├── LICENSE ├── README.md ├── dataloader ├── dataloader.py └── test_dataloader.py ├── model ├── GRU.py └── Tree.py ├── preparation ├── 1_sb_vad.py ├── 2_clip_segments.py ├── 3_generate_list.py ├── libri_sim_code │ ├── 4_gen_simulated_room.py │ ├── 5_generate_json.py │ ├── 6_json_2_list.py │ └── gen_room_para.py └── libri_spkid2gender.py ├── test.sh ├── test └── test.py ├── tools └── misc.py ├── train.sh ├── train └── train.py └── utils └── utils.py /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. 2 | 3 | # Locate and Beamform: Two-dimensional Locating All-neural Beamformer for Multi-channel Speech Separation (LaBNet) 4 | 5 | Official PyTorch implementation and dataset generation scripts of the Interspeech 2023 paper ["Locate and Beamform: Two-dimensional Locating All-neural Beamformer for Multi-channel Speech Separation"](https://arxiv.org/abs/2305.10821) by Fu Yanjie et al. 6 | 7 | ## How to cite 8 | 1. Fu, Yanjie, et al. "Locate and Beamform: Two-dimensional Locating All-neural Beamformer for Multi-channel Speech Separation." arXiv preprint arXiv:2305.10821 (2023). 9 | ```bibtex 10 | @misc{fu2023locate, 11 | title={Locate and Beamform: Two-dimensional Locating All-neural Beamformer for Multi-channel Speech Separation}, 12 | author={Yanjie Fu and Meng Ge and Honglong Wang and Nan Li and Haoran Yin and Longbiao Wang and Gaoyan Zhang and Jianwu Dang and Chengyun Deng and Fei Wang}, 13 | year={2023}, 14 | eprint={2305.10821}, 15 | archivePrefix={arXiv}, 16 | primaryClass={eess.AS} 17 | } 18 | ``` 19 | 20 | ## Model 21 | We implement LaBNet based on Generalized spatio-temporal RNN Beamformer (GRNN-BF), which directly learns the beamforming weights from the estimated speech and noise spatial covariance matrices. For more details, please refer to the original paper: ["Generalized Spatio-Temporal RNN Beamformer for Target Speech Separation"](https://www.isca-speech.org/archive/pdfs/interspeech_2021/xu21i_interspeech.pdf). 22 | 23 | The figure below shows the architecture of our proposed LaBNet. 24 | ![](https://raw.githubusercontent.com/FYJNEVERFOLLOWS/Picture-Bed/main/202305/20230519220355.png) 25 | 26 | ## Dataset (Libri-SIM) 27 | The simulated dataset `Libri-SIM` is based on the [Librispeech](http://www.openslr.org/12) corpus. 28 | 29 | ### Raw data download 30 | 1) Download the *train-clean-100*, *dev-clean* and *test-clean* data from Librispeech's website and unzip them into any directory. The absolute path for the directory is denoted as *libri_path*, which should contain 3 subfolders *train-clean-100*, *dev-clean* and *test-clean*. 31 | 2) Download or clone this repository. 32 | 33 | ### Preprocess 34 | Run the command below for *train-clean-100*, *dev-clean* and *test-clean* respectively. 35 | ```python3 36 | python ./preparation/1_sb_vad.py 37 | python ./preparation/2_clip_segments.py 38 | python ./preparation/3_generate_list.py 39 | ``` 40 | The preprocessing here is to clip 4 seconds long speech segments with few silence for further simulation. 41 | 42 | 43 | ### Simulation 44 | - We simulate 6-channel audio data from original single-channel audio through pyroomacoustics, the spacings of 6 microphones are 0.04 m, 0.04 m, 0.12 m, 0.04 m, 0.04 m. The parameters of simulated rooms are shown in Tabel 1, the length of room is randomly selected between 4 m and 12 m, the width of room is a random number between 3 m and 9 m, and the height of room is a random number between 2.5 m and 5 m. There are small, middle, large 3 types of room according to the length of the room, the RT60 is a random number between 0.3 s and 0.6 s, 0.4 s and 0.7 s, 0.5 s and 0.8 s respectively. 45 | 46 |
47 | 48 |
49 | 50 | - As shown in Figure 1, the microphone array is located in the middle of the wall, at a distance of 0.5 m from the wall and 2 m from the ground. In order to make sound sources cover the area in rooms better, we first set the direction-of-arrival of sound source, then we leave 0.5 m between the sound source and the microphone array and between the sound source and the wall, and divide the rest range into near, medium and far range, the distance between microphone array and sound source is a random number in 3 types of range, so we simulate one original single channel speech data at near, medium, far distance simultaneously. 51 | - We simulate 50 training rooms, 10 validation rooms and 10 testing rooms, respectively. The angular spacing between simulated sources is 1°. 52 | - Then we generate 3 sets of training, validation set, and testing set from the simulated rooms. We randomly select 2 sources by random angles and source-to-array distances. 53 | - The training set contains 40,000 utterances (44.44 hours), the validation set and the testing set contains 5,000 and 3,000 utterances, respectively. 54 | 55 | Run commands below to simulate and generate the `.lst` which contains dataset paths. 56 | ```python3 57 | python ./preparation/libri_sim_code/4_gen_simulated_room.py 58 | python ./preparation/libri_sim_code/5_generate_json.py 59 | python ./preparation/libri_sim_code/6_json_2_list.py 60 | ``` 61 | -------------------------------------------------------------------------------- /dataloader/dataloader.py: -------------------------------------------------------------------------------- 1 | import os 2 | import copy 3 | import json 4 | import librosa 5 | import numpy as np 6 | import multiprocessing as mp 7 | import soundfile as sf 8 | import torch 9 | 10 | import torch.utils.data as tud 11 | from torch.utils.data import Dataset 12 | 13 | def audioread(path, duration, fs = 16000): 14 | wave_data, sr = sf.read(path) 15 | if sr != fs: 16 | wave_data = librosa.resample(wave_data,sr,fs) 17 | return wave_data[:fs*duration] 18 | 19 | 20 | def activelev(data): 21 | eps = np.finfo(np.float32).eps 22 | max_val = (1. + eps) / (np.std(data)+eps) 23 | data = data * max_val 24 | return data 25 | 26 | def gaussian_func(gt_idx, output_dimention, sigma): 27 | indices = np.arange(output_dimention) 28 | out = np.array(np.exp(-1 * np.square(indices - gt_idx) / sigma ** 2)) 29 | return out 30 | 31 | def encode_AS(input_list): 32 | # Azimuth Spectrum 33 | AS = [] 34 | for input_idx in input_list: 35 | AS.append(gaussian_func(input_idx, 210, 8)) 36 | AS = np.asarray(AS) # [1, 210] 37 | return AS 38 | 39 | def encode_DS(input_list): 40 | # Distance Spectrum 41 | DS = [] 42 | for input_idx in input_list: 43 | DS.append(gaussian_func(input_idx, 200, 20)) 44 | DS = np.asarray(DS) 45 | return DS 46 | 47 | def gaussian_func_2d(x_len=10, y_len=10, granularity=0.5, x_mu=5, y_mu=5, x_sigma_pow2=0.1, y_sigma_pow2=0.1): 48 | ''' 49 | Input: x_mu, y_mu 50 | Output: 2D array (each element indicates the probability of active sound source at each coordinate) 51 | ''' 52 | X, Y = np.meshgrid(np.arange(0, x_len, granularity), np.arange(0, y_len, granularity)) 53 | print(f'X.shape {X.shape}') 54 | # TODO 55 | Z = np.array(np.exp(-0.5 * np.square(X - x_mu) / x_sigma_pow2 - 0.5 * np.square(Y - y_mu) / y_sigma_pow2)) 56 | print(f'Z.shape {X.shape}') 57 | 58 | return Z.flatten() # [400] 59 | 60 | def encode_LS(x, y): 61 | # location heatmap 62 | DS = [] 63 | DS.append(gaussian_func_2d(x_mu=x, y_mu=y)) 64 | DS = np.asarray(DS) # [1, 400] 65 | return DS 66 | 67 | def parse_scp(scp, path_list): 68 | with open(scp, encoding='utf-8') as fid: 69 | for line in fid: 70 | path_list.append(line.strip()) 71 | 72 | class TFDataset(Dataset): 73 | def __init__(self, wav_scp, data_mix_info, n_mics = 6, duration = 4, sample_rate= 16000, 74 | perturb_prob = 0.0, negatives=0.2, hold_coff=0.003, n_avb_mics = 2): 75 | mgr = mp.Manager() 76 | self.file_list = mgr.list() 77 | self.noise_list = mgr.list() 78 | self.index = mgr.list() 79 | 80 | self.data_mix_info = data_mix_info 81 | self.duration = duration 82 | 83 | self.sr = sample_rate 84 | self.n_mics = n_mics 85 | self.n_avb_mics = n_avb_mics 86 | self.perturb_prob = perturb_prob 87 | self.negatives = negatives 88 | self.hlod_coff = hold_coff 89 | 90 | self.angle_dimension = 210 91 | self.time_bins = 249 92 | self.speaker_num = 2 93 | 94 | pc_list = [] 95 | p = mp.Process(target = parse_scp, args=(wav_scp,self.file_list)) 96 | p.start() 97 | pc_list.append(p) 98 | 99 | for p in pc_list: 100 | p.join() 101 | 102 | self.index = [idx for idx in range(len(self.file_list))] 103 | 104 | def __len__(self): 105 | return len(self.index) 106 | 107 | def __getitem__(self, idx): 108 | item = self.index[idx] 109 | file_index = item 110 | file_path = self.file_list[file_index] 111 | 112 | with open(file_path) as json_file: 113 | metadata = json.load(json_file) 114 | 115 | all_sources, doa_as_array, target_1, target_2, wave_paths, doa_idx_array, xy_coordinates = self.get_mixture_and_gt(metadata) 116 | 117 | all_sources = torch.stack(all_sources,dim=0) 118 | mixed_data = torch.sum(all_sources,dim=0) 119 | channel_num, _ = mixed_data.size() 120 | target_1 = torch.stack(target_1,dim=0) 121 | target_1 = torch.sum(target_1,dim=0) 122 | target_2 = torch.stack(target_2,dim=0) 123 | target_2 = torch.sum(target_2,dim=0) 124 | 125 | scale = 0.5 126 | for channel_idx in range(channel_num): 127 | mix_single_channel_wav = mixed_data[channel_idx,:] 128 | max_amp = torch.max(torch.abs(mix_single_channel_wav)) 129 | if max_amp == 0: 130 | max_amp =1 131 | mix_scale = 1/max_amp*scale 132 | mixed_data[channel_idx,:] = mixed_data[channel_idx,:] * mix_scale 133 | target_1[channel_idx, :] = target_1[channel_idx, :] * mix_scale 134 | target_2[channel_idx, :] = target_2[channel_idx, :] * mix_scale 135 | 136 | # without noise data 137 | target_1 = target_1[0, :] 138 | target_2 = target_2[0, :] 139 | 140 | return { 141 | "mixed_data": mixed_data, 142 | "target_1": target_1, 143 | "target_2": target_2, 144 | "doa_as_array": doa_as_array, # [B, T, S, n_mics, 210] 145 | "doa_idx_array": doa_idx_array, # [B, T, S, n_mics] 146 | "wave_paths": wave_paths, 147 | "xy": xy_coordinates # [B, T, S, 2] 148 | } 149 | 150 | # # with noise data (need test) 151 | # target_1 = target_1[0, :] 152 | # target_2 = target_1[0, :] 153 | 154 | # mixed_data = np.array(mixed_data) 155 | # target_1 = np.array(target_1) 156 | # target_2 = np.array(target_2) 157 | # interference = np.zeros(len(target_1)) 158 | 159 | # stationary_noise_wav_path_part = metadata["stationary_noise"]['wave_path'] 160 | 161 | # SNR = metadata["stationary_noise"]['SNR'] 162 | 163 | # for channel_idx in range(channel_num): 164 | # stationary_noise_wav_path = stationary_noise_wav_path_part + '_' + str(channel_idx) + '.wav' 165 | 166 | # noise_change_weight = np.max(mixed_data)*(10 ** (-SNR / 20)) 167 | # noise_wav = activelev(audioread(stationary_noise_wav_path, self.duration)) * noise_change_weight 168 | # mixed_data[channel_idx, :] = mixed_data[channel_idx, :] + noise_wav 169 | 170 | # if channel_idx == 0: 171 | # interference = interference + noise_wav 172 | 173 | # mixed_data = torch.from_numpy(mixed_data) 174 | # target_1 = torch.from_numpy(target_1) 175 | # target_2 = torch.from_numpy(target_2) 176 | # interference = torch.from_numpy(interference) 177 | 178 | # return mixed_data, doa_as_array, doa_ont_hot_array, target_1, target_2, interference 179 | 180 | def get_mixture_and_gt(self, metadata): 181 | # dataset_prefix = "/local02/fuyanjie" 182 | # dataset_prefix = "/sata/fuyanjie" 183 | all_sources = [] 184 | source_index = 0 185 | target_data_1 = [] 186 | target_data_2 = [] 187 | wave_paths= {} 188 | 189 | as_dict = dict([]) 190 | doa_idx_array = np.zeros([self.time_bins, self.speaker_num, self.n_avb_mics], dtype=np.int16) 191 | doa_as_array = np.zeros([self.time_bins, self.speaker_num, self.n_avb_mics, self.angle_dimension]) 192 | angle_list = np.zeros([self.speaker_num], dtype=np.int16) 193 | xy_coordinates = np.zeros([self.time_bins, self.speaker_num, 2]) 194 | 195 | for key in metadata.keys(): 196 | if "source" in key: 197 | channel_index_list = np.arange(self.n_mics) 198 | flag = metadata[key]['wave_path'] 199 | # flag.replace(dataset_prefix, "/CDShare3") 200 | gt_audio_files = [flag + '_'+ str(channel_index) + '.wav' for channel_index in channel_index_list] 201 | gt_waveforms = [] 202 | for index, gt_audio_file in enumerate(gt_audio_files): 203 | gt_waveform = audioread(gt_audio_file, self.duration) 204 | single_channel_wav = activelev(gt_waveform) 205 | gt_waveforms.append(torch.from_numpy(single_channel_wav)) 206 | 207 | shifted_gt = np.stack(gt_waveforms) 208 | perturbed_source = shifted_gt 209 | 210 | perturbed_source = torch.from_numpy(perturbed_source) 211 | perturbed_source = perturbed_source.to(torch.float32) 212 | 213 | if source_index !=0: 214 | # ignore the SIR between diffrent speakers 215 | # SIR = metadata[key]['SIR'] 216 | SIR = 0 217 | change_weight = 10 ** (SIR/20) 218 | perturbed_source = perturbed_source * change_weight 219 | 220 | all_sources.append(perturbed_source) 221 | 222 | source_azimuth = int(metadata[key]['azimuth']) 223 | source2mic_dist = int(metadata[key]['s2m_dist']) 224 | 225 | source_azimuth1 = int(round(metadata[key]['azimuth1'])) 226 | source_azimuth3 = int(round(metadata[key]['azimuth3'])) 227 | source_azimuth4 = int(round(metadata[key]['azimuth4'])) 228 | source_azimuth6 = int(round(metadata[key]['azimuth6'])) 229 | 230 | if source_index == 0: 231 | target_data_1.append(perturbed_source) 232 | wave_paths["spk1"] = flag 233 | angle_list[source_index] = source_azimuth 234 | elif source_index == 1: 235 | target_data_2.append(perturbed_source) 236 | wave_paths["spk2"] = flag 237 | angle_list[source_index] = source_azimuth 238 | 239 | ASs = np.zeros([self.n_avb_mics, self.angle_dimension]) # [4, 210] 240 | if self.n_avb_mics == 2: 241 | ASs[0, :] = encode_AS([source_azimuth1 + 15]) 242 | ASs[1, :] = encode_AS([source_azimuth6 + 15]) 243 | elif self.n_avb_mics == 4: 244 | ASs[0, :] = encode_AS([source_azimuth1 + 15]) 245 | ASs[1, :] = encode_AS([source_azimuth3 + 15]) 246 | ASs[2, :] = encode_AS([source_azimuth4 + 15]) 247 | ASs[3, :] = encode_AS([source_azimuth6 + 15]) 248 | elif self.n_avb_mics == 1: 249 | ASs[0, :] = encode_AS([source_azimuth + 15]) 250 | 251 | as_dict[source_index] = ASs 252 | vad_label = metadata[key]['vad_label'] 253 | for vad_index in range(len(vad_label)-1): 254 | if vad_label[vad_index] == 1: 255 | source_azimuth_rad = source_azimuth / 180.0 * np.pi 256 | xy_coordinates[vad_index, source_index, 0] = source2mic_dist * np.cos(source_azimuth_rad) 257 | xy_coordinates[vad_index, source_index, 1] = source2mic_dist * np.sin(source_azimuth_rad) 258 | if self.n_avb_mics == 2: 259 | doa_idx_array[vad_index, source_index, 0] = source_azimuth1 + 15 260 | doa_idx_array[vad_index, source_index, 1] = source_azimuth6 + 15 261 | elif self.n_avb_mics == 4: 262 | doa_idx_array[vad_index, source_index, 0] = source_azimuth1 + 15 263 | doa_idx_array[vad_index, source_index, 1] = source_azimuth3 + 15 264 | doa_idx_array[vad_index, source_index, 2] = source_azimuth4 + 15 265 | doa_idx_array[vad_index, source_index, 3] = source_azimuth6 + 15 266 | elif self.n_avb_mics == 1: 267 | doa_idx_array[vad_index, source_index, 0] = source_azimuth + 15 268 | else: 269 | doa_idx_array[vad_index, source_index, :] = -1 270 | source_index = source_index + 1 271 | 272 | 273 | # Sort by Azimuth 274 | for i in range(0, self.speaker_num): 275 | for j in range(i+1, self.speaker_num): 276 | if angle_list[i] > angle_list[j]: 277 | temp_doa_arr_1 = copy.deepcopy(doa_idx_array[:, i, :]) 278 | temp_doa_arr_2 = copy.deepcopy(doa_idx_array[:, j, :]) 279 | doa_idx_array[:, i, :], doa_idx_array[:, j, :] = temp_doa_arr_2, temp_doa_arr_1 280 | temp_target_1 = copy.deepcopy(target_data_1) 281 | temp_target_2 = copy.deepcopy(target_data_2) 282 | target_data_1, target_data_2 = temp_target_2, temp_target_1 283 | temp1 = copy.deepcopy(angle_list[i]) 284 | temp2 = copy.deepcopy(angle_list[j]) 285 | angle_list[i], angle_list[j] = temp2, temp1 286 | temp_as_1 = copy.deepcopy(as_dict[i]) 287 | temp_as_2 = copy.deepcopy(as_dict[j]) 288 | as_dict[0], as_dict[1] = temp_as_2, temp_as_1 289 | temp_xy_1 = copy.deepcopy(xy_coordinates[:, i, :]) 290 | temp_xy_2 = copy.deepcopy(xy_coordinates[:, j, :]) 291 | xy_coordinates[:, i, :], xy_coordinates[:, j, :] = temp_xy_2, temp_xy_1 292 | 293 | # Assign after sorting 294 | for source_idx in range(0, source_index): 295 | for time_idx in range(0, self.time_bins): 296 | if (doa_idx_array[time_idx, source_idx, :] == -1).any(): 297 | doa_as_array[time_idx, source_idx, :, :] = np.zeros([self.n_avb_mics, self.angle_dimension]) 298 | else: 299 | azi_s = as_dict[source_idx] 300 | doa_as_array[time_idx, source_idx, :, :] = azi_s 301 | 302 | return all_sources, doa_as_array, target_data_1, target_data_2, wave_paths, doa_idx_array, xy_coordinates 303 | 304 | class Sampler(tud.sampler.Sampler): 305 | def __init__(self, data_source, batch_size): 306 | it_end = len(data_source) - batch_size + 1 307 | self.batches = [range(i,i+batch_size) for i in range(0, it_end, batch_size)] 308 | self.data_source = data_source 309 | 310 | def __iter__(self): 311 | return (i for b in self.batches for i in b) 312 | 313 | def __len__(self): 314 | return len(self.data_source) 315 | 316 | def static_loader(clean_scp, batch_size = 4, shuffle = True, num_workers = 8, duration = 4, sample_rate = 16000, data_mix_info = None, n_avb_mics = 2): 317 | dataset = TFDataset( 318 | wav_scp= clean_scp, 319 | data_mix_info = data_mix_info, 320 | duration = duration, 321 | sample_rate = sample_rate, 322 | n_avb_mics = n_avb_mics 323 | ) 324 | 325 | loader = tud.DataLoader( 326 | dataset, 327 | batch_size = batch_size, 328 | shuffle = shuffle, 329 | num_workers = num_workers, 330 | drop_last = False 331 | ) 332 | return loader 333 | 334 | 335 | if __name__ == "__main__": 336 | lst_path = '/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/test-clean_0101.lst' 337 | data_loader = static_loader(lst_path, shuffle=True, batch_size=4) 338 | print(f'len(data_loader) {len(data_loader)}') # len(data_loader) is samples / batch_size 339 | one_batch_data = next(iter(data_loader)) 340 | print('AAA ', one_batch_data["wave_paths"]) 341 | print('B ', one_batch_data["doa_as_array"].dtype) 342 | print('C ', one_batch_data["doa_idx_array"].dtype) 343 | # AAA torch.Size([224, 12, 7, 257]) torch.Size([224]) 344 | # one_batch_data = next(iter(data_loader)) 345 | # print('BBB ', one_batch_data["clean_ris"].shape, one_batch_data["target_doa"].shape) 346 | os.makedirs('../debug_plot', exist_ok=True) 347 | import matplotlib.pyplot as plt 348 | for idx, data in enumerate(data_loader): 349 | fig, ax = plt.subplots() # 创建图实例 350 | ax.plot(np.linspace(0, 210, 210), data['doa_as_array'][3, 50, 0, 0], color='r') 351 | # ax.plot(np.linspace(0, 210, 210), data['doa_idx_array'][2, 50, 0, 0], color='b') 352 | print(f' AAA DOA {data["doa_as_array"].shape}') 353 | print(f' A doa_as_array {data["doa_as_array"][3, 50, 0, 0].shape}') 354 | print(f' B DOA {data["doa_idx_array"][3, 50, 0]}') 355 | plt.savefig(f'../debug_plot/test_as_spk1_{idx}.png') 356 | plt.cla() 357 | ax.plot(np.linspace(0, 210, 210), data['doa_as_array'][3, 50, 1, 0], color='r') 358 | # ax.plot(np.linspace(0, 210, 210), data['doa_one_hot_array'][2, 50, 1, 0], color='b') 359 | print(f' C doa_as_array {data["doa_as_array"][3, 50, 1, 0].shape}') 360 | print(f' D doa_idx_array {data["doa_idx_array"][3, 50, 1]}') 361 | plt.savefig(f'../debug_plot/test_as_spk2_{idx}.png') 362 | # plt.cla() 363 | # ax.plot(np.linspace(0, 400, 400), data['dist_ds_array'][2, 50, 1], color='r') 364 | # ax.plot(np.linspace(0, 400, 400), data['dist_one_hot_array'][2, 50, 1], color='b') 365 | # print(f' C Dist {data["dist_idx_array"][2, 50, 1]}') 366 | # print(f' D Dist {np.where(data["dist_one_hot_array"][2, 50, 1] == 1)[0]}') 367 | # plt.savefig(f'./test_ds_spk2_{idx}.png') 368 | # print(data['wave_paths']) 369 | # print(data['mixed_data'].shape) 370 | # print(data['target_1'].shape) 371 | # print(data['target_2'].shape) 372 | # print(data['doa_as_array'].shape) 373 | # print(data['doa_one_hot_array'].shape) 374 | 375 | print('------------') 376 | if idx >= 3: 377 | break -------------------------------------------------------------------------------- /dataloader/test_dataloader.py: -------------------------------------------------------------------------------- 1 | import os 2 | import copy 3 | import json 4 | import