├── README.md
├── LICENSE
└── Logistic-Regression-v1.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Logistic-Regression
2 | After completing this lab you will be able to: * Use Logistic Regression for classification * Preprocess data for modeling * Implement Logistic regression on real world data
3 |
4 |
5 | ## Logistic Regression for Telco Customer Churn Prediction
6 |
7 | This Jupyter notebook implements a complete **Logistic Regression classification model** to predict customer churn in the telecommunications industry using Python and scikit-learn. The project demonstrates end-to-end machine learning workflow including data preprocessing, model training, evaluation, and feature importance analysis.[1]
8 |
9 | ### Project Overview
10 |
11 | This implementation focuses on predicting which customers are likely to leave a telecommunications company's land-line business for cable competitors. The model achieves approximately **66% accuracy** through logistic regression classification and provides insights into the key factors influencing customer churn.[1]
12 |
13 | ### Dataset
14 |
15 | The project uses the **Telco Customer Churn dataset**, a hypothetical dataset representing telecommunications customer data. The dataset contains 200 customer records with 28 features including:[1]
16 |
17 | **Demographic Features:**
18 | - tenure: Length of customer relationship
19 | - age: Customer age
20 | - address: Years at current address
21 | - income: Annual income
22 | - ed: Education level (1-5 scale)
23 | - employ: Years with current employer
24 |
25 | **Service Features:**
26 | - equip: Equipment rental (binary)
27 | - callcard: Calling card service (binary)
28 | - wireless: Wireless service (binary)
29 |
30 | **Target Variable:**
31 | - churn: Customer churn indicator (0=retained, 1=churned)[1]
32 |
33 | The dataset exhibits a **29% churn rate** (58 out of 200 customers), providing a realistic business scenario for classification modeling.[1]
34 |
35 | ### Key Features
36 |
37 | **Data Preprocessing:**
38 | - Feature selection and subset extraction
39 | - Data type conversion for target variable
40 | - **StandardScaler normalization** for feature scaling
41 | - Train-test split (80-20 ratio) with random state for reproducibility[1]
42 |
43 | **Model Implementation:**
44 | - Logistic Regression classifier from scikit-learn
45 | - Model training on standardized features
46 | - Prediction and probability estimation
47 | - **Log-loss evaluation metric** for model performance assessment[1]
48 |
49 | **Analysis & Visualization:**
50 | - Feature coefficient visualization using horizontal bar plots
51 | - Interpretation of coefficient magnitudes and directions
52 | - Probability-based prediction analysis
53 | - Feature importance ranking for business insights[1]
54 |
55 | ### Technical Stack
56 |
57 | - **Python 3.12.4**
58 | - **pandas 2.2.3**: Data manipulation and analysis
59 | - **numpy 2.2.0**: Numerical computing
60 | - **scikit-learn 1.6.0**: Machine learning algorithms and preprocessing
61 | - **matplotlib 3.9.3**: Data visualization[1]
62 |
63 | ### Model Performance
64 |
65 | The trained model achieves a **log-loss of approximately 0.626** on the test set, indicating reasonable predictive performance. Log-loss (logarithmic loss or binary cross-entropy) measures the performance of a classification model where predictions are probability values between 0 and 1 - lower values indicate better model performance.[1]
66 |
67 | ### Feature Importance Insights
68 |
69 | The model provides interpretable coefficients for each feature, where:
70 | - **Large positive coefficients** indicate that increases in the feature value lead to higher churn probability
71 | - **Large negative coefficients** indicate that increases in the feature value lead to lower churn probability
72 | - **Small absolute values** suggest weaker influence on churn prediction[1]
73 |
74 | The visualization clearly shows which customer attributes have the strongest impact on churn decisions, enabling data-driven retention strategies.[1]
75 |
76 | ### Usage
77 |
78 | The notebook provides a complete, executable workflow that can be run sequentially from top to bottom. Key sections include:[1]
79 |
80 | 1. Library installation and imports
81 | 2. Data loading and exploration
82 | 3. Feature engineering and preprocessing
83 | 4. Data standardization
84 | 5. Train-test splitting
85 | 6. Model training
86 | 7. Prediction generation
87 | 8. Performance evaluation
88 | 9. Feature coefficient analysis and visualization
89 |
90 | ### Practice Exercises
91 |
92 | The notebook includes hands-on exercises to explore model behavior with different feature combinations:
93 | - Adding individual features (callcard, wireless)
94 | - Removing features (equip, income, employ)
95 | - Analyzing the impact on log-loss performance[1]
96 |
97 | ### Learning Objectives
98 |
99 | After completing this implementation, users will be able to:
100 | - Use Logistic Regression for binary classification tasks
101 | - Preprocess data for machine learning modeling
102 | - Implement end-to-end ML pipelines
103 | - Evaluate model performance using appropriate metrics
104 | - Interpret model coefficients for business insights[1]
105 |
106 | ### Estimated Completion Time
107 |
108 | **60 minutes**[1]
109 |
110 | ### Applications
111 |
112 | This implementation is ideal for:
113 | - Customer churn prediction in telecommunications and subscription-based businesses
114 | - Educational purposes for learning classification techniques
115 | - Foundation for more advanced customer retention models
116 | - Business intelligence and customer analytics projects[1]
117 |
118 | ## Dataset link: https://www.kaggle.com/datasets/ezzaldeenesmail/telco-churn-dataset/data
119 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/Logistic-Regression-v1.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "fc302825-d4a6-4659-b19d-c4f28a5c3c39",
6 | "metadata": {},
7 | "source": [
8 | "\n",
9 | "# Logistic Regression with Python\n",
10 | "\n",
11 | "\n",
12 | "Estimated time needed: **60** minutes\n",
13 | " \n",
14 | "\n",
15 | "## Objectives\n",
16 | "\n",
17 | "After completing this lab you will be able to:\n",
18 | "\n",
19 | "* Use Logistic Regression for classification\n",
20 | "* Preprocess data for modeling\n",
21 | "* Implement Logistic regression on real world data\n"
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "id": "6b5bca0c-87c7-4445-b2d9-28c2aaf03e08",
27 | "metadata": {},
28 | "source": [
29 | "## Install and import the required libraries\n",
30 | "Make sure the required libraries are available by executing the cell below.\n"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": null,
36 | "id": "6eadbb65-60c6-47ae-8249-a5a3b12ce36f",
37 | "metadata": {},
38 | "outputs": [],
39 | "source": [
40 | "!pip install numpy==2.2.0\n",
41 | "!pip install pandas==2.2.3\n",
42 | "!pip install scikit-learn==1.6.0\n",
43 | "!pip install matplotlib==3.9.3"
44 | ]
45 | },
46 | {
47 | "cell_type": "markdown",
48 | "id": "28fa82bb-3a10-4e45-8c0d-18e2aa5df684",
49 | "metadata": {},
50 | "source": [
51 | "Let's first import required libraries:\n"
52 | ]
53 | },
54 | {
55 | "cell_type": "markdown",
56 | "metadata": {},
57 | "source": [
58 | "import pandas as pd\n",
59 | "import numpy as np\n",
60 | "\n",
61 | "sklearn.model_selection import train_test_split\n",
62 | "\n",
63 | "from sklearn.linear_model import LogisticRegression\n",
64 | "\n",
65 | "from sklearn.preprocessing import StandardScaler\n",
66 | "\n",
67 | "from sklearn.metrics import log_loss\n",
68 | "\n",
69 | "import matplotlib.pyplot as plt\n",
70 | "\n",
71 | "%matplotlib inline \n",
72 | "\n",
73 | "import warnings\n",
74 | "warnings.filterwarnings('ignore')"
75 | ]
76 | },
77 | {
78 | "cell_type": "code",
79 | "execution_count": null,
80 | "id": "e2c8ace9-9735-40d0-97e6-c97c2445cf76",
81 | "metadata": {},
82 | "outputs": [],
83 | "source": [
84 | "import pandas as pd\n",
85 | "import numpy as np\n",
86 | "\n",
87 | "from sklearn.model_selection import train_test_split\n",
88 | "from sklearn.linear_model import LogisticRegression\n",
89 | "from sklearn.preprocessing import StandardScaler\n",
90 | "\n",
91 | "from sklearn.metrics import log_loss\n",
92 | "import matplotlib.pyplot as plt\n",
93 | "\n",
94 | "%matplotlib inline \n",
95 | "\n",
96 | "import warnings\n",
97 | "warnings.filterwarnings('ignore')"
98 | ]
99 | },
100 | {
101 | "cell_type": "markdown",
102 | "id": "582c85ac-44ea-4ba4-8539-475dee3fbefd",
103 | "metadata": {},
104 | "source": [
105 | "## Classification with Logistic Regression\n",
106 | "\n",
107 | "### Scenario\n",
108 | "Assume that you are working for a telecommunications company which is concerned about the number of customers leaving their land-line business for cable competitors. They need to understand who is more likely to leave the company.\n"
109 | ]
110 | },
111 | {
112 | "cell_type": "markdown",
113 | "id": "2907e2b3-e31b-48c7-b79e-30a9d1f65b29",
114 | "metadata": {},
115 | "source": [
116 | "### Load the Telco Churn data \n",
117 | "Telco Churn is a hypothetical data file that concerns a telecommunications company's efforts to reduce turnover in its customer base. Each case corresponds to a separate customer and it records various demographic and service usage information. Before you can work with the data, you must use the URL to get the ChurnData.csv.\n"
118 | ]
119 | },
120 | {
121 | "cell_type": "markdown",
122 | "id": "77c9cb61-fe06-461d-b05d-16d4b74fdacf",
123 | "metadata": {},
124 | "source": [
125 | "### About the dataset\n",
126 | "We will use a telecommunications dataset for predicting customer churn. This is a historical customer dataset where each row represents one customer. The data is relatively easy to understand, and you may uncover insights you can use immediately. Typically it is less expensive to keep customers than acquire new ones, so the focus of this analysis is to predict the customers who will stay with the company. \n",
127 | "
\n",
128 | "This data set provides you information about customer preferences, services opted, personal details, etc. which helps you predict customer churn.\n"
129 | ]
130 | },
131 | {
132 | "cell_type": "markdown",
133 | "id": "4b0e1cd2-d983-4226-8594-0f92c153c1df",
134 | "metadata": {},
135 | "source": [
136 | "### Load Data from URL\n"
137 | ]
138 | },
139 | {
140 | "cell_type": "code",
141 | "execution_count": null,
142 | "id": "0535963e-0efc-41e9-90b6-6987857af230",
143 | "metadata": {},
144 | "outputs": [
145 | {
146 | "data": {
147 | "text/html": [
148 | "
"
848 | ],
849 | "text/plain": [
850 | " tenure age address income ed employ equip churn\n",
851 | "0 11.0 33.0 7.0 136.0 5.0 5.0 0.0 1\n",
852 | "1 33.0 33.0 12.0 33.0 2.0 0.0 0.0 1\n",
853 | "2 23.0 30.0 9.0 30.0 1.0 2.0 0.0 0\n",
854 | "3 38.0 35.0 5.0 76.0 2.0 10.0 1.0 0\n",
855 | "4 7.0 35.0 14.0 80.0 2.0 15.0 0.0 0\n",
856 | ".. ... ... ... ... ... ... ... ...\n",
857 | "195 55.0 44.0 24.0 83.0 1.0 23.0 0.0 0\n",
858 | "196 34.0 23.0 3.0 24.0 1.0 7.0 0.0 0\n",
859 | "197 6.0 32.0 10.0 47.0 1.0 10.0 0.0 0\n",
860 | "198 24.0 30.0 0.0 25.0 4.0 5.0 0.0 1\n",
861 | "199 61.0 50.0 16.0 190.0 2.0 22.0 1.0 0\n",
862 | "\n",
863 | "[200 rows x 8 columns]"
864 | ]
865 | },
866 | "execution_count": 5,
867 | "metadata": {},
868 | "output_type": "execute_result"
869 | }
870 | ],
871 | "source": [
872 | "churn_df['churn'] = churn_df['churn'].astype('int')\n",
873 | "churn_df"
874 | ]
875 | },
876 | {
877 | "cell_type": "markdown",
878 | "id": "5ca4c39a-e8e7-4ede-8c1c-54360507a566",
879 | "metadata": {},
880 | "source": [
881 | "For modeling the input fields X and the target field y need to be fixed. Since that the target to be predicted is 'churn', the data under this field will be stored under the variable 'y'. We may use any combination or all of the remaining fields as the input. Store these values in the variable 'X'.\n"
882 | ]
883 | },
884 | {
885 | "cell_type": "code",
886 | "execution_count": null,
887 | "metadata": {},
888 | "outputs": [
889 | {
890 | "data": {
891 | "text/html": [
892 | "
\n",
893 | "\n",
906 | "
\n",
907 | " \n",
908 | "
\n",
909 | "
\n",
910 | "
tenure
\n",
911 | "
age
\n",
912 | "
address
\n",
913 | "
income
\n",
914 | "
ed
\n",
915 | "
employ
\n",
916 | "
equip
\n",
917 | "
\n",
918 | " \n",
919 | " \n",
920 | "
\n",
921 | "
0
\n",
922 | "
11.0
\n",
923 | "
33.0
\n",
924 | "
7.0
\n",
925 | "
136.0
\n",
926 | "
5.0
\n",
927 | "
5.0
\n",
928 | "
0.0
\n",
929 | "
\n",
930 | "
\n",
931 | "
1
\n",
932 | "
33.0
\n",
933 | "
33.0
\n",
934 | "
12.0
\n",
935 | "
33.0
\n",
936 | "
2.0
\n",
937 | "
0.0
\n",
938 | "
0.0
\n",
939 | "
\n",
940 | "
\n",
941 | "
2
\n",
942 | "
23.0
\n",
943 | "
30.0
\n",
944 | "
9.0
\n",
945 | "
30.0
\n",
946 | "
1.0
\n",
947 | "
2.0
\n",
948 | "
0.0
\n",
949 | "
\n",
950 | "
\n",
951 | "
3
\n",
952 | "
38.0
\n",
953 | "
35.0
\n",
954 | "
5.0
\n",
955 | "
76.0
\n",
956 | "
2.0
\n",
957 | "
10.0
\n",
958 | "
1.0
\n",
959 | "
\n",
960 | "
\n",
961 | "
4
\n",
962 | "
7.0
\n",
963 | "
35.0
\n",
964 | "
14.0
\n",
965 | "
80.0
\n",
966 | "
2.0
\n",
967 | "
15.0
\n",
968 | "
0.0
\n",
969 | "
\n",
970 | "
\n",
971 | "
...
