├── .gitattributes ├── class_diagram.png ├── requirements.txt ├── skstab ├── __version__.py ├── __init__.py ├── metrics.py ├── datasets.py └── perturbation.py ├── setup.py ├── datasets ├── target │ ├── zoo.csv │ ├── exemple_scale_square_1.csv │ ├── iris.csv │ ├── tae.csv │ ├── wine.csv │ ├── wine_tnse.csv │ ├── wine_tsne.csv │ ├── wine_umap.csv │ ├── crabs.csv │ ├── exemple_scale_square_2.csv │ ├── seeds.csv │ ├── hepta.csv │ ├── thy.csv │ ├── spherical_5_2.csv │ ├── faithful.csv │ ├── spherical_6_2.csv │ ├── zelnik2.csv │ ├── exemple_scale_square_3.csv │ ├── haberman.csv │ ├── sonar.csv │ ├── tetra.csv │ ├── spherical_4_3.csv │ ├── exemple_scale_square_4.csv │ ├── iono.csv │ ├── arrhythmia.csv │ ├── ecoli.csv │ ├── ds4c2sc8.csv │ ├── elliptical_10_2.csv │ ├── exemple_scale_square_5.csv │ ├── exemples1_3g.csv │ ├── ds-577.csv │ ├── exemple_scale_square_6.csv │ ├── 4clusters_twins.csv │ ├── zelnik4.csv │ ├── r15.csv │ ├── 3clusters_elephant.csv │ ├── exemple_scale_square_7.csv │ ├── glass.csv │ ├── 2d-3c-no123.csv │ ├── diabetes.csv │ ├── balance-scale.csv │ ├── exemples7_elbow_3g.csv │ ├── twodiamonds.csv │ ├── exemple_scale_square_8.csv │ ├── ds-850.csv │ ├── 2d-4c-no4.csv │ ├── 2d-4c-no9.csv │ ├── st900.csv │ └── longsquare.csv └── data │ ├── real │ ├── iris.csv │ └── faithful.csv │ └── artificial │ ├── spherical_5_2.csv │ └── spherical_6_2.csv ├── example_modelexplorer.py ├── LICENSE ├── example_modelorderselection.py ├── .gitignore ├── example_stadion.py └── README.md /.gitattributes: -------------------------------------------------------------------------------- 1 | *.ipynb linguist-vendored 2 | -------------------------------------------------------------------------------- /class_diagram.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/FlorentF9/skstab/HEAD/class_diagram.png -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | joblib 2 | matplotlib 3 | numpy 4 | pandas 5 | scikit-learn 6 | scipy -------------------------------------------------------------------------------- /skstab/__version__.py: -------------------------------------------------------------------------------- 1 | """ 2 | skstab - Version 3 | """ 4 | 5 | __version__ = '1.0' 6 | -------------------------------------------------------------------------------- /skstab/__init__.py: -------------------------------------------------------------------------------- 1 | """ 2 | skstab - Init file 3 | 4 | @author Florent Forest, Alex Mourer 5 | """ 6 | 7 | from .__version__ import __version__ 8 | 9 | from .stability import BaseStability, ReferenceComparisonStability, PairwiseComparisonStability, LabelTransferStability 10 | from .stability import StadionEstimator, ModelExplorer, ModelOrderSelection 11 | 12 | __all__ = [ 13 | 'BaseStability', 14 | 'ReferenceComparisonStability', 15 | 'PairwiseComparisonStability', 16 | 'LabelTransferStability', 17 | 'StadionEstimator', 18 | 'ModelExplorer', 19 | 'ModelOrderSelection' 20 | ] 21 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | from setuptools import setup, find_packages 2 | 3 | with open('requirements.txt') as fp: 4 | install_reqs = [r.rstrip() for r in fp.readlines() 5 | if not r.startswith('#') and not r.startswith('git+')] 6 | 7 | with open('skstab/__version__.py') as fh: 8 | version = fh.readlines()[-1].split()[-1].strip('\'\'') 9 | 10 | setup( 11 | name='skstab', 12 | version=version, 13 | description='Clustering stability analysis with a scikit-learn compatible API', 14 | author='Florent Forest, Alex Mourer', 15 | author_email='f@florentfo.rest', 16 | packages=find_packages(), 17 | install_requires=install_reqs, 18 | url='https://github.com/FlorentF9/skstab' 19 | ) 20 | -------------------------------------------------------------------------------- /datasets/target/zoo.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 4 4 | 2 5 | 5 6 | 1 7 | 1 8 | 2 9 | 6 10 | 1 11 | 7 12 | 1 13 | 1 14 | 4 15 | 1 16 | 1 17 | 1 18 | 4 19 | 1 20 | 1 21 | 2 22 | 4 23 | 7 24 | 7 25 | 7 26 | 2 27 | 1 28 | 4 29 | 1 30 | 2 31 | 1 32 | 2 33 | 6 34 | 5 35 | 1 36 | 1 37 | 6 38 | 1 39 | 2 40 | 4 41 | 1 42 | 1 43 | 4 44 | 6 45 | 2 46 | 6 47 | 2 48 | 1 49 | 1 50 | 7 51 | 1 52 | 1 53 | 1 54 | 6 55 | 5 56 | 7 57 | 1 58 | 1 59 | 2 60 | 2 61 | 2 62 | 2 63 | 4 64 | 4 65 | 3 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 2 75 | 7 76 | 4 77 | 1 78 | 1 79 | 3 80 | 7 81 | 2 82 | 2 83 | 3 84 | 7 85 | 4 86 | 2 87 | 1 88 | 4 89 | 2 90 | 6 91 | 5 92 | 3 93 | 3 94 | 4 95 | 1 96 | 1 97 | 2 98 | 1 99 | 6 100 | 1 101 | 7 102 | 2 103 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_1.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | -------------------------------------------------------------------------------- /example_modelexplorer.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from skstab import ModelExplorer 3 | from skstab.datasets import load_dataset 4 | from sklearn.cluster import KMeans 5 | 6 | dataset = 'exemples2_5g' 7 | X, y = load_dataset(dataset) 8 | print('Dataset: {} (true number of clusters: K = {})'.format(dataset, len(np.unique(y)))) 9 | 10 | algorithm = KMeans 11 | km_kwargs = {'init': 'k-means++', 'n_init': 10} 12 | 13 | k_values = list(range(2, 11)) 14 | print('Evaluated numbers of clusters:', k_values) 15 | 16 | stab = ModelExplorer(X, algorithm, 17 | param_name='n_clusters', 18 | param_values=k_values, 19 | f=0.8, 20 | runs=100, 21 | algo_kwargs=km_kwargs, 22 | n_jobs=-1) 23 | 24 | score = stab.score() 25 | print('Model explorer scores:\n', score) 26 | k_hat = stab.select_param()[0] 27 | print('Selected number of clusters: K =', k_hat) 28 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 Florent Forest, Alex Mourer 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /datasets/target/iris.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 3 6 | 1 7 | 2 8 | 2 9 | 2 10 | 1 11 | 3 12 | 3 13 | 3 14 | 2 15 | 3 16 | 2 17 | 3 18 | 1 19 | 2 20 | 1 21 | 3 22 | 3 23 | 3 24 | 1 25 | 3 26 | 2 27 | 2 28 | 1 29 | 2 30 | 2 31 | 1 32 | 1 33 | 1 34 | 2 35 | 2 36 | 3 37 | 2 38 | 3 39 | 3 40 | 2 41 | 3 42 | 1 43 | 2 44 | 1 45 | 3 46 | 1 47 | 2 48 | 1 49 | 1 50 | 2 51 | 3 52 | 3 53 | 3 54 | 2 55 | 1 56 | 1 57 | 1 58 | 2 59 | 2 60 | 3 61 | 3 62 | 2 63 | 3 64 | 1 65 | 3 66 | 3 67 | 3 68 | 2 69 | 1 70 | 1 71 | 1 72 | 2 73 | 2 74 | 1 75 | 3 76 | 2 77 | 3 78 | 2 79 | 2 80 | 1 81 | 2 82 | 3 83 | 3 84 | 3 85 | 1 86 | 1 87 | 1 88 | 3 89 | 1 90 | 2 91 | 2 92 | 3 93 | 1 94 | 1 95 | 3 96 | 3 97 | 2 98 | 2 99 | 1 100 | 1 101 | 2 102 | 3 103 | 2 104 | 1 105 | 2 106 | 3 107 | 3 108 | 3 109 | 1 110 | 1 111 | 1 112 | 1 113 | 2 114 | 3 115 | 2 116 | 1 117 | 3 118 | 2 119 | 2 120 | 3 121 | 2 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 3 128 | 2 129 | 2 130 | 3 131 | 3 132 | 2 133 | 3 134 | 2 135 | 3 136 | 2 137 | 3 138 | 2 139 | 1 140 | 1 141 | 1 142 | 2 143 | 1 144 | 3 145 | 3 146 | 2 147 | 3 148 | 2 149 | 3 150 | 1 151 | 2 152 | -------------------------------------------------------------------------------- /datasets/target/tae.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 3 3 | 3 4 | 3 5 | 3 6 | 3 7 | 3 8 | 3 9 | 3 10 | 3 11 | 3 12 | 3 13 | 3 14 | 3 15 | 3 16 | 2 17 | 2 18 | 2 19 | 2 20 | 2 21 | 2 22 | 2 23 | 2 24 | 2 25 | 2 26 | 2 27 | 2 28 | 2 29 | 2 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 3 42 | 3 43 | 3 44 | 3 45 | 3 46 | 3 47 | 3 48 | 3 49 | 3 50 | 3 51 | 3 52 | 3 53 | 3 54 | 3 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 3 81 | 3 82 | 3 83 | 3 84 | 3 85 | 3 86 | 3 87 | 3 88 | 3 89 | 3 90 | 3 91 | 3 92 | 3 93 | 3 94 | 3 95 | 3 96 | 3 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 3 124 | 3 125 | 3 126 | 3 127 | 3 128 | 3 129 | 3 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | -------------------------------------------------------------------------------- /example_modelorderselection.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from skstab import ModelOrderSelection 3 | from skstab.datasets import load_dataset 4 | from sklearn.cluster import KMeans 5 | from sklearn.neighbors import KNeighborsClassifier 6 | 7 | dataset = 'exemples2_5g' 8 | X, y = load_dataset(dataset) 9 | print('Dataset: {} (true number of clusters: K = {})'.format(dataset, len(np.unique(y)))) 10 | 11 | algorithm = KMeans 12 | km_kwargs = {'init': 'k-means++', 'n_init': 10} 13 | 14 | k_values = list(range(2, 11)) 15 | print('Evaluated numbers of clusters:', k_values) 16 | 17 | stab = ModelOrderSelection(X, algorithm, 18 | param_name='n_clusters', 19 | param_values=k_values, 20 | classifier=KNeighborsClassifier, 21 | norm_samples=20, 22 | runs=20, 23 | algo_kwargs=km_kwargs, 24 | clf_kwargs={'n_neighbors': 1}, 25 | n_jobs=-1) 26 | 27 | score = stab.score() 28 | print('Model order selection scores:\n', score) 29 | k_hat = stab.select_param()[0] 30 | print('Selected number of clusters: K =', k_hat) 31 | -------------------------------------------------------------------------------- /datasets/target/wine.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 2 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 3 133 | 3 134 | 3 135 | 3 136 | 3 137 | 3 138 | 3 139 | 3 140 | 3 141 | 3 142 | 3 143 | 3 144 | 3 145 | 3 146 | 3 147 | 3 148 | 3 149 | 3 150 | 3 151 | 3 152 | 3 153 | 3 154 | 3 155 | 3 156 | 3 157 | 3 158 | 3 159 | 3 160 | 3 161 | 3 162 | 3 163 | 3 164 | 3 165 | 3 166 | 3 167 | 3 168 | 3 169 | 3 170 | 3 171 | 3 172 | 3 173 | 3 174 | 3 175 | 3 176 | 3 177 | 3 178 | 3 179 | 3 180 | -------------------------------------------------------------------------------- /datasets/target/wine_tnse.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | -------------------------------------------------------------------------------- /datasets/target/wine_tsne.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | -------------------------------------------------------------------------------- /datasets/target/wine_umap.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | -------------------------------------------------------------------------------- /datasets/target/crabs.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 2 3 | 2 4 | 2 5 | 2 6 | 2 7 | 2 8 | 2 9 | 2 10 | 2 11 | 2 12 | 2 13 | 2 14 | 2 15 | 2 16 | 2 17 | 2 18 | 2 19 | 2 20 | 2 21 | 2 22 | 2 23 | 2 24 | 2 25 | 2 26 | 2 27 | 2 28 | 2 29 | 2 30 | 2 31 | 2 32 | 2 33 | 2 34 | 2 35 | 2 36 | 2 37 | 2 38 | 2 39 | 2 40 | 2 41 | 2 42 | 2 43 | 2 44 | 2 45 | 2 46 | 2 47 | 2 48 | 2 49 | 2 50 | 2 51 | 2 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 4 103 | 4 104 | 4 105 | 4 106 | 4 107 | 4 108 | 4 109 | 4 110 | 4 111 | 4 112 | 4 113 | 4 114 | 4 115 | 4 116 | 4 117 | 4 118 | 4 119 | 4 120 | 4 121 | 4 122 | 4 123 | 4 124 | 4 125 | 4 126 | 4 127 | 4 128 | 4 129 | 4 130 | 4 131 | 4 132 | 4 133 | 4 134 | 4 135 | 4 136 | 4 137 | 4 138 | 4 139 | 4 140 | 4 141 | 4 142 | 4 143 | 4 144 | 4 145 | 4 146 | 4 147 | 4 148 | 4 149 | 4 150 | 4 151 | 4 152 | 3 153 | 3 154 | 3 155 | 3 156 | 3 157 | 3 158 | 3 159 | 3 160 | 3 161 | 3 162 | 3 163 | 3 164 | 3 165 | 3 166 | 3 167 | 3 168 | 3 169 | 3 170 | 3 171 | 3 172 | 3 173 | 3 174 | 3 175 | 3 176 | 3 177 | 3 178 | 3 179 | 3 180 | 3 181 | 3 182 | 3 183 | 3 184 | 3 185 | 3 186 | 3 187 | 3 188 | 3 189 | 3 190 | 3 191 | 3 192 | 3 193 | 3 194 | 3 195 | 3 196 | 3 197 | 3 198 | 3 199 | 3 200 | 3 201 | 3 202 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_2.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | -------------------------------------------------------------------------------- /datasets/target/seeds.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 2 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 3 143 | 3 144 | 3 145 | 3 146 | 3 147 | 3 148 | 3 149 | 3 150 | 3 151 | 3 152 | 3 153 | 3 154 | 3 155 | 3 156 | 3 157 | 3 158 | 3 159 | 3 160 | 3 161 | 3 162 | 3 163 | 3 164 | 3 165 | 3 166 | 3 167 | 3 168 | 3 169 | 3 170 | 3 171 | 3 172 | 3 173 | 3 174 | 3 175 | 3 176 | 3 177 | 3 178 | 3 179 | 3 180 | 3 181 | 3 182 | 3 183 | 3 184 | 3 185 | 3 186 | 3 187 | 3 188 | 3 189 | 3 190 | 3 191 | 3 192 | 3 193 | 3 194 | 3 195 | 3 196 | 3 197 | 3 198 | 3 199 | 3 200 | 3 201 | 3 202 | 3 203 | 3 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | -------------------------------------------------------------------------------- /datasets/target/hepta.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 2 35 | 2 36 | 2 37 | 2 38 | 2 39 | 2 40 | 2 41 | 2 42 | 2 43 | 2 44 | 2 45 | 2 46 | 2 47 | 2 48 | 2 49 | 2 50 | 2 51 | 2 52 | 2 53 | 2 54 | 2 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 3 65 | 3 66 | 3 67 | 3 68 | 3 69 | 3 70 | 3 71 | 3 72 | 3 73 | 3 74 | 3 75 | 3 76 | 3 77 | 3 78 | 3 79 | 3 80 | 3 81 | 3 82 | 3 83 | 3 84 | 3 85 | 3 86 | 3 87 | 3 88 | 3 89 | 3 90 | 3 91 | 3 92 | 3 93 | 3 94 | 4 95 | 4 96 | 4 97 | 4 98 | 4 99 | 4 100 | 4 101 | 4 102 | 4 103 | 4 104 | 4 105 | 4 106 | 4 107 | 4 108 | 4 109 | 4 110 | 4 111 | 4 112 | 4 113 | 4 114 | 4 115 | 4 116 | 4 117 | 4 118 | 4 119 | 4 120 | 4 121 | 4 122 | 4 123 | 4 124 | 5 125 | 5 126 | 5 127 | 5 128 | 5 129 | 5 130 | 5 131 | 5 132 | 5 133 | 5 134 | 5 135 | 5 136 | 5 137 | 5 138 | 5 139 | 5 140 | 5 141 | 5 142 | 5 143 | 5 144 | 5 145 | 5 146 | 5 147 | 5 148 | 5 149 | 5 150 | 5 151 | 5 152 | 5 153 | 5 154 | 6 155 | 6 156 | 6 157 | 6 158 | 6 159 | 6 160 | 6 161 | 6 162 | 6 163 | 6 164 | 6 165 | 6 166 | 6 167 | 6 168 | 6 169 | 6 170 | 6 171 | 6 172 | 6 173 | 6 174 | 6 175 | 6 176 | 6 177 | 6 178 | 6 179 | 6 180 | 6 181 | 6 182 | 6 183 | 6 184 | 7 185 | 7 186 | 7 187 | 7 188 | 7 189 | 7 190 | 7 191 | 7 192 | 7 193 | 7 194 | 7 195 | 7 196 | 7 197 | 7 198 | 7 199 | 7 200 | 7 201 | 7 202 | 7 203 | 7 204 | 7 205 | 7 206 | 7 207 | 7 208 | 7 209 | 7 210 | 7 211 | 7 212 | 7 213 | 7 214 | -------------------------------------------------------------------------------- /datasets/target/thy.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 3 188 | 3 189 | 3 190 | 3 191 | 3 192 | 3 193 | 3 194 | 3 195 | 3 196 | 3 197 | 3 198 | 3 199 | 3 200 | 3 201 | 3 202 | 3 203 | 3 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | -------------------------------------------------------------------------------- /skstab/metrics.py: -------------------------------------------------------------------------------- 1 | """ 2 | skstab - Clustering metrics 3 | 4 | @author Florent Forest, Alex Mourer 5 | """ 6 | 7 | import numpy as np 8 | from scipy.optimize import linear_sum_assignment 9 | 10 | 11 | def _contingency_matrix(y_true, y_pred): 12 | w = np.zeros((y_true.max() + 1, y_pred.max() + 1), dtype=np.int64) 13 | for c, k in zip(y_true, y_pred): 14 | w[c, k] += 1 # w[c, k] = number of c-labeled samples in cluster k 15 | return w 16 | 17 | 18 | def clustering_accuracy(y_true, y_pred): 19 | """Unsupervised clustering accuracy. 20 | 21 | Can only be used if the number of target classes in y_true is equal to the number of clusters in y_pred. 22 | 23 | Parameters 24 | ---------- 25 | y_true : array, shape = [n] 26 | true labels. 27 | y_pred : array, shape = [n] 28 | predicted cluster ids. 29 | 30 | Returns 31 | ------- 32 | accuracy : float in [0,1] (higher is better) 33 | accuracy score. 34 | """ 35 | y_true = y_true.astype(np.int64) 36 | y_pred = y_pred.astype(np.int64) 37 | w = _contingency_matrix(y_true, y_pred).T 38 | row_ind, col_ind = linear_sum_assignment(w.max() - w) 39 | return w[row_ind, col_ind].sum() * 1.0 / y_pred.size 40 | 41 | 42 | def minimum_matching_distance(y_true, y_pred): 43 | """Minimum matching distance (MMD). 44 | 45 | Can only be used if the number of target classes in y_true is equal to the number of clusters in y_pred. 46 | 47 | Parameters 48 | ---------- 49 | y_true : array, shape = [n] 50 | true labels. 51 | y_pred : array, shape = [n] 52 | predicted cluster ids. 53 | 54 | Returns 55 | ------- 56 | mmd : float in [0,1] 57 | minimum matching distance. 58 | """ 59 | return 1.0 - clustering_accuracy(y_true, y_pred) 60 | -------------------------------------------------------------------------------- /datasets/target/spherical_5_2.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 2 53 | 2 54 | 2 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 2 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 3 103 | 3 104 | 3 105 | 3 106 | 3 107 | 3 108 | 3 109 | 3 110 | 3 111 | 3 112 | 3 113 | 3 114 | 3 115 | 3 116 | 3 117 | 3 118 | 3 119 | 3 120 | 3 121 | 3 122 | 3 123 | 3 124 | 3 125 | 3 126 | 3 127 | 3 128 | 3 129 | 3 130 | 3 131 | 3 132 | 3 133 | 3 134 | 3 135 | 3 136 | 3 137 | 3 138 | 3 139 | 3 140 | 3 141 | 3 142 | 3 143 | 3 144 | 3 145 | 3 146 | 3 147 | 3 148 | 3 149 | 3 150 | 3 151 | 3 152 | 4 153 | 4 154 | 4 155 | 4 156 | 4 157 | 4 158 | 4 159 | 4 160 | 4 161 | 4 162 | 4 163 | 4 164 | 4 165 | 4 166 | 4 167 | 4 168 | 4 169 | 4 170 | 4 171 | 4 172 | 4 173 | 4 174 | 4 175 | 4 176 | 4 177 | 4 178 | 4 179 | 4 180 | 4 181 | 4 182 | 4 183 | 4 184 | 4 185 | 4 186 | 4 187 | 4 188 | 4 189 | 4 190 | 4 191 | 4 192 | 4 193 | 4 194 | 4 195 | 4 196 | 4 197 | 4 198 | 4 199 | 4 200 | 4 201 | 4 202 | 5 203 | 5 204 | 5 205 | 5 206 | 5 207 | 5 208 | 5 209 | 5 210 | 5 211 | 5 212 | 5 213 | 5 214 | 5 215 | 5 216 | 5 217 | 5 218 | 5 219 | 5 220 | 5 221 | 5 222 | 5 223 | 5 224 | 5 225 | 5 226 | 5 227 | 5 228 | 5 229 | 5 230 | 5 231 | 5 232 | 5 233 | 5 234 | 5 235 | 5 236 | 5 237 | 5 238 | 5 239 | 5 240 | 5 241 | 5 242 | 5 243 | 5 244 | 5 245 | 5 246 | 5 247 | 5 248 | 5 249 | 5 250 | 5 251 | 5 252 | -------------------------------------------------------------------------------- /datasets/target/faithful.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 2 3 | 1 4 | 2 5 | 1 6 | 2 7 | 1 8 | 2 9 | 2 10 | 1 11 | 2 12 | 1 13 | 2 14 | 2 15 | 1 16 | 2 17 | 1 18 | 1 19 | 2 20 | 1 21 | 2 22 | 1 23 | 1 24 | 2 25 | 2 26 | 2 27 | 2 28 | 1 29 | 2 30 | 2 31 | 2 32 | 2 33 | 2 34 | 2 35 | 2 36 | 2 37 | 1 38 | 1 39 | 2 40 | 1 41 | 2 42 | 2 43 | 1 44 | 2 45 | 1 46 | 2 47 | 2 48 | 2 49 | 1 50 | 2 51 | 1 52 | 2 53 | 2 54 | 1 55 | 2 56 | 1 57 | 2 58 | 2 59 | 1 60 | 2 61 | 2 62 | 1 63 | 2 64 | 1 65 | 2 66 | 1 67 | 2 68 | 2 69 | 2 70 | 1 71 | 2 72 | 2 73 | 1 74 | 2 75 | 2 76 | 1 77 | 2 78 | 1 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 1 86 | 2 87 | 2 88 | 2 89 | 2 90 | 1 91 | 2 92 | 1 93 | 2 94 | 1 95 | 2 96 | 1 97 | 2 98 | 2 99 | 2 100 | 1 101 | 2 102 | 1 103 | 2 104 | 1 105 | 2 106 | 2 107 | 1 108 | 2 109 | 1 110 | 2 111 | 2 112 | 2 113 | 1 114 | 2 115 | 2 116 | 1 117 | 2 118 | 1 119 | 2 120 | 1 121 | 2 122 | 1 123 | 2 124 | 2 125 | 1 126 | 2 127 | 2 128 | 1 129 | 2 130 | 1 131 | 2 132 | 1 133 | 2 134 | 1 135 | 2 136 | 1 137 | 2 138 | 1 139 | 2 140 | 1 141 | 2 142 | 2 143 | 1 144 | 2 145 | 2 146 | 2 147 | 1 148 | 2 149 | 1 150 | 2 151 | 1 152 | 2 153 | 2 154 | 1 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 1 161 | 2 162 | 1 163 | 2 164 | 1 165 | 2 166 | 2 167 | 2 168 | 1 169 | 2 170 | 1 171 | 2 172 | 1 173 | 1 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 1 180 | 2 181 | 2 182 | 1 183 | 2 184 | 2 185 | 2 186 | 1 187 | 2 188 | 2 189 | 1 190 | 2 191 | 1 192 | 2 193 | 1 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 1 201 | 2 202 | 1 203 | 2 204 | 2 205 | 1 206 | 2 207 | 1 208 | 2 209 | 2 210 | 1 211 | 2 212 | 1 213 | 2 214 | 1 215 | 2 216 | 2 217 | 2 218 | 1 219 | 2 220 | 1 221 | 2 222 | 1 223 | 2 224 | 1 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 1 234 | 2 235 | 1 236 | 2 237 | 1 238 | 1 239 | 2 240 | 2 241 | 1 242 | 2 243 | 1 244 | 2 245 | 1 246 | 2 247 | 2 248 | 1 249 | 2 250 | 1 251 | 2 252 | 1 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 1 261 | 2 262 | 2 263 | 2 264 | 1 265 | 2 266 | 1 267 | 1 268 | 2 269 | 2 270 | 1 271 | 2 272 | 1 273 | 2 274 | -------------------------------------------------------------------------------- /datasets/target/spherical_6_2.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 2 53 | 2 54 | 2 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 2 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 3 103 | 3 104 | 3 105 | 3 106 | 3 107 | 3 108 | 3 109 | 3 110 | 3 111 | 3 112 | 3 113 | 3 114 | 3 115 | 3 116 | 3 117 | 3 118 | 3 119 | 3 120 | 3 121 | 3 122 | 3 123 | 3 124 | 3 125 | 3 126 | 3 127 | 3 128 | 3 129 | 3 130 | 3 131 | 3 132 | 3 133 | 3 134 | 3 135 | 3 136 | 3 137 | 3 138 | 3 139 | 3 140 | 3 141 | 3 142 | 3 143 | 3 144 | 3 145 | 3 146 | 3 147 | 3 148 | 3 149 | 3 150 | 3 151 | 3 152 | 4 153 | 4 154 | 4 155 | 4 156 | 4 157 | 4 158 | 4 159 | 4 160 | 4 161 | 4 162 | 4 163 | 4 164 | 4 165 | 4 166 | 4 167 | 4 168 | 4 169 | 4 170 | 4 171 | 4 172 | 4 173 | 4 174 | 4 175 | 4 176 | 4 177 | 4 178 | 4 179 | 4 180 | 4 181 | 4 182 | 4 183 | 4 184 | 4 185 | 4 186 | 4 187 | 4 188 | 4 189 | 4 190 | 4 191 | 4 192 | 4 193 | 4 194 | 4 195 | 4 196 | 4 197 | 4 198 | 4 199 | 4 200 | 4 201 | 4 202 | 5 203 | 5 204 | 5 205 | 5 206 | 5 207 | 5 208 | 5 209 | 5 210 | 5 211 | 5 212 | 5 213 | 5 214 | 5 215 | 5 216 | 5 217 | 5 218 | 5 219 | 5 220 | 5 221 | 5 222 | 5 223 | 5 224 | 5 225 | 5 226 | 5 227 | 5 228 | 5 229 | 5 230 | 5 231 | 5 232 | 5 233 | 5 234 | 5 235 | 5 236 | 5 237 | 5 238 | 5 239 | 5 240 | 5 241 | 5 242 | 5 243 | 5 244 | 5 245 | 5 246 | 5 247 | 5 248 | 5 249 | 5 250 | 5 251 | 5 252 | 6 253 | 6 254 | 6 255 | 6 256 | 6 257 | 6 258 | 6 259 | 6 260 | 6 261 | 6 262 | 6 263 | 6 264 | 6 265 | 6 266 | 6 267 | 6 268 | 6 269 | 6 270 | 6 271 | 6 272 | 6 273 | 6 274 | 6 275 | 6 276 | 6 277 | 6 278 | 6 279 | 6 280 | 6 281 | 6 282 | 6 283 | 6 284 | 6 285 | 6 286 | 6 287 | 6 288 | 6 289 | 6 290 | 6 291 | 6 292 | 6 293 | 6 294 | 6 295 | 6 296 | 6 297 | 6 298 | 6 299 | 6 300 | 6 301 | 6 302 | -------------------------------------------------------------------------------- /datasets/target/zelnik2.