├── img
├── README.md
└── Banner_DL.png
├── LICENSE
├── .gitignore
└── README.md
/img/README.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/img/Banner_DL.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ElizaLo/Deep-Learning/HEAD/img/Banner_DL.png
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2020 Yelyzaveta L
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | [](https://hits.seeyoufarm.com)
4 |
5 | This repository contains examples of deep learning algorithms implemented in Python with mathematics behind them being explained.
6 |
7 | > - [ ] For **Machine Learning** algorithms please check [Machine Learning](https://github.com/ElizaLo/Machine-Learning) repository.
8 |
9 | > - [ ] For **Natural Language Processing** (NLU = NLP + NLG) please check [Natural Language Processing](https://github.com/ElizaLo/NLP-Natural-Language-Processing) repository.
10 |
11 | > - [ ] For **Computer Vision** please check [Computer Vision](https://github.com/ElizaLo/Computer-Vision) repository.
12 |
13 |
14 | ## 🎓 University Courses
15 |
16 | - [ ] [CS 231N: Convolutional Neural Networks for Visual Recognition, Stanford](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv)
17 | - [ ] [CS 224N: Natural Language Processing with Deep Learning, Stanford](https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z)
18 | - [ ] [Machine Learning Crash Course](https://techdevguide.withgoogle.com/paths/machine-learning/featured/ml-crash-course#)
19 | - [ ] [fast.ai: Practical Deep Learning for Coders](https://course.fast.ai)"
20 | - [ ] [CS 285: Deep Reinforcement Learning, UC Berkeley](http://rail.eecs.berkeley.edu/deeprlcourse/)
21 | - [ ] [CSC 2541: Differentiable Inference and Generative Models](http://www.cs.toronto.edu/~duvenaud/courses/csc2541/index.html)
22 | - [ ] [MIT 6.S191: Introduction to Deep Learning](http://introtodeeplearning.com)
23 | - [MIT 6.S191: Introduction to Deep Learning ](https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI)
24 | - [ ] [Frontiers of Deep Learning (Simons Institute)](https://www.youtube.com/playlist?list=PLgKuh-lKre11ekU7g-Z_qsvjDD8cT-hi9)
25 | - [Course website](https://simons.berkeley.edu/workshops/dl2019-1)
26 | - [ ] [New Deep Learning Techniques](https://www.youtube.com/playlist?list=PLHyI3Fbmv0SdM0zXj31HWjG9t9Q0v2xYN)
27 | - [Course website](http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/?tab=overview)
28 | - [ ] [Geometry of Deep Learning (Microsoft Research)](https://www.youtube.com/playlist?list=PLD7HFcN7LXRe30qq36It2XCljxc340O_d)
29 | - [Course website](https://www.microsoft.com/en-us/research/event/ai-institute-2019/)
30 | - [ ] [Deep Multi-Task and Meta Learning (Stanford CS330)](https://www.youtube.com/playlist?list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5)
31 | - [Course Website](http://cs330.stanford.edu/)
32 | - [ ] [Advanced Deep Learning & Reinforcement Learning 2020 (DeepMind / UCL)](https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs)
33 | - [ ] [Deep Reinforcment Learning, Decision Making and Control (UC Berkeley CS285)](https://www.youtube.com/playlist?list=PLkFD6_40KJIwhWJpGazJ9VSj9CFMkb79A)
34 | - [ ] [Full Stack Deep Learning 2019](https://www.youtube.com/playlist?list=PL1T8fO7ArWlcf3Hc4VMEVBlH8HZm_NbeB)
35 | - [ ] [Emerging Challenges in Deep Learning](https://www.youtube.com/playlist?list=PLgKuh-lKre10BpafDrv0fg2VNUweWXWVd)
36 | - [ ] [Deep|Bayes 2019 Summer School](https://www.youtube.com/playlist?list=PLe5rNUydzV9QHe8VDStpU0o8Yp63OecdW)
37 | - [ ] [Workshop on Theory of Deep Learning: Where next (Institure for Advanced Study)](https://www.youtube.com/playlist?list=PLdDZb3TwJPZ5dqqg_S-rgJqSFeH4DQqFQ)
38 | - [ ] [Deep Learning: Alchemy or Science? (Institure for Advanced Study)](https://www.youtube.com/playlist?list=PLdDZb3TwJPZ7aAxhIHALBoh8l6-UxmMNP)
39 |
40 | ## 🔹 Coursera Courses
41 |
42 |
43 | List of Coursera Courses
44 |
50 |
51 |
52 |
53 | ## 📚 Books
54 |
