├── modules
├── __init__.py
├── routing.py
├── groundwater.py
├── dynamic_veg.py
├── inca.py
├── musle.py
├── hspf.py
├── snow.py
├── reservoirs.py
├── dhsvm.py
├── shetran.py
├── lakes.py
├── sediment_transport.py
├── mmf.py
└── advanced_routing.py
├── .gitignore
├── resorder.txt
├── utilities
├── timecalc.py
├── pedotransfer.py
├── reporting.py
└── netcdf2PCraster.py
├── hargreaves.py
├── ET.py
├── subzone.py
├── README.md
├── rootzone.py
├── reporting.csv
└── LICENSE.TXT
/modules/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 | *.pyo
--------------------------------------------------------------------------------
/resorder.txt:
--------------------------------------------------------------------------------
1 | order steps
2 | 1 0
3 | 2 0
4 | 3 0
5 | 6 0
6 | 9 0
7 | 10 0
8 | 11 0
9 | 13 0
10 | 14 0
11 | 15 0
12 | 16 0
13 | 17 0
14 | 20 0
15 | 22 0
16 | 24 0
17 | 25 0
18 | 26 0
19 | 27 0
20 | 28 0
21 | 30 0
22 | 32 0
23 | 33 0
24 | 4 1
25 | 5 1
26 | 8 1
27 | 18 1
28 | 29 1
29 | 31 1
30 | 7 2
31 | 19 2
32 | 12 3
33 | 21 3
34 | 23 4
35 | 34 5
36 |
--------------------------------------------------------------------------------
/utilities/timecalc.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2019 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, W. Immerzeel, S. Khanal, A. Lutz, G. Simons, W. Terink
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | #-Function to return the julian day of the year
24 | def julian(self):
25 | y= self.curdate.year
26 | start= self.datetime.datetime(y,1,1).toordinal()
27 | current= self.curdate.toordinal()
28 | day= current-start+1
29 | return day, 1
30 |
31 | #-Function to calculate the number of timesteps for the model run
32 | def timesteps(self):
33 | nrTimeSteps = (self.enddate - self.startdate).days + 1
34 | print('Running SPHY for '+str(self.startdate.day)+'-'+str(self.startdate.month)+'-'+str(self.startdate.year)+' through '+str(self.enddate.day)+'-'+str(self.enddate.month)+'-'+str(self.enddate.year))
35 | print('with '+str(nrTimeSteps)+' daily timesteps')
36 | return nrTimeSteps
--------------------------------------------------------------------------------
/hargreaves.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | # -Extraterrestrial radiation
24 | def extrarad(self, pcr):
25 | DayNo = self.timecalc.julian(self)[0]
26 | LatRad = self.Lat * (self.pi / 180)
27 | dr = 1 + 0.033 * pcr.cos((2 * self.pi * DayNo) / 365)
28 | delta = 0.409 * pcr.sin(((2 * self.pi * DayNo) / 365) - 1.39)
29 | omegas = pcr.acos(-1 * pcr.tan(LatRad) * pcr.tan(delta))
30 | Ra = (
31 | ((24 * 60) / self.pi)
32 | * self.Gsc
33 | * dr
34 | * (
35 | pcr.scalar(omegas) * pcr.sin(LatRad) * pcr.sin(delta)
36 | + pcr.cos(LatRad) * pcr.cos(delta) * pcr.sin(omegas)
37 | )
38 | )
39 | return Ra
40 |
41 |
42 | # -Modified Hargreaves for calculation of ETref
43 | def Hargreaves(pcr, ra, temp, tempmax, tempmin):
44 | ETref = pcr.max(
45 | 0.0023 * 0.408 * ra * (temp + 17.8) * (pcr.max(tempmax - tempmin, 0)) ** 0.5, 0
46 | )
47 | return ETref
48 |
--------------------------------------------------------------------------------
/ET.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | # -Function to calculate the potential evapotranspiration
24 | def ETpot(etr, kc):
25 | etpot = etr * kc
26 | return etpot
27 |
28 |
29 | # -Function to calculate the actual evapotranspiration
30 | def ETact(pcr, etpot, rootwater, rootsat, etreddry, rainfrac):
31 | etredwet = pcr.ifthenelse(rootwater >= rootsat, pcr.scalar(0), 1)
32 | etact = pcr.ifthenelse(
33 | rainfrac > 0, pcr.min(etpot * etreddry * etredwet, rootwater), 0
34 | )
35 | return etact
36 |
37 |
38 | # -Determine plant water stress for calculation of actual evapotranspiration
39 | def ks(self, pcr, etpot):
40 | TAW = self.RootField - self.RootDry
41 | p = pcr.max(pcr.min(self.PMap + 0.04 * (5 - etpot), 0.8), 0.1)
42 | RAW = TAW * p
43 | RootPWS = self.RootField - RAW
44 | Ks = pcr.max(
45 | pcr.min((self.RootWater - self.RootDry) / (RootPWS - self.RootDry), 1), 0
46 | )
47 | return Ks
48 |
--------------------------------------------------------------------------------
/subzone.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | # -Function to calculate capillary rise
24 | def CapilRise(pcr, subfield, subwater, capmax, rootwater, rootsat, rootfield):
25 | subrelwat = pcr.max(pcr.min((subwater / subfield), 1), 0)
26 | rootrelwat = pcr.max(pcr.min((rootwater / rootfield), 1), 0)
27 | caprise = pcr.min(subwater, capmax * (1 - rootrelwat) * subrelwat)
28 | caprise = pcr.min(
29 | caprise, rootsat - rootwater
30 | ) # adding caprise can not exceed saturated rootwater content
31 | return caprise
32 |
33 |
34 | # -Function to calculate percolation from subsoil (only if groundwater module is used)
35 | def SubPercolation(pcr, subwater, subfield, subTT, gw, gwsat):
36 | subperc = pcr.ifthenelse(
37 | (gw < gwsat) & ((subwater - subfield) > 0),
38 | (subwater - subfield) * (1 - pcr.exp(-1 / subTT)),
39 | 0,
40 | )
41 | return subperc
42 |
43 |
44 | # -Function to calculate drainage from subsoil (only if groundwater module is NOT used)
45 | def SubDrainage(pcr, subwater, subfield, subsat, drainvel, subdrainage, subTT):
46 | subexcess = pcr.max(subwater - subfield, 0)
47 | subexcessfrac = subexcess / (subsat - subfield)
48 | sublateral = subexcessfrac * drainvel
49 | subdrainage = (sublateral + subdrainage) * (1 - pcr.exp(-1 / subTT))
50 | subdrainage = pcr.max(pcr.min(subdrainage, subwater), 0)
51 | return subdrainage
52 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Spatial Processes in HYdrology (SPHY) model
2 | Version 3.1
3 |
4 | The Spatial Processes in Hydrology (SPHY) model is a hydrological modeling tool suitable for a wide range of water resource management applications. SPHY is a state-of-the-art, easy to use, robust tool, that can be applied for operational as well as strategic decision support. The SPHY model has been applied and tested in various studies ranging from real-time soil moisture predictions in flat lands, to operational reservoir inflow forecasting applications in mountainous catchments, irrigation scenarios in the Nile Basin, and detailed climate change impact studies in the snow- and glacier-melt dominated the Himalayan region.
5 |
6 | With respect to version 3.0, the code in version 3.1 has an improved procedure for bias-correcting meteorological forcing and increased flexibility for defining simulation periods.
7 |
8 | Journal paper SPHY v2.0
9 |
14 |
15 | Acknowledgements
16 | The development and publication of the SPHY model source code, its binaries, GUIs, and case-studies has been supported through various (research) projects that were partly or completely funded by the following organizations:
17 |
18 | - International Centre for Integrated Mountain Development (ICIMOD)
19 | - European Space Agency (ESA)
20 | - Asian Development Bank (ADB)
21 | - World Bank
22 | - Rijksdienst voor Ondernemend Nederland (RVO)
23 | - NUFFIC
24 |
25 | We are very grateful to these organizations that made the development of the SPHY model possible.
26 | We hope to continue to collaborate with these organizations in the future in order to further develop and improve the SPHY model and its interfaces.
27 |
28 |
Copyright
29 | Copyright (C) 2013-2025 FutureWater. The Spatial Processes in HYdrology (SPHY) model is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
30 |
31 | Contact:
32 | sphy@futurewater.nl
33 |
--------------------------------------------------------------------------------
/rootzone.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | # -Function to calculate surface runoff
24 | def RootRunoff(self, pcr, rainfrac, rain):
25 | # -Infiltration excess surface runoff
26 | if self.InfilFLAG == 1:
27 | # -Infiltration capacity, scaled based on rootwater content and ksat and corrected for paved surface
28 | Infil_cap = (
29 | self.K_eff
30 | * self.RootKsat
31 | / 24
32 | * (1 + ((self.RootSat - self.RootWater) / self.RootSat)) ** self.Labda_Infil
33 | )
34 |
35 | # -Infiltration
36 | Infil_excess = pcr.ifthenelse(
37 | (self.Alpha * rain) > Infil_cap,
38 | rain - ((self.Alpha * rain - Infil_cap) ** 2) / (self.Alpha**2 * rain),
39 | rain,
40 | )
41 | Saturated_excess = self.RootSat - self.RootWater
42 | Infil = pcr.max(0, pcr.min(Infil_excess, Saturated_excess)) * (
43 | 1 - self.pavedFrac
44 | )
45 |
46 | # -Surface runoff
47 | rootrunoff = rain - Infil
48 |
49 | # -Saturation excess surface runoff
50 | else:
51 | # -Assume infiltration capacity to be equal to saturated hydraulic conductivity
52 | Infil_cap = self.RootKsat
53 |
54 | # -Infiltration
55 | Infil = pcr.max(0, pcr.min(rain, Infil_cap, self.RootSat - self.RootWater))
56 | # -Runoff
57 | rootrunoff = pcr.ifthenelse(rainfrac > 0, rain - Infil, 0)
58 |
59 | return rootrunoff, Infil
60 |
61 |
62 | # -Function to calculate rootzone drainage
63 | def RootDrainage(pcr, rootwater, rootdrain, rootfield, rootsat, drainvel, rootTT):
64 | rootexcess = pcr.max(rootwater - rootfield, 0)
65 | rootexcessfrac = rootexcess / (rootsat - rootfield)
66 | rootlat = rootexcessfrac * drainvel
67 | rootdrainage = pcr.max(
68 | pcr.min(
69 | rootexcess,
70 | rootlat * (1 - pcr.exp(-1 / rootTT)) + rootdrain * pcr.exp(-1 / rootTT),
71 | ),
72 | 0,
73 | )
74 | return rootdrainage
75 |
76 |
77 | # -Function to calculate rootzone percolation
78 | def RootPercolation(pcr, rootwater, subwater, rootfield, rootTT, subsat):
79 | rootexcess = pcr.max(rootwater - rootfield, 0)
80 | rootperc = rootexcess * (1 - pcr.exp(-1 / rootTT))
81 | rootperc = pcr.ifthenelse(
82 | subwater >= subsat, 0, pcr.min(subsat - subwater, rootperc)
83 | )
84 | rootperc = pcr.max(pcr.min(rootperc, rootexcess), 0)
85 | return rootperc
86 |
87 |
88 | # -Function to calculate the right fraction between the two fluxes
89 | def CalcFrac(pcr, rootwater, rootfield, rootdrain, rootperc):
90 | rootexcess = pcr.max(rootwater - rootfield, 0)
91 | frac = ((rootdrain + rootperc) - rootexcess) / (rootdrain + rootperc)
92 | rootdrain = rootdrain - (rootdrain * frac)
93 | rootperc = rootperc - (rootperc * frac)
94 | return rootdrain, rootperc
95 |
--------------------------------------------------------------------------------
/reporting.csv:
--------------------------------------------------------------------------------
1 | name,map,avg,timeseries,filename,comment
2 | wbal,NONE,NONE,NONE,wbal,WATER BALANCE (Can only select daily output)
3 | # ONLY FOR LAKE AND/OR RESERVOIR MODULE,,,,,
4 | TotStor,NONE,NONE,NONE,TotS,REPORT TOTAL STORAGE (only D or F options are logical)
5 | RainStor,NONE,NONE,NONE,RainS,REPORT STORAGE FROM RAINFALL (only D or F options are logical)
6 | SnowStor,NONE,NONE,NONE,SnowS,REPORT STORAGE FROM SNOW RUNOFF (only D or F options are logical)
7 | GlacStor,NONE,NONE,NONE,GlacS,REPORT STORAGE FROM GLACIER RUNOFF (only D or F options are logical)
8 | BaseStor,NONE,NONE,NONE,BaseS,REPORT STORAGE FROM BASEFLOW RUNOFF (only D or F options are logical)
9 | # FLUXES IN MM,,,,,
10 | TotPrec,M,NONE,NONE,Prec,PREC
11 | TotPrecF,NONE,NONE,NONE,PrecF,PREC; CORRECTED FOR FRACTION
12 | TotPrecEF,NONE,NONE,NONE,PrecEF,EFFECTIVE PRECIPITATION; CORRECTED FOR FRACTION
13 | LAI,NONE,NONE,NONE,LAI,LEAF AREA INDEX
14 | TotIntF,NONE,NONE,NONE,IntF,INTERCEPTION; CORRECTED FOR FRACTION
15 | TotRain,NONE,NONE,NONE,Rain,RAIN
16 | TotRainF,NONE,NONE,NONE,RainF,RAIN; CORRECTED FOR FRACTION
17 | TotETref,M,NONE,NONE,ETr,ETREF
18 | TotETrefF,NONE,NONE,NONE,ETrF,ETREF; CORRECTED FOR FRACTION
19 | TotETpot,NONE,NONE,NONE,ETp,ETPOT
20 | TotETpotF,NONE,NONE,NONE,ETpF,ETPOT; CORRECTED FOR FRACTION
21 | TotETact,Y,NONE,NONE,ETa,ETACT
22 | TotETactF,NONE,NONE,NONE,ETaF,ETACT; CORRECTED FOR FRACTION
23 | PlantStress,NONE,MA,NONE,Pws,PLANT WATER STRESS
24 | TotSnow,NONE,NONE,NONE,Snow,SNOWFALL
25 | TotSnowF,NONE,NONE,NONE,SnowF,SNOWFALL; CORRECTED FOR FRACTION
26 | TotSnowMelt,NONE,NONE,NONE,SMel,SNOWMELT
27 | TotSnowMeltF,NONE,NONE,NONE,SMelF,SNOWMELT; CORRECTED FOR FRACTION
28 | TotGlacMelt,NONE,NONE,NONE,Gmel,GLACIER MELT
29 | TotGlacMeltF,NONE,NONE,NONE,GMelF,GLACIER MELT; CORRECTED FOR FRACTION
30 | Infil,NONE,NONE,NONE,Infil,INFILTRATION
31 | TotRootRF,M,NONE,NONE,Rootr,ROOTZONE RUNOFF; CORRECTED FOR FRACTION
32 | TotRootDF,M,NONE,NONE,Rootd,ROOTZONE DRAINAGE; CORRECTED FOR FRACTION
33 | TotRootPF,NONE,NONE,NONE,Rootp,ROOTZONE PERCOLATION; CORRECTED FOR FRACTION
34 | TotSubDF,NONE,NONE,NONE,Subd,SUBZONE DRAINAGE; CORRECTED FOR FRACTION
35 | TotSubPF,NONE,NONE,NONE,Subp,SUBZONE PERCOLATION; CORRECTED FOR FRACTION
36 | TotCapRF,NONE,NONE,NONE,Capr,CAPILARY RISE; CORRECTED FOR FRACTION
37 | TotSeepF,NONE,NONE,NONE,Seep,SEEPAGE; CORRECTED FOR FRACTION
38 | TotGlacPercF,NONE,NONE,NONE,Glacp,GLACIER PERCOLATION; CORRECTED FOR FRACTION
39 | TotGwRechargeF,M,NONE,NONE,Gwre,GROUNDWATER RECHARGE; CORRECTED FOR FRACTION
40 | GWL,NONE,NONE,NONE,Gwl,GROUNDWATER LEVEL in m below surface (Can only select daily output)
41 | TotRainRF,NONE,NONE,NONE,Rainr,RAIN RUNOFF; CORRECTED FOR FRACTION
42 | TotSnowRF,NONE,NONE,NONE,Snowr,SNOW RUNOFF; CORRECTED FOR FRACTION
43 | TotGlacRF,NONE,NONE,NONE,Glacr,GLACIER RUNOFF; CORRECTED FOR FRACTION
44 | TotBaseRF,NONE,NONE,NONE,Baser,BASEFLOW RUNOFF; CORRECTED FOR FRACTION
45 | TotRF,M,NONE,NONE,Totr,TOTAL RUNOFF OF ALL FRACTIONS
46 | # STORAGE IN CANOPY AND SOIL LAYERS,,,,,
47 | StorCanop,NONE,Y,NONE,Canop,CANOPY STORAGE
48 | StorSnow,NONE,Y,NONE,SnowS,SNOW STORAGE
49 | StorRootW,NONE,Y,NONE,Rootw,ROOTZONE STORAGE
50 | StorSubW,NONE,Y,NONE,Subw,SUBSOIL STORAGE
51 | StorGroundW,NONE,Y,NONE,GrndW,GROUNDWATER STORAGE
52 | # ROUTED STREAMFLOW FLUXES IN M3/S (only D or F options are logical) ,,,,,
53 | SubSurfRAtot,NONE,NONE,NONE,SSTot,ROUTED SUBSURFACE RUNOFF
54 | RootRRAtot,NONE,NONE,NONE,RRTot,ROUTED ROOT SURFACE RUNOFF
55 | RootDRAtot,NONE,NONE,NONE,RDTot,ROUTED ROOT DRAINAGE RUNOFF
56 | RainRAtot,NONE,NONE,NONE,RTot,ROUTED RAIN RUNOFF
57 | SnowRAtot,NONE,NONE,NONE,STot,ROUTED SNOW RUNOFF
58 | GlacRAtot,NONE,NONE,NONE,GTot,ROUTED GLACIER RUNOFF
59 | BaseRAtot,NONE,NONE,NONE,BTot,ROUTED BASEFLOW RUNOFF
60 | QallRAtot,NONE,NONE,D,QAll,ROUTED TOTAL RUNOFF
61 | # SEDIMENT YIELD,,,,,
62 | DetRn,NONE,NONE,NONE,DetRn,DETACHMENT BY RAIN in metric tons per cell area
63 | DetRun,NONE,NONE,NONE,DetRun,DETACHMENT BY RUNOFF in metric tons per cell area
64 | SDepFld,NONE,NONE,NONE,SDpFld,IN FIELD SEDIMENT DEPOSITION in metric tons per cell area
65 | SedTrans,NONE,NONE,NONE,STrans,SEDIMENT TRANSPORTED in metric tons per cell area
66 | SedDep,NONE,NONE,NONE,Sdep,SEDIMENT DEPOSITION in metric tons per cell area
67 | SedYld,NONE,NONE,NONE,SdYld,SEDIMENT YIELD AT STATIONS in metric tons
68 | SedFlux,NONE,NONE,NONE,SdFlux,SEDIMENT FLUX AT STATIONS in metric tons
69 | TC,NONE,NONE,NONE,TC,TRANSPORT CAPACITY in metric tons
70 |
--------------------------------------------------------------------------------
/modules/routing.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 | print("routing module imported")
23 |
24 |
25 | def ROUT(pcr, q, oldq, flowdir, kx):
26 | rr = (q * 0.001 * pcr.cellarea()) / (24 * 3600)
27 | ra = pcr.accuflux(flowdir, rr)
28 | ra = (1 - kx) * ra + kx * oldq
29 | return ra
30 |
31 |
32 | # -init routing processes
33 | def init(self, pcr, config):
34 | self.FlowDir = pcr.readmap(self.inpath + config.get("ROUTING", "flowdir"))
35 | try:
36 | self.kx = pcr.readmap(self.inpath + config.get("ROUTING", "kx"))
37 | except:
38 | self.kx = config.getfloat("ROUTING", "kx")
39 |
40 |
41 | # -initial conditions routing
42 | def initial(self, pcr, config):
43 | # -initial routed total runoff
44 | try:
45 | self.QRAold = config.getfloat("ROUT_INIT", "QRA_init")
46 | except:
47 | try:
48 | self.QRAold = pcr.readmap(self.inpath + config.get("ROUT_INIT", "QRA_init"))
49 | except:
50 | self.QRAold = 0
51 | # -initial routed runoff for the individual components
52 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
53 | for i in pars:
54 | try:
55 | setattr(
56 | self,
57 | i + "RAold",
58 | pcr.readmap(self.inpath + config.get("ROUT_INIT", i + "RA_init")),
59 | )
60 | setattr(self, i + "RA_FLAG", True)
61 | except:
62 | try:
63 | setattr(self, i + "RAold", config.getfloat("ROUT_INIT", i + "RA_init"))
64 | setattr(self, i + "RA_FLAG", True)
65 | except:
66 | setattr(self, i + "RA_FLAG", False)
67 |
68 |
69 | # -dynamic routing processes
70 | def dynamic(self, pcr, TotR):
71 | # -Rout total runoff
72 | Q = self.routing.ROUT(pcr, TotR, self.QRAold, self.FlowDir, self.kx)
73 | self.QRAold = Q
74 | self.reporting.reporting(self, pcr, "QallRAtot", Q)
75 | if self.mm_rep_FLAG == 1 and self.QTOT_mm_FLAG == 1:
76 | self.QTOTSubBasinTSS.sample(
77 | ((Q * 3600 * 24) / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)) * 1000
78 | )
79 |
80 | # -Routing of surface runoff, root drainage, rain, snow, glacier and baseflow
81 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
82 | for i in pars:
83 | if getattr(self, i + "RA_FLAG") == 1:
84 | try:
85 | ParsRA = self.routing.ROUT(
86 | pcr,
87 | getattr(self, i + "R"),
88 | getattr(self, i + "RAold"),
89 | self.FlowDir,
90 | self.kx,
91 | )
92 | except:
93 | ParsRA = self.routing.ROUT(
94 | pcr,
95 | eval(i + "R"),
96 | getattr(self, i + "RAold"),
97 | self.FlowDir,
98 | self.kx,
99 | )
100 | setattr(self, i + "RAold", ParsRA)
101 | self.reporting.reporting(self, pcr, i + "RAtot", ParsRA)
102 | if (
103 | self.mm_rep_FLAG == 1
104 | and getattr(self, "Q" + i.upper() + "_mm_FLAG") == 1
105 | ):
106 | setattr(
107 | self,
108 | "Q" + i.upper() + "SubBasinTSS.sample",
109 | (
110 | (ParsRA * 3600 * 24)
111 | / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)
112 | )
113 | * 1000,
114 | )
115 |
116 | return Q
117 |
--------------------------------------------------------------------------------
/modules/groundwater.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 | print("groundwater module imported")
23 |
24 |
25 | # -Function to calculate groundwater recharge
26 | def GroundWaterRecharge(pcr, deltagw, gwrecharge, subperc, glacperc):
27 | gwseep = (1 - pcr.exp(-1 / deltagw)) * (subperc + glacperc)
28 | gwrecharge = (pcr.exp(-1 / deltagw) * gwrecharge) + gwseep
29 | return gwrecharge