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 0 98 | 0 99 | 0 100 | 0 101 | 0 102 | 0 103 | 0 104 | 0 105 | 0 106 | 0 107 | 0 108 | 0 109 | 0 110 | 0 111 | 0 112 | 0 113 | 0 114 | 0 115 | 0 116 | 0 117 | 0 118 | 0 119 | 0 120 | 0 121 | 0 122 | 0 123 | 0 124 | 0 125 | 0 126 | 0 127 | 0 128 | 0 129 | 0 130 | 0 131 | 0 132 | 0 133 | 0 134 | 0 135 | 0 136 | 0 137 | 0 138 | 0 139 | 0 140 | 0 141 | 0 142 | 0 143 | 0 144 | 0 145 | 0 146 | 0 147 | 0 148 | 0 149 | 0 150 | 0 151 | 0 152 | 0 153 | 0 154 | 0 155 | 0 156 | 0 157 | 0 158 | 0 159 | 0 160 | 0 161 | 0 162 | 0 163 | 0 164 | 0 165 | 0 166 | 0 167 | 0 168 | 0 169 | 0 170 | 0 171 | 0 172 | 0 173 | 0 174 | 0 175 | 0 176 | 0 177 | 0 178 | 0 179 | 0 180 | 0 181 | 0 182 | 0 183 | 0 184 | 0 185 | 0 186 | 0 187 | 0 188 | 0 189 | 0 190 | 0 191 | 0 192 | 0 193 | 0 194 | 0 195 | 0 196 | 0 197 | 0 198 | 0 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 2 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 2 261 | 2 262 | 2 263 | 2 264 | 2 265 | 2 266 | 2 267 | 2 268 | 2 269 | 2 270 | 2 271 | 2 272 | 2 273 | 2 274 | 2 275 | 2 276 | 2 277 | 2 278 | 2 279 | 2 280 | 2 281 | 2 282 | 2 283 | 2 284 | 2 285 | 2 286 | 2 287 | 2 288 | 2 289 | 2 290 | 2 291 | 2 292 | 2 293 | 2 294 | 2 295 | 2 296 | 2 297 | 2 298 | 2 299 | 2 300 | 2 301 | 2 302 | 2 303 | 2 304 | 2 305 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_3.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | -------------------------------------------------------------------------------- /datasets/target/haberman.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 2 10 | 2 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 2 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 2 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 2 46 | 2 47 | 2 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 2 56 | 2 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 2 65 | 2 66 | 2 67 | 2 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 2 76 | 2 77 | 2 78 | 1 79 | 1 80 | 1 81 | 1 82 | 2 83 | 2 84 | 2 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 2 92 | 2 93 | 2 94 | 2 95 | 1 96 | 1 97 | 1 98 | 2 99 | 2 100 | 2 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 2 110 | 2 111 | 2 112 | 1 113 | 1 114 | 1 115 | 1 116 | 2 117 | 2 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 2 127 | 2 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 2 139 | 2 140 | 1 141 | 1 142 | 1 143 | 1 144 | 2 145 | 2 146 | 2 147 | 2 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 2 170 | 2 171 | 2 172 | 2 173 | 1 174 | 1 175 | 1 176 | 1 177 | 1 178 | 1 179 | 1 180 | 1 181 | 1 182 | 2 183 | 2 184 | 1 185 | 1 186 | 1 187 | 1 188 | 1 189 | 1 190 | 1 191 | 1 192 | 2 193 | 2 194 | 1 195 | 1 196 | 1 197 | 1 198 | 1 199 | 2 200 | 2 201 | 2 202 | 1 203 | 1 204 | 1 205 | 1 206 | 1 207 | 1 208 | 1 209 | 1 210 | 1 211 | 1 212 | 1 213 | 1 214 | 1 215 | 1 216 | 1 217 | 2 218 | 1 219 | 1 220 | 1 221 | 1 222 | 1 223 | 1 224 | 1 225 | 2 226 | 2 227 | 1 228 | 1 229 | 1 230 | 1 231 | 2 232 | 2 233 | 2 234 | 1 235 | 1 236 | 1 237 | 1 238 | 1 239 | 1 240 | 2 241 | 2 242 | 2 243 | 1 244 | 1 245 | 1 246 | 1 247 | 2 248 | 1 249 | 1 250 | 1 251 | 1 252 | 1 253 | 1 254 | 1 255 | 1 256 | 1 257 | 1 258 | 1 259 | 1 260 | 2 261 | 2 262 | 2 263 | 2 264 | 1 265 | 1 266 | 1 267 | 1 268 | 1 269 | 1 270 | 2 271 | 2 272 | 1 273 | 1 274 | 1 275 | 2 276 | 2 277 | 1 278 | 1 279 | 1 280 | 1 281 | 1 282 | 1 283 | 2 284 | 1 285 | 1 286 | 1 287 | 2 288 | 2 289 | 1 290 | 1 291 | 1 292 | 1 293 | 1 294 | 1 295 | 2 296 | 1 297 | 1 298 | 1 299 | 1 300 | 1 301 | 2 302 | 1 303 | 1 304 | 1 305 | 1 306 | 2 307 | 2 308 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /skstab/datasets.py: -------------------------------------------------------------------------------- 1 | """ 2 | skstab - Data loading utility functions 3 | 4 | @author Florent Forest, Alex Mourer 5 | """ 6 | 7 | import os 8 | import pandas as pd 9 | from sklearn.preprocessing import StandardScaler 10 | 11 | 12 | ARTIFICIAL_DATASETS = [ 13 | '2d_10c', 14 | 'r15', 15 | 'd31', 16 | 'elliptical_10_2', 17 | 'twenty', 18 | 'fourty', 19 | 'hepta', 20 | 'tetra', 21 | '2d-3c-no123', 22 | '2d-4c', 23 | '2d-4c-no4', 24 | '2d-4c-no9', 25 | 'curves1', 26 | 'diamond9', 27 | 'ds-577', 28 | 'ds-850', 29 | 'elly-2d10c13s', 30 | 'engytime', 31 | 'ds4c2sc8', 32 | 'long1', 33 | 'long2', 34 | 'long3', 35 | 'longsquare', 36 | 'sizes1', 37 | 'sizes2', 38 | 'sizes3', 39 | 'sizes4', 40 | 'sizes5', 41 | 'spherical_4_3', 42 | 'spherical_5_2', 43 | 'spherical_6_2', 44 | 'square1', 45 | 'square2', 46 | 'square3', 47 | 'square4', 48 | 'square5', 49 | 'st900', 50 | 'triangle1', 51 | 'triangle2', 52 | 'twodiamonds', 53 | 'wingnut', 54 | 'xclara', 55 | 'zelnik2', 56 | 'zelnik4', 57 | 'exemples5_overlap2_3g', 58 | 'exemples4_overlap_3g', 59 | 'exemples8_Overlap_Uvar_5g', 60 | 'exemples9_YoD_6g', 61 | 'exemples6_quicunx_4g', 62 | 'exemples10_WellS_3g', 63 | 'exemples3_Uvar_4g', 64 | 'exemples1_3g', 65 | 'exemples2_5g', 66 | 'exemples7_elbow_3g', 67 | '3clusters_elephant', 68 | '4clusters_corner', 69 | '4clusters_twins', 70 | '5clusters_stars', 71 | 'a1', 72 | 'a2', 73 | 'g2-2', 74 | 'g2-16', 75 | 'g2-64', 76 | 's1', 77 | 's2', 78 | 's3', 79 | 's4', 80 | ] 81 | 82 | REAL_DATASETS = [ 83 | 'crabs', 84 | 'iris', 85 | 'oldfaithful', 86 | 'wine_umap', 87 | 'mfds_umap', 88 | 'usps_umap', 89 | 'mnist_umap' 90 | ] 91 | 92 | 93 | def load_dataset(name, path='./datasets'): 94 | if name in ARTIFICIAL_DATASETS: 95 | data_path = os.path.join(path, 'data/artificial') 96 | elif name in REAL_DATASETS: 97 | data_path = os.path.join(path, 'data/real') 98 | else: 99 | raise ValueError('Unknown dataset!') 100 | target_path = os.path.join(path, 'target') 101 | x = pd.read_csv(os.path.join(data_path, '{}.csv'.format(name)), sep=';', decimal=',').values 102 | y = pd.read_csv(os.path.join(target_path, '{}.csv'.format(name))).values.ravel() 103 | x_scaled = StandardScaler().fit_transform(x) 104 | del x 105 | return x_scaled, y 106 | -------------------------------------------------------------------------------- /datasets/target/sonar.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | "Rock" 3 | "Rock" 4 | "Rock" 5 | "Rock" 6 | "Rock" 7 | "Rock" 8 | "Rock" 9 | "Rock" 10 | "Rock" 11 | "Rock" 12 | "Rock" 13 | "Rock" 14 | "Rock" 15 | "Rock" 16 | "Rock" 17 | "Rock" 18 | "Rock" 19 | "Rock" 20 | "Rock" 21 | "Rock" 22 | "Rock" 23 | "Rock" 24 | "Rock" 25 | "Rock" 26 | "Rock" 27 | "Rock" 28 | "Rock" 29 | "Rock" 30 | "Rock" 31 | "Rock" 32 | "Rock" 33 | "Rock" 34 | "Rock" 35 | "Rock" 36 | "Rock" 37 | "Rock" 38 | "Rock" 39 | "Rock" 40 | "Rock" 41 | "Rock" 42 | "Rock" 43 | "Rock" 44 | "Rock" 45 | "Rock" 46 | "Rock" 47 | "Rock" 48 | "Rock" 49 | "Rock" 50 | "Rock" 51 | "Rock" 52 | "Rock" 53 | "Rock" 54 | "Rock" 55 | "Rock" 56 | "Rock" 57 | "Rock" 58 | "Rock" 59 | "Rock" 60 | "Rock" 61 | "Rock" 62 | "Rock" 63 | "Rock" 64 | "Rock" 65 | "Rock" 66 | "Rock" 67 | "Rock" 68 | "Rock" 69 | "Rock" 70 | "Rock" 71 | "Rock" 72 | "Rock" 73 | "Rock" 74 | "Rock" 75 | "Rock" 76 | "Rock" 77 | "Rock" 78 | "Rock" 79 | "Rock" 80 | "Rock" 81 | "Rock" 82 | "Rock" 83 | "Rock" 84 | "Rock" 85 | "Rock" 86 | "Rock" 87 | "Rock" 88 | "Rock" 89 | "Rock" 90 | "Rock" 91 | "Rock" 92 | "Rock" 93 | "Rock" 94 | "Rock" 95 | "Rock" 96 | "Rock" 97 | "Rock" 98 | "Rock" 99 | "Mine" 100 | "Mine" 101 | "Mine" 102 | "Mine" 103 | "Mine" 104 | "Mine" 105 | "Mine" 106 | "Mine" 107 | "Mine" 108 | "Mine" 109 | "Mine" 110 | "Mine" 111 | "Mine" 112 | "Mine" 113 | "Mine" 114 | "Mine" 115 | "Mine" 116 | "Mine" 117 | "Mine" 118 | "Mine" 119 | "Mine" 120 | "Mine" 121 | "Mine" 122 | "Mine" 123 | "Mine" 124 | "Mine" 125 | "Mine" 126 | "Mine" 127 | "Mine" 128 | "Mine" 129 | "Mine" 130 | "Mine" 131 | "Mine" 132 | "Mine" 133 | "Mine" 134 | "Mine" 135 | "Mine" 136 | "Mine" 137 | "Mine" 138 | "Mine" 139 | "Mine" 140 | "Mine" 141 | "Mine" 142 | "Mine" 143 | "Mine" 144 | "Mine" 145 | "Mine" 146 | "Mine" 147 | "Mine" 148 | "Mine" 149 | "Mine" 150 | "Mine" 151 | "Mine" 152 | "Mine" 153 | "Mine" 154 | "Mine" 155 | "Mine" 156 | "Mine" 157 | "Mine" 158 | "Mine" 159 | "Mine" 160 | "Mine" 161 | "Mine" 162 | "Mine" 163 | "Mine" 164 | "Mine" 165 | "Mine" 166 | "Mine" 167 | "Mine" 168 | "Mine" 169 | "Mine" 170 | "Mine" 171 | "Mine" 172 | "Mine" 173 | "Mine" 174 | "Mine" 175 | "Mine" 176 | "Mine" 177 | "Mine" 178 | "Mine" 179 | "Mine" 180 | "Mine" 181 | "Mine" 182 | "Mine" 183 | "Mine" 184 | "Mine" 185 | "Mine" 186 | "Mine" 187 | "Mine" 188 | "Mine" 189 | "Mine" 190 | "Mine" 191 | "Mine" 192 | "Mine" 193 | "Mine" 194 | "Mine" 195 | "Mine" 196 | "Mine" 197 | "Mine" 198 | "Mine" 199 | "Mine" 200 | "Mine" 201 | "Mine" 202 | "Mine" 203 | "Mine" 204 | "Mine" 205 | "Mine" 206 | "Mine" 207 | "Mine" 208 | "Mine" 209 | "Mine" 210 | -------------------------------------------------------------------------------- /datasets/data/real/iris.csv: -------------------------------------------------------------------------------- 1 | "V1";"V2";"V3";"V4" 2 | 4,8;3,4;1,9;0,2 3 | 4,5;2,3;1,3;0,3 4 | 4,6;3,4;1,4;0,3 5 | 6,8;3;5,5;2,1 6 | 5;3,4;1,6;0,4 7 | 6,2;2,9;4,3;1,3 8 | 5,7;2,8;4,5;1,3 9 | 5,6;2,9;3,6;1,3 10 | 5,4;3,9;1,3;0,4 11 | 7,4;2,8;6,1;1,9 12 | 6,7;3,1;5,6;2,4 13 | 5,8;2,7;5,1;1,9 14 | 6,1;2,9;4,7;1,4 15 | 4,9;2,5;4,5;1,7 16 | 6;2,2;4;1 17 | 5,8;2,8;5,1;2,4 18 | 5;3,5;1,6;0,6 19 | 6,4;3,2;4,5;1,5 20 | 4,3;3;1,1;0,1 21 | 6,4;2,8;5,6;2,2 22 | 6,5;3;5,2;2 23 | 6,7;2,5;5,8;1,8 24 | 5,4;3,4;1,5;0,4 25 | 5,8;2,7;5,1;1,9 26 | 6,3;2,3;4,4;1,3 27 | 6,3;3,3;4,7;1,6 28 | 4,7;3,2;1,3;0,2 29 | 6,9;3,1;4,9;1,5 30 | 5,2;2,7;3,9;1,4 31 | 5,8;4;1,2;0,2 32 | 5,2;3,4;1,4;0,2 33 | 5,7;3,8;1,7;0,3 34 | 6,6;3;4,4;1,4 35 | 7;3,2;4,7;1,4 36 | 7,2;3,2;6;1,8 37 | 5,8;2,6;4;1,2 38 | 7,3;2,9;6,3;1,8 39 | 6,1;3;4,9;1,8 40 | 6;2,9;4,5;1,5 41 | 6,5;3;5,5;1,8 42 | 4,8;3,4;1,6;0,2 43 | 5,5;2,4;3,7;1 44 | 5,5;4,2;1,4;0,2 45 | 6,4;3,1;5,5;1,8 46 | 5;3,5;1,3;0,3 47 | 5,5;2,4;3,8;1,1 48 | 4,4;3,2;1,3;0,2 49 | 5,2;3,5;1,5;0,2 50 | 5,6;3;4,1;1,3 51 | 6,3;2,8;5,1;1,5 52 | 5,9;3;5,1;1,8 53 | 6,5;3;5,8;2,2 54 | 5,9;3;4,2;1,5 55 | 5,1;3,8;1,9;0,4 56 | 5,4;3,4;1,7;0,2 57 | 4,8;3;1,4;0,3 58 | 5,6;2,5;3,9;1,1 59 | 5;2,3;3,3;1 60 | 6,8;3,2;5,9;2,3 61 | 6;3;4,8;1,8 62 | 5,4;3;4,5;1,5 63 | 7,6;3;6,6;2,1 64 | 5,2;4,1;1,5;0,1 65 | 7,7;3,8;6,7;2,2 66 | 6,5;3,2;5,1;2 67 | 6,2;2,8;4,8;1,8 68 | 6;3,4;4,5;1,6 69 | 4,6;3,1;1,5;0,2 70 | 5;3,3;1,4;0,2 71 | 5,1;3,8;1,6;0,2 72 | 6,3;2,5;4,9;1,5 73 | 5,1;2,5;3;1,1 74 | 5,3;3,7;1,5;0,2 75 | 5,7;2,5;5;2 76 | 5,6;2,7;4,2;1,3 77 | 6,3;3,4;5,6;2,4 78 | 6,7;3;5;1,7 79 | 6,1;2,8;4,7;1,2 80 | 5,4;3,9;1,7;0,4 81 | 5,5;2,6;4,4;1,2 82 | 6,3;3,3;6;2,5 83 | 7,2;3;5,8;1,6 84 | 6,9;3,1;5,4;2,1 85 | 4,6;3,2;1,4;0,2 86 | 5,1;3,4;1,5;0,2 87 | 4,9;3;1,4;0,2 88 | 6,9;3,2;5,7;2,3 89 | 5,1;3,8;1,5;0,3 90 | 6,1;2,8;4;1,3 91 | 6,2;2,2;4,5;1,5 92 | 6,1;2,6;5,6;1,4 93 | 5,1;3,5;1,4;0,2 94 | 4,9;3,1;1,5;0,1 95 | 6,3;2,5;5;1,9 96 | 7,7;3;6,1;2,3 97 | 6,8;2,8;4,8;1,4 98 | 6,4;2,9;4,3;1,3 99 | 5;3;1,6;0,2 100 | 4,8;3;1,4;0,1 101 | 5,8;2,7;3,9;1,2 102 | 6,4;2,7;5,3;1,9 103 | 6,7;3,1;4,4;1,4 104 | 5;3,6;1,4;0,2 105 | 5,8;2,7;4,1;1 106 | 6,2;3,4;5,4;2,3 107 | 6,3;2,9;5,6;1,8 108 | 7,9;3,8;6,4;2 109 | 5,1;3,7;1,5;0,4 110 | 5;3,4;1,5;0,2 111 | 5,1;3,3;1,7;0,5 112 | 4,4;2,9;1,4;0,2 113 | 5,5;2,3;4;1,3 114 | 6,7;3;5,2;2,3 115 | 5,7;2,6;3,5;1 116 | 4,4;3;1,3;0,2 117 | 6;2,2;5;1,5 118 | 5;2;3,5;1 119 | 6,6;2,9;4,6;1,3 120 | 7,2;3,6;6,1;2,5 121 | 5,7;3;4,2;1,2 122 | 4,8;3,1;1,6;0,2 123 | 5;3,2;1,2;0,2 124 | 5,5;3,5;1,3;0,2 125 | 5,4;3,7;1,5;0,2 126 | 5,1;3,5;1,4;0,3 127 | 7,7;2,8;6,7;2 128 | 5,5;2,5;4;1,3 129 | 6,1;3;4,6;1,4 130 | 6,7;3,3;5,7;2,5 131 | 7,7;2,6;6,9;2,3 132 | 6;2,7;5,1;1,6 133 | 6,4;2,8;5,6;2,1 134 | 6,7;3,1;4,7;1,5 135 | 6,3;2,7;4,9;1,8 136 | 4,9;2,4;3,3;1 137 | 6,4;3,2;5,3;2,3 138 | 5,9;3,2;4,8;1,8 139 | 4,7;3,2;1,6;0,2 140 | 4,9;3,1;1,5;0,1 141 | 4,6;3,6;1;0,2 142 | 5,7;2,8;4,1;1,3 143 | 4,9;3,1;1,5;0,1 144 | 5,6;2,8;4,9;2 145 | 7,1;3;5,9;2,1 146 | 5,6;3;4,5;1,5 147 | 6,7;3,3;5,7;2,1 148 | 6,5;2,8;4,6;1,5 149 | 6,9;3,1;5,1;2,3 150 | 5,7;4,4;1,5;0,4 151 | 5,7;2,9;4,2;1,3 152 | -------------------------------------------------------------------------------- /datasets/target/tetra.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 3 203 | 3 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 4 303 | 4 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | -------------------------------------------------------------------------------- /datasets/target/spherical_4_3.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 3 203 | 3 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 4 303 | 4 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_4.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | 4 403 | 4 404 | -------------------------------------------------------------------------------- /datasets/target/iono.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | "g" 3 | "b" 4 | "g" 5 | "g" 6 | "g" 7 | "g" 8 | "b" 9 | "g" 10 | "g" 11 | "g" 12 | "b" 13 | "b" 14 | "g" 15 | "g" 16 | "b" 17 | "g" 18 | "g" 19 | "b" 20 | "g" 21 | "g" 22 | "b" 23 | "b" 24 | "b" 25 | "g" 26 | "g" 27 | "g" 28 | "b" 29 | "b" 30 | "g" 31 | "g" 32 | "g" 33 | "g" 34 | "b" 35 | "g" 36 | "b" 37 | "g" 38 | "b" 39 | "g" 40 | "g" 41 | "g" 42 | "g" 43 | "g" 44 | "b" 45 | "b" 46 | "b" 47 | "b" 48 | "g" 49 | "g" 50 | "g" 51 | "g" 52 | "b" 53 | "g" 54 | "g" 55 | "g" 56 | "g" 57 | "b" 58 | "g" 59 | "g" 60 | "g" 61 | "b" 62 | "g" 63 | "b" 64 | "b" 65 | "g" 66 | "g" 67 | "g" 68 | "b" 69 | "b" 70 | "g" 71 | "b" 72 | "g" 73 | "b" 74 | "g" 75 | "b" 76 | "g" 77 | "b" 78 | "g" 79 | "g" 80 | "g" 81 | "g" 82 | "g" 83 | "g" 84 | "g" 85 | "b" 86 | "b" 87 | "b" 88 | "b" 89 | "g" 90 | "b" 91 | "g" 92 | "g" 93 | "g" 94 | "g" 95 | "g" 96 | "b" 97 | "b" 98 | "b" 99 | "g" 100 | "g" 101 | "g" 102 | "b" 103 | "g" 104 | "g" 105 | "b" 106 | "g" 107 | "g" 108 | "b" 109 | "g" 110 | "g" 111 | "g" 112 | "g" 113 | "g" 114 | "g" 115 | "b" 116 | "g" 117 | "g" 118 | "g" 119 | "g" 120 | "b" 121 | "g" 122 | "b" 123 | "g" 124 | "g" 125 | "g" 126 | "b" 127 | "g" 128 | "g" 129 | "b" 130 | "g" 131 | "b" 132 | "g" 133 | "b" 134 | "g" 135 | "g" 136 | "b" 137 | "b" 138 | "b" 139 | "b" 140 | "g" 141 | "g" 142 | "g" 143 | "b" 144 | "g" 145 | "g" 146 | "g" 147 | "g" 148 | "b" 149 | "g" 150 | "b" 151 | "g" 152 | "g" 153 | "b" 154 | "b" 155 | "b" 156 | "g" 157 | "g" 158 | "g" 159 | "g" 160 | "b" 161 | "g" 162 | "g" 163 | "g" 164 | "g" 165 | "b" 166 | "g" 167 | "b" 168 | "g" 169 | "b" 170 | "b" 171 | "b" 172 | "b" 173 | "g" 174 | "g" 175 | "g" 176 | "g" 177 | "b" 178 | "g" 179 | "b" 180 | "b" 181 | "g" 182 | "g" 183 | "b" 184 | "g" 185 | "b" 186 | "b" 187 | "b" 188 | "g" 189 | "g" 190 | "b" 191 | "g" 192 | "g" 193 | "b" 194 | "g" 195 | "g" 196 | "b" 197 | "g" 198 | "g" 199 | "g" 200 | "g" 201 | "g" 202 | "g" 203 | "g" 204 | "b" 205 | "g" 206 | "g" 207 | "g" 208 | "b" 209 | "b" 210 | "g" 211 | "g" 212 | "g" 213 | "g" 214 | "g" 215 | "g" 216 | "g" 217 | "g" 218 | "b" 219 | "b" 220 | "b" 221 | "b" 222 | "g" 223 | "g" 224 | "g" 225 | "g" 226 | "g" 227 | "b" 228 | "g" 229 | "g" 230 | "g" 231 | "b" 232 | "g" 233 | "g" 234 | "g" 235 | "g" 236 | "b" 237 | "g" 238 | "g" 239 | "g" 240 | "b" 241 | "g" 242 | "g" 243 | "b" 244 | "g" 245 | "b" 246 | "b" 247 | "g" 248 | "b" 249 | "b" 250 | "g" 251 | "g" 252 | "b" 253 | "g" 254 | "b" 255 | "g" 256 | "b" 257 | "g" 258 | "g" 259 | "b" 260 | "g" 261 | "g" 262 | "g" 263 | "b" 264 | "g" 265 | "g" 266 | "g" 267 | "g" 268 | "g" 269 | "g" 270 | "b" 271 | "b" 272 | "b" 273 | "b" 274 | "b" 275 | "g" 276 | "g" 277 | "g" 278 | "g" 279 | "g" 280 | "g" 281 | "g" 282 | "b" 283 | "b" 284 | "g" 285 | "g" 286 | "g" 287 | "b" 288 | "g" 289 | "g" 290 | "g" 291 | "b" 292 | "b" 293 | "g" 294 | "g" 295 | "b" 296 | "b" 297 | "g" 298 | "g" 299 | "b" 300 | "g" 301 | "g" 302 | "g" 303 | "b" 304 | "g" 305 | "g" 306 | "g" 307 | "g" 308 | "b" 309 | "b" 310 | "b" 311 | "g" 312 | "g" 313 | "g" 314 | "b" 315 | "g" 316 | "g" 317 | "g" 318 | "g" 319 | "g" 320 | "g" 321 | "b" 322 | "b" 323 | "b" 324 | "g" 325 | "g" 326 | "g" 327 | "b" 328 | "b" 329 | "g" 330 | "b" 331 | "g" 332 | "g" 333 | "g" 334 | "g" 335 | "g" 336 | "g" 337 | "b" 338 | "g" 339 | "g" 340 | "b" 341 | "g" 342 | "b" 343 | "g" 344 | "g" 345 | "g" 346 | "b" 347 | "g" 348 | "b" 349 | "g" 350 | "b" 351 | "g" 352 | "b" 353 | -------------------------------------------------------------------------------- /datasets/target/arrhythmia.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 12 3 | 10 4 | 2 5 | 1 6 | 11 7 | 3 8 | 1 9 | 1 10 | 1 11 | 2 12 | 7 13 | 1 14 | 2 15 | 10 16 | 1 17 | 1 18 | 2 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 5 28 | 3 29 | 2 30 | 6 31 | 6 32 | 10 33 | 1 34 | 1 35 | 1 36 | 8 37 | 1 38 | 1 39 | 2 40 | 1 41 | 10 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 8 48 | 9 49 | 1 50 | 10 51 | 1 52 | 1 53 | 1 54 | 2 55 | 5 56 | 5 57 | 10 58 | 1 59 | 1 60 | 10 61 | 1 62 | 9 63 | 9 64 | 1 65 | 1 66 | 1 67 | 1 68 | 6 69 | 1 70 | 10 71 | 1 72 | 10 73 | 5 74 | 1 75 | 1 76 | 1 77 | 2 78 | 7 79 | 6 80 | 1 81 | 1 82 | 1 83 | 1 84 | 6 85 | 8 86 | 10 87 | 13 88 | 6 89 | 8 90 | 13 91 | 13 92 | 1 93 | 8 94 | 1 95 | 9 96 | 2 97 | 1 98 | 2 99 | 1 100 | 1 101 | 1 102 | 8 103 | 1 104 | 1 105 | 1 106 | 10 107 | 8 108 | 10 109 | 1 110 | 6 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 10 117 | 1 118 | 5 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 2 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 2 137 | 1 138 | 1 139 | 2 140 | 1 141 | 1 142 | 1 143 | 9 144 | 1 145 | 1 146 | 2 147 | 2 148 | 2 149 | 1 150 | 1 151 | 2 152 | 1 153 | 1 154 | 1 155 | 10 156 | 5 157 | 1 158 | 1 159 | 6 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 9 171 | 8 172 | 1 173 | 1 174 | 1 175 | 2 176 | 4 177 | 10 178 | 1 179 | 1 180 | 1 181 | 6 182 | 1 183 | 5 184 | 1 185 | 8 186 | 6 187 | 8 188 | 6 189 | 6 190 | 3 191 | 13 192 | 1 193 | 1 194 | 6 195 | 6 196 | 1 197 | 1 198 | 1 199 | 5 200 | 5 201 | 1 202 | 6 203 | 1 204 | 1 205 | 1 206 | 7 207 | 1 208 | 1 209 | 13 210 | 1 211 | 2 212 | 2 213 | 1 214 | 6 215 | 6 216 | 8 217 | 1 218 | 6 219 | 4 220 | 7 221 | 5 222 | 1 223 | 1 224 | 10 225 | 1 226 | 2 227 | 7 228 | 1 229 | 5 230 | 1 231 | 1 232 | 1 233 | 8 234 | 1 235 | 1 236 | 1 237 | 6 238 | 1 239 | 6 240 | 1 241 | 1 242 | 1 243 | 1 244 | 1 245 | 4 246 | 1 247 | 6 248 | 1 249 | 1 250 | 8 251 | 1 252 | 2 253 | 8 254 | 7 255 | 7 256 | 1 257 | 1 258 | 6 259 | 7 260 | 9 261 | 6 262 | 1 263 | 5 264 | 1 265 | 1 266 | 1 267 | 1 268 | 2 269 | 1 270 | 1 271 | 1 272 | 1 273 | 1 274 | 10 275 | 1 276 | 1 277 | 6 278 | 1 279 | 6 280 | 2 281 | 1 282 | 1 283 | 1 284 | 1 285 | 10 286 | 2 287 | 7 288 | 1 289 | 1 290 | 1 291 | 1 292 | 1 293 | 2 294 | 1 295 | 2 296 | 6 297 | 6 298 | 6 299 | 2 300 | 2 301 | 1 302 | 4 303 | 1 304 | 10 305 | 7 306 | 6 307 | 1 308 | 5 309 | 10 310 | 6 311 | 11 312 | 1 313 | 1 314 | 2 315 | 2 316 | 1 317 | 1 318 | 9 319 | 1 320 | 1 321 | 2 322 | 9 323 | 1 324 | 6 325 | 6 326 | 2 327 | 1 328 | 2 329 | 11 330 | 1 331 | 6 332 | 1 333 | 1 334 | 5 335 | 1 336 | 2 337 | 1 338 | 2 339 | 1 340 | 1 341 | 1 342 | 5 343 | 2 344 | 1 345 | 10 346 | 2 347 | 1 348 | 2 349 | 1 350 | 9 351 | 1 352 | 1 353 | 6 354 | 1 355 | 2 356 | 5 357 | 1 358 | 7 359 | 6 360 | 10 361 | 6 362 | 6 363 | 7 364 | 5 365 | 2 366 | 10 367 | 1 368 | 6 369 | 6 370 | 6 371 | 1 372 | 13 373 | 1 374 | 6 375 | 1 376 | 9 377 | 6 378 | 12 379 | 1 380 | 1 381 | 2 382 | 5 383 | 7 384 | 1 385 | 1 386 | 10 387 | 1 388 | 5 389 | 9 390 | 13 391 | 1 392 | 1 393 | 1 394 | 1 395 | 1 396 | 1 397 | 13 398 | 1 399 | 2 400 | 7 401 | 1 402 | 2 403 | 3 404 | 1 405 | 9 406 | 1 407 | 1 408 | 1 409 | 1 410 | 1 411 | 5 412 | 8 413 | 6 414 | 5 415 | 1 416 | 1 417 | 1 418 | 1 419 | 2 420 | 1 421 | 1 422 | 4 423 | 1 424 | 1 425 | 1 426 | 13 427 | 1 428 | 1 429 | 2 430 | 1 431 | 5 432 | 2 433 | 10 434 | 2 435 | 7 436 | 1 437 | 1 438 | 1 439 | 1 440 | 1 441 | 1 442 | 1 443 | 1 444 | 1 445 | 2 446 | 1 447 | 1 448 | 1 449 | 1 450 | 2 451 | 6 452 | 1 453 | 1 454 | -------------------------------------------------------------------------------- /datasets/target/ecoli.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | "cp" 3 | "cp" 4 | "cp" 5 | "cp" 6 | "cp" 7 | "cp" 8 | "cp" 9 | "cp" 10 | "cp" 11 | "cp" 12 | "cp" 13 | "cp" 14 | "cp" 15 | "cp" 16 | "cp" 17 | "cp" 18 | "cp" 19 | "cp" 20 | "cp" 21 | "cp" 22 | "cp" 23 | "cp" 24 | "cp" 25 | "cp" 26 | "cp" 27 | "cp" 28 | "cp" 29 | "cp" 30 | "cp" 31 | "cp" 32 | "cp" 33 | "cp" 34 | "cp" 35 | "cp" 36 | "cp" 37 | "cp" 38 | "cp" 39 | "cp" 40 | "cp" 41 | "cp" 42 | "cp" 43 | "cp" 44 | "cp" 45 | "cp" 46 | "cp" 47 | "cp" 48 | "cp" 49 | "cp" 50 | "cp" 51 | "cp" 52 | "cp" 53 | "cp" 54 | "cp" 55 | "cp" 56 | "cp" 57 | "cp" 58 | "cp" 59 | "cp" 60 | "cp" 61 | "cp" 62 | "cp" 63 | "cp" 64 | "cp" 65 | "cp" 66 | "cp" 67 | "cp" 68 | "cp" 69 | "cp" 70 | "cp" 71 | "cp" 72 | "cp" 73 | "cp" 74 | "cp" 75 | "cp" 76 | "cp" 77 | "cp" 78 | "cp" 79 | "cp" 80 | "cp" 81 | "cp" 82 | "cp" 83 | "cp" 84 | "cp" 85 | "cp" 86 | "cp" 87 | "cp" 88 | "cp" 89 | "cp" 90 | "cp" 91 | "cp" 92 | "cp" 93 | "cp" 94 | "cp" 95 | "cp" 96 | "cp" 97 | "cp" 98 | "cp" 99 | "cp" 100 | "cp" 101 | "cp" 102 | "cp" 103 | "cp" 104 | "cp" 105 | "cp" 106 | "cp" 107 | "cp" 108 | "cp" 109 | "cp" 110 | "cp" 111 | "cp" 112 | "cp" 113 | "cp" 114 | "cp" 115 | "cp" 116 | "cp" 117 | "cp" 118 | "cp" 119 | "cp" 120 | "cp" 121 | "cp" 122 | "cp" 123 | "cp" 124 | "cp" 125 | "cp" 126 | "cp" 127 | "cp" 128 | "cp" 129 | "cp" 130 | "cp" 131 | "cp" 132 | "cp" 133 | "cp" 134 | "cp" 135 | "cp" 136 | "cp" 137 | "cp" 138 | "cp" 139 | "cp" 140 | "cp" 141 | "cp" 142 | "cp" 143 | "cp" 144 | "cp" 145 | "im" 146 | "im" 147 | "im" 148 | "im" 149 | "im" 150 | "im" 151 | "im" 152 | "im" 153 | "im" 154 | "im" 155 | "im" 156 | "im" 157 | "im" 158 | "im" 159 | "im" 160 | "im" 161 | "im" 162 | "im" 163 | "im" 164 | "im" 165 | "im" 166 | "im" 167 | "im" 168 | "im" 169 | "im" 170 | "im" 171 | "im" 172 | "im" 173 | "im" 174 | "im" 175 | "im" 176 | "im" 177 | "im" 178 | "im" 179 | "im" 180 | "im" 181 | "im" 182 | "im" 183 | "im" 184 | "im" 185 | "im" 186 | "im" 187 | "im" 188 | "im" 189 | "im" 190 | "im" 191 | "im" 192 | "im" 193 | "im" 194 | "im" 195 | "im" 196 | "im" 197 | "im" 198 | "im" 199 | "im" 200 | "im" 201 | "im" 202 | "im" 203 | "im" 204 | "im" 205 | "im" 206 | "im" 207 | "im" 208 | "im" 209 | "im" 210 | "im" 211 | "im" 212 | "im" 213 | "im" 214 | "im" 215 | "im" 216 | "im" 217 | "im" 218 | "im" 219 | "im" 220 | "im" 221 | "im" 222 | "imS" 223 | "imS" 224 | "imL" 225 | "imL" 226 | "imU" 227 | "imU" 228 | "imU" 229 | "imU" 230 | "imU" 231 | "imU" 232 | "imU" 233 | "imU" 234 | "imU" 235 | "imU" 236 | "imU" 237 | "imU" 238 | "imU" 239 | "imU" 240 | "imU" 241 | "imU" 242 | "imU" 243 | "imU" 244 | "imU" 245 | "imU" 246 | "imU" 247 | "imU" 248 | "imU" 249 | "imU" 250 | "imU" 251 | "imU" 252 | "imU" 253 | "imU" 254 | "imU" 255 | "imU" 256 | "imU" 257 | "imU" 258 | "imU" 259 | "imU" 260 | "imU" 261 | "om" 262 | "om" 263 | "om" 264 | "om" 265 | "om" 266 | "om" 267 | "om" 268 | "om" 269 | "om" 270 | "om" 271 | "om" 272 | "om" 273 | "om" 274 | "om" 275 | "om" 276 | "om" 277 | "om" 278 | "om" 279 | "om" 280 | "om" 281 | "omL" 282 | "omL" 283 | "omL" 284 | "omL" 285 | "omL" 286 | "pp" 287 | "pp" 288 | "pp" 289 | "pp" 290 | "pp" 291 | "pp" 292 | "pp" 293 | "pp" 294 | "pp" 295 | "pp" 296 | "pp" 297 | "pp" 298 | "pp" 299 | "pp" 300 | "pp" 301 | "pp" 302 | "pp" 303 | "pp" 304 | "pp" 305 | "pp" 306 | "pp" 307 | "pp" 308 | "pp" 309 | "pp" 310 | "pp" 311 | "pp" 312 | "pp" 313 | "pp" 314 | "pp" 315 | "pp" 316 | "pp" 317 | "pp" 318 | "pp" 319 | "pp" 320 | "pp" 321 | "pp" 322 | "pp" 323 | "pp" 324 | "pp" 325 | "pp" 326 | "pp" 327 | "pp" 328 | "pp" 329 | "pp" 330 | "pp" 331 | "pp" 332 | "pp" 333 | "pp" 334 | "pp" 335 | "pp" 336 | "pp" 337 | "pp" 338 | -------------------------------------------------------------------------------- /datasets/target/ds4c2sc8.