librosa 5 | import numpy as np 6 | import multiprocessing as mp 7 | import soundfile as sf 8 | import torch 9 | 10 | import torch.utils.data as tud 11 | from torch.utils.data import Dataset 12 | 13 | def audioread(path, duration, fs = 16000): 14 | wave_data, sr = sf.read(path) 15 | if sr != fs: 16 | wave_data = librosa.resample(wave_data,sr,fs) 17 | return wave_data[:fs*duration] 18 | 19 | 20 | def activelev(data): 21 | eps = np.finfo(np.float32).eps 22 | max_val = (1. + eps) / (np.std(data)+eps) 23 | data = data * max_val 24 | return data 25 | 26 | def gaussian_func(gt_idx, output_dimention, sigma): 27 | indices = np.arange(output_dimention) 28 | out = np.array(np.exp(-1 * np.square(indices - gt_idx) / sigma ** 2)) 29 | return out 30 | 31 | def encode_AS(input_list): 32 | # Azimuth Spectrum 33 | AS = [] 34 | for input_idx in input_list: 35 | AS.append(gaussian_func(input_idx, 210, 8)) 36 | AS = np.asarray(AS) # [1, 210] 37 | return AS 38 | 39 | def encode_DS(input_list): 40 | # Distance Spectrum 41 | DS = [] 42 | for input_idx in input_list: 43 | DS.append(gaussian_func(input_idx, 200, 20)) 44 | DS = np.asarray(DS) 45 | return DS 46 | 47 | def gaussian_func_2d(x_len=10, y_len=10, granularity=0.5, x_mu=5, y_mu=5, x_sigma_pow2=0.1, y_sigma_pow2=0.1): 48 | ''' 49 | Input: x_mu, y_mu 50 | Output: 2D array (each element indicates the probability of active sound source at each coordinate) 51 | ''' 52 | X, Y = np.meshgrid(np.arange(0, x_len, granularity), np.arange(0, y_len, granularity)) 53 | print(f'X.shape {X.shape}') 54 | # TODO 55 | Z = np.array(np.exp(-0.5 * np.square(X - x_mu) / x_sigma_pow2 - 0.5 * np.square(Y - y_mu) / y_sigma_pow2)) 56 | print(f'Z.shape {X.shape}') 57 | 58 | return Z.flatten() # [400] 59 | 60 | def encode_LS(x, y): 61 | # location heatmap 62 | DS = [] 63 | DS.append(gaussian_func_2d(x_mu=x, y_mu=y)) 64 | DS = np.asarray(DS) # [1, 400] 65 | return DS 66 | 67 | def parse_scp(scp, path_list): 68 | with open(scp, encoding='utf-8') as fid: 69 | # with open(scp, encoding='utf-8-sig') as fid: 70 | for line in fid: 71 | path_list.append(line.strip()) 72 | 73 | class TFDataset(Dataset): 74 | def __init__(self, wav_scp, data_mix_info, n_mics = 6, duration = 4, sample_rate= 16000, 75 | perturb_prob = 0.0, negatives=0.2, hold_coff=0.003, n_avb_mics = 2): 76 | 77 | mgr = mp.Manager() 78 | self.file_list = mgr.list() 79 | self.noise_list = mgr.list() 80 | self.index = mgr.list() 81 | 82 | self.data_mix_info = data_mix_info 83 | self.duration = duration 84 | 85 | self.sr = sample_rate 86 | self.n_mics = n_mics 87 | self.n_avb_mics = n_avb_mics 88 | self.perturb_prob = perturb_prob 89 | self.negatives = negatives 90 | self.hlod_coff = hold_coff 91 | 92 | self.angle_dimension = 210 93 | self.time_bins = 249 94 | self.speaker_num = 2 95 | 96 | pc_list = [] 97 | p = mp.Process(target = parse_scp, args=(wav_scp,self.file_list)) 98 | p.start() 99 | pc_list.append(p) 100 | 101 | for p in pc_list: 102 | p.join() 103 | 104 | self.index = [idx for idx in range(len(self.file_list))] 105 | 106 | def __len__(self): 107 | return len(self.index) 108 | 109 | def __getitem__(self, idx): 110 | item = self.index[idx] 111 | file_index = item 112 | file_path = self.file_list[file_index] 113 | 114 | with open(file_path) as json_file: 115 | metadata = json.load(json_file) 116 | 117 | all_sources, doa_as_array, target_1, target_2, angle_list, wave_paths, doa_idx_array, xy_coordinates = self.get_mixture_and_gt(metadata) 118 | 119 | all_sources = torch.stack(all_sources,dim=0) 120 | mixed_data = torch.sum(all_sources,dim=0) 121 | channel_num, _ = mixed_data.size() 122 | target_1 = torch.stack(target_1,dim=0) 123 | target_1 = torch.sum(target_1,dim=0) 124 | target_2 = torch.stack(target_2,dim=0) 125 | target_2 = torch.sum(target_2,dim=0) 126 | 127 | scale = 0.5 128 | for channel_idx in range(channel_num): 129 | mix_single_channel_wav = mixed_data[channel_idx,:] 130 | max_amp = torch.max(torch.abs(mix_single_channel_wav)) 131 | if max_amp == 0: 132 | max_amp =1 133 | mix_scale = 1/max_amp*scale 134 | mixed_data[channel_idx,:] = mixed_data[channel_idx,:] * mix_scale 135 | target_1[channel_idx, :] = target_1[channel_idx, :] * mix_scale 136 | target_2[channel_idx, :] = target_2[channel_idx, :] * mix_scale 137 | 138 | # without noise data 139 | target_1 = target_1[0, :] 140 | target_2 = target_2[0, :] 141 | 142 | angular_distance = abs(angle_list[0]-angle_list[1]) 143 | social_distance = float(metadata["social_dist"]) 144 | 145 | return { 146 | "mixed_data": mixed_data, 147 | "target_1": target_1, 148 | "target_2": target_2, 149 | "doa_as_array": doa_as_array, # [B, T, S, n_mics, 210] 150 | "doa_idx_array": doa_idx_array, # [B, T, S, n_mics] 151 | "angular_distance": angular_distance, 152 | "social_distance": social_distance, 153 | "wave_paths": wave_paths, 154 | "xy": xy_coordinates # [B, T, S, 2] 155 | } 156 | 157 | # # with noise data (need test) 158 | # target_1 = target_1[0, :] 159 | # target_2 = target_1[0, :] 160 | 161 | # mixed_data = np.array(mixed_data) 162 | # target_1 = np.array(target_1) 163 | # target_2 = np.array(target_2) 164 | # interference = np.zeros(len(target_1)) 165 | 166 | # stationary_noise_wav_path_part = metadata["stationary_noise"]['wave_path'] 167 | 168 | # SNR = metadata["stationary_noise"]['SNR'] 169 | 170 | # for channel_idx in range(channel_num): 171 | # stationary_noise_wav_path = stationary_noise_wav_path_part + '_' + str(channel_idx) + '.wav' 172 | 173 | # noise_change_weight = np.max(mixed_data)*(10 ** (-SNR / 20)) 174 | # noise_wav = activelev(audioread(stationary_noise_wav_path, self.duration)) * noise_change_weight 175 | # mixed_data[channel_idx, :] = mixed_data[channel_idx, :] + noise_wav 176 | 177 | # if channel_idx == 0: 178 | # interference = interference + noise_wav 179 | 180 | # mixed_data = torch.from_numpy(mixed_data) 181 | # target_1 = torch.from_numpy(target_1) 182 | # target_2 = torch.from_numpy(target_2) 183 | # interference = torch.from_numpy(interference) 184 | 185 | # return mixed_data, doa_as_array, doa_ont_hot_array, target_1, target_2, interference 186 | 187 | def get_mixture_and_gt(self, metadata): 188 | dataset_prefix = "/local01/fuyanjie" 189 | # dataset_prefix = "/sata/fuyanjie" 190 | all_sources = [] 191 | source_index = 0 192 | target_data_1 = [] 193 | target_data_2 = [] 194 | wave_paths= {} 195 | 196 | as_dict = dict([]) 197 | doa_idx_array = np.zeros([self.time_bins, self.speaker_num, self.n_avb_mics], dtype=np.int16) 198 | doa_as_array = np.zeros([self.time_bins, self.speaker_num, self.n_avb_mics, self.angle_dimension]) 199 | angle_list = np.zeros([self.speaker_num], dtype=np.int16) 200 | xy_coordinates = np.zeros([self.time_bins, self.speaker_num, 2]) 201 | for key in metadata.keys(): 202 | if "source" in key: 203 | channel_index_list = np.arange(self.n_mics) 204 | flag = metadata[key]['wave_path'] 205 | gt_audio_files = [flag + '_'+ str(channel_index) + '.wav' for channel_index in channel_index_list] 206 | gt_waveforms = [] 207 | for index, gt_audio_file in enumerate(gt_audio_files): 208 | gt_waveform = audioread(gt_audio_file, self.duration) 209 | single_channel_wav = activelev(gt_waveform) 210 | gt_waveforms.append(torch.from_numpy(single_channel_wav)) 211 | 212 | shifted_gt = np.stack(gt_waveforms) 213 | perturbed_source = shifted_gt 214 | 215 | perturbed_source = torch.from_numpy(perturbed_source) 216 | perturbed_source = perturbed_source.to(torch.float32) 217 | 218 | if source_index !=0: 219 | # ignore the SIR between diffrent speakers 220 | # SIR = metadata[key]['SIR'] 221 | SIR = 0 222 | change_weight = 10 ** (SIR/20) 223 | perturbed_source = perturbed_source * change_weight 224 | 225 | all_sources.append(perturbed_source) 226 | 227 | source_azimuth = int(metadata[key]['azimuth']) 228 | source2mic_dist = int(metadata[key]['s2m_dist']) 229 | 230 | source_azimuth1 = int(round(metadata[key]['azimuth1'])) 231 | source_azimuth3 = int(round(metadata[key]['azimuth3'])) 232 | source_azimuth4 = int(round(metadata[key]['azimuth4'])) 233 | source_azimuth6 = int(round(metadata[key]['azimuth6'])) 234 | 235 | if source_index == 0: 236 | target_data_1.append(perturbed_source) 237 | wave_paths["spk1"] = flag 238 | angle_list[source_index] = source_azimuth 239 | elif source_index == 1: 240 | target_data_2.append(perturbed_source) 241 | wave_paths["spk2"] = flag 242 | angle_list[source_index] = source_azimuth 243 | 244 | ASs = np.zeros([self.n_avb_mics, self.angle_dimension]) # [4, 210] 245 | if self.n_avb_mics == 2: 246 | ASs[0, :] = encode_AS([source_azimuth1 + 15]) 247 | ASs[1, :] = encode_AS([source_azimuth6 + 15]) 248 | elif self.n_avb_mics == 4: 249 | ASs[0, :] = encode_AS([source_azimuth1 + 15]) 250 | ASs[1, :] = encode_AS([source_azimuth3 + 15]) 251 | ASs[2, :] = encode_AS([source_azimuth4 + 15]) 252 | ASs[3, :] = encode_AS([source_azimuth6 + 15]) 253 | elif self.n_avb_mics == 1: 254 | ASs[0, :] = encode_AS([source_azimuth + 15]) 255 | as_dict[source_index] = ASs 256 | 257 | vad_label = metadata[key]['vad_label'] 258 | for vad_index in range(len(vad_label)-1): 259 | if vad_label[vad_index] == 1: 260 | source_azimuth_rad = source_azimuth / 180.0 * np.pi 261 | xy_coordinates[vad_index, source_index, 0] = source2mic_dist * np.cos(source_azimuth_rad) 262 | xy_coordinates[vad_index, source_index, 1] = source2mic_dist * np.sin(source_azimuth_rad) 263 | if self.n_avb_mics == 2: 264 | doa_idx_array[vad_index, source_index, 0] = source_azimuth1 + 15 265 | doa_idx_array[vad_index, source_index, 1] = source_azimuth6 + 15 266 | elif self.n_avb_mics == 4: 267 | doa_idx_array[vad_index, source_index, 0] = source_azimuth1 + 15 268 | doa_idx_array[vad_index, source_index, 1] = source_azimuth3 + 15 269 | doa_idx_array[vad_index, source_index, 2] = source_azimuth4 + 15 270 | doa_idx_array[vad_index, source_index, 3] = source_azimuth6 + 15 271 | elif self.n_avb_mics == 1: 272 | doa_idx_array[vad_index, source_index, 0] = source_azimuth + 15 273 | else: 274 | doa_idx_array[vad_index, source_index, :] = -1 275 | source_index = source_index + 1 276 | 277 | 278 | # # Sort by Azimuth 279 | # for i in range(0, self.speaker_num): 280 | # for j in range(i+1, self.speaker_num): 281 | # if angle_list[i] > angle_list[j]: 282 | # temp_doa_arr_1 = copy.deepcopy(doa_idx_array[:, i, :]) 283 | # temp_doa_arr_2 = copy.deepcopy(doa_idx_array[:, j, :]) 284 | # doa_idx_array[:, i, :], doa_idx_array[:, j, :] = temp_doa_arr_2, temp_doa_arr_1 285 | # temp_target_1 = copy.deepcopy(target_data_1) 286 | # temp_target_2 = copy.deepcopy(target_data_2) 287 | # target_data_1, target_data_2 = temp_target_2, temp_target_1 288 | # temp1 = copy.deepcopy(angle_list[i]) 289 | # temp2 = copy.deepcopy(angle_list[j]) 290 | # angle_list[i], angle_list[j] = temp2, temp1 291 | # temp_as_1 = copy.deepcopy(as_dict[0]) 292 | # temp_as_2 = copy.deepcopy(as_dict[1]) 293 | # as_dict[0], as_dict[1] = temp_as_2, temp_as_1 294 | 295 | # Assign after sorting 296 | for source_idx in range(0, source_index): 297 | for time_idx in range(0, self.time_bins): 298 | if (doa_idx_array[time_idx, source_idx, :] == -1).any(): 299 | doa_as_array[time_idx, source_idx, :, :] = np.zeros([self.n_avb_mics, self.angle_dimension]) 300 | else: 301 | azi_s = as_dict[source_idx] 302 | doa_as_array[time_idx, source_idx, :, :] = azi_s 303 | 304 | return all_sources, doa_as_array, target_data_1, target_data_2, angle_list, wave_paths, doa_idx_array, xy_coordinates 305 | 306 | class Sampler(tud.sampler.Sampler): 307 | def __init__(self, data_source, batch_size): 308 | it_end = len(data_source) - batch_size + 1 309 | self.batches = [range(i,i+batch_size) for i in range(0, it_end, batch_size)] 310 | self.data_source = data_source 311 | 312 | def __iter__(self): 313 | return (i for b in self.batches for i in b) 314 | 315 | def __len__(self): 316 | return len(self.data_source) 317 | 318 | def static_loader(clean_scp, batch_size = 4, shuffle = True, num_workers = 8, duration = 4, sample_rate = 16000, data_mix_info = None, n_avb_mics = 2): 319 | dataset = TFDataset( 320 | wav_scp= clean_scp, 321 | data_mix_info = data_mix_info, 322 | duration = duration, 323 | sample_rate = sample_rate, 324 | n_avb_mics = n_avb_mics 325 | ) 326 | 327 | loader = tud.DataLoader( 328 | dataset, 329 | batch_size = batch_size, 330 | shuffle = shuffle, 331 | num_workers = num_workers, 332 | drop_last = False 333 | ) 334 | return loader 335 | 336 | 337 | if __name__ == "__main__": 338 | lst_path = '/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/test-clean_0101.lst' 339 | data_loader = static_loader(lst_path, shuffle=False) 340 | print(f'len(data_loader) {len(data_loader)}') # len(data_loader) is samples / batch_size 341 | one_batch_data = next(iter(data_loader)) 342 | print('AAA ', one_batch_data["wave_paths"]) 343 | print('B ', one_batch_data["doa_as_array"].dtype) 344 | print('C ', one_batch_data["doa_idx_array"].dtype) 345 | # AAA torch.Size([224, 12, 7, 257]) torch.Size([224]) 346 | # one_batch_data = next(iter(data_loader)) 347 | # print('BBB ', one_batch_data["clean_ris"].shape, one_batch_data["target_doa"].shape) 348 | import matplotlib.pyplot as plt 349 | for idx, data in enumerate(data_loader): 350 | print(f' AAA DOA {data["doa_as_array"].shape}') 351 | print(f' A doa_as_array {data["doa_as_array"][3, 50, 0, 0].shape}') 352 | print(f' B DOA {data["doa_idx_array"][3, 50, 0]}') 353 | 354 | print(f' C doa_as_array {data["doa_as_array"][3, 50, 1, 0].shape}') 355 | print(f' D doa_idx_array {data["doa_idx_array"][3, 50, 1]}') 356 | # print(data['wave_paths']) 357 | # print(data['mixed_data'].shape) 358 | # print(data['target_1'].shape) 359 | # print(data['target_2'].shape) 360 | # print(data['doa_as_array'].shape) 361 | # print(data['doa_one_hot_array'].shape) 362 | 363 | print('------------') 364 | if idx >= 3: 365 | break -------------------------------------------------------------------------------- /model/GRU.py: -------------------------------------------------------------------------------- 1 | import torch as th 2 | from torch.nn.utils.rnn import pad_packed_sequence, PackedSequence 3 | 4 | class RNN_MASK(th.nn.Module): 5 | def __init__(self, 6 | num_bins = 256, # num of feature channels 7 | freq_bins = 257, 8 | rnn = "gru", 9 | num_mask = 4, 10 | num_layer = 2, 11 | hidden_size = 500, 12 | dropout = 0.0, 13 | non_linear = "relu", 14 | bidirectional = False 15 | ): 16 | super(RNN_MASK,self).__init__() 17 | if non_linear not in ["relu","sigmoid","tanh"]: 18 | raise ValueError( 19 | "Unsupported non-linear type:{}".format(non_linear) 20 | ) 21 | self.num_mask = num_mask 22 | rnn = rnn.upper() 23 | if rnn not in ["RNN", "LSTM", "GRU"]: 24 | raise ValueError( 25 | "Unsupported rnn type:{}".format(rnn) 26 | ) 27 | self.rnn = getattr(th.nn, rnn)( 28 | num_bins, 29 | hidden_size, 30 | num_layer, 31 | batch_first = True, 32 | dropout = dropout, 33 | bidirectional = bidirectional 34 | ) 35 | self.filter_size = 3 36 | self.drops = th.nn.Dropout(p=dropout) 37 | self.linear = th.nn.ModuleList([ 38 | th.nn.Linear(hidden_size * 2 if bidirectional else hidden_size, 2 * freq_bins * self.filter_size * self.filter_size) 39 | for _ in range(self.num_mask) 40 | ]) 41 | 42 | # self.conv1d = th.nn.Conv1d(hidden_size * 2 if bidirectional else hidden_size, self.num_mask * 2 * freq_bins * self.filter_size * self.filter_size, kernel_size=1) 43 | 44 | self.non_linear = { 45 | "relu": th.nn.functional.relu, 46 | "sigmoid": th.nn.functional.sigmoid, 47 | "tanh": th.nn.functional.tanh 48 | }[non_linear] 49 | self.num_bins = num_bins 50 | 51 | def forward(self,x): 52 | is_packed = isinstance(x, PackedSequence) 53 | if not is_packed and x.dim()!=3: 54 | x = th.unsqueeze(x,0) 55 | x, _ = self.rnn(x) # [B, C, T] 56 | 57 | if is_packed: 58 | x, _ = pad_packed_sequence(x,batch_first = True) 59 | x = self.drops(x) 60 | m = [] 61 | for linear in self.linear: 62 | y = linear(x) 63 | y = self.non_linear(y) 64 | m.append(y) 65 | return m -------------------------------------------------------------------------------- /model/Tree.py: -------------------------------------------------------------------------------- 1 | import sys 2 | sys.path.append("/Work21/2021/fuyanjie/pycode/LaBNetPro") 3 | 4 | from dataloader.dataloader import static_loader 5 | from model.GRU import RNN_MASK 6 | from torch_complex import ComplexTensor 7 | from torch_complex import functional as FC 8 | import torch.nn.functional as F 9 | import torch.nn as nn 10 | import torch 11 | import numpy as np 12 | from scipy.signal import get_window 13 | 14 | EPS = 1e-8 15 | 16 | 17 | def get_ipd(spec, dim): 18 | ''' 19 | : param spec: (batch, channels, freq_bins:257 × 2, time_bins) 20 | : param dim: 21 | : return: 22 | ''' 23 | 24 | real = spec[:, :, :dim, :] 25 | imag = spec[:, :, dim:, :] 26 | phase = torch.atan2(imag,real) # (batch,channels, freq_bins:257, time_bins) 27 | # 8, 12, 16, 16, 20 cm 28 | # diff1 = torch.cos((phase[:, 2, :, :] - phase[:, 0, :, :])).unsqueeze(1) 29 | # diff2 = torch.cos((phase[:, 3, :, :] - phase[:, 2, :, :])).unsqueeze(1) 30 | # diff3 = torch.cos((phase[:, 4, :, :] - phase[:, 2, :, :])).unsqueeze(1) 31 | # diff4 = torch.cos((phase[:, 3, :, :] - phase[:, 1, :, :])).unsqueeze(1) 32 | # diff5 = torch.cos((phase[:, 3, :, :] - phase[:, 0, :, :])).unsqueeze(1) 33 | 34 | # 8, 8, 12, 16, 16 cm 35 | # diff1 = torch.cos((phase[:, 2, :, :] - phase[:, 0, :, :])).unsqueeze(1) 36 | # diff2 = torch.cos((phase[:, 3, :, :] - phase[:, 1, :, :])).unsqueeze(1) 37 | # diff3 = torch.cos((phase[:, 3, :, :] - phase[:, 2, :, :])).unsqueeze(1) 38 | # diff4 = torch.cos((phase[:, 4, :, :] - phase[:, 2, :, :])).unsqueeze(1) 39 | # diff5 = torch.cos((phase[:, 5, :, :] - phase[:, 3, :, :])).unsqueeze(1) 40 | 41 | diff1 = torch.cos((phase[:, 1, :, :] - phase[:, 0, :, :])).unsqueeze(1) 42 | diff2 = torch.cos((phase[:, 2, :, :] - phase[:, 0, :, :])).unsqueeze(1) 43 | diff3 = torch.cos((phase[:, 3, :, :] - phase[:, 0, :, :])).unsqueeze(1) 44 | diff4 = torch.cos((phase[:, 4, :, :] - phase[:, 0, :, :])).unsqueeze(1) 45 | diff5 = torch.cos((phase[:, 5, :, :] - phase[:, 0, :, :])).unsqueeze(1) 46 | 47 | sin_diff1 = torch.sin((phase[:, 1, :, :] - phase[:, 0, :, :])).unsqueeze(1) 48 | sin_diff2 = torch.sin((phase[:, 2, :, :] - phase[:, 0, :, :])).unsqueeze(1) 49 | sin_diff3 = torch.sin((phase[:, 3, :, :] - phase[:, 0, :, :])).unsqueeze(1) 50 | sin_diff4 = torch.sin((phase[:, 4, :, :] - phase[:, 0, :, :])).unsqueeze(1) 51 | sin_diff5 = torch.sin((phase[:, 5, :, :] - phase[:, 0, :, :])).unsqueeze(1) 52 | 53 | result = torch.cat((diff1, diff2, diff3, diff4, diff5), dim=1) 54 | # result = torch.cat((diff1,diff2,diff3,diff4,diff5,sin_diff1,sin_diff2,sin_diff3,sin_diff4,sin_diff5), dim=1) 55 | #(batch, (m-1) pair microphones, freq bins:257, time_bins) 56 | return result 57 | 58 | def get_lps(spec, dim): 59 | ''' 60 | : param spec: (batch,channels, freq _bins:257 × 2, time_bins) 61 | : param dim: 62 | : return: 63 | ''' 64 | real = spec[:, :, :dim, :] 65 | imag = spec[:, :, dim:, :] 66 | mags = torch.sqrt(real ** 2 + imag ** 2) 67 | mags_refch = mags[:, 0, :, : ].unsqueeze(1) 68 | result = torch.log(mags_refch ** 2 + EPS) - np.log(EPS) # (batch, 1,freq_bins :257, time_bins) 69 | return result 70 | 71 | def get_spec_mag(spec, dim): 72 | ''' 73 | :param spec: (batch, channels, freq bins:257 × 2, time_bins) 74 | :param dim: 75 | :return: 76 | ''' 77 | real = spec[:, :, :dim, :] 78 | imag = spec[:, :, dim:, :] 79 | mags = torch.sqrt(real ** 2 + imag ** 2) 80 | mags_refch = mags[:, 0, :, :].unsqueeze(1) 81 | return mags_refch 82 | 83 | 84 | def get_covariance_v2(spec, crf, filter_size): 85 | batch, channels, two_freq_bins, time_bins = spec.size() 86 | freq_bins = two_freq_bins // 2 87 | spec = spec.reshape(batch, channels, 2, freq_bins, time_bins) 88 | spec = spec.permute(0, 1, 2, 4, 3) 89 | pad = nn.ZeroPad2d(1) 90 | spec_horizental = pad(spec) 91 | result_horizental = spec_horizental[:,:,:,:time_bins,:freq_bins+1] 92 | for i in range(1, filter_size): 93 | result_horizental = torch.cat((result_horizental, spec_horizental[:,:,:,i:i+time_bins,:freq_bins+1]),dim=3) 94 | 95 | spec_vertical = pad(result_horizental) 96 | result_vertical = spec_vertical[:,:,:,1:filter_size*time_bins+1,1:1+freq_bins] 97 | for j in range(1,filter_size): 98 | result_vertical = torch.cat((result_vertical,spec_vertical[:,:,:,1:3*time_bins+1,1+j:1+j+freq_bins]),dim=4) 99 | 100 | spec_final = result_vertical.reshape(batch, channels, 2, filter_size, time_bins, filter_size * freq_bins) 101 | spec_final = spec_final.reshape(batch, channels, 2, filter_size, time_bins, filter_size, freq_bins) 102 | spec_final = spec_final.permute(0, 1, 2, 4, 6, 3, 5) 103 | 104 | spec_real = spec_final[:,:,0,...] 