30 |
31 |
32 | # -Function to calculate baseflow
33 | def BaseFlow(pcr, gw, baser, gwrecharge, basethresh, alphagw):
34 | baser = pcr.ifthenelse(
35 | gw <= basethresh,
36 | 0,
37 | (baser * pcr.exp(-alphagw) + gwrecharge * (1 - pcr.exp(-alphagw))),
38 | )
39 | return baser
40 |
41 |
42 | # -Function to calculate the groundwater height, taken from the bottom of the gw layer (zero reference)
43 | def HLevel(pcr, Hgw, alphagw, gwrecharge, yield_gw):
44 | Hgw = (Hgw * pcr.exp(-alphagw)) + (
45 | (gwrecharge * (1 - pcr.exp(-alphagw))) / (800 * yield_gw * alphagw)
46 | )
47 | return Hgw
48 |
49 |
50 | # -init groundwater processes
51 | def init(self, pcr, config):
52 | pars = ["GwDepth", "GwSat", "deltaGw", "BaseThresh", "alphaGw", "YieldGw"]
53 | for i in pars:
54 | try:
55 | setattr(self, i, pcr.readmap(self.inpath + config.get("GROUNDW_PARS", i)))
56 | except:
57 | setattr(self, i, config.getfloat("GROUNDW_PARS", i))
58 |
59 |
60 | # -initial conditions groundwater
61 | def initial(self, pcr, config):
62 | # -initial groundwater recharge
63 | try:
64 | self.GwRecharge = config.getfloat("GROUNDW_INIT", "GwRecharge")
65 | except:
66 | self.GwRecharge = pcr.readmap(
67 | self.inpath + config.get("GROUNDW_INIT", "GwRecharge")
68 | )
69 | # -initial baseflow
70 | try:
71 | self.BaseR = config.getfloat("GROUNDW_INIT", "BaseR")
72 | except:
73 | self.BaseR = pcr.readmap(self.inpath + config.get("GROUNDW_INIT", "BaseR"))
74 | # -initial groundwater storage
75 | try:
76 | self.Gw = config.getfloat("GROUNDW_INIT", "Gw")
77 | except:
78 | self.Gw = pcr.readmap(self.inpath + config.get("GROUNDW_INIT", "Gw"))
79 | # -initial groundwater level
80 | try:
81 | self.H_gw = config.getfloat("GROUNDW_INIT", "H_gw")
82 | except:
83 | self.H_gw = pcr.readmap(self.inpath + config.get("GROUNDW_INIT", "H_gw"))
84 | self.H_gw = pcr.max(
85 | (self.RootDepthFlat + self.SubDepthFlat + self.GwDepth) / 1000 - self.H_gw, 0
86 | )
87 |
88 |
89 | # -dynamic groundwater processes
90 | def dynamic(self, pcr, ActSubPerc, GlacPerc):
91 | # GwOld = self.Gw
92 | # -Groundwater recharge
93 | self.GwRecharge = self.groundwater.GroundWaterRecharge(
94 | pcr, self.deltaGw, self.GwRecharge, ActSubPerc, GlacPerc
95 | )
96 | # -Report groundwater recharge
97 | self.reporting.reporting(self, pcr, "TotGwRechargeF", self.GwRecharge)
98 | # -Update groundwater storage
99 | self.Gw = self.Gw + self.GwRecharge
100 | # -Baseflow
101 | self.BaseR = self.groundwater.BaseFlow(
102 | pcr, self.Gw, self.BaseR, self.GwRecharge, self.BaseThresh, self.alphaGw
103 | )
104 | # -Update groundwater storage
105 | self.Gw = self.Gw - self.BaseR
106 | # -Report groundwater storage
107 | self.reporting.reporting(
108 | self, pcr, "StorGroundW", self.Gw * (1 - self.openWaterFrac)
109 | )
110 | # -Correct for open-water fraction
111 | self.BaseR = self.BaseR * (1 - self.openWaterFrac)
112 | # -Report Baseflow
113 | self.reporting.reporting(self, pcr, "TotBaseRF", self.BaseR)
114 | # -Calculate groundwater level
115 | self.H_gw = self.groundwater.HLevel(
116 | pcr, self.H_gw, self.alphaGw, self.GwRecharge, self.YieldGw
117 | )
118 | # -Report groundwater level
119 | self.reporting.reporting(
120 | self,
121 | pcr,
122 | "GWL",
123 | ((self.SubDepthFlat + self.RootDepthFlat + self.GwDepth) / 1000 - self.H_gw)
124 | * -1,
125 | )
126 |
--------------------------------------------------------------------------------
/modules/dynamic_veg.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 | print("dynamic vegetation module imported")
23 |
24 |
25 | # -Function that returns crop factor (Kc) and maximum storage (Smax)
26 | def Veg_function(
27 | pcr, ndvi, fpar_max, fpar_min, lai_max, ndvi_min, ndvi_max, kc_min, kc_max
28 | ):
29 | SR = (1 + ndvi) / (1 - ndvi)
30 | SR_max = (1 + ndvi_max) / (1 - ndvi_max)
31 | SR_min = (1 + ndvi_min) / (1 - ndvi_min)
32 | FPAR = pcr.min((SR - SR_min) / (SR_max - SR_min) * (fpar_max - fpar_min), 0.95)
33 | LAI = lai_max * pcr.log10(1 - FPAR) / pcr.log10(1 - fpar_max)
34 | Smax = 0.935 + 0.498 * LAI - 0.00575 * (LAI**2)
35 | Kc = kc_min + (kc_max - kc_min) * pcr.max(
36 | pcr.min((ndvi - ndvi_min) / (ndvi_max - ndvi_min), 1), 0
37 | )
38 | return Kc, Smax, LAI
39 |
40 |
41 | # -Function that returns the interception, precipitation throughfall, and remaining storage
42 | def Inter_function(pcr, S, Smax, Etr):
43 | PreT = pcr.max(0, S - Smax)
44 | S = S - PreT
45 | Int = pcr.min(1.5 * Etr, S)
46 | S = S - Int
47 | return Int, PreT, S
48 |
49 |
50 | # -init processes dynamic vegetation
51 | def init(self, pcr, config):
52 | # -set the ndvi map series to be read
53 | self.ndvi = self.inpath + config.get("DYNVEG", "NDVI")
54 | # -read the vegetation parameters
55 | LAImax_table = self.inpath + config.get("DYNVEG", "LAImax")
56 | self.LAImax = pcr.lookupscalar(LAImax_table, self.LandUse)
57 | pars = ["NDVImax", "NDVImin", "NDVIbase", "KCmax", "KCmin", "FPARmax", "FPARmin"]
58 | for i in pars:
59 | try:
60 | setattr(self, i, pcr.readmap(self.inpath + config.get("DYNVEG", i)))
61 | except:
62 | setattr(self, i, config.getfloat("DYNVEG", i))
63 |
64 |
65 | # -initial conditions dynamic vegetation
66 | def initial(self, pcr):
67 | # -initial canopy storage
68 | self.Scanopy = 0
69 | # -initial ndvi if first map is not provided
70 | self.ndviOld = pcr.scalar((self.NDVImax + self.NDVImin) / 2)
71 | # -set initial kc value to one, if kc map is not available for first timestep
72 | self.KcOld = pcr.scalar(1)
73 |
74 |
75 | # -dynamic processes dynamic vegetation
76 | def dynamic(self, pcr, pcrm, np, Precip, ETref):
77 | # -try to read the ndvi map series. If not available, then use ndvi old
78 | try:
79 | ndvi = pcr.readmap(pcrm.generateNameT(self.ndvi, self.counter))
80 | except:
81 | ndvi = self.ndviOld
82 | self.ndviOld = ndvi
83 | # -fill missing ndvi values with average
84 | ndviAvg = np.nanmean(pcr.pcr2numpy(ndvi, np.nan))
85 | ndvi = pcr.cover(ndvi, float(ndviAvg))
86 | # -set maximum value to 0.999
87 | ndvi = pcr.min(ndvi, 0.999)
88 |
89 | # -calculate the vegetation parameters
90 | vegoutput = self.dynamic_veg.Veg_function(
91 | pcr,
92 | ndvi,
93 | self.FPARmax,
94 | self.FPARmin,
95 | self.LAImax,
96 | self.NDVImin,
97 | self.NDVImax,
98 | self.KCmin,
99 | self.KCmax,
100 | )
101 | # -Kc
102 | self.Kc = vegoutput[0]
103 | # -LAI
104 | self.LAI = vegoutput[2]
105 | # -report leaf area index
106 | self.reporting.reporting(self, pcr, "LAI", self.LAI)
107 |
108 | # -Update canopy storage
109 | self.Scanopy = self.Scanopy + Precip
110 | # -interception and effective precipitation
111 | intercep = self.dynamic_veg.Inter_function(pcr, self.Scanopy, vegoutput[1], ETref)
112 | # -interception
113 | Int = intercep[0]
114 | Int = Int * (1 - self.openWaterFrac)
115 | # -report interception corrected for fraction
116 | self.reporting.reporting(self, pcr, "TotIntF", Int * (1 - self.GlacFrac))
117 | # -effective precipitation
118 | Precip = intercep[1]
119 | # -Report effective precipitation corrected for fraction
120 | self.reporting.reporting(self, pcr, "TotPrecEF", Precip * (1 - self.GlacFrac))
121 | # -canopy storage
122 | self.Scanopy = intercep[2]
123 | # -Report effective precipitation corrected for fraction
124 | self.reporting.reporting(
125 | self, pcr, "StorCanop", self.Scanopy * (1 - self.openWaterFrac)
126 | )
127 |
128 | return Precip
129 |
--------------------------------------------------------------------------------
/modules/inca.py:
--------------------------------------------------------------------------------
1 | # Soil erosion module using the INCA soil erosion model
2 | # Copyright (C) 2020 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
3 | # Email: jeekhout@cebas.csic.es
4 | #
5 | # This program is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # This program is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with this program. If not, see .
17 |
18 |
19 | print('INCA module imported')
20 |
21 | #-Detachment of soil particles by raindrop impact (kg/km2)
22 | def DetachmentRaindrop(self, pcr, c_X1, p_Sed, E_SP, V, CG):
23 | p = p_Sed / (24 * 60 * 60) * 1e-3
24 | S_SP = pcr.max(0, 1 - CG - self.NoErosion_INCA) * c_X1 * p * E_SP**(10 / (10 - V)) * 8.64 * 1e10
25 | return S_SP
26 |
27 | #-Detachment of soil particles by runoff (kg/km2)
28 | def DetachmentRunoff(self, pcr, q_dr, S_SP, S_TC, E_FL, a1, a2, a3, CG, A, L):
29 | K = a1 * E_FL * 86400 * ((A * q_dr) / L - a2)**a3
30 | S_FL = pcr.max(0, pcr.ifthenelse(S_TC + K == 0, 0, K * (S_TC - S_SP) / (S_TC + K)) * pcr.max(0, 1 - self.NoErosion_INCA))
31 |
32 | #-set values in channels to 0 in case channels should be excluded
33 | if self.exclChannelsFLAG == 1:
34 | S_FL = S_FL * self.Hillslope
35 | return S_FL, K
36 |
37 | #-Transport capacity of the flow (kg/km2)
38 | def TransportCapacity(self, pcr, q_dr, a4, a5, a6, A, L):
39 | S_TC = a4 * 86400 * ((A * q_dr) / L - a5)**a6
40 | return S_TC
41 |
42 | #-Update sediment store (kg/km2)
43 | def UpdateSedimentStore(self, pcr, S_SP, S_FL, S_TC, K):
44 | if self.exclChannelsFLAG == 1:
45 | dStore_dt = pcr.ifthenelse(self.Hillslope == 1, -K * (S_SP - S_TC) / (S_TC + K), S_SP)
46 | else:
47 | dStore_dt = -K * (S_SP - S_TC) / (S_TC + K)
48 | dStore_dt = pcr.ifthenelse(S_TC + K == 0, 0, dStore_dt)
49 |
50 | S_store = pcr.max(0, self.S_store + pcr.ifthenelse(self.S_store + S_SP > S_TC, S_SP - S_TC, dStore_dt))
51 | return S_store
52 |
53 | #-Mass of sediment transported (kg/km2)
54 | def sedimentTransported(self, pcr, S_SP, S_FL, S_TC):
55 | M_Out = pcr.ifthenelse(self.S_store + S_SP > S_TC, S_TC, S_SP + S_FL) * pcr.max(0, 1 - self.NoErosion_INCA)
56 | return M_Out
57 |
58 | #-init processes inca
59 | def init(self, pcr, config):
60 | #-read table with INCA landuse specific model parameters
61 | pcr.setglobaloption('matrixtable')
62 | inca_table = self.inpath + config.get('INCA', 'inca_table')
63 | self.V_INCA = pcr.lookupscalar(inca_table, 1, self.LandUse)
64 | self.GC_INCA = pcr.lookupscalar(inca_table, 2, self.LandUse)
65 | try:
66 | self.a4_INCA = config.getfloat('INCA', 'a4')
67 | except:
68 | self.a4_INCA = pcr.lookupscalar(inca_table, 3, self.LandUse)
69 | self.NoErosion_INCA = pcr.lookupscalar(inca_table, 4, self.LandUse)
70 | pcr.setglobaloption('columntable')
71 |
72 | #-read other model parameters
73 | self.c_x1_INCA = config.getfloat('INCA', 'c_x1')
74 | self.a1_INCA = config.getfloat('INCA', 'a1')
75 | self.a2_INCA = config.getfloat('INCA', 'a2')
76 | self.a3_INCA = config.getfloat('INCA', 'a3')
77 | self.a5_INCA = config.getfloat('INCA', 'a5')
78 | self.a6_INCA = config.getfloat('INCA', 'a6')
79 | self.E_SP_INCA = config.getfloat('INCA', 'E_SP')
80 | self.E_FL_INCA = config.getfloat('INCA', 'E_FL')
81 |
82 | #-Determine cell size and slope length
83 | self.A_INCA = pcr.cellarea() * 1e-6
84 | alpha = pcr.atan(self.Slope)
85 | self.L_INCA = pcr.celllength() * 1e-3 / pcr.cos(alpha)
86 |
87 | #-Initiate sediment store variable
88 | self.S_store = self.DEM * 0
89 |
90 | #-dynamic processes inca
91 | def dynamic(self, pcr, Precip, Q):
92 | #-determine canopy cover from LAI
93 | if self.DynVegFLAG == 1:
94 | V_INCA = pcr.min(9.999, pcr.min(1, self.LAI) * 10)
95 | else:
96 | V_INCA = self.V_INCA
97 |
98 | #-determine detachment of soil particles by raindrop impact (kg/km2)
99 | S_SP = self.inca.DetachmentRaindrop(self, pcr, self.c_x1_INCA, Precip, self.E_SP_INCA, V_INCA, self.GC_INCA)
100 |
101 | #-report detachment of soil particles by raindrop impact (ton / cell)
102 | self.reporting.reporting(self, pcr, 'DetRn', S_SP * pcr.cellarea() * 1e-9)
103 |
104 | #-Determine transport capacity of the flow (kg/km2)
105 | S_TC = self.inca.TransportCapacity(self, pcr, Q, self.a4_INCA, self.a5_INCA, self.a6_INCA, self.A_INCA, self.L_INCA)
106 |
107 | #-determine detachment of soil particles by runoff (kg/km2)
108 | S_FL, K = self.inca.DetachmentRunoff(self, pcr, Q, S_SP, S_TC, self.E_FL_INCA, self.a1_INCA, self.a2_INCA, self.a3_INCA, self.GC_INCA, self.A_INCA, self.L_INCA)
109 |
110 | #-report detachment of soil particles by runoff (ton / cell)
111 | self.reporting.reporting(self, pcr, 'DetRun', S_FL * pcr.cellarea() * 1e-9)
112 |
113 | #-determine mass of sediment in transport (kg/km2)
114 | sed = self.inca.sedimentTransported(self, pcr, S_SP, S_FL, S_TC)
115 |
116 | #-update sediment store (kg/km2)
117 | self.S_store = self.inca.UpdateSedimentStore(self, pcr, S_SP, S_FL, S_TC, K)
118 |
119 | #-report sediment in transport (ton / cell)
120 | self.reporting.reporting(self, pcr, 'SedTrans', sed * pcr.cellarea() * 1e-9)
121 |
122 | return sed
123 |
--------------------------------------------------------------------------------
/modules/musle.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | # Equations to calculate sediment yield accoding to the soil loss equation (Williams, 1995)
24 | # from rootzone import RootRunoff
25 |
26 | print("MUSLE module imported")
27 |
28 |
29 | # -Modified unviversal soil loss equation to calculate sediment yield (metric tons)
30 | def MUSLE(self, pcr, Q_surf, q_peak):
31 | sed = (
32 | 11.8
33 | * (Q_surf * q_peak * self.ha_area) ** 0.56
34 | * self.K_USLE
35 | * self.C_USLE
36 | * self.P_USLE
37 | * self.LS_USLE
38 | * self.CFRG
39 | )
40 | sed = (sed / 10000) * pcr.cellarea() # conversion to ton / cell
41 | return sed
42 |
43 |
44 | # -Peak runoff (m3/s)
45 | def q_peak(self, pcr, Runoff):
46 | q_peak = (self.Alpha_tc * Runoff * pcr.cellarea()) / (
47 | 3600000 * self.Tc
48 | ) # peak runoff in m3/s
49 | return q_peak
50 |
51 |
52 | # -LS topographic factor
53 | def LS_ULSE(self, pcr):
54 | m = 0.6 * (1 - pcr.exp(-35.835 * self.Slope))
55 | alpha_hill = pcr.atan(self.Slope)
56 | L_hill = pcr.celllength() / pcr.cos(alpha_hill)
57 | LS = ((L_hill / 22.1) ** m) * (
58 | 65.41 * pcr.sin(alpha_hill) ** 2 + 4.56 * pcr.sin(alpha_hill) + 0.065
59 | )
60 | return LS
61 |
62 |
63 | # -K factor
64 | def K_USLE(self, pcr):
65 | # ksat_hourly = self.RootKsat / 24 / self.RootKsatFrac
66 | ksat_hourly = self.RootKsat / 24
67 | M_textural = (self.RootSiltMap * 100 + 0) * (100 - self.RootClayMap * 100)
68 | permeability = pcr.scalar(ksat_hourly > 150) * 1
69 | permeability = (
70 | permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 50, ksat_hourly < 150)) * 2
71 | )
72 | permeability = (
73 | permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 15, ksat_hourly < 50)) * 3
74 | )
75 | permeability = (
76 | permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 5, ksat_hourly < 15)) * 4
77 | )
78 | permeability = (
79 | permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 1, ksat_hourly < 5)) * 5
80 | )
81 | permeability = permeability + pcr.scalar(ksat_hourly < 1) * 6
82 | s = 2
83 | K_USLE = (
84 | (
85 | 2.1 * 10**-4 * M_textural**1.14 * (12 - self.RootOMMap)
86 | + 3.25 * (s - 2)
87 | + 2.5 * (permeability - 3)
88 | )
89 | / 100
90 | ) * 0.1317
91 | return K_USLE
92 |
93 |
94 | # -Time of concentration
95 | def Tc(self, pcr):
96 | slope_adjusted = pcr.ifthenelse(
97 | self.Slope < 0.0025, self.Slope + 0.0005, self.Slope
98 | )
99 | alpha_hill = pcr.atan(slope_adjusted)
100 | L = pcr.celllength() / pcr.cos(alpha_hill)
101 | # -Kirpich channel flow time of concentration
102 | T_ch = 0.0195 * L**0.77 * slope_adjusted**-0.385
103 | # -Kerby overland flow time of concentration
104 | T_ov = 1.44 * (L * self.N) ** 0.467 * slope_adjusted**-0.235
105 | Tc = (T_ch + T_ov) / 60 # conversion to hours
106 | return Tc
107 |
108 |
109 | # -init processes musle
110 | def init(self, pcr, config):
111 | # -read table with MUSLE C-factor and retardance coefficient values per landuse class
112 | pcr.setglobaloption("matrixtable")
113 | musle_table = self.inpath + config.get("MUSLE", "musle_table")
114 | self.C_USLE = pcr.lookupscalar(musle_table, 1, self.LandUse)
115 | self.N = pcr.lookupscalar(musle_table, 2, self.LandUse)
116 | pcr.setglobaloption("columntable")
117 |
118 | # -read P-factor values map or float
119 | try:
120 | self.P_USLE = pcr.readmap(self.inpath + config.get("MUSLE", "P_USLE"))
121 | except:
122 | self.P_USLE = config.getfloat("MUSLE", "P_USLE")
123 |
124 | # -when pedotransfer module is used, calculate the K-factor based on texture maps, else read K-factor values from table
125 | if self.PedotransferFLAG == 1:
126 | self.K_USLE = self.musle.K_USLE(self, pcr)
127 | else:
128 | self.K_USLE = pcr.readmap(self.inpath + config.get("MUSLE", "K_USLE"))
129 |
130 | # -calculate other input parameters
131 | self.LS_USLE = self.musle.LS_ULSE(self, pcr)
132 | self.CFRG = pcr.exp(-0.053 * (self.RockFrac * 100))
133 | self.Tc = self.musle.Tc(self, pcr)
134 | self.Alpha_tc = 1 - pcr.exp(2 * self.Tc * pcr.ln(1 - (self.Alpha / 2)))
135 | self.ha_area = pcr.cellarea() / 10000
136 |
137 |
138 | # -dynamic processes musle
139 | def dynamic(self, pcr, Runoff):
140 | # -determine peak runoff
141 | q_peak = self.musle.q_peak(self, pcr, Runoff) # -peak runoff in m3/s
142 |
143 | # -determine soil erosion
144 | sed = self.musle.MUSLE(self, pcr, Runoff, q_peak) # -sediment yield in ton
145 |
146 | # -report sediment in transport (ton / cell)
147 | self.reporting.reporting(self, pcr, "SedTrans", sed)
148 |
--------------------------------------------------------------------------------
/utilities/pedotransfer.py:
--------------------------------------------------------------------------------
1 | # Tool to determine soil hydraulic properties from texture and organic matter input maps,
2 | # based on the pedotransfer function from Saxton & Rawls (2006)
3 | # Copyright (C) 2016-2019 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
4 | # Email: jeekhout@cebas.csic.es
5 | #
6 | # This program is free software: you can redistribute it and/or modify
7 | # it under the terms of the GNU General Public License as published by
8 | # the Free Software Foundation, either version 3 of the License, or
9 | # (at your option) any later version.
10 | #
11 | # This program is distributed in the hope that it will be useful,
12 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 | # GNU General Public License for more details.
15 | #
16 | # You should have received a copy of the GNU General Public License
17 | # along with this program. If not, see .
