├── .gitignore
├── LICENSE
├── README.md
├── analyze.py
├── compare.py
├── metrics.py
├── ml
├── grid_search
│ ├── AdaBoostClassifier.py
│ ├── BernoulliNB.py
│ ├── DecisionTreeClassifier.py
│ ├── ExtraTreesClassifier.py
│ ├── GaussianNB.py
│ ├── GradientBoostingClassifier.py
│ ├── KNeighborsClassifier.py
│ ├── LinearSVC.py
│ ├── LogisticRegression.py
│ ├── MultinomialNB.py
│ ├── PassiveAggressiveClassifier.py
│ ├── RandomForestClassifier.py
│ ├── SGDClassifier.py
│ ├── SVC.py
│ ├── XGBClassifier.py
│ ├── evaluate_model.py
│ └── tpot_metrics.py
├── random_search
│ ├── AdaBoostClassifier.py
│ ├── BernoulliNB.py
│ ├── DecisionTreeClassifier.py
│ ├── ExtraTreesClassifier.py
│ ├── GaussianNB.py
│ ├── GradientBoostingClassifier.py
│ ├── KNeighborsClassifier.py
│ ├── LinearSVC.py
│ ├── LogisticRegression.py
│ ├── MultinomialNB.py
│ ├── PassiveAggressiveClassifier.py
│ ├── RandomForestClassifier.py
│ ├── SGDClassifier.py
│ ├── SVC.py
│ ├── XGBClassifier.py
│ ├── evaluate_model.py
│ └── tpot_metrics.py
└── random_search_preprocessing
│ ├── AdaBoostClassifier.py
│ ├── BernoulliNB.py
│ ├── DecisionTreeClassifier.py
│ ├── ExtraTreesClassifier.py
│ ├── GaussianNB.py
│ ├── GradientBoostingClassifier.py
│ ├── KNeighborsClassifier.py
│ ├── LinearSVC.py
│ ├── LogisticRegression.py
│ ├── MLPClassifier.py
│ ├── MultinomialNB.py
│ ├── PassiveAggressiveClassifier.py
│ ├── RandomForestClassifier.py
│ ├── SGDClassifier.py
│ ├── SVC.py
│ ├── XGBClassifier.py
│ ├── evaluate_model.py
│ └── tpot_metrics.py
├── preprocessors.py
├── read_file.py
├── submit_jobs.py
└── utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 |
49 | # Translations
50 | *.mo
51 | *.pot
52 |
53 | # Django stuff:
54 | *.log
55 | local_settings.py
56 |
57 | # Flask stuff:
58 | instance/
59 | .webassets-cache
60 |
61 | # Scrapy stuff:
62 | .scrapy
63 |
64 | # Sphinx documentation
65 | docs/_build/
66 |
67 | # PyBuilder
68 | target/
69 |
70 | # Jupyter Notebook
71 | .ipynb_checkpoints
72 |
73 | # pyenv
74 | .python-version
75 |
76 | # celery beat schedule file
77 | celerybeat-schedule
78 |
79 | # SageMath parsed files
80 | *.sage.py
81 |
82 | # dotenv
83 | .env
84 |
85 | # virtualenv
86 | .venv
87 | venv/
88 | ENV/
89 |
90 | # Spyder project settings
91 | .spyderproject
92 | .spyproject
93 |
94 | # Rope project settings
95 | .ropeproject
96 |
97 | # mkdocs documentation
98 | /site
99 |
100 | # mypy
101 | .mypy_cache/
102 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ML Analyst
2 |
3 | This project is designed to help rapidly apply a standard machine learning analysis to a new data set.
4 |
5 |
6 | # Usage
7 |
8 | ## running the analysis
9 |
10 | > I want to run logistic regression, random forests, and neural nets on my dataset. i want to scale the features.
11 |
12 | ```python
13 | python analyze.py path/to/dataset -ml LogisticRegression,RandomForestClassifier,MLPClassifier -prep RobustScaler
14 | ```
15 | > I want to tune the parameters of each method using 100 combinations, and run 10 shuffles of the data.
16 |
17 | ```python
18 | python analyze.py path/to/dataset -ml LogisticRegression,RandomForestClassifier,MLPClassifier -prep RobustScaler -n_combos 100 -n_trials 10
19 | ```
20 |
21 | > what other options are there?
22 | ```
23 | python analyze.py -h
24 | ```
25 |
26 | ## generating comparisons
27 |
28 | ```python
29 | python compare.py path/to/results
30 | ```
31 |
--------------------------------------------------------------------------------
/analyze.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import argparse
4 | import os, errno, sys
5 | from sklearn.externals.joblib import Parallel, delayed
6 |
7 |
8 | if __name__ == '__main__':
9 | # parse command line arguments
10 | parser = argparse.ArgumentParser(description="An analyst for quick ML applications.",
11 | add_help=False)
12 | parser.add_argument('INPUT_FILE', type=str,
13 | help='Data file to analyze; ensure that the '
14 | 'target/label column is labeled as "class".')
15 | parser.add_argument('-h', '--help', action='help',
16 | help='Show this help message and exit.')
17 | parser.add_argument('-ml', action='store', dest='LEARNERS',default=None,type=str,
18 | help='Comma-separated list of ML methods to use (should correspond to a py file name '
19 | 'in ml/)')
20 | parser.add_argument('-prep', action='store', dest='PREP', default=None, type=str,
21 | help = 'Comma-separated list of preprocessors to apply to data')
22 | parser.add_argument('--lsf', action='store_true', dest='LSF', default=False,
23 | help='Run on an LSF HPC (using bsub commands)')
24 | parser.add_argument('-metric',action='store', dest='METRIC', default='f1_macro', type=str,
25 | help='Metric to compare algorithms')
26 | parser.add_argument('-k',action='store', dest='K', default=5, type=int,
27 | help='Number of folds for cross validation')
28 | parser.add_argument('-search',action='store',dest='SEARCH',default='random',choices=['grid','random'],
29 | help='Hyperparameter search strategy')
30 | parser.add_argument('--r',action='store_true',dest='REGRESSION',default=False,
31 | help='Run regression instead of classification.')
32 | parser.add_argument('-n_jobs',action='store',dest='N_JOBS',default=4,type=int,
33 | help='Number of parallel jobs')
34 | parser.add_argument('-n_trials',action='store',dest='N_TRIALS',default=1,type=int,
35 | help='Number of parallel jobs')
36 | parser.add_argument('-n_combos',action='store',dest='N_COMBOS',default=4,type=int,
37 | help='Number of hyperparameters to try')
38 | parser.add_argument('-rs',action='store',dest='RANDOM_STATE',default=None,type=int,
39 | help='random state')
40 | parser.add_argument('-label',action='store',dest='LABEL',default='class',type=str,
41 | help='Name of class label column')
42 | parser.add_argument('-m',action='store',dest='M',default=4096,type=int,
43 | help='LSF memory request and limit (MB)')
44 | parser.add_argument('-results',action='store',dest='RDIR',default='results',type=str,
45 | help='results directory')
46 | parser.add_argument('-q',action='store',dest='QUEUE',default='moore_normal',type=str,
47 | help='results directory')
48 |
49 |
50 | args = parser.parse_args()
51 |
52 | if args.RANDOM_STATE:
53 | random_state = args.RANDOM_STATE
54 | else:
55 | random_state = np.random.randint(2**15 - 1)
56 |
57 | learners = [ml for ml in args.LEARNERS.split(',')] # learners
58 |
59 | if args.SEARCH == 'random':
60 | if args.PREP:
61 | model_dir = 'ml/random_search_preprocessing/'
62 | else:
63 | model_dir = 'ml/random_search/'
64 | else:
65 | model_dir= 'ml/grid_search/'
66 |
67 | dataset = args.INPUT_FILE.split('/')[-1].split('.csv')[0]
68 | RANDOM_STATE = args.RANDOM_STATE
69 | results_path = '/'.join([args.RDIR, dataset]) + '/'
70 | # make the results_path directory if it doesn't exit
71 | try:
72 | os.makedirs(results_path)
73 | except OSError as e:
74 | if e.errno != errno.EEXIST:
75 | raise
76 | # initialize output files
77 | for ml in learners:
78 | #write headers
79 | if args.PREP:
80 | save_file = results_path + '-'.join(args.PREP.split(',')) + '_' + ml + '.csv'
81 | else:
82 | save_file = results_path + '/' + dataset + '_' + ml + '.csv'
83 |
84 | feat_file = save_file.split('.')[0]+'.imp_score'
85 | roc_file = save_file.split('.')[0]+'.roc'
86 |
87 | with open(save_file.split('.')[0] + '.imp_score','w') as out:
88 | out.write('preprocessor\tprep-parameters\talgorithm\talg-parameters\tseed\tfeature\tscore\n')
89 |
90 | with open(save_file.split('.')[0] + '.roc','w') as out:
91 | out.write('preprocessor\tprep-parameters\talgorithm\talg-parameters\tseed\tfpr\ttpr\tauc\n')
92 |
93 | with open(save_file,'w') as out:
94 | if args.PREP:
95 | out.write('dataset\tpreprocessor\tprep-parameters\talgorithm\talg-parameters\tseed\taccuracy\tf1_macro\tbal_accuracy\troc_auc\n')
96 | else:
97 | out.write('dataset\talgorithm\tparameters\taccuracy\tf1_macro\tseed\tbal_accuracy\troc_auc\n')
98 |
99 | # write run commands
100 | all_commands = []
101 | job_info=[]
102 | for t in range(args.N_TRIALS):
103 | random_state = np.random.randint(2**15-1)
104 | for ml in learners:
105 | if args.PREP:
106 | save_file = results_path + '-'.join(args.PREP.split(',')) + '_' + ml + '.csv'
107 | else:
108 | save_file = results_path + '/' + dataset + '_' + ml + '.csv'
109 |
110 | if args.PREP:
111 | all_commands.append('python {PATH}/{ML}.py {DATASET} {SAVEFILE} {N_COMBOS} {RS} {PREP} {LABEL}'.format(PATH=model_dir,ML=ml,DATASET=args.INPUT_FILE,SAVEFILE=save_file,N_COMBOS=args.N_COMBOS,RS=random_state,PREP=args.PREP,LABEL=args.LABEL))
112 | elif args.SEARCH == 'random':
113 | all_commands.append('python {PATH}/{ML}.py {DATASET} {SAVEFILE} {N_COMBOS} {RS}'.format(PATH=model_dir,ML=ml,DATASET=args.INPUT_FILE,SAVEFILE=save_file,N_COMBOS=args.N_COMBOS,RS=random_state))
114 | else:
115 | all_commands.append('python {PATH}/{ML}.py {DATASET} {SAVEFILE} {RS}'.format(
116 | PATH=model_dir,ML=ml,DATASET=args.INPUT_FILE,
117 | SAVEFILE=save_file,RS=random_state)
118 | )
119 | job_info.append({'ml':ml,'dataset':dataset,'results_path':results_path})
120 |
121 | if args.LSF: # bsub commands
122 | for i,run_cmd in enumerate(all_commands):
123 | job_name = job_info[i]['ml'] + '_' + job_info[i]['dataset']
124 | out_file = job_info[i]['results_path'] + job_name + '_%J.out'
125 |
126 | bsub_cmd = ('bsub -o {OUT_FILE} -n {N_CORES} -J {JOB_NAME} -q {QUEUE} '
127 | '-R "span[hosts=1] rusage[mem={M}]" -M {M} ').format(OUT_FILE=out_file,
128 | JOB_NAME=job_name,
129 | QUEUE=args.QUEUE,
130 | N_CORES=args.N_JOBS,
131 | M=args.M)
132 |
133 | bsub_cmd += '"' + run_cmd + '"'
134 | print(bsub_cmd)
135 | os.system(bsub_cmd) # submit jobs
136 | else: # run locally
137 | Parallel(n_jobs=args.N_JOBS)(delayed(os.system)(run_cmd) for run_cmd in all_commands )
138 |
--------------------------------------------------------------------------------
/compare.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import matplotlib as mpl
4 | mpl.rcParams['xtick.labelsize'] = 8
5 | import matplotlib.pyplot as plt
6 | import seaborn as sns
7 | sns.set_style("whitegrid")
8 | import math
9 | import argparse
10 | from glob import glob
11 | import pdb
12 | def main():
13 | """Analyzes results and generates figures."""
