├── LICENSE
├── LPRNet_Pytorch
├── .idea
│ ├── .gitignore
│ ├── LPRNet_Pytorch.iml
│ ├── inspectionProfiles
│ │ ├── Project_Default.xml
│ │ └── profiles_settings.xml
│ ├── misc.xml
│ └── modules.xml
├── data
│ ├── NotoSansCJK-Regular.ttc
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-37.pyc
│ │ ├── __init__.cpython-38.pyc
│ │ ├── load_data.cpython-37.pyc
│ │ └── load_data.cpython-38.pyc
│ ├── load_data.py
│ └── test
│ │ ├── 京PL3N67.jpg
│ │ ├── 川JK0707.jpg
│ │ ├── 川X90621.jpg
│ │ ├── 沪AMS087.jpg
│ │ ├── 沪C21F13.jpg
│ │ ├── 沪C8GK31.jpg
│ │ ├── 皖A00E66.jpg
│ │ ├── 皖A0C333.jpg
│ │ ├── 皖A0C911.jpg
│ │ ├── 苏A0X3B2.jpg
│ │ ├── 苏A53D97.jpg
│ │ ├── 苏A57NT9.jpg
│ │ ├── 苏A8DC31.jpg
│ │ ├── 苏AP48A8.jpg
│ │ ├── 苏B810FT.jpg
│ │ ├── 苏BH828L.jpg
│ │ ├── 苏E5YR23.jpg
│ │ ├── 苏E7R5Y0.jpg
│ │ ├── 苏E9CD08.jpg
│ │ ├── 苏EW0806.jpg
│ │ ├── 苏EYV501.jpg
│ │ ├── 苏G2F335.jpg
│ │ ├── 苏HXN335.jpg
│ │ ├── 闽D33U29.jpg
│ │ ├── 鲁AW9V20.jpg
│ │ ├── 鲁BE31L9.jpg
│ │ ├── 鲁Q08F99.jpg
│ │ └── 鲁R8D57Z.jpg
├── model
│ ├── LPRNet.py
│ ├── __init__.py
│ └── __pycache__
│ │ ├── LPRNet.cpython-37.pyc
│ │ └── __init__.cpython-37.pyc
├── predict_data.csv
├── test.py
├── train.py
└── weights
│ └── Final_LPRNet_model.pth
├── README.md
└── Yolov7
├── VOCCCPDlicense
└── images
│ └── try
│ ├── 0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.jpg
│ ├── 0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.jpg
│ ├── 03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.jpg
│ └── 03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.jpg
├── cfg
└── training
│ └── yolov7-e6e-ccpd.yaml
├── data
├── hyp.scratch.custom.yaml
└── license.yaml
├── detect.py
├── models
├── __pycache__
│ ├── common.cpython-37.pyc
│ ├── experimental.cpython-37.pyc
│ └── yolo.cpython-37.pyc
├── common.py
├── experimental.py
└── yolo.py
├── runs
└── detect
│ └── exp
│ ├── 0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.jpg
│ ├── 0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.jpg
│ ├── 03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.jpg
│ ├── 03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.jpg
│ └── labels
│ ├── 0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.txt
│ ├── 0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.txt
│ ├── 03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.txt
│ └── 03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.txt
└── utils
├── __pycache__
├── autoanchor.cpython-37.pyc
├── datasets.cpython-37.pyc
├── general.cpython-37.pyc
├── google_utils.cpython-37.pyc
├── loss.cpython-37.pyc
├── metrics.cpython-37.pyc
├── plots.cpython-37.pyc
└── torch_utils.cpython-37.pyc
├── activations.py
├── add_nms.py
├── autoanchor.py
├── datasets.py
├── general.py
├── google_utils.py
├── loss.py
├── metrics.py
├── plots.py
└── torch_utils.py
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # 默认忽略的文件
2 | /shelf/
3 | /workspace.xml
4 | # 基于编辑器的 HTTP 客户端请求
5 | /httpRequests/
6 | # Datasource local storage ignored files
7 | /dataSources/
8 | /dataSources.local.xml
9 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/.idea/LPRNet_Pytorch.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/.idea/inspectionProfiles/Project_Default.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/NotoSansCJK-Regular.ttc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/NotoSansCJK-Regular.ttc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | # @Author: fanstuck
3 | # @Time: 2023/9/25 10:42
4 | # @File: __init__.py
5 | from .load_data import *
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/__pycache__/__init__.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/__pycache__/__init__.cpython-37.pyc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/__pycache__/load_data.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/__pycache__/load_data.cpython-37.pyc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/__pycache__/load_data.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/__pycache__/load_data.cpython-38.pyc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/load_data.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | # @Author: fanstuck
3 | # @Time: 2023/9/25 10:41
4 | # @File: load_data.py
5 | from torch.utils.data import *
6 | from imutils import paths
7 | import numpy as np
8 | import random
9 | import cv2
10 | import os
11 |
12 | CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
13 | '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
14 | '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
15 | '新',
16 | '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
17 | 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
18 | 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
19 | 'W', 'X', 'Y', 'Z', 'I', 'O', '-'
20 | ]
21 |
22 | CHARS_DICT = {char:i for i, char in enumerate(CHARS)}
23 |
24 | class LPRDataLoader(Dataset):
25 | def __init__(self, img_dir, imgSize, lpr_max_len, PreprocFun=None):
26 | self.img_dir = img_dir
27 | self.img_paths = []
28 | for i in range(len(img_dir)):
29 | self.img_paths += [el for el in paths.list_images(img_dir[i])]
30 | random.shuffle(self.img_paths)
31 | self.img_size = imgSize
32 | self.lpr_max_len = lpr_max_len
33 | if PreprocFun is not None:
34 | self.PreprocFun = PreprocFun
35 | else:
36 | self.PreprocFun = self.transform
37 |
38 | def __len__(self):
39 | return len(self.img_paths)
40 |
41 | def __getitem__(self, index):
42 | filename = self.img_paths[index]
43 | Image = cv2.imdecode(np.fromfile(filename, dtype=np.uint8), -1)
44 | Image = cv2.cvtColor(Image, cv2.COLOR_RGB2BGR)
45 | height, width, _ = Image.shape
46 | if height != self.img_size[1] or width != self.img_size[0]:
47 | Image = cv2.resize(Image, self.img_size)
48 | Image = self.PreprocFun(Image)
49 |
50 | basename = os.path.basename(filename)
51 | imgname, suffix = os.path.splitext(basename)
52 | imgname = imgname.split("-")[0].split("_")[0]
53 | label = list()
54 | for c in imgname:
55 | # one_hot_base = np.zeros(len(CHARS))
56 | # one_hot_base[CHARS_DICT[c]] = 1
57 | label.append(CHARS_DICT[c])
58 |
59 | if len(label) == 8:
60 | if self.check(label) == False:
61 | print(imgname)
62 | assert 0, "Error label ^~^!!!"
63 |
64 | return Image, label, len(label)
65 |
66 | def transform(self, img):
67 | img = img.astype('float32')
68 | img -= 127.5
69 | img *= 0.0078125
70 | img = np.transpose(img, (2, 0, 1))
71 |
72 | return img
73 |
74 | def check(self, label):
75 | if label[2] != CHARS_DICT['D'] and label[2] != CHARS_DICT['F'] \
76 | and label[-1] != CHARS_DICT['D'] and label[-1] != CHARS_DICT['F']:
77 | print("Error label, Please check!")
78 | return False
79 | else:
80 | return True
81 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/京PL3N67.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/京PL3N67.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/川JK0707.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/川JK0707.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/川X90621.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/川X90621.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/沪AMS087.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/沪AMS087.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/沪C21F13.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/沪C21F13.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/沪C8GK31.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/沪C8GK31.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/皖A00E66.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/皖A00E66.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/皖A0C333.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/皖A0C333.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/皖A0C911.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/皖A0C911.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏A0X3B2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏A0X3B2.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏A53D97.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏A53D97.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏A57NT9.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏A57NT9.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏A8DC31.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏A8DC31.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏AP48A8.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏AP48A8.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏B810FT.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏B810FT.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏BH828L.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏BH828L.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏E5YR23.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏E5YR23.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏E7R5Y0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏E7R5Y0.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏E9CD08.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏E9CD08.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏EW0806.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏EW0806.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏EYV501.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏EYV501.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏G2F335.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏G2F335.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/苏HXN335.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/苏HXN335.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/闽D33U29.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/闽D33U29.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/鲁AW9V20.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/鲁AW9V20.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/鲁BE31L9.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/鲁BE31L9.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/鲁Q08F99.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/鲁Q08F99.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/data/test/鲁R8D57Z.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/data/test/鲁R8D57Z.jpg
--------------------------------------------------------------------------------
/LPRNet_Pytorch/model/LPRNet.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | # @Author: fanstuck
3 | # @Time: 2023/9/25 10:43
4 | # @File: LPRNet.py
5 | import torch.nn as nn
6 | import torch
7 |
8 | class small_basic_block(nn.Module):
9 | def __init__(self, ch_in, ch_out):
10 | super(small_basic_block, self).__init__()
11 | self.block = nn.Sequential(
12 | nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
13 | nn.ReLU(),
14 | nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
15 | nn.ReLU(),
16 | nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
17 | nn.ReLU(),
18 | nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
19 | )
20 | def forward(self, x):
21 | return self.block(x)
22 |
23 | class LPRNet(nn.Module):
24 | def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
25 | super(LPRNet, self).__init__()
26 | self.phase = phase
27 | self.lpr_max_len = lpr_max_len
28 | self.class_num = class_num
29 | self.backbone = nn.Sequential(
30 | nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
31 | nn.BatchNorm2d(num_features=64),
32 | nn.ReLU(), # 2
33 | nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
34 | small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
35 | nn.BatchNorm2d(num_features=128),
36 | nn.ReLU(), # 6
37 | nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
38 | small_basic_block(ch_in=64, ch_out=256), # 8
39 | nn.BatchNorm2d(num_features=256),
40 | nn.ReLU(), # 10
41 | small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
42 | nn.BatchNorm2d(num_features=256), # 12
43 | nn.ReLU(),
44 | nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
45 | nn.Dropout(dropout_rate),
46 | nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
47 | nn.BatchNorm2d(num_features=256),
48 | nn.ReLU(), # 18
49 | nn.Dropout(dropout_rate),
50 | nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
51 | nn.BatchNorm2d(num_features=class_num),
52 | nn.ReLU(), # *** 22 ***
53 | )
54 | self.container = nn.Sequential(
55 | nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),
56 | # nn.BatchNorm2d(num_features=self.class_num),
57 | # nn.ReLU(),
58 | # nn.Conv2d(in_channels=self.class_num, out_channels=self.lpr_max_len+1, kernel_size=3, stride=2),
59 | # nn.ReLU(),
60 | )
61 |
62 | def forward(self, x):
63 | keep_features = list()
64 | for i, layer in enumerate(self.backbone.children()):
65 | x = layer(x)
66 | if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
67 | keep_features.append(x)
68 |
69 | global_context = list()
70 | for i, f in enumerate(keep_features):
71 | if i in [0, 1]:
72 | f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
73 | if i in [2]:
74 | f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
75 | f_pow = torch.pow(f, 2)
76 | f_mean = torch.mean(f_pow)
77 | f = torch.div(f, f_mean)
78 | global_context.append(f)
79 |
80 | x = torch.cat(global_context, 1)
81 | x = self.container(x)
82 | logits = torch.mean(x, dim=2)
83 |
84 | return logits
85 |
86 | def build_lprnet(lpr_max_len=8, phase=False, class_num=66, dropout_rate=0.5):
87 |
88 | Net = LPRNet(lpr_max_len, phase, class_num, dropout_rate)
89 |
90 | if phase == "train":
91 | return Net.train()
92 | else:
93 | return Net.eval()
94 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/model/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | # @Author: fanstuck
3 | # @Time: 2023/9/25 10:43
4 | # @File: __init__.py
5 | from .LPRNet import *
--------------------------------------------------------------------------------
/LPRNet_Pytorch/model/__pycache__/LPRNet.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/model/__pycache__/LPRNet.cpython-37.pyc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/model/__pycache__/__init__.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/model/__pycache__/__init__.cpython-37.pyc
--------------------------------------------------------------------------------
/LPRNet_Pytorch/predict_data.csv:
--------------------------------------------------------------------------------
1 | ,target_license,predict_license
2 | 0,苏AP48A8,GAP48A8
3 | 1,苏EW0806,7EW0806
4 | 2,皖A0C333,皖A0C333
5 | 3,苏E7R5Y0,苏E7R5Y0
6 | 4,苏E5YR23,苏E5YR23
7 | 5,京PL3N67,皖PL3N67
8 | 6,鲁BE31L9,皖BE31L9
9 | 7,鲁R8D57Z,皖R8D57Z
10 | 8,苏G2F335,浙G2F335
11 | 9,沪AMS087,沪AMS087
12 | 10,川JK0707,川JK0707
13 | 11,皖A0C911,皖A0C911
14 | 12,苏EYV501,苏EYV501
15 | 13,苏A53D97,苏A53D97
16 | 14,苏A8DC31,苏A8DC31
17 | 15,沪C21F13,沪C21F13
18 | 16,苏A0X3B2,苏A0X3B2
19 | 17,川X90621,川WX90621
20 | 18,鲁AW9V20,皖AW9V20
21 | 19,苏HXN335,皖HXN335
22 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/test.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | # @Author: fanstuck
3 | # @Time: 2023/9/25 10:46
4 | # @File: test.py
5 | # -*- coding: utf-8 -*-
6 | # /usr/bin/env/python3
7 |
8 | '''
9 | test pretrained model.
10 | Author: aiboy.wei@outlook.com .
11 | '''
12 |
13 | from data.load_data import CHARS, CHARS_DICT, LPRDataLoader
14 | from PIL import Image, ImageDraw, ImageFont
15 | from model.LPRNet import build_lprnet
16 | # import torch.backends.cudnn as cudnn
17 | from torch.autograd import Variable
18 | import torch.nn.functional as F
19 | from torch.utils.data import *
20 | from torch import optim
21 | import torch.nn as nn
22 | import numpy as np
23 | import argparse
24 | import torch
25 | import pandas as pd
26 | import time
27 | import cv2
28 | import os
29 |
30 | def get_parser():
31 | parser = argparse.ArgumentParser(description='parameters to train net')
32 | parser.add_argument('--img_size', default=[94, 24], help='the image size')
33 | parser.add_argument('--test_img_dirs', default="./data/test", help='the test images path')
34 | parser.add_argument('--dropout_rate', default=0, help='dropout rate.')
35 | parser.add_argument('--lpr_max_len', default=8, help='license plate number max length.')
36 | parser.add_argument('--test_batch_size', default=10, help='testing batch size.')
37 | parser.add_argument('--phase_train', default=False, type=bool, help='train or test phase flag.')
38 | parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
39 | parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model')
40 | parser.add_argument('--show', default=True, type=bool, help='show test image and its predict result or not.')
41 | parser.add_argument('--pretrained_model', default='./weights/Final_LPRNet_model.pth', help='pretrained base model')
42 |
43 | args = parser.parse_args()
44 |
45 | return args
46 |
47 | def collate_fn(batch):
48 | imgs = []
49 | labels = []
50 | lengths = []
51 | for _, sample in enumerate(batch):
52 | img, label, length = sample
53 | imgs.append(torch.from_numpy(img))
54 | labels.extend(label)
55 | lengths.append(length)
56 | labels = np.asarray(labels).flatten().astype(np.float32)
57 |
58 | return (torch.stack(imgs, 0), torch.from_numpy(labels), lengths)
59 |
60 | def test():
61 | args = get_parser()
62 |
63 | lprnet = build_lprnet(lpr_max_len=args.lpr_max_len, phase=args.phase_train, class_num=len(CHARS), dropout_rate=args.dropout_rate)
64 | device = torch.device("cuda:0" if args.cuda else "cpu")
65 | lprnet.to(device)
66 | print("Successful to build network!")
67 |
68 | # load pretrained model
69 | if args.pretrained_model:
70 | lprnet.load_state_dict(torch.load(args.pretrained_model))
71 | print("load pretrained model successful!")
72 | else:
73 | print("[Error] Can't found pretrained mode, please check!")
74 | return False
75 |
76 | test_img_dirs = os.path.expanduser(args.test_img_dirs)
77 | test_dataset = LPRDataLoader(test_img_dirs.split(','), args.img_size, args.lpr_max_len)
78 | try:
79 | Greedy_Decode_Eval(lprnet, test_dataset, args)
80 | finally:
81 | cv2.destroyAllWindows()
82 |
83 | def Greedy_Decode_Eval(Net, datasets, args):
84 | Net = Net.eval()
85 | epoch_size = len(datasets) // args.test_batch_size
86 | batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn))
87 |
88 | Tp = 0
89 | Tn_1 = 0
90 | Tn_2 = 0
91 | t1 = time.time()
92 | for i in range(epoch_size):
93 | # load train data
94 | images, labels, lengths = next(batch_iterator)
95 | start = 0
96 | targets = []
97 | for length in lengths:
98 | label = labels[start:start+length]
99 | targets.append(label)
100 | start += length
101 | targets = np.array([el.numpy() for el in targets])
102 | imgs = images.numpy().copy()
103 |
104 | if args.cuda:
105 | images = Variable(images.cuda())
106 | else:
107 | images = Variable(images)
108 |
109 | # forward
110 | prebs = Net(images)
111 | # greedy decode
112 | prebs = prebs.cpu().detach().numpy()
113 | preb_labels = list()
114 | for i in range(prebs.shape[0]):
115 | preb = prebs[i, :, :]
116 | preb_label = list()
117 | for j in range(preb.shape[1]):
118 | preb_label.append(np.argmax(preb[:, j], axis=0))
119 | no_repeat_blank_label = list()
120 | pre_c = preb_label[0]
121 | if pre_c != len(CHARS) - 1:
122 | no_repeat_blank_label.append(pre_c)
123 | for c in preb_label: # dropout repeate label and blank label
124 | if (pre_c == c) or (c == len(CHARS) - 1):
125 | if c == len(CHARS) - 1:
126 | pre_c = c
127 | continue
128 | no_repeat_blank_label.append(c)
129 | pre_c = c
130 | preb_labels.append(no_repeat_blank_label)
131 | for i, label in enumerate(preb_labels):
132 | # show image and its predict label
133 | if args.show:
134 | show(imgs[i], label, targets[i])
135 | if len(label) != len(targets[i]):
136 | Tn_1 += 1
137 | continue
138 | if (np.asarray(targets[i]) == np.asarray(label)).all():
139 | Tp += 1
140 | else:
141 | Tn_2 += 1
142 | Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)
143 | print("[Info] Test Accuracy: {} [{}:{}:{}:{}]".format(Acc, Tp, Tn_1, Tn_2, (Tp+Tn_1+Tn_2)))
144 | t2 = time.time()
145 | print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets)))
146 |
147 | def show(img, label, target):
148 | img = np.transpose(img, (1, 2, 0))
149 | img *= 128.
