 -11.059 -10.731 -10.478 -10.108
142 | -14.147 -13.698 -13.423 -12.963 -12.522 -12.06 -11.632 -11.391 -11.231 -10.889 -10.616 -10.225
143 | -14.515 -13.944 -13.636 -13.134 -12.696 -12.226 -11.799 -11.555 -11.396 -11.044 -10.766 -10.358
144 | -15.95 -15.171 -14.698 -13.999 -13.377 -12.732 -12.157 -11.854 -11.648 -11.241 -10.931 -10.502
145 | -17.168 -16.263 -15.714 -14.931 -14.168 -13.395 -12.699 -12.322 -12.076 -11.575 -11.201 -10.699
146 | -17.748 -16.928 -16.407 -15.634 -14.846 -14.027 -13.258 -12.84 -12.553 -11.987 -11.552 -10.97
147 | -17.766 -17.079 -16.636 -15.925 -15.205 -14.415 -13.668 -13.248 -12.962 -12.374 -11.907 -11.278
148 | -18.324 -17.508 -17.013 -16.246 -15.494 -14.709 -13.965 -13.553 -13.267 -12.684 -12.211 -11.558
149 | -18.035 -17.475 -17.101 -16.429 -15.749 -14.99 -14.274 -13.864 -13.573 -12.982 -12.499 -11.818
150 | -16.237 -16.14 -16.008 -15.653 -15.246 -14.751 -14.235 -13.917 -13.69 -13.147 -12.707 -12.049
151 | -17.216 -16.549 -16.154 -15.571 -15.058 -14.549 -14.052 -13.76 -13.572 -13.146 -12.741 -12.181
152 | -19.1 -18.086 -17.505 -16.641 -15.911 -15.126 -14.399 -14.018 -13.762 -13.244 -12.839 -12.249
153 | -21.094 -19.903 -19.178 -18.1 -17.176 -16.13 -15.135 -14.621 -14.287 -13.638 -13.127 -12.45
154 | -22.195 -21.072 -20.338 -19.218 -18.234 -17.075 -15.96 -15.366 -14.968 -14.193 -13.592 -12.796
155 | -22.325 -21.423 -20.808 -19.795 -18.843 -17.711 -16.606 -16.014 -15.585 -14.762 -14.104 -13.216
156 | -20.801 -20.415 -20.058 -19.372 -18.629 -17.756 -16.86 -16.353 -15.964 -15.197 -14.543 -13.629
157 | -21.176 -20.387 -19.891 -19.116 -18.381 -17.592 -16.792 -16.341 -16.016 -15.343 -14.767 -13.911
158 | -22.505 -21.447 -20.816 -19.849 -18.959 -18.006 -17.059 -16.567 -16.218 -15.507 -14.915 -14.08
159 | -22.945 -22.101 -21.542 -20.617 -19.635 -18.637 -17.596 -17.042 -16.65 -15.869 -15.234 -14.354
160 | -22.133 -21.434 -20.984 -20.254 -19.465 -18.621 -17.766 -17.269 -16.918 -16.188 -15.552 -14.651
161 | -23.36 -22.343 -21.74 -20.836 -19.851 -18.936 -17.98 -17.471 -17.098 -16.366 -15.746 -14.872
162 | -24.418 -23.302 -22.636 -21.652 -20.547 -19.536 -18.451 -17.89 -17.493 -16.692 -16.035 -15.113
163 | -25.096 -24.004 -23.33 -22.332 -21.192 -20.139 -18.985 -18.388 -17.953 -17.101 -16.4 -15.429
164 | -25.43 -24.406 -23.746 -22.784 -21.653 -20.594 -19.442 -18.838 -18.396 -17.517 -16.782 -15.769
165 | -26.009 -24.909 -24.237 -23.235 -22.075 -21.014 -19.844 -19.231 -18.786 -17.9 -17.154 -16.101
166 | -26.385 -25.37 -24.708 -23.709 -22.54 -21.468 -20.274 -19.645 -19.185 -18.281 -17.512 -16.44
167 | -26.605 -25.62 -24.993 -24.023 -22.873 -21.807 -20.632 -20.013 -19.552 -18.638 -17.869 -16.774
168 | -26.49 -25.623 -25.053 -24.134 -23.059 -22.018 -20.914 -20.304 -19.853 -18.957 -18.183 -17.089
169 | -25.636 -25.134 -24.722 -23.976 -23.062 -22.094 -21.069 -20.503 -20.076 -19.214 -18.461 -17.378
170 | -23.222 -23.039 -22.868 -22.449 -21.928 -21.347 -20.688 -20.288 -19.971 -19.258 -18.605 -17.581
171 | -24.09 -23.374 -22.957 -22.331 -21.643 -20.976 -20.309 -19.912 -19.658 -19.035 -18.491 -17.585
172 | -24.243 -23.533 -23.092 -22.414 -21.725 -21.027 -20.308 -19.887 -19.633 -19.002 -18.467 -17.596
173 | -25.574 -24.659 -24.07 -23.175 -22.329 -21.456 -20.555 -20.081 -19.745 -19.065 -18.495 -17.657
174 | -25.642 -24.897 -24.406 -23.58 -22.756 -21.853 -20.915 -20.418 -20.067 -19.324 -18.706 -17.808
175 | -25.799 -25.099 -24.593 -23.752 -22.939 -22.057 -21.134 -20.643 -20.282 -19.536 -18.909 -18
176 | -24.951 -24.464 -24.089 -23.441 -22.744 -22.007 -21.21 -20.75 -20.43 -19.73 -19.104 -18.188
177 | -24.667 -24.228 -23.874 -23.259 -22.59 -21.878 -21.138 -20.745 -20.428 -19.768 -19.178 -18.315
178 | -24.338 -23.778 -23.411 -22.822 -22.222 -21.62 -20.974 -20.611 -20.333 -19.735 -19.208 -18.368
179 | -26.262 -25.246 -24.632 -23.708 -22.872 -22.014 -21.138 -20.691 -20.377 -19.733 -19.207 -18.39
180 | -26.031 -25.499 -25.078 -24.309 -23.479 -22.589 -21.64 -21.137 -20.774 -20.039 -19.429 -18.558
181 | -23.935 -23.804 -23.652 -23.211 -22.69 -22.137 -21.492 -21.116 -20.829 -20.196 -19.6 -18.756
182 | -21.82 -21.964 -21.969 -21.817 -21.57 -21.302 -20.917 -20.674 -20.481 -19.998 -19.535 -18.794
183 | -20.422 -20.574 -20.624 -20.587 -20.475 -20.408 -20.196 -20.055 -19.944 -19.611 -19.272 -18.668
184 | -21.397 -21.12 -20.967 -20.63 -20.326 -20.103 -19.782 -19.643 -19.529 -19.237 -18.949 -18.447
185 | -22.317 -21.695 -21.384 -20.898 -20.466 -20.124 -19.73 -19.529 -19.384 -19.054 -18.78 -18.285
186 | -24.3 -23.364 -22.846 -22.066 -21.366 -20.729 -20.068 -19.741 -19.53 -19.08 -18.733 -18.216
187 | -25.177 -24.351 -23.82 -23.018 -22.221 -21.434 -20.625 -20.208 -19.928 -19.37 -18.924 -18.289
188 | -24.396 -23.894 -23.531 -22.932 -22.268 -21.605 -20.889 -20.512 -20.252 -19.662 -19.179 -18.487
189 | -24.059 -23.594 -23.279 -22.732 -22.142 -21.563 -20.927 -20.589 -20.337 -19.782 -19.327 -18.632
190 | -24.074 -23.55 -23.213 -22.639 -22.064 -21.494 -20.877 -20.591 -20.358 -19.842 -19.382 -18.725
191 | -24.923 -24.201 -23.746 -23.048 -22.366 -21.707 -21.021 -20.658 -20.402 -19.868 -19.443 -18.767
192 | -26.079 -25.084 -24.512 -23.676 -22.872 -22.119 -21.315 -20.905 -20.626 -20.043 -19.561 -18.867
193 | -27.772 -26.599 -25.908 -24.874 -23.897 -22.936 -21.908 -21.406 -21.05 -20.364 -19.811 -19.046
194 | -28.775 -27.655 -26.956 -25.877 -24.834 -23.754 -22.607 -22.029 -21.625 -20.836 -20.2 -19.332
195 | -29.053 -28.05 -27.402 -26.388 -25.346 -24.288 -23.148 -22.561 -22.137 -21.31 -20.611 -19.675
196 | -28.795 -27.972 -27.41 -26.541 -25.518 -24.538 -23.483 -22.922 -22.509 -21.685 -20.986 -20.003
197 | -28.203 -27.545 -27.096 -26.344 -25.474 -24.549 -23.622 -23.112 -22.721 -21.933 -21.259 -20.29
198 | -27.296 -26.735 -26.384 -25.757 -25.039 -24.322 -23.533 -23.089 -22.769 -22.062 -21.435 -20.504
199 | -27.385 -26.688 -26.264 -25.606 -24.853 -24.164 -23.372 -22.982 -22.672 -21.995 -21.462 -20.592
200 | -27.67 -26.89 -26.418 -25.686 -24.923 -24.213 -23.41 -23.003 -22.715 -22.067 -21.507 -20.668
201 | -28.042 -27.329 -26.88 -26.106 -25.286 -24.506 -23.631 -23.176 -22.856 -22.182 -21.596 -20.757
202 | -28.345 -27.483 -26.983 -26.199 -25.375 -24.611 -23.765 -23.314 -23.001 -22.323 -21.748 -20.895
203 | -26.998 -26.704 -26.454 -25.93 -25.267 -24.598 -23.852 -23.429 -23.134 -22.477 -21.88 -21.044
204 | -25.205 -25.183 -25.101 -24.795 -24.39 -23.988 -23.476 -23.18 -22.95 -22.408 -21.895 -21.131
205 | -24.101 -24.089 -24.032 -23.816 -23.544 -23.294 -22.934 -22.723 -22.561 -22.139 -21.738 -21.067
206 | -23.527 -23.388 -23.311 -23.098 -22.867 -22.708 -22.422 -22.268 -22.14 -21.812 -21.489 -20.913
207 | -23.019 -23.03 -23 -22.812 -22.579 -22.403 -22.121 -21.956 -21.842 -21.531 -21.241 -20.737
208 | -22.847 -22.69 -22.603 -22.384 -22.186 -22.032 -21.768 -21.645 -21.552 -21.285 -21.03 -20.574
209 | -24.306 -23.635 -23.317 -22.82 -22.399 -22.072 -21.707 -21.494 -21.388 -21.109 -20.851 -20.422
210 | -26.848 -25.771 -25.198 -24.401 -23.593 -22.865 -22.176 -21.841 -21.614 -21.174 -20.838 -20.331
211 | -28.06 -27.059 -26.485 -25.63 -24.705 -23.812 -22.925 -22.47 -22.169 -21.569 -21.108 -20.479
212 | -26.984 -26.588 -26.275 -25.694 -24.958 -24.191 -23.376 -22.953 -22.646 -21.998 -21.473 -20.754
213 | -27.207 -26.397 -25.959 -25.331 -24.63 -23.98 -23.306 -22.941 -22.686 -22.12 -21.648 -20.932
214 | -27.008 -26.6 -26.323 -25.759 -25.034 -24.322 -23.57 -23.181 -22.876 -22.281 -21.791 -21.076
