├── .ipynb_checkpoints └── main-v2-checkpoint.ipynb ├── LICENSE ├── README.md ├── __init__.py ├── bleu.py ├── data ├── src-train.txt ├── src-val.txt ├── tgt-train.txt └── tgt-val.txt ├── images ├── learning_rate.png ├── multi_head_attention.png ├── scaled_attention.png └── transformer.png ├── main-v2.ipynb ├── modules_v2.py ├── old_version ├── __init__.py ├── data_loader.py ├── eval.py ├── make_dic.py ├── modules.py ├── params.py ├── requirements.txt └── train.py ├── params.py ├── requirements.txt ├── tf1.12.0-eager ├── __init__.py ├── bleu.py ├── main.ipynb ├── modules.py ├── params.py ├── requirements.txt └── utils.py └── utils_v2.py /.ipynb_checkpoints/main-v2-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "from __future__ import absolute_import, division, print_function, unicode_literals\n", 10 | "\n", 11 | "import tensorflow as tf\n", 12 | "\n", 13 | "import time\n", 14 | "import datetime\n", 15 | "import os\n", 16 | "from tqdm import tqdm\n", 17 | "import numpy as np\n", 18 | "import matplotlib.pyplot as plt\n", 19 | "plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签\n", 20 | "plt.rcParams['axes.unicode_minus']=False\n", 21 | "\n", 22 | "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0, 1, 2, 3\" # 添加可用的gpu\n", 23 | "physical_devices = tf.config.experimental.list_physical_devices('GPU')\n", 24 | "for device in physical_devices:\n", 25 | " tf.config.experimental.set_memory_growth(device, True)\n", 26 | "\n", 27 | "from params import Params as pm\n", 28 | "from utils_v2 import en2idx, idx2en, de2idx, idx2de, dump2record, build_dataset, LRSchedule, masking, create_masks, plot_attention_weights\n", 29 | "from bleu import bleu_metrics" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": null, 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "tf.__version__" 39 | ] 40 | }, 41 | { 42 | "cell_type": "markdown", 43 | "metadata": {}, 44 | "source": [ 45 | "---" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": null, 51 | "metadata": {}, 52 | "outputs": [], 53 | "source": [ 54 | "strategy = tf.distribute.MirroredStrategy()\n", 55 | "\n", 56 | "print('Number of device: {}'.format(strategy.num_replicas_in_sync))" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": null, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "def get_data(corpus_file):\n", 66 | " return open(corpus_file, 'r', encoding='utf-8').read().splitlines()" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": null, 72 | "metadata": {}, 73 | "outputs": [], 74 | "source": [ 75 | "src_train, src_val = get_data(pm.src_train), get_data(pm.src_test)\n", 76 | "tgt_train, tgt_val = get_data(pm.tgt_train), get_data(pm.tgt_test)" 77 | ] 78 | }, 79 | { 80 | "cell_type": "code", 81 | "execution_count": null, 82 | "metadata": {}, 83 | "outputs": [], 84 | "source": [ 85 | "dump2record(pm.train_record, src_train, tgt_train)\n", 86 | "dump2record(pm.test_record, src_val, tgt_val)" 87 | ] 88 | }, 89 | { 90 | "cell_type": "markdown", 91 | "metadata": {}, 92 | "source": [ 93 | "---" 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "execution_count": null, 99 | "metadata": {}, 100 | "outputs": [], 101 | "source": [ 102 | "from modules_v2 import positional_encoding, scaled_dot_product_attention, multihead_attention, pointwise_feedforward, EncoderBlock, DecoderBlock, Encoder, Decoder, Transformer" 103 | ] 104 | }, 105 | { 106 | "cell_type": "markdown", 107 | "metadata": {}, 108 | "source": [ 109 | "# Positional encoding\n", 110 | "$$\\Large{PE_{(pos, 2i)} = sin(pos / 10000^{2i / d_{model}})} $$\n", 111 | "$$\\Large{PE_{(pos, 2i+1)} = cos(pos / 10000^{2i / d_{model}})} $$" 112 | ] 113 | }, 114 | { 115 | "cell_type": "code", 116 | "execution_count": null, 117 | "metadata": {}, 118 | "outputs": [], 119 | "source": [ 120 | "pos_encoding = positional_encoding(50, 512, True)\n", 121 | "print(pos_encoding.shape)" 122 | ] 123 | }, 124 | { 125 | "cell_type": "markdown", 126 | "metadata": {}, 127 | "source": [ 128 | "# Masking" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": null, 134 | "metadata": {}, 135 | "outputs": [], 136 | "source": [ 137 | "x = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])\n", 138 | "masking(x, task='padding')" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": null, 144 | "metadata": {}, 145 | "outputs": [], 146 | "source": [ 147 | "masking(x, task='look_ahead')" 148 | ] 149 | }, 150 | { 151 | "cell_type": "markdown", 152 | "metadata": {}, 153 | "source": [ 154 | "# Scaled dot product attention" 155 | ] 156 | }, 157 | { 158 | "cell_type": "markdown", 159 | "metadata": {}, 160 | "source": [ 161 | "![](https://www.tensorflow.org/images/tutorials/transformer/scaled_attention.png)\n", 162 | "$$\\Large{Attention(Q, K, V) = softmax_k(\\frac{QK^T}{\\sqrt{d_k}}) V} $$" 163 | ] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": null, 168 | "metadata": {}, 169 | "outputs": [], 170 | "source": [ 171 | "def print_out(q, k, v):\n", 172 | " temp_out, temp_attn = scaled_dot_product_attention(q, k, v, None)\n", 173 | " print ('Attention weights are:')\n", 174 | " print (temp_attn)\n", 175 | " print ('Output is:')\n", 176 | " print (temp_out)" 177 | ] 178 | }, 179 | { 180 | "cell_type": "code", 181 | "execution_count": null, 182 | "metadata": {}, 183 | "outputs": [], 184 | "source": [ 185 | "np.set_printoptions(suppress=True)\n", 186 | "\n", 187 | "temp_k = tf.constant([[10,0,0],\n", 188 | " [0,10,0],\n", 189 | " [0,0,10],\n", 190 | " [0,0,10]], dtype=tf.float32)\n", 191 | "\n", 192 | "temp_v = tf.constant([[ 1,0],\n", 193 | " [ 10,0],\n", 194 | " [ 100,5],\n", 195 | " [1000,6]], dtype=tf.float32)\n", 196 | "\n", 197 | "temp_q = tf.constant([[0, 10, 0]], dtype=tf.float32)\n", 198 | "print_out(temp_q, temp_k, temp_v)" 199 | ] 200 | }, 201 | { 202 | "cell_type": "code", 203 | "execution_count": null, 204 | "metadata": {}, 205 | "outputs": [], 206 | "source": [ 207 | "temp_q = tf.constant([[0, 0, 10]], dtype=tf.float32)\n", 208 | "print_out(temp_q, temp_k, temp_v)" 209 | ] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "execution_count": null, 214 | "metadata": {}, 215 | "outputs": [], 216 | "source": [ 217 | "temp_q = tf.constant([[0, 0, 10], [0, 10, 0], [10, 10, 0]], dtype=tf.float32)\n", 218 | "print_out(temp_q, temp_k, temp_v)" 219 | ] 220 | }, 221 | { 222 | "cell_type": "markdown", 223 | "metadata": {}, 224 | "source": [ 225 | "# Multi-head attention" 226 | ] 227 | }, 228 | { 229 | "cell_type": "markdown", 230 | "metadata": {}, 231 | "source": [ 232 | "![](https://www.tensorflow.org/images/tutorials/transformer/multi_head_attention.png)" 233 | ] 234 | }, 235 | { 236 | "cell_type": "markdown", 237 | "metadata": {}, 238 | "source": [ 239 | "- **Tips: Dimention-level split**" 240 | ] 241 | }, 242 | { 243 | "cell_type": "code", 244 | "execution_count": null, 245 | "metadata": {}, 246 | "outputs": [], 247 | "source": [ 248 | "temp_mha = multihead_attention(d_model=512, num_heads=8)\n", 249 | "y = tf.random.uniform((1, 50, 512))\n", 250 | "out, attn = temp_mha(y, k=y, q=y, mask=None)\n", 251 | "out.shape, attn.shape" 252 | ] 253 | }, 254 | { 255 | "cell_type": "markdown", 256 | "metadata": {}, 257 | "source": [ 258 | "# Pointwise feed forward network" 259 | ] 260 | }, 261 | { 262 | "cell_type": "code", 263 | "execution_count": null, 264 | "metadata": {}, 265 | "outputs": [], 266 | "source": [ 267 | "sample_ffn = pointwise_feedforward(512, 2048)\n", 268 | "sample_ffn(tf.random.uniform((64, 50, 512))).shape" 269 | ] 270 | }, 271 | { 272 | "cell_type": "markdown", 273 | "metadata": {}, 274 | "source": [ 275 | "# Whole model (Encoder & Decoder)\n", 276 | "![](https://www.tensorflow.org/images/tutorials/transformer/transformer.png)" 277 | ] 278 | }, 279 | { 280 | "cell_type": "markdown", 281 | "metadata": {}, 282 | "source": [ 283 | "## Encoder" 284 | ] 285 | }, 286 | { 287 | "cell_type": "code", 288 | "execution_count": null, 289 | "metadata": {}, 290 | "outputs": [], 291 | "source": [ 292 | "sample_encoder_layer = EncoderBlock(512, 8, 2048)\n", 293 | "sample_encoder_layer_output, _ = sample_encoder_layer(tf.random.uniform((64, 43, 512)), False, None)\n", 294 | "sample_encoder_layer_output.shape" 295 | ] 296 | }, 297 | { 298 | "cell_type": "markdown", 299 | "metadata": {}, 300 | "source": [ 301 | "## Decoder" 302 | ] 303 | }, 304 | { 305 | "cell_type": "code", 306 | "execution_count": null, 307 | "metadata": {}, 308 | "outputs": [], 309 | "source": [ 310 | "sample_decoder_layer = DecoderBlock(512, 8, 2048)\n", 311 | "\n", 312 | "sample_decoder_layer_output, _, _ = sample_decoder_layer(\n", 313 | " tf.random.uniform((64, 50, 512)), sample_encoder_layer_output, \n", 314 | " False, None, None)\n", 315 | "\n", 316 | "sample_decoder_layer_output.shape" 317 | ] 318 | }, 319 | { 320 | "cell_type": "markdown", 321 | "metadata": {}, 322 | "source": [ 323 | "## Packed Encoder & Decoder" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": null, 329 | "metadata": {}, 330 | "outputs": [], 331 | "source": [ 332 | "sample_encoder = Encoder(num_blocks=2, d_model=512, num_heads=8, dff=2048, input_vocab_size=8500, plot_pos_embedding=False)\n", 333 | "attn_dict = {}\n", 334 | "sample_encoder_output, attn_dict = sample_encoder(tf.random.uniform((64, 62)), training=False, padding_mask=None, attn_dict=attn_dict)\n", 335 | "sample_encoder_output.shape" 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "execution_count": null, 341 | "metadata": {}, 342 | "outputs": [], 343 | "source": [ 344 | "sample_decoder = Decoder(num_blocks=2, d_model=512, num_heads=8, dff=2048, target_vocab_size=8000, plot_pos_embedding=False)\n", 345 | "output, attn_dict = sample_decoder(tf.random.uniform((64, 26)), \n", 346 | " enc_output=sample_encoder_output, \n", 347 | " training=False, look_ahead_mask=None, \n", 348 | " padding_mask=None, attn_dict=attn_dict)\n", 349 | "output.shape, attn_dict['decoder_layer2_block'].shape" 350 | ] 351 | }, 352 | { 353 | "cell_type": "markdown", 354 | "metadata": {}, 355 | "source": [ 356 | "# Transformer" 357 | ] 358 | }, 359 | { 360 | "cell_type": "code", 361 | "execution_count": null, 362 | "metadata": {}, 363 | "outputs": [], 364 | "source": [ 365 | "sample_transformer = Transformer(num_blocks=2, d_model=512, num_heads=8, dff=2048, input_vocab_size=8500, target_vocab_size=8000, plot_pos_embedding=False)\n", 366 | "\n", 367 | "temp_input = tf.random.uniform((64, 62))\n", 368 | "temp_target = tf.random.uniform((64, 26))\n", 369 | "\n", 370 | "fn_out, _ = sample_transformer(temp_input, \n", 371 | " temp_target, \n", 372 | " training=False, \n", 373 | " enc_padding_mask=None, \n", 374 | " look_ahead_mask=None,\n", 375 | " dec_padding_mask=None)\n", 376 | "\n", 377 | "fn_out.shape" 378 | ] 379 | }, 380 | { 381 | "cell_type": "markdown", 382 | "metadata": {}, 383 | "source": [ 384 | "# Training" 385 | ] 386 | }, 387 | { 388 | "cell_type": "code", 389 | "execution_count": null, 390 | "metadata": {}, 391 | "outputs": [], 392 | "source": [ 393 | "num_layers = pm.num_block\n", 394 | "d_model = pm.d_model\n", 395 | "dff = pm.dff\n", 396 | "num_heads = pm.num_heads\n", 397 | "\n", 398 | "input_vocab_size = len(en2idx)\n", 399 | "target_vocab_size = len(de2idx)\n", 400 | "dropout_rate = pm.dropout_rate\n", 401 | "\n", 402 | "EPOCHS = pm.num_epochs" 403 | ] 404 | }, 405 | { 406 | "cell_type": "markdown", 407 | "metadata": {}, 408 | "source": [ 409 | "- Learning rate schedule\n", 410 | "$$\\Large{lrate = d_{model}^{-0.5} * min(step{\\_}num^{-0.5}, step{\\_}num * warmup{\\_}steps^{-1.5})}$$" 411 | ] 412 | }, 413 | { 414 | "cell_type": "code", 415 | "execution_count": null, 416 | "metadata": {}, 417 | "outputs": [], 418 | "source": [ 419 | "temp_learning_rate_schedule = LRSchedule(d_model)\n", 420 | "\n", 421 | "plt.figure(figsize=(12, 8))\n", 422 | "plt.plot(temp_learning_rate_schedule(tf.range(40000, dtype=tf.float32)))\n", 423 | "plt.ylabel(\"Learning Rate\")\n", 424 | "plt.xlabel(\"Train Step\")" 425 | ] 426 | }, 427 | { 428 | "cell_type": "markdown", 429 | "metadata": {}, 430 | "source": [ 431 | "---" 432 | ] 433 | }, 434 | { 435 | "cell_type": "code", 436 | "execution_count": null, 437 | "metadata": {}, 438 | "outputs": [], 439 | "source": [ 440 | "with strategy.scope():\n", 441 | " # 1、dataset\n", 442 | " ## train_dataset = build_dataset(mode='array', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='train_cache.tf-data', corpus=[src_train, tgt_train], is_training=True)\n", 443 | " ## val_dataset = build_dataset(mode='array', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='val_cache.tf-data', corpus=[src_val, tgt_val], is_training=True)\n", 444 | " \n", 445 | " train_dataset = build_dataset(mode='file', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='train_cache.tf-data', filename=pm.train_record, is_training=True)\n", 446 | " train_dist_dataset = strategy.experimental_distribute_dataset(train_dataset)\n", 447 | " \n", 448 | " # 2、loss function\n", 449 | " loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)\n", 450 | "\n", 451 | " def loss_function(real, pred):\n", 452 | " mask = tf.math.logical_not(tf.math.equal(real, 0))\n", 453 | " loss_ = loss_object(real, pred)\n", 454 | "\n", 455 | " mask = tf.cast(mask, dtype=loss_.dtype)\n", 456 | " loss_ *= mask\n", 457 | "\n", 458 | " return tf.reduce_mean(loss_), mask\n", 459 | " \n", 460 | " # 3、metrics to track loss and accuracy\n", 461 | " train_loss = tf.keras.metrics.Mean(name='train_loss')\n", 462 | " train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')\n", 463 | " \n", 464 | " # 4、model config\n", 465 | " transformer = Transformer(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pm.plot_pos_embedding, dropout_rate)\n", 466 | " \n", 467 | " learning_rate = LRSchedule(d_model)\n", 468 | " optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=pm.beta_1, beta_2=pm.beta_2, epsilon=pm.epsilon)\n", 469 | " \n", 470 | " checkpoint_path = pm.ckpt_path\n", 471 | "\n", 472 | " ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)\n", 473 | " ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)\n", 474 | "\n", 475 | " if ckpt_manager.latest_checkpoint:\n", 476 | " ckpt.restore(ckpt_manager.latest_checkpoint)\n", 477 | " print ('Latest checkpoint restored!!')\n", 478 | " \n", 479 | " current_time = datetime.datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n", 480 | " log_dir = pm.logdir + '/gradient_tape/' + current_time\n", 481 | " summary_writer = tf.summary.create_file_writer(log_dir)\n", 482 | " \n", 483 | " # 5、train step\n", 484 | " def train_step(inp, tar):\n", 485 | " tar_inp = tar[:, :-1]\n", 486 | " tar_real = tar[:, 1:]\n", 487 | "\n", 488 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)\n", 489 | "\n", 490 | " with tf.GradientTape() as tape:\n", 491 | " predictions, _ = transformer(inp, \n", 492 | " tar_inp, \n", 493 | " True, \n", 494 | " enc_padding_mask, \n", 495 | " combined_mask, \n", 496 | " dec_padding_mask)\n", 497 | "\n", 498 | " loss, istarget = loss_function(tar_real, predictions)\n", 499 | "\n", 500 | " gradients = tape.gradient(loss, transformer.trainable_variables) \n", 501 | " optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))\n", 502 | "\n", 503 | " train_accuracy(tar_real, predictions, sample_weight=istarget)\n", 504 | " \n", 505 | " return loss\n", 506 | " \n", 507 | " @tf.function\n", 508 | " def distributed_train_step(inp, tar):\n", 509 | " per_replica_losses = strategy.experimental_run_v2(train_step, \n", 510 | " args=(inp, tar, ))\n", 511 | " return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)\n", 512 | " \n", 513 | " # 6、for loop\n", 514 | " total_steps = 0\n", 515 | " for epoch in range(EPOCHS):\n", 516 | " start = time.time()\n", 517 | "\n", 518 | " train_loss.reset_states()\n", 519 | " train_accuracy.reset_states()\n", 520 | " \n", 521 | " total_loss = 0.0\n", 522 | " num_batches = 0\n", 523 | " for (batch, (inp, tar)) in enumerate(train_dataset):\n", 524 | " total_loss += distributed_train_step(inp, tar)\n", 525 | " num_batches += 1\n", 526 | " total_steps += 1\n", 527 | "\n", 528 | " if batch % 500 == 0:\n", 529 | " with summary_writer.as_default():\n", 530 | " tf.summary.scalar('loss', total_loss / num_batches, step=total_steps)\n", 531 | " tf.summary.scalar('accuracy', train_accuracy.result() * 100, step=total_steps)\n", 532 | " \n", 533 | " print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(\n", 534 | " epoch + 1, batch, total_loss / num_batches, train_accuracy.result() * 100))\n", 535 | " \n", 536 | " train_loss(total_loss / num_batches)\n", 537 | "\n", 538 | " if (epoch + 1) % 5 == 0:\n", 539 | " ckpt_save_path = ckpt_manager.save()\n", 540 | " print ('Saving checkpoint for epoch {} at {}'.format(epoch + 1, ckpt_save_path))\n", 541 | "\n", 542 | " print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, train_loss.result(), train_accuracy.result() * 100))\n", 543 | " print ('Time taken for 1 epoch: {} secs\\n'.format(time.time() - start))" 544 | ] 545 | }, 546 | { 547 | "cell_type": "markdown", 548 | "metadata": {}, 549 | "source": [ 550 | "---" 551 | ] 552 | }, 553 | { 554 | "cell_type": "code", 555 | "execution_count": null, 556 | "metadata": {}, 557 | "outputs": [], 558 | "source": [ 559 | "val_dataset = build_dataset(mode='file', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='val_cache.tf-data', filename=pm.test_record, is_training=True)" 560 | ] 561 | }, 562 | { 563 | "cell_type": "code", 564 | "execution_count": null, 565 | "metadata": {}, 566 | "outputs": [], 567 | "source": [ 568 | "def evaluate(inp_sentence):\n", 569 | " encoder_input = inp_sentence\n", 570 | " \n", 571 | " decoder_input = [2]\n", 572 | " output = tf.expand_dims(decoder_input, 0)\n", 573 | " output = tf.tile(output, [tf.shape(encoder_input)[0], 1])\n", 574 | "\n", 575 | " for i in range(pm.maxlen):\n", 576 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)\n", 577 | "\n", 578 | " predictions, attention_weights = transformer(encoder_input, \n", 579 | " output,\n", 580 | " False,\n", 581 | " enc_padding_mask,\n", 582 | " combined_mask,\n", 583 | " dec_padding_mask)\n", 584 | "\n", 585 | " predictions = predictions[: ,-1:, :]\n", 586 | " predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)\n", 587 | "\n", 588 | " output = tf.concat([output, predicted_id], axis=-1)\n", 589 | "\n", 590 | " return output, attention_weights" 591 | ] 592 | }, 593 | { 594 | "cell_type": "code", 595 | "execution_count": null, 596 | "metadata": {}, 597 | "outputs": [], 598 | "source": [ 599 | "def cut_by_end(samples):\n", 600 | " output_list = np.zeros(tf.shape(samples))\n", 601 | " for i, sample in enumerate(samples):\n", 602 | " dtype = sample.dtype\n", 603 | " idx = tf.where(tf.equal(sample, 3))\n", 604 | " \n", 605 | " flag = tf.where(tf.equal(tf.size(idx), 0), 1, 0)\n", 606 | " if flag:\n", 607 | " output_list[i] = sample\n", 608 | " else:\n", 609 | " indices = tf.cast(idx[0, 0], dtype)\n", 610 | " output_list[i] = tf.concat([sample[:indices], tf.zeros(tf.shape(sample)[0] - indices, dtype=dtype)], axis=0)\n", 611 | "\n", 612 | " return tf.cast(output_list, dtype)" 613 | ] 614 | }, 615 | { 616 | "cell_type": "code", 617 | "execution_count": null, 618 | "metadata": {}, 619 | "outputs": [], 620 | "source": [ 621 | "eval_log = os.path.join(pm.eval_log_path, '{}_eval.tsv'.format(pm.project_name))\n", 622 | "if not os.path.exists(pm.eval_log_path):\n", 623 | " os.makedirs(pm.eval_log_path)\n", 624 | "eval_file = open(eval_log, 'w', encoding='utf-8')\n", 625 | "\n", 626 | "start = time.time()\n", 627 | "count, scores = 0, 0\n", 628 | "for (batch, (inp, tar)) in enumerate(val_dataset):\n", 629 | " prediction, attention_weights = evaluate(inp)\n", 630 | " prediction = cut_by_end(prediction)\n", 631 | " \n", 632 | " preds, tars = [], []\n", 633 | " for source, real_tar, pred in zip(inp, tar, prediction):\n", 634 | " s = \" \".join([idx2en.get(i, 1) for i in source.numpy() if i < len(idx2en) and i not in [0, 2, 3]])\n", 635 | " t = \"\".join([idx2de.get(i, 1) for i in real_tar.numpy() if i < len(idx2de) and i not in [0, 2, 3]])\n", 636 | " p = \"\".join([idx2de.get(i, 1) for i in pred.numpy() if i < len(idx2de) and i not in [0, 2, 3]])\n", 637 | " \n", 638 | " preds.append(p)\n", 639 | " tars.append([t])\n", 640 | " \n", 641 | " eval_file.write('-Source : {}\\n-Target : {}\\n-Pred : {}\\n\\n'.format(s, t, p))\n", 642 | " eval_file.flush()\n", 643 | " \n", 644 | " scores += bleu_metrics(tars, preds, False, 3, True)\n", 645 | " count += 1\n", 646 | "\n", 647 | "eval_file.write('-BLEU Score : {:.4f}'.format(scores / count))\n", 648 | "eval_file.close()\n", 649 | "\n", 650 | "print(\"MSG : Done for evalutation ... Totolly {:.2f} sec.