150 | img += 127.5
151 | img = img.astype(np.uint8)
152 |
153 | lb = ""
154 | for i in label:
155 | lb += CHARS[i]
156 | tg = ""
157 | for j in target.tolist():
158 | tg += CHARS[int(j)]
159 |
160 | flag = "F"
161 | if lb == tg:
162 | flag = "T"
163 |
164 | #img = cv2.putText(img, lb, (0,16), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.6, (0, 0, 255), 1)
165 | img = cv2ImgAddText(img, lb, (0, 0))
166 | cv2.imshow("test", img)
167 | print("target: ", tg, " ### {} ### ".format(flag), "predict: ", lb)
168 | traget_file.append(tg)
169 | predict_data.append(lb)
170 | cv2.waitKey()
171 | cv2.destroyAllWindows()
172 |
173 | def cv2ImgAddText(img, text, pos, textColor=(255, 0, 0), textSize=20):
174 | if (isinstance(img, np.ndarray)): # detect opencv format or not
175 | img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
176 | draw = ImageDraw.Draw(img)
177 | fontText = ImageFont.truetype("data/NotoSansCJK-Regular.ttc", textSize, encoding="utf-8")
178 | draw.text(pos, text, textColor, font=fontText)
179 |
180 | return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
181 |
182 |
183 | if __name__ == "__main__":
184 | traget_file=[]
185 | predict_data=[]
186 | test()
187 | dict_convert = {"target_license":traget_file,"predict_license": predict_data}
188 | print(len(traget_file))
189 | print(len(predict_data))
190 | df_convert = pd.DataFrame(dict_convert)
191 | df_convert.to_csv('./predict_data.csv',encoding='utf-8')
192 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/train.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | # @Author: fanstuck
3 | # @Time: 2023/9/25 10:44
4 | # @File: train.py
5 | # -*- coding: utf-8 -*-
6 | # /usr/bin/env/python3
7 |
8 |
9 | from data.load_data import CHARS, CHARS_DICT, LPRDataLoader
10 | from model.LPRNet import build_lprnet
11 | # import torch.backends.cudnn as cudnn
12 | from torch.autograd import Variable
13 | import torch.nn.functional as F
14 | from torch.utils.data import *
15 | from torch import optim
16 | import torch.nn as nn
17 | import numpy as np
18 | import argparse
19 | import torch
20 | import time
21 | import os
22 |
23 | def sparse_tuple_for_ctc(T_length, lengths):
24 | input_lengths = []
25 | target_lengths = []
26 |
27 | for ch in lengths:
28 | input_lengths.append(T_length)
29 | target_lengths.append(ch)
30 |
31 | return tuple(input_lengths), tuple(target_lengths)
32 |
33 | def adjust_learning_rate(optimizer, cur_epoch, base_lr, lr_schedule):
34 | """
35 | Sets the learning rate
36 | """
37 | lr = 0
38 | for i, e in enumerate(lr_schedule):
39 | if cur_epoch < e:
40 | lr = base_lr * (0.1 ** i)
41 | break
42 | if lr == 0:
43 | lr = base_lr
44 | for param_group in optimizer.param_groups:
45 | param_group['lr'] = lr
46 |
47 | return lr
48 |
49 | def get_parser():
50 | parser = argparse.ArgumentParser(description='parameters to train net')
51 | parser.add_argument('--max_epoch', default=20, help='epoch to train the network')
52 | parser.add_argument('--img_size', default=[94, 24], help='the image size')
53 | parser.add_argument('--train_img_dirs', default="data/train", help='the train images path')
54 | parser.add_argument('--test_img_dirs', default="data/test", help='the test images path')
55 | parser.add_argument('--dropout_rate', default=0.5, help='dropout rate.')
56 | parser.add_argument('--learning_rate', default=0.0001, help='base value of learning rate.')
57 | parser.add_argument('--lpr_max_len', default=8, help='license plate number max length.')
58 | parser.add_argument('--train_batch_size', default=128, help='training batch size.')
59 | parser.add_argument('--test_batch_size', default=120, help='testing batch size.')
60 | parser.add_argument('--phase_train', default=True, type=bool, help='train or test phase flag.')
61 | parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading')
62 | parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model')
63 | parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining')
64 | parser.add_argument('--save_interval', default=2000, type=int, help='interval for save model state dict')
65 | parser.add_argument('--test_interval', default=2000, type=int, help='interval for evaluate')
66 | parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
67 | parser.add_argument('--weight_decay', default=2e-5, type=float, help='Weight decay for SGD')
68 | parser.add_argument('--lr_schedule', default=[4, 8, 12, 14, 16], help='schedule for learning rate.')
69 | parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')
70 | parser.add_argument('--pretrained_model', default='./weights/Final_LPRNet_model.pth', help='pretrained base model')
71 | #parser.add_argument('--pretrained_model', default='', help='pretrained base model')
72 |
73 | args = parser.parse_args()
74 |
75 | return args
76 |
77 | def collate_fn(batch):
78 | imgs = []
79 | labels = []
80 | lengths = []
81 | for _, sample in enumerate(batch):
82 | img, label, length = sample
83 | imgs.append(torch.from_numpy(img))
84 | labels.extend(label)
85 | lengths.append(length)
86 | labels = np.asarray(labels).flatten().astype(np.int)
87 |
88 | return (torch.stack(imgs, 0), torch.from_numpy(labels), lengths)
89 |
90 | def train():
91 | args = get_parser()
92 |
93 | T_length = 18 # args.lpr_max_len
94 | epoch = 0 + args.resume_epoch
95 | loss_val = 0
96 |
97 | if not os.path.exists(args.save_folder):
98 | os.mkdir(args.save_folder)
99 |
100 | lprnet = build_lprnet(lpr_max_len=args.lpr_max_len, phase=args.phase_train, class_num=len(CHARS), dropout_rate=args.dropout_rate)
101 | device = torch.device("cuda:0" if args.cuda else "cpu")
102 | lprnet.to(device)
103 | print("Successful to build network!")
104 |
105 | # load pretrained model
106 | if args.pretrained_model:
107 | lprnet.load_state_dict(torch.load(args.pretrained_model))
108 | print("load pretrained model successful!")
109 | else:
110 | def xavier(param):
111 | nn.init.xavier_uniform(param)
112 |
113 | def weights_init(m):
114 | for key in m.state_dict():
115 | if key.split('.')[-1] == 'weight':
116 | if 'conv' in key:
117 | nn.init.kaiming_normal_(m.state_dict()[key], mode='fan_out')
118 | if 'bn' in key:
119 | m.state_dict()[key][...] = xavier(1)
120 | elif key.split('.')[-1] == 'bias':
121 | m.state_dict()[key][...] = 0.01
122 |
123 | lprnet.backbone.apply(weights_init)
124 | lprnet.container.apply(weights_init)
125 | print("initial net weights successful!")
126 |
127 | # define optimizer
128 | # optimizer = optim.SGD(lprnet.parameters(), lr=args.learning_rate,
129 | # momentum=args.momentum, weight_decay=args.weight_decay)
130 | optimizer = optim.RMSprop(lprnet.parameters(), lr=args.learning_rate, alpha = 0.9, eps=1e-08,
131 | momentum=args.momentum, weight_decay=args.weight_decay)
132 | train_img_dirs = os.path.expanduser(args.train_img_dirs)
133 | test_img_dirs = os.path.expanduser(args.test_img_dirs)
134 | train_dataset = LPRDataLoader(train_img_dirs.split(','), args.img_size, args.lpr_max_len)
135 | test_dataset = LPRDataLoader(test_img_dirs.split(','), args.img_size, args.lpr_max_len)
136 |
137 | epoch_size = len(train_dataset) // args.train_batch_size
138 | max_iter = args.max_epoch * epoch_size
139 |
140 | ctc_loss = nn.CTCLoss(blank=len(CHARS)-1, reduction='mean') # reduction: 'none' | 'mean' | 'sum'
141 |
142 | if args.resume_epoch > 0:
143 | start_iter = args.resume_epoch * epoch_size
144 | else:
145 | start_iter = 0
146 |
147 | for iteration in range(start_iter, max_iter):
148 | if iteration % epoch_size == 0:
149 | # create batch iterator
150 | batch_iterator = iter(DataLoader(train_dataset, args.train_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn))
151 | loss_val = 0
152 | epoch += 1
153 |
154 | if iteration !=0 and iteration % args.save_interval == 0:
155 | torch.save(lprnet.state_dict(), args.save_folder + 'LPRNet_' + '_iteration_' + repr(iteration) + '.pth')
156 |
157 | if (iteration + 1) % args.test_interval == 0:
158 | Greedy_Decode_Eval(lprnet, test_dataset, args)
159 | # lprnet.train() # should be switch to train mode
160 |
161 | start_time = time.time()
162 | # load train data
163 | images, labels, lengths = next(batch_iterator)
164 | # labels = np.array([el.numpy() for el in labels]).T
165 | # print(labels)
166 | # get ctc parameters
167 | input_lengths, target_lengths = sparse_tuple_for_ctc(T_length, lengths)
168 | # update lr
169 | lr = adjust_learning_rate(optimizer, epoch, args.learning_rate, args.lr_schedule)
170 |
171 | if args.cuda:
172 | images = Variable(images, requires_grad=False).cuda()
173 | labels = Variable(labels, requires_grad=False).cuda()
174 | else:
175 | images = Variable(images, requires_grad=False)
176 | labels = Variable(labels, requires_grad=False)
177 |
178 | # forward
179 | logits = lprnet(images)
180 | log_probs = logits.permute(2, 0, 1) # for ctc loss: T x N x C
181 | # print(labels.shape)
182 | log_probs = log_probs.log_softmax(2).requires_grad_()
183 | # log_probs = log_probs.detach().requires_grad_()
184 | # print(log_probs.shape)
185 | # backprop
186 | optimizer.zero_grad()
187 | loss = ctc_loss(log_probs, labels, input_lengths=input_lengths, target_lengths=target_lengths)
188 | if loss.item() == np.inf:
189 | continue
190 | loss.backward()
191 | optimizer.step()
192 | loss_val += loss.item()
193 | end_time = time.time()
194 | if iteration % 20 == 0:
195 | print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
196 | + '|| Totel iter ' + repr(iteration) + ' || Loss: %.4f||' % (loss.item()) +
197 | 'Batch time: %.4f sec. ||' % (end_time - start_time) + 'LR: %.8f' % (lr))
198 | # final test
199 | print("Final test Accuracy:")
200 | Greedy_Decode_Eval(lprnet, test_dataset, args)
201 |
202 | # save final parameters
203 | torch.save(lprnet.state_dict(), args.save_folder + 'Final_LPRNet_model.pth')
204 |
205 | def Greedy_Decode_Eval(Net, datasets, args):
206 | Net = Net.eval()
207 | epoch_size = len(datasets) // args.test_batch_size
208 | batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn))
209 |
210 | Tp = 0
211 | Tn_1 = 0
212 | Tn_2 = 0
213 | t1 = time.time()
214 | for i in range(epoch_size):
215 | # load train data
216 | images, labels, lengths = next(batch_iterator)
217 | start = 0
218 | targets = []
219 | for length in lengths:
220 | label = labels[start:start+length]
221 | targets.append(label)
222 | start += length
223 | targets = np.array([el.numpy() for el in targets])
224 |
225 | if args.cuda:
226 | images = Variable(images.cuda())
227 | else:
228 | images = Variable(images)
229 |
230 | # forward
231 | prebs = Net(images)
232 | # greedy decode
233 | prebs = prebs.cpu().detach().numpy()
234 | preb_labels = list()
235 | for i in range(prebs.shape[0]):
236 | preb = prebs[i, :, :]
237 | preb_label = list()
238 | for j in range(preb.shape[1]):
239 | preb_label.append(np.argmax(preb[:, j], axis=0))
240 | no_repeat_blank_label = list()
241 | pre_c = preb_label[0]
242 | if pre_c != len(CHARS) - 1:
243 | no_repeat_blank_label.append(pre_c)
244 | for c in preb_label: # dropout repeate label and blank label
245 | if (pre_c == c) or (c == len(CHARS) - 1):
246 | if c == len(CHARS) - 1:
247 | pre_c = c
248 | continue
249 | no_repeat_blank_label.append(c)
250 | pre_c = c
251 | preb_labels.append(no_repeat_blank_label)
252 | for i, label in enumerate(preb_labels):
253 | if len(label) != len(targets[i]):
254 | Tn_1 += 1
255 | continue
256 | if (np.asarray(targets[i]) == np.asarray(label)).all():
257 | Tp += 1
258 | else:
259 | Tn_2 += 1
260 |
261 | Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)
262 | print("[Info] Test Accuracy: {} [{}:{}:{}:{}]".format(Acc, Tp, Tn_1, Tn_2, (Tp+Tn_1+Tn_2)))
263 | t2 = time.time()
264 | print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets)))
265 |
266 |
267 | if __name__ == "__main__":
268 | train()
269 |
--------------------------------------------------------------------------------
/LPRNet_Pytorch/weights/Final_LPRNet_model.pth:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/LPRNet_Pytorch/weights/Final_LPRNet_model.pth
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Yolov7-LPRNet
2 | 基于Yolov7-LPRNet的动态车牌目标识别算法模型
3 | 博客地址:https://blog.csdn.net/master_hunter/article/details/133631461
4 | ## 数据集
5 | CCPD:https://github.com/detectRecog/CCPD
6 |
7 | CCPD是一个大型的、多样化的、经过仔细标注的中国城市车牌开源数据集。CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集。CCPD2019数据集车牌类型仅有普通车牌(蓝色车牌),CCPD2020数据集车牌类型仅有新能源车牌(绿色车牌)。
8 |
9 | **在CCPD数据集中,每张图片仅包含一张车牌,车牌的车牌省份主要为皖。CCPD中的每幅图像都包含大量的标注信息,但是CCPD数据集没有专门的标注文件,每张图像的文件名就是该图像对应的数据标注**。
10 |
11 | 标注最困难的部分是注释四个顶点的位置。为了完成这项任务,数据发布者首先在10k图像上手动标记四个顶点的位置。然后设计了一个基于深度学习的检测模型,在对该网络进行良好训练后,对每幅图像的四个顶点位置进行自动标注。
12 | ## 前言
13 |
14 | 。我见过很多初学目标识别的同学基本上只花一周时间就可以参照案例实现一个目标检测的项目,这全靠YOLO强大的解耦性和部署简易性。初学者甚至只需要修改部分超参数接口,调整数据集就可以实现目标检测了。但是我想表达的并不是YOLO的原理有多么难理解,原理有多难推理。一般工作中要求我们能够运行并且能够完成目标检测出来就可以了,更重要的是数据集的标注。我们不需要完成几乎难以单人完成的造目标检测算法轮子的过程,我们需要理解YOLO算法中每个超参数的作用以及影响。就算我们能够训练出一定准确度的目标检测模型,我们还需要根据实际情况对生成结果进行一定的改写:例如对于图片来说一共出现了几种目标;对于一个视频来说,定位到具体时间出现了识别的目标。这都是需要我们反复学习再练习的本领。
15 |
16 | 完成目标检测后,我们应该输出定位出来的信息,YOLO是提供输出设定的超参数的,我们需要根据输出的信息对目标进行裁剪得到我们想要的目标之后再做上层处理。如果是车牌目标识别的项目,我们裁剪出来的车牌就可以进行OCR技术识别出车牌字符了,如果是安全帽识别项目,那么我们可以统计一张图片或者一帧中出现检测目标的个数做出判断,一切都需要根据实际业务需求为主。本篇文章主要是OCR模型对车牌进行字符识别,结合YOLO算法直接定位目标进行裁剪,裁剪后生成OCR训练数据集即可。
17 | ## 训练步骤
18 | ### 1.安装环境
19 | 利用Yolo训练模型十分简单并没有涉及到很复杂的步骤,如果是新手的话注意下载的torch版本是否符合本身NVDIA GPU的版本,需要根据NVIDIA支持最高的cuda版本去下载兼容的Torch版本,查看cuda版本可以通过终端输入:nvidia-smi
20 |
21 | 
22 | ### 2.修改Yolo配置文件
23 | 首先增加cfg/training/yolov7-e6e-ccpd.yaml文件,此配置文件可以参数动态调整网络规模,这里也不展开细讲,以后会有Yolov7源码详解系列,敬请期待,我们需要根据我们用到的官方yolo模型选择对于的yaml文件配置,我这里用的的yolov7-e6e模型训练,所以直接拿yolov7-e6e.yaml改写:
24 | ````
25 | # parameters
26 | nc: 1 # number of classes
27 | depth_multiple: 1.0 # model depth multiple
28 | width_multiple: 1.0 # layer channel multiple
29 | ````
30 | 其中nc是检测个数,depth_multiple是模型深度,width_multiple表示卷积通道的缩放因子,就是将配置里面的backbone和head部分有关Conv通道的设置,全部乘以该系数。通过这两个参数就可以实现不同复杂度的模型设计。然后是添加数据索引文件data/license.yaml:
31 | ````
32 | train: ./split_dataset/images/train
33 | val: ./split_dataset/images/val
34 | test: ./split_dataset/images/test
35 |
36 | # number of classes
37 | nc : 1
38 |
39 | #class names
40 | names : ['license']
41 | ````
42 | ### 训练模型
43 | 前面train,val,test都对应着目录存放的训练数据集。之后修改train.py中的参数或者是直接在终端输入对应的参数自动目录,我一般是习惯直接在defalut下面修改,对应参数修改,一般来说修改这些就足够了:
44 |
45 | ````
46 | parser.add_argument('--weights', type=str, default='weights/yolo7-e6e.pt', help='initial weights path')
47 | parser.add_argument('--cfg', type=str, default='cfg/yolov7-e6e-ccpd', help='model.yaml path')
48 | parser.add_argument('--data', type=str, default='data/license.yaml', help='data.yaml path')
49 | ````
50 | 当然也可能出现内存溢出等问题,需要修改:
51 | ````
52 | arser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
53 | parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
54 | ````
55 | 这两个参数,具体参数根据自己硬件条件修改。
56 | ### 推理
57 | 这里需要将刚刚训练好的最好的权重传入到推理函数中去。然后就可以对图像视频进行推理了。
58 |
59 | 主要需要修改的参数是:
60 | ````
61 | parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp/weights/best.pt', help='model.pt path(s)')
62 | parser.add_argument('--source', type=str, default='测试数据集目录或者图片', help='source')
63 | ````
64 | 有问题的私信博主或者直接评论就可以了博主会长期维护此开源项目,目前此项目运行需要多部操作比较繁琐,我将不断更新版本优化,下一版本将加入UI以及一键部署环境和添加sh指令一键运行项目代码。下篇文章将详细解读LPRNet模型如何进行OCR识别, 再次希望对大家有帮助不吝点亮star~:
65 |
66 |
67 |
--------------------------------------------------------------------------------
/Yolov7/VOCCCPDlicense/images/try/0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/VOCCCPDlicense/images/try/0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.jpg
--------------------------------------------------------------------------------
/Yolov7/VOCCCPDlicense/images/try/0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/VOCCCPDlicense/images/try/0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.jpg
--------------------------------------------------------------------------------
/Yolov7/VOCCCPDlicense/images/try/03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/VOCCCPDlicense/images/try/03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.jpg
--------------------------------------------------------------------------------
/Yolov7/VOCCCPDlicense/images/try/03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/VOCCCPDlicense/images/try/03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.jpg
--------------------------------------------------------------------------------
/Yolov7/cfg/training/yolov7-e6e-ccpd.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 1 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 19,27, 44,40, 38,94 ] # P3/8
9 | - [ 96,68, 86,152, 180,137 ] # P4/16
10 | - [ 140,301, 303,264, 238,542 ] # P5/32
11 | - [ 436,615, 739,380, 925,792 ] # P6/64
12 |
13 | # yolov7 backbone
14 | backbone:
15 | # [from, number, module, args],
16 | [[-1, 1, ReOrg, []], # 0
17 | [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18 |
19 | [-1, 1, DownC, [160]], # 2-P2/4
20 | [-1, 1, Conv, [64, 1, 1]],
21 | [-2, 1, Conv, [64, 1, 1]],
22 | [-1, 1, Conv, [64, 3, 1]],
23 | [-1, 1, Conv, [64, 3, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29 | [-1, 1, Conv, [160, 1, 1]], # 12