14 |
15 | parser = argparse.ArgumentParser(description="An analyst for quick ML applications.",
16 | add_help=False)
17 |
18 | parser.add_argument('RUN_DIR', action='store', type=str, help='Path to results from analysis.')
19 | parser.add_argument('-max_feat',action='store',dest='MAX_FEAT',default=10,type=int,
20 | help = 'Max features to show in importance plots.')
21 | args = parser.parse_args()
22 |
23 | # dataset = args.NAME
24 | # dataset = args.NAME.split('/')[-1].split('.')[0]
25 | # run_dir = 'results/' + dataset + '/'
26 | run_dir = args.RUN_DIR
27 | if run_dir[-1] != '/':
28 | run_dir += '/'
29 | dataset = run_dir.split('/')[-2]
30 | print('dataset:',dataset)
31 | print('loading data from',run_dir)
32 |
33 | frames = [] # data frames to combine
34 | count = 0
35 | for f in glob(run_dir + '*.csv'):
36 | if 'imp_score' not in f:
37 | frames.append(pd.read_csv(f,sep='\t',index_col=False))
38 | count = count + 1
39 |
40 | df = pd.concat(frames, join='outer', ignore_index=True)
41 | df['prep_alg'] = df['preprocessor'] + '_' + df['algorithm']
42 |
43 | print('loaded',count,'result files with results from these learners:',df['prep_alg'].unique())
44 |
45 | ########################################################################## performance boxplots
46 | restricted_cols = ['prep_alg','preprocessor', 'prep-parameters', 'algorithm',
47 | 'alg-parameters','dataset', 'trial','seed','parameters']
48 | columns_to_plot = [c for c in df.columns if c not in restricted_cols ]
49 | #['accuracy','f1_macro','bal_accuracy']
50 | print('generating boxplots for these columns:',columns_to_plot)
51 |
52 | for col in columns_to_plot:
53 | fig = plt.figure()
54 | unique_preps = df['preprocessor'].unique()
55 | for i, prep in enumerate(unique_preps):
56 | fig.add_subplot(math.ceil(len(unique_preps)), 2,i+1)
57 | # sns.boxplot(data=df.loc[df['preprocessor']==prep],x="algorithm",y=col,orient='h')
58 | sns.boxplot(data=df.loc[df['preprocessor']==prep],y="algorithm",x=col,orient='h')
59 | plt.title(prep,size=16)
60 | # plt.gca().set_xticklabels(df.algorithm.unique(),size=10,rotation=45)
61 | # plt.ylabel(col,size=16)
62 | # plt.xlabel(col,size=16)
63 | plt.ylabel(col,size=16)
64 | # plt.ylim(0.5,1.0)
65 | # plt.xlim(0.5,1.0)
66 | # plt.xlabel('')
67 | plt.ylabel('')
68 | # plt.gca().set_xticklabels(size=10)
69 | plt.tight_layout()
70 | plt.savefig(run_dir + '_'.join([ dataset, col,'boxplots.pdf']))
71 |
72 | ###################################################################### feature importance plots
73 | frames = [] # data frames to combine
74 | count = 0
75 | for f in glob(run_dir + '*.imp_score'):
76 | frames.append(pd.read_csv(f,sep='\t',index_col=False))
77 | count = count + 1
78 |
79 | df = pd.concat(frames, join='outer', ignore_index=True)
80 | df['prep_alg'] = df['preprocessor'] + '_' + df['algorithm']
81 | print('loaded',count,'feature importance files with results from these learners:',
82 | df['prep_alg'].unique())
83 |
84 | dfp = df.groupby(['prep_alg','feature']).median().unstack(['prep_alg'])
85 | dfpn = df.groupby(['feature','prep_alg']).median().groupby('feature').sum().unstack()['score']
86 | # print(dfpn.columns)
87 | # pdb.set_trace()
88 | dfpn = dfpn.sort_values(ascending=True) #, inplace=True)
89 | print('dfpn.head:',dfpn.tail(100))
90 | # sort by median feature importance
91 | nf = min(args.MAX_FEAT, dfpn.index.shape[0])
92 |
93 | dfpw = dfp.loc[dfpn.index[-nf:]]
94 | h = dfpw['score'].plot(kind='barh', stacked=True)
95 | leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
96 | fig = plt.gcf()
97 | fig.set_size_inches(5,15)
98 | plt.ylabel('Importance Score')
99 | plt.savefig(run_dir + '_'.join([ dataset, 'importance_scores.pdf']),
100 | bbox_extra_artists=(leg,h), bbox_inches='tight',figsize=(5,15))
101 |
102 | #################################################################################### roc curves
103 | frames = [] # data frames to combine
104 | count = 0
105 | for f in glob(run_dir + '*.roc'):
106 | frames.append(pd.read_csv(f,sep='\t',index_col=False))
107 | count = count + 1
108 |
109 | df = pd.concat(frames, join='outer', ignore_index=True)
110 | df['prep_alg'] = df['preprocessor'] + '_' + df['algorithm']
111 |
112 | print('loaded',count,'roc files with results from these learners:',df['prep_alg'].unique())
113 |
114 | h, ax = plt.subplots()
115 | ax.plot([0, 1],[0, 1],'--k',label='_nolegend_')
116 | # colors = ('r','y','b','g','c','k')
117 | # colors = plt.cm.Blues(np.linspace(0.1, 0.9, len(df['prep_alg'].unique())))
118 | colors = plt.cm.Spectral(np.linspace(0.1, 0.9, len(df['prep_alg'].unique())))
119 | n_algs = len(df['prep_alg'].unique())
120 | # markers = ['o','v','^','<','>','8','s',
121 | # 'p','P','*','h','H','+','x','X','D','d','|','_']
122 | for i, (alg,df_g) in enumerate(df.groupby('prep_alg')):
123 |
124 | aucs = df_g.auc.values
125 | seed_max = df_g.loc[df_g.auc.idxmax()]['seed']
126 | seed_min = df_g.loc[df_g.auc.idxmin()]['seed']
127 | seed_med = df_g.loc[np.abs(df_g.auc - df_g.auc.median()) ==
128 | np.min(np.abs(df_g.auc - df_g.auc.median()))]['seed']
129 | seed_med = seed_med.iloc[0]
130 |
131 | auc = df_g.auc.median()
132 | # fpr = df_g['fpr'].unique()
133 | tprs,fprs=[],[]
134 | fpr_min = df_g.loc[df_g.seed == seed_min,:]['fpr']
135 | fpr_max = df_g.loc[df_g.seed == seed_max,:]['fpr']
136 | tpr_min = df_g.loc[df_g.seed == seed_min,:]['tpr']
137 | tpr_max = df_g.loc[df_g.seed == seed_max,:]['tpr']
138 | tpr_med = df_g.loc[df_g.seed == seed_med,:]['tpr']
139 | fpr_med = df_g.loc[df_g.seed == seed_med,:]['fpr']
140 |
141 | ax.plot(fpr_med,tpr_med, color=colors[i % n_algs], linestyle='-', linewidth=1.5,
142 | label='{:s} (AUC = {:0.2f})'.format(alg,auc))
143 | ax.plot(fpr_max,tpr_max, color=colors[i % n_algs], linestyle='--', linewidth=0.5,
144 | label='_nolegend_')
145 | ax.plot(fpr_min,tpr_min,color=colors[i % n_algs], linestyle='--', linewidth=0.5,
146 | label='_nolegend_'.format(alg,auc))
147 |
148 | plt.ylabel('True Positive Rate')
149 | plt.xlabel('False Positive Rate')
150 | leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
151 | plt.ylim(0,1)
152 | plt.xlim(0,1)
153 | plt.savefig(run_dir + '_'.join([ dataset, col,'roc_curves.pdf']), bbox_inches='tight')
154 |
155 | print('done!')
156 |
157 | if __name__ == '__main__':
158 | main()
159 |
--------------------------------------------------------------------------------
/metrics.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | Copyright 2016 Randal S. Olson
5 |
6 | This file is part of the TPOT library.
7 |
8 | The TPOT library is free software: you can redistribute it and/or
9 | modify it under the terms of the GNU General Public License as published by the
10 | Free Software Foundation, either version 3 of the License, or (at your option)
11 | any later version.
12 |
13 | The TPOT library is distributed in the hope that it will be useful, but
14 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 | details. You should have received a copy of the GNU General Public License along
17 | with the TPOT library. If not, see http://www.gnu.org/licenses/.
18 |
19 | """
20 | from sklearn.metrics import f1_score
21 | import numpy as np
22 |
23 | def balanced_accuracy_score(y_true, y_pred):
24 | """Default scoring function: balanced accuracy
25 |
26 | Balanced accuracy computes each class' accuracy on a per-class basis using a
27 | one-vs-rest encoding, then computes an unweighted average of the class accuracies.
28 |
29 | Parameters
30 | ----------
31 | y_true: numpy.ndarray {n_samples}
32 | True class labels
33 | y_pred: numpy.ndarray {n_samples}
34 | Predicted class labels by the estimator
35 |
36 | Returns
37 | -------
38 | fitness: float
39 | Returns a float value indicating the `individual`'s balanced accuracy
40 | 0.5 is as good as chance, and 1.0 is perfect predictive accuracy
41 | """
42 | all_classes = list(set(np.append(y_true, y_pred)))
43 | all_class_accuracies = []
44 | for this_class in all_classes:
45 | this_class_sensitivity = \
46 | float(sum((y_pred == this_class) & (y_true == this_class))) /\
47 | float(sum((y_true == this_class)))
48 |
49 | this_class_specificity = \
50 | float(sum((y_pred != this_class) & (y_true != this_class))) /\
51 | float(sum((y_true != this_class)))
52 |
53 | this_class_accuracy = (this_class_sensitivity + this_class_specificity) / 2.