\n",
972 | "
...
\n",
973 | "
...
\n",
974 | "
...
\n",
975 | "
...
\n",
976 | "
...
\n",
977 | "
...
\n",
978 | "
...
\n",
979 | "
\n",
980 | "
\n",
981 | "
195
\n",
982 | "
55.0
\n",
983 | "
44.0
\n",
984 | "
24.0
\n",
985 | "
83.0
\n",
986 | "
1.0
\n",
987 | "
23.0
\n",
988 | "
0.0
\n",
989 | "
\n",
990 | "
\n",
991 | "
196
\n",
992 | "
34.0
\n",
993 | "
23.0
\n",
994 | "
3.0
\n",
995 | "
24.0
\n",
996 | "
1.0
\n",
997 | "
7.0
\n",
998 | "
0.0
\n",
999 | "
\n",
1000 | "
\n",
1001 | "
197
\n",
1002 | "
6.0
\n",
1003 | "
32.0
\n",
1004 | "
10.0
\n",
1005 | "
47.0
\n",
1006 | "
1.0
\n",
1007 | "
10.0
\n",
1008 | "
0.0
\n",
1009 | "
\n",
1010 | "
\n",
1011 | "
198
\n",
1012 | "
24.0
\n",
1013 | "
30.0
\n",
1014 | "
0.0
\n",
1015 | "
25.0
\n",
1016 | "
4.0
\n",
1017 | "
5.0
\n",
1018 | "
0.0
\n",
1019 | "
\n",
1020 | "
\n",
1021 | "
199
\n",
1022 | "
61.0
\n",
1023 | "
50.0
\n",
1024 | "
16.0
\n",
1025 | "
190.0
\n",
1026 | "
2.0
\n",
1027 | "
22.0
\n",
1028 | "
1.0
\n",
1029 | "
\n",
1030 | " \n",
1031 | "
\n",
1032 | "
200 rows × 7 columns
\n",
1033 | "
"
1034 | ],
1035 | "text/plain": [
1036 | " tenure age address income ed employ equip\n",
1037 | "0 11.0 33.0 7.0 136.0 5.0 5.0 0.0\n",
1038 | "1 33.0 33.0 12.0 33.0 2.0 0.0 0.0\n",
1039 | "2 23.0 30.0 9.0 30.0 1.0 2.0 0.0\n",
1040 | "3 38.0 35.0 5.0 76.0 2.0 10.0 1.0\n",
1041 | "4 7.0 35.0 14.0 80.0 2.0 15.0 0.0\n",
1042 | ".. ... ... ... ... ... ... ...\n",
1043 | "195 55.0 44.0 24.0 83.0 1.0 23.0 0.0\n",
1044 | "196 34.0 23.0 3.0 24.0 1.0 7.0 0.0\n",
1045 | "197 6.0 32.0 10.0 47.0 1.0 10.0 0.0\n",
1046 | "198 24.0 30.0 0.0 25.0 4.0 5.0 0.0\n",
1047 | "199 61.0 50.0 16.0 190.0 2.0 22.0 1.0\n",
1048 | "\n",
1049 | "[200 rows x 7 columns]"
1050 | ]
1051 | },
1052 | "execution_count": 13,
1053 | "metadata": {},
1054 | "output_type": "execute_result"
1055 | }
1056 | ],
1057 | "source": [
1058 | "XX = churn_df.drop('churn', axis=1)\n",
1059 | "yy = churn_df['churn']\n",
1060 | "XX"
1061 | ]
1062 | },
1063 | {
1064 | "cell_type": "code",
1065 | "execution_count": 6,
1066 | "id": "9a4afcab-17e1-450e-b6df-e14d5d94eb26",
1067 | "metadata": {},
1068 | "outputs": [
1069 | {
1070 | "data": {
1071 | "text/plain": [
1072 | "array([[ 11., 33., 7., 136., 5., 5., 0.],\n",
1073 | " [ 33., 33., 12., 33., 2., 0., 0.],\n",
1074 | " [ 23., 30., 9., 30., 1., 2., 0.],\n",
1075 | " [ 38., 35., 5., 76., 2., 10., 1.],\n",
1076 | " [ 7., 35., 14., 80., 2., 15., 0.]])"
1077 | ]
1078 | },
1079 | "execution_count": 6,
1080 | "metadata": {},
1081 | "output_type": "execute_result"
1082 | }
1083 | ],
1084 | "source": [
1085 | "# X = XX.to_numpy()\n",
1086 | "X = np.asarray(churn_df[['tenure', 'age', 'address', 'income', 'ed', 'employ', 'equip']])\n",
1087 | "X[0:5] #print the first 5 values"
1088 | ]
1089 | },
1090 | {
1091 | "cell_type": "code",
1092 | "execution_count": 7,
1093 | "id": "b5a6b91c-f3ee-499f-a844-7eabae0d9408",
1094 | "metadata": {},
1095 | "outputs": [
1096 | {
1097 | "data": {
1098 | "text/plain": [
1099 | "array([1, 1, 0, 0, 0])"
1100 | ]
1101 | },
1102 | "execution_count": 7,
1103 | "metadata": {},
1104 | "output_type": "execute_result"
1105 | }
1106 | ],
1107 | "source": [
1108 | "y = np.asarray(churn_df['churn'])\n",
1109 | "y[0:5] #print the first 5 values"
1110 | ]
1111 | },
1112 | {
1113 | "cell_type": "markdown",
1114 | "id": "026bedf6-e320-4e58-8655-3a4ba111139f",
1115 | "metadata": {},
1116 | "source": [
1117 | "It is also a norm to standardize or normalize the dataset in order to have all the features at the same scale. This helps the model learn faster and improves the model performance. We may make use of StandardScalar function in the Scikit-Learn library.\n"
1118 | ]
1119 | },
1120 | {
1121 | "cell_type": "code",
1122 | "execution_count": 15,
1123 | "id": "71cb424f-c701-42b8-8426-db16a8f3d1cd",
1124 | "metadata": {},
1125 | "outputs": [
1126 | {
1127 | "data": {
1128 | "text/plain": [
1129 | "array([[-1.13518441, -0.62595491, -0.4588971 , 0.4751423 , 1.6961288 ,\n",
1130 | " -0.58477841, -0.85972695],\n",
1131 | " [-0.11604313, -0.62595491, 0.03454064, -0.32886061, -0.6433592 ,\n",
1132 | " -1.14437497, -0.85972695],\n",
1133 | " [-0.57928917, -0.85594447, -0.261522 , -0.35227817, -1.42318853,\n",
1134 | " -0.92053635, -0.85972695],\n",
1135 | " [ 0.11557989, -0.47262854, -0.65627219, 0.00679109, -0.6433592 ,\n",
1136 | " -0.02518185, 1.16316 ],\n",
1137 | " [-1.32048283, -0.47262854, 0.23191574, 0.03801451, -0.6433592 ,\n",
1138 | " 0.53441472, -0.85972695]])"
1139 | ]
1140 | },
1141 | "execution_count": 15,
1142 | "metadata": {},
1143 | "output_type": "execute_result"
1144 | }
1145 | ],
1146 | "source": [
1147 | "X_norm = StandardScaler().fit(X).transform(X)\n",
1148 | "X_norm[0:5]"
1149 | ]
1150 | },
1151 | {
1152 | "cell_type": "markdown",
1153 | "id": "180bb824-9b40-4a53-808f-e10bec6d677e",
1154 | "metadata": {},
1155 | "source": [
1156 | "### Splitting the dataset\n"
1157 | ]
1158 | },
1159 | {
1160 | "cell_type": "markdown",
1161 | "id": "8971e904-5c1c-4694-bef0-a7b62fd94b1f",
1162 | "metadata": {},
1163 | "source": [
1164 | "The trained model has to be tested and evaluated on data which has not been used during training. Therefore, it is required to separate a part of the data for testing and the remaining for training. For this, we may make use of the train_test_split function in the scikit-learn library.\n"
1165 | ]
1166 | },
1167 | {
1168 | "cell_type": "code",
1169 | "execution_count": 16,
1170 | "id": "cdbe3030-85a2-4656-abc0-1f1f7ba041e5",
1171 | "metadata": {},
1172 | "outputs": [],
1173 | "source": [
1174 | "X_train, X_test, y_train, y_test = train_test_split( X_norm, y, test_size=0.2, random_state=4)"
1175 | ]