30 | [-11, 1, Conv, [64, 1, 1]],
31 | [-12, 1, Conv, [64, 1, 1]],
32 | [-1, 1, Conv, [64, 3, 1]],
33 | [-1, 1, Conv, [64, 3, 1]],
34 | [-1, 1, Conv, [64, 3, 1]],
35 | [-1, 1, Conv, [64, 3, 1]],
36 | [-1, 1, Conv, [64, 3, 1]],
37 | [-1, 1, Conv, [64, 3, 1]],
38 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
39 | [-1, 1, Conv, [160, 1, 1]], # 22
40 | [[-1, -11], 1, Shortcut, [1]], # 23
41 |
42 | [-1, 1, DownC, [320]], # 24-P3/8
43 | [-1, 1, Conv, [128, 1, 1]],
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, Conv, [128, 3, 1]],
46 | [-1, 1, Conv, [128, 3, 1]],
47 | [-1, 1, Conv, [128, 3, 1]],
48 | [-1, 1, Conv, [128, 3, 1]],
49 | [-1, 1, Conv, [128, 3, 1]],
50 | [-1, 1, Conv, [128, 3, 1]],
51 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
52 | [-1, 1, Conv, [320, 1, 1]], # 34
53 | [-11, 1, Conv, [128, 1, 1]],
54 | [-12, 1, Conv, [128, 1, 1]],
55 | [-1, 1, Conv, [128, 3, 1]],
56 | [-1, 1, Conv, [128, 3, 1]],
57 | [-1, 1, Conv, [128, 3, 1]],
58 | [-1, 1, Conv, [128, 3, 1]],
59 | [-1, 1, Conv, [128, 3, 1]],
60 | [-1, 1, Conv, [128, 3, 1]],
61 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62 | [-1, 1, Conv, [320, 1, 1]], # 44
63 | [[-1, -11], 1, Shortcut, [1]], # 45
64 |
65 | [-1, 1, DownC, [640]], # 46-P4/16
66 | [-1, 1, Conv, [256, 1, 1]],
67 | [-2, 1, Conv, [256, 1, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [-1, 1, Conv, [256, 3, 1]],
70 | [-1, 1, Conv, [256, 3, 1]],
71 | [-1, 1, Conv, [256, 3, 1]],
72 | [-1, 1, Conv, [256, 3, 1]],
73 | [-1, 1, Conv, [256, 3, 1]],
74 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
75 | [-1, 1, Conv, [640, 1, 1]], # 56
76 | [-11, 1, Conv, [256, 1, 1]],
77 | [-12, 1, Conv, [256, 1, 1]],
78 | [-1, 1, Conv, [256, 3, 1]],
79 | [-1, 1, Conv, [256, 3, 1]],
80 | [-1, 1, Conv, [256, 3, 1]],
81 | [-1, 1, Conv, [256, 3, 1]],
82 | [-1, 1, Conv, [256, 3, 1]],
83 | [-1, 1, Conv, [256, 3, 1]],
84 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
85 | [-1, 1, Conv, [640, 1, 1]], # 66
86 | [[-1, -11], 1, Shortcut, [1]], # 67
87 |
88 | [-1, 1, DownC, [960]], # 68-P5/32
89 | [-1, 1, Conv, [384, 1, 1]],
90 | [-2, 1, Conv, [384, 1, 1]],
91 | [-1, 1, Conv, [384, 3, 1]],
92 | [-1, 1, Conv, [384, 3, 1]],
93 | [-1, 1, Conv, [384, 3, 1]],
94 | [-1, 1, Conv, [384, 3, 1]],
95 | [-1, 1, Conv, [384, 3, 1]],
96 | [-1, 1, Conv, [384, 3, 1]],
97 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
98 | [-1, 1, Conv, [960, 1, 1]], # 78
99 | [-11, 1, Conv, [384, 1, 1]],
100 | [-12, 1, Conv, [384, 1, 1]],
101 | [-1, 1, Conv, [384, 3, 1]],
102 | [-1, 1, Conv, [384, 3, 1]],
103 | [-1, 1, Conv, [384, 3, 1]],
104 | [-1, 1, Conv, [384, 3, 1]],
105 | [-1, 1, Conv, [384, 3, 1]],
106 | [-1, 1, Conv, [384, 3, 1]],
107 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
108 | [-1, 1, Conv, [960, 1, 1]], # 88
109 | [[-1, -11], 1, Shortcut, [1]], # 89
110 |
111 | [-1, 1, DownC, [1280]], # 90-P6/64
112 | [-1, 1, Conv, [512, 1, 1]],
113 | [-2, 1, Conv, [512, 1, 1]],
114 | [-1, 1, Conv, [512, 3, 1]],
115 | [-1, 1, Conv, [512, 3, 1]],
116 | [-1, 1, Conv, [512, 3, 1]],
117 | [-1, 1, Conv, [512, 3, 1]],
118 | [-1, 1, Conv, [512, 3, 1]],
119 | [-1, 1, Conv, [512, 3, 1]],
120 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
121 | [-1, 1, Conv, [1280, 1, 1]], # 100
122 | [-11, 1, Conv, [512, 1, 1]],
123 | [-12, 1, Conv, [512, 1, 1]],
124 | [-1, 1, Conv, [512, 3, 1]],
125 | [-1, 1, Conv, [512, 3, 1]],
126 | [-1, 1, Conv, [512, 3, 1]],
127 | [-1, 1, Conv, [512, 3, 1]],
128 | [-1, 1, Conv, [512, 3, 1]],
129 | [-1, 1, Conv, [512, 3, 1]],
130 | [[-1, -3, -5, -7, -8], 1, Concat, [1]],
131 | [-1, 1, Conv, [1280, 1, 1]], # 110
132 | [[-1, -11], 1, Shortcut, [1]], # 111
133 | ]
134 |
135 | # yolov7 head
136 | head:
137 | [[-1, 1, SPPCSPC, [640]], # 112
138 |
139 | [-1, 1, Conv, [480, 1, 1]],
140 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
141 | [89, 1, Conv, [480, 1, 1]], # route backbone P5
142 | [[-1, -2], 1, Concat, [1]],
143 |
144 | [-1, 1, Conv, [384, 1, 1]],
145 | [-2, 1, Conv, [384, 1, 1]],
146 | [-1, 1, Conv, [192, 3, 1]],
147 | [-1, 1, Conv, [192, 3, 1]],
148 | [-1, 1, Conv, [192, 3, 1]],
149 | [-1, 1, Conv, [192, 3, 1]],
150 | [-1, 1, Conv, [192, 3, 1]],
151 | [-1, 1, Conv, [192, 3, 1]],
152 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
153 | [-1, 1, Conv, [480, 1, 1]], # 126
154 | [-11, 1, Conv, [384, 1, 1]],
155 | [-12, 1, Conv, [384, 1, 1]],
156 | [-1, 1, Conv, [192, 3, 1]],
157 | [-1, 1, Conv, [192, 3, 1]],
158 | [-1, 1, Conv, [192, 3, 1]],
159 | [-1, 1, Conv, [192, 3, 1]],
160 | [-1, 1, Conv, [192, 3, 1]],
161 | [-1, 1, Conv, [192, 3, 1]],
162 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
163 | [-1, 1, Conv, [480, 1, 1]], # 136
164 | [[-1, -11], 1, Shortcut, [1]], # 137
165 |
166 | [-1, 1, Conv, [320, 1, 1]],
167 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
168 | [67, 1, Conv, [320, 1, 1]], # route backbone P4
169 | [[-1, -2], 1, Concat, [1]],
170 |
171 | [-1, 1, Conv, [256, 1, 1]],
172 | [-2, 1, Conv, [256, 1, 1]],
173 | [-1, 1, Conv, [128, 3, 1]],
174 | [-1, 1, Conv, [128, 3, 1]],
175 | [-1, 1, Conv, [128, 3, 1]],
176 | [-1, 1, Conv, [128, 3, 1]],
177 | [-1, 1, Conv, [128, 3, 1]],
178 | [-1, 1, Conv, [128, 3, 1]],
179 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
180 | [-1, 1, Conv, [320, 1, 1]], # 151
181 | [-11, 1, Conv, [256, 1, 1]],
182 | [-12, 1, Conv, [256, 1, 1]],
183 | [-1, 1, Conv, [128, 3, 1]],
184 | [-1, 1, Conv, [128, 3, 1]],
185 | [-1, 1, Conv, [128, 3, 1]],
186 | [-1, 1, Conv, [128, 3, 1]],
187 | [-1, 1, Conv, [128, 3, 1]],
188 | [-1, 1, Conv, [128, 3, 1]],
189 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
190 | [-1, 1, Conv, [320, 1, 1]], # 161
191 | [[-1, -11], 1, Shortcut, [1]], # 162
192 |
193 | [-1, 1, Conv, [160, 1, 1]],
194 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
195 | [45, 1, Conv, [160, 1, 1]], # route backbone P3
196 | [[-1, -2], 1, Concat, [1]],
197 |
198 | [-1, 1, Conv, [128, 1, 1]],
199 | [-2, 1, Conv, [128, 1, 1]],
200 | [-1, 1, Conv, [64, 3, 1]],
201 | [-1, 1, Conv, [64, 3, 1]],
202 | [-1, 1, Conv, [64, 3, 1]],
203 | [-1, 1, Conv, [64, 3, 1]],
204 | [-1, 1, Conv, [64, 3, 1]],
205 | [-1, 1, Conv, [64, 3, 1]],
206 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
207 | [-1, 1, Conv, [160, 1, 1]], # 176
208 | [-11, 1, Conv, [128, 1, 1]],
209 | [-12, 1, Conv, [128, 1, 1]],
210 | [-1, 1, Conv, [64, 3, 1]],
211 | [-1, 1, Conv, [64, 3, 1]],
212 | [-1, 1, Conv, [64, 3, 1]],
213 | [-1, 1, Conv, [64, 3, 1]],
214 | [-1, 1, Conv, [64, 3, 1]],
215 | [-1, 1, Conv, [64, 3, 1]],
216 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
217 | [-1, 1, Conv, [160, 1, 1]], # 186
218 | [[-1, -11], 1, Shortcut, [1]], # 187
219 |
220 | [-1, 1, DownC, [320]],
221 | [[-1, 162], 1, Concat, [1]],
222 |
223 | [-1, 1, Conv, [256, 1, 1]],
224 | [-2, 1, Conv, [256, 1, 1]],
225 | [-1, 1, Conv, [128, 3, 1]],
226 | [-1, 1, Conv, [128, 3, 1]],
227 | [-1, 1, Conv, [128, 3, 1]],
228 | [-1, 1, Conv, [128, 3, 1]],
229 | [-1, 1, Conv, [128, 3, 1]],
230 | [-1, 1, Conv, [128, 3, 1]],
231 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
232 | [-1, 1, Conv, [320, 1, 1]], # 199
233 | [-11, 1, Conv, [256, 1, 1]],
234 | [-12, 1, Conv, [256, 1, 1]],
235 | [-1, 1, Conv, [128, 3, 1]],
236 | [-1, 1, Conv, [128, 3, 1]],
237 | [-1, 1, Conv, [128, 3, 1]],
238 | [-1, 1, Conv, [128, 3, 1]],
239 | [-1, 1, Conv, [128, 3, 1]],
240 | [-1, 1, Conv, [128, 3, 1]],
241 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
242 | [-1, 1, Conv, [320, 1, 1]], # 209
243 | [[-1, -11], 1, Shortcut, [1]], # 210
244 |
245 | [-1, 1, DownC, [480]],
246 | [[-1, 137], 1, Concat, [1]],
247 |
248 | [-1, 1, Conv, [384, 1, 1]],
249 | [-2, 1, Conv, [384, 1, 1]],
250 | [-1, 1, Conv, [192, 3, 1]],
251 | [-1, 1, Conv, [192, 3, 1]],
252 | [-1, 1, Conv, [192, 3, 1]],
253 | [-1, 1, Conv, [192, 3, 1]],
254 | [-1, 1, Conv, [192, 3, 1]],
255 | [-1, 1, Conv, [192, 3, 1]],
256 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
257 | [-1, 1, Conv, [480, 1, 1]], # 222
258 | [-11, 1, Conv, [384, 1, 1]],
259 | [-12, 1, Conv, [384, 1, 1]],
260 | [-1, 1, Conv, [192, 3, 1]],
261 | [-1, 1, Conv, [192, 3, 1]],
262 | [-1, 1, Conv, [192, 3, 1]],
263 | [-1, 1, Conv, [192, 3, 1]],
264 | [-1, 1, Conv, [192, 3, 1]],
265 | [-1, 1, Conv, [192, 3, 1]],
266 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
267 | [-1, 1, Conv, [480, 1, 1]], # 232
268 | [[-1, -11], 1, Shortcut, [1]], # 233
269 |
270 | [-1, 1, DownC, [640]],
271 | [[-1, 112], 1, Concat, [1]],
272 |
273 | [-1, 1, Conv, [512, 1, 1]],
274 | [-2, 1, Conv, [512, 1, 1]],
275 | [-1, 1, Conv, [256, 3, 1]],
276 | [-1, 1, Conv, [256, 3, 1]],
277 | [-1, 1, Conv, [256, 3, 1]],
278 | [-1, 1, Conv, [256, 3, 1]],
279 | [-1, 1, Conv, [256, 3, 1]],
280 | [-1, 1, Conv, [256, 3, 1]],
281 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
282 | [-1, 1, Conv, [640, 1, 1]], # 245
283 | [-11, 1, Conv, [512, 1, 1]],
284 | [-12, 1, Conv, [512, 1, 1]],
285 | [-1, 1, Conv, [256, 3, 1]],
286 | [-1, 1, Conv, [256, 3, 1]],
287 | [-1, 1, Conv, [256, 3, 1]],
288 | [-1, 1, Conv, [256, 3, 1]],
289 | [-1, 1, Conv, [256, 3, 1]],
290 | [-1, 1, Conv, [256, 3, 1]],
291 | [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
292 | [-1, 1, Conv, [640, 1, 1]], # 255
293 | [[-1, -11], 1, Shortcut, [1]], # 256
294 |
295 | [187, 1, Conv, [320, 3, 1]],
296 | [210, 1, Conv, [640, 3, 1]],
297 | [233, 1, Conv, [960, 3, 1]],
298 | [256, 1, Conv, [1280, 3, 1]],
299 |
300 | [186, 1, Conv, [320, 3, 1]],
301 | [161, 1, Conv, [640, 3, 1]],
302 | [136, 1, Conv, [960, 3, 1]],
303 | [112, 1, Conv, [1280, 3, 1]],
304 |
305 | [[257,258,259,260,261,262,263,264], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
306 | ]
307 |
--------------------------------------------------------------------------------
/Yolov7/data/hyp.scratch.custom.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | # anchors: 3 # anchors per output layer (0 to ignore)
16 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20 | degrees: 0.0 # image rotation (+/- deg)
21 | translate: 0.2 # image translation (+/- fraction)
22 | scale: 0.5 # image scale (+/- gain)
23 | shear: 0.0 # image shear (+/- deg)
24 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25 | flipud: 0.0 # image flip up-down (probability)
26 | fliplr: 0.5 # image flip left-right (probability)
27 | mosaic: 1.0 # image mosaic (probability)
28 | mixup: 0.0 # image mixup (probability)
29 | copy_paste: 0.0 # image copy paste (probability)
30 | paste_in: 0.0 # image copy paste (probability), use 0 for faster training
31 | loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
--------------------------------------------------------------------------------
/Yolov7/data/license.yaml:
--------------------------------------------------------------------------------
1 | train: ./split_dataset/images/train # 21000 images
2 | val: ./split_dataset/images/val # 5000 images
3 | test: ./split_dataset/images/test # 4000
4 |
5 | # number of classes
6 | nc : 1
7 |
8 | #class names
9 | names : ['license']
--------------------------------------------------------------------------------
/Yolov7/detect.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import time
3 | from pathlib import Path
4 |
5 | import cv2
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | from numpy import random
9 |
10 | from models.experimental import attempt_load
11 | from utils.datasets import LoadStreams, LoadImages
12 | from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13 | scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14 | from utils.plots import plot_one_box
15 | from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16 |
17 |
18 | def detect(save_img=False):
19 | source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20 | save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21 | webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22 | ('rtsp://', 'rtmp://', 'http://', 'https://'))
23 |
24 | # Directories
25 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27 |
28 | # Initialize
29 | set_logging()
30 | device = select_device(opt.device)
31 | half = device.type != 'cpu' # half precision only supported on CUDA
32 |
33 | # Load model
34 | model = attempt_load(weights, map_location=device) # load FP32 model
35 | stride = int(model.stride.max()) # model stride
36 | imgsz = check_img_size(imgsz, s=stride) # check img_size
37 |
38 | if trace:
39 | model = TracedModel(model, device, opt.img_size)
40 |
41 | if half:
42 | model.half() # to FP16
43 |
44 | # Second-stage classifier
45 | classify = False
46 | if classify:
47 | modelc = load_classifier(name='resnet101', n=2) # initialize
48 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49 |
50 | # Set Dataloader
51 | vid_path, vid_writer = None, None
52 | if webcam:
53 | view_img = check_imshow()
54 | cudnn.benchmark = True # set True to speed up constant image size inference
55 | dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56 | else:
57 | dataset = LoadImages(source, img_size=imgsz, stride=stride)
58 |
59 | # Get names and colors
60 | names = model.module.names if hasattr(model, 'module') else model.names
61 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62 |
63 | # Run inference
64 | if device.type != 'cpu':
65 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66 | old_img_w = old_img_h = imgsz
67 | old_img_b = 1
68 |
69 | t0 = time.time()
70 | for path, img, im0s, vid_cap in dataset:
71 | img = torch.from_numpy(img).to(device)
72 | img = img.half() if half else img.float() # uint8 to fp16/32
73 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
74 | if img.ndimension() == 3:
75 | img = img.unsqueeze(0)
76 |
77 | # Warmup
78 | if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
79 | old_img_b = img.shape[0]
80 | old_img_h = img.shape[2]
81 | old_img_w = img.shape[3]
82 | for i in range(3):
83 | model(img, augment=opt.augment)[0]
84 |
85 | # Inference
86 | t1 = time_synchronized()
87 | with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
88 | pred = model(img, augment=opt.augment)[0]
89 | t2 = time_synchronized()
90 |
91 | # Apply NMS
92 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
93 | t3 = time_synchronized()
94 |
95 | # Apply Classifier
96 | if classify:
97 | pred = apply_classifier(pred, modelc, img, im0s)
98 |
99 | # Process detections
100 | for i, det in enumerate(pred): # detections per image
101 | if webcam: # batch_size >= 1
102 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
103 | else:
104 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
105 |
106 | p = Path(p) # to Path
107 | save_path = str(save_dir / p.name) # img.jpg
108 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
109 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
110 | if len(det):
111 | # Rescale boxes from img_size to im0 size
112 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
113 |
114 | # Print results
115 | for c in det[:, -1].unique():
116 | n = (det[:, -1] == c).sum() # detections per class
117 | s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
118 |
119 | # Write results
120 | for *xyxy, conf, cls in reversed(det):
121 | if save_txt: # Write to file
122 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
123 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
124 | with open(txt_path + '.txt', 'a') as f:
125 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
126 |
127 | if save_img or view_img: # Add bbox to image
128 | label = f'{names[int(cls)]} {conf:.2f}'
129 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
130 |
131 | # Print time (inference + NMS)
132 | print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
133 |
134 | # Stream results
135 | if view_img:
136 | cv2.imshow(str(p), im0)
137 | cv2.waitKey(1) # 1 millisecond
138 |
139 | # Save results (image with detections)
140 | if save_img:
141 | if dataset.mode == 'image':
142 | cv2.imwrite(save_path, im0)
143 | print(f" The image with the result is saved in: {save_path}")
144 | else: # 'video' or 'stream'
145 | if vid_path != save_path: # new video
146 | vid_path = save_path
147 | if isinstance(vid_writer, cv2.VideoWriter):
148 | vid_writer.release() # release previous video writer
149 | if vid_cap: # video
150 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
151 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
152 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
153 | else: # stream
154 | fps, w, h = 30, im0.shape[1], im0.shape[0]
155 | save_path += '.mp4'
156 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
157 | vid_writer.write(im0)
158 |
159 | if save_txt or save_img:
160 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
161 | #print(f"Results saved to {save_dir}{s}")
162 |
163 | print(f'Done. ({time.time() - t0:.3f}s)')
164 |
165 |
166 | if __name__ == '__main__':
167 | parser = argparse.ArgumentParser()
168 | parser.add_argument('--weights', nargs='+', type=str, default='weights/best.pt', help='model.pt path(s)')
169 | parser.add_argument('--source', type=str, default='VOCCCPDlicense/images/try', help='source') # file/folder, 0 for webcam
