├── .gitignore ├── LICENSE ├── README.md ├── VAE ├── VAE_model.py ├── VAE_train.py └── __init__.py ├── cell_sample.py ├── cell_train.py ├── celltypist_train.py ├── classifier_sample.py ├── classifier_train.py ├── exp_script ├── down_stream_analysis_muris.ipynb ├── script_description.md ├── script_diffusion_interpolation.ipynb ├── script_diffusion_multi-condi.ipynb ├── script_diffusion_umap.ipynb ├── script_random_forest.ipynb └── script_static_eval.ipynb ├── guided_diffusion ├── __init__.py ├── cell_datasets_WOT.py ├── cell_datasets_loader.py ├── cell_datasets_lung.py ├── cell_datasets_muris.py ├── cell_datasets_pbmc.py ├── cell_datasets_sapiens.py ├── cell_model.py ├── dist_util.py ├── fp16_util.py ├── gaussian_diffusion.py ├── logger.py ├── losses.py ├── nn.py ├── resample.py ├── respace.py ├── script_util.py └── train_util.py ├── model_archi.png └── train.sh /.gitignore: -------------------------------------------------------------------------------- 1 | .vscode 2 | __pycache__/ 3 | VAE/cache 4 | output/* -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2023 Erpai Luo 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## scDiffusion: Conditional Generation of High-Quality Single-Cell Data Using Diffusion Model 2 | Welcome to the code base for scDiffusion, a model developed for the generation of scRNA-seq data. This model combines the power of latent diffusion model and pre-trained model. More details about this model: https://doi.org/10.1093/bioinformatics/btae518. 3 | 4 | 5 |
6 | 7 |
8 | 9 | 10 | # Environment 11 | ``` 12 | pytorch 1.13.0 13 | numpy 1.23.4 14 | anndata 0.8.0 15 | scanpy 1.9.1 16 | scikit-learn 1.2.2 17 | blobfile 2.0.0 18 | pandas 1.5.1 19 | celltypist 1.3.0 20 | imbalanced-learn 0.11.0 21 | mpi4py 3.1.4 22 | ``` 23 | 24 | # Train the scDiffusion model 25 | 26 | **Dataset:** 27 | The data used for training the model is formatted in h5ad. You can download the dataset that used in the paper in https://figshare.com/s/49b29cb24b27ec8b6d72. For other formats (or your data has already been pre-possed), modify the code in ./guided_diffusion/cell_datasets_loader.py. The load_data function in the cell_datasets_loader.py only support not pre-processed row count data. 28 | 29 | You can directly run the `train.sh` to complete all the training steps. Be aware to change the file path to your own. 30 | 31 | Below are the complete steps for the training process: 32 | 33 | - Step 1: Train the Autoencoder 34 | Run `VAE/VAE_train.py`: cd VAE. Set the parameters *data_dir* and *save_dir* to your local path, and set the *num_genes* parameter to match the gene number of your dataset. The pretrained weight of scimilarity can be found in https://zenodo.org/records/8286452, we used the annotation_model_v1 in this work. Set the *state_dict* to the path where you store your downloaded scimilarity checkpoint. You can also train the autoencoder from scratch, this might need larger interation steps (larger than 1.5e5 steps would be good). 35 | 36 | For example: 37 | `python VAE_train.py --data_dir '/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad' --num_genes 18996 --save_dir '../output/checkpoint/AE/my_VAE' --max_steps 200000` 38 | 39 | - Step 2: Train the diffusion backbone 40 | Run `cell_train.py`: First, set the parameters *vae_path* to the path of your trained Autoencoder. Next, set the *data_dir*, *model_name*(the folder to save the ckpt), and *save_dir*(the path to place the *model_name* folder). We trained the backbone for 6e5 steps. 41 | 42 | For example: 43 | `python cell_train.py --data_dir '/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad' --vae_path 'output/checkpoint/AE/my_VAE/model_seed=0_step=150000.pt' --model_name 'my_diffusion' --save_dir 'output/checkpoint/backbone' --lr_anneal_steps 800000` 44 | 45 | - Step 3: Train the classifier 46 | Run `classifier_train.py`: Again, set the parameters *vae_path* to the path of your trained Autoencoder. Set the *num_class* parameter to match the number of classes in your dataset. Then, set the *model_path* to the path you would like to save the ckpt and execute the file. We trained the classifier for 2e5 steps. 47 | 48 | For example: 49 | `python classifier_train.py --data_dir '/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad' --model_path "output/checkpoint/classifier/my_classifier" --iterations 400000 --vae_path 'output/checkpoint/AE/my_VAE/model_seed=0_step=150000.pt' --num_class=12` 50 | 51 | # Generate new sample 52 | 53 | **Unconditional generation:** 54 | 55 | Run `cell_sample.py`: set the *model_path* to match the trained backbone model's path and set the *sample_dir* to your local path. The *num_samples* is the number of cell to generate, and the *batch_size* is the number of cell generate in one diffusion reverse process. 56 | 57 | For example: 58 | `python cell_sample.py --model_path 'output/checkpoint/backbone/my_diffusion/model600000.pt' --sample_dir 'output/simulated_samples/muris' --num_samples 3000 --batch_size 1000` 59 | 60 | Running the file will generate new latent embeddings for the scRNA-seq data and save them in a .npz file. You can decode these latent embeddings and retrieve the complete gene expression data using `exp_script/script_diffusion_umap.ipynb` or `exp_script/script_static_eval.ipynb`. 61 | 62 | **Conditional generation:** 63 | 64 | Run `classifier_sample.py`: set the *model_path* and *classifier_path* to match the trained backbone model and the trained classifier, respectively. Also, set the *sample_dir* to your local path. The condition can be set in "main" (the param *cell_type* in the main() function refer to the cell_type you want to generate.). Running the file will generate new latent embeddings under the given conditions. 65 | 66 | For example: 67 | `python classifier_sample.py --model_path 'output/checkpoint/backbone/my_diffusion/model600000.pt' --classifier_path 'output/checkpoint/classifier/my_classifier/model200000.pt' --sample_dir 'output/simulated_samples/muris' --num_samples 3000 --batch_size 1000` 68 | 69 | You can decode these embeddings the same way as in unconditional generation. 70 | 71 | For multi-conditional generation and gradiante interpolation, refer to the comments in the main() function and create_argparser() function (see the comments with *** mark). 72 | 73 | **Experiments reproduce:** 74 | 75 | The scripts in the exp_script/ directory can be used to reproduce the results presented in the paper. You can refer the process in any of these scripts to rebuild the gene expression from latent space. The `exp_script/down_stream_analysis_muris.ipynb` can reproduce the marker genes result. The `exp_script/script_diffusion_umap_multi-condi.ipynb` can reproduce the result of two-conditonal generation. The `exp_script/script_diffusion_umap_trajectory.ipynb` can reproduce the result of Gradient Interpolation. The `exp_script/script_diffusion_umap.ipynb` can reproduce the UMAP shown in the paper. The `exp_script/script_static_eval.ipynb` can reproduce the statistical metrics mentioned in the paper. 76 | -------------------------------------------------------------------------------- /VAE/VAE_model.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import torch 3 | import torch.nn.functional as F 4 | from torch import nn 5 | import os 6 | import anndata as ad 7 | import scanpy as sc 8 | from typing import List 9 | 10 | 11 | class Encoder(nn.Module): 12 | """A class that encapsulates the encoder.""" 13 | def __init__( 14 | self, 15 | n_genes: int, 16 | latent_dim: int = 128, 17 | hidden_dim: List[int] = [1024, 1024], 18 | dropout: float = 0.5, 19 | input_dropout: float = 0.4, 20 | residual: bool = False, 21 | ): 22 | """Constructor. 23 | 24 | Parameters 25 | ---------- 26 | n_genes: int 27 | The number of genes in the gene space, representing the input dimensions. 28 | latent_dim: int, default: 128 29 | The latent space dimensions 30 | hidden_dim: List[int], default: [1024, 1024] 31 | A list of hidden layer dimensions, describing the number of layers and their dimensions. 32 | Hidden layers are constructed in the order of the list for the encoder and in reverse 33 | for the decoder. 34 | dropout: float, default: 0.5 35 | The dropout rate for hidden layers 36 | input_dropout: float, default: 0.4 37 | The dropout rate for the input layer 38 | residual: bool, default: False 39 | Use residual connections. 40 | """ 41 | super().__init__() 42 | self.latent_dim = latent_dim 43 | self.network = nn.ModuleList() 44 | self.residual = residual 45 | if self.residual: 46 | assert len(set(hidden_dim)) == 1 47 | for i in range(len(hidden_dim)): 48 | if i == 0: # input layer 49 | self.network.append( 50 | nn.Sequential( 51 | nn.Dropout(p=input_dropout), 52 | nn.Linear(n_genes, hidden_dim[i]), 53 | nn.BatchNorm1d(hidden_dim[i]), 54 | nn.PReLU(), 55 | ) 56 | ) 57 | else: # hidden layers 58 | self.network.append( 59 | nn.Sequential( 60 | nn.Dropout(p=dropout), 61 | nn.Linear(hidden_dim[i - 1], hidden_dim[i]), 62 | nn.BatchNorm1d(hidden_dim[i]), 63 | nn.PReLU(), 64 | ) 65 | ) 66 | # output layer 67 | self.network.append(nn.Linear(hidden_dim[-1], latent_dim)) 68 | 69 | def forward(self, x) -> F.Tensor: 70 | for i, layer in enumerate(self.network): 71 | if self.residual and (0 < i < len(self.network) - 1): 72 | x = layer(x) + x 73 | else: 74 | x = layer(x) 75 | return F.normalize(x, p=2, dim=1) 76 | 77 | def save_state(self, filename: str): 78 | """Save state dictionary. 79 | 80 | Parameters 81 | ---------- 82 | filename: str 83 | Filename to save the state dictionary. 84 | """ 85 | torch.save({"state_dict": self.state_dict()}, filename) 86 | 87 | def load_state(self, filename: str, use_gpu: bool = False): 88 | """Load model state. 89 | 90 | Parameters 91 | ---------- 92 | filename: str 93 | Filename containing the model state. 94 | use_gpu: bool 95 | Boolean indicating whether or not to use GPUs. 96 | """ 97 | if not use_gpu: 98 | ckpt = torch.load(filename, map_location=torch.device("cpu")) 99 | else: 100 | ckpt = torch.load(filename) 101 | state_dict = ckpt['state_dict'] 102 | first_layer_key = ['network.0.1.weight', 103 | 'network.0.1.bias', 104 | 'network.0.2.weight', 105 | 'network.0.2.bias', 106 | 'network.0.2.running_mean', 107 | 'network.0.2.running_var', 108 | 'network.0.2.num_batches_tracked', 109 | 'network.0.3.weight]',] 110 | for key in first_layer_key: 111 | if key in state_dict: 112 | del state_dict[key] 113 | self.load_state_dict(state_dict, strict=False) 114 | 115 | 116 | class Decoder(nn.Module): 117 | """A class that encapsulates the decoder.""" 118 | 119 | def __init__( 120 | self, 121 | n_genes: int, 122 | latent_dim: int = 128, 123 | hidden_dim: List[int] = [1024, 1024], 124 | dropout: float = 0.5, 125 | residual: bool = False, 126 | ): 127 | """Constructor. 128 | 129 | Parameters 130 | ---------- 131 | n_genes: int 132 | The number of genes in the gene space, representing the input dimensions. 133 | latent_dim: int, default: 128 134 | The latent space dimensions 135 | hidden_dim: List[int], default: [1024, 1024] 136 | A list of hidden layer dimensions, describing the number of layers and their dimensions. 137 | Hidden layers are constructed in the order of the list for the encoder and in reverse 138 | for the decoder. 139 | dropout: float, default: 0.5 140 | The dropout rate for hidden layers 141 | residual: bool, default: False 142 | Use residual connections. 143 | """ 144 | super().__init__() 145 | self.latent_dim = latent_dim 146 | self.network = nn.ModuleList() 147 | self.residual = residual 148 | if self.residual: 149 | assert len(set(hidden_dim)) == 1 150 | for i in range(len(hidden_dim)): 151 | if i == 0: # first hidden layer 152 | self.network.append( 153 | nn.Sequential( 154 | nn.Linear(latent_dim, hidden_dim[i]), 155 | nn.BatchNorm1d(hidden_dim[i]), 156 | nn.PReLU(), 157 | ) 158 | ) 159 | else: # other hidden layers 160 | self.network.append( 161 | nn.Sequential( 162 | nn.Dropout(p=dropout), 163 | nn.Linear(hidden_dim[i - 1], hidden_dim[i]), 164 | nn.BatchNorm1d(hidden_dim[i]), 165 | nn.PReLU(), 166 | ) 167 | ) 168 | # reconstruction layer 169 | self.network.append(nn.Linear(hidden_dim[-1], n_genes)) 170 | 171 | def forward(self, x): 172 | for i, layer in enumerate(self.network): 173 | if self.residual and (0 < i < len(self.network) - 1): 174 | x = layer(x) + x 175 | else: 176 | x = layer(x) 177 | return x 178 | 179 | def save_state(self, filename: str): 180 | """Save state dictionary. 181 | 182 | Parameters 183 | ---------- 184 | filename: str 185 | Filename to save the state dictionary. 186 | """ 187 | torch.save({"state_dict": self.state_dict()}, filename) 188 | 189 | def load_state(self, filename: str, use_gpu: bool = False): 190 | """Load model state. 191 | 192 | Parameters 193 | ---------- 194 | filename: str 195 | Filename containing the model state. 196 | use_gpu: bool 197 | Boolean indicating whether to use GPUs. 198 | """ 199 | if not use_gpu: 200 | ckpt = torch.load(filename, map_location=torch.device("cpu")) 201 | else: 202 | ckpt = torch.load(filename) 203 | state_dict = ckpt['state_dict'] 204 | last_layer_key = ['network.3.weight', 205 | 'network.3.bias',] 206 | for key in last_layer_key: 207 | if key in state_dict: 208 | del state_dict[key] 209 | self.load_state_dict(state_dict, strict=False) 210 | # self.load_state_dict(ckpt["state_dict"]) 211 | 212 | class VAE(torch.nn.Module): 213 | """ 214 | VAE base on compositional perturbation autoencoder (CPA) 215 | """ 216 | def __init__( 217 | self, 218 | num_genes, 219 | device="cuda", 220 | seed=0, 221 | loss_ae="gauss", 222 | decoder_activation="linear", 223 | hidden_dim=128, 224 | ): 225 | super(VAE, self).__init__() 226 | # set generic attributes 227 | self.num_genes = num_genes 228 | self.device = device 229 | self.seed = seed 230 | self.loss_ae = loss_ae 231 | # early-stopping 232 | self.best_score = -1e3 233 | self.patience_trials = 0 234 | 235 | # set hyperparameters 236 | self.set_hparams_(hidden_dim) 237 | 238 | # set models 239 | self.hidden_dim = [1024,1024,1024] 240 | self.dropout = 0.0 241 | self.input_dropout = 0.0 242 | self.residual = False 243 | self.encoder = Encoder( 244 | self.num_genes, 245 | latent_dim=self.hparams["dim"], 246 | hidden_dim=self.hidden_dim, 247 | dropout=self.dropout, 248 | input_dropout=self.input_dropout, 249 | residual=self.residual, 250 | ) 251 | self.decoder = Decoder( 252 | self.num_genes, 253 | latent_dim=self.hparams["dim"], 254 | hidden_dim=list(reversed(self.hidden_dim)), 255 | dropout=self.dropout, 256 | residual=self.residual, 257 | ) 258 | 259 | # losses 260 | self.loss_autoencoder = nn.MSELoss(reduction='mean') 261 | 262 | self.iteration = 0 263 | 264 | self.to(self.device) 265 | 266 | # optimizers 267 | get_params = lambda model, cond: list(model.parameters()) if cond else [] 268 | _parameters = ( 269 | get_params(self.encoder, True) 270 | + get_params(self.decoder, True) 271 | ) 272 | self.optimizer_autoencoder = torch.optim.AdamW(_parameters, lr=self.hparams["autoencoder_lr"], weight_decay=self.hparams["autoencoder_wd"],) 273 | 274 | 275 | def forward(self, genes, return_latent=False, return_decoded=False): 276 | """ 277 | If return_latent=True, act as encoder only. If return_decoded, genes should 278 | be the latent representation and this act as decoder only. 279 | """ 280 | if return_decoded: 281 | gene_reconstructions = self.decoder(genes) 282 | gene_reconstructions = nn.ReLU()(gene_reconstructions) # only relu when inference 283 | return gene_reconstructions 284 | 285 | latent_basal = self.encoder(genes) 286 | if return_latent: 287 | return latent_basal 288 | 289 | gene_reconstructions = self.decoder(latent_basal) 290 | 291 | return gene_reconstructions 292 | 293 | 294 | 295 | def set_hparams_(self, hidden_dim): 296 | """ 297 | Set hyper-parameters to default values or values fixed by user. 298 | """ 299 | 300 | self.hparams = { 301 | "dim": hidden_dim, 302 | "autoencoder_width": 5000, 303 | "autoencoder_depth": 3, 304 | "adversary_lr": 3e-4, 305 | "autoencoder_wd": 0.01, 306 | "autoencoder_lr": 5e-4, 307 | } 308 | 309 | return self.hparams 310 | 311 | 312 | def train_step(self, genes): 313 | """ 314 | Train VAE. 315 | """ 316 | genes = genes.to(self.device) 317 | gene_reconstructions = self.forward(genes) 318 | 319 | reconstruction_loss = self.loss_autoencoder(gene_reconstructions, genes) 320 | 321 | self.optimizer_autoencoder.zero_grad() 322 | reconstruction_loss.backward() 323 | self.optimizer_autoencoder.step() 324 | 325 | self.iteration += 1 326 | 327 | return { 328 | "loss_reconstruction": reconstruction_loss.item(), 329 | } 330 | -------------------------------------------------------------------------------- /VAE/VAE_train.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import os 3 | import time 4 | 5 | import numpy as np 6 | import torch 7 | from VAE_model import VAE 8 | import sys 9 | sys.path.append("..") 10 | # from guided_diffusion.cell_datasets import load_data 11 | # from guided_diffusion.cell_datasets_sapiens import load_data 12 | # from guided_diffusion.cell_datasets_WOT import load_data 13 | # from guided_diffusion.cell_datasets_muris import load_data 14 | from guided_diffusion.cell_datasets_loader import load_data 15 | 16 | torch.autograd.set_detect_anomaly(True) 17 | import random 18 | 19 | def seed_everything(seed): 20 | random.seed(seed) 21 | np.random.seed(seed) 22 | torch.manual_seed(seed) 23 | torch.cuda.manual_seed_all(seed) 24 | torch.backends.cudnn.deterministic = True 25 | 26 | 27 | def prepare_vae(args, state_dict=None): 28 | """ 29 | Instantiates autoencoder and dataset to run an experiment. 30 | """ 31 | 32 | device = "cuda" if torch.cuda.is_available() else "cpu" 33 | 34 | datasets = load_data( 35 | data_dir=args["data_dir"], 36 | batch_size=args["batch_size"], 37 | train_vae=True, 38 | ) 39 | 40 | autoencoder = VAE( 41 | num_genes=args["num_genes"], 42 | device=device, 43 | seed=args["seed"], 44 | loss_ae=args["loss_ae"], 45 | hidden_dim=128, 46 | decoder_activation=args["decoder_activation"], 47 | ) 48 | if state_dict is not None: 49 | print('loading pretrained model from: \n',state_dict) 50 | use_gpu = device == "cuda" 51 | autoencoder.encoder.load_state(state_dict["encoder"], use_gpu) 52 | autoencoder.decoder.load_state(state_dict["decoder"], use_gpu) 53 | 54 | return autoencoder, datasets 55 | 56 | 57 | def train_vae(args, return_model=False): 58 | """ 59 | Trains a autoencoder 60 | """ 61 | if args["state_dict"] is not None: 62 | filenames = {} 63 | checkpoint_path = { 64 | "encoder": os.path.join( 65 | args["state_dict"], filenames.get("model", "encoder.ckpt") 66 | ), 67 | "decoder": os.path.join( 68 | args["state_dict"], filenames.get("model", "decoder.ckpt") 69 | ), 70 | "gene_order": os.path.join( 71 | args["state_dict"], filenames.get("gene_order", "gene_order.tsv") 72 | ), 73 | } 74 | autoencoder, datasets = prepare_vae(args, checkpoint_path) 75 | else: 76 | autoencoder, datasets = prepare_vae(args) 77 | 78 | args["hparams"] = autoencoder.hparams 79 | 80 | start_time = time.time() 81 | for step in range(args["max_steps"]): 82 | 83 | genes, _ = next(datasets) 84 | 85 | minibatch_training_stats = autoencoder.train_step(genes) 86 | 87 | if step % 1000 == 0: 88 | for key, val in minibatch_training_stats.items(): 89 | print('step ', step, 'loss ', val) 90 | 91 | ellapsed_minutes = (time.time() - start_time) / 60 92 | 93 | stop = ellapsed_minutes > args["max_minutes"] or ( 94 | step == args["max_steps"] - 1 95 | ) 96 | 97 | if ((step % args["checkpoint_freq"]) == 0 or stop): 98 | 99 | os.makedirs(args["save_dir"],exist_ok=True) 100 | torch.save( 101 | autoencoder.state_dict(), 102 | os.path.join( 103 | args["save_dir"], 104 | "model_seed={}_step={}.pt".format(args["seed"], step), 105 | ), 106 | ) 107 | 108 | if stop: 109 | break 110 | 111 | if return_model: 112 | return autoencoder, datasets 113 | 114 | 115 | def parse_arguments(): 116 | """ 117 | Read arguments if this script is called from a terminal. 