18 |
19 |
20 | #-function to calculate the wilting point (1500 kPa, %)
21 | def Dry(pcr, self, sand, clay, OM, bulk):
22 | #-1500 kPa moisture, first solution, %v (Eq. 1)
23 | dry_first = -0.024 * sand + 0.487 * clay + 0.006 * OM + 0.005 * sand * OM - 0.013 * clay * OM + 0.068 * sand * clay + 0.031
24 | #-1500 kPa moisture, %v (Eq. 1)
25 | dry = dry_first + (0.14 * dry_first - 0.02)
26 | return dry
27 |
28 |
29 | #-function to calculate the field capacity (33 kPa, %)
30 | def Field(pcr, self, sand, clay, OM, bulk):
31 | #-33 kPa moisture, first solution, %v (Eq. 2)
32 | field_first = -0.251 * sand + 0.195 * clay + 0.011 * OM + 0.006 * sand * OM - 0.027 * clay * OM + 0.452 * sand * clay + 0.299
33 | #-33 kPa moisture, normal density, %v (Eq. 2)
34 | field = field_first + (1.283 * field_first**2 - 0.374 * field_first - 0.015)
35 | return field
36 |
37 |
38 | #-function to calculate the saturated water content (0 kPa, %)
39 | def Sat(pcr, self, sand, clay, OM, bulk):
40 | #-SAT-33 kPa moisture, first solution, %v (Eq. 3)
41 | poros_first = 0.278 * sand + 0.034 * clay + 0.022 * OM - 0.018 * sand * OM - 0.027 * clay * OM - 0.584 * sand * clay + 0.078
42 | #-SAT-33 kPa moisture, normal density, %v (Eq. 3)
43 | poros = poros_first + (0.636 * poros_first - 0.107)
44 | #-Saturated moisture (0 kPa), normal density, %v (Eq. 5)
45 | sat = poros + self.pedotransfer.Field(pcr, self, sand, clay, OM, bulk) - 0.097 * sand + 0.043
46 | return sat
47 |
48 |
49 | #-function to calculate the field capacity adjusted for density (33 kPa, %) and saturated water content adjusted for density (0 kPa, %)
50 | def FieldAdj(pcr, self, sand, clay, OM, bulk):
51 | #-Normal density, g cm-3 (Eq. 6)
52 | density = (1-self.pedotransfer.Sat(pcr, self, sand, clay, OM, bulk))*2.65
53 | #-Adjusted density, g cm-3 (Eq. 7)
54 | density_adj = density * bulk
55 | #-Saturated moisture (0 kPa), adjusted density, %v (Eq. 8)
56 | sat_adj_dens = 1 - density_adj/2.65
57 | #-33 kPa moisture, adjusted density, %v (Eq. 9)
58 | field_adj_dens = self.pedotransfer.Field(pcr, self, sand, clay, OM, bulk) + 0.2 * (self.pedotransfer.Sat(pcr, self, sand, clay, OM, bulk) - sat_adj_dens)
59 | #-SAT-33 kPa moisture, adjusted density, %v (Eq. 10)
60 | poros_adj_dens = sat_adj_dens - field_adj_dens
61 | return field_adj_dens, poros_adj_dens, sat_adj_dens
62 |
63 |
64 | #-function to calculate the saturated hydraulic conductivity (mm/day)
65 | def KSat(pcr, self, sand, clay, OM, bulk):
66 | #-Calculate wilting, field capacity and porosity
67 | dry = self.pedotransfer.Dry(pcr, self, sand, clay, OM, bulk)
68 | temp = self.pedotransfer.FieldAdj(pcr, self, sand, clay, OM, bulk)
69 | field_adj_dens = temp[0]
70 | poros_adj_dens = temp[1]
71 | #-Inverse of B (Eq. 18)
72 | lamda = (pcr.log10(field_adj_dens) - pcr.log10(dry)) / (pcr.log10(1500) - pcr.log10(33))
73 | #-Saturated conductivity (matric soil), mm/day (Eq. 16)
74 | ksat = (1930 * (poros_adj_dens)**(3 - lamda)) * 24
75 | return ksat
76 |
77 | #-function to calculate the wilting point based on previous pedotransfer functions
78 | def Wilt(pcr, self, np):
79 | #-Determine exponents B and A for logarithmic function
80 | B = (np.log(1500) - np.log(33)) / (pcr.ln(self.RootFieldMap) - pcr.ln(self.RootDryMap))
81 | A = pcr.exp(np.log(33) + B * pcr.ln(self.RootFieldMap))
82 |
83 | #-Wilting point based on logarithmic function
84 | wilt = (100 / A)**(-1/B)
85 | return wilt
86 |
87 | #-init pedotransfer processes
88 | def init(self, pcr, config, np):
89 | self.RootSandMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','RootSandMap')) / 100
90 | self.RootClayMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','RootClayMap')) / 100
91 | self.RootSiltMap = 1 - self.RootSandMap - self.RootClayMap
92 | self.RootOMMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','RootOMMap'))
93 | try:
94 | self.RootBulkMap = config.getfloat('PEDOTRANSFER','RootBulkMap')
95 | except:
96 | self.RootBulkMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','RootBulkMap'))
97 |
98 | self.SubSandMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','SubSandMap')) / 100
99 | self.SubClayMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','SubClayMap')) / 100
100 | self.SubOMMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','SubOMMap'))
101 | try:
102 | self.SubBulkMap = config.getfloat('PEDOTRANSFER','SubBulkMap')
103 | except:
104 | self.SubBulkMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','SubBulkMap'))
105 |
106 | self.RootDryMap = self.pedotransfer.Dry(pcr, self, self.RootSandMap, self.RootClayMap, self.RootOMMap, self.RootBulkMap)
107 | temp = self.pedotransfer.FieldAdj(pcr, self, self.RootSandMap, self.RootClayMap, self.RootOMMap, self.RootBulkMap)
108 | self.RootFieldMap = temp[0] * self.RootFieldFrac
109 | self.RootSatMap = temp[2] * self.RootSatFrac
110 | self.RootFieldMap = pcr.min(self.RootSatMap - 0.0001, self.RootFieldMap)
111 | self.RootWiltMap = self.pedotransfer.Wilt(pcr, self, np) * self.RootWiltFrac
112 | self.RootDryMap = self.RootDryMap * self.RootDryFrac
113 | self.RootKsat = self.pedotransfer.KSat(pcr, self, self.RootSandMap, self.RootClayMap, self.RootOMMap, self.RootBulkMap) * self.RootKsatFrac
114 | self.RootDrainVel = self.RootKsat * self.Slope
115 |
116 | temp = self.pedotransfer.FieldAdj(pcr, self, self.SubSandMap, self.SubClayMap, self.SubOMMap, self.SubBulkMap)
117 | self.SubFieldMap = temp[0]
118 | self.SubSatMap = temp[2]
119 | self.SubKsat = self.pedotransfer.KSat(pcr, self, self.SubSandMap, self.SubClayMap, self.SubOMMap, self.SubBulkMap)
120 |
--------------------------------------------------------------------------------
/modules/hspf.py:
--------------------------------------------------------------------------------
1 | # Soil erosion module using the HSPF soil erosion model
2 | # Copyright (C) 2020 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
3 | # Email: jeekhout@cebas.csic.es
4 | #
5 | # This program is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # This program is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with this program. If not, see .
17 |
18 |
19 | print('HSPF module imported')
20 |
21 | #-Detachment of soil particles by raindrop impact (ton/acre)
22 | def DetachmentRaindrop(self, pcr, DELT60, CR, SMPF, KRER, RAIN, JRER):
23 | DET = DELT60 * pcr.max(0, (1 - CR - self.NoErosion_HSPF)) * SMPF * KRER * (RAIN / DELT60)**JRER
24 | return DET
25 |
26 | #-Detached sediment in storage (ton/acre)
27 | def SedimentStorage(self, pcr, DETS, AFFIX, DET):
28 | DETS = DETS * (1 - AFFIX) + DET
29 |
30 | return DETS
31 |
32 | #-Detachment of soil particles by washoff (ton/acre)
33 | def DetachmentWashoff(self, pcr, STCAP, DETS, SURO, SURS, CR):
34 | WSSD = pcr.ifthenelse(STCAP > DETS, DETS * SURO / (SURS + SURO), STCAP * SURO / (SURS + SURO)) * (1 - self.NoErosion_HSPF)
35 |
36 | return WSSD
37 |
38 | #-Detachment of soil particles from the soil matrix (ton/acre)
39 | def DetachmentSoilScour(self, pcr, SURO, SURS, DELT60, KGER, JGER):
40 | SCRSD = SURO / (SURS + SURO) * DELT60 * KGER * ((SURS + SURO)/DELT60)**JGER * (1 - self.NoErosion_HSPF)
41 |
42 | #-set values in channels to 0 in case channels should be excluded
43 | if self.exclChannelsFLAG == 1:
44 | SCRSD = SCRSD * self.Hillslope
45 |
46 | return SCRSD
47 |
48 | #-Transport capacity (ton/acre)
49 | def TransportCapacity(self, pcr, DELT60, KSER, SURO, SURS, JSER):
50 | STCAP = DELT60 * KSER * ((SURS + SURO)/DELT60)**JSER * (1 - self.NoErosion_HSPF)
51 |
52 | return STCAP
53 |
54 | #-K factor (-)
55 | def K_HSPF(self, pcr):
56 | ksat_hourly = self.RootKsat / 24
57 | M_textural = (self.RootSiltMap * 100 + 0) * (100 - self.RootClayMap * 100)
58 | permeability = pcr.scalar(ksat_hourly > 150) * 1
59 | permeability = permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 50, ksat_hourly < 150)) * 2
60 | permeability = permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 15, ksat_hourly < 50)) * 3
61 | permeability = permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 5, ksat_hourly < 15)) * 4
62 | permeability = permeability + pcr.scalar(pcr.pcrand(ksat_hourly > 1, ksat_hourly < 5)) * 5
63 | permeability = permeability + pcr.scalar(ksat_hourly < 1) * 6
64 | s = 2
65 | K_HSPF = ((2.1 * 10**-4 * M_textural**1.14 * (12 - self.RootOMMap) + 3.25 * (s - 2) + 2.5 * (permeability - 3))/100)
66 | return K_HSPF
67 |
68 | #-init processes hspf
69 | def init(self, pcr, config):
70 | #-read table with HSPF landuse specific model parameters
71 | pcr.setglobaloption('matrixtable')
72 | hspf_table = self.inpath + config.get('HSPF', 'hspf_table')
73 | self.CR_HSPF = pcr.lookupscalar(hspf_table, 1, self.LandUse)
74 | try:
75 | self.KGER_HSPF = config.getfloat('HSPF', 'KGER')
76 | except:
77 | self.KGER_HSPF = pcr.lookupscalar(hspf_table, 2, self.LandUse)
78 | self.NoErosion_HSPF = pcr.lookupscalar(hspf_table, 3, self.LandUse)
79 | pcr.setglobaloption('columntable')
80 |
81 | #-read other model parameters
82 | self.JRER_HSPF = config.getfloat('HSPF', 'JRER')
83 | self.KSER_HSPF = config.getfloat('HSPF', 'KSER')
84 | self.JSER_HSPF = config.getfloat('HSPF', 'JSER')
85 | self.JGER_HSPF = config.getfloat('HSPF', 'JGER')
86 | self.AFFIX_HSPF = config.getfloat('HSPF', 'AFFIX')
87 |
88 | #-initial sediment storage
89 | self.DETS_HSPF = 0
90 | self.SURSold = 0
91 |
92 | #-define some constants
93 | self.acre_m2_HSPF = 4046.9
94 | self.inch_mm_HSPF = 25.4
95 |
96 | #-read P-factor values map or float
97 | try:
98 | self.P_HSPF = pcr.readmap(self.inpath + config.get('HSPF', 'P_USLE'))
99 | except:
100 | self.P_HSPF = config.getfloat('HSPF', 'P_USLE')
101 |
102 | #-when pedotransfer module is used, calculate the K-factor based on texture maps, else read K-factor values from the config file
103 | if self.PedotransferFLAG == 1:
104 | self.K_HSPF = self.hspf.K_HSPF(self, pcr)
105 | else:
106 | try:
107 | self.K_HSPF = pcr.readmap(self.inpath + config.get('HSPF', 'KRER'))
108 | except:
109 | self.K_HSPF = config.getfloat('HSPF', 'KRER')
110 |
111 |
112 | #-dynamic processes hspf
113 | def dynamic(self, pcr, np, Precip, Runoff):
114 | #-determine daily precipitation in inch
115 | Precip_inch = Precip / self.inch_mm_HSPF
116 |
117 | #-get acre to m2 transformation value
118 | acre_m2_HSPF = self.acre_m2_HSPF
119 |
120 | #-determine detachment of soil particles by raindrop impact (ton/acre)
121 | DET = self.hspf.DetachmentRaindrop(self, pcr, 24, self.CR_HSPF, self.P_HSPF, self.K_HSPF, Precip_inch, self.JRER_HSPF)
122 |
123 | #-determine the sediment storage (ton/acre)
124 | self.DETS_HSPF = self.hspf.SedimentStorage(self, pcr, self.DETS_HSPF, self.AFFIX_HSPF, DET)
125 |
126 | #-determine the surface water storage
127 | SURS = 0
128 |
129 | #-determine the surface outflow (inch) (= routed runoff)
130 | SURO = pcr.max(0.0001, Runoff / self.inch_mm_HSPF)
131 |
132 | #-determine transport capacity (ton/acre)
133 | STCAP = self.hspf.TransportCapacity(self, pcr, 24, self.KSER_HSPF, SURO, SURS, self.JSER_HSPF)
134 |
135 | #-determine detachment of soil particles by washoff (ton/acre)
136 | WSSD = self.hspf.DetachmentWashoff(self, pcr, STCAP, self.DETS_HSPF, SURO, SURS, self.CR_HSPF)
137 |
138 | #-report detachment of soil particles by raindrop impact (ton / cell)
139 | self.reporting.reporting(self, pcr, 'DetRn', WSSD * (pcr.cellarea() / acre_m2_HSPF))
140 |
141 | #-update sediment storage
142 | self.DETS_HSPF = self.DETS_HSPF - WSSD
143 |
144 | #-determine detachment of soil particles from the soil matrix (ton/acre)
145 | SCRSD = self.hspf.DetachmentSoilScour(self, pcr, SURO, SURS, 24, self.KGER_HSPF, self.JGER_HSPF)
146 |
147 | #-report detachment of soil particles by runoff (ton / cell)
148 | self.reporting.reporting(self, pcr, 'DetRun', SCRSD * (pcr.cellarea() / acre_m2_HSPF))
149 |
150 | #-determine mass of sediment in transport (ton/acre)
151 | sed = WSSD + SCRSD
152 |
153 | #-report sediment in transport (ton / cell)
154 | self.reporting.reporting(self, pcr, 'SedTrans', sed * (pcr.cellarea() / acre_m2_HSPF))
155 |
156 | return sed
157 |
--------------------------------------------------------------------------------
/modules/snow.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | print("snow module imported")
24 |
25 |
26 | # -Function to calculate the potential snow melt
27 | def PotSnowMelt(pcr, temp, tempmax, ddfs):
28 | thour = pcr.scalar(0)
29 | for ij in range(1, 25, 1):
30 | th_max = pcr.max(0, (temp + (tempmax - temp) * pcr.cos(3.1415 * ij / 12)))
31 | thour = thour + th_max
32 | melt = thour * ddfs / 24
33 | return melt
34 |
35 |
36 | # -Function to calculate the actual snow melt
37 | def ActSnowMelt(pcr, snowstore, potmelt):
38 | melt = pcr.min(snowstore, potmelt)
39 | return melt
40 |
41 |
42 | # -Function that updates the snow storage
43 | def SnowStoreUpdate(pcr, snowstore, snow, actmelt, temp, snowwatstore):
44 | snowstore = (
45 | snowstore
46 | + snow
47 | - actmelt
48 | + pcr.ifthenelse(temp < 0, pcr.scalar(snowwatstore), 0)
49 | )
50 | return snowstore
51 |
52 |
53 | # -Function that determines the maximum amount of water that can be stored in the snowpack
54 | def MaxSnowWatStorage(snowsc, snowstore):
55 | maxsnowwatstore = snowsc * snowstore
56 | return maxsnowwatstore
57 |
58 |
59 | # -Function to calculate the actual snow water storage
60 | def SnowWatStorage(pcr, temp, maxsnowwatstore, snowwatstore, actmelt, rain):
61 | snowwatstore = pcr.ifthenelse(
62 | temp < 0, 0, pcr.min(maxsnowwatstore, snowwatstore + actmelt + rain)
63 | )
64 | return snowwatstore
65 |
66 |
67 | # -Function to calculate the total snow storage (snowstore + snowwatstore)
68 | def TotSnowStorage(snowstore, snowwatstore, snowfrac, rainfrac):
69 | totalsnowstore = (snowstore + snowwatstore) * (snowfrac + rainfrac)
70 | return totalsnowstore
71 |
72 |
73 | # -Function to calculate runoff from snow
74 | def SnowR(pcr, snowwatstore, maxsnowwatstore, actmelt, rain, oldsnowwatstore, snowfrac):
75 | snowr = pcr.ifthenelse(
76 | snowwatstore == maxsnowwatstore,
77 | (((actmelt + rain) - (snowwatstore - oldsnowwatstore)) * snowfrac),
78 | 0,
79 | )
80 | return snowr
81 |
82 |
83 | # -init snow processes
84 | def init(self, pcr, config):
85 | pars = ["Tcrit", "SnowSC", "DDFS", "SnowF", "SnowCth"]
86 | for i in pars:
87 | try:
88 | setattr(self, i, pcr.readmap(self.inpath + config.get("SNOW", i)))
89 | except:
90 | setattr(self, i, config.getfloat("SNOW", i))
91 |
92 |
93 | # -initial snow processes
94 | def initial(self, pcr, config):
95 | try:
96 | self.SnowStore = config.getfloat("SNOW_INIT", "SnowIni")
97 | except:
98 | self.SnowStore = pcr.readmap(self.inpath + config.get("SNOW_INIT", "SnowIni"))
99 | # -initial water stored in snowpack
100 | try:
101 | self.SnowWatStore = config.getfloat("SNOW_INIT", "SnowWatStore")
102 | except:
103 | self.SnowWatStore = pcr.readmap(
104 | self.inpath + config.get("SNOW_INIT", "SnowWatStore")
105 | )
106 | self.TotalSnowStore = self.SnowStore + self.SnowWatStore
107 |
108 |
109 | # -dynamic snow processes
110 | def dynamic(
111 | self,
112 | pcr,
113 | Temp,
114 | TempMax,
115 | Precip,
116 | Snow_GLAC,
117 | ActSnowMelt_GLAC,
118 | SnowFrac,
119 | RainFrac,
120 | SnowR_GLAC,
121 | ):
122 | # -Snow and rain differentiation
123 | Snow = pcr.ifthenelse(Temp >= self.Tcrit, 0, Precip)
124 | Rain = pcr.ifthenelse(Temp < self.Tcrit, 0, Precip)
125 | # -Report Snow for entire cell (snow+glacier fraction)
126 | self.reporting.reporting(self, pcr, "TotSnow", Snow)
127 | self.reporting.reporting(
128 | self, pcr, "TotSnowF", Snow * (1 - self.GlacFrac) + Snow_GLAC
129 | )
130 | # -Snow melt sonu added
131 | PotSnowMelt = pcr.ifthenelse(
132 | TempMax < 0, 0, self.snow.PotSnowMelt(pcr, Temp, TempMax, self.DDFS)
133 | )
134 | ActSnowMelt = self.snow.ActSnowMelt(pcr, self.SnowStore, PotSnowMelt)
135 | # -Report snow melt for entire cell (snow+glacier fraction)
136 | self.reporting.reporting(self, pcr, "TotSnowMelt", ActSnowMelt)
137 | self.reporting.reporting(
138 | self, pcr, "TotSnowMeltF", ActSnowMelt * (1 - self.GlacFrac) + ActSnowMelt_GLAC
139 | )
140 | # -Update snow store
141 | self.SnowStore = self.snow.SnowStoreUpdate(
142 | pcr, self.SnowStore, Snow, ActSnowMelt, Temp, self.SnowWatStore
143 | )
144 | # -Caclulate the maximum amount of water that can be stored in snowwatstore
145 | MaxSnowWatStore = self.snow.MaxSnowWatStorage(self.SnowSC, self.SnowStore)
146 | OldSnowWatStore = self.SnowWatStore
147 | # -Calculate the actual amount of water stored in snowwatstore
148 | self.SnowWatStore = self.snow.SnowWatStorage(
149 | pcr, TempMax, MaxSnowWatStore, self.SnowWatStore, ActSnowMelt, Rain
150 | )
151 | # -Changes in total water storage in snow (SnowStore and SnowWatStore)
152 | OldTotalSnowStore = self.TotalSnowStore
153 | self.TotalSnowStore = (
154 | self.snow.TotSnowStorage(self.SnowStore, self.SnowWatStore, SnowFrac, RainFrac)
155 | + self.TotalSnowStore_GLAC
156 | ) # for entire cell
157 | # -Report Snow storage
158 | self.reporting.reporting(self, pcr, "StorSnow", self.TotalSnowStore)
159 | # -Determine if cell is covered with snow
160 | SnowCover = pcr.ifthenelse(
161 | self.TotalSnowStore > self.SnowCth, pcr.scalar(1), pcr.scalar(0)
162 | )
163 | self.reporting.reporting(self, pcr, "SCover", SnowCover)
164 | self.reporting.reporting(
165 | self, pcr, "StorSnowW", self.SnowWatStore
166 | ) # sonu added note this is only SnowWatStore
167 | # -Snow runoff
168 | SnowR = (
169 | self.snow.SnowR(
170 | pcr,
171 | self.SnowWatStore,
172 | MaxSnowWatStore,
173 | ActSnowMelt,
174 | Rain,
175 | OldSnowWatStore,
176 | SnowFrac,
177 | )
178 | + SnowR_GLAC
179 | ) # for entire cell
180 | ##sonu added snow infiltration##
181 | SnowSoil = SnowR * self.SnowF
182 | SnowR = SnowR * (1 - self.SnowF)
183 | SnowR = SnowR * (1 - self.openWaterFrac)
184 | # -Report Snow runoff
185 | self.reporting.reporting(self, pcr, "TotSnowRF", SnowR)
186 |
187 | return Rain, SnowR, SnowSoil, OldTotalSnowStore
188 |
--------------------------------------------------------------------------------
/modules/reservoirs.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 | print("Reservoir module imported")
23 |
24 |
25 | # -Advanced reservoir
26 | def QAdv(self, pcr):
27 | DayNo = self.timecalc.julian(self)[0]
28 | # -determine if it is flood or dry season
29 | S1 = pcr.ifthenelse(
30 | self.ResFlStart < self.ResFlEnd,
31 | pcr.ifthenelse(
32 | DayNo >= self.ResFlStart,
33 | pcr.ifthenelse(DayNo <= self.ResFlEnd, pcr.boolean(1), pcr.boolean(0)),
34 | pcr.boolean(0),
35 | ),
36 | pcr.ifthenelse(
37 | DayNo >= self.ResFlEnd,
38 | pcr.ifthenelse(DayNo >= self.ResFlStart, pcr.boolean(1), pcr.boolean(0)),
39 | pcr.ifthenelse(
40 | DayNo <= self.ResFlEnd,
41 | pcr.ifthenelse(
42 | DayNo <= self.ResFlStart, pcr.boolean(1), pcr.boolean(0)
43 | ),
44 | pcr.boolean(0),
45 | ),
46 | ),
47 | )
48 |
49 | S_avail = pcr.max(self.StorRES - self.ResPVOL, 0)
50 | Q = pcr.max(
51 | pcr.ifthenelse(
52 | S1,
53 | self.ResMaxFl * S_avail / (self.ResEVOL - self.ResPVOL),
54 | self.ResDemFl * S_avail / (self.ResEVOL - self.ResPVOL),
55 | ),
56 | self.StorRES - self.ResEVOL,
57 | )
58 | return Q
59 |
60 |
61 | # -Simple reservoir
62 | def QSimple(self, pcr):
63 | Q = pcr.max(
64 | pcr.min(
65 | self.ResKr * self.StorRES * (self.StorRES / self.ResSmax) ** self.ResB,
66 | self.StorRES,
67 | ),
68 | self.StorRES - self.ResSmax,
69 | )
70 | return Q
71 |
72 |
73 | # -Calculates reservoir outflow and the fraction to release, depending on the type of reservoir (simple or advanced)
74 | def QRes(self, pcr):
75 | if self.ResSimple and self.ResAdvanced:
76 | Qout = pcr.ifthenelse(
77 | self.ResFunc == 1,
78 | QSimple(self, pcr),
79 | pcr.ifthenelse(self.ResFunc == 2, QAdv(self, pcr), 0),
80 | )
81 | elif self.ResSimple:
82 | Qout = pcr.ifthenelse(self.ResFunc == 1, QSimple(self, pcr), 0)
83 | else:
84 | Qout = pcr.ifthenelse(self.ResFunc == 2, QAdv(self, pcr), 0)
85 |
86 | return Qout
87 |
88 |
89 | # -init processes reservoirs
90 | def init(self, pcr, config):
91 | # -set the option to calculate the reservoir inflow, outflow and storage per component
92 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
93 | for i in pars:
94 | var = "Rep" + i + "_FLAG"
95 | setattr(self, var, config.getint("REPORTING", var))
96 |
97 | pcr.setglobaloption("matrixtable")
98 | # nominal map with reservoir IDs
99 | self.ResID = pcr.cover(
100 | pcr.readmap(self.inpath + config.get("RESERVOIR", "ResId")), 0
101 | )
102 | # boolean map with stations that are not reservoirs
103 | self.LocationsNoRes = pcr.ifthenelse(
104 | pcr.pcrand(pcr.scalar(self.Locations) > 0, pcr.scalar(self.ResID) == 0),
105 | pcr.boolean(1),
106 | pcr.boolean(0),
107 | )
108 |
109 | # lookup table with operational scheme to use (simple or advanced)