105 | spec_imag = spec_final[:,:,1,...] 106 | spec_com = ComplexTensor(spec_real, spec_imag) 107 | spec_com = spec_com.permute(0, 3, 1, 2, 4, 5) 108 | crf_com = ComplexTensor(crf[:,0,...],crf[:,1,...]) 109 | crf_com = crf_com.permute(0, 2, 1, 3, 4) 110 | psd_Y = FC.einsum("...ctkl,...etkl->...tcekl",[spec_com,spec_com.conj()]) 111 | psd = psd_Y * crf_com[...,None,None,:,:] 112 | psd = psd.sum(dim=-1) 113 | psd = psd.sum(dim=-1) 114 | 115 | convariance_final_real = psd.real 116 | convariance_final_real = convariance_final_real.permute(0, 2, 1, 3, 4) 117 | convariance_final_imag = psd.imag 118 | convariance_final_imag = convariance_final_imag.permute(0, 2, 1, 3, 4) 119 | 120 | convariance_final = torch.stack((convariance_final_real,convariance_final_imag),dim=1) 121 | 122 | return convariance_final 123 | 124 | def remove_dc(signal): 125 | """Normalized to zero mean""" 126 | mean = torch.mean(signal, dim=-1, keepdim=True) 127 | signal = signal - mean 128 | return signal 129 | 130 | def dotproduct(y, y_hat) : 131 | #batch x channel x nsamples 132 | return torch.bmm(y.reshape(y.shape[0], 1, y.shape[ -1]), y_hat.reshape(y_hat.shape[0], y_hat.shape[-1], 1)).reshape(-1) 133 | 134 | def si_sdr_loss(e1, c1, c2): 135 | # [B, T] 136 | def sisdr(estimated, original, eps=1e-8): 137 | # estimated = remove_dc(estimated) 138 | # original = remove_dc(original) 139 | target = pow_norm(estimated, original) * original / (pow_p_norm(original) + eps) 140 | noise = estimated - target 141 | return -10 * torch.log10(eps + pow_p_norm(target) / pow_p_norm(noise) + eps) 142 | 143 | sisdr_loss = sisdr(e1, c1) 144 | avg_loss = torch.mean(sisdr_loss) 145 | 146 | return avg_loss 147 | 148 | def wsdr_loss(output, target_signal, inference_signal): 149 | """ 150 | : param output: B, 1, T 151 | : param target_signal: (batch, time samples) 152 | : param inference_signal: (batch, time_samples) 153 | : return: 154 | """ 155 | 156 | output = torch.squeeze(output, 1) 157 | 158 | y = target_signal 159 | z = inference_signal 160 | 161 | # target size: torch.Size([32, 15988B]) noise torch.Size([32, 159888]) output: torch.Size([32, 159800])# print ( "target size:", target_sig.size(),"noise ", noise.size(), 'output : ' , output .size( 162 | y_hat = output 163 | z_hat = y + z - y_hat # expected noise signal 164 | 165 | y_norm = torch.norm(y, dim=-1) 166 | z_norm = torch.norm(z, dim=-1) 167 | y_hat_norm = torch.norm(y_hat, dim=-1) 168 | z_hat_norm = torch.norm(z_hat, dim=-1) 169 | 170 | def loss_sdr(a, a_hat, a_norm, a_hat_norm): 171 | return dotproduct(a, a_hat) / (a_norm * a_hat_norm + EPS) 172 | 173 | alpha = y_norm.pow(2) / (y_norm.pow(2) + z_norm.pow(2) + EPS) 174 | loss_wSDR = -alpha * loss_sdr(y, y_hat, y_norm, y_hat_norm) - (1 - alpha) * loss_sdr(z, z_hat, z_norm, z_hat_norm) 175 | 176 | return loss_wSDR.mean() 177 | 178 | def pow_p_norm_np(signal): 179 | """Compute 2 Norm""" 180 | return np.square(np.linalg.norm(signal, ord=2, axis=-1)) 181 | 182 | def pow_norm_np(s1, s2): 183 | return np.sum(s1 * s2, axis=-1) 184 | 185 | def pow_p_norm(signal): 186 | """Compute 2 Norm""" 187 | return torch.pow(torch.norm(signal, p=2, dim=-1, keepdim=True), 2) 188 | 189 | def pow_norm(s1, s2): 190 | return torch.sum(s1 * s2, dim=-1, keepdim=True) 191 | 192 | def pit_sisdr_loss(e1, e2, c1, c2): 193 | # [1, T] 194 | def sisdr(estimated, original): 195 | # estimated = remove_dc(estimated) 196 | # original = remove_dc(original) 197 | target = pow_norm(estimated, original) * original / pow_p_norm(original) 198 | noise = estimated - target 199 | return 10 * torch.log10(pow_p_norm(target) / pow_p_norm(noise)) 200 | 201 | e1b = e1.squeeze() # [T] 202 | e2b = e2.squeeze() # [T] 203 | c1b = c1.squeeze() # [T] 204 | c2b = c2.squeeze() # [T] 205 | 206 | sdr1 = (sisdr(e1b, c1b) + sisdr(e2b, c2b)) * 0.5 207 | sdr2 = (sisdr(e2b, c1b) + sisdr(e1b, c2b)) * 0.5 208 | 209 | loss, idx = torch.max(torch.stack((sdr1, sdr2), dim=-1), dim=-1) 210 | avg_loss = torch.mean(loss) 211 | 212 | return avg_loss, idx 213 | 214 | def pit_sisdr_numpy(e1, e2, c1, c2): 215 | # [1, T] 216 | def sisdr(estimated, original): 217 | # estimated = remove_dc(estimated) 218 | # original = remove_dc(original) 219 | target = pow_norm_np(estimated, original) * original / pow_p_norm_np(original) 220 | noise = estimated - target 221 | return 10 * np.log10(pow_p_norm_np(target) / pow_p_norm_np(noise)) 222 | 223 | e1b = np.squeeze(e1) # [T] 224 | e2b = np.squeeze(e2) # [T] 225 | c1b = np.squeeze(c1) # [T] 226 | c2b = np.squeeze(c2) # [T] 227 | 228 | sdr1 = (sisdr(e1b, c1b) + sisdr(e2b, c2b)) * 0.5 229 | sdr2 = (sisdr(e2b, c1b) + sisdr(e1b, c2b)) * 0.5 230 | print(f'sdr for permutation 1 {sdr1} sdr for permutation 2 {sdr2}', flush=True) 231 | loss = np.max(np.stack((sdr1, sdr2), axis=-1), axis=-1) 232 | idx = np.argmax(np.stack((sdr1, sdr2), axis=-1), axis=-1) 233 | avg_loss = np.mean(loss) 234 | 235 | return avg_loss, idx 236 | 237 | def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False): 238 | if win_type == 'None' or win_type is None: 239 | window = np.ones(win_len) 240 | else: 241 | window = get_window(win_type, win_len, fftbins=True) # **0.5 242 | 243 | N = fft_len 244 | fourier_basis = np.fft.rfft(np.eye(N))[:win_len] 245 | real_kernel = np.real(fourier_basis) 246 | imag_kernel = np.imag(fourier_basis) 247 | kernel = np.concatenate([real_kernel, imag_kernel], 1).T 248 | 249 | if invers: 250 | kernel = np.linalg.pinv(kernel).T 251 | 252 | kernel = kernel * window 253 | kernel = kernel[:, None, :] 254 | return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32)) 255 | 256 | 257 | class ConvSTFT(nn.Module): 258 | def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True): 259 | super(ConvSTFT, self).__init__() 260 | 261 | if fft_len == None: 262 | self.fft_len = np.int(2 ** np.ceil(np.log2(win_len))) 263 | else: 264 | self.fft_len = fft_len 265 | 266 | kernel, _ = init_kernels(win_len, win_inc, self.fft_len, win_type) 267 | # self.weight = nn.Parameter(kernel, requires_grad=(not fix)) 268 | self.register_buffer('weight', kernel) 269 | self.feature_type = feature_type 270 | self.stride = win_inc 271 | self.win_len = win_len 272 | self.dim = self.fft_len 273 | 274 | def forward(self, inputs): 275 | if inputs.dim() == 2: 276 | inputs = torch.unsqueeze(inputs, 1) 277 | inputs = F.pad(inputs, [self.win_len - self.stride, self.win_len - self.stride]) 278 | outputs = F.conv1d(inputs, self.weight, stride=self.stride) 279 | 280 | if self.feature_type == 'complex': 281 | return outputs 282 | else: 283 | dim = self.dim // 2 + 1 284 | real = outputs[:, :dim, :] 285 | imag = outputs[:, dim:, :] 286 | mags = torch.sqrt(real ** 2 + imag ** 2) 287 | phase = torch.atan2(imag, real) 288 | return mags, phase 289 | 290 | 291 | class ConviSTFT(nn.Module): 292 | def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True): 293 | super(ConviSTFT, self).__init__() 294 | if fft_len == None: 295 | self.fft_len = np.int(2 ** np.ceil(np.log2(win_len))) 296 | else: 297 | self.fft_len = fft_len 298 | kernel, window = init_kernels(win_len, win_inc, self.fft_len, win_type, invers=True) 299 | # self.weight = nn.Parameter(kernel, requires_grad=(not fix)) 300 | self.register_buffer('weight', kernel) 301 | self.feature_type = feature_type 302 | self.win_type = win_type 303 | self.win_len = win_len 304 | self.stride = win_inc 305 | self.stride = win_inc 306 | self.dim = self.fft_len 307 | self.register_buffer('window', window) 308 | self.register_buffer('enframe', torch.eye(win_len)[:, None, :]) 309 | 310 | def forward(self, inputs, phase=None): 311 | """ 312 | inputs : [B, N+2, T] (complex spec) or [B, N//2+1, T] (mags) 313 | phase: [B, N//2+1, T] (if not none) 314 | """ 315 | 316 | if phase is not None: 317 | real = inputs * torch.cos(phase) 318 | imag = inputs * torch.sin(phase) 319 | inputs = torch.cat([real, imag], 1) 320 | outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride) 321 | 322 | # this is from torch-stft: https://github.com/pseeth/torch-stft 323 | t = self.window.repeat(1, 1, inputs.size(-1)) ** 2 324 | coff = F.conv_transpose1d(t, self.enframe, stride=self.stride) 325 | outputs = outputs / (coff + 1e-8) 326 | # outputs = torch.where(coff == 0, outputs, outputs/coff) 327 | outputs = outputs[..., self.win_len - self.stride:-(self.win_len - self.stride)] 328 | 329 | return outputs 330 | 331 | class Triangulation(nn.Module): 332 | def __init__(self): 333 | super(Triangulation, self).__init__() 334 | 335 | def forward(self, doas, mic_itval=28): 336 | """ 337 | doas : [B*F, T, n_avb_mics] 338 | xy: [B*F, T, 2] 339 | """ 340 | if doas.shape[-1] == 4: 341 | doas = torch.index_select(doas, -1, torch.tensor([0, 3], device=doas.device)) # [B*F, T, 2] 342 | 343 | # doas = torch.max(azi_s, dim=-1)[1] # [B, T, n_avb_mics] if input [B, T, n_avb_mics, 210] 344 | # if azi_s.shape[-1] == 4: 345 | # doas = torch.index_select(azi_s, -1, torch.tensor([0, 3])) # [B, T, 2] 346 | 347 | doa1 = doas[:, :, 0] 348 | doa2 = doas[:, :, 1] 349 | if (doa1 == doa2).any(): 350 | doa1 = doa1 + 1 351 | doa1 = doa1 / 180.0 * np.pi 352 | doa2 = doa2 / 180.0 * np.pi 353 | 354 | side = torch.clamp(torch.sin(doa2) * mic_itval / (torch.sin(doa1-doa2) + 1e-8), min=50, max=800) 355 | 356 | x = -side * torch.cos(doa1) 357 | y = side * torch.sin(doa1) 358 | xy = torch.stack((x, y), dim=2) 359 | # print(f'side {side} doa1 {doa1} doa2 {doa2} xy {xy}', flush=True) 360 | return xy 361 | 362 | 363 | class Tree(nn.Module): 364 | def __init__(self, fft_len=512,speaker_num=2,n_avb_mics=2): 365 | super(Tree, self).__init__() 366 | self.channels = 6 367 | self.dim = fft_len // 2 + 1 368 | self.win_len = fft_len 369 | self.win_inc = fft_len // 2 370 | self.fft_len = fft_len 371 | self.win_type = 'hamming' 372 | self.filter_size = 3 373 | self.stftConv = ConvSTFT(self.win_len, self.win_inc, self.fft_len, self.win_type, feature_type='complex') 374 | self.istftConv = ConviSTFT(self.win_len, self.win_inc, self.fft_len, self.win_type, feature_type='complex') 375 | self.P = 3 376 | self.R = 4 377 | self.X = 8 378 | self.causal = True 379 | self.norm_type = 'cLN' 380 | self.n_mics = 6 # len(mic_location) 381 | self.n_avb_mics = n_avb_mics 382 | self.speaker_num = speaker_num 383 | self.reduction_linear = nn.Linear(in_features = (10+1)*257,out_features=256) 384 | 385 | self.repeats = RNN_MASK() 386 | 387 | self.width_window_length = 2 388 | 389 | self.RELU = nn.ReLU() 390 | self.PRELU = nn.PReLU() 391 | self.Sigmoid = nn.Sigmoid() 392 | self.covariance_ln_ss = nn.LayerNorm([self.n_mics, self.n_mics]) 393 | self.covariance_ln_nn = nn.LayerNorm([self.n_mics, self.n_mics]) 394 | 395 | self.conv1_doa = nn.Sequential( 396 | nn.Conv2d(144, 210*self.n_avb_mics, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0)), 397 | nn.BatchNorm2d(210*self.n_avb_mics), nn.ReLU(inplace=True) 398 | ) 399 | self.conv_emb_doa = nn.Sequential( 400 | nn.Conv2d(210, 1, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0)), 401 | nn.BatchNorm2d(1), nn.ReLU(inplace=True) 402 | ) 403 | self.conv2_doa = nn.Sequential( 404 | nn.Conv2d(257, 1, kernel_size=(3, 5), stride=(1, 1), padding=(1, 2)), 405 | nn.BatchNorm2d(1), nn.ReLU(inplace=True) 406 | ) 407 | 408 | self.gru_doa = nn.GRU(210, hidden_size=210, num_layers=2, batch_first=True) 409 | 410 | ### 411 | # self.triangulation = nn.Linear(self.n_avb_mics * 210, 400) 412 | self.triangulation = Triangulation() 413 | # self.conv1_loc = nn.Sequential( 414 | # nn.Conv2d(210*self.n_avb_mics, 400, kernel_size=(3, 5), stride=(1, 1), padding=(1, 2)), 415 | # nn.BatchNorm2d(400), nn.ReLU(inplace=True) 416 | # ) 417 | # self.conv2_loc = nn.Sequential( 418 | # nn.Conv2d(257, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), 419 | # nn.BatchNorm2d(1), nn.ReLU(inplace=True) 420 | # ) 421 | ### 422 | 423 | # Branch 1 (gru_bss) 424 | self.linear_bss_1 = nn.Linear(self.n_mics * self.n_mics * 2 * 2 + self.n_avb_mics * 210 + 2, 300) 425 | # self.linear_bss_1 = nn.Linear(self.n_mics * self.n_mics * 2 * 2 + self.n_avb_mics * 210, 300) 426 | self.gru_bss_1 = nn.GRU(300, hidden_size=300, num_layers=2, batch_first=True) 427 | self.linear_w1 = nn.Linear(300, self.channels * 2) 428 | 429 | # Branch 2 (gru_bss) 430 | self.linear_bss_2 = nn.Linear(self.n_mics * self.n_mics * 2 * 2 + self.n_avb_mics * 210 + 2, 300) 431 | # self.linear_bss_2 = nn.Linear(self.n_mics * self.n_mics * 2 * 2 + self.n_avb_mics * 210, 300) 432 | self.gru_bss_2 = nn.GRU(300, hidden_size=300, num_layers=2, batch_first=True) 433 | self.linear_w2 = nn.Linear(300, self.channels * 2) 434 | 435 | def get_params(self, weight_decay=0.0): 436 | #add L2 penalty 437 | weights, biases = [], [] 438 | for name, param in self.named_parameters(): 439 | if 'bias' in name: 440 | biases += [param] 441 | else: 442 | weights += [param] 443 | params = [{ 444 | 'params': weights, 445 | 'weight_decay': weight_decay, 446 | }, { 447 | 'params': biases, 448 | 'weight_decay': 0.0, 449 | }] 450 | return params 451 | 452 | def forward(self, inputs): 453 | """ 454 | Returns 455 | ------- 456 | azis_1 / azis_2: [B, T, n_mics=self.n_avb_mics, 210] 457 | es_sig: [B, 1, T] 458 | """ 459 | self.gru_doa.flatten_parameters() 460 | self.gru_bss_1.flatten_parameters() 461 | self.gru_bss_2.flatten_parameters() 462 | inputs = torch.unsqueeze(inputs, 2) # bs * channels * 1 * time_samples 463 | batch, channels, _, time_samples = inputs.size() 464 | inputs = inputs.view(batch * channels, 1, time_samples) # bs * channels, l, time_samples 465 | 466 | #STFT 467 | #que stftConv返回的维度是2 * 257吗 468 | spectrograms = self.stftConv(inputs) 469 | _, double_freq_bins, time_bins = spectrograms.size() # batch * channels, 2 * 257,time bins 470 | freq_bins = double_freq_bins // 2 471 | spectrograms = spectrograms.reshape(batch, channels, double_freq_bins, time_bins) 472 | 473 | '''compute ipd , lps and width feature,concat''' 474 | ipd = get_ipd(spectrograms, self.dim) # batch, M microphone pair num, freq_bins, time_bin$ 475 | lps = get_spec_mag(spectrograms, self.dim) # batch, 1, freq_bins, time_bins 476 | 477 | audio_blocks = torch.cat((ipd, lps), dim=1) #(batch, n_mics, freq_bins:257, time_bins 478 | audio_blocks = audio_blocks.view(batch, (10+1) * 257, time_bins) 479 | audio_blocks = audio_blocks.permute(0,2,1) # [B, time_bins, 6*freq_bins] 480 | 481 | '''pass through front-GRU ''' 482 | audio_reduction = self.reduction_linear(audio_blocks) # batch, time_bins, 256 channels 483 | masks = self.repeats(audio_reduction) # batch, time_bins, 256 channels 484 | 485 | convariance_set_doa_list = [] 486 | convariance_set_bss_list = [] 487 | 488 | """audio embeddings经过blstm得到 crf,crf与spectrograms得到目标信号的协方差矩阵""" 489 | 490 | for mask_idx in range(self.speaker_num): 491 | comlex_filter_ss = masks[mask_idx * 2].permute(0,2,1) 492 | comlex_filter_nn = masks[mask_idx * 2 + 1].permute(0,2,1) 493 | 494 | comlex_filter_ss = comlex_filter_ss.view(batch, freq_bins, 2 * self.filter_size * self.filter_size, time_bins) 495 | comlex_filter_ss = comlex_filter_ss.view(batch, freq_bins, 2, self.filter_size * self.filter_size, time_bins) 496 | comlex_filter_ss = comlex_filter_ss.view(batch, freq_bins, 2, self.filter_size, self.filter_size, time_bins) 497 | comlex_filter_ss = comlex_filter_ss.permute(0, 2, 5, 1, 3, 4) 498 | covariance_ss = get_covariance_v2(spectrograms, comlex_filter_ss, self.filter_size) 499 | covariance_ss = self.covariance_ln_ss(covariance_ss) 500 | covariance_ss = covariance_ss.unsqueeze(dim=4) 501 | 502 | comlex_filter_nn = comlex_filter_nn.view(batch, freq_bins, 2 * self.filter_size * self.filter_size, time_bins) 503 | comlex_filter_nn = comlex_filter_nn.view(batch, freq_bins, 2, self.filter_size * self.filter_size, time_bins) 504 | comlex_filter_nn = comlex_filter_nn.view(batch, freq_bins, 2, self.filter_size, self.filter_size, time_bins) 505 | comlex_filter_nn = comlex_filter_nn.permute(0, 2, 5, 1, 3, 4) 506 | covariance_nn = get_covariance_v2(spectrograms, comlex_filter_nn, self.filter_size) 507 | covariance_nn = self.covariance_ln_nn(covariance_nn) 508 | covariance_nn = covariance_nn.unsqueeze(dim=4) 509 | 510 | # TODO 511 | covariance_set = torch.cat((covariance_ss, covariance_nn), dim=4) # B,2,T,F,2,6,6 512 | 513 | covariance_set = covariance_set.permute(2, 0, 3, 1, 4, 5, 6) 514 | # (time bins, batch, freq bins, 2, 2, channels, channels) 515 | covariance_set = covariance_set.reshape(time_bins, batch, freq_bins, 2, 2, channels *channels) 516 | covariance_set = covariance_set.reshape(time_bins, batch, freq_bins, 2, 2* channels *channels) 517 | covariance_set = covariance_set.reshape(time_bins, batch, freq_bins, 2* 2* channels *channels) 518 | 519 | covariance_set_doa = covariance_set 520 | covariance_set_doa = covariance_set_doa.permute(1,3,0,2) 521 | convariance_set_doa_list.append(covariance_set_doa) # (B, 144, T, F) 522 | 523 | covariance_set = covariance_set.reshape(time_bins, batch * freq_bins, 2* 2* channels *channels) 524 | covariance_set = covariance_set.permute(1,0,2) # [B*F, T, 144] 525 | 526 | convariance_set_bss_list.append(covariance_set) # [B*F, T, 144] 527 | 528 | '''Branch_1''' 529 | # DoA_1 530 | # as1_freq = self.conv1_doa(convariance_set_doa_list[0]) # [B, 210*n_avb_mics, T, F] 531 | # as1_loc_emb = as1_freq.permute(0, 3, 2, 1) # [B, F, T, 210*n_avb_mics] 532 | # as1_freq = as1_freq.reshape(batch, 210, self.n_avb_mics, time_bins, freq_bins) # [B, 210, n_avb_mics, T, F] 533 | # as1_freq = as1_freq.reshape(batch, 210, self.n_avb_mics*time_bins, freq_bins) # [B, 210, T*n_avb_mics, F] 534 | # as1_freq_emb = as1_freq # [B, 210, T*n_avb_mics, F] 535 | # as1_freq = as1_freq.reshape(batch, 210, time_bins, self.n_avb_mics, freq_bins) 536 | # as1_freq = as1_freq.reshape(batch*self.n_avb_mics, 210, time_bins, freq_bins) 537 | # as1_freq = as1_freq.permute(0, 3, 2, 1) # [B*n_avb_mics, F, T, 210] 538 | # as1_freq_emb = self.conv_emb_doa(as1_freq_emb) # [B, 1, T*n_avb_mics, F] 539 | # as1_freq_emb = as1_freq_emb.squeeze(dim=1) # [B, T*n_avb_mics, F] 540 | # as1_freq_emb = as1_freq_emb.reshape(batch, time_bins, freq_bins, self.n_avb_mics) # [B, T, F, n_avb_mics] 541 | # as1_freq_emb = as1_freq_emb.reshape(batch * freq_bins, time_bins, self.n_avb_mics) # [B*F, T, n_avb_mics] 542 | 543 | ### 544 | as1_freq = self.conv1_doa(convariance_set_doa_list[0]) # [B, 210*n_avb_mics, T, F] 545 | as1_freq = as1_freq.permute(0, 3, 2, 1) # [B, F, T, 210*n_avb_mics] 546 | as1_freq_emb = as1_freq.reshape(batch * freq_bins, time_bins, 210*self.n_avb_mics) # [B*F, T, 210*n_avb_mics] 547 | as1_freq = as1_freq.reshape(batch, freq_bins, time_bins, 210, self.n_avb_mics) 548 | as1_freq = as1_freq.reshape(batch*self.n_avb_mics, freq_bins, time_bins, 210) # [B*n_avb_mics, F, T, 210] 549 | 550 | as_1 = self.conv2_doa(as1_freq) # (B*n_avb_mics, 1, T, 210) 551 | as_1 = as_1.squeeze(dim=1) # [B*n_avb_mics, T, 210] 552 | azis_1, _ = self.gru_doa(as_1) # [B*n_avb_mics, T, 210] 553 | azis_1 = azis_1.reshape(batch, self.n_avb_mics, time_bins, 210) # [B, n_avb_mics, T, 210] 554 | azis_1 = azis_1.permute(0, 2, 1, 3) # [B, T, n_mics=n_avb_mics, 210] 555 | doas_1 = torch.max(azis_1, dim=3)[1] 556 | xy1 = self.triangulation(doas_1) # [B, T, 2] 557 | xy1_emb = torch.repeat_interleave(xy1.unsqueeze(dim=1),repeats=257,dim=1) # [B, F, T, 2] 558 | xy1_emb = xy1_emb.reshape(batch*freq_bins, time_bins, 2) # [B*F, T, 2] 559 | 560 | # BSS_1 561 | convariance_set_with_sps_1 = torch.cat((convariance_set_bss_list[0], as1_freq_emb, xy1_emb), dim=2) 562 | # convariance_set_with_sps_1 = torch.cat((convariance_set_bss_list[0], as1_freq_emb), dim=2) 563 | covariance_set_bss_1 = self.linear_bss_1(convariance_set_with_sps_1) # [B*F, T, 300] 564 | gru_output_w1, _ = self.gru_bss_1(covariance_set_bss_1) # [B*F, T, 300] 565 | gru_output_w1 = gru_output_w1.reshape(batch, freq_bins, time_bins, 300) 566 | gru_output_w1 = gru_output_w1.permute(2, 0, 1, 3) 567 | w1 = self.linear_w1(gru_output_w1) # (time_bins, batch, freq_bins, channels * 2) 568 | w1 = w1.reshape(time_bins, batch, freq_bins, channels, 2) # (time_bins, batch, freq_bins, channels, 2) 569 | beamformer_1 = w1.permute(1, 0, 4, 2, 3) # (batch, time_bins, 2, freq_bins, channels) 570 | beamformer_1 = beamformer_1.unsqueeze(dim=5) # (batch, time_bins, 2, freq_bins, channels, 1) 571 | 572 | '''Branch_2''' 573 | # DoA_2 574 | # as2_freq = self.conv1_doa(convariance_set_doa_list[1]) # [B, 210*n_avb_mics, T, F] 575 | # as2_freq = as2_freq.reshape(batch, 210, self.n_avb_mics, time_bins, freq_bins) 576 | # as2_freq = as2_freq.reshape(batch, 210, self.n_avb_mics*time_bins, freq_bins) # [B, 210, T*n_avb_mics, F] 577 | # as2_freq_emb = as2_freq # [B, 210, T*n_avb_mics, F] 578 | # as2_freq = as2_freq.reshape(batch, 210, time_bins, self.n_avb_mics, freq_bins) 579 | # as2_freq = as2_freq.reshape(batch*self.n_avb_mics, 210, time_bins, freq_bins) 580 | # as2_freq = as2_freq.permute(0, 3, 2, 1) # [B*n_avb_mics, F, T, 210] 581 | # as2_freq_emb = self.conv_emb_doa(as2_freq_emb) # [B, 1, T*n_avb_mics, F] 582 | # as2_freq_emb = as2_freq_emb.squeeze(dim=1) # [B, T*n_avb_mics, F] 583 | # as2_freq_emb = as2_freq_emb.reshape(batch, time_bins, freq_bins, self.n_avb_mics) # [B, T, F, n_avb_mics] 584 | # as2_freq_emb = as2_freq_emb.reshape(batch * freq_bins, time_bins, self.n_avb_mics) # [B*F, T, n_avb_mics] 585 | 586 | ### 587 | as2_freq = self.conv1_doa(convariance_set_doa_list[1]) # [B, 210*n_avb_mics, T, F] 588 | as2_freq = as2_freq.permute(0, 3, 2, 1) # [B, F, T, 210*n_avb_mics] 589 | as2_freq_emb = as2_freq.reshape(batch * freq_bins, time_bins, 210*self.n_avb_mics) # [B*F, T, 210*n_avb_mics] 590 | as2_freq = as2_freq.reshape(batch, freq_bins, time_bins, 210, self.n_avb_mics) 591 | as2_freq = as2_freq.reshape(batch*self.n_avb_mics, freq_bins, time_bins, 210) # [B*n_avb_mics, F, T, 210] 592 | 593 | as_2 = self.conv2_doa(as2_freq) # (B*n_avb_mics, 1, T, 210) 594 | as_2 = as_2.squeeze(dim=1) # [B*n_avb_mics, T, 210] 595 | azis_2, _ = self.gru_doa(as_2) # [B*n_avb_mics, T, 210] 596 | azis_2 = azis_2.reshape(batch, self.n_avb_mics, time_bins, 210) # [B, n_avb_mics, T, 210] 597 | azis_2 = azis_2.permute(0, 2, 1, 3) # [B, T, n_mics=n_avb_mics, 210] 598 | doas_2 = torch.max(azis_2, dim=3)[1] 599 | xy2 = self.triangulation(doas_2) # [B, T, 2] 600 | xy2_emb = torch.repeat_interleave(xy2.unsqueeze(dim=1),repeats=257,dim=1) # [B, F, T, 2] 601 | xy2_emb = xy2_emb.reshape(batch*freq_bins, time_bins, 2) # [B*F, T, 2] 602 | 603 | # BSS_2 604 | convariance_set_with_sps_2 = torch.cat((convariance_set_bss_list[1], as2_freq_emb, xy2_emb), dim=2) 605 | # convariance_set_with_sps_2 = torch.cat((convariance_set_bss_list[1], as2_freq_emb), dim=2) 606 | covariance_set_bss_2 = self.linear_bss_2(convariance_set_with_sps_2) 607 | gru_output_w2, _ = self.gru_bss_2(covariance_set_bss_2) 608 | gru_output_w2 = gru_output_w2.reshape(batch, freq_bins, time_bins, 300) 609 | gru_output_w2 = gru_output_w2.permute(2, 0, 1, 3) 610 | w2 = self.linear_w2(gru_output_w2) # (time_bins, batch, freq_bins, channels * 2) 611 | w2 = w2.reshape(time_bins, batch, freq_bins, channels, 2) # (time_bins, batch, freq_bins, channels, 2) 612 | beamformer_2 = w2.permute(1, 0, 4, 2, 3) # (batch, time_bins, 2, freq_bins, channels) 613 | beamformer_2 = beamformer_2.unsqueeze(dim=5) # (batch, time_bins, 2, freq_bins,channels, 1) 614 | 615 | '''Beamformer Separation''' 616 | spec = torch.unsqueeze(spectrograms, 4) # (batch, channels, 2*freq_bins,time_bins, 1) 617 | # (batch, channels, 2, freq_bins, time bins, 1) 618 | spec = spec.reshape(batch, channels, 2, freq_bins, time_bins, 1) 619 | spec = spec.permute(0, 4, 2, 3, 1, 5) # (batch, time bins, 2, freq_bins, channels, 1) 620 | spec_real = spec[:, :, 0, :, :, :]# (batch, time bins, freq bins, channels, 1) 621 | spec_imag = spec[:, :, 1, :, :, :] # (batch,time bins, freq bins,channels, 1) 622 | 623 | beamformer_list = [] 624 | extract_signal_list = [] 625 | beamformer_list.append(beamformer_1) 626 | beamformer_list.append(beamformer_2) 627 | 628 | for beamformer in beamformer_list: 629 | beamformer_real = beamformer[:, :, 0, ...] # (batch,time bins, freq_bins,channels, 1) 630 | beamformer_imag = beamformer[:, :, 1, ...] # (batch, time bins, freq bins,channels, 1) 631 | beamformer_real = beamformer_real.permute(0, 1, 2, 4, 3) # (batch, time_ bins, freq_bins,1, channels) 632 | beamformer_imag = beamformer_imag.permute(0, 1, 2, 4, 3) #(batch, time_bins, freqg_bins, 1, channels) 633 | 634 | enhancement_real = torch.matmul(beamformer_real, spec_real) - torch.matmul(beamformer_imag, spec_imag) 635 | enhancement_imag = torch.matmul(beamformer_real, spec_imag) + torch.matmul(beamformer_imag, spec_real)#( batch, time bins, freq bins, 1, 1) 636 | 637 | enhancement_real = enhancement_real.squeeze(dim=-1) # (batch, time_bins, freq_bins, 1) 638 | enhancement_imag = enhancement_imag.squeeze(dim=-1) # (batch, time_bins,freq_bins, 1) 639 | 640 | enhancement_real = enhancement_real.permute(0, 1, 3, 2) 641 | enhancement_imag = enhancement_imag.permute(0, 1, 3, 2) 642 | 643 | enhancement = torch.cat((enhancement_real, enhancement_imag), dim=2) # batch, time_bins, 2, freq_bins 644 | enhancement = enhancement. reshape(batch, time_bins, 2 * freq_bins) # batch, time bins, 2 * freq bins 645 | enhancement = enhancement.permute(0, 2, 1) # batch, 2 * freq bins, time_bins 646 | '''do iSTFT''' 647 | extract_signal = self.istftConv(enhancement) # batch, 1, time_samples 648 | extract_signal_list.append(extract_signal) 649 | 650 | extract_signal_1 = extract_signal_list[0] # [B, 1, T] 651 | extract_signal_2 = extract_signal_list[1] 652 | 653 | return azis_1, azis_2, extract_signal_1, extract_signal_2 654 | # return azis_1, azis_2, xy1, xy2, extract_signal_1, extract_signal_2 655 | 656 | if __name__ == '__main__': 657 | # e1 = np.random.randn(4, 32000) 658 | # e2 = np.random.randn(4, 32000) 659 | # c1 = np.random.randn(4, 32000) 660 | # c2 = np.random.randn(4, 32000) 661 | # print(f'e1.shape {e1.shape} e2.shape {e2.shape}') 662 | # print(f'c1.shape {c1.shape} c2.shape {c2.shape}') 663 | # print(pit_sisdr_numpy(e1, e2, c1, c2)) 664 | inputs = torch.randn((4, 6, 64000)) 665 | model = Tree() 666 | model.to(torch.device('cpu')) 667 | sps_1, sps_2, es_sig_1, es_sig_2 = model(inputs) 668 | print(f'sps_1.shape {sps_1.shape} sps_2.shape {sps_2.shape}', flush=True) 669 | print(f'es_sig_1.shape {es_sig_1.shape} es_sig_2.shape {es_sig_2.shape}', flush=True) 670 | 671 | 672 | 673 | -------------------------------------------------------------------------------- /preparation/1_sb_vad.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import sys 3 | sys.path.append("/Work21/2021/fuyanjie/libs/speechbrain/speechbrain/pretrained") 4 | from interfaces import VAD 5 | import os 6 | import glob 7 | 8 | """ 9 | RUN this script for trainset, devset and testset, respectively 10 | """ 11 | 12 | device = torch.device('cuda') 13 | # device = torch.device('cpu') 14 | 15 | VAD = VAD.from_hparams(source="speechbrain/vad-crdnn-libriparty", savedir="pretrained_models/vad-crdnn-libriparty") 16 | VAD.to(device) 17 | 18 | # wav_path_pattern = '/CDShare3/LibriSpeech/train-clean-100/*/*/*.flac' 19 | wav_path_pattern = '/CDShare3/LibriSpeech/dev-clean/*/*/*.flac' 20 | files = glob.glob(wav_path_pattern) 21 | 22 | # output_folder = '/Work21/2021/fuyanjie/pycode/LaBNet/data/metadata/vad/train-clean-100/' 23 | output_folder = '/Work21/2021/fuyanjie/pycode/LaBNet/data/metadata/vad/dev-clean/' 24 | 25 | for audio_file in files: 26 | try: 27 | print(f'{audio_file}', flush=True) 28 | boundaries = VAD.get_speech_segments(audio_file) 29 | 30 | file_name = str(audio_file).split('/')[-1] 31 | spkid = file_name.split('-')[0] 32 | 33 | save_folder = os.path.join(output_folder, spkid) 34 | if not os.path.exists(save_folder): 35 | os.makedirs(save_folder) 36 | save_path = os.path.join(save_folder, file_name.replace('.flac', '.txt')) 37 | print('save_path ', save_path, flush=True) 38 | # Print the output 39 | VAD.save_boundaries(boundaries, save_path=save_path) 40 | except Exception as e: 41 | print(f'Exception: {e}') 42 | continue -------------------------------------------------------------------------------- /preparation/2_clip_segments.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | import soundfile as sf 4 | 5 | """ 6 | RUN this script for trainset, devset and testset, respectively 7 | """ 8 | 9 | SR = 16000 10 | SEG_DURATION = 4 # duration in seconds 11 | SEG_LEN = SEG_DURATION * SR 12 | 13 | def clip_train_dev_test_segs(dataset_split): 14 | librispeech_path = f"/CDShare3/LibriSpeech/{dataset_split}" 15 | vad_results_path = f"/Work21/2021/fuyanjie/pycode/LaBNet/data/metadata/vad/{dataset_split}" 16 | output_libri_segments_dir = f"/CDShare3/LibriSpeechSegments/{dataset_split}" 17 | 18 | vad_res_spks = os.listdir(vad_results_path) 19 | for vad_res_spk in vad_res_spks: 20 | spkid = vad_res_spk 21 | vad_res_spk = os.path.join(vad_results_path, vad_res_spk) 22 | vad_res_utts = os.listdir(vad_res_spk) 23 | for vad_res_utt in vad_res_utts: 24 | uttid = vad_res_utt[:-4] 25 | chapid = uttid.split('-')[1] 26 | vad_res_utt = os.path.join(vad_res_spk, vad_res_utt) 27 | lines = open(vad_res_utt, 'r').readlines() 28 | start_idx = None 29 | end_idx = None 30 | if len(lines) == 1: 31 | seg_data = lines[0].split(' ') 32 | if float(seg_data[4]) < SEG_DURATION or seg_data[-1].startswith('N'): 33 | continue 34 | print(f'seg_data {seg_data}', flush=True) 35 | start_idx = 0 36 | end_idx = float(seg_data[4]) * SR 37 | else: 38 | for row_idx, line in enumerate(lines): 39 | seg_data = line.split(' ') 40 | print(f'seg_data {seg_data}', flush=True) 41 | if seg_data[-1].startswith('S'): 42 | duration = float(seg_data[4]) - float(seg_data[2]) 43 | if duration > 4: 44 | start_idx = float(seg_data[2]) * SR 45 | end_idx = float(seg_data[4]) * SR 46 | if not start_idx or not end_idx: 47 | continue 48 | 49 | utt_path = os.path.join(librispeech_path, spkid, chapid, uttid + '.flac') 50 | wave_data, sr = sf.read(utt_path) 51 | end_idx = int(start_idx) + SEG_LEN 52 | seg_data = wave_data[int(start_idx):end_idx] 53 | dst_parent_dir = os.path.join(output_libri_segments_dir, spkid, chapid) 54 | os.makedirs(dst_parent_dir, exist_ok=True) 55 | dst_path = os.path.join(dst_parent_dir, uttid + '.flac') 56 | print(f'dst_path {dst_path}', flush=True) 57 | sf.write(dst_path, seg_data, 16000) 58 | 59 | def clip_wer_test_segs(dataset_split): 60 | librispeech_path = f"/CDShare3/LibriSpeech/{dataset_split}" 61 | vad_results_path = f"/Work21/2021/fuyanjie/pycode/LaBNet/data/metadata/vad/{dataset_split}" 62 | output_libri_segments_dir = f"/CDShare3/LibriSpeechSegments/{dataset_split}_wer" 63 | 64 | vad_res_spks = os.listdir(vad_results_path) 65 | vad_res_spks.sort() 66 | index = 0 67 | for vad_res_spk in vad_res_spks: 68 | spkid = vad_res_spk 69 | vad_res_spk = os.path.join(vad_results_path, vad_res_spk) 70 | vad_res_utts = os.listdir(vad_res_spk) 71 | vad_res_utts.sort() 72 | for vad_res_utt in vad_res_utts: 73 | try: 74 | index += 1 75 | random_state = np.random.RandomState(index) 76 | 77 | uttid = vad_res_utt[:-4] 78 | chapid = uttid.split('-')[1] 79 | vad_res_utt = os.path.join(vad_res_spk, vad_res_utt) 80 | lines = open(vad_res_utt, 'r').readlines() 81 | print(f'vad_res_utt {vad_res_utt}', flush=True) 82 | 83 | seg_data = lines[-1].split(' ') 84 | if float(seg_data[4]) > SEG_DURATION: 85 | continue 86 | print(f'seg_data {seg_data}', flush=True) 87 | 88 | utt_path = os.path.join(librispeech_path, spkid, chapid, uttid + '.flac') 89 | wave_data, sr = sf.read(utt_path) 90 | # print(f'{wave_data.shape} {wave_data.shape[-1]}') 91 | if wave_data.shape[-1] > SEG_LEN or wave_data.shape[-1] < SR * 3.5: 92 | continue 93 | # randomly padding to 4 secs long segment 94 | wave_padding_data = np.zeros(SEG_LEN) 95 | 96 | start_idx = random_state.randint(0, SEG_LEN - wave_data.shape[-1]) 97 | end_idx = start_idx + len(wave_data) 98 | wave_padding_data[start_idx:end_idx] = wave_data 99 | seg_data = wave_padding_data 100 | print(f'start_idx {start_idx} end_idx {end_idx}', flush=True) 101 | 102 | dst_parent_dir = os.path.join(output_libri_segments_dir, spkid, chapid) 103 | os.makedirs(dst_parent_dir, exist_ok=True) 104 | dst_path = os.path.join(dst_parent_dir, uttid + '.flac') 105 | print(f'dst_path {dst_path}', flush=True) 106 | sf.write(dst_path, seg_data, 16000) 107 | except Exception as e: 108 | print(f'Exception: {e}') 109 | continue 110 | 111 | if __name__ == '__main__': 112 | # dataset_split = 'train-clean-100' 113 | # clip_train_dev_test_segs(dataset_split) 114 | # dataset_split = 'dev-clean' 115 | # clip_train_dev_test_segs(dataset_split) 116 | # dataset_split = 'test-clean' 117 | # clip_train_dev_test_segs(dataset_split) 118 | dataset_split = 'test-clean' 119 | clip_wer_test_segs(dataset_split) 120 | -------------------------------------------------------------------------------- /preparation/3_generate_list.py: -------------------------------------------------------------------------------- 1 | import librosa 2 | import os 3 | import math 4 | import soundfile as sf 5 | 6 | def generate_flac_list(libri_segments_dir, output_list_path): 7 | spkids = os.listdir(libri_segments_dir) 8 | count = 0 9 | with open(output_list_path, 'w', encoding='utf-8') as output_f: 10 | for spkid in spkids: 11 | spk_dir = os.path.join(libri_segments_dir, spkid) 12 | chapids = os.listdir(spk_dir) 13 | for chapid in chapids: 14 | chap_dir = os.path.join(spk_dir, chapid) 15 | wav_names = os.listdir(chap_dir) 16 | for wav_name in wav_names: 17 | wav_path = os.path.join(chap_dir, wav_name) 18 | print(f'wav_path {wav_path}') 19 | output_f.write(wav_path + '\n') 20 | count += 1 21 | print('Finish count:{} | {}'.format(count, wav_path)) 22 | 23 | def generate_spk_list(libri_segments_dir, output_list_path): 24 | spkids = os.listdir(libri_segments_dir) 25 | spkids.sort() 26 | with open(output_list_path, 'w', encoding='utf-8') as output_f: 27 | for spkid in spkids: 28 | output_f.write(spkid + '\n') 29 | 30 | def summarize_transcription(librispeech_path, libri_segments_dir, output_txt_path): 31 | spkids = os.listdir(libri_segments_dir) 32 | count = 0 33 | with open(output_txt_path, 'w', encoding='utf-8') as output_f: 34 | for spkid in spkids: 35 | spk_dir = os.path.join(libri_segments_dir, spkid) 36 | chapids = os.listdir(spk_dir) 37 | for chapid in chapids: 38 | chap_dir = os.path.join(spk_dir, chapid) 39 | wav_names = os.listdir(chap_dir) 40 | uttids = [] 41 | for wav_name in wav_names: 42 | uttid = wav_name[:-5] 43 | print(f'uttid {uttid}') 44 | uttids.append(uttid) 45 | src_txt_path = os.path.join(librispeech_path, spkid, chapid, f'{spkid}-{chapid}.trans.txt') 46 | src_txt = open(src_txt_path, 'r').readlines() 47 | for line in src_txt: 48 | line = line.strip() 49 | uttid, txt = line.split(' ', 1) 50 | print(f'uttid: {uttid} txt: {txt}') 51 | if uttid in uttids: 52 | output_f.write(uttid + ' ' + txt + '\n') 53 | count += 1 54 | print('Finish count:{} | {}'.format(count, uttid)) 55 | 56 | 57 | if __name__ == '__main__': 58 | # dataset_split = 'test-clean' 59 | dataset_split = 'test-clean_wer' 60 | libri_segments_dir = f'/CDShare3/LibriSpeechSegments/{dataset_split}' 61 | output_flac_list_path = f'/Work21/2021/fuyanjie/pycode/LaBNet/data/libri_segments_list/{dataset_split}.lst' 62 | output_spk_list_path = f'/Work21/2021/fuyanjie/pycode/LaBNet/data/libri_segments_list/{dataset_split}_spk.lst' 63 | generate_flac_list(libri_segments_dir, output_flac_list_path) 64 | generate_spk_list(libri_segments_dir, output_spk_list_path) 65 | 66 | librispeech_path = f"/CDShare3/LibriSpeech/test-clean" 67 | libri_segments_dir = '/CDShare3/LibriSpeechSegments/test-clean_wer' 68 | output_txt_path = '/CDShare3/LibriSpeechSegments/test-clean_wer/test-clean_wer.txt' 69 | summarize_transcription(librispeech_path, libri_segments_dir, output_txt_path) -------------------------------------------------------------------------------- /preparation/libri_sim_code/4_gen_simulated_room.py: -------------------------------------------------------------------------------- 1 | import math 2 | import multiprocessing as mp 3 | import os 4 | import random 5 | import re 6 | import shutil 7 | import time 8 | from concurrent.futures.process import ProcessPoolExecutor 9 | from functools import partial 10 | from joblib import Parallel, delayed 11 | import sys 12 | import wave 13 | import glob 14 | sys.path.append("/Work21/2021/fuyanjie/pycode/LaBNet/libri_sim_code") 15 | 16 | import numpy as np 17 | import soundfile as sf 18 | 19 | from gen_room_para import gen_room_para, gen_mulchannel_data_random, gen_mulchannel_data_angle 20 | 21 | MAX_WORKERS = 10 22 | SEED = 42 23 | 24 | def get_first_level_folder(dir): 25 | folder_list = [] 26 | for entry in os.scandir(dir): 27 | if entry.is_dir(): 28 | folder_list.append(entry.path) 29 | 30 | return folder_list 31 | 32 | 33 | def generate_wav_list_from_lst_file(lst_file): 34 | with open(lst_file, "r", encoding='utf-8-sig') as f: 35 | file_list = f.readlines() 36 | 37 | return file_list 38 | 39 | 40 | def save_audio_separately(audio, path, fs): 41 | channels, length = audio.shape 42 | 43 | for channel in range(channels): 44 | suffix = '_multichannel_' + str(channel) + '.wav' 45 | 46 | out_data = np.reshape(audio[channel, :], [length, 1]) 47 | 48 | out_data = out_data.astype(np.int16) 49 | 50 | with wave.open(path+suffix, 'wb') as f: 51 | f.setframerate(fs) 52 | f.setsampwidth(2) 53 | f.setnchannels(1) 54 | f.writeframes(out_data.tostring()) 55 | 56 | 57 | def __sim_stationary_noise(folder, max_gen_num, wav_list, fs, speech_length): 58 | room_para_path = os.path.join(folder, 'room_para.npy') 59 | room_para = np.load(room_para_path, allow_pickle=True).item() 60 | 61 | # used_wav_num = random.randint(5, 10) 62 | used_wav_num = 1 63 | wav_samples = random.sample(wav_list, used_wav_num) 64 | print(f'num of wav_samples {len(wav_samples)}') 65 | 66 | # judge if multi-channel stationary noise wav files exist 67 | # file_list = os.listdir(os.path.join(folder, 'stationary_noise')) 68 | st_noise_dir = os.path.join(folder, 'stationary_noise') 69 | if os.path.exists(st_noise_dir) and len(os.listdir(st_noise_dir)) > 0: 70 | print(f'{st_noise_dir} is not empty!') 