118 | """ 119 | 120 | parser = argparse.ArgumentParser(description="Finetune Scimilarity") 121 | # dataset arguments 122 | parser.add_argument("--data_dir", type=str, default='/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad') 123 | parser.add_argument("--loss_ae", type=str, default="mse") 124 | parser.add_argument("--decoder_activation", type=str, default="ReLU") 125 | 126 | # AE arguments 127 | parser.add_argument("--local_rank", type=int, default=0) 128 | parser.add_argument("--split_seed", type=int, default=1234) 129 | parser.add_argument("--num_genes", type=int, default=18996) 130 | parser.add_argument("--seed", type=int, default=0) 131 | parser.add_argument("--hparams", type=str, default="") 132 | 133 | # training arguments 134 | parser.add_argument("--max_steps", type=int, default=200000) 135 | parser.add_argument("--max_minutes", type=int, default=3000) 136 | parser.add_argument("--checkpoint_freq", type=int, default=50000) 137 | parser.add_argument("--batch_size", type=int, default=128) 138 | parser.add_argument("--state_dict", type=str, default="/data1/lep/Workspace/guided-diffusion/scimilarity-main/models/annotation_model_v1") # if pretrain 139 | # parser.add_argument("--state_dict", type=str, default=None) # if not pretrain 140 | 141 | parser.add_argument("--save_dir", type=str, default='../output/ae_checkpoint/muris_AE') 142 | parser.add_argument("--sweep_seeds", type=int, default=200) 143 | return dict(vars(parser.parse_args())) 144 | 145 | 146 | if __name__ == "__main__": 147 | seed_everything(1234) 148 | train_vae(parse_arguments()) 149 | -------------------------------------------------------------------------------- /VAE/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EperLuo/scDiffusion/d34ef8e560b47159d4500cf4411a7a34e5a12a32/VAE/__init__.py -------------------------------------------------------------------------------- /cell_sample.py: -------------------------------------------------------------------------------- 1 | """ 2 | Generate a large batch of image samples from a model and save them as a large 3 | numpy array. This can be used to produce samples for FID evaluation. 4 | """ 5 | import argparse 6 | 7 | import numpy as np 8 | import torch as th 9 | import torch.distributed as dist 10 | import random 11 | 12 | from guided_diffusion import dist_util, logger 13 | from guided_diffusion.script_util import ( 14 | NUM_CLASSES, 15 | model_and_diffusion_defaults, 16 | create_model_and_diffusion, 17 | add_dict_to_argparser, 18 | args_to_dict, 19 | ) 20 | 21 | 22 | def save_data(all_cells, traj, data_dir): 23 | cell_gen = all_cells 24 | np.savez(data_dir, cell_gen=cell_gen) 25 | return 26 | 27 | def main(): 28 | setup_seed(1234) 29 | args = create_argparser().parse_args() 30 | 31 | dist_util.setup_dist() 32 | logger.configure(dir='output/checkpoint/sample_logs') 33 | 34 | logger.log("creating model and diffusion...") 35 | model, diffusion = create_model_and_diffusion( 36 | **args_to_dict(args, model_and_diffusion_defaults().keys()) 37 | ) 38 | model.load_state_dict( 39 | dist_util.load_state_dict(args.model_path, map_location="cpu") 40 | ) 41 | model.to(dist_util.dev()) 42 | model.eval() 43 | 44 | logger.log("sampling...") 45 | all_cells = [] 46 | while len(all_cells) * args.batch_size < args.num_samples: 47 | model_kwargs = {} 48 | sample_fn = ( 49 | diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop 50 | ) 51 | sample, traj = sample_fn( 52 | model, 53 | (args.batch_size, args.input_dim), 54 | clip_denoised=args.clip_denoised, 55 | model_kwargs=model_kwargs, 56 | start_time=diffusion.betas.shape[0], 57 | ) 58 | 59 | gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())] 60 | dist.all_gather(gathered_samples, sample) # gather not supported with NCCL 61 | all_cells.extend([sample.cpu().numpy() for sample in gathered_samples]) 62 | logger.log(f"created {len(all_cells) * args.batch_size} samples") 63 | 64 | arr = np.concatenate(all_cells, axis=0) 65 | save_data(arr, traj, args.sample_dir) 66 | 67 | dist.barrier() 68 | logger.log("sampling complete") 69 | 70 | 71 | def create_argparser(): 72 | defaults = dict( 73 | clip_denoised=False, 74 | num_samples=12000, 75 | batch_size=3000, 76 | use_ddim=False, 77 | model_path="output/checkpoint/backbone/open_problem/model800000.pt", 78 | sample_dir="output/simulated_samples/open_problem" 79 | ) 80 | defaults.update(model_and_diffusion_defaults()) 81 | parser = argparse.ArgumentParser() 82 | add_dict_to_argparser(parser, defaults) 83 | return parser 84 | 85 | def setup_seed(seed): 86 | th.manual_seed(seed) 87 | th.cuda.manual_seed_all(seed) 88 | np.random.seed(seed) 89 | random.seed(seed) 90 | th.backends.cudnn.deterministic = True # 设置随机数种子 91 | 92 | 93 | if __name__ == "__main__": 94 | main() 95 | -------------------------------------------------------------------------------- /cell_train.py: -------------------------------------------------------------------------------- 1 | """ 2 | Train a diffusion model on images. 3 | """ 4 | 5 | import argparse 6 | 7 | from guided_diffusion import dist_util, logger 8 | from guided_diffusion.cell_datasets_loader import load_data 9 | from guided_diffusion.resample import create_named_schedule_sampler 10 | from guided_diffusion.script_util import ( 11 | model_and_diffusion_defaults, 12 | create_model_and_diffusion, 13 | args_to_dict, 14 | add_dict_to_argparser, 15 | ) 16 | from guided_diffusion.train_util import TrainLoop 17 | 18 | import torch 19 | import numpy as np 20 | import random 21 | 22 | def main(): 23 | setup_seed(1234) 24 | args = create_argparser().parse_args() 25 | 26 | dist_util.setup_dist() 27 | logger.configure(dir='../output/logs/'+args.model_name) # log file 28 | 29 | logger.log("creating model and diffusion...") 30 | model, diffusion = create_model_and_diffusion( 31 | **args_to_dict(args, model_and_diffusion_defaults().keys()) 32 | ) 33 | model.to(dist_util.dev()) 34 | schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) 35 | 36 | logger.log("creating data loader...") 37 | data = load_data( 38 | data_dir=args.data_dir, 39 | batch_size=args.batch_size, 40 | vae_path=args.vae_path, 41 | train_vae=False, 42 | ) 43 | 44 | logger.log("training...") 45 | TrainLoop( 46 | model=model, 47 | diffusion=diffusion, 48 | data=data, 49 | batch_size=args.batch_size, 50 | microbatch=args.microbatch, 51 | lr=args.lr, 52 | ema_rate=args.ema_rate, 53 | log_interval=args.log_interval, 54 | save_interval=args.save_interval, 55 | resume_checkpoint=args.resume_checkpoint, 56 | use_fp16=args.use_fp16, 57 | fp16_scale_growth=args.fp16_scale_growth, 58 | schedule_sampler=schedule_sampler, 59 | weight_decay=args.weight_decay, 60 | lr_anneal_steps=args.lr_anneal_steps, 61 | model_name=args.model_name, 62 | save_dir=args.save_dir 63 | ).run_loop() 64 | 65 | 66 | def create_argparser(): 67 | defaults = dict( 68 | data_dir="/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad", 69 | schedule_sampler="uniform", 70 | lr=1e-4, 71 | weight_decay=0.0001, 72 | lr_anneal_steps=500000, 73 | batch_size=128, 74 | microbatch=-1, # -1 disables microbatches 75 | ema_rate="0.9999", # comma-separated list of EMA values 76 | log_interval=100, 77 | save_interval=200000, 78 | resume_checkpoint="", 79 | use_fp16=False, 80 | fp16_scale_growth=1e-3, 81 | vae_path = 'output/Autoencoder_checkpoint/muris_AE/model_seed=0_step=0.pt', 82 | model_name="muris_diffusion", 83 | save_dir='output/diffusion_checkpoint' 84 | ) 85 | defaults.update(model_and_diffusion_defaults()) 86 | parser = argparse.ArgumentParser() 87 | add_dict_to_argparser(parser, defaults) 88 | return parser 89 | 90 | 91 | def setup_seed(seed): 92 | torch.manual_seed(seed) 93 | torch.cuda.manual_seed_all(seed) 94 | np.random.seed(seed) 95 | random.seed(seed) 96 | torch.backends.cudnn.deterministic = True 97 | 98 | if __name__ == "__main__": 99 | main() 100 | -------------------------------------------------------------------------------- /celltypist_train.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import anndata as ad 3 | import scanpy as sc 4 | import celltypist 5 | from sklearn.model_selection import train_test_split 6 | from imblearn.over_sampling import RandomOverSampler 7 | 8 | def split_adata(adata, train_ratio=0.8, random_state=42): 9 | indexes = np.arange(adata.shape[0]) 10 | train_indexes, test_indexes = train_test_split(indexes, train_size=train_ratio, random_state=random_state) 11 | 12 | train_adata = adata[train_indexes].copy() 13 | test_adata = adata[test_indexes].copy() 14 | 15 | return train_adata, test_adata 16 | 17 | adata = sc.read_h5ad('/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad') 18 | sc.pp.filter_genes(adata, min_cells=3) 19 | sc.pp.filter_cells(adata, min_genes=10) 20 | adata.var_names_make_unique() 21 | sc.pp.normalize_total(adata, target_sum=1e4) 22 | sc.pp.log1p(adata) 23 | 24 | # rebalance 25 | adata, test_adata = split_adata(adata, train_ratio=0.8, random_state=42) 26 | celltype = adata.obs['celltype'].values 27 | ros = RandomOverSampler(random_state=42) 28 | X_resampled, y_resampled = ros.fit_resample(adata.X, celltype) 29 | adata_resampled = ad.AnnData(X_resampled[:80000]) 30 | adata_resampled.var_names = adata.var_names 31 | print(adata_resampled) 32 | # if you want to save the testset 33 | test_adata.write_h5ad('data/testset_muris_all.h5ad') 34 | 35 | new_model = celltypist.train(adata_resampled, labels = y_resampled[:80000], n_jobs=32) 36 | 37 | new_model.write('output/checkpoint/celltypist/my_celltypist.pkl') 38 | -------------------------------------------------------------------------------- /classifier_sample.py: -------------------------------------------------------------------------------- 1 | """ 2 | Like image_sample.py, but use a noisy image classifier to guide the sampling 3 | process towards more realistic images. 4 | """ 5 | 6 | import argparse 7 | 8 | import numpy as np 9 | import torch as th 10 | import torch.distributed as dist 11 | import torch.nn.functional as F 12 | 13 | from guided_diffusion import dist_util, logger 14 | from guided_diffusion.script_util import ( 15 | NUM_CLASSES, 16 | model_and_diffusion_defaults, 17 | classifier_and_diffusion_defaults, 18 | create_model_and_diffusion, 19 | create_classifier, 20 | add_dict_to_argparser, 21 | args_to_dict, 22 | ) 23 | import scanpy as sc 24 | import torch 25 | from VAE.VAE_model import VAE 26 | 27 | def load_VAE(ae_dir, num_gene): 28 | autoencoder = VAE( 29 | num_genes=num_gene, 30 | device='cuda', 31 | seed=0, 32 | hidden_dim=128, 33 | decoder_activation='ReLU', 34 | ) 35 | autoencoder.load_state_dict(torch.load(ae_dir)) 36 | return autoencoder 37 | 38 | def save_data(all_cells, traj, data_dir): 39 | cell_gen = all_cells 40 | np.savez(data_dir, cell_gen=cell_gen) 41 | return 42 | 43 | def main(cell_type=[0], multi=False, inter=False, weight=[10,10]): 44 | args = create_argparser(cell_type, weight).parse_args() 45 | 46 | dist_util.setup_dist() 47 | logger.configure() 48 | 49 | logger.log("creating model and diffusion...") 50 | model, diffusion = create_model_and_diffusion( 51 | **args_to_dict(args, model_and_diffusion_defaults().keys()) 52 | ) 53 | model.load_state_dict( 54 | dist_util.load_state_dict(args.model_path, map_location="cpu") 55 | ) 56 | model.to(dist_util.dev()) 57 | model.eval() 58 | 59 | logger.log("loading classifier...") 60 | if multi: 61 | args.num_class = args.num_class1 # how many classes in this condition 62 | classifier1 = create_classifier(**args_to_dict(args, (['num_class']+list(classifier_and_diffusion_defaults().keys()))[:3])) 63 | classifier1.load_state_dict( 64 | dist_util.load_state_dict(args.classifier_path1, map_location="cpu") 65 | ) 66 | classifier1.to(dist_util.dev()) 67 | classifier1.eval() 68 | 69 | args.num_class = args.num_class2 # how many classes in this condition 70 | classifier2 = create_classifier(**args_to_dict(args, (['num_class']+list(classifier_and_diffusion_defaults().keys()))[:3])) 71 | classifier2.load_state_dict( 72 | dist_util.load_state_dict(args.classifier_path2, map_location="cpu") 73 | ) 74 | classifier2.to(dist_util.dev()) 75 | classifier2.eval() 76 | 77 | else: 78 | classifier = create_classifier(**args_to_dict(args, (['num_class']+list(classifier_and_diffusion_defaults().keys()))[:3])) 79 | classifier.load_state_dict( 80 | dist_util.load_state_dict(args.classifier_path, map_location="cpu") 81 | ) 82 | classifier.to(dist_util.dev()) 83 | classifier.eval() 84 | 85 | ''' 86 | control function for Gradient Interpolation Strategy 87 | ''' 88 | def cond_fn_inter(x, t, y=None, init=None, diffusion=None): 89 | assert y is not None 90 | y1 = y[:,0] 91 | y2 = y[:,1] 92 | # xt = diffusion.q_sample(th.tensor(init,device=dist_util.dev()),t*th.ones(init.shape[0],device=dist_util.dev(),dtype=torch.long),) 93 | with th.enable_grad(): 94 | x_in = x.detach().requires_grad_(True) 95 | logits = classifier(x_in, t) 96 | log_probs = F.log_softmax(logits, dim=-1) 97 | selected1 = log_probs[range(len(logits)), y1.view(-1)] 98 | selected2 = log_probs[range(len(logits)), y2.view(-1)] 99 | 100 | grad1 = th.autograd.grad(selected1.sum(), x_in, retain_graph=True)[0] * args.classifier_scale1 101 | grad2 = th.autograd.grad(selected2.sum(), x_in, retain_graph=True)[0] * args.classifier_scale2 102 | 103 | # l2_loss = ((x_in-xt)**2).mean() 104 | # grad3 = th.autograd.grad(-l2_loss, x_in, retain_graph=True)[0] * 100 105 | 106 | return grad1+grad2#+grad3 107 | 108 | ''' 109 | control function for multi-conditional generation 110 | Two conditional generation here 111 | ''' 112 | def cond_fn_multi(x, t, y=None): 113 | assert y is not None 114 | y1 = y[:,0] 115 | y2 = y[:,1] 116 | with th.enable_grad(): 117 | x_in = x.detach().requires_grad_(True) 118 | logits1 = classifier1(x_in, t) 119 | log_probs1 = F.log_softmax(logits1, dim=-1) 120 | selected1 = log_probs1[range(len(logits1)), y1.view(-1)] 121 | 122 | logits2 = classifier2(x_in, t) 123 | log_probs2 = F.log_softmax(logits2, dim=-1) 124 | selected2 = log_probs2[range(len(logits2)), y2.view(-1)] 125 | 126 | grad1 = th.autograd.grad(selected1.sum(), x_in, retain_graph=True)[0] * args.classifier_scale1 127 | grad2 = th.autograd.grad(selected2.sum(), x_in, retain_graph=True)[0] * args.classifier_scale2 128 | 129 | return grad1+grad2 130 | 131 | ''' 132 | control function for one conditional generation 133 | ''' 134 | def cond_fn_ori(x, t, y=None): 135 | assert y is not None 136 | with th.enable_grad(): 137 | x_in = x.detach().requires_grad_(True) 138 | logits = classifier(x_in, t) 139 | log_probs = F.log_softmax(logits, dim=-1) 140 | selected = log_probs[range(len(logits)), y.view(-1)] 141 | grad = th.autograd.grad(selected.sum(), x_in, retain_graph=True)[0] * args.classifier_scale 142 | return grad 143 | 144 | def model_fn(x, t, y=None, init=None, diffusion=None): 145 | assert y is not None 146 | if args.class_cond: 147 | return model(x, t, y if args.class_cond else None) 148 | else: 149 | return model(x, t) 150 | 151 | if inter: 152 | # input real cell expression data as initial noise 153 | ori_adata = sc.read_h5ad(args.init_cell_path) 154 | sc.pp.normalize_total(ori_adata, target_sum=1e4) 155 | sc.pp.log1p(ori_adata) 156 | 157 | logger.log("sampling...") 