170 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
171 | parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')
172 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
173 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
174 | parser.add_argument('--view-img', action='store_true', help='display results')
175 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
176 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
177 | parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
178 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
179 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
180 | parser.add_argument('--augment', action='store_true', help='augmented inference')
181 | parser.add_argument('--update', action='store_true', help='update all models')
182 | parser.add_argument('--project', default='runs/detect', help='save results to project/name')
183 | parser.add_argument('--name', default='exp', help='save results to project/name')
184 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
185 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
186 | opt = parser.parse_args()
187 | print(opt)
188 | #check_requirements(exclude=('pycocotools', 'thop'))
189 |
190 | with torch.no_grad():
191 | if opt.update: # update all models (to fix SourceChangeWarning)
192 | for opt.weights in ['yolov7.pt']:
193 | detect()
194 | strip_optimizer(opt.weights)
195 | else:
196 | detect()
197 |
--------------------------------------------------------------------------------
/Yolov7/models/__pycache__/common.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/models/__pycache__/common.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/models/__pycache__/experimental.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/models/__pycache__/experimental.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/models/__pycache__/yolo.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/models/__pycache__/yolo.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/models/experimental.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | import torch
4 | import torch.nn as nn
5 |
6 | from models.common import Conv, DWConv
7 | from utils.google_utils import attempt_download
8 |
9 |
10 | class CrossConv(nn.Module):
11 | # Cross Convolution Downsample
12 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14 | super(CrossConv, self).__init__()
15 | c_ = int(c2 * e) # hidden channels
16 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
17 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18 | self.add = shortcut and c1 == c2
19 |
20 | def forward(self, x):
21 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22 |
23 |
24 | class Sum(nn.Module):
25 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26 | def __init__(self, n, weight=False): # n: number of inputs
27 | super(Sum, self).__init__()
28 | self.weight = weight # apply weights boolean
29 | self.iter = range(n - 1) # iter object
30 | if weight:
31 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32 |
33 | def forward(self, x):
34 | y = x[0] # no weight
35 | if self.weight:
36 | w = torch.sigmoid(self.w) * 2
37 | for i in self.iter:
38 | y = y + x[i + 1] * w[i]
39 | else:
40 | for i in self.iter:
41 | y = y + x[i + 1]
42 | return y
43 |
44 |
45 | class MixConv2d(nn.Module):
46 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48 | super(MixConv2d, self).__init__()
49 | groups = len(k)
50 | if equal_ch: # equal c_ per group
51 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53 | else: # equal weight.numel() per group
54 | b = [c2] + [0] * groups
55 | a = np.eye(groups + 1, groups, k=-1)
56 | a -= np.roll(a, 1, axis=1)
57 | a *= np.array(k) ** 2
58 | a[0] = 1
59 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60 |
61 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62 | self.bn = nn.BatchNorm2d(c2)
63 | self.act = nn.LeakyReLU(0.1, inplace=True)
64 |
65 | def forward(self, x):
66 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67 |
68 |
69 | class Ensemble(nn.ModuleList):
70 | # Ensemble of models
71 | def __init__(self):
72 | super(Ensemble, self).__init__()
73 |
74 | def forward(self, x, augment=False):
75 | y = []
76 | for module in self:
77 | y.append(module(x, augment)[0])
78 | # y = torch.stack(y).max(0)[0] # max ensemble
79 | # y = torch.stack(y).mean(0) # mean ensemble
80 | y = torch.cat(y, 1) # nms ensemble
81 | return y, None # inference, train output
82 |
83 |
84 |
85 |
86 |
87 | class ORT_NMS(torch.autograd.Function):
88 | '''ONNX-Runtime NMS operation'''
89 | @staticmethod
90 | def forward(ctx,
91 | boxes,
92 | scores,
93 | max_output_boxes_per_class=torch.tensor([100]),
94 | iou_threshold=torch.tensor([0.45]),
95 | score_threshold=torch.tensor([0.25])):
96 | device = boxes.device
97 | batch = scores.shape[0]
98 | num_det = random.randint(0, 100)
99 | batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100 | idxs = torch.arange(100, 100 + num_det).to(device)
101 | zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102 | selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103 | selected_indices = selected_indices.to(torch.int64)
104 | return selected_indices
105 |
106 | @staticmethod
107 | def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108 | return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109 |
110 |
111 | class TRT_NMS(torch.autograd.Function):
112 | '''TensorRT NMS operation'''
113 | @staticmethod
114 | def forward(
115 | ctx,
116 | boxes,
117 | scores,
118 | background_class=-1,
119 | box_coding=1,
120 | iou_threshold=0.45,
121 | max_output_boxes=100,
122 | plugin_version="1",
123 | score_activation=0,
124 | score_threshold=0.25,
125 | ):
126 | batch_size, num_boxes, num_classes = scores.shape
127 | num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128 | det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129 | det_scores = torch.randn(batch_size, max_output_boxes)
130 | det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131 | return num_det, det_boxes, det_scores, det_classes
132 |
133 | @staticmethod
134 | def symbolic(g,
135 | boxes,
136 | scores,
137 | background_class=-1,
138 | box_coding=1,
139 | iou_threshold=0.45,
140 | max_output_boxes=100,
141 | plugin_version="1",
142 | score_activation=0,
143 | score_threshold=0.25):
144 | out = g.op("TRT::EfficientNMS_TRT",
145 | boxes,
146 | scores,
147 | background_class_i=background_class,
148 | box_coding_i=box_coding,
149 | iou_threshold_f=iou_threshold,
150 | max_output_boxes_i=max_output_boxes,
151 | plugin_version_s=plugin_version,
152 | score_activation_i=score_activation,
153 | score_threshold_f=score_threshold,
154 | outputs=4)
155 | nums, boxes, scores, classes = out
156 | return nums, boxes, scores, classes
157 |
158 |
159 | class ONNX_ORT(nn.Module):
160 | '''onnx module with ONNX-Runtime NMS operation.'''
161 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
162 | super().__init__()
163 | self.device = device if device else torch.device("cpu")
164 | self.max_obj = torch.tensor([max_obj]).to(device)
165 | self.iou_threshold = torch.tensor([iou_thres]).to(device)
166 | self.score_threshold = torch.tensor([score_thres]).to(device)
167 | self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168 | self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169 | dtype=torch.float32,
170 | device=self.device)
171 | self.n_classes=n_classes
172 |
173 | def forward(self, x):
174 | boxes = x[:, :, :4]
175 | conf = x[:, :, 4:5]
176 | scores = x[:, :, 5:]
177 | if self.n_classes == 1:
178 | scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
179 | # so there is no need to multiplicate.
180 | else:
181 | scores *= conf # conf = obj_conf * cls_conf
182 | boxes @= self.convert_matrix
183 | max_score, category_id = scores.max(2, keepdim=True)
184 | dis = category_id.float() * self.max_wh
185 | nmsbox = boxes + dis
186 | max_score_tp = max_score.transpose(1, 2).contiguous()
187 | selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
188 | X, Y = selected_indices[:, 0], selected_indices[:, 2]
189 | selected_boxes = boxes[X, Y, :]
190 | selected_categories = category_id[X, Y, :].float()
191 | selected_scores = max_score[X, Y, :]
192 | X = X.unsqueeze(1).float()
193 | return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
194 |
195 | class ONNX_TRT(nn.Module):
196 | '''onnx module with TensorRT NMS operation.'''
197 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
198 | super().__init__()
199 | assert max_wh is None
200 | self.device = device if device else torch.device('cpu')
201 | self.background_class = -1,
202 | self.box_coding = 1,
203 | self.iou_threshold = iou_thres
204 | self.max_obj = max_obj
205 | self.plugin_version = '1'
206 | self.score_activation = 0
207 | self.score_threshold = score_thres
208 | self.n_classes=n_classes
209 |
210 | def forward(self, x):
211 | boxes = x[:, :, :4]
212 | conf = x[:, :, 4:5]
213 | scores = x[:, :, 5:]
214 | if self.n_classes == 1:
215 | scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
216 | # so there is no need to multiplicate.
217 | else:
218 | scores *= conf # conf = obj_conf * cls_conf
219 | num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
220 | self.iou_threshold, self.max_obj,
221 | self.plugin_version, self.score_activation,
222 | self.score_threshold)
223 | return num_det, det_boxes, det_scores, det_classes
224 |
225 |
226 | class End2End(nn.Module):
227 | '''export onnx or tensorrt model with NMS operation.'''
228 | def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
229 | super().__init__()
230 | device = device if device else torch.device('cpu')
231 | assert isinstance(max_wh,(int)) or max_wh is None
232 | self.model = model.to(device)
233 | self.model.model[-1].end2end = True
234 | self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
235 | self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
236 | self.end2end.eval()
237 |
238 | def forward(self, x):
239 | x = self.model(x)
240 | x = self.end2end(x)
241 | return x
242 |
243 |
244 |
245 |
246 |
247 | def attempt_load(weights, map_location=None):
248 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
249 | model = Ensemble()
250 | for w in weights if isinstance(weights, list) else [weights]:
251 | attempt_download(w)
252 | ckpt = torch.load(w, map_location=map_location) # load
253 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
254 |
255 | # Compatibility updates
256 | for m in model.modules():
257 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
258 | m.inplace = True # pytorch 1.7.0 compatibility
259 | elif type(m) is nn.Upsample:
260 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
261 | elif type(m) is Conv:
262 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
263 |
264 | if len(model) == 1:
265 | return model[-1] # return model
266 | else:
267 | print('Ensemble created with %s\n' % weights)
268 | for k in ['names', 'stride']:
269 | setattr(model, k, getattr(model[-1], k))
270 | return model # return ensemble
271 |
272 |
273 |
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/runs/detect/exp/0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.jpg
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/runs/detect/exp/0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.jpg
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/runs/detect/exp/03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.jpg
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/runs/detect/exp/03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.jpg
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/labels/0275-93_75-201&483_486&587-491&584_211&566_183&474_463&492-0_0_27_14_28_29_29-93-58.txt:
--------------------------------------------------------------------------------
1 | 0 0.46875 0.458621 0.381944 0.0775862
2 |
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/labels/0275-93_82-352&510_649&606-629&619_349&588_339&500_619&531-0_0_28_28_21_33_29-84-25.txt:
--------------------------------------------------------------------------------
1 | 0 0.679167 0.483621 0.377778 0.0913793
2 |
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/labels/03-91_90-283&402_600&524-589&515_285&521_296&411_600&405-0_0_22_27_1_24_32-154-73.txt:
--------------------------------------------------------------------------------
1 | 0 0.604167 0.399569 0.427778 0.087069
2 |
--------------------------------------------------------------------------------
/Yolov7/runs/detect/exp/labels/03-92_86-111&425_419&538-427&544_98&523_105&413_434&434-0_0_23_32_32_32_33-137-60.txt:
--------------------------------------------------------------------------------
1 | 0 0.364583 0.414655 0.459722 0.0948276
2 |
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/autoanchor.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/autoanchor.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/datasets.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/datasets.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/general.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/general.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/google_utils.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/google_utils.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/loss.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/loss.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/metrics.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/metrics.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/plots.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/plots.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/__pycache__/torch_utils.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Fanstuck/Yolov7-LPRNet/13f962fb37309ffa0c27f9c888877e7986960177/Yolov7/utils/__pycache__/torch_utils.cpython-37.pyc
--------------------------------------------------------------------------------
/Yolov7/utils/activations.py:
--------------------------------------------------------------------------------
1 | # Activation functions
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 |
8 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9 | class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10 | @staticmethod
11 | def forward(x):
12 | return x * torch.sigmoid(x)
13 |
14 |
15 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16 | @staticmethod
17 | def forward(x):
18 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
19 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20 |
21 |
22 | class MemoryEfficientSwish(nn.Module):
23 | class F(torch.autograd.Function):
24 | @staticmethod
25 | def forward(ctx, x):
26 | ctx.save_for_backward(x)
27 | return x * torch.sigmoid(x)
28 |
29 | @staticmethod
30 | def backward(ctx, grad_output):
31 | x = ctx.saved_tensors[0]
32 | sx = torch.sigmoid(x)
33 | return grad_output * (sx * (1 + x * (1 - sx)))
34 |
35 | def forward(self, x):
36 | return self.F.apply(x)
37 |
38 |
39 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40 | class Mish(nn.Module):
41 | @staticmethod
42 | def forward(x):
43 | return x * F.softplus(x).tanh()
44 |
45 |
46 | class MemoryEfficientMish(nn.Module):
47 | class F(torch.autograd.Function):
48 | @staticmethod
49 | def forward(ctx, x):
50 | ctx.save_for_backward(x)
51 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52 |
53 | @staticmethod
54 | def backward(ctx, grad_output):
55 | x = ctx.saved_tensors[0]
56 | sx = torch.sigmoid(x)
57 | fx = F.softplus(x).tanh()
58 | return grad_output * (fx + x * sx * (1 - fx * fx))
59 |
60 | def forward(self, x):
61 | return self.F.apply(x)
62 |
63 |
64 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65 | class FReLU(nn.Module):
66 | def __init__(self, c1, k=3): # ch_in, kernel
67 | super().__init__()
68 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69 | self.bn = nn.BatchNorm2d(c1)
70 |
71 | def forward(self, x):
72 | return torch.max(x, self.bn(self.conv(x)))
73 |
--------------------------------------------------------------------------------
/Yolov7/utils/add_nms.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import onnx
3 | from onnx import shape_inference
4 | try:
5 | import onnx_graphsurgeon as gs
6 | except Exception as e:
7 | print('Import onnx_graphsurgeon failure: %s' % e)
8 |
9 | import logging
10 |
11 | LOGGER = logging.getLogger(__name__)
12 |
13 | class RegisterNMS(object):
14 | def __init__(
15 | self,
16 | onnx_model_path: str,
17 | precision: str = "fp32",
18 | ):
19 |
20 | self.graph = gs.import_onnx(onnx.load(onnx_model_path))
21 | assert self.graph
22 | LOGGER.info("ONNX graph created successfully")
23 | # Fold constants via ONNX-GS that PyTorch2ONNX may have missed
24 | self.graph.fold_constants()
25 | self.precision = precision
26 | self.batch_size = 1
27 | def infer(self):
28 | """
29 | Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
30 | and fold constant inputs values. When possible, run shape inference on the
31 | ONNX graph to determine tensor shapes.