\".format(time.time() - start))" 651 | ] 652 | }, 653 | { 654 | "cell_type": "code", 655 | "execution_count": null, 656 | "metadata": {}, 657 | "outputs": [], 658 | "source": [ 659 | "def predict(inp_sentence):\n", 660 | " start_token = [2]\n", 661 | " end_token = [3]\n", 662 | "\n", 663 | " inp_sentence = start_token + [en2idx.get(word, 1) for word in inp_sentence.split()] + end_token\n", 664 | " encoder_input = tf.expand_dims(inp_sentence, 0)\n", 665 | " \n", 666 | " decoder_input = [2]\n", 667 | " output = tf.expand_dims(decoder_input, 0)\n", 668 | "\n", 669 | " for i in range(pm.maxlen):\n", 670 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)\n", 671 | "\n", 672 | " predictions, attention_weights = transformer(encoder_input, \n", 673 | " output,\n", 674 | " False,\n", 675 | " enc_padding_mask,\n", 676 | " combined_mask,\n", 677 | " dec_padding_mask)\n", 678 | "\n", 679 | " predictions = predictions[: ,-1:, :]\n", 680 | " predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)\n", 681 | "\n", 682 | " if tf.equal(predicted_id, 3):\n", 683 | " return tf.squeeze(output, axis=0), attention_weights\n", 684 | "\n", 685 | " output = tf.concat([output, predicted_id], axis=-1)\n", 686 | "\n", 687 | " return tf.squeeze(output, axis=0), attention_weights" 688 | ] 689 | }, 690 | { 691 | "cell_type": "code", 692 | "execution_count": null, 693 | "metadata": {}, 694 | "outputs": [], 695 | "source": [ 696 | "def translate(sentence, plot=''):\n", 697 | " result, attention_weights = predict(sentence)\n", 698 | " \n", 699 | " predicted_sentence = [idx2de.get(i, 1) for i in result.numpy() if i < len(idx2de) and i not in [0, 2, 3]]\n", 700 | "\n", 701 | " print('Input: {}'.format(sentence))\n", 702 | " print('Predicted translation: {}'.format(\" \".join(predicted_sentence)))\n", 703 | "\n", 704 | " if plot:\n", 705 | " plot_attention_weights(attention_weights, sentence, result, plot)" 706 | ] 707 | }, 708 | { 709 | "cell_type": "code", 710 | "execution_count": null, 711 | "metadata": {}, 712 | "outputs": [], 713 | "source": [ 714 | "translate(\"明 天 就 要 上 班 了\", plot='decoder_layer4_block')\n", 715 | "print(\"Real translation: 還好我沒工作QQ\")" 716 | ] 717 | }, 718 | { 719 | "cell_type": "code", 720 | "execution_count": null, 721 | "metadata": {}, 722 | "outputs": [], 723 | "source": [] 724 | } 725 | ], 726 | "metadata": { 727 | "kernelspec": { 728 | "display_name": "Python 3", 729 | "language": "python", 730 | "name": "python3" 731 | }, 732 | "language_info": { 733 | "codemirror_mode": { 734 | "name": "ipython", 735 | "version": 3 736 | }, 737 | "file_extension": ".py", 738 | "mimetype": "text/x-python", 739 | "name": "python", 740 | "nbconvert_exporter": "python", 741 | "pygments_lexer": "ipython3", 742 | "version": "3.7.1" 743 | } 744 | }, 745 | "nbformat": 4, 746 | "nbformat_minor": 2 747 | } 748 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "{}" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright {yyyy} {name of copyright owner} 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | An Implementation of Attention is all you need with Chinese Corpus 2 | === 3 |   The code is an implementation of Paper [Attention is all you need](https://arxiv.org/abs/1706.03762) working for dialogue generation tasks like: **Chatbot**、 **Text Generation** and so on. 4 |   **Thanks to every friends who have raised issues and helped solve them. Your contribution is very important for the improvement of this project. Due to the limited support of the 'static graph mode' in coding, we decided to move the features to 2.0.0-beta1 version. However if you worry about the problems from docker building and service creation with version issues, we still keep an old version of the code written by eager mode using tensorflow 1.12.x version to refer.** 5 | 6 | # Documents 7 | ``` 8 | |-- root/ 9 | |-- data/ 10 | |-- src-train.csv 11 | |-- src-val.csv 12 | |-- tgt-train.csv 13 | `-- tgt-val.csv 14 | |-- old_version/ 15 | |-- data_loader.py 16 | |-- eval.py 17 | |-- make_dic.py 18 | |-- modules.py 19 | |-- params.py 20 | |-- requirements.txt 21 | `-- train.py 22 | |-- tf1.12.0-eager/ 23 | |-- bleu.py 24 | |-- main.ipynb 25 | |-- modules.py 26 | |-- params.py 27 | |-- requirements.txt 28 | `-- utils.py 29 | |-- images/ 30 | |-- bleu.py 31 | |-- main-v2.ipynb 32 | |-- modules-v2.py 33 | |-- params.py 34 | |-- requirements.txt 35 | `-- utils-v2.py 36 | ``` 37 | 38 | # Requirements 39 | - Numpy >= 1.13.1 40 | - Tensorflow-gpu == 1.12.0 41 | - **Tensorflow-gpu == 2.0.0-beta1** 42 | - cudatoolkit >= 10.0 43 | - cudnn >= 7.4 44 | - nvidia cuda driver version >= 410.x 45 | - tqdm 46 | - nltk 47 | - jupyter notebook 48 | 49 | # Construction 50 |   As we all know the Translation System can be used in implementing conversational model just by replacing the paris of two different sentences to questions and answers. After all, the basic conversation model named "Sequence-to-Sequence" is develped from translation system. Therefore, why we not to improve the efficiency of conversation model in generating dialogues? 51 | 52 |
53 | 54 |
55 | 56 |   With the development of [BERT-based models](https://arxiv.org/abs/1810.04805), more and more nlp tasks are refreshed constantly. However, the language model is not contained in BERT's open source tasks. There is no doubt that on this way we still have a long way to go. 57 | 58 | ## Model Advantages 59 |   A transformer model handles variable-sized input using stacks of self-attention layers instead of RNNs or CNNs. This general architecture has a number of advantages and special ticks. Now let's take them out: 60 | 61 | - It make no assumptions about the temporal/spatial relationships across the data.(However this was proved to be not sure from AutoML) 62 | - Layer outputs can be calculated in parallel, instead of a series like an RNN.(Faster training) 63 | - Distant items can affect each other's output without passing through many RNN-steps, or CNN layers.(Lower cost) 64 | - It can learn long-range dependencies, which is a challenge of dialogue system. 65 | 66 | ## Implementation details 67 |   **In the newest version of our code**, we complete the details described in paper. 68 | 69 | ### Data Generation 70 | - Use tfrecord to unified data storage format. 71 | - Use dataset to load the processed chinese token datasets. 72 | 73 | ### Positional Encoding 74 | - Since the model doesn't contain any memory mechanism, positional encoding is added to give it some information about the relative position of the words in the sentence by representing a token into a d-dimensional space where tokens with similar meaning will be closer to each other. 75 | 76 |
77 | 78 |
79 | 80 |
81 | 82 |
83 | 84 | ### Mask 85 | - We create two different type of mask during training. One is for the padding masking, the other is for the decoder look_ahead masking to keep the following tokens invisible when generating the previous ones. 86 | 87 | ### Scaled dot product attention 88 | - The attention function used by the transformer takes three inputs: Q,K,V. The equation used to calculate the attention weights, which is scaled by a factor of square root of the depth is: 89 | 90 |
91 | 92 |
93 | 94 |
95 | 96 |
97 | 98 | ### Multi-head attention 99 | - Multi-head attention consists of four parts: **Linear layers**、**Multi-head attention**、**Concatenation of heads** and **Final linear layers**. 100 | 101 |
102 | 103 |
104 | 105 | ### Pointwise Feedforward Network 106 | - Pointwise feedforward network consists of two fully-connected layers with ReLU activation in between. 107 | 108 | ### Learning Rate Schedule 109 | - Use the adam optimizer with a custom learning rate scheduler according to the formula like: 110 | 111 |
112 | 113 |
114 | 115 |
116 | 117 |
118 | 119 | 120 | ## Model Downsides 121 | However, such a strong architecture still have some downsides: 122 | - For a time-series, the output for a time-step is calculated from the entire history of only the inputs and current hidden-state(Just like the different between CRF & HMM). So that it may be less efficient. 123 | - As the first part above said, if the input does have a temporal/spatial relationship, like text generation task, the model may be lost in the context. 124 | 125 | # Usage 126 | - old_version 127 | - STEP 1. Download dialogue corpus with format like sample datasets and extract them to `data/` folder. 128 | - STEP 2. Adjust hyper parameters in `params.py` if you want. 129 | - STEP 3. Run `make_dic.py` to generate vocabulary files to a new folder named `dictionary`. 130 | - STEP 4. Run `train.py` to build the model. Checkpoint will be stored in `checkpoint` folder while the tensorflow event files can be found in `logdir`. 131 | - STEP 5. Run `eval.py` to evaluate the result with testing data. Result will be stored in `Results` folder. 132 | - new_version(2.0 & 1.12.x with eager mode) 133 | - follow the .ipynb to run train & eval & demo 134 | - if you use `GPU` to speed up training processing, please set up your device in the code.(It support multi-workers training) 135 | 136 | # Results 137 | - demo 138 | ``` 139 | - Source: 肥 宅 初 夜 可 以 賣 多 少 ` 140 | - Ground Truth: 肥 宅 還 是 去 打 手 槍 吧 141 | - Predict: 肥 宅 還 是 去 打 手 槍 吧 142 | 143 | - Source: 兇 的 女 生 484 都 很 胸 144 | - Ground Truth: 我 看 都 是 醜 的 比 較 凶 145 | - Predict: 我 看 都 是 醜 的 比 較 146 | 147 | - Source: 留 髮 不 留 頭 148 | - Ground Truth: 還 好 我 早 就 禿 頭 了 149 | - Predict: 還 好 我 早 就 禿 頭 了 150 | 151 | - Source: 當 人 好 痛 苦 R 的 八 卦 152 | - Ground Truth: 去 中 國 就 不 用 當 人 了 153 | - Predict: 去 中 國 就 不 會 有 了 - 154 | 155 | - Source: 有 沒 有 今 天 捷 運 的 八 卦 156 | - Ground Truth: 有 - 真 的 有 多 157 | - Predict: 有 - 真 的 有 多 158 | 159 | - Source: 2016 帶 走 了 什 麼 ` 160 | - Ground Truth: HellKitty 麥 當 勞 歡 樂 送 開 門 - 161 | - Predict: 麥 當 勞 歡 樂 送 開 門 - 162 | 163 | - Source: 有 沒 有 多 益 很 賺 的 八 卦 164 | - Ground Truth: 比 大 型 包 裹 貴 165 | - Predict: 比 大 型 包 貴 166 | 167 | - Source: 邊 緣 人 收 到 地 震 警 報 了 168 | - Ground Truth: 都 跑 到 窗 邊 了 才 來 169 | - Predict: 都 跑 到 邊 了 才 來 170 | 171 | - Source: 車 震 172 | - Ground Truth: 沒 被 刪 版 主 是 有 眼 睛 der 173 | - Predict: 沒 被 刪 版 主 是 有 眼 睛 der 174 | 175 | - Source: 在 家 跌 倒 的 八 卦 ` 176 | - Ground Truth: 傷 到 腦 袋 - 可 憐 177 | - Predict: 傷 到 腦 袋 - 可 憐 178 | 179 | - Source: 大 家 很 討 厭 核 核 嗎 ` 180 | - Ground Truth: 核 核 欠 幹 阿 181 | - Predict: 核 核 欠 幹 阿 182 | 183 | - Source: 館 長 跟 黎 明 打 誰 贏 - 184 | - Ground Truth: 我 愛 黎 明 - 我 愛 黎 明 - 185 | - Predict: 我 愛 明 - 我 愛 明 - 186 | 187 | - Source: 嘻 嘻 打 打 188 | - Ground Truth: 媽 的 智 障 姆 咪 滾 喇 幹 189 | - Predict: 媽 的 智 障 姆 咪 滾 喇 幹 190 | 191 | - Source: 經 典 電 影 台 詞 192 | - Ground Truth: 超 時 空 要 愛 裡 滿 滿 的 梗 193 | - Predict: 超 時 空 要 愛 裡 滿 滿 滿 的 194 | 195 | - Source: 2B 守 得 住 街 亭 嗎 ` 196 | - Ground Truth: 被 病 毒 滅 亡 真 的 會 - 197 | - Predict: 守 得 住 198 | ``` 199 | 200 | # Comparison 201 | 202 | ## Implement feedforward through fully connected. 203 | 204 | - Training Accuracy 205 | 206 |
207 | 208 |
209 | 210 | - Training Loss 211 | 212 |
213 | 214 |
215 | 216 | ## Implement feedforward through convolution in only one dimention. 217 | 218 | - Training Accuracy 219 | 220 |
221 | 222 |
223 | 224 | - Training Loss 225 | 226 |
227 | 228 |
229 | 230 | # Tips 231 |   If you try to use **AutoGraph** to speed up your training process, please make sure the datasets is padded to a fixed length. Because of the graph rebuilding operation will be activated during training, which may affect the performance. Our code only ensures the performance of version 2.0, and the lower ones can try to refer it. 232 | 233 | # Reference 234 | 235 | Thanks for [Transformer](https://github.com/Kyubyong/transformer) and [Tensorflow](https://www.tensorflow.org) 236 | -------------------------------------------------------------------------------- /__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/__init__.py -------------------------------------------------------------------------------- /bleu.py: -------------------------------------------------------------------------------- 1 | # Copyright 2017 Google Inc. All Rights Reserved. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | # ============================================================================== 15 | 16 | """Python implementation of BLEU and smooth-BLEU. 17 | This module provides a Python implementation of BLEU and smooth-BLEU. 18 | Smooth BLEU is computed following the method outlined in the paper: 19 | Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic 20 | evaluation metrics for machine translation. COLING 2004. 21 | """ 22 | 23 | import collections 24 | import math 25 | 26 | 27 | def _get_ngrams(segment, max_order): 28 | """Extracts all n-grams upto a given maximum order from an input segment. 29 | Args: 30 | segment: text segment from which n-grams will be extracted. 31 | max_order: maximum length in tokens of the n-grams returned by this 32 | methods. 33 | Returns: 34 | The Counter containing all n-grams upto max_order in segment 35 | with a count of how many times each n-gram occurred. 36 | """ 37 | ngram_counts = collections.Counter() 38 | for order in range(1, max_order + 1): 39 | for i in range(0, len(segment) - order + 1): 40 | ngram = tuple(segment[i:i+order]) 41 | ngram_counts[ngram] += 1 42 | return ngram_counts 43 | 44 | 45 | def compute_bleu(reference_corpus, translation_corpus, max_order=4, 46 | smooth=False, order_weights=True): 47 | """Computes BLEU score of translated segments against one or more references. 48 | Args: 49 | reference_corpus: list of lists of references for each translation. Each 50 | reference should be tokenized into a list of tokens. 51 | translation_corpus: list of translations to score. Each translation 52 | should be tokenized into a list of tokens. 53 | max_order: Maximum n-gram order to use when computing BLEU score. 54 | smooth: Whether or not to apply Lin et al. 2004 smoothing. 55 | 56 | order_weights: Use different weights to control accuracy. The longer, the more important. 57 | Default to True. 58 | 59 | Returns: 60 | 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram 61 | precisions and brevity penalty. 62 | """ 63 | matches_by_order = [0] * max_order 64 | possible_matches_by_order = [0] * max_order 65 | reference_length = 0 66 | translation_length = 0 67 | 68 | empty_error_flag = False 69 | 70 | for (references, translation) in zip(reference_corpus, 71 | translation_corpus): 72 | if len(references) == 0 or len(translation) == 0: 73 | empty_error_flag = True 74 | break 75 | 76 | reference_length += min(len(r) for r in references) 77 | translation_length += len(translation) 78 | 79 | merged_ref_ngram_counts = collections.Counter() 80 | for reference in references: 81 | merged_ref_ngram_counts |= _get_ngrams(reference, max_order) 82 | translation_ngram_counts = _get_ngrams(translation, max_order) 83 | overlap = translation_ngram_counts & merged_ref_ngram_counts 84 | 85 | for ngram in overlap: 86 | matches_by_order[len(ngram)-1] += overlap[ngram] 87 | for order in range(1, max_order+1): 88 | possible_matches = len(translation) - order + 1 89 | if possible_matches > 0: 90 | possible_matches_by_order[order-1] += possible_matches 91 | 92 | if empty_error_flag: 93 | return 0.0, None, None, None, None, None 94 | 95 | precisions = [0] * max_order 96 | for i in range(0, max_order): 97 | if smooth: 98 | precisions[i] = ((matches_by_order[i] + 1.) / 99 | (possible_matches_by_order[i] + 1.)) 100 | else: 101 | if possible_matches_by_order[i] > 0: 102 | precisions[i] = (float(matches_by_order[i]) / 103 | possible_matches_by_order[i]) 104 | else: 105 | precisions[i] = 0.0 106 | 107 | if max(precisions) > 0: 108 | if order_weights: 109 | p_log_sum = sum((1. / (i + 1)) * math.log(p) for i, p in enumerate(reversed(precisions)) if p > 0) 110 | else: 111 | p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions if p > 0) 112 | geo_mean = math.exp(p_log_sum) 113 | else: 114 | geo_mean = 0 115 | 116 | ratio = float(translation_length) / reference_length 117 | 118 | if ratio > 1.0: 119 | bp = 1. 120 | else: 121 | bp = math.exp(1 - 1. / ratio) 122 | 123 | bleu = geo_mean * bp 124 | 125 | return bleu, precisions, bp, ratio, translation_length, reference_length 126 | 127 | 128 | def bleu_metrics(per_segment_references, translations, smooth=False, max_order=3, order_weights=True): 129 | """Compute BLEU scores""" 130 | # bleu_score, precisions, bp, ratio, translation_length, reference_length 131 | bleu_score, _, _, _, _, _ = compute_bleu( 132 | per_segment_references, translations, max_order, smooth, order_weights) 133 | 134 | return 100 * bleu_score 135 | 136 | -------------------------------------------------------------------------------- /data/src-val.txt: -------------------------------------------------------------------------------- 1 | 不 要 再 操 弄 一 休 和 尚 了 2 | 明 天 有 放 假 嗎 - 3 | 4NonBlondes 4 | 如 何 幫 貓 貓 減 肥 ` 5 | 雞 腿 能 換 駕 照 那 雞 翅 ` 6 | 台 灣 十 大 國 際 品 牌 7 | 最 近 有 哪 本 書 好 看 ` 8 | 這 樣 稱 得 上 反 串 嗎 - 9 | 馬 子 是 M 屬 性 怎 麼 辦 - 10 | 要 如 何 才 能 把 餅 掰 開 ` 11 | 哪 裡 買 的 到 陰 陽 奶 12 | FB484 壞 掉 13 | 有 狠 生 氣 燒 肉 的 卦 嗎 ` 14 | 那 女 孩 對 我 微 笑 - 15 | 關 於 身 心 障 礙 特 考 三 等 16 | 明 天 就 要 上 班 了 17 | 館 長 怎 麼 在 PTT 紅 的 18 | 今 天 晚 上 會 治 安 紅 燈 嗎 19 | 馬 雅 人 有 沒 有 改 革 者 ` 20 | 誰 知 道 這 是 什 麼 餅 乾 - 21 | 貓 咪 會 這 樣 走 路 嗎 OAO 22 | 發 廢 文 嗆 金 正 恩 - 23 | 妹 妹 拿 槍 指 著 我 24 | 有 沒 有 MAJAJA 的 掛 - 25 | 想 開 間 按 摩 店 26 | 波 波 圍 棋 會 下 圍 棋 嗎 27 | 登 入 1000 次 算 學 長 嗎 - 28 | 貓 會 裝 死 嗎 ` 29 | 兔 兔 蜜 外 套 的 原 料 30 | 幫 黑 人 拔 罐 31 | 草 莓 百 分 百 重 新 選 邊 站 32 | 惱 羞 拍 影 片 回 嗆 酸 民 ` 33 | 屁 股 下 巴 34 | 閣 下 是 開 戰 的 起 手 式 嗎 35 | 睡 不 著 36 | 有 炸 鍋 貼 這 種 料 理 嗎 - 37 | 魔 人 是 如 何 養 成 的 ` 38 | 幾 歲 第 一 次 搭 ` - 39 | 讓 我 們 互 到 一 聲 晚 安 40 | 有 沒 有 通 靈 的 八 卦 - 41 | 濟 顛 是 不 是 工 具 人 ` 42 | 什 麼 叫 做 勇 敢 去 愛 43 | 學 姐 一 直 在 聽 magnet 44 | 登 入 滿 1000 次 會 出 現 什 麼 45 | 三 監 之 亂 46 | 一 直 看 公 車 的 卦 ` 47 | 大 學 畢 業 潮 有 多 潮 48 | 世 界 末 日 - 49 | 天 氣 很 熱 怎 麼 辦 50 | 該 閃 左 邊 還 右 邊 ` 51 | 嫖 了 不 給 錢 算 誘 姦 嗎 ` 52 | 今 天 的 勇 士 讓 人 舒 服 - 53 | 中 華 XX 隊 54 | 宵 夜 戒 斷 症 候 群 55 | 有 沒 有 theXXX 的 八 卦 56 | 慈 濟 今 天 什 麼 活 動 ` 57 | 童 軍 是 在 幹 嘛 的 - 58 | 個 體 經 濟 中 文 聖 經 是 誰 59 | 如 何 加 強 國 民 駕 駛 素 質 60 | 冰 島 CrashedDC3Plane 61 | 是 有 多 潮 ` 62 | 臉 書 社 團 63 | she 當 初 怎 麼 紅 的 - 64 | 低 能 卡 怎 麼 這 摸 低 能 65 | 有 沒 有 疊 字 的 八 卦 ` 66 | 海 淪 清 洮 的 八 卦 67 | 米 其 林 餐 廳 有 沒 有 魚 翅 68 | 姐 姐 是 不 是 睡 糊 塗 了 ` 69 | 683T 拍 成 電 影 要 怎 麼 演 70 | 有 沒 有 歐 森 的 八 卦 71 | babalabalabalabala 給 你 好 心 情 72 | yee 建 聯 行 情 還 好 嗎 ` 73 | 姓 侯 能 取 什 麼 名 字 - 74 | 桐 谷 和 人 巴 哈 - 75 | 伴 隨 我 這 樣 好 嗎 76 | 有 沒 有 基 地 台 名 稱 的 卦 77 | 為 什 麼 NBA 樂 透 一 面 倒 - 78 | 板 主 要 開 賭 盤 嗎 ` 79 | 鄉 民 想 當 正 男 還 是 正 恩 80 | 怎 摸 拒 絕 國 中 森 - 81 | 八 卦 板 隨 時 都 有 人 噓 ` 82 | ThuMay414 - 53 - 292017 83 | 只 有 一 人 的 電 影 廳 84 | 有 沒 有 sodapoppin 的 八 掛 85 | 南 加 州 學 院 科 系 86 | 肥 宅 早 餐 都 吃 了 什 麼 87 | a000000000 被 水 桶 obov 會 復 出 嗎 - 88 | 肥 宅 是 帥 哥 難 為 89 | 全 部 人 都 死 了 - 90 | 單 身 的 力 量 ` 91 | 得 憂 鬱 症 了 怎 麼 辦 - 92 | 睡 前 喝 惹 很 多 牛 奶 93 | 要 怎 麼 證 明 圓 環 之 理 - 94 | 半 導 體 95 | 大 家 多 久 一 次 見 到 朋 友 96 | 有 妹 妹 是 什 麼 感 覺 ` 97 | 剛 和 正 妹 看 完 電 影 - 98 | 生 氣 給 魔 鬼 留 地 步 99 | Python 和 R - 哪 個 屌 ` 100 | 犬 太 大 怎 麼 辦 101 | 我 突 然 發 現 102 | 希 望 撿 到 筆 記 本 103 | 有 沒 有 中 夭 崩 潰 的 八 卦 104 | 準 時 下 班 的 工 作 多 嗎 ` 105 | 哪 個 工 藤 新 一 比 較 像 ` 106 | 氧 化 還 原 反 應 - 107 | 把 可 樂 當 水 喝 會 怎 樣 - 108 | 法 國 是 不 是 太 自 由 了 109 | 有 沒 有 宣 儀 的 八 卦 110 | 如 果 做 一 份 這 種 工 作 - 111 | 該 唸 企 鵝 還 是 企 鵝 - 112 | 妹 妹 說 看 小 說 會 濕 掉 113 | 我 飄 香 北 方 - 114 | 正 修 的 掛 115 | 在 中 橫 上 想 ` 怎 麼 辦 ` 116 | 剛 剛 去 提 款 被 電 到 - 117 | pttfor 手 機 的 API 有 後 門 - 118 | 八 卦 下 一 個 戰 的 族 群 - 119 | 好 希 望 能 被 XXXXGAY 肛 120 | 有 陳 園 淳 的 八 卦 嗎 121 | 希 望 能 交 到 女 朋 友 122 | XXXXGAY 和 X 是 什 麼 關 係 ` 123 | 希 望 我 的 狗 不 再 尿 床 124 | 睡 夢 中 驚 醒 125 | 取 手 治 算 是 工 具 人 嗎 ` 126 | - ` - ` - 奶 子 的 八 卦 127 | 色 盲 可 以 分 辨 紅 綠 燈 嗎 128 | 有 沒 有 電 療 的 掛 ` 129 | 有 沒 有 王 洛 九 的 八 卦 - 130 | ptt 是 不 是 過 譽 了 131 | 赤 井 秀 一 怎 麼 那 麼 帥 ` 132 | 你 室 友 沒 有 被 ` - 133 | 手 機 電 池 容 量 134 | 喉 糖 界 的 霸 主 的 掛 135 | SHE 新 歌 抄 襲 五 佰 - 136 | 不 穿 內 褲 內 衣 會 被 告 嗎 137 | 有 沒 有 新 物 種 的 八 卦 138 | 發 哥 只 收 電 機 資 工 - 139 | 有 沒 有 小 紅 帽 的 八 卦 - 140 | 有 沒 有 神 經 病 的 八 卦 141 | 有 沒 有 反 三 寶 的 八 卦 142 | 如 何 安 慰 失 戀 的 室 友 143 | 胡 瓜 兒 144 | 有 沒 有 DJOkawari 的 八 卦 145 | 狗 淡 水 新 民 街 狗 走 失 - 146 | 有 沒 有 五 雷 印 的 八 卦 147 | 現 在 誰 開 演 唱 會 會 去 看 148 | 被 男 生 倒 追 怎 麼 辦 ` 149 | 香 港 大 欖 郊 公 園 八 卦 150 | 一 休 一 例 被 蓋 掉 嗎 - 151 | 有 沒 有 大 熱 天 的 八 卦 ` 152 | 跑 酷 遊 戲 越 跑 越 快 - 153 | 有 沒 有 伯 奇 的 八 卦 ` 154 | 偶 勒 哇 趟 抖 露 155 | 有 沒 有 吳 祥 輝 的 八 卦 ` 156 | 有 沒 有 seve 舞 步 的 八 卦 - 157 | 大 家 的 卍 解 是 什 麼 ` 158 | 有 沒 有 MAJU 公 司 的 八 卦 - 159 | 有 人 喝 過 馬 奶 酒 嗎 - 160 | 有 沒 有 返 校 日 的 八 卦 161 | 有 沒 有 練 懿 樂 的 八 卦 162 | 一 直 畫 圖 是 在 畫 三 小 ` 163 | 悲 傷 的 心 情 QQ 164 | 弟 弟 不 給 舔 165 | 有 沒 有 ROC 的 八 卦 166 | 要 怎 麼 跟 鬼 交 朋 友 ` 167 | 有 誰 能 打 奧 運 網 球 - 168 | 七 夕 可 以 幹 嘛 169 | 王 八 蛋 是 什 麼 樣 的 