54 | all_class_accuracies.append(this_class_accuracy)
55 |
56 | return np.mean(all_class_accuracies)
57 |
58 | def f1_macro(y_true,y_pred):
59 | return f1_score(y_true,y_pred,average='macro')
60 |
--------------------------------------------------------------------------------
/ml/grid_search/AdaBoostClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.ensemble import AdaBoostClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, AdaBoostClassifier]
14 | pipeline_parameters = {}
15 |
16 | learning_rate_values = [0.01, 0.1, 0.5, 1.0, 10.0, 50.0, 100.0]
17 | n_estimators_values = [10, 50, 100, 500]
18 | random_state = [random_seed]
19 |
20 | all_param_combinations = itertools.product(learning_rate_values, n_estimators_values, random_state)
21 | pipeline_parameters[AdaBoostClassifier] = [{'learning_rate': learning_rate, 'n_estimators': n_estimators, 'random_state': random_state}
22 | for (learning_rate, n_estimators, random_state) in all_param_combinations]
23 |
24 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
25 |
--------------------------------------------------------------------------------
/ml/grid_search/BernoulliNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import MinMaxScaler
6 | from sklearn.naive_bayes import BernoulliNB
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [MinMaxScaler, BernoulliNB]
14 | pipeline_parameters = {}
15 |
16 | alpha_values = [0., 0.1, 0.25, 0.5, 0.75, 1., 5., 10., 25., 50.]
17 | fit_prior_values = [True, False]
18 | binarize_values = [0., 0.1, 0.25, 0.5, 0.75, 0.9, 1.]
19 | pipeline_parameters[BernoulliNB] = [{'alpha': args[0], 'fit_prior': args[1], 'binarize': args[2]}
20 | for args in itertools.product(alpha_values, fit_prior_values, binarize_values)]
21 |
22 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
23 |
--------------------------------------------------------------------------------
/ml/grid_search/DecisionTreeClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.tree import DecisionTreeClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, DecisionTreeClassifier]
14 | pipeline_parameters = {}
15 |
16 | min_impurity_decrease_values = np.arange(0., 0.005, 0.00025)
17 | max_features_values = [0.1, 0.25, 0.5, 0.75, 'sqrt', 'log2', None]
18 | criterion_values = ['gini', 'entropy']
19 | random_state = [random_seed]
20 |
21 | all_param_combinations = itertools.product(min_impurity_decrease_values, max_features_values, criterion_values, random_state)
22 | pipeline_parameters[DecisionTreeClassifier] = \
23 | [{'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'random_state': random_state}
24 | for (min_impurity_decrease, max_features, criterion, random_state) in all_param_combinations]
25 |
26 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
27 |
--------------------------------------------------------------------------------
/ml/grid_search/ExtraTreesClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.ensemble import ExtraTreesClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, ExtraTreesClassifier]
14 | pipeline_parameters = {}
15 |
16 | n_estimators_values = [10, 50, 100, 500]
17 | min_impurity_decrease_values = np.arange(0., 0.005, 0.00025)
18 | max_features_values = [0.1, 0.25, 0.5, 0.75, 'sqrt', 'log2', None]
19 | criterion_values = ['gini', 'entropy']
20 | random_state = [random_seed]
21 |
22 | all_param_combinations = itertools.product(n_estimators_values, min_impurity_decrease_values, max_features_values, criterion_values, random_state)
23 | pipeline_parameters[ExtraTreesClassifier] = \
24 | [{'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'random_state': random_state}
25 | for (n_estimators, min_impurity_decrease, max_features, criterion, random_state) in all_param_combinations]
26 |
27 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
28 |
--------------------------------------------------------------------------------
/ml/grid_search/GaussianNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.naive_bayes import GaussianNB
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, GaussianNB]
14 | pipeline_parameters = {}
15 | pipeline_parameters[GaussianNB] = [{}]
16 |
17 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
18 |
--------------------------------------------------------------------------------
/ml/grid_search/GradientBoostingClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.ensemble import GradientBoostingClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, GradientBoostingClassifier]
14 | pipeline_parameters = {}
15 |
16 | n_estimators_values = [10, 100, 500]
17 | min_impurity_decrease_values = np.arange(0., 0.005, 0.001)
18 | max_features_values = ['sqrt', 'log2', None]
19 | learning_rate_values = np.logspace(-2,2,5)
20 | loss_values = ['deviance', 'exponential']
21 | random_state = [random_seed]
22 |
23 | all_param_combinations = itertools.product(n_estimators_values, min_impurity_decrease_values, max_features_values, learning_rate_values, loss_values, random_state)
24 | pipeline_parameters[GradientBoostingClassifier] = \
25 | [{'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'learning_rate': learning_rate, 'loss': loss, 'random_state': random_state}
26 | for (n_estimators, min_impurity_decrease, max_features, learning_rate, loss, random_state) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
29 |
--------------------------------------------------------------------------------
/ml/grid_search/KNeighborsClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.neighbors import KNeighborsClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, KNeighborsClassifier]
14 | pipeline_parameters = {}
15 |
16 | n_neighbors_values = list(range(1, 26)) + [50, 100]
17 | weights_values = ['uniform', 'distance']
18 |
19 | all_param_combinations = itertools.product(n_neighbors_values, weights_values)
20 | pipeline_parameters[KNeighborsClassifier] = \
21 | [{'n_neighbors': n_neighbors, 'weights': weights}
22 | for (n_neighbors, weights) in all_param_combinations]
23 |
24 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
25 |
--------------------------------------------------------------------------------
/ml/grid_search/LinearSVC.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.svm import LinearSVC
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, LinearSVC]
14 | pipeline_parameters = {}
15 |
16 | C_values = np.concatenate((np.arange(0., 1.0, 0.1), np.arange(1., 10.01, 1.)))
17 | loss_values = ['hinge', 'squared_hinge']
18 | penalty_values = ['l1', 'l2']
19 | dual_values = [True, False]
20 | fit_intercept_values = [True, False]
21 | random_state = [random_seed]
22 |
23 | all_param_combinations = itertools.product(C_values, loss_values, penalty_values, dual_values, fit_intercept_values, random_state)
24 | pipeline_parameters[LinearSVC] = \
25 | [{'C': C, 'penalty': penalty, 'fit_intercept': fit_intercept, 'dual': dual, 'random_state': random_state}
26 | for (C, loss, penalty, dual, fit_intercept, random_state) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
29 |
--------------------------------------------------------------------------------
/ml/grid_search/LogisticRegression.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.linear_model import LogisticRegression
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, LogisticRegression]
14 | pipeline_parameters = {}
15 |
16 | C_values = np.arange(0.5, 20.1, 0.5)
17 | penalty_values = ['l1', 'l2']
18 | fit_intercept_values = [True, False]
19 | dual_values = [True, False]
20 | random_state = [random_seed]
21 |
22 | all_param_combinations = itertools.product(C_values, penalty_values, fit_intercept_values, dual_values, random_state)
23 | pipeline_parameters[LogisticRegression] = \
24 | [{'C': C, 'penalty': penalty, 'fit_intercept': fit_intercept, 'dual': dual, 'random_state': random_state}
25 | for (C, penalty, fit_intercept, dual, random_state) in all_param_combinations
26 | if not (penalty != 'l2' and dual != False)]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
29 |
--------------------------------------------------------------------------------
/ml/grid_search/MultinomialNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import MinMaxScaler
6 | from sklearn.naive_bayes import MultinomialNB
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [MinMaxScaler, MultinomialNB]
14 | pipeline_parameters = {}
15 |
16 | alpha_values = [0., 0.1, 0.25, 0.5, 0.75, 1., 5., 10., 25., 50.]
17 | fit_prior_values = [True, False]
18 |
19 | all_param_combinations = itertools.product(alpha_values, fit_prior_values)
20 | pipeline_parameters[MultinomialNB] = \
21 | [{'alpha': alpha, 'fit_prior': fit_prior}
22 | for (alpha, fit_prior) in all_param_combinations]
23 |
24 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
25 |
--------------------------------------------------------------------------------
/ml/grid_search/PassiveAggressiveClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.linear_model import PassiveAggressiveClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, PassiveAggressiveClassifier]
14 | pipeline_parameters = {}
15 |
16 | C_values = [0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1., 10., 50., 100.]
17 | loss_values = ['hinge', 'squared_hinge']
18 | fit_intercept_values = [True, False]
19 | random_state = [random_seed]
20 |
21 | all_param_combinations = itertools.product(C_values, loss_values, fit_intercept_values, random_state)
22 | pipeline_parameters[PassiveAggressiveClassifier] = \
23 | [{'C': C, 'loss': loss, 'fit_intercept': fit_intercept, 'random_state': random_state}
24 | for (C, loss, fit_intercept, random_state) in all_param_combinations]
25 |
26 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
27 |
--------------------------------------------------------------------------------
/ml/grid_search/RandomForestClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.ensemble import RandomForestClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, RandomForestClassifier]
14 | pipeline_parameters = {}
15 |
16 | n_estimators_values = [10, 100, 500]
17 | min_impurity_decrease_values = np.arange(0., 0.005, 0.001)
18 | max_features_values = ['sqrt', 'log2', None]
19 | criterion_values = ['gini', 'entropy']
20 | random_state = [random_seed]
21 |
22 | all_param_combinations = itertools.product(n_estimators_values, min_impurity_decrease_values, max_features_values, criterion_values, random_state)
23 | pipeline_parameters[RandomForestClassifier] = \
24 | [{'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'random_state': random_state}
25 | for (n_estimators, min_impurity_decrease, max_features, criterion, random_state) in all_param_combinations]
26 |
27 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
28 |
--------------------------------------------------------------------------------
/ml/grid_search/SGDClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.linear_model import SGDClassifier
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, SGDClassifier]
14 | pipeline_parameters = {}
15 |
16 | loss_values = ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron']
17 | penalty_values = ['l2', 'l1', 'elasticnet']
18 | alpha_values = [0.000001, 0.00001, 0.0001, 0.001, 0.01]
19 | learning_rate_values = ['constant', 'optimal', 'invscaling']
20 | fit_intercept_values = [True, False]
21 | l1_ratio_values = [0., 0.1, 0.15, 0.25, 0.5, 0.75, 0.9, 1.]
22 | eta0_values = [0.0, 0.01, 0.1, 0.5, 1., 10., 50., 100.]
23 | power_t_values = [0., 0.1, 0.5, 1., 10., 50., 100.]
24 | random_state = [random_seed]
25 |
26 | all_param_combinations = itertools.product(loss_values, penalty_values, alpha_values, learning_rate_values, fit_intercept_values, l1_ratio_values, eta0_values, power_t_values, random_state)
27 | pipeline_parameters[SGDClassifier] = \
28 | [{'loss': loss, 'penalty': penalty, 'alpha': alpha, 'learning_rate': learning_rate, 'fit_intercept': fit_intercept, 'l1_ratio': l1_ratio, 'eta0': eta0, 'power_t': power_t, 'random_state': random_state}
29 | for (loss, penalty, alpha, learning_rate, fit_intercept, l1_ratio, eta0, power_t, random_state) in all_param_combinations
30 | if not (penalty != 'elasticnet' and l1_ratio != 0.15) and not (learning_rate not in ['constant', 'invscaling'] and eta0 != 0.0) and not (learning_rate != 'invscaling' and power_t != 0.5)]
31 |
32 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
33 |
--------------------------------------------------------------------------------
/ml/grid_search/SVC.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from sklearn.svm import SVC
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, SVC]
14 | pipeline_parameters = {}
15 |
16 | C_values = [0.01, 0.1, 0.5, 1., 10., 50., 100.]
17 | gamma_values = [0.01, 0.1, 0.5, 1., 10., 50., 100., 'auto']
18 | kernel_values = ['poly', 'rbf', 'sigmoid']
19 | degree_values = [2, 3]
20 | coef0_values = [0., 0.1, 0.5, 1., 10., 50., 100.]