32 | """
33 | for _ in range(3):
34 | count_before = len(self.graph.nodes)
35 |
36 | self.graph.cleanup().toposort()
37 | try:
38 | for node in self.graph.nodes:
39 | for o in node.outputs:
40 | o.shape = None
41 | model = gs.export_onnx(self.graph)
42 | model = shape_inference.infer_shapes(model)
43 | self.graph = gs.import_onnx(model)
44 | except Exception as e:
45 | LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
46 | try:
47 | self.graph.fold_constants(fold_shapes=True)
48 | except TypeError as e:
49 | LOGGER.error(
50 | "This version of ONNX GraphSurgeon does not support folding shapes, "
51 | f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
52 | )
53 | raise
54 |
55 | count_after = len(self.graph.nodes)
56 | if count_before == count_after:
57 | # No new folding occurred in this iteration, so we can stop for now.
58 | break
59 |
60 | def save(self, output_path):
61 | """
62 | Save the ONNX model to the given location.
63 | Args:
64 | output_path: Path pointing to the location where to write
65 | out the updated ONNX model.
66 | """
67 | self.graph.cleanup().toposort()
68 | model = gs.export_onnx(self.graph)
69 | onnx.save(model, output_path)
70 | LOGGER.info(f"Saved ONNX model to {output_path}")
71 |
72 | def register_nms(
73 | self,
74 | *,
75 | score_thresh: float = 0.25,
76 | nms_thresh: float = 0.45,
77 | detections_per_img: int = 100,
78 | ):
79 | """
80 | Register the ``EfficientNMS_TRT`` plugin node.
81 | NMS expects these shapes for its input tensors:
82 | - box_net: [batch_size, number_boxes, 4]
83 | - class_net: [batch_size, number_boxes, number_labels]
84 | Args:
85 | score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
86 | nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
87 | overlap with previously selected boxes are removed).
88 | detections_per_img (int): Number of best detections to keep after NMS.
89 | """
90 |
91 | self.infer()
92 | # Find the concat node at the end of the network
93 | op_inputs = self.graph.outputs
94 | op = "EfficientNMS_TRT"
95 | attrs = {
96 | "plugin_version": "1",
97 | "background_class": -1, # no background class
98 | "max_output_boxes": detections_per_img,
99 | "score_threshold": score_thresh,
100 | "iou_threshold": nms_thresh,
101 | "score_activation": False,
102 | "box_coding": 0,
103 | }
104 |
105 | if self.precision == "fp32":
106 | dtype_output = np.float32
107 | elif self.precision == "fp16":
108 | dtype_output = np.float16
109 | else:
110 | raise NotImplementedError(f"Currently not supports precision: {self.precision}")
111 |
112 | # NMS Outputs
113 | output_num_detections = gs.Variable(
114 | name="num_dets",
115 | dtype=np.int32,
116 | shape=[self.batch_size, 1],
117 | ) # A scalar indicating the number of valid detections per batch image.
118 | output_boxes = gs.Variable(
119 | name="det_boxes",
120 | dtype=dtype_output,
121 | shape=[self.batch_size, detections_per_img, 4],
122 | )
123 | output_scores = gs.Variable(
124 | name="det_scores",
125 | dtype=dtype_output,
126 | shape=[self.batch_size, detections_per_img],
127 | )
128 | output_labels = gs.Variable(
129 | name="det_classes",
130 | dtype=np.int32,
131 | shape=[self.batch_size, detections_per_img],
132 | )
133 |
134 | op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
135 |
136 | # Create the NMS Plugin node with the selected inputs. The outputs of the node will also
137 | # become the final outputs of the graph.
138 | self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
139 | LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
140 |
141 | self.graph.outputs = op_outputs
142 |
143 | self.infer()
144 |
145 | def save(self, output_path):
146 | """
147 | Save the ONNX model to the given location.
148 | Args:
149 | output_path: Path pointing to the location where to write
150 | out the updated ONNX model.
151 | """
152 | self.graph.cleanup().toposort()
153 | model = gs.export_onnx(self.graph)
154 | onnx.save(model, output_path)
155 | LOGGER.info(f"Saved ONNX model to {output_path}")
156 |
--------------------------------------------------------------------------------
/Yolov7/utils/autoanchor.py:
--------------------------------------------------------------------------------
1 | # Auto-anchor utils
2 |
3 | import numpy as np
4 | import torch
5 | import yaml
6 | from scipy.cluster.vq import kmeans
7 | from tqdm import tqdm
8 |
9 | from utils.general import colorstr
10 |
11 |
12 | def check_anchor_order(m):
13 | # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area
15 | da = a[-1] - a[0] # delta a
16 | ds = m.stride[-1] - m.stride[0] # delta s
17 | if da.sign() != ds.sign(): # same order
18 | print('Reversing anchor order')
19 | m.anchors[:] = m.anchors.flip(0)
20 | m.anchor_grid[:] = m.anchor_grid.flip(0)
21 |
22 |
23 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
24 | # Check anchor fit to data, recompute if necessary
25 | prefix = colorstr('autoanchor: ')
26 | print(f'\n{prefix}Analyzing anchors... ', end='')
27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31 |
32 | def metric(k): # compute metric
33 | r = wh[:, None] / k[None]
34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35 | best = x.max(1)[0] # best_x
36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37 | bpr = (best > 1. / thr).float().mean() # best possible recall
38 | return bpr, aat
39 |
40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41 | bpr, aat = metric(anchors)
42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43 | if bpr < 0.98: # threshold to recompute
44 | print('. Attempting to improve anchors, please wait...')
45 | na = m.anchor_grid.numel() // 2 # number of anchors
46 | try:
47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48 | except Exception as e:
49 | print(f'{prefix}ERROR: {e}')
50 | new_bpr = metric(anchors)[0]
51 | if new_bpr > bpr: # replace anchors
52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54 | check_anchor_order(m)
55 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57 | else:
58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59 | print('') # newline
60 |
61 |
62 | def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63 | """ Creates kmeans-evolved anchors from training dataset
64 |
65 | Arguments:
66 | path: path to dataset *.yaml, or a loaded dataset
67 | n: number of anchors
68 | img_size: image size used for training
69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70 | gen: generations to evolve anchors using genetic algorithm
71 | verbose: print all results
72 |
73 | Return:
74 | k: kmeans evolved anchors
75 |
76 | Usage:
77 | from utils.autoanchor import *; _ = kmean_anchors()
78 | """
79 | thr = 1. / thr
80 | prefix = colorstr('autoanchor: ')
81 |
82 | def metric(k, wh): # compute metrics
83 | r = wh[:, None] / k[None]
84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
86 | return x, x.max(1)[0] # x, best_x
87 |
88 | def anchor_fitness(k): # mutation fitness
89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90 | return (best * (best > thr).float()).mean() # fitness
91 |
92 | def print_results(k):
93 | k = k[np.argsort(k.prod(1))] # sort small to large
94 | x, best = metric(k, wh0)
95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99 | for i, x in enumerate(k):
100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101 | return k
102 |
103 | if isinstance(path, str): # *.yaml file
104 | with open(path) as f:
105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106 | from utils.datasets import LoadImagesAndLabels
107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108 | else:
109 | dataset = path # dataset
110 |
111 | # Get label wh
112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114 |
115 | # Filter
116 | i = (wh0 < 3.0).any(1).sum()
117 | if i:
118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121 |
122 | # Kmeans calculation
123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124 | s = wh.std(0) # sigmas for whitening
125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127 | k *= s
128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130 | k = print_results(k)
131 |
132 | # Plot
133 | # k, d = [None] * 20, [None] * 20
134 | # for i in tqdm(range(1, 21)):
135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137 | # ax = ax.ravel()
138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142 | # fig.savefig('wh.png', dpi=200)
143 |
144 | # Evolve
145 | npr = np.random
146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148 | for _ in pbar:
149 | v = np.ones(sh)
150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152 | kg = (k.copy() * v).clip(min=2.0)
153 | fg = anchor_fitness(kg)
154 | if fg > f:
155 | f, k = fg, kg.copy()
156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157 | if verbose:
158 | print_results(k)
159 |
160 | return print_results(k)
161 |
--------------------------------------------------------------------------------
/Yolov7/utils/general.py:
--------------------------------------------------------------------------------
1 | # YOLOR general utils
2 |
3 | import glob
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import random
9 | import re
10 | import subprocess
11 | import time
12 | from pathlib import Path
13 |
14 | import cv2
15 | import numpy as np
16 | import pandas as pd
17 | import torch
18 | import torchvision
19 | import yaml
20 |
21 | from utils.google_utils import gsutil_getsize
22 | from utils.metrics import fitness
23 | from utils.torch_utils import init_torch_seeds
24 |
25 | # Settings
26 | torch.set_printoptions(linewidth=320, precision=5, profile='long')
27 | np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28 | pd.options.display.max_columns = 10
29 | cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30 | os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31 |
32 |
33 | def set_logging(rank=-1):
34 | logging.basicConfig(
35 | format="%(message)s",
36 | level=logging.INFO if rank in [-1, 0] else logging.WARN)
37 |
38 |
39 | def init_seeds(seed=0):
40 | # Initialize random number generator (RNG) seeds
41 | random.seed(seed)
42 | np.random.seed(seed)
43 | init_torch_seeds(seed)
44 |
45 |
46 | def get_latest_run(search_dir='.'):
47 | # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48 | last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49 | return max(last_list, key=os.path.getctime) if last_list else ''
50 |
51 |
52 | def isdocker():
53 | # Is environment a Docker container
54 | return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55 |
56 |
57 | def emojis(str=''):
58 | # Return platform-dependent emoji-safe version of string
59 | return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60 |
61 |
62 | def check_online():
63 | # Check internet connectivity
64 | import socket
65 | try:
66 | socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67 | return True
68 | except OSError:
69 | return False
70 |
71 |
72 | def check_git_status():
73 | # Recommend 'git pull' if code is out of date
74 | print(colorstr('github: '), end='')
75 | try:
76 | assert Path('.git').exists(), 'skipping check (not a git repository)'
77 | assert not isdocker(), 'skipping check (Docker image)'
78 | assert check_online(), 'skipping check (offline)'
79 |
80 | cmd = 'git fetch && git config --get remote.origin.url'
81 | url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82 | branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83 | n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84 | if n > 0:
85 | s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86 | f"Use 'git pull' to update or 'git clone {url}' to download latest."
87 | else:
88 | s = f'up to date with {url} ✅'
89 | print(emojis(s)) # emoji-safe
90 | except Exception as e:
91 | print(e)
92 |
93 |
94 | def check_requirements(requirements='requirements.txt', exclude=()):
95 | # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96 | import pkg_resources as pkg
97 | prefix = colorstr('red', 'bold', 'requirements:')
98 | if isinstance(requirements, (str, Path)): # requirements.txt file
99 | file = Path(requirements)
100 | if not file.exists():
101 | print(f"{prefix} {file.resolve()} not found, check failed.")
102 | return
103 | requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104 | else: # list or tuple of packages
105 | requirements = [x for x in requirements if x not in exclude]
106 |
107 | n = 0 # number of packages updates
108 | for r in requirements:
109 | try:
110 | pkg.require(r)
111 | except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112 | n += 1
113 | print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114 | print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115 |
116 | if n: # if packages updated
117 | source = file.resolve() if 'file' in locals() else requirements
118 | s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119 | f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120 | print(emojis(s)) # emoji-safe
121 |
122 |
123 | def check_img_size(img_size, s=32):
124 | # Verify img_size is a multiple of stride s
125 | new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126 | if new_size != img_size:
127 | print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128 | return new_size
129 |
130 |
131 | def check_imshow():
132 | # Check if environment supports image displays
133 | try:
134 | assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135 | cv2.imshow('test', np.zeros((1, 1, 3)))
136 | cv2.waitKey(1)
137 | cv2.destroyAllWindows()
138 | cv2.waitKey(1)
139 | return True
140 | except Exception as e:
141 | print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142 | return False
143 |
144 |
145 | def check_file(file):
146 | # Search for file if not found
147 | if Path(file).is_file() or file == '':
148 | return file
149 | else:
150 | files = glob.glob('./**/' + file, recursive=True) # find file
151 | assert len(files), f'File Not Found: {file}' # assert file was found
152 | assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153 | return files[0] # return file
154 |
155 |
156 | def check_dataset(dict):
157 | # Download dataset if not found locally
158 | val, s = dict.get('val'), dict.get('download')
159 | if val and len(val):
160 | val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161 | if not all(x.exists() for x in val):
162 | print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163 | if s and len(s): # download script
164 | print('Downloading %s ...' % s)
165 | if s.startswith('http') and s.endswith('.zip'): # URL
166 | f = Path(s).name # filename
167 | torch.hub.download_url_to_file(s, f)
168 | r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169 | else: # bash script
170 | r = os.system(s)
171 | print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172 | else:
173 | raise Exception('Dataset not found.')