1176 | },
1177 | {
1178 | "cell_type": "markdown",
1179 | "id": "e873eb89-30ba-4b75-b5db-2d6c653d5ff9",
1180 | "metadata": {},
1181 | "source": [
1182 | "## Logistic Regression Classifier modeling\n"
1183 | ]
1184 | },
1185 | {
1186 | "cell_type": "markdown",
1187 | "id": "f925b359-dffb-42ed-ae01-23cf4c08b031",
1188 | "metadata": {},
1189 | "source": [
1190 | "Let's build the model using __LogisticRegression__ from the Scikit-learn package and fit our model with train data set.\n"
1191 | ]
1192 | },
1193 | {
1194 | "cell_type": "code",
1195 | "execution_count": 17,
1196 | "id": "b57308e1-5e95-4e07-a021-ebf72842e21c",
1197 | "metadata": {},
1198 | "outputs": [],
1199 | "source": [
1200 | "LR = LogisticRegression().fit(X_train,y_train)"
1201 | ]
1202 | },
1203 | {
1204 | "cell_type": "markdown",
1205 | "id": "89a92441-51e5-4dc9-ae90-fa22e5d7ff1f",
1206 | "metadata": {},
1207 | "source": [
1208 | "Fitting, or in simple terms training, gives us a model that has now learnt from the traning data and can be used to predict the output variable. Let us predict the churn parameter for the test data set.\n"
1209 | ]
1210 | },
1211 | {
1212 | "cell_type": "code",
1213 | "execution_count": 19,
1214 | "id": "e2253e7b-5519-4be6-97b6-34663295740d",
1215 | "metadata": {},
1216 | "outputs": [
1217 | {
1218 | "data": {
1219 | "text/plain": [
1220 | "(array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0]), array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0]))"
1221 | ]
1222 | },
1223 | "execution_count": 19,
1224 | "metadata": {},
1225 | "output_type": "execute_result"
1226 | }
1227 | ],
1228 | "source": [
1229 | "yhat = LR.predict(X_test)\n",
1230 | "yhat[:10], y[:10]"
1231 | ]
1232 | },
1233 | {
1234 | "cell_type": "markdown",
1235 | "id": "df6d5069-6b71-4f0a-b120-d6bd097f8d80",
1236 | "metadata": {},
1237 | "source": [
1238 | "To understand this prediction, we can also have a look at the prediction probability of data point of the test data set. Use the function __predict_proba__ , we can get the probability of each class. The first column is the probability of the record belonging to class 0, and second column that of class 1. Note that the class prediction system uses the threshold for class prediction as 0.5. This means that the class predicted is the one which is most likely.\n"
1239 | ]
1240 | },
1241 | {
1242 | "cell_type": "code",
1243 | "execution_count": 20,
1244 | "id": "dedd0a86-c822-4d86-a5a9-765340e2437b",
1245 | "metadata": {},
1246 | "outputs": [
1247 | {
1248 | "data": {
1249 | "text/plain": [
1250 | "array([[0.74643946, 0.25356054],\n",
1251 | " [0.92667894, 0.07332106],\n",
1252 | " [0.83442627, 0.16557373],\n",
1253 | " [0.94600618, 0.05399382],\n",
1254 | " [0.84325532, 0.15674468],\n",
1255 | " [0.71448367, 0.28551633],\n",
1256 | " [0.77076426, 0.22923574],\n",
1257 | " [0.90955642, 0.09044358],\n",
1258 | " [0.26152115, 0.73847885],\n",
1259 | " [0.94900731, 0.05099269]])"
1260 | ]
1261 | },
1262 | "execution_count": 20,
1263 | "metadata": {},
1264 | "output_type": "execute_result"
1265 | }
1266 | ],
1267 | "source": [
1268 | "yhat_prob = LR.predict_proba(X_test)\n",
1269 | "yhat_prob[:10]"
1270 | ]
1271 | },
1272 | {
1273 | "cell_type": "markdown",
1274 | "id": "ee9c420b-79c0-4195-ba05-dc5505716296",
1275 | "metadata": {},
1276 | "source": [
1277 | "Since the purpose here is to predict the 1 class more acccurately, you can also examine what role each input feature has to play in the prediction of the 1 class. Consider the code below.\n"
1278 | ]
1279 | },
1280 | {
1281 | "cell_type": "code",
1282 | "execution_count": null,
1283 | "id": "b9cc2884-c83b-4fa7-8d84-8ad6fa15ed22",
1284 | "metadata": {},
1285 | "outputs": [
1286 | {
1287 | "data": {
1288 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHFCAYAAAAXETaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABTX0lEQVR4nO3dd1gU1xoG8HdpS18sIEUEUURQUOzYwBbsvfcau8YSy43BGlGMipqgxgImscUaFWNXrgbsXYhGFNEodsWKwJ77h8NcV0BZOuT9Pc8+yc6cOfOdbbyemdlVCCEEiIiIiAg6eV0AERERUX7BYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmCUy0JCQqBQKNK8jR8/Pkf2GRkZiWnTpiEmJiZH+s8O9+/fx6RJk+Du7g5TU1MYGhrC2dkZo0ePxt9//52j+z537hy8vb2hUqmgUCgQGBgIADh48CCqVasGExMTKBQKbN++XX7+tH0sp02bBoVCkf3Ff+D169eYNm0ajhw5km19Zna8n+Lo6IiWLVtmW38ZceTIESgUCq0fm6CgIISEhKRaHhMTA4VCkea6zPj4s8Dc3By1a9fG+vXrs6X/giC7H9PMOHr0KDp37gw7OzsYGBhApVKhdu3aWLp0KV69eiW3UygUGDFiRJ7VqY2Uzx4dHR3cuHEj1fpXr17B3NwcCoUCffv2zbb9ZuX5zOz7Nbvo5cleCcHBwShfvrzGMltb2xzZV2RkJKZPnw4fHx84OjrmyD6y4uTJk2jZsiWEEBgxYgS8vLxgYGCAq1ev4tdff0WNGjXw9OnTHNt///798erVK2zYsAFFihSBo6MjhBDo3LkzypUrhx07dsDExAQuLi5ISkpCREQEbGxstNrHwIED0bRp0xwawXuvX7/G9OnTAQA+Pj7Z0meLFi0yNd78pkqVKoiIiICbm5tW2wUFBaF48eKp/mDY2NggIiICZcqUybYaO3bsiHHjxkEIgZs3b2L27Nno3r07hBDo3r17tu0nv8qJx1QbU6dOxYwZM1C7dm3MnDkTZcqUwevXrxEeHo5p06bh2rVrWLhwYZ7Ulh1MTU0RHByMmTNnaizftGkTEhMToa+vn0eV5T8MRnmkYsWKqFatWl6XkSWJiYlQKBTQ08v8yyg+Ph5t2rSBoaEhwsPDUbJkSXmdj48PBg8ejM2bN2dHuem6fPkyBg0ahGbNmsnL/vnnHzx58gTt2rVDo0aNNNpbWlpqvY+SJUtqjK2gsLS0zNR48xtzc3PUqlUr2/pTKpXZ2h8AlChRQu7Ty8sLderUgaOjI5YvX57rwej169cwNjbO1X3mxGOaUZs2bcKMGTMwYMAArFixQmN2t1mzZpgwYQIiIiJytSYhBN6+fQsjI6Ns6a9Lly5Ys2YNpk+fDh2d/x8sWrVqFdq1a4cdO3Zky34KAx5Ky6c2btwILy8vmJiYwNTUFL6+vjh37pxGm9OnT6Nr165wdHSEkZERHB0d0a1bN9y6dUtuExISgk6dOgEAGjRoIE/Vp0xvOjo6pjl96uPjozHrkDK1+csvv2DcuHGws7ODUqnE9evXAQAHDhxAo0aNYG5uDmNjY9SpUwcHDx787DhXrFiBuLg4BAQEpBscOnbsqHF/x44d8PLygrGxMczMzNCkSZM0P7T+/vtvdO/eHVZWVlAqlXB1dcWPP/6o8dgoFAokJSVh6dKl8mMzbdo0uZaJEydCoVDIM23pHVras2cPGjVqBJVKBWNjY7i6usLf319en96htIw8z3379oWpqSmuX7+O5s2bw9TUFPb29hg3bhwSEhIAvJ+2Tgkw06dPl8eS8tw+fPgQX375Jezt7aFUKmFpaYk6dergwIEDaT7mHz9GH47Xx8cHFStWxKlTp1CvXj0YGxvDyckJc+bMgVqt/mR/GfX27VtMnjwZpUuXhoGBAezs7DB8+HA8e/ZMo11CQgLGjRsHa2trGBsbo379+jhz5kyq13VaU/M3btxA165dYWtrC6VSiRIlSqBRo0Y4f/48gPfvjStXriAsLEx+PFNeB+kdJvjrr7/QrVs3lChRAkqlEqVKlULv3r3l50kbDg4OsLS0xP379zWWx8fHY/z48RqPzVdffaVxqAcAnj17hgEDBqBo0aIwNTVFixYtcOPGDfk1niLltXn27Fl07NgRRYoUkWdthBAICgpC5cqVYWRkhCJFiqBjx46pDsmcO3cOLVu2lN9rtra2aNGiBe7cuSO32bRpE2rWrCm/R5ycnNC/f395fXqP6bFjx9CoUSOYmZnB2NgYtWvXRmhoqEablNfp4cOHMXToUBQvXhzFihVD+/btcffu3c8+1jNmzECRIkWwePHiNN+nZmZm+OKLL1It/+WXX+Dq6gpjY2NUqlQJu3bt0ljft2/fNGfp0/o8SDk8t2zZMri6ukKpVGLNmjVZHluK/v374/bt29i/f7+87Nq1azh27JjG8/Ch2NhY9OzZU+MzdP78+ane53fv3kXnzp1hZmYGlUqFLl26IC4uLs0+T58+jdatW6No0aIwNDSEp6cnfvvttwyPIzcwGOWR5ORkJCUladxSzJ49G926dYObmxt+++03/PLLL3jx4gXq1auHyMhIuV1MTAxcXFwQGBiIvXv3Yu7cubh37x6qV6+OR48eAXh/KGT27NkAgB9//BERERGIiIhAixYtMlX35MmTERsbi2XLlmHnzp2wsrLCr7/+ii+++ALm5uZYs2YNfvvtNxQtWhS+vr6fDUf79u2Drq4uWrVqlaH9r1u3Dm3atIG5uTnWr1+PVatW4enTp/Dx8cGxY8fkdpGRkahevTouX76M+fPnY9euXWjRogVGjRolH25KOUwEvA9fKY/NwIEDsXXrVgDAyJEjERERgW3btqVb06pVq9C8eXOo1Wr5cRk1apTGH4W0ZPR5Bt7PzrVu3RqNGjXC77//jv79+2PhwoWYO3cugPeHIfbs2QMAGDBggDyWb7/9FgDQq1cvbN++HX5+fti3bx9WrlyJxo0b4/Hjxxl63D8WFxeHHj16oGfPntixYweaNWuGyZMn49dff81Ufx8SQqBt27b4/vvv0atXL4SGhmLs2LFYs2YNGjZsqBEy+vXrh8DAQPTr1w+///47OnTogHbt2qUKUGlp3rw5zpw5g4CAAOzfvx9Lly6Fp6envO22bdvg5OQET09P+fH81OvgwoULqF69Oo4fP44ZM2bgjz/+gL+/PxISEvDu3TutH4fnz5/jyZMnKFeunLzs9evX8Pb2xpo1azBq1Cj88ccfmDhxIkJCQtC6dWsIIQAAarUarVq1wrp16zBx4kRs27YNNWvW/OTh3Pbt26Ns2bLYtGkTli1bBgAYPHgwvvrqKzRu3Bjbt29HUFAQrly5gtq1a8uB7dWrV2jSpAnu37+PH3/8Efv370dgYCBKlSqFFy9eAAAiIiLQpUsXODk5YcOGDQgNDYWfn5/G515awsLC0LBhQzx//hyrVq3C+vXrYWZmhlatWmHjxo2p2g8cOBD6+vpYt24dAgICcOTIEfTs2fOT+7h37x4uX76ML774QqtZstDQUPzwww+YMWMGtmzZgqJFi6Jdu3ZpnseTUdu3b8fSpUvh5+eHvXv3ol69elka24ecnZ1Rr149rF69Wl62evVqODo6ppoVB97/Y6p27drYt28fZs6ciR07dqBx48YYP368xvlVb968QePGjbFv3z74+/tj06ZNsLa2RpcuXVL1efjwYdSpUwfPnj3DsmXL8Pvvv6Ny5cro0qVLnp5bloqgXBUcHCwApHlLTEwUsbGxQk9PT4wcOVJjuxcvXghra2vRuXPndPtOSkoSL1++FCYmJmLRokXy8k2bNgkA4vDhw6m2cXBwEH369Em13NvbW3h7e8v3Dx8+LACI+vXra7R79eqVKFq0qGjVqpXG8uTkZFGpUiVRo0aNTzwaQpQvX15YW1t/ss2Hfdra2gp3d3eRnJwsL3/x4oWwsrIStWvXlpf5+vqKkiVLiufPn2v0MWLECGFoaCiePHkiLwMghg8frtHu5s2bAoCYN2+exvKU5+/mzZvyvs3NzUXdunWFWq1Ot/apU6eKD99u2jzPffr0EQDEb7/9ptG2efPmwsXFRb7/8OFDAUBMnTo11f5NTU3FV199lW596fl4vEK8f20AECdOnNBo6+bmJnx9fT/bp4ODg2jRokW66/fs2SMAiICAAI3lGzduFADETz/9JIQQ4sqVKwKAmDhxoka79evXCwAar+uU12/Ke+DRo0cCgAgMDPxkrRUqVNB4H6RIeX0EBwfLyxo2bCgsLCzEgwcPPtlnWgCIYcOGicTERPHu3Ttx7do10bp1a2FmZiZOnz4tt/P39xc6Ojri1KlTGttv3rxZABC7d+8WQggRGhoqAIilS5dqtPP390/1Gkl5bfr5+Wm0jYiIEADE/PnzNZbfvn1bGBkZiQkTJgghhDh9+rQAILZv357u+L7//nsBQDx79izdNmk9prVq1RJWVlbixYsX8rKkpCRRsWJFUbJkSfk9l/I6HTZsmEafAQEBAoC4d+9euvs9fvy4ACAmTZqUbpuPARAlSpQQ8fHx8rK4uDiho6Mj/P395WV9+vQRDg4Oqbb/+PMgpU+VSqXx2ZTVsX24r4cPH4rg4GChVCrF48ePRVJSkrCxsRHTpk0TQghhYmKi8Z6ZNGlSmu/zoUOHCoVCIa5evSqEEGLp0qUCgPj999812g0aNCjV81m+fHnh6ekpEhMTNdq2bNlS2NjYyJ/rH79fcxtnjPLIzz//jFOnTmnc9PT0sHfvXiQlJaF3794as0mGhobw9vbWOBTw8uVLTJw4EWXLloWenh709PRgamqKV69eISoqKkfq7tChg8b98PBwPHnyBH369NGoV61Wo2nTpjh16lSqKf7Munr1Ku7evYtevXppHCM3NTVFhw4dcPz4cbx+/Rpv377FwYMH0a5dOxgbG2vU1bx5c7x9+xbHjx/PlprCw8MRHx+PYcOGaXXVmTbPM/B+mv3jWTUPDw+Nw6afUqNGDYSEhGDWrFk4fvw4EhMTM1xrWqytrVGjRo1M1/Mphw4dAoBUh3g7deoEExMTeRYyLCwMANC5c2eNdh07dvzseW9FixZFmTJlMG/ePCxYsADnzp3L0mHA169fIywsDJ07d870OVlBQUHQ19eHgYEBypUrhz/++APr169H1apV5Ta7du1CxYoVUblyZY3Xja+vr8ahwvQem27duqW7/4/f27t27YJCoUDPnj019mVtbY1KlSrJ+ypbtiyKFCmCiRMnYtmyZalmOwGgevXqcj2//fYb/vnnn88+Hq9evcKJEyfQsWNHmJqayst1dXXRq1cv3LlzB1evXtXYpnXr1hr3PTw8ACBbXpcfa9CgAczMzOT7JUqUgJWVVZb21bBhQxQpUiTNddkxtk6dOsHAwABr167F7t27ERcXl+6VaIcOHYKbm1uq93nfvn0hhJDfp4cPH4aZmVmq+j4+L+769ev466+/0KNHDwBI9bl87969VM9nXmEwyiOurq6oVq2axg2APD1dvXp16Ovra9w2btwoHyID3r/wfvjhBwwcOBB79+7FyZMncerUKVhaWuLNmzc5UvfHVyel1NuxY8dU9c6dOxdCCDx58iTd/kqVKoWHDx9mKDylHPZJ6wopW1tbqNVqPH36FI8fP0ZSUhKWLFmSqqbmzZsDgMbjmBUPHz4EAK1PrNbmeQYAY2NjGBoaaixTKpV4+/Zthva3ceNG9OnTBytXroSXlxeKFi2K3r17p3sewOcUK1Ys1TKlUpktr7vHjx9DT08vVcBQKBSwtraWXwcp/y1RooRGOz09vTTr+7ivgwcPwtfXFwEBAahSpQosLS0xatQo+fCPNp4+fYrk5OQsnWDfuXNnnDp1CuHh4Vi+fDnMzMzQtWtXja+ruH//Pi5evJjqNWNmZgYhhPy6SXkMixYtqrGPjx+rD6X13hZCoESJEqn2d/z4cXlfKpUKYWFhqFy5Mv7zn/+gQoUKsLW1xdSpU+UAXr9+fWzfvl3+x0DJkiVRsWLFT34dwdOnTyGESPf9njLOD338vCuVSgD45OuyVKlSAICbN2+m2yYtOfEe+NTVn5kZ28dMTEzQpUsXrF69GqtWrULjxo3h4OCQZtvHjx9n6LF//Phxmq8ra2trjfspn3njx49P9XoaNmwYgOz7XM4qXpWWzxQvXhwAsHnz5nRfsMD78w927dqFqVOnYtKkSfLyhISETwaRjxkaGqZ5YuijR4/kWj708axISpslS5ake0XJpz6MfX19sW/fPuzcuRNdu3b9ZK0pHwz37t1Lte7u3bvQ0dGR/7WV8q/K4cOHp9lX6dKlP7mvjEr54/2584k+ltHnObsUL14cgYGBCAwMRGxsLHbs2IFJkybhwYMH8rlJ+UWxYsWQlJSEhw8faoQjIQTi4uLk2YeU18P9+/dhZ2cnt0tKSsrQuVMODg5YtWoVgPcnof7222+YNm0a3r17J59jk1FFixaFrq6u1q+DD1laWsr/QPLy8oKrqyu8vb0xZswY+aTe4sWLw8jISOM8kQ+lvK5SHsMnT55ohKNPBeG03tsKhQJHjx6V/wh/6MNl7u7u2LBhA4QQuHjxIkJCQjBjxgwYGRnJn09t2rRBmzZtkJCQgOPHj8Pf3x/du3eHo6MjvLy8UvVfpEgR6OjopPt+/3C8WWFjYwN3d3fs27cv26/G+9Tna1py+rvOgPcnYa9cuRIXL17E2rVr021XrFixDD32xYoVw8mTJ1O1+/i1ltJ+8uTJaN++fZr7dHFxydggchhnjPIZX19f6OnpITo6OtWM0oczSwqFAkKIVB9YK1euRHJyssayT/3LwtHRERcvXtRYdu3atQxPadapUwcWFhaIjIxMt14DA4N0tx8wYACsra0xYcKEdKfXU06EdnFxgZ2dHdatWyefZAq8n3LfsmWLfKWasbExGjRogHPnzsHDwyPNmj43o5BRtWvXhkqlwrJlyzRq+pyMPs/ayOi/IEuVKoURI0agSZMmOHv2rNb7yWkpJ4J+fCL3li1b8OrVK3l9/fr1ASDVSbibN2/+7Em9HytXrhymTJkCd3d3jcckozMARkZG8Pb2xqZNm7LtX7316tVD7969ERoaKl8k0LJlS0RHR6NYsWJpvmZSroDy9vYGkPqx2bBhQ4b3n/LdYv/880+a+3J3d0+1jUKhQKVKlbBw4UJYWFik+fpSKpXw9vaWLxz4+CrMFCYmJqhZsya2bt2q8Ryo1Wr8+uuvKFmypMaJ6Vnx7bff4unTpxg1alSa7+OXL19i3759Wvfr6OiIBw8eaFxZ+O7dO+zduzdL9WaFl5cX+vfvj3bt2qFdu3bptmvUqBEiIyNTPYc///wzFAoFGjRoAOD9IcUXL16kutx/3bp1GvddXFzg7OyMCxcupPuZ9+GhybzEGaN8xtHRETNmzMA333yDGzduoGnTpihSpAju37+PkydPwsTEBNOnT4e5uTnq16+PefPmoXjx4nB0dERYWBhWrVoFCwsLjT4rVqwIAPjpp59gZmYGQ0NDlC5dGsWKFUOvXr3Qs2dPDBs2DB06dMCtW7cQEBCQ4fMkTE1NsWTJEvTp0wdPnjxBx44dYWVlhYcPH+LChQt4+PAhli5dmu72KpUKv//+O