215 | -25.564 -25.32 -25.154 -24.786 -24.316 -23.884 -23.368 -23.08 -22.855 -22.344 -21.9 -21.204
216 | -24.516 -24.44 -24.361 -24.087 -23.758 -23.448 -23.051 -22.812 -22.643 -22.227 -21.832 -21.212
217 | -24.296 -24.081 -23.933 -23.635 -23.32 -23.076 -22.695 -22.507 -22.37 -22.017 -21.7 -21.152
218 | -24.613 -24.268 -24.064 -23.67 -23.296 -22.96 -22.581 -22.355 -22.209 -21.852 -21.549 -21.036
219 | -25.59 -25.03 -24.724 -24.216 -23.66 -23.174 -22.67 -22.407 -22.226 -21.834 -21.491 -21.014
220 | -25.947 -25.476 -25.176 -24.684 -24.068 -23.528 -22.943 -22.639 -22.428 -21.965 -21.59 -21.028
221 | -27.575 -26.646 -26.151 -25.436 -24.66 -23.971 -23.259 -22.905 -22.659 -22.145 -21.735 -21.13
222 | -28.074 -27.293 -26.823 -26.097 -25.277 -24.534 -23.723 -23.309 -23.03 -22.442 -21.964 -21.29
223 | -28.076 -27.423 -26.992 -26.288 -25.533 -24.827 -24.032 -23.619 -23.322 -22.72 -22.21 -21.5
224 | -28.157 -27.542 -27.104 -26.428 -25.692 -24.983 -24.219 -23.82 -23.535 -22.927 -22.424 -21.687
225 | -29.421 -28.427 -27.847 -26.98 -26.139 -25.342 -24.488 -24.056 -23.747 -23.124 -22.614 -21.859
226 | -30.936 -29.866 -29.208 -28.195 -27.16 -26.164 -25.096 -24.563 -24.201 -23.467 -22.878 -22.066
227 | -30.008 -29.44 -29.025 -28.325 -27.412 -26.499 -25.517 -25.039 -24.638 -23.879 -23.234 -22.356
228 | -29.485 -28.823 -28.414 -27.769 -26.985 -26.264 -25.46 -25.014 -24.712 -24.047 -23.459 -22.597
229 | -30.634 -29.718 -29.176 -28.308 -27.415 -26.564 -25.647 -25.176 -24.844 -24.171 -23.579 -22.748
230 | -30.36 -29.647 -29.192 -28.447 -27.604 -26.832 -25.913 -25.445 -25.099 -24.394 -23.799 -22.927
231 | -31.239 -30.294 -29.714 -28.831 -27.931 -27.065 -26.115 -25.631 -25.283 -24.575 -23.968 -23.11
232 | -31.57 -30.781 -30.265 -29.39 -28.45 -27.506 -26.491 -25.973 -25.589 -24.829 -24.201 -23.298
233 | -30.242 -29.785 -29.467 -28.883 -28.105 -27.377 -26.551 -26.08 -25.78 -25.042 -24.415 -23.509
234 | -29.886 -29.393 -29.076 -28.503 -27.79 -27.141 -26.372 -25.997 -25.685 -25.059 -24.511 -23.643
235 | -28.863 -28.521 -28.315 -27.871 -27.302 -26.795 -26.182 -25.859 -25.598 -25.022 -24.508 -23.682
236 | -29.353 -28.755 -28.413 -27.866 -27.225 -26.632 -26.024 -25.684 -25.465 -24.893 -24.442 -23.673
237 | -30.481 -29.655 -29.174 -28.447 -27.638 -26.922 -26.152 -25.77 -25.491 -24.908 -24.437 -23.668
238 | -29.92 -29.405 -29.056 -28.422 -27.736 -27.075 -26.327 -25.945 -25.649 -25.039 -24.52 -23.767
239 | -30.3 -29.672 -29.273 -28.641 -27.863 -27.182 -26.401 -26.034 -25.739 -25.134 -24.626 -23.859
240 | -28.766 -28.598 -28.434 -27.998 -27.478 -26.985 -26.367 -26.037 -25.784 -25.207 -24.741 -23.971
241 | -28.706 -28.215 -27.926 -27.453 -26.947 -26.548 -26.013 -25.743 -25.55 -25.07 -24.645 -23.956
242 | -28.299 -28.053 -27.856 -27.426 -26.94 -26.519 -25.978 -25.684 -25.48 -24.989 -24.559 -23.939
243 | -28.734 -28.156 -27.842 -27.299 -26.792 -26.353 -25.829 -25.531 -25.34 -24.894 -24.506 -23.86
244 | -29.585 -28.948 -28.562 -27.907 -27.256 -26.669 -25.987 -25.66 -25.423 -24.908 -24.49 -23.855
245 | -30.358 -29.678 -29.234 -28.567 -27.772 -27.053 -26.295 -25.909 -25.643 -25.077 -24.606 -23.933
246 | -30.326 -29.785 -29.41 -28.77 -28.047 -27.332 -26.559 -26.152 -25.865 -25.265 -24.767 -24.045
247 | -29.568 -29.228 -28.976 -28.494 -27.851 -27.238 -26.585 -26.191 -25.973 -25.355 -24.895 -24.166
248 | -28.388 -28.237 -28.104 -27.768 -27.293 -26.882 -26.357 -26.075 -25.858 -25.35 -24.926 -24.252
249 | -27.778 -27.544 -27.397 -27.063 -26.691 -26.401 -25.984 -25.761 -25.6 -25.178 -24.795 -24.197
250 | -29.677 -28.871 -28.427 -27.79 -27.105 -26.546 -25.95 -25.661 -25.455 -25.041 -24.653 -24.089
251 | -30.375 -29.756 -29.339 -28.673 -27.884 -27.169 -26.403 -26.02 -25.741 -25.19 -24.76 -24.11
252 | -29.835 -29.31 -28.963 -28.399 -27.756 -27.166 -26.532 -26.182 -25.882 -25.354 -24.897 -24.222
253 | -30.638 -29.921 -29.472 -28.769 -28.03 -27.383 -26.64 -26.276 -26.005 -25.459 -24.986 -24.317
254 | -30.881 -30.241 -29.821 -29.126 -28.359 -27.655 -26.878 -26.484 -26.198 -25.597 -25.128 -24.407
255 | -30.264 -29.887 -29.595 -29.041 -28.341 -27.739 -27.007 -26.627 -26.347 -25.76 -25.266 -24.538
256 | -29.923 -29.375 -29.051 -28.534 -27.925 -27.446 -26.851 -26.517 -26.295 -25.759 -25.299 -24.597
257 | -30.81 -30.185 -29.782 -29.131 -28.364 -27.708 -26.964 -26.596 -26.335 -25.775 -25.314 -24.621
258 | -28.95 -28.919 -28.801 -28.451 -27.986 -27.536 -26.972 -26.652 -26.394 -25.865 -25.42 -24.715
259 | -29.399 -28.846 -28.522 -28.01 -27.51 -27.104 -26.596 -26.325 -26.138 -25.714 -25.336 -24.698
260 | -29.222 -28.899 -28.671 -28.192 -27.668 -27.236 -26.642 -26.383 -26.163 -25.652 -25.31 -24.702
261 | -29.139 -28.763 -28.527 -28.054 -27.554 -27.159 -26.61 -26.296 -26.089 -25.649 -25.307 -24.699
262 | -29.278 -28.824 -28.554 -28.052 -27.53 -27.107 -26.545 -26.288 -26.082 -25.642 -25.301 -24.692
263 | -29.208 -28.904 -28.655 -28.19 -27.669 -27.225 -26.649 -26.365 -26.153 -25.663 -25.318 -24.709
264 | -29.08 -28.672 -28.43 -27.947 -27.489 -27.059 -26.542 -26.294 -26.096 -25.652 -25.306 -24.697
265 | -30.09 -29.44 -29.077 -28.449 -27.832 -27.299 -26.667 -26.361 -26.142 -25.681 -25.299 -24.693
266 | -30.475 -29.927 -29.566 -28.931 -28.27 -27.666 -26.965 -26.608 -26.363 -25.834 -25.411 -24.785
267 | -28.844 -28.816 -28.718 -28.377 -27.93 -27.533 -26.986 -26.693 -26.486 -25.961 -25.531 -24.905
268 | -26.908 -27.071 -27.107 -27.018 -26.828 -26.749 -26.445 -26.28 -26.158 -25.813 -25.475 -24.919
269 | -26.16 -26.245 -26.261 -26.176 -26.05 -26.05 -25.849 -25.755 -25.682 -25.445 -25.204 -24.759
270 | -25.873 -25.825 -25.795 -25.672 -25.534 -25.559 -25.392 -25.319 -25.265 -25.099 -24.908 -24.555
271 | -26.655 -26.467 -26.327 -26.034 -25.74 -25.58 -25.301 -25.138 -25.093 -24.86 -24.678 -24.352
272 | -26.848 -26.615 -26.466 -26.143 -25.835 -25.629 -25.313 -25.126 -25.033 -24.796 -24.585 -24.246
273 | -26.686 -26.564 -26.452 -26.193 -25.87 -25.67 -25.308 -25.136 -25.027 -24.795 -24.563 -24.157
274 | -25.104 -25.299 -25.349 -25.312 -25.213 -25.222 -25.037 -24.941 -24.882 -24.663 -24.475 -24.122
275 | -24.955 -24.948 -24.948 -24.841 -24.732 -24.754 -24.624 -24.569 -24.536 -24.396 -24.263 -23.979
276 | -24.444 -24.549 -24.589 -24.537 -24.443 -24.51 -24.37 -24.315 -24.288 -24.155 -24.045 -23.8
277 | -23.598 -23.787 -23.864 -23.916 -23.909 -24.066 -24.008 -23.999 -23.994 -23.915 -23.828 -23.625
278 | -23.238 -23.405 -23.467 -23.502 -23.515 -23.685 -23.644 -23.653 -23.668 -23.624 -23.581 -23.423
279 | -23.073 -23.116 -23.162 -23.163 -23.168 -23.354 -23.326 -23.357 -23.376 -23.358 -23.337 -23.218
280 | -24.227 -23.993 -23.859 -23.611 -23.435 -23.408 -23.268 -23.221 -23.226 -23.166 -23.142 -23.026
281 | -23.519 -23.67 -23.724 -23.641 -23.54 -23.518 -23.378 -23.327 -23.271 -23.144 -23.105 -22.909
282 | -22.425 -22.697 -22.812 -22.898 -22.923 -23.111 -23.076 -23.073 -23.084 -23.033 -22.978 -22.845
283 | -21.619 -21.877 -22.017 -22.138 -22.262 -22.569 -22.628 -22.688 -22.737 -22.753 -22.759 -22.668
284 | -22.635 -22.52 -22.463 -22.361 -22.296 -22.437 -22.406 -22.411 -22.488 -22.475 -22.501 -22.461
285 | -22.892 -22.885 -22.85 -22.719 -22.591 -22.611 -22.486 -22.446 -22.447 -22.378 -22.402 -22.321
286 | -22.144 -22.294 -22.337 -22.347 -22.33 -22.465 -22.396 -22.391 -22.401 -22.341 -22.329 -22.232
287 | -22.766 -22.655 -22.592 -22.447 -22.331 -22.379 -22.293 -22.265 -22.268 -22.219 -22.203 -22.145