158 | all_cell = [] 159 | sample_num = 0 160 | while sample_num < args.num_samples: 161 | model_kwargs = {} 162 | 163 | if not multi and not inter: 164 | classes = (cell_type[0])*th.ones((args.batch_size,), device=dist_util.dev(), dtype=th.long) 165 | 166 | if multi: 167 | classes1 = (cell_type[0])*th.ones((args.batch_size,), device=dist_util.dev(), dtype=th.long) 168 | classes2 = (cell_type[1])*th.ones((args.batch_size,), device=dist_util.dev(), dtype=th.long) 169 | # classes3 = ... if more conditions 170 | classes = th.stack((classes1,classes2), dim=1) 171 | 172 | if inter: 173 | classes1 = (cell_type[0])*th.ones((args.batch_size,), device=dist_util.dev(), dtype=th.long) 174 | classes2 = (cell_type[1])*th.ones((args.batch_size,), device=dist_util.dev(), dtype=th.long) 175 | classes = th.stack((classes1,classes2), dim=1) 176 | 177 | model_kwargs["y"] = classes 178 | sample_fn = ( 179 | diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop 180 | ) 181 | 182 | if inter: 183 | celltype = ori_adata.obs['period'].cat.categories.tolist()[cell_type[0]] 184 | adata = ori_adata[ori_adata.obs['period']==celltype].copy() 185 | 186 | start_x = adata.X 187 | autoencoder = load_VAE(args.ae_dir, args.num_gene) 188 | start_x = autoencoder(torch.tensor(start_x,device=dist_util.dev()),return_latent=True).detach().cpu().numpy() 189 | 190 | n, m = start_x.shape 191 | if n >= args.batch_size: 192 | start_x = start_x[:args.batch_size, :] 193 | else: 194 | repeat_times = args.batch_size // n 195 | remainder = args.batch_size % n 196 | start_x = np.concatenate([start_x] * repeat_times + [start_x[:remainder, :]], axis=0) 197 | 198 | noise = diffusion.q_sample(th.tensor(start_x,device=dist_util.dev()),args.init_time*th.ones(start_x.shape[0],device=dist_util.dev(),dtype=torch.long),) 199 | model_kwargs["init"] = start_x 200 | model_kwargs["diffusion"] = diffusion 201 | 202 | if multi: 203 | sample, traj = sample_fn( 204 | model_fn, 205 | (args.batch_size, args.input_dim), 206 | clip_denoised=args.clip_denoised, 207 | model_kwargs=model_kwargs, 208 | cond_fn=cond_fn_multi, 209 | device=dist_util.dev(), 210 | noise = None, 211 | start_time=diffusion.betas.shape[0], 212 | start_guide_steps=args.start_guide_steps, 213 | ) 214 | elif inter: 215 | sample, traj = sample_fn( 216 | model_fn, 217 | (args.batch_size, args.input_dim), 218 | clip_denoised=args.clip_denoised, 219 | model_kwargs=model_kwargs, 220 | cond_fn=cond_fn_inter, 221 | device=dist_util.dev(), 222 | noise = noise, 223 | start_time=diffusion.betas.shape[0], 224 | start_guide_steps=args.start_guide_steps, 225 | ) 226 | else: 227 | sample, traj = sample_fn( 228 | model_fn, 229 | (args.batch_size, args.input_dim), 230 | clip_denoised=args.clip_denoised, 231 | model_kwargs=model_kwargs, 232 | cond_fn=cond_fn_ori, 233 | device=dist_util.dev(), 234 | noise = None, 235 | ) 236 | 237 | gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())] 238 | dist.all_gather(gathered_samples, sample) # gather not supported with NCCL 239 | if args.filter: 240 | for sample in gathered_samples: 241 | if multi: 242 | logits1 = classifier1(sample, torch.zeros((sample.shape[0]), device=sample.device)) 243 | logits2 = classifier2(sample, torch.zeros((sample.shape[0]), device=sample.device)) 244 | prob1 = F.softmax(logits1, dim=-1) 245 | prob2 = F.softmax(logits2, dim=-1) 246 | type1 = torch.argmax(prob1, 1) 247 | type2 = torch.argmax(prob2, 1) 248 | select_index = ((type1 == cell_type[0]) & (type2 == cell_type[1])) 249 | all_cell.extend([sample[select_index].cpu().numpy()]) 250 | sample_num += select_index.sum().item() 251 | elif inter: 252 | logits = classifier(sample, torch.zeros((sample.shape[0]), device=sample.device)) 253 | prob = F.softmax(logits, dim=-1) 254 | left = (prob[:,cell_type[0]] > weight[0]/10-0.15) & (prob[:,cell_type[0]] < weight[0]/10+0.15) 255 | right = (prob[:,cell_type[1]] > weight[1]/10-0.15) & (prob[:,cell_type[1]] < weight[1]/10+0.15) 256 | select_index = left & right 257 | all_cell.extend([sample[select_index].cpu().numpy()]) 258 | sample_num += select_index.sum().item() 259 | else: 260 | logits = classifier(sample, torch.zeros((sample.shape[0]), device=sample.device)) 261 | prob = F.softmax(logits, dim=-1) 262 | type = torch.argmax(prob, 1) 263 | select_index = (type == cell_type[0]) 264 | all_cell.extend([sample[select_index].cpu().numpy()]) 265 | sample_num += select_index.sum().item() 266 | logger.log(f"created {sample_num} samples") 267 | else: 268 | all_cell.extend([sample.cpu().numpy() for sample in gathered_samples]) 269 | sample_num = len(all_cell) * args.batch_size 270 | logger.log(f"created {len(all_cell) * args.batch_size} samples") 271 | 272 | arr = np.concatenate(all_cell, axis=0) 273 | save_data(arr, traj, args.sample_dir+str(cell_type[0])) 274 | 275 | dist.barrier() 276 | logger.log("sampling complete") 277 | 278 | 279 | def create_argparser(celltype=[0], weight=[10,10]): 280 | defaults = dict( 281 | clip_denoised=True, 282 | num_samples=9000, 283 | batch_size=3000, 284 | use_ddim=False, 285 | class_cond=False, 286 | 287 | model_path="output/diffusion_checkpoint/muris_diffusion/model000000.pt", 288 | 289 | # ***if commen conditional generation & gradiante interpolation, use this path*** 290 | classifier_path="output/classifier_checkpoint/classifier_muris/model000100.pt", 291 | # ***if multi-conditional, use this path. replace this to your own classifiers*** 292 | classifier_path1="output/classifier_checkpoint/classifier_muris_ood_type/model200000.pt", 293 | classifier_path2="output/classifier_checkpoint/classifier_muris_ood_organ/model200000.pt", 294 | num_class1 = 2, # set this to the number of classes in your own dataset. this is the first condition (for example cell organ). 295 | num_class2 = 2, # this is the second condition (for example cell type). 296 | 297 | # ***if commen conditional generation, use this scale*** 298 | classifier_scale=2, 299 | # ***in multi-conditional, use this scale. scale1 and scale2 are the weights of two classifiers*** 300 | # ***in Gradient Interpolation, use this scale, too. scale1 and scale2 are the weights of two gradients*** 301 | classifier_scale1=weight[0]*2/10, 302 | classifier_scale2=weight[1]*2/10, 303 | 304 | # ***if gradient interpolation, replace these base on your own situation*** 305 | ae_dir='output/Autoencoder_checkpoint/WOT/model_seed=0_step=150000.pt', 306 | num_gene=19423, 307 | init_time = 600, # initial noised state if interpolation 308 | init_cell_path = 'data/WOT/filted_data.h5ad', #input initial noised cell state 309 | 310 | sample_dir=f"output/simulated_samples/muris", 311 | start_guide_steps = 500, # the time to use classifier guidance 312 | filter = False, # filter the simulated cells that are classified into other condition, might take long time 313 | 314 | ) 315 | defaults.update(model_and_diffusion_defaults()) 316 | defaults.update(classifier_and_diffusion_defaults()) 317 | defaults['num_class']=12 318 | parser = argparse.ArgumentParser() 319 | add_dict_to_argparser(parser, defaults) 320 | return parser 321 | 322 | 323 | if __name__ == "__main__": 324 | # for conditional generation 325 | # main(cell_type=[2]) 326 | for type in range(12): 327 | main(cell_type=[type]) 328 | 329 | # ***for multi-condition, run*** 330 | # muris ood 331 | # for i in [0,1]: 332 | # for j in [0,1]: 333 | # main(cell_type=[i,j],multi=True) 334 | 335 | # ***for Gradient Interpolation, run*** 336 | # for i in range(0,11): 337 | # main(cell_type=[6,7], inter=True, weight=[10-i,i]) 338 | # for i in range(18): 339 | # main(cell_type=[i,i+1], inter=True, weight=[5,5]) -------------------------------------------------------------------------------- /classifier_train.py: -------------------------------------------------------------------------------- 1 | """ 2 | Train a noised image classifier on ImageNet. 3 | """ 4 | 5 | import argparse 6 | import os 7 | 8 | import blobfile as bf 9 | import torch as th 10 | import torch.distributed as dist 11 | import torch.nn.functional as F 12 | from torch.nn.parallel.distributed import DistributedDataParallel as DDP 13 | from torch.optim import AdamW 14 | 15 | from guided_diffusion import dist_util, logger 16 | from guided_diffusion.fp16_util import MixedPrecisionTrainer 17 | from guided_diffusion.cell_datasets_loader import load_data 18 | from guided_diffusion.resample import create_named_schedule_sampler 19 | from guided_diffusion.script_util import ( 20 | add_dict_to_argparser, 21 | args_to_dict, 22 | classifier_and_diffusion_defaults, 23 | create_classifier_and_diffusion, 24 | ) 25 | from guided_diffusion.train_util import parse_resume_step_from_filename, log_loss_dict 26 | import torch 27 | import torch.nn as nn 28 | import numpy as np 29 | 30 | def main(): 31 | args = create_argparser().parse_args() 32 | 33 | setup_seed(1234) 34 | 35 | dist_util.setup_dist() 36 | logger.configure() 37 | 38 | logger.log("creating model and diffusion...") 39 | model, diffusion = create_classifier_and_diffusion( 40 | **args_to_dict(args, classifier_and_diffusion_defaults().keys()) 41 | ) 42 | model.to(dist_util.dev()) 43 | if args.noised: 44 | schedule_sampler = create_named_schedule_sampler( 45 | args.schedule_sampler, diffusion 46 | ) 47 | 48 | resume_step = 0 49 | if args.resume_checkpoint: 50 | resume_step = parse_resume_step_from_filename(args.resume_checkpoint) 51 | if dist.get_rank() == 0: 52 | logger.log( 53 | f"loading model from checkpoint: {args.resume_checkpoint}... at {resume_step} step" 54 | ) 55 | model.load_state_dict( 56 | dist_util.load_state_dict( 57 | args.resume_checkpoint, map_location=dist_util.dev() 58 | ) 59 | ) 60 | 61 | # Needed for creating correct EMAs and fp16 parameters. 62 | dist_util.sync_params(model.parameters()) 63 | 64 | mp_trainer = MixedPrecisionTrainer( 65 | model=model, use_fp16=args.classifier_use_fp16, initial_lg_loss_scale=16.0 66 | ) 67 | 68 | model = DDP( 69 | model, 70 | device_ids=[dist_util.dev()], 71 | output_device=dist_util.dev(), 72 | broadcast_buffers=False, 73 | bucket_cap_mb=128, 74 | find_unused_parameters=True, 75 | ) 76 | 77 | logger.log("creating data loader...") 78 | data = load_data( 79 | data_dir=args.data_dir, 80 | batch_size=args.batch_size, 81 | vae_path=args.vae_path, 82 | hidden_dim=args.latent_dim, 83 | train_vae=False, 84 | ) 85 | if args.val_data_dir: 86 | val_data = load_data( 87 | data_dir=args.val_data_dir, 88 | batch_size=args.batch_size, 89 | vae_path=args.vae_path, 90 | hidden_dim=args.latent_dim, 91 | train_vae=False, 92 | ) 93 | else: 94 | val_data = None 95 | 96 | logger.log(f"creating optimizer...") 97 | opt = AdamW(mp_trainer.master_params, lr=args.lr, weight_decay=args.weight_decay) 98 | if args.resume_checkpoint: 99 | opt_checkpoint = bf.join( 100 | bf.dirname(args.resume_checkpoint), f"opt{resume_step:06}.pt" 101 | ) 102 | logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") 103 | opt.load_state_dict( 104 | dist_util.load_state_dict(opt_checkpoint, map_location=dist_util.dev()) 105 | ) 106 | 107 | logger.log("training classifier model...") 108 | 109 | def forward_backward_log(data_loader, prefix="train"): 110 | batch, extra = next(data_loader) 111 | labels = extra["y"].to(dist_util.dev()) 112 | 113 | batch = batch.to(dist_util.dev()) 114 | # Noisy cells 115 | if args.noised: 116 | t, _ = schedule_sampler.sample(batch.shape[0], dist_util.dev(), start_guide_time=args.start_guide_time) 117 | batch = diffusion.q_sample(batch, t) 118 | else: 119 | t = th.zeros(batch.shape[0], dtype=th.long, device=dist_util.dev()) 120 | 121 | for i, (sub_batch, sub_labels, sub_t) in enumerate( 122 | split_microbatches(args.microbatch, batch, labels, t) 123 | ): 124 | logits = model(sub_batch, sub_t) 125 | loss = F.cross_entropy(logits, sub_labels, reduction="none") 126 | 127 | losses = {} 128 | losses[f"{prefix}_loss"] = loss.detach() 129 | losses[f"{prefix}_acc@1"] = compute_top_k( 130 | logits, sub_labels, k=1, reduction="none" 131 | ) 132 | 133 | log_loss_dict(diffusion, sub_t, losses) 134 | del losses 135 | loss = loss.mean() 136 | if loss.requires_grad: 137 | if i == 0: 138 | mp_trainer.zero_grad() 139 | mp_trainer.backward(loss * len(sub_batch) / len(batch)) 140 | 141 | model_path = args.model_path 142 | for step in range(args.iterations - resume_step): 143 | logger.logkv("step", step + resume_step) 144 | logger.logkv( 145 | "samples", 146 | (step + resume_step + 1) * args.batch_size * dist.get_world_size(), 147 | ) 148 | if args.anneal_lr: 149 | set_annealed_lr(opt, args.lr, (step + resume_step) / args.iterations) 150 | forward_backward_log(data) 151 | mp_trainer.optimize(opt) 152 | if val_data is not None and not step % args.eval_interval: 153 | with th.no_grad(): 154 | with model.no_sync(): 155 | model.eval() 156 | forward_backward_log(val_data, prefix="val") 157 | model.train() 158 | if not step % args.log_interval: 159 | logger.dumpkvs() 160 | if ( 161 | step 162 | and dist.get_rank() == 0 163 | and not (step + resume_step) % args.save_interval 164 | ): 165 | logger.log("saving model...") 166 | save_model(mp_trainer, opt, step + resume_step, model_path) 167 | 168 | if dist.get_rank() == 0: 169 | logger.log("saving model...") 170 | save_model(mp_trainer, opt, step + resume_step, model_path) 171 | dist.barrier() 172 | 173 | 174 | def set_annealed_lr(opt, base_lr, frac_done): 175 | lr = base_lr * (1 - frac_done) 176 | for param_group in opt.param_groups: 177 | param_group["lr"] = lr 178 | 179 | 180 | def save_model(mp_trainer, opt, step, model_path): 181 | if dist.get_rank() == 0: 182 | model_dir = model_path 183 | os.makedirs(model_dir,exist_ok=True) 184 | th.save( 185 | mp_trainer.master_params_to_state_dict(mp_trainer.master_params), 186 | os.path.join(model_dir, f"model{step:06d}.pt"), 187 | ) 188 | th.save(opt.state_dict(), os.path.join(model_dir, f"opt{step:06d}.pt")) 189 | 190 | 191 | def compute_top_k(logits, labels, k, reduction="mean"): 192 | _, top_ks = th.topk(logits, k, dim=-1) 193 | if reduction == "mean": 194 | return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() 195 | elif reduction == "none": 196 | return (top_ks == labels[:, None]).float().sum(dim=-1) 197 | 198 | 199 | def split_microbatches(microbatch, *args): 200 | bs = len(args[0]) 201 | if microbatch == -1 or microbatch >= bs: 202 | yield tuple(args) 203 | else: 204 | for i in range(0, bs, microbatch): 205 | yield tuple(x[i : i + microbatch] if x is not None else None for x in args) 206 | 207 | 208 | def create_argparser(): 209 | defaults = dict( 210 | data_dir="/data1/lep/Workspace/guided-diffusion/data/tabula_muris/all.h5ad", 211 | val_data_dir="", 212 | noised=True, 213 | iterations=500000, 214 | lr=3e-4, 215 | weight_decay=0.0, 216 | anneal_lr=False, 217 | batch_size=128, 218 | microbatch=-1, 219 | schedule_sampler="uniform", 220 | resume_checkpoint="", 221 | log_interval=100, 222 | eval_interval=100, 223 | save_interval=100000, 224 | vae_path='output/Autoencoder_checkpoint/muris_AE/model_seed=0_step=0.pt', 225 | latent_dim=128, 226 | model_path='output/classifier_checkpoint/classifier_muris', 227 | start_guide_time=500, 228 | num_class=12, 229 | ) 230 | num_class = defaults['num_class'] 231 | defaults.update(classifier_and_diffusion_defaults()) 232 | defaults['num_class']= num_class 233 | parser = argparse.ArgumentParser() 234 | add_dict_to_argparser(parser, defaults) 235 | return parser 236 | 237 | def setup_seed(seed): 238 | torch.manual_seed(seed) 239 | torch.cuda.manual_seed_all(seed) 240 | np.random.seed(seed) 241 | torch.backends.cudnn.deterministic = True 242 | 243 | if __name__ == "__main__": 244 | main() 245 | -------------------------------------------------------------------------------- /exp_script/script_description.md: -------------------------------------------------------------------------------- 1 | exp_script/down_stream_analysis_muris.ipynb 2 | QQ plot for generated data 3 | 4 | exp_script/script_diffusion_interpolation.ipynb 5 | generate data using gradient interpolation 6 | 7 | exp_script/script_diffusion_multi-condi.ipynb 8 | generate data with more than one condition 9 | 10 | exp_script/script_diffusion_umap.ipynb 11 | plot UMAP for the generated data 12 | 13 | exp_script/script_static_eval.ipynb 14 | statistical evaluation for the generated data (conditional and unconditional) 15 | 16 | exp_script/script_random_forest.ipynb 17 | use random forest to classify real and generated data -------------------------------------------------------------------------------- /guided_diffusion/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | Codebase for "Improved Denoising Diffusion Probabilistic Models". 3 | """ 4 | -------------------------------------------------------------------------------- /guided_diffusion/cell_datasets_WOT.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from torch.utils.data import DataLoader, Dataset 3 | 4 | import scanpy as sc 5 | import torch 6 | import sys 7 | sys.path.append('..') 8 | from VAE.VAE_model import VAE 9 | from sklearn.preprocessing import LabelEncoder 10 | 11 | def load_VAE(vae_path, num_gene, hidden_dim): 12 | autoencoder = VAE( 13 | num_genes=num_gene, 14 | device='cuda', 15 | seed=0, 16 | loss_ae='mse', 17 | hidden_dim=hidden_dim, 18 | decoder_activation='ReLU', 19 | ) 20 | autoencoder.load_state_dict(torch.load(vae_path)) 21 | return autoencoder 22 | 23 | def load_data( 24 | *, 25 | data_dir, 26 | batch_size, 27 | vae_path=None, 28 | deterministic=False, 29 | train_vae=False, 30 | hidden_dim=128, 31 | ): 32 | """ 33 | For a dataset, create a generator over (cells, kwargs) pairs. 34 | 35 | :param data_dir: a dataset directory. 36 | :param batch_size: the batch size of each returned pair. 37 | :param vae_path: the path to save autoencoder / read autoencoder checkpoint. 38 | :param deterministic: if True, yield results in a deterministic order. 39 | :param train_vae: train the autoencoder or use the autoencoder. 40 | :param hidden_dim: the dimensions of latent space. If use pretrained weight, set 128 41 | """ 42 | if not data_dir: 43 | raise ValueError("unspecified data directory") 44 | 45 | adata = sc.read_h5ad(data_dir) # dataset already filter cells and genes 46 | 47 | sc.pp.normalize_total(adata, target_sum=1e4) 48 | sc.pp.log1p(adata) 49 | 50 | adata = adata[np.where(np.in1d(adata.obs['period'], ['D0','D0.5','D1','D1.5','D2','D2.5','D3','D4.5','D5','D5.5','D6','D6.5','D7','D7.5','D8']))[0]] 51 | print(adata) 52 | 53 | label_encoder = LabelEncoder() 54 | label_encoder.fit(adata.obs['period']) 55 | label_encoder.classes_= np.array(['D0','D0.5','D1','D1.5','D2','D2.5','D3','D4.5','D5','D5.5','D6','D6.5','D7','D7.5','D8']) 56 | classes = label_encoder.transform(adata.obs['period']) 57 | print(label_encoder.classes_) 58 | 59 | cell_data = adata.X 60 | 61 | # if not train autoencoder 62 | if not train_vae: 63 | num_gene = cell_data.shape[1] 64 | autoencoder = load_VAE(vae_path,num_gene,hidden_dim) 65 | cell_data1 = autoencoder(torch.tensor(cell_data)[::2].cuda(),return_latent=True).cpu().detach().numpy() 66 | cell_data2 = autoencoder(torch.tensor(cell_data)[1::2].cuda(),return_latent=True).cpu().detach().numpy() 67 | cell_data = np.concatenate((cell_data1,cell_data2)) 68 | 69 | classes = np.concatenate((classes[::2],classes[1::2])) 70 | print(cell_data.shape) 71 | 72 | dataset = CellDataset( 73 | cell_data, 74 | classes 75 | ) 76 | if deterministic: 77 | loader = DataLoader( 78 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True 79 | ) 80 | else: 81 | loader = DataLoader( 82 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True 83 | ) 84 | while True: 85 | yield from loader 86 | 87 | 88 | class CellDataset(Dataset): 89 | def __init__( 90 | self, 91 | cell_data, 92 | class_name 93 | ): 94 | super().__init__() 95 | self.data = cell_data 96 | self.class_name = class_name 97 | 98 | def __len__(self): 99 | return self.data.shape[0] 100 | 101 | def __getitem__(self, idx): 102 | arr = self.data[idx] 103 | out_dict = {} 104 | if self.class_name is not None: 105 | out_dict["y"] = np.array(self.class_name[idx], dtype=np.int64) 106 | return arr, out_dict 107 | -------------------------------------------------------------------------------- /guided_diffusion/cell_datasets_loader.py: -------------------------------------------------------------------------------- 1 | import math 2 | import random 3 | 4 | from PIL import Image 5 | import blobfile as bf 6 | import numpy as np 7 | from torch.utils.data import DataLoader, Dataset 8 | 9 | import scanpy as sc 10 | import torch 11 | import sys 12 | sys.path.append('..') 13 | from VAE.VAE_model import VAE 14 | from sklearn.preprocessing import LabelEncoder 15 | 16 | def stabilize(expression_matrix): 17 | ''' Use Anscombes approximation to variance stabilize Negative Binomial data 18 | See https://f1000research.com/posters/4-1041 for motivation. 19 | Assumes columns are samples, and rows are genes 20 | ''' 21 | from scipy import optimize 22 | phi_hat, _ = optimize.curve_fit(lambda mu, phi: mu + phi * mu ** 2, expression_matrix.mean(1), expression_matrix.var(1)) 23 | 24 | return np.log(expression_matrix + 1. / (2 * phi_hat[0])) 25 | 26 | def load_VAE(vae_path, num_gene, hidden_dim): 27 | autoencoder = VAE( 28 | num_genes=num_gene, 29 | device='cuda', 30 | seed=0, 31 | loss_ae='mse', 32 | hidden_dim=hidden_dim, 33 | decoder_activation='ReLU', 34 | ) 35 | autoencoder.load_state_dict(torch.load(vae_path)) 36 | return autoencoder 37 | 38 | 39 | def load_data( 40 | *, 41 | data_dir, 42 | batch_size, 43 | vae_path=None, 44 | deterministic=False, 45 | train_vae=False, 46 | hidden_dim=128, 47 | ): 48 | """ 49 | For a dataset, create a generator over (cells, kwargs) pairs. 50 | 51 | :param data_dir: a dataset directory. 