71 | return 72 | 73 | for num in range(max_gen_num): 74 | # 生成多个多通道平稳噪声数据 75 | mulchannel_audio_data_list = [] 76 | for wav_file in wav_samples: 77 | multichannel_audio_data, _, angle_degree = gen_mulchannel_data_random(wav_file.strip(), 78 | room_para, 79 | folder, 80 | audio_type=0, 81 | fs=fs, 82 | segment_length=speech_length) 83 | multichannel_audio_data = multichannel_audio_data[:, 0:fs * speech_length] 84 | mulchannel_audio_data_list.append(multichannel_audio_data) 85 | 86 | # 对生成数据幅度进行一下调整,再进行叠加 87 | out_mulchannel_audio_data = np.zeros_like(mulchannel_audio_data_list[0], dtype=np.int16) 88 | for data in mulchannel_audio_data_list: 89 | out_mulchannel_audio_data += data 90 | 91 | # 将生成好的数据进行保存 92 | mic_num, _ = out_mulchannel_audio_data.shape 93 | save_folder = os.path.join(folder, 'stationary_noise') 94 | output_file_path = os.path.join(save_folder, 'stationary_noise_{}'.format(num)) 95 | save_audio_separately(out_mulchannel_audio_data, output_file_path, fs=fs) 96 | 97 | 98 | def sim_stationary_noise(base_dir, stationary_noise_lst_file, sim_room_num, max_stationary_noise_num, fs, room_transpose_prob, speech_length): 99 | ''' 100 | 利用多个平稳噪声模拟真实环境下的多通道平稳噪声,每个房间就仿真一条数据,主要目的是为了更好模拟不同环境下的平稳噪声 101 | :param base_dir: 根目录,用于保存不同房间的数据 102 | :param stationary_noise_lst_file: 平稳噪声列表文件 103 | :param sim_room_num: 模拟不同房间的数目 104 | :param max_stationary_noise_num: 最多使用平稳噪声的数目 105 | :param fs: 106 | :return: 107 | ''' 108 | for i in range(sim_room_num): 109 | _ = gen_room_para(base_dir, room_transpose_prob=room_transpose_prob) 110 | 111 | room_folders = get_first_level_folder(base_dir) 112 | wav_list = list(generate_wav_list_from_lst_file(stationary_noise_lst_file)) 113 | 114 | Parallel(n_jobs=MAX_WORKERS)(delayed(__sim_stationary_noise)(room_folder, max_stationary_noise_num, wav_list, fs, speech_length) for room_folder in room_folders) 115 | # with ProcessPoolExecutor(MAX_WORKERS) as ex: 116 | # func = partial(__sim_stationary_noise, max_gen_num=max_stationary_noise_num, wav_list=wav_list, 117 | # fs=fs, speech_length=speech_length) 118 | # ex.map(func, room_folders) 119 | 120 | 121 | def __sim_speech(seed_idx, folder, libri_segments_dir, fs, cover_angle_range, multi_list, segment_length, speaker_list, angular_spacing): 122 | random_state = np.random.RandomState(seed_idx * SEED) 123 | 124 | room_para_path = os.path.join(folder, 'room_para.npy') 125 | room_para = np.load(room_para_path, allow_pickle=True).item() 126 | 127 | # if room_para['room_dim'][1] < 5: 128 | # cover_angle_range = [20, 160] 129 | # elif room_para['room_dim'][1] >= 5 and room_para['room_dim'][1] < 7: 130 | # cover_angle_range = [15, 165] 131 | # elif room_para['room_dim'][1] >= 7: 132 | # cover_angle_range = [10, 170] 133 | # 声明多通道人声数据保存路径 134 | mulchannel_speech_folder = os.path.join(folder, 'speech') 135 | 136 | cover_angle_num = (cover_angle_range[1] - cover_angle_range[0]) // angular_spacing 137 | 138 | speaker_folder = "" 139 | speaker_folders = [] 140 | speaker_lsts = [] 141 | seen_speaker_lsts = [] 142 | 143 | with open(speaker_list) as fid: 144 | for line in fid: 145 | seen_speaker_lsts.append(line.strip()) 146 | 147 | if not multi_list: 148 | speaker_folder = libri_segments_dir 149 | print(f'speaker_folder {speaker_folder}', flush=True) 150 | speaker_lst = seen_speaker_lsts 151 | print(f'speaker_lst {speaker_lst}', flush=True) 152 | speaker_idx_lst = np.arange(len(speaker_lst)) 153 | random_state.shuffle(speaker_idx_lst) 154 | speaker_idx_lst = speaker_idx_lst[:cover_angle_num * 2] 155 | 156 | # get the wav_id list 157 | wav_id_file_path = os.path.join(folder, 'speech_wav_id_lst.lst') 158 | if os.path.exists(wav_id_file_path): 159 | wav_id_lst = [] 160 | with open(wav_id_file_path, 'r', encoding='utf-8') as f: 161 | wav_id_set = f.readlines() 162 | 163 | for wav_id in wav_id_set: 164 | wav_id = wav_id.strip() 165 | wav_id_lst.append(wav_id) 166 | else: 167 | wav_id_lst = [] 168 | angle = cover_angle_range[0] 169 | index = 0 170 | while True: 171 | index %= len(speaker_idx_lst) 172 | k = speaker_idx_lst[index] 173 | index += 1 174 | wav_lst = glob.glob(os.path.join(speaker_folder, speaker_lst[k]) + '/*/*.flac') 175 | wav_name = random.sample(wav_lst, 1)[0] 176 | 177 | if speaker_lst[k] not in wav_id_lst: 178 | wav_path = os.path.join(speaker_folder, speaker_lst[k]) 179 | wav_path = os.path.join(wav_name.split('-')[1], wav_name) 180 | 181 | # if angle >= 55: 182 | # angular_spacing = 5 183 | # if angle >= 120: 184 | # angular_spacing = 10 185 | # random_range = random.randint(0, angular_spacing - 1) 186 | # random_angle = angle + random_range 187 | random_angle = angle 188 | 189 | 190 | for dis_idx in range(3): 191 | multichannel_audio_data, wav_id, distance = gen_mulchannel_data_angle(wav_path, 192 | room_para, 193 | folder, 194 | angle=random_angle, 195 | distance_flag=dis_idx, 196 | fs=fs, 197 | segment_length=segment_length, 198 | audio_type=1) 199 | 200 | max_speech_value = np.max(np.abs(multichannel_audio_data)) 201 | 202 | 203 | if max_speech_value > 32767: 204 | multichannel_audio_data = multichannel_audio_data / max_speech_value * 30000 205 | out_mulchannel_audio_data = multichannel_audio_data 206 | 207 | 208 | # 生成文件保存路径 209 | if dis_idx == 0: 210 | distance_type = "close" 211 | elif dis_idx == 1: 212 | distance_type = "middle" 213 | else: 214 | distance_type = "far" 215 | file_name = "{}-{}m-{}".format(wav_id, distance, distance_type) 216 | angle_speech_folder = os.path.join(mulchannel_speech_folder, f"{random_angle}-{wav_id.split('-')[0]}") 217 | os.makedirs(angle_speech_folder, exist_ok=True) 218 | save_file_path = os.path.join(angle_speech_folder, file_name) 219 | 220 | save_audio_separately(out_mulchannel_audio_data, save_file_path, fs=fs) 221 | print(save_file_path + " finish!") 222 | 223 | wav_id_lst.append(wav_id) 224 | angle = angle + angular_spacing 225 | if angle >= cover_angle_range[1] + 1 - angular_spacing: 226 | break 227 | else: 228 | continue 229 | # wait for all the wav simulation finish, write wav_id_lst in the wav_id_file_path 230 | with open(wav_id_file_path, 'w', encoding='utf-8') as f: 231 | for wav_id in wav_id_lst: 232 | f.write(wav_id + '\n') 233 | 234 | def sim_speech(base_dir, libri_segments_dir, fs, cover_angle_range, segment_length, speaker_list, 235 | angular_spacing): 236 | ''' 237 | 模拟多通道人声数据 238 | :param base_dir: 根目录 239 | :param libri_segments_dir: 单通道人声文件夹 240 | :param max_wav_num: 241 | :param fs: 242 | :return: 243 | ''' 244 | room_folders = get_first_level_folder(base_dir) 245 | 246 | Parallel(n_jobs=MAX_WORKERS)(delayed(__sim_speech)(seed_idx, folder, libri_segments_dir, fs, cover_angle_range, False, segment_length, speaker_list, angular_spacing) for seed_idx, folder in enumerate(room_folders)) 247 | 248 | # with ProcessPoolExecutor(MAX_WORKERS) as ex: 249 | # func = partial(__sim_speech, libri_segments_dir=libri_segments_dir, fs=fs, cover_angle_range=cover_angle_range, multi_list=False, 250 | # segment_length=segment_length, speaker_list=speaker_list, angular_spacing=angular_spacing) 251 | # ex.map(func, room_folders) 252 | # debug 253 | # for folder in room_folders: 254 | # __sim_speech(folder, libri_segments_dir, fs, cover_angle_range, False, segment_length, speaker_list, angular_spacing) 255 | # debug 256 | 257 | 258 | def __sim_non_stationary_noise(folder, sim_wav_num, wav_list, fs, cover_angle_range, speech_length, angular_spacing): 259 | room_para_path = os.path.join(folder, 'room_para.npy') 260 | room_para = np.load(room_para_path, allow_pickle=True).item() 261 | 262 | speech_path = os.path.join(folder, 'speech') 263 | angle_of_speech = os.listdir(speech_path) 264 | angle_of_speech = list(map(int, angle_of_speech)) 265 | angle_of_speech.sort() 266 | print(f'angle_list_of_speech: {angle_of_speech}') 267 | 268 | # 声明多通道非平稳噪声数据保存路径 269 | mulchannel_nonstationary_noise_folder = os.path.join(folder, 'nonstationary_noise') 270 | 271 | cover_angle_num = (cover_angle_range[1] - cover_angle_range[0]) / angular_spacing 272 | cover_angle_num = math.floor(cover_angle_num) 273 | 274 | non_stationary_list = wav_list 275 | np.random.shuffle(non_stationary_list) 276 | non_stationary_list = non_stationary_list[:3 * cover_angle_num] 277 | 278 | angle = angle_of_speech[0] 279 | index = 0 280 | for wav in non_stationary_list: 281 | multichannel_audio_data, wav_id, distance = gen_mulchannel_data_angle(wav.strip(), 282 | room_para, 283 | folder, 284 | angle=angle, 285 | distance_flag=index % 3, 286 | fs=fs, 287 | segment_length=speech_length, 288 | audio_type=2) 289 | 290 | # out_mulchannel_audio_data = multichannel_audio_data - np.mean(multichannel_audio_data, axis=0) 291 | out_mulchannel_audio_data = multichannel_audio_data 292 | 293 | # 生成文件保存路径 294 | if index % 3 == 0: 295 | distance_type = "close" 296 | elif index % 3 == 1: 297 | distance_type = "middle" 298 | else: 299 | distance_type = "far" 300 | file_name = "{}-{}m-{}".format(wav_id, distance, distance_type) 301 | angle_speech_folder = os.path.join(mulchannel_nonstationary_noise_folder, str(angle)) 302 | 303 | save_file_path = os.path.join(angle_speech_folder, file_name) 304 | 305 | save_audio_separately(out_mulchannel_audio_data, save_file_path, fs=fs) 306 | print(save_file_path + " finish!") 307 | 308 | if index % 3 == 2: 309 | angle = angle + angular_spacing 310 | index = index + 1 311 | 312 | 313 | 314 | def sim_non_stationary_noise(base_dir, mono_nonstationary_noise_lst_file, max_wav_num, fs, cover_angle_range, 315 | speech_length, angular_spacing): 316 | ''' 317 | 模拟多通道非平稳噪声 318 | :param base_dir: 根目录 319 | :param mono_nonstationary_noise_lst_file: 单通道非平稳噪声文件列表文件 320 | :param max_wav_num: 321 | :param fs: 采样率 322 | :return: 323 | ''' 324 | room_folders = get_first_level_folder(base_dir) 325 | 326 | wav_list = list(generate_wav_list_from_lst_file(mono_nonstationary_noise_lst_file)) 327 | if len(wav_list) > max_wav_num: 328 | sim_wav_num = max_wav_num 329 | else: 330 | sim_wav_num = len(wav_list) 331 | 332 | with ProcessPoolExecutor(MAX_WORKERS) as ex: 333 | func = partial(__sim_non_stationary_noise, sim_wav_num=sim_wav_num, wav_list=wav_list, fs=fs, 334 | cover_angle_range=cover_angle_range, speech_length=speech_length, 335 | angular_spacing=angular_spacing) 336 | ex.map(func, room_folders) 337 | 338 | 339 | def single_proc(stationary_noise_lst, libri_segments_dir, non_stationary_noise_lst, save_path, 340 | sim_room_num, stationary_noise_num, fs, speech_length, cover_angle_range, room_transpose_prob, speaker_list, augular_spacing): 341 | print("MAX_WORKERS:", MAX_WORKERS) 342 | 343 | # Start timing¬ 344 | start_time = time.time() 345 | 346 | # make directory of output data 347 | if not os.path.exists(save_path): 348 | os.makedirs(save_path) 349 | else: 350 | print(f'{save_path} already exists!') 351 | shutil.rmtree(save_path) 352 | print(f'remove {save_path}') 353 | 354 | # generate room parameters and stationary noise 355 | sim_stationary_noise(save_path, stationary_noise_lst, sim_room_num, stationary_noise_num, fs, room_transpose_prob, speech_length) 356 | print('Finish sim_stationary_noise') 357 | 358 | # generate multi-channel speech 359 | sim_speech(save_path, libri_segments_dir, fs, cover_angle_range, speech_length, speaker_list, augular_spacing) 360 | print('Finish sim_speech') 361 | 362 | # DO NOT INVOKE FOR NOW! 363 | # generate multi-channel non-stationary noise 364 | # sim_non_stationary_noise(save_path, non_stationary_noise_lst, non_stationary_num, fs, cover_angle_range, speech_length, augular_spacing) 365 | # print('Finish sim_non_stationary_noise') 366 | 367 | # End timing 368 | print('time spent: %s mins' % str((time.time() - start_time) / 60.0)) 369 | 370 | 371 | if __name__ == '__main__': 372 | ''' 373 | convert single channel format to multi-channel(6-channel) format of single voice. 374 | 375 | :param stationary_noise_lst: contains the absolute path of stationary noise .wav 376 | :param libri_segments_dir: contains clean audio files 377 | :param non_stationary_noise_lst: contains the absolute path of non-stationary noise .wav 378 | :param save_path: the output path of multi-channel data 379 | :param sim_room_num: the number of simulated rooms, each room contains specified number of stationary noise, speech, and non-stationary noise 380 | :param stationary_noise_num: the upper bound of the kind of stationary noise we choose 381 | :param speech_num: the number of simulated speech in each room 382 | :param non_stationary_num: the number of simulated non-stationary noise in each room 383 | :param fs: sample rate 384 | :return: 385 | ''' 386 | 387 | # 设置路径参数 388 | # dataset_split = "train-clean-100" 389 | # dataset_split = "dev-clean" 390 | # dataset_split = "test-clean" 391 | dataset_split = "test-clean_wer" 392 | stationary_noise_lst = '/Work21/2020/yinhaoran/VCTK_simulated_data/list/clean_speech_3.lst' 393 | libri_segments_dir = f'/CDShare3/LibriSpeechSegments/{dataset_split}' 394 | non_stationary_noise_lst = '/non_stationary_noise.lst' 395 | 396 | speaker_lst = f'/Work21/2021/fuyanjie/pycode/LaBNet/data/libri_segments_list/{dataset_split}_spk.lst' 397 | 398 | # 设定合成参数 399 | sim_room_num = 10 400 | stationary_noise_num = 1 401 | fs = 16000 402 | speech_length = 4 403 | cover_angle_range = [0, 180] 404 | angular_spacing = 1 # 角度最小间隔 405 | room_transpose_prob = 0.5 406 | 407 | save_path = f'/CDShare3/Libri-SIM/rooms_0129/{dataset_split}_{sim_room_num}rooms' 408 | 409 | single_proc(stationary_noise_lst, libri_segments_dir, non_stationary_noise_lst, save_path, sim_room_num, 410 | stationary_noise_num, fs, speech_length, cover_angle_range, room_transpose_prob, 411 | speaker_lst, angular_spacing) 412 | 413 | -------------------------------------------------------------------------------- /preparation/libri_sim_code/5_generate_json.py: -------------------------------------------------------------------------------- 1 | # -*- coding:utf-8 _*- 2 | from itertools import groupby 3 | import json 4 | import os 5 | import pickle 6 | import random 7 | from acoustics.signal import highpass 8 | 9 | import librosa 10 | import numpy as np 11 | import soundfile as sf 12 | 13 | SEED = 7 14 | random.seed(SEED) 15 | sr = 16000 16 | 17 | def audioread(path, fs=16000): 18 | wave_data, sr = sf.read(path) 19 | if sr != fs: 20 | wave_data = librosa.resample(wave_data, sr, fs) 21 | return wave_data 22 | 23 | 24 | def generate_vad_label(orig_signal, sr = 16000, win_len = 0.032, hop_len = 0.016): 25 | original_signal = orig_signal / np.max(orig_signal) * 25000 26 | original_signal = highpass(original_signal, 100, sr, order =8) 27 | 28 | vad = np.ones(int(len(original_signal)/(hop_len * sr))) 29 | 30 | frame_shift = int(hop_len * sr) # 256 31 | frame_len = int(win_len * sr) # 512 32 | 33 | value_threshold = 110 34 | 35 | sig_100ms_len = int(0.01 * sr) 36 | frame_max_value = np.max(original_signal[:sig_100ms_len]) 37 | if frame_max_value > value_threshold: 38 | value_threshold = frame_max_value 39 | 40 | for i in range(len(vad)): 41 | frame_data = original_signal[i * frame_shift : (i + 1) * frame_shift] # old: i -> i+1, changed: i -> i + length 42 | frame_data = np.abs(frame_data) 43 | frame_data = np.where(frame_data > value_threshold,0,1) 44 | if np.sum(frame_data) > frame_shift * 0.9 and vad[i] == 1: 45 | vad[i] = 0 46 | 47 | mid_len_speech = round(0.1 / hop_len + 0.1) 48 | mid_len_non_speech = round(0.05 / hop_len + 0.1) 49 | for i in range(len(vad)): 50 | if i < len(vad) - mid_len_speech - 2: 51 | if vad[i] == 0 and vad[i+mid_len_speech+1] == 0 and sum(vad[i+1:i+mid_len_speech+1] select_angle_min: 87 | available_list.append([select_angle_min, select_angle - min_interval]) 88 | if select_angle + min_interval < select_angle_max: 89 | available_list.append([select_angle + min_interval, select_angle_max]) 90 | return result 91 | 92 | def data_mix_angle_wav_cos(generate_sample_num, max_source_num, input_single_source_folder_path, out_folder_path, add_noise=0.2): 93 | ''' 94 | 从多个混合音频中分离出一个目标角度的音频 95 | :param generate_sample_num: 96 | :param max_source_num: 97 | :param input_single_source_folder_path: 98 | :param out_folder_path: 99 | :param add_noise: 100 | :return: 101 | ''' 102 | # 3 audio types for one room 103 | stationary_noise_flag = 'stationary_noise' 104 | speech_flag = 'speech' 105 | # non_stationary_noise_flag = 'nonstationary_noise' 106 | 107 | all_log = {} 108 | num_samples = np.zeros(4) 109 | max_num = 0 110 | dists = [] 111 | sqrt_sample_num = int(np.sqrt(generate_sample_num)) 112 | if not os.path.exists(out_folder_path): 113 | for folder_idx in range(sqrt_sample_num + 1): 114 | os.makedirs(os.path.join(out_folder_path, f'{folder_idx*sqrt_sample_num}-{(folder_idx+1)*sqrt_sample_num-1}'), exist_ok=True) 115 | else: 116 | exist_folders = os.listdir(out_folder_path) 117 | for folder in exist_folders: 118 | num_part = folder.split('_')[0] 119 | num = int(num_part.split('-')[1]) 120 | if num > max_num: 121 | max_num = num 122 | print('existing samples: ', max_num) 123 | 124 | sample_pos = 0 125 | sample_idx = 0 126 | try: 127 | while 1: 128 | if sample_pos >= generate_sample_num: 129 | print(f'num_samples < 15: {num_samples[0]} 15-45 {num_samples[1]} 45-90 {num_samples[2]} >90 {num_samples[3]}', ) 130 | break 131 | sample_log = {} 132 | 133 | random.seed(sample_idx) 134 | random_state = np.random.RandomState(sample_idx) 135 | sample_idx += 1 136 | 137 | # randomly choose a room 138 | rooms = os.listdir(input_single_source_folder_path) 139 | room = rooms[random.randint(0, len(rooms) - 1)] 140 | file_1st = input_single_source_folder_path + os.sep + room 141 | # get RIR 142 | tmp = room.split('_') 143 | rir = float(tmp[-1]) 144 | file_2nd = file_1st # no reverb 145 | sample_log['room'] = room 146 | sample_log['rir'] = rir 147 | speech = file_1st + os.sep + speech_flag 148 | # non_stationary = file_1st + os.sep + non_stationary_noise_flag 149 | stationary = file_1st + os.sep + stationary_noise_flag 150 | 151 | stationary_noise_log = {} 152 | stationary_list = os.listdir(stationary) 153 | choose_stationary = random.sample(stationary_list, 1)[0] 154 | 155 | stationary_noise_log["wave_path"] = stationary + os.sep + choose_stationary.split('multichannel')[0] + 'multichannel' 156 | 157 | SNR = [10,20] 158 | 159 | stationary_noise_log["SNR"] = random.randint(SNR[0], SNR[1]) 160 | sample_log["stationary_noise"] = stationary_noise_log 161 | 162 | if not os.path.exists(speech): 163 | continue 164 | all_speech = os.listdir(speech) 165 | # print("all_speech ", all_speech) 166 | 167 | if len(all_speech) < max_source_num: 168 | continue 169 | 170 | source_list = [] 171 | angle_list = [] 172 | spkid_list = [] 173 | available_list = all_speech 174 | for i in range(max_source_num): 175 | chosen_subfolder = random.sample(available_list, 1)[0] 176 | chosen_angle, chosen_spkid = chosen_subfolder.split('-') 177 | source_list.append(chosen_subfolder) 178 | angle_list.append(chosen_angle) 179 | spkid_list.append(chosen_spkid) 180 | new_available_list = [] 181 | for available_subfolder in available_list: 182 | available_angle, available_spkid = available_subfolder.split('-') 183 | if available_spkid not in spkid_list: 184 | # if np.abs(int(available_angle)-int(chosen_angle))>5 and available_spkid not in spkid_list: 185 | new_available_list.append(available_subfolder) 186 | available_list = new_available_list 187 | 188 | SIR = [-10, 10] 189 | 190 | for index, source in enumerate(source_list): 191 | angle = float(source.split('-')[0]) 192 | sample_source_log = {} 193 | # 从某个房间的某种混响下选取 single_source_num 个角度进行混合,每个角度选取一个 wav 文件,保证角度之间的 wav 不重复 194 | wav_path = speech + os.sep + source_list[index] 195 | 196 | choosen_wav_list = os.listdir(wav_path) 197 | if index == 1: 198 | if 'far' in choosen_wav: 199 | close_or_middle = random_state.choice(['close', 'middle', 'far'], 1, p=[0.4, 0.3, 0.3])[0] 200 | choosen_wav = [wavname for wavname in choosen_wav_list if close_or_middle in wavname][0] 201 | else: 202 | choosen_wav = [wavname for wavname in choosen_wav_list if 'far' in wavname][0] 203 | else: 204 | choosen_wav = random.sample(choosen_wav_list, 1)[0] 205 | 206 | choosen_wav_path = choosen_wav.split('multichannel') 207 | wav_path = wav_path + os.sep + choosen_wav_path[0] + 'multichannel' 208 | sample_source_log['wave_path'] = wav_path 209 | sample_source_log['azimuth'] = angle 210 | 211 | # compute azimuth w.r.t. all mics 212 | s2m_dist = float(wav_path.split('/')[-1].split('-')[3].replace('m', '')) 213 | print(f"s2m_dist {s2m_dist} wav_path {wav_path}") 214 | mic_itvals = [0.14, 0.1, 0.06] 215 | rad = angle / 180.0 * np.pi 216 | for idx, mic_itval in enumerate(mic_itvals): 217 | third_side = np.sqrt(mic_itval ** 2 + s2m_dist ** 2 - 2 * mic_itval * s2m_dist * np.cos(rad)) 218 | azi_rad = np.arccos(np.clip((third_side ** 2 + mic_itval ** 2 - s2m_dist ** 2) / (2 * third_side * mic_itval), -1+1e-8, 1-1e-8)) 219 | azimuth = azi_rad * 180.0 / np.pi 220 | if idx == 0: 221 | sample_source_log['azimuth1'] = round(180 - round(azimuth, 2), 2) 222 | elif idx == 1: 223 | sample_source_log['azimuth2'] = round(180 - round(azimuth, 2), 2) 224 | elif idx == 2: 225 | sample_source_log['azimuth3'] = round(180 - round(azimuth, 2), 2) 226 | rad = (180 - angle) / 180.0 * np.pi 227 | for idx, mic_itval in enumerate(mic_itvals): 228 | third_side = np.sqrt(mic_itval ** 2 + s2m_dist ** 2 - 2 * mic_itval * s2m_dist * np.cos(rad)) 229 | azi_rad = np.arccos(np.clip((third_side ** 2 + mic_itval ** 2 - s2m_dist ** 2) / (2 * third_side * mic_itval), -1+1e-8, 1-1e-8)) 230 | azimuth = azi_rad * 180.0 / np.pi 231 | if idx == 0: 232 | sample_source_log['azimuth6'] = round(azimuth, 2) 233 | elif idx == 1: 234 | sample_source_log['azimuth5'] = round(azimuth, 2) 235 | elif idx == 2: 236 | sample_source_log['azimuth4'] = round(azimuth, 2) 237 | 238 | if index != 0: 239 | sample_source_log["SIR"] = random.randint(SIR[0], SIR[1]) 240 | wave = audioread(wav_path + '_0.wav') 241 | wave = wave[0:4*sr] # 4s 242 | vad_label = generate_vad_label(wave) 243 | 244 | sample_source_log['vad_label'] = list(vad_label) 245 | sample_log["source" + str(index)] = sample_source_log 246 | 247 | angular_dist = abs(int(sample_log['source0']['azimuth']) - int(sample_log['source1']['azimuth'])) 248 | # if angular_dist <= 5: 249 | # continue 250 | if angular_dist > 15: 251 | if np.random.rand() > 0.5: 252 | continue 253 | # source-to-microphone distance 254 | s2m_dist1 = float(sample_log['source0']['wave_path'].split('/')[-1].split('-')[3].replace('m', '')) * 100 255 | s2m_dist2 = float(sample_log['source1']['wave_path'].split('/')[-1].split('-')[3].replace('m', '')) * 100 256 | sample_log['source0']['s2m_dist'] = int(s2m_dist1) 257 | sample_log['source1']['s2m_dist'] = int(s2m_dist2) 258 | # distance between two sources 259 | social_dist = np.round(np.sqrt(np.square(s2m_dist1) + np.square(s2m_dist2) - 2 * s2m_dist1 * s2m_dist2 * np.cos(angular_dist / 180 * np.pi)), 2) 260 | sample_log['social_dist'] = social_dist 261 | # print(f's2m_dist1 {int(s2m_dist1)} s2m_dist2 {int(s2m_dist2)} social_dist {social_dist}', flush=True) 262 | 263 | if social_dist <= 100: 264 | continue 265 | if angular_dist <= 15: 266 | num_samples[0] += 1 267 | elif angular_dist > 15 and angular_dist < 45: 268 | num_samples[1] += 1 269 | elif angular_dist >= 45 and angular_dist < 90: 270 | num_samples[2] += 1 271 | elif angular_dist >= 90: 272 | num_samples[3] += 1 273 | 274 | sample_pos += 1 275 | dists.append(int(s2m_dist1)) 276 | dists.append(int(s2m_dist2)) 277 | print(f'sample_pos {sample_pos} source_list {source_list} angular_dist {angular_dist} s2m_dist1 {int(s2m_dist1)} s2m_dist2 {int(s2m_dist2)} social_dist {social_dist}', flush=True) 278 | 279 | folder_idx = (max_num + sample_pos) // sqrt_sample_num 280 | output_subfolder = out_folder_path + os.sep + f'{folder_idx*sqrt_sample_num}-{(folder_idx+1)*sqrt_sample_num-1}' 281 | write_file_path = output_subfolder + os.sep + f'sample-{max_num+sample_pos}-' + room + '.json' 282 | os.makedirs(output_subfolder, exist_ok=True) 283 | with open(write_file_path, 'w', encoding='utf-8') as f: 284 | f.write(json.dumps(sample_log, ensure_ascii=False)) 285 | except Exception as e: 286 | print(f'e {e}') 287 | 288 | print('----- Statistics about the source-to-microphone distance -----') 289 | for k, g in groupby(sorted(dists), key=lambda x: x//50): 290 | print('{}-{}: {}'.format(k*50, (k+1)*50-1, len(list(g)))) 291 | save_path = os.path.dirname(out_folder_path) + os.sep + out_folder_path.split('/')[-1] + '.pkl' 292 | dists_dict = {"dists": dists} 293 | pkl_file = open(save_path, 'wb') 294 | pickle.dump(dists_dict, pkl_file) 295 | 296 | 297 | if __name__ == '__main__': 298 | # set_sample_num = 40000 299 | set_sample_num = 3000 300 | set_source_max_num = 2 301 | 302 | # dataset_split = "train-clean-100" 303 | # dataset_split = "dev-clean" 304 | dataset_split = "test-clean_0226" 305 | # dataset_split = "test-clean_wer" 306 | # input_single_source_folder_path = f'/CDShare3/Libri-SIM/rooms_0129/{dataset_split}_10rooms' # 包含多个房间的输入目录 307 | input_single_source_folder_path = f'/CDShare3/Libri-SIM/rooms_0129/test-clean_10rooms' # 包含多个房间的输入目录 308 | out_folder_path = f'/CDShare3/Libri-SIM/jsons_0129/{dataset_split}' # json输出目录 309 | data_mix_angle_wav_cos(set_sample_num, set_source_max_num, input_single_source_folder_path, 310 | out_folder_path, add_noise=0.0) 311 | 312 | 313 | 314 | -------------------------------------------------------------------------------- /preparation/libri_sim_code/6_json_2_list.py: -------------------------------------------------------------------------------- 1 | import os 2 | import datetime 3 | 4 | def generate_list(input_dir, ouput_dir, data_split): 5 | date = datetime.datetime.now().strftime("%m%d") 6 | os.makedirs(ouput_dir, exist_ok=True) 7 | output_wav_lst = os.path.join(ouput_dir, '{}_{}.lst'.format(data_split, date)) 8 | with open(output_wav_lst, 'w', encoding='utf-8') as output_f: 9 | save_num = 0 10 | if os.path.exists(input_dir): 11 | subfolder_list = os.listdir(input_dir) 12 | subfolder_list = [os.path.join(input_dir, subfolder_name) for subfolder_name in subfolder_list] 13 | for subfolder in subfolder_list: 14 | file_path_list = os.listdir(subfolder) 15 | for file_path in file_path_list: 16 | output_f.write(subfolder+ os.sep+ file_path.strip()+'\n') 17 | save_num += 1 18 | print('Finish save: {}'.format(save_num)) 19 | 20 | 21 | if __name__ == '__main__': 22 | # data_split = 'test-clean_wer' 23 | data_split = 'test-clean_0226' 24 | # data_split = 'dev-clean' 25 | # data_split = 'train-clean-100' 26 | # input_dir = f'/local02/fuyanjie/Libri-SIM/jsons/{data_split}' 27 | input_dir = f'/CDShare3/Libri-SIM/jsons_0129/{data_split}' 28 | ouput_dir = '/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list' 29 | generate_list(input_dir, ouput_dir, data_split) -------------------------------------------------------------------------------- /preparation/libri_sim_code/gen_room_para.py: -------------------------------------------------------------------------------- 1 | import os 2 | import random 3 | import re 4 | 5 | import pyroomacoustics as pra 6 | import numpy as np 7 | import soundfile as sf 8 | 9 | MIN_ROOM_WIDTH= 3 10 | MAX_ROOM_WIDTH = 9 11 | MIN_ROOM_LEN = 4 12 | MAX_ROOM_LEN = 12 13 | MIN_ROOM_HEIGHT = 2.5 14 | MAX_ROOM_HEIGHT = 5 15 | 16 | EPS = 1e-8 17 | SEED = 77 18 | 19 | # 随机生成一个房间参数,生成对应的文件夹,并保存房间参数 20 | def gen_room_para(dir, room_transpose_prob): 21 | ''' 22 | :param dir: the save path of room 23 | :param room_transpose_prob: the probability of whether to switch the room length and the room width 24 | :return: 25 | ''' 26 | 27 | room_para = dict() 28 | 29 | if random.uniform(0, 1) < room_transpose_prob: 30 | room_length = random.randint(MIN_ROOM_LEN, MAX_ROOM_LEN) 31 | room_width = np.round(random.uniform(max(room_length / 2, MIN_ROOM_WIDTH), room_length), 2) 32 | else: 33 | room_width = random.randint(MIN_ROOM_LEN, MAX_ROOM_LEN) 34 | room_length = np.round(random.uniform(max(room_width / 2, MIN_ROOM_WIDTH), room_width), 2) 35 | 36 | room_height = np.round(random.uniform(MIN_ROOM_HEIGHT, MAX_ROOM_HEIGHT), 2) 37 | 38 | room_para['room_dim'] = [room_length, room_width, room_height] 39 | 40 | max_room_size = max(room_length, room_width) 41 | # 根据房间大小随机生成rt60 42 | if max_room_size >= 4 and max_room_size < 8: 43 | rt60_tgt = random.uniform(0.3, 0.6) 44 | elif max_room_size >= 8 and max_room_size < 10: 45 | rt60_tgt = random.uniform(0.4, 0.7) 46 | elif max_room_size >= 10: 47 | rt60_tgt = random.uniform(0.5, 0.8) 48 | 49 | rt60_tgt = np.round(rt60_tgt, 3) 50 | 51 | room_para['rt60'] = rt60_tgt 52 | 53 | folder_name = 'room_{}_{}_{}_rt60_{}'.format(room_length, room_width, room_height, rt60_tgt) 54 | 55 | folder_path = os.path.join(dir, folder_name) 56 | 57 | if not os.path.exists(folder_path): 58 | os.makedirs(folder_path) 59 | 60 | # 保存房间参数 61 | room_para_file_path = os.path.join(folder_path, 'room_para.npy') 62 | np.save(room_para_file_path, room_para) 63 | 64 | return room_para 65 | 66 | 67 | def gen_mulchannel_data_random(wave_file_path, room_para, folder, audio_type, fs, segment_length): 68 | ''' 69 | 利用 Pyroomacoustics 生成多通道音频文件 70 | :param wave_file_path: 单通道音频文件路径 71 | :param room_para: 房间参数 72 | :param folder: 保存生成多通道声音文件的文件夹路径 73 | :param audio_type: 0:平稳噪声,1:人声,2:非平稳噪声 74 | :param fs: 音频采样率 75 | :return: 多通道音频data 76 | ''' 77 | # 根据房间信息生成麦克风阵列位置 78 | room_dim = room_para['room_dim'] 79 | rt60_tgt = room_para['rt60'] 80 | room_length = room_dim[0] 81 | room_width = room_dim[1] 82 | room_height = room_dim[2] 83 | mic_locations = np.c_[ 84 | [0.5, room_width / 2 - 0.14, 2], 85 | [0.5, room_width / 2 - 0.1, 2], 86 | [0.5, room_width / 2 - 0.06, 2], 87 | [0.5, room_width / 2 + 0.06, 2], 88 | [0.5, room_width / 2 + 0.1, 2], 89 | [0.5, room_width / 2 + 0.14, 2], 90 | ] 91 | 92 | # We invert Sabine's formula to obtain the parameters for the ISM simulator 93 | e_absorption, max_order = pra.inverse_sabine(rt60_tgt, room_dim) 94 | # 根据参数创建房间 95 | room = pra.ShoeBox(room_dim, fs=fs, materials=pra.Material(e_absorption), max_order=max_order, air_absorption=True, humidity=50) 96 | audio_data, sr = sf.read(wave_file_path, dtype=np.int16) 97 | 98 | target_length = segment_length * sr 99 | if len(audio_data) < target_length: 100 | pad_audio_data = np.zeros(target_length) 101 | 102 | start = random.randint(0, target_length - len(audio_data)) 103 | end = start + len(audio_data) 104 | 105 | pad_audio_data[start:end] = audio_data 106 | audio_data = pad_audio_data 107 | 108 | if sr != fs: 109 | raise ValueError("input wav file samplerate is not {}".format(fs)) 110 | 111 | # 根据 wave 文件名获取说话人ID 112 | wave_file_name = wave_file_path.split('/')[-1] 113 | 114 | # 随机生成一个声源角度及距离 115 | if audio_type == 0: 116 | source_location = np.array([random.uniform(0, room_length), 117 | random.uniform(0, room_width), 118 | random.uniform(0, room_height)]) 119 | elif audio_type == 1: 120 | source_location = np.array([random.uniform(mic_locations[0][0], room_length), 121 | random.uniform(0.5, room_width - 0.5), 122 | random.uniform(1.4, 1.8)]) 123 | else: 124 | source_location = np.array([random.uniform(0.5, room_length), 125 | random.uniform(0, room_width), 126 | random.uniform(0, room_height)]) 127 | if source_location[1] < room_width / 2: 128 | target_angle = np.arctan((source_location[0] - 0.5) / (room_width / 2 - source_location[1])) 129 | else: 130 | target_angle = np.pi / 2 + np.arctan((source_location[1] - room_width / 2) / (source_location[0] - 0.5)) 131 | 132 | # 将弧度转为度 133 | angle_degree = int(target_angle * 180 / np.pi) 134 | 135 | # 生成多通道数据 136 | c = 345 137 | dist = np.linalg.norm(source_location - mic_locations[:, 0]) 138 | 139 | if audio_type == 0: 140 | delay = 0 141 | else: 142 | delay = dist / c 143 | 144 | # 将声源放置在房间中 145 | room.add_source(source_location, signal=audio_data, delay=delay) 146 | 147 | # 将麦克风阵列放置在房间中 148 | room.add_microphone_array(mic_locations) 149 | 150 | # Run the simulation 151 | room.simulate() 152 | 153 | # 得到仿真的语音信号 154 | orig_max_value = np.max(np.abs(audio_data)) 155 | multichannel_audio_data = room.mic_array.signals[:, 0:len(audio_data)] 156 | # multichannel_audio_data = multichannel_audio_data.astype(np.int16) 157 | 158 | multichannel_audio_data = multichannel_audio_data / np.max(np.abs(multichannel_audio_data)) * orig_max_value 159 | multichannel_audio_data = multichannel_audio_data.astype(np.int16) 160 | 161 | # print(dist, rt60_tgt, max_order, orig_max_value, np.max(np.abs(multichannel_audio_data))) 162 | 163 | # 生成对应的文件夹 164 | if audio_type == 0: 165 | new_folder = os.path.join(folder, 'stationary_noise') 166 | elif audio_type == 1: 167 | new_folder = os.path.join(folder, 'speech') 168 | else: 169 | new_folder = os.path.join(folder, 'nonstationary_noise') 170 | 171 | if not os.path.exists(new_folder): 172 | os.makedirs(new_folder) 173 | 174 | # 生成对应文件名 175 | if audio_type == 0: 176 | # wav_id = wave_file_name.replace('.wav', '') 177 | return multichannel_audio_data, -1, angle_degree 178 | elif audio_type == 1: 179 | wav_id = re.findall('\d+', wave_file_name.split('/')[-1])[0] 180 | # wav_id = wave_file_name.replace('.wav', '') # for FYJ 181 | return multichannel_audio_data, wav_id, angle_degree 182 | else: 183 | wav_id = wave_file_name.replace('.wav', '') 184 | return multichannel_audio_data, wav_id, angle_degree 185 | 186 | def gen_mulchannel_data_angle(wave_file_path, room_para, folder, angle, distance_flag, fs, segment_length, audio_type): 187 | ''' 188 | 利用 Pyroomacoustics 生成多通道音频文件 189 | :param wave_file_path: 单通道音频文件路径 190 | :param room_para: 房间参数 191 | :param folder: 保存生成多通道声音文件的文件夹路径 192 | :param audio_type: 0:平稳噪声,1:人声,2:非平稳噪声 193 | :param fs: 音频采样率 194 | :return: 多通道音频data 195 | ''' 196 | # 根据房间信息生成麦克风阵列位置 197 | room_dim = room_para['room_dim'] 198 | rt60_tgt = room_para['rt60'] 199 | room_length = room_dim[0] 200 | room_width = room_dim[1] 201 | room_height = room_dim[2] 202 | room_mid = room_width / 2 203 | mic_locations = np.c_[ 204 | [0.5, room_width / 2 - 0.14, 2], 205 | [0.5, room_width / 2 - 0.1, 2], 206 | [0.5, room_width / 2 - 0.06, 2], 207 | [0.5, room_width / 2 + 0.06, 2], 208 | [0.5, room_width / 2 + 0.1, 2], 209 | [0.5, room_width / 2 + 0.14, 2], 210 | ] 211 | 212 | # We invert Sabine's formula to obtain the parameters for the ISM simulator 213 | e_absorption, max_order = pra.inverse_sabine(rt60_tgt, room_dim) 214 | # 根据参数创建房间 215 | room = pra.ShoeBox(room_dim, fs=fs, materials=pra.Material(e_absorption), max_order=max_order, air_absorption=True, humidity=50) 216 | 217 | audio_data, sr = sf.read(wave_file_path, dtype=np.int16) 218 | 219 | target_length = segment_length * sr 220 | if len(audio_data) < target_length: 221 | pad_audio_data = np.zeros(target_length) 222 | 223 | start = random.randint(0, target_length - len(audio_data)) 224 | end = start + len(audio_data) 225 | 226 | pad_audio_data[start:end] = audio_data 227 | audio_data = pad_audio_data 228 | 229 | if sr != fs: 230 | raise ValueError("input wav file samplerate is not {}".format(fs)) 231 | 232 | # 根据 wave 文件名获取说话人ID 233 | wave_file_name = wave_file_path.split('/')[-1] 234 | min_distance = 0.5 235 | 236 | # 随机生成一个声源角度及距离 237 | if angle < 90: 238 | rad = angle / 180 * np.pi 239 | max_distance = min(room_mid / (np.cos(rad) + EPS), (room_length - 0.5) / (np.sin(rad) + EPS)) - 0.5 240 | one_third_distance = (max_distance - min_distance) / 3 241 | # relative_distance = random.uniform(distance_flag * one_third_distance, (distance_flag + 1) * one_third_distance) 242 | relative_distance = max(0, random.normalvariate(mu = (distance_flag + 0.5) * one_third_distance, sigma = one_third_distance / 6)) 243 | distance = min_distance + relative_distance 244 | distance = round(distance, 2) 245 | if distance > 8: 246 | rand_temp = random.random() 247 | if rand_temp < 0.1: 248 | distance = round(random.uniform(5, 5.5), 2) 249 | elif rand_temp >= 0.1 and rand_temp < 0.2: 250 | distance = round(random.uniform(5.5, 6), 2) 251 | elif rand_temp >= 0.2 and rand_temp < 0.35: 252 | distance = round(random.uniform(6, 6.5), 2) 253 | elif rand_temp >= 0.35 and rand_temp < 0.55: 254 | distance = round(random.uniform(6.5, 7), 2) 255 | elif rand_temp >= 0.55 and rand_temp < 0.75: 256 | distance = round(random.uniform(7, 7.5), 2) 257 | elif rand_temp >= 0.75: 258 | distance = round(random.uniform(7.5, 8), 2) 259 | source_location = np.array([distance * np.sin(rad) + 0.5, 260 | room_mid - distance * np.cos(rad), 261 | random.uniform(1.4, 1.8)]) 262 | elif angle == 90: 263 | max_distance = room_length - 1 264 | one_third_distance = (max_distance - min_distance) / 3 265 | # relative_distance = random.uniform(distance_flag * one_third_distance, (distance_flag + 1) * one_third_distance) 266 | relative_distance = max(0, random.normalvariate(mu = (distance_flag + 0.5) * one_third_distance, sigma = one_third_distance / 6)) 267 | distance = min_distance + relative_distance 268 | distance = round(distance, 2) 269 | if distance > 8: 270 | rand_temp = random.random() 271 | if rand_temp < 0.1: 272 | distance = round(random.uniform(5, 5.5), 2) 273 | elif rand_temp >= 0.1 and rand_temp < 0.2: 274 | distance = round(random.uniform(5.5, 6), 2) 275 | elif rand_temp >= 0.2 and rand_temp < 0.35: 276 | distance = round(random.uniform(6, 6.5), 2) 277 | elif rand_temp >= 0.35 and rand_temp < 0.55: 278 | distance = round(random.uniform(6.5, 7), 2) 279 | elif rand_temp >= 0.55 and rand_temp < 0.75: 280 | distance = round(random.uniform(7, 7.5), 2) 281 | elif rand_temp >= 0.75: 282 | distance = round(random.uniform(7.5, 8), 2) 283 | source_location = np.array([distance + 0.5, 284 | room_mid, 285 | random.uniform(1.4, 1.8)]) 286 | else: 287 | rad = (180 - angle) / 180 * np.pi 288 | max_distance = min(room_mid / (np.cos(rad) + EPS), (room_length - 0.5) / (np.sin(rad) + EPS)) - 0.5 289 | one_third_distance = (max_distance - min_distance) / 3 290 | # relative_distance = random.uniform(distance_flag * one_third_distance, (distance_flag + 1) * one_third_distance) 291 | relative_distance = max(0, random.normalvariate(mu = (distance_flag + 0.5) * one_third_distance, sigma = one_third_distance / 6)) 292 | distance = min_distance + relative_distance 293 | distance = round(distance, 2) 294 | if distance > 8: 295 | rand_temp = random.random() 296 | if rand_temp < 0.1: 297 | distance = round(random.uniform(5, 5.5), 2) 298 | elif rand_temp >= 0.1 and rand_temp < 0.2: 299 | distance = round(random.uniform(5.5, 6), 2) 300 | elif rand_temp >= 0.2 and rand_temp < 0.35: 301 | distance = round(random.uniform(6, 6.5), 2) 302 | elif rand_temp >= 0.35 and rand_temp < 0.55: 303 | distance = round(random.uniform(6.5, 7), 2) 304 | elif rand_temp >= 0.55 and rand_temp < 0.75: 305 | distance = round(random.uniform(7, 7.5), 2) 306 | elif rand_temp >= 0.75: 307 | distance = round(random.uniform(7.5, 8), 2) 308 | source_location = np.array([distance * np.sin(rad) + 0.5, 309 | room_mid + distance * np.cos(rad), 310 | random.uniform(1.4, 1.8)]) 311 | 312 | # 生成多通道数据 313 | c = 343 314 | dist = np.linalg.norm(source_location - mic_locations[:, 0]) 315 | 316 | delay = dist / c 317 | 318 | # 将声源放置在房间中 319 | room.add_source(source_location, signal=audio_data, delay=delay) 320 | 321 | # 将麦克风阵列放置在房间中 322 | room.add_microphone_array(mic_locations) 323 | 324 | # Run the simulation 325 | room.simulate() 326 | 327 | # 得到仿真的语音信号 328 | orig_max_value = np.max(np.abs(audio_data)) 329 | multichannel_audio_data = room.mic_array.signals[:, 0:len(audio_data)] 330 | 331 | multichannel_audio_data = multichannel_audio_data / np.max(np.abs(multichannel_audio_data)) * orig_max_value 332 | multichannel_audio_data = multichannel_audio_data.astype(np.int16) 333 | 334 | # print(dist, rt60_tgt, max_order, orig_max_value, np.max(np.abs(multichannel_audio_data))) 335 | 336 | # 生成对应的文件夹 337 | if audio_type == 0: 338 | new_folder = os.path.join(folder, 'stationary_noise') 339 | elif audio_type == 1: 340 | new_folder = os.path.join(folder, 'speech') 341 | else: 342 | new_folder = os.path.join(folder, 'nonstationary_noise') 343 | 344 | if not os.path.exists(new_folder): 345 | os.makedirs(new_folder) 346 | 347 | ### TODO 348 | wav_id = wave_file_name.split(".")[0] 349 | 350 | return multichannel_audio_data, wav_id, distance 351 | 352 | def gen_mulchannel_data(wave_file_path, room_para, folder, audio_type=0, fs=16000): 353 | ''' 354 | 利用 Pyroomacoustics 生成多通道音频文件 355 | :param wave_file_path: 单通道音频文件路径 356 | :param room_para: 房间参数 357 | :param folder: 保存生成多通道声音文件的文件夹路径 358 | :param audio_type: 0:平稳噪声,1:人声,2:非平稳噪声 359 | :param fs: 音频采样率 360 | :return: 多通道音频data 361 | ''' 362 | # 根据房间信息生成麦克风阵列位置 363 | room_dim = room_para['room_dim'] 364 | rt60_tgt = room_para['rt60'] 365 | room_length = room_dim[0] 366 | room_width = room_dim[1] 367 | room_height = room_dim[2] 368 | mic_locations = np.c_[ 369 | [0.5, room_width / 2 - 0.07, 1], 370 | [0.5, room_width / 2 - 0.035, 1], 371 | [0.5, room_width / 2, 1], 372 | [0.5, room_width / 2 + 0.035, 1], 373 | [0.5, room_width / 2 + 0.07, 1], 374 | [0.5, room_width / 2 + 0.105, 1], 375 | ] 376 | 377 | # We invert Sabine's formula to obtain the parameters for the ISM simulator 378 | e_absorption, max_order = pra.inverse_sabine(rt60_tgt, room_dim) 379 | # 根据参数创建房间 380 | room = pra.ShoeBox(room_dim, fs=fs, materials=pra.Material(e_absorption), max_order=max_order, air_absorption=True, humidity=50) 381 | audio_data, sr = sf.read(wave_file_path, dtype=np.int16) 382 | print("audio_data.shape = {}, sr = {}".format(audio_data.shape, sr)) 383 | if sr != fs: 384 | raise ValueError("input wav file samplerate is not {}".format(fs)) 385 | 386 | # 根据 wave 文件名获取说话人ID 387 | wave_file_name = wave_file_path.split('/')[-1] 388 | 389 | # 随机生成一个声源角度及距离 390 | if audio_type == 0: 391 | source_location = np.array([random.uniform(0, room_length), 392 | random.uniform(0, room_width), 393 | random.uniform(0, room_height)]) 394 | elif audio_type == 1: 395 | source_location = np.array([random.uniform(mic_locations[0][0], room_length), 396 | random.uniform(0.5, room_width - 0.5), 397 | random.uniform(1.4, 1.8)]) 398 | else: 399 | source_location = np.array([random.uniform(0.5, room_length), 400 | random.uniform(0, room_width), 401 | random.uniform(0, room_height)]) 402 | if source_location[1] < room_width / 2: 403 | target_angle = np.arctan((source_location[0] - 0.5) / (room_width / 2 - source_location[1])) 404 | else: 405 | target_angle = np.pi / 2 + np.arctan((source_location[1] - room_width / 2) / (source_location[0] - 0.5)) 406 | 407 | 408 | # 将弧度转为度 409 | angle_degree = int(target_angle * 180 / np.pi) 410 | 411 | # 生成多通道数据 412 | c = 345 413 | dist = np.linalg.norm(source_location - mic_locations[:, 0]) 414 | 415 | 416 | if audio_type == 0: 417 | delay = 0 418 | else: 419 | delay = dist / c 420 | 421 | # 将声源放置在房间中 422 | room.add_source(source_location, signal=audio_data, delay=delay) 423 | 424 | # 将麦克风阵列放置在房间中 425 | room.add_microphone_array(mic_locations) 426 | 427 | # Run the simulation 428 | room.simulate() 429 | 430 | # 得到仿真的语音信号 431 | orig_max_value = np.max(np.abs(audio_data)) 432 | multichannel_audio_data = room.mic_array.signals[:, 0:len(audio_data)] 433 | # multichannel_audio_data = multichannel_audio_data.astype(np.int16) 434 | 435 | multichannel_audio_data = multichannel_audio_data / np.max(np.abs(multichannel_audio_data)) * orig_max_value 436 | multichannel_audio_data = multichannel_audio_data.astype(np.int16) 437 | 438 | # print(dist, rt60_tgt, max_order, orig_max_value, np.max(np.abs(multichannel_audio_data))) 439 | 440 | # 生成对应的文件夹 441 | if audio_type == 0: 442 | new_folder = os.path.join(folder, 'stationary_noise') 443 | elif audio_type == 1: 444 | new_folder = os.path.join(folder, 'speech') 445 | else: 446 | new_folder = os.path.join(folder, 'nonstationary_noise') 447 | 448 | if not os.path.exists(new_folder): 449 | os.makedirs(new_folder) 450 | 451 | # 生成对应文件名 452 | if audio_type == 0: 453 | wav_id = wave_file_name.replace('.wav', '') 454 | return multichannel_audio_data, wav_id, angle_degree 455 | elif audio_type == 1: 456 | # wav_id = re.findall('\d+', wave_file_name.split('/')[-1])[0] 457 | wav_id = wave_file_name.replace('.wav', '') 458 | return multichannel_audio_data, wav_id, angle_degree 459 | else: 460 | wav_id = wave_file_name.replace('.wav', '') 461 | return multichannel_audio_data, wav_id, angle_degree 462 | -------------------------------------------------------------------------------- /preparation/libri_spkid2gender.py: -------------------------------------------------------------------------------- 1 | import os 2 | import json 3 | 4 | libri_spkinfo_path = "/CDShare3/LibriSpeech/SPEAKERS.TXT" 5 | spkid2gender_path = "/Work21/2021/fuyanjie/pycode/LaBNet/data/libri_spkid2gender.json" 6 | lines = open(libri_spkinfo_path, "r").readlines() 7 | kv = dict() 8 | 9 | for idx, line in enumerate(lines): 10 | if idx < 12: 11 | continue 12 | cols = line.split('|') 13 | print(f'{cols} ') 14 | spkid = cols[0].strip() 15 | gender = cols[1].strip() 16 | kv[spkid] = gender 17 | print(f'{spkid}: {kv[spkid]} ') 18 | 19 | f = open(spkid2gender_path, 'w') 20 | f.write(json.dumps(kv)) 21 | f.close() 22 | -------------------------------------------------------------------------------- /test.