288 | -23.635 -23.392 -23.238 -22.951 -22.72 -22.626 -22.416 -22.332 -22.303 -22.206 -22.156 -22.046
289 | -23.898 -23.692 -23.55 -23.276 -23.002 -22.866 -22.623 -22.502 -22.444 -22.301 -22.202 -22.042
290 | -23.852 -23.718 -23.619 -23.373 -23.126 -22.981 -22.74 -22.617 -22.536 -22.379 -22.259 -22.052
291 | -23.5 -23.477 -23.399 -23.227 -23.03 -22.956 -22.727 -22.641 -22.57 -22.432 -22.324 -22.124
292 | -22.781 -22.809 -22.825 -22.727 -22.645 -22.68 -22.545 -22.497 -22.472 -22.352 -22.267 -22.084
293 | -23.187 -23.084 -23.007 -22.828 -22.655 -22.608 -22.45 -22.4 -22.365 -22.264 -22.174 -22.023
294 | -22.671 -22.728 -22.727 -22.627 -22.519 -22.545 -22.404 -22.323 -22.305 -22.194 -22.125 -21.957
295 | -22.765 -22.722 -22.684 -22.545 -22.404 -22.415 -22.269 -22.229 -22.229 -22.114 -22.066 -21.903
296 | -22.047 -22.186 -22.249 -22.217 -22.17 -22.261 -22.155 -22.125 -22.114 -22.034 -21.975 -21.838
297 | -21.522 -21.694 -21.758 -21.781 -21.793 -21.937 -21.902 -21.899 -21.917 -21.881 -21.853 -21.749
298 | -21.31 -21.431 -21.468 -21.486 -21.5 -21.669 -21.664 -21.671 -21.713 -21.701 -21.702 -21.631
299 | -20.867 -21.055 -21.146 -21.186 -21.242 -21.444 -21.436 -21.475 -21.512 -21.522 -21.539 -21.496
300 | -20.628 -20.776 -20.846 -20.888 -20.947 -21.178 -21.194 -21.251 -21.312 -21.333 -21.376 -21.356
301 | -19.864 -20.224 -20.365 -20.519 -20.637 -20.927 -20.985 -21.043 -21.107 -21.154 -21.207 -21.208
302 | -18.351 -18.851 -19.121 -19.451 -19.768 -20.273 -20.494 -20.634 -20.757 -20.884 -20.987 -21.044
303 | -18.457 -18.777 -18.939 -19.161 -19.408 -19.857 -20.063 -20.211 -20.355 -20.521 -20.681 -20.797
304 | -18.446 -18.72 -18.857 -19.034 -19.244 -19.646 -19.822 -19.962 -20.092 -20.255 -20.42 -20.563
305 | -18.787 -18.948 -19.026 -19.11 -19.248 -19.569 -19.696 -19.811 -19.904 -20.066 -20.221 -20.367
306 | -18.933 -19.092 -19.152 -19.213 -19.304 -19.575 -19.655 -19.731 -19.823 -19.944 -20.08 -20.213
307 | -18.74 -18.965 -19.062 -19.159 -19.26 -19.532 -19.61 -19.675 -19.754 -19.868 -19.991 -20.112
308 | -17.283 -17.814 -18.068 -18.368 -18.662 -19.119 -19.316 -19.46 -19.583 -19.723 -19.867 -19.985
309 | -16.385 -16.944 -17.221 -17.599 -17.981 -18.557 -18.852 -19.04 -19.208 -19.43 -19.627 -19.806
310 | -16.053 -16.519 -16.761 -17.117 -17.488 -18.099 -18.416 -18.636 -18.825 -19.088 -19.337 -19.576
311 | -16.201 -16.566 -16.762 -17.028 -17.344 -17.871 -18.154 -18.351 -18.531 -18.797 -19.046 -19.325
312 | -16.714 -16.927 -17.036 -17.189 -17.409 -17.834 -18.049 -18.196 -18.354 -18.604 -18.839 -19.107
313 | -16.47 -16.814 -16.982 -17.186 -17.403 -17.805 -17.994 -18.163 -18.293 -18.489 -18.705 -18.957
314 | -16.887 -17.063 -17.133 -17.256 -17.416 -17.768 -17.925 -18.042 -18.187 -18.377 -18.582 -18.823
315 | -16.626 -16.93 -17.077 -17.231 -17.422 -17.759 -17.919 -18.031 -18.14 -18.307 -18.497 -18.705
316 | -16.137 -16.5 -16.677 -16.886 -17.12 -17.543 -17.74 -17.884 -18.015 -18.203 -18.394 -18.612
317 | -16.614 -16.783 -16.871 -16.979 -17.125 -17.476 -17.621 -17.753 -17.893 -18.064 -18.256 -18.479
318 | -15.985 -16.357 -16.542 -16.735 -16.97 -17.361 -17.535 -17.67 -17.798 -17.966 -18.158 -18.372
319 | -15.771 -16.1 -16.259 -16.462 -16.72 -17.128 -17.339 -17.487 -17.624 -17.826 -18.025 -18.258
320 | -15.896 -16.152 -16.285 -16.449 -16.66 -17.028 -17.224 -17.345 -17.488 -17.679 -17.886 -18.126
321 | -15.591 -15.967 -16.138 -16.332 -16.545 -16.956 -17.122 -17.256 -17.389 -17.576 -17.783 -18
322 | -14.187 -14.874 -15.193 -15.591 -15.987 -16.547 -16.837 -17.023 -17.183 -17.415 -17.637 -17.884
323 | -13.375 -14.025 -14.339 -14.782 -15.265 -15.945 -16.334 -16.585 -16.797 -17.112 -17.395 -17.706
324 | -12.931 -13.559 -13.877 -14.319 -14.806 -15.505 -15.914 -16.186 -16.417 -16.766 -17.091 -17.453
325 | -13.13 -13.58 -13.805 -14.173 -14.59 -15.243 -15.627 -15.883 -16.112 -16.47 -16.815 -17.21
326 | -13.07 -13.576 -13.818 -14.171 -14.553 -15.132 -15.482 -15.723 -15.928 -16.268 -16.587 -16.988
327 | -12.814 -13.332 -13.587 -13.945 -14.352 -14.942 -15.306 -15.545 -15.755 -16.084 -16.41 -16.804
328 | -12.98 -13.395 -13.611 -13.909 -14.275 -14.836 -15.169 -15.389 -15.593 -15.921 -16.24 -16.632
329 | -13.161 -13.542 -13.718 -13.983 -14.293 -14.792 -15.085 -15.283 -15.479 -15.784 -16.096 -16.476
330 | -13.143 -13.53 -13.715 -13.97 -14.275 -14.755 -15.031 -15.219 -15.41 -15.7 -15.981 -16.352
331 | -12.299 -12.947 -13.232 -13.613 -14.006 -14.569 -14.895 -15.1 -15.285 -15.584 -15.875 -16.241
332 | -11.37 -12.092 -12.436 -12.909 -13.416 -14.104 -14.532 -14.8 -15.028 -15.375 -15.703 -16.095
333 | -10.106 -10.986 -11.448 -12.087 -12.727 -13.55 -14.062 -14.387 -14.655 -15.066 -15.442 -15.888
334 | -7.703 -8.86 -9.521 -10.456 -11.4 -12.543 -13.272 -13.723 -14.064 -14.608 -15.072 -15.614
335 | -5.779 -7.069 -7.803 -8.894 -10.001 -11.372 -12.274 -12.823 -13.258 -13.952 -14.528 -15.204
336 | -3.97 -5.606 -6.355 -7.545 -8.773 -10.279 -11.288 -11.924 -12.413 -13.216 -13.9 -14.697
337 | -1.687 -3.403 -4.204 -5.577 -7.051 -8.846 -10.093 -10.845 -11.43 -12.387 -13.183 -14.124
338 | -0.444 -1.951 -2.724 -4.073 -5.554 -7.391 -8.725 -9.575 -10.231 -11.345 -12.284 -13.42
339 | -0.386 -1.672 -2.336 -3.526 -4.885 -6.615 -7.885 -8.7 -9.36 -10.487 -11.469 -12.702
340 | -0.239 -0.843 -1.046 -1.538 -2.557 -4.645 -6.638 -7.769 -8.5 -9.703 -10.734 -12.025
341 | 1.708 -0.694 -1.139 -2.276 -3.634 -5.142 -6.432 -7.31 -7.978 -9.121 -10.127 -11.431
342 | 4.438 -0.35 -1.146 -2.206 -3.404 -4.83 -6.046 -6.884 -7.525 -8.635 -9.629 -10.928
343 | 2.269 -0.065 -0.741 -1.773 -2.952 -4.359 -5.567 -6.402 -7.041 -8.15 -9.149 -10.45
344 | 2.728 -0.018 -0.629 -1.584 -2.702 -4.038 -5.191 -5.997 -6.618 -7.706 -8.693 -10.011
345 | 4.283 0.338 -0.492 -1.437 -2.507 -3.784 -4.899 -5.667 -6.27 -7.335 -8.298 -9.597
346 | 4.855 1.003 -0.235 -1.217 -2.274 -3.521 -4.61 -5.363 -5.953 -6.991 -7.946 -9.229
347 | 6.815 2.345 0.191 -0.953 -2.011 -3.245 -4.318 -5.06 -5.64 -6.671 -7.613 -8.885
348 | 5.117 2.388 0.542 -0.63 -1.674 -2.911 -3.99 -4.736 -5.32 -6.347 -7.285 -8.559
349 | 2.388 1.145 0.342 -0.437 -1.393 -2.59 -3.657 -4.398 -4.976 -6.009 -6.954 -8.224
350 | 2.625 1.072 0.32 -0.444 -1.321 -2.44 -3.445 -4.148 -4.708 -5.709 -6.641 -7.908
351 | 4.932 2.418 0.904 -0.38 -1.25 -2.319 -3.288 -3.965 -4.507 -5.474 -6.38 -7.626
352 | 5.988 2.976 1.392 -0.235 -1.076 -2.148 -3.103 -3.773 -4.31 -5.259 -6.146 -7.369
353 | 6.671 3.792 2.138 -0.06 -0.786 -1.863 -2.84 -3.524 -4.064 -5.021 -5.909 -7.126
354 | 6.634 4.318 2.848 0.108 -0.41 -1.462 -2.479 -3.19 -3.75 -4.739 -5.64 -6.871
355 | 10.814 6.821 4.863 0.646 -0.151 -1.019 -2.046 -2.786 -3.375 -4.396 -5.328 -6.587
356 | 7.396 5.48 4.419 1.363 -0.032 -0.442 -1.445 -2.235 -2.864 -3.975 -4.953 -6.265
357 | 5.843 4.199 3.42 1.623 -0.016 -0.224 -1.079 -1.825 -2.442 -3.549 -4.554 -5.904
358 | 8.61 5.936 4.664 2.467 0.087 -0.159 -0.924 -1.616 -2.2 -3.266 -4.244 -5.584
359 | 3.514 3.149 2.878 1.977 0.261 -0.069 -0.709 -1.391 -1.976 -3.027 -3.995 -5.321
360 | 3.546 2.377 1.965 1.235 0.245 -0.071 -0.662 -1.271 -1.825 -2.826 -3.773 -5.073
361 | 6.526 3.725 2.852 1.62 0.423 -0.082 -0.658 -1.243 -1.761 -2.713 -3.619 -4.879
362 | 10 6.805 5.374 3.203 1.204 -0.032 -0.603 -1.18 -1.69 -2.619 -3.496 -4.725
363 | 11.906 8.373 6.748 4.236 2.141 0.14 -0.467 -1.054 -1.573 -2.501 -3.368 -4.572
364 | 11.933 9.002 7.511 5.106 3.172 1.003 -0.181 -0.764 -1.316 -2.295 -3.187 -4.41