蛋 - 170 | 到 底 道 統 是 什 麼 ` 171 | PTT 御 三 家 ` 172 | 幾 歲 結 婚 的 八 卦 173 | 老 師 怪 怪 的 怎 麼 辦 - 174 | PokemonGO 是 肥 宅 出 頭 天 的 遊 戲 175 | 有 沒 有 樂 宜 的 八 卦 - 176 | 國 語 是 不 是 過 譽 了 177 | 把 外 勞 妹 妹 要 注 意 什 麼 178 | 請 問 輔 大 Kobe 179 | 有 沒 有 女 追 男 的 八 卦 - 180 | 又 長 又 硬 的 懶 覺 181 | cp 值 最 高 的 咖 啡 182 | 邪 魔 ` - 183 | 跟 身 體 一 樣 長 的 屎 184 | 盒 盒 跟 女 森 ` 下 午 茶 185 | ` 的 團 長 ` 孫 - 志 186 | 神 奇 海 螺 有 多 神 奇 - 187 | 有 人 用 伍 佰 的 ID 嗎 188 | 國 慶 爺 在 幹 嘛 189 | 早 餐 店 該 選 哪 一 家 ` 190 | 用 花 生 造 個 詞 191 | 為 什 麼 公 雞 早 上 會 叫 ` 192 | 有 沒 有 口 噛 ` 酒 的 八 卦 193 | 香 香 的 胖 子 有 多 慘 194 | 為 什 麼 會 被 肥 宅 敷 衍 - 195 | 螞 蟻 是 會 突 然 暴 斃 的 嗎 196 | 被 劈 腿 了 要 嗆 什 麼 話 ` 197 | 陳 建 州 為 什 麼 不 告 網 友 198 | 被 說 像 貓 ` 該 開 心 嗎 ` 199 | 夢 子 算 不 算 母 豬 ` 200 | 是 你 你 會 選 擇 - 201 | 被 刺 激 到 了 - 怎 麼 辦 ` 202 | 我 可 以 抱 你 嗎 203 | 任 天 堂 在 搞 什 麼 飛 機 - 204 | 決 戰 一 分 鐘 205 | 清 蘭 槌 子 上 的 紅 漬 206 | 明 年 會 有 什 麼 秀 ` 207 | 蛇 蛇 可 愛 但 蛇 蛇 不 說 208 | 有 沒 有 愛 愛 的 八 卦 209 | 有 李 欣 欣 的 八 卦 嗎 ` 210 | 有 沒 有 HTLV 的 八 卦 211 | 還 有 什 麼 捨 不 得 能 幹 嘛 212 | 歐 陽 鋒 想 收 妹 妹 為 徒 213 | 蟑 螂 什 麼 時 候 黑 掉 了 214 | 姓 柯 的 能 取 什 麼 名 字 ` 215 | 肥 宅 可 剪 豪 力 頭 嗎 - 216 | 先 有 雞 先 有 蛋 - 217 | 最 可 愛 的 狗 218 | 以 後 義 體 化 可 以 結 婚 嗎 219 | 在 哪 裡 工 作 最 潮 - 220 | 有 沒 有 重 新 定 義 大 平 台 221 | 考 上 清 大 很 難 ` 222 | 當 PTT 板 主 有 什 麼 好 處 - 223 | 吃 到 飽 要 多 少 錢 才 合 理 224 | 有 沒 有 烘 焙 機 的 八 卦 - 225 | 我 不 要 緊 的 226 | 為 什 麼 撞 到 牆 壁 會 痛 227 | 反 甲 卻 挺 T 是 為 什 麼 ` 228 | 每 天 一 定 做 的 事 - 229 | 聽 縮 鄉 民 人 都 很 好 230 | 被 叫 床 聲 吵 醒 能 幹 嘛 231 | 姆 咪 被 偷 了 怎 麼 辦 232 | 清 華 大 學 233 | 有 氧 飲 料 喝 了 會 怎 樣 234 | 冬 天 如 何 克 制 食 慾 - 235 | 肥 宅 外 遇 的 八 卦 236 | uber 現 在 是 不 是 不 能 用 了 237 | 有 菜 蟲 的 八 卦 嗎 ` 238 | 肥 宅 很 會 轉 珠 有 加 分 嗎 239 | 為 何 剛 力 彩 芽 常 被 酸 ` 240 | 有 沒 有 AlisonBrie 的 八 卦 - 241 | 給 我 一 個 理 由 忘 記 242 | 愛 的 故 事 有 很 多 243 | -------------------------------------------------------------------------------- /data/tgt-val.txt: -------------------------------------------------------------------------------- 1 | 幕 府 大 將 軍 2 | 學 生 乖 乖 去 上 課 ` 懂 ` 3 | BASS 手 是 女 的 - 我 不 信 4 | 橘 貓 天 生 肥 宅 無 解 5 | 打 翻 了 齁 笑 你 6 | 台 積 電 是 外 資 啊 - 7 | 有 從 市 場 賺 到 2000 了 嗎 8 | 歐 嗨 喲 不 是 這 樣 用 的 吧 9 | 彩 虹 小 馬 ` - 10 | 一 代 宗 師 嗎 11 | 陰 陽 爛 屁 股 12 | 應 該 都 沒 有 注 意 到 吧 13 | 就 還 好 吃 粗 飽 還 可 以 14 | 往 後 看 好 嗎 15 | 有 國 考 板 身 障 板 16 | 還 好 我 沒 工 作 QQ 17 | 館 長 就 是 說 真 話 的 人 18 | 宣 佈 為 國 定 殺 戮 日 19 | 先 猜 你 釣 不 到 20 | 裡 面 有 蠶 寶 寶 21 | 臉 書 有 影 片 22 | 有 種 去 官 網 嗆 23 | 尻 尻 時 別 看 著 GG 24 | 國 中 的 東 西 了 - 25 | 叫 某 某 女 中 會 超 多 人 26 | 不 只 波 波 比 鵰 也 會 27 | 沒 人 認 識 高 義 嗎 ` 28 | 正 在 CD 中 貓 有 九 條 命 29 | 前 三 張 外 套 都 一 樣 吧 30 | 蓋 三 小 喇 幹 31 | 癡 女 梢 奇 蹟 逆 轉 32 | 你 被 搶 上 來 討 拍 拍 嗎 33 | 韓 國 子 瑜 ` 34 | 閣 下 筆 者 35 | 該 ` 早 餐 惹 36 | 早 餐 店 會 有 炸 水 餃 這 道 37 | 在 蛋 裡 吸 賽 亞 人 的 氣 38 | 還 在 媽 媽 肚 子 裡 的 時 候 39 | 我 想 念 動 哥 QQ 40 | 現 在 通 通 隔 開 41 | 佛 不 會 跟 凡 人 計 較 這 些 42 | 你 的 電 量 說 明 一 切 43 | 和 他 一 起 玩 啊 - 3 44 | 真 的 有 道 理 耶 發 錢 45 | 幹 是 真 貨 - 46 | 在 等 307 阿 斯 娜 47 | 高 潮 了 啊 啊 - 啊 啊 啊 ` 48 | 歌 詞 文 出 動 49 | 開 27 加 電 扇 阿 50 | 到 左 邊 助 跑 往 右 邊 跳 51 | 去 問 豹 子 頭 52 | 總 冠 軍 賽 再 叫 我 53 | 中 國 台 北 一 定 強 54 | 真 的 幹 他 媽 的 戒 不 掉 55 | 快 去 吃 THE 便 當 56 | 乾 我 屁 事 去 選 賓 士 啦 滾 57 | 打 發 時 間 用 的 58 | 鼻 地 經 濟 學 59 | 直 接 抓 進 去 關 就 好 了 60 | 冰 鳥 墜 機 在 ` 第 三 星 球 61 | XDDDDDDDDDDDD 62 | 石 皮 處 礻 土 63 | 捧 中 國 人 LP 64 | 你 這 篇 文 章 還 給 嗆 低 卡 65 | 疊 字 就 是 可 愛 66 | 好 你 可 以 滾 了 67 | 我 請 你 吃 虱 目 魚 刺 68 | 佛 說 八 大 人 學 經 69 | 拍 國 軍 公 墓 阿 70 | 歐 森 姐 妹 我 的 71 | 吧 啦 吧 啦 紅 吧 啦 吧 啦 紅 72 | Yi 定 很 好 73 | 侯 子 在 動 物 園 74 | 西 瓜 榴 槤 雞 75 | 你 沒 有 女 友 76 | 我 有 網 路 你 沒 有 ` 77 | 姆 迷 嘴 上 說 不 要 78 | 眼 睛 有 父 女 眼 79 | 想 當 正 男 幹 妮 妮 80 | 想 騙 人 家 尿 尿 ` 地 方 ` 81 | 剛 好 想 ` 82 | 台 北 人 養 全 台 灣 人 83 | 你 的 後 面 都 是 人 84 | 我 只 知 道 SODA 是 巨 乳 DJ 85 | 勝 文 哪 是 笑 噴 86 | 機 器 人 問 卦 87 | 哈 哈 哈 哈 哈 哈 88 | 你 的 語 表 - 89 | 有 時 候 死 人 比 活 人 好 用 90 | 138 哪 裡 啊 91 | 好 想 瘋 狂 做 艾 92 | 你 明 天 開 始 改 喝 馬 奶 93 | 一 個 女 的 在 中 間 94 | 快 去 睡 覺 - 別 想 太 多 了 95 | 我 現 在 在 聽 粗 音 唱 歌 96 | 沒 有 很 好 醒 醒 97 | 錢 準 備 好 了 就 去 吧 98 | 因 為 要 CD 99 | R 時 代 已 經 過 去 了 100 | 三 小 XDD 101 | 廢 到 笑 XD 102 | 雷 姆 是 誰 ` 103 | 太 陽 花 崩 潰 - 104 | - 1 面 時 的 時 候 記 得 問 105 | 小 哀 不 夠 傲 嬌 106 | 你 化 學 式 先 寫 出 來 啊 ` 107 | 會 變 更 肥 的 肥 宅 108 | 沒 競 爭 力 的 國 家 109 | 現 在 很 少 發 fb 了 QQ 110 | 發 錢 啊 - 馬 的 這 麼 多 字 111 | 去 看 教 育 部 的 資 料 啊 112 | 幹 嘛 開 兩 個 帳 號 聊 天 113 | 哪 首 糞 歌 自 己 報 114 | 超 多 學 店 不 意 外 115 | 衛 生 紙 吞 下 去 不 會 喔 116 | 開 始 尻 阿 還 用 問 117 | 覺 青 ` 把 手 機 丟 掉 118 | 沒 網 路 的 南 部 人 119 | 還 穿 什 麼 內 褲 120 | 邱 創 換 外 孫 女 121 | 幽 默 的 工 具 人 122 | 插 四 下 就 會 射 123 | 差 點 害 到 正 妹 96 124 | 睡 夢 中 被 敲 醒 125 | 愛 情 白 皮 書 126 | 一 個 奶 子 - 各 自 表 述 ` 127 | 聽 說 有 色 盲 專 用 的 眼 鏡 128 | 為 啥 要 殺 高 梨 王 129 | 八 卦 是 你 竟 然 會 看 康 熙 130 | 慢 走 不 送 囉 131 | 只 要 做 好 自 己 本 分 就 好 132 | 腦 袋 沒 壞 吧 ` 133 | 改 裝 電 瓶 啊 134 | 龍 角 散 喉 糖 有 點 貴 就 是 135 | ` 點 都 不 想 - 騙 點 136 | 你 長 那 樣 都 沒 事 了 137 | XDDDDDD 138 | 都 至 少 大 葉 資 工 好 嗎 139 | 佩 雯 小 紅 帽 140 | 公 三 小 哪 部 直 接 講 141 | 肥 宅 也 是 三 寶 142 | 好 棒 喔 加 油 喔 143 | 開 封 有 個 包 莖 天 144 | 一 個 不 練 腳 的 人 很 愛 聽 145 | 好 可 愛 會 咬 人 嗎 146 | 季 離 欸 進 力 量 欸 大 喔 ` 147 | 張 學 友 張 學 友 我 們 愛 你 148 | 肚 毛 有 點 多 149 | 請 香 港 人 來 說 明 - 150 | 總 統 旅 遊 團 也 被 蓋 掉 了 151 | 因 為 柱 算 不 如 朱 算 152 | hiyo 衝 天 跑 153 | 機 機 應 應 就 是 伯 奇 154 | 不 知 道 在 嗨 什 麼 - 155 | 國 家 系 列 書 寫 得 很 動 人 156 | 西 洋 台 客 舞 157 | 看 到 超 ` 拳 婦 白 冰 冰 158 | 官 網 是 國 小 生 做 的 嗎 159 | 這 篇 沒 馬 奶 圖 我 自 ` 160 | 全 裸 登 校 日 161 | 幹 他 很 帥 - 162 | 想 紅 的 肥 宅 吧 163 | 沒 關 過 所 以 不 知 道 164 | 你 是 不 是 有 屌 - 錢 165 | 沒 人 理 你 欸 166 | 你 根 本 沒 種 認 識 啦 - 167 | 叫 那 群 喊 賠 錢 的 去 打 啊 168 | 去 抓 特 有 怪 四 腳 獸 169 | 忘 八 端 170 | 中 華 民 國 道 統 懂 - 171 | 肥 宅 ` 魯 蛇 ` 魯 肥 宅 172 | 肥 宅 此 生 窩 無 望 結 婚 173 | 這 片 好 老 了 喔 174 | 肥 宅 連 寶 可 夢 都 想 沾 光 175 | 冷 凍 小 丑 女 友 176 | 你 是 文 組 嗎 177 | 幹 轟 三 小 喇 幹 178 | 輔 大 情 慾 流 動 179 | 找 人 回 收 - 180 | 你 是 不 是 想 釣 懶 叫 王 181 | 他 去 了 免 費 續 杯 的 咖 啡 182 | 幹 那 是 特 蘭 克 斯 的 招 吧 183 | 倒 影 都 出 油 惹 184 | 藥 吃 了 嗎 ` 185 | 這 還 不 桶 又 廢 又 難 笑 186 | 梗 老 到 不 行 滾 喇 幹 187 | 他 老 婆 好 像 是 台 大 的 188 | 人 妻 好 ` 油 189 | 先 看 看 老 闆 娘 190 | 電 腦 選 的 花 生 191 | 我 人 超 好 我 告 訴 你 - 192 | 咪 茲 哈 會 說 你 變 態 193 | 嗆 三 小 窩 揪 香 香 ` 194 | 妳 等 級 比 他 高 啊 195 | 肥 宅 味 道 太 噁 心 被 臭 死 196 | 台 灣 這 種 賤 妹 太 多 了 197 | 說 人 裝 熟 實 在 不 好 告 198 | 貓 咪 ` 199 | 有 毛 又 摳 B 感 覺 有 夠 A 200 | 林 北 不 喝 酒 滾 201 | 在 床 上 教 訓 室 友 202 | 終 於 抓 到 人 了 203 | 跟 nokia 一 樣 - 再 等 等 204 | 廣 告 3 分 鐘 決 戰 一 分 鐘 205 | 明 明 就 花 生 醬 206 | 無 存 在 感 板 主 QQ 207 | 有 點 創 意 好 麻 208 | 比 較 溫 馨 阿 209 | 加 我 群 組 QQ 210 | LTHV ` NTNV 211 | 安 寧 病 房 啊 212 | 你 哪 國 來 的 啦 213 | 蟑 螂 脫 皮 後 就 變 白 的 囉 214 | 車 車 19 號 柯 斯 塔 215 | 明 明 是 腕 力 216 | 雞 懶 覺 好 ` 217 | 最 大 隻 的 狗 三 翻 西 施 狗 218 | 素 子 給 你 七 轉 福 音 給 我 219 | 美 國 啊 當 然 - 220 | 大 奶 平 臺 你 都 不 懂 ` 221 | 變 成 肥 宅 的 後 宮 惹 開 勳 222 | 桶 人 很 舒 壓 約 泡 很 爽 223 | 本 魯 小 確 幸 224 | 就 這 點 資 歷 也 敢 說 多 年 225 | 邱 X 表 示 - 226 | 因 為 人 被 殺 就 會 死 227 | 剛 好 被 你 朋 友 聞 到 228 | 幹 菜 英 文 229 | 我 又 不 是 好 人 230 | 開 a 片 回 擊 啊 還 用 說 231 | 姆 咪 騎 士 團 參 上 232 | 先 吃 一 下 麥 當 勞 233 | 會 有 吉 戰 力 234 | 吃 飽 開 始 克 制 4 小 時 阿 235 | 我 家 老 婆 們 不 會 吵 架 的 236 | 真 的 耶 - 新 竹 沒 有 半 台 237 | 揪 竟 什 麼 坎 佔 才 不 菜 238 | 有 啊 - 加 工 具 人 分 239 | 人 太 正 也 會 燒 菜 240 | MadMen 裡 面 我 最 愛 她 241 | 那 麼 愛 我 的 你 ` 242 | 而 任 性 的 風 243 | -------------------------------------------------------------------------------- /images/learning_rate.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/images/learning_rate.png -------------------------------------------------------------------------------- /images/multi_head_attention.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/images/multi_head_attention.png -------------------------------------------------------------------------------- /images/scaled_attention.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/images/scaled_attention.png -------------------------------------------------------------------------------- /images/transformer.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/images/transformer.png -------------------------------------------------------------------------------- /main-v2.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "from __future__ import absolute_import, division, print_function, unicode_literals\n", 10 | "\n", 11 | "import tensorflow as tf\n", 12 | "\n", 13 | "import time\n", 14 | "import datetime\n", 15 | "import os\n", 16 | "from tqdm import tqdm\n", 17 | "import numpy as np\n", 18 | "import matplotlib.pyplot as plt\n", 19 | "plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签\n", 20 | "plt.rcParams['axes.unicode_minus']=False\n", 21 | "\n", 22 | "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0, 1, 2, 3\" # 添加可用的gpu\n", 23 | "physical_devices = tf.config.experimental.list_physical_devices('GPU')\n", 24 | "for device in physical_devices:\n", 25 | " tf.config.experimental.set_memory_growth(device, True)\n", 26 | "\n", 27 | "from params import Params as pm\n", 28 | "from utils_v2 import en2idx, idx2en, de2idx, idx2de, dump2record, build_dataset, LRSchedule, masking, create_masks, plot_attention_weights\n", 29 | "from bleu import bleu_metrics" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": null, 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "tf.__version__" 39 | ] 40 | }, 41 | { 42 | "cell_type": "markdown", 43 | "metadata": {}, 44 | "source": [ 45 | "---" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": null, 51 | "metadata": {}, 52 | "outputs": [], 53 | "source": [ 54 | "strategy = tf.distribute.MirroredStrategy()\n", 55 | "\n", 56 | "print('Number of device: {}'.format(strategy.num_replicas_in_sync))" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": null, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "def get_data(corpus_file):\n", 66 | " return open(corpus_file, 'r', encoding='utf-8').read().splitlines()" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": null, 72 | "metadata": {}, 73 | "outputs": [], 74 | "source": [ 75 | "src_train, src_val = get_data(pm.src_train), get_data(pm.src_test)\n", 76 | "tgt_train, tgt_val = get_data(pm.tgt_train), get_data(pm.tgt_test)" 77 | ] 78 | }, 79 | { 80 | "cell_type": "code", 81 | "execution_count": null, 82 | "metadata": {}, 83 | "outputs": [], 84 | "source": [ 85 | "dump2record(pm.train_record, src_train, tgt_train)\n", 86 | "dump2record(pm.test_record, src_val, tgt_val)" 87 | ] 88 | }, 89 | { 90 | "cell_type": "markdown", 91 | "metadata": {}, 92 | "source": [ 93 | "---" 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "execution_count": null, 99 | "metadata": {}, 100 | "outputs": [], 101 | "source": [ 102 | "from modules_v2 import positional_encoding, scaled_dot_product_attention, multihead_attention, pointwise_feedforward, EncoderBlock, DecoderBlock, Encoder, Decoder, Transformer" 103 | ] 104 | }, 105 | { 106 | "cell_type": "markdown", 107 | "metadata": {}, 108 | "source": [ 109 | "# Positional encoding\n", 110 | "$$\\Large{PE_{(pos, 2i)} = sin(pos / 10000^{2i / d_{model}})} $$\n", 111 | "$$\\Large{PE_{(pos, 2i+1)} = cos(pos / 10000^{2i / d_{model}})} $$" 112 | ] 113 | }, 114 | { 115 | "cell_type": "code", 116 | "execution_count": null, 117 | "metadata": {}, 118 | "outputs": [], 119 | "source": [ 120 | "pos_encoding = positional_encoding(50, 512, True)\n", 121 | "print(pos_encoding.shape)" 122 | ] 123 | }, 124 | { 125 | "cell_type": "markdown", 126 | "metadata": {}, 127 | "source": [ 128 | "# Masking" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": null, 134 | "metadata": {}, 135 | "outputs": [], 136 | "source": [ 137 | "x = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])\n", 138 | "masking(x, task='padding')" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": null, 144 | "metadata": {}, 145 | "outputs": [], 146 | "source": [ 147 | "masking(x, task='look_ahead')" 148 | ] 149 | }, 150 | { 151 | "cell_type": "markdown", 152 | "metadata": {}, 153 | "source": [ 154 | "# Scaled dot product attention" 155 | ] 156 | }, 157 | { 158 | "cell_type": "markdown", 159 | "metadata": {}, 160 | "source": [ 161 | "![](https://www.tensorflow.org/images/tutorials/transformer/scaled_attention.png)\n", 162 | "$$\\Large{Attention(Q, K, V) = softmax_k(\\frac{QK^T}{\\sqrt{d_k}}) V} $$" 163 | ] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": null, 168 | "metadata": {}, 169 | "outputs": [], 170 | "source": [ 171 | "def print_out(q, k, v):\n", 172 | " temp_out, temp_attn = scaled_dot_product_attention(q, k, v, None)\n", 173 | " print ('Attention weights are:')\n", 174 | " print (temp_attn)\n", 175 | " print ('Output is:')\n", 176 | " print (temp_out)" 177 | ] 178 | }, 179 | { 180 | "cell_type": "code", 181 | "execution_count": null, 182 | "metadata": {}, 183 | "outputs": [], 184 | "source": [ 185 | "np.set_printoptions(suppress=True)\n", 186 | "\n", 187 | "temp_k = tf.constant([[10,0,0],\n", 188 | " [0,10,0],\n", 189 | " [0,0,10],\n", 190 | " [0,0,10]], dtype=tf.float32)\n", 191 | "\n", 192 | "temp_v = tf.constant([[ 1,0],\n", 193 | " [ 10,0],\n", 194 | " [ 100,5],\n", 195 | " [1000,6]], dtype=tf.float32)\n", 196 | "\n", 197 | "temp_q = tf.constant([[0, 10, 0]], dtype=tf.float32)\n", 198 | "print_out(temp_q, temp_k, temp_v)" 199 | ] 200 | }, 201 | { 202 | "cell_type": "code", 203 | "execution_count": null, 204 | "metadata": {}, 205 | "outputs": [], 206 | "source": [ 207 | "temp_q = tf.constant([[0, 0, 10]], dtype=tf.float32)\n", 208 | "print_out(temp_q, temp_k, temp_v)" 209 | ] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "execution_count": null, 214 | "metadata": {}, 215 | "outputs": [], 216 | "source": [ 217 | "temp_q = tf.constant([[0, 0, 10], [0, 10, 0], [10, 10, 0]], dtype=tf.float32)\n", 218 | "print_out(temp_q, temp_k, temp_v)" 219 | ] 220 | }, 221 | { 222 | "cell_type": "markdown", 223 | "metadata": {}, 224 | "source": [ 225 | "# Multi-head attention" 226 | ] 227 | }, 228 | { 229 | "cell_type": "markdown", 230 | "metadata": {}, 231 | "source": [ 232 | "![](https://www.tensorflow.org/images/tutorials/transformer/multi_head_attention.png)" 233 | ] 234 | }, 235 | { 236 | "cell_type": "markdown", 237 | "metadata": {}, 238 | "source": [ 239 | "- **Tips: Dimention-level split**" 240 | ] 241 | }, 242 | { 243 | "cell_type": "code", 244 | "execution_count": null, 245 | "metadata": {}, 246 | "outputs": [], 247 | "source": [ 248 | "temp_mha = multihead_attention(d_model=512, num_heads=8)\n", 249 | "y = tf.random.uniform((1, 50, 512))\n", 250 | "out, attn = temp_mha(y, k=y, q=y, mask=None)\n", 251 | "out.shape, attn.shape" 252 | ] 253 | }, 254 | { 255 | "cell_type": "markdown", 256 | "metadata": {}, 257 | "source": [ 258 | "# Pointwise feed forward network" 259 | ] 260 | }, 261 | { 262 | "cell_type": "code", 263 | "execution_count": null, 264 | "metadata": {}, 265 | "outputs": [], 266 | "source": [ 267 | "sample_ffn = pointwise_feedforward(512, 2048)\n", 268 | "sample_ffn(tf.random.uniform((64, 50, 512))).shape" 269 | ] 270 | }, 271 | { 272 | "cell_type": "markdown", 273 | "metadata": {}, 274 | "source": [ 275 | "# Whole model (Encoder & Decoder)\n", 276 | "![](https://www.tensorflow.org/images/tutorials/transformer/transformer.png)" 277 | ] 278 | }, 279 | { 280 | "cell_type": "markdown", 281 | "metadata": {}, 282 | "source": [ 283 | "## Encoder" 284 | ] 285 | }, 286 | { 287 | "cell_type": "code", 288 | "execution_count": null, 289 | "metadata": {}, 290 | "outputs": [], 291 | "source": [ 292 | "sample_encoder_layer = EncoderBlock(512, 8, 2048)\n", 293 | "sample_encoder_layer_output, _ = sample_encoder_layer(tf.random.uniform((64, 43, 512)), False, None)\n", 294 | "sample_encoder_layer_output.shape" 295 | ] 296 | }, 297 | { 298 | "cell_type": "markdown", 299 | "metadata": {}, 300 | "source": [ 301 | "## Decoder" 302 | ] 303 | }, 304 | { 305 | "cell_type": "code", 306 | "execution_count": null, 307 | "metadata": {}, 308 | "outputs": [], 309 | "source": [ 310 | "sample_decoder_layer = DecoderBlock(512, 8, 2048)\n", 311 | "\n", 312 | "sample_decoder_layer_output, _, _ = sample_decoder_layer(\n", 313 | " tf.random.uniform((64, 50, 512)), sample_encoder_layer_output, \n", 314 | " False, None, None)\n", 315 | "\n", 316 | "sample_decoder_layer_output.shape" 317 | ] 318 | }, 319 | { 320 | "cell_type": "markdown", 321 | "metadata": {}, 322 | "source": [ 323 | "## Packed Encoder & Decoder" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": null, 329 | "metadata": {}, 330 | "outputs": [], 331 | "source": [ 332 | "sample_encoder = Encoder(num_blocks=2, d_model=512, num_heads=8, dff=2048, input_vocab_size=8500, plot_pos_embedding=False)\n", 333 | "attn_dict = {}\n", 334 | "sample_encoder_output, attn_dict = sample_encoder(tf.random.uniform((64, 62)), training=False, padding_mask=None, attn_dict=attn_dict)\n", 335 | "sample_encoder_output.shape" 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "execution_count": null, 341 | "metadata": {}, 342 | "outputs": [], 343 | "source": [ 344 | "sample_decoder = Decoder(num_blocks=2, d_model=512, num_heads=8, dff=2048, target_vocab_size=8000, plot_pos_embedding=False)\n", 345 | "output, attn_dict = sample_decoder(tf.random.uniform((64, 26)), \n", 346 | " enc_output=sample_encoder_output, \n", 347 | " training=False, look_ahead_mask=None, \n", 348 | " padding_mask=None, attn_dict=attn_dict)\n", 349 | "output.shape, attn_dict['decoder_layer2_block'].shape" 350 | ] 351 | }, 352 | { 353 | "cell_type": "markdown", 354 | "metadata": {}, 355 | "source": [ 356 | "# Transformer" 357 | ] 358 | }, 359 | { 360 | "cell_type": "code", 361 | "execution_count": null, 362 | "metadata": {}, 363 | "outputs": [], 364 | "source": [ 365 | "sample_transformer = Transformer(num_blocks=2, d_model=512, num_heads=8, dff=2048, input_vocab_size=8500, target_vocab_size=8000, plot_pos_embedding=False)\n", 366 | "\n", 367 | "temp_input = tf.random.uniform((64, 62))\n", 368 | "temp_target = tf.random.uniform((64, 26))\n", 369 | "\n", 370 | "fn_out, _ = sample_transformer(temp_input, \n", 371 | " temp_target, \n", 372 | " training=False, \n", 373 | " enc_padding_mask=None, \n", 374 | " look_ahead_mask=None,\n", 375 | " dec_padding_mask=None)\n", 376 | "\n", 377 | "fn_out.shape" 378 | ] 379 | }, 380 | { 381 | "cell_type": "markdown", 382 | "metadata": {}, 383 | "source": [ 384 | "# Training" 385 | ] 386 | }, 387 | { 388 | "cell_type": "code", 389 | "execution_count": null, 390 | "metadata": {}, 391 | "outputs": [], 392 | "source": [ 393 | "num_layers = pm.num_block\n", 394 | "d_model = pm.d_model\n", 395 | "dff = pm.dff\n", 396 | "num_heads = pm.num_heads\n", 397 | "\n", 398 | "input_vocab_size = len(en2idx)\n", 399 | "target_vocab_size = len(de2idx)\n", 400 | "dropout_rate = pm.dropout_rate\n", 401 | "\n", 402 | "EPOCHS = pm.num_epochs" 403 | ] 404 | }, 405 | { 406 | "cell_type": "markdown", 407 | "metadata": {}, 408 | "source": [ 409 | "- Learning rate schedule\n", 410 | "$$\\Large{lrate = d_{model}^{-0.5} * min(step{\\_}num^{-0.5}, step{\\_}num * warmup{\\_}steps^{-1.5})}$$" 411 | ] 412 | }, 413 | { 414 | "cell_type": "code", 415 | "execution_count": null, 416 | "metadata": {}, 417 | "outputs": [], 418 | "source": [ 419 | "temp_learning_rate_schedule = LRSchedule(d_model)\n", 420 | "\n", 421 | "plt.figure(figsize=(12, 8))\n", 422 | "plt.plot(temp_learning_rate_schedule(tf.range(40000, dtype=tf.float32)))\n", 423 | "plt.ylabel(\"Learning Rate\")\n", 424 | "plt.xlabel(\"Train Step\")" 425 | ] 426 | }, 427 | { 428 | "cell_type": "markdown", 429 | "metadata": {}, 430 | "source": [ 431 | "---" 432 | ] 433 | }, 434 | { 435 | "cell_type": "code", 436 | "execution_count": null, 437 | "metadata": {}, 438 | "outputs": [], 439 | "source": [ 440 | "with strategy.scope():\n", 441 | " # 1、dataset\n", 442 | " ## train_dataset = build_dataset(mode='array', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='train_cache.tf-data', corpus=[src_train, tgt_train], is_training=True)\n", 443 | " ## val_dataset = build_dataset(mode='array', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='val_cache.tf-data', corpus=[src_val, tgt_val], is_training=True)\n", 444 | " \n", 445 | " train_dataset = build_dataset(mode='file', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='train_cache.tf-data', filename=pm.train_record, is_training=True)\n", 446 | " train_dist_dataset = strategy.experimental_distribute_dataset(train_dataset)\n", 447 | " \n", 448 | " # 2、loss function\n", 449 | " loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)\n", 450 | "\n", 451 | " def loss_function(real, pred):\n", 452 | " mask = tf.math.logical_not(tf.math.equal(real, 0))\n", 453 | " loss_ = loss_object(real, pred)\n", 454 | "\n", 455 | " mask = tf.cast(mask, dtype=loss_.dtype)\n", 456 | " loss_ *= mask\n", 457 | "\n", 458 | " return tf.reduce_mean(loss_), mask\n", 459 | " \n", 460 | " # 3、metrics to track loss and accuracy\n", 461 | " train_loss = tf.keras.metrics.Mean(name='train_loss')\n", 462 | " train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')\n", 463 | " \n", 464 | " # 4、model config\n", 465 | " transformer = Transformer(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pm.plot_pos_embedding, dropout_rate)\n", 466 | " \n", 467 | " learning_rate = LRSchedule(d_model)\n", 468 | " optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=pm.beta_1, beta_2=pm.beta_2, epsilon=pm.epsilon)\n", 469 | " \n", 470 | " checkpoint_path = pm.ckpt_path\n", 471 | "\n", 472 | " ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)\n", 473 | " ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)\n", 474 | "\n", 475 | " if ckpt_manager.latest_checkpoint:\n", 476 | " ckpt.restore(ckpt_manager.latest_checkpoint)\n", 477 | " print ('Latest checkpoint restored!!')