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 2 43 | 2 44 | 2 45 | 2 46 | 2 47 | 2 48 | 2 49 | 2 50 | 2 51 | 2 52 | 2 53 | 2 54 | 2 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 2 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 3 125 | 3 126 | 3 127 | 3 128 | 3 129 | 3 130 | 3 131 | 3 132 | 3 133 | 3 134 | 3 135 | 3 136 | 3 137 | 3 138 | 3 139 | 3 140 | 3 141 | 3 142 | 3 143 | 3 144 | 3 145 | 3 146 | 3 147 | 3 148 | 3 149 | 3 150 | 3 151 | 3 152 | 3 153 | 3 154 | 3 155 | 3 156 | 3 157 | 3 158 | 3 159 | 3 160 | 3 161 | 3 162 | 3 163 | 3 164 | 3 165 | 3 166 | 3 167 | 3 168 | 3 169 | 3 170 | 3 171 | 3 172 | 3 173 | 3 174 | 3 175 | 3 176 | 4 177 | 4 178 | 4 179 | 4 180 | 4 181 | 4 182 | 4 183 | 4 184 | 4 185 | 4 186 | 4 187 | 4 188 | 4 189 | 4 190 | 4 191 | 4 192 | 4 193 | 4 194 | 4 195 | 4 196 | 4 197 | 4 198 | 4 199 | 4 200 | 4 201 | 4 202 | 4 203 | 4 204 | 4 205 | 4 206 | 4 207 | 4 208 | 4 209 | 4 210 | 4 211 | 4 212 | 4 213 | 4 214 | 4 215 | 4 216 | 4 217 | 4 218 | 4 219 | 4 220 | 4 221 | 4 222 | 4 223 | 4 224 | 4 225 | 4 226 | 4 227 | 4 228 | 4 229 | 5 230 | 5 231 | 5 232 | 5 233 | 5 234 | 5 235 | 5 236 | 5 237 | 5 238 | 5 239 | 5 240 | 5 241 | 5 242 | 5 243 | 5 244 | 5 245 | 5 246 | 5 247 | 5 248 | 5 249 | 5 250 | 5 251 | 5 252 | 5 253 | 5 254 | 5 255 | 5 256 | 5 257 | 5 258 | 5 259 | 5 260 | 5 261 | 5 262 | 5 263 | 5 264 | 5 265 | 5 266 | 5 267 | 5 268 | 5 269 | 5 270 | 5 271 | 5 272 | 5 273 | 5 274 | 5 275 | 5 276 | 5 277 | 5 278 | 5 279 | 5 280 | 5 281 | 5 282 | 5 283 | 5 284 | 5 285 | 5 286 | 5 287 | 5 288 | 5 289 | 5 290 | 5 291 | 5 292 | 5 293 | 5 294 | 5 295 | 5 296 | 5 297 | 5 298 | 6 299 | 6 300 | 6 301 | 6 302 | 6 303 | 6 304 | 6 305 | 6 306 | 6 307 | 6 308 | 6 309 | 6 310 | 6 311 | 6 312 | 6 313 | 6 314 | 6 315 | 6 316 | 6 317 | 6 318 | 6 319 | 6 320 | 6 321 | 6 322 | 6 323 | 6 324 | 6 325 | 6 326 | 6 327 | 6 328 | 6 329 | 6 330 | 6 331 | 6 332 | 6 333 | 6 334 | 6 335 | 6 336 | 6 337 | 6 338 | 6 339 | 6 340 | 6 341 | 6 342 | 6 343 | 6 344 | 6 345 | 6 346 | 6 347 | 6 348 | 6 349 | 6 350 | 6 351 | 6 352 | 6 353 | 6 354 | 6 355 | 6 356 | 6 357 | 6 358 | 6 359 | 6 360 | 6 361 | 6 362 | 6 363 | 6 364 | 6 365 | 6 366 | 6 367 | 6 368 | 7 369 | 7 370 | 7 371 | 7 372 | 7 373 | 7 374 | 7 375 | 7 376 | 7 377 | 7 378 | 7 379 | 7 380 | 7 381 | 7 382 | 7 383 | 7 384 | 7 385 | 7 386 | 7 387 | 7 388 | 7 389 | 7 390 | 7 391 | 7 392 | 7 393 | 7 394 | 7 395 | 7 396 | 7 397 | 7 398 | 7 399 | 7 400 | 7 401 | 7 402 | 7 403 | 7 404 | 7 405 | 7 406 | 7 407 | 7 408 | 7 409 | 7 410 | 7 411 | 7 412 | 7 413 | 7 414 | 7 415 | 7 416 | 7 417 | 7 418 | 7 419 | 7 420 | 7 421 | 7 422 | 7 423 | 7 424 | 7 425 | 7 426 | 7 427 | 7 428 | 7 429 | 7 430 | 8 431 | 8 432 | 8 433 | 8 434 | 8 435 | 8 436 | 8 437 | 8 438 | 8 439 | 8 440 | 8 441 | 8 442 | 8 443 | 8 444 | 8 445 | 8 446 | 8 447 | 8 448 | 8 449 | 8 450 | 8 451 | 8 452 | 8 453 | 8 454 | 8 455 | 8 456 | 8 457 | 8 458 | 8 459 | 8 460 | 8 461 | 8 462 | 8 463 | 8 464 | 8 465 | 8 466 | 8 467 | 8 468 | 8 469 | 8 470 | 8 471 | 8 472 | 8 473 | 8 474 | 8 475 | 8 476 | 8 477 | 8 478 | 8 479 | 8 480 | 8 481 | 8 482 | 8 483 | 8 484 | 8 485 | 8 486 | 8 487 | -------------------------------------------------------------------------------- /datasets/data/real/faithful.csv: -------------------------------------------------------------------------------- 1 | "V2";"V3" 2 | 3,6;79 3 | 1,8;54 4 | 3,333;74 5 | 2,283;62 6 | 4,533;85 7 | 2,883;55 8 | 4,7;88 9 | 3,6;85 10 | 1,95;51 11 | 4,35;85 12 | 1,833;54 13 | 3,917;84 14 | 4,2;78 15 | 1,75;47 16 | 4,7;83 17 | 2,167;52 18 | 1,75;62 19 | 4,8;84 20 | 1,6;52 21 | 4,25;79 22 | 1,8;51 23 | 1,75;47 24 | 3,45;78 25 | 3,067;69 26 | 4,533;74 27 | 3,6;83 28 | 1,967;55 29 | 4,083;76 30 | 3,85;78 31 | 4,433;79 32 | 4,3;73 33 | 4,467;77 34 | 3,367;66 35 | 4,033;80 36 | 3,833;74 37 | 2,017;52 38 | 1,867;48 39 | 4,833;80 40 | 1,833;59 41 | 4,783;90 42 | 4,35;80 43 | 1,883;58 44 | 4,567;84 45 | 1,75;58 46 | 4,533;73 47 | 3,317;83 48 | 3,833;64 49 | 2,1;53 50 | 4,633;82 51 | 2;59 52 | 4,8;75 53 | 4,716;90 54 | 1,833;54 55 | 4,833;80 56 | 1,733;54 57 | 4,883;83 58 | 3,717;71 59 | 1,667;64 60 | 4,567;77 61 | 4,317;81 62 | 2,233;59 63 | 4,5;84 64 | 1,75;48 65 | 4,8;82 66 | 1,817;60 67 | 4,4;92 68 | 4,167;78 69 | 4,7;78 70 | 2,067;65 71 | 4,7;73 72 | 4,033;82 73 | 1,967;56 74 | 4,5;79 75 | 4;71 76 | 1,983;62 77 | 5,067;76 78 | 2,017;60 79 | 4,567;78 80 | 3,883;76 81 | 3,6;83 82 | 4,133;75 83 | 4,333;82 84 | 4,1;70 85 | 2,633;65 86 | 4,067;73 87 | 4,933;88 88 | 3,95;76 89 | 4,517;80 90 | 2,167;48 91 | 4;86 92 | 2,2;60 93 | 4,333;90 94 | 1,867;50 95 | 4,817;78 96 | 1,833;63 97 | 4,3;72 98 | 4,667;84 99 | 3,75;75 100 | 1,867;51 101 | 4,9;82 102 | 2,483;62 103 | 4,367;88 104 | 2,1;49 105 | 4,5;83 106 | 4,05;81 107 | 1,867;47 108 | 4,7;84 109 | 1,783;52 110 | 4,85;86 111 | 3,683;81 112 | 4,733;75 113 | 2,3;59 114 | 4,9;89 115 | 4,417;79 116 | 1,7;59 117 | 4,633;81 118 | 2,317;50 119 | 4,6;85 120 | 1,817;59 121 | 4,417;87 122 | 2,617;53 123 | 4,067;69 124 | 4,25;77 125 | 1,967;56 126 | 4,6;88 127 | 3,767;81 128 | 1,917;45 129 | 4,5;82 130 | 2,267;55 131 | 4,65;90 132 | 1,867;45 133 | 4,167;83 134 | 2,8;56 135 | 4,333;89 136 | 1,833;46 137 | 4,383;82 138 | 1,883;51 139 | 4,933;86 140 | 2,033;53 141 | 3,733;79 142 | 4,233;81 143 | 2,233;60 144 | 4,533;82 145 | 4,817;77 146 | 4,333;76 147 | 1,983;59 148 | 4,633;80 149 | 2,017;49 150 | 5,1;96 151 | 1,8;53 152 | 5,033;77 153 | 4;77 154 | 2,4;65 155 | 4,6;81 156 | 3,567;71 157 | 4;70 158 | 4,5;81 159 | 4,083;93 160 | 1,8;53 161 | 3,967;89 162 | 2,2;45 163 | 4,15;86 164 | 2;58 165 | 3,833;78 166 | 3,5;66 167 | 4,583;76 168 | 2,367;63 169 | 5;88 170 | 1,933;52 171 | 4,617;93 172 | 1,917;49 173 | 2,083;57 174 | 4,583;77 175 | 3,333;68 176 | 4,167;81 177 | 4,333;81 178 | 4,5;73 179 | 2,417;50 180 | 4;85 181 | 4,167;74 182 | 1,883;55 183 | 4,583;77 184 | 4,25;83 185 | 3,767;83 186 | 2,033;51 187 | 4,433;78 188 | 4,083;84 189 | 1,833;46 190 | 4,417;83 191 | 2,183;55 192 | 4,8;81 193 | 1,833;57 194 | 4,8;76 195 | 4,1;84 196 | 3,966;77 197 | 4,233;81 198 | 3,5;87 199 | 4,366;77 200 | 2,25;51 201 | 4,667;78 202 | 2,1;60 203 | 4,35;82 204 | 4,133;91 205 | 1,867;53 206 | 4,6;78 207 | 1,783;46 208 | 4,367;77 209 | 3,85;84 210 | 1,933;49 211 | 4,5;83 212 | 2,383;71 213 | 4,7;80 214 | 1,867;49 215 | 3,833;75 216 | 3,417;64 217 | 4,233;76 218 | 2,4;53 219 | 4,8;94 220 | 2;55 221 | 4,15;76 222 | 1,867;50 223 | 4,267;82 224 | 1,75;54 225 | 4,483;75 226 | 4;78 227 | 4,117;79 228 | 4,083;78 229 | 4,267;78 230 | 3,917;70 231 | 4,55;79 232 | 4,083;70 233 | 2,417;54 234 | 4,183;86 235 | 2,217;50 236 | 4,45;90 237 | 1,883;54 238 | 1,85;54 239 | 4,283;77 240 | 3,95;79 241 | 2,333;64 242 | 4,15;75 243 | 2,35;47 244 | 4,933;86 245 | 2,9;63 246 | 4,583;85 247 | 3,833;82 248 | 2,083;57 249 | 4,367;82 250 | 2,133;67 251 | 4,35;74 252 | 2,2;54 253 | 4,45;83 254 | 3,567;73 255 | 4,5;73 256 | 4,15;88 257 | 3,817;80 258 | 3,917;71 259 | 4,45;83 260 | 2;56 261 | 4,283;79 262 | 4,767;78 263 | 4,533;84 264 | 1,85;58 265 | 4,25;83 266 | 1,983;43 267 | 2,25;60 268 | 4,75;75 269 | 4,117;81 270 | 2,15;46 271 | 4,417;90 272 | 1,817;46 273 | 4,467;74 274 | -------------------------------------------------------------------------------- /example_stadion.py: -------------------------------------------------------------------------------- 1 | import os 2 | import matplotlib.pyplot as plt 3 | import numpy as np 4 | from skstab import StadionEstimator 5 | from skstab.datasets import load_dataset 6 | from sklearn.cluster import KMeans 7 | 8 | dataset = 'exemples2_5g' 9 | X, y = load_dataset(dataset) 10 | print('Dataset: {} (true number of clusters: K = {})'.format(dataset, len(np.unique(y)))) 11 | 12 | algorithm = KMeans 13 | km_kwargs = {'init': 'k-means++', 'n_init': 10} 14 | 15 | k_values = list(range(1, 11)) 16 | omega = list(range(2, 6)) 17 | print('Evaluated numbers of clusters:', k_values) 18 | 19 | stab = StadionEstimator(X, algorithm, 20 | param_name='n_clusters', 21 | param_values=k_values, 22 | omega=omega, 23 | extended=True, 24 | runs=10, 25 | perturbation='uniform', 26 | perturbation_kwargs='auto', 27 | algo_kwargs=km_kwargs, 28 | n_jobs=-1) 29 | 30 | score = stab.score(strategy='max', crossing=True) 31 | print('Stadion-max scores:\n', score) 32 | k_hat = stab.select_param()[0] 33 | print('Selected number of clusters: K =', k_hat) 34 | 35 | """ 36 | Generate plots 37 | """ 38 | # These are the "Tableau 20" colors as RGB. 39 | tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), 40 | (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), 41 | (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), 42 | (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), 43 | (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] 44 | # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. 45 | for i in range(len(tableau20)): 46 | r, g, b = tableau20[i] 47 | tableau20[i] = (r / 255., g / 255., b / 255.) 48 | epsilons = [kwargs['eps'] for kwargs in stab.perturbation_kwargs] 49 | bstab_path = 'stabB_paths_{}_{}.pdf'.format(algorithm.__name__, dataset) 50 | wstab_path = 'stabW_paths_{}_{}.pdf'.format(algorithm.__name__, dataset) 51 | stadion_path = 'stadion_paths_{}_{}.pdf'.format(algorithm.__name__, dataset) 52 | 53 | plt.figure(figsize=(10, 8)) 54 | for i, p in enumerate(k_values): 55 | plt.plot(epsilons, stab.between_cluster_stability_paths[i, :, 0], label='{} = {}'.format(stab.param_name, p), 56 | color=tableau20[(2 * i) % 20]) 57 | plt.legend() 58 | plt.xlabel('$\epsilon$', fontsize=16) 59 | plt.ylabel('Between-cluster Stability', fontsize=16) 60 | plt.title('{} (dataset = {} / true K = {})'.format(algorithm.__name__, dataset, len(np.unique(y))), fontsize=16) 61 | plt.savefig(bstab_path, bbox_inches='tight') 62 | 63 | plt.figure(figsize=(10, 8)) 64 | for i, p in enumerate(k_values): 65 | plt.plot(epsilons, stab.within_cluster_stability_paths[i, :, 0], label='{} = {}'.format(stab.param_name, p), 66 | color=tableau20[(2 * i) % 20]) 67 | plt.legend() 68 | plt.xlabel('$\epsilon$', fontsize=16) 69 | plt.ylabel('Within-cluster Stability', fontsize=16) 70 | plt.title('{} (dataset = {} / true K = {})'.format(algorithm.__name__, dataset, len(np.unique(y))), fontsize=16) 71 | plt.savefig(wstab_path, bbox_inches='tight') 72 | 73 | plt.figure(figsize=(10, 8)) 74 | for i, p in enumerate(k_values): 75 | plt.plot(epsilons, stab.stadion_paths[i, :, 0], label='{} = {}'.format(stab.param_name, p), 76 | color=tableau20[(2 * i) % 20]) 77 | plt.legend() 78 | plt.xlabel('$\epsilon$', fontsize=16) 79 | plt.ylabel('Stadion', fontsize=16) 80 | plt.title('{} (dataset = {} / true K = {})'.format(algorithm.__name__, dataset, len(np.unique(y))), fontsize=16) 81 | plt.savefig(stadion_path, bbox_inches='tight') 82 | print('Paths saved to {}, {} and {}!'.format(bstab_path, wstab_path, stadion_path)) 83 | -------------------------------------------------------------------------------- /datasets/target/elliptical_10_2.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 4 3 | 4 4 | 4 5 | 4 6 | 4 7 | 4 8 | 4 9 | 4 10 | 4 11 | 4 12 | 4 13 | 4 14 | 4 15 | 4 16 | 4 17 | 4 18 | 4 19 | 4 20 | 4 21 | 4 22 | 4 23 | 4 24 | 4 25 | 4 26 | 4 27 | 4 28 | 4 29 | 4 30 | 4 31 | 4 32 | 4 33 | 4 34 | 4 35 | 4 36 | 4 37 | 4 38 | 4 39 | 4 40 | 4 41 | 4 42 | 4 43 | 4 44 | 4 45 | 4 46 | 4 47 | 4 48 | 4 49 | 4 50 | 4 51 | 4 52 | 5 53 | 5 54 | 5 55 | 5 56 | 5 57 | 5 58 | 5 59 | 5 60 | 5 61 | 5 62 | 5 63 | 5 64 | 5 65 | 5 66 | 5 67 | 5 68 | 5 69 | 5 70 | 5 71 | 5 72 | 5 73 | 5 74 | 5 75 | 5 76 | 5 77 | 5 78 | 5 79 | 5 80 | 5 81 | 5 82 | 5 83 | 5 84 | 5 85 | 5 86 | 5 87 | 5 88 | 5 89 | 5 90 | 5 91 | 5 92 | 5 93 | 5 94 | 5 95 | 5 96 | 5 97 | 5 98 | 5 99 | 5 100 | 5 101 | 5 102 | 6 103 | 6 104 | 6 105 | 6 106 | 6 107 | 6 108 | 6 109 | 6 110 | 6 111 | 6 112 | 6 113 | 6 114 | 6 115 | 6 116 | 6 117 | 6 118 | 6 119 | 6 120 | 6 121 | 6 122 | 6 123 | 6 124 | 6 125 | 6 126 | 6 127 | 6 128 | 6 129 | 6 130 | 6 131 | 6 132 | 6 133 | 6 134 | 6 135 | 6 136 | 6 137 | 6 138 | 6 139 | 6 140 | 6 141 | 6 142 | 6 143 | 6 144 | 6 145 | 6 146 | 6 147 | 6 148 | 6 149 | 6 150 | 6 151 | 6 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 1 203 | 1 204 | 1 205 | 1 206 | 1 207 | 1 208 | 1 209 | 1 210 | 1 211 | 1 212 | 1 213 | 1 214 | 1 215 | 1 216 | 1 217 | 1 218 | 1 219 | 1 220 | 1 221 | 1 222 | 1 223 | 1 224 | 1 225 | 1 226 | 1 227 | 1 228 | 1 229 | 1 230 | 1 231 | 1 232 | 1 233 | 1 234 | 1 235 | 1 236 | 1 237 | 1 238 | 1 239 | 1 240 | 1 241 | 1 242 | 1 243 | 1 244 | 1 245 | 1 246 | 1 247 | 1 248 | 1 249 | 1 250 | 1 251 | 1 252 | 9 253 | 9 254 | 9 255 | 9 256 | 9 257 | 9 258 | 9 259 | 9 260 | 9 261 | 9 262 | 9 263 | 9 264 | 9 265 | 9 266 | 9 267 | 9 268 | 9 269 | 9 270 | 9 271 | 9 272 | 8 273 | 9 274 | 9 275 | 9 276 | 9 277 | 8 278 | 9 279 | 9 280 | 9 281 | 9 282 | 9 283 | 9 284 | 9 285 | 9 286 | 9 287 | 9 288 | 9 289 | 9 290 | 9 291 | 8 292 | 9 293 | 9 294 | 9 295 | 9 296 | 9 297 | 8 298 | 9 299 | 9 300 | 9 301 | 9 302 | 3 303 | 3 304 | 3 305 | 3 306 | 3 307 | 3 308 | 3 309 | 3 310 | 3 311 | 3 312 | 3 313 | 3 314 | 3 315 | 3 316 | 3 317 | 3 318 | 3 319 | 3 320 | 3 321 | 3 322 | 3 323 | 3 324 | 3 325 | 3 326 | 3 327 | 3 328 | 3 329 | 3 330 | 3 331 | 3 332 | 3 333 | 3 334 | 3 335 | 3 336 | 3 337 | 3 338 | 3 339 | 3 340 | 3 341 | 3 342 | 3 343 | 3 344 | 3 345 | 3 346 | 3 347 | 3 348 | 3 349 | 3 350 | 3 351 | 3 352 | 0 353 | 0 354 | 0 355 | 0 356 | 0 357 | 0 358 | 0 359 | 0 360 | 0 361 | 0 362 | 0 363 | 0 364 | 0 365 | 0 366 | 0 367 | 0 368 | 0 369 | 0 370 | 0 371 | 0 372 | 0 373 | 0 374 | 0 375 | 0 376 | 0 377 | 0 378 | 0 379 | 0 380 | 0 381 | 0 382 | 0 383 | 0 384 | 0 385 | 0 386 | 0 387 | 0 388 | 0 389 | 0 390 | 0 391 | 0 392 | 0 393 | 0 394 | 0 395 | 0 396 | 0 397 | 0 398 | 0 399 | 0 400 | 0 401 | 0 402 | 8 403 | 8 404 | 8 405 | 8 406 | 8 407 | 8 408 | 8 409 | 8 410 | 8 411 | 8 412 | 8 413 | 8 414 | 8 415 | 8 416 | 8 417 | 8 418 | 8 419 | 8 420 | 8 421 | 8 422 | 8 423 | 8 424 | 8 425 | 8 426 | 8 427 | 8 428 | 8 429 | 8 430 | 8 431 | 8 432 | 8 433 | 8 434 | 8 435 | 8 436 | 8 437 | 8 438 | 8 439 | 8 440 | 8 441 | 8 442 | 8 443 | 8 444 | 8 445 | 8 446 | 8 447 | 8 448 | 8 449 | 8 450 | 8 451 | 8 452 | 7 453 | 7 454 | 7 455 | 7 456 | 7 457 | 7 458 | 7 459 | 7 460 | 7 461 | 7 462 | 7 463 | 7 464 | 7 465 | 7 466 | 7 467 | 7 468 | 7 469 | 7 470 | 7 471 | 7 472 | 7 473 | 7 474 | 7 475 | 7 476 | 7 477 | 7 478 | 7 479 | 7 480 | 7 481 | 7 482 | 7 483 | 7 484 | 7 485 | 7 486 | 7 487 | 7 488 | 7 489 | 7 490 | 7 491 | 7 492 | 7 493 | 7 494 | 7 495 | 7 496 | 7 497 | 7 498 | 7 499 | 7 500 | 7 501 | 7 502 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_5.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | 4 403 | 4 404 | 5 405 | 5 406 | 5 407 | 5 408 | 5 409 | 5 410 | 5 411 | 5 412 | 5 413 | 5 414 | 5 415 | 5 416 | 5 417 | 5 418 | 5 419 | 5 420 | 5 421 | 5 422 | 5 423 | 5 424 | 5 425 | 5 426 | 5 427 | 5 428 | 5 429 | 5 430 | 5 431 | 5 432 | 5 433 | 5 434 | 5 435 | 5 436 | 5 437 | 5 438 | 5 439 | 5 440 | 5 441 | 5 442 | 5 443 | 5 444 | 5 445 | 5 446 | 5 447 | 5 448 | 5 449 | 5 450 | 5 451 | 5 452 | 5 453 | 5 454 | 5 455 | 5 456 | 5 457 | 5 458 | 5 459 | 5 460 | 5 461 | 5 462 | 5 463 | 5 464 | 5 465 | 5 466 | 5 467 | 5 468 | 5 469 | 5 470 | 5 471 | 5 472 | 5 473 | 5 474 | 5 475 | 5 476 | 5 477 | 5 478 | 5 479 | 5 480 | 5 481 | 5 482 | 5 483 | 5 484 | 5 485 | 5 486 | 5 487 | 5 488 | 5 489 | 5 490 | 5 491 | 5 492 | 5 493 | 5 494 | 5 495 | 5 496 | 5 497 | 5 498 | 5 499 | 5 500 | 5 501 | 5 502 | 5 503 | 5 504 | -------------------------------------------------------------------------------- /datasets/target/exemples1_3g.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 1 159 | 1 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 1 171 | 1 172 | 1 173 | 1 174 | 1 175 | 1 176 | 1 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 2 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 2 261 | 2 262 | 2 263 | 2 264 | 2 265 | 2 266 | 2 267 | 2 268 | 2 269 | 2 270 | 2 271 | 2 272 | 2 273 | 2 274 | 2 275 | 2 276 | 2 277 | 2 278 | 2 279 | 2 280 | 2 281 | 2 282 | 2 283 | 2 284 | 2 285 | 2 286 | 2 287 | 2 288 | 2 289 | 2 290 | 2 291 | 2 292 | 2 293 | 2 294 | 2 295 | 2 296 | 2 297 | 2 298 | 2 299 | 2 300 | 2 301 | 2 302 | 2 303 | 2 304 | 2 305 | 2 306 | 2 307 | 2 308 | 2 309 | 2 310 | 2 311 | 2 312 | 2 313 | 2 314 | 2 315 | 2 316 | 2 317 | 2 318 | 2 319 | 2 320 | 2 321 | 2 322 | 2 323 | 2 324 | 2 325 | 2 326 | 2 327 | 2 328 | 2 329 | 2 330 | 2 331 | 2 332 | 2 333 | 2 334 | 2 335 | 2 336 | 2 337 | 2 338 | 2 339 | 2 340 | 2 341 | 2 342 | 2 343 | 2 344 | 2 345 | 2 346 | 2 347 | 2 348 | 2 349 | 2 350 | 2 351 | 2 352 | 3 353 | 3 354 | 3 355 | 3 356 | 3 357 | 3 358 | 3 359 | 3 360 | 3 361 | 3 362 | 3 363 | 3 364 | 3 365 | 3 366 | 3 367 | 3 368 | 3 369 | 3 370 | 3 371 | 3 372 | 3 373 | 3 374 | 3 375 | 3 376 | 3 377 | 3 378 | 3 379 | 3 380 | 3 381 | 3 382 | 3 383 | 3 384 | 3 385 | 3 386 | 3 387 | 3 388 | 3 389 | 3 390 | 3 391 | 3 392 | 3 393 | 3 394 | 3 395 | 3 396 | 3 397 | 3 398 | 3 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 3 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 3 498 | 3 499 | 3 500 | 3 501 | 3 502 | 3 503 | 3 504 | 3 505 | 3 506 | 3 507 | 3 508 | 3 509 | 3 510 | 3 511 | 3 512 | 3 513 | 3 514 | 3 515 | 3 516 | 3 517 | 3 518 | 3 519 | 3 520 | 3 521 | 3 522 | 3 523 | 3 524 | 3 525 | 3 526 | 3 527 | -------------------------------------------------------------------------------- /datasets/data/artificial/spherical_5_2.csv: -------------------------------------------------------------------------------- 1 | "V1";"V2" 2 | 11,11;10,14 3 | 8,68;9,76 4 | 10,04;10,63 5 | 8,79;10,13 6 | 10,53;8,95 7 | 10,58;9,72 8 | 11,19;11,6 9 | 8,14;10,21 10 | 9,62;10,83 11 | 11,31;9,7 12 | 9,95;8,16 13 | 9,84;10,93 14 | 10,05;10,35 15 | 9,41;11,39 16 | 10,91;11,33 17 | 10,13;11,76 18 | 8,51;11,3 19 | 10,2;10,89 20 | 9,94;10,1 21 | 8,25;9,49 22 | 8,93;10,87 23 | 8,16;10,69 24 | 10,74;8,36 25 | 11,79;9,77 26 | 9,33;10,64 27 | 10,86;11,3 28 | 9,04;11,66 29 | 8,19;9,17 30 | 9,06;10,1 31 | 11,49;10,43 32 | 9,03;10,04 33 | 10,84;10,82 34 | 11,09;10,28 35 | 11,11;10,39 36 | 9,77;8,33 37 | 8,24;10,66 38 | 9,88;9,48 39 | 8,87;10,72 40 | 11,42;9,34 41 | 9,2;8,49 42 | 9,46;9,88 43 | 10,86;11,78 44 | 9,88;10,23 45 | 10,37;9,72 46 | 9,26;8,63 47 | 11,42;9,06 48 | 8,96;10,78 49 | 10,38;8,92 50 | 8,78;9,96 51 | 11,19;10,71 52 | 11,81;6,15 53 | 10,4;6,66 54 | 9,15;5,55 55 | 11,43;7,07 56 | 8,61;6,62 57 | 10,6;7,27 58 | 9,49;5,97 59 | 10,99;5,51 60 | 8,45;6,57 61 | 10,69;7,42 62 | 10,14;4,86 63 | 11,52;7,39 64 | 10,04;6,87 65 | 11,7;5,99 66 | 10,26;6,71 67 | 10,06;5,87 68 | 10,62;4,81 69 | 11,25;7,51 70 | 8,17;5,62 71 | 8,83;7,48 72 | 10,15;6,99 73 | 8,76;7 74 | 10,27;7,4 75 | 10,91;5,35 76 | 9,87;5,55 77 | 11,48;5 78 | 10,05;7,96 79 | 10,73;6,3 80 | 11,89;5,97 81 | 9,03;6,44 82 | 10,27;7,35 83 | 8,86;4,74 84 | 9,23;5,94 85 | 11,24;6,37 86 | 10,22;5,51 87 | 8,68;7,15 88 | 8,48;5,08 89 | 9,97;4,86 90 | 8,79;6,09 91 | 10,8;7,26 92 | 9,87;5,59 93 | 9,62;5,06 94 | 8,63;7,52 95 | 9,24;7,04 96 | 8,88;7,35 97 | 10,91;7,76 98 | 9,87;7,84 99 | 9,16;6,18 100 | 9,25;4,29 101 | 11,37;5,5 102 | 13,74;11,7 103 | 14,63;11,17 104 | 15,44;10,46 105 | 13,28;11,27 106 | 13,15;10,56 107 | 13,16;10,65 108 | 13,23;8,76 109 | 14,46;8,7 110 | 13,21;10,44 111 | 13,45;10,2 112 | 12,34;10,33 113 | 14,32;9,79 114 | 15,39;9,18 115 | 13,44;9,48 116 | 15,09;10,79 117 | 12,85;9,3 118 | 14,13;8,91 119 | 13,19;9,97 120 | 13,8;8,84 121 | 14,08;10,93 122 | 14,53;11,83 123 | 13,61;10,37 124 | 15,69;9,18 125 | 13,95;9,73 126 | 13,99;9,22 127 | 15,71;9,4 128 | 13,77;10,07 129 | 14,85;9,43 130 | 12,09;10,71 131 | 15,88;10,25 132 | 13,28;11,25 133 | 13,1;11,83 134 | 15,65;10,86 135 | 12,94;11,38 136 | 13,59;10,51 137 | 14,52;10,94 138 | 13,88;10,65 139 | 14,88;10,75 140 | 15,73;9,8 141 | 12,27;9,45 142 | 13,37;10,67 143 | 13,51;10,42 144 | 13,74;11,9 145 | 14,68;10,91 146 | 12,56;9,02 147 | 13,09;8,48 148 | 15,18;9,13 149 | 15,31;9,71 150 | 13,01;8,33 151 | 14,64;8,21 152 | 11,12;13,31 153 | 11,43;13,45 154 | 11,2;15,49 155 | 10,93;13,91 156 | 11,19;13,24 157 | 10,67;14,77 158 | 9,94;12,17 159 | 9,46;12,35 160 | 9,31;15,25 161 | 10,31;15,26 162 | 10,58;15,4 163 | 11,53;12,71 164 | 10,88;13,61 165 | 9,08;12,46 166 | 9,64;12,05 167 | 10,42;15,57 168 | 11,09;15,2 169 | 9,56;13,41 170 | 10,94;15,5 171 | 9,9;15,62 172 | 10,09;15,15 173 | 9,39;15,76 174 | 10,2;12,66 175 | 10,44;13,58 176 | 9,08;13,97 177 | 9,56;12,32 178 | 11,58;14,9 179 | 9,17;15,25 180 | 11,69;14,05 181 | 9,24;13,7 182 | 11,67;14,36 183 | 10,58;14,32 184 | 10,56;14,87 185 | 9,47;15,62 186 | 8,32;13,62 187 | 10,03;15,79 188 | 9,41;13,6 189 | 11,67;13,58 190 | 9,29;12,55 191 | 9,93;12,91 192 | 10,88;12,93 193 | 9,73;14,31 194 | 9,92;12,07 195 | 8,84;13,29 196 | 11,48;14,49 197 | 10,65;13,06 198 | 11,53;14,4 199 | 11,23;12,72 200 | 8,89;12,49 201 | 9,16;14,12 202 | 7,21;9,66 203 | 4,79;10,99 204 | 5,38;8,74 205 | 7,96;9,76 206 | 7,1;11,72 207 | 5,49;11,63 208 | 6,82;11,73 209 | 7,26;9,27 210 | 5,69;8,95 211 | 4,47;9,53 212 | 5,06;8,59 213 | 5,52;11,29 214 | 4,69;9,5 215 | 6,02;9,05 216 | 4,36;10,93 217 | 6,96;9,41 218 | 6,61;9,98 219 | 7,27;9,04 220 | 6,17;11,69 221 | 6,14;8,38 222 | 6,61;9,06 223 | 4,98;8,77 224 | 5,03;9,42 225 | 4,65;9,12 226 | 5,08;9,74 227 | 4,95;8,49 228 | 7,48;10,64 229 | 6,54;10,76 230 | 5,6;9,53 231 | 6,78;8,98 232 | 5,11;8,75 233 | 4,6;9,7 234 | 4,82;9,54 235 | 4,8;10,34 236 | 5,54;9,4 237 | 5,26;10,29 238 | 5,48;10,88 239 | 6,92;10,55 240 | 6,55;10,25 241 | 5,41;10,15 242 | 4,45;10,14 243 | 5;8,43 244 | 6,62;8,4 245 | 7,7;11,15 246 | 5,45;9,99 247 | 7,01;9,11 248 | 6,95;10,75 249 | 6,7;9,87 250 | 5,71;8,26 251 | 5,79;10,67 252 | -------------------------------------------------------------------------------- /datasets/target/ds-577.