52 | :param batch_size: the batch size of each returned pair. 53 | :param vae_path: the path to save autoencoder / read autoencoder checkpoint. 54 | :param deterministic: if True, yield results in a deterministic order. 55 | :param train_vae: train the autoencoder or use the autoencoder. 56 | :param hidden_dim: the dimensions of latent space. If use pretrained weight, set 128 57 | """ 58 | if not data_dir: 59 | raise ValueError("unspecified data directory") 60 | 61 | adata = sc.read_h5ad(data_dir) 62 | 63 | # preporcess the data. modify this part if use your own dataset. the gene expression must first norm1e4 then log1p 64 | sc.pp.filter_genes(adata, min_cells=3) 65 | sc.pp.filter_cells(adata, min_genes=10) 66 | adata.var_names_make_unique() 67 | 68 | # if generate ood data, left this as the ood data 69 | # selected_cells = (adata.obs['organ'] != 'mammary') | (adata.obs['celltype'] != 'B cell') 70 | # adata = adata[selected_cells, :] 71 | 72 | classes = adata.obs['celltype'].values 73 | label_encoder = LabelEncoder() 74 | labels = classes 75 | label_encoder.fit(labels) 76 | classes = label_encoder.transform(labels) 77 | 78 | sc.pp.normalize_total(adata, target_sum=1e4) 79 | sc.pp.log1p(adata) 80 | 81 | cell_data = adata.X.toarray() 82 | 83 | # turn the gene expression into latent space. use this if training the diffusion backbone. 84 | if not train_vae: 85 | num_gene = cell_data.shape[1] 86 | autoencoder = load_VAE(vae_path,num_gene,hidden_dim) 87 | cell_data = autoencoder(torch.tensor(cell_data).cuda(),return_latent=True) 88 | cell_data = cell_data.cpu().detach().numpy() 89 | 90 | dataset = CellDataset( 91 | cell_data, 92 | classes 93 | ) 94 | if deterministic: 95 | loader = DataLoader( 96 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True 97 | ) 98 | else: 99 | loader = DataLoader( 100 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True 101 | ) 102 | while True: 103 | yield from loader 104 | 105 | 106 | class CellDataset(Dataset): 107 | def __init__( 108 | self, 109 | cell_data, 110 | class_name 111 | ): 112 | super().__init__() 113 | self.data = cell_data 114 | self.class_name = class_name 115 | 116 | def __len__(self): 117 | return self.data.shape[0] 118 | 119 | def __getitem__(self, idx): 120 | arr = self.data[idx] 121 | out_dict = {} 122 | if self.class_name is not None: 123 | out_dict["y"] = np.array(self.class_name[idx], dtype=np.int64) 124 | return arr, out_dict 125 | 126 | -------------------------------------------------------------------------------- /guided_diffusion/cell_datasets_lung.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from torch.utils.data import DataLoader, Dataset 3 | 4 | import scanpy as sc 5 | import pandas as pd 6 | import torch 7 | import sys 8 | sys.path.append('..') 9 | from VAE.VAE_model import VAE 10 | 11 | from sklearn.preprocessing import LabelEncoder 12 | 13 | def load_VAE(vae_path, num_gene, hidden_dim): 14 | autoencoder = VAE( 15 | num_genes=num_gene, 16 | device='cuda', 17 | seed=0, 18 | loss_ae='mse', 19 | hidden_dim=hidden_dim, 20 | decoder_activation='ReLU', 21 | ) 22 | autoencoder.load_state_dict(torch.load(vae_path)) 23 | return autoencoder 24 | 25 | def load_data( 26 | *, 27 | data_dir, 28 | batch_size, 29 | vae_path=None, 30 | deterministic=False, 31 | train_vae=False, 32 | hidden_dim=128, 33 | ): 34 | """ 35 | For a dataset, create a generator over (cells, kwargs) pairs. 36 | 37 | :param data_dir: a dataset directory. 38 | :param batch_size: the batch size of each returned pair. 39 | :param vae_path: the path to save autoencoder / read autoencoder checkpoint. 40 | :param deterministic: if True, yield results in a deterministic order. 41 | :param train_vae: train the autoencoder or use the autoencoder. 42 | :param hidden_dim: the dimensions of latent space. If use pretrained weight, set 128 43 | """ 44 | if not data_dir: 45 | raise ValueError("unspecified data directory") 46 | 47 | 48 | adata = sc.read_h5ad(data_dir) 49 | sc.pp.filter_genes(adata, min_cells=3) 50 | sc.pp.filter_cells(adata, min_genes=10) 51 | adata.var_names_make_unique() 52 | 53 | sc.pp.normalize_total(adata, target_sum=1e4) 54 | sc.pp.log1p(adata) 55 | 56 | celltype = adata.obs['celltype'] 57 | label_encoder = LabelEncoder() 58 | label_encoder.fit(celltype) 59 | classes = label_encoder.transform(celltype) 60 | print(label_encoder.classes_) 61 | 62 | cell_data = adata.X.toarray() 63 | 64 | # if not train autoencoder 65 | if not train_vae: 66 | num_gene = cell_data.shape[1] 67 | autoencoder = load_VAE(vae_path,num_gene,hidden_dim) 68 | cell_data = autoencoder(torch.tensor(cell_data).cuda(),return_latent=True) 69 | cell_data = cell_data.cpu().detach().numpy() 70 | 71 | dataset = CellDataset( 72 | cell_data, 73 | classes 74 | ) 75 | if deterministic: 76 | loader = DataLoader( 77 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True 78 | ) 79 | else: 80 | loader = DataLoader( 81 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True 82 | ) 83 | while True: 84 | yield from loader 85 | 86 | class CellDataset(Dataset): 87 | def __init__( 88 | self, 89 | cell_data, 90 | class_name 91 | ): 92 | super().__init__() 93 | self.data = cell_data 94 | self.class_name = class_name 95 | 96 | def __len__(self): 97 | return self.data.shape[0] 98 | 99 | def __getitem__(self, idx): 100 | arr = self.data[idx] 101 | out_dict = {} 102 | if self.class_name is not None: 103 | out_dict["y"] = np.array(self.class_name[idx], dtype=np.int64) 104 | return arr, out_dict -------------------------------------------------------------------------------- /guided_diffusion/cell_datasets_muris.py: -------------------------------------------------------------------------------- 1 | import math 2 | import random 3 | 4 | from PIL import Image 5 | import blobfile as bf 6 | import numpy as np 7 | from torch.utils.data import DataLoader, Dataset 8 | 9 | import scanpy as sc 10 | import torch 11 | import sys 12 | sys.path.append('..') 13 | from VAE.VAE_model import VAE 14 | from sklearn.preprocessing import LabelEncoder 15 | 16 | def stabilize(expression_matrix): 17 | ''' Use Anscombes approximation to variance stabilize Negative Binomial data 18 | See https://f1000research.com/posters/4-1041 for motivation. 19 | Assumes columns are samples, and rows are genes 20 | ''' 21 | from scipy import optimize 22 | phi_hat, _ = optimize.curve_fit(lambda mu, phi: mu + phi * mu ** 2, expression_matrix.mean(1), expression_matrix.var(1)) 23 | 24 | return np.log(expression_matrix + 1. / (2 * phi_hat[0])) 25 | 26 | def load_VAE(vae_path, num_gene, hidden_dim): 27 | autoencoder = VAE( 28 | num_genes=num_gene, 29 | device='cuda', 30 | seed=0, 31 | loss_ae='mse', 32 | hidden_dim=hidden_dim, 33 | decoder_activation='ReLU', 34 | ) 35 | autoencoder.load_state_dict(torch.load(vae_path)) 36 | return autoencoder 37 | 38 | 39 | def load_data( 40 | *, 41 | data_dir, 42 | batch_size, 43 | vae_path=None, 44 | deterministic=False, 45 | train_vae=False, 46 | hidden_dim=128, 47 | ): 48 | """ 49 | For a dataset, create a generator over (cells, kwargs) pairs. 50 | 51 | :param data_dir: a dataset directory. 52 | :param batch_size: the batch size of each returned pair. 53 | :param vae_path: the path to save autoencoder / read autoencoder checkpoint. 54 | :param deterministic: if True, yield results in a deterministic order. 55 | :param train_vae: train the autoencoder or use the autoencoder. 56 | :param hidden_dim: the dimensions of latent space. If use pretrained weight, set 128 57 | """ 58 | if not data_dir: 59 | raise ValueError("unspecified data directory") 60 | 61 | adata = sc.read_h5ad(data_dir) 62 | sc.pp.filter_genes(adata, min_cells=3) 63 | sc.pp.filter_cells(adata, min_genes=10) 64 | adata.var_names_make_unique() 65 | 66 | # if generate ood data, left this as the ood data 67 | # selected_cells = (adata.obs['organ'] != 'mammary') | (adata.obs['celltype'] != 'B cell') 68 | # adata = adata[selected_cells, :] 69 | 70 | classes = adata.obs['celltype'].values 71 | label_encoder = LabelEncoder() 72 | labels = classes 73 | label_encoder.fit(labels) 74 | classes = label_encoder.transform(labels) 75 | 76 | sc.pp.normalize_total(adata, target_sum=1e4) 77 | sc.pp.log1p(adata) 78 | 79 | cell_data = adata.X.toarray() 80 | 81 | # if use vae 82 | if not train_vae: 83 | num_gene = cell_data.shape[1] 84 | autoencoder = load_VAE(vae_path,num_gene,hidden_dim) 85 | cell_data = autoencoder(torch.tensor(cell_data).cuda(),return_latent=True) 86 | cell_data = cell_data.cpu().detach().numpy() 87 | 88 | dataset = CellDataset( 89 | cell_data, 90 | classes 91 | ) 92 | if deterministic: 93 | loader = DataLoader( 94 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True 95 | ) 96 | else: 97 | loader = DataLoader( 98 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True 99 | ) 100 | while True: 101 | yield from loader 102 | 103 | 104 | class CellDataset(Dataset): 105 | def __init__( 106 | self, 107 | cell_data, 108 | class_name 109 | ): 110 | super().__init__() 111 | self.data = cell_data 112 | self.class_name = class_name 113 | 114 | def __len__(self): 115 | return self.data.shape[0] 116 | 117 | def __getitem__(self, idx): 118 | arr = self.data[idx] 119 | out_dict = {} 120 | if self.class_name is not None: 121 | out_dict["y"] = np.array(self.class_name[idx], dtype=np.int64) 122 | return arr, out_dict 123 | 124 | -------------------------------------------------------------------------------- /guided_diffusion/cell_datasets_pbmc.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from torch.utils.data import DataLoader, Dataset 3 | 4 | import scanpy as sc 5 | import pandas as pd 6 | import torch 7 | import sys 8 | sys.path.append('..') 9 | from VAE.VAE_model import VAE 10 | 11 | from sklearn.preprocessing import LabelEncoder 12 | 13 | def load_VAE(vae_path, num_gene, hidden_dim): 14 | autoencoder = VAE( 15 | num_genes=num_gene, 16 | device='cuda', 17 | seed=0, 18 | loss_ae='mse', 19 | hidden_dim=hidden_dim, 20 | decoder_activation='ReLU', 21 | ) 22 | autoencoder.load_state_dict(torch.load(vae_path)) 23 | return autoencoder 24 | 25 | def load_data( 26 | *, 27 | data_dir, 28 | batch_size, 29 | vae_path=None, 30 | deterministic=False, 31 | train_vae=False, 32 | hidden_dim=128, 33 | ): 34 | """ 35 | For a dataset, create a generator over (cells, kwargs) pairs. 36 | 37 | :param data_dir: a dataset directory. 38 | :param batch_size: the batch size of each returned pair. 39 | :param vae_path: the path to save autoencoder / read autoencoder checkpoint. 40 | :param deterministic: if True, yield results in a deterministic order. 41 | :param train_vae: train the autoencoder or use the autoencoder. 42 | :param hidden_dim: the dimensions of latent space. If use pretrained weight, set 128 43 | """ 44 | if not data_dir: 45 | raise ValueError("unspecified data directory") 46 | 47 | 48 | adata = sc.read_10x_mtx( 49 | data_dir, # the directory with the `.mtx` file 50 | var_names='gene_symbols', # use gene symbols for the variable names (variables-axis index) 51 | cache=True) # write a cache file for faster subsequent reading 52 | 53 | adata.var_names_make_unique() 54 | sc.pp.filter_cells(adata, min_genes=10) 55 | sc.pp.filter_genes(adata, min_cells=3) 56 | 57 | sc.pp.normalize_total(adata, target_sum=1e4) 58 | sc.pp.log1p(adata) 59 | 60 | celltype = pd.read_csv('/data1/lep/Workspace/guided-diffusion/data/pbmc68k/analysis_csv/68k_pbmc_barcodes_annotation.tsv', sep='\t')['celltype'].values 61 | 62 | adata.obs['celltype'] = celltype 63 | label_encoder = LabelEncoder() 64 | label_encoder.fit(celltype) 65 | classes = label_encoder.transform(celltype) 66 | 67 | cell_data = adata.X.toarray() 68 | 69 | # if not train autoencoder 70 | if not train_vae: 71 | num_gene = cell_data.shape[1] 72 | autoencoder = load_VAE(vae_path,num_gene,hidden_dim) 73 | cell_data = autoencoder(torch.tensor(cell_data).cuda(),return_latent=True) 74 | cell_data = cell_data.cpu().detach().numpy() 75 | 76 | dataset = CellDataset( 77 | cell_data, 78 | classes 79 | ) 80 | if deterministic: 81 | loader = DataLoader( 82 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True 83 | ) 84 | else: 85 | loader = DataLoader( 86 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True 87 | ) 88 | while True: 89 | yield from loader 90 | 91 | class CellDataset(Dataset): 92 | def __init__( 93 | self, 94 | cell_data, 95 | class_name 96 | ): 97 | super().__init__() 98 | self.data = cell_data 99 | self.class_name = class_name 100 | 101 | def __len__(self): 102 | return self.data.shape[0] 103 | 104 | def __getitem__(self, idx): 105 | arr = self.data[idx] 106 | out_dict = {} 107 | if self.class_name is not None: 108 | out_dict["y"] = np.array(self.class_name[idx], dtype=np.int64) 109 | return arr, out_dict -------------------------------------------------------------------------------- /guided_diffusion/cell_datasets_sapiens.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from torch.utils.data import DataLoader, Dataset 3 | 4 | import scanpy as sc 5 | import torch 6 | import sys 7 | sys.path.append('..') 8 | from VAE.VAE_model import VAE 9 | from sklearn.preprocessing import LabelEncoder 10 | 11 | 12 | def load_VAE(vae_path, num_gene, hidden_dim): 13 | autoencoder = VAE( 14 | num_genes=num_gene, 15 | device='cuda', 16 | seed=0, 17 | loss_ae='mse', 18 | hidden_dim=hidden_dim, 19 | decoder_activation='ReLU', 20 | ) 21 | autoencoder.load_state_dict(torch.load(vae_path)) 22 | return autoencoder 23 | 24 | 25 | def load_data( 26 | *, 27 | data_dir, 28 | batch_size, 29 | vae_path=None, 30 | deterministic=False, 31 | train_vae=False, 32 | hidden_dim=128, 33 | ): 34 | """ 35 | For a dataset, create a generator over (cells, kwargs) pairs. 36 | 37 | :param data_dir: a dataset directory. 38 | :param batch_size: the batch size of each returned pair. 39 | :param vae_path: the path to save autoencoder / read autoencoder checkpoint. 40 | :param deterministic: if True, yield results in a deterministic order. 41 | :param train_vae: train the autoencoder or use the autoencoder. 42 | :param hidden_dim: the dimensions of latent space. If use pretrained weight, set 128 43 | """ 44 | if not data_dir: 45 | raise ValueError("unspecified data directory") 46 | 47 | adata = sc.read_h5ad(data_dir) 48 | adata.var_names_make_unique() # has been process by the SCimilarity code base. No need to filter cells and genes 49 | 50 | # filter spleen macrophage cell 51 | selected_cells = (adata.obs['organ_tissue'] != 'Spleen') | (adata.obs['free_annotation'] != 'macrophage') 52 | adata = adata[selected_cells, :] 53 | 54 | # filter Thymus memory b cell 55 | selected_cells = (adata.obs['organ_tissue'] != 'Thymus') | (adata.obs['free_annotation'] != 'memory b cell') 56 | adata = adata[selected_cells, :] 57 | 58 | classes = adata.obs['organ_tissue'].values 59 | label_encoder = LabelEncoder() 60 | labels = classes 61 | label_encoder.fit(labels) 62 | classes = label_encoder.transform(labels) 63 | print(label_encoder.classes_) 64 | 65 | sc.pp.normalize_total(adata, target_sum=1e4) 66 | sc.pp.log1p(adata) 67 | 68 | cell_data = adata.X.toarray() 69 | 70 | # if not train autoencoder 71 | if not train_vae: 72 | num_gene = cell_data.shape[1] 73 | autoencoder = load_VAE(vae_path,num_gene,hidden_dim) 74 | cell_data = autoencoder(torch.tensor(cell_data).cuda(),return_latent=True) 75 | cell_data = cell_data.cpu().detach().numpy() 76 | 77 | dataset = CellDataset( 78 | cell_data, 79 | classes 80 | ) 81 | if deterministic: 82 | loader = DataLoader( 83 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True 84 | ) 85 | else: 86 | loader = DataLoader( 87 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True 88 | ) 89 | while True: 90 | yield from loader 91 | 92 | class CellDataset(Dataset): 93 | def __init__( 94 | self, 95 | cell_data, 96 | class_name 97 | ): 98 | super().__init__() 99 | self.data = cell_data 100 | self.class_name = class_name 101 | 102 | def __len__(self): 103 | return self.data.shape[0] 104 | 105 | def __getitem__(self, idx): 106 | arr = self.data[idx] 107 | out_dict = {} 108 | if self.class_name is not None: 109 | out_dict["y"] = np.array(self.class_name[idx], dtype=np.int64) 110 | return arr, out_dict 111 | -------------------------------------------------------------------------------- /guided_diffusion/cell_model.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | 4 | from .nn import ( 5 | linear, 6 | timestep_embedding, 7 | ) 8 | 9 | class TimeEmbedding(nn.Module): 10 | def __init__(self, hidden_dim): 11 | super(TimeEmbedding, self).__init__() 12 | self.time_embed = nn.Sequential( 13 | nn.Linear(hidden_dim, hidden_dim), 14 | nn.SiLU(), 15 | nn.Linear(hidden_dim, hidden_dim), 16 | ) 17 | self.hidden_dim = hidden_dim 18 | 19 | def forward(self, t): 20 | return self.time_embed(timestep_embedding(t, self.hidden_dim).squeeze(1)) 21 | 22 | class ResidualBlock(nn.Module): 23 | def __init__(self, in_features, out_features, time_features): 24 | super(ResidualBlock, self).__init__() 25 | self.fc = nn.Linear(in_features, out_features) 26 | self.norm = nn.LayerNorm(out_features) 27 | self.emb_layer = nn.Sequential( 28 | nn.SiLU(), 29 | linear( 30 | time_features, 31 | out_features, 32 | ), 33 | ) 34 | self.act = nn.SiLU() 35 | self.drop = nn.Dropout(0) 36 | 37 | def forward(self, x, emb): 38 | h = self.fc(x) 39 | h = h + self.emb_layer(emb) 40 | h = self.norm(h) 41 | h = self.act(h) 42 | h = self.drop(h) 43 | return h 44 | 45 | class Cell_Unet(nn.Module): 46 | def __init__(self, input_dim=2, hidden_num=[2000,1000,500,500], dropout=0.1): 47 | super(Cell_Unet, self).__init__() 48 | self.hidden_num = hidden_num 49 | 50 | self.time_embedding = TimeEmbedding(hidden_num[0]) 51 | 52 | # Create layers dynamically 53 | self.layers = nn.ModuleList() 54 | 55 | self.layers.append(ResidualBlock(input_dim, hidden_num[0], hidden_num[0])) 56 | 57 | for i in range(len(hidden_num)-1): 58 | self.layers.append(ResidualBlock(hidden_num[i], hidden_num[i+1], hidden_num[0])) 59 | 60 | self.reverse_layers = nn.ModuleList() 61 | for i in reversed(range(len(hidden_num)-1)): 62 | self.reverse_layers.append(ResidualBlock(hidden_num[i+1], hidden_num[i], hidden_num[0])) 63 | 64 | self.out1 = nn.Linear(hidden_num[0], int(hidden_num[1]*2)) 65 | self.norm_out = nn.LayerNorm(int(hidden_num[1]*2)) 66 | self.out2 = nn.Linear(int(hidden_num[1]*2), input_dim, bias=True) 67 | 68 | self.act = nn.SiLU() 69 | self.drop = nn.Dropout(dropout) 70 | 71 | def forward(self, x_input, t, y=None): 72 | emb = self.time_embedding(t) 73 | x = x_input.float() 74 | 75 | # Forward pass with history saving 76 | history = [] 77 | for layer in self.layers: 78 | x = layer(x, emb) 79 | history.append(x) 80 | 81 | history.pop() 82 | 83 | # Reverse pass with skip connections 84 | for layer in self.reverse_layers: 85 | x = layer(x, emb) 86 | x = x + history.pop() # Skip connection 87 | 88 | x = self.out1(x) 89 | x = self.norm_out(x) 90 | x = self.act(x) 91 | x = self.out2(x) 92 | return x 93 | 94 | 95 | class Cell_classifier(nn.Module): 96 | def __init__(self, input_dim=2, hidden_num=[2000,1000,500,200], num_class=11, dropout = 0.1): 97 | super().