\n", 478 | " \n", 479 | " current_time = datetime.datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n", 480 | " log_dir = pm.logdir + '/gradient_tape/' + current_time\n", 481 | " summary_writer = tf.summary.create_file_writer(log_dir)\n", 482 | " \n", 483 | " # 5、train step\n", 484 | " def train_step(inp, tar):\n", 485 | " tar_inp = tar[:, :-1]\n", 486 | " tar_real = tar[:, 1:]\n", 487 | "\n", 488 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)\n", 489 | "\n", 490 | " with tf.GradientTape() as tape:\n", 491 | " predictions, _ = transformer(inp, \n", 492 | " tar_inp, \n", 493 | " True, \n", 494 | " enc_padding_mask, \n", 495 | " combined_mask, \n", 496 | " dec_padding_mask)\n", 497 | "\n", 498 | " loss, istarget = loss_function(tar_real, predictions)\n", 499 | "\n", 500 | " gradients = tape.gradient(loss, transformer.trainable_variables) \n", 501 | " optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))\n", 502 | "\n", 503 | " train_accuracy(tar_real, predictions, sample_weight=istarget)\n", 504 | " \n", 505 | " return loss\n", 506 | " \n", 507 | " @tf.function\n", 508 | " def distributed_train_step(inp, tar):\n", 509 | " per_replica_losses = strategy.experimental_run_v2(train_step, \n", 510 | " args=(inp, tar, ))\n", 511 | " return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)\n", 512 | " \n", 513 | " # 6、for loop\n", 514 | " total_steps = 0\n", 515 | " for epoch in range(EPOCHS):\n", 516 | " start = time.time()\n", 517 | "\n", 518 | " train_loss.reset_states()\n", 519 | " train_accuracy.reset_states()\n", 520 | " \n", 521 | " total_loss = 0.0\n", 522 | " num_batches = 0\n", 523 | " for (batch, (inp, tar)) in enumerate(train_dataset):\n", 524 | " total_loss += distributed_train_step(inp, tar)\n", 525 | " num_batches += 1\n", 526 | " total_steps += 1\n", 527 | "\n", 528 | " if batch % 500 == 0:\n", 529 | " with summary_writer.as_default():\n", 530 | " tf.summary.scalar('loss', total_loss / num_batches, step=total_steps)\n", 531 | " tf.summary.scalar('accuracy', train_accuracy.result() * 100, step=total_steps)\n", 532 | " \n", 533 | " print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(\n", 534 | " epoch + 1, batch, total_loss / num_batches, train_accuracy.result() * 100))\n", 535 | " \n", 536 | " train_loss(total_loss / num_batches)\n", 537 | "\n", 538 | " if (epoch + 1) % 5 == 0:\n", 539 | " ckpt_save_path = ckpt_manager.save()\n", 540 | " print ('Saving checkpoint for epoch {} at {}'.format(epoch + 1, ckpt_save_path))\n", 541 | "\n", 542 | " print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, train_loss.result(), train_accuracy.result() * 100))\n", 543 | " print ('Time taken for 1 epoch: {} secs\\n'.format(time.time() - start))" 544 | ] 545 | }, 546 | { 547 | "cell_type": "markdown", 548 | "metadata": {}, 549 | "source": [ 550 | "---" 551 | ] 552 | }, 553 | { 554 | "cell_type": "code", 555 | "execution_count": null, 556 | "metadata": {}, 557 | "outputs": [], 558 | "source": [ 559 | "val_dataset = build_dataset(mode='file', batch_size=pm.batch_size * strategy.num_replicas_in_sync, cache_name='val_cache.tf-data', filename=pm.test_record, is_training=True)" 560 | ] 561 | }, 562 | { 563 | "cell_type": "code", 564 | "execution_count": null, 565 | "metadata": {}, 566 | "outputs": [], 567 | "source": [ 568 | "def evaluate(inp_sentence):\n", 569 | " encoder_input = inp_sentence\n", 570 | " \n", 571 | " decoder_input = [2]\n", 572 | " output = tf.expand_dims(decoder_input, 0)\n", 573 | " output = tf.tile(output, [tf.shape(encoder_input)[0], 1])\n", 574 | "\n", 575 | " for i in range(pm.maxlen):\n", 576 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)\n", 577 | "\n", 578 | " predictions, attention_weights = transformer(encoder_input, \n", 579 | " output,\n", 580 | " False,\n", 581 | " enc_padding_mask,\n", 582 | " combined_mask,\n", 583 | " dec_padding_mask)\n", 584 | "\n", 585 | " predictions = predictions[: ,-1:, :]\n", 586 | " predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)\n", 587 | "\n", 588 | " output = tf.concat([output, predicted_id], axis=-1)\n", 589 | "\n", 590 | " return output, attention_weights" 591 | ] 592 | }, 593 | { 594 | "cell_type": "code", 595 | "execution_count": null, 596 | "metadata": {}, 597 | "outputs": [], 598 | "source": [ 599 | "def cut_by_end(samples):\n", 600 | " output_list = np.zeros(tf.shape(samples))\n", 601 | " for i, sample in enumerate(samples):\n", 602 | " dtype = sample.dtype\n", 603 | " idx = tf.where(tf.equal(sample, 3))\n", 604 | " \n", 605 | " flag = tf.where(tf.equal(tf.size(idx), 0), 1, 0)\n", 606 | " if flag:\n", 607 | " output_list[i] = sample\n", 608 | " else:\n", 609 | " indices = tf.cast(idx[0, 0], dtype)\n", 610 | " output_list[i] = tf.concat([sample[:indices], tf.zeros(tf.shape(sample)[0] - indices, dtype=dtype)], axis=0)\n", 611 | "\n", 612 | " return tf.cast(output_list, dtype)" 613 | ] 614 | }, 615 | { 616 | "cell_type": "code", 617 | "execution_count": null, 618 | "metadata": {}, 619 | "outputs": [], 620 | "source": [ 621 | "eval_log = os.path.join(pm.eval_log_path, '{}_eval.tsv'.format(pm.project_name))\n", 622 | "if not os.path.exists(pm.eval_log_path):\n", 623 | " os.makedirs(pm.eval_log_path)\n", 624 | "eval_file = open(eval_log, 'w', encoding='utf-8')\n", 625 | "\n", 626 | "start = time.time()\n", 627 | "count, scores = 0, 0\n", 628 | "for (batch, (inp, tar)) in enumerate(val_dataset):\n", 629 | " prediction, attention_weights = evaluate(inp)\n", 630 | " prediction = cut_by_end(prediction)\n", 631 | " \n", 632 | " preds, tars = [], []\n", 633 | " for source, real_tar, pred in zip(inp, tar, prediction):\n", 634 | " s = \" \".join([idx2en.get(i, 1) for i in source.numpy() if i < len(idx2en) and i not in [0, 2, 3]])\n", 635 | " t = \"\".join([idx2de.get(i, 1) for i in real_tar.numpy() if i < len(idx2de) and i not in [0, 2, 3]])\n", 636 | " p = \"\".join([idx2de.get(i, 1) for i in pred.numpy() if i < len(idx2de) and i not in [0, 2, 3]])\n", 637 | " \n", 638 | " preds.append(p)\n", 639 | " tars.append([t])\n", 640 | " \n", 641 | " eval_file.write('-Source : {}\\n-Target : {}\\n-Pred : {}\\n\\n'.format(s, t, p))\n", 642 | " eval_file.flush()\n", 643 | " \n", 644 | " scores += bleu_metrics(tars, preds, False, 3, True)\n", 645 | " count += 1\n", 646 | "\n", 647 | "eval_file.write('-BLEU Score : {:.4f}'.format(scores / count))\n", 648 | "eval_file.close()\n", 649 | "\n", 650 | "print(\"MSG : Done for evalutation ... Totolly {:.2f} sec.\".format(time.time() - start))" 651 | ] 652 | }, 653 | { 654 | "cell_type": "code", 655 | "execution_count": null, 656 | "metadata": {}, 657 | "outputs": [], 658 | "source": [ 659 | "def predict(inp_sentence):\n", 660 | " start_token = [2]\n", 661 | " end_token = [3]\n", 662 | "\n", 663 | " inp_sentence = start_token + [en2idx.get(word, 1) for word in inp_sentence.split()] + end_token\n", 664 | " encoder_input = tf.expand_dims(inp_sentence, 0)\n", 665 | " \n", 666 | " decoder_input = [2]\n", 667 | " output = tf.expand_dims(decoder_input, 0)\n", 668 | "\n", 669 | " for i in range(pm.maxlen):\n", 670 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)\n", 671 | "\n", 672 | " predictions, attention_weights = transformer(encoder_input, \n", 673 | " output,\n", 674 | " False,\n", 675 | " enc_padding_mask,\n", 676 | " combined_mask,\n", 677 | " dec_padding_mask)\n", 678 | "\n", 679 | " predictions = predictions[: ,-1:, :]\n", 680 | " predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)\n", 681 | "\n", 682 | " if tf.equal(predicted_id, 3):\n", 683 | " return tf.squeeze(output, axis=0), attention_weights\n", 684 | "\n", 685 | " output = tf.concat([output, predicted_id], axis=-1)\n", 686 | "\n", 687 | " return tf.squeeze(output, axis=0), attention_weights" 688 | ] 689 | }, 690 | { 691 | "cell_type": "code", 692 | "execution_count": null, 693 | "metadata": {}, 694 | "outputs": [], 695 | "source": [ 696 | "def translate(sentence, plot=''):\n", 697 | " result, attention_weights = predict(sentence)\n", 698 | " \n", 699 | " predicted_sentence = [idx2de.get(i, 1) for i in result.numpy() if i < len(idx2de) and i not in [0, 2, 3]]\n", 700 | "\n", 701 | " print('Input: {}'.format(sentence))\n", 702 | " print('Predicted translation: {}'.format(\" \".join(predicted_sentence)))\n", 703 | "\n", 704 | " if plot:\n", 705 | " plot_attention_weights(attention_weights, sentence, result, plot)" 706 | ] 707 | }, 708 | { 709 | "cell_type": "code", 710 | "execution_count": null, 711 | "metadata": {}, 712 | "outputs": [], 713 | "source": [ 714 | "translate(\"明 天 就 要 上 班 了\", plot='decoder_layer4_block')\n", 715 | "print(\"Real translation: 還好我沒工作QQ\")" 716 | ] 717 | }, 718 | { 719 | "cell_type": "code", 720 | "execution_count": null, 721 | "metadata": {}, 722 | "outputs": [], 723 | "source": [] 724 | } 725 | ], 726 | "metadata": { 727 | "kernelspec": { 728 | "display_name": "Python 3", 729 | "language": "python", 730 | "name": "python3" 731 | }, 732 | "language_info": { 733 | "codemirror_mode": { 734 | "name": "ipython", 735 | "version": 3 736 | }, 737 | "file_extension": ".py", 738 | "mimetype": "text/x-python", 739 | "name": "python", 740 | "nbconvert_exporter": "python", 741 | "pygments_lexer": "ipython3", 742 | "version": "3.7.1" 743 | } 744 | }, 745 | "nbformat": 4, 746 | "nbformat_minor": 2 747 | } 748 | -------------------------------------------------------------------------------- /modules_v2.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | import tensorflow as tf 4 | import numpy as np 5 | import matplotlib.pyplot as plt 6 | 7 | 8 | def positional_encoding(seq_len, num_units, visualization=False): 9 | """ 10 | Positional_Encoding for a given tensor. 11 | 12 | Args: 13 | :param inputs: [Tensor], A tensor contains the ids to be search from the lookup table, shape = [batch_size, seq_len] 14 | :param num_units: [Int], Hidden size of embedding 15 | :param visualization: [Boolean], If True, it will plot the graph of position encoding 16 | :return: [Tensor] A tensor with shape [1, seq_len, num_units] 17 | """ 18 | def __get_angles(pos, i, d_model): 19 | angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) 20 | return pos * angle_rates 21 | 22 | angle_rads = __get_angles(np.arange(seq_len)[:, np.newaxis], 23 | np.arange(num_units)[np.newaxis, :], 24 | num_units) 25 | 26 | sine = np.sin(angle_rads[:, 0::2]) 27 | cosine = np.cos(angle_rads[:, 1::2]) 28 | 29 | pos_encoding = np.concatenate([sine, cosine], axis=-1) 30 | pos_encoding = pos_encoding[np.newaxis, ...] 31 | 32 | if visualization: 33 | plt.figure(figsize=(12, 8)) 34 | plt.pcolormesh(pos_encoding[0], cmap='RdBu') 35 | plt.xlabel('Depth') 36 | plt.xlim((0, num_units)) 37 | plt.ylabel('Position') 38 | plt.colorbar() 39 | plt.show() 40 | 41 | return tf.cast(pos_encoding, tf.float32) 42 | 43 | 44 | def scaled_dot_product_attention(q, k, v, mask=None): 45 | """ 46 | Calculate the attention weights. 47 | 48 | Args: 49 | :param q: [Tensor], query with shape [..., seq_len_q, d_model] 50 | :param k: [Tensor], key with shape [..., seq_len_k, d_model] 51 | :param v: [Tensor], value with shape [..., seq_len_v, d_model] 52 | :param mask: [Tensor], Float tensor with shape [..., seq_len_q, seq_len_k], default to None 53 | :return: [Tensor], output, attention_weights 54 | """ 55 | matmul_qk = tf.matmul(q, k, transpose_b=True) 56 | 57 | dk = tf.cast(tf.shape(k)[-1], tf.float32) 58 | scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) 59 | 60 | # Heuristic mask implementation that add an infinitesimal number so that its effect can be ignored 61 | if mask is not None: 62 | scaled_attention_logits += (mask * -1e9) 63 | 64 | attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) 65 | output = tf.matmul(attention_weights, v) 66 | 67 | return output, attention_weights 68 | 69 | 70 | class multihead_attention(tf.keras.layers.Layer): 71 | def __init__(self, d_model, num_heads): 72 | super(multihead_attention, self).__init__() 73 | self.num_heads = num_heads 74 | self.d_model = d_model 75 | 76 | assert d_model % self.num_heads == 0 77 | self.depth = d_model // num_heads 78 | 79 | self.wq = tf.keras.layers.Dense(d_model) 80 | self.wk = tf.keras.layers.Dense(d_model) 81 | self.wv = tf.keras.layers.Dense(d_model) 82 | 83 | self.dense = tf.keras.layers.Dense(d_model) 84 | 85 | def split_heads(self, x, batch_size): 86 | """ 87 | Split the last dimension into (num_heads, depth). 88 | Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth). 89 | """ 90 | 91 | x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) 92 | return tf.transpose(x, perm=[0, 2, 1, 3]) 93 | 94 | def call(self, v, k, q, mask): 95 | batch_size = tf.shape(q)[0] 96 | 97 | q = self.wq(q) 98 | k = self.wk(k) 99 | v = self.wv(v) 100 | 101 | q = self.split_heads(q, batch_size) 102 | k = self.split_heads(k, batch_size) 103 | v = self.split_heads(v, batch_size) 104 | 105 | scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask) 106 | scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) 107 | concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) 108 | output = self.dense(concat_attention) 109 | 110 | return output, attention_weights 111 | 112 | 113 | class pointwise_feedforward(tf.keras.layers.Layer): 114 | def __init__(self, d_model, dff): 115 | super(pointwise_feedforward, self).__init__() 116 | self.d_model = d_model 117 | self.dff = dff 118 | 119 | self.dense_layer_1 = tf.keras.layers.Dense(dff, activation='relu') 120 | self.dense_layer_2 = tf.keras.layers.Dense(d_model) 121 | 122 | def call(self, x): 123 | output = self.dense_layer_1(x) 124 | output = self.dense_layer_2(output) 125 | 126 | return output 127 | 128 | 129 | class EncoderBlock(tf.keras.layers.Layer): 130 | def __init__(self, d_model, num_heads, dff, rate=0.1): 131 | super(EncoderBlock, self).__init__() 132 | self.multi_attn = multihead_attention(d_model, num_heads) 133 | self.ffn = pointwise_feedforward(d_model, dff) 134 | 135 | self.layer_norm_1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 136 | self.layer_norm_2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 137 | 138 | self.dropout_1 = tf.keras.layers.Dropout(rate) 139 | self.dropout_2 = tf.keras.layers.Dropout(rate) 140 | 141 | def call(self, x, training, padding_mask): 142 | attn_output, attn_weight = self.multi_attn(x, x, x, padding_mask) 143 | attn_output = self.dropout_1(attn_output, training=training) 144 | output_1 = self.layer_norm_1(x + attn_output) 145 | 146 | ffn_output = self.ffn(output_1) 147 | ffn_output = self.dropout_2(ffn_output, training=training) 148 | output_2 = self.layer_norm_2(output_1 + ffn_output) 149 | 150 | return output_2, attn_weight 151 | 152 | 153 | class DecoderBlock(tf.keras.layers.Layer): 154 | def __init__(self, d_model, num_heads, dff, rate=0.1): 155 | super(DecoderBlock, self).__init__() 156 | self.multi_attn_1 = multihead_attention(d_model, num_heads) 157 | self.multi_attn_2 = multihead_attention(d_model, num_heads) 158 | 159 | self.ffn = pointwise_feedforward(d_model, dff) 160 | 161 | self.layer_norm_1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 162 | self.layer_norm_2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 163 | self.layer_norm_3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 164 | 165 | self.dropout_1 = tf.keras.layers.Dropout(rate) 166 | self.dropout_2 = tf.keras.layers.Dropout(rate) 167 | self.dropout_3 = tf.keras.layers.Dropout(rate) 168 | 169 | def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 170 | attn_output_1, attn_weight_1 = self.multi_attn_1(x, x, x, look_ahead_mask) 171 | attn_output_1 = self.dropout_1(attn_output_1, training=training) 172 | output_1 = self.layer_norm_1(x + attn_output_1) 173 | 174 | attn_output_2, attn_weight_2 = self.multi_attn_2(enc_output, enc_output, output_1, padding_mask) 175 | attn_output_2 = self.dropout_2(attn_output_2, training=training) 176 | output_2 = self.layer_norm_2(output_1 + attn_output_2) 177 | 178 | ffn_output = self.ffn(output_2) 179 | ffn_output = self.dropout_3(ffn_output, training=training) 180 | output_3 = self.layer_norm_3(output_2 + ffn_output) 181 | 182 | return output_3, attn_weight_1, attn_weight_2 183 | 184 | 185 | class Encoder(tf.keras.layers.Layer): 186 | def __init__(self, num_blocks, d_model, num_heads, dff, input_vocab_size, plot_pos_embedding, rate=0.1): 187 | super(Encoder, self).__init__() 188 | self.d_model = d_model 189 | self.num_blocks = num_blocks 190 | self.plot_pos_embedding = plot_pos_embedding 191 | 192 | self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) 193 | self.pos_embedding = positional_encoding(input_vocab_size, d_model, plot_pos_embedding) 194 | 195 | self.enc_blocks = [EncoderBlock(d_model, num_heads, dff, rate) for _ in range(num_blocks)] 196 | self.dropout = tf.keras.layers.Dropout(rate) 197 | 198 | def call(self, x, training, padding_mask, attn_dict): 199 | seq_len = tf.shape(x)[1] 200 | 201 | x = self.embedding(x) 202 | x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 203 | x += self.pos_embedding[:, :seq_len, :] 204 | 205 | x = self.dropout(x, training=training) 206 | 207 | for i in range(self.num_blocks): 208 | x, attn_weight = self.enc_blocks[i](x, training, padding_mask) 209 | attn_dict['encoder_layer{}_block'.format(i + 1)] = attn_weight 210 | 211 | return x, attn_dict 212 | 213 | 214 | class Decoder(tf.keras.layers.Layer): 215 | def __init__(self, num_blocks, d_model, num_heads, dff, target_vocab_size, plot_pos_embedding, rate=0.1): 216 | super(Decoder, self).__init__() 217 | self.d_model = d_model 218 | self.num_blocks = num_blocks 219 | self.plot_pos_embedding = plot_pos_embedding 220 | 221 | self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) 222 | self.pos_embedding = positional_encoding(target_vocab_size, d_model, plot_pos_embedding) 223 | 224 | self.dec_blocks = [DecoderBlock(d_model, num_heads, dff, rate) for _ in range(num_blocks)] 225 | self.dropout = tf.keras.layers.Dropout(rate) 226 | 227 | def call(self, x, enc_output, training, look_ahead_mask, padding_mask, attn_dict): 228 | seq_len = tf.shape(x)[1] 229 | 230 | x = self.embedding(x) 231 | x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 232 | x += self.pos_embedding[:, :seq_len, :] 233 | 234 | x = self.dropout(x, training=training) 235 | 236 | for i in range(self.num_blocks): 237 | x, attn_weight_1, attn_weight_2 = self.dec_blocks[i](x, enc_output, training, look_ahead_mask, padding_mask) 238 | attn_dict['decoder_layer{}_block'.format(i + 1)] = attn_weight_1 239 | attn_dict['decoder_layer{}_cross'.format(i + 1)] = attn_weight_2 240 | 241 | return x, attn_dict 242 | 243 | 244 | class Transformer(tf.keras.Model): 245 | def __init__(self, num_blocks, d_model, num_heads, dff, input_vocab_size, target_vocab_size, plot_pos_embedding, rate=0.1): 246 | super(Transformer, self).__init__() 247 | 248 | self.encoder = Encoder(num_blocks, d_model, num_heads, dff, input_vocab_size, plot_pos_embedding, rate) 249 | self.decoder = Decoder(num_blocks, d_model, num_heads, dff, target_vocab_size, plot_pos_embedding, rate) 250 | self.final_layer = tf.keras.layers.Dense(target_vocab_size) 251 | 252 | def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): 253 | attn_dict = {} 254 | 255 | enc_output, attn_dict = self.encoder(inp, training, enc_padding_mask, attn_dict) 256 | dec_output, attn_dict = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask, attn_dict) 257 | final_output = self.final_layer(dec_output) 258 | 259 | return final_output, attn_dict 260 | -------------------------------------------------------------------------------- /old_version/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/old_version/__init__.py -------------------------------------------------------------------------------- /old_version/data_loader.