21 | random_state = [random_seed]
22 |
23 | all_param_combinations = itertools.product(C_values, gamma_values, kernel_values, degree_values, coef0_values, random_state)
24 | pipeline_parameters[SVC] = \
25 | [{'C': C, 'gamma': gamma, 'kernel': kernel, 'degree': degree, 'coef0': coef0, 'random_state': random_state}
26 | for (C, gamma, kernel, degree, coef0, random_state) in all_param_combinations
27 | if not (kernel != 'poly' and degree > 2) and not (kernel not in ['poly', 'sigmoid'] and coef0 != 0.0)]
28 |
29 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
30 |
--------------------------------------------------------------------------------
/ml/grid_search/XGBClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | import itertools
5 | from sklearn.preprocessing import RobustScaler
6 | from xgboost import XGBClassifier # Assumes XGBoost v0.6
7 | from evaluate_model import evaluate_model
8 |
9 | dataset = sys.argv[1]
10 | save_file = sys.argv[2]
11 | random_seed = int(sys.argv[3])
12 |
13 | pipeline_components = [RobustScaler, XGBClassifier]
14 | pipeline_parameters = {}
15 |
16 | n_estimators_values = [10, 50, 100, 500]
17 | learning_rate_values = [0.01, 0.1, 0.5, 1.0, 10.0, 50.0, 100.0]
18 | gamma_values = np.arange(0., 0.51, 0.05)
19 | max_depth_values = [1, 2, 3, 4, 5, 10, 20, 50, None]
20 | subsample_values = np.arange(0.0, 1.01, 0.1)
21 | random_state = [random_seed]
22 |
23 | all_param_combinations = itertools.product(n_estimators_values, learning_rate_values, gamma_values, max_depth_values, subsample_values, random_state)
24 | pipeline_parameters[XGBClassifier] = \
25 | [{'n_estimators': n_estimators, 'learning_rate': learning_rate, 'gamma': gamma, 'max_depth': max_depth, 'subsample': subsample, 'seed': random_state, 'nthread': 1}
26 | for (n_estimators, learning_rate, gamma, max_depth, subsample, random_state) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_seed)
29 |
--------------------------------------------------------------------------------
/ml/grid_search/evaluate_model.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import itertools
3 | import pandas as pd
4 | from sklearn.model_selection import cross_val_predict, StratifiedKFold
5 | from sklearn.metrics import accuracy_score, f1_score
6 | from sklearn.pipeline import make_pipeline
7 | from tpot_metrics import balanced_accuracy_score
8 | import warnings
9 |
10 | def evaluate_model(dataset, pipeline_components, pipeline_parameters, save_file, random_state):
11 | compression = 'gzip' if '.gz' in dataset else None
12 | input_data = pd.read_csv(dataset, compression=compression, engine='python', sep=None)
13 | features = input_data.drop('class', axis=1).values.astype(float)
14 | labels = input_data['class'].values
15 | # features, labels, feature_names = read_file(dataset, label)
16 |
17 | pipelines = [dict(zip(pipeline_parameters.keys(), list(parameter_combination)))
18 | for parameter_combination in itertools.product(*pipeline_parameters.values())]
19 |
20 | with warnings.catch_warnings():
21 | # Squash warning messages. Turn this off when debugging!
22 | warnings.simplefilter('ignore')
23 |
24 | for pipe_parameters in pipelines:
25 | pipeline = []
26 | for component in pipeline_components:
27 | if component in pipe_parameters:
28 | args = pipe_parameters[component]
29 | pipeline.append(component(**args))
30 | else:
31 | pipeline.append(component())
32 |
33 | try:
34 | clf = make_pipeline(*pipeline)
35 | cv_predictions = cross_val_predict(estimator=clf, X=features, y=labels,
36 | cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=random_state))
37 | accuracy = accuracy_score(labels, cv_predictions)
38 | macro_f1 = f1_score(labels, cv_predictions, average='macro')
39 | balanced_accuracy = balanced_accuracy_score(labels, cv_predictions)
40 | except KeyboardInterrupt:
41 | sys.exit(1)
42 | # This is a catch-all to make sure that the evaluation won't crash due to a bad parameter
43 | # combination or bad data. Turn this off when debugging!
44 | except Exception as e:
45 | continue
46 |
47 | classifier_class = pipeline_components[-1]
48 | param_string = ','.join(['{}={}'.format(parameter, value)
49 | for parameter, value in pipe_parameters[classifier_class].items()])
50 |
51 | out_text = '\t'.join([dataset.split('/')[-1][:-7],
52 | classifier_class.__name__,
53 | param_string,
54 | str(accuracy),
55 | str(macro_f1),
56 | str(balanced_accuracy)])
57 |
58 | print(out_text)
59 | with open(save_file, 'a') as out:
60 | out.write(out_text+'\n')
61 |
62 | sys.stdout.flush()
63 |
--------------------------------------------------------------------------------
/ml/grid_search/tpot_metrics.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | Copyright 2016 Randal S. Olson
5 |
6 | This file is part of the TPOT library.
7 |
8 | The TPOT library is free software: you can redistribute it and/or
9 | modify it under the terms of the GNU General Public License as published by the
10 | Free Software Foundation, either version 3 of the License, or (at your option)
11 | any later version.
12 |
13 | The TPOT library is distributed in the hope that it will be useful, but
14 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 | details. You should have received a copy of the GNU General Public License along
17 | with the TPOT library. If not, see http://www.gnu.org/licenses/.
18 |
19 | """
20 |
21 | import numpy as np
22 |
23 | def balanced_accuracy_score(y_true, y_pred):
24 | """Default scoring function: balanced accuracy
25 |
26 | Balanced accuracy computes each class' accuracy on a per-class basis using a
27 | one-vs-rest encoding, then computes an unweighted average of the class accuracies.
28 |
29 | Parameters
30 | ----------
31 | y_true: numpy.ndarray {n_samples}
32 | True class labels
33 | y_pred: numpy.ndarray {n_samples}
34 | Predicted class labels by the estimator
35 |
36 | Returns
37 | -------
38 | fitness: float
39 | Returns a float value indicating the `individual`'s balanced accuracy
40 | 0.5 is as good as chance, and 1.0 is perfect predictive accuracy
41 | """
42 | all_classes = list(set(np.append(y_true, y_pred)))
43 | all_class_accuracies = []
44 | for this_class in all_classes:
45 | this_class_sensitivity = \
46 | float(sum((y_pred == this_class) & (y_true == this_class))) /\
47 | float(sum((y_true == this_class)))
48 |
49 | this_class_specificity = \
50 | float(sum((y_pred != this_class) & (y_true != this_class))) /\
51 | float(sum((y_true != this_class)))
52 |
53 | this_class_accuracy = (this_class_sensitivity + this_class_specificity) / 2.
54 | all_class_accuracies.append(this_class_accuracy)
55 |
56 | return np.mean(all_class_accuracies)
57 |
--------------------------------------------------------------------------------
/ml/random_search/AdaBoostClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.ensemble import AdaBoostClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, AdaBoostClassifier]
15 | pipeline_parameters = {}
16 |
17 | learning_rate_values = np.random.uniform(low=1e-10, high=5., size=num_param_combinations)
18 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
19 |
20 | all_param_combinations = zip(learning_rate_values, n_estimators_values)
21 | pipeline_parameters[AdaBoostClassifier] = [{'learning_rate': learning_rate, 'n_estimators': n_estimators, 'random_state': 324089}
22 | for (learning_rate, n_estimators) in all_param_combinations]
23 |
24 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
25 |
--------------------------------------------------------------------------------
/ml/random_search/BernoulliNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import MinMaxScaler
5 | from sklearn.naive_bayes import BernoulliNB
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [MinMaxScaler, BernoulliNB]
15 | pipeline_parameters = {}
16 |
17 | alpha_values = np.random.uniform(low=0., high=50., size=num_param_combinations)
18 | fit_prior_values = np.random.choice([True, False], size=num_param_combinations)
19 | binarize_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
20 |
21 | all_param_combinations = zip(alpha_values, fit_prior_values, binarize_values)
22 | pipeline_parameters[BernoulliNB] = [{'alpha': alpha, 'fit_prior': fit_prior, 'binarize': binarize}
23 | for (alpha, fit_prior, binarize) in all_param_combinations]
24 |
25 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
26 |
--------------------------------------------------------------------------------
/ml/random_search/DecisionTreeClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.tree import DecisionTreeClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, DecisionTreeClassifier]
15 | pipeline_parameters = {}
16 |
17 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
18 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
19 | criterion_values = np.random.choice(['gini', 'entropy'], size=num_param_combinations)
20 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
21 |
22 | all_param_combinations = zip(min_impurity_decrease_values, max_features_values, criterion_values, max_depth_values)
23 | pipeline_parameters[DecisionTreeClassifier] = \
24 | [{'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'max_depth': max_depth, 'random_state': 324089}
25 | for (min_impurity_decrease, max_features, criterion, max_depth) in all_param_combinations]
26 |
27 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
28 |
--------------------------------------------------------------------------------
/ml/random_search/ExtraTreesClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.ensemble import ExtraTreesClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, ExtraTreesClassifier]
15 | pipeline_parameters = {}
16 |
17 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
18 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
19 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
20 | criterion_values = np.random.choice(['gini', 'entropy'], size=num_param_combinations)
21 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
22 |
23 | all_param_combinations = zip(n_estimators_values, min_impurity_decrease_values, max_features_values, criterion_values, max_depth_values)
24 | pipeline_parameters[ExtraTreesClassifier] = \
25 | [{'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'max_depth': max_depth, 'random_state': 324089}
26 | for (n_estimators, min_impurity_decrease, max_features, criterion, max_depth) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
29 |
--------------------------------------------------------------------------------
/ml/random_search/GaussianNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.naive_bayes import GaussianNB
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, GaussianNB]
15 | pipeline_parameters = {}
16 | pipeline_parameters[GaussianNB] = [{}]
17 |
18 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
19 |
--------------------------------------------------------------------------------
/ml/random_search/GradientBoostingClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.ensemble import GradientBoostingClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, GradientBoostingClassifier]
15 | pipeline_parameters = {}
16 |
17 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
18 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
19 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
20 | learning_rate_values = np.random.uniform(low=1e-10, high=5., size=num_param_combinations)
21 | loss_values = np.random.choice(['deviance', 'exponential'], size=num_param_combinations)
22 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
23 |
24 | all_param_combinations = zip(n_estimators_values, min_impurity_decrease_values, max_features_values, learning_rate_values, loss_values, max_depth_values)
25 | pipeline_parameters[GradientBoostingClassifier] = \
26 | [{'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'learning_rate': learning_rate, 'loss': loss, 'max_depth': max_depth, 'random_state': 324089}
27 | for (n_estimators, min_impurity_decrease, max_features, learning_rate, loss, max_depth) in all_param_combinations]
28 |
29 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
30 |
--------------------------------------------------------------------------------
/ml/random_search/KNeighborsClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.neighbors import KNeighborsClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, KNeighborsClassifier]
15 | pipeline_parameters = {}
16 |
17 | n_neighbors_values = np.random.randint(low=1, high=100, size=num_param_combinations)