365 | 10.958 8.516 7.284 5.196 3.508 1.77 0.262 -0.501 -1.055 -2.049 -2.961 -4.203
366 | 9.557 7.601 6.609 4.853 3.388 1.868 0.544 -0.349 -0.887 -1.861 -2.759 -4
367 | 4.559 4.253 4.039 3.347 2.493 1.483 0.523 -0.273 -0.785 -1.724 -2.602 -3.821
368 | 8.004 5.351 4.347 2.923 1.955 1.069 0.355 -0.262 -0.739 -1.635 -2.483 -3.674
369 | 6.162 5.067 4.47 3.395 2.442 1.428 0.526 -0.231 -0.708 -1.574 -2.399 -3.553
370 | 5.329 4.375 3.89 2.971 2.134 1.259 0.479 -0.195 -0.667 -1.512 -2.316 -3.452
371 | 3.599 2.941 2.672 2.122 1.549 0.926 0.345 -0.194 -0.661 -1.467 -2.254 -3.357
372 | 4.922 3.31 2.81 2.026 1.388 0.78 0.262 -0.228 -0.661 -1.45 -2.2 -3.277
373 | 4.641 3.5 3.075 2.308 1.625 0.93 0.32 -0.231 -0.661 -1.415 -2.163 -3.212
374 | 5.028 3.459 2.914 2.092 1.444 0.815 0.265 -0.231 -0.643 -1.39 -2.12 -3.147
375 | 6.761 4.593 3.887 2.748 1.884 1.046 0.356 -0.228 -0.621 -1.375 -2.083 -3.094
376 | 7.124 4.818 4.155 3.062 2.149 1.24 0.453 -0.192 -0.608 -1.338 -2.042 -3.035
377 | 7.692 5.243 4.507 3.313 2.341 1.369 0.536 -0.189 -0.582 -1.304 -2.001 -2.979
378 | 6.571 4.803 4.253 3.262 2.361 1.425 0.605 -0.153 -0.553 -1.269 -1.955 -2.924
379 | 6.088 4.442 3.855 2.902 2.1 1.282 0.563 -0.142 -0.535 -1.231 -1.909 -2.862
380 | 7.993 5.645 4.717 3.348 2.347 1.406 0.627 -0.115 -0.504 -1.205 -1.867 -2.81
381 | 10.534 7.536 6.295 4.453 3.133 1.901 0.905 -0.086 -0.484 -1.168 -1.828 -2.759
382 | 7.341 6.044 5.545 4.435 3.35 2.177 1.151 -0.006 -0.438 -1.122 -1.777 -2.704
383 | 9.645 6.512 5.455 3.922 2.829 1.817 0.983 0.049 -0.392 -1.077 -1.729 -2.643
384 | 8.238 6.569 5.883 4.596 3.471 2.319 1.326 0.169 -0.358 -1.032 -1.679 -2.589
385 | 10.064 6.915 5.885 4.35 3.216 2.145 1.261 0.247 -0.314 -0.987 -1.631 -2.525
386 | 7.659 6.363 5.783 4.635 3.579 2.49 1.529 0.403 -0.275 -0.944 -1.577 -2.472
387 | 11.32 7.987 6.65 4.771 3.493 2.362 1.456 0.454 -0.232 -0.898 -1.533 -2.42
388 | 8.289 7.542 7.006 5.738 4.497 3.192 2.057 0.769 -0.179 -0.85 -1.485 -2.358
389 | 5.986 4.956 4.698 4.033 3.276 2.436 1.634 0.696 -0.121 -0.798 -1.428 -2.304
390 | 5.94 4.46 3.97 3.19 2.519 1.846 1.236 0.547 -0.107 -0.755 -1.376 -2.244
391 | 7.287 5.132 4.463 3.435 2.625 1.874 1.236 0.554 -0.076 -0.734 -1.339 -2.194
392 | 6.354 5.369 4.868 3.926 3.084 2.244 1.498 0.699 -0.048 -0.699 -1.304 -2.155
393 | 6.676 5.319 4.73 3.727 2.9 2.113 1.421 0.684 -0.029 -0.681 -1.271 -2.112
394 | 4.87 4.362 4.157 3.537 2.857 2.137 1.459 0.723 0.001 -0.66 -1.245 -2.072
395 | 3.076 2.683 2.621 2.368 1.982 1.535 1.073 0.548 0.009 -0.622 -1.218 -2.036
396 | 2.716 2.202 2.071 1.783 1.441 1.091 0.744 0.366 -0.026 -0.621 -1.185 -2.002
397 | 3.742 2.792 2.346 1.76 1.323 0.952 0.621 0.288 -0.059 -0.621 -1.185 -1.971
398 | 7.435 5.039 4.11 2.859 2.039 1.376 0.862 0.396 -0.045 -0.621 -1.185 -1.96
399 | 7.98 6.195 5.37 4.105 3.143 2.24 1.482 0.726 0.013 -0.616 -1.148 -1.922
400 | 7.813 6.543 5.876 4.668 3.658 2.676 1.821 0.935 0.096 -0.581 -1.143 -1.908
401 | 8.437 6.692 5.888 4.606 3.604 2.661 1.837 0.979 0.159 -0.565 -1.105 -1.877
402 | 8.375 7.105 6.41 5.122 4.036 2.982 2.07 1.139 0.258 -0.537 -1.078 -1.84
403 | 3.986 3.928 3.936 3.643 3.131 2.488 1.81 1.053 0.289 -0.503 -1.048 -1.809
404 | 4.561 3.654 3.291 2.705 2.183 1.682 1.201 0.697 0.191 -0.467 -1.023 -1.775
405 | 3.589 3.312 3.186 2.781 2.28 1.753 1.247 0.726 0.208 -0.464 -0.988 -1.744
406 | 2.787 2.371 2.235 1.952 1.608 1.257 0.9 0.526 0.14 -0.456 -0.987 -1.718
407 | 1.678 1.419 1.433 1.344 1.139 0.906 0.649 0.375 0.076 -0.453 -0.952 -1.684
408 | 2.54 1.829 1.565 1.215 0.927 0.682 0.455 0.253 0.019 -0.464 -0.947 -1.677
409 | 5.17 3.87 3.267 2.357 1.699 1.158 0.742 0.397 0.058 -0.464 -0.946 -1.671
410 | 4.374 3.779 3.439 2.814 2.231 1.654 1.123 0.644 0.151 -0.463 -0.946 -1.638
411 | 6.618 4.906 4.205 3.157 2.386 1.72 1.163 0.663 0.165 -0.432 -0.946 -1.636
412 | 4.782 4.257 3.992 3.376 2.733 2.073 1.456 0.852 0.255 -0.425 -0.917 -1.611
413 | 1.906 1.936 2.101 2.1 1.851 1.5 1.1 0.67 0.206 -0.425 -0.908 -1.596
414 | 1.207 1.041 1.094 1.105 0.97 0.803 0.59 0.348 0.079 -0.404 -0.901 -1.573
415 | 1.192 0.656 0.701 0.704 0.585 0.471 0.321 0.18 0.004 -0.425 -0.878 -1.556
416 | 1.409 0.94 0.816 0.65 0.485 0.359 0.225 0.116 -0.025 -0.425 -0.893 -1.556
417 | 2.474 1.661 1.445 1.095 0.789 0.545 0.334 0.158 -0.022 -0.425 -0.908 -1.556
418 | 1.858 1.455 1.352 1.157 0.913 0.682 0.447 0.235 -0.002 -0.433 -0.908 -1.543
419 | 4.019 2.75 2.291 1.654 1.179 0.805 0.501 0.253 0.003 -0.461 -0.908 -1.521
420 | 4.533 3.286 2.793 2.114 1.604 1.146 0.752 0.398 0.04 -0.464 -0.907 -1.516
421 | 1.75 1.805 1.954 1.904 1.618 1.247 0.86 0.474 0.065 -0.448 -0.896 -1.516
422 | 0.383 0.561 0.662 0.758 0.69 0.583 0.408 0.225 -0.007 -0.425 -0.87 -1.516
423 | 2.208 1.468 1.193 0.83 0.567 0.38 0.217 0.101 -0.038 -0.461 -0.868 -1.514
424 | 0.77 0.703 0.784 0.797 0.659 0.5 0.329 0.155 -0.038 -0.464 -0.868 -1.484
425 | 0.023 0.088 0.163 0.27 0.251 0.217 0.136 0.056 -0.07 -0.464 -0.88 -1.476
426 | 0.55 0.238 0.231 0.196 0.112 0.071 0.017 -0.015 -0.076 -0.464 -0.896 -1.476
427 | -0.228 -0.132 -0.011 0.095 0.077 0.068 0.024 -0.014 -0.078 -0.471 -0.907 -1.476
428 | -0.512 -0.227 -0.121 -0.033 -0.05 -0.034 -0.049 -0.038 -0.113 -0.503 -0.907 -1.476
429 | -0.53 -0.174 -0.109 -0.048 -0.068 -0.045 -0.078 -0.038 -0.115 -0.503 -0.907 -1.476
430 | -0.328 -0.184 -0.106 -0.048 -0.068 -0.045 -0.078 -0.038 -0.126 -0.52 -0.907 -1.476
431 | -0.521 -0.211 -0.113 -0.048 -0.068 -0.045 -0.078 -0.038 -0.154 -0.542 -0.934 -1.476
432 | -1.252 -0.397 -0.157 -0.048 -0.068 -0.045 -0.078 -0.039 -0.168 -0.542 -0.947 -1.479
433 | -1.699 -0.696 -0.242 -0.059 -0.068 -0.045 -0.078 -0.068 -0.193 -0.58 -0.947 -1.513
434 | -2.041 -1.069 -0.455 -0.095 -0.076 -0.049 -0.078 -0.077 -0.209 -0.582 -0.964 -1.516
435 | -2.201 -1.19 -0.602 -0.123 -0.1 -0.055 -0.077 -0.076 -0.231 -0.61 -0.987 -1.516
436 | -3.847 -2.13 -1.171 -0.235 -0.131 -0.082 -0.078 -0.077 -0.261 -0.622 -0.987 -1.517
437 | -4.707 -3.398 -2.269 -0.76 -0.298 -0.084 -0.078 -0.079 -0.271 -0.643 -1.012 -1.517
438 | -2.518 -2.046 -1.61 -0.85 -0.396 -0.084 -0.078 -0.112 -0.307 -0.66 -1.026 -1.516
439 | -2.971 -2.304 -1.711 -0.954 -0.51 -0.113 -0.105 -0.134 -0.332 -0.681 -1.031 -1.553
440 | -3.385 -2.695 -2.192 -1.417 -0.898 -0.257 -0.116 -0.186 -0.373 -0.711 -1.066 -1.556
441 | -2.184 -1.989 -1.782 -1.357 -1.013 -0.511 -0.163 -0.272 -0.447 -0.756 -1.089 -1.569
442 | -1.255 -1.223 -1.139 -0.967 -0.852 -0.642 -0.486 -0.501 -0.615 -0.863 -1.164 -1.613
443 | -2.012 -1.653 -1.426 -1.117 -0.972 -0.808 -0.742 -0.753 -0.838 -1.028 -1.285 -1.689
444 | -1.96 -1.795 -1.625 -1.378 -1.247 -1.1 -1.033 -1.025 -1.088 -1.225 -1.44 -1.795
445 | -3.169 -2.623 -2.272 -1.836 -1.627 -1.427 -1.334 -1.302 -1.343 -1.439 -1.616 -1.922
446 | -4.87 -4.082 -3.619 -2.964 -2.567 -2.151 -1.865 -1.695 -1.683 -1.698 -1.814 -2.066
447 | -7.155 -5.959 -5.234 -4.327 -3.699 -3.112 -2.623 -2.3 -2.202 -2.084 -2.112 -2.264
448 | -6.944 -6.325 -5.885 -5.256 -4.718 -4.107 -3.52 -3.071 -2.895 -2.63 -2.545 -2.553
449 | -6.917 -6.304 -5.917 -5.361 -4.963 -4.484 -4.002 -3.617 -3.453 -3.169 -3.02 -2.928
450 | -7.647 -6.977 -6.559 -5.952 -5.513 -5.005 -4.501 -4.096 -3.93 -3.62 -3.444 -3.295
451 | -7.044 -6.737 -6.491 -6.093 -5.771 -5.358 -4.91 -4.535 -4.373 -4.057 -3.855 -3.652
452 | -7.801 -7.36 -6.954 -6.409 -6.043 -5.613 -5.176 -4.837 -4.686 -4.393 -4.2 -3.982