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | from params import Params as pm 4 | import codecs 5 | import sys 6 | import numpy as np 7 | import tensorflow as tf 8 | 9 | 10 | def load_vocab(vocab): 11 | ''' 12 | Load word token from encoding dictionary 13 | 14 | Args: 15 | vocab: [String], vocabulary files 16 | ''' 17 | vocab = [line.split()[0] for line in codecs.open('dictionary/{}'.format(vocab), 'r', 'utf-8').read().splitlines() if int(line.split()[1]) >= pm.word_limit_size] 18 | word2idx_dic = {word: idx for idx, word in enumerate(vocab)} 19 | idx2word_dic = {idx: word for idx, word in enumerate(vocab)} 20 | return word2idx_dic, idx2word_dic 21 | 22 | 23 | def generate_dataset(source_sents, target_sents): 24 | ''' 25 | Parse source sentences and target sentences from corpus with some formats 26 | 27 | Parse word token of each sentences 28 | 29 | Args: 30 | source_sents: [List], encoding sentences from src-train file 31 | target_sents: [List], decoding sentences from tgt-train file 32 | 33 | Padding for word token sentence list 34 | ''' 35 | en2idx, idx2en = load_vocab('en.vocab.tsv') 36 | de2idx, idx2de = load_vocab('de.vocab.tsv') 37 | 38 | in_list, out_list, Sources, Targets = [], [], [], [] 39 | for source_sent, target_sent in zip(source_sents, target_sents): 40 | # 1 means 41 | inpt = [en2idx.get(word, 1) for word in (source_sent + u" ").split()] 42 | outpt = [de2idx.get(word, 1) for word in (target_sent + u" ").split()] 43 | if max(len(inpt), len(outpt)) <= pm.maxlen: 44 | # sentence token list 45 | in_list.append(np.array(inpt)) 46 | out_list.append(np.array(outpt)) 47 | # sentence list 48 | Sources.append(source_sent) 49 | Targets.append(target_sent) 50 | 51 | X = np.zeros([len(in_list), pm.maxlen], np.int32) 52 | Y = np.zeros([len(out_list), pm.maxlen], np.int32) 53 | for i, (x, y) in enumerate(zip(in_list, out_list)): 54 | X[i] = np.lib.pad(x, (0, pm.maxlen - len(x)), 'constant', constant_values = (0, 0)) 55 | Y[i] = np.lib.pad(y, (0, pm.maxlen - len(y)), 'constant', constant_values = (0, 0)) 56 | 57 | return X, Y, Sources, Targets 58 | 59 | 60 | def load_data(l_data): 61 | ''' 62 | Read train-data from input datasets 63 | 64 | Args: 65 | l_data: [String], the file name of datasets which used to generate tokens 66 | ''' 67 | if l_data == 'train': 68 | en_sents = [line for line in codecs.open(pm.src_train, 'r', 'utf-8').read().split('\n') if line] 69 | de_sents = [line for line in codecs.open(pm.tgt_train, 'r', 'utf-8').read().split('\n') if line] 70 | if len(en_sents) == len(de_sents): 71 | inpt, outpt, Sources, Targets = generate_dataset(en_sents, de_sents) 72 | else: 73 | print("MSG : Source length is different from Target length.") 74 | sys.exit(0) 75 | return inpt, outpt 76 | elif l_data == 'test': 77 | en_sents = [line for line in codecs.open(pm.src_test, 'r', 'utf-8').read().split('\n') if line] 78 | de_sents = [line for line in codecs.open(pm.tgt_test, 'r', 'utf-8').read().split('\n') if line] 79 | if len(en_sents) == len(de_sents): 80 | inpt, outpt, Sources, Targets = generate_dataset(en_sents, de_sents) 81 | else: 82 | print("MSG : Source length is different from Target length.") 83 | sys.exit(0) 84 | return inpt, Sources, Targets 85 | else: 86 | print("MSG : Error when load data.") 87 | sys.exit(0) 88 | 89 | 90 | def get_batch_data(): 91 | ''' 92 | A batch dataset generator 93 | ''' 94 | inpt, outpt = load_data("train") 95 | 96 | batch_num = len(inpt) // pm.batch_size 97 | 98 | inpt = tf.convert_to_tensor(inpt, tf.int32) 99 | outpt = tf.convert_to_tensor(outpt, tf.int32) 100 | 101 | # parsing data into queue used for pipeline operations as a generator. 102 | input_queues = tf.train.slice_input_producer([inpt, outpt]) 103 | 104 | # multi-thread processing using batch 105 | x, y = tf.train.shuffle_batch(input_queues, 106 | num_threads = 8, 107 | batch_size = pm.batch_size, 108 | capacity = pm.batch_size * 64, 109 | min_after_dequeue = pm.batch_size * 32, 110 | allow_smaller_final_batch = False) 111 | 112 | return x, y, batch_num 113 | 114 | 115 | 116 | -------------------------------------------------------------------------------- /old_version/eval.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | import codecs 4 | import os 5 | from train import Graph 6 | from params import Params as pm 7 | from data_loader import load_data, load_vocab 8 | import tensorflow as tf 9 | import numpy as np 10 | from nltk.translate.bleu_score import corpus_bleu 11 | 12 | 13 | def eval(): 14 | g = Graph(is_training = False) 15 | print("MSG : Graph loaded!") 16 | 17 | X, Sources, Targets = load_data('test') 18 | en2idx, idx2en = load_vocab('en.vocab.tsv') 19 | de2idx, idx2de = load_vocab('de.vocab.tsv') 20 | 21 | with g.graph.as_default(): 22 | sv = tf.train.Supervisor() 23 | with sv.managed_session(config = tf.ConfigProto(allow_soft_placement = True)) as sess: 24 | # load pre-train model 25 | sv.saver.restore(sess, tf.train.latest_checkpoint(pm.checkpoint)) 26 | print("MSG : Restore Model!") 27 | 28 | mname = open(pm.checkpoint + '/checkpoint', 'r').read().split('"')[1] 29 | 30 | if not os.path.exists('Results'): 31 | os.mkdir('Results') 32 | with codecs.open("Results/" + mname, 'w', 'utf-8') as f: 33 | list_of_refs, predict = [], [] 34 | # Get a batch 35 | for i in range(len(X) // pm.batch_size): 36 | x = X[i * pm.batch_size: (i + 1) * pm.batch_size] 37 | sources = Sources[i * pm.batch_size: (i + 1) * pm.batch_size] 38 | targets = Targets[i * pm.batch_size: (i + 1) * pm.batch_size] 39 | 40 | # Autoregressive inference 41 | preds = np.zeros((pm.batch_size, pm.maxlen), dtype = np.int32) 42 | for j in range(pm.maxlen): 43 | _preds = sess.run(g.preds, feed_dict = {g.inpt: x, g.outpt: preds}) 44 | preds[:, j] = _preds[:, j] 45 | 46 | for source, target, pred in zip(sources, targets, preds): 47 | got = " ".join(idx2de[idx] for idx in pred).split("")[0].strip() 48 | f.write("- Source: {}\n".format(source)) 49 | f.write("- Ground Truth: {}\n".format(target)) 50 | f.write("- Predict: {}\n\n".format(got)) 51 | f.flush() 52 | 53 | # Bleu Score 54 | ref = target.split() 55 | prediction = got.split() 56 | if len(ref) > pm.word_limit_lower and len(prediction) > pm.word_limit_lower: 57 | list_of_refs.append([ref]) 58 | predict.append(prediction) 59 | 60 | score = corpus_bleu(list_of_refs, predict) 61 | f.write("Bleu Score = " + str(100 * score)) 62 | 63 | 64 | if __name__ == '__main__': 65 | eval() 66 | print("MSG : Done!") 67 | -------------------------------------------------------------------------------- /old_version/make_dic.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | from params import Params as pm 4 | import codecs 5 | import os 6 | from collections import Counter 7 | 8 | 9 | def make_dic(path, fname): 10 | ''' 11 | Constructs vocabulary as a dictionary 12 | 13 | Args: 14 | path: [String], Input file path 15 | fname: [String], Output file name 16 | 17 | Build vocabulary line by line to dictionary/ path 18 | ''' 19 | text = codecs.open(path, 'r', 'utf-8').read() 20 | words = text.split() 21 | wordCount = Counter(words) 22 | if not os.path.exists('dictionary'): 23 | os.mkdir('dictionary') 24 | with codecs.open('dictionary/{}'.format(fname), 'w', 'utf-8') as f: 25 | f.write("{}\t1000000000\n{}\t1000000000\n{}\t1000000000\n{}\t1000000000\n".format("","","","")) 26 | for word, count in wordCount.most_common(len(wordCount)): 27 | f.write(u"{}\t{}\n".format(word, count)) 28 | 29 | 30 | if __name__ == '__main__': 31 | make_dic(pm.src_train, "en.vocab.tsv") 32 | make_dic(pm.tgt_train, "de.vocab.tsv") 33 | print("MSG : Constructing Dictionary Finished!") 34 | 35 | -------------------------------------------------------------------------------- /old_version/modules.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | import tensorflow as tf 4 | import numpy as np 5 | import math 6 | 7 | 8 | def normalize(inputs, 9 | epsilon = 1e-8, 10 | scope = "ln", 11 | reuse = None): 12 | ''' 13 | Implement layer normalization 14 | 15 | Args: 16 | inputs: [Tensor], A tensor with two or more dimensions, where the first one is "batch_size" 17 | epsilon: [Float], A small number for preventing ZeroDivision Error 18 | scope: [String], Optional scope for "variable_scope" 19 | reuse: [Boolean], If to reuse the weights of a previous layer by the same name 20 | 21 | Returns: 22 | A tensor with the same shape and data type as "inputs" 23 | ''' 24 | with tf.variable_scope(scope, reuse = reuse): 25 | inputs_shape = inputs.get_shape() 26 | params_shape = inputs_shape[-1 :] 27 | 28 | mean, variance = tf.nn.moments(inputs, [-1], keep_dims = True) 29 | beta = tf.Variable(tf.zeros(params_shape)) 30 | gamma = tf.Variable(tf.ones(params_shape)) 31 | normalized = (inputs - mean) / ((variance + epsilon) ** (.5)) 32 | outputs = gamma * normalized + beta 33 | 34 | return outputs 35 | 36 | 37 | def positional_encoding(inputs, 38 | vocab_size, 39 | num_units, 40 | zero_pad = True, 41 | scale = True, 42 | scope = "positional_embedding", 43 | reuse = None): 44 | ''' 45 | Positional_Encoding for a given tensor. 46 | 47 | Args: 48 | inputs: [Tensor], A tensor contains the ids to be search from the lookup table, shape = [batch_size, 1 + len(inpt)] 49 | vocab_size: [Int], Vocabulary size 50 | num_units: [Int], Hidden size of embedding 51 | zero_pad: [Boolean], If True, all the values of the first row(id = 0) should be constant zero 52 | scale: [Boolean], If True, the output will be multiplied by sqrt num_units(check details from paper) 53 | scope: [String], Optional scope for 'variable_scope' 54 | reuse: [Boolean], If to reuse the weights of a previous layer by the same name 55 | 56 | Returns: 57 | A 'Tensor' with one more rank than inputs's, with the dimensionality should be 'num_units' 58 | ''' 59 | N, T = inputs.get_shape().as_list() 60 | 61 | with tf.variable_scope(scope, reuse=reuse): 62 | position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) 63 | 64 | # First part of the PE function: sin and cos argument 65 | position_enc = np.array([ 66 | [pos / np.power(10000, 2.*i/num_units) for i in range(num_units)] 67 | for pos in range(T)]) 68 | 69 | # Second part, apply the cosine to even columns and sin to odds. 70 | position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) # dim 2i 71 | position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # dim 2i+1 72 | 73 | # Convert to a tensor 74 | lookup_table = tf.convert_to_tensor(position_enc) 75 | 76 | if zero_pad: 77 | lookup_table = tf.concat((tf.zeros(shape=[1, num_units]), 78 | lookup_table[1:, :]), 0) 79 | outputs = tf.nn.embedding_lookup(lookup_table, position_ind) 80 | 81 | if scale: 82 | outputs = outputs * num_units**0.5 83 | 84 | return tf.cast(outputs, tf.float32) 85 | 86 | 87 | def embedding(inputs, 88 | vocab_size, 89 | num_units, 90 | zero_pad = True, 91 | scale = True, 92 | scope = "embedding", 93 | reuse = None): 94 | ''' 95 | Embed a given tensor. 96 | 97 | Args: 98 | inputs: [Tensor], A tensor contains the ids to be search from the lookup table 99 | vocab_size: [Int], Vocabulary size 100 | num_units: [Int], Hidden size of embedding 101 | zero_pad: [Boolean], If True, all the values of the first row(id = 0) should be constant zero 102 | scale: [Boolean], If True, the output will be multiplied by sqrt num_units(check details from paper) 103 | scope: [String], Optional scope for 'variable_scope' 104 | reuse: [Boolean], If to reuse the weights of a previous layer by the same name 105 | 106 | Returns: 107 | A 'Tensor' with one more rank than inputs's, with the dimensionality should be 'num_units' 108 | ''' 109 | with tf.variable_scope(scope, reuse = reuse): 110 | lookup_table = tf.get_variable('lookup_table', 111 | dtype = tf.float32, 112 | shape = [vocab_size, num_units], 113 | initializer = tf.contrib.layers.xavier_initializer()) 114 | 115 | if zero_pad: 116 | lookup_table = tf.concat((tf.zeros(shape = [1, num_units]), 117 | lookup_table[1:, :]), 0) 118 | outputs = tf.nn.embedding_lookup(lookup_table, inputs) 119 | 120 | if scale: 121 | outputs = outputs * math.sqrt(num_units) 122 | 123 | return outputs 124 | 125 | 126 | def multihead_attention(queries, 127 | keys, 128 | num_units = None, 129 | num_heads = 8, 130 | dropout_rate = 0, 131 | is_training = True, 132 | causality = False, 133 | scope = "multihead_attention", 134 | reuse = None): 135 | ''' 136 | Implement multihead attention 137 | 138 | Args: 139 | queries: [Tensor], A 3-dimensions tensor with shape of [N, T_q, S_q] 140 | keys: [Tensor], A 3-dimensions tensor with shape of [N, T_k, S_k] 141 | num_units: [Int], Attention size 142 | num_heads: [Int], Number of heads 143 | dropout_rate: [Float], A ratio of dropout 144 | is_training: [Boolean], If true, controller of mechanism for dropout 145 | causality: [Boolean], If true, units that reference the future are masked 146 | scope: [String], Optional scope for "variable_scope" 147 | reuse: [Boolean], If to reuse the weights of a previous layer by the same name 148 | 149 | Returns: 150 | A 3-dimensions tensor with shape of [N, T_q, S] 151 | ''' 152 | with tf.variable_scope(scope, reuse = reuse): 153 | if num_units is None: 154 | # length of sentence 155 | num_units = queries.get_shape().as_list()[-1] 156 | 157 | # Linear layers in Figure 2(right) 158 | # shape = [N, T_q, S] 159 | Q = tf.layers.dense(queries, num_units, activation = tf.nn.relu) 160 | # shape = [N, T_k, S] 161 | K = tf.layers.dense(keys, num_units, activation = tf.nn.relu) 162 | # shape = [N, T_k, S] 163 | V = tf.layers.dense(keys, num_units, activation = tf.nn.relu) 164 | 165 | # Split and concat 166 | # shape = [N*h, T_q, S/h] 167 | Q_ = tf.concat(tf.split(Q, num_heads, axis = 2), axis = 0) 168 | # shape = [N*h, T_k, S/h] 169 | K_ = tf.concat(tf.split(K, num_heads, axis = 2), axis = 0) 170 | # shape = [N*h, T_k, S/h] 171 | V_ = tf.concat(tf.split(V, num_heads, axis = 2), axis = 0) 172 | 173 | # shape = [N*h, T_q, T_k] 174 | outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1])) 175 | 176 | # Scale 177 | outputs = outputs / (K_.get_shape().as_list()[-1] ** 0.5) 178 | 179 | # Masking 180 | # shape = [N, T_k] 181 | key_masks = tf.sign(tf.abs(tf.reduce_sum(keys, axis = -1))) 182 | # shape = [N*h, T_k] 183 | key_masks = tf.tile(key_masks, [num_heads, 1]) 184 | # shape = [N*h, T_q, T_k] 185 | key_masks = tf.tile(tf.expand_dims(key_masks, 1), [1, tf.shape(queries)[1], 1]) 186 | 187 | # If key_masks == 0 outputs = [1]*length(outputs) 188 | paddings = tf.ones_like(outputs) * (-math.pow(2, 32) + 1) 189 | # shape = [N*h, T_q, T_k] 190 | outputs = tf.where(tf.equal(key_masks, 0), paddings, outputs) 191 | 192 | if causality: 193 | # reduce dims : shape = [T_q, T_k] 194 | diag_vals = tf.ones_like(outputs[0, :, :]) 195 | # shape = [T_q, T_k] 196 | # use triangular matrix to ignore the affect from future words 197 | # like : [[1,0,0] 198 | # [1,2,0] 199 | # [1,2,3]] 200 | tril = tf.contrib.linalg.LinearOperatorTriL(diag_vals).to_dense() 201 | # shape = [N*h, T_q, T_k] 202 | masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(outputs)[0], 1, 1]) 203 | 204 | paddings = tf.ones_like(masks) * (-math.pow(2, 32) + 1) 205 | # shape = [N*h, T_q, T_k] 206 | outputs = tf.where(tf.equal(masks, 0), paddings, outputs) 207 | 208 | # Output Activation 209 | outputs = tf.nn.softmax(outputs) 210 | 211 | # Query Masking 212 | # shape = [N, T_q] 213 | query_masks = tf.sign(tf.abs(tf.reduce_sum(queries, axis = -1))) 214 | # shape = [N*h, T_q] 215 | query_masks = tf.tile(query_masks, [num_heads, 1]) 216 | # shape = [N*h, T_q, T_k] 217 | query_masks = tf.tile(tf.expand_dims(query_masks, -1), [1, 1, tf.shape(keys)[1]]) 218 | outputs *= query_masks 219 | 220 | # Dropouts 221 | outputs = tf.layers.dropout(outputs, rate = dropout_rate, training = tf.convert_to_tensor(is_training)) 222 | 223 | # Weighted sum 224 | # shape = [N*h, T_q, S/h] 225 | outputs = tf.matmul(outputs, V_) 226 | 227 | # Restore shape 228 | # shape = [N, T_q, S] 229 | outputs = tf.concat(tf.split(outputs, num_heads, axis = 0), axis = 2) 230 | 231 | # Residual connection 232 | outputs += queries 233 | 234 | # Normalize 235 | # shape = [N, T_q, S] 236 | outputs = normalize(outputs) 237 | 238 | return outputs 239 | 240 | 241 | def feedforward(inputs, 242 | num_units = [2048, 512], 243 | scope = "multihead_attention", 244 | reuse = None): 245 | ''' 246 | Position-wise feed forward neural network 247 | 248 | Args: 249 | inputs: [Tensor], A 3d tensor with shape [N, T, S] 250 | num_units: [Int], A list of convolution parameters 251 | scope: [String], Optional scope for "variable_scope" 252 | reuse: [Boolean], If to reuse the weights of a previous layer by the same name 253 | 254 | Return: 255 | A tensor converted by feedforward layers from inputs 256 | ''' 257 | 258 | with tf.variable_scope(scope, reuse = reuse): 259 | # params = {"inputs": inputs, "filters": num_units[0], "kernel_size": 1, \ 260 | # "activation": tf.nn.relu, "use_bias": True} 261 | # outputs = tf.layers.conv1d(inputs = inputs, filters = num_units[0], kernel_size = 1, activation = tf.nn.relu, use_bias = True) 262 | # outputs = tf.layers.conv1d(**params) 263 | params = {"inputs": inputs, "num_outputs": num_units[0], \ 264 | "activation_fn": tf.nn.relu} 265 | outputs = tf.contrib.layers.fully_connected(**params) 266 | 267 | # params = {"inputs": inputs, "filters": num_units[1], "kernel_size": 1, \ 268 | # "activation": None, "use_bias": True} 269 | params = {"inputs": inputs, "num_outputs": num_units[1], \ 270 | "activation_fn": None} 271 | # outputs = tf.layers.conv1d(inputs = inputs, filters = num_units[1], kernel_size = 1, activation = None, use_bias = True) 272 | # outputs = tf.layers.conv1d(**params) 273 | outputs = tf.contrib.layers.fully_connected(**params) 274 | 275 | # residual connection 276 | outputs += inputs 277 | 278 | outputs = normalize(outputs) 279 | 280 | return outputs 281 | 282 | 283 | def label_smoothing(inputs, epsilon = 0.1): 284 | ''' 285 | Implement label smoothing 286 | 287 | Args: 288 | inputs: [Tensor], A 3d tensor with shape of [N, T, V] 289 | epsilon: [Float], Smoothing rate 290 | 291 | Return: 292 | A tensor after smoothing 293 | ''' 294 | 295 | K = inputs.get_shape().as_list()[-1] 296 | return ((1 - epsilon) * inputs) + (epsilon / K) 297 | -------------------------------------------------------------------------------- /old_version/params.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | class Params: 3 | ''' 4 | Parameters of our model 5 | ''' 6 | src_train = "../data/src-train.txt" 7 | tgt_train = "../data/tgt-train.txt" 8 | src_test = "../data/src-val.txt" 9 | tgt_test = "../data/tgt-val.txt" 10 | 11 | maxlen = 10 12 | batch_size = 32 13 | hidden_units = 512 14 | logdir = 'logdir' 15 | num_epochs = 250 16 | num_identical = 6 17 | num_heads = 8 18 | dropout = 0.1 19 | learning_rate = 0.0001 20 | word_limit_size = 20 21 | word_limit_lower = 3 22 | checkpoint = 'checkpoint' 23 | -------------------------------------------------------------------------------- /old_version/requirements.txt: -------------------------------------------------------------------------------- 1 | nltk==3.4 2 | numpy==1.15.4 3 | tqdm==4.28.1 4 | tensorflow-gpu==1.12.0 -------------------------------------------------------------------------------- /old_version/train.