__init__() 98 | self.num_class = num_class 99 | self.input_dim = input_dim 100 | self.hidden_num = hidden_num 101 | self.drop_rate = dropout 102 | 103 | self.time_embed = nn.Sequential( 104 | linear(hidden_num[0], hidden_num[0]), 105 | nn.SiLU(), 106 | linear(hidden_num[0], hidden_num[0]), 107 | ) 108 | 109 | self.fc1 = nn.Linear(input_dim, hidden_num[0], bias=True) 110 | self.emb_layers1 = nn.Sequential( 111 | nn.SiLU(), 112 | linear( 113 | hidden_num[0], 114 | hidden_num[0], 115 | ), 116 | ) 117 | self.norm1 = nn.BatchNorm1d(hidden_num[0]) 118 | 119 | self.fc2 = nn.Linear(hidden_num[0], hidden_num[1], bias=True) 120 | self.emb_layers2 = nn.Sequential( 121 | nn.SiLU(), 122 | linear( 123 | hidden_num[0], 124 | hidden_num[1], 125 | ), 126 | ) 127 | self.norm2 = nn.BatchNorm1d(hidden_num[1]) 128 | 129 | self.fc3 = nn.Linear(hidden_num[1], hidden_num[2], bias=True) 130 | self.emb_layers3 = nn.Sequential( 131 | nn.SiLU(), 132 | linear( 133 | hidden_num[0], 134 | hidden_num[2], 135 | ), 136 | ) 137 | self.norm3 = nn.BatchNorm1d(hidden_num[2]) 138 | 139 | self.act = torch.nn.SiLU() 140 | self.drop = nn.Dropout(self.drop_rate) 141 | self.out = nn.Linear(hidden_num[2], num_class, bias=True) 142 | 143 | 144 | def forward(self, x_input, t): 145 | emb = self.time_embed(timestep_embedding(t, self.hidden_num[0]).squeeze(1)) 146 | 147 | x = self.fc1(x_input) 148 | x = x+self.emb_layers1(emb) 149 | x = self.norm1(x) 150 | x = self.act(x) 151 | x = self.drop(x) 152 | 153 | x = self.fc2(x) 154 | x = x+self.emb_layers2(emb) 155 | x = self.norm2(x) 156 | x = self.act(x) 157 | x = self.drop(x) 158 | 159 | x = self.fc3(x) 160 | x = self.norm3(x) 161 | x = self.act(x) 162 | x = self.drop(x) 163 | 164 | x = self.out(x) 165 | return x 166 | -------------------------------------------------------------------------------- /guided_diffusion/dist_util.py: -------------------------------------------------------------------------------- 1 | """ 2 | Helpers for distributed training. 3 | """ 4 | 5 | import io 6 | import os 7 | import socket 8 | 9 | import blobfile as bf 10 | from mpi4py import MPI 11 | import torch as th 12 | import torch.distributed as dist 13 | 14 | # Change this to reflect your cluster layout. 15 | # The GPU for a given rank is (rank % GPUS_PER_NODE). 16 | GPUS_PER_NODE = 8 17 | 18 | SETUP_RETRY_COUNT = 3 19 | 20 | 21 | def setup_dist(): 22 | """ 23 | Setup a distributed process group. 24 | """ 25 | if dist.is_initialized(): 26 | return 27 | os.environ["CUDA_VISIBLE_DEVICES"] = "0" 28 | 29 | comm = MPI.COMM_WORLD 30 | backend = "gloo" if not th.cuda.is_available() else "nccl" 31 | 32 | if backend == "gloo": 33 | hostname = "localhost" 34 | else: 35 | hostname = socket.gethostbyname(socket.getfqdn()) 36 | os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0) 37 | os.environ["RANK"] = str(comm.rank) 38 | os.environ["WORLD_SIZE"] = str(comm.size) 39 | 40 | port = comm.bcast(_find_free_port(), root=0) 41 | os.environ["MASTER_PORT"] = str(port) 42 | dist.init_process_group(backend=backend, init_method="env://") 43 | 44 | 45 | def dev(): 46 | """ 47 | Get the device to use for torch.distributed. 48 | """ 49 | if th.cuda.is_available(): 50 | return th.device(f"cuda") 51 | return th.device("cpu") 52 | 53 | 54 | def load_state_dict(path, **kwargs): 55 | """ 56 | Load a PyTorch file without redundant fetches across MPI ranks. 57 | """ 58 | chunk_size = 2 ** 30 # MPI has a relatively small size limit 59 | if MPI.COMM_WORLD.Get_rank() == 0: 60 | with bf.BlobFile(path, "rb") as f: 61 | data = f.read() 62 | num_chunks = len(data) // chunk_size 63 | if len(data) % chunk_size: 64 | num_chunks += 1 65 | MPI.COMM_WORLD.bcast(num_chunks) 66 | for i in range(0, len(data), chunk_size): 67 | MPI.COMM_WORLD.bcast(data[i : i + chunk_size]) 68 | else: 69 | num_chunks = MPI.COMM_WORLD.bcast(None) 70 | data = bytes() 71 | for _ in range(num_chunks): 72 | data += MPI.COMM_WORLD.bcast(None) 73 | 74 | return th.load(io.BytesIO(data), **kwargs) 75 | 76 | 77 | def sync_params(params): 78 | """ 79 | Synchronize a sequence of Tensors across ranks from rank 0. 80 | """ 81 | for p in params: 82 | with th.no_grad(): 83 | dist.broadcast(p, 0) 84 | 85 | 86 | def _find_free_port(): 87 | try: 88 | s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 89 | s.bind(("", 0)) 90 | s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 91 | return s.getsockname()[1] 92 | finally: 93 | s.close() 94 | -------------------------------------------------------------------------------- /guided_diffusion/fp16_util.py: -------------------------------------------------------------------------------- 1 | """ 2 | Helpers to train with 16-bit precision. 3 | """ 4 | 5 | import numpy as np 6 | import torch as th 7 | import torch.nn as nn 8 | from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors 9 | 10 | from . import logger 11 | 12 | INITIAL_LOG_LOSS_SCALE = 20.0 13 | 14 | 15 | def convert_module_to_f16(l): 16 | """ 17 | Convert primitive modules to float16. 18 | """ 19 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): 20 | l.weight.data = l.weight.data.half() 21 | if l.bias is not None: 22 | l.bias.data = l.bias.data.half() 23 | 24 | 25 | def convert_module_to_f32(l): 26 | """ 27 | Convert primitive modules to float32, undoing convert_module_to_f16(). 28 | """ 29 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): 30 | l.weight.data = l.weight.data.float() 31 | if l.bias is not None: 32 | l.bias.data = l.bias.data.float() 33 | 34 | 35 | def make_master_params(param_groups_and_shapes): 36 | """ 37 | Copy model parameters into a (differently-shaped) list of full-precision 38 | parameters. 39 | """ 40 | master_params = [] 41 | for param_group, shape in param_groups_and_shapes: 42 | master_param = nn.Parameter( 43 | _flatten_dense_tensors( 44 | [param.detach().float() for (_, param) in param_group] 45 | ).view(shape) 46 | ) 47 | master_param.requires_grad = True 48 | master_params.append(master_param) 49 | return master_params 50 | 51 | 52 | def model_grads_to_master_grads(param_groups_and_shapes, master_params): 53 | """ 54 | Copy the gradients from the model parameters into the master parameters 55 | from make_master_params(). 56 | """ 57 | for master_param, (param_group, shape) in zip( 58 | master_params, param_groups_and_shapes 59 | ): 60 | master_param.grad = _flatten_dense_tensors( 61 | [param_grad_or_zeros(param) for (_, param) in param_group] 62 | ).view(shape) 63 | 64 | 65 | def master_params_to_model_params(param_groups_and_shapes, master_params): 66 | """ 67 | Copy the master parameter data back into the model parameters. 68 | """ 69 | # Without copying to a list, if a generator is passed, this will 70 | # silently not copy any parameters. 71 | for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): 72 | for (_, param), unflat_master_param in zip( 73 | param_group, unflatten_master_params(param_group, master_param.view(-1)) 74 | ): 75 | param.detach().copy_(unflat_master_param) 76 | 77 | 78 | def unflatten_master_params(param_group, master_param): 79 | return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) 80 | 81 | 82 | def get_param_groups_and_shapes(named_model_params): 83 | named_model_params = list(named_model_params) 84 | scalar_vector_named_params = ( 85 | [(n, p) for (n, p) in named_model_params if p.ndim <= 1], 86 | (-1), 87 | ) 88 | matrix_named_params = ( 89 | [(n, p) for (n, p) in named_model_params if p.ndim > 1], 90 | (1, -1), 91 | ) 92 | return [scalar_vector_named_params, matrix_named_params] 93 | 94 | 95 | def master_params_to_state_dict( 96 | model, param_groups_and_shapes, master_params, use_fp16 97 | ): 98 | if use_fp16: 99 | state_dict = model.state_dict() 100 | for master_param, (param_group, _) in zip( 101 | master_params, param_groups_and_shapes 102 | ): 103 | for (name, _), unflat_master_param in zip( 104 | param_group, unflatten_master_params(param_group, master_param.view(-1)) 105 | ): 106 | assert name in state_dict 107 | state_dict[name] = unflat_master_param 108 | else: 109 | state_dict = model.state_dict() 110 | for i, (name, _value) in enumerate(model.named_parameters()): 111 | assert name in state_dict 112 | state_dict[name] = master_params[i] 113 | return state_dict 114 | 115 | 116 | def state_dict_to_master_params(model, state_dict, use_fp16): 117 | if use_fp16: 118 | named_model_params = [ 119 | (name, state_dict[name]) for name, _ in model.named_parameters() 120 | ] 121 | param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) 122 | master_params = make_master_params(param_groups_and_shapes) 123 | else: 124 | master_params = [state_dict[name] for name, _ in model.named_parameters()] 125 | return master_params 126 | 127 | 128 | def zero_master_grads(master_params): 129 | for param in master_params: 130 | param.grad = None 131 | 132 | 133 | def zero_grad(model_params): 134 | for param in model_params: 135 | # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group 136 | if param.grad is not None: 137 | param.grad.detach_() 138 | param.grad.zero_() 139 | 140 | 141 | def param_grad_or_zeros(param): 142 | if param.grad is not None: 143 | return param.grad.data.detach() 144 | else: 145 | return th.zeros_like(param) 146 | 147 | 148 | class MixedPrecisionTrainer: 149 | def __init__( 150 | self, 151 | *, 152 | model, 153 | use_fp16=False, 154 | fp16_scale_growth=1e-3, 155 | initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, 156 | ): 157 | self.model = model 158 | self.use_fp16 = use_fp16 159 | self.fp16_scale_growth = fp16_scale_growth 160 | 161 | self.model_params = list(self.model.parameters()) 162 | self.master_params = self.model_params 163 | self.param_groups_and_shapes = None 164 | self.lg_loss_scale = initial_lg_loss_scale 165 | 166 | if self.use_fp16: 167 | self.param_groups_and_shapes = get_param_groups_and_shapes( 168 | self.model.named_parameters() 169 | ) 170 | self.master_params = make_master_params(self.param_groups_and_shapes) 171 | self.model.convert_to_fp16() 172 | 173 | def zero_grad(self): 174 | zero_grad(self.model_params) 175 | 176 | def backward(self, loss: th.Tensor, retain_graph=False): 177 | if self.use_fp16: 178 | loss_scale = 2 ** self.lg_loss_scale 179 | (loss * loss_scale).backward(retain_graph=retain_graph) 180 | else: 181 | loss.backward(retain_graph=retain_graph) 182 | 183 | def optimize(self, opt: th.optim.Optimizer): 184 | if self.use_fp16: 185 | return self._optimize_fp16(opt) 186 | else: 187 | return self._optimize_normal(opt) 188 | 189 | def _optimize_fp16(self, opt: th.optim.Optimizer): 190 | logger.logkv_mean("lg_loss_scale", self.lg_loss_scale) 191 | model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) 192 | grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale) 193 | if check_overflow(grad_norm): 194 | self.lg_loss_scale -= 1 195 | logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}") 196 | zero_master_grads(self.master_params) 197 | return False 198 | 199 | logger.logkv_mean("grad_norm", grad_norm) 200 | logger.logkv_mean("param_norm", param_norm) 201 | 202 | for p in self.master_params: 203 | p.grad.mul_(1.0 / (2 ** self.lg_loss_scale)) 204 | opt.step() 205 | zero_master_grads(self.master_params) 206 | master_params_to_model_params(self.param_groups_and_shapes, self.master_params) 207 | self.lg_loss_scale += self.fp16_scale_growth 208 | return True 209 | 210 | def _optimize_normal(self, opt: th.optim.Optimizer): 211 | grad_norm, param_norm = self._compute_norms() 212 | logger.logkv_mean("grad_norm", grad_norm) 213 | logger.logkv_mean("param_norm", param_norm) 214 | opt.step() 215 | return True 216 | 217 | def _compute_norms(self, grad_scale=1.0): 218 | grad_norm = 0.0 219 | param_norm = 0.0 220 | for p in self.master_params: 221 | with th.no_grad(): 222 | param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 223 | if p.grad is not None: 224 | grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 225 | return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) 226 | 227 | def master_params_to_state_dict(self, master_params): 228 | return master_params_to_state_dict( 229 | self.model, self.param_groups_and_shapes, master_params, self.use_fp16 230 | ) 231 | 232 | def state_dict_to_master_params(self, state_dict): 233 | return state_dict_to_master_params(self.model, state_dict, self.use_fp16) 234 | 235 | 236 | def check_overflow(value): 237 | return (value == float("inf")) or (value == -float("inf")) or (value != value) 238 | -------------------------------------------------------------------------------- /guided_diffusion/gaussian_diffusion.py: -------------------------------------------------------------------------------- 1 | """ 2 | This code started out as a PyTorch port of Ho et al's diffusion models: 3 | https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py 4 | 5 | Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. 6 | """ 7 | 8 | import enum 9 | import math 10 | 11 | import numpy as np 12 | import torch as th 13 | 14 | from .nn import mean_flat 15 | from .losses import normal_kl, discretized_gaussian_log_likelihood 16 | 17 | 18 | def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): 19 | """ 20 | Get a pre-defined beta schedule for the given name. 21 | 22 | The beta schedule library consists of beta schedules which remain similar 23 | in the limit of num_diffusion_timesteps. 24 | Beta schedules may be added, but should not be removed or changed once 25 | they are committed to maintain backwards compatibility. 26 | """ 27 | if schedule_name == "linear": 28 | # Linear schedule from Ho et al, extended to work for any number of 29 | # diffusion steps. 30 | scale = 1000 / num_diffusion_timesteps 31 | beta_start = scale * 0.0001 32 | beta_end = scale * 0.02 33 | return np.linspace( 34 | beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 35 | ) 36 | elif schedule_name == "cosine": 37 | return betas_for_alpha_bar( 38 | num_diffusion_timesteps, 39 | lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, 40 | ) 41 | else: 42 | raise NotImplementedError(f"unknown beta schedule: {schedule_name}") 43 | 44 | 45 | def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): 46 | """ 47 | Create a beta schedule that discretizes the given alpha_t_bar function, 48 | which defines the cumulative product of (1-beta) over time from t = [0,1]. 49 | 50 | :param num_diffusion_timesteps: the number of betas to produce. 51 | :param alpha_bar: a lambda that takes an argument t from 0 to 1 and 52 | produces the cumulative product of (1-beta) up to that 53 | part of the diffusion process. 54 | :param max_beta: the maximum beta to use; use values lower than 1 to 55 | prevent singularities. 56 | """ 57 | betas = [] 58 | for i in range(num_diffusion_timesteps): 59 | t1 = i / num_diffusion_timesteps 60 | t2 = (i + 1) / num_diffusion_timesteps 61 | betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) 62 | return np.array(betas) 63 | 64 | 65 | class ModelMeanType(enum.Enum): 66 | """ 67 | Which type of output the model predicts. 68 | """ 69 | 70 | PREVIOUS_X = enum.auto() # the model predicts x_{t-1} 71 | START_X = enum.auto() # the model predicts x_0 72 | EPSILON = enum.auto() # the model predicts epsilon 73 | 74 | 75 | class ModelVarType(enum.Enum): 76 | """ 77 | What is used as the model's output variance. 78 | 79 | The LEARNED_RANGE option has been added to allow the model to predict 80 | values between FIXED_SMALL and FIXED_LARGE, making its job easier. 81 | """ 82 | 83 | LEARNED = enum.auto() 84 | FIXED_SMALL = enum.auto() 85 | FIXED_LARGE = enum.auto() 86 | LEARNED_RANGE = enum.auto() 87 | 88 | 89 | class LossType(enum.Enum): 90 | MSE = enum.auto() # use raw MSE loss (and KL when learning variances) 91 | RESCALED_MSE = ( 92 | enum.auto() 93 | ) # use raw MSE loss (with RESCALED_KL when learning variances) 94 | KL = enum.auto() # use the variational lower-bound 95 | RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB 96 | 97 | def is_vb(self): 98 | return self == LossType.KL or self == LossType.RESCALED_KL 99 | 100 | 101 | class GaussianDiffusion: 102 | """ 103 | Utilities for training and sampling diffusion models. 104 | 105 | Ported directly from here, and then adapted over time to further experimentation. 106 | https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 107 | 108 | :param betas: a 1-D numpy array of betas for each diffusion timestep, 109 | starting at T and going to 1. 110 | :param model_mean_type: a ModelMeanType determining what the model outputs. 111 | :param model_var_type: a ModelVarType determining how variance is output. 112 | :param loss_type: a LossType determining the loss function to use. 113 | :param rescale_timesteps: if True, pass floating point timesteps into the 114 | model so that they are always scaled like in the 115 | original paper (0 to 1000). 116 | """ 117 | 118 | def __init__( 119 | self, 120 | *, 121 | betas, 122 | model_mean_type, 123 | model_var_type, 124 | loss_type, 125 | rescale_timesteps=False, 126 | ): 127 | self.model_mean_type = model_mean_type 128 | self.model_var_type = model_var_type 129 | self.loss_type = loss_type 130 | self.rescale_timesteps = rescale_timesteps 131 | 132 | # Use float64 for accuracy. 133 | betas = np.array(betas, dtype=np.float64) 134 | self.betas = betas 135 | assert len(betas.shape) == 1, "betas must be 1-D" 136 | assert (betas > 0).all() and (betas <= 1).all() 137 | 138 | self.num_timesteps = int(betas.shape[0]) 139 | 140 | alphas = 1.0 - betas 141 | self.alphas_cumprod = np.cumprod(alphas, axis=0) 142 | self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) 143 | self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) 144 | assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) 145 | 146 | # calculations for diffusion q(x_t | x_{t-1}) and others 147 | self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) 148 | self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) 149 | self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) 150 | self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) 151 | self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) 152 | 153 | # calculations for posterior q(x_{t-1} | x_t, x_0) 154 | self.posterior_variance = ( 155 | betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) 156 | ) 157 | # log calculation clipped because the posterior variance is 0 at the 158 | # beginning of the diffusion chain. 159 | self.posterior_log_variance_clipped = np.log( 160 | np.append(self.posterior_variance[1], self.posterior_variance[1:]) 161 | ) 162 | self.posterior_mean_coef1 = ( 163 | betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) 164 | ) 165 | self.posterior_mean_coef2 = ( 166 | (1.0 - self.alphas_cumprod_prev) 167 | * np.sqrt(alphas) 168 | / (1.0 - self.alphas_cumprod) 169 | ) 170 | 171 | def q_mean_variance(self, x_start, t): 172 | """ 173 | Get the distribution q(x_t | x_0). 