453 | -7.636 -7.302 -7.041 -6.642 -6.337 -5.948 -5.539 -5.195 -5.041 -4.732 -4.525 -4.282
454 | -7.173 -7.012 -6.855 -6.548 -6.329 -6.023 -5.69 -5.401 -5.27 -4.995 -4.804 -4.559
455 | -7.287 -7.018 -6.825 -6.53 -6.316 -6.046 -5.768 -5.516 -5.413 -5.174 -5.006 -4.783
456 | -8.472 -7.814 -7.437 -6.946 -6.639 -6.3 -5.959 -5.689 -5.581 -5.347 -5.181 -4.971
457 | -10.407 -9.506 -8.971 -8.265 -7.73 -7.174 -6.604 -6.176 -5.989 -5.652 -5.435 -5.178
458 | -11.762 -10.955 -10.356 -9.55 -8.881 -8.186 -7.443 -6.88 -6.616 -6.153 -5.843 -5.486
459 | -10.993 -10.5 -10.124 -9.58 -9.128 -8.575 -7.943 -7.433 -7.173 -6.685 -6.32 -5.869
460 | -12.883 -12.075 -11.527 -10.692 -10.045 -9.311 -8.522 -7.912 -7.618 -7.092 -6.704 -6.227
461 | -10.895 -10.757 -10.597 -10.256 -9.896 -9.428 -8.835 -8.328 -8.069 -7.555 -7.141 -6.604
462 | -10.556 -10.221 -10.009 -9.663 -9.374 -9.046 -8.625 -8.264 -8.09 -7.691 -7.36 -6.883
463 | -10.944 -10.458 -10.179 -9.766 -9.438 -9.057 -8.633 -8.272 -8.112 -7.751 -7.466 -7.05
464 | -11.8 -11.062 -10.652 -10.112 -9.692 -9.265 -8.783 -8.405 -8.223 -7.86 -7.58 -7.186
465 | -12.056 -11.522 -11.162 -10.615 -10.194 -9.708 -9.152 -8.717 -8.506 -8.092 -7.778 -7.357
466 | -12.12 -11.652 -11.345 -10.84 -10.439 -9.971 -9.431 -8.995 -8.784 -8.356 -8.022 -7.575
467 | -12.807 -12.131 -11.713 -11.118 -10.692 -10.212 -9.661 -9.228 -9.015 -8.587 -8.25 -7.786
468 | -15.373 -14.05 -13.32 -12.358 -11.765 -11.022 -10.264 -9.679 -9.402 -8.898 -8.519 -8.023
469 | -17.214 -15.996 -15.273 -14.228 -13.358 -12.418 -11.366 -10.564 -10.172 -9.484 -8.978 -8.351
470 | -15.953 -15.256 -14.84 -14.155 -13.535 -12.822 -11.951 -11.221 -10.844 -10.126 -9.558 -8.813
471 | -17.112 -16.219 -15.669 -14.814 -14.07 -13.285 -12.34 -11.6 -11.228 -10.525 -9.969 -9.213
472 | -15.395 -14.892 -14.615 -14.133 -13.672 -13.142 -12.447 -11.853 -11.535 -10.897 -10.349 -9.587
473 | -14.898 -14.595 -14.383 -13.974 -13.538 -13.033 -12.391 -11.858 -11.58 -11.013 -10.533 -9.836
474 | -14.837 -14.295 -13.988 -13.533 -13.137 -12.718 -12.198 -11.767 -11.545 -11.06 -10.64 -10.012
475 | -13.719 -13.643 -13.546 -13.287 -12.997 -12.644 -12.172 -11.77 -11.565 -11.103 -10.709 -10.126
476 | -12.82 -12.733 -12.675 -12.474 -12.306 -12.11 -11.797 -11.522 -11.384 -11.037 -10.713 -10.207
477 | -12.546 -12.402 -12.3 -12.089 -11.929 -11.765 -11.502 -11.282 -11.172 -10.892 -10.641 -10.215
478 | -12.92 -12.584 -12.411 -12.114 -11.896 -11.692 -11.399 -11.151 -11.051 -10.792 -10.566 -10.168
479 | -13.538 -13.176 -12.941 -12.551 -12.248 -11.938 -11.546 -11.244 -11.1 -10.805 -10.556 -10.172
480 | -13.725 -13.32 -13.061 -12.675 -12.371 -12.071 -11.663 -11.353 -11.209 -10.889 -10.633 -10.24
481 | -14.157 -13.695 -13.401 -12.961 -12.627 -12.276 -11.841 -11.505 -11.337 -10.996 -10.725 -10.314
482 | -15.58 -15.019 -14.494 -13.774 -13.307 -12.796 -12.219 -11.779 -11.575 -11.169 -10.864 -10.428
483 | -17.818 -16.809 -16.045 -15.012 -14.444 -13.692 -12.89 -12.29 -12.012 -11.494 -11.112 -10.603
484 | -18.692 -18.047 -17.427 -16.431 -15.815 -14.917 -13.896 -13.109 -12.735 -12.05 -11.544 -10.904
485 | -16.963 -16.691 -16.428 -15.922 -15.462 -14.887 -14.128 -13.503 -13.165 -12.523 -11.992 -11.274
486 | -17.219 -16.606 -16.199 -15.589 -15.112 -14.612 -13.969 -13.449 -13.195 -12.641 -12.189 -11.527
487 | -16.415 -16.209 -15.994 -15.549 -15.147 -14.68 -14.048 -13.54 -13.288 -12.758 -12.316 -11.681
488 | -14.958 -14.956 -14.912 -14.711 -14.473 -14.195 -13.768 -13.398 -13.207 -12.774 -12.39 -11.805
489 | -13.25 -13.419 -13.482 -13.478 -13.423 -13.358 -13.159 -12.975 -12.869 -12.588 -12.296 -11.826
490 | -12.732 -12.798 -12.814 -12.78 -12.744 -12.734 -12.617 -12.51 -12.461 -12.272 -12.084 -11.725
491 | -13.033 -12.885 -12.798 -12.637 -12.526 -12.476 -12.34 -12.224 -12.182 -12.019 -11.878 -11.583
492 | -13.578 -13.339 -13.188 -12.916 -12.726 -12.565 -12.343 -12.162 -12.098 -11.901 -11.749 -11.481
493 | -13.748 -13.474 -13.313 -13.036 -12.841 -12.666 -12.394 -12.209 -12.099 -11.889 -11.717 -11.459
494 | -14.075 -13.763 -13.553 -13.221 -12.991 -12.776 -12.479 -12.246 -12.154 -11.914 -11.73 -11.458
495 | -15.57 -14.895 -14.461 -13.886 -13.527 -13.169 -12.749 -12.438 -12.295 -12.006 -11.798 -11.48
496 | -18.077 -16.884 -16.196 -15.286 -14.738 -14.101 -13.418 -12.909 -12.682 -12.264 -11.966 -11.568
497 | -19.701 -18.507 -17.79 -16.789 -16.081 -15.274 -14.356 -13.676 -13.347 -12.765 -12.339 -11.817
498 | -20.016 -18.969 -18.33 -17.449 -16.725 -15.964 -15.049 -14.339 -13.991 -13.334 -12.83 -12.182
499 | -20.828 -19.817 -19.18 -18.247 -17.489 -16.66 -15.672 -14.906 -14.527 -13.824 -13.272 -12.556
500 | -17.46 -17.503 -17.464 -17.211 -16.851 -16.39 -15.728 -15.154 -14.855 -14.215 -13.685 -12.937
501 | -16.113 -16.082 -16.031 -15.857 -15.662 -15.44 -15.061 -14.74 -14.565 -14.146 -13.754 -13.126
502 | -15.63 -15.468 -15.385 -15.193 -15.029 -14.877 -14.593 -14.361 -14.243 -13.933 -13.632 -13.131
503 | -16.034 -15.741 -15.566 -15.259 -15.008 -14.788 -14.441 -14.194 -14.061 -13.771 -13.519 -13.086
504 | -16.577 -16.071 -15.782 -15.399 -15.096 -14.829 -14.46 -14.172 -14.036 -13.751 -13.501 -13.059
505 | -17.164 -16.704 -16.42 -15.983 -15.592 -15.215 -14.733 -14.365 -14.189 -13.825 -13.532 -13.095
506 | -17.571 -16.948 -16.616 -16.14 -15.742 -15.387 -14.897 -14.517 -14.339 -13.962 -13.652 -13.197
507 | -19.301 -18.306 -17.771 -17.064 -16.474 -15.935 -15.29 -14.811 -14.574 -14.131 -13.779 -13.286
508 | -20.841 -19.719 -19.122 -18.3 -17.558 -16.857 -16.009 -15.369 -15.058 -14.49 -14.054 -13.478
509 | -21.943 -20.693 -20.029 -19.145 -18.35 -17.59 -16.656 -15.958 -15.605 -14.95 -14.447 -13.77
510 | -23.327 -21.954 -21.202 -20.204 -19.32 -18.453 -17.4 -16.597 -16.197 -15.457 -14.878 -14.118
511 | -24.116 -22.946 -22.262 -21.298 -20.349 -19.4 -18.223 -17.323 -16.866 -16.032 -15.377 -14.521
512 | -22.683 -21.895 -21.447 -20.801 -20.118 -19.409 -18.463 -17.723 -17.3 -16.52 -15.859 -14.946
513 | -24.128 -22.919 -22.234 -21.33 -20.501 -19.695 -18.69 -17.915 -17.518 -16.767 -16.14 -15.256
514 | -23.846 -22.924 -22.402 -21.658 -20.873 -20.106 -19.104 -18.322 -17.913 -17.13 -16.47 -15.563
515 | -24.02 -23.101 -22.582 -21.841 -21.083 -20.337 -19.349 -18.593 -18.194 -17.426 -16.778 -15.866
516 | -23.334 -22.567 -22.157 -21.541 -20.908 -20.276 -19.42 -18.735 -18.365 -17.653 -17.032 -16.127
517 | -23.564 -22.729 -22.256 -21.569 -20.898 -20.263 -19.426 -18.778 -18.443 -17.77 -17.185 -16.324
518 | -23.229 -22.536 -22.109 -21.496 -20.872 -20.296 -19.522 -18.88 -18.546 -17.882 -17.32 -16.492
519 | -23.354 -22.538 -22.079 -21.423 -20.816 -20.274 -19.518 -18.899 -18.599 -17.976 -17.429 -16.629
520 | -23.772 -22.958 -22.503 -21.825 -21.163 -20.546 -19.713 -19.082 -18.748 -18.101 -17.551 -16.75
521 | -24.728 -23.732 -23.162 -22.355 -21.609 -20.914 -20.014 -19.327 -18.979 -18.295 -17.734 -16.924
522 | -24.408 -23.525 -23.034 -22.358 -21.716 -21.096 -20.246 -19.579 -19.241 -18.558 -17.963 -17.126
523 | -26.395 -25.142 -24.409 -23.38 -22.546 -21.722 -20.669 -19.899 -19.511 -18.769 -18.17 -17.319
524 | -24.862 -24.242 -23.864 -23.252 -22.591 -21.937 -21.021 -20.293 -19.908 -19.135 -18.491 -17.58
525 | -26.383 -25.118 -24.432 -23.536 -22.738 -22.012 -21.074 -20.352 -19.992 -19.273 -18.667 -17.79
526 | -28.04 -26.612 -25.779 -24.683 -23.739 -22.83 -21.686 -20.82 -20.387 -19.58 -18.921 -17.997
527 | -27.661 -26.693 -26.091 -25.211 -24.32 -23.457 -22.287 -21.387 -20.915 -20.035 -19.305 -18.298