18 | weights_values = np.random.choice(['uniform', 'distance'], size=num_param_combinations)
19 |
20 | all_param_combinations = zip(n_neighbors_values, weights_values)
21 | pipeline_parameters[KNeighborsClassifier] = \
22 | [{'n_neighbors': n_neighbors, 'weights': weights}
23 | for (n_neighbors, weights) in all_param_combinations]
24 |
25 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
26 |
--------------------------------------------------------------------------------
/ml/random_search/LinearSVC.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.svm import LinearSVC
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, LinearSVC]
15 | pipeline_parameters = {}
16 |
17 | C_values = np.random.uniform(low=1e-10, high=10., size=num_param_combinations)
18 | loss_values = np.random.choice(['hinge', 'squared_hinge'], size=num_param_combinations)
19 | penalty_values = np.random.choice(['l1', 'l2'], size=num_param_combinations)
20 | dual_values = np.random.choice([True, False], size=num_param_combinations)
21 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
22 |
23 | all_param_combinations = zip(C_values, loss_values, penalty_values, dual_values, fit_intercept_values)
24 | pipeline_parameters[LinearSVC] = \
25 | [{'C': C, 'penalty': penalty, 'fit_intercept': fit_intercept, 'dual': dual, 'random_state': 324089}
26 | for (C, loss, penalty, dual, fit_intercept) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
29 |
--------------------------------------------------------------------------------
/ml/random_search/LogisticRegression.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.linear_model import LogisticRegression
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, LogisticRegression]
15 | pipeline_parameters = {}
16 |
17 | C_values = np.random.uniform(low=1e-10, high=10., size=num_param_combinations)
18 | penalty_values = np.random.choice(['l1', 'l2'], size=num_param_combinations)
19 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
20 | dual_values = np.random.choice([True, False], size=num_param_combinations)
21 |
22 | all_param_combinations = zip(C_values, penalty_values, fit_intercept_values, dual_values)
23 | pipeline_parameters[LogisticRegression] = \
24 | [{'C': C, 'penalty': penalty, 'fit_intercept': fit_intercept, 'dual': False if penalty != 'l2' else dual, 'random_state': 324089}
25 | for (C, penalty, fit_intercept, dual) in all_param_combinations]
26 |
27 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
28 |
--------------------------------------------------------------------------------
/ml/random_search/MultinomialNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import MinMaxScaler
5 | from sklearn.naive_bayes import MultinomialNB
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [MinMaxScaler, MultinomialNB]
15 | pipeline_parameters = {}
16 |
17 | alpha_values = np.random.uniform(low=0., high=10., size=num_param_combinations)
18 | fit_prior_values = np.random.choice([True, False], size=num_param_combinations)
19 |
20 | all_param_combinations = zip(alpha_values, fit_prior_values)
21 | pipeline_parameters[MultinomialNB] = \
22 | [{'alpha': alpha, 'fit_prior': fit_prior}
23 | for (alpha, fit_prior) in all_param_combinations]
24 |
25 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
26 |
--------------------------------------------------------------------------------
/ml/random_search/PassiveAggressiveClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.linear_model import PassiveAggressiveClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, PassiveAggressiveClassifier]
15 | pipeline_parameters = {}
16 |
17 | C_values = np.random.uniform(low=1e-10, high=10., size=num_param_combinations)
18 | loss_values = np.random.choice(['hinge', 'squared_hinge'], size=num_param_combinations)
19 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
20 |
21 | all_param_combinations = zip(C_values, loss_values, fit_intercept_values)
22 | pipeline_parameters[PassiveAggressiveClassifier] = \
23 | [{'C': C, 'loss': loss, 'fit_intercept': fit_intercept, 'random_state': 324089}
24 | for (C, loss, fit_intercept) in all_param_combinations]
25 |
26 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
27 |
--------------------------------------------------------------------------------
/ml/random_search/RandomForestClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.ensemble import RandomForestClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, RandomForestClassifier]
15 | pipeline_parameters = {}
16 |
17 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
18 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
19 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
20 | criterion_values = np.random.choice(['gini', 'entropy'], size=num_param_combinations)
21 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
22 |
23 | all_param_combinations = zip(n_estimators_values, min_impurity_decrease_values, max_features_values, criterion_values, max_depth_values)
24 | pipeline_parameters[RandomForestClassifier] = \
25 | [{'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'max_depth': max_depth, 'random_state': 324089}
26 | for (n_estimators, min_impurity_decrease, max_features, criterion, max_depth) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
29 |
--------------------------------------------------------------------------------
/ml/random_search/SGDClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.linear_model import SGDClassifier
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, SGDClassifier]
15 | pipeline_parameters = {}
16 |
17 | loss_values = np.random.choice(['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'], size=num_param_combinations)
18 | penalty_values = np.random.choice(['l2', 'l1', 'elasticnet'], size=num_param_combinations)
19 | alpha_values = np.random.exponential(scale=0.01, size=num_param_combinations)
20 | learning_rate_values = np.random.choice(['constant', 'optimal', 'invscaling'], size=num_param_combinations)
21 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
22 | l1_ratio_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
23 | eta0_values = np.random.uniform(low=0., high=5., size=num_param_combinations)
24 | power_t_values = np.random.uniform(low=0., high=5., size=num_param_combinations)
25 |
26 | all_param_combinations = zip(loss_values, penalty_values, alpha_values, learning_rate_values, fit_intercept_values, l1_ratio_values, eta0_values, power_t_values)
27 | pipeline_parameters[SGDClassifier] = \
28 | [{'loss': loss, 'penalty': penalty, 'alpha': alpha, 'learning_rate': learning_rate, 'fit_intercept': fit_intercept,
29 | 'l1_ratio': 0.15 if penalty != 'elasticnet' else l1_ratio, 'eta0': 0. if learning_rate not in ['constant', 'invscaling'] else eta0,
30 | 'power_t': 0.5 if learning_rate != 'invscaling' else power_t, 'random_state': 324089}
31 | for (loss, penalty, alpha, learning_rate, fit_intercept, l1_ratio, eta0, power_t) in all_param_combinations]
32 |
33 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
34 |
--------------------------------------------------------------------------------
/ml/random_search/SVC.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from sklearn.svm import SVC
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, SVC]
15 | pipeline_parameters = {}
16 |
17 | C_values = np.random.uniform(low=1e-10, high=500., size=num_param_combinations)
18 | gamma_values = np.random.choice(list(np.arange(0.05, 1.01, 0.05)) + ['auto'], size=num_param_combinations)
19 | kernel_values = np.random.choice(['poly', 'rbf', 'sigmoid'], size=num_param_combinations)
20 | degree_values = np.random.choice([2, 3], size=num_param_combinations)
21 | coef0_values = np.random.uniform(low=0., high=10., size=num_param_combinations)
22 |
23 | all_param_combinations = zip(C_values, gamma_values, kernel_values, degree_values, coef0_values)
24 | pipeline_parameters[SVC] = \
25 | [{'C': C, 'gamma': float(gamma) if gamma != 'auto' else gamma, 'kernel': str(kernel), 'degree': 2 if kernel != 'poly' else degree, 'coef0': 0. if kernel not in ['poly', 'sigmoid'] else coef0, 'random_state': 324089}
26 | for (C, gamma, kernel, degree, coef0) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
29 |
--------------------------------------------------------------------------------
/ml/random_search/XGBClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 | from sklearn.preprocessing import RobustScaler
5 | from xgboost import XGBClassifier # Assumes XGBoost v0.6
6 | from evaluate_model import evaluate_model
7 |
8 | dataset = sys.argv[1]
9 | num_param_combinations = int(sys.argv[2])
10 | random_seed = int(sys.argv[3])
11 |
12 | np.random.seed(random_seed)
13 |
14 | pipeline_components = [RobustScaler, XGBClassifier]
15 | pipeline_parameters = {}
16 |
17 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
18 | learning_rate_values = np.random.uniform(low=1e-10, high=5., size=num_param_combinations)
19 | gamma_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
20 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
21 | subsample_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
22 |
23 | all_param_combinations = zip(n_estimators_values, learning_rate_values, gamma_values, max_depth_values, subsample_values)
24 | pipeline_parameters[XGBClassifier] = \
25 | [{'n_estimators': n_estimators, 'learning_rate': learning_rate, 'gamma': gamma, 'max_depth': max_depth, 'subsample': subsample, 'seed': 324089, 'nthread': 1}
26 | for (n_estimators, learning_rate, gamma, max_depth, subsample) in all_param_combinations]
27 |
28 | evaluate_model(dataset, pipeline_components, pipeline_parameters)
29 |
--------------------------------------------------------------------------------
/ml/random_search/evaluate_model.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import itertools
3 | import pandas as pd
4 | from sklearn.model_selection import cross_val_predict, StratifiedKFold
5 | from sklearn.metrics import accuracy_score, f1_score
6 | from sklearn.pipeline import make_pipeline
7 | from tpot_metrics import balanced_accuracy_score
8 | import warnings
9 |
10 | def evaluate_model(dataset, out_file, pipeline_components, pipeline_parameters):
11 | input_data = pd.read_csv(dataset, compression='gzip', sep='\t')
12 | features = input_data.drop('class', axis=1).values.astype(float)
13 | labels = input_data['class'].values
14 |
15 | pipelines = [dict(zip(pipeline_parameters.keys(), list(parameter_combination)))
16 | for parameter_combination in itertools.product(*pipeline_parameters.values())]
17 |
18 | with warnings.catch_warnings():
19 | # Squash warning messages. Turn this off when debugging!
20 | warnings.simplefilter('ignore')
21 |
22 | for pipe_parameters in pipelines:
23 | pipeline = []
24 | for component in pipeline_components:
25 | if component in pipe_parameters:
26 | args = pipe_parameters[component]
27 | pipeline.append(component(**args))
28 | else:
29 | pipeline.append(component())
30 |
31 | try:
32 | clf = make_pipeline(*pipeline)
33 | cv_predictions = cross_val_predict(estimator=clf, X=features, y=labels, cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=90483257))
34 | accuracy = accuracy_score(labels, cv_predictions)
35 | macro_f1 = f1_score(labels, cv_predictions, average='macro')
36 | balanced_accuracy = balanced_accuracy_score(labels, cv_predictions)
37 | except KeyboardInterrupt:
38 | sys.exit(1)
39 | # This is a catch-all to make sure that the evaluation won't crash due to a bad parameter
40 | # combination or bad data. Turn this off when debugging!
41 | except Exception as e:
42 | continue
43 |
44 | classifier_class = pipeline_components[-1]
45 | param_string = ','.join(['{}={}'.format(parameter, value)
46 | for parameter, value in pipe_parameters[classifier_class].items()])
47 |
48 | out_text = '\t'.join([dataset.split('/')[-1][:-7],
49 | classifier_class.__name__,
50 | param_string,
51 | str(accuracy),
52 | str(macro_f1),
53 | str(balanced_accuracy)])
54 |
55 | print(out_text)
56 | sys.stdout.flush()
57 |
--------------------------------------------------------------------------------
/ml/random_search/tpot_metrics.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | Copyright 2016 Randal S. Olson
5 |
6 | This file is part of the TPOT library.
7 |
8 | The TPOT library is free software: you can redistribute it and/or
9 | modify it under the terms of the GNU General Public License as published by the
10 | Free Software Foundation, either version 3 of the License, or (at your option)
11 | any later version.