1q2bAlPT0+NL3j8+++/8euvv+LChQto3749dHR0EBAQgB49eqBly5YYPHgwEhISMG/ePDx79gxz5syR+120aBHq1q2LevXqYejQoXB0dMSLFy9w/fp17Ny5Uz4+nlWmpqaYP38+Bg4ciMaNG2PQoEEoUaIErl+/jgsXLuCHH35Ic7uMPs/aMDMzg4ODA37//Xc0atQIRYsWRfHixVGkSBE0aNAA3bt3R/ny5WFmZoZTp05hz5496f7LLafFxcWl+f1Ujo6OaNKkCXx9fTFx4kTEx8ejTp06uHjxIqZOnQpPT0/06tULAFChQgV069YN8+fPh66uLho2bIgrV65g/vz5UKlUGuehfezixYsYMWIEOnXqBGdnZxgYGODQoUO4ePGixgxsykzIxo0b4eTkBENDwzQDAQAsWLAAdevWRc2aNTFp0iSULVsW9+/fx44dO+RDY9qaOXMmNm7ciG+//RYHDhzAV199hS1btqB+/foYM2YMPDw8oFarERsbi3379mHcuHHy1Wd16tTBuHHjEB8fj6pVqyIiIgI///wzAHzysUlRp04dfPnll+jXrx9Onz6N+vXrw8TEBPfu3cOxY8fg7u6OoUOHYteuXQgKCkLbtm3h5OQEIQS2bt2KZ8+eoUmTJgAAPz8/3LlzB40aNULJkiXx7NkzLFq0CPr6+nKIS4u/vz+aNGmCBg0aYPz48TAwMEBQUBAuX76M9evXZ9sMS6dOnfDtt99i5syZ+OuvvzBgwAD5Cx5PnDiB5cuXo0uXLmlesv8pXbp0gZ+fH7p27Yqvv/4ab9++xeLFi1P94zW3pcyUfsqYMWPw888/o0WLFpgxYwYcHBwQGhqKoKAgDB06VA6lvXv3xsKFC9G7d2989913cHZ2xu7du9MMf8uXL0ezZs3g6+uLvn37ws7ODk+ePEFUVBTOnj2LTZs2ZftYMyVPTvn+F0u5wuDjq0o+tn37dtGgQQNhbm4ulEqlcHBwEB07dhQHDhyQ29y5c0d06NBBFClSRJiZmYmmTZuKy5cvp3mlWWBgoChdurTQ1dXVuFJArVaLgIAA4eTkJAwNDUW1atXEoUOH0r0qbdOmTWnWGxYWJlq0aCGKFi0q9PX1hZ2dnWjRokW67T8WFxcnJk6cKCpUqCCMjY2FUqkUZcuWFYMHDxaXLl1K9djUrFlTGBoaChMTE9GoUSPx559/purz5s2bon///sLOzk7o6+sLS0tLUbt2bTFr1iyNdsjCVWkpdu/eLby9vYWJiYkwNjYWbm5uYu7cufL6tK5CSRnL557nPn36CBMTk1TbptXngQMHhKenp1AqlfKVWW/fvhVDhgwRHh4ewtzcXBgZGQkXFxcxdepU8erVq1T9fm683t7eokKFCqnapncFzsccHBzSvTIz5XX75s0bMXHiROHg4CD09fWFjY2NGDp0qHj69KlGX2/fvhVjx44VVlZWwtDQUNSqVUtEREQIlUolxowZI7f7+CqX+/fvi759+4ry5csLExMTYWpqKjw8PMTChQtFUlKSvF1MTIz44osvhJmZmQAgjy+tK6iEECIyMlJ06tRJFCtWTBgYGIhSpUqJvn37irdv337yMUnrNZji66+/FgBEWFiYEEKIly9fiilTpggXFxdhYGAgVCqVcHd3F2PGjBFxcXHydk+ePBH9+vUTFhYWwtjYWDRp0kS+AuvDq1Y/vGopLatXrxY1a9YUJiYmwsjISJQpU0b07t1bvlrur7/+Et26dRNlypQRRkZGQqVSiRo1aoiQkBC5j127dolmzZoJOzs7YWBgIKysrETz5s3F0aNH5TbpPaZHjx4VDRs2lPdfq1YtsXPnTo026X2uant1U1hYmOjYsaOwsbER+vr6wtzcXHh5eYl58+ZpXIGW3vOV1mfv7t27ReXKlYWRkZFwcnISP/zwQ7pXpaXVZ1bH9rnnN8XHV6UJIcStW7dE9+7dRbFixYS+vr5wcXER8+bN07gqWIj//y0yNTUVZmZmokOHDiI8PDzN5/PChQuic+fOwsrKSujr6wtra2vRsGFDsWzZMq3HllMUQmgx/09ElM+Fh4ejTp06WLt27b/ipzS0sW7dOvTo0QN//vknateundflEOVLDEZEVGDt378fERERqFq1KoyMjHDhwgXMmTMHKpUKFy9eTHUl37/J+vXr8c8//8Dd3R06Ojo4fvw45s2bB09PT/lyfiJKjecYEVGBZW5ujn379iEwMBAvXrxA8eLF0axZM/j7+/+rQxHw/pyzDRs2YNasWXj16hVsbGzQt29fzJo1K69LI8rXOGNEREREJOHl+kREREQSBiMiIiIiCYMRERERkYQnX2eAWq3G3bt3YWZmlitf2U5ERERZJ4TAixcvYGtrm6EvNgUYjDLk7t27sLe3z+syiIiIKBNu376d4R95ZjDKgJSv8r99+zbMzc3zuBoiIiLKiPj4eNjb22v1kzwMRhmQcvjM3NycwYiIiKiA0eY0GJ58TURERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikvAnQYiIMslxUmhel0BUaMTMaZHXJQDgjBERERGRjMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkRERESSQheM+vbti7Zt2+Z1GURERFQAFboveFy0aBGEEHldBhERERVAhS4YqVSqvC6BiIiICqhcPZQmhEBAQACcnJxgZGSESpUqYfPmzfL63bt3o1y5cjAyMkKDBg0QEhIChUKBZ8+eAQCmTZuGypUra/QZGBgIR0dH+f7Hh9J8fHwwYsQIjBgxAhYWFihWrBimTJnCWSUiIiJKJVdnjKZMmYKtW7di6dKlcHZ2xn//+1/07NkTlpaWcHJyQvv27TFkyBAMHToUp0+fxrhx47Jlv2vWrMGAAQNw4sQJnD59Gl9++SUcHBwwaNCgbOmfiIiICodcC0avXr3CggULcOjQIXh5eQEAnJyccOzYMSxfvhyOjo5wcnLCwoULoVAo4OLigkuXLmHu3LlZ3re9vX2qfhcuXJhuMEpISEBCQoJ8Pz4+Pss1EBERUf6Xa8EoMjISb9++RZMmTTSWv3v3Dp6ennjz5g1q1aoFhUIhr0sJUFmVVr/z589HcnIydHV1U7X39/fH9OnTs2XfREREVHDkWjBSq9UAgNDQUNjZ2WmsUyqVGDly5Gf70NHRSXVuUGJiYvYVKZk8eTLGjh0r34+Pj4e9vX2274eIiIjyl1wLRm5ublAqlYiNjYW3t3ea67dv366x7Pjx4xr3LS0tERcXByGEPAN0/vz5z+77436OHz8OZ2fnNGeLgPdBTalUfrZfIiIiKlxyLRiZmZlh/PjxGDNmDNRqNerWrYv4+HiEh4fD1NQUQ4YMwfz58zF27FgMHjwYZ86cQUhIiEYfPj4+ePjwIQICAtCxY0fs2bMHf/zxB8zNzT+579u3b8v9nj17FkuWLMH8+fNzcLRERERUEOXq5fozZ86En58f/P394erqCl9fX+zcuROlS5dGqVKlsGXLFuzcuROVKlXCsmXLMHv2bI3tXV1dERQUhB9//BGVKlXCyZMnMX78+M/ut3fv3njz5g1q1KiB4cOHY+TIkfjyyy9zaphERERUQClEPv5CnyNHjqBBgwZ4+vQpLCwsMtWHj48PKleujMDAwEzXER8fD5VKhefPn392doqI/j0cJ4XmdQlEhUbMnBbZ3mdm/n4Xut9KIyIiIsosBiMiIiIiSb7+rTQfH58s/3THkSNHsqcYIiIiKvQ4Y0REREQkYTAiIiIikjAYEREREUkYjIiIiIgk+frkayKi/CwnvneFiPIWZ4yIiIiIJAxGRERERBIGIyIiIiIJgxERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJHp5XQARUUHlOCk0y33EzGmRDZUQUXbhjBERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkRERESSf2UwOnLkCBQKBZ49e5bXpRAREVE+8q8MRkRERERpYTAiIiIikhSKYCSEQEBAAJycnGBkZIRKlSph8+bN8vrdu3ejXLlyMDIyQoMGDRATE5N3xRIREVG+VSh+K23KlCnYunUrli5dCmdnZ/z3v/9Fz549YWlpCScnJ7Rv3x5DhgzB0KFDcfr0aYwbN+6T/SUkJCAhIUG+Hx8fn9NDICIionygwAejV69eYcGCBTh06BC8vLwAAE5OTjh27BiWL18OR0dHODk5YeHChVAoFHBxccGlS5cwd+7cdPv09/fH9OnTc2sIRERElE8U+GAUGRmJt2/fokmTJhrL3717B09PT7x58wa1atWCQqGQ16UEqPRMnjwZY8eOle/Hx8fD3t4+ewsnIiKifKfAByO1Wg0ACA0NhZ2dncY6pVKJkSNHat2nUqmEUqnMlvqIiIio4CjwwcjNzQ1KpRKxsbHw9vZOc/327ds1lh0/fjyXqiMiIqKCpMAHIzMzM4wfPx5jxoyBWq1G3bp1ER8fj/DwcJiammLIkCGYP38+xo4di8GDB+PMmTMICQnJ67KJiIgoHyoUl+vPnDkTfn5+8Pf3h6urK3x9fbFz506ULl0apUqVwpYtW7Bz505UqlQJy5Ytw+zZs/O6ZCIiIsqHFEIIkddF5Hfx8fFQqVR4/vw5zM3N87ocIsonHCeFZrmPmDktsqESIkpLZv5+F4oZIyIiIqLswGBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiJJgf/mayKivMLvICIqfDhjRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiIJgxERERGRhMGIiIiISMJgRERERCTRy+sCiIgKEsdJofL/x8xpkYeVEFFO4IwRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREkiwFIx8fH3z11VfZVAoRERFR3srSFzxu3boV+vr62VULERERUZ7KUjAqWrRodtVBRERElOey7VCao6MjZs+ejf79+8PMzAylSpXCTz/9pNH+zp076Nq1K4oWLQoTExNUq1YNJ06ckNcvXboUZcqUgYGBAVxcXPDLL79obK9QKLB8+XK0bNkSxsbGcHV1RUREBK5fvw4fHx+YmJjAy8sL0dHRGtvt3LkTVatWhaGhIZycnDB9+nQkJSVlZehERERUCGXrydfz589HtWrVcO7cOQwbNgxDhw7FX3/9BQB4+fIlvL29cffuXezYsQMXLlzAhAkToFarAQDbtm3D6NGjMW7cOFy+fBmDBw9Gv379cPjwYY19zJw5E71798b58+dRvnx5dO/eHYMHD8bkyZNx+vRpAMCIESPk9nv37kXPnj0xatQoREZGYvny5QgJCcF3332X7jgSEhIQHx+vcSMiIqJ/AZEF3t7eYvTo0UIIIRwcHETPnj3ldWq1WlhZWYmlS5cKIYRYvny5MDMzE48fP06zr9q1a4tBgwZpLOvUqZNo3ry5fB+AmDJlinw/IiJCABCrVq2Sl61fv14YGhrK9+vVqydmz56t0e8vv/wibGxs0h3X1KlTBYBUt+fPn6e7DRH9OzhM3CXfiCh/e/78udZ/v7N1xsjDw0P+f4VCAWtrazx48AAAcP78eXh6eqZ7XlJUVBTq1KmjsaxOnTqIiopKdx8lSpQAALi7u2sse/v2rTzLc+bMGcyYMQOmpqbybdCgQbh37x5ev36dZi2TJ0/G8+fP5dvt27cz+hAQERFRAZalk68/9vEVagqFQj5UZmRk9NntFQqFxn0hRKplH+4jZV1ay1L2q1arMX36dLRv3z7V/gwNDdOsQ6lUQqlUfrZeIiIiKlxy7QsePTw8cP78eTx58iTN9a6urjh27JjGsvDwcLi6umZpv1WqVMHVq1dRtmzZVDcdHX6/JREREf1fts4YfUq3bt0we/ZstG3bFv7+/rCxscG5c+dga2sLLy8vfP311+jcuTOqVKmCRo0aYefOndi6dSsOHDiQpf36+fmhZcuWsLe3R6dOnaCjo4OLFy/i0qVLmDVrVjaNjoiIiAqDXJsyMTAwwL59+2BlZYXmzZvD3d0dc+bMga6uLgCgbdu2WLRoEebNm4cKFSpg+fLlCA4Oho+PT5b26+vri127dmH//v2oXr06atWqhQULFsDBwSEbRkVERESFiUIIIfK6iPwuPj4eKpUKz58/h7m5eV6XQ0R5yHFSqPz/MXNa5GElRPQ5mfn7zZNsiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkybUveCQiKgx4iT5R4cYZIyIiIiIJgxERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiIJgxERERGRRC+vCyAi0objpNC8LkEWM6dFXpdARNmMM0ZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJcjwYxcTEQKFQ4Pz58+m2OXLkCBQKBZ49e5bT5RARERGlizNGRERERJICEYySk5OhVqvzugwiIiIq5LQORnv27EHdunVhYWGBYsWKoWXLloiOjpbXnzx5Ep6enjA0NES1atVw7ty5VH3s3r0b5cqVg5GRERo0aICYmBiN9SEhIbCwsMCuXbvg5uYGpVKJW7du4d27d5gwYQLs7OxgYmKCmjVr4siRI/J2t27dQqtWrVCkSBGYmJigQoUK2L17NwDg6dOn6NGjBywtLWFkZARnZ2cEBwdrO3wiIiIqxLT+rbRXr15h7NixcHd3x6tXr+Dn54d27drh/PnzePPmDVq2bImGDRvi119/xc2bNzF69GiN7W/fvo327dtjyJAhGDp0KE6fPo1x48al2s/r16/h7++PlStXolixYrCyskK/fv0QExODDRs2wNbWFtu2bUPTpk1x6dIlODs7Y/jw4Xj37h3++9//wsTEBJGRkTA1NQUAfPvtt4iMjMQff/yB4sWL4/r163jz5k2aY0xISEBCQoJ8Pz4+XtuHiYiIiAogrYNRhw4dNO6vWrUKVlZWiIyMRHh4OJKTk7F69WoYGxujQoUKuHPnDoYOHSq3X7p0KZycnLBw4UIoFAq4uLjg0qVLmDt3rka/iYmJCAoKQqVKlQAA0dHRWL9+Pe7cuQNbW1sAwPjx47Fnzx4EBwdj9uzZiI2NRYcOHeDu7g4AcHJykvuLjY2Fp6cnqlWrBgBwdHRMd4z+/v6YPn26tg8NERERFXBaH0qLjo5G9+7d4eTkBHNzc5QuXRrA++ARFRWFSpUqwdjYWG7v5eWlsX1UVBRq1aoFhUKRbhsAMDAwgIeHh3z/7NmzEEKgXLlyMDU1lW9hYWHyobxRo0Zh1qxZqFOnDqZOnYqLFy/K2w8dOhQbNmxA5cqVMWHCBISHh6c7xsmTJ+P58+fy7fbt21o+SkRERFQQaT1j1KpVK9jb22PFihWwtbWFWq1GxYoV8e7dOwghPrt9RtoAgJGRkUZ4UqvV0NXVxZkzZ6Crq6vRNuVw2cCBA+Hr64vQ0FDs27cP/v7+mD9/PkaOHIlmzZrh1q1bCA0NxYEDB9CoUSMMHz4c33//fap9K5VKKJXKDNVJREREhYdWM0aPHz9GVFQUpkyZgkaNGsHV1RVPnz6V17u5ueHChQsa5+4cP35cow83N7dUyz6+nxZPT08kJyfjwYMHKFu2rMbN2tpabmdvb48hQ4Zg69atGDduHFasWCGvs7S0RN++ffHrr78iMDAQP/30kzbDJyIiokJOq2BUpEgRFCtWDD/99BOuX7+OQ4cOYezYsfL67t27Q0dHBwMGDEBkZCR2796dakZmyJAhiI6OxtixY3H16lWsW7cOISEhn913uXLl0KNHD/Tu3Rtbt27FzZs3cerUKcydO1e+8uyrr77C3r17cfPmTZw9exaHDh2Cq6srAMDPzw+///47rl+/jitXrmDXrl3yOiIiIiJAy2Cko6ODDRs24MyZM6hYsSLGjBmDefPmyetNTU2xc+dOREZGwtPTE998802qk6pLlSqFLVu2YOfOnahUqRKWLVuG2bNnZ2j/wcHB6N27N8aNGwcXFxe0bt0aJ06cgL29PYD333c0fPhwuLq6omnTpnBxcUFQUBCA9+csTZ48GR4eHqhfvz50dXWxYcMGbYZPREREhZxCZPSkn3+x+Ph4qFQqPH/+HObm5nldDtG/muOk0LwuQRYzp0Vel0BEn5CZv98F4puviYiIiHIDgxERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSbT+SRAiorzES+SJKCdxxoiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiIJgxERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJNHL6wKI6N/HcVJoXpeQLWLmtMjrEogom3HGiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIUiCC0Z49e1C3bl1YWFigWLFiaNmyJaKjo+X14eHhqFy5MgwNDVGtWjVs374dCoUC58+fl9tERkaiefPmMDU1RYkSJdCrVy88evQoD0ZDRERE+VWBCEavXr3C2LFjcerUKRw8eBA6Ojpo164d1Go1Xrx4gVatWsHd3R1nz57FzJkzMXHiRI3t7927B29vb1SuXBmnT5/Gnj17cP/+fXTu3DmPRkRERET5UYH4rbQOHTpo3F+1ahWsrKwQGRmJY8eOQaFQYMWKFTA0NISbmxv++ecfDBo0SG6/dOlSVKlSBbNnz5aXrV69Gvb29rh27RrKlSun0X9CQgISEhLk+/Hx8Tk0MiIiIspPCsSMUXR0NLp37w4nJyeYm5ujdOnSAIDY2FhcvXoVHh4eMDQ0lNvXqFFDY/szZ87g8OHDMDU1lW/ly5eX+/6Yv78/VCqVfLO3t8/B0REREVF+USBmjFq1agV7e3usWLECtra2UKvVqFixIt69ewchBBQKhUZ7IYTGfbVajVatWmHu3Lmp+raxsUm1bPLkyRg7dqx8Pz4+nuGIiIjoXyDfB6PHjx8jKioKy5cvR7169QAAx44dk9eXL18ea9euRUJCApRKJQDg9OnTGn1UqVIFW7ZsgaOjI/T0Pj9kpVIp90VERET/Hvn+UFqRIkVQrFgx/PTTT7h+/ToOHTqkMZvTvXt3qNVqfPnll4iKisLevXvx/fffA4A8kzR8+HA8efIE3bp1w8mTJ3Hjxg3s27cP/fv3R3Jycp6Mi4iIiPKffB+MdHR0sGHDBpw5cwYVK1bEmDFjMG/ePHm9ubk5du7cifPnz6Ny5cr45ptv4OfnBwDyeUe2trb4888/kZycDF9fX1SsWBGjR4+GSqWCjk6+fwiIiIgol+T7Q2kA0LhxY0RGRmos+/A8otq1a+PChQvy/bVr10JfXx+lSpWSlzk7O2Pr1q05XywREREVWAUiGH3Ozz//DCcnJ9jZ2eHChQuYOHEiOnfuDCMjo7wujYiIiAqQQhGM4uLi4Ofnh7i4ONjY2KBTp0747rvv8rosIiIiKmAKRTCaMGECJkyYkNdlEBERUQHHM4+JiIiIJAxGRERERBIGIyIiIiIJgxERERGRpFCcfE1EBUvMnBZ5XQIRUZo4Y0REREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiIJgxERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQk0cvrAoio4HGcFJrXJeQLMXNa5HUJRJTNOGNEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiIJgxERERGRpEAGI0dHRwQGBuZ1GURERFTIFMhgRERERJQTGIyIiIiIJFkKRkIIBAQEwMnJCUZGRqhUqRI2b94MADhy5AgUCgX27t0LT09PGBkZoWHDhnjw4AH++OMPuLq6wtzcHN26dcPr16/lPn18fDBixAiMGDECFhYWKFasGKZMmQIhRLp1xMbGok2bNjA1NYW5uTk6d+6M+/fvAwBiYmKgo6OD06dPa2yzZMkSODg4fLJfIiIi+nfJUjCaMmUKgoODsXTpUly5cgVjxoxBz549ERYWJreZNm0afvjhB4SHh+P27dvo3LkzAgMDsW7dOoSGhmL//v1YsmSJRr9r1qyBnp4eTpw4gcWLF2PhwoVYuXJlmjUIIdC2bVs8efIEYWFh2L9/P6Kjo9GlSxcA789Haty4MYKDgzW2Cw4ORt++faFQKLLyEBAREVEhkukfkX316hUWLFiAQ4cOwcvLCwDg5OSEY8eOYfny5fjyyy8BALNmzUKdOnUAAAMGDMDkyZMRHR0NJycnAEDHjh1x+PBhTJw4Ue7b3t4eCxcuhEKhgIuLCy5duoSFCxdi0KBBqeo4cOAALl68iJs3b8Le3h4A8Msvv6BChQo4deoUqlevjoEDB2LIkCFYsGABlEolLly4gPPnz2Pr1q1pji0hIQEJCQny/fj4+Mw+TERERFSAZHrGKDIyEm/fvkWTJk1gamoq337++WdER0fL7Tw8POT/L1GiBIyNjeVQlLLswYMHGn3XqlVLYybHy8sLf//9N5KTk1PVERUVBXt7ezkUAYCbmxssLCwQFRUFAGjbti309PSwbds2AMDq1avRoEEDODo6pjk2f39/qFQq+fZh30RERFR4ZXrGSK1WAwBCQ0NhZ2ensU6pVMrhSF9fX16uUCg07qcsS+krM4QQaR4O+3C5gYEBevXqheDgYLRv3x7r1q375OX+kydPxtixY+X78fHxDEdERET/ApkORm5ublAqlYiNjYW3t3eq9R/OGmnr+PHjqe47OztDV1c3zTpiY2Nx+/ZtObxERkbi+fPncHV1ldsNHDgQFStWRFBQEBITE9G+fft0969UKqFUKjNdPxERERVMmQ5GZmZmGD9+PMaMGQO1Wo26desiPj4e4eHhMDU1hYODQ6aLun37NsaOHYvBgwfj7NmzWLJkCebPn59m28aNG8PDwwM9evRAYGAgkpKSMGzYMHh7e6NatWpyO1dXV9SqVQsTJ05E//79YWRklOn6iIiIqHDKdDACgJkzZ8LKygr+/v64ceMGLCwsUKVKFfznP//J0uGx3r17482bN6hRowZ0dXUxcuRI+WTujykUCmzfvh0jR45E/fr1oaOjg6ZNm6a60g14f/J3eHg4+vfvn+naiIiIqPBSiHz2RT4+Pj6oXLlyjvzkx3fffYcNGzbg0qVLWm