174 | 175 | :param x_start: the [N x C x ...] tensor of noiseless inputs. 176 | :param t: the number of diffusion steps (minus 1). Here, 0 means one step. 177 | :return: A tuple (mean, variance, log_variance), all of x_start's shape. 178 | """ 179 | mean = ( 180 | _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start 181 | ) 182 | variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) 183 | log_variance = _extract_into_tensor( 184 | self.log_one_minus_alphas_cumprod, t, x_start.shape 185 | ) 186 | return mean, variance, log_variance 187 | 188 | def q_sample(self, x_start, t, noise=None): 189 | """ 190 | Diffuse the data for a given number of diffusion steps. 191 | 192 | In other words, sample from q(x_t | x_0). 193 | 194 | :param x_start: the initial data batch. 195 | :param t: the number of diffusion steps (minus 1). Here, 0 means one step. 196 | :param noise: if specified, the split-out normal noise. 197 | :return: A noisy version of x_start. 198 | """ 199 | if noise is None: 200 | noise = th.randn_like(x_start) 201 | assert noise.shape == x_start.shape 202 | return ( 203 | _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start 204 | + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) 205 | * noise 206 | ) 207 | 208 | def q_posterior_mean_variance(self, x_start, x_t, t): 209 | """ 210 | Compute the mean and variance of the diffusion posterior: 211 | 212 | q(x_{t-1} | x_t, x_0) 213 | 214 | """ 215 | assert x_start.shape == x_t.shape 216 | posterior_mean = ( 217 | _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start 218 | + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t 219 | ) 220 | posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) 221 | posterior_log_variance_clipped = _extract_into_tensor( 222 | self.posterior_log_variance_clipped, t, x_t.shape 223 | ) 224 | assert ( 225 | posterior_mean.shape[0] 226 | == posterior_variance.shape[0] 227 | == posterior_log_variance_clipped.shape[0] 228 | == x_start.shape[0] 229 | ) 230 | return posterior_mean, posterior_variance, posterior_log_variance_clipped 231 | 232 | def p_mean_variance( 233 | self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None 234 | ): 235 | """ 236 | Apply the model to get p(x_{t-1} | x_t), as well as a prediction of 237 | the initial x, x_0. 238 | 239 | :param model: the model, which takes a signal and a batch of timesteps 240 | as input. 241 | :param x: the [N x C x ...] tensor at time t. 242 | :param t: a 1-D Tensor of timesteps. 243 | :param clip_denoised: if True, clip the denoised signal into [-1, 1]. 244 | :param denoised_fn: if not None, a function which applies to the 245 | x_start prediction before it is used to sample. Applies before 246 | clip_denoised. 247 | :param model_kwargs: if not None, a dict of extra keyword arguments to 248 | pass to the model. This can be used for conditioning. 249 | :return: a dict with the following keys: 250 | - 'mean': the model mean output. 251 | - 'variance': the model variance output. 252 | - 'log_variance': the log of 'variance'. 253 | - 'pred_xstart': the prediction for x_0. 254 | """ 255 | if model_kwargs is None: 256 | model_kwargs = {} 257 | 258 | B, C = x.shape[:2] 259 | assert t.shape == (B,) 260 | model_output = model(x, self._scale_timesteps(t).unsqueeze(1), **model_kwargs) #MLP 261 | # model_output = model(x.unsqueeze(1).float(), self._scale_timesteps(t), **model_kwargs) #UNet 262 | # model_output = model_output.squeeze(1) 263 | 264 | if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: 265 | assert model_output.shape == (B, C * 2, *x.shape[2:]) 266 | model_output, model_var_values = th.split(model_output, C, dim=1) 267 | if self.model_var_type == ModelVarType.LEARNED: 268 | model_log_variance = model_var_values 269 | model_variance = th.exp(model_log_variance) 270 | else: 271 | min_log = _extract_into_tensor( 272 | self.posterior_log_variance_clipped, t, x.shape 273 | ) 274 | max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) 275 | # The model_var_values is [-1, 1] for [min_var, max_var]. 276 | frac = (model_var_values + 1) / 2 277 | model_log_variance = frac * max_log + (1 - frac) * min_log 278 | model_variance = th.exp(model_log_variance) 279 | else: 280 | model_variance, model_log_variance = { 281 | # for fixedlarge, we set the initial (log-)variance like so 282 | # to get a better decoder log likelihood. 283 | ModelVarType.FIXED_LARGE: ( 284 | np.append(self.posterior_variance[1], self.betas[1:]), 285 | np.log(np.append(self.posterior_variance[1], self.betas[1:])), 286 | ), 287 | ModelVarType.FIXED_SMALL: ( 288 | self.posterior_variance, 289 | self.posterior_log_variance_clipped, 290 | ), 291 | }[self.model_var_type] 292 | model_variance = _extract_into_tensor(model_variance, t, x.shape) 293 | model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) 294 | 295 | def process_xstart(x): 296 | if denoised_fn is not None: 297 | x = denoised_fn(x) 298 | if clip_denoised: 299 | return x.clamp(-1, 1) 300 | return x 301 | 302 | if self.model_mean_type == ModelMeanType.PREVIOUS_X: 303 | pred_xstart = process_xstart( 304 | self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) 305 | ) 306 | model_mean = model_output 307 | elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: 308 | if self.model_mean_type == ModelMeanType.START_X: 309 | pred_xstart = process_xstart(model_output) 310 | else: 311 | pred_xstart = process_xstart( 312 | self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) 313 | ) 314 | model_mean, _, _ = self.q_posterior_mean_variance( 315 | x_start=pred_xstart, x_t=x, t=t 316 | ) 317 | else: 318 | raise NotImplementedError(self.model_mean_type) 319 | 320 | assert ( 321 | model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape 322 | ) 323 | return { 324 | "mean": model_mean, 325 | "variance": model_variance, 326 | "log_variance": model_log_variance, 327 | "pred_xstart": pred_xstart, 328 | } 329 | 330 | def _predict_xstart_from_eps(self, x_t, t, eps): 331 | assert x_t.shape == eps.shape 332 | return ( 333 | _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t 334 | - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps 335 | ) 336 | 337 | def _predict_xstart_from_xprev(self, x_t, t, xprev): 338 | assert x_t.shape == xprev.shape 339 | return ( # (xprev - coef2*x_t) / coef1 340 | _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev 341 | - _extract_into_tensor( 342 | self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape 343 | ) 344 | * x_t 345 | ) 346 | 347 | def _predict_eps_from_xstart(self, x_t, t, pred_xstart): 348 | return ( 349 | _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t 350 | - pred_xstart 351 | ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) 352 | 353 | def _scale_timesteps(self, t): 354 | if self.rescale_timesteps: 355 | return t.float() * (1000.0 / self.num_timesteps) 356 | return t 357 | 358 | def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): 359 | """ 360 | Compute the mean for the previous step, given a function cond_fn that 361 | computes the gradient of a conditional log probability with respect to 362 | x. In particular, cond_fn computes grad(log(p(y|x))), and we want to 363 | condition on y. 364 | 365 | This uses the conditioning strategy from Sohl-Dickstein et al. (2015). 366 | """ 367 | gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) 368 | new_mean = ( 369 | p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() 370 | ) 371 | return new_mean 372 | 373 | def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): 374 | """ 375 | Compute what the p_mean_variance output would have been, should the 376 | model's score function be conditioned by cond_fn. 377 | 378 | See condition_mean() for details on cond_fn. 379 | 380 | Unlike condition_mean(), this instead uses the conditioning strategy 381 | from Song et al (2020). 382 | """ 383 | alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) 384 | 385 | eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) 386 | eps = eps - (1 - alpha_bar).sqrt() * cond_fn( 387 | x, self._scale_timesteps(t), **model_kwargs 388 | ) 389 | 390 | out = p_mean_var.copy() 391 | out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) 392 | out["mean"], _, _ = self.q_posterior_mean_variance( 393 | x_start=out["pred_xstart"], x_t=x, t=t 394 | ) 395 | return out 396 | 397 | def p_sample( 398 | self, 399 | model, 400 | x, 401 | t, 402 | clip_denoised=True, 403 | denoised_fn=None, 404 | cond_fn=None, 405 | model_kwargs=None, 406 | nw=0.5, 407 | start_guide_steps=500, 408 | ): 409 | """ 410 | Sample x_{t-1} from the model at the given timestep. 411 | 412 | :param model: the model to sample from. 413 | :param x: the current tensor at x_{t-1}. 414 | :param t: the value of t, starting at 0 for the first diffusion step. 415 | :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. 416 | :param denoised_fn: if not None, a function which applies to the 417 | x_start prediction before it is used to sample. 418 | :param cond_fn: if not None, this is a gradient function that acts 419 | similarly to the model. 420 | :param model_kwargs: if not None, a dict of extra keyword arguments to 421 | pass to the model. This can be used for conditioning. 422 | :return: a dict containing the following keys: 423 | - 'sample': a random sample from the model. 424 | - 'pred_xstart': a prediction of x_0. 425 | """ 426 | out = self.p_mean_variance( 427 | model, 428 | x, 429 | t, 430 | clip_denoised=clip_denoised, 431 | denoised_fn=denoised_fn, 432 | model_kwargs=model_kwargs, 433 | ) 434 | noise = th.randn_like(x)#*(0.5**0.5) 435 | nonzero_mask = ( 436 | (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) 437 | ) # no noise when t == 0 438 | if cond_fn is not None and t[0] maxlen else s 83 | 84 | def writeseq(self, seq): 85 | seq = list(seq) 86 | for (i, elem) in enumerate(seq): 87 | self.file.write(elem) 88 | if i < len(seq) - 1: # add space unless this is the last one 89 | self.file.write(" ") 90 | self.file.write("\n") 91 | self.file.flush() 92 | 93 | def close(self): 94 | if self.own_file: 95 | self.file.close() 96 | 97 | 98 | class JSONOutputFormat(KVWriter): 99 | def __init__(self, filename): 100 | self.file = open(filename, "wt") 101 | 102 | def writekvs(self, kvs): 103 | for k, v in sorted(kvs.items()): 104 | if hasattr(v, "dtype"): 105 | kvs[k] = float(v) 106 | self.file.write(json.dumps(kvs) + "\n") 107 | self.file.flush() 108 | 109 | def close(self): 110 | self.file.close() 111 | 112 | 113 | class CSVOutputFormat(KVWriter): 114 | def __init__(self, filename): 115 | self.file = open(filename, "w+t") 116 | self.keys = [] 117 | self.sep = "," 118 | 119 | def writekvs(self, kvs): 120 | # Add our current row to the history 121 | extra_keys = list(kvs.keys() - self.keys) 122 | extra_keys.sort() 123 | if extra_keys: 124 | self.keys.extend(extra_keys) 125 | self.file.seek(0) 126 | lines = self.file.readlines() 127 | self.file.seek(0) 128 | for (i, k) in enumerate(self.keys): 129 | if i > 0: 130 | self.file.write(",") 131 | self.file.write(k) 132 | self.file.write("\n") 133 | for line in lines[1:]: 134 | self.file.write(line[:-1]) 135 | self.file.write(self.sep * len(extra_keys)) 136 | self.file.write("\n") 137 | for (i, k) in enumerate(self.keys): 138 | if i > 0: 139 | self.file.write(",") 140 | v = kvs.get(k) 141 | if v is not None: 142 | self.file.write(str(v)) 143 | self.file.write("\n") 144 | self.file.flush() 145 | 146 | def close(self): 147 | self.file.close() 148 | 149 | 150 | class TensorBoardOutputFormat(KVWriter): 151 | """ 152 | Dumps key/value pairs into TensorBoard's numeric format. 153 | """ 154 | 155 | def __init__(self, dir): 156 | os.makedirs(dir, exist_ok=True) 157 | self.dir = dir 158 | self.step = 1 159 | prefix = "events" 160 | path = osp.join(osp.abspath(dir), prefix) 161 | import tensorflow as tf 162 | from tensorflow.python import pywrap_tensorflow 163 | from tensorflow.core.util import event_pb2 164 | from tensorflow.python.util import compat 165 | 166 | self.tf = tf 167 | self.event_pb2 = event_pb2 168 | self.pywrap_tensorflow = pywrap_tensorflow 169 | self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) 170 | 171 | def writekvs(self, kvs): 172 | def summary_val(k, v): 173 | kwargs = {"tag": k, "simple_value": float(v)} 174 | return self.tf.Summary.Value(**kwargs) 175 | 176 | summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) 177 | event = self.event_pb2.Event(wall_time=time.time(), summary=summary) 178 | event.step = ( 179 | self.step 180 | ) # is there any reason why you'd want to specify the step? 181 | self.writer.WriteEvent(event) 182 | self.writer.Flush() 183 | self.step += 1 184 | 185 | def close(self): 186 | if self.writer: 187 | self.writer.Close() 188 | self.writer = None 189 | 190 | 191 | def make_output_format(format, ev_dir, log_suffix=""): 192 | os.makedirs(ev_dir, exist_ok=True) 193 | if format == "stdout": 194 | return HumanOutputFormat(sys.stdout) 195 | elif format == "log": 196 | return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix)) 197 | elif format == "json": 198 | return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix)) 199 | elif format == "csv": 200 | return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix)) 201 | elif format == "tensorboard": 202 | return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix)) 203 | else: 204 | raise ValueError("Unknown format specified: %s" % (format,)) 205 | 206 | 207 | # ================================================================ 208 | # API 209 | # ================================================================ 210 | 211 | 212 | def logkv(key, val): 213 | """ 214 | Log a value of some diagnostic 215 | Call this once for each diagnostic quantity, each iteration 216 | If called many times, last value will be used. 217 | """ 218 | get_current().logkv(key, val) 219 | 220 | 221 | def logkv_mean(key, val): 222 | """ 223 | The same as logkv(), but if called many times, values averaged. 224 | """ 225 | get_current().logkv_mean(key, val) 226 | 227 | 228 | def logkvs(d): 229 | """ 230 | Log a dictionary of key-value pairs 231 | """ 232 | for (k, v) in d.items(): 233 | logkv(k, v) 234 | 235 | 236 | def dumpkvs(): 237 | """ 238 | Write all of the diagnostics from the current iteration 239 | """ 240 | return get_current().dumpkvs() 241 | 242 | 243 | def getkvs(): 244 | return get_current().name2val 245 | 246 | 247 | def log(*args, level=INFO): 248 | """ 249 | Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). 250 | """ 251 | get_current().log(*args, level=level) 252 | 253 | 254 | def debug(*args): 255 | log(*args, level=DEBUG) 256 | 257 | 258 | def info(*args): 259 | log(*args, level=INFO) 260 | 261 | 262 | def warn(*args): 263 | log(*args, level=WARN) 264 | 265 | 266 | def error(*args): 267 | log(*args, level=ERROR) 268 | 269 | 270 | def set_level(level): 271 | """ 272 | Set logging threshold on current logger. 273 | """ 274 | get_current().set_level(level) 275 | 276 | 277 | def set_comm(comm): 278 | get_current().set_comm(comm) 279 | 280 | 281 | def get_dir(): 282 | """ 283 | Get directory that log files are being written to. 284 | will be None if there is no output directory (i.e., if you didn't call start) 285 | """ 286 | return get_current().get_dir() 287 | 288 | 289 | record_tabular = logkv 290 | dump_tabular = dumpkvs 291 | 292 | 293 | @contextmanager 294 | def profile_kv(scopename): 295 | logkey = "wait_" + scopename 296 | tstart = time.time() 297 | try: 298 | yield 299 | finally: 300 | get_current().name2val[logkey] += time.time() - tstart 301 | 302 | 303 | def profile(n): 304 | """ 305 | Usage: 306 | @profile("my_func") 307 | def my_func(): code 308 | """ 309 | 310 | def decorator_with_name(func): 311 | def func_wrapper(*args, **kwargs): 312 | with profile_kv(n): 313 | return func(*args, **kwargs) 314 | 315 | return func_wrapper 316 | 317 | return decorator_with_name 318 | 319 | 320 | # ================================================================ 321 | # Backend 322 | # ================================================================ 323 | 324 | 325 | def get_current(): 326 | if Logger.CURRENT is None: 327 | _configure_default_logger() 328 | 329 | return Logger.CURRENT 330 | 331 | 332 | class Logger(object): 333 | DEFAULT = None # A logger with no output files. (See right below class definition) 334 | # So that you can still log to the terminal without setting up any output files 335 | CURRENT = None # Current logger being used by the free functions above 336 | 337 | def __init__(self, dir, output_formats, comm=None): 338 | self.name2val = defaultdict(float) # values this iteration 339 | self.name2cnt = defaultdict(int) 340 | self.level = INFO 341 | self.dir = dir 342 | self.output_formats = output_formats 343 | self.comm = comm 344 | 345 | # Logging API, forwarded 346 | # ---------------------------------------- 347 | def logkv(self, key, val): 348 | self.name2val[key] = val 349 | 350 | def logkv_mean(self, key, val): 351 | oldval, cnt = self.name2val[key], self.name2cnt[key] 352 | self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) 353 | self.name2cnt[key] = cnt + 1 354 | 355 | def dumpkvs(self): 356 | if self.comm is None: 357 | d = self.name2val 358 | else: 359 | d = mpi_weighted_mean( 360 | self.comm, 361 | { 362 | name: (val, self.name2cnt.get(name, 1)) 363 | for (name, val) in self.name2val.items() 364 | }, 365 | ) 366 | if self.comm.rank != 0: 367 | d["dummy"] = 1 # so we don't get a warning about empty dict 368 | out = d.copy() # Return the dict for unit testing purposes 369 | for fmt in self.output_formats: 370 | if isinstance(fmt, KVWriter): 371 | fmt.writekvs(d) 372 | self.name2val.clear() 373 | self.name2cnt.clear() 374 | return out 375 | 376 | def log(self, *args, level=INFO): 377 | if self.level <= level: 378 | self._do_log(args) 379 | 380 | # Configuration 381 | # ---------------------------------------- 382 | def set_level(self, level): 383 | self.level = level 384 | 385 | def set_comm(self, comm): 386 | self.comm = comm 387 | 388 | def get_dir(self): 389 | return self.dir 390 | 391 | def close(self): 392 | for fmt in self.output_formats: 393 | fmt.close() 394 | 395 | # Misc 396 | # ---------------------------------------- 397 | def _do_log(self, args): 398 | for fmt in self.output_formats: 399 | if isinstance(fmt, SeqWriter): 400 | fmt.writeseq(map(str, args)) 401 | 402 | 403 | def get_rank_without_mpi_import(): 404 | # check environment variables here instead of importing mpi4py 405 | # to avoid calling MPI_Init() when this module is imported 406 | for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]: 407 | if varname in os.environ: 408 | return int(os.environ[varname]) 409 | return 0 410 | 411 | 412 | def mpi_weighted_mean(comm, local_name2valcount): 413 | """ 414 | Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110 415 | Perform a weighted average over dicts that are each on a different node 416 | Input: local_name2valcount: dict mapping key -> (value, count) 