528 | -27.682 -26.56 -25.926 -25.082 -24.242 -23.473 -22.43 -21.609 -21.181 -20.345 -19.631 -18.618
529 | -28.425 -27.193 -26.477 -25.497 -24.633 -23.786 -22.685 -21.845 -21.407 -20.568 -19.868 -18.869
530 | -29.07 -27.897 -27.191 -26.168 -25.256 -24.342 -23.154 -22.244 -21.776 -20.889 -20.156 -19.119
531 | -29.016 -27.957 -27.293 -26.35 -25.471 -24.628 -23.473 -22.591 -22.118 -21.233 -20.477 -19.419
532 | -28.765 -27.933 -27.386 -26.53 -25.699 -24.88 -23.751 -22.88 -22.414 -21.527 -20.769 -19.692
533 | -28.301 -27.529 -27.042 -26.289 -25.488 -24.798 -23.737 -22.977 -22.539 -21.713 -20.992 -19.938
534 | -26.59 -26.177 -25.903 -25.436 -24.862 -24.34 -23.521 -22.87 -22.501 -21.761 -21.118 -20.111
535 | -27.086 -26.342 -25.915 -25.247 -24.621 -24.082 -23.267 -22.665 -22.342 -21.67 -21.075 -20.162
536 | -24.261 -24.403 -24.423 -24.249 -23.933 -23.617 -23.02 -22.537 -22.262 -21.648 -21.099 -20.251
537 | -22.922 -22.904 -22.879 -22.748 -22.585 -22.484 -22.146 -21.882 -21.719 -21.31 -20.897 -20.184
538 | -24.997 -24.191 -23.762 -23.168 -22.708 -22.365 -21.856 -21.5 -21.32 -20.943 -20.569 -19.967
539 | -26.042 -25.211 -24.733 -24.021 -23.464 -22.954 -22.244 -21.728 -21.47 -20.955 -20.518 -19.905
540 | -26.415 -25.687 -25.259 -24.595 -23.981 -23.426 -22.637 -22.055 -21.751 -21.161 -20.67 -19.956
541 | -25.24 -24.906 -24.69 -24.275 -23.803 -23.381 -22.708 -22.192 -21.922 -21.341 -20.85 -20.11
542 | -25.18 -24.655 -24.371 -23.903 -23.456 -23.08 -22.488 -22.046 -21.8 -21.296 -20.847 -20.152
543 | -25.503 -24.876 -24.54 -24 -23.499 -23.087 -22.47 -22.03 -21.772 -21.24 -20.802 -20.14
544 | -26.941 -25.91 -25.367 -24.581 -24.003 -23.451 -22.698 -22.147 -21.876 -21.341 -20.888 -20.211
545 | -28.308 -27.184 -26.539 -25.64 -24.912 -24.21 -23.279 -22.598 -22.248 -21.601 -21.072 -20.322
546 | -29.25 -28.117 -27.474 -26.552 -25.721 -24.943 -23.907 -23.129 -22.732 -21.991 -21.391 -20.554
547 | -28.008 -27.525 -27.204 -26.571 -25.875 -25.234 -24.263 -23.542 -23.141 -22.375 -21.735 -20.833
548 | -23.788 -24.304 -24.516 -24.508 -24.357 -24.165 -23.667 -23.249 -23.009 -22.444 -21.888 -21.072
549 | -22.023 -22.363 -22.528 -22.612 -22.6 -22.675 -22.497 -22.363 -22.274 -21.965 -21.629 -20.994
550 | -21.438 -21.628 -21.705 -21.721 -21.713 -21.803 -21.705 -21.645 -21.607 -21.415 -21.191 -20.735
551 | -22.367 -22.07 -21.917 -21.686 -21.52 -21.5 -21.303 -21.203 -21.152 -20.978 -20.801 -20.442
552 | -24.059 -23.451 -23.107 -22.625 -22.223 -21.939 -21.521 -21.222 -21.094 -20.799 -20.588 -20.205
553 | -22.953 -22.755 -22.639 -22.407 -22.168 -21.994 -21.617 -21.353 -21.204 -20.895 -20.6 -20.178
554 | -25.123 -24.199 -23.72 -23.073 -22.61 -22.241 -21.725 -21.372 -21.192 -20.856 -20.573 -20.15
555 | -26.758 -25.65 -25.103 -24.337 -23.67 -23.125 -22.377 -21.846 -21.586 -21.095 -20.718 -20.191
556 | -28.32 -27.093 -26.457 -25.574 -24.774 -24.079 -23.144 -22.465 -22.129 -21.508 -21.028 -20.384
557 | -27.969 -27.204 -26.771 -26.061 -25.352 -24.679 -23.733 -23.021 -22.662 -21.972 -21.42 -20.666
558 | -28.563 -27.523 -26.955 -26.151 -25.448 -24.807 -23.931 -23.258 -22.925 -22.266 -21.716 -20.941
559 | -27.762 -27.165 -26.809 -26.222 -25.59 -25.019 -24.189 -23.516 -23.196 -22.519 -21.967 -21.17
560 | -27.43 -26.828 -26.513 -25.961 -25.373 -24.863 -24.107 -23.596 -23.24 -22.655 -22.128 -21.353
561 | -27.536 -26.777 -26.369 -25.773 -25.237 -24.774 -24.068 -23.543 -23.244 -22.682 -22.209 -21.476
562 | -29.193 -28.086 -27.485 -26.626 -25.929 -25.271 -24.408 -23.772 -23.444 -22.836 -22.32 -21.574
563 | -28.579 -28.087 -27.731 -27.116 -26.429 -25.817 -24.884 -24.2 -23.843 -23.147 -22.574 -21.758
564 | -26.148 -26.039 -25.938 -25.701 -25.364 -25.078 -24.507 -24.065 -23.808 -23.259 -22.75 -21.969
565 | -27.595 -26.672 -26.222 -25.615 -25.123 -24.758 -24.163 -23.732 -23.525 -23.054 -22.646 -21.954
566 | -29.348 -28.215 -27.62 -26.829 -26.089 -25.476 -24.632 -24.025 -23.717 -23.138 -22.67 -21.967
567 | -30.496 -29.234 -28.585 -27.71 -26.903 -26.192 -25.222 -24.505 -24.143 -23.467 -22.92 -22.136
568 | -31.46 -30.189 -29.521 -28.597 -27.711 -26.918 -25.838 -25.047 -24.636 -23.87 -23.252 -22.392
569 | -30.662 -29.861 -29.418 -28.702 -27.936 -27.237 -26.212 -25.449 -25.041 -24.273 -23.609 -22.688
570 | -29.436 -28.91 -28.607 -28.104 -27.516 -26.974 -26.142 -25.489 -25.169 -24.461 -23.843 -22.936
571 | -28.855 -28.34 -28.058 -27.578 -27.056 -26.603 -25.874 -25.333 -25.047 -24.45 -23.88 -23.07
572 | -26.134 -26.377 -26.467 -26.371 -26.151 -25.961 -25.472 -25.09 -24.867 -24.357 -23.883 -23.155
573 | -25.72 -25.462 -25.374 -25.19 -25.001 -24.928 -24.647 -24.44 -24.314 -23.97 -23.646 -23.024
574 | -28.112 -27.179 -26.707 -26.101 -25.586 -25.231 -24.671 -24.31 -24.11 -23.74 -23.382 -22.837
575 | -30.567 -29.336 -28.728 -27.88 -27.095 -26.425 -25.525 -24.892 -24.575 -23.983 -23.523 -22.861
576 | -31.378 -30.358 -29.796 -28.988 -28.157 -27.436 -26.403 -25.637 -25.248 -24.507 -23.929 -23.114
577 | -32.185 -31.016 -30.424 -29.575 -28.742 -28 -26.948 -26.166 -25.764 -24.98 -24.348 -23.457
578 | -31.594 -30.975 -30.606 -29.952 -29.205 -28.485 -27.44 -26.639 -26.228 -25.41 -24.735 -23.779
579 | -30.27 -29.768 -29.485 -29.017 -28.49 -27.987 -27.213 -26.624 -26.287 -25.575 -24.982 -24.057
580 | -30.088 -29.475 -29.167 -28.658 -28.152 -27.717 -26.982 -26.438 -26.167 -25.544 -25.007 -24.169
581 | -30.805 -30.025 -29.621 -29.015 -28.39 -27.88 -27.087 -26.517 -26.212 -25.58 -25.04 -24.237
582 | -32.122 -31.054 -30.528 -29.753 -28.99 -28.361 -27.444 -26.782 -26.432 -25.744 -25.186 -24.352
583 | -32.738 -31.785 -31.264 -30.495 -29.722 -29.024 -27.99 -27.243 -26.846 -26.084 -25.451 -24.544
584 | -32.954 -32.023 -31.517 -30.796 -30.011 -29.346 -28.338 -27.581 -27.189 -26.404 -25.758 -24.801
585 | -31.983 -31.425 -31.086 -30.546 -29.921 -29.356 -28.436 -27.764 -27.409 -26.633 -25.998 -25.036
586 | -31.547 -31.002 -30.704 -30.194 -29.583 -29.123 -28.326 -27.684 -27.332 -26.658 -26.092 -25.197
587 | -31.505 -30.815 -30.493 -29.914 -29.361 -28.921 -28.141 -27.588 -27.336 -26.657 -26.096 -25.268
588 | -31.5 -30.858 -30.54 -30.016 -29.44 -28.969 -28.192 -27.648 -27.335 -26.676 -26.166 -25.33
589 | -31.015 -30.592 -30.341 -29.876 -29.344 -28.923 -28.184 -27.647 -27.331 -26.762 -26.192 -25.375
590 | -30.657 -30.172 -29.92 -29.491 -29.007 -28.668 -27.999 -27.525 -27.24 -26.681 -26.192 -25.466
591 | -31.249 -30.561 -30.198 -29.64 -29.092 -28.685 -27.977 -27.474 -27.227 -26.657 -26.197 -25.467
592 | -31.571 -30.94 -30.602 -30.033 -29.442 -28.968 -28.201 -27.63 -27.349 -26.744 -26.247 -25.471
593 | -31.533 -30.908 -30.624 -30.087 -29.507 -29.047 -28.297 -27.767 -27.446 -26.867 -26.351 -25.567
594 | -30.18 -30.098 -29.994 -29.678 -29.253 -28.894 -28.259 -27.745 -27.52 -26.922 -26.403 -25.667
595 | -27.853 -28.071 -28.16 -28.106 -27.946 -27.905 -27.554 -27.294 -27.13 -26.728 -26.334 -25.67
596 | -26.932 -26.992 -27.027 -26.975 -26.891 -26.938 -26.731 -26.599 -26.526 -26.259 -25.988 -25.476
597 | -27.793 -27.433 -27.288 -26.998 -26.752 -26.681 -26.338 -26.198 -26.107 -25.85 -25.621 -25.18
598 | -28.065 -27.744 -27.593 -27.273 -26.988 -26.804 -26.421 -26.174 -25.985 -25.733 -25.444 -25.012
599 | -30.022 -29.079 -28.622 -27.992 -27.487 -27.144 -26.598 -26.218 -26.044 -25.671 -25.397 -24.913
600 | -31.73 -30.684 -30.146 -29.403 -28.703 -28.14 -27.322 -26.756 -26.461 -25.933 -25.526 -24.947
