├── Book-Recommender-System ├── Book-Recommender.ipynb ├── README.md ├── Result-1.PNG ├── Result-2.PNG └── books.csv ├── Campus-Recruitment-Analysis ├── CampusPlacementAnalysis.ipynb ├── Placement_Data_Full_Class.csv ├── README.md ├── result1.PNG └── result2.PNG ├── Celestial-Bodies-Classification ├── DataSheet.csv ├── Plots │ ├── galaxy.csv │ ├── plot.py │ ├── plot1.png │ ├── plot2.png │ ├── readme.jpg │ └── star.csv ├── kernel_svm.py ├── knn.py └── svm.py ├── Cervical-Cancer-Risk ├── cervical-cancer-awareness.png ├── cervicalCancer-ML.ipynb └── risk_factors_cervical_cancer.csv ├── Drowsiness-Detection-web-app ├── Drowsiness Detection model.py ├── Eye_patch_extractor_&_GUI.py ├── ISHN0619_C3_pic.jpg ├── Pics-for-Readme │ ├── 2021-04-10.png │ ├── 2021-05-03 (1).png │ ├── 2021-05-03 (2).png │ ├── 2021-05-03 (3).png │ └── 2021-05-03 (4).png ├── README.md ├── my_model (1).h5 ├── requirements.txt └── sleep.jfif ├── Kaggle 2020 Survey Analysis ├── Kaggle-Survey-2020-Submission.ipynb ├── README.md └── images.png ├── Noise-Removal-and-OCR-Using-CNNs-Autoencoders ├── OCR_DeNoiser.ipynb └── images │ └── result.jpg ├── README.md ├── Titanic-Survival-Dataset-Analysis ├── .ipynb_checkpoints │ └── titanic_survival-checkpoint.ipynb ├── README.md ├── ground_truth.csv ├── titanic_survival.ipynb ├── titanic_test.csv └── titanic_train.csv ├── TwitchTopStreamers-Analysis ├── README.md ├── Twitch-Result.PNG ├── TwitchTopStreamersAnalysis.ipynb └── twitchdata-update.csv ├── UsedCarPricePredictor ├── CarPricePrediction.ipynb ├── Procfile ├── README.md ├── app.py ├── car_data.csv ├── main.py ├── random_forest_regression_model.pkl ├── requirements.txt ├── static │ └── stylesheets │ │ └── styles.css └── templates │ └── index.html └── contribution.md /Book-Recommender-System/README.md: -------------------------------------------------------------------------------- 1 | # Book-Recommender 2 | A Machine Learning Project that makes the use of KNN to recommend books to the users based off of average ratings of the books in the Data, the language they are written in, and the total rating counts for that book. 3 | 4 | # Files In the Folder 5 | 1) Book Recommender - Contains the actual Recommender System.
6 | 2) books.csv - The data that was used to make the Model. 7 | 8 | # Tools used 9 | 10 | 11 | # Objective of the Project 12 | The objective of this Recommender system was to Recommend Books to the user based on the average ratings that the books have recieved, the number of rating counts and the languages these books are written in. 13 | 14 | # Steps involved in making the Recommender System 15 | 1) We start off by importing and taking a look at our data. We have in total 10 columns to work with. These columns include - the authors, book title, publishers and many other details that might be relevant to the books. More information on these columns is provided in the main notebook.
16 | 2) We then check some basic information such as checkig for any null data present, checking for maximum and minimum values of each column and finding the data types of each column. This step helps us in knowing a little bit more about our data and makes our further processes easier.
17 | 3) Next, we do some visualizations on on the columns in our data. We find the top 10 athors, some highly rated authors, the top 10 publishers and try and find relations between the average ratings of the books and number of ratings that these books have recieved. These helps us in having a better understanding of our data and also helps us in selectig the right features to make our model on.
18 | 4) We chose average ratings, the rating counts and languages as our features to feedd to our model. It would have been better if we had a category column as well, we could use this to suggest books according to the genres but our data set didn't have these values but we can obtain them externally through scraping.
19 | 5) We feed these features to our model which is a KNN based model. So what it does is, a user inputs a name of the book, this book name becomes a data point, then our model looks for other data points that are in the vicinity of this data point to make our Recommendation.
20 | 6) We finally define a method to make our predictions and that concludes our whole process of making this recommender system.
21 | 22 | # Results 23 | The System actually makes some decent recommendations based on the inputs. These recommendations can be made even better with a category column as well. We have a column called ISBN-13 which we cann use to scrape the Categories of each book in our data but even with our features, the system performs well.