417 | Returns: key -> mean 418 | """ 419 | all_name2valcount = comm.gather(local_name2valcount) 420 | if comm.rank == 0: 421 | name2sum = defaultdict(float) 422 | name2count = defaultdict(float) 423 | for n2vc in all_name2valcount: 424 | for (name, (val, count)) in n2vc.items(): 425 | try: 426 | val = float(val) 427 | except ValueError: 428 | if comm.rank == 0: 429 | warnings.warn( 430 | "WARNING: tried to compute mean on non-float {}={}".format( 431 | name, val 432 | ) 433 | ) 434 | else: 435 | name2sum[name] += val * count 436 | name2count[name] += count 437 | return {name: name2sum[name] / name2count[name] for name in name2sum} 438 | else: 439 | return {} 440 | 441 | 442 | def configure(dir=None, format_strs=None, comm=None, log_suffix=""): 443 | """ 444 | If comm is provided, average all numerical stats across that comm 445 | """ 446 | if dir is None: 447 | dir = os.getenv("OPENAI_LOGDIR") 448 | if dir is None: 449 | dir = osp.join( 450 | tempfile.gettempdir(), 451 | datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"), 452 | ) 453 | assert isinstance(dir, str) 454 | dir = os.path.expanduser(dir) 455 | os.makedirs(os.path.expanduser(dir), exist_ok=True) 456 | 457 | rank = get_rank_without_mpi_import() 458 | if rank > 0: 459 | log_suffix = log_suffix + "-rank%03i" % rank 460 | 461 | if format_strs is None: 462 | if rank == 0: 463 | format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",") 464 | else: 465 | format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",") 466 | format_strs = filter(None, format_strs) 467 | output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] 468 | 469 | Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm) 470 | if output_formats: 471 | log("Logging to %s" % dir) 472 | 473 | 474 | def _configure_default_logger(): 475 | configure() 476 | Logger.DEFAULT = Logger.CURRENT 477 | 478 | 479 | def reset(): 480 | if Logger.CURRENT is not Logger.DEFAULT: 481 | Logger.CURRENT.close() 482 | Logger.CURRENT = Logger.DEFAULT 483 | log("Reset logger") 484 | 485 | 486 | @contextmanager 487 | def scoped_configure(dir=None, format_strs=None, comm=None): 488 | prevlogger = Logger.CURRENT 489 | configure(dir=dir, format_strs=format_strs, comm=comm) 490 | try: 491 | yield 492 | finally: 493 | Logger.CURRENT.close() 494 | Logger.CURRENT = prevlogger 495 | 496 | -------------------------------------------------------------------------------- /guided_diffusion/losses.py: -------------------------------------------------------------------------------- 1 | """ 2 | Helpers for various likelihood-based losses. These are ported from the original 3 | Ho et al. diffusion models codebase: 4 | https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py 5 | """ 6 | 7 | import numpy as np 8 | 9 | import torch as th 10 | 11 | 12 | def normal_kl(mean1, logvar1, mean2, logvar2): 13 | """ 14 | Compute the KL divergence between two gaussians. 15 | 16 | Shapes are automatically broadcasted, so batches can be compared to 17 | scalars, among other use cases. 18 | """ 19 | tensor = None 20 | for obj in (mean1, logvar1, mean2, logvar2): 21 | if isinstance(obj, th.Tensor): 22 | tensor = obj 23 | break 24 | assert tensor is not None, "at least one argument must be a Tensor" 25 | 26 | # Force variances to be Tensors. Broadcasting helps convert scalars to 27 | # Tensors, but it does not work for th.exp(). 28 | logvar1, logvar2 = [ 29 | x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) 30 | for x in (logvar1, logvar2) 31 | ] 32 | 33 | return 0.5 * ( 34 | -1.0 35 | + logvar2 36 | - logvar1 37 | + th.exp(logvar1 - logvar2) 38 | + ((mean1 - mean2) ** 2) * th.exp(-logvar2) 39 | ) 40 | 41 | 42 | def approx_standard_normal_cdf(x): 43 | """ 44 | A fast approximation of the cumulative distribution function of the 45 | standard normal. 46 | """ 47 | return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) 48 | 49 | 50 | def discretized_gaussian_log_likelihood(x, *, means, log_scales): 51 | """ 52 | Compute the log-likelihood of a Gaussian distribution discretizing to a 53 | given image. 54 | 55 | :param x: the target images. It is assumed that this was uint8 values, 56 | rescaled to the range [-1, 1]. 57 | :param means: the Gaussian mean Tensor. 58 | :param log_scales: the Gaussian log stddev Tensor. 59 | :return: a tensor like x of log probabilities (in nats). 60 | """ 61 | assert x.shape == means.shape == log_scales.shape 62 | centered_x = x - means 63 | inv_stdv = th.exp(-log_scales) 64 | plus_in = inv_stdv * (centered_x + 1.0 / 255.0) 65 | cdf_plus = approx_standard_normal_cdf(plus_in) 66 | min_in = inv_stdv * (centered_x - 1.0 / 255.0) 67 | cdf_min = approx_standard_normal_cdf(min_in) 68 | log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) 69 | log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) 70 | cdf_delta = cdf_plus - cdf_min 71 | log_probs = th.where( 72 | x < -0.999, 73 | log_cdf_plus, 74 | th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), 75 | ) 76 | assert log_probs.shape == x.shape 77 | return log_probs 78 | -------------------------------------------------------------------------------- /guided_diffusion/nn.py: -------------------------------------------------------------------------------- 1 | """ 2 | Various utilities for neural networks. 3 | """ 4 | 5 | import math 6 | 7 | import torch as th 8 | import torch.nn as nn 9 | 10 | 11 | # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. 12 | class SiLU(nn.Module): 13 | def forward(self, x): 14 | return x * th.sigmoid(x) 15 | 16 | 17 | class GroupNorm32(nn.GroupNorm): 18 | def forward(self, x): 19 | return super().forward(x.float()).type(x.dtype) 20 | 21 | 22 | def conv_nd(dims, *args, **kwargs): 23 | """ 24 | Create a 1D, 2D, or 3D convolution module. 25 | """ 26 | if dims == 1: 27 | return nn.Conv1d(*args, **kwargs) 28 | elif dims == 2: 29 | return nn.Conv2d(*args, **kwargs) 30 | elif dims == 3: 31 | return nn.Conv3d(*args, **kwargs) 32 | raise ValueError(f"unsupported dimensions: {dims}") 33 | 34 | 35 | def linear(*args, **kwargs): 36 | """ 37 | Create a linear module. 38 | """ 39 | return nn.Linear(*args, **kwargs) 40 | 41 | 42 | def avg_pool_nd(dims, *args, **kwargs): 43 | """ 44 | Create a 1D, 2D, or 3D average pooling module. 45 | """ 46 | if dims == 1: 47 | return nn.AvgPool1d(*args, **kwargs) 48 | elif dims == 2: 49 | return nn.AvgPool2d(*args, **kwargs) 50 | elif dims == 3: 51 | return nn.AvgPool3d(*args, **kwargs) 52 | raise ValueError(f"unsupported dimensions: {dims}") 53 | 54 | 55 | def update_ema(target_params, source_params, rate=0.99): 56 | """ 57 | Update target parameters to be closer to those of source parameters using 58 | an exponential moving average. 59 | 60 | :param target_params: the target parameter sequence. 61 | :param source_params: the source parameter sequence. 62 | :param rate: the EMA rate (closer to 1 means slower). 63 | """ 64 | for targ, src in zip(target_params, source_params): 65 | targ.detach().mul_(rate).add_(src, alpha=1 - rate) 66 | 67 | 68 | def zero_module(module): 69 | """ 70 | Zero out the parameters of a module and return it. 71 | """ 72 | for p in module.parameters(): 73 | p.detach().zero_() 74 | return module 75 | 76 | 77 | def scale_module(module, scale): 78 | """ 79 | Scale the parameters of a module and return it. 80 | """ 81 | for p in module.parameters(): 82 | p.detach().mul_(scale) 83 | return module 84 | 85 | 86 | def mean_flat(tensor): 87 | """ 88 | Take the mean over all non-batch dimensions. 89 | """ 90 | return tensor.mean(dim=list(range(1, len(tensor.shape)))) 91 | 92 | 93 | def normalization(channels): 94 | """ 95 | Make a standard normalization layer. 96 | 97 | :param channels: number of input channels. 98 | :return: an nn.Module for normalization. 99 | """ 100 | return GroupNorm32(32, channels) 101 | 102 | 103 | def timestep_embedding(timesteps, dim, max_period=10000): 104 | """ 105 | Create sinusoidal timestep embeddings. 106 | 107 | :param timesteps: a 1-D Tensor of N indices, one per batch element. 108 | These may be fractional. 109 | :param dim: the dimension of the output. 110 | :param max_period: controls the minimum frequency of the embeddings. 111 | :return: an [N x dim] Tensor of positional embeddings. 112 | """ 113 | half = dim // 2 114 | freqs = th.exp( 115 | -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half 116 | ).to(device=timesteps.device) 117 | args = timesteps[:, None].float() * freqs[None] 118 | embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) 119 | if dim % 2: 120 | embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) 121 | return embedding 122 | 123 | 124 | def checkpoint(func, inputs, params, flag): 125 | """ 126 | Evaluate a function without caching intermediate activations, allowing for 127 | reduced memory at the expense of extra compute in the backward pass. 128 | 129 | :param func: the function to evaluate. 130 | :param inputs: the argument sequence to pass to `func`. 131 | :param params: a sequence of parameters `func` depends on but does not 132 | explicitly take as arguments. 133 | :param flag: if False, disable gradient checkpointing. 134 | """ 135 | if flag: 136 | args = tuple(inputs) + tuple(params) 137 | return CheckpointFunction.apply(func, len(inputs), *args) 138 | else: 139 | return func(*inputs) 140 | 141 | 142 | class CheckpointFunction(th.autograd.Function): 143 | @staticmethod 144 | def forward(ctx, run_function, length, *args): 145 | ctx.run_function = run_function 146 | ctx.input_tensors = list(args[:length]) 147 | ctx.input_params = list(args[length:]) 148 | with th.no_grad(): 149 | output_tensors = ctx.run_function(*ctx.input_tensors) 150 | return output_tensors 151 | 152 | @staticmethod 153 | def backward(ctx, *output_grads): 154 | ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] 155 | with th.enable_grad(): 156 | # Fixes a bug where the first op in run_function modifies the 157 | # Tensor storage in place, which is not allowed for detach()'d 158 | # Tensors. 159 | shallow_copies = [x.view_as(x) for x in ctx.input_tensors] 160 | output_tensors = ctx.run_function(*shallow_copies) 161 | input_grads = th.autograd.grad( 162 | output_tensors, 163 | ctx.input_tensors + ctx.input_params, 164 | output_grads, 165 | allow_unused=True, 166 | ) 167 | del ctx.input_tensors 168 | del ctx.input_params 169 | del output_tensors 170 | return (None, None) + input_grads 171 | -------------------------------------------------------------------------------- /guided_diffusion/resample.py: -------------------------------------------------------------------------------- 1 | from abc import ABC, abstractmethod 2 | 3 | import numpy as np 4 | import torch as th 5 | import torch.distributed as dist 6 | 7 | 8 | def create_named_schedule_sampler(name, diffusion): 9 | """ 10 | Create a ScheduleSampler from a library of pre-defined samplers. 11 | 12 | :param name: the name of the sampler. 13 | :param diffusion: the diffusion object to sample for. 14 | """ 15 | if name == "uniform": 16 | return UniformSampler(diffusion) 17 | elif name == "loss-second-moment": 18 | return LossSecondMomentResampler(diffusion) 19 | else: 20 | raise NotImplementedError(f"unknown schedule sampler: {name}") 21 | 22 | 23 | class ScheduleSampler(ABC): 24 | """ 25 | A distribution over timesteps in the diffusion process, intended to reduce 26 | variance of the objective. 27 | 28 | By default, samplers perform unbiased importance sampling, in which the 29 | objective's mean is unchanged. 30 | However, subclasses may override sample() to change how the resampled 31 | terms are reweighted, allowing for actual changes in the objective. 32 | """ 33 | 34 | @abstractmethod 35 | def weights(self): 36 | """ 37 | Get a numpy array of weights, one per diffusion step. 38 | 39 | The weights needn't be normalized, but must be positive. 40 | """ 41 | 42 | def sample(self, batch_size, device, start_guide_time=1000): 43 | """ 44 | Importance-sample timesteps for a batch. 45 | 46 | :param batch_size: the number of timesteps. 47 | :param device: the torch device to save to. 48 | :return: a tuple (timesteps, weights): 49 | - timesteps: a tensor of timestep indices. 50 | - weights: a tensor of weights to scale the resulting losses. 51 | """ 52 | w = self.weights()[:start_guide_time] 53 | p = w / np.sum(w) 54 | indices_np = np.random.choice(len(p), size=(batch_size,), p=p) 55 | indices = th.from_numpy(indices_np).long().to(device) 56 | weights_np = 1 / (len(p) * p[indices_np]) 57 | weights = th.from_numpy(weights_np).float().to(device) 58 | return indices, weights 59 | 60 | 61 | class UniformSampler(ScheduleSampler): 62 | def __init__(self, diffusion): 63 | self.diffusion = diffusion 64 | self._weights = np.ones([diffusion.num_timesteps]) 65 | 66 | def weights(self): 67 | return self._weights 68 | 69 | 70 | class LossAwareSampler(ScheduleSampler): 71 | def update_with_local_losses(self, local_ts, local_losses): 72 | """ 73 | Update the reweighting using losses from a model. 74 | 75 | Call this method from each rank with a batch of timesteps and the 76 | corresponding losses for each of those timesteps. 77 | This method will perform synchronization to make sure all of the ranks 78 | maintain the exact same reweighting. 79 | 80 | :param local_ts: an integer Tensor of timesteps. 81 | :param local_losses: a 1D Tensor of losses. 82 | """ 83 | batch_sizes = [ 84 | th.tensor([0], dtype=th.int32, device=local_ts.device) 85 | for _ in range(dist.get_world_size()) 86 | ] 87 | dist.all_gather( 88 | batch_sizes, 89 | th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device), 90 | ) 91 | 92 | # Pad all_gather batches to be the maximum batch size. 93 | batch_sizes = [x.item() for x in batch_sizes] 94 | max_bs = max(batch_sizes) 95 | 96 | timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes] 97 | loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes] 98 | dist.all_gather(timestep_batches, local_ts) 99 | dist.all_gather(loss_batches, local_losses) 100 | timesteps = [ 101 | x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs] 102 | ] 103 | losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]] 104 | self.update_with_all_losses(timesteps, losses) 105 | 106 | @abstractmethod 107 | def update_with_all_losses(self, ts, losses): 108 | """ 109 | Update the reweighting using losses from a model. 110 | 111 | Sub-classes should override this method to update the reweighting 112 | using losses from the model. 113 | 114 | This method directly updates the reweighting without synchronizing 115 | between workers. It is called by update_with_local_losses from all 116 | ranks with identical arguments. Thus, it should have deterministic 117 | behavior to maintain state across workers. 118 | 119 | :param ts: a list of int timesteps. 120 | :param losses: a list of float losses, one per timestep. 121 | """ 122 | 123 | 124 | class LossSecondMomentResampler(LossAwareSampler): 125 | def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001): 126 | self.diffusion = diffusion 127 | self.history_per_term = history_per_term 128 | self.uniform_prob = uniform_prob 129 | self._loss_history = np.zeros( 130 | [diffusion.num_timesteps, history_per_term], dtype=np.float64 131 | ) 132 | self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int) 133 | 134 | def weights(self): 135 | if not self._warmed_up(): 136 | return np.ones([self.diffusion.num_timesteps], dtype=np.float64) 137 | weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1)) 138 | weights /= np.sum(weights) 139 | weights *= 1 - self.uniform_prob 140 | weights += self.uniform_prob / len(weights) 141 | return weights 142 | 143 | def update_with_all_losses(self, ts, losses): 144 | for t, loss in zip(ts, losses): 145 | if self._loss_counts[t] == self.history_per_term: 146 | # Shift out the oldest loss term. 147 | self._loss_history[t, :-1] = self._loss_history[t, 1:] 148 | self._loss_history[t, -1] = loss 149 | else: 150 | self._loss_history[t, self._loss_counts[t]] = loss 151 | self._loss_counts[t] += 1 152 | 153 | def _warmed_up(self): 154 | return (self._loss_counts == self.history_per_term).all() 155 | -------------------------------------------------------------------------------- /guided_diffusion/respace.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import torch as th 3 | 4 | from .gaussian_diffusion import GaussianDiffusion 5 | 6 | 7 | def space_timesteps(num_timesteps, section_counts): 8 | """ 9 | Create a list of timesteps to use from an original diffusion process, 10 | given the number of timesteps we want to take from equally-sized portions 11 | of the original process. 12 | 13 | For example, if there's 300 timesteps and the section counts are [10,15,20] 14 | then the first 100 timesteps are strided to be 10 timesteps, the second 100 15 | are strided to be 15 timesteps, and the final 100 are strided to be 20. 16 | 17 | If the stride is a string starting with "ddim", then the fixed striding 18 | from the DDIM paper is used, and only one section is allowed. 19 | 20 | :param num_timesteps: the number of diffusion steps in the original 21 | process to divide up. 22 | :param section_counts: either a list of numbers, or a string containing 23 | comma-separated numbers, indicating the step count 24 | per section. As a special case, use "ddimN" where N 25 | is a number of steps to use the striding from the 26 | DDIM paper. 27 | :return: a set of diffusion steps from the original process to use. 28 | """ 29 | if isinstance(section_counts, str): 30 | if section_counts.startswith("ddim"): 31 | desired_count = int(section_counts[len("ddim") :]) 32 | for i in range(1, num_timesteps): 33 | if len(range(0, num_timesteps, i)) == desired_count: 34 | return set(range(0, num_timesteps, i)) 35 | raise ValueError( 36 | f"cannot create exactly {num_timesteps} steps with an integer stride" 37 | ) 38 | section_counts = [int(x) for x in section_counts.split(",")] 39 | size_per = num_timesteps // len(section_counts) 40 | extra = num_timesteps % len(section_counts) 41 | start_idx = 0 42 | all_steps = [] 43 | for i, section_count in enumerate(section_counts): 44 | size = size_per + (1 if i < extra else 0) 45 | if size < section_count: 46 | raise ValueError( 47 | f"cannot divide section of {size} steps into {section_count}" 48 | ) 49 | if section_count <= 1: 50 | frac_stride = 1 51 | else: 52 | frac_stride = (size - 1) / (section_count - 1) 53 | cur_idx = 0.0 54 | taken_steps = [] 55 | for _ in range(section_count): 56 | taken_steps.append(start_idx + round(cur_idx)) 57 | cur_idx += frac_stride 58 | all_steps += taken_steps 59 | start_idx += size 60 | return set(all_steps) 61 | 62 | 63 | class SpacedDiffusion(GaussianDiffusion): 64 | """ 65 | A diffusion process which can skip steps in a base diffusion process. 66 | 67 | :param use_timesteps: a collection (sequence or set) of timesteps from the 68 | original diffusion process to retain. 69 | :param kwargs: the kwargs to create the base diffusion process. 