601 | -32.639 -31.618 -31.08 -30.318 -29.552 -28.923 -27.986 -27.318 -26.974 -26.337 -25.848 -25.152
602 | -32.815 -31.926 -31.412 -30.72 -30 -29.366 -28.436 -27.734 -27.387 -26.698 -26.159 -25.381
603 | -32.925 -32.057 -31.566 -30.916 -30.196 -29.599 -28.683 -28.014 -27.656 -26.979 -26.41 -25.612
604 | -32.784 -32.091 -31.696 -31.07 -30.381 -29.796 -28.887 -28.227 -27.861 -27.181 -26.621 -25.807
605 | -31.639 -31.068 -30.779 -30.315 -29.82 -29.394 -28.68 -28.162 -27.864 -27.266 -26.71 -25.943
606 | -33.053 -31.987 -31.508 -30.803 -30.108 -29.571 -28.74 -28.158 -27.851 -27.239 -26.739 -25.993
607 | -33.686 -32.631 -32.117 -31.379 -30.665 -30.032 -29.12 -28.44 -28.104 -27.434 -26.893 -26.102
608 | -33.865 -32.907 -32.393 -31.693 -31.001 -30.336 -29.408 -28.715 -28.361 -27.656 -27.089 -26.263
609 | -32.375 -32.019 -31.776 -31.338 -30.776 -30.26 -29.458 -28.853 -28.51 -27.829 -27.268 -26.419
610 | -30.892 -30.609 -30.473 -30.153 -29.774 -29.508 -28.931 -28.51 -28.269 -27.734 -27.271 -26.468
611 | -31.38 -30.82 -30.549 -30.087 -29.595 -29.284 -28.698 -28.226 -28.007 -27.531 -27.119 -26.445
612 | -30.293 -30.109 -29.998 -29.7 -29.348 -29.09 -28.554 -28.139 -27.935 -27.464 -27.02 -26.364
613 | -30.773 -30.245 -29.996 -29.551 -29.121 -28.836 -28.303 -27.92 -27.729 -27.309 -26.941 -26.314
614 | -29.465 -29.42 -29.364 -29.121 -28.828 -28.637 -28.158 -27.815 -27.632 -27.221 -26.857 -26.265
615 | -28.895 -28.714 -28.631 -28.389 -28.159 -28.063 -27.707 -27.465 -27.327 -26.992 -26.696 -26.162
616 | -29.745 -29.275 -29.042 -28.62 -28.235 -28.034 -27.583 -27.28 -27.122 -26.788 -26.522 -26.024
617 | -28.035 -28.227 -28.287 -28.17 -27.978 -27.887 -27.504 -27.245 -27.086 -26.754 -26.469 -25.974
618 | -26.312 -26.648 -26.793 -26.859 -26.851 -26.966 -26.829 -26.736 -26.685 -26.473 -26.266 -25.854
619 | -26.067 -26.198 -26.234 -26.224 -26.185 -26.303 -26.216 -26.18 -26.172 -26.049 -25.917 -25.615
620 | -25.78 -25.899 -25.954 -25.917 -25.849 -25.976 -25.864 -25.836 -25.819 -25.708 -25.608 -25.349
621 | -25.959 -25.906 -25.873 -25.761 -25.651 -25.733 -25.586 -25.546 -25.534 -25.428 -25.326 -25.102
622 | -25.778 -25.809 -25.802 -25.719 -25.592 -25.663 -25.502 -25.416 -25.383 -25.251 -25.166 -24.942
623 | -25.677 -25.669 -25.669 -25.554 -25.422 -25.503 -25.324 -25.261 -25.22 -25.104 -24.997 -24.772
624 | -25.942 -25.814 -25.752 -25.583 -25.423 -25.424 -25.243 -25.112 -25.108 -24.958 -24.857 -24.637
625 | -25.037 -25.265 -25.345 -25.317 -25.233 -25.302 -25.138 -25.064 -25.014 -24.873 -24.769 -24.547
626 | -23.741 -24.06 -24.221 -24.342 -24.405 -24.63 -24.641 -24.676 -24.7 -24.652 -24.584 -24.407
627 | -23.601 -23.718 -23.781 -23.836 -23.866 -24.088 -24.138 -24.22 -24.278 -24.283 -24.298 -24.197
628 | -24.713 -24.534 -24.439 -24.265 -24.138 -24.198 -24.093 -24.079 -24.071 -24.05 -24.034 -23.955
629 | -26.128 -25.738 -25.514 -25.153 -24.885 -24.752 -24.452 -24.28 -24.217 -24.056 -23.978 -23.85
630 | -26.295 -26.076 -25.929 -25.632 -25.366 -25.19 -24.837 -24.607 -24.498 -24.259 -24.106 -23.859
631 | -25.714 -25.736 -25.7 -25.514 -25.336 -25.212 -24.947 -24.733 -24.639 -24.403 -24.224 -23.954
632 | -24.565 -24.736 -24.804 -24.769 -24.705 -24.78 -24.62 -24.529 -24.495 -24.34 -24.225 -23.968
633 | -24.695 -24.647 -24.615 -24.512 -24.39 -24.48 -24.321 -24.274 -24.238 -24.139 -24.053 -23.853
634 | -25.214 -25.039 -24.933 -24.713 -24.524 -24.503 -24.309 -24.175 -24.159 -24.022 -23.917 -23.74
635 | -25.782 -25.518 -25.367 -25.079 -24.839 -24.734 -24.451 -24.278 -24.188 -24.019 -23.884 -23.673
636 | -26.32 -25.986 -25.794 -25.445 -25.161 -24.992 -24.639 -24.41 -24.303 -24.09 -23.92 -23.67
637 | -26.433 -26.207 -26.046 -25.711 -25.428 -25.242 -24.854 -24.584 -24.481 -24.215 -24.018 -23.725
638 | -24.938 -25.142 -25.196 -25.121 -25.003 -24.994 -24.747 -24.579 -24.495 -24.277 -24.094 -23.787
639 | -23.425 -23.804 -23.963 -24.059 -24.086 -24.256 -24.202 -24.184 -24.177 -24.077 -23.981 -23.749
640 | -22.575 -22.904 -23.063 -23.21 -23.297 -23.553 -23.61 -23.691 -23.736 -23.729 -23.712 -23.588
641 | -21.678 -22.061 -22.262 -22.466 -22.619 -22.939 -23.07 -23.224 -23.306 -23.37 -23.413 -23.353
642 | -21.028 -21.495 -21.73 -21.956 -22.129 -22.462 -22.63 -22.799 -22.904 -23.005 -23.084 -23.094
643 | -19.9 -20.381 -20.669 -21.019 -21.287 -21.742 -22.026 -22.293 -22.44 -22.61 -22.752 -22.822
644 | -20.644 -20.751 -20.791 -20.878 -21.013 -21.365 -21.59 -21.846 -21.986 -22.196 -22.369 -22.502
645 | -22.89 -22.641 -22.456 -22.186 -22.044 -22.071 -21.983 -21.985 -22.02 -22.06 -22.159 -22.26
646 | -24.05 -23.74 -23.546 -23.195 -22.949 -22.819 -22.556 -22.413 -22.366 -22.263 -22.256 -22.204
647 | -23.739 -23.721 -23.677 -23.486 -23.3 -23.195 -22.924 -22.752 -22.676 -22.514 -22.434 -22.306
648 | -22.005 -22.308 -22.446 -22.528 -22.551 -22.699 -22.643 -22.63 -22.627 -22.553 -22.491 -22.38
649 | -21.59 -21.751 -21.829 -21.892 -21.934 -22.154 -22.191 -22.266 -22.314 -22.327 -22.346 -22.294
650 | -21.662 -21.794 -21.851 -21.847 -21.86 -22.044 -22.024 -22.079 -22.133 -22.14 -22.186 -22.164
651 | -22.053 -22.062 -22.045 -21.973 -21.915 -22.018 -21.983 -21.978 -22.054 -22.031 -22.067 -22.054
652 | -22.253 -22.229 -22.203 -22.105 -22.02 -22.11 -22.027 -22.002 -22.02 -22.014 -21.987 -21.961
653 | -22.525 -22.473 -22.443 -22.309 -22.192 -22.221 -22.104 -22.034 -22.047 -22.01 -21.986 -21.919
654 | -21.374 -21.675 -21.785 -21.852 -21.868 -22.017 -21.984 -21.992 -22.009 -21.975 -21.972 -21.871
655 | -20.628 -20.947 -21.083 -21.217 -21.309 -21.543 -21.616 -21.709 -21.764 -21.804 -21.84 -21.82
656 | -20.879 -21.015 -21.093 -21.113 -21.143 -21.346 -21.392 -21.479 -21.544 -21.594 -21.661 -21.672
657 | -19.88 -20.318 -20.503 -20.68 -20.809 -21.079 -21.182 -21.297 -21.373 -21.444 -21.519 -21.549
658 | -19.793 -20.109 -20.243 -20.371 -20.482 -20.757 -20.863 -21.014 -21.118 -21.224 -21.325 -21.392
659 | -18.403 -19.019 -19.311 -19.64 -19.876 -20.266 -20.5 -20.72 -20.847 -20.994 -21.13 -21.222
660 | -18.07 -18.549 -18.787 -19.069 -19.317 -19.731 -20.02 -20.29 -20.455 -20.671 -20.848 -21.015
661 | -17.765 -18.254 -18.484 -18.76 -19.008 -19.407 -19.699 -19.974 -20.138 -20.361 -20.568 -20.771
662 | -18.095 -18.407 -18.547 -18.725 -18.898 -19.249 -19.478 -19.741 -19.895 -20.115 -20.332 -20.552
663 | -18.127 -18.458 -18.611 -18.772 -18.924 -19.235 -19.424 -19.642 -19.758 -19.955 -20.151 -20.361
664 | -17.213 -17.843 -18.097 -18.383 -18.609 -18.983 -19.233 -19.469 -19.615 -19.807 -19.998 -20.207
665 | -15.531 -16.418 -16.832 -17.341 -17.734 -18.293 -18.699 -19.058 -19.265 -19.54 -19.78 -20.027
666 | -15.314 -15.9 -16.209 -16.634 -17.028 -17.604 -18.09 -18.518 -18.765 -19.124 -19.436 -19.766
667 | -16.241 -16.542 -16.692 -16.919 -17.151 -17.57 -17.914 -18.258 -18.476 -18.807 -19.119 -19.477
668 | -17.431 -17.49 -17.508 -17.551 -17.632 -17.884 -18.085 -18.311 -18.443 -18.714 -18.95 -19.274
669 | -17.786 -17.947 -17.992 -18.026 -18.073 -18.266 -18.355 -18.481 -18.591 -18.741 -18.917 -19.184
670 | -16.897 -17.336 -17.526 -17.734 -17.903 -18.18 -18.34 -18.51 -18.613 -18.778 -18.934 -19.153
671 | -16.247 -16.743 -16.968 -17.231 -17.447 -17.814 -18.06 -18.291 -18.446 -18.644 -18.842 -19.069
672 | -16.286 -16.65 -16.82 -17.016 -17.215 -17.567 -17.808 -18.069 -18.228 -18.461 -18.686 -18.939
673 | -16.519 -16.797 -16.924 -17.069 -17.21 -17.514 -17.723 -17.964 -18.114 -18.31 -18.532 -18.795