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | import tensorflow as tf 4 | from params import Params as pm 5 | from data_loader import get_batch_data, load_vocab 6 | from modules import * 7 | from tqdm import tqdm 8 | import os 9 | 10 | 11 | class Graph(): 12 | def __init__(self, is_training = True): 13 | self.graph = tf.Graph() 14 | with self.graph.as_default(): 15 | if is_training: 16 | self.inpt, self.outpt, self.batch_num = get_batch_data() 17 | else: 18 | self.inpt = tf.placeholder(tf.int32, shape = (None, pm.maxlen)) 19 | self.outpt = tf.placeholder(tf.int32, shape = (None, pm.maxlen)) 20 | 21 | # start with 2() and without 3() 22 | self.decoder_input = tf.concat((tf.ones_like(self.outpt[:, :1])*2, self.outpt[:, :-1]), -1) 23 | 24 | en2idx, idx2en = load_vocab('en.vocab.tsv') 25 | de2idx, idx2de = load_vocab('de.vocab.tsv') 26 | 27 | # Encoder 28 | with tf.variable_scope("encoder"): 29 | self.enc = embedding(self.inpt, 30 | vocab_size = len(en2idx), 31 | num_units = pm.hidden_units, 32 | scale = True, 33 | scope = "enc_embed") 34 | 35 | # Position Encoding(use range from 0 to len(inpt) to represent position dim of each words) 36 | # tf.tile(tf.expand_dims(tf.range(tf.shape(self.inpt)[1]), 0), [tf.shape(self.inpt)[0], 1]), 37 | self.enc += positional_encoding(self.inpt, 38 | vocab_size = pm.maxlen, 39 | num_units = pm.hidden_units, 40 | zero_pad = False, 41 | scale = False, 42 | scope = "enc_pe") 43 | 44 | # Dropout 45 | self.enc = tf.layers.dropout(self.enc, 46 | rate = pm.dropout, 47 | training = tf.convert_to_tensor(is_training)) 48 | 49 | # Identical 50 | for i in range(pm.num_identical): 51 | with tf.variable_scope("num_identical_{}".format(i)): 52 | # Multi-head Attention 53 | self.enc = multihead_attention(queries = self.enc, 54 | keys = self.enc, 55 | num_units = pm.hidden_units, 56 | num_heads = pm.num_heads, 57 | dropout_rate = pm.dropout, 58 | is_training = is_training, 59 | causality = False) 60 | 61 | self.enc = feedforward(self.enc, num_units = [4 * pm.hidden_units, pm.hidden_units]) 62 | 63 | # Decoder 64 | with tf.variable_scope("decoder"): 65 | self.dec = embedding(self.decoder_input, 66 | vocab_size = len(de2idx), 67 | num_units = pm.hidden_units, 68 | scale = True, 69 | scope = "dec_embed") 70 | 71 | # Position Encoding(use range from 0 to len(inpt) to represent position dim) 72 | self.dec += positional_encoding(self.decoder_input, 73 | vocab_size = pm.maxlen, 74 | num_units = pm.hidden_units, 75 | zero_pad = False, 76 | scale = False, 77 | scope = "dec_pe") 78 | 79 | # Dropout 80 | self.dec = tf.layers.dropout(self.dec, 81 | rate = pm.dropout, 82 | training = tf.convert_to_tensor(is_training)) 83 | 84 | # Identical 85 | for i in range(pm.num_identical): 86 | with tf.variable_scope("num_identical_{}".format(i)): 87 | # Multi-head Attention(self-attention) 88 | self.dec = multihead_attention(queries = self.dec, 89 | keys = self.dec, 90 | num_units = pm.hidden_units, 91 | num_heads = pm.num_heads, 92 | dropout_rate = pm.dropout, 93 | is_training = is_training, 94 | causality = True, 95 | scope = "self_attention") 96 | 97 | # Multi-head Attention(vanilla-attention) 98 | self.dec = multihead_attention(queries=self.dec, 99 | keys=self.enc, 100 | num_units=pm.hidden_units, 101 | num_heads=pm.num_heads, 102 | dropout_rate=pm.dropout, 103 | is_training=is_training, 104 | causality=False, 105 | scope="vanilla_attention") 106 | 107 | self.dec = feedforward(self.dec, num_units = [4 * pm.hidden_units, pm.hidden_units]) 108 | 109 | # Linear 110 | self.logits = tf.layers.dense(self.dec, len(de2idx)) 111 | self.preds = tf.to_int32(tf.arg_max(self.logits, dimension = -1)) 112 | self.istarget = tf.to_float(tf.not_equal(self.outpt, 0)) 113 | self.acc = tf.reduce_sum(tf.to_float(tf.equal(self.preds, self.outpt)) * self.istarget) / (tf.reduce_sum(self.istarget)) 114 | tf.summary.scalar('acc', self.acc) 115 | 116 | if is_training: 117 | # smooth inputs 118 | self.y_smoothed = label_smoothing(tf.one_hot(self.outpt, depth = len(de2idx))) 119 | # loss function 120 | self.loss = tf.nn.softmax_cross_entropy_with_logits(logits = self.logits, labels = self.y_smoothed) 121 | self.mean_loss = tf.reduce_sum(self.loss * self.istarget) / (tf.reduce_sum(self.istarget)) 122 | 123 | self.global_step = tf.Variable(0, name = 'global_step', trainable = False) 124 | # optimizer 125 | self.optimizer = tf.train.AdamOptimizer(learning_rate = pm.learning_rate, beta1 = 0.9, beta2 = 0.98, epsilon = 1e-8) 126 | self.train_op = self.optimizer.minimize(self.mean_loss, global_step = self.global_step) 127 | 128 | tf.summary.scalar('mean_loss', self.mean_loss) 129 | self.merged = tf.summary.merge_all() 130 | 131 | 132 | if __name__ == '__main__': 133 | en2idx, idx2en = load_vocab('en.vocab.tsv') 134 | de2idx, idx2de = load_vocab('de.vocab.tsv') 135 | 136 | g = Graph(True) 137 | print("MSG : Graph loaded!") 138 | 139 | # save model and use this model to training 140 | supvisor = tf.train.Supervisor(graph = g.graph, 141 | logdir = pm.logdir, 142 | save_model_secs = 0) 143 | 144 | with supvisor.managed_session() as sess: 145 | for epoch in range(1, pm.num_epochs + 1): 146 | if supvisor.should_stop(): 147 | break 148 | # process bar 149 | for step in tqdm(range(g.batch_num), total = g.batch_num, ncols = 70, leave = False, unit = 'b'): 150 | sess.run(g.train_op) 151 | 152 | if not os.path.exists(pm.checkpoint): 153 | os.mkdir(pm.checkpoint) 154 | g_step = sess.run(g.global_step) 155 | supvisor.saver.save(sess, pm.checkpoint + '/model_epoch_%02d_gs_%d' % (epoch, g_step)) 156 | 157 | print("MSG : Done!") 158 | 159 | -------------------------------------------------------------------------------- /params.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | class Params: 3 | """ 4 | Parameters of our model. 5 | """ 6 | project_name = 'demo' 7 | vocab_path = "dictionary/" 8 | src_train = "data/src-train.txt" 9 | tgt_train = "data/tgt-train.txt" 10 | src_test = "data/src-val.txt" 11 | tgt_test = "data/tgt-val.txt" 12 | 13 | train_record = "data/processed/{}/train.tfrecord".format(project_name) 14 | test_record = "data/processed/{}/val.tfrecord".format(project_name) 15 | logdir = 'logdir' 16 | ckpt_path = 'checkpoint/{}'.format(project_name) 17 | eval_log_path = 'result/{}'.format(project_name) 18 | 19 | rebuild_vocabulary = False 20 | 21 | maxlen = 12 22 | buffer_size = 10000 23 | batch_size = 128 24 | word_limit_size = 5 25 | 26 | d_model = 512 27 | dff = 2048 28 | num_epochs = 10 29 | num_block = 6 30 | num_heads = 8 31 | dropout_rate = 0.1 32 | smooth_epsilon = 0.1 33 | learning_rate = 1e-4 34 | learning_rate_warmup_steps = 4000 35 | beta_1 = 0.9 36 | beta_2 = 0.98 37 | epsilon = 1e-9 38 | batch_show_every = 500 39 | epoch_show_every = 1 40 | plot_pos_embedding = False 41 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | nltk==3.4 2 | numpy==1.15.4 3 | tqdm==4.28.1 4 | tensorflow-gpu==2.0.0-alpha0 5 | matplotlib==3.0.2 -------------------------------------------------------------------------------- /tf1.12.0-eager/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/EternalFeather/Transformer-in-generating-dialogue/fc781a61ee8cfcd0966571f34809ec7308476590/tf1.12.0-eager/__init__.py -------------------------------------------------------------------------------- /tf1.12.0-eager/bleu.py: -------------------------------------------------------------------------------- 1 | # Copyright 2017 Google Inc. All Rights Reserved. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | # ============================================================================== 15 | 16 | """Python implementation of BLEU and smooth-BLEU. 17 | This module provides a Python implementation of BLEU and smooth-BLEU. 18 | Smooth BLEU is computed following the method outlined in the paper: 19 | Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic 20 | evaluation metrics for machine translation. COLING 2004. 21 | """ 22 | 23 | import collections 24 | import math 25 | 26 | 27 | def _get_ngrams(segment, max_order): 28 | """Extracts all n-grams upto a given maximum order from an input segment. 29 | Args: 30 | segment: text segment from which n-grams will be extracted. 31 | max_order: maximum length in tokens of the n-grams returned by this 32 | methods. 33 | Returns: 34 | The Counter containing all n-grams upto max_order in segment 35 | with a count of how many times each n-gram occurred. 36 | """ 37 | ngram_counts = collections.Counter() 38 | for order in range(1, max_order + 1): 39 | for i in range(0, len(segment) - order + 1): 40 | ngram = tuple(segment[i:i+order]) 41 | ngram_counts[ngram] += 1 42 | return ngram_counts 43 | 44 | 45 | def compute_bleu(reference_corpus, translation_corpus, max_order=4, 46 | smooth=False, order_weights=True): 47 | """Computes BLEU score of translated segments against one or more references. 48 | Args: 49 | reference_corpus: list of lists of references for each translation. Each 50 | reference should be tokenized into a list of tokens. 51 | translation_corpus: list of translations to score. Each translation 52 | should be tokenized into a list of tokens. 53 | max_order: Maximum n-gram order to use when computing BLEU score. 54 | smooth: Whether or not to apply Lin et al. 2004 smoothing. 55 | 56 | order_weights: Use different weights to control accuracy. The longer, the more important. 57 | Default to True. 58 | 59 | Returns: 60 | 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram 61 | precisions and brevity penalty. 62 | """ 63 | matches_by_order = [0] * max_order 64 | possible_matches_by_order = [0] * max_order 65 | reference_length = 0 66 | translation_length = 0 67 | 68 | empty_error_flag = False 69 | 70 | for (references, translation) in zip(reference_corpus, 71 | translation_corpus): 72 | if len(references) == 0 or len(translation) == 0: 73 | empty_error_flag = True 74 | break 75 | 76 | reference_length += min(len(r) for r in references) 77 | translation_length += len(translation) 78 | 79 | merged_ref_ngram_counts = collections.Counter() 80 | for reference in references: 81 | merged_ref_ngram_counts |= _get_ngrams(reference, max_order) 82 | translation_ngram_counts = _get_ngrams(translation, max_order) 83 | overlap = translation_ngram_counts & merged_ref_ngram_counts 84 | 85 | for ngram in overlap: 86 | matches_by_order[len(ngram)-1] += overlap[ngram] 87 | for order in range(1, max_order+1): 88 | possible_matches = len(translation) - order + 1 89 | if possible_matches > 0: 90 | possible_matches_by_order[order-1] += possible_matches 91 | 92 | if empty_error_flag: 93 | return 0.0, None, None, None, None, None 94 | 95 | precisions = [0] * max_order 96 | for i in range(0, max_order): 97 | if smooth: 98 | precisions[i] = ((matches_by_order[i] + 1.) / 99 | (possible_matches_by_order[i] + 1.)) 100 | else: 101 | if possible_matches_by_order[i] > 0: 102 | precisions[i] = (float(matches_by_order[i]) / 103 | possible_matches_by_order[i]) 104 | else: 105 | precisions[i] = 0.0 106 | 107 | if max(precisions) > 0: 108 | if order_weights: 109 | p_log_sum = sum((1. / (i + 1)) * math.log(p) for i, p in enumerate(reversed(precisions)) if p > 0) 110 | else: 111 | p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions if p > 0) 112 | geo_mean = math.exp(p_log_sum) 113 | else: 114 | geo_mean = 0 115 | 116 | ratio = float(translation_length) / reference_length 117 | 118 | if ratio > 1.0: 119 | bp = 1. 120 | else: 121 | bp = math.exp(1 - 1. / ratio) 122 | 123 | bleu = geo_mean * bp 124 | 125 | return bleu, precisions, bp, ratio, translation_length, reference_length 126 | 127 | 128 | def bleu_metrics(per_segment_references, translations, smooth=False, max_order=3, order_weights=True): 129 | """Compute BLEU scores""" 130 | # bleu_score, precisions, bp, ratio, translation_length, reference_length 131 | bleu_score, _, _, _, _, _ = compute_bleu( 132 | per_segment_references, translations, max_order, smooth, order_weights) 133 | 134 | return 100 * bleu_score 135 | 136 | -------------------------------------------------------------------------------- /tf1.12.0-eager/main.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "from __future__ import absolute_import, division, print_function, unicode_literals\n", 10 | "\n", 11 | "import tensorflow as tf\n", 12 | "\n", 13 | "import time\n", 14 | "import os\n", 15 | "from tqdm import tqdm\n", 16 | "import numpy as np\n", 17 | "\n", 18 | "from params import Params as pm\n", 19 | "from utils import en2idx, idx2en, de2idx, idx2de, dump2record, build_dataset, LRSchedule, masking, create_masks\n", 20 | "from bleu import bleu_metrics" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "tf.enable_eager_execution()" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": null, 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "tf.__version__" 39 | ] 40 | }, 41 | { 42 | "cell_type": "markdown", 43 | "metadata": {}, 44 | "source": [ 45 | "---" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": null, 51 | "metadata": {}, 52 | "outputs": [], 53 | "source": [ 54 | "def get_data(corpus_file):\n", 55 | " return open(corpus_file, 'r', encoding='utf-8').read().splitlines()" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": null, 61 | "metadata": {}, 62 | "outputs": [], 63 | "source": [ 64 | "src_train, src_val = get_data(pm.src_train), get_data(pm.src_test)\n", 65 | "tgt_train, tgt_val = get_data(pm.tgt_train), get_data(pm.tgt_test)" 66 | ] 67 | }, 68 | { 69 | "cell_type": "code", 70 | "execution_count": null, 71 | "metadata": {}, 72 | "outputs": [], 73 | "source": [ 74 | "dump2record(pm.train_record, src_train, tgt_train)\n", 75 | "dump2record(pm.test_record, src_val, tgt_val)" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": null, 81 | "metadata": {}, 82 | "outputs": [], 83 | "source": [ 84 | "# train_dataset = build_dataset(mode='array', corpus=[src_train, tgt_train], is_training=True)\n", 85 | "# val_dataset = build_dataset(mode='array', corpus=[src_val, tgt_val], is_training=True)\n", 86 | "\n", 87 | "train_dataset = build_dataset(mode='file', filename=pm.train_record, is_training=True)\n", 88 | "val_dataset = build_dataset(mode='file', filename=pm.test_record, is_training=True)" 89 | ] 90 | }, 91 | { 92 | "cell_type": "code", 93 | "execution_count": null, 94 | "metadata": {}, 95 | "outputs": [], 96 | "source": [ 97 | "next(iter(train_dataset))" 98 | ] 99 | }, 100 | { 101 | "cell_type": "markdown", 102 | "metadata": {}, 103 | "source": [ 104 | "---" 105 | ] 106 | }, 107 | { 108 | "cell_type": "code", 109 | "execution_count": null, 110 | "metadata": {}, 111 | "outputs": [], 112 | "source": [ 113 | "from modules import positional_encoding, scaled_dot_product_attention, multihead_attention, pointwise_feedforward, EncoderBlock, DecoderBlock, Encoder, Decoder, Transformer" 114 | ] 115 | }, 116 | { 117 | "cell_type": "markdown", 118 | "metadata": {}, 119 | "source": [ 120 | "# Positional encoding\n", 121 | "$$\\Large{PE_{(pos, 2i)} = sin(pos / 10000^{2i / d_{model}})} $$\n", 122 | "$$\\Large{PE_{(pos, 2i+1)} = cos(pos / 10000^{2i / d_{model}})} $$" 123 | ] 124 | }, 125 | { 126 | "cell_type": "code", 127 | "execution_count": null, 128 | "metadata": {}, 129 | "outputs": [], 130 | "source": [ 131 | "pos_encoding = positional_encoding(50, 512, True)\n", 132 | "print(pos_encoding.shape)" 133 | ] 134 | }, 135 | { 136 | "cell_type": "markdown", 137 | "metadata": {}, 138 | "source": [ 139 | "# Masking" 140 | ] 141 | }, 142 | { 143 | "cell_type": "code", 144 | "execution_count": null, 145 | "metadata": {}, 146 | "outputs": [], 147 | "source": [ 148 | "x = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])\n", 149 | "masking(x, task='padding')" 150 | ] 151 | }, 152 | { 153 | "cell_type": "code", 154 | "execution_count": null, 155 | "metadata": {}, 156 | "outputs": [], 157 | "source": [ 158 | "masking(x, task='look_ahead')" 159 | ] 160 | }, 161 | { 162 | "cell_type": "markdown", 163 | "metadata": {}, 164 | "source": [ 165 | "# Scaled dot product attention" 166 | ] 167 | }, 168 | { 169 | "cell_type": "markdown", 170 | "metadata": {}, 171 | "source": [ 172 | "![](https://www.tensorflow.org/images/tutorials/transformer/scaled_attention.png)\n", 173 | "$$\\Large{Attention(Q, K, V) = softmax_k(\\frac{QK^T}{\\sqrt{d_k}}) V} $$" 174 | ] 175 | }, 176 | { 177 | "cell_type": "code", 178 | "execution_count": null, 179 | "metadata": {}, 180 | "outputs": [], 181 | "source": [ 182 | "def print_out(q, k, v):\n", 183 | " temp_out, temp_attn = scaled_dot_product_attention(q, k, v, None)\n", 184 | " print ('Attention weights are:')\n", 185 | " print (temp_attn)\n", 186 | " print ('Output is:')\n", 187 | " print (temp_out)" 188 | ] 189 | }, 190 | { 191 | "cell_type": "code", 192 | "execution_count": null, 193 | "metadata": {}, 194 | "outputs": [], 195 | "source": [ 196 | "np.set_printoptions(suppress=True)\n", 197 | "\n", 198 | "temp_k = tf.constant([[10,0,0],\n", 199 | " [0,10,0],\n", 200 | " [0,0,10],\n", 201 | " [0,0,10]], dtype=tf.float32)\n", 202 | "\n", 203 | "temp_v = tf.constant([[ 1,0],\n", 204 | " [ 10,0],\n", 205 | " [ 100,5],\n", 206 | " [1000,6]], dtype=tf.float32)\n", 207 | "\n", 208 | "temp_q = tf.constant([[0, 10, 0]], dtype=tf.float32)\n", 209 | "print_out(temp_q, temp_k, temp_v)" 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "execution_count": null, 215 | "metadata": {}, 216 | "outputs": [], 217 | "source": [ 218 | "temp_q = tf.constant([[0, 0, 10]], dtype=tf.float32)\n", 219 | "print_out(temp_q, temp_k, temp_v)" 220 | ] 221 | }, 222 | { 223 | "cell_type": "code", 224 | "execution_count": null, 225 | "metadata": {}, 226 | "outputs": [], 227 | "source": [ 228 | "temp_q = tf.constant([[0, 0, 10], [0, 10, 0], [10, 10, 0]], dtype=tf.float32)\n", 229 | "print_out(temp_q, temp_k, temp_v)" 230 | ] 231 | }, 232 | { 233 | "cell_type": "markdown", 234 | "metadata": {}, 235 | "source": [ 236 | "# Multi-head attention" 237 | ] 238 | }, 239 | { 240 | "cell_type": "markdown", 241 | "metadata": {}, 242 | "source": [ 243 | "![](https://www.tensorflow.org/images/tutorials/transformer/multi_head_attention.png)" 244 | ] 245 | }, 246 | { 247 | "cell_type": "markdown", 248 | "metadata": {}, 249 | "source": [ 250 | "- **Tips: Dimention-level split**" 251 | ] 252 | }, 253 | { 254 | "cell_type": "code", 255 | "execution_count": null, 256 | "metadata": {}, 257 | "outputs": [], 258 | "source": [ 259 | "temp_mha = multihead_attention(d_model=512, num_heads=8)\n", 260 | "y = tf.random.uniform((1, 50, 512))\n", 261 | "out, attn = temp_mha(y, k=y, q=y, mask=None)\n", 262 | "out.shape, attn.shape" 263 | ] 264 | }, 265 | { 266 | "cell_type": "markdown", 267 | "metadata": {}, 268 | "source": [ 269 | "# Pointwise feed forward network" 270 | ] 271 | }, 272 | { 273 | "cell_type": "code", 274 | "execution_count": null, 275 | "metadata": {}, 276 | "outputs": [], 277 | "source": [ 278 | "sample_ffn = pointwise_feedforward(512, 2048)\n", 279 | "sample_ffn(tf.random.uniform((64, 50, 512))).shape" 280 | ] 281 | }, 282 | { 283 | "cell_type": "markdown", 284 | "metadata": {}, 285 | "source": [ 286 | "# Whole model (Encoder & Decoder)\n", 287 | "![](https://www.tensorflow.org/images/tutorials/transformer/transformer.png)" 288 | ] 289 | }, 290 | { 291 | "cell_type": "markdown", 292 | "metadata": {}, 293 | "source": [ 294 | "## Encoder" 295 | ] 296 | }, 297 | { 298 | "cell_type": "code", 299 | "execution_count": null, 300 | "metadata": {}, 301 | "outputs": [], 302 | "source": [ 303 | "sample_encoder_layer = EncoderBlock(512, 8, 2048)\n", 304 | "sample_encoder_layer_output, _ = sample_encoder_layer(tf.random.uniform((64, 43, 512)), False, None)\n", 305 | "sample_encoder_layer_output.shape" 306 | ] 307 | }, 308 | { 309 | "cell_type": "markdown", 310 | "metadata": {}, 311 | "source": [ 312 | "## Decoder" 313 | ] 314 | }, 315 | { 316 | "cell_type": "code", 317 | "execution_count": null, 318 | "metadata": {}, 319 | "outputs": [], 320 | "source": [ 321 | "sample_decoder_layer = DecoderBlock(512, 8, 2048)\n", 322 | "\n", 323 | "sample_decoder_layer_output, _, _ = sample_decoder_layer(\n", 324 | " tf.random.uniform((64, 50, 512)), sample_encoder_layer_output, \n", 325 | " False, None, None)\n", 326 | "\n", 327 | "sample_decoder_layer_output.shape" 328 | ] 329 | }, 330 | { 331 | "cell_type": "markdown", 332 | "metadata": {}, 333 | "source": [ 334 | "## Packed Encoder & Decoder" 335 | ] 336 | }, 337 | { 338 | "cell_type": "code", 339 | "execution_count": null, 340 | "metadata": {}, 341 | "outputs": [], 342 | "source": [ 343 | "sample_encoder = Encoder(num_blocks=2, d_model=512, num_heads=8, dff=2048, input_vocab_size=8500, plot_pos_embedding=False)\n", 344 | "attn_dict = {}\n", 345 | "sample_encoder_output, attn_dict = sample_encoder(tf.random.uniform((64, 62)), training=False, padding_mask=None, attn_dict=attn_dict)\n", 346 | "sample_encoder_output.shape" 347 | ] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "execution_count": null, 352 | "metadata": {}, 353 | "outputs": [], 354 | "source": [ 355 | "sample_decoder = Decoder(num_blocks=2, d_model=512, num_heads=8, dff=2048, target_vocab_size=8000, plot_pos_embedding=False)\n", 356 | "output, attn_dict = sample_decoder(tf.random.uniform((64, 26)), \n", 357 | " enc_output=sample_encoder_output, \n", 358 | " training=False, look_ahead_mask=None, \n", 359 | " padding_mask=None, attn_dict=attn_dict)\n", 360 | "output.shape, attn_dict['decoder_layer2_block'].shape" 361 | ] 362 | }, 363 | { 364 | "cell_type": "markdown", 365 | "metadata": {}, 366 | "source": [ 367 | "# Transformer" 368 | ] 369 | }, 370 | { 371 | "cell_type": "code", 372 | "execution_count": null, 373 | "metadata": {}, 374 | "outputs": [], 375 | "source": [ 376 | "sample_transformer = Transformer(num_blocks=2, d_model=512, num_heads=8, dff=2048, input_vocab_size=8500, target_vocab_size=8000, plot_pos_embedding=False)\n", 377 | "\n", 378 | "temp_input = tf.random.uniform((64, 62))\n", 379 | "temp_target = tf.random.uniform((64, 26))\n", 380 | "\n", 381 | "fn_out, _ = sample_transformer(temp_input, \n", 382 | " temp_target, \n", 383 | " training=False, \n", 384 | " enc_padding_mask=None, \n", 385 | " look_ahead_mask=None,\n", 386 | " dec_padding_mask=None)\n", 387 | "\n", 388 | "fn_out.shape" 389 | ] 390 | }, 391 | { 392 | "cell_type": "markdown", 393 | "metadata": {}, 394 | "source": [ 395 | "# Training" 396 | ] 397 | }, 398 | { 399 | "cell_type": "code", 400 | "execution_count": null, 401 | "metadata": {}, 402 | "outputs": [], 403 | "source": [ 404 | "num_layers = pm.num_block\n", 405 | "d_model = pm.d_model\n", 406 | "dff = pm.dff\n", 407 | "num_heads = pm.num_heads\n", 408 | "\n", 409 | "input_vocab_size = len(en2idx)\n", 410 | "target_vocab_size = len(de2idx)\n", 411 | "dropout_rate = pm.dropout_rate\n", 412 | "\n", 413 | "EPOCHS = pm.num_epochs" 414 | ] 415 | }, 416 | { 417 | "cell_type": "markdown", 418 | "metadata": {}, 419 | "source": [ 420 | "- Learning rate schedule\n", 421 | "$$\\Large{lrate = d_{model}^{-0.5} * min(step{\\_}num^{-0.5}, step{\\_}num * warmup{\\_}steps^{-1.5})}$$" 422 | ] 423 | }, 424 | { 425 | "cell_type": "code", 426 | "execution_count": null, 427 | "metadata": {}, 428 | "outputs": [], 429 | "source": [ 430 | "global_step = tf.Variable(0, trainable=False)\n", 431 | "learning_rate = LRSchedule(global_step, d_model, pm.learning_rate_warmup_steps)\n", 432 | "optimizer = tf.train.AdamOptimizer(learning_rate, beta1=pm.beta_1, beta2=pm.beta_2, epsilon=pm.epsilon)" 433 | ] 434 | }, 435 | { 436 | "cell_type": "code", 437 | "execution_count": null, 438 | "metadata": {}, 439 | "outputs": [], 440 | "source": [ 441 | "temp_learning_rate_schedule = LRSchedule(tf.range(40000, dtype=tf.float32), d_model, 4000)\n", 442 | "\n", 443 | "plt.figure(figsize=(12, 8))\n", 444 | "plt.plot(temp_learning_rate_schedule().numpy())\n", 445 | "plt.ylabel(\"Learning Rate\")\n", 446 | "plt.xlabel(\"Train Step\")" 447 | ] 448 | }, 449 | { 450 | "cell_type": "markdown", 451 | "metadata": {}, 452 | "source": [ 453 | "- loss mask" 454 | ] 455 | }, 456 | { 457 | "cell_type": "code", 458 | "execution_count": null, 459 | "metadata": {}, 460 | "outputs": [], 461 | "source": [ 462 | "def loss_function(real, pred):\n", 463 | " mask = tf.math.logical_not(tf.math.equal(real, 0))\n", 464 | " loss_ = tf.keras.backend.sparse_categorical_crossentropy(real, pred, from_logits=True)\n", 465 | " \n", 466 | " mask = tf.cast(mask, dtype=loss_.dtype)\n", 467 | " loss_ *= mask\n", 468 | " \n", 469 | " return tf.reduce_mean(loss_)" 470 | ] 471 | }, 472 | { 473 | "cell_type": "code", 474 | "execution_count": null, 475 | "metadata": {}, 476 | "outputs": [], 477 | "source": [ 478 | "transformer = Transformer(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pm.plot_pos_embedding, dropout_rate)" 479 | ] 480 | }, 481 | { 482 | "cell_type": "code", 483 | "execution_count": null, 484 | "metadata": {}, 485 | "outputs": [], 486 | "source": [ 487 | "checkpoint_path = pm.ckpt_path\n", 488 | "\n", 489 | "ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)\n", 490 | "ckpt_dir = os.path.join(checkpoint_path, 'ckpt')\n", 491 | "\n", 492 | "if tf.train.latest_checkpoint(checkpoint_path):\n", 493 | " ckpt.restore(tf.train.latest_checkpoint(checkpoint_path))\n", 494 | " print('Latest model restored!')" 