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 1 159 | 1 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 1 171 | 1 172 | 1 173 | 1 174 | 1 175 | 1 176 | 1 177 | 1 178 | 1 179 | 1 180 | 1 181 | 1 182 | 1 183 | 1 184 | 1 185 | 1 186 | 1 187 | 1 188 | 1 189 | 1 190 | 1 191 | 1 192 | 1 193 | 1 194 | 1 195 | 1 196 | 1 197 | 1 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 2 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 2 261 | 2 262 | 2 263 | 2 264 | 2 265 | 2 266 | 2 267 | 2 268 | 2 269 | 2 270 | 2 271 | 2 272 | 2 273 | 2 274 | 2 275 | 2 276 | 2 277 | 2 278 | 2 279 | 2 280 | 2 281 | 2 282 | 2 283 | 2 284 | 2 285 | 2 286 | 2 287 | 2 288 | 2 289 | 2 290 | 2 291 | 2 292 | 2 293 | 2 294 | 2 295 | 2 296 | 2 297 | 2 298 | 2 299 | 2 300 | 2 301 | 2 302 | 2 303 | 2 304 | 2 305 | 2 306 | 2 307 | 2 308 | 2 309 | 2 310 | 2 311 | 2 312 | 2 313 | 2 314 | 2 315 | 2 316 | 2 317 | 2 318 | 2 319 | 2 320 | 2 321 | 2 322 | 2 323 | 2 324 | 2 325 | 2 326 | 2 327 | 2 328 | 2 329 | 2 330 | 2 331 | 2 332 | 2 333 | 2 334 | 2 335 | 2 336 | 2 337 | 2 338 | 2 339 | 2 340 | 2 341 | 2 342 | 2 343 | 2 344 | 2 345 | 2 346 | 2 347 | 2 348 | 2 349 | 2 350 | 2 351 | 2 352 | 2 353 | 2 354 | 2 355 | 2 356 | 2 357 | 2 358 | 2 359 | 2 360 | 2 361 | 2 362 | 2 363 | 2 364 | 2 365 | 2 366 | 2 367 | 2 368 | 2 369 | 2 370 | 2 371 | 2 372 | 2 373 | 2 374 | 2 375 | 2 376 | 2 377 | 2 378 | 2 379 | 2 380 | 2 381 | 2 382 | 2 383 | 2 384 | 2 385 | 2 386 | 2 387 | 2 388 | 2 389 | 2 390 | 2 391 | 2 392 | 2 393 | 2 394 | 2 395 | 2 396 | 2 397 | 2 398 | 3 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 2 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 3 498 | 3 499 | 3 500 | 3 501 | 3 502 | 3 503 | 3 504 | 3 505 | 3 506 | 3 507 | 3 508 | 3 509 | 3 510 | 3 511 | 3 512 | 3 513 | 3 514 | 3 515 | 3 516 | 3 517 | 3 518 | 3 519 | 3 520 | 3 521 | 3 522 | 3 523 | 3 524 | 3 525 | 3 526 | 3 527 | 3 528 | 3 529 | 3 530 | 3 531 | 3 532 | 3 533 | 3 534 | 3 535 | 3 536 | 3 537 | 3 538 | 3 539 | 3 540 | 3 541 | 3 542 | 3 543 | 3 544 | 3 545 | 3 546 | 3 547 | 3 548 | 3 549 | 3 550 | 3 551 | 3 552 | 3 553 | 3 554 | 3 555 | 3 556 | 3 557 | 3 558 | 3 559 | 3 560 | 3 561 | 3 562 | 3 563 | 3 564 | 3 565 | 3 566 | 3 567 | 3 568 | 3 569 | 3 570 | 3 571 | 3 572 | 3 573 | 3 574 | 3 575 | 3 576 | 3 577 | 3 578 | 3 579 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_6.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | 4 403 | 4 404 | 5 405 | 5 406 | 5 407 | 5 408 | 5 409 | 5 410 | 5 411 | 5 412 | 5 413 | 5 414 | 5 415 | 5 416 | 5 417 | 5 418 | 5 419 | 5 420 | 5 421 | 5 422 | 5 423 | 5 424 | 5 425 | 5 426 | 5 427 | 5 428 | 5 429 | 5 430 | 5 431 | 5 432 | 5 433 | 5 434 | 5 435 | 5 436 | 5 437 | 5 438 | 5 439 | 5 440 | 5 441 | 5 442 | 5 443 | 5 444 | 5 445 | 5 446 | 5 447 | 5 448 | 5 449 | 5 450 | 5 451 | 5 452 | 5 453 | 5 454 | 5 455 | 5 456 | 5 457 | 5 458 | 5 459 | 5 460 | 5 461 | 5 462 | 5 463 | 5 464 | 5 465 | 5 466 | 5 467 | 5 468 | 5 469 | 5 470 | 5 471 | 5 472 | 5 473 | 5 474 | 5 475 | 5 476 | 5 477 | 5 478 | 5 479 | 5 480 | 5 481 | 5 482 | 5 483 | 5 484 | 5 485 | 5 486 | 5 487 | 5 488 | 5 489 | 5 490 | 5 491 | 5 492 | 5 493 | 5 494 | 5 495 | 5 496 | 5 497 | 5 498 | 5 499 | 5 500 | 5 501 | 5 502 | 5 503 | 5 504 | 6 505 | 6 506 | 6 507 | 6 508 | 6 509 | 6 510 | 6 511 | 6 512 | 6 513 | 6 514 | 6 515 | 6 516 | 6 517 | 6 518 | 6 519 | 6 520 | 6 521 | 6 522 | 6 523 | 6 524 | 6 525 | 6 526 | 6 527 | 6 528 | 6 529 | 6 530 | 6 531 | 6 532 | 6 533 | 6 534 | 6 535 | 6 536 | 6 537 | 6 538 | 6 539 | 6 540 | 6 541 | 6 542 | 6 543 | 6 544 | 6 545 | 6 546 | 6 547 | 6 548 | 6 549 | 6 550 | 6 551 | 6 552 | 6 553 | 6 554 | 6 555 | 6 556 | 6 557 | 6 558 | 6 559 | 6 560 | 6 561 | 6 562 | 6 563 | 6 564 | 6 565 | 6 566 | 6 567 | 6 568 | 6 569 | 6 570 | 6 571 | 6 572 | 6 573 | 6 574 | 6 575 | 6 576 | 6 577 | 6 578 | 6 579 | 6 580 | 6 581 | 6 582 | 6 583 | 6 584 | 6 585 | 6 586 | 6 587 | 6 588 | 6 589 | 6 590 | 6 591 | 6 592 | 6 593 | 6 594 | 6 595 | 6 596 | 6 597 | 6 598 | 6 599 | 6 600 | 6 601 | 6 602 | 6 603 | 6 604 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # skstab 2 | 3 | **skstab** is a module for clustering stability analysis in Python with a scikit-learn compatible API. 4 | 5 | If this repository was useful, please cite following conference paper: 6 | 7 | ``` 8 | @inproceedings{mourer_stadion_2023, 9 | title = {Selecting the Number of Clusters K with a Stability Trade-off: an Internal Validation Criterion}, 10 | author = {Mourer, Alex and Forest, Florent and Lebbah, Mustapha and Azzag, Hanane and Lacaille, Jérôme}, 11 | year = {2023}, 12 | booktitle = {Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)}, 13 | address = {Osaka, Japan} 14 | url = {https://arxiv.org/abs/2006.08530} 15 | } 16 | ``` 17 | 18 | ## What is clustering stability? 19 | 20 | Clustering stability is a method for model selection in clustering, based on the principle that if we repeatedly 21 | perturb a data set, a good clustering algorithm should output similar partitions. In particular, it allows to 22 | select the correct number of clusters in an unlabeled data set. See for example [4] for an overview. 23 | 24 | ## How to use skstab for model selection 25 | 26 | The API is compatible with any clustering algorithm with an interface similar to scikit-sklearn, i.e. a 27 | `fit` method for training, and a `labels_` field or `predict` method to obtain cluster memberships. 28 | 29 | skstab allows to build and tune a variety of stability estimation methods. As of today, three concrete methods are 30 | implemented and can be used off-the-shelf: 31 | 32 | * **Model explorer** from Ben-Hur et al, 2002 [1] 33 | * **Model order selection** from Lange et al, 2004 [2] 34 | * **Stadion** from Mourer et al, 2023 [3] 35 | 36 | Each method has a usage example script (simply run `example_modelexplorer.py`/`example_modelorderselection.py`/`example_stadion.py`). 37 | Let us start with the K-means algorithm and Stadion [3], since it effectively selects the number of clusters K even in 38 | the case where data is not clusterable (i.e. K=1): 39 | 40 | ```python 41 | from skstab import StadionEstimator 42 | from skstab.datasets import load_dataset 43 | from sklearn.cluster import KMeans 44 | 45 | # 1. Load data 46 | dataset = 'exemples2_5g' # example data set with 5 Gaussians 47 | X, y = load_dataset(dataset) 48 | 49 | # 2. Choose clustering algorithm 50 | algorithm = KMeans 51 | km_kwargs = {'init': 'k-means++', 'n_init': 10} # algorithm settings 52 | 53 | # 3. Fix range of parameters and Stadion hyperparameter omega 54 | k_values = list(range(1, 11)) # evaluate K=1 to K=10 55 | omega = list(range(2, 6)) # keep this fixed to 2:5 or 2:10 56 | 57 | # 4. Define stability estimation class 58 | stab = StadionEstimator(X, algorithm, 59 | param_name='n_clusters', 60 | param_values=k_values, 61 | omega=omega, 62 | extended=True, 63 | runs=10, 64 | perturbation='uniform', 65 | perturbation_kwargs='auto', 66 | algo_kwargs=km_kwargs, 67 | n_jobs=-1) 68 | 69 | # 5. Evaluate stability scores 70 | score = stab.score(strategy='max', crossing=True) # estimate Stadion scores 71 | k_hat = stab.select_param()[0] # selected number of clusters 72 | ``` 73 | 74 | The correct number of clusters (K=5) is selected. The example script `example_stadion.py` also outputs visualizations 75 | called _stability paths_, representing stability as a function of the level of perturbation (see 76 | [3] for more details). 77 | 78 | ## Installation 79 | 80 | `$ python3 setup.py install` 81 | 82 | skstab was written for Python 3 and depends on joblib, matplotlib, numpy, pandas, scikit-learn and scipy. 83 | 84 | ## Architecture 85 | 86 | ![Class diagram](class_diagram.png) 87 | 88 | ## References 89 | 90 | > [1] Ben-Hur, A., Elisseeff, A., & Guyon, I. (2002). A stability based method for discovering structure in clustered 91 | data. Pacific Symposium on Biocomputing. https://doi.org/10.1142/9789812799623_0002 92 | 93 | > [2] Lange, T., Roth, V., Braun, M. L., & Buhmann, J. M. (2004). Stability-based validation of clustering solutions. 94 | Neural Computation. https://doi.org/10.1162/089976604773717621 95 | 96 | > [3] Mourer, A., Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2023). Selecting the Number of Clusters K with a 97 | Stability Trade-off: an Internal Validation Criterion. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). https://arxiv.org/abs/2006.08530 98 | 99 | > [4] Von Luxburg, U. (2009). Clustering stability: An overview. Foundations and Trends in Machine Learning. https://doi.org/10.1561/2200000008 100 | -------------------------------------------------------------------------------- /datasets/target/4clusters_twins.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 1 159 | 1 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 1 171 | 1 172 | 1 173 | 1 174 | 1 175 | 1 176 | 1 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 2 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 2 261 | 2 262 | 2 263 | 2 264 | 2 265 | 2 266 | 2 267 | 2 268 | 2 269 | 2 270 | 2 271 | 2 272 | 2 273 | 2 274 | 2 275 | 2 276 | 2 277 | 2 278 | 2 279 | 2 280 | 2 281 | 2 282 | 2 283 | 2 284 | 2 285 | 2 286 | 2 287 | 2 288 | 2 289 | 2 290 | 2 291 | 2 292 | 2 293 | 2 294 | 2 295 | 2 296 | 2 297 | 2 298 | 2 299 | 2 300 | 2 301 | 2 302 | 2 303 | 2 304 | 2 305 | 2 306 | 2 307 | 2 308 | 2 309 | 2 310 | 2 311 | 2 312 | 2 313 | 2 314 | 2 315 | 2 316 | 2 317 | 2 318 | 2 319 | 2 320 | 2 321 | 2 322 | 2 323 | 2 324 | 2 325 | 2 326 | 2 327 | 2 328 | 2 329 | 2 330 | 2 331 | 2 332 | 2 333 | 2 334 | 2 335 | 2 336 | 2 337 | 2 338 | 2 339 | 2 340 | 2 341 | 2 342 | 2 343 | 2 344 | 2 345 | 2 346 | 2 347 | 2 348 | 2 349 | 2 350 | 2 351 | 2 352 | 3 353 | 3 354 | 3 355 | 3 356 | 3 357 | 3 358 | 3 359 | 3 360 | 3 361 | 3 362 | 3 363 | 3 364 | 3 365 | 3 366 | 3 367 | 3 368 | 3 369 | 3 370 | 3 371 | 3 372 | 3 373 | 3 374 | 3 375 | 3 376 | 3 377 | 3 378 | 3 379 | 3 380 | 3 381 | 3 382 | 3 383 | 3 384 | 3 385 | 3 386 | 3 387 | 3 388 | 3 389 | 3 390 | 3 391 | 3 392 | 3 393 | 3 394 | 3 395 | 3 396 | 3 397 | 3 398 | 3 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 3 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 3 498 | 3 499 | 3 500 | 3 501 | 3 502 | 3 503 | 3 504 | 3 505 | 3 506 | 3 507 | 3 508 | 3 509 | 3 510 | 3 511 | 3 512 | 3 513 | 3 514 | 3 515 | 3 516 | 3 517 | 3 518 | 3 519 | 3 520 | 3 521 | 3 522 | 3 523 | 3 524 | 3 525 | 3 526 | 3 527 | 4 528 | 4 529 | 4 530 | 4 531 | 4 532 | 4 533 | 4 534 | 4 535 | 4 536 | 4 537 | 4 538 | 4 539 | 4 540 | 4 541 | 4 542 | 4 543 | 4 544 | 4 545 | 4 546 | 4 547 | 4 548 | 4 549 | 4 550 | 4 551 | 4 552 | 4 553 | 4 554 | 4 555 | 4 556 | 4 557 | 4 558 | 4 559 | 4 560 | 4 561 | 4 562 | 4 563 | 4 564 | 4 565 | 4 566 | 4 567 | 4 568 | 4 569 | 4 570 | 4 571 | 4 572 | 4 573 | 4 574 | 4 575 | 4 576 | 4 577 | 4 578 | 4 579 | 4 580 | 4 581 | 4 582 | 4 583 | 4 584 | 4 585 | 4 586 | 4 587 | 4 588 | 4 589 | 4 590 | 4 591 | 4 592 | 4 593 | 4 594 | 4 595 | 4 596 | 4 597 | 4 598 | 4 599 | 4 600 | 4 601 | 4 602 | 4 603 | 4 604 | 4 605 | 4 606 | 4 607 | 4 608 | 4 609 | 4 610 | 4 611 | 4 612 | 4 613 | 4 614 | -------------------------------------------------------------------------------- /datasets/target/zelnik4.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 4 3 | 4 4 | 4 5 | 4 6 | 4 7 | 4 8 | 4 9 | 4 10 | 4 11 | 4 12 | 4 13 | 4 14 | 4 15 | 4 16 | 4 17 | 4 18 | 4 19 | 4 20 | 4 21 | 4 22 | 4 23 | 4 24 | 4 25 | 4 26 | 4 27 | 4 28 | 4 29 | 4 30 | 4 31 | 4 32 | 4 33 | 4 34 | 4 35 | 4 36 | 4 37 | 4 38 | 4 39 | 4 40 | 4 41 | 4 42 | 4 43 | 4 44 | 4 45 | 4 46 | 4 47 | 4 48 | 4 49 | 4 50 | 4 51 | 4 52 | 4 53 | 4 54 | 4 55 | 4 56 | 4 57 | 4 58 | 4 59 | 4 60 | 4 61 | 4 62 | 4 63 | 4 64 | 4 65 | 4 66 | 4 67 | 4 68 | 4 69 | 4 70 | 4 71 | 4 72 | 4 73 | 4 74 | 4 75 | 4 76 | 4 77 | 4 78 | 4 79 | 4 80 | 4 81 | 4 82 | 4 83 | 4 84 | 4 85 | 4 86 | 4 87 | 4 88 | 4 89 | 4 90 | 4 91 | 4 92 | 4 93 | 4 94 | 4 95 | 4 96 | 4 97 | 4 98 | 4 99 | 4 100 | 4 101 | 4 102 | 4 103 | 4 104 | 4 105 | 4 106 | 4 107 | 4 108 | 4 109 | 4 110 | 4 111 | 3 112 | 3 113 | 3 114 | 3 115 | 3 116 | 3 117 | 3 118 | 3 119 | 3 120 | 3 121 | 3 122 | 3 123 | 3 124 | 3 125 | 3 126 | 3 127 | 3 128 | 3 129 | 3 130 | 3 131 | 3 132 | 3 133 | 3 134 | 3 135 | 3 136 | 3 137 | 3 138 | 3 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 3 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 1 255 | 1 256 | 1 257 | 1 258 | 1 259 | 1 260 | 1 261 | 1 262 | 1 263 | 1 264 | 1 265 | 1 266 | 1 267 | 1 268 | 1 269 | 1 270 | 1 271 | 1 272 | 1 273 | 1 274 | 1 275 | 1 276 | 1 277 | 1 278 | 1 279 | 1 280 | 1 281 | 1 282 | 1 283 | 1 284 | 1 285 | 1 286 | 1 287 | 1 288 | 1 289 | 1 290 | 1 291 | 1 292 | 1 293 | 1 294 | 1 295 | 1 296 | 1 297 | 1 298 | 1 299 | 1 300 | 1 301 | 1 302 | 1 303 | 1 304 | 1 305 | 1 306 | 1 307 | 1 308 | 1 309 | 1 310 | 1 311 | 1 312 | 1 313 | 1 314 | 1 315 | 1 316 | 1 317 | 1 318 | 1 319 | 1 320 | 1 321 | 1 322 | 1 323 | 1 324 | 1 325 | 1 326 | 1 327 | 1 328 | 1 329 | 1 330 | 1 331 | 1 332 | 1 333 | 1 334 | 1 335 | 1 336 | 1 337 | 1 338 | 1 339 | 1 340 | 1 341 | 1 342 | 1 343 | 1 344 | 1 345 | 1 346 | 1 347 | 1 348 | 1 349 | 1 350 | 1 351 | 1 352 | 1 353 | 1 354 | 1 355 | 1 356 | 1 357 | 1 358 | 1 359 | 1 360 | 1 361 | 1 362 | 1 363 | 1 364 | 1 365 | 3 366 | 3 367 | 3 368 | 3 369 | 3 370 | 3 371 | 3 372 | 3 373 | 3 374 | 3 375 | 3 376 | 3 377 | 3 378 | 3 379 | 3 380 | 3 381 | 3 382 | 3 383 | 3 384 | 3 385 | 3 386 | 3 387 | 3 388 | 3 389 | 3 390 | 3 391 | 3 392 | 3 393 | 3 394 | 3 395 | 3 396 | 3 397 | 3 398 | 3 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 3 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 5 487 | 5 488 | 5 489 | 5 490 | 5 491 | 5 492 | 5 493 | 5 494 | 5 495 | 5 496 | 5 497 | 5 498 | 5 499 | 5 500 | 5 501 | 5 502 | 5 503 | 5 504 | 5 505 | 5 506 | 5 507 | 5 508 | 5 509 | 5 510 | 5 511 | 5 512 | 5 513 | 5 514 | 5 515 | 5 516 | 5 517 | 5 518 | 5 519 | 5 520 | 5 521 | 5 522 | 5 523 | 5 524 | 5 525 | 5 526 | 5 527 | 5 528 | 5 529 | 5 530 | 5 531 | 5 532 | 5 533 | 5 534 | 5 535 | 5 536 | 5 537 | 5 538 | 5 539 | 5 540 | 5 541 | 5 542 | 5 543 | 5 544 | 5 545 | 5 546 | 5 547 | 5 548 | 5 549 | 5 550 | 5 551 | 5 552 | 5 553 | 5 554 | 5 555 | 5 556 | 5 557 | 5 558 | 5 559 | 5 560 | 5 561 | 5 562 | 5 563 | 5 564 | 5 565 | 5 566 | 5 567 | 5 568 | 5 569 | 5 570 | 5 571 | 5 572 | 5 573 | 5 574 | 5 575 | 5 576 | 5 577 | 5 578 | 5 579 | 5 580 | 5 581 | 5 582 | 5 583 | 5 584 | 5 585 | 5 586 | 5 587 | 5 588 | 5 589 | 5 590 | 5 591 | 5 592 | 5 593 | 5 594 | 5 595 | 5 596 | 5 597 | 5 598 | 5 599 | 5 600 | 5 601 | 5 602 | 5 603 | 5 604 | 5 605 | 5 606 | 5 607 | 5 608 | 5 609 | 5 610 | 5 611 | 5 612 | 5 613 | 5 614 | 5 615 | 5 616 | 5 617 | 5 618 | 5 619 | 5 620 | 5 621 | 5 622 | 5 623 | 5 624 | -------------------------------------------------------------------------------- /datasets/target/r15.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 2 43 | 2 44 | 2 45 | 2 46 | 2 47 | 2 48 | 2 49 | 2 50 | 2 51 | 2 52 | 2 53 | 2 54 | 2 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 3 83 | 3 84 | 3 85 | 3 86 | 3 87 | 3 88 | 3 89 | 3 90 | 3 91 | 3 92 | 3 93 | 3 94 | 3 95 | 3 96 | 3 97 | 3 98 | 3 99 | 3 100 | 3 101 | 3 102 | 3 103 | 3 104 | 3 105 | 3 106 | 3 107 | 3 108 | 3 109 | 3 110 | 3 111 | 3 112 | 3 113 | 3 114 | 3 115 | 3 116 | 3 117 | 3 118 | 3 119 | 3 120 | 3 121 | 3 122 | 4 123 | 4 124 | 4 125 | 4 126 | 4 127 | 4 128 | 4 129 | 4 130 | 4 131 | 4 132 | 4 133 | 4 134 | 4 135 | 4 136 | 4 137 | 4 138 | 4 139 | 4 140 | 4 141 | 4 142 | 4 143 | 4 144 | 4 145 | 4 146 | 4 147 | 4 148 | 4 149 | 4 150 | 4 151 | 4 152 | 4 153 | 4 154 | 4 155 | 4 156 | 4 157 | 4 158 | 4 159 | 4 160 | 4 161 | 4 162 | 5 163 | 5 164 | 5 165 | 5 166 | 5 167 | 5 168 | 5 169 | 5 170 | 5 171 | 5 172 | 5 173 | 5 174 | 5 175 | 5 176 | 5 177 | 5 178 | 5 179 | 5 180 | 5 181 | 5 182 | 5 183 | 5 184 | 5 185 | 5 186 | 5 187 | 5 188 | 5 189 | 5 190 | 5 191 | 5 192 | 5 193 | 5 194 | 5 195 | 5 196 | 5 197 | 5 198 | 5 199 | 5 200 | 5 201 | 5 202 | 6 203 | 6 204 | 6 205 | 6 206 | 6 207 | 6 208 | 6 209 | 6 210 | 6 211 | 6 212 | 6 213 | 6 214 | 6 215 | 6 216 | 6 217 | 6 218 | 6 219 | 6 220 | 6 221 | 6 222 | 6 223 | 6 224 | 6 225 | 6 226 | 6 227 | 6 228 | 6 229 | 6 230 | 6 231 | 6 232 | 6 233 | 6 234 | 6 235 | 6 236 | 6 237 | 6 238 | 6 239 | 6 240 | 6 241 | 6 242 | 7 243 | 7 244 | 7 245 | 7 246 | 7 247 | 7 248 | 7 249 | 7 250 | 7 251 | 7 252 | 7 253 | 7 254 | 7 255 | 7 256 | 7 257 | 7 258 | 7 259 | 7 260 | 7 261 | 7 262 | 7 263 | 7 264 | 7 265 | 7 266 | 7 267 | 7 268 | 7 269 | 7 270 | 7 271 | 7 272 | 7 273 | 7 274 | 7 275 | 7 276 | 7 277 | 7 278 | 7 279 | 7 280 | 7 281 | 7 282 | 8 283 | 8 284 | 8 285 | 8 286 | 8 287 | 8 288 | 8 289 | 8 290 | 8 291 | 8 292 | 8 293 | 8 294 | 8 295 | 8 296 | 8 297 | 8 298 | 8 299 | 8 300 | 8 301 | 8 302 | 8 303 | 8 304 | 8 305 | 8 306 | 8 307 | 8 308 | 8 309 | 8 310 | 8 311 | 8 312 | 8 313 | 8 314 | 8 315 | 8 316 | 8 317 | 8 318 | 8 319 | 8 320 | 8 321 | 8 322 | 9 323 | 9 324 | 9 325 | 9 326 | 9 327 | 9 328 | 9 329 | 9 330 | 9 331 | 9 332 | 9 333 | 9 334 | 9 335 | 9 336 | 9 337 | 9 338 | 9 339 | 9 340 | 9 341 | 9 342 | 9 343 | 9 344 | 9 345 | 9 346 | 9 347 | 9 348 | 9 349 | 9 350 | 9 351 | 9 352 | 9 353 | 9 354 | 9 355 | 9 356 | 9 357 | 9 358 | 9 359 | 9 360 | 9 361 | 9 362 | 10 363 | 10 364 | 10 365 | 10 366 | 10 367 | 10 368 | 10 369 | 10 370 | 10 371 | 10 372 | 10 373 | 10 374 | 10 375 | 10 376 | 10 377 | 10 378 | 10 379 | 10 380 | 10 381 | 10 382 | 10 383 | 10 384 | 10 385 | 10 386 | 10 387 | 10 388 | 10 389 | 10 390 | 10 391 | 10 392 | 10 393 | 10 394 | 10 395 | 10 396 | 10 397 | 10 398 | 10 399 | 10 400 | 10 401 | 10 402 | 11 403 | 11 404 | 11 405 | 11 406 | 11 407 | 11 408 | 11 409 | 11 410 | 11 411 | 11 412 | 11 413 | 11 414 | 11 415 | 11 416 | 11 417 | 11 418 | 11 419 | 11 420 | 11 421 | 11 422 | 11 423 | 11 424 | 11 425 | 11 426 | 11 427 | 11 428 | 11 429 | 11 430 | 11 431 | 11 432 | 11 433 | 11 434 | 11 435 | 11 436 | 11 437 | 11 438 | 11 439 | 11 440 | 11 441 | 11 442 | 12 443 | 12 444 | 12 445 | 12 446 | 12 447 | 12 448 | 12 449 | 12 450 | 12 451 | 12 452 | 12 453 | 12 454 | 12 455 | 12 456 | 12 457 | 12 458 | 12 459 | 12 460 | 12 461 | 12 462 | 12 463 | 12 464 | 12 465 | 12 466 | 12 467 | 12 468 | 12 469 | 12 470 | 12 471 | 12 472 | 12 473 | 12 474 | 12 475 | 12 476 | 12 477 | 12 478 | 12 479 | 12 480 | 12 481 | 12 482 | 13 483 | 13 484 | 13 485 | 13 486 | 13 487 | 13 488 | 13 489 | 13 490 | 13 491 | 13 492 | 13 493 | 13 494 | 13 495 | 13 496 | 13 497 | 13 498 | 13 499 | 13 500 | 13 501 | 13 502 | 13 503 | 13 504 | 13 505 | 13 506 | 13 507 | 13 508 | 13 509 | 13 510 | 13 511 | 13 512 | 13 513 | 13 514 | 13 515 | 13 516 | 13 517 | 13 518 | 13 519 | 13 520 | 13 521 | 13 522 | 14 523 | 14 524 | 14 525 | 14 526 | 14 527 | 14 528 | 14 529 | 14 530 | 14 531 | 14 532 | 14 533 | 14 534 | 14 535 | 14 536 | 14 537 | 14 538 | 14 539 | 14 540 | 14 541 | 14 542 | 14 543 | 14 544 | 14 545 | 14 546 | 14 547 | 14 548 | 14 549 | 14 550 | 14 551 | 14 552 | 14 553 | 14 554 | 14 555 | 14 556 | 14 557 | 14 558 | 14 559 | 14 560 | 14 561 | 14 562 | 15 563 | 15 564 | 15 565 | 15 566 | 15 567 | 15 568 | 15 569 | 15 570 | 15 571 | 15 572 | 15 573 | 15 574 | 15 575 | 15 576 | 15 577 | 15 578 | 15 579 | 15 580 | 15 581 | 15 582 | 15 583 | 15 584 | 15 585 | 15 586 | 15 587 | 15 588 | 15 589 | 15 590 | 15 591 | 15 592 | 15 593 | 15 594 | 15 595 | 15 596 | 15 597 | 15 598 | 15 599 | 15 600 | 15 601 | 15 602 | -------------------------------------------------------------------------------- /datasets/data/artificial/spherical_6_2.csv: -------------------------------------------------------------------------------- 1 | "V1";"V2" 2 | 14,86;16,6 3 | 14,13;16,280001 4 | 17,1;16,639999 5 | 14,82;17,4 6 | 17,16;15,54 7 | 16,719999;16,530001 8 | 15,37;15,95 9 | 17,26;14,75 10 | 14,27;15,99 11 | 17,51;16,42 12 | 16,290001;14,13 13 | 15,72;17,85 14 | 15,92;16,709999 15 | 15,86;16,040001 16 | 14,19;15,32 17 | 14,54;15,71 18 | 16,18;15,57 19 | 15,58;16,98 20 | 16,629999;15,6 21 | 17,299999;16,24 22 | 14,94;14,79 23 | 14,61;16,84 24 | 17,940001;16,280001 25 | 15,79;17,879999 26 | 17,690001;16,370001 27 | 15,34;16,58 28 | 15,08;16,540001 29 | 15,33;14,52 30 | 16,129999;15,58 31 | 15,43;16,5 32 | 16,4;15,09 33 | 16,5;15,46 34 | 15,8;14,87 35 | 17,030001;16,17 36 | 15,68;16,6 37 | 16,82;15,14 38 | 16,299999;15,7 39 | 16,15;16,290001 40 | 15,62;14,81 41 | 16,5;17,799999 42 | 14,77;15,24 43 | 15,76;16,639999 44 | 17,639999;15,59 45 | 14,24;16,059999 46 | 15,46;16,09 47 | 17,540001;16,34 48 | 16,1;17,690001 49 | 16,02;15,05 50 | 15,99;14,11 51 | 15,94;15,01 52 | 5,11;3,08 53 | 4,06;3,69 54 | 3,18;4,34 55 | 4,65;4,45 56 | 5,08;4,53 57 | 5,92;6,27 58 | 5,12;5,16 59 | 4,27;4,2 60 | 5,18;5,99 61 | 4,78;4,3 62 | 3,74;4,56 63 | 5,61;3,53 64 | 4,77;4,66 65 | 5,4;5,22 66 | 5,77;4,88 67 | 4,22;3,18 68 | 4,41;6,6 69 | 5,3;3,64 70 | 6,59;5,74 71 | 5,16;6,93 72 | 5,69;5,29 73 | 3,54;4,39 74 | 5,64;4,5 75 | 5,41;6,07 76 | 3,4;4,35 77 | 4,72;3,98 78 | 5,08;5,7 79 | 3,95;4,31 80 | 6,62;5,4 81 | 4,05;4,54 82 | 3,67;5,04 83 | 3,89;6,56 84 | 3,69;6,51 85 | 3,74;5 86 | 5,07;3,07 87 | 3,56;4,63 88 | 4;6,48 89 | 6,51;4,73 90 | 6,22;4,69 91 | 5,63;5,47 92 | 5,69;5,71 93 | 4,29;5,34 94 | 4,28;6,15 95 | 5,58;4 96 | 6,45;4,83 97 | 6,08;6,28 98 | 6,06;6,68 99 | 5,31;5,86 100 | 5,73;5,94 101 | 6,46;5,16 102 | 8,68;9,72 103 | 9,62;9,97 104 | 7,65;9,81 105 | 8,54;7,08 106 | 10,46;7,64 107 | 8,3;7,28 108 | 9,1;8,25 109 | 9,52;9,08 110 | 7,93;9,48 111 | 9,28;10,19 112 | 7,5;8,12 113 | 10,3;8,27 114 | 7,2;8,42 115 | 8,92;9,31 116 | 8,6;9,6 117 | 7,76;10,52 118 | 8,95;9,47 119 | 7,7;9,57 120 | 9,33;8,39 121 | 10,5;8,77 122 | 8,93;8,15 123 | 8,88;8,92 124 | 9,6;10,29 125 | 9,89;10,42 126 | 9,85;8,07 127 | 10,51;10,03 128 | 9,87;7,37 129 | 7,43;9,9 130 | 8,84;7,04 131 | 9,02;9,83 132 | 9,9;10,25 133 | 7,73;8,33 134 | 10,32;8,07 135 | 9,57;10,63 136 | 10,45;10,33 137 | 8,97;9,27 138 | 8,62;9,68 139 | 8,19;9,37 140 | 8,69;9,64 141 | 9,35;10,65 142 | 9,76;8,43 143 | 9,88;8,43 144 | 9,2;9,79 145 | 9,72;8,73 146 | 7,82;8,54 147 | 9,62;8,72 148 | 9,19;9,05 149 | 9,33;10,44 150 | 8,21;7,26 151 | 9,49;8,65 152 | 21,92;20,469999 153 | 21,860001;20,559999 154 | 19,700001;19,02 155 | 20,83;21,219999 156 | 19,129999;18,25 157 | 20,709999;18,290001 158 | 19,07;21,58 159 | 20,280001;20,24 160 | 19,129999;20,18 161 | 19,129999;19,84 162 | 21,52;20,51 163 | 19,370001;21,16 164 | 18,950001;19,42 165 | 18,809999;19,040001 166 | 21,620001;20,879999 167 | 21,43;19,139999 168 | 19,85;19,559999 169 | 19,42;18,27 170 | 20,629999;20,139999 171 | 20,129999;21,84 172 | 19,49;19,6 173 | 19,5;20,42 174 | 19,139999;21,42 175 | 19,889999;20,290001 176 | 21,09;19,99 177 | 20,08;21,110001 178 | 20,190001;21,32 179 | 18,58;19,24 180 | 21,379999;20,75 181 | 18,4;19,91 182 | 19,459999;20,610001 183 | 19,4;20,34 184 | 20,059999;19,860001 185 | 20,67;20,82 186 | 20,26;21,09 187 | 19,870001;21,110001 188 | 19,139999;21,209999 189 | 21,42;20,92 190 | 19,07;20,73 191 | 19,17;19,709999 192 | 18,959999;20,280001 193 | 18,549999;20,629999 194 | 19,67;20,860001 195 | 18,219999;20,66 196 | 20,030001;21,15 197 | 20,809999;20,07 198 | 19,4;20,77 199 | 19,01;19,57 200 | 19,43;20,84 201 | 20,41;19,629999 202 | 4,09;19,84 203 | 4,41;21,57 204 | 3,73;20,48 205 | 5,8;19,190001 206 | 6,49;19,07 207 | 4,52;20,99 208 | 4,52;18,42 209 | 6,09;19,51 210 | 4,08;18,459999 211 | 6,8;20,610001 212 | 5,98;20,280001 213 | 5,82;21,110001 214 | 4,72;20,51 215 | 3,59;19,83 216 | 4,99;18,799999 217 | 3,55;19,610001 218 | 4,22;18,639999 219 | 4,83;18,879999 220 | 4,24;20,6 221 | 5,14;19,35 222 | 3,81;19,940001 223 | 5,43;21,450001 224 | 4,74;18,809999 225 | 5,68;20,68 226 | 4,67;20,4 227 | 6,23;19,940001 228 | 5,76;18,379999 229 | 4,56;20,6 230 | 6,02;20,950001 231 | 3,78;20,51 232 | 5,82;20,08 233 | 4,16;19,700001 234 | 4,27;19,07 235 | 3,57;19,09 236 | 6,11;20,26 237 | 6,1;18,4 238 | 6,07;18,84 239 | 6,39;21,379999 240 | 4,6;20,51 241 | 5,49;21,59 242 | 6,58;19,26 243 | 3,37;19,299999 244 | 5,47;20,34 245 | 6,13;20,93 246 | 4,85;18,35 247 | 4,38;19,65 248 | 4,48;21,379999 249 | 5,73;20,639999 250 | 4,87;19,66 251 | 3,13;20,059999 252 | 19,57;5,37 253 | 20,290001;4,18 254 | 18,370001;5,16 255 | 19,709999;5,05 256 | 18,16;5,79 257 | 19,540001;6,28 258 | 20,08;3,35 259 | 21,370001;5,64 260 | 20,969999;4,38 261 | 19,870001;3,94 262 | 21,51;3,77 263 | 21,450001;4,9 264 | 21,530001;3,74 265 | 20,370001;3,2 266 | 18,5;6,12 267 | 18,85;5,15 268 | 19,639999;5,07 269 | 21,24;5,3 270 | 18,49;4,19 271 | 19,549999;3,1 272 | 19,66;4,98 273 | 19,92;5,45 274 | 19,23;3,65 275 | 20,93;5,05 276 | 20,370001;5,81 277 | 18,51;3,99 278 | 20,200001;4,4 279 | 21,540001;6,08 280 | 18,84;5,18 281 | 19,440001;3,28 282 | 21,49;4,07 283 | 20,73;6,44 284 | 19,809999;5,47 285 | 19,77;5,32 286 | 18,360001;4,43 287 | 20,129999;6,7 288 | 19,110001;6,31 289 | 20,24;3,23 290 | 20,040001;6,39 291 | 18,84;3,8 292 | 19,700001;6,78 293 | 20,200001;5,63 294 | 20,280001;3,46 295 | 21,190001;3,6 296 | 21,030001;3,92 297 | 19,99;4,95 298 | 20,879999;5,53 299 | 19,120001;4,56 300 | 19,9;5,67 301 | 21,15;5,52 302 | -------------------------------------------------------------------------------- /datasets/target/3clusters_elephant.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 1 159 | 1 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 1 171 | 1 172 | 1 173 | 1 174 | 1 175 | 1 176 | 1 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 2 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 2 261 | 2 262 | 2 263 | 2 264 | 2 265 | 2 266 | 2 267 | 2 268 | 2 269 | 2 270 | 2 271 | 2 272 | 2 273 | 2 274 | 2 275 | 2 276 | 2 277 | 2 278 | 2 279 | 2 280 | 2 281 | 2 282 | 2 283 | 2 284 | 2 285 | 2 286 | 2 287 | 2 288 | 2 289 | 2 290 | 2 291 | 2 292 | 2 293 | 2 294 | 2 295 | 2 296 | 2 297 | 2 298 | 2 299 | 2 300 | 2 301 | 2 302 | 2 303 | 2 304 | 2 305 | 2 306 | 2 307 | 2 308 | 2 309 | 2 310 | 2 311 | 2 312 | 2 313 | 2 314 | 2 315 | 2 316 | 2 317 | 2 318 | 2 319 | 2 320 | 2 321 | 2 322 | 2 323 | 2 324 | 2 325 | 2 326 | 2 327 | 2 328 | 2 329 | 2 330 | 2 331 | 2 332 | 2 333 | 2 334 | 2 335 | 2 336 | 2 337 | 2 338 | 2 339 | 2 340 | 2 341 | 2 342 | 2 343 | 2 344 | 2 345 | 2 346 | 2 347 | 2 348 | 2 349 | 2 350 | 2 351 | 2 352 | 3 353 | 3 354 | 3 355 | 3 356 | 3 357 | 3 358 | 3 359 | 3 360 | 3 361 | 3 362 | 3 363 | 3 364 | 3 365 | 3 366 | 3 367 | 3 368 | 3 369 | 3 370 | 3 371 | 3 372 | 3 373 | 3 374 | 3 375 | 3 376 | 3 377 | 3 378 | 3 379 | 3 380 | 3 381 | 3 382 | 3 383 | 3 384 | 3 385 | 3 386 | 3 387 | 3 388 | 3 389 | 3 390 | 3 391 | 3 392 | 3 393 | 3 394 | 3 395 | 3 396 | 3 397 | 3 398 | 3 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 3 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 3 498 | 3 499 | 3 500 | 3 501 | 3 502 | 3 503 | 3 504 | 3 505 | 3 506 | 3 507 | 3 508 | 3 509 | 3 510 | 3 511 | 3 512 | 3 513 | 3 514 | 3 515 | 3 516 | 3 517 | 3 518 | 3 519 | 3 520 | 3 521 | 3 522 | 3 523 | 3 524 | 3 525 | 3 526 | 3 527 | 3 528 | 3 529 | 3 530 | 3 531 | 3 532 | 3 533 | 3 534 | 3 535 | 3 536 | 3 537 | 3 538 | 3 539 | 3 540 | 3 541 | 3 542 | 3 543 | 3 544 | 3 545 | 3 546 | 3 547 | 3 548 | 3 549 | 3 550 | 3 551 | 3 552 | 3 553 | 3 554 | 3 555 | 3 556 | 3 557 | 3 558 | 3 559 | 3 560 | 3 561 | 3 562 | 3 563 | 3 564 | 3 565 | 3 566 | 3 567 | 3 568 | 3 569 | 3 570 | 3 571 | 3 572 | 3 573 | 3 574 | 3 575 | 3 576 | 3 577 | 3 578 | 3 579 | 3 580 | 3 581 | 3 582 | 3 583 | 3 584 | 3 585 | 3 586 | 3 587 | 3 588 | 3 589 | 3 590 | 3 591 | 3 592 | 3 593 | 3 594 | 3 595 | 3 596 | 3 597 | 3 598 | 3 599 | 3 600 | 3 601 | 3 602 | 3 603 | 3 604 | 3 605 | 3 606 | 3 607 | 3 608 | 3 609 | 3 610 | 3 611 | 3 612 | 3 613 | 3 614 | 3 615 | 3 616 | 3 617 | 3 618 | 3 619 | 3 620 | 3 621 | 3 622 | 3 623 | 3 624 | 3 625 | 3 626 | 3 627 | 3 628 | 3 629 | 3 630 | 3 631 | 3 632 | 3 633 | 3 634 | 3 635 | 3 636 | 3 637 | 3 638 | 3 639 | 3 640 | 3 641 | 3 642 | 3 643 | 3 644 | 3 645 | 3 646 | 3 647 | 3 648 | 3 649 | 3 650 | 3 651 | 3 652 | 3 653 | 3 654 | 3 655 | 3 656 | 3 657 | 3 658 | 3 659 | 3 660 | 3 661 | 3 662 | 3 663 | 3 664 | 3 665 | 3 666 | 3 667 | 3 668 | 3 669 | 3 670 | 3 671 | 3 672 | 3 673 | 3 674 | 3 675 | 3 676 | 3 677 | 3 678 | 3 679 | 3 680 | 3 681 | 3 682 | 3 683 | 3 684 | 3 685 | 3 686 | 3 687 | 3 688 | 3 689 | 3 690 | 3 691 | 3 692 | 3 693 | 3 694 | 3 695 | 3 696 | 3 697 | 3 698 | 3 699 | 3 700 | 3 701 | 3 702 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_7.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | 4 403 | 4 404 | 5 405 | 5 406 | 5 407 | 5 408 | 5 409 | 5 410 | 5 411 | 5 412 | 5 413 | 5 414 | 5 415 | 5 416 | 5 417 | 5 418 | 5 419 | 5 420 | 5 421 | 5 422 | 5 423 | 5 424 | 5 425 | 5 426 | 5 427 | 5 428 | 5 429 | 5 430 | 5 431 | 5 432 | 5 433 | 5 434 | 5 435 | 5 436 | 5 437 | 5 438 | 5 439 | 5 440 | 5 441 | 5 442 | 5 443 | 5 444 | 5 445 | 5 446 | 5 447 | 5 448 | 5 449 | 5 450 | 5 451 | 5 452 | 5 453 | 5 454 | 5 455 | 5 456 | 5 457 | 5 458 | 5 459 | 5 460 | 5 461 | 5 462 | 5 463 | 5 464 | 5 465 | 5 466 | 5 467 | 5 468 | 5 469 | 5 470 | 5 471 | 5 472 | 5 473 | 5 474 | 5 475 | 5 476 | 5 477 | 5 478 | 5 479 | 5 480 | 5 481 | 5 482 | 5 483 | 5 484 | 5 485 | 5 486 | 5 487 | 5 488 | 5 489 | 5 490 | 5 491 | 5 492 | 5 493 | 5 494 | 5 495 | 5 496 | 5 497 | 5 498 | 5 499 | 5 500 | 5 501 | 5 502 | 5 503 | 5 504 | 6 505 | 6 506 | 6 507 | 6 508 | 6 509 | 6 510 | 6 511 | 6 512 | 6 513 | 6 514 | 6 515 | 6 516 | 6 517 | 6 518 | 6 519 | 6 520 | 6 521 | 6 522 | 6 523 | 6 524 | 6 525 | 6 526 | 6 527 | 6 528 | 6 529 | 6 530 | 6 531 | 6 532 | 6 533 | 6 534 | 6 535 | 6 536 | 6 537 | 6 538 | 6 539 | 6 540 | 6 541 | 6 542 | 6 543 | 6 544 | 6 545 | 6 546 | 6 547 | 6 548 | 6 549 | 6 550 | 6 551 | 6 552 | 6 553 | 6 554 | 6 555 | 6 556 | 6 557 | 6 558 | 6 559 | 6 560 | 6 561 | 6 562 | 6 563 | 6 564 | 6 565 | 6 566 | 6 567 | 6 568 | 6 569 | 6 570 | 6 571 | 6 572 | 6 573 | 6 574 | 6 575 | 6 576 | 6 577 | 6 578 | 6 579 | 6 580 | 6 581 | 6 582 | 6 583 | 6 584 | 6 585 | 6 586 | 6 587 | 6 588 | 6 589 | 6 590 | 6 591 | 6 592 | 6 593 | 6 594 | 6 595 | 6 596 | 6 597 | 6 598 | 6 599 | 6 600 | 6 601 | 6 602 | 6 603 | 6 604 | 7 605 | 7 606 | 7 607 | 7 608 | 7 609 | 7 610 | 7 611 | 7 612 | 7 613 | 7 614 | 7 615 | 7 616 | 7 617 | 7 618 | 7 619 | 7 620 | 7 621 | 7 622 | 7 623 | 7 624 | 7 625 | 7 626 | 7 627 | 7 628 | 7 629 | 7 630 | 7 631 | 7 632 | 7 633 | 7 634 | 7 635 | 7 636 | 7 637 | 7 638 | 7 639 | 7 640 | 7 641 | 7 642 | 7 643 | 7 644 | 7 645 | 7 646 | 7 647 | 7 648 | 7 649 | 7 650 | 7 651 | 7 652 | 7 653 | 7 654 | 7 655 | 7 656 | 7 657 | 7 658 | 7 659 | 7 660 | 7 661 | 7 662 | 7 663 | 7 664 | 7 665 | 7 666 | 7 667 | 7 668 | 7 669 | 7 670 | 7 671 | 7 672 | 7 673 | 7 674 | 7 675 | 7 676 | 7 677 | 7 678 | 7 679 | 7 680 | 7 681 | 7 682 | 7 683 | 7 684 | 7 685 | 7 686 | 7 687 | 7 688 | 7 689 | 7 690 | 7 691 | 7 692 | 7 693 | 7 694 | 7 695 | 7 696 | 7 697 | 7 698 | 7 699 | 7 700 | 7 701 | 7 702 | 7 703 | 7 704 | -------------------------------------------------------------------------------- /datasets/target/glass.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | "'build_wind_float'" 3 | "'build_wind_float'" 4 | "containers" 5 | "'build_wind_float'" 6 | "'build_wind_non-float'" 7 | "'build_wind_non-float'" 8 | "'build_wind_non-float'" 9 | "'build_wind_non-float'" 10 | "'build_wind_float'" 11 | "headlamps" 12 | "headlamps" 13 | "'build_wind_non-float'" 14 | "'build_wind_non-float'" 15 | "'build_wind_float'" 16 | "'vehic_wind_float'" 17 | "'build_wind_float'" 18 | "headlamps" 19 | "'build_wind_non-float'" 20 | "'build_wind_float'" 21 | "'build_wind_non-float'" 22 | "'vehic_wind_float'" 23 | "'build_wind_float'" 24 | "'vehic_wind_float'" 25 | "'vehic_wind_float'" 26 | "headlamps" 27 | "'build_wind_non-float'" 28 | "'build_wind_float'" 29 | "tableware" 30 | "headlamps" 31 | "'build_wind_float'" 32 | "'build_wind_non-float'" 33 | "'build_wind_float'" 34 | "'build_wind_non-float'" 35 | "headlamps" 36 | "'build_wind_float'" 37 | "'build_wind_non-float'" 38 | "'build_wind_non-float'" 39 | "'build_wind_float'" 40 | "'build_wind_float'" 41 | "'build_wind_float'" 42 | "'build_wind_non-float'" 43 | "containers" 44 | "headlamps" 45 | "headlamps" 46 | "'build_wind_non-float'" 47 | "containers" 48 | "'vehic_wind_float'" 49 | "'build_wind_non-float'" 50 | "'build_wind_float'" 51 | "headlamps" 52 | "'build_wind_float'" 53 | "'build_wind_float'" 54 | "'build_wind_float'" 55 | "'build_wind_float'" 56 | "'build_wind_float'" 57 | "'vehic_wind_float'" 58 | "'build_wind_non-float'" 59 | "'build_wind_non-float'" 60 | "tableware" 61 | "headlamps" 62 | "'build_wind_non-float'" 63 | "'build_wind_non-float'" 64 | "'build_wind_non-float'" 65 | "headlamps" 66 | "'build_wind_non-float'" 67 | "'build_wind_non-float'" 68 | "headlamps" 69 | "tableware" 70 | "tableware" 71 | "'build_wind_non-float'" 72 | "'build_wind_float'" 73 | "tableware" 74 | "tableware" 75 | "'build_wind_non-float'" 76 | "'build_wind_non-float'" 77 | "'build_wind_float'" 78 | "headlamps" 79 | "'build_wind_float'" 80 | "'build_wind_float'" 81 | "'build_wind_non-float'" 82 | "'build_wind_non-float'" 83 | "'build_wind_float'" 84 | "'build_wind_float'" 85 | "containers" 86 | "'build_wind_non-float'" 87 | "'vehic_wind_float'" 88 | "'build_wind_non-float'" 89 | "'build_wind_float'" 90 | "headlamps" 91 | "'build_wind_non-float'" 92 | "'build_wind_non-float'" 93 | "containers" 94 | "containers" 95 | "'build_wind_float'" 96 | "'build_wind_non-float'" 97 | "'build_wind_float'" 98 | "'vehic_wind_float'" 99 | "tableware" 100 | "'build_wind_float'" 101 | "'build_wind_non-float'" 102 | "headlamps" 103 | "'build_wind_non-float'" 104 | "'build_wind_float'" 105 | "'build_wind_non-float'" 106 | "'vehic_wind_float'" 107 | "headlamps" 108 | "'build_wind_float'" 109 | "'build_wind_float'" 110 | "tableware" 111 | "'build_wind_non-float'" 112 | "'build_wind_float'" 113 | "'build_wind_non-float'" 114 | "'build_wind_non-float'" 115 | "'build_wind_float'" 116 | "'vehic_wind_float'" 117 | "'build_wind_non-float'" 118 | "'build_wind_non-float'" 119 | "'build_wind_non-float'" 120 | "'build_wind_float'" 121 | "'build_wind_non-float'" 122 | "'build_wind_float'" 123 | "'build_wind_float'" 124 | "containers" 125 | "headlamps" 126 | "'build_wind_float'" 127 | "headlamps" 128 | "'build_wind_float'" 129 | "'build_wind_non-float'" 130 | "'build_wind_float'" 131 | "headlamps" 132 | "'build_wind_non-float'" 133 | "'build_wind_non-float'" 134 | "'build_wind_non-float'" 135 | "'build_wind_non-float'" 136 | "headlamps" 137 | "headlamps" 138 | "'build_wind_float'" 139 | "headlamps" 140 | "'vehic_wind_float'" 141 | "'build_wind_float'" 142 | "'vehic_wind_float'" 143 | "'build_wind_float'" 144 | "containers" 145 | "'build_wind_non-float'" 146 | "containers" 147 | "'build_wind_non-float'" 148 | "'build_wind_non-float'" 149 | "'build_wind_float'" 150 | "headlamps" 151 | "'build_wind_float'" 152 | "'build_wind_non-float'" 153 | "'build_wind_float'" 154 | "'build_wind_float'" 155 | "'build_wind_non-float'" 156 | "'build_wind_float'" 157 | "headlamps" 158 | "'build_wind_float'" 159 | "'build_wind_non-float'" 160 | "'build_wind_non-float'" 161 | "'build_wind_float'" 162 | "'build_wind_float'" 163 | "'build_wind_non-float'" 164 | "'build_wind_float'" 165 | "'build_wind_float'" 166 | "containers" 167 | "headlamps" 168 | "'build_wind_non-float'" 169 | "'vehic_wind_float'" 170 | "'build_wind_non-float'" 171 | "'build_wind_non-float'" 172 | "'build_wind_float'" 173 | "'build_wind_float'" 174 | "'build_wind_non-float'" 175 | "headlamps" 176 | "'build_wind_non-float'" 177 | "'build_wind_non-float'" 178 | "'build_wind_float'" 179 | "'build_wind_non-float'" 180 | "'vehic_wind_float'" 181 | "containers" 182 | "'build_wind_float'" 183 | "'build_wind_float'" 184 | "'build_wind_non-float'" 185 | "'build_wind_non-float'" 186 | "'build_wind_float'" 187 | "headlamps" 188 | "'build_wind_float'" 189 | "'build_wind_non-float'" 190 | "'build_wind_non-float'" 191 | "'build_wind_non-float'" 192 | "tableware" 193 | "'build_wind_float'" 194 | "'build_wind_non-float'" 195 | "'build_wind_float'" 196 | "'build_wind_non-float'" 197 | "'build_wind_non-float'" 198 | "'build_wind_non-float'" 199 | "'build_wind_float'" 200 | "headlamps" 201 | "containers" 202 | "'vehic_wind_float'" 203 | "'build_wind_non-float'" 204 | "'vehic_wind_float'" 205 | "'build_wind_non-float'" 206 | "containers" 207 | "'build_wind_float'" 208 | "'build_wind_float'" 209 | "'build_wind_float'" 210 | "'vehic_wind_float'" 211 | "headlamps" 212 | "'build_wind_float'" 213 | "'build_wind_non-float'" 214 | "'build_wind_float'" 215 | "'build_wind_non-float'" 216 | -------------------------------------------------------------------------------- /datasets/target/2d-3c-no123.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 0 62 | 0 63 | 0 64 | 0 65 | 0 66 | 0 67 | 0 68 | 0 69 | 0 70 | 0 71 | 0 72 | 0 73 | 0 74 | 0 75 | 0 76 | 0 77 | 0 78 | 0 79 | 0 80 | 0 81 | 0 82 | 0 83 | 0 84 | 0 85 | 0 86 | 0 87 | 0 88 | 0 89 | 0 90 | 0 91 | 0 92 | 0 93 | 0 94 | 0 95 | 0 96 | 0 97 | 0 98 | 0 99 | 0 100 | 0 101 | 0 102 | 0 103 | 0 104 | 0 105 | 0 106 | 0 107 | 0 108 | 0 109 | 0 110 | 0 111 | 0 112 | 0 113 | 0 114 | 0 115 | 0 116 | 0 117 | 0 118 | 0 119 | 0 120 | 0 121 | 0 122 | 0 123 | 0 124 | 0 125 | 0 126 | 0 127 | 0 128 | 0 129 | 0 130 | 0 131 | 0 132 | 0 133 | 0 134 | 0 135 | 0 136 | 0 137 | 0 138 | 0 139 | 0 140 | 0 141 | 0 142 | 0 143 | 0 144 | 0 145 | 0 146 | 0 147 | 0 148 | 0 149 | 0 150 | 0 151 | 0 152 | 0 153 | 0 154 | 0 155 | 0 156 | 0 157 | 0 158 | 0 159 | 0 160 | 0 161 | 0 162 | 0 163 | 0 164 | 0 165 | 0 166 | 0 167 | 0 168 | 0 169 | 0 170 | 0 171 | 0 172 | 0 173 | 0 174 | 0 175 | 0 176 | 0 177 | 0 178 | 0 179 | 0 180 | 0 181 | 0 182 | 0 183 | 0 184 | 0 185 | 0 186 | 0 187 | 0 188 | 0 189 | 0 190 | 0 191 | 0 192 | 0 193 | 0 194 | 0 195 | 0 196 | 0 197 | 0 198 | 0 199 | 0 200 | 0 201 | 0 202 | 0 203 | 0 204 | 0 205 | 0 206 | 0 207 | 0 208 | 0 209 | 0 210 | 0 211 | 0 212 | 0 213 | 0 214 | 0 215 | 0 216 | 0 217 | 0 218 | 0 219 | 0 220 | 0 221 | 0 222 | 0 223 | 0 224 | 0 225 | 0 226 | 0 227 | 0 228 | 0 229 | 0 230 | 0 231 | 0 232 | 0 233 | 0 234 | 0 235 | 0 236 | 0 237 | 0 238 | 0 239 | 0 240 | 0 241 | 0 242 | 0 243 | 0 244 | 0 245 | 0 246 | 0 247 | 0 248 | 0 249 | 0 250 | 0 251 | 0 252 | 0 253 | 0 254 | 0 255 | 0 256 | 0 257 | 0 258 | 0 259 | 0 260 | 0 261 | 0 262 | 0 263 | 0 264 | 0 265 | 0 266 | 1 267 | 1 268 | 1 269 | 1 270 | 1 271 | 1 272 | 1 273 | 1 274 | 1 275 | 1 276 | 1 277 | 1 278 | 1 279 | 1 280 | 1 281 | 1 282 | 1 283 | 1 284 | 1 285 | 1 286 | 1 287 | 1 288 | 1 289 | 1 290 | 1 291 | 1 292 | 1 293 | 1 294 | 1 295 | 1 296 | 1 297 | 1 298 | 1 299 | 1 300 | 1 301 | 1 302 | 1 303 | 1 304 | 1 305 | 1 306 | 1 307 | 1 308 | 1 309 | 1 310 | 1 311 | 1 312 | 1 313 | 1 314 | 1 315 | 1 316 | 1 317 | 1 318 | 1 319 | 1 320 | 1 321 | 1 322 | 1 323 | 1 324 | 1 325 | 1 326 | 1 327 | 1 328 | 1 329 | 1 330 | 1 331 | 1 332 | 1 333 | 1 334 | 1 335 | 1 336 | 1 337 | 1 338 | 1 339 | 1 340 | 1 341 | 1 342 | 1 343 | 1 344 | 1 345 | 1 346 | 1 347 | 1 348 | 1 349 | 1 350 | 1 351 | 1 352 | 1 353 | 1 354 | 1 355 | 1 356 | 1 357 | 1 358 | 1 359 | 1 360 | 1 361 | 1 362 | 1 363 | 1 364 | 1 365 | 1 366 | 1 367 | 1 368 | 1 369 | 1 370 | 1 371 | 1 372 | 1 373 | 1 374 | 1 375 | 1 376 | 1 377 | 1 378 | 1 379 | 1 380 | 1 381 | 1 382 | 1 383 | 1 384 | 1 385 | 1 386 | 1 387 | 1 388 | 1 389 | 1 390 | 1 391 | 1 392 | 1 393 | 1 394 | 1 395 | 1 396 | 1 397 | 1 398 | 1 399 | 1 400 | 1 401 | 1 402 | 1 403 | 1 404 | 1 405 | 1 406 | 1 407 | 1 408 | 1 409 | 1 410 | 1 411 | 1 412 | 1 413 | 1 414 | 1 415 | 1 416 | 1 417 | 1 418 | 1 419 | 1 420 | 1 421 | 1 422 | 1 423 | 1 424 | 1 425 | 1 426 | 1 427 | 1 428 | 1 429 | 1 430 | 1 431 | 1 432 | 1 433 | 1 434 | 1 435 | 1 436 | 1 437 | 1 438 | 1 439 | 1 440 | 1 441 | 1 442 | 1 443 | 1 444 | 1 445 | 1 446 | 1 447 | 1 448 | 1 449 | 1 450 | 1 451 | 1 452 | 1 453 | 1 454 | 1 455 | 1 456 | 1 457 | 1 458 | 1 459 | 1 460 | 1 461 | 1 462 | 1 463 | 1 464 | 1 465 | 1 466 | 1 467 | 1 468 | 1 469 | 1 470 | 1 471 | 1 472 | 1 473 | 1 474 | 1 475 | 1 476 | 1 477 | 1 478 | 1 479 | 1 480 | 1 481 | 1 482 | 1 483 | 1 484 | 1 485 | 1 486 | 1 487 | 1 488 | 1 489 | 1 490 | 1 491 | 1 492 | 1 493 | 1 494 | 1 495 | 1 496 | 1 497 | 1 498 | 1 499 | 1 500 | 1 501 | 1 502 | 1 503 | 1 504 | 1 505 | 1 506 | 1 507 | 1 508 | 1 509 | 1 510 | 1 511 | 1 512 | 1 513 | 1 514 | 1 515 | 1 516 | 1 517 | 1 518 | 1 519 | 1 520 | 1 521 | 1 522 | 1 523 | 1 524 | 1 525 | 1 526 | 1 527 | 1 528 | 1 529 | 1 530 | 1 531 | 1 532 | 1 533 | 1 534 | 1 535 | 1 536 | 1 537 | 1 538 | 1 539 | 1 540 | 1 541 | 1 542 | 1 543 | 1 544 | 1 545 | 1 546 | 1 547 | 1 548 | 1 549 | 1 550 | 1 551 | 1 552 | 1 553 | 1 554 | 1 555 | 1 556 | 1 557 | 1 558 | 1 559 | 1 560 | 1 561 | 1 562 | 1 563 | 1 564 | 1 565 | 1 566 | 1 567 | 1 568 | 1 569 | 1 570 | 1 571 | 1 572 | 1 573 | 1 574 | 1 575 | 1 576 | 1 577 | 1 578 | 1 579 | 1 580 | 1 581 | 1 582 | 1 583 | 1 584 | 1 585 | 1 586 | 1 587 | 1 588 | 1 589 | 1 590 | 1 591 | 1 592 | 1 593 | 1 594 | 1 595 | 1 596 | 1 597 | 1 598 | 1 599 | 1 600 | 1 601 | 1 602 | 1 603 | 1 604 | 1 605 | 1 606 | 1 607 | 1 608 | 1 609 | 1 610 | 1 611 | 1 612 | 1 613 | 1 614 | 1 615 | 1 616 | 1 617 | 1 618 | 1 619 | 1 620 | 1 621 | 1 622 | 1 623 | 1 624 | 1 625 | 1 626 | 1 627 | 1 628 | 1 629 | 1 630 | 1 631 | 1 632 | 1 633 | 1 634 | 1 635 | 1 636 | 2 637 | 2 638 | 2 639 | 2 640 | 2 641 | 2 642 | 2 643 | 2 644 | 2 645 | 2 646 | 2 647 | 2 648 | 2 649 | 2 650 | 2 651 | 2 652 | 2 653 | 2 654 | 2 655 | 2 656 | 2 657 | 2 658 | 2 659 | 2 660 | 2 661 | 2 662 | 2 663 | 2 664 | 2 665 | 2 666 | 2 667 | 2 668 | 2 669 | 2 670 | 2 671 | 2 672 | 2 673 | 2 674 | 2 675 | 2 676 | 2 677 | 2 678 | 2 679 | 2 680 | 2 681 | 2 682 | 2 683 | 2 684 | 2 685 | 2 686 | 2 687 | 2 688 | 2 689 | 2 690 | 2 691 | 2 692 | 2 693 | 2 694 | 2 695 | 2 696 | 2 697 | 2 698 | 2 699 | 2 700 | 2 701 | 2 702 | 2 703 | 2 704 | 2 705 | 2 706 | 2 707 | 2 708 | 2 709 | 2 710 | 2 711 | 2 712 | 2 713 | 2 714 | 2 715 | 2 716 | 2 717 | -------------------------------------------------------------------------------- /datasets/target/diabetes.