674 | -16.665 -16.91 -17.024 -17.146 -17.268 -17.54 -17.717 -17.896 -18.037 -18.227 -18.436 -18.69
675 | -16.151 -16.566 -16.755 -16.961 -17.122 -17.435 -17.635 -17.837 -17.969 -18.162 -18.353 -18.581
676 | -15.873 -16.304 -16.496 -16.71 -16.9 -17.23 -17.454 -17.682 -17.828 -18.031 -18.244 -18.484
677 | -15.273 -15.795 -16.024 -16.297 -16.543 -16.931 -17.217 -17.483 -17.646 -17.874 -18.109 -18.365
678 | -15.652 -15.993 -16.143 -16.327 -16.495 -16.819 -17.065 -17.32 -17.48 -17.708 -17.942 -18.23
679 | -15.176 -15.7 -15.926 -16.179 -16.399 -16.73 -16.993 -17.226 -17.379 -17.599 -17.83 -18.105
680 | -14.583 -15.184 -15.45 -15.771 -16.037 -16.445 -16.739 -17.032 -17.201 -17.456 -17.698 -17.982
681 | -14.096 -14.753 -15.046 -15.384 -15.682 -16.114 -16.464 -16.779 -16.969 -17.255 -17.527 -17.835
682 | -12.69 -13.604 -14.022 -14.534 -14.97 -15.541 -16.012 -16.418 -16.656 -17.001 -17.312 -17.663
683 | -13.329 -13.861 -14.1 -14.434 -14.748 -15.232 -15.663 -16.062 -16.304 -16.684 -17.025 -17.432
684 | -12.105 -13.122 -13.546 -14.051 -14.456 -15.009 -15.455 -15.868 -16.101 -16.466 -16.814 -17.224
685 | -10.595 -11.807 -12.334 -13.01 -13.571 -14.273 -14.887 -15.41 -15.711 -16.158 -16.555 -17.009
686 | -10.001 -11.113 -11.604 -12.265 -12.851 -13.591 -14.273 -14.867 -15.202 -15.73 -16.189 -16.723
687 | -9.534 -10.798 -11.27 -11.917 -12.456 -13.186 -13.856 -14.441 -14.785 -15.328 -15.817 -16.401
688 | -7.726 -9.341 -10.007 -10.888 -11.607 -12.48 -13.277 -13.956 -14.344 -14.942 -15.467 -16.095
689 | -5.538 -7.32 -8.148 -9.306 -10.257 -11.348 -12.357 -13.203 -13.668 -14.383 -14.998 -15.721
690 | -1.825 -3.164 -3.76 -4.803 -6.075 -8.128 -10.252 -11.77 -12.477 -13.501 -14.294 -15.21
691 | 0.868 -1.553 -2.396 -3.961 -5.385 -6.944 -8.7 -10.256 -11.046 -12.304 -13.306 -14.471
692 | 1.415 -1.069 -1.931 -3.243 -4.496 -5.926 -7.595 -9.106 -9.898 -11.205 -12.299 -13.623
693 | 2.456 -0.779 -1.596 -2.817 -3.987 -5.324 -6.89 -8.304 -9.073 -10.347 -11.448 -12.85
694 | 3.287 -0.443 -1.222 -2.382 -3.505 -4.785 -6.285 -7.653 -8.391 -9.65 -10.749 -12.163
695 | 2.799 -0.282 -0.955 -2.032 -3.101 -4.33 -5.772 -7.091 -7.818 -9.048 -10.137 -11.559
696 | 1.841 -0.211 -0.8 -1.805 -2.82 -3.984 -5.364 -6.628 -7.33 -8.526 -9.599 -11.02
697 | 3.252 -0.006 -0.695 -1.661 -2.622 -3.732 -5.045 -6.253 -6.928 -8.09 -9.139 -10.542
698 | 3.837 0.368 -0.482 -1.454 -2.393 -3.468 -4.746 -5.916 -6.57 -7.704 -8.732 -10.117
699 | 4.274 0.808 -0.264 -1.228 -2.152 -3.199 -4.449 -5.591 -6.237 -7.347 -8.358 -9.724
700 | 4.486 1.302 -0.04 -1.008 -1.911 -2.934 -4.162 -5.281 -5.914 -7.013 -8.009 -9.365
701 | 6.348 2.301 0.345 -0.772 -1.671 -2.678 -3.883 -4.983 -5.606 -6.687 -7.678 -9.017
702 | 7.942 3.675 1.057 -0.475 -1.35 -2.364 -3.571 -4.669 -5.29 -6.367 -7.353 -8.686
703 | 8.857 4.777 2.088 -0.154 -0.937 -1.952 -3.175 -4.294 -4.923 -6.012 -7.008 -8.353
704 | 9.812 6.162 3.923 0.126 -0.487 -1.465 -2.708 -3.854 -4.502 -5.617 -6.63 -8.001
705 | 9.238 6.124 4.508 0.626 -0.18 -1.005 -2.23 -3.375 -4.033 -5.179 -6.219 -7.623
706 | 6.666 4.692 3.822 1.403 -0.058 -0.655 -1.814 -2.939 -3.593 -4.752 -5.804 -7.237
707 | 4.806 3.448 2.852 1.408 -0.029 -0.485 -1.554 -2.615 -3.25 -4.387 -5.43 -6.866
708 | 4.245 2.668 2.131 1.091 -0.018 -0.437 -1.433 -2.43 -3.032 -4.122 -5.136 -6.545
709 | 4.908 3.228 2.619 1.396 0.03 -0.429 -1.37 -2.315 -2.894 -3.934 -4.915 -6.281
710 | 4.808 3.084 2.483 1.348 0.08 -0.395 -1.315 -2.225 -2.783 -3.785 -4.732 -6.063
711 | 7.395 4.609 3.573 1.885 0.196 -0.38 -1.258 -2.142 -2.684 -3.654 -4.576 -5.871
712 | 6.142 4.297 3.607 2.139 0.379 -0.299 -1.165 -2.042 -2.573 -3.532 -4.43 -5.696
713 | 4.716 3.14 2.569 1.541 0.373 -0.234 -1.056 -1.921 -2.447 -3.392 -4.284 -5.531
714 | 5.333 3.478 2.847 1.677 0.482 -0.2 -1.008 -1.839 -2.353 -3.277 -4.15 -5.373
715 | 4.734 3.054 2.55 1.554 0.511 -0.2 -0.97 -1.778 -2.28 -3.177 -4.033 -5.227
716 | 3.006 2.117 1.805 1.145 0.396 -0.193 -0.938 -1.717 -2.21 -3.088 -3.923 -5.099
717 | 5.709 3.404 2.69 1.5 0.521 -0.201 -0.936 -1.693 -2.168 -3.018 -3.83 -4.977
718 | 6.462 4.14 3.348 1.983 0.766 -0.161 -0.893 -1.643 -2.117 -2.952 -3.747 -4.875
719 | 5.74 3.613 2.98 1.831 0.75 -0.15 -0.85 -1.587 -2.045 -2.871 -3.66 -4.77
720 | 6.894 4.233 3.412 2.047 0.876 -0.114 -0.794 -1.519 -1.982 -2.795 -3.571 -4.669
721 | 5.431 3.829 3.298 2.177 1.042 -0.062 -0.71 -1.436 -1.896 -2.71 -3.482 -4.561
722 | 6.152 3.761 3.028 1.858 0.89 -0.032 -0.631 -1.343 -1.796 -2.606 -3.375 -4.454
723 | 9.693 6.188 4.895 2.959 1.501 0.073 -0.57 -1.264 -1.715 -2.517 -3.279 -4.343
724 | 7.117 5.691 4.946 3.436 2.025 0.428 -0.399 -1.112 -1.577 -2.4 -3.169 -4.236
725 | 2.896 2.546 2.414 1.916 1.258 0.502 -0.228 -0.903 -1.382 -2.23 -3.018 -4.101
726 | 4.676 2.901 2.399 1.567 0.901 0.32 -0.232 -0.858 -1.298 -2.116 -2.887 -3.967
727 | 7.557 4.913 3.987 2.553 1.491 0.552 -0.223 -0.822 -1.263 -2.051 -2.8 -3.857
728 | 8.447 6.115 5.123 3.452 2.123 0.87 -0.162 -0.772 -1.206 -1.991 -2.728 -3.767
729 | 7.001 5.479 4.782 3.421 2.219 1.045 -0.043 -0.656 -1.103 -1.898 -2.645 -3.674
730 | 6.708 4.925 4.214 3.013 2.001 1.037 0.14 -0.477 -0.943 -1.764 -2.519 -3.566
731 | 7.362 5.628 4.835 3.44 2.296 1.234 0.264 -0.379 -0.833 -1.646 -2.398 -3.448
732 | 7.564 5.845 5.094 3.714 2.535 1.435 0.427 -0.274 -0.724 -1.537 -2.289 -3.332
733 | 7.774 5.594 4.828 3.536 2.443 1.434 0.521 -0.189 -0.633 -1.434 -2.185 -3.223
734 | 9.739 7.236 6.175 4.431 3.055 1.817 0.738 -0.136 -0.571 -1.356 -2.094 -3.12
735 | 11.178 8.303 7.096 5.157 3.631 2.242 1.03 -0.045 -0.504 -1.281 -2.009 -3.029
736 | 8.176 7.083 6.483 5.174 3.877 2.558 1.325 0.127 -0.42 -1.197 -1.923 -2.933
737 | 5.384 4.622 4.329 3.578 2.755 1.886 1.045 0.194 -0.356 -1.115 -1.838 -2.839
738 | 5.147 3.81 3.391 2.675 2.006 1.369 0.758 0.152 -0.312 -1.064 -1.767 -2.757
739 | 4.9 3.956 3.584 2.838 2.117 1.435 0.793 0.165 -0.308 -1.024 -1.717 -2.685
740 | 4.166 3.205 2.9 2.298 1.709 1.166 0.645 0.136 -0.309 -0.998 -1.673 -2.631
741 | 6.44 4.342 3.656 2.626 1.851 1.21 0.649 0.139 -0.302 -0.976 -1.638 -2.57
742 | 8.537 6.225 5.336 3.91 2.787 1.825 1.011 0.25 -0.271 -0.964 -1.607 -2.525
743 | 4.498 4.1 3.997 3.478 2.754 1.953 1.153 0.344 -0.249 -0.928 -1.572 -2.481
744 | 2.609 2.436 2.414 2.179 1.753 1.283 0.774 0.24 -0.231 -0.897 -1.539 -2.435
745 | 3.118 2.237 1.971 1.535 1.133 0.783 0.44 0.107 -0.231 -0.897 -1.506 -2.389
746 | 3.471 2.572 2.278 1.749 1.263 0.853 0.462 0.1 -0.244 -0.885 -1.496 -2.355
747 | 3.43 2.598 2.323 1.839 1.356 0.922 0.502 0.113 -0.27 -0.859 -1.467 -2.33
748 | 5.222 3.623 3.035 2.175 1.528 1.004 0.539 0.122 -0.27 -0.857 -1.465 -2.295
749 | 7.754 5.647 4.74 3.37 2.366 1.532 0.843 0.216 -0.244 -0.857 -1.448 -2.278
750 | 8.417 6.35 5.502 4.116 3.006 2.024 1.163 0.36 -0.229 -0.836 -1.424 -2.245
751 | 7.384 5.809 5.236 4.154 3.16 2.217 1.345 0.47 -0.192 -0.814 -1.388 -2.206
752 | 8.494 6.425 5.589 4.25 3.171 2.223 1.377 0.529 -0.156 -0.778 -1.361 -2.172
753 | 7.919 6.434 5.759 4.53 3.451 2.466 1.572 0.663 -0.117 -0.743 -1.326 -2.138
754 | 8.906 6.923 6.083 4.686 3.538 2.532 1.631 0.75 -0.063 -0.706 -1.286 -2.097
755 | 8.747 7.03 6.261 4.93 3.789 2.758 1.82 0.895 0.016 -0.671 -1.249 -2.054
756 | 4.646 4.444 4.394 3.941 3.259 2.507 1.722 0.907 0.093 -0.627 -1.207 -2.012
757 | 3.43 2.799 2.78 2.651 2.282 1.826 1.275 0.692 0.078 -0.607 -1.185 -1.976
--------------------------------------------------------------------------------