55 | List of Books
56 |
63 |
64 |
65 | ## Papers
66 |
67 | | Title | Description, Information |
68 | | :---: | :--- |
69 | |[Deep Learning Papers Reading Roadmap](https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap)|Deep Learning papers reading roadmap for anyone who are eager to learn this amazing tech!|
70 |
71 |
72 | ## Videos
73 |
74 | Other useful links
75 |
80 |
81 |
82 |
83 | ## :octocat: GitHub Repositories
84 |
85 | | Title | Description, Information |
86 | | :---: | :--- |
87 | |[NVIDIA Deep Learning Examples for Tensor Cores](https://github.com/NVIDIA/DeepLearningExamples)|Deep Learning Examples|
88 |
89 | ## Contests
90 |
91 | Other useful links
92 |
99 |
100 |
101 | ## 📌 Other
102 |
103 | Other useful links
104 |
109 |
110 |
111 | * [Caffe](https://github.com/weiliu89/caffe) – a fast open framework for deep learning;
112 | * [Deep Learning](http://www.deeplearningbook.org) - Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016);
113 | * [Deep Learning](https://www.udacity.com/course/deep-learning--ud730) от Google — короткий курс для продвинутых. Основное внимание уделяется библиотеке для глубинного обучения TensorFlow;
114 | * [Deep Learning at Oxford](https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu) (2015) – a YouTube playlist with lectures ([read more](http://www.cs.ox.ac.uk/teaching/courses/2014-2015/ml/));
115 | * [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision) – a curated list of deep learning resources for computer vision;
116 | * [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers) – a curated list of the most cited deep learning papers (since 2010);
117 | * [Deep Learning Tutorials](https://github.com/subokita/DeepLearningTutorials) – notes and code;
118 | * [dl-docker](https://github.com/saiprashanths/dl-docker) – an all-in-one Docker image for deep learning. Contains all the popular DL frameworks (TensorFlow, Theano, Torch, Caffe, etc.);
119 | * [Self-Study Courses for Deep Learning](https://developer.nvidia.com/deep-learning-courses) от NVDIA — self-paced classes for deep learning that feature interactive lectures, hands-on exercises, and recordings of the office hours Q&A with instructors. You’ll learn everything you need to design, train, and integrate neural network-powered artificial intelligence into your applications with widely used open-source frameworks and NVIDIA software. During the hands-on exercises, you will use GPUs and deep learning software in the cloud;
120 | * [deep-rl-tensorflow](https://github.com/carpedm20/deep-rl-tensorflow) - ensorFlow implementation of Deep Reinforcement Learning papers;
121 | * [TensorFlow 101](https://github.com/sjchoi86/Tensorflow-101) – Tensorflow tutorials;
122 | * [Introduction to Deep Learning for Image Recognition](https://github.com/rouseguy/scipyUS2016_dl-image) – this notebook accompanies the Introduction to Deep Learning for Image Recognition workshop to explain the core concepts of deep learning with emphasis on classifying images as the application;
123 |
124 | ## Main skills required by the Deep Learning Engineer / Deep Learning Research Engineer
125 |
126 | > The [research](https://apps.ucu.edu.ua/en/articles-and-research/data-science-job-market-2020-1/data-scientists-skills-2020-1/) made by **Faculty of Applied Sciences at UCU**. Link on main [article](https://apps.ucu.edu.ua/en/articles-and-research/data-science-job-market-2020-1/).
127 |
128 | ### Deep Learning Engineer / Deep Learning Research Engineer
129 |
130 | 1. Python3: numpy, scikit-learn, pandas, scipy.
131 | 2. Statistics (regression, properties of distributions, statistical tests, and proper usage, etc.) and probability theory.
132 | 3. Deep learning frameworks: Tensorflow, PyTorch; MxNet, Caffe, Keras.
133 | 4. Deep learning architectures: VGG, ResNet, Inception, MobileNet.
134 | 5. Deepnets, hyperparameter optimization, visualization, interpretation.
135 | 6. Machine learning models.