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 2 3 | 1 4 | 2 5 | 1 6 | 2 7 | 1 8 | 2 9 | 1 10 | 2 11 | 2 12 | 1 13 | 2 14 | 1 15 | 2 16 | 2 17 | 2 18 | 2 19 | 2 20 | 1 21 | 2 22 | 1 23 | 1 24 | 2 25 | 2 26 | 2 27 | 2 28 | 2 29 | 1 30 | 1 31 | 1 32 | 1 33 | 2 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 2 40 | 2 41 | 2 42 | 1 43 | 1 44 | 1 45 | 2 46 | 1 47 | 2 48 | 1 49 | 1 50 | 2 51 | 1 52 | 1 53 | 1 54 | 1 55 | 2 56 | 1 57 | 1 58 | 2 59 | 1 60 | 1 61 | 1 62 | 1 63 | 2 64 | 1 65 | 1 66 | 2 67 | 1 68 | 2 69 | 1 70 | 1 71 | 1 72 | 2 73 | 1 74 | 2 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 2 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 2 87 | 1 88 | 1 89 | 1 90 | 2 91 | 1 92 | 1 93 | 1 94 | 1 95 | 2 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 2 102 | 2 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 2 112 | 2 113 | 2 114 | 1 115 | 1 116 | 2 117 | 2 118 | 2 119 | 1 120 | 1 121 | 1 122 | 2 123 | 1 124 | 1 125 | 1 126 | 2 127 | 2 128 | 1 129 | 1 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 2 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 2 155 | 1 156 | 2 157 | 2 158 | 1 159 | 1 160 | 1 161 | 2 162 | 1 163 | 1 164 | 1 165 | 1 166 | 2 167 | 2 168 | 1 169 | 1 170 | 1 171 | 1 172 | 2 173 | 2 174 | 1 175 | 1 176 | 1 177 | 2 178 | 1 179 | 2 180 | 1 181 | 2 182 | 1 183 | 1 184 | 1 185 | 1 186 | 1 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 1 193 | 1 194 | 2 195 | 2 196 | 1 197 | 2 198 | 1 199 | 2 200 | 2 201 | 2 202 | 1 203 | 1 204 | 1 205 | 1 206 | 1 207 | 1 208 | 2 209 | 2 210 | 1 211 | 2 212 | 1 213 | 1 214 | 1 215 | 2 216 | 2 217 | 2 218 | 2 219 | 1 220 | 2 221 | 2 222 | 2 223 | 2 224 | 1 225 | 1 226 | 1 227 | 1 228 | 1 229 | 2 230 | 1 231 | 1 232 | 2 233 | 2 234 | 1 235 | 1 236 | 1 237 | 2 238 | 2 239 | 2 240 | 2 241 | 1 242 | 1 243 | 1 244 | 2 245 | 2 246 | 1 247 | 2 248 | 1 249 | 1 250 | 1 251 | 1 252 | 1 253 | 1 254 | 1 255 | 1 256 | 2 257 | 2 258 | 1 259 | 1 260 | 1 261 | 2 262 | 1 263 | 2 264 | 1 265 | 1 266 | 2 267 | 1 268 | 2 269 | 1 270 | 1 271 | 2 272 | 2 273 | 1 274 | 1 275 | 1 276 | 1 277 | 1 278 | 2 279 | 1 280 | 1 281 | 1 282 | 2 283 | 1 284 | 1 285 | 2 286 | 2 287 | 1 288 | 1 289 | 2 290 | 1 291 | 1 292 | 1 293 | 2 294 | 2 295 | 2 296 | 1 297 | 1 298 | 2 299 | 1 300 | 2 301 | 1 302 | 2 303 | 2 304 | 1 305 | 2 306 | 1 307 | 1 308 | 2 309 | 1 310 | 2 311 | 2 312 | 1 313 | 1 314 | 2 315 | 1 316 | 2 317 | 1 318 | 1 319 | 2 320 | 1 321 | 2 322 | 1 323 | 2 324 | 2 325 | 2 326 | 1 327 | 1 328 | 2 329 | 1 330 | 2 331 | 1 332 | 1 333 | 1 334 | 2 335 | 1 336 | 1 337 | 1 338 | 1 339 | 2 340 | 2 341 | 2 342 | 1 343 | 1 344 | 1 345 | 1 346 | 1 347 | 1 348 | 1 349 | 1 350 | 1 351 | 2 352 | 1 353 | 1 354 | 1 355 | 1 356 | 1 357 | 2 358 | 2 359 | 2 360 | 1 361 | 2 362 | 2 363 | 1 364 | 1 365 | 2 366 | 1 367 | 1 368 | 2 369 | 1 370 | 1 371 | 2 372 | 2 373 | 1 374 | 1 375 | 1 376 | 1 377 | 2 378 | 1 379 | 1 380 | 2 381 | 1 382 | 1 383 | 1 384 | 1 385 | 1 386 | 1 387 | 1 388 | 2 389 | 2 390 | 2 391 | 1 392 | 1 393 | 2 394 | 1 395 | 1 396 | 2 397 | 1 398 | 1 399 | 2 400 | 1 401 | 2 402 | 2 403 | 1 404 | 2 405 | 1 406 | 2 407 | 1 408 | 2 409 | 1 410 | 2 411 | 2 412 | 1 413 | 1 414 | 1 415 | 1 416 | 2 417 | 2 418 | 1 419 | 2 420 | 1 421 | 2 422 | 1 423 | 1 424 | 1 425 | 1 426 | 2 427 | 2 428 | 1 429 | 2 430 | 1 431 | 2 432 | 1 433 | 1 434 | 1 435 | 1 436 | 1 437 | 2 438 | 1 439 | 1 440 | 1 441 | 1 442 | 2 443 | 1 444 | 1 445 | 2 446 | 2 447 | 2 448 | 1 449 | 1 450 | 2 451 | 1 452 | 1 453 | 2 454 | 1 455 | 1 456 | 1 457 | 2 458 | 1 459 | 1 460 | 2 461 | 1 462 | 1 463 | 1 464 | 1 465 | 1 466 | 1 467 | 1 468 | 1 469 | 1 470 | 2 471 | 1 472 | 1 473 | 1 474 | 1 475 | 1 476 | 1 477 | 1 478 | 2 479 | 1 480 | 1 481 | 1 482 | 2 483 | 1 484 | 1 485 | 1 486 | 2 487 | 2 488 | 1 489 | 1 490 | 1 491 | 1 492 | 1 493 | 1 494 | 1 495 | 2 496 | 1 497 | 1 498 | 1 499 | 1 500 | 2 501 | 1 502 | 1 503 | 1 504 | 2 505 | 1 506 | 1 507 | 1 508 | 2 509 | 1 510 | 1 511 | 1 512 | 2 513 | 1 514 | 1 515 | 1 516 | 1 517 | 2 518 | 2 519 | 1 520 | 1 521 | 1 522 | 1 523 | 1 524 | 1 525 | 2 526 | 1 527 | 1 528 | 1 529 | 1 530 | 1 531 | 1 532 | 1 533 | 1 534 | 1 535 | 1 536 | 1 537 | 2 538 | 1 539 | 1 540 | 1 541 | 2 542 | 2 543 | 2 544 | 2 545 | 1 546 | 1 547 | 2 548 | 2 549 | 1 550 | 1 551 | 1 552 | 1 553 | 1 554 | 1 555 | 1 556 | 1 557 | 1 558 | 1 559 | 1 560 | 1 561 | 1 562 | 2 563 | 2 564 | 1 565 | 1 566 | 1 567 | 1 568 | 1 569 | 1 570 | 1 571 | 2 572 | 1 573 | 1 574 | 1 575 | 1 576 | 1 577 | 1 578 | 1 579 | 2 580 | 1 581 | 2 582 | 2 583 | 1 584 | 1 585 | 1 586 | 2 587 | 1 588 | 2 589 | 1 590 | 2 591 | 1 592 | 2 593 | 1 594 | 2 595 | 1 596 | 1 597 | 2 598 | 1 599 | 1 600 | 2 601 | 1 602 | 1 603 | 1 604 | 1 605 | 2 606 | 2 607 | 1 608 | 2 609 | 1 610 | 1 611 | 1 612 | 1 613 | 2 614 | 2 615 | 1 616 | 2 617 | 1 618 | 1 619 | 1 620 | 2 621 | 2 622 | 1 623 | 1 624 | 1 625 | 1 626 | 1 627 | 1 628 | 1 629 | 1 630 | 1 631 | 1 632 | 2 633 | 1 634 | 1 635 | 1 636 | 1 637 | 2 638 | 1 639 | 1 640 | 2 641 | 1 642 | 1 643 | 1 644 | 2 645 | 1 646 | 1 647 | 1 648 | 2 649 | 2 650 | 2 651 | 1 652 | 1 653 | 1 654 | 1 655 | 1 656 | 1 657 | 2 658 | 1 659 | 1 660 | 1 661 | 2 662 | 1 663 | 2 664 | 2 665 | 2 666 | 2 667 | 1 668 | 2 669 | 2 670 | 1 671 | 1 672 | 1 673 | 1 674 | 1 675 | 1 676 | 1 677 | 2 678 | 2 679 | 1 680 | 2 681 | 1 682 | 1 683 | 2 684 | 1 685 | 2 686 | 1 687 | 1 688 | 1 689 | 1 690 | 1 691 | 2 692 | 1 693 | 2 694 | 1 695 | 2 696 | 1 697 | 2 698 | 2 699 | 1 700 | 1 701 | 1 702 | 1 703 | 2 704 | 2 705 | 1 706 | 1 707 | 1 708 | 2 709 | 1 710 | 2 711 | 2 712 | 1 713 | 1 714 | 2 715 | 1 716 | 1 717 | 2 718 | 2 719 | 1 720 | 1 721 | 2 722 | 1 723 | 1 724 | 2 725 | 1 726 | 1 727 | 1 728 | 1 729 | 1 730 | 1 731 | 1 732 | 2 733 | 2 734 | 2 735 | 1 736 | 1 737 | 1 738 | 1 739 | 1 740 | 1 741 | 2 742 | 2 743 | 1 744 | 1 745 | 2 746 | 1 747 | 1 748 | 2 749 | 1 750 | 2 751 | 2 752 | 2 753 | 1 754 | 1 755 | 2 756 | 2 757 | 2 758 | 1 759 | 2 760 | 1 761 | 2 762 | 1 763 | 2 764 | 1 765 | 1 766 | 1 767 | 1 768 | 2 769 | 1 770 | -------------------------------------------------------------------------------- /datasets/target/balance-scale.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | "B" 3 | "R" 4 | "R" 5 | "R" 6 | "R" 7 | "R" 8 | "R" 9 | "R" 10 | "R" 11 | "R" 12 | "R" 13 | "R" 14 | "R" 15 | "R" 16 | "R" 17 | "R" 18 | "R" 19 | "R" 20 | "R" 21 | "R" 22 | "R" 23 | "R" 24 | "R" 25 | "R" 26 | "R" 27 | "L" 28 | "B" 29 | "R" 30 | "R" 31 | "R" 32 | "B" 33 | "R" 34 | "R" 35 | "R" 36 | "R" 37 | "R" 38 | "R" 39 | "R" 40 | "R" 41 | "R" 42 | "R" 43 | "R" 44 | "R" 45 | "R" 46 | "R" 47 | "R" 48 | "R" 49 | "R" 50 | "R" 51 | "R" 52 | "L" 53 | "L" 54 | "B" 55 | "R" 56 | "R" 57 | "L" 58 | "R" 59 | "R" 60 | "R" 61 | "R" 62 | "B" 63 | "R" 64 | "R" 65 | "R" 66 | "R" 67 | "R" 68 | "R" 69 | "R" 70 | "R" 71 | "R" 72 | "R" 73 | "R" 74 | "R" 75 | "R" 76 | "R" 77 | "L" 78 | "L" 79 | "L" 80 | "B" 81 | "R" 82 | "L" 83 | "B" 84 | "R" 85 | "R" 86 | "R" 87 | "L" 88 | "R" 89 | "R" 90 | "R" 91 | "R" 92 | "B" 93 | "R" 94 | "R" 95 | "R" 96 | "R" 97 | "R" 98 | "R" 99 | "R" 100 | "R" 101 | "R" 102 | "L" 103 | "L" 104 | "L" 105 | "L" 106 | "B" 107 | "L" 108 | "L" 109 | "R" 110 | "R" 111 | "R" 112 | "L" 113 | "R" 114 | "R" 115 | "R" 116 | "R" 117 | "L" 118 | "R" 119 | "R" 120 | "R" 121 | "R" 122 | "B" 123 | "R" 124 | "R" 125 | "R" 126 | "R" 127 | "L" 128 | "B" 129 | "R" 130 | "R" 131 | "R" 132 | "B" 133 | "R" 134 | "R" 135 | "R" 136 | "R" 137 | "R" 138 | "R" 139 | "R" 140 | "R" 141 | "R" 142 | "R" 143 | "R" 144 | "R" 145 | "R" 146 | "R" 147 | "R" 148 | "R" 149 | "R" 150 | "R" 151 | "R" 152 | "L" 153 | "L" 154 | "L" 155 | "B" 156 | "R" 157 | "L" 158 | "B" 159 | "R" 160 | "R" 161 | "R" 162 | "L" 163 | "R" 164 | "R" 165 | "R" 166 | "R" 167 | "B" 168 | "R" 169 | "R" 170 | "R" 171 | "R" 172 | "R" 173 | "R" 174 | "R" 175 | "R" 176 | "R" 177 | "L" 178 | "L" 179 | "L" 180 | "L" 181 | "L" 182 | "L" 183 | "L" 184 | "B" 185 | "R" 186 | "R" 187 | "L" 188 | "B" 189 | "R" 190 | "R" 191 | "R" 192 | "L" 193 | "R" 194 | "R" 195 | "R" 196 | "R" 197 | "L" 198 | "R" 199 | "R" 200 | "R" 201 | "R" 202 | "L" 203 | "L" 204 | "L" 205 | "L" 206 | "L" 207 | "L" 208 | "L" 209 | "L" 210 | "B" 211 | "R" 212 | "L" 213 | "L" 214 | "R" 215 | "R" 216 | "R" 217 | "L" 218 | "B" 219 | "R" 220 | "R" 221 | "R" 222 | "L" 223 | "R" 224 | "R" 225 | "R" 226 | "R" 227 | "L" 228 | "L" 229 | "L" 230 | "L" 231 | "L" 232 | "L" 233 | "L" 234 | "L" 235 | "L" 236 | "B" 237 | "L" 238 | "L" 239 | "L" 240 | "R" 241 | "R" 242 | "L" 243 | "L" 244 | "R" 245 | "R" 246 | "R" 247 | "L" 248 | "B" 249 | "R" 250 | "R" 251 | "R" 252 | "L" 253 | "L" 254 | "B" 255 | "R" 256 | "R" 257 | "L" 258 | "R" 259 | "R" 260 | "R" 261 | "R" 262 | "B" 263 | "R" 264 | "R" 265 | "R" 266 | "R" 267 | "R" 268 | "R" 269 | "R" 270 | "R" 271 | "R" 272 | "R" 273 | "R" 274 | "R" 275 | "R" 276 | "R" 277 | "L" 278 | "L" 279 | "L" 280 | "L" 281 | "L" 282 | "L" 283 | "L" 284 | "B" 285 | "R" 286 | "R" 287 | "L" 288 | "B" 289 | "R" 290 | "R" 291 | "R" 292 | "L" 293 | "R" 294 | "R" 295 | "R" 296 | "R" 297 | "L" 298 | "R" 299 | "R" 300 | "R" 301 | "R" 302 | "L" 303 | "L" 304 | "L" 305 | "L" 306 | "L" 307 | "L" 308 | "L" 309 | "L" 310 | "L" 311 | "R" 312 | "L" 313 | "L" 314 | "B" 315 | "R" 316 | "R" 317 | "L" 318 | "L" 319 | "R" 320 | "R" 321 | "R" 322 | "L" 323 | "R" 324 | "R" 325 | "R" 326 | "R" 327 | "L" 328 | "L" 329 | "L" 330 | "L" 331 | "L" 332 | "L" 333 | "L" 334 | "L" 335 | "L" 336 | "L" 337 | "L" 338 | "L" 339 | "L" 340 | "B" 341 | "R" 342 | "L" 343 | "L" 344 | "B" 345 | "R" 346 | "R" 347 | "L" 348 | "L" 349 | "R" 350 | "R" 351 | "R" 352 | "L" 353 | "L" 354 | "L" 355 | "L" 356 | "L" 357 | "L" 358 | "L" 359 | "L" 360 | "L" 361 | "L" 362 | "L" 363 | "L" 364 | "L" 365 | "L" 366 | "B" 367 | "L" 368 | "L" 369 | "L" 370 | "R" 371 | "R" 372 | "L" 373 | "L" 374 | "B" 375 | "R" 376 | "R" 377 | "L" 378 | "L" 379 | "L" 380 | "B" 381 | "R" 382 | "L" 383 | "B" 384 | "R" 385 | "R" 386 | "R" 387 | "L" 388 | "R" 389 | "R" 390 | "R" 391 | "R" 392 | "B" 393 | "R" 394 | "R" 395 | "R" 396 | "R" 397 | "R" 398 | "R" 399 | "R" 400 | "R" 401 | "R" 402 | "L" 403 | "L" 404 | "L" 405 | "L" 406 | "L" 407 | "L" 408 | "L" 409 | "L" 410 | "B" 411 | "R" 412 | "L" 413 | "L" 414 | "R" 415 | "R" 416 | "R" 417 | "L" 418 | "B" 419 | "R" 420 | "R" 421 | "R" 422 | "L" 423 | "R" 424 | "R" 425 | "R" 426 | "R" 427 | "L" 428 | "L" 429 | "L" 430 | "L" 431 | "L" 432 | "L" 433 | "L" 434 | "L" 435 | "L" 436 | "L" 437 | "L" 438 | "L" 439 | "L" 440 | "B" 441 | "R" 442 | "L" 443 | "L" 444 | "B" 445 | "R" 446 | "R" 447 | "L" 448 | "L" 449 | "R" 450 | "R" 451 | "R" 452 | "L" 453 | "L" 454 | "L" 455 | "L" 456 | "L" 457 | "L" 458 | "L" 459 | "L" 460 | "L" 461 | "L" 462 | "L" 463 | "L" 464 | "L" 465 | "L" 466 | "L" 467 | "L" 468 | "L" 469 | "L" 470 | "B" 471 | "R" 472 | "L" 473 | "L" 474 | "L" 475 | "R" 476 | "R" 477 | "L" 478 | "L" 479 | "L" 480 | "L" 481 | "L" 482 | "L" 483 | "L" 484 | "L" 485 | "L" 486 | "L" 487 | "L" 488 | "L" 489 | "L" 490 | "L" 491 | "L" 492 | "L" 493 | "L" 494 | "L" 495 | "L" 496 | "B" 497 | "L" 498 | "L" 499 | "L" 500 | "B" 501 | "R" 502 | "L" 503 | "L" 504 | "L" 505 | "L" 506 | "B" 507 | "L" 508 | "L" 509 | "R" 510 | "R" 511 | "R" 512 | "L" 513 | "R" 514 | "R" 515 | "R" 516 | "R" 517 | "L" 518 | "R" 519 | "R" 520 | "R" 521 | "R" 522 | "B" 523 | "R" 524 | "R" 525 | "R" 526 | "R" 527 | "L" 528 | "L" 529 | "L" 530 | "L" 531 | "L" 532 | "L" 533 | "L" 534 | "L" 535 | "L" 536 | "B" 537 | "L" 538 | "L" 539 | "L" 540 | "R" 541 | "R" 542 | "L" 543 | "L" 544 | "R" 545 | "R" 546 | "R" 547 | "L" 548 | "B" 549 | "R" 550 | "R" 551 | "R" 552 | "L" 553 | "L" 554 | "L" 555 | "L" 556 | "L" 557 | "L" 558 | "L" 559 | "L" 560 | "L" 561 | "L" 562 | "L" 563 | "L" 564 | "L" 565 | "L" 566 | "B" 567 | "L" 568 | "L" 569 | "L" 570 | "R" 571 | "R" 572 | "L" 573 | "L" 574 | "B" 575 | "R" 576 | "R" 577 | "L" 578 | "L" 579 | "L" 580 | "L" 581 | "L" 582 | "L" 583 | "L" 584 | "L" 585 | "L" 586 | "L" 587 | "L" 588 | "L" 589 | "L" 590 | "L" 591 | "L" 592 | "L" 593 | "L" 594 | "L" 595 | "L" 596 | "B" 597 | "L" 598 | "L" 599 | "L" 600 | "B" 601 | "R" 602 | "L" 603 | "L" 604 | "L" 605 | "L" 606 | "L" 607 | "L" 608 | "L" 609 | "L" 610 | "L" 611 | "L" 612 | "L" 613 | "L" 614 | "L" 615 | "L" 616 | "L" 617 | "L" 618 | "L" 619 | "L" 620 | "L" 621 | "L" 622 | "L" 623 | "L" 624 | "L" 625 | "L" 626 | "B" 627 | -------------------------------------------------------------------------------- /datasets/target/exemples7_elbow_3g.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 4 3 | 4 4 | 4 5 | 4 6 | 4 7 | 4 8 | 4 9 | 4 10 | 4 11 | 4 12 | 4 13 | 4 14 | 4 15 | 4 16 | 4 17 | 4 18 | 4 19 | 4 20 | 4 21 | 4 22 | 4 23 | 4 24 | 4 25 | 4 26 | 4 27 | 4 28 | 4 29 | 4 30 | 4 31 | 4 32 | 4 33 | 4 34 | 4 35 | 4 36 | 4 37 | 4 38 | 4 39 | 4 40 | 4 41 | 4 42 | 4 43 | 4 44 | 4 45 | 4 46 | 4 47 | 4 48 | 4 49 | 4 50 | 4 51 | 4 52 | 4 53 | 4 54 | 4 55 | 4 56 | 4 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 2 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 2 205 | 2 206 | 2 207 | 2 208 | 2 209 | 2 210 | 2 211 | 2 212 | 2 213 | 2 214 | 2 215 | 2 216 | 2 217 | 2 218 | 2 219 | 2 220 | 2 221 | 2 222 | 2 223 | 2 224 | 2 225 | 2 226 | 2 227 | 2 228 | 2 229 | 2 230 | 2 231 | 2 232 | 2 233 | 2 234 | 2 235 | 2 236 | 2 237 | 2 238 | 2 239 | 2 240 | 2 241 | 2 242 | 2 243 | 2 244 | 2 245 | 2 246 | 2 247 | 2 248 | 2 249 | 2 250 | 2 251 | 2 252 | 2 253 | 2 254 | 2 255 | 2 256 | 2 257 | 2 258 | 2 259 | 2 260 | 2 261 | 2 262 | 2 263 | 2 264 | 2 265 | 2 266 | 2 267 | 2 268 | 2 269 | 2 270 | 2 271 | 2 272 | 2 273 | 2 274 | 2 275 | 2 276 | 2 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | 3 305 | 3 306 | 3 307 | 3 308 | 3 309 | 3 310 | 3 311 | 3 312 | 3 313 | 3 314 | 3 315 | 3 316 | 3 317 | 3 318 | 3 319 | 3 320 | 3 321 | 3 322 | 3 323 | 3 324 | 3 325 | 3 326 | 3 327 | 3 328 | 3 329 | 3 330 | 3 331 | 3 332 | 3 333 | 3 334 | 3 335 | 3 336 | 3 337 | 3 338 | 3 339 | 3 340 | 3 341 | 3 342 | 3 343 | 3 344 | 3 345 | 3 346 | 3 347 | 3 348 | 3 349 | 3 350 | 3 351 | 3 352 | 3 353 | 3 354 | 3 355 | 3 356 | 3 357 | 3 358 | 3 359 | 3 360 | 3 361 | 3 362 | 3 363 | 3 364 | 3 365 | 3 366 | 3 367 | 3 368 | 3 369 | 3 370 | 3 371 | 3 372 | 3 373 | 3 374 | 3 375 | 3 376 | 3 377 | 3 378 | 3 379 | 3 380 | 3 381 | 3 382 | 3 383 | 3 384 | 3 385 | 3 386 | 3 387 | 3 388 | 3 389 | 3 390 | 3 391 | 3 392 | 3 393 | 3 394 | 3 395 | 3 396 | 3 397 | 3 398 | 3 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 3 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 4 498 | 4 499 | 4 500 | 4 501 | 4 502 | 4 503 | 4 504 | 4 505 | 4 506 | 4 507 | 4 508 | 4 509 | 4 510 | 4 511 | 4 512 | 4 513 | 4 514 | 4 515 | 4 516 | 4 517 | 4 518 | 4 519 | 4 520 | 4 521 | 4 522 | 4 523 | 4 524 | 4 525 | 4 526 | 4 527 | 4 528 | 4 529 | 4 530 | 4 531 | 4 532 | 4 533 | 4 534 | 4 535 | 4 536 | 4 537 | 4 538 | 4 539 | 4 540 | 4 541 | 4 542 | 4 543 | 4 544 | 4 545 | 4 546 | 4 547 | 4 548 | 4 549 | 4 550 | 4 551 | 4 552 | 4 553 | 4 554 | 4 555 | 4 556 | 4 557 | 4 558 | 4 559 | 4 560 | 4 561 | 4 562 | 4 563 | 4 564 | 4 565 | 4 566 | 4 567 | 4 568 | 4 569 | 4 570 | 4 571 | 4 572 | 4 573 | 4 574 | 4 575 | 4 576 | 4 577 | 4 578 | 4 579 | 4 580 | 4 581 | 4 582 | 4 583 | 4 584 | 4 585 | 4 586 | 4 587 | 4 588 | 4 589 | 4 590 | 4 591 | 4 592 | 4 593 | 4 594 | 4 595 | 4 596 | 4 597 | 4 598 | 4 599 | 4 600 | 4 601 | 4 602 | 4 603 | 4 604 | 4 605 | 4 606 | 4 607 | 4 608 | 4 609 | 4 610 | 4 611 | 4 612 | 4 613 | 4 614 | 4 615 | 4 616 | 4 617 | 4 618 | 4 619 | 4 620 | 4 621 | 4 622 | 4 623 | 4 624 | 4 625 | 4 626 | 4 627 | 4 628 | 4 629 | 4 630 | 4 631 | 4 632 | 4 633 | 4 634 | 4 635 | 4 636 | 4 637 | 4 638 | 4 639 | 4 640 | 4 641 | 4 642 | 4 643 | 4 644 | 4 645 | 4 646 | 4 647 | 4 648 | 4 649 | 4 650 | 4 651 | 4 652 | 4 653 | 4 654 | 4 655 | 4 656 | 4 657 | 4 658 | 4 659 | 4 660 | 4 661 | 4 662 | 4 663 | 4 664 | 4 665 | 4 666 | 4 667 | 4 668 | 4 669 | 4 670 | 4 671 | 4 672 | 4 673 | 4 674 | 4 675 | 4 676 | 4 677 | 4 678 | 4 679 | 4 680 | 4 681 | 4 682 | 4 683 | 4 684 | 4 685 | 4 686 | 4 687 | 4 688 | 4 689 | 4 690 | 4 691 | 4 692 | 4 693 | 4 694 | 4 695 | 4 696 | 4 697 | 4 698 | 4 699 | 4 700 | 4 701 | 4 702 | 4 703 | 4 704 | 4 705 | 4 706 | 4 707 | 4 708 | 4 709 | 4 710 | 4 711 | 4 712 | 4 713 | 4 714 | 4 715 | 4 716 | 4 717 | 4 718 | 4 719 | 4 720 | 4 721 | 4 722 | 4 723 | 4 724 | 4 725 | 4 726 | 4 727 | 4 728 | 4 729 | 4 730 | 4 731 | 4 732 | 4 733 | 4 734 | 4 735 | 4 736 | 4 737 | 4 738 | 4 739 | 4 740 | 4 741 | 4 742 | 4 743 | 4 744 | 4 745 | 4 746 | 4 747 | 4 748 | 4 749 | 4 750 | 4 751 | 4 752 | 4 753 | 4 754 | 4 755 | 4 756 | 4 757 | 4 758 | 4 759 | 4 760 | 4 761 | 4 762 | 4 763 | 4 764 | 4 765 | 4 766 | 4 767 | 4 768 | 4 769 | 4 770 | 4 771 | 4 772 | 4 773 | 4 774 | 4 775 | 4 776 | 4 777 | 4 778 | 4 779 | 4 780 | 4 781 | 4 782 | 4 783 | 4 784 | 4 785 | 4 786 | 4 787 | 4 788 | 4 789 | 4 790 | -------------------------------------------------------------------------------- /datasets/target/twodiamonds.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 1 105 | 1 106 | 1 107 | 1 108 | 1 109 | 1 110 | 1 111 | 1 112 | 1 113 | 1 114 | 1 115 | 1 116 | 1 117 | 1 118 | 1 119 | 1 120 | 1 121 | 1 122 | 1 123 | 1 124 | 1 125 | 1 126 | 1 127 | 1 128 | 1 129 | 1 130 | 1 131 | 1 132 | 1 133 | 1 134 | 1 135 | 1 136 | 1 137 | 1 138 | 1 139 | 1 140 | 1 141 | 1 142 | 1 143 | 1 144 | 1 145 | 1 146 | 1 147 | 1 148 | 1 149 | 1 150 | 1 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 1 159 | 1 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 1 171 | 1 172 | 1 173 | 1 174 | 1 175 | 1 176 | 1 177 | 1 178 | 1 179 | 1 180 | 1 181 | 1 182 | 1 183 | 1 184 | 1 185 | 1 186 | 1 187 | 1 188 | 1 189 | 1 190 | 1 191 | 1 192 | 1 193 | 1 194 | 1 195 | 1 196 | 1 197 | 1 198 | 1 199 | 1 200 | 1 201 | 1 202 | 1 203 | 1 204 | 1 205 | 1 206 | 1 207 | 1 208 | 1 209 | 1 210 | 1 211 | 1 212 | 1 213 | 1 214 | 1 215 | 1 216 | 1 217 | 1 218 | 1 219 | 1 220 | 1 221 | 1 222 | 1 223 | 1 224 | 1 225 | 1 226 | 1 227 | 1 228 | 1 229 | 1 230 | 1 231 | 1 232 | 1 233 | 1 234 | 1 235 | 1 236 | 1 237 | 1 238 | 1 239 | 1 240 | 1 241 | 1 242 | 1 243 | 1 244 | 1 245 | 1 246 | 1 247 | 1 248 | 1 249 | 1 250 | 1 251 | 1 252 | 1 253 | 1 254 | 1 255 | 1 256 | 1 257 | 1 258 | 1 259 | 1 260 | 1 261 | 1 262 | 1 263 | 1 264 | 1 265 | 1 266 | 1 267 | 1 268 | 1 269 | 1 270 | 1 271 | 1 272 | 1 273 | 1 274 | 1 275 | 1 276 | 1 277 | 1 278 | 1 279 | 1 280 | 1 281 | 1 282 | 1 283 | 1 284 | 1 285 | 1 286 | 1 287 | 1 288 | 1 289 | 1 290 | 1 291 | 1 292 | 1 293 | 1 294 | 1 295 | 1 296 | 1 297 | 1 298 | 1 299 | 1 300 | 1 301 | 1 302 | 1 303 | 1 304 | 1 305 | 1 306 | 1 307 | 1 308 | 1 309 | 1 310 | 1 311 | 1 312 | 1 313 | 1 314 | 1 315 | 1 316 | 1 317 | 1 318 | 1 319 | 1 320 | 1 321 | 1 322 | 1 323 | 1 324 | 1 325 | 1 326 | 1 327 | 1 328 | 1 329 | 1 330 | 1 331 | 1 332 | 1 333 | 1 334 | 1 335 | 1 336 | 1 337 | 1 338 | 1 339 | 1 340 | 1 341 | 1 342 | 1 343 | 1 344 | 1 345 | 1 346 | 1 347 | 1 348 | 1 349 | 1 350 | 1 351 | 1 352 | 1 353 | 1 354 | 1 355 | 1 356 | 1 357 | 1 358 | 1 359 | 1 360 | 1 361 | 1 362 | 1 363 | 1 364 | 1 365 | 1 366 | 1 367 | 1 368 | 1 369 | 1 370 | 1 371 | 1 372 | 1 373 | 1 374 | 1 375 | 1 376 | 1 377 | 1 378 | 1 379 | 1 380 | 1 381 | 1 382 | 1 383 | 1 384 | 1 385 | 1 386 | 1 387 | 1 388 | 1 389 | 1 390 | 1 391 | 1 392 | 1 393 | 1 394 | 1 395 | 1 396 | 1 397 | 1 398 | 1 399 | 1 400 | 1 401 | 1 402 | 2 403 | 2 404 | 2 405 | 2 406 | 2 407 | 2 408 | 2 409 | 2 410 | 2 411 | 2 412 | 2 413 | 2 414 | 2 415 | 2 416 | 2 417 | 2 418 | 2 419 | 2 420 | 2 421 | 2 422 | 2 423 | 2 424 | 2 425 | 2 426 | 2 427 | 2 428 | 2 429 | 2 430 | 2 431 | 2 432 | 2 433 | 2 434 | 2 435 | 2 436 | 2 437 | 2 438 | 2 439 | 2 440 | 2 441 | 2 442 | 2 443 | 2 444 | 2 445 | 2 446 | 2 447 | 2 448 | 2 449 | 2 450 | 2 451 | 2 452 | 2 453 | 2 454 | 2 455 | 2 456 | 2 457 | 2 458 | 2 459 | 2 460 | 2 461 | 2 462 | 2 463 | 2 464 | 2 465 | 2 466 | 2 467 | 2 468 | 2 469 | 2 470 | 2 471 | 2 472 | 2 473 | 2 474 | 2 475 | 2 476 | 2 477 | 2 478 | 2 479 | 2 480 | 2 481 | 2 482 | 2 483 | 2 484 | 2 485 | 2 486 | 2 487 | 2 488 | 2 489 | 2 490 | 2 491 | 2 492 | 2 493 | 2 494 | 2 495 | 2 496 | 2 497 | 2 498 | 2 499 | 2 500 | 2 501 | 2 502 | 2 503 | 2 504 | 2 505 | 2 506 | 2 507 | 2 508 | 2 509 | 2 510 | 2 511 | 2 512 | 2 513 | 2 514 | 2 515 | 2 516 | 2 517 | 2 518 | 2 519 | 2 520 | 2 521 | 2 522 | 2 523 | 2 524 | 2 525 | 2 526 | 2 527 | 2 528 | 2 529 | 2 530 | 2 531 | 2 532 | 2 533 | 2 534 | 2 535 | 2 536 | 2 537 | 2 538 | 2 539 | 2 540 | 2 541 | 2 542 | 2 543 | 2 544 | 2 545 | 2 546 | 2 547 | 2 548 | 2 549 | 2 550 | 2 551 | 2 552 | 2 553 | 2 554 | 2 555 | 2 556 | 2 557 | 2 558 | 2 559 | 2 560 | 2 561 | 2 562 | 2 563 | 2 564 | 2 565 | 2 566 | 2 567 | 2 568 | 2 569 | 2 570 | 2 571 | 2 572 | 2 573 | 2 574 | 2 575 | 2 576 | 2 577 | 2 578 | 2 579 | 2 580 | 2 581 | 2 582 | 2 583 | 2 584 | 2 585 | 2 586 | 2 587 | 2 588 | 2 589 | 2 590 | 2 591 | 2 592 | 2 593 | 2 594 | 2 595 | 2 596 | 2 597 | 2 598 | 2 599 | 2 600 | 2 601 | 2 602 | 2 603 | 2 604 | 2 605 | 2 606 | 2 607 | 2 608 | 2 609 | 2 610 | 2 611 | 2 612 | 2 613 | 2 614 | 2 615 | 2 616 | 2 617 | 2 618 | 2 619 | 2 620 | 2 621 | 2 622 | 2 623 | 2 624 | 2 625 | 2 626 | 2 627 | 2 628 | 2 629 | 2 630 | 2 631 | 2 632 | 2 633 | 2 634 | 2 635 | 2 636 | 2 637 | 2 638 | 2 639 | 2 640 | 2 641 | 2 642 | 2 643 | 2 644 | 2 645 | 2 646 | 2 647 | 2 648 | 2 649 | 2 650 | 2 651 | 2 652 | 2 653 | 2 654 | 2 655 | 2 656 | 2 657 | 2 658 | 2 659 | 2 660 | 2 661 | 2 662 | 2 663 | 2 664 | 2 665 | 2 666 | 2 667 | 2 668 | 2 669 | 2 670 | 2 671 | 2 672 | 2 673 | 2 674 | 2 675 | 2 676 | 2 677 | 2 678 | 2 679 | 2 680 | 2 681 | 2 682 | 2 683 | 2 684 | 2 685 | 2 686 | 2 687 | 2 688 | 2 689 | 2 690 | 2 691 | 2 692 | 2 693 | 2 694 | 2 695 | 2 696 | 2 697 | 2 698 | 2 699 | 2 700 | 2 701 | 2 702 | 2 703 | 2 704 | 2 705 | 2 706 | 2 707 | 2 708 | 2 709 | 2 710 | 2 711 | 2 712 | 2 713 | 2 714 | 2 715 | 2 716 | 2 717 | 2 718 | 2 719 | 2 720 | 2 721 | 2 722 | 2 723 | 2 724 | 2 725 | 2 726 | 2 727 | 2 728 | 2 729 | 2 730 | 2 731 | 2 732 | 2 733 | 2 734 | 2 735 | 2 736 | 2 737 | 2 738 | 2 739 | 2 740 | 2 741 | 2 742 | 2 743 | 2 744 | 2 745 | 2 746 | 2 747 | 2 748 | 2 749 | 2 750 | 2 751 | 2 752 | 2 753 | 2 754 | 2 755 | 2 756 | 2 757 | 2 758 | 2 759 | 2 760 | 2 761 | 2 762 | 2 763 | 2 764 | 2 765 | 2 766 | 2 767 | 2 768 | 2 769 | 2 770 | 2 771 | 2 772 | 2 773 | 2 774 | 2 775 | 2 776 | 2 777 | 2 778 | 2 779 | 2 780 | 2 781 | 2 782 | 2 783 | 2 784 | 2 785 | 2 786 | 2 787 | 2 788 | 2 789 | 2 790 | 2 791 | 2 792 | 2 793 | 2 794 | 2 795 | 2 796 | 2 797 | 2 798 | 2 799 | 2 800 | 2 801 | 2 802 | -------------------------------------------------------------------------------- /datasets/target/exemple_scale_square_8.