110 | ResFunc_Tab = self.inpath + config.get("RESERVOIR", "ResFuncStor")
111 | # Reservoir function
112 | self.ResFunc = pcr.cover(pcr.lookupscalar(ResFunc_Tab, 1, self.ResID), 0)
113 | try:
114 | # lookup table with coefficients for simple reservoirs
115 | ResSimple_Tab = self.inpath + config.get("RESERVOIR", "ResSimple")
116 | # Read coefficients for simple reservoirs
117 | self.ResKr = pcr.lookupscalar(ResSimple_Tab, 1, self.ResID)
118 | self.ResB = pcr.lookupscalar(ResSimple_Tab, 2, self.ResID)
119 | self.ResSmax = (
120 | pcr.lookupscalar(ResSimple_Tab, 3, self.ResID) * 10**6
121 | ) # convert to m3
122 | self.ResSimple = True
123 | except:
124 | self.ResSimple = False
125 | try:
126 | # lookup table with coefficients for advanced reservoirs
127 | ResAdvanced_Tab = self.inpath + config.get("RESERVOIR", "ResAdv")
128 | # Read coefficients for advanced reservoirs
129 | self.ResEVOL = (
130 | pcr.lookupscalar(ResAdvanced_Tab, 1, self.ResID) * 10**6
131 | ) # convert to m3
132 | self.ResPVOL = (
133 | pcr.lookupscalar(ResAdvanced_Tab, 2, self.ResID) * 10**6
134 | ) # convert to m3
135 | self.ResMaxFl = (
136 | pcr.lookupscalar(ResAdvanced_Tab, 3, self.ResID) * 10**6
137 | ) # convert to m3/d
138 | self.ResDemFl = (
139 | pcr.lookupscalar(ResAdvanced_Tab, 4, self.ResID) * 10**6
140 | ) # convert to m3/d
141 | self.ResFlStart = pcr.lookupscalar(ResAdvanced_Tab, 5, self.ResID)
142 | self.ResFlEnd = pcr.lookupscalar(ResAdvanced_Tab, 6, self.ResID)
143 | self.ResAdvanced = True
144 | except:
145 | self.ResAdvanced = False
146 | pcr.setglobaloption("columntable")
147 |
148 |
149 | # -initial conditions reservoirs
150 | def initial(self, pcr, config):
151 | ResStor_Tab = self.inpath + config.get("RESERVOIR", "ResFuncStor")
152 | ResStor = (
153 | pcr.cover(pcr.lookupscalar(ResStor_Tab, 2, self.ResID), 0) * 10**6
154 | ) # convert to m3
155 | try:
156 | self.StorRES = self.StorRES + ResStor
157 | # -Qfrac for reservoir cells should be zero, else 1
158 | self.QFRAC = pcr.ifthenelse(self.ResID != 0, pcr.scalar(0), self.QFRAC)
159 | except:
160 | self.StorRES = ResStor
161 | # -Qfrac for reservoir cells should be zero, else 1
162 | self.QFRAC = pcr.ifthenelse(self.ResID != 0, pcr.scalar(0), 1)
163 |
164 |
165 | # -initial conditions reporting reservoirs
166 | def initial_reporting(self, pcr, pcrm):
167 | self.ResInTSS = pcrm.TimeoutputTimeseries(
168 | "ResInTSS", self, self.ResID, noHeader=True
169 | )
170 | self.ResOutTSS = pcrm.TimeoutputTimeseries(
171 | "ResOutTSS", self, self.ResID, noHeader=True
172 | )
173 | self.ResStorTSS = pcrm.TimeoutputTimeseries(
174 | "ResStorTSS", self, self.ResID, noHeader=True
175 | )
176 | self.ResETaTSS = pcrm.TimeoutputTimeseries(
177 | "ResETaTSS", self, self.ResID, noHeader=True
178 | )
179 | self.ResInCalTSS = pcrm.TimeoutputTimeseries(
180 | "ResInCalTSS", self, self.ResID, noHeader=True
181 | )
182 | # -set reporting of water balances for individual components
183 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
184 | for i in pars:
185 | if eval("self." + i + "RA_FLAG") and getattr(self, "Rep" + i + "_FLAG"):
186 | setattr(
187 | self,
188 | "Res" + i + "InTSS",
189 | pcrm.TimeoutputTimeseries(
190 | "Res" + i + "InTSS", self, self.ResID, noHeader=True
191 | ),
192 | )
193 | setattr(
194 | self,
195 | "Res" + i + "OutTSS",
196 | pcrm.TimeoutputTimeseries(
197 | "Res" + i + "OutTSS", self, self.ResID, noHeader=True
198 | ),
199 | )
200 | setattr(
201 | self,
202 | "Res" + i + "StorTSS",
203 | pcrm.TimeoutputTimeseries(
204 | "Res" + i + "StorTSS", self, self.ResID, noHeader=True
205 | ),
206 | )
207 |
--------------------------------------------------------------------------------
/utilities/reporting.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2019 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, W. Immerzeel, S. Khanal, A. Lutz, G. Simons, W. Terink
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 |
23 | #-Function to report the output
24 | def REPM(self, pcr, tot, var, fname, outops, TSS=False, MAP=False, AVG=False):
25 | dim = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
26 | if self.calendar.isleap(self.curdate.year):
27 | dim[1] = 29
28 |
29 | if self.calendar.isleap(self.curdate.year):
30 | ydays = 366
31 | else:
32 | ydays = 365
33 |
34 | if outops == 'Day':
35 | if TSS:
36 | TSS.sample(var)
37 | if MAP:
38 | self.report(var, self.outpath + fname)
39 | tot = 0
40 |
41 | elif outops == 'Month':
42 | tot = tot + var
43 | if self.curdate.day == dim[self.curdate.month-1]:
44 | if TSS:
45 | TSS.sample(tot)
46 | if MAP:
47 | self.report(tot, self.outpath + fname + 'M')
48 | if AVG:
49 | self.report(tot / dim[self.curdate.month-1], self.outpath + fname + 'M')
50 | tot = 0
51 |
52 | elif outops == 'Year':
53 | if self.timecalc.julian(self)[0] != ydays:
54 | tot = tot + var
55 | else:
56 | tot = tot + var
57 | if TSS:
58 | TSS.sample(tot)
59 | if MAP:
60 | self.report(tot, self.outpath + fname + 'Y')
61 | if AVG:
62 | self.report(tot / ydays, self.outpath + fname + 'Y')
63 | tot = 0
64 |
65 | elif outops == 'MonthSum':
66 | if self.curdate.day != dim[self.curdate.month-1] and self.curdate.year >= self.startYear + self.spinUpYears:
67 | tot[self.curdate.month-1] = tot[self.curdate.month-1] + var
68 | if self.curdate.day == dim[self.curdate.month-1] and self.curdate.year == self.endYear:
69 | pcr.report(tot[self.curdate.month-1] / (self.simYears), self.outpath + fname + 'SumM' + str(self.curdate.month).zfill(2) + '.map')
70 |
71 | elif outops == 'YearSum':
72 | if self.curdate.year >= self.startYear + self.spinUpYears:
73 | tot = tot + var
74 | if self.curdate == self.enddate:
75 | pcr.report(tot / (self.simYears), self.outpath + fname + 'SumY.map')
76 |
77 | elif outops == 'MonthAvg':
78 | if self.curdate.day != dim[self.curdate.month-1] and self.curdate.year >= self.startYear + self.spinUpYears:
79 | tot[self.curdate.month-1] = tot[self.curdate.month-1] + var / dim[self.curdate.month-1]
80 | elif self.curdate.day == dim[self.curdate.month-1] and self.curdate.year == self.endYear:
81 | pcr.report(tot[self.curdate.month-1] / (self.simYears), self.outpath + fname + 'AvgM' + str(self.curdate.month).zfill(2) + '.map')
82 |
83 | elif outops == 'YearAvg':
84 | if self.curdate.year >= self.startYear + self.spinUpYears:
85 | tot = tot + var / ydays
86 | if self.curdate == self.enddate:
87 | pcr.report(tot / (self.simYears), self.outpath + fname + 'AvgY.map')
88 |
89 | else:
90 | if self.curdate != self.enddate:
91 | tot = tot + var
92 | else:
93 | pcr.report(tot, self.outpath + fname + '.map')
94 | tot = 0
95 | return tot
96 |
97 | #-Function to initialise the reporting
98 | def reporting(self, pcr, tot, var):
99 | for outops in ['Day','Month','Year','Final','MonthSum','YearSum','MonthAvg','YearAvg']:
100 | try:
101 | TSS = eval('self.' + tot + '_' + outops + 'TS')
102 | except:
103 | TSS = False
104 | try:
105 | MAP = eval('self.' + tot + '_' + outops + '_map')
106 | except:
107 | MAP = False
108 | try:
109 | AVG = eval('self.' + tot + '_' + outops + '_avg')
110 | except:
111 | AVG = False
112 | if TSS or MAP or AVG:
113 | setattr(self, tot + '_'+outops, REPM(self, pcr, eval('self.'+tot+'_'+outops), var, eval('self.'+tot+'_fname'), outops, TSS, MAP, AVG))
114 |
115 | #-read reporting from csv file
116 | def initial(self, pcr, csv, pcrm):
117 | #-set reporting options and read initial values
118 | with open(self.inpath + self.RepTab, 'r') as f:
119 | next(f) # skip headings
120 | reader = csv.reader(f, delimiter=',')
121 | for row in reader:
122 | if row[0][:1] != '#':
123 | i = row[0]
124 | mapoutops = row[1]
125 | avgoutops = row[2]
126 | TSoutops = row[3]
127 | if mapoutops == 'NONE' and avgoutops == 'NONE' and TSoutops == 'NONE':
128 | print(i + ' will NOT be reported')
129 | else:
130 | print(i + ' will be reported')
131 | fname = row[4]
132 | setattr(self, i+'_fname', fname)
133 | setattr(self, i, 0.) # use this instead of the commented part above, because it is more logical to always zero as initial condition for reporting
134 | if mapoutops != 'NONE':
135 | mapoutops = mapoutops.split("+")
136 | for j in mapoutops:
137 | if j == 'D':
138 | setattr(self, i+'_Day', eval('self.'+i))
139 | setattr(self, i+'_Day_map', 1)
140 | elif j == 'M':
141 | setattr(self, i+'_Month', eval('self.'+i))
142 | setattr(self, i+'_Month_map', 1)
143 | elif j == 'Y':
144 | setattr(self, i+'_Year', eval('self.'+i))
145 | setattr(self, i+'_Year_map', 1)
146 | elif j == 'MS':
147 | setattr(self, i+'_MonthSum', {m: self.DEM * 0 for m in range(0, 13, 1)})
148 | setattr(self, i+'_MonthSum_map', 1)
149 | elif j == 'YS':
150 | setattr(self, i+'_YearSum', eval('self.'+i))
151 | setattr(self, i+'_YearSum_map', 1)
152 | else:
153 | setattr(self, i+'_Final', eval('self.'+i))
154 | setattr(self, i+'_Final_map', 1)
155 | if avgoutops != 'NONE':
156 | avgoutops = avgoutops.split("+")
157 | for j in avgoutops:
158 | if j == 'M':
159 | setattr(self, i+'_Month', eval('self.'+i))
160 | setattr(self, i+'_Month_avg', 1)
161 | elif j == 'Y':
162 | setattr(self, i+'_Year', eval('self.'+i))
163 | setattr(self, i+'_Year_avg', 1)
164 | elif j == 'MA':
165 | setattr(self, i+'_MonthAvg', {m: self.DEM * 0 for m in range(0, 13, 1)})
166 | setattr(self, i+'_MonthAvg_avg', 1)
167 | elif j == 'YA':
168 | setattr(self, i+'_YearAvg', eval('self.'+i))
169 | setattr(self, i+'_YearAvg_avg', 1)
170 | if TSoutops != 'NONE':
171 | TSoutops = TSoutops.split("+")
172 | for j in TSoutops:
173 | if j == 'D':
174 | setattr(self, i+'_Day', eval('self.'+i))
175 | setattr(self, i+'_DayTS', eval('pcrm.TimeoutputTimeseries("'+fname+'DTS'+'", self, self.Locations, noHeader=False)'))
176 | elif j == 'M':
177 | setattr(self, i+'_Month', eval('self.'+i))
178 | setattr(self, i+'_MonthTS', eval('pcrm.TimeoutputTimeseries("'+fname+'MTS'+'", self, self.Locations, noHeader=False)'))
179 | elif j == 'Y':
180 | setattr(self, i+'_Year', eval('self.'+i))
181 | setattr(self, i+'_YearTS', eval('pcrm.TimeoutputTimeseries("'+fname+'YTS'+'", self, self.Locations, noHeader=False)'))
--------------------------------------------------------------------------------
/modules/dhsvm.py:
--------------------------------------------------------------------------------
1 | # Soil erosion module using the DHSVM soil erosion model
2 | # Copyright (C) 2020 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
3 | # Email: jeekhout@cebas.csic.es
4 | #
5 | # This program is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # This program is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with this program. If not, see .
17 |
18 |
19 | print('DHSVM module imported')
20 |
21 | #-Detachment of soil particles by raindrop impact (kg/m2/s)
22 | def DetachmentRaindrop(self, pcr, k_r, F_w, C_G, C_C, M_R, M_D):
23 | D_R = k_r * F_w * pcr.max(0, 1 - C_G - self.NoErosion_DHSVM) * (pcr.max(0, 1 - C_C) * M_R + M_D)
24 | return D_R
25 |
26 | #-Rainfall drop momentum (kg2/s3)
27 | def MomentumRainDrop(self, pcr, np, precSum):
28 | #-store daily precipitation
29 | precipDaily = precSum
30 |
31 | #-determine sum over all raster cells
32 | precIntTotal = np.sum(pcr.pcr2numpy(precSum, 0))
33 |
34 | #-initiate hour counter and set M_r to 0
35 | hour = 0
36 | M_R = self.DEM * 0
37 |
38 | #-while precipitation sum is larger than 0
39 | while (precIntTotal > 0):
40 | #-determine hourly rainfall intensity
41 | I = pcr.max(0, self.Alpha * precipDaily - ((self.Alpha**2 * precipDaily) / 2) * hour)
42 |
43 | #-determine coefficient alpha
44 | alpha = pcr.scalar(I >= 100) * 11.75 * 1e-8
45 | alpha = alpha + pcr.scalar(pcr.pcrand(I >= 50, I < 100)) * 6.12 * 1e-8
46 | alpha = alpha + pcr.scalar(pcr.pcrand(I >= 10, I < 50)) * 3.75 * 1e-8
47 | alpha = alpha + pcr.scalar(I < 10) * 2.69 * 1e-8
48 |
49 | #-determine coefficient beta
50 | beta = pcr.scalar(I >= 100) * 1.2821
51 | beta = beta + pcr.scalar(pcr.pcrand(I >= 50, I < 100)) * 1.4242
52 | beta = beta + pcr.scalar(pcr.pcrand(I >= 10, I < 50)) * 1.5545
53 | beta = beta + pcr.scalar(I < 10) * 1.6896
54 |
55 | #-calculate rainfall drop momentum based on hourly precipitation intensity and multiply with 1/24
56 | M_R_hour = alpha * I**beta * 1/24
57 |
58 | #-add to daily rainfall drop momentum
59 | M_R = M_R + M_R_hour
60 |
61 | #-determine sum over all raster cells
62 | precIntTotal = np.sum(pcr.pcr2numpy(I, 0))
63 |
64 | #-increase hour with 1
65 | hour += 1
66 | return M_R
67 |
68 | #-Leaf drip momentum (kg2 / s3)
69 | def MomentumLeafDrip(self, pcr, D, X, rho, DRAIN, g, C_C):
70 | #-determine coefficient a
71 | a = pcr.scalar(pcr.pcrand(D >= 0.033, X >= 7.5)) * 5.14
72 | a = a + pcr.scalar(pcr.pcrand(D >= 0.033, X < 7.5)) * 1.93
73 | a = a + pcr.scalar(D < 0.033) * 0
74 |
75 | #-determine coefficient b
76 | b = pcr.scalar(pcr.pcrand(D >= 0.033, X >= 7.5)) * 660
77 | b = b + pcr.scalar(pcr.pcrand(D >= 0.033, X < 7.5)) * 1640
78 | b = b + pcr.scalar(D < 0.033) * 2200
79 |
80 | #-Ratio M/beta (m)
81 | M_beta = a + b * D
82 | #-Leaf drip fall speed (m/s)
83 | V = (M_beta * g * (1 - pcr.exp(-2*X/M_beta)))**0.5
84 | #-Set the proportion of the drainage that falls as leaf drip equal to the canopy cover
85 | DRIP = C_C
86 | #-Determine the momentum squared for leaf drip (kg2 / s3)
87 | M_D = (((V * rho * self.pi * D**3) / 6)**2 * DRIP * DRAIN) / ((self.pi * D**3) / 6)
88 | return M_D
89 |
90 | #-Detachment of soil particles by runoff (kg/m2/s)
91 | def DetachmentRunoff(self, pcr, beta_de, dy, v_s, TC, C_G):
92 | D_of = beta_de * dy * v_s * TC * pcr.max(0, 1 - self.NoErosion_DHSVM)
93 |
94 | #-set values in channels to 0 in case channels should be excluded
95 | if self.exclChannelsFLAG == 1:
96 | D_of = D_of * self.Hillslope
97 | return D_of
98 |
99 | #-Detachment efficiency (-)
100 | def DetachmentEfficiency(self, pcr, C_s):
101 | beta_de = 0.79 * pcr.exp(-0.6 * C_s)
102 | return beta_de
103 |
104 | #-Settling velocity (m/s)
105 | def SettlingVelocity(self, pcr, g, rho_s, rho, nu, d50):
106 | #-Initial guess of the settling velocity (m/s)
107 | v_s = (4/3 * g * (rho_s / rho) - 1)**0.5 * d50
108 | #-Reynolds number (-)
109 | Rn = (v_s * d50) / nu
110 | #-Drag coefficient (-)
111 | Cd = (24 / Rn) + (3 / (Rn**0.5)) + 0.34
112 | #-Settling velocity (m/s)
113 | v_s = ((4/3 * g * ((rho_s/rho) - 1) * d50) / Cd)**0.5
114 | return v_s
115 |
116 | #-Stream power (kg/m/s3)
117 | def StreamPower(self, pcr, rho, g, Q, S):
118 | SP = rho * g * Q * S
119 | return SP
120 |
121 | #-Transport capacity (m3/m3)
122 | def TransportCapacity(self, pcr, d50, rho, rho_s, S, h, g, SP, SP_cr):
123 | TC = (0.05 / (d50 * (rho_s / rho - 1)**2)) * ((S * h) / g)**0.5 * pcr.max(0, (SP - SP_cr))
124 | return TC
125 |
126 | #-Water depth (m), flow velocity (m/s)
127 | def Manning(self, pcr, Q, n, WD_ratio, S):
128 | #-Determine flow area and water depth
129 | A = ((Q * n * (2 * ((WD_ratio**2 + 1) / WD_ratio)**0.5)**(2/3)) / S**0.5)**(3/4)
130 | h = (A / WD_ratio)**0.5
131 |
132 | #-Set minimum value for flow area and water depth
133 | h = pcr.max(self.h_min_DHSVM, h)
134 | return h
135 |
136 | #-init processes dhsvm
137 | def init(self, pcr, config):
138 | #-read table with DHSVM landuse specific model parameters
139 | pcr.setglobaloption('matrixtable')
140 | dhsvm_table = self.inpath + config.get('DHSVM', 'dhsvm_table')
141 | self.D_DHSVM = pcr.lookupscalar(dhsvm_table, 1, self.LandUse)
142 | self.X_DHSVM = pcr.lookupscalar(dhsvm_table, 2, self.LandUse)
143 | self.C_G_DHSVM = pcr.lookupscalar(dhsvm_table, 3, self.LandUse)
144 | self.C_C_table_DHSVM = pcr.lookupscalar(dhsvm_table, 4, self.LandUse)
145 | self.n_table_DHSVM = pcr.lookupscalar(dhsvm_table, 5, self.LandUse)
146 | self.root_cohesion_DHSVM = pcr.lookupscalar(dhsvm_table, 6, self.LandUse)
147 | self.NoErosion_DHSVM = pcr.lookupscalar(dhsvm_table, 7, self.LandUse)
148 |
149 | #-read table with soil cohesion per soil class
150 | self.SoilClass_DHSVM = pcr.readmap(self.inpath + config.get('DHSVM', 'SoilClass'))
151 | dhsvm_cohesion_table = self.inpath + config.get('DHSVM', 'dhsvm_cohesion_table')
152 | self.soil_cohesion_DHSVM = pcr.lookupscalar(dhsvm_cohesion_table, 1, self.SoilClass_DHSVM)
153 | pcr.setglobaloption('columntable')
154 |
155 | #-determine overall cohesion from soil and root cohesion
156 | self.C_s_DHSVM = self.soil_cohesion_DHSVM + self.root_cohesion_DHSVM
157 |
158 | #-read other model parameters
159 | self.WD_ratio_DHSVM = config.getfloat('DHSVM', 'WD_ratio')
160 | self.rho_DHSVM = config.getfloat('DHSVM', 'rho')
161 | self.rho_s_DHSVM = config.getfloat('DHSVM', 'rho_s')
162 | self.deltaClay_DHSVM = config.getfloat('DHSVM', 'deltaClay') * 1e-6
163 | self.deltaSilt_DHSVM = config.getfloat('DHSVM', 'deltaSilt') * 1e-6
164 | self.deltaSand_DHSVM = config.getfloat('DHSVM', 'deltaSand') * 1e-6
165 | self.k_r_DHSVM = config.getfloat('DHSVM', 'k_r')
166 | self.h_min_DHSVM = config.getfloat('DHSVM', 'h_min')
167 | self.SP_crit_DHSVM = config.getfloat('DHSVM', 'SP_crit')
168 |
169 | #-define constants
170 | self.F_w_DHSVM = 1
171 | self.g_DHSVM = 9.81
172 | self.visc_DHSVM = 1e-06
173 |
174 | #-determine median grain size
175 | if self.PedotransferFLAG == 1:
176 | self.D50_DHSVM = pcr.ifthenelse(self.RootClayMap > 0.5, pcr.scalar(self.deltaClay_DHSVM), 0)
177 | self.D50_DHSVM = pcr.ifthenelse(self.RootClayMap + self.RootSiltMap > 0.5, self.deltaClay_DHSVM + (self.deltaSilt_DHSVM - self.deltaClay_DHSVM) * (0.5 - self.RootClayMap) / self.RootSiltMap, 0) + self.D50_DHSVM
178 | self.D50_DHSVM = pcr.ifthenelse(self.RootClayMap + self.RootSiltMap < 0.5, self.deltaSilt_DHSVM + (self.deltaSand_DHSVM - self.deltaSilt_DHSVM) * (self.RootSandMap - 0.5) / self.RootSandMap, 0) + self.D50_DHSVM
179 | else:
180 | self.D50_DHSVM = config.getfloat('DHSVM', 'D50') * 1e-6
181 |
182 | #-dynamic processes dhsvm
183 | def dynamic(self, pcr, np, Precip, Q):
184 | #-determine canopy cover from LAI
185 | if self.DynVegFLAG == 1:
186 | C_C_DHSVM = pcr.min(1, self.LAI)
187 | else:
188 | C_C_DHSVM = self.C_C_table_DHSVM
189 |
190 | #-determine rainfall drop momentum (kg2/s3)
191 | M_R = self.dhsvm.MomentumRainDrop(self, pcr, np, Precip)
192 |
193 | #-determine water drainage rate from canopy (m/s)
194 | DRAIN = Precip * 1e-3 / (24 * 60 * 60)
195 |
196 | #-determine leaf drop momentum (kg2/s3)
197 | M_D = self.dhsvm.MomentumLeafDrip(self, pcr, self.D_DHSVM, self.X_DHSVM, self.rho_DHSVM, DRAIN, self.g_DHSVM, C_C_DHSVM)
198 |
199 | #-determine detachment of soil particles by raindrop impact (kg/m2/s)
200 | D_R = self.dhsvm.DetachmentRaindrop(self, pcr, self.k_r_DHSVM, self.F_w_DHSVM, self.C_G_DHSVM, C_C_DHSVM, M_R, M_D)
201 |
202 | #-report detachment of soil particles by raindrop impact (ton / cell)
203 | self.reporting.reporting(self, pcr, 'DetRn', D_R * pcr.cellarea() * 1e-3 * (24 * 60 * 60))
204 |
205 | #-determine water depth (m) and width of the flow (m)
206 | h = self.dhsvm.Manning(self, pcr, Q, self.n_table_DHSVM, self.WD_ratio_DHSVM, self.Slope)
207 |
208 | #-determine detachment efficiency (-)
209 | beta_de = self.dhsvm.DetachmentEfficiency(self, pcr, self.C_s_DHSVM)
210 |
211 | #-determine settling velocity (m/s)
212 | v_s = self.dhsvm.SettlingVelocity(self, pcr, self.g_DHSVM, self.rho_s_DHSVM, self.rho_DHSVM, self.visc_DHSVM, self.D50_DHSVM)
213 |
214 | #-determine stream power (kg m/s3)
215 | SP = self.dhsvm.StreamPower(self, pcr, self.rho_DHSVM, self.g_DHSVM, Q, self.Slope)
216 |
217 | #-determine transport capacity (m3/m3)
218 | TC = self.dhsvm.TransportCapacity(self, pcr, self.D50_DHSVM, self.rho_DHSVM, self.rho_s_DHSVM, self.Slope, h, self.g_DHSVM, SP, self.SP_crit_DHSVM)
219 |
220 | #-determine detachment of soil particles by runoff (kg/m2/s)
221 | D_of = self.dhsvm.DetachmentRunoff(self, pcr, beta_de, pcr.celllength(), v_s, TC, self.C_G_DHSVM)
222 |
223 | #-report detachment of soil particles by runoff (ton / cell)
224 | self.reporting.reporting(self, pcr, 'DetRun', D_of * pcr.cellarea() * 1e-3 * (24 * 60 * 60))
225 |
226 | #-determine mass of sediment in transport (kg/m2/s)
227 | sed = D_R + D_of
228 |
229 | #-report sediment in transport (ton / cell)
230 | self.reporting.reporting(self, pcr, 'SedTrans', sed * pcr.cellarea() * 1e-3 * (24 * 60 * 60))
231 |
232 | return sed
233 |
--------------------------------------------------------------------------------
/modules/shetran.py:
--------------------------------------------------------------------------------
1 | # Soil erosion module using the SHETRAN soil erosion model
2 | # Copyright (C) 2020 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
3 | # Email: jeekhout@cebas.csic.es
4 | #
5 | # This program is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # This program is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with this program. If not, see .