174 |
175 |
176 | def make_divisible(x, divisor):
177 | # Returns x evenly divisible by divisor
178 | return math.ceil(x / divisor) * divisor
179 |
180 |
181 | def clean_str(s):
182 | # Cleans a string by replacing special characters with underscore _
183 | return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184 |
185 |
186 | def one_cycle(y1=0.0, y2=1.0, steps=100):
187 | # lambda function for sinusoidal ramp from y1 to y2
188 | return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189 |
190 |
191 | def colorstr(*input):
192 | # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193 | *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194 | colors = {'black': '\033[30m', # basic colors
195 | 'red': '\033[31m',
196 | 'green': '\033[32m',
197 | 'yellow': '\033[33m',
198 | 'blue': '\033[34m',
199 | 'magenta': '\033[35m',
200 | 'cyan': '\033[36m',
201 | 'white': '\033[37m',
202 | 'bright_black': '\033[90m', # bright colors
203 | 'bright_red': '\033[91m',
204 | 'bright_green': '\033[92m',
205 | 'bright_yellow': '\033[93m',
206 | 'bright_blue': '\033[94m',
207 | 'bright_magenta': '\033[95m',
208 | 'bright_cyan': '\033[96m',
209 | 'bright_white': '\033[97m',
210 | 'end': '\033[0m', # misc
211 | 'bold': '\033[1m',
212 | 'underline': '\033[4m'}
213 | return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214 |
215 |
216 | def labels_to_class_weights(labels, nc=80):
217 | # Get class weights (inverse frequency) from training labels
218 | if labels[0] is None: # no labels loaded
219 | return torch.Tensor()
220 |
221 | labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222 | classes = labels[:, 0].astype(np.int32) # labels = [class xywh]
223 | weights = np.bincount(classes, minlength=nc) # occurrences per class
224 |
225 | # Prepend gridpoint count (for uCE training)
226 | # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227 | # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228 |
229 | weights[weights == 0] = 1 # replace empty bins with 1
230 | weights = 1 / weights # number of targets per class
231 | weights /= weights.sum() # normalize
232 | return torch.from_numpy(weights)
233 |
234 |
235 | def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236 | # Produces image weights based on class_weights and image contents
237 | class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
238 | image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239 | # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240 | return image_weights
241 |
242 |
243 | def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244 | # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245 | # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246 | # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247 | # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248 | # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249 | x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250 | 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251 | 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252 | return x
253 |
254 |
255 | def xyxy2xywh(x):
256 | # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258 | y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259 | y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260 | y[:, 2] = x[:, 2] - x[:, 0] # width
261 | y[:, 3] = x[:, 3] - x[:, 1] # height
262 | return y
263 |
264 |
265 | def xywh2xyxy(x):
266 | # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268 | y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269 | y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270 | y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271 | y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272 | return y
273 |
274 |
275 | def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276 | # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278 | y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279 | y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280 | y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281 | y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282 | return y
283 |
284 |
285 | def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286 | # Convert normalized segments into pixel segments, shape (n,2)
287 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288 | y[:, 0] = w * x[:, 0] + padw # top left x
289 | y[:, 1] = h * x[:, 1] + padh # top left y
290 | return y
291 |
292 |
293 | def segment2box(segment, width=640, height=640):
294 | # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295 | x, y = segment.T # segment xy
296 | inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297 | x, y, = x[inside], y[inside]
298 | return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299 |
300 |
301 | def segments2boxes(segments):
302 | # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303 | boxes = []
304 | for s in segments:
305 | x, y = s.T # segment xy
306 | boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307 | return xyxy2xywh(np.array(boxes)) # cls, xywh
308 |
309 |
310 | def resample_segments(segments, n=1000):
311 | # Up-sample an (n,2) segment
312 | for i, s in enumerate(segments):
313 | s = np.concatenate((s, s[0:1, :]), axis=0)
314 | x = np.linspace(0, len(s) - 1, n)
315 | xp = np.arange(len(s))
316 | segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
317 | return segments
318 |
319 |
320 | def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
321 | # Rescale coords (xyxy) from img1_shape to img0_shape
322 | if ratio_pad is None: # calculate from img0_shape
323 | gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
324 | pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
325 | else:
326 | gain = ratio_pad[0][0]
327 | pad = ratio_pad[1]
328 |
329 | coords[:, [0, 2]] -= pad[0] # x padding
330 | coords[:, [1, 3]] -= pad[1] # y padding
331 | coords[:, :4] /= gain
332 | clip_coords(coords, img0_shape)
333 | return coords
334 |
335 |
336 | def clip_coords(boxes, img_shape):
337 | # Clip bounding xyxy bounding boxes to image shape (height, width)
338 | boxes[:, 0].clamp_(0, img_shape[1]) # x1
339 | boxes[:, 1].clamp_(0, img_shape[0]) # y1
340 | boxes[:, 2].clamp_(0, img_shape[1]) # x2
341 | boxes[:, 3].clamp_(0, img_shape[0]) # y2
342 |
343 |
344 | def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
345 | # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
346 | box2 = box2.T
347 |
348 | # Get the coordinates of bounding boxes
349 | if x1y1x2y2: # x1, y1, x2, y2 = box1
350 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
351 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
352 | else: # transform from xywh to xyxy
353 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
354 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
355 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
356 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
357 |
358 | # Intersection area
359 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
360 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
361 |
362 | # Union Area
363 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
364 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
365 | union = w1 * h1 + w2 * h2 - inter + eps
366 |
367 | iou = inter / union
368 |
369 | if GIoU or DIoU or CIoU:
370 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
371 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
372 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373 | c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
374 | rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
375 | (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
376 | if DIoU:
377 | return iou - rho2 / c2 # DIoU
378 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
379 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
380 | with torch.no_grad():
381 | alpha = v / (v - iou + (1 + eps))
382 | return iou - (rho2 / c2 + v * alpha) # CIoU
383 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
384 | c_area = cw * ch + eps # convex area
385 | return iou - (c_area - union) / c_area # GIoU
386 | else:
387 | return iou # IoU
388 |
389 |
390 |
391 |
392 | def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
393 | # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
394 | box2 = box2.T
395 |
396 | # Get the coordinates of bounding boxes
397 | if x1y1x2y2: # x1, y1, x2, y2 = box1
398 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
399 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
400 | else: # transform from xywh to xyxy
401 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
402 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
403 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
404 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
405 |
406 | # Intersection area
407 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
408 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
409 |
410 | # Union Area
411 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
412 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
413 | union = w1 * h1 + w2 * h2 - inter + eps
414 |
415 | # change iou into pow(iou+eps)
416 | # iou = inter / union
417 | iou = torch.pow(inter/union + eps, alpha)
418 | # beta = 2 * alpha
419 | if GIoU or DIoU or CIoU:
420 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
421 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
422 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
423 | c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
424 | rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
425 | rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
426 | rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
427 | if DIoU:
428 | return iou - rho2 / c2 # DIoU
429 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
430 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
431 | with torch.no_grad():
432 | alpha_ciou = v / ((1 + eps) - inter / union + v)
433 | # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
434 | return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
435 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
436 | # c_area = cw * ch + eps # convex area
437 | # return iou - (c_area - union) / c_area # GIoU
438 | c_area = torch.max(cw * ch + eps, union) # convex area
439 | return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
440 | else:
441 | return iou # torch.log(iou+eps) or iou
442 |
443 |
444 | def box_iou(box1, box2):
445 | # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
446 | """
447 | Return intersection-over-union (Jaccard index) of boxes.
448 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
449 | Arguments:
450 | box1 (Tensor[N, 4])
451 | box2 (Tensor[M, 4])
452 | Returns:
453 | iou (Tensor[N, M]): the NxM matrix containing the pairwise
454 | IoU values for every element in boxes1 and boxes2
455 | """
456 |
457 | def box_area(box):
458 | # box = 4xn
459 | return (box[2] - box[0]) * (box[3] - box[1])
460 |
461 | area1 = box_area(box1.T)
462 | area2 = box_area(box2.T)
463 |
464 | # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
465 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
466 | return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
467 |
468 |
469 | def wh_iou(wh1, wh2):
470 | # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
471 | wh1 = wh1[:, None] # [N,1,2]
472 | wh2 = wh2[None] # [1,M,2]
473 | inter = torch.min(wh1, wh2).prod(2) # [N,M]
474 | return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
475 |
476 |
477 | def box_giou(box1, box2):
478 | """
479 | Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
480 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
481 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
482 | Args:
483 | boxes1 (Tensor[N, 4]): first set of boxes
484 | boxes2 (Tensor[M, 4]): second set of boxes
485 | Returns:
486 | Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
487 | for every element in boxes1 and boxes2
488 | """
489 |
490 | def box_area(box):
491 | # box = 4xn
492 | return (box[2] - box[0]) * (box[3] - box[1])
493 |
494 | area1 = box_area(box1.T)
495 | area2 = box_area(box2.T)
496 |
497 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
498 | union = (area1[:, None] + area2 - inter)
499 |
500 | iou = inter / union
501 |
502 | lti = torch.min(box1[:, None, :2], box2[:, :2])
503 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
504 |
505 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
506 | areai = whi[:, :, 0] * whi[:, :, 1]
507 |
508 | return iou - (areai - union) / areai
509 |
510 |
511 | def box_ciou(box1, box2, eps: float = 1e-7):
512 | """
513 | Return complete intersection-over-union (Jaccard index) between two sets of boxes.
514 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
515 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
516 | Args:
517 | boxes1 (Tensor[N, 4]): first set of boxes
518 | boxes2 (Tensor[M, 4]): second set of boxes
519 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
520 | Returns:
521 | Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
522 | for every element in boxes1 and boxes2
523 | """
524 |
525 | def box_area(box):
526 | # box = 4xn
527 | return (box[2] - box[0]) * (box[3] - box[1])
528 |
529 | area1 = box_area(box1.T)
530 | area2 = box_area(box2.T)
531 |
532 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
533 | union = (area1[:, None] + area2 - inter)
534 |
535 | iou = inter / union
536 |
537 | lti = torch.min(box1[:, None, :2], box2[:, :2])
538 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
539 |
540 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
541 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
542 |
543 | # centers of boxes
544 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
545 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
546 | x_g = (box2[:, 0] + box2[:, 2]) / 2
547 | y_g = (box2[:, 1] + box2[:, 3]) / 2
548 | # The distance between boxes' centers squared.
549 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
550 |
551 | w_pred = box1[:, None, 2] - box1[:, None, 0]
552 | h_pred = box1[:, None, 3] - box1[:, None, 1]
553 |
554 | w_gt = box2[:, 2] - box2[:, 0]
555 | h_gt = box2[:, 3] - box2[:, 1]
556 |
557 | v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
558 | with torch.no_grad():
559 | alpha = v / (1 - iou + v + eps)
560 | return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
561 |
562 |
563 | def box_diou(box1, box2, eps: float = 1e-7):
564 | """
565 | Return distance intersection-over-union (Jaccard index) between two sets of boxes.
566 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
567 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
568 | Args:
569 | boxes1 (Tensor[N, 4]): first set of boxes
570 | boxes2 (Tensor[M, 4]): second set of boxes
571 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
572 | Returns:
573 | Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
574 | for every element in boxes1 and boxes2
575 | """
576 |
577 | def box_area(box):
578 | # box = 4xn
579 | return (box[2] - box[0]) * (box[3] - box[1])
580 |
581 | area1 = box_area(box1.T)
582 | area2 = box_area(box2.T)
583 |
584 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
585 | union = (area1[:, None] + area2 - inter)
586 |
587 | iou = inter / union
588 |
589 | lti = torch.min(box1[:, None, :2], box2[:, :2])
590 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
591 |
592 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
593 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
594 |
595 | # centers of boxes
596 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
597 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
598 | x_g = (box2[:, 0] + box2[:, 2]) / 2
599 | y_g = (box2[:, 1] + box2[:, 3]) / 2
600 | # The distance between boxes' centers squared.
601 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
602 |
603 | # The distance IoU is the IoU penalized by a normalized
604 | # distance between boxes' centers squared.
605 | return iou - (centers_distance_squared / diagonal_distance_squared)
606 |
607 |
608 | def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
609 | labels=()):
610 | """Runs Non-Maximum Suppression (NMS) on inference results
611 |
612 | Returns:
613 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
614 | """
615 |
616 | nc = prediction.shape[2] - 5 # number of classes
617 | xc = prediction[..., 4] > conf_thres # candidates
618 |
619 | # Settings
620 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
621 | max_det = 300 # maximum number of detections per image
622 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
623 | time_limit = 10.0 # seconds to quit after
624 | redundant = True # require redundant detections
625 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
626 | merge = False # use merge-NMS
627 |
628 | t = time.time()
629 | output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
630 | for xi, x in enumerate(prediction): # image index, image inference
631 | # Apply constraints
632 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
633 | x = x[xc[xi]] # confidence
634 |
635 | # Cat apriori labels if autolabelling
636 | if labels and len(labels[xi]):
637 | l = labels[xi]
638 | v = torch.zeros((len(l), nc + 5), device=x.device)
639 | v[:, :4] = l[:, 1:5] # box
640 | v[:, 4] = 1.0 # conf
641 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
642 | x = torch.cat((x, v), 0)
643 |
644 | # If none remain process next image
645 | if not x.shape[0]:
646 | continue
647 |
648 | # Compute conf
649 | if nc == 1:
650 | x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
651 | # so there is no need to multiplicate.
652 | else:
653 | x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
654 |
655 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
656 | box = xywh2xyxy(x[:, :4])
657 |
658 | # Detections matrix nx6 (xyxy, conf, cls)
659 | if multi_label:
660 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
661 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
662 | else: # best class only
663 | conf, j = x[:, 5:].max(1, keepdim=True)
664 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
665 |
666 | # Filter by class
667 | if classes is not None:
668 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
669 |
670 | # Apply finite constraint
671 | # if not torch.isfinite(x).all():
672 | # x = x[torch.isfinite(x).all(1)]
673 |
674 | # Check shape
675 | n = x.shape[0] # number of boxes
676 | if not n: # no boxes
677 | continue
678 | elif n > max_nms: # excess boxes
679 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
680 |
681 | # Batched NMS
682 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
683 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
684 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
685 | if i.shape[0] > max_det: # limit detections
686 | i = i[:max_det]
687 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
688 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
689 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
690 | weights = iou * scores[None] # box weights
691 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
692 | if redundant:
693 | i = i[iou.sum(1) > 1] # require redundancy
694 |
695 | output[xi] = x[i]
696 | if (time.time() - t) > time_limit:
697 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
698 | break # time limit exceeded
699 |
700 | return output
701 |
702 |
703 | def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
704 | labels=(), kpt_label=False, nc=None, nkpt=None):
705 | """Runs Non-Maximum Suppression (NMS) on inference results
706 |
707 | Returns:
708 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
709 | """
710 | if nc is None:
711 | nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
712 | xc = prediction[..., 4] > conf_thres # candidates
713 |
714 | # Settings
715 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
716 | max_det = 300 # maximum number of detections per image
717 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
718 | time_limit = 10.0 # seconds to quit after
719 | redundant = True # require redundant detections
720 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
721 | merge = False # use merge-NMS
722 |
723 | t = time.time()
724 | output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
725 | for xi, x in enumerate(prediction): # image index, image inference
726 | # Apply constraints
727 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
728 | x = x[xc[xi]] # confidence
729 |
730 | # Cat apriori labels if autolabelling
731 | if labels and len(labels[xi]):
732 | l = labels[xi]
733 | v = torch.zeros((len(l), nc + 5), device=x.device)
734 | v[:, :4] = l[:, 1:5] # box
735 | v[:, 4] = 1.0 # conf
736 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
737 | x = torch.cat((x, v), 0)
738 |
739 | # If none remain process next image
740 | if not x.shape[0]:
741 | continue
742 |
743 | # Compute conf
744 | x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
745 |
746 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
747 | box = xywh2xyxy(x[:, :4])
748 |
749 | # Detections matrix nx6 (xyxy, conf, cls)
750 | if multi_label:
751 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
752 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
753 | else: # best class only
754 | if not kpt_label:
755 | conf, j = x[:, 5:].max(1, keepdim=True)
756 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
757 | else:
758 | kpts = x[:, 6:]
759 | conf, j = x[:, 5:6].max(1, keepdim=True)
760 | x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
761 |
762 |
763 | # Filter by class
764 | if classes is not None:
765 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
766 |
767 | # Apply finite constraint
768 | # if not torch.isfinite(x).all():
769 | # x = x[torch.isfinite(x).all(1)]
770 |
771 | # Check shape
772 | n = x.shape[0] # number of boxes
773 | if not n: # no boxes
774 | continue
775 | elif n > max_nms: # excess boxes
776 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
777 |
778 | # Batched NMS
779 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
780 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
781 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
782 | if i.shape[0] > max_det: # limit detections
783 | i = i[:max_det]
784 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
785 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
786 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
787 | weights = iou * scores[None] # box weights
788 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
789 | if redundant:
790 | i = i[iou.sum(1) > 1] # require redundancy
791 |
792 | output[xi] = x[i]
793 | if (time.time() - t) > time_limit:
794 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
795 | break # time limit exceeded
796 |
797 | return output
798 |
799 |
800 | def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
801 | # Strip optimizer from 'f' to finalize training, optionally save as 's'
802 | x = torch.load(f, map_location=torch.device('cpu'))
803 | if x.get('ema'):
804 | x['model'] = x['ema'] # replace model with ema
805 | for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
806 | x[k] = None
807 | x['epoch'] = -1
808 | x['model'].half() # to FP16
809 | for p in x['model'].parameters():
810 | p.requires_grad = False
811 | torch.save(x, s or f)
812 | mb = os.path.getsize(s or f) / 1E6 # filesize
813 | print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
814 |
815 |
816 | def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
817 | # Print mutation results to evolve.txt (for use with train.py --evolve)
818 | a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
819 | b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
820 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
821 | print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
822 |
823 | if bucket:
824 | url = 'gs://%s/evolve.txt' % bucket
825 | if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
826 | os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
827 |
828 | with open('evolve.txt', 'a') as f: # append result
829 | f.write(c + b + '\n')
830 | x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
831 | x = x[np.argsort(-fitness(x))] # sort
832 | np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
833 |
834 | # Save yaml
835 | for i, k in enumerate(hyp.keys()):
836 | hyp[k] = float(x[0, i + 7])
837 | with open(yaml_file, 'w') as f:
838 | results = tuple(x[0, :7])
839 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
840 | f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
841 | yaml.dump(hyp, f, sort_keys=False)
842 |
843 | if bucket:
844 | os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
845 |
846 |
847 | def apply_classifier(x, model, img, im0):
848 | # applies a second stage classifier to yolo outputs
849 | im0 = [im0] if isinstance(im0, np.ndarray) else im0
850 | for i, d in enumerate(x): # per image
851 | if d is not None and len(d):
852 | d = d.clone()
853 |
854 | # Reshape and pad cutouts
855 | b = xyxy2xywh(d[:, :4]) # boxes
856 | b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
857 | b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
858 | d[:, :4] = xywh2xyxy(b).long()
859 |
860 | # Rescale boxes from img_size to im0 size
861 | scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
862 |
863 | # Classes
864 | pred_cls1 = d[:, 5].long()
865 | ims = []
866 | for j, a in enumerate(d): # per item
867 | cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
868 | im = cv2.resize(cutout, (224, 224)) # BGR
869 | # cv2.imwrite('test%i.jpg' % j, cutout)
870 |
871 | im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
872 | im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
873 | im /= 255.0 # 0 - 255 to 0.0 - 1.0
874 | ims.append(im)
875 |
876 | pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
877 | x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
878 |
879 | return x
880 |
881 |
882 | def increment_path(path, exist_ok=True, sep=''):
883 | # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
884 | path = Path(path) # os-agnostic
885 | if (path.exists() and exist_ok) or (not path.exists()):
886 | return str(path)
887 | else:
888 | dirs = glob.glob(f"{path}{sep}*") # similar paths
889 | matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
890 | i = [int(m.groups()[0]) for m in matches if m] # indices
891 | n = max(i) + 1 if i else 2 # increment number
892 | return f"{path}{sep}{n}" # update path
893 |
--------------------------------------------------------------------------------
/Yolov7/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='WongKinYiu/yolov7'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30 | 'yolov7-e6e.pt', 'yolov7-w6.pt']
31 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32 |
33 | name = file.name
34 | if name in assets:
35 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36 | redundant = False # second download option
37 | try: # GitHub
38 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39 | print(f'Downloading {url} to {file}...')