495 | ] 496 | }, 497 | { 498 | "cell_type": "markdown", 499 | "metadata": {}, 500 | "source": [ 501 | "- Teacher forcing" 502 | ] 503 | }, 504 | { 505 | "cell_type": "code", 506 | "execution_count": null, 507 | "metadata": {}, 508 | "outputs": [], 509 | "source": [ 510 | "def train_step(inp, tar):\n", 511 | " tar_inp = tar[:, :-1]\n", 512 | " tar_real = tar[:, 1:]\n", 513 | "\n", 514 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)\n", 515 | "\n", 516 | " with tf.GradientTape() as tape:\n", 517 | " predictions, _ = transformer(inp, \n", 518 | " tar_inp, \n", 519 | " True, \n", 520 | " enc_padding_mask, \n", 521 | " combined_mask, \n", 522 | " dec_padding_mask)\n", 523 | " \n", 524 | " loss = loss_function(tar_real, predictions)\n", 525 | "\n", 526 | " gradients = tape.gradient(loss, transformer.trainable_variables) \n", 527 | " optimizer.apply_gradients(zip(gradients, transformer.trainable_variables), global_step=global_step)\n", 528 | " istarget = tf.cast(tf.not_equal(tar_real, 0), tf.float32)\n", 529 | " predictions = tf.cast(tf.arg_max(predictions, dimension=-1), tf.int32)\n", 530 | " \n", 531 | " return loss, tf.reduce_sum(tf.cast(tf.equal(predictions, tar_real), tf.float32) * istarget) / (tf.reduce_sum(istarget))" 532 | ] 533 | }, 534 | { 535 | "cell_type": "code", 536 | "execution_count": null, 537 | "metadata": {}, 538 | "outputs": [], 539 | "source": [ 540 | "for epoch in range(EPOCHS):\n", 541 | " start = time.time()\n", 542 | "\n", 543 | " train_loss, train_accuracy, batch_num = 0.0, 0.0, 0\n", 544 | "\n", 545 | " for (batch, (inp, tar)) in enumerate(train_dataset):\n", 546 | " loss, acc = train_step(inp, tar)\n", 547 | " train_loss += loss\n", 548 | " train_accuracy += acc\n", 549 | " batch_num += 1\n", 550 | " \n", 551 | " if batch % 500 == 0:\n", 552 | " print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(\n", 553 | " epoch + 1, batch, loss, acc))\n", 554 | "\n", 555 | " if (epoch + 1) % 5 == 0:\n", 556 | " ckpt.save(ckpt_dir)\n", 557 | " print ('Saving checkpoint for epoch {} at {}'.format(epoch + 1, ckpt_dir))\n", 558 | " \n", 559 | " print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, train_loss / batch_num, train_accuracy / batch_num))\n", 560 | " print ('Time taken for 1 epoch: {} secs\\n'.format(time.time() - start))" 561 | ] 562 | }, 563 | { 564 | "cell_type": "markdown", 565 | "metadata": {}, 566 | "source": [ 567 | "---" 568 | ] 569 | }, 570 | { 571 | "cell_type": "code", 572 | "execution_count": null, 573 | "metadata": {}, 574 | "outputs": [], 575 | "source": [ 576 | "def evaluate(inp_sentence):\n", 577 | " encoder_input = inp_sentence\n", 578 | " \n", 579 | " decoder_input = [2]\n", 580 | " output = tf.expand_dims(decoder_input, 0)\n", 581 | " output = tf.tile(output, [tf.shape(encoder_input)[0], 1])\n", 582 | "\n", 583 | " for i in range(pm.maxlen):\n", 584 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)\n", 585 | "\n", 586 | " predictions, attention_weights = transformer(encoder_input, \n", 587 | " output,\n", 588 | " False,\n", 589 | " enc_padding_mask,\n", 590 | " combined_mask,\n", 591 | " dec_padding_mask)\n", 592 | "\n", 593 | " predictions = predictions[: ,-1:, :]\n", 594 | " predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)\n", 595 | "\n", 596 | " output = tf.concat([output, predicted_id], axis=-1)\n", 597 | "\n", 598 | " return output, attention_weights" 599 | ] 600 | }, 601 | { 602 | "cell_type": "code", 603 | "execution_count": null, 604 | "metadata": {}, 605 | "outputs": [], 606 | "source": [ 607 | "def cut_by_end(samples):\n", 608 | " output_list = []\n", 609 | " for i, sample in enumerate(samples):\n", 610 | " dtype = sample.dtype\n", 611 | " idx = tf.where(tf.equal(sample, 3))\n", 612 | " \n", 613 | " flag = tf.where(tf.equal(tf.size(idx), 0), 1, 0)\n", 614 | " if flag == 1:\n", 615 | " output_list.append(sample)\n", 616 | " else:\n", 617 | " indices = tf.cast(idx[0, 0], dtype)\n", 618 | " output_list.append(tf.concat([sample[:indices], tf.zeros(tf.shape(sample)[0] - indices, dtype=dtype)], axis=0))\n", 619 | "\n", 620 | " return tf.stack(output_list)" 621 | ] 622 | }, 623 | { 624 | "cell_type": "code", 625 | "execution_count": null, 626 | "metadata": {}, 627 | "outputs": [], 628 | "source": [ 629 | "eval_log = os.path.join(pm.eval_log_path, '{}_eval.tsv'.format(pm.project_name))\n", 630 | "if not os.path.exists(pm.eval_log_path):\n", 631 | " os.makedirs(pm.eval_log_path)\n", 632 | "eval_file = open(eval_log, 'w', encoding='utf-8')\n", 633 | "\n", 634 | "start = time.time()\n", 635 | "count, scores = 0, 0\n", 636 | "for (batch, (inp, tar)) in enumerate(val_dataset):\n", 637 | " prediction, attention_weights = evaluate(inp)\n", 638 | " prediction = cut_by_end(prediction)\n", 639 | " \n", 640 | " preds, tars = [], []\n", 641 | " for source, real_tar, pred in zip(inp, tar, prediction):\n", 642 | " s = \" \".join([idx2en.get(i, 1) for i in source.numpy() if i < len(idx2en) and i not in [0, 2, 3]])\n", 643 | " t = \"\".join([idx2de.get(i, 1) for i in real_tar.numpy() if i < len(idx2de) and i not in [0, 2, 3]])\n", 644 | " p = \"\".join([idx2de.get(i, 1) for i in pred.numpy() if i < len(idx2de) and i not in [0, 2, 3]])\n", 645 | " \n", 646 | " preds.append(p)\n", 647 | " tars.append([t])\n", 648 | " \n", 649 | " eval_file.write('-Source : {}\\n-Target : {}\\n-Pred : {}\\n\\n'.format(s, t, p))\n", 650 | " eval_file.flush()\n", 651 | " \n", 652 | " scores += bleu_metrics(tars, preds, False, 3, True)\n", 653 | " count += 1\n", 654 | "\n", 655 | "eval_file.write('-BLEU Score : {:.4f}'.format(scores / count))\n", 656 | "eval_file.close()\n", 657 | "\n", 658 | "print(\"MSG : Done for evalutation ... Totolly {:.2f} sec.\".format(time.time() - start))" 659 | ] 660 | }, 661 | { 662 | "cell_type": "code", 663 | "execution_count": null, 664 | "metadata": {}, 665 | "outputs": [], 666 | "source": [ 667 | "def predict(inp_sentence):\n", 668 | " start_token = [2]\n", 669 | " end_token = [3]\n", 670 | "\n", 671 | " inp_sentence = start_token + [en2idx.get(word, 1) for word in inp_sentence.split()] + end_token\n", 672 | " encoder_input = tf.expand_dims(inp_sentence, 0)\n", 673 | " \n", 674 | " decoder_input = [2]\n", 675 | " output = tf.expand_dims(decoder_input, 0)\n", 676 | "\n", 677 | " for i in range(pm.maxlen):\n", 678 | " enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)\n", 679 | "\n", 680 | " predictions, attention_weights = transformer(encoder_input, \n", 681 | " output,\n", 682 | " False,\n", 683 | " enc_padding_mask,\n", 684 | " combined_mask,\n", 685 | " dec_padding_mask)\n", 686 | "\n", 687 | " predictions = predictions[: ,-1:, :]\n", 688 | " predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)\n", 689 | "\n", 690 | " if tf.where(tf.equal(predicted_id[0, 0], 3), 1, 0) == 1:\n", 691 | " return tf.squeeze(output, axis=0), attention_weights\n", 692 | "\n", 693 | " output = tf.concat([output, predicted_id], axis=-1)\n", 694 | "\n", 695 | " return tf.squeeze(output, axis=0), attention_weights" 696 | ] 697 | }, 698 | { 699 | "cell_type": "code", 700 | "execution_count": null, 701 | "metadata": {}, 702 | "outputs": [], 703 | "source": [ 704 | "def translate(sentence):\n", 705 | " result, attention_weights = predict(sentence)\n", 706 | " \n", 707 | " predicted_sentence = [idx2de.get(i, 1) for i in result.numpy() if i < len(idx2de) and i not in [0, 2, 3]]\n", 708 | "\n", 709 | " print('Input: {}'.format(sentence))\n", 710 | " print('Predicted translation: {}'.format(\" \".join(predicted_sentence)))" 711 | ] 712 | }, 713 | { 714 | "cell_type": "code", 715 | "execution_count": null, 716 | "metadata": {}, 717 | "outputs": [], 718 | "source": [ 719 | "translate(\"明 天 就 要 上 班 了\")\n", 720 | "print(\"Real translation: 還好我沒工作QQ\")" 721 | ] 722 | }, 723 | { 724 | "cell_type": "code", 725 | "execution_count": null, 726 | "metadata": {}, 727 | "outputs": [], 728 | "source": [] 729 | } 730 | ], 731 | "metadata": { 732 | "kernelspec": { 733 | "display_name": "Python 3", 734 | "language": "python", 735 | "name": "python3" 736 | }, 737 | "language_info": { 738 | "codemirror_mode": { 739 | "name": "ipython", 740 | "version": 3 741 | }, 742 | "file_extension": ".py", 743 | "mimetype": "text/x-python", 744 | "name": "python", 745 | "nbconvert_exporter": "python", 746 | "pygments_lexer": "ipython3", 747 | "version": "3.7.1" 748 | } 749 | }, 750 | "nbformat": 4, 751 | "nbformat_minor": 2 752 | } 753 | -------------------------------------------------------------------------------- /tf1.12.0-eager/modules.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | import tensorflow as tf 4 | import numpy as np 5 | import matplotlib.pyplot as plt 6 | 7 | 8 | def positional_encoding(seq_len, num_units, visualization=False): 9 | """ 10 | Positional_Encoding for a given tensor. 11 | 12 | Args: 13 | :param inputs: [Tensor], A tensor contains the ids to be search from the lookup table, shape = [batch_size, seq_len] 14 | :param num_units: [Int], Hidden size of embedding 15 | :param visualization: [Boolean], If True, it will plot the graph of position encoding 16 | :return: [Tensor] A tensor with shape [1, seq_len, num_units] 17 | """ 18 | def __get_angles(pos, i, d_model): 19 | angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) 20 | return pos * angle_rates 21 | 22 | angle_rads = __get_angles(np.arange(seq_len)[:, np.newaxis], 23 | np.arange(num_units)[np.newaxis, :], 24 | num_units) 25 | 26 | sine = np.sin(angle_rads[:, 0::2]) 27 | cosine = np.cos(angle_rads[:, 1::2]) 28 | 29 | pos_encoding = np.concatenate([sine, cosine], axis=-1) 30 | pos_encoding = pos_encoding[np.newaxis, ...] 31 | 32 | if visualization: 33 | plt.figure(figsize=(12, 8)) 34 | plt.pcolormesh(pos_encoding[0], cmap='RdBu') 35 | plt.xlabel('Depth') 36 | plt.xlim((0, num_units)) 37 | plt.ylabel('Position') 38 | plt.colorbar() 39 | plt.show() 40 | 41 | return tf.cast(pos_encoding, tf.float32) 42 | 43 | 44 | def scaled_dot_product_attention(q, k, v, mask=None): 45 | """ 46 | Calculate the attention weights. 47 | 48 | Args: 49 | :param q: [Tensor], query with shape [..., seq_len_q, d_model] 50 | :param k: [Tensor], key with shape [..., seq_len_k, d_model] 51 | :param v: [Tensor], value with shape [..., seq_len_v, d_model] 52 | :param mask: [Tensor], Float tensor with shape [..., seq_len_q, seq_len_k], default to None 53 | :return: [Tensor], output, attention_weights 54 | """ 55 | matmul_qk = tf.matmul(q, k, transpose_b=True) 56 | 57 | dk = tf.cast(tf.shape(k)[-1], tf.float32) 58 | scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) 59 | 60 | # Heuristic mask implementation that add an infinitesimal number so that its effect can be ignored 61 | if mask is not None: 62 | scaled_attention_logits += (mask * -1e9) 63 | 64 | attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) 65 | output = tf.matmul(attention_weights, v) 66 | 67 | return output, attention_weights 68 | 69 | 70 | class multihead_attention(tf.keras.layers.Layer): 71 | def __init__(self, d_model, num_heads): 72 | super(multihead_attention, self).__init__() 73 | self.num_heads = num_heads 74 | self.d_model = d_model 75 | 76 | assert d_model % self.num_heads == 0 77 | self.depth = d_model // num_heads 78 | 79 | self.wq = tf.keras.layers.Dense(d_model) 80 | self.wk = tf.keras.layers.Dense(d_model) 81 | self.wv = tf.keras.layers.Dense(d_model) 82 | 83 | self.dense = tf.keras.layers.Dense(d_model) 84 | 85 | def split_heads(self, x, batch_size): 86 | """ 87 | Split the last dimension into (num_heads, depth). 88 | Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth). 89 | """ 90 | 91 | x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) 92 | return tf.transpose(x, perm=[0, 2, 1, 3]) 93 | 94 | def call(self, v, k, q, mask): 95 | batch_size = tf.shape(q)[0] 96 | 97 | q = self.wq(q) 98 | k = self.wk(k) 99 | v = self.wv(v) 100 | 101 | q = self.split_heads(q, batch_size) 102 | k = self.split_heads(k, batch_size) 103 | v = self.split_heads(v, batch_size) 104 | 105 | scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask) 106 | scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) 107 | concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) 108 | output = self.dense(concat_attention) 109 | 110 | return output, attention_weights 111 | 112 | 113 | class pointwise_feedforward(tf.keras.layers.Layer): 114 | def __init__(self, d_model, dff): 115 | super(pointwise_feedforward, self).__init__() 116 | self.d_model = d_model 117 | self.dff = dff 118 | 119 | self.dense_layer_1 = tf.keras.layers.Dense(dff, activation='relu') 120 | self.dense_layer_2 = tf.keras.layers.Dense(d_model) 121 | 122 | def call(self, x): 123 | output = self.dense_layer_1(x) 124 | output = self.dense_layer_2(output) 125 | 126 | return output 127 | 128 | 129 | class EncoderBlock(tf.keras.layers.Layer): 130 | def __init__(self, d_model, num_heads, dff, rate=0.1): 131 | super(EncoderBlock, self).__init__() 132 | self.multi_attn = multihead_attention(d_model, num_heads) 133 | self.ffn = pointwise_feedforward(d_model, dff) 134 | 135 | self.layer_norm_1 = tf.contrib.layers.layer_norm 136 | self.layer_norm_2 = tf.contrib.layers.layer_norm 137 | 138 | self.dropout_1 = tf.keras.layers.Dropout(rate) 139 | self.dropout_2 = tf.keras.layers.Dropout(rate) 140 | 141 | def call(self, x, training, padding_mask): 142 | attn_output, attn_weight = self.multi_attn(x, x, x, padding_mask) 143 | attn_output = self.dropout_1(attn_output, training=training) 144 | output_1 = self.layer_norm_1(x + attn_output) 145 | 146 | ffn_output = self.ffn(output_1) 147 | ffn_output = self.dropout_2(ffn_output, training=training) 148 | output_2 = self.layer_norm_2(output_1 + ffn_output) 149 | 150 | return output_2, attn_weight 151 | 152 | 153 | class DecoderBlock(tf.keras.layers.Layer): 154 | def __init__(self, d_model, num_heads, dff, rate=0.1): 155 | super(DecoderBlock, self).__init__() 156 | self.multi_attn_1 = multihead_attention(d_model, num_heads) 157 | self.multi_attn_2 = multihead_attention(d_model, num_heads) 158 | 159 | self.ffn = pointwise_feedforward(d_model, dff) 160 | 161 | self.layer_norm_1 = tf.contrib.layers.layer_norm 162 | self.layer_norm_2 = tf.contrib.layers.layer_norm 163 | self.layer_norm_3 = tf.contrib.layers.layer_norm 164 | 165 | self.dropout_1 = tf.keras.layers.Dropout(rate) 166 | self.dropout_2 = tf.keras.layers.Dropout(rate) 167 | self.dropout_3 = tf.keras.layers.Dropout(rate) 168 | 169 | def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 170 | attn_output_1, attn_weight_1 = self.multi_attn_1(x, x, x, look_ahead_mask) 171 | attn_output_1 = self.dropout_1(attn_output_1, training=training) 172 | output_1 = self.layer_norm_1(x + attn_output_1) 173 | 174 | attn_output_2, attn_weight_2 = self.multi_attn_2(enc_output, enc_output, output_1, padding_mask) 175 | attn_output_2 = self.dropout_2(attn_output_2, training=training) 176 | output_2 = self.layer_norm_2(output_1 + attn_output_2) 177 | 178 | ffn_output = self.ffn(output_2) 179 | ffn_output = self.dropout_3(ffn_output, training=training) 180 | output_3 = self.layer_norm_3(output_2 + ffn_output) 181 | 182 | return output_3, attn_weight_1, attn_weight_2 183 | 184 | 185 | class Encoder(tf.keras.layers.Layer): 186 | def __init__(self, num_blocks, d_model, num_heads, dff, input_vocab_size, plot_pos_embedding, rate=0.1): 187 | super(Encoder, self).__init__() 188 | self.d_model = d_model 189 | self.num_blocks = num_blocks 190 | self.plot_pos_embedding = plot_pos_embedding 191 | 192 | self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) 193 | self.pos_embedding = positional_encoding(input_vocab_size, d_model, plot_pos_embedding) 194 | 195 | self.enc_blocks = [EncoderBlock(d_model, num_heads, dff, rate) for _ in range(num_blocks)] 196 | self.dropout = tf.keras.layers.Dropout(rate) 197 | 198 | def call(self, x, training, padding_mask, attn_dict): 199 | seq_len = tf.shape(x)[1] 200 | 201 | x = self.embedding(x) 202 | x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 203 | x += self.pos_embedding[:, :seq_len, :] 204 | 205 | x = self.dropout(x, training=training) 206 | 207 | for i in range(self.num_blocks): 208 | x, attn_weight = self.enc_blocks[i](x, training, padding_mask) 209 | attn_dict['encoder_layer{}_block'.format(i + 1)] = attn_weight 210 | 211 | return x, attn_dict 212 | 213 | 214 | class Decoder(tf.keras.layers.Layer): 215 | def __init__(self, num_blocks, d_model, num_heads, dff, target_vocab_size, plot_pos_embedding, rate=0.1): 216 | super(Decoder, self).__init__() 217 | self.d_model = d_model 218 | self.num_blocks = num_blocks 219 | self.plot_pos_embedding = plot_pos_embedding 220 | 221 | self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) 222 | self.pos_embedding = positional_encoding(target_vocab_size, d_model, plot_pos_embedding) 223 | 224 | self.dec_blocks = [DecoderBlock(d_model, num_heads, dff, rate) for _ in range(num_blocks)] 225 | self.dropout = tf.keras.layers.Dropout(rate) 226 | 227 | def call(self, x, enc_output, training, look_ahead_mask, padding_mask, attn_dict): 228 | seq_len = tf.shape(x)[1] 229 | 230 | x = self.embedding(x) 231 | x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 232 | x += self.pos_embedding[:, :seq_len, :] 233 | 234 | x = self.dropout(x, training=training) 235 | 236 | for i in range(self.num_blocks): 237 | x, attn_weight_1, attn_weight_2 = self.dec_blocks[i](x, enc_output, training, look_ahead_mask, padding_mask) 238 | attn_dict['decoder_layer{}_block'.format(i + 1)] = attn_weight_1 239 | attn_dict['decoder_layer{}_cross'.format(i + 1)] = attn_weight_2 240 | 241 | return x, attn_dict 242 | 243 | 244 | class Transformer(tf.keras.Model): 245 | def __init__(self, num_blocks, d_model, num_heads, dff, input_vocab_size, target_vocab_size, plot_pos_embedding, rate=0.1): 246 | super(Transformer, self).