17 |
18 |
19 | print('SHETRAN module imported')
20 |
21 | #-Detachment of soil particles by raindrop impact (kg/m2/s)
22 | def DetachmentRaindrop(self, pcr, k_r, F_w, C_g, C_r, M_r, M_d):
23 | D_r = k_r * F_w * pcr.max(0, 1 - C_g - C_r - self.NoErosion_SHETRAN) * (M_r + M_d)
24 | return D_r
25 |
26 | #-Rainfall drop momentum (kg2/s3)
27 | def MomentumRainDrop(self, pcr, np, C_c, precSum):
28 | #-store daily precipitation
29 | precipDaily = precSum
30 |
31 | #-determine sum over all raster cells
32 | precIntTotal = np.sum(pcr.pcr2numpy(precSum, 0))
33 |
34 | #-initiate hour counter and set M_r to 0
35 | hour = 0
36 | M_r = self.DEM * 0
37 |
38 | #-while precipitation sum is larger than 0
39 | while (precIntTotal > 0):
40 | #-determine hourly rainfall intensity
41 | I = pcr.max(0, self.Alpha * precipDaily - ((self.Alpha**2 * precipDaily) / 2) * hour)
42 |
43 | a_1 = pcr.scalar(I >= 100) * 11.737 * 1e-8
44 | a_1 = a_1 + pcr.scalar(pcr.pcrand(I >= 50, I < 100)) * 6.1192 * 1e-8
45 | a_1 = a_1 + pcr.scalar(pcr.pcrand(I >= 10, I < 50)) * 3.7514 * 1e-8
46 | a_1 = a_1 + pcr.scalar(I < 10) * 2.6893 * 1e-8
47 |
48 | b_1 = pcr.scalar(I >= 100) * 1.2821
49 | b_1 = b_1 + pcr.scalar(pcr.pcrand(I >= 50, I < 100)) * 1.4242
50 | b_1 = b_1 + pcr.scalar(pcr.pcrand(I >= 10, I < 50)) * 1.5545
51 | b_1 = b_1 + pcr.scalar(I < 10) * 1.6896
52 |
53 | #-calculate rainfall drop momentum based on hourly precipitation intensity and multiply with 1/24
54 | M_r_hour = (1 - C_c) * a_1 * I**b_1 * 1/24
55 |
56 | #-add to daily rainfall drop momentum
57 | M_r = M_r + M_r_hour
58 |
59 | #-determine sum over all raster cells
60 | precIntTotal = np.sum(pcr.pcr2numpy(I, 0))
61 |
62 | #-increase hour with 1
63 | hour += 1
64 | return M_r
65 |
66 | #-Leaf drip momentum (kg2/s3)
67 | def MomentumLeafDrip(self, pcr, d_l, X, rho, DRAINA, g, C_c):
68 | a_2 = pcr.scalar(pcr.pcrand(d_l >= 0.033, X >= 7.5)) * 5.14
69 | a_2 = a_2 + pcr.scalar(pcr.pcrand(d_l >= 0.033, X < 7.5)) * 1.93
70 | a_2 = a_2 + pcr.scalar(d_l < 0.033) * 0
71 |
72 | b_2 = pcr.scalar(pcr.pcrand(d_l >= 0.033, X >= 7.5)) * 660
73 | b_2 = b_2 + pcr.scalar(pcr.pcrand(d_l >= 0.033, X < 7.5)) * 1640
74 | b_2 = b_2 + pcr.scalar(d_l < 0.033) * 2200
75 |
76 | M_beta = a_2 + b_2 * d_l
77 | V_d = (M_beta * g * (1 - pcr.exp(-2*X/M_beta)))**0.5
78 |
79 | L_d = C_c
80 |
81 | M_d = self.pi / 6 * V_d**2 * rho**2 * d_l**3 * L_d * DRAINA
82 | return M_d
83 |
84 | #-Detachment of soil particles by runoff (kg/m2/s)
85 | def DetachmentRunoff(self, pcr, k_f, C_r, tau, tau_cr, C_g):
86 | D_q = pcr.ifthenelse(tau > tau_cr, k_f * pcr.max(0, 1 - C_g - C_r - self.NoErosion_SHETRAN) * (tau/tau_cr - 1), 0)
87 |
88 | #-set values in channels to 0 in case channels should be excluded
89 | if self.exclChannelsFLAG == 1:
90 | D_q = D_q * self.Hillslope
91 | return D_q
92 |
93 | #-Water depth (m) and flow width (m)
94 | def Manning(self, pcr, Q, n, WD_ratio, S):
95 | A = ((Q * n * (2 * ((WD_ratio**2 + 1) / WD_ratio)**0.5)**(2/3)) / S**0.5)**(3/4)
96 | h = (A / WD_ratio)**0.5
97 | l = WD_ratio * h
98 | return h, l
99 |
100 | #-Shear stress (N/m2)
101 | def ShearStress(self, pcr, rho, g, h, S):
102 | tau = rho * g * h * S
103 | return tau
104 |
105 | #-Critical shear stress (N/m2)
106 | def ShearStressCritical(self, pcr, tau, rho_s, rho, g, D_50, nu):
107 | R_star = pcr.max(0.03, (D_50 * (tau / rho)**0.5) / nu)
108 |
109 | a_3 = pcr.scalar(R_star > 400) * 0.056
110 | a_3 = a_3 + pcr.scalar(pcr.pcrand(R_star > 135, R_star <= 400)) * 0.03
111 | a_3 = a_3 + pcr.scalar(pcr.pcrand(R_star > 30, R_star <= 135)) * 0.013
112 | a_3 = a_3 + pcr.scalar(pcr.pcrand(R_star > 6, R_star <= 30)) * 0.033
113 | a_3 = a_3 + pcr.scalar(pcr.pcrand(R_star > 1, R_star <= 6)) * 0.1
114 | a_3 = a_3 + pcr.scalar(pcr.pcrand(R_star >= 0.03, R_star <= 1)) * 0.1
115 |
116 | b_3 = pcr.scalar(R_star > 400) * 0
117 | b_3 = b_3 + pcr.scalar(pcr.pcrand(R_star > 135, R_star <= 400)) * 0.1
118 | b_3 = b_3 + pcr.scalar(pcr.pcrand(R_star > 30, R_star <= 135)) * 0.28
119 | b_3 = b_3 + pcr.scalar(pcr.pcrand(R_star > 6, R_star <= 30)) * 0
120 | b_3 = b_3 + pcr.scalar(pcr.pcrand(R_star > 1, R_star <= 6)) * -0.62
121 | b_3 = b_3 + pcr.scalar(pcr.pcrand(R_star >= 0.03, R_star <= 1)) * -0.3
122 |
123 | tau_cr = (rho_s - rho) * g * D_50 * a_3 * R_star**b_3
124 | return tau_cr
125 |
126 |
127 | #-Capacity particulate transport rate for overland flow (m3/s)
128 | def Capacity(self, pcr, np, tau, tau_cr, rho, rho_s, g, h, l, Q, D50, S):
129 | if self.CapacityEquation == 1: # Yalin (1963)
130 | a = 2.45 * (tau_cr / ((rho_s - rho) * g * D50))**0.5 * (rho_s / rho)**(-0.4)
131 | delta = pcr.max(tau / tau_cr - 1, 0)
132 |
133 | G_tot = 0.635 * (tau / rho)**0.5 * l * D50 * delta * (1 - 1 / (a * pcr.max(1e-6, delta)) * pcr.ln(1 + a * delta))
134 | elif self.CapacityEquation == 2: # Engelund & Hansen (1963)
135 | G_tot = pcr.ifthenelse(h > 0, (0.05 * Q**2 * S**(3/2)) / ((g * h)**0.5 * (rho_s / rho - 1)**2 * D50 * l), 0)
136 | return G_tot
137 |
138 | #-Mass of sediment transported (kg/m2/s)
139 | def sedimentTransported(self, pcr, D_r, D_q, G_tot, rho_s):
140 | #-determine transport capacity in (kg/m2/s)
141 | TC = G_tot * rho_s / pcr.cellarea()
142 | sed = pcr.ifthenelse(D_r + D_q < TC, D_r + D_q, TC)
143 | return sed
144 |
145 | #-init processes shetran
146 | def init(self, pcr, config):
147 | #-read table with SHETRAN landuse specific model parameters
148 | pcr.setglobaloption('matrixtable')
149 | shetran_table = self.inpath + config.get('SHETRAN', 'shetran_table')
150 | self.d_l_SHETRAN = pcr.lookupscalar(shetran_table, 1, self.LandUse)
151 | self.X_SHETRAN = pcr.lookupscalar(shetran_table, 2, self.LandUse)
152 | self.C_g_SHETRAN = pcr.lookupscalar(shetran_table, 3, self.LandUse)
153 | self.C_c_table_SHETRAN = pcr.lookupscalar(shetran_table, 4, self.LandUse)
154 | self.n_table_SHETRAN = pcr.lookupscalar(shetran_table, 5, self.LandUse)
155 | self.NoErosion_SHETRAN = pcr.lookupscalar(shetran_table, 6, self.LandUse)
156 | pcr.setglobaloption('columntable')
157 |
158 | #-read other model parameters
159 | self.WD_ratio_SHETRAN = config.getfloat('SHETRAN', 'WD_ratio')
160 | self.rho_SHETRAN = config.getfloat('SHETRAN', 'rho')
161 | self.rho_s_SHETRAN = config.getfloat('SHETRAN', 'rho_s')
162 | self.deltaClay_SHETRAN = config.getfloat('SHETRAN', 'deltaClay') * 1e-6
163 | self.deltaSilt_SHETRAN = config.getfloat('SHETRAN', 'deltaSilt') * 1e-6
164 | self.deltaSand_SHETRAN = config.getfloat('SHETRAN', 'deltaSand') * 1e-6
165 | self.CapacityEquation = config.getint('SHETRAN', 'capacityEquation')
166 | self.k_r_SHETRAN = config.getfloat('SHETRAN', 'k_r')
167 | self.k_f_SHETRAN = config.getfloat('SHETRAN', 'k_f')
168 |
169 | #-define some constants
170 | self.F_w_SHETRAN = 1
171 | self.g_SHETRAN = 9.81
172 | self.nu_SHETRAN = 1e-06
173 |
174 | #-determine median grain size
175 | if self.PedotransferFLAG == 1:
176 | self.D50_SHETRAN = pcr.ifthenelse(self.RootClayMap > 0.5, pcr.scalar(self.deltaClay_SHETRAN), 0)
177 | self.D50_SHETRAN = pcr.ifthenelse(self.RootClayMap + self.RootSiltMap > 0.5, self.deltaClay_SHETRAN + (self.deltaSilt_SHETRAN - self.deltaClay_SHETRAN) * (0.5 - self.RootClayMap) / self.RootSiltMap, 0) + self.D50_SHETRAN
178 | self.D50_SHETRAN = pcr.ifthenelse(self.RootClayMap + self.RootSiltMap < 0.5, self.deltaSilt_SHETRAN + (self.deltaSand_SHETRAN - self.deltaSilt_SHETRAN) * (self.RootSandMap - 0.5) / self.RootSandMap, 0) + self.D50_SHETRAN
179 | else:
180 | self.D50_SHETRAN = config.getfloat('SHETRAN', 'D50') * 1e-6
181 |
182 |
183 | #-dynamic processes shetran
184 | def dynamic(self, pcr, np, Precip, Q):
185 | #-determine canopy cover from LAI
186 | if self.DynVegFLAG == 1:
187 | C_c_SHETRAN = pcr.min(1, self.LAI)
188 | else:
189 | C_c_SHETRAN = self.C_c_table_SHETRAN
190 |
191 | #-determine rainfall drop momentum (kg2/s3)
192 | M_r = self.shetran.MomentumRainDrop(self, pcr, np, C_c_SHETRAN, Precip)
193 |
194 | #-determine water drainage rate from canopy (m/s)
195 | DRAINA = Precip * 1e-3 / (24 * 60 * 60)
196 |
197 | #-determine leaf drop momentum (kg2/s3)
198 | M_d = self.shetran.MomentumLeafDrip(self, pcr, self.d_l_SHETRAN, self.X_SHETRAN, self.rho_SHETRAN, DRAINA, self.g_SHETRAN, C_c_SHETRAN)
199 |
200 | #-determine detachment of soil particles by raindrop impact (kg/m2/s)
201 | D_r = self.shetran.DetachmentRaindrop(self, pcr, self.k_r_SHETRAN, self.F_w_SHETRAN, self.C_g_SHETRAN, self.RockFrac, M_r, M_d)
202 |
203 | #-report detachment of soil particles by raindrop impact (ton / cell)
204 | self.reporting.reporting(self, pcr, 'DetRn', D_r * pcr.cellarea() * 1e-3 * (24 * 60 * 60))
205 |
206 | #-determine water depth (m) and width of the flow (m)
207 | h, l = self.shetran.Manning(self, pcr, Q, self.n_table_SHETRAN, self.WD_ratio_SHETRAN, self.Slope)
208 |
209 | #-determine shear stress (N/m2)
210 | tau = self.shetran.ShearStress(self, pcr, self.rho_SHETRAN, self.g_SHETRAN, h, self.Slope)
211 |
212 | #-determine shear stress (N/m2)
213 | tau_cr = self.shetran.ShearStressCritical(self, pcr, tau, self.rho_s_SHETRAN, self.rho_SHETRAN, self.g_SHETRAN, self.D50_SHETRAN, self.nu_SHETRAN)
214 |
215 | #-determine detachment of soil particles by runoff (kg/m2/s)
216 | D_q = self.shetran.DetachmentRunoff(self, pcr, self.k_f_SHETRAN, self.RockFrac, tau, tau_cr, self.C_g_SHETRAN)
217 |
218 | #-report detachment of soil particles by runoff (ton / cell)
219 | self.reporting.reporting(self, pcr, 'DetRun', D_q * pcr.cellarea() * 1e-3 * (24 * 60 * 60))
220 |
221 | #-Determine transport capacity of the flow (m3/s)
222 | G_tot = self.shetran.Capacity(self, pcr, np, tau, tau_cr, self.rho_SHETRAN, self.rho_s_SHETRAN, self.g_SHETRAN, h, l, Q, self.D50_SHETRAN, self.Slope)
223 |
224 | #-determine mass of sediment in transport (kg/m2/s)
225 | sed = self.shetran.sedimentTransported(self, pcr, D_r, D_q, G_tot, self.rho_s_SHETRAN)
226 |
227 | #-report sediment in transport (ton / cell)
228 | self.reporting.reporting(self, pcr, 'SedTrans', sed * pcr.cellarea() * 1e-3 * (24 * 60 * 60))
229 |
230 | return sed
231 |
--------------------------------------------------------------------------------
/modules/lakes.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 | print("Lake module imported")
23 |
24 |
25 | # -Function that updates the lake storage and lake level given a measured lake level. If no lake
26 | # level is measured, then the actual storage is not updated with a measured level. The function
27 | # returns the updated storage and lake level
28 | def UpdateLakeHStore(self, pcr, pcrm):
29 | # -buffer actual storage
30 | OldStorage = self.StorRES
31 | # -Check if measured lake levels area available
32 | try:
33 | LakeLevel = pcr.readmap(pcrm.generateNameT(self.LLevel, self.counter))
34 | Level = True
35 | except:
36 | Level = False
37 | if Level:
38 | # -update lake storage according to measured water level
39 | self.StorRES = pcr.ifthenelse(
40 | self.UpdateLakeLevel,
41 | pcr.ifthenelse(
42 | pcr.defined(LakeLevel),
43 | pcr.ifthenelse(
44 | self.LakeSH_Func == 1,
45 | self.LakeSH_exp_a * pcr.exp(self.LakeSH_exp_b * LakeLevel),
46 | pcr.ifthenelse(
47 | self.LakeSH_Func == 2,
48 | self.LakeSH_pol_a1 * LakeLevel + self.LakeSH_pol_b,
49 | pcr.ifthenelse(
50 | self.LakeSH_Func == 3,
51 | (self.LakeSH_pol_a2 * LakeLevel**2)
52 | + self.LakeSH_pol_a1 * LakeLevel
53 | + self.LakeSH_pol_b,
54 | (self.LakeSH_pol_a3 * LakeLevel**3)
55 | + (self.LakeSH_pol_a2 * LakeLevel**2)
56 | + (self.LakeSH_pol_a1 * LakeLevel + self.LakeSH_pol_b),
57 | ),
58 | ),
59 | ),
60 | self.StorRES,
61 | ),
62 | self.StorRES,
63 | )
64 | # prevent storage becoming negative for whatever reason
65 | self.StorRES = pcr.max(self.StorRES, 0)
66 | # -Update the lake level based on the storage for lakes where no levels are measured
67 | LakeLevel = pcr.ifthenelse(
68 | self.UpdateLakeLevel,
69 | pcr.ifthenelse(
70 | pcr.defined(LakeLevel),
71 | LakeLevel,
72 | pcr.ifthenelse(
73 | self.LakeHS_Func == 1,
74 | self.LakeHS_exp_a * pcr.exp(self.LakeHS_exp_b * self.StorRES),
75 | pcr.ifthenelse(
76 | self.LakeHS_Func == 2,
77 | self.LakeHS_pol_a1 * self.StorRES + self.LakeHS_pol_b,
78 | pcr.ifthenelse(
79 | self.LakeHS_Func == 3,
80 | (self.LakeHS_pol_a2 * self.StorRES**2)
81 | + self.LakeHS_pol_a1 * self.StorRES
82 | + self.LakeHS_pol_b,
83 | (self.LakeHS_pol_a3 * self.StorRES**3)
84 | + (self.LakeHS_pol_a2 * self.StorRES**2)
85 | + self.LakeHS_pol_a1 * self.StorRES
86 | + self.LakeHS_pol_b,
87 | ),
88 | ),
89 | ),
90 | ),
91 | pcr.ifthenelse(
92 | self.LakeHS_Func == 1,
93 | self.LakeHS_exp_a * pcr.exp(self.LakeHS_exp_b * self.StorRES),
94 | pcr.ifthenelse(
95 | self.LakeHS_Func == 2,
96 | self.LakeHS_pol_a1 * self.StorRES + self.LakeHS_pol_b,
97 | pcr.ifthenelse(
98 | self.LakeHS_Func == 3,
99 | (self.LakeHS_pol_a2 * self.StorRES**2)
100 | + self.LakeHS_pol_a1 * self.StorRES
101 | + self.LakeHS_pol_b,
102 | (self.LakeHS_pol_a3 * self.StorRES**3)
103 | + (self.LakeHS_pol_a2 * self.StorRES**2)
104 | + self.LakeHS_pol_a1 * self.StorRES
105 | + self.LakeHS_pol_b,
106 | ),
107 | ),
108 | ),
109 | )
110 |
111 | else:
112 | # if no lake level map is available, then calculate the h based on storages
113 | LakeLevel = pcr.ifthenelse(
114 | self.LakeHS_Func == 1,
115 | self.LakeHS_exp_a * pcr.exp(self.LakeHS_exp_b * self.StorRES),
116 | pcr.ifthenelse(
117 | self.LakeHS_Func == 2,
118 | self.LakeHS_pol_a1 * self.StorRES + self.LakeHS_pol_b,
119 | pcr.ifthenelse(
120 | self.LakeHS_Func == 3,
121 | (self.LakeHS_pol_a2 * self.StorRES**2)
122 | + self.LakeHS_pol_a1 * self.StorRES
123 | + self.LakeHS_pol_b,
124 | (self.LakeHS_pol_a3 * self.StorRES**3)
125 | + (self.LakeHS_pol_a2 * self.StorRES**2)
126 | + self.LakeHS_pol_a1 * self.StorRES
127 | + self.LakeHS_pol_b,
128 | ),
129 | ),
130 | )
131 | self.StorRES = pcr.ifthenelse(self.LakeID != 0, self.StorRES, OldStorage)
132 | return LakeLevel, self.StorRES
133 |
134 |
135 | # -function that calculates the fraction of lake storage that is available for routing, and the lake outflow
136 | def QLake(self, pcr, LakeLevel):
137 | Qout = pcr.ifthenelse(
138 | self.LakeQH_Func == 1,
139 | self.LakeQH_exp_a * pcr.exp(self.LakeQH_exp_b * LakeLevel),
140 | pcr.ifthenelse(
141 | self.LakeQH_Func == 2,
142 | self.LakeQH_pol_a1 * LakeLevel + self.LakeQH_pol_b,
143 | pcr.ifthenelse(
144 | self.LakeQH_Func == 3,
145 | (self.LakeQH_pol_a2 * LakeLevel**2)
146 | + self.LakeQH_pol_a1 * LakeLevel
147 | + self.LakeQH_pol_b,
148 | (self.LakeQH_pol_a3 * LakeLevel**3)
149 | + (self.LakeQH_pol_a2 * LakeLevel**2)
150 | + self.LakeQH_pol_a1 * LakeLevel
151 | + self.LakeQH_pol_b,
152 | ),
153 | ),
154 | )
155 | Qout = pcr.max(0, Qout)
156 | Qout = Qout * 3600 * 24 # -convert to m3/d
157 | Qout = pcr.cover(Qout, 0) # -for non-lake cells, Qout is zero
158 | return Qout
159 |
160 |
161 | # -init processes lake
162 | def init(self, pcr, config):
163 | # -set the option to calculate the lake inflow, outflow and storage per component
164 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
165 | for i in pars:
166 | var = "Rep" + i + "_FLAG"
167 | setattr(self, var, config.getint("REPORTING", var))
168 |
169 | pcr.setglobaloption("matrixtable")
170 | # nominal map with lake IDs
171 | self.LakeID = pcr.cover(pcr.readmap(self.inpath + config.get("LAKE", "LakeId")), 0)
172 | # lookup table with function for each lake (exp, 1-order poly, 2-order poly, 3-order poly)
173 | LakeFunc_Tab = self.inpath + config.get("LAKE", "LakeFunc")
174 | # lookup table with Qh-coeficients for each lake
175 | LakeQH_Tab = self.inpath + config.get("LAKE", "LakeQH")
176 | # lookup table with Sh-coeficients for each lake
177 | LakeSH_Tab = self.inpath + config.get("LAKE", "LakeSH")
178 | # lookup table with hS-coeficients for each lake
179 | LakeHS_Tab = self.inpath + config.get("LAKE", "LakeHS")
180 | # create lake coefficient maps
181 | self.LakeQH_Func = pcr.lookupnominal(LakeFunc_Tab, 1, self.LakeID)
182 | self.LakeSH_Func = pcr.lookupnominal(LakeFunc_Tab, 2, self.LakeID)
183 | self.LakeHS_Func = pcr.lookupnominal(LakeFunc_Tab, 3, self.LakeID)
184 | # Read QH coefficients
185 | self.LakeQH_exp_a = pcr.lookupscalar(LakeQH_Tab, 1, self.LakeID)
186 | self.LakeQH_exp_b = pcr.lookupscalar(LakeQH_Tab, 2, self.LakeID)
187 | self.LakeQH_pol_b = pcr.lookupscalar(LakeQH_Tab, 3, self.LakeID)
188 | self.LakeQH_pol_a1 = pcr.lookupscalar(LakeQH_Tab, 4, self.LakeID)
189 | self.LakeQH_pol_a2 = pcr.lookupscalar(LakeQH_Tab, 5, self.LakeID)
190 | self.LakeQH_pol_a3 = pcr.lookupscalar(LakeQH_Tab, 6, self.LakeID)
191 | # Read SH coefficients
192 | self.LakeSH_exp_a = pcr.lookupscalar(LakeSH_Tab, 1, self.LakeID)
193 | self.LakeSH_exp_b = pcr.lookupscalar(LakeSH_Tab, 2, self.LakeID)
194 | self.LakeSH_pol_b = pcr.lookupscalar(LakeSH_Tab, 3, self.LakeID)
195 | self.LakeSH_pol_a1 = pcr.lookupscalar(LakeSH_Tab, 4, self.LakeID)
196 | self.LakeSH_pol_a2 = pcr.lookupscalar(LakeSH_Tab, 5, self.LakeID)
197 | self.LakeSH_pol_a3 = pcr.lookupscalar(LakeSH_Tab, 6, self.LakeID)
198 | # Read HS coefficients
199 | self.LakeHS_exp_a = pcr.lookupscalar(LakeHS_Tab, 1, self.LakeID)
200 | self.LakeHS_exp_b = pcr.lookupscalar(LakeHS_Tab, 2, self.LakeID)
201 | self.LakeHS_pol_b = pcr.lookupscalar(LakeHS_Tab, 3, self.LakeID)
202 | self.LakeHS_pol_a1 = pcr.lookupscalar(LakeHS_Tab, 4, self.LakeID)
203 | self.LakeHS_pol_a2 = pcr.lookupscalar(LakeHS_Tab, 5, self.LakeID)
204 | self.LakeHS_pol_a3 = pcr.lookupscalar(LakeHS_Tab, 6, self.LakeID)
205 | # -read water level maps and parameters if available
206 | try:
207 | self.UpdateLakeLevel = pcr.readmap(
208 | self.inpath + config.get("LAKE", "updatelakelevel")
209 | )
210 | self.LLevel = self.inpath + config.get("LAKE", "LakeFile")
211 | print("measured lake levels will be used to update lake storage")
212 | except:
213 | pass
214 | pcr.setglobaloption("columntable")
215 |
216 |
217 | # -initial conditions lakes
218 | def initial(self, pcr, config):
219 | LakeStor_Tab = self.inpath + config.get("LAKE", "LakeStor")
220 | self.StorRES = (
221 | pcr.cover(pcr.lookupscalar(LakeStor_Tab, 1, self.LakeID), 0) * 10**6
222 | ) # convert to m3
223 | # -Qfrac for lake cells should be zero, else 1
224 | self.QFRAC = pcr.ifthenelse(self.LakeID != 0, pcr.scalar(0), 1)
225 |
226 |
227 | # -initial conditions reporting lakes
228 | def initial_reporting(self, pcr, pcrm):
229 | self.LakeInTSS = pcrm.TimeoutputTimeseries(
230 | "LakeInTSS", self, self.LakeID, noHeader=True
231 | )
232 | self.LakeOutTSS = pcrm.TimeoutputTimeseries(
233 | "LakeOutTSS", self, self.LakeID, noHeader=True
234 | )
235 | self.LakeStorTSS = pcrm.TimeoutputTimeseries(
236 | "LakeStorTSS", self, self.LakeID, noHeader=True
237 | )
238 | # -set reporting of water balances for individual components
239 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
240 | for i in pars:
241 | if eval("self." + i + "RA_FLAG") and getattr(self, "Rep" + i + "_FLAG"):
242 | setattr(
243 | self,
244 | "Lake" + i + "InTSS",
245 | pcrm.TimeoutputTimeseries(
246 | "Lake" + i + "InTSS", self, self.ResID, noHeader=True
247 | ),
248 | )
249 | setattr(
250 | self,
251 | "Lake" + i + "OutTSS",
252 | pcrm.TimeoutputTimeseries(
253 | "Lake" + i + "OutTSS", self, self.ResID, noHeader=True
254 | ),
255 | )
256 | setattr(
257 | self,
258 | "Lake" + i + "StorTSS",
259 | pcrm.TimeoutputTimeseries(
260 | "Lake" + i + "StorTSS", self, self.ResID, noHeader=True
261 | ),
262 | )
263 |
--------------------------------------------------------------------------------
/utilities/netcdf2PCraster.py:
--------------------------------------------------------------------------------
1 | # Tool to force the SPHY model with NetCDF files
2 | # Copyright (C) 2018-2019 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
3 | # Email: jeekhout@cebas.csic.es
4 | #
5 | # This program is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # This program is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with this program. If not, see .