40 | torch.hub.download_url_to_file(url, file)
41 | assert file.exists() and file.stat().st_size > 1E6 # check
42 | except Exception as e: # GCP
43 | print(f'Download error: {e}')
44 | assert redundant, 'No secondary mirror'
45 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46 | print(f'Downloading {url} to {file}...')
47 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48 | finally:
49 | if not file.exists() or file.stat().st_size < 1E6: # check
50 | file.unlink(missing_ok=True) # remove partial downloads
51 | print(f'ERROR: Download failure: {msg}')
52 | print('')
53 | return
54 |
55 |
56 | def gdrive_download(id='', file='tmp.zip'):
57 | # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58 | t = time.time()
59 | file = Path(file)
60 | cookie = Path('cookie') # gdrive cookie
61 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62 | file.unlink(missing_ok=True) # remove existing file
63 | cookie.unlink(missing_ok=True) # remove existing cookie
64 |
65 | # Attempt file download
66 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
67 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68 | if os.path.exists('cookie'): # large file
69 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70 | else: # small file
71 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72 | r = os.system(s) # execute, capture return
73 | cookie.unlink(missing_ok=True) # remove existing cookie
74 |
75 | # Error check
76 | if r != 0:
77 | file.unlink(missing_ok=True) # remove partial
78 | print('Download error ') # raise Exception('Download error')
79 | return r
80 |
81 | # Unzip if archive
82 | if file.suffix == '.zip':
83 | print('unzipping... ', end='')
84 | os.system(f'unzip -q {file}') # unzip
85 | file.unlink() # remove zip to free space
86 |
87 | print(f'Done ({time.time() - t:.1f}s)')
88 | return r
89 |
90 |
91 | def get_token(cookie="./cookie"):
92 | with open(cookie) as f:
93 | for line in f:
94 | if "download" in line:
95 | return line.split()[-1]
96 | return ""
97 |
98 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99 | # # Uploads a file to a bucket
100 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101 | #
102 | # storage_client = storage.Client()
103 | # bucket = storage_client.get_bucket(bucket_name)
104 | # blob = bucket.blob(destination_blob_name)
105 | #
106 | # blob.upload_from_filename(source_file_name)
107 | #
108 | # print('File {} uploaded to {}.'.format(
109 | # source_file_name,
110 | # destination_blob_name))
111 | #
112 | #
113 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
114 | # # Uploads a blob from a bucket
115 | # storage_client = storage.Client()
116 | # bucket = storage_client.get_bucket(bucket_name)
117 | # blob = bucket.blob(source_blob_name)
118 | #
119 | # blob.download_to_filename(destination_file_name)
120 | #
121 | # print('Blob {} downloaded to {}.'.format(
122 | # source_blob_name,
123 | # destination_file_name))
124 |
--------------------------------------------------------------------------------
/Yolov7/utils/metrics.py:
--------------------------------------------------------------------------------
1 | # Model validation metrics
2 |
3 | from pathlib import Path
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import torch
8 |
9 | from . import general
10 |
11 |
12 | def fitness(x):
13 | # Model fitness as a weighted combination of metrics
14 | w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15 | return (x[:, :4] * w).sum(1)
16 |
17 |
18 | def ap_per_class(tp, conf, pred_cls, target_cls, v5_metric=False, plot=False, save_dir='.', names=()):
19 | """ Compute the average precision, given the recall and precision curves.
20 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21 | # Arguments
22 | tp: True positives (nparray, nx1 or nx10).
23 | conf: Objectness value from 0-1 (nparray).
24 | pred_cls: Predicted object classes (nparray).
25 | target_cls: True object classes (nparray).
26 | plot: Plot precision-recall curve at mAP@0.5
27 | save_dir: Plot save directory
28 | # Returns
29 | The average precision as computed in py-faster-rcnn.
30 | """
31 |
32 | # Sort by objectness
33 | i = np.argsort(-conf)
34 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35 |
36 | # Find unique classes
37 | unique_classes = np.unique(target_cls)
38 | nc = unique_classes.shape[0] # number of classes, number of detections
39 |
40 | # Create Precision-Recall curve and compute AP for each class
41 | px, py = np.linspace(0, 1, 1000), [] # for plotting
42 | ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43 | for ci, c in enumerate(unique_classes):
44 | i = pred_cls == c
45 | n_l = (target_cls == c).sum() # number of labels
46 | n_p = i.sum() # number of predictions
47 |
48 | if n_p == 0 or n_l == 0:
49 | continue
50 | else:
51 | # Accumulate FPs and TPs
52 | fpc = (1 - tp[i]).cumsum(0)
53 | tpc = tp[i].cumsum(0)
54 |
55 | # Recall
56 | recall = tpc / (n_l + 1e-16) # recall curve
57 | r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58 |
59 | # Precision
60 | precision = tpc / (tpc + fpc) # precision curve
61 | p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62 |
63 | # AP from recall-precision curve
64 | for j in range(tp.shape[1]):
65 | ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j], v5_metric=v5_metric)
66 | if plot and j == 0:
67 | py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68 |
69 | # Compute F1 (harmonic mean of precision and recall)
70 | f1 = 2 * p * r / (p + r + 1e-16)
71 | if plot:
72 | plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73 | plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74 | plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75 | plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76 |
77 | i = f1.mean(0).argmax() # max F1 index
78 | return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79 |
80 |
81 | def compute_ap(recall, precision, v5_metric=False):
82 | """ Compute the average precision, given the recall and precision curves
83 | # Arguments
84 | recall: The recall curve (list)
85 | precision: The precision curve (list)
86 | v5_metric: Assume maximum recall to be 1.0, as in YOLOv5, MMDetetion etc.
87 | # Returns
88 | Average precision, precision curve, recall curve
89 | """
90 |
91 | # Append sentinel values to beginning and end
92 | if v5_metric: # New YOLOv5 metric, same as MMDetection and Detectron2 repositories
93 | mrec = np.concatenate(([0.], recall, [1.0]))
94 | else: # Old YOLOv5 metric, i.e. default YOLOv7 metric
95 | mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
96 | mpre = np.concatenate(([1.], precision, [0.]))
97 |
98 | # Compute the precision envelope
99 | mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
100 |
101 | # Integrate area under curve
102 | method = 'interp' # methods: 'continuous', 'interp'
103 | if method == 'interp':
104 | x = np.linspace(0, 1, 101) # 101-point interp (COCO)
105 | ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
106 | else: # 'continuous'
107 | i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
108 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
109 |
110 | return ap, mpre, mrec
111 |
112 |
113 | class ConfusionMatrix:
114 | # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
115 | def __init__(self, nc, conf=0.25, iou_thres=0.45):
116 | self.matrix = np.zeros((nc + 1, nc + 1))
117 | self.nc = nc # number of classes
118 | self.conf = conf
119 | self.iou_thres = iou_thres
120 |
121 | def process_batch(self, detections, labels):
122 | """
123 | Return intersection-over-union (Jaccard index) of boxes.
124 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
125 | Arguments:
126 | detections (Array[N, 6]), x1, y1, x2, y2, conf, class
127 | labels (Array[M, 5]), class, x1, y1, x2, y2
128 | Returns:
129 | None, updates confusion matrix accordingly
130 | """
131 | detections = detections[detections[:, 4] > self.conf]
132 | gt_classes = labels[:, 0].int()
133 | detection_classes = detections[:, 5].int()
134 | iou = general.box_iou(labels[:, 1:], detections[:, :4])
135 |
136 | x = torch.where(iou > self.iou_thres)
137 | if x[0].shape[0]:
138 | matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
139 | if x[0].shape[0] > 1:
140 | matches = matches[matches[:, 2].argsort()[::-1]]
141 | matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
142 | matches = matches[matches[:, 2].argsort()[::-1]]
143 | matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
144 | else:
145 | matches = np.zeros((0, 3))
146 |
147 | n = matches.shape[0] > 0
148 | m0, m1, _ = matches.transpose().astype(np.int16)
149 | for i, gc in enumerate(gt_classes):
150 | j = m0 == i
151 | if n and sum(j) == 1:
152 | self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
153 | else:
154 | self.matrix[self.nc, gc] += 1 # background FP
155 |
156 | if n:
157 | for i, dc in enumerate(detection_classes):
158 | if not any(m1 == i):
159 | self.matrix[dc, self.nc] += 1 # background FN
160 |
161 | def matrix(self):
162 | return self.matrix
163 |
164 | def plot(self, save_dir='', names=()):
165 | try:
166 | import seaborn as sn
167 |
168 | array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
169 | array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
170 |
171 | fig = plt.figure(figsize=(12, 9), tight_layout=True)
172 | sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
173 | labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
174 | sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
175 | xticklabels=names + ['background FP'] if labels else "auto",
176 | yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
177 | fig.axes[0].set_xlabel('True')
178 | fig.axes[0].set_ylabel('Predicted')
179 | fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
180 | except Exception as e:
181 | pass
182 |
183 | def print(self):
184 | for i in range(self.nc + 1):
185 | print(' '.join(map(str, self.matrix[i])))
186 |
187 |
188 | # Plots ----------------------------------------------------------------------------------------------------------------
189 |
190 | def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
191 | # Precision-recall curve
192 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
193 | py = np.stack(py, axis=1)
194 |
195 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
196 | for i, y in enumerate(py.T):
197 | ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
198 | else:
199 | ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
200 |
201 | ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
202 | ax.set_xlabel('Recall')
203 | ax.set_ylabel('Precision')
204 | ax.set_xlim(0, 1)
205 | ax.set_ylim(0, 1)
206 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
207 | fig.savefig(Path(save_dir), dpi=250)
208 |
209 |
210 | def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
211 | # Metric-confidence curve
212 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
213 |
214 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
215 | for i, y in enumerate(py):
216 | ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
217 | else:
218 | ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
219 |
220 | y = py.mean(0)
221 | ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
222 | ax.set_xlabel(xlabel)
223 | ax.set_ylabel(ylabel)
224 | ax.set_xlim(0, 1)
225 | ax.set_ylim(0, 1)
226 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
227 | fig.savefig(Path(save_dir), dpi=250)
228 |
--------------------------------------------------------------------------------
/Yolov7/utils/plots.py:
--------------------------------------------------------------------------------
1 | # Plotting utils
2 |
3 | import glob
4 | import math
5 | import os
6 | import random
7 | from copy import copy
8 | from pathlib import Path
9 |
10 | import cv2
11 | import matplotlib
12 | import matplotlib.pyplot as plt
13 | import numpy as np
14 | import pandas as pd
15 | import seaborn as sns
16 | import torch
17 | import yaml
18 | from PIL import Image, ImageDraw, ImageFont
19 | from scipy.signal import butter, filtfilt
20 |
21 | from utils.general import xywh2xyxy, xyxy2xywh
22 | from utils.metrics import fitness
23 |
24 | # Settings
25 | matplotlib.rc('font', **{'size': 11})
26 | matplotlib.use('Agg') # for writing to files only
27 |
28 |
29 | def color_list():
30 | # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31 | def hex2rgb(h):
32 | return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33 |
34 | return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35 |
36 |
37 | def hist2d(x, y, n=100):
38 | # 2d histogram used in labels.png and evolve.png
39 | xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40 | hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41 | xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42 | yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43 | return np.log(hist[xidx, yidx])
44 |
45 |
46 | def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47 | # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48 | def butter_lowpass(cutoff, fs, order):
49 | nyq = 0.5 * fs
50 | normal_cutoff = cutoff / nyq
51 | return butter(order, normal_cutoff, btype='low', analog=False)
52 |
53 | b, a = butter_lowpass(cutoff, fs, order=order)
54 | return filtfilt(b, a, data) # forward-backward filter
55 |
56 |
57 | def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58 | # Plots one bounding box on image img
59 | tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60 | color = color or [random.randint(0, 255) for _ in range(3)]
61 | c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62 | cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63 | if label:
64 | tf = max(tl - 1, 1) # font thickness
65 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66 | c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67 | cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68 | cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69 |
70 |
71 | def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72 | img = Image.fromarray(img)
73 | draw = ImageDraw.Draw(img)
74 | line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75 | draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76 | if label:
77 | fontsize = max(round(max(img.size) / 40), 12)
78 | font = ImageFont.truetype("Arial.ttf", fontsize)
79 | txt_width, txt_height = font.getsize(label)
80 | draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81 | draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82 | return np.asarray(img)
83 |
84 |
85 | def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86 | # Compares the two methods for width-height anchor multiplication
87 | # https://github.com/ultralytics/yolov3/issues/168
88 | x = np.arange(-4.0, 4.0, .1)
89 | ya = np.exp(x)
90 | yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91 |
92 | fig = plt.figure(figsize=(6, 3), tight_layout=True)
93 | plt.plot(x, ya, '.-', label='YOLOv3')
94 | plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95 | plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96 | plt.xlim(left=-4, right=4)
97 | plt.ylim(bottom=0, top=6)
98 | plt.xlabel('input')
99 | plt.ylabel('output')
100 | plt.grid()
101 | plt.legend()
102 | fig.savefig('comparison.png', dpi=200)
103 |
104 |
105 | def output_to_target(output):
106 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107 | targets = []
108 | for i, o in enumerate(output):
109 | for *box, conf, cls in o.cpu().numpy():
110 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111 | return np.array(targets)
112 |
113 |
114 | def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115 | # Plot image grid with labels
116 |
117 | if isinstance(images, torch.Tensor):
118 | images = images.cpu().float().numpy()
119 | if isinstance(targets, torch.Tensor):
120 | targets = targets.cpu().numpy()
121 |
122 | # un-normalise
123 | if np.max(images[0]) <= 1:
124 | images *= 255
125 |
126 | tl = 3 # line thickness
127 | tf = max(tl - 1, 1) # font thickness
128 | bs, _, h, w = images.shape # batch size, _, height, width
129 | bs = min(bs, max_subplots) # limit plot images
130 | ns = np.ceil(bs ** 0.5) # number of subplots (square)
131 |
132 | # Check if we should resize
133 | scale_factor = max_size / max(h, w)
134 | if scale_factor < 1:
135 | h = math.ceil(scale_factor * h)
136 | w = math.ceil(scale_factor * w)
137 |
138 | colors = color_list() # list of colors
139 | mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140 | for i, img in enumerate(images):
141 | if i == max_subplots: # if last batch has fewer images than we expect
142 | break
143 |
144 | block_x = int(w * (i // ns))
145 | block_y = int(h * (i % ns))
146 |
147 | img = img.transpose(1, 2, 0)
148 | if scale_factor < 1:
149 | img = cv2.resize(img, (w, h))
150 |
151 | mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152 | if len(targets) > 0:
153 | image_targets = targets[targets[:, 0] == i]
154 | boxes = xywh2xyxy(image_targets[:, 2:6]).T
155 | classes = image_targets[:, 1].astype('int')
156 | labels = image_targets.shape[1] == 6 # labels if no conf column
157 | conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158 |
159 | if boxes.shape[1]:
160 | if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161 | boxes[[0, 2]] *= w # scale to pixels
162 | boxes[[1, 3]] *= h
163 | elif scale_factor < 1: # absolute coords need scale if image scales
164 | boxes *= scale_factor
165 | boxes[[0, 2]] += block_x
166 | boxes[[1, 3]] += block_y
167 | for j, box in enumerate(boxes.T):
168 | cls = int(classes[j])
169 | color = colors[cls % len(colors)]
170 | cls = names[cls] if names else cls
171 | if labels or conf[j] > 0.25: # 0.25 conf thresh
172 | label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173 | plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174 |
175 | # Draw image filename labels
176 | if paths:
177 | label = Path(paths[i]).name[:40] # trim to 40 char
178 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179 | cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180 | lineType=cv2.LINE_AA)
181 |
182 | # Image border
183 | cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184 |
185 | if fname:
186 | r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187 | mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188 | # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189 | Image.fromarray(mosaic).save(fname) # PIL save
190 | return mosaic
191 |
192 |
193 | def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194 | # Plot LR simulating training for full epochs
195 | optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196 | y = []
197 | for _ in range(epochs):
198 | scheduler.step()
199 | y.append(optimizer.param_groups[0]['lr'])
200 | plt.plot(y, '.-', label='LR')
201 | plt.xlabel('epoch')
202 | plt.ylabel('LR')
203 | plt.grid()
204 | plt.xlim(0, epochs)
205 | plt.ylim(0)
206 | plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207 | plt.close()
208 |
209 |
210 | def plot_test_txt(): # from utils.plots import *; plot_test()
211 | # Plot test.txt histograms
212 | x = np.loadtxt('test.txt', dtype=np.float32)
213 | box = xyxy2xywh(x[:, :4])
214 | cx, cy = box[:, 0], box[:, 1]
215 |
216 | fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217 | ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218 | ax.set_aspect('equal')
219 | plt.savefig('hist2d.png', dpi=300)
220 |
221 | fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222 | ax[0].hist(cx, bins=600)
223 | ax[1].hist(cy, bins=600)
224 | plt.savefig('hist1d.png', dpi=200)
225 |
226 |
227 | def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228 | # Plot targets.txt histograms
229 | x = np.loadtxt('targets.txt', dtype=np.float32).T
230 | s = ['x targets', 'y targets', 'width targets', 'height targets']
231 | fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232 | ax = ax.ravel()
233 | for i in range(4):
234 | ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235 | ax[i].legend()
236 | ax[i].set_title(s[i])
237 | plt.savefig('targets.jpg', dpi=200)
238 |
239 |
240 | def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241 | # Plot study.txt generated by test.py
242 | fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243 | # ax = ax.ravel()
244 |
245 | fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246 | # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247 | for f in sorted(Path(path).glob('study*.txt')):
248 | y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249 | x = np.arange(y.shape[1]) if x is None else np.array(x)
250 | s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251 | # for i in range(7):
252 | # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253 | # ax[i].set_title(s[i])
254 |
255 | j = y[3].argmax() + 1
256 | ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257 | label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258 |
259 | ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260 | 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261 |
262 | ax2.grid(alpha=0.2)
263 | ax2.set_yticks(np.arange(20, 60, 5))
264 | ax2.set_xlim(0, 57)
265 | ax2.set_ylim(30, 55)
266 | ax2.set_xlabel('GPU Speed (ms/img)')
267 | ax2.set_ylabel('COCO AP val')
268 | ax2.legend(loc='lower right')
269 | plt.savefig(str(Path(path).name) + '.png', dpi=300)
270 |
271 |
272 | def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273 | # plot dataset labels
274 | print('Plotting labels... ')
275 | c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276 | nc = int(c.max() + 1) # number of classes