0XHx8PlUqF58+fw9zcPNvrIipoHCeF5nUJ+ULMnBZ5XQIRfUJm/n7/K775+uXLlzh16hSWLFmCUaNG5XU5RERElE/9K4LRiBEjULduXXh7e/MwGhEREaUrS+cY5YQjR45ke58hISEICQnJ9n6JiIiocPlXzBgRERERZQSDEREREZGEwYiIiIhIwmBEREREJMl3J18TUf7H7+8hosKKM0ZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiIJgxERERGRhMGIiIiISMJgRERERCRhMCIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEr28LoAAx0mheV0CEWVCzJwWeV0CEWUzzhgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikuRIMPLx8cFXX32VE10TERER5ZhCPWMkhEBSUlJel0FEREQFRLYHo759+yIsLAyLFi2CQqGAQqFATEwMIiMj0bx5c5iamqJEiRLo1asXHj16JG/n4+ODUaNGYcKECShatCisra0xbdo0eX1MTAwUCgXOnz8vL3v27BkUCgWOHDkCADhy5AgUCgX27t2LatWqQalU4ujRoxBCICAgAE5OTjAyMkKlSpWwefPm7B46ERERFXDZHowWLVoELy8vDBo0CPfu3cO9e/egr68Pb29vVK5cGadPn8aePXtw//59dO7cWWPbNWvWwMTEBCdOnEBAQABmzJiB/fv3a13DhAkT4O/vj6ioKHh4eGDKlCkIDg7G0qVLceXKFYwZMwY9e/ZEWFhYmtsnJCQgPj5e40ZERESFX7b/iKxKpYKBgQGMjY1hbW0NAPDz80OVKlUwe/Zsud3q1athb2+Pa9euoVy5cgAADw8PTJ06FQDg7OyMH374AQcPHkSTJk20qmHGjBnyNq9evcKCBQtw6NAheHl5AQCcnJxw7NgxLF++HN7e3qm29/f3x/Tp07UfPBERERVo2R6M0nLmzBkcPnwYpqamqdZFR0drBKMP2djY4MGDB1rvr1q1avL/R0ZG4u3bt6nC1bt37+Dp6Znm9pMnT8bYsWPl+/Hx8bC3t9e6DiIiIipYciUYqdVqtGrVCnPnzk21zsbGRv5/fX19jXUKhQJqtRoAoKPz/qifEEJen5iYmOb+TExMNPYNAKGhobCzs9Nop1Qq09xeqVSmu46IiIgKrxwJRgYGBkhOTpbvV6lSBVu2bIGjoyP09DK3S0tLSwDAvXv35JmeD0/ETo+bmxuUSiViY2PTPGxGRERElCJHgpGjoyNOnDiBmJgYmJqaYvjw4VixYgW6deuGr7/+GsWLF8f169exYcMGrFixArq6up/t08jICLVq1cKcOXPg6OiIR48eYcqUKZ/dzszMDOPHj8eYMWOgVqtRt25dxMfHIzw8HKampujTp092DJmIiIgKgRz5HqPx48dDV1cXbm5usLS0xLt37/Dnn38iOTkZvr6+qFixIkaPHg2VSiUfIsuI1atXIzExEdWqVcPo0aMxa9asDG03c+ZM+Pn5wd/fH66urvD19cXOnTtRunTpzA6RiIiICiGF+PCkHUpTfHw8VCoVnj9/DnNz82zv33FSaLb3SUQ5L2ZOi7wugYg+ITN/vwv1N18TERERaYPBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREklz5rTT6NH4XChERUf7AGSMiIiIiCYMRERERkYTBiIiIiEjCYEREREQkYTAiIiIikjAYEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwt9KywAhBAAgPj4+jyshIiKijEr5u53ydzwjGIwy4MWLFwAAe3v7PK6EiIiItPXixQuoVKoMtVUIbWLUv5Rarcbdu3dhZmYGhUKR1+UgPj4e9vb2uH37NszNzfO6nGxX2McHFP4xFvbxAYV/jBxfwVfYx5iR8Qkh8OLFC9ja2kJHJ2NnD3HGKAN0dHRQsmTJvC4jFXNz80L5Yk9R2McHFP4xFvbxAYV/jBxfwVfYx/i58WV0pigFT74mIiIikjAYEREREUkYjAogpVKJqVOnQqlU5nUpOaKwjw8o/GMs7OMDCv8YOb6Cr7CPMafGx5OviYiIiCScMSIiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBqMC4OnTp+jVqxdUKhVUKhV69eqFZ8+efXKbly9fYsSIEShZsiSMjIzg6uqKpUuX5k7BmZCZMQJAVFQUWrduDZVKBTMzM9SqVQuxsbE5X7CWMju+FIMHD4ZCoUBgYGCO1ZhV2o4xMTEREydOhLu7O0xMTGBra4vevXvj7t27uVf0JwQFBaF06dIwNDRE1apVcfTo0U+2DwsLQ9WqVWFoaAgnJycsW7YslyrNPG3GuHXrVjRp0gSWlpYwNzeHl5cX9u7dm4vVak/b5zDFn3/+CT09PVSuXDlnC8wG2o4xISEB33zzDRwcHKBUKlGmTBmsXr06l6rVnrbjW7t2LSpVqgRjY2PY2NigX79+ePz4sXY7FZTvNW3aVFSsWFGEh4eL8PBwUbFiRdGyZctPbjNw4EBRpkwZcfjwYXHz5k2xfPlyoaurK7Zv355LVWsnM2O8fv26KFq0qPj666/F2bNnRXR0tNi1a5e4f/9+LlWdcZkZX4pt27aJSpUqCVtbW7Fw4cKcLTQLtB3js2fPROPGjcXGjRvFX3/9JSIiIkTNmjVF1apVc7HqtG3YsEHo6+uLFStWiMjISDF69GhhYmIibt26lWb7GzduCGNjYzF69GgRGRkpVqxYIfT19cXmzZtzufKM03aMo0ePFnPnzhUnT54U165dE5MnTxb6+vri7NmzuVx5xmg7vhTPnj0TTk5O4osvvhCVKlXKnWIzKTNjbN26tahZs6bYv3+/uHnzpjhx4oT4888/c7HqjNN2fEePHhU6Ojpi0aJF4saNG+Lo0aOiQoUKom3btlrtl8Eon4uMjBQAxPHjx+VlERERAoD466+/0t2uQoUKYsaMGRrLqlSpIqZMmZJjtWZWZsfYpUsX0bNnz9woMUsyOz4hhLhz546ws7MTly9fFg4ODvk2GGVljB86efKkAPDZP145rUaNGmLIkCEay8qXLy8mTZqUZvsJEyaI8uXLaywbPHiwqFWrVo7VmFXajjEtbm5uYvr06dldWrbI7Pi6dOkipkyZIqZOnZrvg5G2Y/zjjz+ESqUSjx8/zo3yskzb8c2bN084OTlpLFu8eLEoWbKkVvvlobR8LiIiAiqVCjVr1pSX1apVCyqVCuHh4eluV7duXezYsQP//PMPhBA4fPgwrl27Bl9f39woWyuZGaNarUZoaCjKlSsHX19fWFlZoWbNmti+fXsuVZ1xmX0O1Wo1evXqha+//hoVKlTIjVIzLbNj/Njz58+hUChgYWGRA1VmzLt373DmzBl88cUXGsu/+OKLdMcSERGRqr2vry9Onz6NxMTEHKs1szIzxo+p1Wq8ePECRYsWzYkSsySz4wsODkZ0dDSmTp2a0yVmWWbGuGPHDlSrVg0BAQGws7NDuXLlMH78eLx58yY3StZKZsZXu3Zt3LlzB7t374YQAvfv38fmzZvRokULrfbNYJTPxcXFwcrKKtVyKysrxMXFpbvd4sWL4ebmhpIlS8LAwABNmzZFUFAQ6tatm5PlZkpmxvjgwQO8fPkSc+bMQdOmTbFv3z60a9cO7du3R1hYWE6XrJXMPodz586Fnp4eRo0alZPlZYvMjvFDb9++xaRJk9C9e/c8/cHLR48eITk5GSVKlNBYXqJEiXTHEhcXl2b7pKQkPHr0KMdqzazMjPFj8+fPx6tXr9C5c+ecKDFLMjO+v//+G5MmTcLatWuhp5f/f189M2O8ceMGjh07hsuXL2Pbtm0IDAzE5s2bMXz48NwoWSuZGV/t2rWxdu1adOnSBQYGBrC2toaFhQWWLFmi1b4ZjPLItGnToFAoPnk7ffo0AEChUKTaXgiR5vIUixcvxvHjx7Fjxw6cOXMG8+fPx7Bhw3DgwIEcG9PHcnKMarUaANCmTRuMGTMGlStXxqRJk9CyZctcO+k1J8d35swZLFq0CCEhIZ98nnNaTr9OUyQmJqJr165Qq9UICgrK9nFkxsd1f24sabVPa3l+ou0YU6xfvx7Tpk3Dxo0b0wzE+UVGx5ecnIzu3btj+vTpKFeuXG6Vly20eQ7VajUUCgXWrl2LGjVqoHnz5liwYAFCQkLy5awRoN34IiMjMWrUKPj5+eHMmTPYs2cPbt68iSFDhmi1z/wfiwupESNGoGvXrp9s4+joiIsXL+L+/fup1j18+DBVkk7x5s0b/Oc//8G2bdvkKUQPDw+cP38e33//PRo3bpz1AWRATo6xePHi0NPTg5ubm8ZyV1dXHDt2LPNFayEnx3f06FE8ePAApUqVkpclJydj3LhxCAwMRExMTJZqz6icHGOKxMREdO7cGTdv3sShQ4fydLYIeP/a0tXVTfWv0gcPHqQ7Fmtr6zTb6+npoVixYjlWa2ZlZowpNm7ciAEDBmDTpk259lmiLW3H9+LFC5w+fRrnzp3DiBEjALwPEUII6OnpYd++fWjYsGGu1J5RmXkObWxsYGdnB5VKJS9zdXWFEAJ37tyBs7NzjtasjcyMz9/fH3Xq1MHXX38N4P3fPRMTE9SrVw+zZs2CjY1NhvbNYJRHihcvjuLFi3+2nZeXF54/f46TJ0+iRo0aAIATJ07g+fPnqF27dprbJCYmIjExETo6mhOCurq68kxLbsjJMRoYGKB69eq4evWqxvJr167BwcEh68VnQE6Or1evXqn+6Pj6+qJXr17o169f1ovPoJwcI/D/UPT333/j8OHD+SJEGBgYoGrVqti/fz/atWsnL9+/fz/atGmT5jZeXl7YuXOnxrJ9+/ahWrVq0NfXz9F6MyMzYwTezxT1798f69ev1/q8jdyk7fjMzc1x6dIljWVBQUE4dOgQNm/ejNKlS+d4zdrKzHNYp04dbNq0CS9fvoSpqSmA95+ZOjo6KFmyZK7UnVGZGd/r169THQbV1dUF8P8Z3AzR6lRtyhNNmzYVHh4eIiIiQkRERAh3d/dUl0G7uLiIrVu3yve9vb1FhQoVxOHDh8WNGzdEcHCwMDQ0FEFBQbldfoZkZoxbt24V+vr64qeffhJ///23WLJkidDV1RVHjx7N7fI/KzPj+1h+vipNCO3HmJiYKFq3bi1Kliwpzp8/L+7duyffEhIS8mIIspTLhFetWiUiIyPFV199JUxMTERMTIwQQohJkyaJXr16ye1TLtcfM2aMiIyMFKtWrSowl+tndIzr1q0Tenp64scff9R4rp49e5ZXQ/gkbcf3sYJwVZq2Y3zx4oUoWbKk6Nixo7hy5YoICwsTzs7OYuDAgXk1hE/SdnzBwcFCT09PBAUFiejoaHHs2DFRrVo1UaNGDa32y2BUADx+/Fj06NFDmJmZCTMzM9GjRw/x9OlTjTYARHBwsHz/3r17om/fvsLW1lYYGhoKFxcXMX/+fKFWq3O3+AzKzBiFEGLVqlWibNmywtDQUFSqVCnffk9TZsf3ofwejLQd482bNwWANG+HDx/O9fo/9uOPPwoHBwdhYGAgqlSpIsLCwuR1ffr0Ed7e3hrtjxw5Ijw9PYWBgYFwdHQUS5cuzeWKtafNGL29vdN8rvr06ZP7hWeQts/hhwpCMBJC+zFGRUWJxo0bCyMjI1GyZEkxduxY8fr161yuOuO0Hd/ixYuFm5ubMDIyEjY2NqJHjx7izp07Wu1TIYQ280tEREREhRevSiMiIiKSMBgRERERSRiMiIiIiCQMRkREREQSBiMiIiIiCYMRERERkYTBiIiIiEjCYERE+UZcXByaNGkCExMTWFhYpLtMoVBg+/btGepz2rRpqFy5co7UmxsKev1EBQ2DERF9VlxcHEaOHAknJycolUrY29ujVatWOHjwYLbuZ+HChbh37x7Onz+Pa9eupbvs3r17aNasWYb6HD9+fLbXGRISIoe09MyfPx8qlQqvX79Ote7t27ewsLDAggULsrUuIso6BiMi+qSYmBhUrVoVhw4dQkBAAC5duoQ9e/agQYMGGD58eLbuKzo6GlWrVoWzszOsrKzSXWZtbQ2lUpmhPk1NTfPkx2l79+6NN2/eYMuWLanWbdmyBa9fv0avXr1yvS4i+oys/5IJERVmzZo1E3Z2duLly5ep1n34W2i3bt0SrVu3FiYmJsLMzEx06tRJxMXFabTfsWOHqFKlilAqlaJ06dJi2rRpIjExUQjx/rfg8NFvcKW1TIj3v7m2bds2ud/bt2+LLl26iCJFighjY2NRtWpVcfz4cSFE2r95tXr1alG+fHmhVCqFi4uL+PHHH+V1Kb/htmXLFuHj4yOMjIyEh4eHCA8PF0IIcfjw4VS/FzZ16tQ0H7v27dsLHx+fVMsbNmwoOnToIIQQYsKECcLZ2VkYGRmJ0qVLiylTpoh3797JbT+u39vbW4wePVqjvzZt2mj8ZllCQoL4+uuvha2trTA2NhY1atTIF78/R1QQ6OVNHCOiguDJkyfYs2cPvvvuO5iYmKRan3I4SQiBtm3bwsTEBGFhYUhKSsKwYcPQpUsXHDlyBACwd+9e9OzZE4sXL0a9evUQHR2NL7/8EgAwdepUnDp1Cr1794a5uTkWLVoEIyMjvHv3LtWyj718+RLe3t6ws7PDjh07YG1tjbNnz0KtVqc5phUrVmDq1Kn44Ycf4OnpiXPnzmHQoEEwMTFBnz595HbffPMNvv/+ezg7O+Obb75Bt27dcP36ddSuXRuBgYHw8/PD1atXAbyflUrLgAED0LJlS9y8eROlS5cG8H4G7vDhwwgNDQUAmJmZISQkBLa2trh06RIGDRoEMzMzTJgwIQPPUNr69euHmJgYbNiwAba2tti2bRuaNm2KS5cuwdnZOdP9Ev0r5HUyI6L868SJEwKA2Lp16yfb7du3T+jq6orY2Fh52ZUrVwQAcfLkSSGEEPXq1ROzZ8/W2O6XX34RNjY28v2PZz7SW4YPZoyWL18uzMzMxOPHj9Os7eMZF3t7e7Fu3TqNNjNnzhReXl5CiP/PGK1cuTLVWKKiooQQQgQHBwuVSpX2g/GBpKQkYWdnJ/z8/ORlfn5+ws7OTiQlJaW5TUBAgKhatWq69X9uxuj69etCoVCIf/75R6NNo0aNxOTJkz9bM9G/HWeMiChdQggA768C+5SoqCjY29vD3t5eXubm5gYLCwtERUWhevXqOHPmDE6dOoXvvvtObpOcnIy3b9/i9evXMDY2zlSN58+fh6enJ4oWLfrZtg8fPsTt27cxYMAADBo0SF6elJQElUql0dbDw0P+fxsbGwDAgwcPUL58+QzXpquriz59+iAkJARTp06FQqHAmjVr0LdvX+jq6gIANm/ejMDAQFy/fh0vX75EUlISzM3NM7yPj509exZCCJQrV05jeUJCQp6ca0VU0DAYEVG6nJ2doVAoEBUVhbZt26bbTgiRZnj6cLlarcb06dPRvn37VO0MDQ0zXWNah9fSk3J4bcWKFahZs6bGupSgkkJfX1/+/w/HoK3+/fvD398fhw4dAgDExsaiX79+AIDjx4+ja9eumD59Onx9faFSqbBhwwbMnz8/3f50dHTkwJoiMTFR/n+1Wg1dXV2cOXMm1ZjSO+RHRP/HYERE6SpatCh8fX3x448/YtSoUanOM3r27BksLCzg5uaG2NhY3L59W541ioyMxPPnz+Hq6goAqFKlCq5evYqyZctma40eHh5YuXIlnjx58tlZoxIlSsDOzg43btxAjx49Mr1PAwMDJCcnZ6htmTJl4O3tjeDgYAgh4OPjgzJlygAA/vzzTzg4OOCbb76R29+6deuT/VlaWuLevXvy/eTkZFy+fBkNGjQAAHh6eiI5ORkPHjxAvXr1tB0a0b8eL9cnok8KCgpCcnIyatSogS1btuDvv/9GVFQUFi9eDC8vLwBA48aN4eHhgR49euDs2bM4efIkevfuDW9vb1SrVg0A4Ofnh59//hnTpk3DlStXEBUVhY0bN2LKlClZqq9bt26wtrZG27Zt8eeff+LGjRvYsmULIiIi0mw/bdo0+Pv7Y9GiRbh27RouXbqE4OBgrb5TyNHRES9fvsTBgwfx6NGjNL+r6EMDBgzA1q1bsW3bNgwYMEBeXrZsWcTGxmLDhg2Ijo7G4sWLsW3btk/21bBhQ4SGhiI0NBR//fUXhg0bhmfPnsnry5Urhx49eqB3797YunUrbt68iVOnTmHu3LnYvXt3hsdI9G/FYEREn1S6dGmcPXsWDRo0wLhx41CxYkU0adIEBw8exNKlSwH8/5uoixQpgvr166Nx48ZwcnLCxo0b5X58fX2xa9cu7N+/H9WrV0etWrWwYMECODg4ZKk+AwMD7Nu3D1ZWVmjevDnc3d0xZ86cVIeRUgwcOBArV65ESEgI3N3d4e3tjZCQEPmqsYyoXbs2hgwZgi5dusDS0hIBAQGfbN+hQwcolUoolUqNQ4lt2rTBmDFjMGLECFSuXBnh4eH49ttvP9lX//790adPHzl4li5dWp4tShEcHIzevXtj3LhxcHFxQevWrXHixAmNc8CIKG0K8fHBaiIiIqJ/Kc4YEREREUkYjIiIiIgkDEZEREREEgYjIiIiIgmDEREREZGEwYiIiIhIwmBEREREJGEwIiIiIpIwGBERERFJGIyIiIiIJAxGRERERBIGIyIiIiLJ/wA0cWagXymFdgAAAABJRU5ErkJggg==",
1289 | "text/plain": [
1290 | "
"
1291 | ]
1292 | },
1293 | "metadata": {},
1294 | "output_type": "display_data"
1295 | }
1296 | ],
1297 | "source": [
1298 | "coefficients = pd.Series(LR.coef_[0], index=churn_df.columns[:-1])\n",
1299 | "coefficients.sort_values().plot(kind='barh')\n",
1300 | "plt.title(\"Feature Coefficients in Logistic Regression Churn Model\")\n",
1301 | "plt.xlabel(\"Coefficient Value\")\n",
1302 | "plt.show()"
1303 | ]
1304 | },
1305 | {
1306 | "cell_type": "markdown",
1307 | "id": "96a198b8-c505-40c9-8c6f-a24e3d15b860",
1308 | "metadata": {},
1309 | "source": [
1310 | "Large positive value of LR Coefficient for a given field indicates that increase in this parameter will lead to better chance of a positive, i.e. 1 class. A large negative value indicates the opposite, which means that an increase in this parameter will lead to poorer chance of a positive class. A lower absolute value indicates weaker affect of the change in that field on the predicted class. Let us examine this with the following exercises. \n"
1311 | ]
1312 | },
1313 | {
1314 | "cell_type": "markdown",
1315 | "id": "74ec8246-0f37-41ff-8995-5691d9c8ebd2",
1316 | "metadata": {},
1317 | "source": [
1318 | "## Performance Evaluation\n"
1319 | ]
1320 | },
1321 | {
1322 | "cell_type": "markdown",
1323 | "id": "74d44824-d0fc-4c8a-a45f-132fadef6488",
1324 | "metadata": {},
1325 | "source": [
1326 | "Once the predictions have been generated, it becomes prudent to evaluate the performance of the model in predicting the target variable. Let us evaluate the log-loss value.\n",
1327 | "\n",
1328 | "### log loss\n",
1329 | "\n",
1330 | "Log loss (Logarithmic loss), also known as Binary Cross entropy loss, is a function that generates a loss value based on the class wise prediction probabilities and the actual class labels. The lower the log loss value, the better the model is considered to be.\n"
1331 | ]
1332 | },
1333 | {
1334 | "cell_type": "code",
1335 | "execution_count": 28,
1336 | "id": "8dba58f1-502d-4e32-93fc-b8d7903eb36e",
1337 | "metadata": {},
1338 | "outputs": [
1339 | {
1340 | "data": {
1341 | "text/plain": [
1342 | "0.6257718410257236"
1343 | ]
1344 | },
1345 | "execution_count": 28,
1346 | "metadata": {},
1347 | "output_type": "execute_result"
1348 | }
1349 | ],
1350 | "source": [
1351 | "log_loss(y_test, yhat_prob)"
1352 | ]
1353 | },
1354 | {
1355 | "cell_type": "code",
1356 | "execution_count": 32,
1357 | "metadata": {},
1358 | "outputs": [
1359 | {
1360 | "data": {
1361 | "text/html": [
1362 | "