12 |
13 | The TPOT library is distributed in the hope that it will be useful, but
14 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 | details. You should have received a copy of the GNU General Public License along
17 | with the TPOT library. If not, see http://www.gnu.org/licenses/.
18 |
19 | """
20 |
21 | import numpy as np
22 |
23 | def balanced_accuracy_score(y_true, y_pred):
24 | """Default scoring function: balanced accuracy
25 |
26 | Balanced accuracy computes each class' accuracy on a per-class basis using a
27 | one-vs-rest encoding, then computes an unweighted average of the class accuracies.
28 |
29 | Parameters
30 | ----------
31 | y_true: numpy.ndarray {n_samples}
32 | True class labels
33 | y_pred: numpy.ndarray {n_samples}
34 | Predicted class labels by the estimator
35 |
36 | Returns
37 | -------
38 | fitness: float
39 | Returns a float value indicating the `individual`'s balanced accuracy
40 | 0.5 is as good as chance, and 1.0 is perfect predictive accuracy
41 | """
42 | all_classes = list(set(np.append(y_true, y_pred)))
43 | all_class_accuracies = []
44 | for this_class in all_classes:
45 | this_class_sensitivity = \
46 | float(sum((y_pred == this_class) & (y_true == this_class))) /\
47 | float(sum((y_true == this_class)))
48 |
49 | this_class_specificity = \
50 | float(sum((y_pred != this_class) & (y_true != this_class))) /\
51 | float(sum((y_true != this_class)))
52 |
53 | this_class_accuracy = (this_class_sensitivity + this_class_specificity) / 2.
54 | all_class_accuracies.append(this_class_accuracy)
55 |
56 | return np.mean(all_class_accuracies)
57 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/AdaBoostClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.ensemble import AdaBoostClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | # inputs
13 | dataset = sys.argv[1]
14 | save_file = sys.argv[2]
15 | num_param_combinations = int(sys.argv[3])
16 | random_seed = int(sys.argv[4])
17 | preps = sys.argv[5]
18 | label = sys.argv[6]
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | label = sys.argv[6]
26 | pipeline_components.append((p, preprocessor_dict[p]))
27 | # if pipeline_components[-1] is SelectFromModel:
28 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
29 | # elif pipeline_components[-1] is RFE:
30 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
31 |
32 |
33 | pipeline_components.append(('AdaBoostClassifier',AdaBoostClassifier()))
34 |
35 | # parameters for method
36 | learning_rate_values = np.random.uniform(low=1e-10, high=5., size=num_param_combinations)
37 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
38 |
39 | pipeline_parameters['AdaBoostClassifier'] = {'learning_rate': learning_rate_values, 'n_estimators': n_estimators_values, 'random_state': 324089}
40 | ]
41 |
42 |
43 | #evaluate
44 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label, label)
45 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/BernoulliNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.naive_bayes import BernoulliNB
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 | label = sys.argv[6]
19 |
20 | np.random.seed(random_seed)
21 |
22 | # construct pipeline
23 | pipeline_components=[]
24 | pipeline_parameters={}
25 | for p in preps.split(','):
26 | pipeline_components.append((p, preprocessor_dict[p]))
27 | # if pipeline_components[-1] is SelectFromModel:
28 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
29 | # elif pipeline_components[-1] is RFE:
30 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
31 |
32 |
33 | pipeline_components.append('BernoulliNB', BernoulliNB ())
34 |
35 |
36 | alpha_values = np.random.uniform(low=0., high=50., size=num_param_combinations)
37 | fit_prior_values = np.random.choice([True, False], size=num_param_combinations)
38 | binarize_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
39 |
40 | pipeline_parameters[BernoulliNB] = {'alpha': alpha_values, 'fit_prior': fit_prior_values, 'binarize': binarize_values}
41 |
42 |
43 |
44 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label, label)
45 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/DecisionTreeClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.tree import DecisionTreeClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 | label = sys.argv[6]
19 |
20 | np.random.seed(random_seed)
21 |
22 | # construct pipeline
23 | pipeline_components=[]
24 | pipeline_parameters={}
25 | for p in preps.split(','):
26 | pipeline_components.append((p, preprocessor_dict[p]))
27 | # if pipeline_components[-1] is SelectFromModel:
28 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
29 | # elif pipeline_components[-1] is RFE:
30 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
31 |
32 |
33 | pipeline_components.append('DecisionTreeClassifier', DecisionTreeClassifier())
34 |
35 |
36 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
37 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
38 | criterion_values = np.random.choice(['gini', 'entropy'], size=num_param_combinations)
39 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
40 |
41 | pipeline_parameters[DecisionTreeClassifier] = \
42 | {'min_impurity_decrease': min_impurity_decrease_values, 'max_features': max_features_values, 'criterion': criterion_values, 'max_depth': max_depth_values, 'random_state': 324089}
43 |
44 |
45 |
46 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label, label)
47 |
48 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/ExtraTreesClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 |
7 | from sklearn.ensemble import ExtraTreesClassifier
8 | from evaluate_model import evaluate_model
9 | from preprocessors import preprocessor_dict
10 |
11 | dataset = sys.argv[1]
12 | save_file = sys.argv[2]
13 | num_param_combinations = int(sys.argv[3])
14 | random_seed = int(sys.argv[4])
15 | preps = sys.argv[5]
16 | label = sys.argv[6]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('ExtraTreesClassifier', ExtraTreesClassifier ())
33 |
34 |
35 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
36 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
37 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
38 | criterion_values = np.random.choice(['gini', 'entropy'], size=num_param_combinations)
39 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
40 |
41 | pipeline_parameters['ExtraTreesClassifier'] = \
42 | {'n_estimators': n_estimators_values, 'min_impurity_decrease': min_impurity_decrease_values, 'max_features': max_features_values, 'criterion': criterion_values, 'max_depth': max_depth_values, 'random_state': 324089}
43 |
44 |
45 |
46 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label, label)
47 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/GaussianNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.naive_bayes import GaussianNB
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('GaussianNB', GaussianNB ())
33 |
34 | pipeline_parameters['GaussianNB'] = {}
35 |
36 |
37 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
38 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/GradientBoostingClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.ensemble import GradientBoostingClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('GradientBoostingClassifier', GradientBoostingClassifier())
33 |
34 |
35 | n_estimators_values = np.random.choice(list(range(50, 1001, 50)), size=num_param_combinations)
36 | min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations)
37 | max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations)
38 | learning_rate_values = np.random.uniform(low=1e-10, high=5., size=num_param_combinations)
39 | loss_values = np.random.choice(['deviance', 'exponential'], size=num_param_combinations)
40 | max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations)
41 |
42 | pipeline_parameters['GradientBoostingClassifier'] = \
43 | {'n_estimators': n_estimators_values, 'min_impurity_decrease': min_impurity_decrease_values, 'max_features': max_features_values, 'learning_rate': learning_rate_values, 'loss': loss_values, 'max_depth': max_depth_values, 'random_state': 324089}
44 |
45 |
46 |
47 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
48 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/KNeighborsClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.neighbors import KNeighborsClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('KNeighborsClassifier',KNeighborsClassifier())
33 |
34 |
35 | n_neighbors_values = np.random.randint(low=1, high=100, size=num_param_combinations)
36 | weights_values = np.random.choice(['uniform', 'distance'], size=num_param_combinations)
37 |
38 | pipeline_parameters['KNeighborsClassifier'] = \
39 | {'n_neighbors': n_neighbors_values, 'weights': weights_values}
40 |
41 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
42 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/LinearSVC.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.svm import LinearSVC
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('LinearSVC', LinearSVC ())
33 |
34 |
35 | C_values = np.random.uniform(low=1e-10, high=10., size=num_param_combinations)
36 | loss_values = np.random.choice(['hinge', 'squared_hinge'], size=num_param_combinations)
37 | penalty_values = np.random.choice(['l1', 'l2'], size=num_param_combinations)
38 | dual_values = np.random.choice([True, False], size=num_param_combinations)
39 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
40 |
41 | pipeline_parameters['LinearSVC'] = \
42 | {'C': C_values, 'penalty': penalty_values, 'fit_intercept': fit_intercept_values, 'dual': dual_values, 'random_state': 324089}
43 |
44 |
45 |
46 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
47 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/LogisticRegression.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.linear_model import LogisticRegression
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append(('LogisticRegression', LogisticRegression(random_state=random_seed)))
33 |
34 |
35 | C_values = np.random.uniform(low=1e-10, high=10., size=num_param_combinations)
36 | penalty_values = ['l1', 'l2']
37 | fit_intercept_values = [True, False]
38 | # dual_values = np.random.choice([True, False], size=num_param_combinations)
39 |
40 | pipeline_parameters['LogisticRegression'] = \
41 | {'C': C_values, 'penalty': penalty_values, 'fit_intercept': fit_intercept_values}
42 |
43 |
44 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
45 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/MLPClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.neural_network import MLPClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | # inputs
13 | dataset = sys.argv[1]
14 | save_file = sys.argv[2]
15 | num_param_combinations = int(sys.argv[3])
16 | random_seed = int(sys.argv[4])
17 | preps = sys.argv[5]
18 | label = sys.argv[6]
19 |
20 |
21 | np.random.seed(random_seed)
22 |
23 | # construct pipeline
24 | pipeline_components = []
25 | pipeline_parameters = {}
26 |
27 | for p in preps.split(','):
28 | pipeline_components.append((p, preprocessor_dict[p]))
29 | # if p is 'SelectFromModel':
30 | # pipeline_parameters[p] = [{'estimator': }]
31 | # elif p is 'RFE':
32 | # pipeline_parameters[p] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
33 |
34 | pipeline_components.append(('MLPClassifier',MLPClassifier()))
35 |
36 | # parameters for method
37 | hidden_layer_sizes = [(n_layers,n_nodes) for n_layers in np.arange(1,10) for n_nodes in np.arange(10,100,10)]
38 | print(hidden_layer_sizes)
39 | activation = ['identity','logistic','tanh','relu']
40 | solver = ['lbfgs', 'sgd', 'adam']
41 |
42 | pipeline_parameters['MLPClassifier'] = \
43 | {'hidden_layer_sizes':hidden_layer_sizes, 'activation':activation, 'solver':solver}
44 |
45 | #evaluate
46 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
47 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/MultinomialNB.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.naive_bayes import MultinomialNB
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('MultinomialNB',MultinomialNB() )
33 |
34 |
35 | alpha_values = np.random.uniform(low=0., high=10., size=num_param_combinations)
36 | fit_prior_values = np.random.choice([True, False], size=num_param_combinations)
37 |
38 | pipeline_parameters['MultinomialNB'] = \
39 | {'alpha': alpha_values, 'fit_prior': fit_prior_values}
40 |
41 |
42 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