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | #$ -S /bin/bash 3 | 4 | #here you'd best to change testjob as username 5 | #$ -N test 6 | 7 | #cwd define the work environment,files(username.o) will generate here 8 | #$ -cwd 9 | 10 | # merge stdo and stde to one file 11 | #$ -j y 12 | 13 | # resource requesting, e.g. for gpu use 14 | #$ -l h=gpu05 15 | echo `hostname` 16 | 17 | echo "job start time: `date`" 18 | # start whatever your job below, e.g., python, matlab, etc. 19 | #ADD YOUR COMMAND HERE,LIKE python3 main.py 20 | #chmod a+x run.sh. 21 | 22 | gpuid=2 23 | echo "gpuid: ${gpuid}" 24 | CUDA_VISIBLE_DEVICES=$gpuid /Work21/2021/fuyanjie/anaconda3/envs/torch1.8+cu111/bin/python test/test.py \ 25 | --batch-size 5 \ 26 | --ckpt-path "/path/to/your/checkpoint.pt" \ 27 | --tt-clean "/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/test-clean_0130.lst" \ 28 | # --write-wav True 29 | 30 | 31 | sleep 10 32 | echo "job end time:`date`" 33 | -------------------------------------------------------------------------------- /tools/misc.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import torch.nn as nn 4 | import numpy as np 5 | import os 6 | import sys 7 | import soundfile as sf 8 | 9 | 10 | def load_checkpoint(checkpoint_path,use_cuda) : 11 | if use_cuda: 12 | checkpoint = torch.load(checkpoint_path) 13 | else: 14 | checkpoint = torch.load( 15 | checkpoint_path,map_location=lambda storage, loc: storage) 16 | return checkpoint 17 | 18 | 19 | def get_learning_rate(optimizer): 20 | """Get learning rate""" 21 | return optimizer.param_groups[0]["lr"] 22 | 23 | def reload_for_eval(model,checkpoint_dir, use_cuda) : 24 | ckpt_name = os.path.join(checkpoint_dir,'checkpoint_decode') 25 | if not os.path.exists(ckpt_name): 26 | print(f'file does not exists: {ckpt_name}') 27 | exit(1) 28 | if os.path.isfile(ckpt_name): 29 | with open(ckpt_name,'r') as f: 30 | model_name = f.readline().strip() 31 | checkpoint_path = os.path.join(checkpoint_dir, model_name) 32 | print(f'use model file: {checkpoint_path}') 33 | checkpoint = load_checkpoint(checkpoint_path,use_cuda) 34 | print(checkpoint['model'].keys( )) 35 | model.load_state_dict(checkpoint ['model'], strict=True) 36 | print('=> Reload well-trained model {} for decoding.'. format(model_name)) 37 | 38 | 39 | def reload_model(model, optimizer, checkpoint_dir, use_cuda=True, strict=True): 40 | ckpt_name = os.path.join(checkpoint_dir, 'checkpoint') 41 | if os.path.isfile(ckpt_name): 42 | with open(ckpt_name,'r') as f: 43 | model_name = f.readline().strip() 44 | checkpoint_path = os.path.join(checkpoint_dir, model_name) 45 | checkpoint = load_checkpoint(checkpoint_path, use_cuda) 46 | model.load_state_dict(checkpoint['model'],strict=strict) 47 | # optimizer.load state dict(checkpoint [ 'optimizer' ]) 48 | epoch = checkpoint['epoch'] 49 | step = checkpoint['step'] 50 | print ('=>Reload previous model and optimizer.') 51 | else: 52 | print('[!] checkpoint directory is empty. Train a new model ...') 53 | epoch = 0 54 | step = 0 55 | return epoch, step 56 | 57 | def save_checkpoint(model, optimizer, epoch, step, checkpoint_dir, val_loss): 58 | checkpoint_path = os.path.join( 59 | checkpoint_dir, 'model.ckpt-{}-{}.pt'.format(epoch, val_loss)) 60 | torch.save({'model' : model.state_dict(), 61 | 'optimizer' : optimizer.state_dict(), 62 | 'epoch' : epoch, 63 | 'step' : step}, checkpoint_path) 64 | with open(os.path.join(checkpoint_dir, 'checkpoint'),'w' ) as f: 65 | f.write('model.ckpt-{}-{}.pt'.format(epoch, val_loss)) 66 | print("=>Save checkpoint:", checkpoint_path) 67 | 68 | 69 | def setup_lr(opt,lr): 70 | for param_group in opt.param_groups : 71 | param_group['lr'] = lr 72 | -------------------------------------------------------------------------------- /train.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | #$ -S /bin/bash 3 | 4 | #here you'd best to change testjob as username 5 | #$ -N ProStage2 6 | 7 | # resource requesting, e.g. for gpu use 8 | #$ -l h=gpu07 9 | 10 | #cwd define the work environment,files(username.o) will generate here 11 | #$ -cwd 12 | 13 | # merge stdo and stde to one file 14 | #$ -j y 15 | 16 | echo "job start time: `date`" 17 | # start whatever your job below, e.g., python, matlab, etc. 18 | #ADD YOUR COMMAND HERE,LIKE python3 main.py 19 | #chmod a+x run.sh. 20 | 21 | echo `hostname` 22 | 23 | gpuid=1 24 | echo "gpuid: ${gpuid}" 25 | 26 | CUDA_VISIBLE_DEVICES=1 \ 27 | /Work18/2020/lijunjie/anaconda3/envs/torch1.8/bin/python train/train.py \ 28 | --batch-size 4 \ 29 | --n_avb_mics 2 \ 30 | --exp-dir "/Work21/2021/fuyanjie/pycode/LaBNetPro/exp/exp0210-tri2" \ 31 | --tr-clean "/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/train-clean-100_0130.lst" \ 32 | --cv-clean "/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/dev-clean_0130.lst" \ 33 | --alpha 1 \ 34 | --beta 10 35 | #| tee -a "ProStage1.log" 36 | 37 | # gpuid=2 38 | # batch_size=4 39 | # echo "gpuid: ${gpuid}" 40 | # CUDA_VISIBLE_DEVICES=$gpuid \ 41 | # /Work18/2020/lijunjie/anaconda3/envs/torch1.8/bin/python train/train.py \ 42 | # --num-gpu 1 \ 43 | # --batch-size $batch_size \ 44 | # --exp-dir "/Work21/2021/fuyanjie/pycode/LaBNet/exp/exp0117_4mics" \ 45 | # --log-dir "/Work21/2021/fuyanjie/pycode/LaBNet/exp/exp0117_4mics/log" \ 46 | # --tr-clean "/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/train-clean-100_0117.lst" \ 47 | # --cv-clean "/Work21/2021/fuyanjie/pycode/LaBNet/data/exp_list/dev-clean_0117.lst" \ 48 | # --alpha 1 \ 49 | # --beta 10 | tee -a "/Work21/2021/fuyanjie/pycode/LaBNet/exp/exp0117_4mics/log/stage2.txt" 50 | 51 | echo "job end time:`date`" 52 | -------------------------------------------------------------------------------- /train/train.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | sys.path.append("/Work21/2021/fuyanjie/pycode/LaBNetPro") 4 | import torch 5 | import torch.nn as nn 6 | import numpy as np 7 | import argparse 8 | import torch.optim as optim 9 | import time 10 | import logging 11 | from tools.misc import get_learning_rate, save_checkpoint, reload_model, setup_lr 12 | from utils.utils import doa_err_2_source 13 | from model.Tree import Tree, si_sdr_loss, wsdr_loss 14 | from dataloader.dataloader import static_loader 15 | 16 | def load_obj(obj, device): 17 | """ 18 | Offload tensor object in obj to cuda device 19 | """ 20 | 21 | def cuda(obj): 22 | return obj.to(device, dtype=torch.float32) if isinstance(obj, torch.Tensor) else obj 23 | 24 | if isinstance(obj, dict): 25 | return {key: load_obj(obj[key], device) for key in obj} 26 | elif isinstance(obj, list): 27 | return [load_obj(val, device) for val in obj] 28 | else: 29 | return cuda(obj) 30 | 31 | def validation(model, args, lr, epoch, device): 32 | dataloader = static_loader( 33 | clean_scp=args.cv_clean, 34 | batch_size=args.batch_size, 35 | shuffle=False, 36 | num_workers=args.num_threads, 37 | sample_rate=args.sample_rate, 38 | data_mix_info=None, 39 | n_avb_mics=args.n_avb_mics 40 | ) 41 | 42 | 43 | num_batch = len(dataloader) 44 | print("Len dataloader ", num_batch) 45 | stime = time.time() 46 | 47 | mse_loss = nn.MSELoss() 48 | num_target = 0 49 | num_acc = 0 50 | num_pred = 0 51 | sum_err = 0.0 52 | loss_total = 0.0 53 | loss_as_1_total = 0.0 54 | loss_as_2_total = 0.0 55 | loss_sig_1_total = 0.0 56 | loss_sig_2_total = 0.0 57 | MAE_total = 0 58 | MAE_1_total = 0 59 | MAE_2_total = 0 60 | 61 | with torch.no_grad(): 62 | model.eval() 63 | for idx, egs in enumerate(dataloader): 64 | # load to gpu 65 | egs = load_obj(egs, device) 66 | inputs = egs["mixed_data"] # [B, C, T] 67 | gt_AS_arr = egs["doa_as_array"] # [B, T, S, n_mics, 210] 68 | gt_azi_arr = egs["doa_idx_array"] # [B, T, S, n_mics] 69 | target_1 = egs["target_1"] # [B, T] 70 | target_2 = egs["target_2"] # [B, T] 71 | 72 | es_AS_1, es_AS_2, es_sig_1, es_sig_2 = model(inputs) 73 | es_AS_1 = es_AS_1[:, 0:249, :, :] # [B, T, n_avb_mics, F] 74 | es_AS_2 = es_AS_2[:, 0:249, :, :] # [B, T, n_avb_mics, F] 75 | 76 | loss_as_1 = mse_loss(es_AS_1, gt_AS_arr[:, :, 0, :, :]) 77 | loss_as_2 = mse_loss(es_AS_2, gt_AS_arr[:, :, 1, :, :]) 78 | loss_sig_1 = wsdr_loss(es_sig_1, target_1, target_2) 79 | loss_sig_2 = wsdr_loss(es_sig_2, target_2, target_1) 80 | 81 | # weighted 82 | loss_as_1 = loss_as_1 * args.w_azimuth 83 | loss_as_2 = loss_as_2 * args.w_azimuth 84 | loss_sig_1 = loss_sig_1 * args.w_separation 85 | loss_sig_2 = loss_sig_2 * args.w_separation 86 | 87 | loss = loss_as_1 + loss_as_2 + loss_sig_1 + loss_sig_2 88 | 89 | mae_1, mae_2, num_acc_1, num_acc_2, num_pred_1, num_pred_2 = doa_err_2_source(gt_azi_arr, es_AS_1, es_AS_2) 90 | mae = (mae_1 + mae_2)/2 91 | num_acc += num_acc_1 + num_acc_2 92 | num_pred += num_pred_1 + num_pred_2 93 | sum_err += mae_1 * num_pred_1 + mae_2 * num_pred_2 94 | 95 | loss_total += loss.data.cpu() 96 | loss_as_1_total += loss_as_1.data.cpu() 97 | loss_as_2_total += loss_as_2.data.cpu() 98 | loss_sig_1_total += loss_sig_1.data.cpu() 99 | loss_sig_2_total += loss_sig_2.data.cpu() 100 | MAE_total += mae 101 | MAE_1_total += mae_1 102 | MAE_2_total += mae_2 103 | 104 | del inputs, gt_AS_arr, es_AS_1, es_AS_2, loss, loss_as_1, loss_as_2, loss_sig_1, loss_sig_2, mae, mae_1, mae_2 105 | 106 | if not num_pred == 0: 107 | print('DOA Overall ACC frame-level {:2.4f} '.format(num_acc / num_pred)) 108 | print('DOA Overall MAE frame-level {:2.4f} '.format(sum_err / num_pred)) 109 | print(f'TOTAL pred frames: DOA {num_pred}') 110 | 111 | etime = time.time() 112 | eplashed = (etime - stime) / num_batch 113 | 114 | loss_avg = loss_total / num_batch 115 | loss_as_1_avg = loss_as_1_total / num_batch 116 | loss_as_2_avg = loss_as_2_total / num_batch 117 | loss_sig_1_avg = loss_sig_1_total / num_batch 118 | loss_sig_2_avg = loss_sig_2_total / num_batch 119 | MAE_avg = MAE_total / num_batch 120 | MAE_1_avg = MAE_1_total / num_batch 121 | MAE_2_avg = MAE_2_total / num_batch 122 | 123 | print('CKPT {} ' 124 | '| {:2.3f}s/batch | time {:2.1f}mins ' 125 | '| loss {:2.6f} | loss_as {:2.6f} | loss_sig {:2.6f} ' 126 | '| loss_as_1 {:2.6f} | loss_as_2 {:2.6f} | loss_sig_1 {:2.6f} | loss_sig_2 {:2.6f} ' 127 | '| MAE {:2.4f} | MAE_1 {:2.4f} | MAE_2 {:2.4f} '.format( 128 | epoch, 129 | eplashed, 130 | (etime - stime) / 60.0, 131 | loss_avg, 132 | loss_as_1_avg + loss_as_2_avg, 133 | loss_sig_1_avg + loss_sig_2_avg, 134 | loss_as_1_avg, 135 | loss_as_2_avg, 136 | loss_sig_1_avg, 137 | loss_sig_2_avg, 138 | MAE_avg, 139 | MAE_1_avg, 140 | MAE_2_avg, 141 | )) 142 | sys.stdout.flush() 143 | return loss_avg 144 | 145 | 146 | def train_process(model, args, device, writer, mix_info_list): 147 | print('preparing data... args.segment_length = ', args.segment_length) 148 | # torch.cuda.empty_cache() 149 | dataloader = static_loader( 150 | clean_scp=args.tr_clean, 151 | batch_size=args.batch_size, 152 | shuffle=True, 153 | num_workers=args.num_threads, 154 | sample_rate=args.sample_rate, 155 | data_mix_info=None, 156 | n_avb_mics=args.n_avb_mics 157 | ) 158 | print_freq = 2000 159 | num_batch = len(dataloader) 160 | print("num_batch ", num_batch) 161 | print(f'args.num_gpu {args.num_gpu} {type(args.num_gpu)}') 162 | # multi-gpu 163 | if(args.num_gpu > 1): 164 | params = model.module.get_params(args.weight_decay) 165 | # single-gpu 166 | else: 167 | params = model.get_params(args.weight_decay) 168 | 169 | optimizer = optim.Adam(params, lr=args.learn_rate) 170 | scheduler = optim.lr_scheduler.ReduceLROnPlateau( 171 | optimizer, 'min', factor=0.5, patience=2, verbose=True) 172 | 173 | if args.retrain: 174 | start_epoch, step = reload_model(model, optimizer, args.exp_dir, 175 | args.use_cuda) 176 | else: 177 | start_epoch, step = 0, 0 178 | 179 | print('---------PRERUN-----------') 180 | print('(Initialization)') 181 | 182 | 183 | warmup_epoch = 1 184 | check_steps = 100 * print_freq 185 | warmup_lr = args.learn_rate / (2 ** warmup_epoch) 186 | 187 | model.to(device) 188 | 189 | mse_loss = nn.MSELoss() 190 | 191 | for epoch in range(start_epoch, args.max_epoch): 192 | torch.manual_seed(args.seed + epoch) 193 | if args.use_cuda: 194 | torch.cuda.manual_seed(args.seed + epoch) 195 | model.train() 196 | loss_total = 0.0 197 | loss_print = 0.0 198 | loss_as_1_total = 0.0 199 | loss_as_1_print = 0.0 200 | loss_as_2_total = 0.0 201 | loss_as_2_print = 0.0 202 | loss_sig_1_total = 0.0 203 | loss_sig_1_print = 0.0 204 | loss_sig_2_total = 0.0 205 | loss_sig_2_print = 0.0 206 | stime = time.time() 207 | if epoch == 0 and warmup_epoch > 0: 208 | print( 209 | 'Use warmup stragery,and the lr is set to {:.5f} '.format(warmup_lr)) 210 | setup_lr(optimizer, warmup_lr) 211 | warmup_lr *= 2 212 | elif epoch == warmup_epoch: 213 | print('The warmup was end,and the lr is set to {:.5f}'.format( 214 | args.learn_rate)) 215 | setup_lr(optimizer, args.learn_rate) 216 | 217 | lr = get_learning_rate(optimizer) 218 | for idx, egs in enumerate(dataloader): 219 | batch_start = time.time() 220 | 221 | # load to gpu 222 | egs = load_obj(egs, device) 223 | inputs = egs["mixed_data"] # [B, C, T] 224 | gt_AS_arr = egs["doa_as_array"] # [B, T, S, n_mics, 210] 225 | gt_azi_arr = egs["doa_idx_array"] # [B, T, S, n_mics] 226 | target_1 = egs["target_1"] # [B, T] 227 | target_2 = egs["target_2"] # [B, T] 228 | 229 | model.zero_grad() 230 | es_AS_1, es_AS_2, es_sig_1, es_sig_2 = model(inputs) 231 | 232 | es_AS_1 = es_AS_1[:, 0:249, :, :] # [B, T, n_avb_mics, F] 233 | es_AS_2 = es_AS_2[:, 0:249, :, :] # [B, T, n_avb_mics, F] 234 | 235 | loss_as_1 = mse_loss(es_AS_1, gt_AS_arr[:, :, 0, :, :]) 236 | loss_as_2 = mse_loss(es_AS_2, gt_AS_arr[:, :, 1, :, :]) 237 | loss_sig_1 = wsdr_loss(es_sig_1, target_1, target_2) 238 | loss_sig_2 = wsdr_loss(es_sig_2, target_2, target_1) 239 | 240 | # weighted 241 | loss_as_1 = loss_as_1 * args.w_azimuth 242 | loss_as_2 = loss_as_2 * args.w_azimuth 243 | loss_sig_1 = loss_sig_1 * args.w_separation 244 | loss_sig_2 = loss_sig_2 * args.w_separation 245 | 246 | loss = loss_as_1 + loss_as_2 + loss_sig_1 + loss_sig_2 247 | 248 | loss.backward() 249 | 250 | nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm) 251 | 252 | optimizer.step() 253 | 254 | step += 1 255 | loss_total += loss.data.cpu() 256 | loss_print += loss.data.cpu() 257 | loss_as_1_total += loss_as_1.data.cpu() 258 | loss_as_1_print += loss_as_1.data.cpu() 259 | loss_as_2_total += loss_as_2.data.cpu() 260 | loss_as_2_print += loss_as_2.data.cpu() 261 | loss_sig_1_total += loss_sig_1.data.cpu() 262 | loss_sig_1_print += loss_sig_1.data.cpu() 263 | loss_sig_2_total += loss_sig_2.data.cpu() 264 | loss_sig_2_print += loss_sig_2.data.cpu() 265 | 266 | if (idx + 1) % print_freq == 0: 267 | batch_time = time.time() - batch_start 268 | avg_time = (time.time() - stime)/(idx + 1) 269 | loss_print_avg = loss_print / print_freq 270 | loss_as_1_print_avg = loss_as_1_print / print_freq 271 | loss_as_2_print_avg = loss_as_2_print / print_freq 272 | loss_sig_1_print_avg = loss_sig_1_print / print_freq 273 | loss_sig_2_print_avg = loss_sig_2_print / print_freq 274 | 275 | print('Epoch {:3d}/{:3d} | batches {:5d}/{:5d} | lr {:1.4e} | Current {:2.3f}s/batches ' 276 | '| AVG {:2.3f}s/batches | loss {:2.6f} | loss_as {:2.6f} | loss_sig {:2.6f} ' 277 | '| loss_as_1 {:2.6f} | loss_as_2 {:2.6f} | loss_sig_1 {:2.6f} | loss_sig_2 {:2.6f}'.format( 278 | epoch + 1, args.max_epoch, idx + 1, num_batch, lr, 279 | batch_time, avg_time, loss_print_avg, loss_as_1_print_avg + loss_as_2_print_avg, 280 | loss_sig_1_print_avg + loss_sig_2_print_avg, 281 | loss_as_1_print_avg, loss_as_2_print_avg, 282 | loss_sig_1_print_avg, loss_sig_2_print_avg), flush=True) 283 | # sys.stdout.flush() 284 | loss_print = 0.0 285 | loss_as_1_print = 0.0 286 | loss_as_2_print = 0.0 287 | loss_sig_1_print = 0.0 288 | loss_sig_2_print = 0.0 289 | 290 | eplashed = time.time() - stime 291 | loss_avg = loss_total / (step - (epoch) * num_batch) 292 | loss_as_1_avg = loss_as_1_total / (step - (epoch) * num_batch) 293 | loss_as_2_avg = loss_as_2_total / (step - (epoch) * num_batch) 294 | loss_sig_1_avg = loss_sig_1_total / (step - (epoch) * num_batch) 295 | loss_sig_2_avg = loss_sig_2_total / (step - (epoch) * num_batch) 296 | 297 | print( 298 | 'Training AVG.LOSS |' 299 | 'Epoch {:3d}/{:3d} | lr {:1.4e} | ' 300 | '{:2.3f}s/batch | time {:3.2f}mins | ' 301 | 'loss {:2.6f} | loss_as {:2.6f} | loss_sig {:2.6f} ' 302 | 'loss_as_1 {:2.6f} | loss_as_2 {:2.6f} | loss_sig_1 {:2.6f} | loss_sig_2 {:2.6f}'.format( 303 | epoch + 1, 304 | args.max_epoch, 305 | lr, 306 | eplashed / check_steps, 307 | eplashed / 60.0, 308 | loss_avg, 309 | loss_as_1_avg + loss_as_2_avg, 310 | loss_sig_1_avg + loss_sig_2_avg, 311 | loss_as_1_avg, 312 | loss_as_2_avg, 313 | loss_sig_1_avg, 314 | loss_sig_2_avg, 315 | ), flush=True) 316 | val_loss = validation(model, args, lr, epoch, device) 317 | model.train() 318 | 319 | # if iteration after warmup_epoch,reset lr sechel to normal 320 | if epoch >= warmup_epoch: 321 | print('Rejected !!! The best is {:2.6f} '.format(scheduler.best)) 322 | logging.info(' Rejected !!! The best is {:2.6f} model epoch = {:3d} '.format( 323 | scheduler.best, epoch)) 324 | save_checkpoint(model, optimizer, epoch + 1, 325 | step, args.exp_dir, val_loss) 326 | scheduler.step(val_loss) 327 | sys.stdout.flush() 328 | else: 329 | save_checkpoint(model, optimizer, epoch + 1, 330 | step, args.exp_dir, val_loss) 331 | 332 | 333 | def main(args): 334 | cuda_flag = 1 335 | device = torch.device('cuda' if cuda_flag else 'cpu') 336 | torch.cuda.set_device(0) 337 | model = Tree(n_avb_mics=args.n_avb_mics) 338 | 339 | if not os.path.exists(args.exp_dir): 340 | os.mkdir(args.exp_dir) 341 | if not os.path.exists(os.path.join(args.exp_dir, 'log')): 342 | os.mkdir(os.path.join(args.exp_dir, 'log')) 343 | 344 | k = sum(p.numel() for p in model.parameters() if p.requires_grad) 345 | print('# of parameters:', k, flush=True) 346 | 347 | print("=" * 