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1 7 | 1 8 | 1 9 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 19 | 1 20 | 1 21 | 1 22 | 1 23 | 1 24 | 1 25 | 1 26 | 1 27 | 1 28 | 1 29 | 1 30 | 1 31 | 1 32 | 1 33 | 1 34 | 1 35 | 1 36 | 1 37 | 1 38 | 1 39 | 1 40 | 1 41 | 1 42 | 1 43 | 1 44 | 1 45 | 1 46 | 1 47 | 1 48 | 1 49 | 1 50 | 1 51 | 1 52 | 1 53 | 1 54 | 1 55 | 1 56 | 1 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 1 64 | 1 65 | 1 66 | 1 67 | 1 68 | 1 69 | 1 70 | 1 71 | 1 72 | 1 73 | 1 74 | 1 75 | 1 76 | 1 77 | 1 78 | 1 79 | 1 80 | 1 81 | 1 82 | 1 83 | 1 84 | 1 85 | 1 86 | 1 87 | 1 88 | 1 89 | 1 90 | 1 91 | 1 92 | 1 93 | 1 94 | 1 95 | 1 96 | 1 97 | 1 98 | 1 99 | 1 100 | 1 101 | 1 102 | 1 103 | 1 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 2 200 | 2 201 | 2 202 | 2 203 | 2 204 | 3 205 | 3 206 | 3 207 | 3 208 | 3 209 | 3 210 | 3 211 | 3 212 | 3 213 | 3 214 | 3 215 | 3 216 | 3 217 | 3 218 | 3 219 | 3 220 | 3 221 | 3 222 | 3 223 | 3 224 | 3 225 | 3 226 | 3 227 | 3 228 | 3 229 | 3 230 | 3 231 | 3 232 | 3 233 | 3 234 | 3 235 | 3 236 | 3 237 | 3 238 | 3 239 | 3 240 | 3 241 | 3 242 | 3 243 | 3 244 | 3 245 | 3 246 | 3 247 | 3 248 | 3 249 | 3 250 | 3 251 | 3 252 | 3 253 | 3 254 | 3 255 | 3 256 | 3 257 | 3 258 | 3 259 | 3 260 | 3 261 | 3 262 | 3 263 | 3 264 | 3 265 | 3 266 | 3 267 | 3 268 | 3 269 | 3 270 | 3 271 | 3 272 | 3 273 | 3 274 | 3 275 | 3 276 | 3 277 | 3 278 | 3 279 | 3 280 | 3 281 | 3 282 | 3 283 | 3 284 | 3 285 | 3 286 | 3 287 | 3 288 | 3 289 | 3 290 | 3 291 | 3 292 | 3 293 | 3 294 | 3 295 | 3 296 | 3 297 | 3 298 | 3 299 | 3 300 | 3 301 | 3 302 | 3 303 | 3 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 4 400 | 4 401 | 4 402 | 4 403 | 4 404 | 5 405 | 5 406 | 5 407 | 5 408 | 5 409 | 5 410 | 5 411 | 5 412 | 5 413 | 5 414 | 5 415 | 5 416 | 5 417 | 5 418 | 5 419 | 5 420 | 5 421 | 5 422 | 5 423 | 5 424 | 5 425 | 5 426 | 5 427 | 5 428 | 5 429 | 5 430 | 5 431 | 5 432 | 5 433 | 5 434 | 5 435 | 5 436 | 5 437 | 5 438 | 5 439 | 5 440 | 5 441 | 5 442 | 5 443 | 5 444 | 5 445 | 5 446 | 5 447 | 5 448 | 5 449 | 5 450 | 5 451 | 5 452 | 5 453 | 5 454 | 5 455 | 5 456 | 5 457 | 5 458 | 5 459 | 5 460 | 5 461 | 5 462 | 5 463 | 5 464 | 5 465 | 5 466 | 5 467 | 5 468 | 5 469 | 5 470 | 5 471 | 5 472 | 5 473 | 5 474 | 5 475 | 5 476 | 5 477 | 5 478 | 5 479 | 5 480 | 5 481 | 5 482 | 5 483 | 5 484 | 5 485 | 5 486 | 5 487 | 5 488 | 5 489 | 5 490 | 5 491 | 5 492 | 5 493 | 5 494 | 5 495 | 5 496 | 5 497 | 5 498 | 5 499 | 5 500 | 5 501 | 5 502 | 5 503 | 5 504 | 6 505 | 6 506 | 6 507 | 6 508 | 6 509 | 6 510 | 6 511 | 6 512 | 6 513 | 6 514 | 6 515 | 6 516 | 6 517 | 6 518 | 6 519 | 6 520 | 6 521 | 6 522 | 6 523 | 6 524 | 6 525 | 6 526 | 6 527 | 6 528 | 6 529 | 6 530 | 6 531 | 6 532 | 6 533 | 6 534 | 6 535 | 6 536 | 6 537 | 6 538 | 6 539 | 6 540 | 6 541 | 6 542 | 6 543 | 6 544 | 6 545 | 6 546 | 6 547 | 6 548 | 6 549 | 6 550 | 6 551 | 6 552 | 6 553 | 6 554 | 6 555 | 6 556 | 6 557 | 6 558 | 6 559 | 6 560 | 6 561 | 6 562 | 6 563 | 6 564 | 6 565 | 6 566 | 6 567 | 6 568 | 6 569 | 6 570 | 6 571 | 6 572 | 6 573 | 6 574 | 6 575 | 6 576 | 6 577 | 6 578 | 6 579 | 6 580 | 6 581 | 6 582 | 6 583 | 6 584 | 6 585 | 6 586 | 6 587 | 6 588 | 6 589 | 6 590 | 6 591 | 6 592 | 6 593 | 6 594 | 6 595 | 6 596 | 6 597 | 6 598 | 6 599 | 6 600 | 6 601 | 6 602 | 6 603 | 6 604 | 7 605 | 7 606 | 7 607 | 7 608 | 7 609 | 7 610 | 7 611 | 7 612 | 7 613 | 7 614 | 7 615 | 7 616 | 7 617 | 7 618 | 7 619 | 7 620 | 7 621 | 7 622 | 7 623 | 7 624 | 7 625 | 7 626 | 7 627 | 7 628 | 7 629 | 7 630 | 7 631 | 7 632 | 7 633 | 7 634 | 7 635 | 7 636 | 7 637 | 7 638 | 7 639 | 7 640 | 7 641 | 7 642 | 7 643 | 7 644 | 7 645 | 7 646 | 7 647 | 7 648 | 7 649 | 7 650 | 7 651 | 7 652 | 7 653 | 7 654 | 7 655 | 7 656 | 7 657 | 7 658 | 7 659 | 7 660 | 7 661 | 7 662 | 7 663 | 7 664 | 7 665 | 7 666 | 7 667 | 7 668 | 7 669 | 7 670 | 7 671 | 7 672 | 7 673 | 7 674 | 7 675 | 7 676 | 7 677 | 7 678 | 7 679 | 7 680 | 7 681 | 7 682 | 7 683 | 7 684 | 7 685 | 7 686 | 7 687 | 7 688 | 7 689 | 7 690 | 7 691 | 7 692 | 7 693 | 7 694 | 7 695 | 7 696 | 7 697 | 7 698 | 7 699 | 7 700 | 7 701 | 7 702 | 7 703 | 7 704 | 8 705 | 8 706 | 8 707 | 8 708 | 8 709 | 8 710 | 8 711 | 8 712 | 8 713 | 8 714 | 8 715 | 8 716 | 8 717 | 8 718 | 8 719 | 8 720 | 8 721 | 8 722 | 8 723 | 8 724 | 8 725 | 8 726 | 8 727 | 8 728 | 8 729 | 8 730 | 8 731 | 8 732 | 8 733 | 8 734 | 8 735 | 8 736 | 8 737 | 8 738 | 8 739 | 8 740 | 8 741 | 8 742 | 8 743 | 8 744 | 8 745 | 8 746 | 8 747 | 8 748 | 8 749 | 8 750 | 8 751 | 8 752 | 8 753 | 8 754 | 8 755 | 8 756 | 8 757 | 8 758 | 8 759 | 8 760 | 8 761 | 8 762 | 8 763 | 8 764 | 8 765 | 8 766 | 8 767 | 8 768 | 8 769 | 8 770 | 8 771 | 8 772 | 8 773 | 8 774 | 8 775 | 8 776 | 8 777 | 8 778 | 8 779 | 8 780 | 8 781 | 8 782 | 8 783 | 8 784 | 8 785 | 8 786 | 8 787 | 8 788 | 8 789 | 8 790 | 8 791 | 8 792 | 8 793 | 8 794 | 8 795 | 8 796 | 8 797 | 8 798 | 8 799 | 8 800 | 8 801 | 8 802 | 8 803 | 8 804 | -------------------------------------------------------------------------------- /datasets/target/ds-850.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 2 3 | 2 4 | 2 5 | 2 6 | 2 7 | 2 8 | 2 9 | 2 10 | 2 11 | 2 12 | 2 13 | 2 14 | 2 15 | 2 16 | 2 17 | 2 18 | 2 19 | 2 20 | 2 21 | 2 22 | 2 23 | 2 24 | 2 25 | 2 26 | 2 27 | 2 28 | 2 29 | 2 30 | 2 31 | 2 32 | 2 33 | 2 34 | 2 35 | 2 36 | 2 37 | 2 38 | 2 39 | 2 40 | 2 41 | 2 42 | 2 43 | 2 44 | 2 45 | 2 46 | 2 47 | 2 48 | 2 49 | 2 50 | 2 51 | 2 52 | 2 53 | 2 54 | 2 55 | 2 56 | 2 57 | 2 58 | 2 59 | 2 60 | 2 61 | 2 62 | 2 63 | 2 64 | 2 65 | 2 66 | 2 67 | 2 68 | 2 69 | 2 70 | 2 71 | 2 72 | 2 73 | 2 74 | 2 75 | 2 76 | 2 77 | 2 78 | 2 79 | 2 80 | 2 81 | 2 82 | 2 83 | 2 84 | 2 85 | 2 86 | 1 87 | 2 88 | 2 89 | 2 90 | 2 91 | 2 92 | 2 93 | 2 94 | 2 95 | 2 96 | 2 97 | 2 98 | 2 99 | 2 100 | 2 101 | 2 102 | 2 103 | 2 104 | 2 105 | 2 106 | 2 107 | 2 108 | 2 109 | 2 110 | 2 111 | 2 112 | 2 113 | 2 114 | 2 115 | 2 116 | 2 117 | 2 118 | 2 119 | 2 120 | 2 121 | 2 122 | 2 123 | 2 124 | 2 125 | 2 126 | 2 127 | 2 128 | 2 129 | 2 130 | 2 131 | 2 132 | 2 133 | 2 134 | 2 135 | 2 136 | 2 137 | 2 138 | 2 139 | 2 140 | 2 141 | 2 142 | 2 143 | 2 144 | 2 145 | 2 146 | 2 147 | 2 148 | 2 149 | 2 150 | 2 151 | 2 152 | 2 153 | 2 154 | 2 155 | 2 156 | 2 157 | 2 158 | 2 159 | 2 160 | 2 161 | 2 162 | 2 163 | 2 164 | 2 165 | 2 166 | 2 167 | 2 168 | 2 169 | 2 170 | 2 171 | 2 172 | 2 173 | 2 174 | 2 175 | 2 176 | 2 177 | 2 178 | 2 179 | 2 180 | 2 181 | 2 182 | 2 183 | 2 184 | 2 185 | 2 186 | 2 187 | 2 188 | 2 189 | 2 190 | 2 191 | 2 192 | 2 193 | 2 194 | 2 195 | 2 196 | 2 197 | 2 198 | 2 199 | 4 200 | 4 201 | 4 202 | 4 203 | 4 204 | 4 205 | 4 206 | 4 207 | 4 208 | 4 209 | 4 210 | 4 211 | 4 212 | 4 213 | 4 214 | 4 215 | 4 216 | 4 217 | 4 218 | 4 219 | 4 220 | 4 221 | 4 222 | 4 223 | 4 224 | 4 225 | 4 226 | 4 227 | 4 228 | 4 229 | 4 230 | 4 231 | 4 232 | 4 233 | 4 234 | 4 235 | 4 236 | 4 237 | 4 238 | 4 239 | 4 240 | 4 241 | 4 242 | 4 243 | 4 244 | 4 245 | 4 246 | 4 247 | 4 248 | 4 249 | 4 250 | 4 251 | 4 252 | 4 253 | 4 254 | 4 255 | 4 256 | 4 257 | 4 258 | 4 259 | 4 260 | 4 261 | 4 262 | 4 263 | 4 264 | 4 265 | 4 266 | 4 267 | 4 268 | 4 269 | 4 270 | 4 271 | 4 272 | 4 273 | 4 274 | 4 275 | 4 276 | 4 277 | 4 278 | 4 279 | 4 280 | 4 281 | 4 282 | 4 283 | 4 284 | 4 285 | 4 286 | 4 287 | 4 288 | 4 289 | 4 290 | 4 291 | 4 292 | 4 293 | 4 294 | 4 295 | 4 296 | 4 297 | 4 298 | 4 299 | 4 300 | 4 301 | 4 302 | 4 303 | 4 304 | 4 305 | 4 306 | 4 307 | 4 308 | 4 309 | 4 310 | 4 311 | 4 312 | 4 313 | 4 314 | 4 315 | 4 316 | 4 317 | 4 318 | 4 319 | 4 320 | 4 321 | 4 322 | 4 323 | 4 324 | 4 325 | 4 326 | 4 327 | 4 328 | 4 329 | 4 330 | 4 331 | 4 332 | 4 333 | 4 334 | 4 335 | 4 336 | 4 337 | 4 338 | 4 339 | 4 340 | 4 341 | 4 342 | 4 343 | 4 344 | 4 345 | 4 346 | 4 347 | 4 348 | 4 349 | 4 350 | 4 351 | 4 352 | 4 353 | 4 354 | 4 355 | 4 356 | 4 357 | 4 358 | 4 359 | 4 360 | 4 361 | 4 362 | 4 363 | 4 364 | 4 365 | 4 366 | 4 367 | 4 368 | 4 369 | 4 370 | 4 371 | 4 372 | 4 373 | 4 374 | 4 375 | 4 376 | 4 377 | 4 378 | 4 379 | 4 380 | 4 381 | 4 382 | 4 383 | 4 384 | 4 385 | 4 386 | 4 387 | 4 388 | 4 389 | 4 390 | 4 391 | 4 392 | 4 393 | 4 394 | 4 395 | 4 396 | 4 397 | 4 398 | 4 399 | 3 400 | 3 401 | 3 402 | 3 403 | 3 404 | 3 405 | 3 406 | 3 407 | 3 408 | 3 409 | 3 410 | 3 411 | 3 412 | 3 413 | 3 414 | 3 415 | 3 416 | 3 417 | 3 418 | 3 419 | 3 420 | 3 421 | 3 422 | 3 423 | 3 424 | 3 425 | 3 426 | 3 427 | 3 428 | 3 429 | 3 430 | 3 431 | 3 432 | 3 433 | 3 434 | 3 435 | 3 436 | 3 437 | 3 438 | 3 439 | 3 440 | 3 441 | 3 442 | 3 443 | 3 444 | 3 445 | 3 446 | 3 447 | 3 448 | 3 449 | 3 450 | 3 451 | 3 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 3 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 3 498 | 3 499 | 3 500 | 3 501 | 3 502 | 3 503 | 3 504 | 3 505 | 3 506 | 3 507 | 3 508 | 3 509 | 3 510 | 3 511 | 3 512 | 3 513 | 3 514 | 3 515 | 3 516 | 3 517 | 3 518 | 3 519 | 3 520 | 3 521 | 3 522 | 3 523 | 3 524 | 3 525 | 3 526 | 3 527 | 3 528 | 3 529 | 3 530 | 3 531 | 3 532 | 3 533 | 3 534 | 3 535 | 3 536 | 3 537 | 3 538 | 3 539 | 3 540 | 3 541 | 3 542 | 3 543 | 3 544 | 3 545 | 3 546 | 3 547 | 3 548 | 3 549 | 3 550 | 3 551 | 3 552 | 3 553 | 3 554 | 3 555 | 3 556 | 3 557 | 3 558 | 3 559 | 3 560 | 3 561 | 3 562 | 3 563 | 3 564 | 3 565 | 3 566 | 3 567 | 3 568 | 3 569 | 3 570 | 3 571 | 3 572 | 3 573 | 3 574 | 3 575 | 3 576 | 3 577 | 3 578 | 3 579 | 3 580 | 3 581 | 1 582 | 1 583 | 1 584 | 1 585 | 1 586 | 1 587 | 1 588 | 1 589 | 1 590 | 1 591 | 1 592 | 1 593 | 1 594 | 1 595 | 1 596 | 1 597 | 1 598 | 1 599 | 1 600 | 1 601 | 1 602 | 1 603 | 1 604 | 1 605 | 1 606 | 1 607 | 1 608 | 1 609 | 1 610 | 1 611 | 1 612 | 1 613 | 1 614 | 1 615 | 1 616 | 1 617 | 1 618 | 1 619 | 1 620 | 1 621 | 1 622 | 1 623 | 1 624 | 1 625 | 1 626 | 1 627 | 1 628 | 1 629 | 1 630 | 1 631 | 1 632 | 1 633 | 1 634 | 1 635 | 1 636 | 1 637 | 1 638 | 1 639 | 1 640 | 1 641 | 1 642 | 1 643 | 1 644 | 1 645 | 1 646 | 1 647 | 1 648 | 1 649 | 1 650 | 1 651 | 1 652 | 1 653 | 1 654 | 1 655 | 1 656 | 1 657 | 1 658 | 1 659 | 1 660 | 1 661 | 1 662 | 1 663 | 1 664 | 1 665 | 1 666 | 1 667 | 1 668 | 1 669 | 1 670 | 1 671 | 1 672 | 1 673 | 1 674 | 1 675 | 1 676 | 1 677 | 1 678 | 1 679 | 1 680 | 1 681 | 1 682 | 1 683 | 1 684 | 1 685 | 1 686 | 1 687 | 1 688 | 1 689 | 1 690 | 1 691 | 1 692 | 1 693 | 1 694 | 1 695 | 1 696 | 1 697 | 1 698 | 1 699 | 1 700 | 1 701 | 1 702 | 0 703 | 0 704 | 0 705 | 0 706 | 0 707 | 0 708 | 0 709 | 0 710 | 0 711 | 0 712 | 0 713 | 0 714 | 0 715 | 0 716 | 0 717 | 0 718 | 0 719 | 0 720 | 0 721 | 0 722 | 0 723 | 0 724 | 0 725 | 0 726 | 0 727 | 0 728 | 0 729 | 0 730 | 0 731 | 0 732 | 0 733 | 0 734 | 0 735 | 0 736 | 0 737 | 0 738 | 0 739 | 0 740 | 0 741 | 0 742 | 0 743 | 0 744 | 0 745 | 0 746 | 0 747 | 0 748 | 0 749 | 0 750 | 0 751 | 0 752 | 0 753 | 0 754 | 0 755 | 0 756 | 0 757 | 0 758 | 0 759 | 0 760 | 0 761 | 0 762 | 0 763 | 0 764 | 0 765 | 0 766 | 0 767 | 0 768 | 0 769 | 0 770 | 0 771 | 0 772 | 0 773 | 0 774 | 0 775 | 0 776 | 0 777 | 0 778 | 0 779 | 0 780 | 0 781 | 0 782 | 0 783 | 0 784 | 0 785 | 0 786 | 0 787 | 0 788 | 0 789 | 0 790 | 0 791 | 0 792 | 0 793 | 0 794 | 0 795 | 0 796 | 0 797 | 0 798 | 0 799 | 0 800 | 0 801 | 0 802 | 0 803 | 0 804 | 0 805 | 0 806 | 0 807 | 0 808 | 0 809 | 0 810 | 0 811 | 0 812 | 0 813 | 0 814 | 0 815 | 0 816 | 0 817 | 0 818 | 0 819 | 0 820 | 0 821 | 0 822 | 0 823 | 0 824 | 0 825 | 0 826 | 0 827 | 0 828 | 0 829 | 0 830 | 0 831 | 0 832 | 0 833 | 0 834 | 0 835 | 0 836 | 0 837 | 0 838 | 0 839 | 0 840 | 0 841 | 0 842 | 0 843 | 0 844 | 0 845 | 0 846 | 0 847 | 0 848 | 0 849 | 0 850 | 0 851 | 0 852 | -------------------------------------------------------------------------------- /datasets/target/2d-4c-no4.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 0 62 | 0 63 | 0 64 | 0 65 | 0 66 | 0 67 | 0 68 | 0 69 | 0 70 | 0 71 | 0 72 | 0 73 | 0 74 | 0 75 | 0 76 | 0 77 | 0 78 | 0 79 | 0 80 | 0 81 | 0 82 | 0 83 | 0 84 | 0 85 | 0 86 | 0 87 | 0 88 | 0 89 | 0 90 | 0 91 | 0 92 | 0 93 | 0 94 | 0 95 | 0 96 | 0 97 | 0 98 | 0 99 | 0 100 | 0 101 | 0 102 | 0 103 | 0 104 | 0 105 | 0 106 | 0 107 | 0 108 | 0 109 | 0 110 | 0 111 | 0 112 | 0 113 | 0 114 | 0 115 | 0 116 | 0 117 | 0 118 | 0 119 | 0 120 | 0 121 | 0 122 | 0 123 | 0 124 | 0 125 | 0 126 | 0 127 | 0 128 | 0 129 | 0 130 | 0 131 | 0 132 | 0 133 | 0 134 | 0 135 | 0 136 | 0 137 | 0 138 | 0 139 | 0 140 | 0 141 | 0 142 | 0 143 | 0 144 | 0 145 | 0 146 | 0 147 | 0 148 | 0 149 | 0 150 | 0 151 | 0 152 | 0 153 | 0 154 | 0 155 | 0 156 | 0 157 | 0 158 | 0 159 | 0 160 | 0 161 | 0 162 | 0 163 | 0 164 | 0 165 | 0 166 | 0 167 | 0 168 | 0 169 | 0 170 | 0 171 | 0 172 | 0 173 | 0 174 | 0 175 | 0 176 | 0 177 | 0 178 | 0 179 | 0 180 | 0 181 | 0 182 | 0 183 | 0 184 | 0 185 | 0 186 | 0 187 | 0 188 | 0 189 | 0 190 | 0 191 | 0 192 | 0 193 | 0 194 | 0 195 | 0 196 | 0 197 | 0 198 | 0 199 | 0 200 | 0 201 | 0 202 | 0 203 | 0 204 | 0 205 | 0 206 | 0 207 | 0 208 | 0 209 | 0 210 | 0 211 | 0 212 | 0 213 | 0 214 | 0 215 | 0 216 | 0 217 | 0 218 | 0 219 | 0 220 | 0 221 | 0 222 | 0 223 | 0 224 | 0 225 | 0 226 | 0 227 | 0 228 | 0 229 | 0 230 | 0 231 | 0 232 | 0 233 | 0 234 | 0 235 | 0 236 | 0 237 | 0 238 | 0 239 | 0 240 | 0 241 | 0 242 | 0 243 | 0 244 | 0 245 | 0 246 | 0 247 | 0 248 | 0 249 | 0 250 | 0 251 | 0 252 | 0 253 | 0 254 | 0 255 | 0 256 | 0 257 | 0 258 | 0 259 | 0 260 | 0 261 | 0 262 | 0 263 | 0 264 | 0 265 | 0 266 | 0 267 | 0 268 | 0 269 | 0 270 | 0 271 | 0 272 | 0 273 | 0 274 | 0 275 | 0 276 | 0 277 | 0 278 | 0 279 | 0 280 | 0 281 | 0 282 | 0 283 | 0 284 | 0 285 | 0 286 | 0 287 | 0 288 | 0 289 | 0 290 | 0 291 | 0 292 | 0 293 | 0 294 | 0 295 | 0 296 | 0 297 | 0 298 | 0 299 | 0 300 | 0 301 | 0 302 | 0 303 | 0 304 | 0 305 | 0 306 | 0 307 | 0 308 | 0 309 | 0 310 | 0 311 | 0 312 | 0 313 | 0 314 | 0 315 | 0 316 | 0 317 | 0 318 | 0 319 | 0 320 | 0 321 | 0 322 | 0 323 | 0 324 | 0 325 | 0 326 | 0 327 | 0 328 | 0 329 | 0 330 | 0 331 | 0 332 | 0 333 | 0 334 | 0 335 | 0 336 | 0 337 | 0 338 | 0 339 | 0 340 | 0 341 | 0 342 | 0 343 | 0 344 | 0 345 | 0 346 | 0 347 | 0 348 | 0 349 | 0 350 | 0 351 | 0 352 | 0 353 | 0 354 | 0 355 | 0 356 | 0 357 | 0 358 | 0 359 | 0 360 | 0 361 | 0 362 | 0 363 | 0 364 | 0 365 | 0 366 | 0 367 | 0 368 | 0 369 | 0 370 | 0 371 | 0 372 | 0 373 | 0 374 | 0 375 | 0 376 | 0 377 | 0 378 | 0 379 | 0 380 | 0 381 | 0 382 | 0 383 | 0 384 | 0 385 | 0 386 | 0 387 | 0 388 | 0 389 | 0 390 | 0 391 | 0 392 | 0 393 | 0 394 | 0 395 | 0 396 | 0 397 | 0 398 | 0 399 | 0 400 | 0 401 | 0 402 | 0 403 | 0 404 | 0 405 | 0 406 | 0 407 | 0 408 | 0 409 | 0 410 | 0 411 | 0 412 | 0 413 | 0 414 | 0 415 | 0 416 | 0 417 | 0 418 | 0 419 | 0 420 | 0 421 | 0 422 | 0 423 | 1 424 | 1 425 | 1 426 | 1 427 | 1 428 | 1 429 | 1 430 | 1 431 | 1 432 | 1 433 | 1 434 | 1 435 | 1 436 | 1 437 | 1 438 | 1 439 | 1 440 | 1 441 | 1 442 | 1 443 | 1 444 | 1 445 | 1 446 | 1 447 | 1 448 | 1 449 | 1 450 | 1 451 | 1 452 | 1 453 | 1 454 | 1 455 | 1 456 | 1 457 | 1 458 | 1 459 | 1 460 | 1 461 | 1 462 | 1 463 | 1 464 | 1 465 | 1 466 | 1 467 | 1 468 | 1 469 | 1 470 | 1 471 | 1 472 | 1 473 | 1 474 | 1 475 | 1 476 | 1 477 | 1 478 | 1 479 | 1 480 | 1 481 | 1 482 | 1 483 | 1 484 | 1 485 | 1 486 | 1 487 | 1 488 | 1 489 | 1 490 | 1 491 | 1 492 | 1 493 | 1 494 | 1 495 | 1 496 | 1 497 | 1 498 | 1 499 | 1 500 | 1 501 | 1 502 | 1 503 | 1 504 | 1 505 | 1 506 | 1 507 | 1 508 | 1 509 | 2 510 | 2 511 | 2 512 | 2 513 | 2 514 | 2 515 | 2 516 | 2 517 | 2 518 | 2 519 | 2 520 | 2 521 | 2 522 | 2 523 | 2 524 | 2 525 | 2 526 | 2 527 | 2 528 | 2 529 | 2 530 | 2 531 | 2 532 | 2 533 | 2 534 | 2 535 | 2 536 | 2 537 | 2 538 | 2 539 | 2 540 | 2 541 | 2 542 | 2 543 | 2 544 | 2 545 | 2 546 | 2 547 | 2 548 | 2 549 | 2 550 | 2 551 | 2 552 | 2 553 | 2 554 | 2 555 | 2 556 | 2 557 | 2 558 | 2 559 | 2 560 | 2 561 | 2 562 | 2 563 | 2 564 | 2 565 | 2 566 | 2 567 | 2 568 | 2 569 | 2 570 | 2 571 | 2 572 | 2 573 | 2 574 | 2 575 | 2 576 | 2 577 | 2 578 | 2 579 | 2 580 | 2 581 | 2 582 | 2 583 | 2 584 | 2 585 | 2 586 | 2 587 | 2 588 | 2 589 | 2 590 | 2 591 | 2 592 | 2 593 | 2 594 | 2 595 | 2 596 | 2 597 | 2 598 | 2 599 | 2 600 | 2 601 | 2 602 | 2 603 | 2 604 | 2 605 | 2 606 | 2 607 | 2 608 | 2 609 | 2 610 | 2 611 | 2 612 | 2 613 | 2 614 | 2 615 | 2 616 | 2 617 | 2 618 | 2 619 | 2 620 | 2 621 | 2 622 | 2 623 | 2 624 | 2 625 | 2 626 | 2 627 | 2 628 | 2 629 | 2 630 | 2 631 | 2 632 | 2 633 | 2 634 | 2 635 | 2 636 | 2 637 | 2 638 | 2 639 | 2 640 | 2 641 | 2 642 | 2 643 | 2 644 | 2 645 | 2 646 | 2 647 | 2 648 | 2 649 | 2 650 | 2 651 | 2 652 | 2 653 | 2 654 | 2 655 | 2 656 | 2 657 | 2 658 | 2 659 | 2 660 | 2 661 | 2 662 | 2 663 | 2 664 | 2 665 | 2 666 | 2 667 | 2 668 | 2 669 | 2 670 | 2 671 | 2 672 | 2 673 | 2 674 | 2 675 | 2 676 | 2 677 | 2 678 | 2 679 | 2 680 | 2 681 | 2 682 | 2 683 | 2 684 | 2 685 | 2 686 | 2 687 | 2 688 | 2 689 | 2 690 | 2 691 | 2 692 | 2 693 | 2 694 | 2 695 | 2 696 | 2 697 | 2 698 | 2 699 | 2 700 | 2 701 | 2 702 | 2 703 | 2 704 | 2 705 | 2 706 | 2 707 | 2 708 | 2 709 | 2 710 | 2 711 | 2 712 | 2 713 | 2 714 | 2 715 | 2 716 | 2 717 | 2 718 | 2 719 | 2 720 | 2 721 | 2 722 | 2 723 | 2 724 | 2 725 | 2 726 | 2 727 | 2 728 | 2 729 | 2 730 | 2 731 | 2 732 | 2 733 | 2 734 | 2 735 | 2 736 | 2 737 | 2 738 | 2 739 | 2 740 | 2 741 | 2 742 | 2 743 | 2 744 | 2 745 | 2 746 | 2 747 | 2 748 | 2 749 | 2 750 | 2 751 | 2 752 | 2 753 | 2 754 | 2 755 | 2 756 | 2 757 | 2 758 | 2 759 | 2 760 | 2 761 | 2 762 | 2 763 | 2 764 | 2 765 | 2 766 | 2 767 | 2 768 | 2 769 | 2 770 | 2 771 | 2 772 | 2 773 | 2 774 | 2 775 | 2 776 | 2 777 | 2 778 | 2 779 | 2 780 | 2 781 | 2 782 | 2 783 | 2 784 | 2 785 | 2 786 | 2 787 | 2 788 | 2 789 | 2 790 | 2 791 | 2 792 | 2 793 | 2 794 | 2 795 | 2 796 | 2 797 | 2 798 | 2 799 | 2 800 | 2 801 | 2 802 | 2 803 | 3 804 | 3 805 | 3 806 | 3 807 | 3 808 | 3 809 | 3 810 | 3 811 | 3 812 | 3 813 | 3 814 | 3 815 | 3 816 | 3 817 | 3 818 | 3 819 | 3 820 | 3 821 | 3 822 | 3 823 | 3 824 | 3 825 | 3 826 | 3 827 | 3 828 | 3 829 | 3 830 | 3 831 | 3 832 | 3 833 | 3 834 | 3 835 | 3 836 | 3 837 | 3 838 | 3 839 | 3 840 | 3 841 | 3 842 | 3 843 | 3 844 | 3 845 | 3 846 | 3 847 | 3 848 | 3 849 | 3 850 | 3 851 | 3 852 | 3 853 | 3 854 | 3 855 | 3 856 | 3 857 | 3 858 | 3 859 | 3 860 | 3 861 | 3 862 | 3 863 | 3 864 | 3 865 | -------------------------------------------------------------------------------- /datasets/target/2d-4c-no9.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 0 62 | 0 63 | 0 64 | 0 65 | 0 66 | 0 67 | 0 68 | 0 69 | 0 70 | 0 71 | 0 72 | 0 73 | 0 74 | 0 75 | 0 76 | 0 77 | 0 78 | 0 79 | 0 80 | 0 81 | 0 82 | 0 83 | 0 84 | 0 85 | 0 86 | 0 87 | 0 88 | 0 89 | 0 90 | 0 91 | 0 92 | 0 93 | 0 94 | 0 95 | 0 96 | 0 97 | 0 98 | 0 99 | 0 100 | 0 101 | 0 102 | 0 103 | 0 104 | 0 105 | 0 106 | 0 107 | 0 108 | 0 109 | 0 110 | 0 111 | 0 112 | 0 113 | 0 114 | 0 115 | 0 116 | 0 117 | 0 118 | 0 119 | 0 120 | 0 121 | 0 122 | 0 123 | 0 124 | 0 125 | 0 126 | 0 127 | 0 128 | 0 129 | 0 130 | 0 131 | 0 132 | 0 133 | 0 134 | 0 135 | 0 136 | 0 137 | 0 138 | 0 139 | 0 140 | 0 141 | 0 142 | 0 143 | 0 144 | 0 145 | 0 146 | 0 147 | 0 148 | 0 149 | 0 150 | 0 151 | 0 152 | 0 153 | 0 154 | 0 155 | 0 156 | 0 157 | 0 158 | 0 159 | 0 160 | 0 161 | 0 162 | 0 163 | 0 164 | 0 165 | 0 166 | 0 167 | 0 168 | 0 169 | 0 170 | 0 171 | 0 172 | 0 173 | 0 174 | 0 175 | 0 176 | 0 177 | 0 178 | 0 179 | 0 180 | 0 181 | 0 182 | 0 183 | 0 184 | 0 185 | 0 186 | 0 187 | 0 188 | 0 189 | 0 190 | 0 191 | 0 192 | 0 193 | 0 194 | 0 195 | 0 196 | 0 197 | 0 198 | 0 199 | 0 200 | 0 201 | 0 202 | 0 203 | 0 204 | 0 205 | 0 206 | 0 207 | 0 208 | 0 209 | 0 210 | 0 211 | 0 212 | 0 213 | 0 214 | 0 215 | 0 216 | 0 217 | 0 218 | 0 219 | 0 220 | 0 221 | 1 222 | 1 223 | 1 224 | 1 225 | 1 226 | 1 227 | 1 228 | 1 229 | 1 230 | 1 231 | 1 232 | 1 233 | 1 234 | 1 235 | 1 236 | 1 237 | 1 238 | 1 239 | 1 240 | 1 241 | 1 242 | 1 243 | 1 244 | 1 245 | 1 246 | 1 247 | 1 248 | 1 249 | 1 250 | 1 251 | 1 252 | 1 253 | 1 254 | 1 255 | 1 256 | 1 257 | 1 258 | 1 259 | 1 260 | 1 261 | 1 262 | 1 263 | 1 264 | 1 265 | 1 266 | 1 267 | 1 268 | 1 269 | 1 270 | 1 271 | 1 272 | 1 273 | 1 274 | 1 275 | 1 276 | 1 277 | 1 278 | 1 279 | 1 280 | 1 281 | 1 282 | 1 283 | 1 284 | 1 285 | 1 286 | 1 287 | 1 288 | 1 289 | 1 290 | 1 291 | 1 292 | 1 293 | 1 294 | 1 295 | 1 296 | 1 297 | 1 298 | 1 299 | 1 300 | 1 301 | 1 302 | 1 303 | 1 304 | 1 305 | 1 306 | 1 307 | 1 308 | 1 309 | 1 310 | 1 311 | 1 312 | 1 313 | 1 314 | 1 315 | 1 316 | 1 317 | 1 318 | 1 319 | 1 320 | 1 321 | 1 322 | 1 323 | 1 324 | 1 325 | 1 326 | 1 327 | 1 328 | 1 329 | 1 330 | 1 331 | 1 332 | 1 333 | 1 334 | 1 335 | 1 336 | 1 337 | 1 338 | 1 339 | 1 340 | 1 341 | 1 342 | 1 343 | 1 344 | 1 345 | 1 346 | 1 347 | 1 348 | 1 349 | 1 350 | 1 351 | 1 352 | 1 353 | 1 354 | 1 355 | 1 356 | 1 357 | 1 358 | 1 359 | 1 360 | 1 361 | 1 362 | 1 363 | 1 364 | 1 365 | 1 366 | 1 367 | 1 368 | 1 369 | 1 370 | 1 371 | 1 372 | 1 373 | 1 374 | 1 375 | 1 376 | 1 377 | 1 378 | 1 379 | 1 380 | 1 381 | 1 382 | 1 383 | 1 384 | 1 385 | 1 386 | 1 387 | 1 388 | 1 389 | 1 390 | 1 391 | 1 392 | 1 393 | 1 394 | 1 395 | 1 396 | 1 397 | 1 398 | 1 399 | 1 400 | 1 401 | 1 402 | 1 403 | 1 404 | 1 405 | 1 406 | 1 407 | 1 408 | 1 409 | 1 410 | 1 411 | 1 412 | 1 413 | 1 414 | 1 415 | 1 416 | 1 417 | 1 418 | 1 419 | 1 420 | 1 421 | 1 422 | 1 423 | 1 424 | 1 425 | 1 426 | 1 427 | 1 428 | 1 429 | 1 430 | 1 431 | 1 432 | 1 433 | 1 434 | 1 435 | 1 436 | 1 437 | 1 438 | 1 439 | 1 440 | 1 441 | 1 442 | 1 443 | 1 444 | 1 445 | 1 446 | 1 447 | 1 448 | 1 449 | 1 450 | 1 451 | 1 452 | 1 453 | 1 454 | 1 455 | 1 456 | 1 457 | 1 458 | 1 459 | 1 460 | 1 461 | 1 462 | 1 463 | 1 464 | 1 465 | 2 466 | 2 467 | 2 468 | 2 469 | 2 470 | 2 471 | 2 472 | 2 473 | 2 474 | 2 475 | 2 476 | 2 477 | 2 478 | 2 479 | 2 480 | 2 481 | 2 482 | 2 483 | 2 484 | 2 485 | 2 486 | 2 487 | 2 488 | 2 489 | 2 490 | 2 491 | 2 492 | 2 493 | 2 494 | 2 495 | 2 496 | 2 497 | 2 498 | 2 499 | 2 500 | 2 501 | 2 502 | 2 503 | 2 504 | 2 505 | 2 506 | 2 507 | 2 508 | 2 509 | 2 510 | 2 511 | 2 512 | 2 513 | 2 514 | 2 515 | 2 516 | 2 517 | 2 518 | 2 519 | 2 520 | 2 521 | 2 522 | 2 523 | 2 524 | 2 525 | 2 526 | 2 527 | 2 528 | 2 529 | 2 530 | 2 531 | 2 532 | 2 533 | 2 534 | 2 535 | 2 536 | 2 537 | 2 538 | 2 539 | 2 540 | 2 541 | 2 542 | 2 543 | 2 544 | 2 545 | 2 546 | 2 547 | 2 548 | 2 549 | 2 550 | 2 551 | 2 552 | 2 553 | 2 554 | 2 555 | 2 556 | 2 557 | 2 558 | 2 559 | 2 560 | 2 561 | 2 562 | 2 563 | 2 564 | 2 565 | 2 566 | 2 567 | 2 568 | 2 569 | 2 570 | 2 571 | 2 572 | 2 573 | 2 574 | 2 575 | 2 576 | 2 577 | 2 578 | 2 579 | 2 580 | 2 581 | 2 582 | 2 583 | 2 584 | 2 585 | 2 586 | 2 587 | 2 588 | 2 589 | 2 590 | 2 591 | 2 592 | 2 593 | 2 594 | 2 595 | 2 596 | 2 597 | 2 598 | 2 599 | 2 600 | 2 601 | 2 602 | 2 603 | 2 604 | 2 605 | 2 606 | 2 607 | 2 608 | 2 609 | 2 610 | 2 611 | 2 612 | 2 613 | 2 614 | 2 615 | 2 616 | 2 617 | 2 618 | 2 619 | 2 620 | 2 621 | 2 622 | 2 623 | 2 624 | 2 625 | 2 626 | 2 627 | 2 628 | 2 629 | 2 630 | 2 631 | 2 632 | 2 633 | 2 634 | 2 635 | 2 636 | 2 637 | 2 638 | 2 639 | 2 640 | 2 641 | 2 642 | 2 643 | 2 644 | 2 645 | 2 646 | 2 647 | 2 648 | 2 649 | 2 650 | 2 651 | 2 652 | 2 653 | 2 654 | 2 655 | 2 656 | 2 657 | 2 658 | 2 659 | 2 660 | 2 661 | 2 662 | 2 663 | 2 664 | 2 665 | 2 666 | 2 667 | 2 668 | 2 669 | 2 670 | 2 671 | 2 672 | 2 673 | 2 674 | 2 675 | 2 676 | 2 677 | 2 678 | 2 679 | 2 680 | 2 681 | 2 682 | 2 683 | 2 684 | 2 685 | 2 686 | 2 687 | 2 688 | 2 689 | 2 690 | 2 691 | 2 692 | 2 693 | 2 694 | 2 695 | 2 696 | 2 697 | 2 698 | 2 699 | 2 700 | 2 701 | 2 702 | 2 703 | 2 704 | 2 705 | 2 706 | 2 707 | 2 708 | 2 709 | 2 710 | 2 711 | 2 712 | 2 713 | 2 714 | 2 715 | 2 716 | 2 717 | 2 718 | 2 719 | 2 720 | 2 721 | 2 722 | 2 723 | 2 724 | 2 725 | 2 726 | 2 727 | 2 728 | 2 729 | 2 730 | 2 731 | 2 732 | 2 733 | 2 734 | 2 735 | 2 736 | 2 737 | 2 738 | 2 739 | 2 740 | 2 741 | 2 742 | 2 743 | 2 744 | 2 745 | 2 746 | 2 747 | 2 748 | 2 749 | 2 750 | 2 751 | 2 752 | 2 753 | 2 754 | 2 755 | 2 756 | 2 757 | 2 758 | 2 759 | 2 760 | 2 761 | 2 762 | 2 763 | 2 764 | 2 765 | 2 766 | 2 767 | 2 768 | 2 769 | 2 770 | 2 771 | 2 772 | 2 773 | 2 774 | 2 775 | 2 776 | 2 777 | 3 778 | 3 779 | 3 780 | 3 781 | 3 782 | 3 783 | 3 784 | 3 785 | 3 786 | 3 787 | 3 788 | 3 789 | 3 790 | 3 791 | 3 792 | 3 793 | 3 794 | 3 795 | 3 796 | 3 797 | 3 798 | 3 799 | 3 800 | 3 801 | 3 802 | 3 803 | 3 804 | 3 805 | 3 806 | 3 807 | 3 808 | 3 809 | 3 810 | 3 811 | 3 812 | 3 813 | 3 814 | 3 815 | 3 816 | 3 817 | 3 818 | 3 819 | 3 820 | 3 821 | 3 822 | 3 823 | 3 824 | 3 825 | 3 826 | 3 827 | 3 828 | 3 829 | 3 830 | 3 831 | 3 832 | 3 833 | 3 834 | 3 835 | 3 836 | 3 837 | 3 838 | 3 839 | 3 840 | 3 841 | 3 842 | 3 843 | 3 844 | 3 845 | 3 846 | 3 847 | 3 848 | 3 849 | 3 850 | 3 851 | 3 852 | 3 853 | 3 854 | 3 855 | 3 856 | 3 857 | 3 858 | 3 859 | 3 860 | 3 861 | 3 862 | 3 863 | 3 864 | 3 865 | 3 866 | 3 867 | 3 868 | 3 869 | 3 870 | 3 871 | 3 872 | 3 873 | 3 874 | 3 875 | 3 876 | 3 877 | 3 878 | -------------------------------------------------------------------------------- /skstab/perturbation.py: -------------------------------------------------------------------------------- 1 | """ 2 | skstab - Perturbation functions 3 | 4 | @author Florent Forest, Alex Mourer 5 | """ 6 | 7 | import numpy as np 8 | 9 | 10 | """ 11 | Generic perturbations 12 | """ 13 | 14 | 15 | def subsample(x, f, return_indices=False): 16 | """Sample a fraction f of the data set without replacement. 