43 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/PassiveAggressiveClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.linear_model import PassiveAggressiveClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('PassiveAggressiveClassifier', PassiveAggressiveClassifier())
33 |
34 |
35 | C_values = np.random.uniform(low=1e-10, high=10., size=num_param_combinations)
36 | loss_values = np.random.choice(['hinge', 'squared_hinge'], size=num_param_combinations)
37 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
38 |
39 | pipeline_parameters[PassiveAggressiveClassifier] = \
40 | {'C': C_values, 'loss': loss_values, 'fit_intercept': fit_intercept, 'random_state': 324089}
41 |
42 |
43 |
44 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
45 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/RandomForestClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.ensemble import RandomForestClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | # inputs
13 | dataset = sys.argv[1]
14 | save_file = sys.argv[2]
15 | num_param_combinations = int(sys.argv[3])
16 | random_seed = int(sys.argv[4])
17 | preps = sys.argv[5]
18 | label = sys.argv[6]
19 |
20 |
21 | np.random.seed(random_seed)
22 |
23 | # construct pipeline
24 | pipeline_components = []
25 | pipeline_parameters = {}
26 |
27 | for p in preps.split(','):
28 | pipeline_components.append((p, preprocessor_dict[p]))
29 | # if p is 'SelectFromModel':
30 | # pipeline_parameters[p] = [{'estimator': }]
31 | # elif p is 'RFE':
32 | # pipeline_parameters[p] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
33 |
34 | pipeline_components.append(('RandomForestClassifier',RandomForestClassifier(class_weight='balanced')))
35 |
36 | # parameters for method
37 | n_estimators= list(range(50, 1001, 50))
38 | min_impurity_decrease= np.random.exponential(scale=0.01, size=num_param_combinations)
39 | max_features= list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None]
40 | criterion= ['gini', 'entropy']
41 | max_depth= list(range(1, 21)) + [None]
42 |
43 | pipeline_parameters['RandomForestClassifier'] = \
44 | {'n_estimators': n_estimators, 'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'max_depth': max_depth, 'random_state': [324089], 'class_weight':['balanced']}
45 |
46 | #evaluate
47 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
48 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/SGDClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.linear_model import SGDClassifier
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append('SGDClassifier', SGDClassifier())
33 |
34 |
35 | loss_values = np.random.choice(['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'], size=num_param_combinations)
36 | penalty_values = np.random.choice(['l2', 'l1', 'elasticnet'], size=num_param_combinations)
37 | alpha_values = np.random.exponential(scale=0.01, size=num_param_combinations)
38 | learning_rate_values = np.random.choice(['constant', 'optimal', 'invscaling'], size=num_param_combinations)
39 | fit_intercept_values = np.random.choice([True, False], size=num_param_combinations)
40 | l1_ratio_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
41 | eta0_values = np.random.uniform(low=0., high=5., size=num_param_combinations)
42 | power_t_values = np.random.uniform(low=0., high=5., size=num_param_combinations)
43 |
44 | pipeline_parameters['SGDClassifier'] = \
45 | [{'loss': loss_values, 'penalty': penalty, 'alpha': alpha_values, 'learning_rate': learning_rate, 'fit_intercept': fit_intercept_values,
46 | 'l1_ratio': 0.15 if penalty != 'elasticnet' else l1_ratio, 'eta0': 0. if learning_rate not in ['constant', 'invscaling'] else eta0,
47 | 'power_t': 0.5 if learning_rate != 'invscaling' else power_t, 'random_state': 324089}
48 | for penalty, l1_ratio, learning_rate, eta0, power_t in zip(penalty_values, l1_ratio_values, learning_rate_values, eta0_values, power_t_values)]
49 |
50 |
51 |
52 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
53 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/SVC.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from sklearn.feature_selection import SelectFromModel, RFE
6 | from sklearn.ensemble import ExtraTreesClassifier
7 |
8 | from sklearn.svm import SVC
9 | from evaluate_model import evaluate_model
10 | from preprocessors import preprocessor_dict
11 |
12 | dataset = sys.argv[1]
13 | save_file = sys.argv[2]
14 | num_param_combinations = int(sys.argv[3])
15 | random_seed = int(sys.argv[4])
16 | preps = sys.argv[5]
17 | label = sys.argv[6]
18 |
19 | np.random.seed(random_seed)
20 |
21 | # construct pipeline
22 | pipeline_components=[]
23 | pipeline_parameters={}
24 | for p in preps.split(','):
25 | pipeline_components.append((p, preprocessor_dict[p]))
26 | # if pipeline_components[-1] is SelectFromModel:
27 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 | # elif pipeline_components[-1] is RFE:
29 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
30 |
31 |
32 | pipeline_components.append(('SVC', SVC(random_state=random_seed)))
33 |
34 |
35 | C_values = np.random.uniform(low=1e-10, high=500., size=num_param_combinations)
36 | gamma_values = np.random.choice(list(np.arange(0.05, 1.01, 0.05)) + ['auto'], size=num_param_combinations)
37 | kernel_values = ['poly', 'rbf', 'sigmoid']
38 | degree_values = [2, 3]
39 | coef0_values = np.random.uniform(low=0., high=10., size=num_param_combinations)
40 |
41 | pipeline_parameters['SVC'] = \
42 | {'C': C_values, 'gamma': [float(gamma) if gamma != 'auto' else gamma for gamma in gamma_values], 'kernel': kernel_values,
43 | 'degree': degree_values, 'coef0': coef0_values}
44 |
45 |
46 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
47 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/XGBClassifier.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pandas as pd
3 | import numpy as np
4 |
5 | from xgboost import XGBClassifier # Assumes XGBoost v0.6
6 | from evaluate_model import evaluate_model
7 | from preprocessors import preprocessor_dict
8 | from read_file import read_file
9 |
10 | dataset = sys.argv[1]
11 | save_file = sys.argv[2]
12 | num_param_combinations = int(sys.argv[3])
13 | random_seed = int(sys.argv[4])
14 | preps = sys.argv[5]
15 | label = sys.argv[6]
16 |
17 | np.random.seed(random_seed)
18 |
19 | # construct pipeline
20 | pipeline_components=[]
21 | pipeline_parameters={}
22 | for p in preps.split(','):
23 | pipeline_components.append((p, preprocessor_dict[p]))
24 | # if pipeline_components[-1] is SelectFromModel:
25 | # pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
26 | # elif pipeline_components[-1] is RFE:
27 | # pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}]
28 |
29 | # need to load data to set balanced weights..
30 | features, labels, _ = read_file(dataset)
31 | if len(np.unique(labels))==2:
32 | frac = float(sum(labels==0))/float(sum(labels==1))
33 | else:
34 | frac = 1
35 |
36 | pipeline_components.append(('XGBClassifier', XGBClassifier(random_seed=random_seed, n_thread=1,scale_pos_weight=frac)))
37 |
38 |
39 | n_estimators_values = list(range(50, 1001, 50))
40 | learning_rate_values = np.random.uniform(low=1e-10, high=5., size=num_param_combinations)
41 | gamma_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
42 | max_depth_values = list(range(1, 21))
43 | subsample_values = np.random.uniform(low=0., high=1., size=num_param_combinations)
44 |
45 | pipeline_parameters['XGBClassifier'] = \
46 | {'n_estimators': n_estimators_values, 'learning_rate': learning_rate_values, 'gamma': gamma_values, 'max_depth': max_depth_values, 'subsample': subsample_values}
47 |
48 |
49 |
50 | evaluate_model(dataset, save_file, random_seed, pipeline_components, pipeline_parameters, num_param_combinations, label)
51 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/evaluate_model.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import itertools
3 | import pandas as pd
4 | from sklearn.model_selection import RandomizedSearchCV, StratifiedKFold, cross_val_predict
5 | from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
6 | from sklearn.pipeline import Pipeline
7 | from metrics import balanced_accuracy_score
8 | import warnings
9 |
10 | from tempfile import mkdtemp
11 | from shutil import rmtree
12 | from sklearn.externals.joblib import Memory
13 | from read_file import read_file
14 | from utils import feature_importance , roc
15 | import pdb
16 |
17 | def evaluate_model(dataset, save_file, random_state, pipeline_components, pipeline_parameters, n_combos, label):
18 |
19 | features, labels, feature_names = read_file(dataset, label)
20 | # pipelines = [dict(zip(pipeline_parameters.keys(), list(parameter_combination)))
21 | # for parameter_combination in itertools.product(*pipeline_parameters.values())]
22 |
23 | # Create a temporary folder to store the transformers of the pipeline
24 | cachedir = mkdtemp()
25 | memory = Memory(cachedir=cachedir, verbose=0)
26 |
27 | # print ( pipeline_components)
28 | # print(pipeline_parameters)
29 | with warnings.catch_warnings():
30 | # Squash warning messages. Turn this off when debugging!
31 | warnings.simplefilter('ignore')
32 | cv = StratifiedKFold(n_splits=10, shuffle=True,random_state=random_state)
33 | hyperparameters = {}
34 | for k,v in pipeline_parameters.items():
35 | for param,pvals in v.items():
36 | hyperparameters.update({k+'__'+param:pvals})
37 | pipeline = Pipeline(pipeline_components, memory=memory)
38 |
39 | # run Randomized Search CV to tune the hyperparameter settings
40 | est = RandomizedSearchCV(estimator=pipeline, param_distributions = hyperparameters, n_iter = n_combos,
41 | cv=cv, random_state=random_state, refit=True,
42 | error_score=0.0)
43 | est.fit(features, labels)
44 | best_est = est.best_estimator_
45 | # generate cross-validated predictions for each data point using the best estimator
46 | cv_predictions = cross_val_predict(estimator=best_est, X=features, y=labels, cv=cv)
47 |
48 | # get cv probabilities
49 | skip = False
50 | if getattr(best_est, "predict_proba", None):
51 | method = "predict_proba"
52 | elif getattr(best_est, "decision_function", None):
53 | method = "decision_function"
54 | else:
55 | skip = True
56 |
57 | if not skip:
58 | cv_probabilities = cross_val_predict(estimator=best_est, X=features, y=labels, method=method, cv=cv)
59 | if method == "predict_proba":
60 | cv_probabilities = cv_probabilities[:,1]
61 |
62 | accuracy = accuracy_score(labels, cv_predictions)
63 | macro_f1 = f1_score(labels, cv_predictions, average='macro')
64 | balanced_accuracy = balanced_accuracy_score(labels, cv_predictions)
65 | roc_auc = roc_auc_score(labels,cv_probabilities)
66 |
67 | preprocessor_classes = [p[0] for p in pipeline_components[:-1]]
68 |
69 | preprocessor_param_string = 'default'
70 | for preprocessor_class in preprocessor_classes:
71 | if preprocessor_class in pipeline_parameters.keys():
72 | preprocessor_param_string = ','.join(['{}={}'.format(parameter, '|'.join([x.strip() for x in str(value).split(',')]))
73 | for parameter, value in pipeline_parameters[preprocessor_class].items()])
74 |
75 | classifier_class = pipeline_components[-1][0]
76 | param_string = ','.join(['{}={}'.format(p, v) for p,v in est.best_params_.items()])
77 | # for parameter, value in pipeline_parameters[classifier_class].items()])
78 |
79 | out_text = '\t'.join([dataset.split('/')[-1].split('.')[0],
80 | ','.join(preprocessor_classes),
81 | preprocessor_param_string,
82 | classifier_class,
83 | param_string,
84 | str(random_state),
85 | str(accuracy),
86 | str(macro_f1),
87 | str(balanced_accuracy),
88 | str(roc_auc)])
89 | print(out_text)
90 | with open(save_file, 'a') as out:
91 | out.write(out_text+'\n')
92 | sys.stdout.flush()
93 |
94 | # write feature importances
95 | est_name = classifier_class
96 | feature_importance(save_file, best_est, est_name, feature_names, features, labels, random_state, ','.join(preprocessor_classes), preprocessor_param_string,classifier_class, param_string)
97 | # write roc curves
98 | if not skip:
99 | roc(save_file, best_est, labels, cv_probabilities, random_state, ','.join(preprocessor_classes), preprocessor_param_string,classifier_class, param_string)
100 | # Delete the temporary cache before exiting
101 | rmtree(cachedir)
102 |
--------------------------------------------------------------------------------
/ml/random_search_preprocessing/tpot_metrics.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | Copyright 2016 Randal S. Olson
5 |
6 | This file is part of the TPOT library.