40, "Model Structures", "=" * 40) 348 | for module_name, m in model.named_modules(): 349 | if module_name == '': 350 | print(m) 351 | print("=" * 98) 352 | 353 | model.to(device) 354 | if torch.cuda.device_count() > 1: 355 | model = torch.nn.DataParallel(model) 356 | 357 | train_process(model, FLAGS, device, 0, mix_info_list=None) 358 | 359 | 360 | if __name__ == '__main__': 361 | parser = argparse.ArgumentParser('PyTorch Version Enhancement') 362 | # model path 363 | parser.add_argument( 364 | '--exp-dir', 365 | dest='exp_dir', 366 | type=str, 367 | default='/Work21/2021/fuyanjie/pycode/MIMO_DBnet/1-10/exp0915', 368 | help='the exp dir') 369 | parser.add_argument( 370 | '--log-dir', 371 | dest='log_dir', 372 | type=str, 373 | default='/Work21/2021/fuyanjie/pycode/MIMO_DBnet/1-10/exp0915/log', 374 | help='the random seed') 375 | 376 | # data path 377 | parser.add_argument( 378 | '--tr-clean', 379 | dest='tr_clean', 380 | type=str, 381 | default='/Work21/2021/fuyanjie/pycode/LaBNetwoDE/data/exp_list/train-clean-100_1126.lst', 382 | help='the train clean data list') 383 | parser.add_argument( 384 | '--cv-clean ', 385 | dest='cv_clean', 386 | type=str, 387 | default='/Work21/2021/fuyanjie/pycode/LaBNetwoDE/data/exp_list/dev-clean_1126.lst', 388 | help='the validation clean data list') 389 | # train process configuration 390 | parser.add_argument( 391 | '--segment_length', 392 | dest='segment_length', 393 | type=int, 394 | default=4, 395 | help='the segment length') 396 | parser.add_argument( 397 | '--learn-rate', 398 | dest='learn_rate', 399 | type=float, 400 | default=1e-4, 401 | help='the learning rate in training') 402 | parser.add_argument( 403 | '--max-epoch', 404 | dest='max_epoch', 405 | type=int, 406 | default=100, 407 | help='the max epochs ') 408 | parser.add_argument( 409 | '--dropout', 410 | dest='dropout', 411 | type=float, 412 | default=0.4, 413 | help='the probility of dropout') 414 | parser.add_argument( 415 | '--batch-size', 416 | dest='batch_size', 417 | type=int, 418 | default=1, 419 | help='the batch size in train') 420 | parser.add_argument( 421 | '--use-cuda', 422 | dest='use_cuda', 423 | default=1, 424 | type=int, 425 | help='use cuda') 426 | parser.add_argument( 427 | '--seed', 428 | dest='seed', 429 | type=int, 430 | default=20, 431 | help='the random seed') 432 | parser.add_argument( 433 | '--num-threads', 434 | dest='num_threads', 435 | type=int, 436 | default=10) 437 | parser.add_argument( 438 | '--num-gpu', 439 | dest='num_gpu', 440 | type=int, 441 | default=1, 442 | help='the num gpus to use') 443 | parser.add_argument( 444 | '--weight-decay', 445 | dest='weight_decay', 446 | type=float, 447 | default=0.0000001) 448 | parser.add_argument( 449 | '--clip-grad-norm', 450 | dest='clip_grad_norm', 451 | type=float, 452 | default=3) 453 | parser.add_argument( 454 | '--sample-rate', 455 | dest='sample_rate', 456 | type=int, 457 | default=16000) 458 | parser.add_argument( 459 | '--alpha', 460 | dest='w_azimuth', 461 | type=float, 462 | default=1) 463 | parser.add_argument( 464 | '--beta', 465 | dest='w_separation', 466 | type=float, 467 | default=10) 468 | parser.add_argument( 469 | '--n_avb_mics', 470 | dest='n_avb_mics', 471 | type=int, 472 | default=2) 473 | parser.add_argument('--retrain', dest='retrain', type=int, default=1) 474 | FLAGS, _ = parser.parse_known_args() 475 | FLAGS.use_cuda = FLAGS.use_cuda and torch.cuda.is_available() 476 | print('torch.cuda.is_available(): ', torch.cuda.is_available()) 477 | os.makedirs(FLAGS.exp_dir, exist_ok=True) 478 | np.random.seed(FLAGS.seed) 479 | torch.manual_seed(FLAGS.seed) 480 | 481 | torch.cuda.manual_seed(FLAGS.seed) 482 | import pprint 483 | 484 | pp = pprint.PrettyPrinter() 485 | pp.pprint(FLAGS.__dict__) 486 | main(FLAGS) 487 | -------------------------------------------------------------------------------- /utils/utils.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | import torch 4 | from pesq import pesq 5 | import soundfile as sf 6 | import librosa 7 | from itertools import permutations, product 8 | 9 | 10 | time_bins = 249 11 | batch = 4 12 | EPS = 1e-8 13 | 14 | def write_wav(fname, samps, fs=16000, normalize=True): 15 | """ 16 | Write wav files in int16, support single/multi-channel 17 | """ 18 | #if normalize: 19 | # samps = samps * MAX_INT16 20 | ## scipy.io.wavfile.write could write single/multi-channel files 21 | ## for multi-channel, accept ndarray [Nsamples, Nchannels] 22 | #if samps.ndim != 1 and samps.shape[0] < samps.shape[1]: 23 | # samps = np.transpose(samps) 24 | # samps = np.squeeze(samps) 25 | ## same as MATLAB and kaldi 26 | #samps_int16 = samps.astype(np.int16) 27 | #fdir = os.path.dirname(fname) 28 | #if fdir and not os.path.exists(fdir): 29 | # os.makedirs(fdir) 30 | ## NOTE: librosa 0.6.0 seems could not write non-float narray 31 | ## so use scipy.io.wavfile instead 32 | #wf.write(fname, fs, samps_int16) 33 | 34 | # wham and whamr mixture and clean data are float 32, can not use scipy.io.wavfile to read and write int16 35 | # change to soundfile to read and write, although reference speech is int16, soundfile still can read and outputs as float 36 | # soundfile also supports multi-channel files, given two-dimensional audio data (frames x channels) 37 | fdir = os.path.dirname(fname) 38 | if fdir and not os.path.exists(fdir): 39 | os.makedirs(fdir) 40 | sf.write(fname, samps, fs, subtype='FLOAT') 41 | 42 | def doa_err_2_source(gt_azi_arr, es_as_1, es_as_2): 43 | """ 44 | gt_azi_arr: # [B, T, S, n_avb_mics=2] 45 | es_as_1 / es_as_2: [B, T, n_avb_mics=2, F] F: feature dimension of the likelihood-based coding 46 | """ 47 | 48 | gt_azi_1 = gt_azi_arr[:, :, 0, :] # B, T, n_avb_mics 49 | gt_azi_2 = gt_azi_arr[:, :, 1, :] # B, T, n_avb_mics 50 | es_azi_1 = torch.max(es_as_1, 3)[1] # B, T, n_avb_mics 51 | es_azi_2 = torch.max(es_as_2, 3)[1] # B, T, n_avb_mics 52 | 53 | mask_1 = torch.ones((es_azi_1.shape[0], es_azi_1.shape[1], es_azi_1.shape[2]), device=es_as_1.device) # filter -1 value 54 | mask_2 = torch.ones((es_azi_2.shape[0], es_azi_2.shape[1], es_azi_2.shape[2]), device=es_as_1.device) 55 | mask_1[gt_azi_1 == -1] = 0 56 | mask_2[gt_azi_2 == -1] = 0 57 | masked_gt_azi_1 = gt_azi_1 * mask_1 # B, T, n_avb_mics 58 | masked_gt_azi_2 = gt_azi_2 * mask_2 59 | masked_es_azi_1 = es_azi_1 * mask_1 60 | masked_es_azi_2 = es_azi_2 * mask_2 61 | abs_err_azi_1 = torch.abs(masked_gt_azi_1-masked_es_azi_1) 62 | abs_err_azi_2 = torch.abs(masked_gt_azi_2-masked_es_azi_2) 63 | num_pred_1 = mask_1.sum() 64 | num_pred_2 = mask_2.sum() 65 | mae_1 = torch.sum(abs_err_azi_1) / num_pred_1 # [1] 66 | mae_2 = torch.sum(abs_err_azi_2) / num_pred_2 # [1] 67 | num_acc_1 = torch.where(abs_err_azi_1 <= 5, 1, 0).sum() - torch.sum(mask_1 == 0) 68 | num_acc_2 = torch.where(abs_err_azi_2 <= 5, 1, 0).sum() - torch.sum(mask_2 == 0) 69 | 70 | return mae_1, mae_2, num_acc_1, num_acc_2, num_pred_1, num_pred_2 71 | 72 | def dist_err_2_source(gt_dist_arr, es_ds_1, es_ds_2, dist_tolerance=20): 73 | """ 74 | gt_dist_arr: [B, T, S] 75 | es_ds_1 / es_ds_2: [B, T, F] F: feature dimension of the likelihood-based coding 76 | """ 77 | gt_dist_1 = gt_dist_arr[:, :, 0] # B, T 78 | gt_dist_2 = gt_dist_arr[:, :, 1] # B, T 79 | es_dist_1 = torch.max(es_ds_1, 2)[1] # B, T 80 | es_dist_2 = torch.max(es_ds_2, 2)[1] # B, T 81 | 82 | mask_1 = torch.ones((es_dist_1.shape[0], es_dist_1.shape[1]), device=es_ds_1.device) # filter -1 value 83 | mask_2 = torch.ones((es_dist_2.shape[0], es_dist_2.shape[1]), device=es_ds_1.device) 84 | mask_1[gt_dist_1 == -1] = 0 85 | mask_2[gt_dist_2 == -1] = 0 86 | masked_gt_dist_1 = gt_dist_1 * mask_1 # B, T 87 | masked_gt_dist_2 = gt_dist_2 * mask_2 88 | masked_es_dist_1 = es_dist_1 * mask_1 89 | masked_es_dist_2 = es_dist_2 * mask_2 90 | abs_err_azi_1 = torch.abs(masked_gt_dist_1-masked_es_dist_1) 91 | abs_err_azi_2 = torch.abs(masked_gt_dist_2-masked_es_dist_2) 92 | num_pred_1 = mask_1.sum() 93 | num_pred_2 = mask_2.sum() 94 | mae_1 = torch.sum(abs_err_azi_1) / num_pred_1 # [1] 95 | mae_2 = torch.sum(abs_err_azi_2) / num_pred_2 # [1] 96 | num_acc_1 = torch.where(abs_err_azi_1 <= dist_tolerance, 1, 0).sum() - torch.sum(mask_1 == 0) 97 | num_acc_2 = torch.where(abs_err_azi_2 <= dist_tolerance, 1, 0).sum() - torch.sum(mask_2 == 0) 98 | 99 | return mae_1, mae_2, num_acc_1, num_acc_2, num_pred_1, num_pred_2 100 | 101 | 102 | def cal_si_snr(source, estimate_source): 103 | """Calculate SI-SNR without PIT training. 104 | Args: 105 | source: [B, C, T] a tensor 106 | estimate_source: [B, C, T] a tensor 107 | B:batch_size C: channel T:lenght of audio 108 | in this case C==1 only single channel 109 | """ 110 | # assert source.size() == estimate_source.size() 111 | B, C, T = source.size() 112 | 113 | # Step 1. Zero-mean norm 114 | # num_samples = source_lengths.view(-1, 1, 1).float() ?# [B, 1, 1] 115 | mean_target = torch.sum(source, dim=2, keepdim=True) / T 116 | mean_estimate = torch.sum(estimate_source, dim=2, keepdim=True) / T 117 | zero_mean_target = source - mean_target 118 | zero_mean_estimate = estimate_source - mean_estimate 119 | 120 | 121 | # Step 2. SI-SNR without PIT 122 | # reshape to use broadcast 123 | s_target = zero_mean_target # [B, C, T] 124 | s_estimate = zero_mean_estimate # [B, C, T] 125 | # s_target = source 126 | # s_estimate = estimate_source 127 | 128 | 129 | # s_target = s / ||s||^2 130 | pair_wise_dot = torch.sum(s_estimate * s_target, dim=2, keepdim=True) # [B, C, 1] 131 | s_target_energy = torch.sum(s_target ** 2, dim=2, keepdim=True) + EPS # [B, C, 1] 132 | pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, C, T] 133 | # print('s_target:',pair_wise_proj[0][0][0:10]) 134 | # e_noise = s' - s_target 135 | e_noise = s_estimate - pair_wise_proj # [B, C, T] 136 | 137 | # SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2) 138 | pair_wise_si_snr = torch.sum(pair_wise_proj ** 2, dim=2) / (torch.sum(e_noise ** 2, dim=2) + EPS) 139 | pair_wise_si_snr = 10 * torch.log10(pair_wise_si_snr + EPS) # [B, C] 140 | 141 | # print('888',pair_wise_si_snr.shape) 142 | si_snr = torch.mean(pair_wise_si_snr, dim=0) 143 | 144 | # si_snr = torch.sum(pair_wise_si_snr,dim=0) 145 | 146 | return round(float(si_snr.cpu().numpy()[0]),4) 147 | 148 | def cal_si_snr_np(source, estimate_source): 149 | """Calculate SI-SNR without PIT training. 150 | Args: 151 | source: [B, C, T] a tensor 152 | estimate_source: [B, C, T] a tensor 153 | B:batch_size C: channel T:lenght of audio 154 | in this case C==1 only single channel 155 | """ 156 | # assert source.size() == estimate_source.size() 157 | B, C, T = source.shape 158 | 159 | # Step 1. Zero-mean norm 160 | # num_samples = source_lengths.view(-1, 1, 1).float() ?# [B, 1, 1] 161 | mean_target = np.sum(source, axis=2, keepdims=True) / T 162 | mean_estimate = np.sum(estimate_source, axis=2, keepdims=True) / T 163 | zero_mean_target = source - mean_target 164 | zero_mean_estimate = estimate_source - mean_estimate 165 | 166 | 167 | # Step 2. SI-SNR without PIT 168 | # reshape to use broadcast 169 | s_target = zero_mean_target # [B, C, T] 170 | s_estimate = zero_mean_estimate # [B, C, T] 171 | # s_target = source 172 | # s_estimate = estimate_source 173 | 174 | 175 | # s_target = s / ||s||^2 176 | pair_wise_dot = np.sum(s_estimate * s_target, axis=2, keepdims=True) # [B, C, 1] 177 | s_target_energy = np.sum(s_target ** 2, axis=2, keepdims=True) + EPS # [B, C, 1] 178 | pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, C, T] 179 | # print('s_target:',pair_wise_proj[0][0][0:10]) 180 | # e_noise = s' - s_target 181 | e_noise = s_estimate - pair_wise_proj # [B, C, T] 182 | 183 | # SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2) 184 | pair_wise_si_snr = np.sum(pair_wise_proj ** 2, axis=2) / (np.sum(e_noise ** 2, axis=2) + EPS) 185 | pair_wise_si_snr = 10 * np.log10(pair_wise_si_snr + EPS) # [B, C] 186 | 187 | # print('888',pair_wise_si_snr.shape) 188 | si_snr = np.mean(pair_wise_si_snr, axis=0) 189 | 190 | # si_snr = np.sum(pair_wise_si_snr,axis=0) 191 | 192 | return round(float(si_snr[0]),4) 193 | 194 | def pow_p_norm(signal): 195 | """Compute 2 Norm""" 196 | return torch.pow(torch.norm(signal, p=2, dim=-1, keepdim=True), 2) 197 | 198 | def pow_norm(s1, s2): 199 | return torch.sum(s1 * s2, dim=-1, keepdim=True) 200 | 201 | def remove_dc(signal): 202 | """Normalized to zero mean""" 203 | mean = torch.mean(signal, dim=-1, keepdim=True) 204 | signal = signal - mean 205 | return signal 206 | 207 | def si_sdr(estimated, original): 208 | # estimated = remove_dc(estimated) 209 | # original = remove_dc(original) 210 | target = pow_norm(estimated, original) * original / (pow_p_norm(original) + EPS) 211 | noise = estimated - target 212 | sdr = 10 * torch.log10(pow_p_norm(target) / (pow_p_norm(noise) + EPS) + EPS) 213 | return sdr.squeeze_(dim=-1) 214 | 215 | # Minimize negative SI-SDR 216 | def permute_si_sdr(est, src): 217 | """ Caculate SI-SDR with PIT. 218 | Args: 219 | est: [batch_size, nspk, length] 220 | src: [batch_size, nspk, length] 221 | """ 222 | assert est.size() == src.size() 223 | nspk = est.size(1) 224 | # reshape source to [batch_size, 1, nspk, length] 225 | src = torch.unsqueeze(src, dim=1) 226 | # reshape estimation to [batch_size, nspk, 1, length] 227 | est = torch.unsqueeze(est, dim=2) 228 | pair_wise_sdr = si_sdr(est, src) # [batch_size, nspk, nspk] 229 | # permutation, [nspk!, nspk] 230 | perms = torch.tensor(list(permutations(range(nspk))), dtype=torch.long) 231 | index = torch.unsqueeze(perms, dim=-1) 232 | # one-hot, [nspk!, nspk, nspk] 233 | perms_one_hot = torch.zeros((*perms.size(), nspk)).scatter_(-1, index, 1) 234 | perms_one_hot = perms_one_hot.to(est.device) 235 | # einsum([batch_size, nspk, nspk], [nspk!, nspk, nspk]) -> [batch_size, nspk!] 236 | sdr_set = torch.einsum('bij,pij->bp', [pair_wise_sdr, perms_one_hot]) 237 | # max_sdr_idx = torch.argmax(sdr_set, dim=-1) 238 | max_sdr, _ = torch.max(sdr_set, dim=-1) 239 | avg_loss = 0.0 - torch.mean(max_sdr / nspk) 240 | return avg_loss 241 | 242 | def assignment_si_sdr(est, ref): 243 | """ Solve the assignment problem when computing SI-SDR. 244 | Args: 245 | est: [batch_size, est_num_sources=3, length] 246 | ref: [batch_size, ref_num_sources=2, length] 247 | """ 248 | ref_num_sources = ref.size(1) 249 | est_num_sources = est.size(1) 250 | losses = [] 251 | idxs = [] 252 | # This itertools call returns all possible assignments from estimates to 253 | # references, E.g. itertools.product(range(2), repeat=3) produces: 254 | # (0, 0, 0) 255 | # (0, 0, 1) 256 | # (0, 1, 0) 257 | # (0, 1, 1) 258 | # (1, 0, 0) 259 | # (1, 0, 1) 260 | # (1, 1, 0) 261 | # (1, 1, 1) 262 | for idx in product(range(ref_num_sources), repeat=est_num_sources): 263 | # mix_matrix's shape: [1, ref_num_sources, est_num_sources] 264 | mix_matrix = torch.unsqueeze(torch.nn.functional.one_hot(torch.tensor(idx), num_classes=ref_num_sources).transpose(1,0).float(), dim=0) 265 | # estimate_mixed's shape: [batch, ref_num_sources, ...]. 266 | estimate_mixed = torch.matmul(mix_matrix, est) 267 | # losses[0]: [batch, ref_num_sources] 268 | losses.append(torch.mean(si_sdr(estimate_mixed, ref), dim=1, keepdim=True)) 269 | idxs.append(idx) 270 | loss_matrix = torch.cat(losses, dim=1) 271 | # loss_matrix's shape: [batch, len(idxs)]. 272 | idx_argmin = torch.argmin(loss_matrix, dim=1) 273 | idx_argmin = torch.unsqueeze(idx_argmin, 1) 274 | # idx_argmin's shape: [batch, 1]. 275 | 276 | def th_gather_1d(x, indices): 277 | x_gather = torch.index_select(x, 1, indices) 278 | return x_gather 279 | def th_gather_2d(param, indices): 280 | # param: [batch, row_size, col_size] 281 | # indices: [batch, 2] 282 | # return: [batch, horizon] 283 | indices = indices[:, 1] 284 | return torch.stack([param[i, indices[i]] for i in range(indices.shape[0])], 0) 285 | 286 | print(f'loss_matrix {loss_matrix.shape}') 287 | print(f'loss_matrix {loss_matrix}') 288 | print(f'A idx_argmin {idx_argmin.shape}') 289 | print(f'A idx_argmin {idx_argmin}') 290 | loss_best_mixture = torch.gather(loss_matrix, 1, idx_argmin).squeeze() # [B] 291 | print(f'loss_best_mixture {loss_best_mixture.shape}') 292 | print(f'loss_best_mixture {loss_best_mixture}') 293 | # idxs_tf [len(idxs), est_num_sources] 294 | idxs_tf = torch.cat([torch.unsqueeze(torch.tensor(idx), dim=0) for idx in idxs], dim=0) 295 | idxs_tf = torch.unsqueeze(idxs_tf, 0).repeat(batch, 1, 1) 296 | print(f'idxs_tf {idxs_tf.shape}') 297 | # idxs_tf's shape: [batch, len(idxs), est_num_sources]. 298 | idx_argmin = torch.stack([idx_argmin for i in range(est_num_sources)], dim=-1) 299 | print(f'B idx_argmin {idx_argmin.shape}') 300 | print(f'B idx_argmin {idx_argmin}') 301 | idxs_best = torch.gather(idxs_tf, 1, idx_argmin).squeeze() 302 | # idxs_best is shape [batch, est_num_sources]. 303 | print(f'idxs_best {idxs_best.shape}') 304 | mix_matrix = torch.nn.functional.one_hot(idxs_best, num_classes=ref_num_sources).to(torch.float32) 305 | print(f'mix_matrix {mix_matrix.shape}') 306 | # mix_matrix's shape [batch, ref_num_sources, est_num_sources]. 307 | 308 | return loss_best_mixture, mix_matrix 309 | 310 | def cal_pesq(source, estimate_source): 311 | """Calculate PESQ without PIT training. 312 | Args: 313 | source: [B, T] 314 | estimate_source: [B, T] 315 | """ 316 | # assert source.size() == estimate_source.size() 317 | 318 | sr = 16000 319 | # print(source.shape) 320 | batch_size, _ = source.shape 321 | pesq_sum = 0 322 | for batch_idx in range(batch_size): 323 | pesq_sum += pesq(sr, source[batch_idx, :], estimate_source[batch_idx, :], 'wb') 324 | 325 | return (pesq_sum / batch_size) 326 | 327 | def audioread(path, segment=64000, fs = 16000): 328 | wave_data, sr = sf.read(path) 329 | if sr != fs: 330 | wave_data = librosa.resample(wave_data,sr,fs) 331 | return wave_data 332 | 333 | def loss_energy(x, eps=1e-8, fs=16000): 334 | # [B, T] 335 | """ 336 | Arguments: 337 | x: estimated signal, [B, T] tensor 338 | average by duration (seconds) 339 | """ 340 | return torch.mean(10 * torch.log10(pow_p_norm(x) * fs / x.shape[-1] + eps)) 341 | 342 | def split_spec_into_subbands(sig, freq_bound, win_size, hop_size, fs=16000): 343 | """ 344 | Args: 345 | sig: [ch, T] 346 | """ 347 | import apkit 348 | # tf.shape: [C, num_frames, win_size] tf.dtype: complex128 349 | tf = apkit.stft(sig, apkit.cola_hamming, win_size, hop_size, last_sample=True) 350 | # trim freq bins 351 | 352 | fbin_bound = int(freq_bound * win_size / fs) 353 | tf_below = tf[:,:, :fbin_bound] # 0-4kHz 354 | tf_above = tf[:,:, fbin_bound:] # > 4kHz 355 | return tf_below, tf_above 356 | 357 | def split_spec_into_subbands_timedomain(sig, freq_bound, win_size, hop_size, fs=16000): 358 | """ 359 | Args: 360 | sig: [ch, T] 361 | """ 362 | import apkit 363 | # tf.shape: [C, num_frames, win_size] tf.dtype: complex128 364 | tf = apkit.stft(sig, apkit.cola_hamming, win_size, hop_size, last_sample=True) 365 | # trim freq bins 366 | fbin_bound = int(freq_bound * win_size / fs) 367 | 368 | tf_below = tf[:,:, :fbin_bound] # 0-4kHz 369 | tf_above = tf[:,:, fbin_bound:] # > 4kHz 370 | 371 | tf_below = np.pad(tf_below, ((0, 0), (0, 0), (0, win_size-fbin_bound))) 372 | tf_above = np.pad(tf_above, ((0, 0), (0, 0), (fbin_bound, 0))) 373 | # tf_below.shape: [C, num_frames, win_size] tf_above.shape: [C, num_frames, win_size] 374 | sig_below = apkit.istft(tf_below, hop_size) # [C, T] 375 | sig_above = apkit.istft(tf_above, hop_size) # [C, T] 376 | 377 | # write_wav("/Work21/2021/fuyanjie/pycode/MIMO_DBnet/1-10new/testlt4k.wav", sig_below[0]) 378 | # write_wav("/Work21/2021/fuyanjie/pycode/MIMO_DBnet/1-10new/testgt4k.wav", sig_above[0]) 379 | return sig_below, sig_above 380 | 381 | if __name__ == '__main__': 382 | # e1 = np.random.randn(1, 64000) 383 | # e2 = np.random.randn(1, 1, 32000) 384 | # c1 = np.random.randn(1, 1, 32000) 385 | # c2 = np.random.randn(1, 1, 32000) 386 | # print(f'e1.shape {e1.shape} e2.shape {e2.shape}') 387 | # print(f'c1.shape {c1.shape} c2.shape {c2.shape}') 388 | # print(cal_si_snr_np(e1, c1)) 389 | # print(cal_si_snr_np(e2, c2)) 390 | # es 71, 82 391 | gt_azi_arr = torch.tensor([[[62,62]]]) 392 | # print(f'{gt_azi_arr.shape} {es_as_1.shape} {es_as_2.shape}') 393 | # print(doa_err_2_source(gt_azi_arr, es_as_1, es_as_2)) --------------------------------------------------------------------------------