17 | 18 | Parameters 19 | ---------- 20 | x : array 21 | input data matrix. 22 | f : float in [0, 1] 23 | fraction of input data set. 24 | return_indices : bool (default = False) 25 | return the indices of the sample. 26 | 27 | Returns 28 | ------- 29 | x_sub[, idx] : array[, array] 30 | output data matrix and corresponding indices (if return_indices equals True). 31 | """ 32 | idx = np.random.choice(x.shape[0], size=int(f * x.shape[0]), replace=False) 33 | if return_indices: 34 | return x[idx], idx 35 | else: 36 | return x[idx] 37 | 38 | 39 | def bootstrap(x, return_indices=False): 40 | """Bootstrap the data set with replacement. 41 | 42 | Parameters 43 | ---------- 44 | x : array 45 | input data matrix. 46 | return_indices : bool (default = False) 47 | return the indices of the sample. 48 | 49 | Returns 50 | ------- 51 | x_sub[, idx] : array[, array] 52 | output data matrix and corresponding indices (if return_indices equals True). 53 | """ 54 | idx = np.random.choice(x.shape[0], size=x.shape[0], replace=True) 55 | if return_indices: 56 | return x[idx], idx 57 | else: 58 | return x[idx] 59 | 60 | 61 | def uniform_additive_noise(x, eps): 62 | """Uniform additive noise. 63 | 64 | Parameters 65 | ---------- 66 | x : array 67 | input data matrix. 68 | eps : float 69 | noise amplitude. Noise values are sampled uniformely in [-eps, +eps] for each input feature. 70 | 71 | Returns 72 | ------- 73 | x_noise : array 74 | output data matrix. 75 | """ 76 | noise = np.random.uniform(low=-eps, high=eps, size=x.shape) 77 | return x + noise 78 | 79 | 80 | def gaussian_additive_noise(x, sigma): 81 | """Gaussian additive noise. 82 | 83 | Parameters 84 | ---------- 85 | x : array 86 | input data matrix. 87 | sigma : float 88 | noise standard deviation. Noise values are sampled from N(0, sigma) for each input feature. 89 | 90 | Returns 91 | ------- 92 | x_noise : array 93 | output data matrix. 94 | """ 95 | noise = np.random.normal(0.0, sigma, size=x.shape) 96 | return x + noise 97 | 98 | 99 | """ 100 | Time series perturbations (univariate) 101 | """ 102 | 103 | 104 | def random_shift(x, alpha): 105 | """Random temporal shifting of a fraction of the time series length. 106 | 107 | Parameters 108 | ---------- 109 | x : array 110 | input data matrix. 111 | alpha : float 112 | shift amplitude. A fraction of input length is drawn uniformely in [-alpha, +alpha]. 113 | 114 | Returns 115 | ------- 116 | x_shifted : array 117 | output data matrix. 118 | """ 119 | shift = (x.shape[1] * np.random.uniform(low=-alpha, high=alpha, size=x.shape[0])).astype('int') 120 | x_shifted = np.zeros_like(x) 121 | # pad with first and last values 122 | for i in range(x.shape[0]): 123 | if shift[i] > 0: 124 | x_shifted[i, :] = np.pad(x[i, :-shift[i]], (shift[i], 0), mode='edge') 125 | else: 126 | x_shifted[i, :] = np.pad(x[i, -shift[i]:], (0, -shift[i]), mode='edge') 127 | return x_shifted 128 | 129 | 130 | def random_offset(x, eps): 131 | """Random vertical offset. 132 | 133 | Parameters 134 | ---------- 135 | x : array 136 | input data matrix. 137 | eps : float 138 | offset amplitude. The offset value is drawn uniformely in [-eps, +eps]. 139 | 140 | Returns 141 | ------- 142 | x_offset : array 143 | output data matrix. 144 | """ 145 | offset = np.random.uniform(low=-eps, high=eps, size=x.shape[0]) 146 | return x + offset[:, None] 147 | 148 | 149 | def random_scale(x, eps): 150 | """Random vertical scaling. 151 | 152 | Parameters 153 | ---------- 154 | x : array 155 | input data matrix. 156 | eps : float 157 | scaling factor. The scaling factor is drawn uniformely in [1/(1+eps), 1+eps]. 158 | 159 | Returns 160 | ------- 161 | x_scaled : array 162 | output data matrix. 163 | """ 164 | scale = np.random.uniform(low=1.0 / (1.0 + eps), high=1.0 + eps, size=x.shape[0]) 165 | return x * scale[:, None] 166 | 167 | 168 | def random_warp(x, alpha, eps): 169 | """Random local warping of a fraction of the time series. Location of the warping is drawn uniformely inside 170 | the input time series. 171 | 172 | Parameters 173 | ---------- 174 | x : array 175 | input data matrix. 176 | alpha : float 177 | fraction of input time series that will be warped. A fraction of input length is drawn 178 | uniformely in [-alpha, +alpha]. 179 | eps : float 180 | scaling factor of the warping. The scaling factor is drawn uniformely in [1/(1+eps), 1+eps]. 181 | 182 | Returns 183 | ------- 184 | x_warped : array 185 | output data matrix. 186 | """ 187 | start = np.random.choice(x.shape[1], size=x.shape[0]) # random position in the time series 188 | end = start + 1 + (x.shape[1] * np.random.uniform(low=0, high=alpha, size=x.shape[0])).astype('int') 189 | end = np.minimum(end, x.shape[1]) # clip end at end of time series 190 | warp = np.random.uniform(low=1.0 / (1.0 + eps), high=1.0 + eps, size=x.shape[0]) # warping level 191 | warped_end = start + (warp * (end - start)).astype('int') 192 | warped_end = np.minimum(warped_end, x.shape[1]) # clip warp end at end of time series 193 | x_warped = np.zeros_like(x) 194 | for i in range(x.shape[0]): 195 | segment = x[i, start[i]:end[i]] 196 | warped_segment = np.interp(np.linspace(0, 1, num=(warped_end[i] - start[i])), np.linspace(0, 1, num=segment.size), segment) 197 | x_warped[i, :start[i]] = x[i, :start[i]] 198 | x_warped[i, start[i]:warped_end[i]] = warped_segment 199 | if warped_end[i] < x.shape[1]: # if the end of the time series was not reached 200 | if warp[i] >= 1.0: # dilation: fill with end of original time series 201 | x_warped[i, warped_end[i]:] = x[i, end[i]:end[i] + x.shape[1] - warped_end[i]] 202 | else: # reduction: end of original time series is not long enough, pad with last value 203 | x_warped[i, warped_end[i]:warped_end[i] + x.shape[1] - end[i]] = x[i, end[i]:] 204 | x_warped[i, warped_end[i] + x.shape[1] - end[i]:] = x[i, -1] # pad the rest with last value 205 | return x_warped 206 | -------------------------------------------------------------------------------- /datasets/target/st900.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 7 3 | 2 4 | 6 5 | 1 6 | 2 7 | 2 8 | 2 9 | 2 10 | 1 11 | 7 12 | 3 13 | 6 14 | 7 15 | 7 16 | 5 17 | 3 18 | 4 19 | 7 20 | 4 21 | 2 22 | 6 23 | 3 24 | 7 25 | 3 26 | 6 27 | 3 28 | 4 29 | 3 30 | 3 31 | 6 32 | 8 33 | 9 34 | 1 35 | 4 36 | 7 37 | 7 38 | 2 39 | 3 40 | 9 41 | 9 42 | 1 43 | 1 44 | 3 45 | 7 46 | 7 47 | 1 48 | 9 49 | 5 50 | 7 51 | 4 52 | 6 53 | 2 54 | 7 55 | 3 56 | 6 57 | 3 58 | 2 59 | 2 60 | 1 61 | 4 62 | 9 63 | 9 64 | 1 65 | 3 66 | 3 67 | 3 68 | 7 69 | 6 70 | 7 71 | 6 72 | 3 73 | 9 74 | 6 75 | 4 76 | 5 77 | 7 78 | 9 79 | 8 80 | 7 81 | 5 82 | 8 83 | 5 84 | 9 85 | 1 86 | 4 87 | 3 88 | 9 89 | 8 90 | 9 91 | 6 92 | 7 93 | 7 94 | 2 95 | 8 96 | 4 97 | 5 98 | 2 99 | 1 100 | 3 101 | 9 102 | 8 103 | 2 104 | 7 105 | 5 106 | 2 107 | 2 108 | 5 109 | 2 110 | 5 111 | 7 112 | 4 113 | 5 114 | 6 115 | 9 116 | 1 117 | 1 118 | 2 119 | 4 120 | 2 121 | 8 122 | 2 123 | 7 124 | 6 125 | 8 126 | 3 127 | 7 128 | 1 129 | 6 130 | 7 131 | 2 132 | 7 133 | 4 134 | 5 135 | 7 136 | 9 137 | 9 138 | 8 139 | 2 140 | 9 141 | 1 142 | 5 143 | 8 144 | 7 145 | 8 146 | 6 147 | 1 148 | 5 149 | 7 150 | 5 151 | 6 152 | 6 153 | 4 154 | 9 155 | 7 156 | 8 157 | 6 158 | 3 159 | 9 160 | 4 161 | 7 162 | 7 163 | 8 164 | 2 165 | 6 166 | 8 167 | 5 168 | 4 169 | 4 170 | 4 171 | 6 172 | 4 173 | 2 174 | 4 175 | 8 176 | 1 177 | 2 178 | 6 179 | 4 180 | 3 181 | 3 182 | 3 183 | 7 184 | 7 185 | 6 186 | 7 187 | 2 188 | 1 189 | 8 190 | 7 191 | 7 192 | 5 193 | 1 194 | 3 195 | 2 196 | 3 197 | 7 198 | 3 199 | 5 200 | 6 201 | 4 202 | 3 203 | 2 204 | 2 205 | 2 206 | 6 207 | 6 208 | 8 209 | 5 210 | 3 211 | 2 212 | 4 213 | 9 214 | 2 215 | 7 216 | 2 217 | 6 218 | 5 219 | 8 220 | 1 221 | 5 222 | 2 223 | 4 224 | 4 225 | 2 226 | 5 227 | 4 228 | 4 229 | 8 230 | 2 231 | 4 232 | 7 233 | 5 234 | 3 235 | 1 236 | 2 237 | 2 238 | 4 239 | 9 240 | 9 241 | 9 242 | 8 243 | 4 244 | 2 245 | 4 246 | 3 247 | 6 248 | 1 249 | 5 250 | 2 251 | 3 252 | 6 253 | 2 254 | 1 255 | 2 256 | 8 257 | 7 258 | 7 259 | 7 260 | 6 261 | 3 262 | 9 263 | 2 264 | 7 265 | 8 266 | 8 267 | 9 268 | 6 269 | 2 270 | 8 271 | 5 272 | 9 273 | 8 274 | 8 275 | 7 276 | 6 277 | 3 278 | 5 279 | 3 280 | 8 281 | 9 282 | 8 283 | 3 284 | 8 285 | 4 286 | 9 287 | 3 288 | 6 289 | 7 290 | 9 291 | 2 292 | 8 293 | 7 294 | 9 295 | 6 296 | 3 297 | 2 298 | 2 299 | 8 300 | 2 301 | 9 302 | 3 303 | 1 304 | 8 305 | 6 306 | 9 307 | 1 308 | 8 309 | 7 310 | 8 311 | 2 312 | 3 313 | 6 314 | 6 315 | 2 316 | 2 317 | 1 318 | 8 319 | 1 320 | 1 321 | 3 322 | 1 323 | 2 324 | 1 325 | 2 326 | 2 327 | 6 328 | 6 329 | 5 330 | 8 331 | 5 332 | 6 333 | 8 334 | 6 335 | 2 336 | 2 337 | 3 338 | 1 339 | 4 340 | 5 341 | 7 342 | 6 343 | 5 344 | 5 345 | 6 346 | 8 347 | 9 348 | 6 349 | 8 350 | 3 351 | 5 352 | 8 353 | 8 354 | 3 355 | 3 356 | 8 357 | 4 358 | 2 359 | 8 360 | 8 361 | 6 362 | 3 363 | 7 364 | 5 365 | 8 366 | 7 367 | 6 368 | 8 369 | 7 370 | 6 371 | 4 372 | 9 373 | 9 374 | 2 375 | 8 376 | 3 377 | 8 378 | 6 379 | 7 380 | 1 381 | 3 382 | 4 383 | 8 384 | 8 385 | 1 386 | 2 387 | 8 388 | 8 389 | 9 390 | 8 391 | 1 392 | 7 393 | 8 394 | 2 395 | 4 396 | 1 397 | 9 398 | 6 399 | 9 400 | 6 401 | 9 402 | 8 403 | 8 404 | 2 405 | 8 406 | 8 407 | 9 408 | 2 409 | 8 410 | 5 411 | 3 412 | 6 413 | 7 414 | 3 415 | 9 416 | 3 417 | 6 418 | 6 419 | 8 420 | 3 421 | 2 422 | 9 423 | 2 424 | 1 425 | 7 426 | 3 427 | 3 428 | 6 429 | 8 430 | 3 431 | 7 432 | 4 433 | 7 434 | 5 435 | 3 436 | 9 437 | 5 438 | 9 439 | 5 440 | 4 441 | 4 442 | 1 443 | 9 444 | 4 445 | 8 446 | 8 447 | 2 448 | 8 449 | 6 450 | 4 451 | 2 452 | 4 453 | 9 454 | 7 455 | 6 456 | 4 457 | 1 458 | 4 459 | 7 460 | 2 461 | 5 462 | 9 463 | 6 464 | 5 465 | 5 466 | 9 467 | 9 468 | 6 469 | 8 470 | 3 471 | 3 472 | 5 473 | 1 474 | 9 475 | 2 476 | 3 477 | 5 478 | 4 479 | 5 480 | 6 481 | 3 482 | 1 483 | 7 484 | 4 485 | 1 486 | 2 487 | 2 488 | 4 489 | 7 490 | 2 491 | 9 492 | 5 493 | 1 494 | 9 495 | 9 496 | 6 497 | 2 498 | 9 499 | 9 500 | 2 501 | 2 502 | 4 503 | 6 504 | 4 505 | 8 506 | 5 507 | 5 508 | 4 509 | 9 510 | 4 511 | 8 512 | 8 513 | 2 514 | 1 515 | 5 516 | 9 517 | 8 518 | 6 519 | 4 520 | 1 521 | 9 522 | 2 523 | 1 524 | 6 525 | 3 526 | 7 527 | 4 528 | 7 529 | 8 530 | 3 531 | 2 532 | 4 533 | 1 534 | 9 535 | 5 536 | 2 537 | 4 538 | 1 539 | 3 540 | 9 541 | 3 542 | 9 543 | 2 544 | 2 545 | 9 546 | 1 547 | 4 548 | 9 549 | 4 550 | 2 551 | 8 552 | 8 553 | 9 554 | 8 555 | 1 556 | 8 557 | 6 558 | 4 559 | 4 560 | 2 561 | 9 562 | 8 563 | 3 564 | 1 565 | 3 566 | 1 567 | 2 568 | 4 569 | 7 570 | 1 571 | 6 572 | 8 573 | 2 574 | 8 575 | 4 576 | 5 577 | 6 578 | 6 579 | 2 580 | 9 581 | 6 582 | 4 583 | 2 584 | 3 585 | 4 586 | 8 587 | 5 588 | 6 589 | 1 590 | 7 591 | 2 592 | 6 593 | 7 594 | 5 595 | 7 596 | 5 597 | 6 598 | 5 599 | 4 600 | 2 601 | 9 602 | 8 603 | 3 604 | 1 605 | 4 606 | 6 607 | 6 608 | 5 609 | 1 610 | 6 611 | 6 612 | 3 613 | 1 614 | 6 615 | 8 616 | 7 617 | 2 618 | 3 619 | 7 620 | 4 621 | 6 622 | 4 623 | 3 624 | 1 625 | 1 626 | 5 627 | 1 628 | 2 629 | 5 630 | 3 631 | 7 632 | 5 633 | 7 634 | 3 635 | 1 636 | 3 637 | 9 638 | 7 639 | 5 640 | 5 641 | 8 642 | 7 643 | 7 644 | 5 645 | 1 646 | 6 647 | 5 648 | 3 649 | 2 650 | 7 651 | 4 652 | 1 653 | 8 654 | 9 655 | 1 656 | 9 657 | 1 658 | 7 659 | 9 660 | 2 661 | 1 662 | 5 663 | 4 664 | 9 665 | 4 666 | 5 667 | 6 668 | 8 669 | 8 670 | 2 671 | 9 672 | 8 673 | 4 674 | 1 675 | 9 676 | 5 677 | 6 678 | 8 679 | 4 680 | 9 681 | 9 682 | 2 683 | 1 684 | 7 685 | 1 686 | 4 687 | 8 688 | 9 689 | 8 690 | 6 691 | 6 692 | 7 693 | 2 694 | 5 695 | 1 696 | 7 697 | 2 698 | 8 699 | 8 700 | 5 701 | 8 702 | 7 703 | 9 704 | 8 705 | 7 706 | 5 707 | 2 708 | 2 709 | 4 710 | 4 711 | 9 712 | 7 713 | 5 714 | 7 715 | 9 716 | 1 717 | 3 718 | 6 719 | 1 720 | 2 721 | 6 722 | 4 723 | 8 724 | 5 725 | 4 726 | 6 727 | 1 728 | 8 729 | 5 730 | 8 731 | 3 732 | 1 733 | 3 734 | 5 735 | 1 736 | 1 737 | 5 738 | 5 739 | 1 740 | 4 741 | 9 742 | 8 743 | 8 744 | 9 745 | 8 746 | 6 747 | 8 748 | 9 749 | 4 750 | 5 751 | 7 752 | 1 753 | 1 754 | 7 755 | 7 756 | 4 757 | 1 758 | 1 759 | 7 760 | 9 761 | 5 762 | 7 763 | 8 764 | 7 765 | 2 766 | 4 767 | 9 768 | 7 769 | 4 770 | 8 771 | 3 772 | 9 773 | 3 774 | 3 775 | 2 776 | 6 777 | 8 778 | 9 779 | 7 780 | 5 781 | 6 782 | 3 783 | 2 784 | 2 785 | 2 786 | 8 787 | 8 788 | 9 789 | 2 790 | 6 791 | 5 792 | 1 793 | 9 794 | 2 795 | 8 796 | 6 797 | 5 798 | 5 799 | 7 800 | 4 801 | 4 802 | 3 803 | 3 804 | 2 805 | 3 806 | 6 807 | 4 808 | 7 809 | 6 810 | 4 811 | 4 812 | 4 813 | 2 814 | 2 815 | 7 816 | 7 817 | 9 818 | 5 819 | 5 820 | 4 821 | 6 822 | 7 823 | 7 824 | 4 825 | 3 826 | 6 827 | 9 828 | 3 829 | 6 830 | 4 831 | 8 832 | 4 833 | 5 834 | 8 835 | 1 836 | 5 837 | 7 838 | 3 839 | 8 840 | 7 841 | 5 842 | 8 843 | 7 844 | 6 845 | 2 846 | 4 847 | 4 848 | 1 849 | 5 850 | 4 851 | 1 852 | 3 853 | 6 854 | 1 855 | 6 856 | 7 857 | 7 858 | 2 859 | 9 860 | 2 861 | 9 862 | 1 863 | 8 864 | 3 865 | 6 866 | 4 867 | 7 868 | 9 869 | 7 870 | 3 871 | 7 872 | 5 873 | 9 874 | 3 875 | 5 876 | 2 877 | 1 878 | 4 879 | 4 880 | 2 881 | 5 882 | 3 883 | 7 884 | 4 885 | 4 886 | 5 887 | 5 888 | 9 889 | 2 890 | 3 891 | 3 892 | 1 893 | 4 894 | 2 895 | 6 896 | 3 897 | 4 898 | 3 899 | 2 900 | 8 901 | 5 902 | -------------------------------------------------------------------------------- /datasets/target/longsquare.csv: -------------------------------------------------------------------------------- 1 | "x" 2 | 0 3 | 0 4 | 0 5 | 0 6 | 0 7 | 0 8 | 0 9 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 | 0 19 | 0 20 | 0 21 | 0 22 | 0 23 | 0 24 | 0 25 | 0 26 | 0 27 | 0 28 | 0 29 | 0 30 | 0 31 | 0 32 | 0 33 | 0 34 | 0 35 | 0 36 | 0 37 | 0 38 | 0 39 | 0 40 | 0 41 | 0 42 | 0 43 | 0 44 | 0 45 | 0 46 | 0 47 | 0 48 | 0 49 | 0 50 | 0 51 | 0 52 | 0 53 | 0 54 | 0 55 | 0 56 | 0 57 | 0 58 | 0 59 | 0 60 | 0 61 | 0 62 | 0 63 | 0 64 | 0 65 | 0 66 | 0 67 | 0 68 | 0 69 | 0 70 | 0 71 | 0 72 | 0 73 | 0 74 | 0 75 | 0 76 | 0 77 | 0 78 | 0 79 | 0 80 | 1 81 | 0 82 | 0 83 | 0 84 | 0 85 | 0 86 | 0 87 | 0 88 | 0 89 | 0 90 | 0 91 | 0 92 | 0 93 | 0 94 | 0 95 | 0 96 | 0 97 | 0 98 | 0 99 | 0 100 | 0 101 | 0 102 | 0 103 | 0 104 | 0 105 | 0 106 | 0 107 | 0 108 | 0 109 | 0 110 | 0 111 | 0 112 | 0 113 | 0 114 | 0 115 | 0 116 | 0 117 | 0 118 | 0 119 | 0 120 | 0 121 | 0 122 | 0 123 | 0 124 | 0 125 | 0 126 | 0 127 | 0 128 | 0 129 | 0 130 | 0 131 | 0 132 | 0 133 | 1 134 | 0 135 | 0 136 | 0 137 | 0 138 | 1 139 | 0 140 | 0 141 | 0 142 | 0 143 | 0 144 | 0 145 | 0 146 | 0 147 | 0 148 | 0 149 | 0 150 | 0 151 | 1 152 | 1 153 | 1 154 | 1 155 | 1 156 | 1 157 | 1 158 | 1 159 | 1 160 | 1 161 | 1 162 | 1 163 | 1 164 | 1 165 | 1 166 | 1 167 | 1 168 | 1 169 | 1 170 | 1 171 | 1 172 | 1 173 | 1 174 | 1 175 | 1 176 | 1 177 | 1 178 | 1 179 | 1 180 | 1 181 | 1 182 | 1 183 | 1 184 | 1 185 | 1 186 | 1 187 | 1 188 | 1 189 | 1 190 | 1 191 | 1 192 | 1 193 | 1 194 | 1 195 | 1 196 | 1 197 | 1 198 | 1 199 | 1 200 | 1 201 | 1 202 | 1 203 | 1 204 | 1 205 | 1 206 | 1 207 | 1 208 | 1 209 | 1 210 | 1 211 | 1 212 | 1 213 | 1 214 | 1 215 | 1 216 | 1 217 | 1 218 | 1 219 | 1 220 | 1 221 | 1 222 | 1 223 | 1 224 | 1 225 | 1 226 | 1 227 | 1 228 | 1 229 | 1 230 | 1 231 | 1 232 | 1 233 | 1 234 | 1 235 | 1 236 | 1 237 | 1 238 | 1 239 | 1 240 | 1 241 | 1 242 | 1 243 | 1 244 | 1 245 | 1 246 | 1 247 | 1 248 | 1 249 | 1 250 | 1 251 | 1 252 | 1 253 | 1 254 | 1 255 | 1 256 | 1 257 | 1 258 | 1 259 | 1 260 | 1 261 | 1 262 | 1 263 | 1 264 | 1 265 | 1 266 | 1 267 | 1 268 | 1 269 | 1 270 | 1 271 | 1 272 | 1 273 | 1 274 | 1 275 | 1 276 | 1 277 | 1 278 | 1 279 | 1 280 | 1 281 | 1 282 | 1 283 | 1 284 | 1 285 | 1 286 | 1 287 | 1 288 | 1 289 | 1 290 | 1 291 | 1 292 | 1 293 | 1 294 | 1 295 | 1 296 | 1 297 | 1 298 | 1 299 | 1 300 | 1 301 | 1 302 | 2 303 | 2 304 | 2 305 | 2 306 | 2 307 | 2 308 | 2 309 | 2 310 | 2 311 | 2 312 | 2 313 | 2 314 | 0 315 | 2 316 | 2 317 | 2 318 | 2 319 | 2 320 | 2 321 | 2 322 | 2 323 | 2 324 | 2 325 | 2 326 | 2 327 | 2 328 | 2 329 | 2 330 | 2 331 | 2 332 | 2 333 | 2 334 | 2 335 | 2 336 | 2 337 | 2 338 | 2 339 | 2 340 | 2 341 | 2 342 | 2 343 | 2 344 | 2 345 | 2 346 | 2 347 | 2 348 | 2 349 | 2 350 | 2 351 | 2 352 | 2 353 | 2 354 | 2 355 | 2 356 | 2 357 | 2 358 | 2 359 | 2 360 | 2 361 | 2 362 | 2 363 | 2 364 | 2 365 | 2 366 | 2 367 | 2 368 | 2 369 | 2 370 | 2 371 | 2 372 | 2 373 | 2 374 | 2 375 | 2 376 | 2 377 | 2 378 | 2 379 | 2 380 | 2 381 | 2 382 | 2 383 | 2 384 | 2 385 | 2 386 | 2 387 | 2 388 | 2 389 | 2 390 | 2 391 | 2 392 | 2 393 | 2 394 | 2 395 | 2 396 | 2 397 | 2 398 | 2 399 | 2 400 | 2 401 | 2 402 | 2 403 | 2 404 | 2 405 | 2 406 | 2 407 | 2 408 | 2 409 | 2 410 | 2 411 | 2 412 | 2 413 | 2 414 | 2 415 | 2 416 | 2 417 | 2 418 | 2 419 | 2 420 | 2 421 | 2 422 | 2 423 | 2 424 | 2 425 | 2 426 | 2 427 | 2 428 | 2 429 | 2 430 | 2 431 | 2 432 | 2 433 | 2 434 | 2 435 | 2 436 | 2 437 | 2 438 | 2 439 | 2 440 | 2 441 | 2 442 | 2 443 | 2 444 | 2 445 | 2 446 | 2 447 | 2 448 | 2 449 | 2 450 | 2 451 | 2 452 | 3 453 | 3 454 | 3 455 | 3 456 | 3 457 | 3 458 | 3 459 | 3 460 | 3 461 | 3 462 | 3 463 | 3 464 | 3 465 | 3 466 | 3 467 | 3 468 | 3 469 | 3 470 | 3 471 | 3 472 | 3 473 | 3 474 | 3 475 | 3 476 | 3 477 | 3 478 | 3 479 | 3 480 | 3 481 | 3 482 | 3 483 | 3 484 | 2 485 | 3 486 | 3 487 | 3 488 | 3 489 | 3 490 | 3 491 | 3 492 | 3 493 | 3 494 | 3 495 | 3 496 | 3 497 | 3 498 | 3 499 | 3 500 | 3 501 | 3 502 | 3 503 | 3 504 | 3 505 | 3 506 | 3 507 | 3 508 | 3 509 | 3 510 | 3 511 | 3 512 | 3 513 | 3 514 | 3 515 | 3 516 | 3 517 | 3 518 | 3 519 | 3 520 | 3 521 | 3 522 | 3 523 | 3 524 | 3 525 | 3 526 | 3 527 | 3 528 | 3 529 | 3 530 | 3 531 | 3 532 | 3 533 | 3 534 | 3 535 | 3 536 | 3 537 | 3 538 | 3 539 | 3 540 | 3 541 | 3 542 | 3 543 | 3 544 | 3 545 | 3 546 | 3 547 | 3 548 | 3 549 | 3 550 | 3 551 | 3 552 | 3 553 | 3 554 | 3 555 | 3 556 | 3 557 | 3 558 | 3 559 | 3 560 | 3 561 | 3 562 | 3 563 | 3 564 | 3 565 | 3 566 | 3 567 | 3 568 | 3 569 | 3 570 | 3 571 | 3 572 | 3 573 | 3 574 | 3 575 | 3 576 | 3 577 | 3 578 | 3 579 | 3 580 | 3 581 | 3 582 | 3 583 | 3 584 | 3 585 | 3 586 | 3 587 | 3 588 | 3 589 | 3 590 | 3 591 | 3 592 | 3 593 | 3 594 | 3 595 | 3 596 | 3 597 | 3 598 | 1 599 | 3 600 | 3 601 | 3 602 | 4 603 | 4 604 | 4 605 | 4 606 | 4 607 | 4 608 | 4 609 | 4 610 | 4 611 | 4 612 | 4 613 | 4 614 | 4 615 | 4 616 | 4 617 | 4 618 | 4 619 | 4 620 | 4 621 | 4 622 | 4 623 | 4 624 | 4 625 | 4 626 | 4 627 | 4 628 | 4 629 | 4 630 | 4 631 | 4 632 | 4 633 | 4 634 | 4 635 | 4 636 | 4 637 | 4 638 | 4 639 | 4 640 | 4 641 | 4 642 | 4 643 | 4 644 | 4 645 | 4 646 | 4 647 | 4 648 | 4 649 | 4 650 | 4 651 | 4 652 | 4 653 | 4 654 | 4 655 | 4 656 | 4 657 | 4 658 | 4 659 | 4 660 | 4 661 | 4 662 | 4 663 | 4 664 | 4 665 | 4 666 | 4 667 | 4 668 | 4 669 | 4 670 | 4 671 | 4 672 | 4 673 | 4 674 | 4 675 | 4 676 | 4 677 | 4 678 | 4 679 | 4 680 | 4 681 | 4 682 | 4 683 | 4 684 | 4 685 | 4 686 | 4 687 | 4 688 | 4 689 | 4 690 | 4 691 | 4 692 | 4 693 | 4 694 | 4 695 | 4 696 | 4 697 | 4 698 | 4 699 | 4 700 | 4 701 | 4 702 | 4 703 | 4 704 | 4 705 | 4 706 | 4 707 | 4 708 | 4 709 | 4 710 | 4 711 | 4 712 | 4 713 | 4 714 | 4 715 | 4 716 | 4 717 | 4 718 | 4 719 | 4 720 | 4 721 | 4 722 | 4 723 | 4 724 | 4 725 | 4 726 | 4 727 | 4 728 | 4 729 | 4 730 | 4 731 | 4 732 | 4 733 | 4 734 | 4 735 | 4 736 | 4 737 | 4 738 | 4 739 | 4 740 | 4 741 | 4 742 | 4 743 | 4 744 | 4 745 | 4 746 | 4 747 | 4 748 | 4 749 | 4 750 | 4 751 | 4 752 | 5 753 | 5 754 | 5 755 | 5 756 | 5 757 | 5 758 | 5 759 | 5 760 | 5 761 | 5 762 | 5 763 | 5 764 | 5 765 | 5 766 | 5 767 | 5 768 | 5 769 | 5 770 | 5 771 | 5 772 | 5 773 | 5 774 | 5 775 | 5 776 | 5 777 | 5 778 | 5 779 | 5 780 | 5 781 | 5 782 | 5 783 | 5 784 | 5 785 | 5 786 | 5 787 | 5 788 | 5 789 | 5 790 | 5 791 | 5 792 | 5 793 | 5 794 | 5 795 | 5 796 | 5 797 | 5 798 | 5 799 | 5 800 | 5 801 | 5 802 | 5 803 | 5 804 | 5 805 | 5 806 | 5 807 | 5 808 | 5 809 | 5 810 | 5 811 | 5 812 | 5 813 | 5 814 | 5 815 | 5 816 | 5 817 | 5 818 | 5 819 | 5 820 | 5 821 | 5 822 | 5 823 | 5 824 | 5 825 | 5 826 | 5 827 | 5 828 | 5 829 | 5 830 | 5 831 | 5 832 | 5 833 | 5 834 | 5 835 | 5 836 | 5 837 | 5 838 | 5 839 | 5 840 | 5 841 | 5 842 | 5 843 | 5 844 | 5 845 | 5 846 | 5 847 | 5 848 | 5 849 | 5 850 | 5 851 | 5 852 | 5 853 | 5 854 | 5 855 | 5 856 | 5 857 | 5 858 | 5 859 | 5 860 | 5 861 | 5 862 | 5 863 | 5 864 | 5 865 | 5 866 | 5 867 | 5 868 | 5 869 | 5 870 | 5 871 | 5 872 | 5 873 | 5 874 | 5 875 | 5 876 | 5 877 | 5 878 | 5 879 | 5 880 | 5 881 | 5 882 | 5 883 | 5 884 | 5 885 | 5 886 | 5 887 | 5 888 | 5 889 | 5 890 | 5 891 | 5 892 | 5 893 | 5 894 | 5 895 | 5 896 | 5 897 | 5 898 | 5 899 | 5 900 | 5 901 | 5 902 | --------------------------------------------------------------------------------