136 |
137 | ### Python for Deep Learning and Research
138 |
139 | - Basic algorithms and common tasks
140 | - Classical algorithms
141 | - Computational complexity
142 | - Useful Libraries and Frameworks
143 | - CPU vs GPU parallelization
144 | - Cloud and GPU Integration
145 | - Data Visualization
146 | - Vectors and Vectorization
147 | - Image Processing
148 | - Language Processing
149 |
150 | ### Mathematics for Deep Learning
151 |
152 | - Common Notation and Core Ideas
153 | - Linear Algebra
154 | - N-dim Spaces
155 | - Vectors, Matrices and Operators
156 | - Mathematical and Function Analysis calculus
157 | - Derivative and Partial derivative
158 | - Chain Rule
159 | - Probability theory
160 | - Introduction to Statistics
161 |
162 | ### Linear, Polynomial and Multivariate Regression
163 |
164 | - Price prediction Task
165 | - Linear Regression
166 | - Least square method
167 | - Loss Function
168 | - Optimization Task
169 | - Gradient Descent
170 | - MLE — Maximum Likelihood Estimation
171 | - Data Preprocessing
172 | - Model Visualization
173 | - Data Normalization
174 | - Polynomial Regression
175 | - Multivariate Regression
176 |
177 | ### Introduction Computer Vision
178 |
179 | - Basic idea of Computer Vision
180 | - Classical Computer Vision
181 | - Deep Learning and CV
182 | - Core Idea of Semantic Gap
183 | - Classification Task
184 | - N-dim Spaces and Metrics
185 | - Common datasets
186 | - Mnist and Fashion-Mnist
187 | - Cifar10 and Cifar100
188 | - Cats vs Dogs
189 | - ImageNet and MS COCO
190 | - Euclidean Distance
191 | - Nearest Neighbour
192 |
193 | ### Classification and Computer Vision
194 |
195 | - Image Classification
196 | - Cosine Similarity
197 | - Manhattan distance
198 | - KNN
199 | - Train / Val / Test data split
200 | - Logistic Regression
201 | - Logistic Regression and Maximum Likelihood Estimation
202 | - Loss function and Cross Entropy
203 | - Accuracy and Metrics
204 | - Precision, Recall and F1
205 |
206 | ### Neural Networks
207 |
208 | - Rosenblatt’s Perceptron
209 | - Artificial Neuron
210 | - Warren McCulloch and Walter Pitts Neuron
211 | - Fully Connected (Linear, Dense, Affine) Layer
212 | - Activation Layers
213 | - BackPropagation Algorithm
214 | - Stochastic Gradient Descent
215 | - Biological Neuron and Analogy
216 |
217 | ### Computation graphs and Deep Learning Frameworks
218 |
219 | - Computational graphs
220 | - Differentiable graphs
221 | - Deep Learning Frameworks
222 | - Custom Framework Realization
223 | - Linear operations and Activation Realizations
224 | - Main Blocks Of Deep Learning FrameWorks
225 | - Custom Model and Train
226 | - Optimizator realization
227 | - TensorFlow
228 | - Keras
229 | - PyTorch
230 |
231 | ### Deep Learning
232 | - Neural Networks Problems
233 | - Activation Functions
234 | - Weights Initialization
235 | - Initialization Techniks
236 | - Overfitting and Underfitting
237 | - Regularization Methods
238 | - L1 and L2 Regularization
239 | - Ensemble of Models
240 | - Dropout
241 | - Hyper Parameters Search
242 | - Optimizations behind SGD
243 | - Momentum and Nesterov Momentum
244 | - Adagrad, RMSprop
245 | - Adam, Nadam
246 | - Batch-Normalization
247 |
248 | ### Unsupervised Learning
249 |
250 | - Dimensionality reduction
251 | - Feature Learning
252 | - Vector Representation
253 | - Embeddings
254 | - Kernel Method
255 | - Clusterization
256 | - k-means Clusterization
257 | - Hierarchical Clusterization
258 | - Neural Networks and Unsupervised Learning
259 | - Autoencoders
260 | - Autoencoders architectures
261 | - Tasks for Autoencoders
262 | - Problem of Image Generation
263 | - Image Denoising Task
264 |
265 | ### Introduction to Deep Learning in Computer Vision
266 |
267 | - Problems of Fully Connected Neural Networks
268 | - Towards Convolution Neural Network
269 | - CNN as feature extractor
270 | - Computer Vision tasks
271 | - Transfer Learning
272 | - Transfer Learning in Practice
273 | - What Next (breath: CNN Architectures, Image Detection, Segmentation, GANs)
274 |
275 | ### Introduction to Natural Language Processing
276 |
277 | - Introduction to Natural Language Processing
278 | - Text classification
279 | - Words Preprocessing and Representation
280 | - Part-of-Speech tagging (PoS tagging)
281 | - Tokenization, Lemmatization and Stemming
282 | - Bag of Words
283 | - TF-IDF
284 | - Distributive semantics
285 | - Vector Semantics
286 | - Term-document matrix
287 | - Word context matrix
288 | - Dense Vectors and Embeddings
289 | - Word2Vec
290 | - What Next (breath: RNN, Seq2Seq, Attention, Transformers, Modern Language Models)
291 |
--------------------------------------------------------------------------------