17 |
18 | import subprocess
19 | import netCDF4 as nc
20 | import os
21 | import numpy as np
22 | # import sys
23 | # np.set_printoptions(threshold=sys.maxsize)
24 | import csv
25 | from scipy.interpolate import griddata
26 | from scipy import spatial
27 | from scipy.spatial import distance
28 | from pyproj import Proj, transform
29 | from math import *
30 |
31 | #-file cache to minimize/reduce opening/closing files
32 | filecache = dict()
33 |
34 | #-initial processes to determine the x and coordinates of the model grid and netcdf grid
35 | def netcdf2pcrInit(self, pcr, forcing):
36 | #-define input and ouput projections
37 | if getattr(self, forcing + 'InProj') == "rotated":
38 | inProj = Proj(init="epsg:4326")
39 | else:
40 | inProj = Proj(init = getattr(self, forcing + 'InProj'))
41 | outProj = Proj(init = getattr(self, forcing + 'OutProj'))
42 |
43 | #-get the attributes of cloneMap
44 | attributeClone = getMapAttributesALL(self.clonefile)
45 | cellsizeClone = attributeClone['cellsize']
46 | rowsClone = attributeClone['rows']
47 | colsClone = attributeClone['cols']
48 | xULClone = attributeClone['xUL']
49 | yULClone = attributeClone['yUL']
50 |
51 | #-read netcdf file
52 | f = nc.Dataset(getattr(self, forcing + 'NC'))
53 | filecache[getattr(self, forcing + 'NC')] = f
54 |
55 | #-get coordinates of upper right and lower left corners of model grid
56 | xURClone = xULClone + cellsizeClone * colsClone
57 | yURClone = yULClone
58 | xLLClone = xULClone
59 | yLLClone = yULClone - cellsizeClone * rowsClone
60 | yLRClone = yLLClone
61 | xLRClone = xURClone
62 |
63 | #-transform coordinates to netcdf projection coordinates
64 | xULCloneInput,yULCloneInput = transform(outProj, inProj, xULClone, yULClone)
65 | xURCloneInput,yURCloneInput = transform(outProj, inProj, xURClone, yURClone)
66 | xLRCloneInput,yLRCloneInput = transform(outProj, inProj, xLRClone, yLRClone)
67 | xLLCloneInput,yLLCloneInput = transform(outProj, inProj, xLLClone, yLLClone)
68 |
69 | #-determine netcdf cell size and subset coordinates to model domain
70 | if getattr(self, forcing + 'InProj') == "rotated":
71 | #-get coordinates from netcdf file
72 | xrot = f.variables[getattr(self, forcing + 'VarX')][:]
73 | yrot = f.variables[getattr(self, forcing + 'VarY')][:]
74 |
75 | #-get coordinates of north pole
76 | npLat = f.variables[getattr(self, forcing + 'VarX')].grid_north_pole_latitude
77 | npLon = f.variables[getattr(self, forcing + 'VarX')].grid_north_pole_longitude
78 |
79 | #-transform x and y coordinates to grid
80 | xrot,yrot = np.meshgrid(xrot, yrot)
81 |
82 | #-transform rotated grid to lat,lon-coordinates
83 | xLatLon = xrot * 0
84 | yLatLon = yrot * 0
85 | for idx, row in enumerate(xrot):
86 | for idy, val in enumerate(row):
87 | x, y = rotated_grid_transform((xrot[idx, idy], yrot[idx, idy]), 2, (npLon, npLat))
88 | xLatLon[idx, idy] = x
89 | yLatLon[idx, idy] = y
90 |
91 | #-transform x,y-coordinates to 2d array
92 | xyLatLon = [np.array(xLatLon).flatten(), np.array(yLatLon).flatten()]
93 | xyLatLon = list(map(list, zip(*xyLatLon)))
94 |
95 | #-function to find closest node from list of coordinates
96 | def closest_node(node, nodes):
97 | closest_index = distance.cdist([node], nodes).argmin()
98 | indices = np.where(np.ma.getdata(xLatLon) == nodes[closest_index][0])
99 | indices = np.array(indices).flatten().astype('int32')
100 | return indices.tolist()
101 |
102 | #-get indices of corner points clone map from netcdf
103 | indicesUL = closest_node((xULCloneInput,yULCloneInput), xyLatLon)
104 | indicesLL = closest_node((xLLCloneInput,yLLCloneInput), xyLatLon)
105 | indicesUR = closest_node((xURCloneInput,yURCloneInput), xyLatLon)
106 | indicesLR = closest_node((xLRCloneInput,yLRCloneInput), xyLatLon)
107 |
108 | #-determine indices of the corners of netcdf grid corresponding to model grid (+ buffer)
109 | xyUL = max(min(indicesUL[0], indicesLL[0], indicesUR[0], indicesLR[0]) - 2, 0)
110 | xyLL = min(max(indicesUL[0], indicesLL[0], indicesUR[0], indicesLR[0]) + 2, xLatLon.shape[0] - 1)
111 | xyUR = max(min(indicesUL[1], indicesLL[1], indicesUR[1], indicesLR[1]) - 2, 0)
112 | xyLR = min(max(indicesUL[1], indicesLL[1], indicesUR[1], indicesLR[1]) + 2, xLatLon.shape[1] - 1)
113 |
114 | #-determine x,y-coordinates corresponding to model grid (+ buffer) from netcdf grid
115 | x = xLatLon[xyUL:(xyLL + 1), xyUR:(xyLR + 1)]
116 | y = yLatLon[xyUL:(xyLL + 1), xyUR:(xyLR + 1)]
117 |
118 | else:
119 | #-get cell size, number of rows and columns and upper left corner coordinates from netcdf grid
120 | cellsizeInput = f.variables[getattr(self, forcing + 'VarY')][1]- f.variables[getattr(self, forcing + 'VarY')][0]
121 | cellsizeInput = float(cellsizeInput)
122 |
123 | #-determine x-coordinates corresponding to model grid (+ buffer) from netcdf grid
124 | xIdxSta = np.argmin(abs(f.variables[getattr(self, forcing + 'VarX')][:] - (min(xULCloneInput, xLLCloneInput) - 2 * cellsizeInput)))
125 | xIdxEnd = np.argmin(abs(f.variables[getattr(self, forcing + 'VarX')][:] - (max(xURCloneInput, xLRCloneInput) + 2 * cellsizeInput)))
126 | x = f.variables[getattr(self, forcing + 'VarX')][xIdxSta:(xIdxEnd + 1)]
127 |
128 | #-determine y-coordinates corresponding to model grid (+ buffer) from netcdf grid
129 | yIdxEnd = np.argmin(abs(f.variables[getattr(self, forcing + 'VarY')][:] - (max(yULCloneInput, yURCloneInput) + 2 * cellsizeInput)))
130 | yIdxSta = np.argmin(abs(f.variables[getattr(self, forcing + 'VarY')][:] - (min(yLLCloneInput, yLRCloneInput) - 2 * cellsizeInput)))
131 | y = f.variables[getattr(self, forcing + 'VarY')][yIdxSta:(yIdxEnd + 1)]
132 |
133 | #-transform x and y coordinates to grid
134 | x,y = np.meshgrid(x, y)
135 |
136 | #-project x and y coordinates to model grid projection
137 | x,y = transform(inProj, outProj, x, y)
138 |
139 | #-transform x and y coordinates to arrays
140 | x = np.asarray(x).ravel()
141 | y = np.asarray(y).ravel()
142 |
143 | #-determine model grid x and y coordinates and save in grid
144 | xi = np.arange(xULClone + cellsizeClone * 0.5, (xULClone + cellsizeClone * 0.5) + colsClone * cellsizeClone, cellsizeClone)
145 | yi = np.arange((yULClone + cellsizeClone * 0.5) - rowsClone * cellsizeClone, yULClone + cellsizeClone * 0.5, cellsizeClone)
146 | yi = np.flipud(yi)
147 | xi,yi = np.meshgrid(xi,yi)
148 |
149 | #-determine x,y-coordinates of netcdf file and model domain and indices of netcdf corresponding to model domain
150 | setattr(self, forcing + 'x', x)
151 | setattr(self, forcing + 'y', y)
152 | setattr(self, forcing + 'xi', xi)
153 | setattr(self, forcing + 'yi', yi)
154 | if getattr(self, forcing + 'InProj') == "rotated":
155 | setattr(self, forcing + 'xyUL', xyUL)
156 | setattr(self, forcing + 'xyLL', xyLL)
157 | setattr(self, forcing + 'xyUR', xyUR)
158 | setattr(self, forcing + 'xyLR', xyLR)
159 | else:
160 | setattr(self, forcing + 'xIdxSta', xIdxSta)
161 | setattr(self, forcing + 'xIdxEnd', xIdxEnd)
162 | setattr(self, forcing + 'yIdxSta', yIdxSta)
163 | setattr(self, forcing + 'yIdxEnd', yIdxEnd)
164 |
165 | #-function to interpolate netcdf gridded data to model grid
166 | def netcdf2pcrDynamic(self, pcr, forcing): #ncFile, varName, dateInput, method, factor, x, y, xi, yi, xIdxSta, xIdxEnd, yIdxSta, yIdxEnd):
167 | #-read netcdf file
168 | f = nc.Dataset(getattr(self, forcing + 'NC'))
169 | filecache[getattr(self, forcing + 'NC')] = f
170 |
171 | #-get index from netcdf corresponding with current date
172 | idx = int(nc.date2index(self.curdate, f.variables['time'], select ='exact'))
173 |
174 | #-get raw netcdf gridded data from netcdf, transform to array and multiply with factor
175 | if getattr(self, forcing + 'InProj') == "rotated":
176 | z = f.variables[getattr(self, forcing + 'VarName')][idx, getattr(self, forcing + 'xyUL'):(getattr(self, forcing + 'xyLL') + 1), getattr(self, forcing + 'xyUR'):(getattr(self, forcing + 'xyLR') + 1)]
177 | else:
178 | z = f.variables[getattr(self, forcing + 'VarName')][idx, getattr(self, forcing + 'yIdxSta'):(getattr(self, forcing + 'yIdxEnd') + 1), getattr(self, forcing + 'xIdxSta'):(getattr(self, forcing + 'xIdxEnd') + 1)]
179 | z = np.asarray(z).ravel()
180 | with np.errstate(invalid='ignore'): # surpress error message when there are already nans in the z array
181 | z = np.where(z<=-9999, np.nan, z) * getattr(self, forcing + 'Factor')
182 |
183 | #-remove nans from arrays
184 | x = getattr(self, forcing + 'x')[~np.isnan(z)]
185 | y = getattr(self, forcing + 'y')[~np.isnan(z)]
186 | z = z[~np.isnan(z)]
187 |
188 | #-interpolate with method (linear or cubic)
189 | zi = griddata((x, y), z, (getattr(self, forcing + 'xi'), getattr(self, forcing + 'yi')), method=getattr(self, forcing + 'Method'))
190 | zi = np.where(np.isnan(zi), -9999, zi)
191 |
192 | #-convert to PCRaster Python map
193 | output = pcr.numpy2pcr(pcr.Scalar, zi, -9999)
194 |
195 | return output
196 |
197 | #-function to interpolate netcdf gridded data to model grid
198 | def netcdf2pcrTimeIdx(self, pcr, forcing): #ncFile, varName, dateInput, method, factor, x, y, xi, yi, xIdxSta, xIdxEnd, yIdxSta, yIdxEnd):
199 | #-read netcdf file
200 | f = nc.Dataset(getattr(self, forcing + 'NC'))
201 | filecache[getattr(self, forcing + 'NC')] = f
202 |
203 | #-get index from netcdf corresponding with current date
204 | setattr(self, forcing + 'TimeIdx', nc.date2index(self.curdate, f.variables['time'], select ='exact'))
205 |
206 | #-function to get map attributes from clone map
207 | def getMapAttributesALL(cloneMap):
208 | cOut,err = subprocess.Popen(str('mapattr -p %s ' %(cloneMap)), stdout=subprocess.PIPE, stderr=open(os.devnull), shell=True).communicate()
209 | cellsize = float(cOut.split()[7])
210 | mapAttr = {'cellsize': float(cellsize) ,\
211 | 'rows' : float(cOut.split()[3]) ,\
212 | 'cols' : float(cOut.split()[5]) ,\
213 | 'xUL' : float(cOut.split()[17]),\
214 | 'yUL' : float(cOut.split()[19])}
215 | co = None; cOut = None; err = None
216 | del co; del cOut; del err
217 | return mapAttr
218 |
219 | #-function to read the config and
220 | def getConfigNetcdf(self, config, forcing, section):
221 | setattr(self, forcing + 'NC', config.get(section, forcing + 'Netcdf'))
222 | setattr(self, forcing + 'NetcdfInput', config.get(section, forcing + 'NetcdfInput').split(','))
223 | netcdfInput = getattr(self, forcing + 'NetcdfInput')
224 | setattr(self, forcing + 'VarName', netcdfInput[0])
225 | setattr(self, forcing + 'VarX', netcdfInput[1])
226 | setattr(self, forcing + 'VarY', netcdfInput[2])
227 | setattr(self, forcing + 'Method', netcdfInput[3])
228 | setattr(self, forcing + 'Factor', float(netcdfInput[4]))
229 | setattr(self, forcing + 'InProj', netcdfInput[5])
230 | setattr(self, forcing + 'OutProj', netcdfInput[6])
231 |
232 |
233 | #-function to transform rotated lat-lon to regular lat-lon
234 | def rotated_grid_transform(grid_in, option, SP_coor):
235 | lon = grid_in[0]
236 | lat = grid_in[1]
237 |
238 | if option == 2:
239 | lon = -lon
240 | lat = -lat
241 |
242 | lon = (lon*pi)/180 # Convert degrees to radians
243 | lat = (lat*pi)/180
244 |
245 | SP_lon = SP_coor[0]
246 | SP_lat = SP_coor[1]
247 |
248 | theta = 90+SP_lat # Rotation around y-axis
249 | phi = SP_lon # Rotation around z-axis
250 |
251 | theta = (theta*pi)/180
252 | phi = (phi*pi)/180 # Convert degrees to radians
253 |
254 | x = cos(lon)*cos(lat) # Convert from spherical to cartesian coordinates
255 | y = sin(lon)*cos(lat)
256 | z = sin(lat)
257 |
258 | if option == 1: # Regular -> Rotated
259 |
260 | x_new = cos(theta)*cos(phi)*x + cos(theta)*sin(phi)*y + sin(theta)*z
261 | y_new = -sin(phi)*x + cos(phi)*y
262 | z_new = -sin(theta)*cos(phi)*x - sin(theta)*sin(phi)*y + cos(theta)*z
263 |
264 | else: # Rotated -> Regular
265 |
266 | phi = -phi
267 | theta = -theta
268 |
269 | x_new = cos(theta)*cos(phi)*x + sin(phi)*y + sin(theta)*cos(phi)*z
270 | y_new = -cos(theta)*sin(phi)*x + cos(phi)*y - sin(theta)*sin(phi)*z
271 | z_new = -sin(theta)*x + cos(theta)*z
272 |
273 |
274 |
275 | lon_new = atan2(y_new,x_new) # Convert cartesian back to spherical coordinates
276 | lat_new = asin(z_new)
277 |
278 | lon_new = (lon_new*180)/pi # Convert radians back to degrees
279 | lat_new = (lat_new*180)/pi
280 |
281 | if option == 1: # Regular -> Rotated
282 | lon_new = -lon_new
283 | lat_new = -lat_new
284 |
285 | return lon_new, lat_new
286 |
--------------------------------------------------------------------------------
/modules/sediment_transport.py:
--------------------------------------------------------------------------------
1 | # Sediment transport module that determines sediment flux and sediment yield at the stations,
2 | # considering reservoir sedimentation when the reservoir module is used
3 | # Copyright (C) 2015-2019 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
4 | # Email: jeekhout@cebas.csic.es
5 | #
6 | # This program is free software: you can redistribute it and/or modify
7 | # it under the terms of the GNU General Public License as published by
8 | # the Free Software Foundation, either version 3 of the License, or
9 | # (at your option) any later version.
10 | #
11 | # This program is distributed in the hope that it will be useful,
12 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 | # GNU General Public License for more details.
15 | #
16 | # You should have received a copy of the GNU General Public License
17 | # along with this program. If not, see .