7 |
8 | The TPOT library is free software: you can redistribute it and/or
9 | modify it under the terms of the GNU General Public License as published by the
10 | Free Software Foundation, either version 3 of the License, or (at your option)
11 | any later version.
12 |
13 | The TPOT library is distributed in the hope that it will be useful, but
14 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 | details. You should have received a copy of the GNU General Public License along
17 | with the TPOT library. If not, see http://www.gnu.org/licenses/.
18 |
19 | """
20 |
21 | import numpy as np
22 |
23 | def balanced_accuracy_score(y_true, y_pred):
24 | """Default scoring function: balanced accuracy
25 |
26 | Balanced accuracy computes each class' accuracy on a per-class basis using a
27 | one-vs-rest encoding, then computes an unweighted average of the class accuracies.
28 |
29 | Parameters
30 | ----------
31 | y_true: numpy.ndarray {n_samples}
32 | True class labels
33 | y_pred: numpy.ndarray {n_samples}
34 | Predicted class labels by the estimator
35 |
36 | Returns
37 | -------
38 | fitness: float
39 | Returns a float value indicating the `individual`'s balanced accuracy
40 | 0.5 is as good as chance, and 1.0 is perfect predictive accuracy
41 | """
42 | all_classes = list(set(np.append(y_true, y_pred)))
43 | all_class_accuracies = []
44 | for this_class in all_classes:
45 | this_class_sensitivity = \
46 | float(sum((y_pred == this_class) & (y_true == this_class))) /\
47 | float(sum((y_true == this_class)))
48 |
49 | this_class_specificity = \
50 | float(sum((y_pred != this_class) & (y_true != this_class))) /\
51 | float(sum((y_true != this_class)))
52 |
53 | this_class_accuracy = (this_class_sensitivity + this_class_specificity) / 2.
54 | all_class_accuracies.append(this_class_accuracy)
55 |
56 | return np.mean(all_class_accuracies)
57 |
--------------------------------------------------------------------------------
/preprocessors.py:
--------------------------------------------------------------------------------
1 | from sklearn.preprocessing import Binarizer, MaxAbsScaler, MinMaxScaler
2 | from sklearn.preprocessing import Normalizer, PolynomialFeatures, RobustScaler, StandardScaler
3 | from sklearn.decomposition import FastICA, PCA
4 | from sklearn.kernel_approximation import RBFSampler, Nystroem
5 | from sklearn.cluster import FeatureAgglomeration
6 | from sklearn.feature_selection import SelectFwe, SelectPercentile, VarianceThreshold
7 | from sklearn.feature_selection import SelectFromModel, RFE
8 | from sklearn.ensemble import ExtraTreesClassifier
9 |
10 | preprocessor_dict = {
11 | 'Binarizer':Binarizer(),
12 | 'MaxAbsScaler':MaxAbsScaler(),
13 | 'MinMaxScaler':MinMaxScaler(),
14 | 'Normalizer':Normalizer(),
15 | 'PolynomialFeatures':PolynomialFeatures(),
16 | 'RobustScaler':RobustScaler(),
17 | 'StandardScaler':StandardScaler(),
18 | 'FastICA':FastICA(),
19 | 'PCA':PCA(),
20 | 'RBFSampler':RBFSampler(),
21 | 'Nystroem':Nystroem(),
22 | 'FeatureAgglomeration':FeatureAgglomeration(),
23 | 'SelectFwe':SelectFwe(),
24 | 'SelectPercentile':SelectPercentile(),
25 | 'VarianceThreshold':VarianceThreshold(),
26 | 'SelectFromModel':SelectFromModel(estimator=ExtraTreesClassifier(n_estimators=100, random_state=324089)),
27 | 'RFE':RFE(estimator=ExtraTreesClassifier(n_estimators=100, random_state=324089)),
28 | }
29 |
--------------------------------------------------------------------------------
/read_file.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import pdb
4 |
5 | def read_file(filename, label='class', sep=None):
6 |
7 | if filename.split('.')[-1] == 'gz':
8 | compression = 'gzip'
9 | else:
10 | compression = None
11 |
12 | if sep:
13 | input_data = pd.read_csv(filename, sep=sep, compression=compression)
14 | else:
15 | input_data = pd.read_csv(filename, sep=sep, compression=compression,
16 | engine='python')
17 |
18 | input_data.rename(columns={'Label': 'class','Class':'class', 'target':'class'},
19 | inplace=True)
20 |
21 | feature_names = np.array([x for x in input_data.columns.values if x != label])
22 |
23 | X = input_data.drop(label, axis=1).values.astype(float)
24 | y = input_data[label].values
25 |
26 | assert(X.shape[1] == feature_names.shape[0])
27 |
28 | return X, y, feature_names
29 |
--------------------------------------------------------------------------------
/submit_jobs.py:
--------------------------------------------------------------------------------
1 | from glob import glob
2 | import os
3 | import sys
4 | import argparse
5 |
6 | if __name__ == '__main__':
7 | parser = argparse.ArgumentParser(description="Submit long jobs.",
8 | add_help=False)
9 | parser.add_argument('DATA_PATH',type=str)
10 | parser.add_argument('-ml',action='store',dest='mls', type=str,
11 | default='LogisticRegression,RandomForestClassifier,GradientBoostingClassifier,'
12 | 'DecisionTreeClassifier,SVC')
13 | parser.add_argument('--long',action='store_true',dest='LONG', default=False)
14 | parser.add_argument('-n_trials',action='store',dest='TRIALS', default=1)
15 | parser.add_argument('-results',action='store',dest='RDIR',default='../results/',type=str,
16 | help='Results directory')
17 | parser.add_argument('--lsf', action='store_true', dest='LSF', default=False,
18 | help='Run on an LSF HPC (using bsub commands)')
19 | parser.add_argument('-m',action='store',dest='M',default=4096,type=int,
20 | help='LSF memory request and limit (MB)')
21 | args = parser.parse_args()
22 |
23 | datapath = args.DATA_PATH
24 |
25 | if args.LONG:
26 | q = 'moore_long'
27 | else:
28 | q = 'moore_normal'
29 |
30 | lpc_options = '--lsf -q {Q} -m {M} -n_jobs 1'.format(Q=q,M=args.M)
31 |
32 | lsf = '--lsf' if args.LSF else ''
33 |
34 | mls = ','.join([ml for ml in args.mls.split(',')])
35 | for f in glob(datapath + "/*.csv"):
36 | jobline = ('python analyze.py {DATA} '
37 | '-ml {ML} '
38 | '-results {RDIR} -n_trials {NT} '
39 | '-search grid {LPC} {LSF}').format(DATA=f,
40 | LPC=lpc_options,
41 | ML=mls,
42 | RDIR=args.RDIR,
43 | NT=args.TRIALS,
44 | LSF=lsf)
45 | print(jobline)
46 | os.system(jobline)
47 |
48 |
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from read_file import read_file
3 | from eli5.sklearn import PermutationImportance
4 | import matplotlib.pyplot as plt
5 | from sklearn.metrics import roc_curve, auc
6 | import pdb
7 |
8 | def feature_importance(save_file, model, model_name, feature_names, training_features, training_classes, random_state,
9 | preps, prep_params, clf_name, clf_params):
10 | """ prints feature importance information for a trained estimator (model)"""
11 | coefs = compute_imp_score(model, model_name, training_features, training_classes, random_state)
12 |
13 | if len(coefs) < len(feature_names): # there must be a feature selection strategy
14 | name = [k for k,v in model.named_steps.items() if getattr(v,'get_support',None)][0]
15 | print('name:',name)
16 | fn = np.asarray(feature_names)
17 | sel_feature_names = fn[model.named_steps[name].get_support()]
18 | j = 0
19 | new_coefs=np.zeros(fn.shape)
20 | for i,f in enumerate(feature_names):
21 | if f in sel_feature_names:
22 | new_coefs[i] = coefs[j]
23 | j = j+1
24 | else:
25 | new_coefs[i] = 0
26 | coefs = new_coefs
27 | assert(len(coefs)==len(feature_names))
28 | # plot_imp_score(save_file, coefs, feature_names, random_state)
29 |
30 | out_text=''
31 | # algorithm seed feature score
32 | for i,c in enumerate(coefs):
33 | out_text += '\t'.join([preps,
34 | prep_params,
35 | clf_name,
36 | clf_params,
37 | str(random_state),
38 | feature_names[i],
39 | str(c)])+'\n'
40 |
41 | with open(save_file.split('.')[0] + '.imp_score','a') as out:
42 | out.write(out_text)
43 |
44 | def compute_imp_score(model, model_name, training_features, training_classes, random_state):
45 | clf = model.named_steps[model_name]
46 | # pdb.set_trace()
47 | if hasattr(clf, 'coef_'):
48 | coefs = np.abs(clf.coef_.flatten())
49 |
50 | else:
51 | coefs = getattr(clf, 'feature_importances_', None)
52 | if coefs is None:
53 | perm = PermutationImportance(
54 | estimator=model,
55 | n_iter=5,
56 | random_state=random_state,
57 | refit=False
58 | )
59 | perm.fit(training_features, training_classes)
60 | coefs = perm.feature_importances_
61 |
62 |
63 | #return (coefs-np.min(coefs))/(np.max(coefs)-np.min(coefs))
64 | return coefs/np.sum(coefs)
65 |
66 | # def plot_imp_score(save_file, coefs, feature_names, seed):
67 | # # plot bar charts for top 10 importanct features
68 | # num_bar = min(10, len(coefs))
69 | # indices = np.argsort(coefs)[-num_bar:]
70 | # h=plt.figure()
71 | # plt.title("Feature importances")
72 | # plt.barh(range(num_bar), coefs[indices], color="r", align="center")
73 | # plt.yticks(range(num_bar), feature_names[indices])
74 | # plt.ylim([-1, num_bar])
75 | # h.tight_layout()
76 | # plt.savefig(save_file.split('.')[0] + '_imp_score_' + str(seed) + '.pdf')
77 |
78 | ######################################################################################### ROC Curve
79 |
80 | def roc(save_file, model, y_true, probabilities, random_state, preps, prep_params, clf_name, clf_params):
81 | """prints receiver operator chacteristic curve data"""
82 |
83 | # pdb.set_trace()
84 | fpr,tpr,_ = roc_curve(y_true, probabilities)
85 |
86 | AUC = auc(fpr,tpr)
87 | model_name = save_file.split('/')[-1][:-4]
88 | # print results
89 | out_text=''
90 | for f,t in zip(fpr,tpr):
91 | out_text += '\t'.join([preps,
92 | prep_params,
93 | clf_name,
94 | clf_params,
95 | str(random_state),
96 | str(f),
97 | str(t),
98 | str(AUC)])+'\n'
99 |
100 | with open(save_file.split('.')[0] + '.roc','a') as out:
101 | out.write(out_text)
102 |
103 |
104 |
--------------------------------------------------------------------------------