70 | """ 71 | 72 | def __init__(self, use_timesteps, **kwargs): 73 | self.use_timesteps = set(use_timesteps) 74 | self.timestep_map = [] 75 | self.original_num_steps = len(kwargs["betas"]) 76 | 77 | base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa 78 | last_alpha_cumprod = 1.0 79 | new_betas = [] 80 | for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): 81 | if i in self.use_timesteps: 82 | new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) 83 | last_alpha_cumprod = alpha_cumprod 84 | self.timestep_map.append(i) 85 | kwargs["betas"] = np.array(new_betas) 86 | super().__init__(**kwargs) 87 | 88 | def p_mean_variance( 89 | self, model, *args, **kwargs 90 | ): # pylint: disable=signature-differs 91 | return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) 92 | 93 | def training_losses( 94 | self, model, *args, **kwargs 95 | ): # pylint: disable=signature-differs 96 | return super().training_losses(self._wrap_model(model), *args, **kwargs) 97 | 98 | def condition_mean(self, cond_fn, *args, **kwargs): 99 | return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) 100 | 101 | def condition_score(self, cond_fn, *args, **kwargs): 102 | return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) 103 | 104 | def _wrap_model(self, model): 105 | if isinstance(model, _WrappedModel): 106 | return model 107 | return _WrappedModel( 108 | model, self.timestep_map, self.rescale_timesteps, self.original_num_steps 109 | ) 110 | 111 | def _scale_timesteps(self, t): 112 | # Scaling is done by the wrapped model. 113 | return t 114 | 115 | 116 | class _WrappedModel: 117 | def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): 118 | self.model = model 119 | self.timestep_map = timestep_map 120 | self.rescale_timesteps = rescale_timesteps 121 | self.original_num_steps = original_num_steps 122 | 123 | def __call__(self, x, ts, **kwargs): 124 | map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) 125 | new_ts = map_tensor[ts] 126 | if self.rescale_timesteps: 127 | new_ts = new_ts.float() * (1000.0 / self.original_num_steps) 128 | return self.model(x, new_ts, **kwargs) 129 | -------------------------------------------------------------------------------- /guided_diffusion/script_util.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import inspect 3 | 4 | from . import gaussian_diffusion as gd 5 | from .respace import SpacedDiffusion, space_timesteps 6 | from .cell_model import Cell_classifier, Cell_Unet 7 | 8 | NUM_CLASSES = 11 9 | 10 | 11 | def diffusion_defaults(): 12 | """ 13 | Defaults for image and classifier training. 14 | """ 15 | return dict( 16 | learn_sigma=False, 17 | diffusion_steps=1000, 18 | noise_schedule="linear", 19 | timestep_respacing="", 20 | use_kl=False, 21 | predict_xstart=False, 22 | rescale_timesteps=False, 23 | rescale_learned_sigmas=False, 24 | class_cond=False, 25 | ) 26 | 27 | 28 | def model_and_diffusion_defaults(): 29 | """ 30 | Defaults for image training. 31 | """ 32 | res = dict( 33 | input_dim = 128, 34 | hidden_dim = [512,512,256,128], 35 | dropout = 0.0 36 | ) 37 | res.update(diffusion_defaults()) 38 | return res 39 | 40 | 41 | def classifier_and_diffusion_defaults(): 42 | res = dict( 43 | input_dim = 128, 44 | hidden_dim = [512,512,256,128], 45 | classifier_use_fp16=False, 46 | dropout = 0.1, 47 | num_class = 11, 48 | ) 49 | res.update(diffusion_defaults()) 50 | return res 51 | 52 | 53 | def create_model_and_diffusion( 54 | input_dim, 55 | hidden_dim, 56 | class_cond, 57 | learn_sigma, 58 | diffusion_steps, 59 | noise_schedule, 60 | timestep_respacing, 61 | use_kl, 62 | predict_xstart, 63 | rescale_timesteps, 64 | rescale_learned_sigmas, 65 | dropout, 66 | ): 67 | model = create_model( 68 | input_dim, 69 | hidden_dim, 70 | dropout=dropout 71 | ) 72 | diffusion = create_gaussian_diffusion( 73 | steps=diffusion_steps, 74 | learn_sigma=learn_sigma, 75 | noise_schedule=noise_schedule, 76 | use_kl=use_kl, 77 | predict_xstart=predict_xstart, 78 | rescale_timesteps=rescale_timesteps, 79 | rescale_learned_sigmas=rescale_learned_sigmas, 80 | timestep_respacing=timestep_respacing, 81 | ) 82 | return model, diffusion 83 | 84 | 85 | def create_model( 86 | input_dim, 87 | hidden_dim, 88 | dropout, 89 | ): 90 | 91 | return Cell_Unet( 92 | input_dim, 93 | hidden_dim, 94 | dropout=dropout 95 | ) 96 | 97 | 98 | def create_classifier_and_diffusion( 99 | input_dim, 100 | hidden_dim, 101 | classifier_use_fp16, 102 | learn_sigma, 103 | diffusion_steps, 104 | noise_schedule, 105 | timestep_respacing, 106 | use_kl, 107 | predict_xstart, 108 | rescale_timesteps, 109 | rescale_learned_sigmas, 110 | dropout, 111 | num_class, 112 | class_cond, 113 | ): 114 | classifier = create_classifier( 115 | input_dim, 116 | hidden_dim, 117 | dropout=dropout, 118 | num_class=num_class 119 | ) 120 | diffusion = create_gaussian_diffusion( 121 | steps=diffusion_steps, 122 | learn_sigma=learn_sigma, 123 | noise_schedule=noise_schedule, 124 | use_kl=use_kl, 125 | predict_xstart=predict_xstart, 126 | rescale_timesteps=rescale_timesteps, 127 | rescale_learned_sigmas=rescale_learned_sigmas, 128 | timestep_respacing=timestep_respacing, 129 | ) 130 | return classifier, diffusion 131 | 132 | 133 | def create_classifier( 134 | input_dim, 135 | hidden_dim, 136 | num_class = NUM_CLASSES, 137 | dropout = 0.1, 138 | ): 139 | 140 | return Cell_classifier( 141 | input_dim, 142 | hidden_dim, 143 | num_class, 144 | dropout, 145 | ) 146 | 147 | def create_gaussian_diffusion( 148 | *, 149 | steps=1000, 150 | learn_sigma=False, 151 | sigma_small=False, 152 | noise_schedule="linear", 153 | use_kl=False, 154 | predict_xstart=False, 155 | rescale_timesteps=False, 156 | rescale_learned_sigmas=False, 157 | timestep_respacing="", 158 | ): 159 | betas = gd.get_named_beta_schedule(noise_schedule, steps) 160 | if use_kl: 161 | loss_type = gd.LossType.RESCALED_KL 162 | elif rescale_learned_sigmas: 163 | loss_type = gd.LossType.RESCALED_MSE 164 | else: 165 | loss_type = gd.LossType.MSE 166 | if not timestep_respacing: 167 | timestep_respacing = [steps] 168 | return SpacedDiffusion( 169 | use_timesteps=space_timesteps(steps, timestep_respacing), 170 | betas=betas, 171 | model_mean_type=( 172 | gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X 173 | ), 174 | model_var_type=( 175 | ( 176 | gd.ModelVarType.FIXED_LARGE 177 | if not sigma_small 178 | else gd.ModelVarType.FIXED_SMALL 179 | ) 180 | if not learn_sigma 181 | else gd.ModelVarType.LEARNED_RANGE 182 | ), 183 | loss_type=loss_type, 184 | rescale_timesteps=rescale_timesteps, 185 | ) 186 | 187 | 188 | def add_dict_to_argparser(parser, default_dict): 189 | for k, v in default_dict.items(): 190 | v_type = type(v) 191 | if v is None: 192 | v_type = str 193 | elif isinstance(v, bool): 194 | v_type = str2bool 195 | parser.add_argument(f"--{k}", default=v, type=v_type) 196 | 197 | 198 | def args_to_dict(args, keys): 199 | return {k: getattr(args, k) for k in keys} 200 | 201 | 202 | def str2bool(v): 203 | """ 204 | https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse 205 | """ 206 | if isinstance(v, bool): 207 | return v 208 | if v.lower() in ("yes", "true", "t", "y", "1"): 209 | return True 210 | elif v.lower() in ("no", "false", "f", "n", "0"): 211 | return False 212 | else: 213 | raise argparse.ArgumentTypeError("boolean value expected") 214 | -------------------------------------------------------------------------------- /guided_diffusion/train_util.py: -------------------------------------------------------------------------------- 1 | import copy 2 | import functools 3 | import os 4 | 5 | import blobfile as bf 6 | import torch as th 7 | import torch.distributed as dist 8 | from torch.nn.parallel.distributed import DistributedDataParallel as DDP 9 | from torch.optim import AdamW 10 | 11 | from . import dist_util, logger 12 | from .fp16_util import MixedPrecisionTrainer 13 | from .nn import update_ema 14 | from .resample import LossAwareSampler, UniformSampler 15 | 16 | # For ImageNet experiments, this was a good default value. 17 | # We found that the lg_loss_scale quickly climbed to 18 | # 20-21 within the first ~1K steps of training. 19 | INITIAL_LOG_LOSS_SCALE = 20.0 20 | 21 | 22 | class TrainLoop: 23 | def __init__( 24 | self, 25 | *, 26 | model, 27 | diffusion, 28 | data, 29 | batch_size, 30 | microbatch, 31 | lr, 32 | ema_rate, 33 | log_interval, 34 | save_interval, 35 | resume_checkpoint, 36 | use_fp16=False, 37 | fp16_scale_growth=1e-3, 38 | schedule_sampler=None, 39 | weight_decay=0.0, 40 | lr_anneal_steps=0, 41 | model_name, 42 | save_dir, 43 | ): 44 | self.model = model 45 | self.diffusion = diffusion 46 | self.data = data 47 | self.batch_size = batch_size 48 | self.microbatch = microbatch if microbatch > 0 else batch_size 49 | self.lr = lr 50 | self.ema_rate = ( 51 | [ema_rate] 52 | if isinstance(ema_rate, float) 53 | else [float(x) for x in ema_rate.split(",")] 54 | ) 55 | self.log_interval = log_interval 56 | self.save_interval = save_interval 57 | self.resume_checkpoint = resume_checkpoint 58 | self.use_fp16 = use_fp16 59 | self.fp16_scale_growth = fp16_scale_growth 60 | self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) 61 | self.weight_decay = weight_decay 62 | self.lr_anneal_steps = lr_anneal_steps 63 | 64 | self.step = 0 65 | self.resume_step = 0 66 | self.global_batch = self.batch_size * dist.get_world_size() 67 | 68 | self.sync_cuda = th.cuda.is_available() 69 | 70 | self._load_and_sync_parameters() 71 | self.mp_trainer = MixedPrecisionTrainer( 72 | model=self.model, 73 | use_fp16=self.use_fp16, 74 | fp16_scale_growth=fp16_scale_growth, 75 | ) 76 | 77 | self.opt = AdamW( 78 | self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay 79 | ) 80 | if self.resume_step: 81 | self._load_optimizer_state() 82 | # Model was resumed, either due to a restart or a checkpoint 83 | # being specified at the command line. 84 | self.ema_params = [ 85 | self._load_ema_parameters(rate) for rate in self.ema_rate 86 | ] 87 | else: 88 | self.ema_params = [ 89 | copy.deepcopy(self.mp_trainer.master_params) 90 | for _ in range(len(self.ema_rate)) 91 | ] 92 | 93 | if th.cuda.is_available(): 94 | self.use_ddp = True 95 | self.ddp_model = DDP( 96 | self.model, 97 | device_ids=[dist_util.dev()], 98 | output_device=dist_util.dev(), 99 | broadcast_buffers=False, 100 | bucket_cap_mb=128, 101 | find_unused_parameters=False, 102 | ) 103 | else: 104 | if dist.get_world_size() > 1: 105 | logger.warn( 106 | "Distributed training requires CUDA. " 107 | "Gradients will not be synchronized properly!" 108 | ) 109 | self.use_ddp = False 110 | self.ddp_model = self.model 111 | self.timestamp = model_name #time.strftime("%m-%d-%H:%M",time.gmtime()) 112 | self.save_dir = save_dir 113 | 114 | def _load_and_sync_parameters(self): 115 | resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint 116 | 117 | if resume_checkpoint: 118 | self.resume_step = parse_resume_step_from_filename(resume_checkpoint) 119 | if dist.get_rank() == 0: 120 | logger.log(f"loading model from checkpoint: {resume_checkpoint}...") 121 | self.model.load_state_dict( 122 | dist_util.load_state_dict( 123 | resume_checkpoint, map_location=dist_util.dev() 124 | ) 125 | ) 126 | 127 | dist_util.sync_params(self.model.parameters()) 128 | 129 | def _load_ema_parameters(self, rate): 130 | ema_params = copy.deepcopy(self.mp_trainer.master_params) 131 | 132 | main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint 133 | ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) 134 | if ema_checkpoint: 135 | if dist.get_rank() == 0: 136 | logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") 137 | state_dict = dist_util.load_state_dict( 138 | ema_checkpoint, map_location=dist_util.dev() 139 | ) 140 | ema_params = self.mp_trainer.state_dict_to_master_params(state_dict) 141 | 142 | dist_util.sync_params(ema_params) 143 | return ema_params 144 | 145 | def _load_optimizer_state(self): 146 | main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint 147 | opt_checkpoint = bf.join( 148 | bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt" 149 | ) 150 | if bf.exists(opt_checkpoint): 151 | logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") 152 | state_dict = dist_util.load_state_dict( 153 | opt_checkpoint, map_location=dist_util.dev() 154 | ) 155 | self.opt.load_state_dict(state_dict) 156 | 157 | def run_loop(self): 158 | while ( 159 | not self.lr_anneal_steps 160 | or self.step + self.resume_step < self.lr_anneal_steps 161 | ): 162 | batch, cond = next(self.data) 163 | self.run_step(batch, cond) 164 | if self.step % self.log_interval == 0: 165 | logger.dumpkvs() 166 | if self.step % self.save_interval == 0: 167 | self.save() 168 | # Run for a finite amount of time in integration tests. 169 | if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0: 170 | return 171 | self.step += 1 172 | # Save the last checkpoint if it wasn't already saved. 173 | if (self.step - 1) % self.save_interval != 0: 174 | self.save() 175 | 176 | def run_step(self, batch, cond): 177 | self.forward_backward(batch, cond) 178 | took_step = self.mp_trainer.optimize(self.opt) 179 | if took_step: 180 | self._update_ema() 181 | self._anneal_lr() 182 | self.log_step() 183 | 184 | def forward_backward(self, batch, cond): 185 | self.mp_trainer.zero_grad() 186 | for i in range(0, batch.shape[0], self.microbatch): 187 | micro = batch[i : i + self.microbatch].to(dist_util.dev()) 188 | micro_cond = { 189 | k: v[i : i + self.microbatch].to(dist_util.dev()) 190 | for k, v in cond.items() 191 | } 192 | last_batch = (i + self.microbatch) >= batch.shape[0] 193 | t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev()) 194 | 195 | compute_losses = functools.partial( 196 | self.diffusion.training_losses, 197 | self.ddp_model, 198 | micro, 199 | t, 200 | model_kwargs=micro_cond, 201 | ) 202 | 203 | if last_batch or not self.use_ddp: 204 | losses = compute_losses() 205 | else: 206 | with self.ddp_model.no_sync(): 207 | losses = compute_losses() 208 | 209 | if isinstance(self.schedule_sampler, LossAwareSampler): 210 | self.schedule_sampler.update_with_local_losses( 211 | t, losses["loss"].detach() 212 | ) 213 | 214 | loss = (losses["loss"] * weights).mean() 215 | log_loss_dict( 216 | self.diffusion, t, {k: v * weights for k, v in losses.items()} 217 | ) 218 | self.mp_trainer.backward(loss) 219 | 220 | def _update_ema(self): 221 | for rate, params in zip(self.ema_rate, self.ema_params): 222 | update_ema(params, self.mp_trainer.master_params, rate=rate) 223 | 224 | def _anneal_lr(self): 225 | if not self.lr_anneal_steps: 226 | return 227 | frac_done = (self.step + self.resume_step) / self.lr_anneal_steps 228 | lr = self.lr * (1 - frac_done) 229 | for param_group in self.opt.param_groups: 230 | param_group["lr"] = lr 231 | 232 | def log_step(self): 233 | logger.logkv("step", self.step + self.resume_step) 234 | logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) 235 | 236 | def save(self): 237 | def save_checkpoint(rate, params): 238 | state_dict = self.mp_trainer.master_params_to_state_dict(params) 239 | if dist.get_rank() == 0: 240 | logger.log(f"saving model {rate}...") 241 | if not rate: 242 | filename = f"model{(self.step+self.resume_step):06d}.pt" 243 | else: 244 | filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt" 245 | with bf.BlobFile(bf.join(self.save_dir, self.timestamp, filename), "wb") as f: 246 | th.save(state_dict, f) 247 | if not os.path.exists(os.path.join(self.save_dir, self.timestamp)): 248 | os.mkdir(os.path.join(self.save_dir, self.timestamp)) 249 | save_checkpoint(0, self.mp_trainer.master_params) 250 | for rate, params in zip(self.ema_rate, self.ema_params): 251 | save_checkpoint(rate, params) 252 | 253 | if dist.get_rank() == 0: 254 | with bf.BlobFile( 255 | bf.join(self.save_dir, self.timestamp, f"opt{(self.step+self.resume_step):06d}.pt"), 256 | "wb", 257 | ) as f: 258 | th.save(self.opt.state_dict(), f) 259 | 260 | dist.barrier() 261 | 262 | 263 | def parse_resume_step_from_filename(filename): 264 | """ 265 | Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the 266 | checkpoint's number of steps. 267 | """ 268 | split = filename.split("model") 269 | if len(split) < 2: 270 | return 0 271 | split1 = split[-1].split(".")[0] 272 | try: 273 | return int(split1) 274 | except ValueError: 275 | return 0 276 | 277 | 278 | def get_blob_logdir(): 279 | # You can change this to be a separate path to save checkpoints to 280 | # a blobstore or some external drive. 281 | return logger.get_dir() 282 | 283 | 284 | def find_resume_checkpoint(): 285 | # On your infrastructure, you may want to override this to automatically 286 | # discover the latest checkpoint on your blob storage, etc. 287 | return None 288 | 289 | 290 | def find_ema_checkpoint(main_checkpoint, step, rate): 291 | if main_checkpoint is None: 292 | return None 293 | filename = f"ema_{rate}_{(step):06d}.pt" 294 | path = bf.join(bf.dirname(main_checkpoint), filename) 295 | if bf.exists(path): 296 | return path 297 | return None 298 | 299 | 300 | def log_loss_dict(diffusion, ts, losses): 301 | for key, values in losses.items(): 302 | logger.logkv(key, values.mean().item()) 303 | # logger.logkv_mean(key, values.mean().item()) 304 | # Log the quantiles (four quartiles, in particular). 305 | for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): 306 | quartile = int(4 * sub_t / diffusion.num_timesteps) 307 | logger.logkv(f"{key}_q{quartile}", sub_loss) 308 | # logger.logkv_mean(f"{key}_q{quartile}", sub_loss) 309 | -------------------------------------------------------------------------------- /model_archi.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EperLuo/scDiffusion/d34ef8e560b47159d4500cf4411a7a34e5a12a32/model_archi.png -------------------------------------------------------------------------------- /train.sh: -------------------------------------------------------------------------------- 1 | cd VAE 2 | echo "Training Autoencoder, this might take a long time" 3 | python VAE_train.py --data_dir '/stor/lep/diffusion/multiome/openproblems_RNA_new.h5ad' --num_genes 13431 --save_dir '../output/checkpoint/AE/open_problem' --max_steps 200000 4 | echo "Training Autoencoder done" 5 | 6 | cd .. 7 | echo "Training diffusion backbone" 8 | python cell_train.py --data_dir '/stor/lep/diffusion/multiome/openproblems_RNA_new.h5ad' --vae_path 'output/checkpoint/AE/open_problem/model_seed=0_step=150000.pt' \ 9 | --model_name 'open_problem' --lr_anneal_steps 800000 --save_dir 'output/checkpoint/backbone' 10 | echo "Training diffusion backbone done" 11 | 12 | echo "Training classifier" 13 | python classifier_train.py --data_dir '/stor/lep/diffusion/multiome/openproblems_RNA_new.h5ad' --model_path "output/checkpoint/classifier/open_problem_classifier" \ 14 | --iterations 400000 --vae_path 'checkpoint/AE/open_problem/model_seed=0_step=150000.pt' --num_class 22 15 | echo "Training classifier, done" --------------------------------------------------------------------------------