18 |
19 | #- Equations for simulating sediment transport
20 | print('Sediment transport module imported')
21 |
22 | #-Sediment transport capacity
23 | def TC(self, pcr, runoff):
24 | #-runoff discharge per unit width in m2/day
25 | q = (runoff/1000) * pcr.celllength()
26 | #-transport capacity calculation ton/day
27 | TC = self.TC_k * q**self.TC_beta * self.Slope**self.TC_gamma
28 | #-only apply TC to cells with runoff (>0) and in the channel (upstream area > upstream_km2)
29 | TC_upstream = pcr.ifthen(pcr.pcrand(self.Channel == 1, runoff > 0), TC)
30 | #-determine average transport capacity per subcatchment
31 | TCSubcatchment = pcr.areaaverage(TC_upstream, self.subcatchmentRes)
32 | #-set all other cells to 0
33 | TCSubcatchment = pcr.cover(TCSubcatchment, 0)
34 | return TC
35 | # return TCSubcatchment
36 |
37 | #-Sediment transport
38 | def SedTrans(self, pcr, np, sed, TC):
39 | #-determine sediment transport without reservoirs
40 | if self.ResFLAG == 0:
41 | #-rout sediment based on transport capacity
42 | sedimentFlux = pcr.accucapacityflux(self.FlowDir, sed, TC)
43 | sedimentYield = pcr.accucapacitystate(self.FlowDir, sed, TC)
44 | sedDep = sedimentYield
45 |
46 | #-determine sediment transport with reservoirs
47 | else:
48 | #-store sed in sedTrans to be used in routing algorithm
49 | sedTrans = sed
50 |
51 | #-initiate empty map to be used in for-loop
52 | sedimentYield = self.DEM * 0
53 | sedimentFlux = self.DEM * 0
54 | subFinished = self.DEM * 0
55 | sedDep = self.DEM * 0
56 |
57 | #-increase the transport capacity in the reservoir cells such that all sediment is transported towards the end of the reservoir
58 | TC = pcr.ifthenelse(pcr.scalar(self.SedReservoirs) > 0, 1e10, TC)
59 |
60 | #-Determine total soil erosion
61 | sedTotal = np.sum(pcr.pcr2numpy(sed, 0))
62 |
63 | #-Only rout sediment when soil erosion > 0
64 | if (sedTotal > 0):
65 | #-loop through the catchments, rout sediment and determine sedimentation in reservoirs based on trapping efficiency
66 | for step in range(max(self.subcatchmentSteps)+1): #-for-loop through the steps
67 | #-determine the subcatchments for this step
68 | subcatchments = np.where(self.subcatchmentSteps == step)[0]
69 |
70 | #-rout sediment based on transport capacity
71 | sedTransCapFlux = pcr.accucapacityflux(self.FlowDir, sedTrans, TC)
72 | sedTransCapState = pcr.accucapacitystate(self.FlowDir, sedTrans, TC)
73 |
74 | #-initiate empty map to be used in for-loop
75 | stepBool = self.DEM * 0
76 |
77 | #-for-loop through the subcatchments per step
78 | for subcatchment in subcatchments:
79 | #-create boolean map with location of reservoir
80 | reservoirBool = pcr.scalar(pcr.ifthenelse(self.ResSedID == int(self.subcatchmentOrder[subcatchment]), pcr.scalar(1), pcr.scalar(0)))
81 |
82 | #-extract routed sediment value at the reservoir from sedTransCapFlux
83 | reservoirFluxTC = pcr.ifthen(reservoirBool == 1, sedTransCapFlux)
84 |
85 | #-store trapped sediment in sedimentYield (multiply routed sediment value with trapping efficiency to be stored in reservoir cell)
86 | sedimentYield = pcr.ifthenelse(reservoirBool == 1, reservoirFluxTC * self.TrappingEff, sedimentYield)
87 |
88 | #-update subFinished and give subcatchment cells value 1
89 | subFinished = pcr.ifthenelse(pcr.scalar(self.subcatchmentRes) == int(self.subcatchmentOrder[subcatchment]), pcr.scalar(1), subFinished)
90 |
91 | #-update sedTrans, set all subcatchment cells to 0
92 | sedTrans = pcr.ifthenelse(pcr.scalar(subFinished) == 1, 0, sedTrans)
93 | #-add reservoir outflow to cell downstream of reservoir (multiply routed sediment value with outflow efficiency)
94 | sedTrans = sedTrans + pcr.upstream(self.FlowDir, pcr.ifthenelse(reservoirBool == 1, reservoirFluxTC * self.OutflowEff, pcr.scalar(0)))
95 |
96 | #-create boolean map with location of reservoir
97 | stepBool = stepBool + pcr.scalar(pcr.ifthenelse(self.subcatchmentRes == int(self.subcatchmentOrder[subcatchment]), self.subcatchmentRes == int(self.subcatchmentOrder[subcatchment]), pcr.boolean(0)))
98 |
99 | # store sedTransCapFlux in sedimentFlux
100 | sedimentFlux = sedTransCapFlux * subFinished + sedimentFlux
101 |
102 | #-rout sediment based on transport capacity
103 | sedDep = sedDep + sedTransCapState * stepBool
104 |
105 | #-rout sediment based on transport capacity
106 | sedTransCapFlux = pcr.accucapacityflux(self.FlowDir, sedTrans, TC)
107 |
108 | # store sedTransCapFlux in sedimentFlux
109 | sedimentFlux = sedTransCapFlux * (1 - subFinished) + sedimentFlux
110 |
111 | return sedimentYield, sedDep, sedimentFlux
112 |
113 |
114 | #-init processes
115 | def init(self, pcr, config, csv, np):
116 | #-init processes when reservoir module is used
117 | if self.ResFLAG == 1:
118 | #-nominal map with reservoir IDs
119 | self.ResSedID = pcr.cover(self.ResID, 0)
120 | else:
121 | self.ResSedID = self.Locations
122 |
123 | #-determine upstream area map
124 | self.UpstreamArea = pcr.accuflux(self.FlowDir, 1) * pcr.cellarea() / 10**6
125 |
126 | #-determine upstream area smaller than upstream_km2 and define channel cells based on upstream area
127 | self.Upstream_km2 = config.getfloat('SEDIMENT_TRANS', 'upstream_km2')
128 | self.Channel = self.UpstreamArea > self.Upstream_km2
129 |
130 | #-determine average slope per stream based on stream order and averaged per subcatchment
131 | self.Basin = pcr.subcatchment(self.FlowDir, self.ResSedID)
132 | self.StreamOrder = pcr.streamorder(self.FlowDir)
133 | self.Streams = pcr.scalar(self.Channel) * pcr.scalar(self.Basin) * 10 + pcr.scalar(self.Channel) * pcr.scalar(self.StreamOrder)
134 | self.SlopeStreams = pcr.areaaverage(self.Slope, pcr.nominal(self.Streams))
135 | self.SlopeStreams = pcr.ifthenelse(self.Channel == 1, self.SlopeStreams, self.Slope)
136 |
137 | #-read transport capacity parameters
138 | self.TC_beta = config.getfloat('SEDIMENT_TRANS', 'TC_beta')
139 | self.TC_gamma = config.getfloat('SEDIMENT_TRANS', 'TC_gamma')
140 |
141 | #-init processes when reservoir module is used
142 | if self.ResFLAG == 1:
143 | #-nominal map with reservoir IDs and extent
144 | if self.ETOpenWaterFLAG == 1:
145 | self.SedReservoirs = pcr.cover(self.openWaterNominal, 0)
146 | else:
147 | self.SedReservoirs = pcr.readmap(self.inpath + config.get('RESERVOIR', 'reservoirs'))
148 | self.SedReservoirs = pcr.cover(self.SedReservoirs, 0)
149 |
150 | #-read table with the trapping efficiency per reservoir
151 | self.TrapEffTab = self.inpath + config.get('SEDIMENT_TRANS', 'TrapEffTab')
152 | self.TrappingEff = pcr.cover(pcr.lookupscalar(self.TrapEffTab, self.ResSedID), 0)
153 |
154 | #-construct map where all cells have 1 and only the reservoir cells have trapping efficiency value obtained from the table
155 | self.OutflowEff = pcr.cover(1-pcr.lookupscalar(self.TrapEffTab, self.ResSedID), 1)
156 |
157 | #-determine subcatchment map
158 | self.subcatchmentRes = pcr.subcatchment(self.FlowDir, self.ResSedID)
159 |
160 | #-read reservoir order for sediment transport and add the values to self.subcatchmentOrder and self.subcatchmentSteps
161 | self.ResOrder = config.get('SEDIMENT_TRANS', 'ResOrder')
162 | self.subcatchmentOrder = []
163 | self.subcatchmentSteps = []
164 |
165 | #-loop through the rows of the text file
166 | with open(self.inpath + self.ResOrder, 'rt') as f:
167 | next(f) # skip headings
168 | reader = csv.reader(f, delimiter='\t')
169 | for row in reader:
170 | self.subcatchmentOrder = np.append(self.subcatchmentOrder, int(row[0]))
171 | self.subcatchmentOrder = self.subcatchmentOrder.astype(np.int)
172 | self.subcatchmentSteps = np.append(self.subcatchmentSteps, int(row[1]))
173 | self.subcatchmentSteps = self.subcatchmentSteps.astype(np.int)
174 |
175 | #-loop through the steps and define map with step per subcatchment
176 | self.subcatchmentStepsMap = self.DEM * 0
177 | for step in range(max(self.subcatchmentSteps)+1):
178 | #-determine the subcatchments for this step
179 | subcatchments = np.where(self.subcatchmentSteps == step)[0]
180 |
181 | #-for-loop through the subcatchments per step
182 | for subcatchment in subcatchments:
183 | #-update subFinished and give subcatchment cells value 1
184 | self.subcatchmentStepsMap = pcr.ifthenelse(pcr.scalar(self.subcatchmentRes) == int(self.subcatchmentOrder[subcatchment]), pcr.scalar(step + 1), self.subcatchmentStepsMap)
185 | #-set all subcatchments with value 0 to the maximum step
186 | self.subcatchmentStepsMap = pcr.ifthenelse(self.subcatchmentStepsMap == 0, int(max(self.subcatchmentSteps)+1), self.subcatchmentStepsMap)
187 | #-map with step value for stations that are not reservoirs
188 | self.LocationsNoResSteps = pcr.scalar(self.LocationsNoRes) * self.subcatchmentStepsMap
189 |
190 | #-determine roughness factor for mmf only
191 | if self.SedModel == 2:
192 | #-Read flag if channels should be excluded from the detachment by runoff calculation
193 | self.manningChannelsFLAG = config.getint('SEDIMENT_TRANS', 'manningChannelFLAG')
194 |
195 | #-read manning value for channels
196 | if self.manningChannelsFLAG == 1:
197 | self.manningChannel = config.getfloat('SEDIMENT_TRANS', 'manningChannel')
198 |
199 | #-Determine flow velocity for transport capacity calculation
200 | self.n_veg_TC = self.mmf.manningVegetation(self, pcr, self.d_TC, self.Diameter, self.NoElements)
201 | self.n_veg_TC = pcr.ifthenelse(self.NoVegetation == 1, 0, self.n_veg_TC)
202 | self.n_veg_TC = pcr.ifthenelse(self.NoErosion == 1, 0, self.n_veg_TC)
203 | self.n_veg_TC = pcr.ifthenelse(self.n_table > 0, self.n_table, self.n_veg_TC)
204 | self.n_TC = (self.n_soil**2 + self.n_veg_TC**2)**0.5
205 | #-set manning value of channels to predetermined value
206 | if self.manningChannelsFLAG == 1:
207 | self.n_TC = pcr.ifthenelse(self.Channel == 1, self.manningChannel, self.n_TC)
208 | self.v_TC = self.mmf.FlowVelocity(self, pcr, self.n_TC, self.d_TC)
209 |
210 | #-Determine flow velocity after harvest, manning for tilled conditions is used
211 | if self.harvest_FLAG:
212 | self.n_veg_TC_harvest = self.mmf.manningVegetation(self, pcr, self.d_field, self.Diameter_harvest, self.NoElements_harvest)
213 | self.n_veg_TC_harvest = pcr.ifthenelse(self.Tillage_harvest == 1, 0, self.n_veg_field_harvest)
214 | self.n_TC_harvest = (self.n_soil**2 + self.n_veg_TC_harvest**2)**0.5
215 | #-set manning value of channels to predetermined value
216 | if self.manningChannelsFLAG == 1:
217 | self.n_TC_harvest = pcr.ifthenelse(pcr.pcrand(self.Channel == 1, self.n_TC_harvest > 0), self.manningChannel, self.n_TC_harvest)
218 | self.v_TC_harvest = self.mmf.FlowVelocity(self, pcr, self.n_TC_harvest, self.d_TC)
219 |
220 | #-Determine flow velocity for bare soil conditions (reference conditions)
221 | self.v_b = self.mmf.FlowVelocity(self, pcr, self.n_bare, self.d_bare)
222 |
223 | #-Determine roughness factor for transport capacity calculation
224 | self.roughnessFactor = self.v_TC / self.v_b
225 |
226 | #-initial conditions sediment transport
227 | def initial(self, pcr, config):
228 | try:
229 | self.SYieldR = pcr.readmap(self.inpath + config.get('SEDIMENT_TRANS', 'Sed_init'))
230 | except:
231 | self.SYieldR = config.getfloat('SEDIMENT_TRANS', 'Sed_init')
232 |
233 | #-dynamic sediment transport processes musle
234 | def dynamic_musle(self, pcr):
235 | #-transport capacity
236 | TC = self.sediment_transport.TC(self, pcr, (Q * 3600 * 24) / pcr.cellarea() * 1000)
237 |
238 | #-report the transport capacity per subcatchment
239 | self.reporting.reporting(self, pcr, 'TC', TC)
240 |
241 | #-determine sediment yield at reservoirs
242 | tempvar = self.sediment_transport.SedTrans(self, pcr, np, sed, TC)
243 | sedimentYield = tempvar[0]
244 | sedDep = tempvar[1]
245 |
246 | #-report the deposition in channel cells
247 | self.reporting.reporting(self, pcr, 'SedDep', sedDep)
248 |
249 | #-report sediment yield in the reservoirs
250 | self.reporting.reporting(self, pcr, 'SYieldRA', sedimentYield)
251 |
252 | #-dynamic sediment transport processes mmf
253 | def dynamic_mmf(self, pcr, Runoff, np, G):
254 | #-change the flow factor for harvested areas to actual and tillage conditions
255 | if self.harvest_FLAG == 1:
256 | self.roughnessFactorUpdate = pcr.ifthenelse(self.Harvested == 1, self.v_TC_harvest / self.v_b, self.roughnessFactor)
257 | else:
258 | self.roughnessFactorUpdate = self.roughnessFactor
259 |
260 | #-determine transport capacity
261 | TC = self.mmf.TransportCapacity(self, pcr, self.roughnessFactorUpdate, self.RootClayMap + self.RootSiltMap + self.RootSandMap, Runoff)
262 |
263 | #-report the transport capacity
264 | self.reporting.reporting(self, pcr, 'TC', TC)
265 |
266 | #-determine sediment yield at stations
267 | sedYield, sedDep, sedFlux = self.sediment_transport.SedTrans(self, pcr, np, G * pcr.cellarea() / 1000, TC)
268 |
269 | #-report the sediment deposition by transport capacity (ton/day)
270 | self.reporting.reporting(self, pcr, 'SedDep', sedDep)
271 |
272 | #-report sediment yield in the stations (ton/day)
273 | self.reporting.reporting(self, pcr, 'SedYld', sedYield)
274 |
275 | #-report sediment flux in the stations (ton/day)
276 | self.reporting.reporting(self, pcr, 'SedFlux', sedFlux)
--------------------------------------------------------------------------------
/modules/mmf.py:
--------------------------------------------------------------------------------
1 | # Soil erosion module using the Morgan-Morgan-Finney soil erosion model
2 | # Copyright (C) 2017-2019 Joris Eekhout / Spanish National Research Council (CEBAS-CSIC)
3 | # Email: jeekhout@cebas.csic.es
4 | #
5 | # This program is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # This program is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with this program. If not, see .
17 |
18 | print('MMF module imported')
19 |
20 | #-Effective rainfall (Rf, mm)
21 | def RainEff(self, pcr, precip):
22 | Rf = precip * pcr.cos(self.Slope)
23 | return Rf
24 |
25 | #-Leaf drainage (LD; mm)
26 | def LeafDrain(self, pcr, Rf):
27 | LD = Rf * self.CC
28 | return LD
29 |
30 | #-Direct throughfall (DT; mm)
31 | def DirectThroughfall(self, pcr, Rf, LD):
32 | DT = Rf - LD
33 | return DT
34 |
35 | #-Kinetic energy of the direct throughfall (KE_DT; J/m2)
36 | def KineticEnergyDT(self, pcr, DT, PrecInt):
37 | # KE_DT = DT * (8.95 + 8.44 * pcr.log10(PrecInt)) # Marshall and Palmer (1948)
38 | # KE_DT = DT * (0.283 * (1 - 0.52 * pcr.exp(-0.042 * PrecInt))) * 100 # Van Dijk et al (2002)
39 | # KE_DT = DT * (0.384 * (1 - 0.54 * pcr.exp(-0.029 * PrecInt))) * 100 # Cerro et al (1998)
40 | # KE_DT = DT * (0.1418 * PrecInt**0.172) * 100 # Meshesha et al. (2016)
41 | KE_DT = DT * (0.29 * (1 - 0.72 * pcr.exp(-0.05 * PrecInt))) * 100 # Brown and Foster (1987)
42 | return KE_DT
43 |
44 | #-Kinetic energy of the leaf drainage (KE_LD; J/m2)
45 | def KineticEnergyLD(self, pcr, LD, PlantHeight):
46 | KE_LD = pcr.ifthenelse(PlantHeight < 0.15, 0, LD * (15.8 * PlantHeight**0.5 - 5.87))
47 | return KE_LD
48 |
49 | #-Detachment of soil particles by raindrop impact (F; kg/m2)
50 | def DetachmentRaindrop(self, pcr, K, texture, KE):
51 | F = K * texture * pcr.max(0, 1 - (self.NoErosion + self.Cover)) * KE * 1e-3
52 | return F
53 |
54 | #-Detachment of soil particles by runoff (H; kg/m2)
55 | def DetachmentRunoff(self, pcr, DR, texture, Q):
56 | H = DR * texture * Q**1.5 * pcr.max(0, 1 - (self.NoErosion + self.Cover)) * pcr.sin(self.Slope)**(0.3) * 1e-3
57 |
58 | #-set values in channels to 0 in case channels should be excluded
59 | if self.exclChannelsFLAG == 1:
60 | H = H * self.Hillslope
61 |
62 | return H
63 |
64 | #-Manning for tilled conditions (manningTilled; s/m1/3)
65 | def ManningTillage(self, pcr):
66 | manningTilled = pcr.exp(-2.1132 + 0.0349 * self.RFR)
67 | return manningTilled
68 |
69 | #-Manning for vegetated conditions (manningVegetated; s/m1/3)
70 | def manningVegetation(self, pcr, waterDepth, diameter, noElements):
71 | manningVegetated = (waterDepth**(0.67)) / ((2 * 9.81) / (diameter * noElements))**0.5
72 | return manningVegetated
73 |
74 | #-Flow velocity based on manning (v; m/s)
75 | def FlowVelocity(self, pcr, manning, waterDepth):
76 | v = 1 / manning * waterDepth**(0.67) * pcr.ifthenelse(self.Slope == 0, 1e-5, self.Slope)**0.5
77 | return v
78 |
79 | #-Particle fall number (N_f; -)
80 | def ParticleFallNumber(self, pcr, delta, velocity, waterDepth):
81 | v_s = (float(1)/18 * (delta ** 2) * (self.rho_s - self.rho) * 9.81) / (self.eta)
82 | N_f = (pcr.celllength() / pcr.cos(self.Slope) * v_s) / (velocity * waterDepth)
83 | return N_f
84 |
85 | #-Percentage of the detached sediment that is deposited (DEP; %)
86 | def Deposition(self, pcr, N_f):
87 | DEP = pcr.min(100, 44.1 * N_f ** 0.29)
88 | return DEP
89 |
90 | #-Delivery of detached particles to runoff (G; kg/m2)
91 | def MaterialTransport(self, pcr, F, H, DEP):
92 | G = (F + H) * (1 - DEP / 100)
93 | D = (F + H) * DEP / 100
94 | return G, D
95 |
96 | #-Transport capacity of the runoff (TC; ton/ha)
97 | def TransportCapacity(self, pcr, roughnessFactor, texture, Q):
98 | q = (Q/1000) * pcr.celllength() #-runoff discharge per unit width in m2/day
99 | TC = roughnessFactor * q**self.TC_beta * self.SlopeStreams**self.TC_gamma #-determine transport capacity
100 | return TC
101 |
102 | #-init processes mmf
103 | def init(self, pcr, config):
104 | #-if pedotransfer functions are not used read the sand and clay maps
105 | if self.PedotransferFLAG == 0:
106 | self.RootSandMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','RootSandMap')) / 100
107 | self.RootClayMap = pcr.readmap(self.inpath + config.get('PEDOTRANSFER','RootClayMap')) / 100
108 | self.RootSiltMap = 1 - self.RootSandMap - self.RootClayMap
109 |
110 | #-read precipitation intensity map or float
111 | try:
112 | self.PrecInt = pcr.readmap(self.inpath + config.get('MMF', 'PrecInt'))
113 | except:
114 | self.PrecInt = config.getfloat('MMF', 'PrecInt')
115 |
116 | #-read flag if the canopy cover should be determined based on LAI
117 | self.CanopyCoverLAIFlag = config.getfloat('MMF', 'CanopyCoverLAIFlag')
118 |
119 | #-read table with MMF input parameters per landuse class
120 | pcr.setglobaloption('matrixtable')
121 | MMF_table = self.inpath + config.get('MMF', 'MMF_table')
122 | self.PlantHeight = pcr.lookupscalar(MMF_table, 1, self.LandUse)
123 | self.NoElements = pcr.lookupscalar(MMF_table, 2, self.LandUse)
124 | self.Diameter = pcr.lookupscalar(MMF_table, 3, self.LandUse)
125 | self.CC_table = pcr.lookupscalar(MMF_table, 4, self.LandUse)
126 | self.GC_table = pcr.lookupscalar(MMF_table, 5, self.LandUse)
127 | self.NoErosion = pcr.lookupscalar(MMF_table, 6, self.LandUse)
128 | self.Tillage = pcr.lookupscalar(MMF_table, 7, self.LandUse)
129 | self.n_table = pcr.lookupscalar(MMF_table, 8, self.LandUse)
130 | self.NoVegetation = pcr.lookupscalar(MMF_table, 9, self.LandUse)
131 | pcr.setglobaloption('columntable')
132 |
133 | #-nominal map with reservoir IDs and extent
134 | if self.ResFLAG == 1:
135 | if self.ETOpenWaterFLAG == 1:
136 | self.Reservoirs = pcr.ifthenelse(pcr.scalar(self.openWaterNominal) > 0, pcr.scalar(1), pcr.scalar(0))
137 | self.Reservoirs = pcr.cover(self.Reservoirs, 0)
138 | else:
139 | self.Reservoirs = pcr.readmap(self.inpath + config.get('RESERVOIR', 'reservoirs'))
140 | self.NoErosion = pcr.min(self.NoErosion + pcr.scalar(self.Reservoirs), 1)
141 |
142 | #-read table with MMF input parameters per landuse class for the period after harvest
143 | self.harvest_FLAG = config.getfloat('MMF', 'harvestFLAG')
144 | pcr.setglobaloption('matrixtable')
145 | if self.harvest_FLAG:
146 | MMF_harvest_table = self.inpath + config.get('MMF', 'MMF_harvest')
147 | self.Sowing = pcr.lookupscalar(MMF_harvest_table, 1, self.LandUse)
148 | self.Harvest = pcr.lookupscalar(MMF_harvest_table, 2, self.LandUse)
149 | self.PlantHeight_harvest = pcr.lookupscalar(MMF_harvest_table, 3, self.LandUse)
150 | self.NoElements_harvest = pcr.lookupscalar(MMF_harvest_table, 4, self.LandUse)
151 | self.Diameter_harvest = pcr.lookupscalar(MMF_harvest_table, 5, self.LandUse)
152 | self.CC_harvest = pcr.lookupscalar(MMF_harvest_table, 6, self.LandUse)
153 | self.GC_harvest = pcr.lookupscalar(MMF_harvest_table, 7, self.LandUse)
154 | self.Tillage_harvest = pcr.lookupscalar(MMF_harvest_table, 8, self.LandUse)
155 | pcr.setglobaloption('columntable')
156 |
157 | #-read other model parameters
158 | self.K_c = config.getfloat('MMF', 'K_c')
159 | self.K_z = config.getfloat('MMF', 'K_z')
160 | self.K_s = config.getfloat('MMF', 'K_s')
161 | self.DR_c = config.getfloat('MMF', 'DR_c')
162 | self.DR_z = config.getfloat('MMF', 'DR_z')
163 | self.DR_s = config.getfloat('MMF', 'DR_s')