277 | colors = color_list()
278 | x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279 |
280 | # seaborn correlogram
281 | sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282 | plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283 | plt.close()
284 |
285 | # matplotlib labels
286 | matplotlib.use('svg') # faster
287 | ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288 | ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289 | ax[0].set_ylabel('instances')
290 | if 0 < len(names) < 30:
291 | ax[0].set_xticks(range(len(names)))
292 | ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293 | else:
294 | ax[0].set_xlabel('classes')
295 | sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296 | sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297 |
298 | # rectangles
299 | labels[:, 1:3] = 0.5 # center
300 | labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301 | img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302 | for cls, *box in labels[:1000]:
303 | ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304 | ax[1].imshow(img)
305 | ax[1].axis('off')
306 |
307 | for a in [0, 1, 2, 3]:
308 | for s in ['top', 'right', 'left', 'bottom']:
309 | ax[a].spines[s].set_visible(False)
310 |
311 | plt.savefig(save_dir / 'labels.jpg', dpi=200)
312 | matplotlib.use('Agg')
313 | plt.close()
314 |
315 | # loggers
316 | for k, v in loggers.items() or {}:
317 | if k == 'wandb' and v:
318 | v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319 |
320 |
321 | def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322 | # Plot hyperparameter evolution results in evolve.txt
323 | with open(yaml_file) as f:
324 | hyp = yaml.load(f, Loader=yaml.SafeLoader)
325 | x = np.loadtxt('evolve.txt', ndmin=2)
326 | f = fitness(x)
327 | # weights = (f - f.min()) ** 2 # for weighted results
328 | plt.figure(figsize=(10, 12), tight_layout=True)
329 | matplotlib.rc('font', **{'size': 8})
330 | for i, (k, v) in enumerate(hyp.items()):
331 | y = x[:, i + 7]
332 | # mu = (y * weights).sum() / weights.sum() # best weighted result
333 | mu = y[f.argmax()] # best single result
334 | plt.subplot(6, 5, i + 1)
335 | plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336 | plt.plot(mu, f.max(), 'k+', markersize=15)
337 | plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338 | if i % 5 != 0:
339 | plt.yticks([])
340 | print('%15s: %.3g' % (k, mu))
341 | plt.savefig('evolve.png', dpi=200)
342 | print('\nPlot saved as evolve.png')
343 |
344 |
345 | def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346 | # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347 | ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348 | s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349 | files = list(Path(save_dir).glob('frames*.txt'))
350 | for fi, f in enumerate(files):
351 | try:
352 | results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353 | n = results.shape[1] # number of rows
354 | x = np.arange(start, min(stop, n) if stop else n)
355 | results = results[:, x]
356 | t = (results[0] - results[0].min()) # set t0=0s
357 | results[0] = x
358 | for i, a in enumerate(ax):
359 | if i < len(results):
360 | label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361 | a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362 | a.set_title(s[i])
363 | a.set_xlabel('time (s)')
364 | # if fi == len(files) - 1:
365 | # a.set_ylim(bottom=0)
366 | for side in ['top', 'right']:
367 | a.spines[side].set_visible(False)
368 | else:
369 | a.remove()
370 | except Exception as e:
371 | print('Warning: Plotting error for %s; %s' % (f, e))
372 |
373 | ax[1].legend()
374 | plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375 |
376 |
377 | def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378 | # Plot training 'results*.txt', overlaying train and val losses
379 | s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380 | t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381 | for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383 | n = results.shape[1] # number of rows
384 | x = range(start, min(stop, n) if stop else n)
385 | fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386 | ax = ax.ravel()
387 | for i in range(5):
388 | for j in [i, i + 5]:
389 | y = results[j, x]
390 | ax[i].plot(x, y, marker='.', label=s[j])
391 | # y_smooth = butter_lowpass_filtfilt(y)
392 | # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393 |
394 | ax[i].set_title(t[i])
395 | ax[i].legend()
396 | ax[i].set_ylabel(f) if i == 0 else None # add filename
397 | fig.savefig(f.replace('.txt', '.png'), dpi=200)
398 |
399 |
400 | def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401 | # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402 | fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403 | ax = ax.ravel()
404 | s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405 | 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406 | if bucket:
407 | # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408 | files = ['results%g.txt' % x for x in id]
409 | c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410 | os.system(c)
411 | else:
412 | files = list(Path(save_dir).glob('results*.txt'))
413 | assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414 | for fi, f in enumerate(files):
415 | try:
416 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417 | n = results.shape[1] # number of rows
418 | x = range(start, min(stop, n) if stop else n)
419 | for i in range(10):
420 | y = results[i, x]
421 | if i in [0, 1, 2, 5, 6, 7]:
422 | y[y == 0] = np.nan # don't show zero loss values
423 | # y /= y[0] # normalize
424 | label = labels[fi] if len(labels) else f.stem
425 | ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426 | ax[i].set_title(s[i])
427 | # if i in [5, 6, 7]: # share train and val loss y axes
428 | # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429 | except Exception as e:
430 | print('Warning: Plotting error for %s; %s' % (f, e))
431 |
432 | ax[1].legend()
433 | fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434 |
435 |
436 | def output_to_keypoint(output):
437 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438 | targets = []
439 | for i, o in enumerate(output):
440 | kpts = o[:,6:]
441 | o = o[:,:6]
442 | for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444 | return np.array(targets)
445 |
446 |
447 | def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448 | #Plot the skeleton and keypointsfor coco datatset
449 | palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450 | [230, 230, 0], [255, 153, 255], [153, 204, 255],
451 | [255, 102, 255], [255, 51, 255], [102, 178, 255],
452 | [51, 153, 255], [255, 153, 153], [255, 102, 102],
453 | [255, 51, 51], [153, 255, 153], [102, 255, 102],
454 | [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455 | [255, 255, 255]])
456 |
457 | skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458 | [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459 | [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460 |
461 | pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462 | pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463 | radius = 5
464 | num_kpts = len(kpts) // steps
465 |
466 | for kid in range(num_kpts):
467 | r, g, b = pose_kpt_color[kid]
468 | x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469 | if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470 | if steps == 3:
471 | conf = kpts[steps * kid + 2]
472 | if conf < 0.5:
473 | continue
474 | cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475 |
476 | for sk_id, sk in enumerate(skeleton):
477 | r, g, b = pose_limb_color[sk_id]
478 | pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479 | pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480 | if steps == 3:
481 | conf1 = kpts[(sk[0]-1)*steps+2]
482 | conf2 = kpts[(sk[1]-1)*steps+2]
483 | if conf1<0.5 or conf2<0.5:
484 | continue
485 | if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486 | continue
487 | if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488 | continue
489 | cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
490 |
--------------------------------------------------------------------------------
/Yolov7/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | # YOLOR PyTorch utils
2 |
3 | import datetime
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import subprocess
9 | import time
10 | from contextlib import contextmanager
11 | from copy import deepcopy
12 | from pathlib import Path
13 |
14 | import torch
15 | import torch.backends.cudnn as cudnn
16 | import torch.nn as nn
17 | import torch.nn.functional as F
18 | import torchvision
19 |
20 | try:
21 | import thop # for FLOPS computation
22 | except ImportError:
23 | thop = None
24 | logger = logging.getLogger(__name__)
25 |
26 |
27 | @contextmanager
28 | def torch_distributed_zero_first(local_rank: int):
29 | """
30 | Decorator to make all processes in distributed training wait for each local_master to do something.
31 | """
32 | if local_rank not in [-1, 0]:
33 | torch.distributed.barrier()
34 | yield
35 | if local_rank == 0:
36 | torch.distributed.barrier()
37 |
38 |
39 | def init_torch_seeds(seed=0):
40 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41 | torch.manual_seed(seed)
42 | if seed == 0: # slower, more reproducible
43 | cudnn.benchmark, cudnn.deterministic = False, True
44 | else: # faster, less reproducible
45 | cudnn.benchmark, cudnn.deterministic = True, False
46 |
47 |
48 | def date_modified(path=__file__):
49 | # return human-readable file modification date, i.e. '2021-3-26'
50 | t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51 | return f'{t.year}-{t.month}-{t.day}'
52 |
53 |
54 | def git_describe(path=Path(__file__).parent): # path must be a directory
55 | # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56 | s = f'git -C {path} describe --tags --long --always'
57 | try:
58 | return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59 | except subprocess.CalledProcessError as e:
60 | return '' # not a git repository
61 |
62 |
63 | def select_device(device='', batch_size=None):
64 | # device = 'cpu' or '0' or '0,1,2,3'
65 | s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66 | cpu = device.lower() == 'cpu'
67 | if cpu:
68 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69 | elif device: # non-cpu device requested
70 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71 | assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72 |
73 | cuda = not cpu and torch.cuda.is_available()
74 | if cuda:
75 | n = torch.cuda.device_count()
76 | if n > 1 and batch_size: # check that batch_size is compatible with device_count
77 | assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78 | space = ' ' * len(s)
79 | for i, d in enumerate(device.split(',') if device else range(n)):
80 | p = torch.cuda.get_device_properties(i)
81 | s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82 | else:
83 | s += 'CPU\n'
84 |
85 | logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86 | return torch.device('cuda:0' if cuda else 'cpu')
87 |
88 |
89 | def time_synchronized():
90 | # pytorch-accurate time
91 | if torch.cuda.is_available():
92 | torch.cuda.synchronize()
93 | return time.time()
94 |
95 |
96 | def profile(x, ops, n=100, device=None):
97 | # profile a pytorch module or list of modules. Example usage:
98 | # x = torch.randn(16, 3, 640, 640) # input
99 | # m1 = lambda x: x * torch.sigmoid(x)
100 | # m2 = nn.SiLU()
101 | # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102 |
103 | device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104 | x = x.to(device)
105 | x.requires_grad = True
106 | print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107 | print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108 | for m in ops if isinstance(ops, list) else [ops]:
109 | m = m.to(device) if hasattr(m, 'to') else m # device
110 | m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111 | dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112 | try:
113 | flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114 | except:
115 | flops = 0
116 |
117 | for _ in range(n):
118 | t[0] = time_synchronized()
119 | y = m(x)
120 | t[1] = time_synchronized()
121 | try:
122 | _ = y.sum().backward()
123 | t[2] = time_synchronized()
124 | except: # no backward method
125 | t[2] = float('nan')
126 | dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127 | dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128 |
129 | s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130 | s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131 | p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132 | print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133 |
134 |
135 | def is_parallel(model):
136 | return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137 |
138 |
139 | def intersect_dicts(da, db, exclude=()):
140 | # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141 | return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142 |
143 |
144 | def initialize_weights(model):
145 | for m in model.modules():
146 | t = type(m)
147 | if t is nn.Conv2d:
148 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149 | elif t is nn.BatchNorm2d:
150 | m.eps = 1e-3
151 | m.momentum = 0.03
152 | elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153 | m.inplace = True
154 |
155 |
156 | def find_modules(model, mclass=nn.Conv2d):
157 | # Finds layer indices matching module class 'mclass'
158 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159 |
160 |
161 | def sparsity(model):
162 | # Return global model sparsity
163 | a, b = 0., 0.
164 | for p in model.parameters():
165 | a += p.numel()
166 | b += (p == 0).sum()
167 | return b / a
168 |
169 |
170 | def prune(model, amount=0.3):
171 | # Prune model to requested global sparsity
172 | import torch.nn.utils.prune as prune
173 | print('Pruning model... ', end='')
174 | for name, m in model.named_modules():
175 | if isinstance(m, nn.Conv2d):
176 | prune.l1_unstructured(m, name='weight', amount=amount) # prune
177 | prune.remove(m, 'weight') # make permanent
178 | print(' %.3g global sparsity' % sparsity(model))
179 |
180 |
181 | def fuse_conv_and_bn(conv, bn):
182 | # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183 | fusedconv = nn.Conv2d(conv.in_channels,
184 | conv.out_channels,
185 | kernel_size=conv.kernel_size,
186 | stride=conv.stride,
187 | padding=conv.padding,
188 | groups=conv.groups,
189 | bias=True).requires_grad_(False).to(conv.weight.device)
190 |
191 | # prepare filters
192 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
193 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195 |
196 | # prepare spatial bias
197 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200 |
201 | return fusedconv
202 |
203 |
204 | def model_info(model, verbose=False, img_size=640):
205 | # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
207 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208 | if verbose:
209 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210 | for i, (name, p) in enumerate(model.named_parameters()):
211 | name = name.replace('module_list.', '')
212 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214 |
215 | try: # FLOPS
216 | from thop import profile
217 | stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218 | img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219 | flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220 | img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221 | fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222 | except (ImportError, Exception):
223 | fs = ''
224 |
225 | logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226 |
227 |
228 | def load_classifier(name='resnet101', n=2):
229 | # Loads a pretrained model reshaped to n-class output
230 | model = torchvision.models.__dict__[name](pretrained=True)
231 |
232 | # ResNet model properties
233 | # input_size = [3, 224, 224]
234 | # input_space = 'RGB'
235 | # input_range = [0, 1]
236 | # mean = [0.485, 0.456, 0.406]
237 | # std = [0.229, 0.224, 0.225]
238 |
239 | # Reshape output to n classes
240 | filters = model.fc.weight.shape[1]
241 | model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242 | model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243 | model.fc.out_features = n
244 | return model
245 |
246 |
247 | def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248 | # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249 | if ratio == 1.0:
250 | return img
251 | else:
252 | h, w = img.shape[2:]
253 | s = (int(h * ratio), int(w * ratio)) # new size
254 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255 | if not same_shape: # pad/crop img
256 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258 |
259 |
260 | def copy_attr(a, b, include=(), exclude=()):
261 | # Copy attributes from b to a, options to only include [...] and to exclude [...]
262 | for k, v in b.__dict__.items():
263 | if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264 | continue
265 | else:
266 | setattr(a, k, v)
267 |
268 |
269 | class ModelEMA:
270 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271 | Keep a moving average of everything in the model state_dict (parameters and buffers).
272 | This is intended to allow functionality like
273 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274 | A smoothed version of the weights is necessary for some training schemes to perform well.
275 | This class is sensitive where it is initialized in the sequence of model init,
276 | GPU assignment and distributed training wrappers.
277 | """
278 |
279 | def __init__(self, model, decay=0.9999, updates=0):
280 | # Create EMA
281 | self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282 | # if next(model.parameters()).device.type != 'cpu':
283 | # self.ema.half() # FP16 EMA
284 | self.updates = updates # number of EMA updates
285 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286 | for p in self.ema.parameters():
287 | p.requires_grad_(False)
288 |
289 | def update(self, model):
290 | # Update EMA parameters
291 | with torch.no_grad():
292 | self.updates += 1
293 | d = self.decay(self.updates)
294 |
295 | msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296 | for k, v in self.ema.state_dict().items():
297 | if v.dtype.is_floating_point:
298 | v *= d
299 | v += (1. - d) * msd[k].detach()
300 |
301 | def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302 | # Update EMA attributes
303 | copy_attr(self.ema, model, include, exclude)
304 |
305 |
306 | class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307 | def _check_input_dim(self, input):
308 | # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309 | # is this method that is overwritten by the sub-class
310 | # This original goal of this method was for tensor sanity checks
311 | # If you're ok bypassing those sanity checks (eg. if you trust your inference
312 | # to provide the right dimensional inputs), then you can just use this method
313 | # for easy conversion from SyncBatchNorm
314 | # (unfortunately, SyncBatchNorm does not store the original class - if it did
315 | # we could return the one that was originally created)
316 | return
317 |
318 | def revert_sync_batchnorm(module):
319 | # this is very similar to the function that it is trying to revert:
320 | # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321 | module_output = module
322 | if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323 | new_cls = BatchNormXd
324 | module_output = BatchNormXd(module.num_features,
325 | module.eps, module.momentum,
326 | module.affine,
327 | module.track_running_stats)
328 | if module.affine:
329 | with torch.no_grad():
330 | module_output.weight = module.weight
331 | module_output.bias = module.bias
332 | module_output.running_mean = module.running_mean
333 | module_output.running_var = module.running_var
334 | module_output.num_batches_tracked = module.num_batches_tracked
335 | if hasattr(module, "qconfig"):
336 | module_output.qconfig = module.qconfig
337 | for name, child in module.named_children():
338 | module_output.add_module(name, revert_sync_batchnorm(child))
339 | del module
340 | return module_output
341 |
342 |
343 | class TracedModel(nn.Module):
344 |
345 | def __init__(self, model=None, device=None, img_size=(640,640)):
346 | super(TracedModel, self).__init__()
347 |
348 | print(" Convert model to Traced-model... ")
349 | self.stride = model.stride
350 | self.names = model.names
351 | self.model = model
352 |
353 | self.model = revert_sync_batchnorm(self.model)
354 | self.model.to('cpu')
355 | self.model.eval()
356 |
357 | self.detect_layer = self.model.model[-1]
358 | self.model.traced = True
359 |
360 | rand_example = torch.rand(1, 3, img_size, img_size)
361 |
362 | traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363 | #traced_script_module = torch.jit.script(self.model)
364 | traced_script_module.save("traced_model.pt")
365 | print(" traced_script_module saved! ")
366 | self.model = traced_script_module
367 | self.model.to(device)
368 | self.detect_layer.to(device)
369 | print(" model is traced! \n")
370 |
371 | def forward(self, x, augment=False, profile=False):
372 | out = self.model(x)
373 | out = self.detect_layer(out)
374 | return out
--------------------------------------------------------------------------------