__init__() 247 | 248 | self.encoder = Encoder(num_blocks, d_model, num_heads, dff, input_vocab_size, plot_pos_embedding, rate) 249 | self.decoder = Decoder(num_blocks, d_model, num_heads, dff, target_vocab_size, plot_pos_embedding, rate) 250 | self.final_layer = tf.keras.layers.Dense(target_vocab_size) 251 | 252 | def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): 253 | attn_dict = {} 254 | 255 | enc_output, attn_dict = self.encoder(inp, training, enc_padding_mask, attn_dict) 256 | dec_output, attn_dict = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask, attn_dict) 257 | final_output = self.final_layer(dec_output) 258 | 259 | return final_output, attn_dict 260 | -------------------------------------------------------------------------------- /tf1.12.0-eager/params.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | class Params: 3 | """ 4 | Parameters of our model. 5 | """ 6 | project_name = 'demo' 7 | vocab_path = "dictionary/" 8 | src_train = "data/src-train.txt" 9 | tgt_train = "data/tgt-train.txt" 10 | src_test = "data/src-val.txt" 11 | tgt_test = "data/tgt-val.txt" 12 | 13 | train_record = "data/processed/{}/train.tfrecord".format(project_name) 14 | test_record = "data/processed/{}/val.tfrecord".format(project_name) 15 | logdir = 'logdir' 16 | ckpt_path = 'checkpoint/{}'.format(project_name) 17 | eval_log_path = 'result/{}'.format(project_name) 18 | 19 | rebuild_vocabulary = False 20 | 21 | maxlen = 12 22 | buffer_size = 10000 23 | batch_size = 128 24 | word_limit_size = 5 25 | 26 | d_model = 512 27 | dff = 2048 28 | num_epochs = 10 29 | num_block = 6 30 | num_heads = 8 31 | dropout_rate = 0.1 32 | smooth_epsilon = 0.1 33 | learning_rate = 1e-4 34 | learning_rate_warmup_steps = 4000 35 | beta_1 = 0.9 36 | beta_2 = 0.98 37 | epsilon = 1e-9 38 | batch_show_every = 500 39 | epoch_show_every = 1 40 | plot_pos_embedding = False 41 | -------------------------------------------------------------------------------- /tf1.12.0-eager/requirements.txt: -------------------------------------------------------------------------------- 1 | nltk==3.4 2 | numpy==1.15.4 3 | tqdm==4.28.1 4 | tensorflow-gpu==1.12.0 5 | matplotlib==3.0.2 -------------------------------------------------------------------------------- /tf1.12.0-eager/utils.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | from params import Params as pm 4 | import os 5 | from collections import Counter 6 | from tqdm import tqdm 7 | import tensorflow as tf 8 | from tensorflow.python.framework import ops 9 | from tensorflow.python.ops import math_ops 10 | import functools 11 | 12 | 13 | def build_vocab(path, fname): 14 | """ 15 | Constructs vocabulary as a dictionary. 16 | 17 | Args: 18 | :param path: [String], Input file path 19 | :param fname: [String], Output file name 20 | """ 21 | words = open(path, 'r', encoding='utf-8').read().split() 22 | wordCount = Counter(words) 23 | if not os.path.exists(pm.vocab_path): 24 | os.makedirs(pm.vocab_path) 25 | with open(pm.vocab_path + fname, 'w', encoding='utf-8') as f: 26 | f.write("{}\t1000000000\n{}\t1000000000\n{}\t1000000000\n{}\t1000000000\n".format("", "", "", "")) 27 | for word, count in wordCount.most_common(len(wordCount)): 28 | f.write(u"{}\t{}\n".format(word, count)) 29 | 30 | 31 | def load_vocab(vocab): 32 | """ 33 | Load word token from encoding dictionary. 34 | 35 | Args: 36 | :param vocab: [String], vocabulary files 37 | :return: tokenizer 38 | """ 39 | vocab = [line.split()[0] for line in open( 40 | '{}{}'.format(pm.vocab_path, vocab), 'r', encoding='utf-8').read().splitlines() 41 | if int(line.split()[1]) >= pm.word_limit_size] 42 | word2idx_dic = {word: idx for idx, word in enumerate(vocab)} 43 | idx2word_dic = {idx: word for idx, word in enumerate(vocab)} 44 | return word2idx_dic, idx2word_dic 45 | 46 | 47 | if not os.path.exists(pm.vocab_path) or pm.rebuild_vocabulary: 48 | build_vocab(pm.src_train, "en.vocab.tsv") 49 | build_vocab(pm.tgt_train, "de.vocab.tsv") 50 | en2idx, idx2en = load_vocab("en.vocab.tsv") 51 | de2idx, idx2de = load_vocab("de.vocab.tsv") 52 | 53 | 54 | def tokenize_sequences(source_sent, target_sent): 55 | """ 56 | Parse source sentences and target sentences from corpus with some formats. 57 | Parse word token from each sentences. 58 | Padding for word token sentence list. 59 | 60 | Args: 61 | :param source_sent: [List], encoding sentences from src-train file 62 | :param target_sent: [List], decoding sentences from tgt-train file 63 | :return: token sequences & source sentences 64 | """ 65 | source_sent = source_sent.numpy().decode('utf-8') 66 | target_sent = target_sent.numpy().decode('utf-8') 67 | 68 | inpt = [en2idx.get(word, 1) for word in (u" " + source_sent + u" ").split()] 69 | outpt = [de2idx.get(word, 1) for word in (u" " + target_sent + u" ").split()] 70 | 71 | return inpt, outpt 72 | 73 | 74 | def jit_tokenize_sequences(source_sent, target_sent): 75 | return tf.py_function(tokenize_sequences, [source_sent, target_sent], [tf.int64, tf.int64]) 76 | 77 | 78 | def filter_single_word(source_sent, target_sent): 79 | return tf.logical_and(tf.size(source_sent) > 1, tf.size(target_sent) > 1) 80 | 81 | 82 | def _byte_features(value): 83 | return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 84 | 85 | 86 | def dump2record(filename, corpus1, corpus2): 87 | """ 88 | Writedown the data into tfrecord format. 89 | 90 | Args: 91 | :param filename: 92 | :param corpus1: 93 | :param corpus2: 94 | """ 95 | assert len(corpus1) == len(corpus2) 96 | writer = tf.io.TFRecordWriter(filename) 97 | 98 | for sent1, sent2 in tqdm(zip(corpus1, corpus2)): 99 | features = {} 100 | features['src_sent'] = _byte_features(sent1.encode('utf-8')) 101 | features['tgt_sent'] = _byte_features(sent2.encode('utf-8')) 102 | 103 | tf_features = tf.train.Features(feature=features) 104 | tf_examples = tf.train.Example(features=tf_features) 105 | tf_serialized = tf_examples.SerializeToString() 106 | 107 | writer.write(tf_serialized) 108 | 109 | writer.close() 110 | 111 | 112 | def build_dataset(mode, filename=None, corpus=None, is_training=True): 113 | """ 114 | Read train-data from input datasets. 115 | 116 | Args: 117 | :param mode: [String], the tfrecord load mode, including 'array'(load from array) or 'file'(load from file) 118 | :param filename: [String], if mode == 'file' then input the path of tfrecord 119 | :param corpus: [String], if mode == 'array' then input the corpus with array type 120 | :return: datasets 121 | """ 122 | if mode == 'array': 123 | assert corpus is not None 124 | def _parse(example): 125 | return example[0], example[1] 126 | 127 | src, tgt = corpus 128 | real_data = [(inp.encode('utf-8'), tar.encode('utf-8')) for inp, tar in zip(src, tgt)] 129 | dataset = tf.data.Dataset.from_tensor_slices(real_data) 130 | dataset = dataset.map(_parse, num_parallel_calls=2) 131 | dataset = dataset.map(jit_tokenize_sequences, num_parallel_calls=2) 132 | dataset = dataset.filter(filter_single_word).cache().shuffle(pm.buffer_size) if is_training else dataset 133 | dataset = dataset.padded_batch(pm.batch_size, padded_shapes=([-1], [-1])) if is_training else \ 134 | dataset.padded_batch(1, padded_shapes=([-1], [-1])) 135 | dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) if is_training else dataset 136 | return dataset 137 | elif mode == 'file': 138 | def _parse(example): 139 | dics = { 140 | 'src_sent': tf.io.FixedLenFeature(shape=(), dtype=tf.string, default_value=None), 141 | 'tgt_sent': tf.io.FixedLenFeature(shape=(), dtype=tf.string, default_value=None) 142 | } 143 | 144 | parsed_data = tf.io.parse_single_example(example, dics) 145 | src_sent = parsed_data['src_sent'] 146 | tgt_sent = parsed_data['tgt_sent'] 147 | return src_sent, tgt_sent 148 | 149 | assert filename is not None 150 | dataset = tf.data.TFRecordDataset(filename) 151 | dataset = dataset.map(_parse, num_parallel_calls=2) 152 | dataset = dataset.map(jit_tokenize_sequences, num_parallel_calls=2) 153 | dataset = dataset.filter(filter_single_word).cache().shuffle(pm.buffer_size) if is_training else dataset 154 | dataset = dataset.padded_batch(pm.batch_size, padded_shapes=([-1], [-1])) if is_training else \ 155 | dataset.padded_batch(1, padded_shapes=([-1], [-1])) 156 | dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) if is_training else dataset 157 | return dataset 158 | else: 159 | raise ValueError('Something wrong about the mode when loading dataset ...') 160 | 161 | 162 | def LRSchedule(global_step, d_model, warmup_steps=4000): 163 | if global_step is None: 164 | raise ValueError("global_step is required for learning_rate_schedule.") 165 | 166 | def deal_lr(global_step, d_model, warmup_steps): 167 | d_model = ops.convert_to_tensor(d_model, dtype=tf.float32) 168 | dtype = d_model.dtype 169 | warmup_steps = math_ops.cast(warmup_steps, dtype) 170 | 171 | global_step_recomp = math_ops.cast(global_step, dtype) 172 | arg1 = math_ops.rsqrt(global_step_recomp) 173 | arg2 = math_ops.multiply(global_step_recomp, math_ops.pow(warmup_steps, -1.5)) 174 | 175 | return math_ops.multiply(math_ops.rsqrt(d_model), math_ops.minimum(arg1, arg2)) 176 | 177 | return functools.partial(deal_lr, global_step, d_model, warmup_steps) 178 | 179 | 180 | def masking(sequence, task='padding'): 181 | """ 182 | Masking operation. 183 | 184 | Args: 185 | :param sequence: [Tensor], A tensor contains the ids to be search from the lookup table, shape = [batch_size, seq_len] 186 | :param task: [String], 'padding' or 'look_ahead' tasks, set 'padding' default 187 | :return: [Tensor], Masked matrix 188 | """ 189 | if task == 'padding': 190 | return tf.cast(tf.math.equal(sequence, 0), tf.float32)[:, tf.newaxis, tf.newaxis, :] 191 | 192 | elif task == 'look_ahead': 193 | size = tf.shape(sequence)[1] 194 | return 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) 195 | 196 | else: 197 | raise ValueError('Please check the tasks that masking operation dealing with ("padding" or "look_ahead")...') 198 | 199 | 200 | def create_masks(inp, tar): 201 | enc_padding_mask = masking(inp, task='padding') 202 | dec_padding_mask = masking(inp, task='padding') 203 | 204 | look_ahead_mask = masking(tar, task='look_ahead') 205 | dec_tar_padding_mask = masking(tar, task='padding') 206 | combined_mask = tf.maximum(dec_tar_padding_mask, look_ahead_mask) 207 | 208 | return enc_padding_mask, combined_mask, dec_padding_mask 209 | -------------------------------------------------------------------------------- /utils_v2.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | from __future__ import print_function 3 | from params import Params as pm 4 | import os 5 | from collections import Counter 6 | from tqdm import tqdm 7 | import tensorflow as tf 8 | import matplotlib.pyplot as plt 9 | 10 | 11 | def build_vocab(path, fname): 12 | """ 13 | Constructs vocabulary as a dictionary. 14 | 15 | Args: 16 | :param path: [String], Input file path 17 | :param fname: [String], Output file name 18 | """ 19 | words = open(path, 'r', encoding='utf-8').read().split() 20 | wordCount = Counter(words) 21 | if not os.path.exists(pm.vocab_path): 22 | os.makedirs(pm.vocab_path) 23 | with open(pm.vocab_path + fname, 'w', encoding='utf-8') as f: 24 | f.write("{}\t1000000000\n{}\t1000000000\n{}\t1000000000\n{}\t1000000000\n".format("", "", "", "")) 25 | for word, count in wordCount.most_common(len(wordCount)): 26 | f.write(u"{}\t{}\n".format(word, count)) 27 | 28 | 29 | def load_vocab(vocab): 30 | """ 31 | Load word token from encoding dictionary. 32 | 33 | Args: 34 | :param vocab: [String], vocabulary files 35 | :return: tokenizer 36 | """ 37 | vocab = [line.split()[0] for line in open( 38 | '{}{}'.format(pm.vocab_path, vocab), 'r', encoding='utf-8').read().splitlines() 39 | if int(line.split()[1]) >= pm.word_limit_size] 40 | word2idx_dic = {word: idx for idx, word in enumerate(vocab)} 41 | idx2word_dic = {idx: word for idx, word in enumerate(vocab)} 42 | return word2idx_dic, idx2word_dic 43 | 44 | 45 | if not os.path.exists(pm.vocab_path) or pm.rebuild_vocabulary: 46 | build_vocab(pm.src_train, "en.vocab.tsv") 47 | build_vocab(pm.tgt_train, "de.vocab.tsv") 48 | en2idx, idx2en = load_vocab("en.vocab.tsv") 49 | de2idx, idx2de = load_vocab("de.vocab.tsv") 50 | 51 | 52 | def tokenize_sequences(source_sent, target_sent): 53 | """ 54 | Parse source sentences and target sentences from corpus with some formats. 55 | Parse word token from each sentences. 56 | Padding for word token sentence list. 57 | 58 | Args: 59 | :param source_sent: [List], encoding sentences from src-train file 60 | :param target_sent: [List], decoding sentences from tgt-train file 61 | :return: token sequences & source sentences 62 | """ 63 | source_sent = source_sent.numpy().decode('utf-8') 64 | target_sent = target_sent.numpy().decode('utf-8') 65 | 66 | inpt = [en2idx.get(word, 1) for word in (u" " + source_sent + u" ").split()] 67 | outpt = [de2idx.get(word, 1) for word in (u" " + target_sent + u" ").split()] 68 | 69 | if len(inpt) < pm.maxlen: 70 | inpt += [0 for _ in range(pm.maxlen - len(inpt))] 71 | if len(outpt) < pm.maxlen: 72 | outpt += [0 for _ in range(pm.maxlen - len(outpt))] 73 | 74 | return inpt, outpt 75 | 76 | 77 | def jit_tokenize_sequences(source_sent, target_sent): 78 | return tf.py_function(tokenize_sequences, [source_sent, target_sent], [tf.int64, tf.int64]) 79 | 80 | 81 | def filter_single_word(source_sent, target_sent): 82 | return tf.logical_and(tf.size(source_sent) <= pm.maxlen, tf.size(target_sent) <= pm.maxlen) 83 | 84 | 85 | def _byte_features(value): 86 | return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 87 | 88 | 89 | def dump2record(filename, corpus1, corpus2): 90 | """ 91 | Writedown the data into tfrecord format. 92 | 93 | Args: 94 | :param filename: 95 | :param corpus1: 96 | :param corpus2: 97 | """ 98 | assert len(corpus1) == len(corpus2) 99 | writer = tf.io.TFRecordWriter(filename) 100 | 101 | for sent1, sent2 in tqdm(zip(corpus1, corpus2)): 102 | features = {} 103 | features['src_sent'] = _byte_features(sent1.encode('utf-8')) 104 | features['tgt_sent'] = _byte_features(sent2.encode('utf-8')) 105 | 106 | tf_features = tf.train.Features(feature=features) 107 | tf_examples = tf.train.Example(features=tf_features) 108 | tf_serialized = tf_examples.SerializeToString() 109 | 110 | writer.write(tf_serialized) 111 | 112 | writer.close() 113 | 114 | 115 | def build_dataset(mode, batch_size, cache_name, filename=None, corpus=None, is_training=True): 116 | """ 117 | Read train-data from input datasets. 118 | 119 | Args: 120 | :param mode: [String], the tfrecord load mode, including 'array'(load from array) or 'file'(load from file) 121 | :param batch_size: [String], cut data into batches for training 122 | :param filename: [String], if mode == 'file' then input the path of tfrecord 123 | :param corpus: [String], if mode == 'array' then input the corpus with array type 124 | :return: datasets 125 | """ 126 | dataset_root = "/".join(pm.train_record.split('/')[:-1]) 127 | if mode == 'array': 128 | assert corpus is not None 129 | def _parse(example): 130 | return example[0], example[1] 131 | 132 | src, tgt = corpus 133 | real_data = [(inp.encode('utf-8'), tar.encode('utf-8')) for inp, tar in zip(src, tgt)] 134 | dataset = tf.data.Dataset.from_tensor_slices(real_data) 135 | dataset = dataset.map(_parse, num_parallel_calls=tf.data.experimental.AUTOTUNE) 136 | dataset = dataset.map(jit_tokenize_sequences, num_parallel_calls=tf.data.experimental.AUTOTUNE) 137 | dataset = dataset.filter(filter_single_word).cache(filename='{}/{}'.format(dataset_root, cache_name)).shuffle(pm.buffer_size) if is_training else dataset 138 | dataset = dataset.padded_batch(batch_size, padded_shapes=([-1], [-1])) if is_training else \ 139 | dataset.padded_batch(1, padded_shapes=([-1], [-1])) 140 | dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) if is_training else dataset 141 | return dataset 142 | elif mode == 'file': 143 | def _parse(example): 144 | dics = { 145 | 'src_sent': tf.io.FixedLenFeature(shape=(), dtype=tf.string, default_value=None), 146 | 'tgt_sent': tf.io.FixedLenFeature(shape=(), dtype=tf.string, default_value=None) 147 | } 148 | 149 | parsed_data = tf.io.parse_single_example(example, dics) 150 | src_sent = parsed_data['src_sent'] 151 | tgt_sent = parsed_data['tgt_sent'] 152 | return src_sent, tgt_sent 153 | 154 | assert filename is not None 155 | dataset = tf.data.TFRecordDataset(filename) 156 | dataset = dataset.map(_parse, num_parallel_calls=tf.data.experimental.AUTOTUNE) 157 | dataset = dataset.map(jit_tokenize_sequences, num_parallel_calls=tf.data.experimental.AUTOTUNE) 158 | dataset = dataset.filter(filter_single_word).cache(filename='{}/{}'.format(dataset_root, cache_name)).shuffle(pm.buffer_size) if is_training else dataset 159 | dataset = dataset.padded_batch(batch_size, padded_shapes=([-1], [-1])) if is_training else \ 160 | dataset.padded_batch(1, padded_shapes=([-1], [-1])) 161 | dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) if is_training else dataset 162 | return dataset 163 | else: 164 | raise ValueError('Something wrong about the mode when loading dataset ...') 165 | 166 | 167 | class LRSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): 168 | def __init__(self, d_model, warmup_steps=4000): 169 | super(LRSchedule, self).__init__() 170 | 171 | # It must be tensor else raise "Could not find valid device for node." error. 172 | self.d_model = tf.cast(d_model, tf.float32) 173 | self.warmup_steps = warmup_steps 174 | 175 | def __call__(self, step): 176 | arg1 = tf.math.rsqrt(step) 177 | arg2 = step * (self.warmup_steps ** -1.5) 178 | 179 | return tf.math.rsqrt(self.d_model) * tf.minimum(arg1, arg2) 180 | 181 | 182 | class polynomialLR(tf.keras.optimizers.schedules.LearningRateSchedule): 183 | def __init__(self, sl, el, decay_steps, power): 184 | super(polynomialLR, self).__init__() 185 | 186 | # It must be tensor else raise "Could not find valid device for node." error. 187 | self.sl = sl 188 | self.el = el 189 | self.decay_steps = decay_steps 190 | self.power = power 191 | 192 | def __call__(self, step): 193 | arg1 = self.decay_steps * tf.math.ceil(step / self.decay_steps) 194 | 195 | return (self.sl - self.el) * (1 - step / arg1) ** self.power + self.el 196 | 197 | 198 | def masking(sequence, task='padding'): 199 | """ 200 | Masking operation. 201 | 202 | Args: 203 | :param sequence: [Tensor], A tensor contains the ids to be search from the lookup table, shape = [batch_size, seq_len] 204 | :param task: [String], 'padding' or 'look_ahead' tasks, set 'padding' default 205 | :return: [Tensor], Masked matrix 206 | """ 207 | if task == 'padding': 208 | return tf.cast(tf.math.equal(sequence, 0), tf.float32)[:, tf.newaxis, tf.newaxis, :] 209 | 210 | elif task == 'look_ahead': 211 | size = tf.shape(sequence)[1] 212 | return 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) 213 | 214 | else: 215 | raise ValueError('Please check the tasks that masking operation dealing with ("padding" or "look_ahead")...') 216 | 217 | 218 | def create_masks(inp, tar): 219 | enc_padding_mask = masking(inp, task='padding') 220 | dec_padding_mask = masking(inp, task='padding') 221 | 222 | look_ahead_mask = masking(tar, task='look_ahead') 223 | dec_tar_padding_mask = masking(tar, task='padding') 224 | combined_mask = tf.maximum(dec_tar_padding_mask, look_ahead_mask) 225 | 226 | return enc_padding_mask, combined_mask, dec_padding_mask 227 | 228 | 229 | def plot_attention_weights(attention, sentence, result, layer): 230 | fig = plt.figure(figsize=(16, 8)) 231 | 232 | sentence = [en2idx.get(word, 1) for word in sentence.split()] 233 | attention = tf.squeeze(attention[layer], axis=0) 234 | 235 | for head in range(attention.shape[0]): 236 | ax = fig.add_subplot(2, 4, head + 1) 237 | 238 | ax.matshow(attention[head][:-1, :], cmap='viridis') 239 | fontdict = {'fontsize': 10} 240 | 241 | ax.set_xticks(range(len(sentence) + 2)) 242 | ax.set_yticks(range(len(result))) 243 | 244 | ax.set_ylim(len(result)-1.5, -0.5) 245 | 246 | ax.set_xticklabels([''] + [idx2en.get(i, 1) for i in sentence] + [''], 247 | fontdict=fontdict, rotation=90) 248 | 249 | ax.set_yticklabels([idx2de.get(i, 1) for i in result.numpy() if i < len(idx2de) and i not in [0, 2, 3]], 250 | fontdict=fontdict) 251 | 252 | ax.set_xlabel('Head {}'.format(head + 1)) 253 | 254 | plt.tight_layout() 255 | plt.show() 256 | --------------------------------------------------------------------------------