164 | self.deltaClay = config.getfloat('MMF', 'deltaClay')
165 | self.deltaSilt = config.getfloat('MMF', 'deltaSilt')
166 | self.deltaSand = config.getfloat('MMF', 'deltaSand')
167 | self.n_bare = config.getfloat('MMF', 'manning')
168 | self.d_bare = config.getfloat('MMF', 'depthBare')
169 | self.d_field = config.getfloat('MMF', 'depthInField')
170 | self.d_TC = config.getfloat('MMF', 'depthTC')
171 | self.RFR = config.getfloat('MMF', 'RFR')
172 | self.rho_s = config.getfloat('MMF', 'rho_s')
173 | self.rho = config.getfloat('MMF', 'rho')
174 | self.eta = config.getfloat('MMF', 'eta')
175 |
176 | #-Determine manning for soil and tilled conditions
177 | self.n_tilled = self.mmf.ManningTillage(self, pcr)
178 | self.n_soil = pcr.ifthenelse(self.Tillage == 1, self.n_tilled, self.n_bare)
179 |
180 | #-Determine flow velocity for in field deposition
181 | self.n_veg_field = self.mmf.manningVegetation(self, pcr, self.d_field, self.Diameter, self.NoElements)
182 | self.n_veg_field = pcr.ifthenelse(self.NoVegetation == 1, 0, self.n_veg_field)
183 | self.n_veg_field = pcr.ifthenelse(self.NoErosion == 1, 0, self.n_veg_field)
184 | self.n_veg_field = pcr.ifthenelse(self.n_table > 0, self.n_table, self.n_veg_field)
185 | self.n_field = (self.n_soil**2 + self.n_veg_field**2)**0.5
186 | self.v_field = self.mmf.FlowVelocity(self, pcr, self.n_field, self.d_field)
187 |
188 | #-Determine flow velocity after harvest
189 | if self.harvest_FLAG:
190 | self.n_veg_field_harvest = self.mmf.manningVegetation(self, pcr, self.d_field, self.Diameter_harvest, self.NoElements_harvest)
191 | self.n_veg_field_harvest = pcr.ifthenelse(self.Tillage_harvest == 1, 0, self.n_veg_field_harvest)
192 | self.n_field_harvest = (self.n_soil**2 + self.n_veg_field_harvest**2)**0.5
193 | self.v_field_harvest = self.mmf.FlowVelocity(self, pcr, self.n_field_harvest, self.d_field)
194 |
195 |
196 | #-dynamic processes
197 | def dynamic(self, pcr, Precip, Runoff):
198 | #-determine canopy cover from LAI
199 | if self.CanopyCoverLAIFlag == 1 and self.DynVegFLAG == 1:
200 | self.CC = pcr.min(1, self.LAI)
201 | else:
202 | self.CC = self.CC_table
203 |
204 | #-determine areas that have been harvested
205 | if self.harvest_FLAG:
206 | self.Harvested = self.Slope * 0
207 | self.Harvested = pcr.ifthenelse(self.Harvest < self.Sowing, pcr.ifthenelse(pcr.pcrand(self.Harvest < self.curdate.timetuple().tm_yday, self.Sowing > self.curdate.timetuple().tm_yday), 1, self.Harvested), self.Harvested)
208 | self.Harvested = pcr.ifthenelse(self.Harvest > self.Sowing, pcr.ifthenelse(pcr.pcror(self.curdate.timetuple().tm_yday > self.Harvest, self.curdate.timetuple().tm_yday < self.Sowing), 1, self.Harvested), self.Harvested)
209 | self.Harvested = pcr.ifthenelse(self.Harvest == 0, 0, self.Harvested)
210 |
211 | #-set canopy cover to value from MMF harvest table for months between harvest and sowing
212 | if self.CanopyCoverLAIFlag == 0 and self.harvest_FLAG:
213 | self.CC = pcr.ifthenelse(self.Harvested == 1, self.CC_harvest, self.CC_table)
214 |
215 | #-set ground cover to value from MMF harvest table for months between harvest and sowing
216 | if self.harvest_FLAG:
217 | self.GC = pcr.ifthenelse(self.Harvested == 1, self.GC_harvest, self.GC_table)
218 | else:
219 | self.GC = self.GC_table
220 |
221 | #-define cover as fraction of soil covered by ground cover and rock
222 | if self.SnowFLAG == 1:
223 | SCover = pcr.scalar(self.TotalSnowStore > 0)
224 | self.Cover = pcr.min(SCover + self.GC + self.RockFrac, 1)
225 | else:
226 | self.Cover = pcr.min(self.GC + self.RockFrac, 1)
227 |
228 | #-determine effective rainfall
229 | Rf = self.mmf.RainEff(self, pcr, Precip)
230 |
231 | #-determine leaf drainage
232 | LD = self.mmf.LeafDrain(self, pcr, Rf)
233 |
234 | #-determine direct throughfall
235 | DT = self.mmf.DirectThroughfall(self, pcr, Rf, LD)
236 |
237 | #-obtain precipitation intensity from direct throughfall and fraction of the rain in the highest intensity
238 | if self.InfilFLAG == 1:
239 | self.PrecInt = DT * self.Alpha
240 |
241 | #-determine kinetic energy of the direct throughfall
242 | KE_DT = self.mmf.KineticEnergyDT(self, pcr, DT, self.PrecInt)
243 | KE_DT = pcr.ifthenelse(DT == 0, 0, KE_DT)
244 |
245 | #-update plant height for months between harvest and sowing
246 | if self.harvest_FLAG:
247 | self.PlantHeightUpdate = pcr.ifthenelse(self.Harvested == 1, self.PlantHeight_harvest, self.PlantHeight)
248 | else:
249 | self.PlantHeightUpdate = self.PlantHeight
250 |
251 | #-determine kinetic energy of the leaf drainage
252 | KE_LD = self.mmf.KineticEnergyLD(self, pcr, LD, self.PlantHeightUpdate)
253 |
254 | #-determine total kinetic energy
255 | KE = KE_DT + KE_LD
256 |
257 | #-determine detachment of soil particles by raindrop impact
258 | F_c = self.mmf.DetachmentRaindrop(self, pcr, self.K_c, self.RootClayMap, KE)
259 | F_z = self.mmf.DetachmentRaindrop(self, pcr, self.K_z, self.RootSiltMap, KE)
260 | F_s = self.mmf.DetachmentRaindrop(self, pcr, self.K_s, self.RootSandMap, KE)
261 | F = F_c + F_z + F_s
262 |
263 | #-report detachment of soil particles by raindrop impact (ton / cell)
264 | self.reporting.reporting(self, pcr, 'DetRn', F * pcr.cellarea() / 1000)
265 |
266 | #-determine detachment of soil particles by runoff
267 | H_c = self.mmf.DetachmentRunoff(self, pcr, self.DR_c, self.RootClayMap, Runoff)
268 | H_z = self.mmf.DetachmentRunoff(self, pcr, self.DR_z, self.RootSiltMap, Runoff)
269 | H_s = self.mmf.DetachmentRunoff(self, pcr, self.DR_s, self.RootSandMap, Runoff)
270 | H = H_c + H_z + H_s
271 |
272 | #-report detachment of soil particles by runoff (ton / cell)
273 | self.reporting.reporting(self, pcr, 'DetRun', H * pcr.cellarea() / 1000)
274 |
275 | #-replace velocity for vegetated conditions for tilled soil conditions in case of harvested areas
276 | if self.harvest_FLAG:
277 | self.v_update = pcr.ifthenelse(self.Harvested == 1, self.v_field_harvest, self.v_field)
278 | else:
279 | self.v_update = self.v_field
280 |
281 | #-determine particle fall number
282 | N_f_c = self.mmf.ParticleFallNumber(self, pcr, self.deltaClay, self.v_update, self.d_field)
283 | N_f_z = self.mmf.ParticleFallNumber(self, pcr, self.deltaSilt, self.v_update, self.d_field)
284 | N_f_s = self.mmf.ParticleFallNumber(self, pcr, self.deltaSand, self.v_update, self.d_field)
285 |
286 | #-determine percentage of the detached sediment that is deposited within the cell of origin
287 | DEP_c = self.mmf.Deposition(self, pcr, N_f_c)
288 | DEP_z = self.mmf.Deposition(self, pcr, N_f_z)
289 | DEP_s = self.mmf.Deposition(self, pcr, N_f_s)
290 |
291 | #-determine delivery of detached particles to runoff and sediment that is deposited within the cell of origin
292 | tempvar = self.mmf.MaterialTransport(self, pcr, F_c, H_c, DEP_c)
293 | G_c = tempvar[0]
294 | D_c = tempvar[1]
295 | tempvar = self.mmf.MaterialTransport(self, pcr, F_z, H_z, DEP_z)
296 | G_z = tempvar[0]
297 | D_z = tempvar[1]
298 | tempvar = self.mmf.MaterialTransport(self, pcr, F_s, H_s, DEP_s)
299 | G_s = tempvar[0]
300 | D_s = tempvar[1]
301 | G = G_c + G_z + G_s
302 | D = D_c + D_z + D_s
303 |
304 | #-report in field deposition of detached particles (ton / cell)
305 | self.reporting.reporting(self, pcr, 'SDepFld', D * pcr.cellarea() / 1000)
306 |
307 | #-report sediment in transport (ton / cell)
308 | self.reporting.reporting(self, pcr, 'SedTrans', G * pcr.cellarea() / 1000)
309 |
310 | return G
--------------------------------------------------------------------------------
/modules/advanced_routing.py:
--------------------------------------------------------------------------------
1 | # The Spatial Processes in HYdrology (SPHY) model:
2 | # A spatially distributed hydrological model
3 | # Copyright (C) 2013-2025 FutureWater
4 | # Email: sphy@futurewater.nl
5 | #
6 | # Authors (alphabetical order):
7 | # P. Droogers, J. Eekhout, A. Fernandez-Rodriguez, W. Immerzeel, S. Khanal, A. Lutz, T. Schults, G. Simons, W. Terink.
8 | #
9 | # This program is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # This program is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with this program. If not, see .
21 |
22 | # Advanced routing that is used for reservoirs or lakes
23 | print("Advanced routing module for lakes and reservoirs imported")
24 |
25 |
26 | # -Function to rout the specific runoff
27 | def ROUT(self, pcr, rvolume, qold, qout, sres):
28 | # Calculate the discharge Q (m3/d)
29 | Q = pcr.accufractionflux(self.FlowDir, rvolume, self.QFRAC)
30 | # Re-calculate Q, based on qold en kx, and assign Qout for cells being lake/reservoir
31 | Q = pcr.ifthenelse(
32 | self.QFRAC == 0, qout, (1 - self.kx) * Q + (qold * 24 * 3600) * self.kx
33 | )
34 | # Only calculate inflow for lake/reservoir cells
35 | Qin = pcr.ifthenelse(self.QFRAC == 0, pcr.upstream(self.FlowDir, Q), 0)
36 | sres = sres - qout + Qin
37 | Q = Q / (24 * 3600) # -only convert Q to m3/s
38 | return sres, Q, Qin
39 |
40 |
41 | # -init advanced routing processes
42 | def init(self, pcr, config):
43 | self.FlowDir = pcr.readmap(self.inpath + config.get("ROUTING", "flowdir"))
44 | try:
45 | self.kx = pcr.readmap(self.inpath + config.get("ROUTING", "kx"))
46 | except:
47 | self.kx = config.getfloat("ROUTING", "kx")
48 |
49 |
50 | # -initial conditions advanced routing
51 | def initial(self, pcr, config):
52 | # -initial routed total runoff
53 | try:
54 | self.QRAold = config.getfloat("ROUT_INIT", "QRA_init")
55 | except:
56 | try:
57 | self.QRAold = pcr.readmap(self.inpath + config.get("ROUT_INIT", "QRA_init"))
58 | except:
59 | self.QRAold = 0
60 | # -initial routed runoff for the individual components
61 | pars = ["RootR", "RootD", "Rain", "Snow", "Glac", "Base"]
62 | for i in pars:
63 | try:
64 | setattr(
65 | self,
66 | i + "RAold",
67 | pcr.readmap(self.inpath + config.get("ROUT_INIT", i + "RA_init")),
68 | )
69 | setattr(self, i + "RA_FLAG", True)
70 | except:
71 | try:
72 | setattr(self, i + "RAold", config.getfloat("ROUT_INIT", i + "RA_init"))
73 | setattr(self, i + "RA_FLAG", True)
74 | except:
75 | setattr(self, i + "RA_FLAG", False)
76 |
77 | # -initial storage in lakes/reservoirs of individual flow components
78 | pars = ["RootRRA", "RootDRA", "RainRA", "SnowRA", "GlacRA", "BaseRA"]
79 | for i in pars:
80 | column = pars.index(
81 | i
82 | ) # identify column to be read from lake or reservoir table
83 | try: # -try to sum the storages read from the lake and reservoir tables if both thse modules are used
84 | setattr(
85 | self,
86 | i + "stor",
87 | (
88 | pcr.cover(
89 | pcr.lookupscalar(LakeStor_Tab, column + 2, self.LakeID), 0
90 | )
91 | + pcr.cover(
92 | pcr.lookupscalar(ResStor_Tab, column + 3, self.ResID), 0
93 | )
94 | )
95 | * 10**6,
96 | )
97 | if eval("self." + i + "_FLAG"):
98 | setattr(self, i + "_FLAG", True)
99 | else:
100 | setattr(self, i + "_FLAG", False)
101 | except:
102 | try: # -try to read the storages from the lake table
103 | setattr(
104 | self,
105 | i + "stor",
106 | pcr.cover(
107 | pcr.lookupscalar(LakeStor_Tab, column + 2, self.LakeID), 0
108 | )
109 | * 10**6,
110 | )
111 | if eval("self." + i + "_FLAG"):
112 | setattr(self, i + "_FLAG", True)
113 | else:
114 | setattr(self, i + "_FLAG", False)
115 | except: # -try to read the storages from the reservoir table
116 | try:
117 | setattr(
118 | self,
119 | i + "stor",
120 | pcr.cover(
121 | pcr.lookupscalar(ResStor_Tab, column + 3, self.ResID), 0
122 | )
123 | * 10**6,
124 | )
125 | if eval("self." + i + "_FLAG"):
126 | setattr(self, i + "_FLAG", True)
127 | else:
128 | setattr(self, i + "_FLAG", False)
129 | except:
130 | setattr(self, i + "_FLAG", False)
131 |
132 |
133 | # -dynamic processes advanced routing
134 | def dynamic(self, pcr, pcrm, config, TotR, ETOpenWater, PrecipTot):
135 | # -Update storage in lakes/reservoirs (m3) with specific runoff
136 | self.StorRES = self.StorRES + pcr.ifthenelse(
137 | self.QFRAC == 0, 0.001 * pcr.cellarea() * TotR, 0
138 | )
139 | OldStorage = self.StorRES
140 | # -Calculate lake/reservoir outflow volumes
141 | if self.LakeFLAG == 1 and self.ResFLAG == 1:
142 | tempvar = self.lakes.UpdateLakeHStore(self, pcr, pcrm)
143 | LakeLevel = tempvar[0]
144 | self.StorRES = tempvar[1]
145 | LakeQ = self.lakes.QLake(self, pcr, LakeLevel)
146 | ResQ = self.reservoirs.QRes(self, pcr)
147 | Qout = pcr.ifthenelse(
148 | self.ResID != 0, ResQ, pcr.ifthenelse(self.LakeID != 0, LakeQ, 0)
149 | )
150 | elif self.LakeFLAG == 1:
151 | tempvar = self.lakes.UpdateLakeHStore(self, pcr, pcrm)
152 | LakeLevel = tempvar[0]
153 | self.StorRES = tempvar[1]
154 | Qout = self.lakes.QLake(self, pcr, LakeLevel)
155 | else:
156 | Qout = self.reservoirs.QRes(self, pcr)
157 |
158 | # -Calculate volume available for routing (=outflow lakes/reservoir + cell specific runoff)
159 | RunoffVolume = pcr.upstream(self.FlowDir, Qout) + pcr.ifthenelse(
160 | self.QFRAC == 0, 0, 0.001 * pcr.cellarea() * TotR
161 | )
162 | # -Routing of total flow
163 | tempvar = self.advanced_routing.ROUT(
164 | self, pcr, RunoffVolume, self.QRAold, Qout, self.StorRES
165 | )
166 | self.StorRES = tempvar[0]
167 | if self.ETOpenWaterFLAG == 1:
168 | # -determine actual evapotranspiration per reservoir in m3/day
169 | ETaRES = pcr.ifthenelse(
170 | self.StorRES > 0,
171 | pcr.min(
172 | (
173 | pcr.areatotal(
174 | ETOpenWater * pcr.cellarea() * self.openWaterFrac,
175 | self.openWaterNominal,
176 | )
177 | * 0.001
178 | ),
179 | self.StorRES,
180 | ),
181 | 0,
182 | )
183 | # -Determine total precipitation as input for fraction of open water
184 | PrecipRES = pcr.ifthenelse(
185 | self.StorRES > 0,
186 | (
187 | pcr.areatotal(
188 | PrecipTot * pcr.cellarea() * self.openWaterFrac,
189 | self.openWaterNominal,
190 | )
191 | * 0.001
192 | ),
193 | 0,
194 | )
195 | # -update storage by subtracting the actual evapotranspiration per reservoir
196 | self.StorRES = self.StorRES - ETaRES + PrecipRES
197 | Q = tempvar[1]
198 | Qin = tempvar[2]
199 | self.QRAold = Q
200 | self.reporting.reporting(self, pcr, "QallRAtot", Q)
201 | # -report flux in mm
202 | if self.mm_rep_FLAG == 1 and self.QTOT_mm_FLAG == 1:
203 | self.QTOTSubBasinTSS.sample(
204 | ((Q * 3600 * 24) / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)) * 1000
205 | )
206 | # -report lake and reservoir waterbalance
207 | if self.LakeFLAG == 1 and config.getint("REPORTING", "Lake_wbal") == 1:
208 | self.LakeInTSS.sample(Qin)
209 | self.LakeOutTSS.sample(Qout)
210 | self.LakeStorTSS.sample(self.StorRES)
211 | if self.ResFLAG == 1 and config.getint("REPORTING", "Res_wbal") == 1:
212 | self.ResInTSS.sample(Qin)
213 | self.ResOutTSS.sample(Qout)
214 | self.ResStorTSS.sample(self.StorRES)
215 | if self.ETOpenWaterFLAG:
216 | self.ResETaTSS.sample(ETaRES)
217 | self.ResInCalTSS.sample(Qin - ETaRES)
218 |
219 | # -Routing of individual contributers
220 | # -Snow routing
221 | if self.SnowRA_FLAG == 1 and self.SnowFLAG == 1:
222 | self.SnowRAstor = self.SnowRAstor + pcr.ifthenelse(
223 | self.QFRAC == 0, SnowR * 0.001 * pcr.cellarea(), 0
224 | )
225 | cQfrac = pcr.cover(self.SnowRAstor / OldStorage, 0)
226 | cQout = cQfrac * Qout
227 | cRunoffVolume = pcr.upstream(self.FlowDir, cQout) + pcr.ifthenelse(
228 | self.QFRAC == 0, 0, 0.001 * pcr.cellarea() * SnowR
229 | )
230 | tempvar = self.advanced_routing.ROUT(
231 | self, pcr, cRunoffVolume, self.SnowRAold, cQout, self.SnowRAstor
232 | )
233 | self.SnowRAstor = tempvar[0]
234 | SnowRA = tempvar[1]
235 | cQin = tempvar[2]
236 | self.SnowRAold = SnowRA
237 | self.reporting.reporting(self, pcr, "SnowRAtot", SnowRA)
238 | if self.mm_rep_FLAG == 1 and self.QSNOW_mm_FLAG == 1:
239 | self.QSNOWSubBasinTSS.sample(
240 | (
241 | (SnowRA * 3600 * 24)
242 | / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)
243 | )
244 | * 1000
245 | )
246 | # -report lake and reservoir waterbalance
247 | if self.LakeFLAG == 1 and config.getint("REPORTING", "Lake_wbal") == 1:
248 | self.LakeSnowInTSS.sample(cQin)
249 | self.LakeSnowOutTSS.sample(cQout)
250 | self.LakeSnowStorTSS.sample(self.SnowRAstor)
251 | if self.ResFLAG == 1 and config.getint("REPORTING", "Res_wbal") == 1:
252 | self.ResSnowInTSS.sample(cQin)
253 | self.ResSnowOutTSS.sample(cQout)
254 | self.ResSnowStorTSS.sample(self.SnowRAstor)
255 | # -Rain routing
256 | if self.RainRA_FLAG == 1:
257 | self.RainRAstor = self.RainRAstor + pcr.ifthenelse(
258 | self.QFRAC == 0, RainR * 0.001 * pcr.cellarea(), 0
259 | )
260 | cQfrac = pcr.cover(self.RainRAstor / OldStorage, 0)
261 | cQout = cQfrac * Qout
262 | cRunoffVolume = pcr.upstream(self.FlowDir, cQout) + pcr.ifthenelse(
263 | self.QFRAC == 0, 0, 0.001 * pcr.cellarea() * RainR
264 | )
265 | tempvar = self.advanced_routing.ROUT(
266 | self, pcr, cRunoffVolume, self.RainRAold, cQout, self.RainRAstor
267 | )
268 | self.RainRAstor = tempvar[0]
269 | RainRA = tempvar[1]
270 | cQin = tempvar[2]
271 | self.RainRAold = RainRA
272 | self.reporting.reporting(self, pcr, "RainRAtot", RainRA)
273 | if self.mm_rep_FLAG == 1 and self.QRAIN_mm_FLAG == 1:
274 | self.QRAINSubBasinTSS.sample(
275 | (
276 | (RainRA * 3600 * 24)
277 | / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)
278 | )
279 | * 1000
280 | )
281 | # -report lake and reservoir waterbalance
282 | if self.LakeFLAG == 1 and config.getint("REPORTING", "Lake_wbal") == 1:
283 | self.LakeRainInTSS.sample(cQin)
284 | self.LakeRainOutTSS.sample(cQout)
285 | self.LakeRainStorTSS.sample(self.RainRAstor)
286 | if self.ResFLAG == 1 and config.getint("REPORTING", "Res_wbal") == 1:
287 | self.ResRainInTSS.sample(cQin)
288 | self.ResRainOutTSS.sample(cQout)
289 | self.ResRainStorTSS.sample(self.RainRAstor)
290 | # -Glacier routing
291 | if self.GlacRA_FLAG == 1 and self.GlacFLAG == 1:
292 | self.GlacRAstor = self.GlacRAstor + pcr.ifthenelse(
293 | self.QFRAC == 0, GlacR * 0.001 * pcr.cellarea(), 0
294 | )
295 | cQfrac = pcr.cover(self.GlacRAstor / OldStorage, 0)
296 | cQout = cQfrac * Qout
297 | cRunoffVolume = pcr.upstream(self.FlowDir, cQout) + pcr.ifthenelse(
298 | self.QFRAC == 0, 0, 0.001 * pcr.cellarea() * GlacR
299 | )
300 | tempvar = self.advanced_routing.ROUT(
301 | self, pcr, cRunoffVolume, self.GlacRAold, cQout, self.GlacRAstor
302 | )
303 | self.GlacRAstor = tempvar[0]
304 | GlacRA = tempvar[1]
305 | cQin = tempvar[2]
306 | self.GlacRAold = GlacRA
307 | self.reporting.reporting(self, pcr, "GlacRAtot", GlacRA)
308 | if self.mm_rep_FLAG == 1 and self.QGLAC_mm_FLAG == 1:
309 | self.QGLACSubBasinTSS.sample(
310 | (
311 | (GlacRA * 3600 * 24)
312 | / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)
313 | )
314 | * 1000
315 | )
316 | # -report lake and reservoir waterbalance
317 | if self.LakeFLAG == 1 and config.getint("REPORTING", "Lake_wbal") == 1:
318 | self.LakeGlacInTSS.sample(cQin)
319 | self.LakeGlacOutTSS.sample(cQout)
320 | self.LakeGlacStorTSS.sample(self.GlacRAstor)
321 | if self.ResFLAG == 1 and config.getint("REPORTING", "Res_wbal") == 1:
322 | self.ResGlacInTSS.sample(cQin)
323 | self.ResGlacOutTSS.sample(cQout)
324 | self.ResGlacStorTSS.sample(self.GlacRAstor)
325 | # -Baseflow routing
326 | if self.BaseRA_FLAG == 1:
327 | self.BaseRAstor = self.BaseRAstor + pcr.ifthenelse(
328 | self.QFRAC == 0, self.BaseR * 0.001 * pcr.cellarea(), 0
329 | )
330 | cQfrac = pcr.cover(self.BaseRAstor / OldStorage, 0)
331 | cQout = cQfrac * Qout
332 | cRunoffVolume = pcr.upstream(self.FlowDir, cQout) + pcr.ifthenelse(
333 | self.QFRAC == 0, 0, 0.001 * pcr.cellarea() * self.BaseR
334 | )
335 | tempvar = self.routing.ROUT(
336 | self, pcr, cRunoffVolume, self.BaseRAold, cQout, self.BaseRAstor
337 | )
338 | self.BaseRAstor = tempvar[0]
339 | BaseRA = tempvar[1]
340 | cQin = tempvar[2]
341 | self.BaseRAold = BaseRA
342 | self.reporting.reporting(self, pcr, "BaseRAtot", BaseRA)
343 | if self.mm_rep_FLAG == 1 and self.QBASE_mm_FLAG == 1:
344 | self.QBASESubBasinTSS.sample(
345 | (
346 | (BaseRA * 3600 * 24)
347 | / pcr.catchmenttotal(pcr.cellarea(), self.FlowDir)
348 | )
349 | * 1000
350 | )
351 | # -report lake and reservoir waterbalance
352 | if self.LakeFLAG == 1 and config.getint("REPORTING", "Lake_wbal") == 1:
353 | self.LakeBaseInTSS.sample(cQin)
354 | self.LakeBaseOutTSS.sample(cQout)
355 | self.LakeBaseStorTSS.sample(self.BaseRAstor)
356 | if self.ResFLAG == 1 and config.getint("REPORTING", "Res_wbal") == 1:
357 | self.ResBaseInTSS.sample(cQin)
358 | self.ResBaseOutTSS.sample(cQout)
359 | self.ResBaseStorTSS.sample(self.BaseRAstor)
360 | return Q
361 |
--------------------------------------------------------------------------------
/LICENSE.TXT:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
--------------------------------------------------------------------------------