24 | 25 | Results when we input one of the Harry Potter books -
26 | ![alt text](https://github.com/AM1CODES/Machine-Learning-Projects/blob/main/Book-Recommender-main/Result-1.PNG?raw=true) 27 | 28 | Results when we input one of the Lord of the Rings books -
29 | ![alt text](https://github.com/AM1CODES/Machine-Learning-Projects/blob/main/Book-Recommender-main/Result-2.PNG?raw=true) 30 | -------------------------------------------------------------------------------- /Book-Recommender-System/Result-1.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Book-Recommender-System/Result-1.PNG -------------------------------------------------------------------------------- /Book-Recommender-System/Result-2.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Book-Recommender-System/Result-2.PNG -------------------------------------------------------------------------------- /Campus-Recruitment-Analysis/Placement_Data_Full_Class.csv: -------------------------------------------------------------------------------- 1 | sl_no,gender,ssc_p,ssc_b,hsc_p,hsc_b,hsc_s,degree_p,degree_t,workex,etest_p,specialisation,mba_p,status,salary 2 | 1,M,67.00,Others,91.00,Others,Commerce,58.00,Sci&Tech,No,55,Mkt&HR,58.8,Placed,270000 3 | 2,M,79.33,Central,78.33,Others,Science,77.48,Sci&Tech,Yes,86.5,Mkt&Fin,66.28,Placed,200000 4 | 3,M,65.00,Central,68.00,Central,Arts,64.00,Comm&Mgmt,No,75,Mkt&Fin,57.8,Placed,250000 5 | 4,M,56.00,Central,52.00,Central,Science,52.00,Sci&Tech,No,66,Mkt&HR,59.43,Not Placed, 6 | 5,M,85.80,Central,73.60,Central,Commerce,73.30,Comm&Mgmt,No,96.8,Mkt&Fin,55.5,Placed,425000 7 | 6,M,55.00,Others,49.80,Others,Science,67.25,Sci&Tech,Yes,55,Mkt&Fin,51.58,Not Placed, 8 | 7,F,46.00,Others,49.20,Others,Commerce,79.00,Comm&Mgmt,No,74.28,Mkt&Fin,53.29,Not Placed, 9 | 8,M,82.00,Central,64.00,Central,Science,66.00,Sci&Tech,Yes,67,Mkt&Fin,62.14,Placed,252000 10 | 9,M,73.00,Central,79.00,Central,Commerce,72.00,Comm&Mgmt,No,91.34,Mkt&Fin,61.29,Placed,231000 11 | 10,M,58.00,Central,70.00,Central,Commerce,61.00,Comm&Mgmt,No,54,Mkt&Fin,52.21,Not Placed, 12 | 11,M,58.00,Central,61.00,Central,Commerce,60.00,Comm&Mgmt,Yes,62,Mkt&HR,60.85,Placed,260000 13 | 12,M,69.60,Central,68.40,Central,Commerce,78.30,Comm&Mgmt,Yes,60,Mkt&Fin,63.7,Placed,250000 14 | 13,F,47.00,Central,55.00,Others,Science,65.00,Comm&Mgmt,No,62,Mkt&HR,65.04,Not Placed, 15 | 14,F,77.00,Central,87.00,Central,Commerce,59.00,Comm&Mgmt,No,68,Mkt&Fin,68.63,Placed,218000 16 | 15,M,62.00,Central,47.00,Central,Commerce,50.00,Comm&Mgmt,No,76,Mkt&HR,54.96,Not Placed, 17 | 16,F,65.00,Central,75.00,Central,Commerce,69.00,Comm&Mgmt,Yes,72,Mkt&Fin,64.66,Placed,200000 18 | 17,M,63.00,Central,66.20,Central,Commerce,65.60,Comm&Mgmt,Yes,60,Mkt&Fin,62.54,Placed,300000 19 | 18,F,55.00,Central,67.00,Central,Commerce,64.00,Comm&Mgmt,No,60,Mkt&Fin,67.28,Not Placed, 20 | 19,F,63.00,Central,66.00,Central,Commerce,64.00,Comm&Mgmt,No,68,Mkt&HR,64.08,Not Placed, 21 | 20,M,60.00,Others,67.00,Others,Arts,70.00,Comm&Mgmt,Yes,50.48,Mkt&Fin,77.89,Placed,236000 22 | 21,M,62.00,Others,65.00,Others,Commerce,66.00,Comm&Mgmt,No,50,Mkt&HR,56.7,Placed,265000 23 | 22,F,79.00,Others,76.00,Others,Commerce,85.00,Comm&Mgmt,No,95,Mkt&Fin,69.06,Placed,393000 24 | 23,F,69.80,Others,60.80,Others,Science,72.23,Sci&Tech,No,55.53,Mkt&HR,68.81,Placed,360000 25 | 24,F,77.40,Others,60.00,Others,Science,64.74,Sci&Tech,Yes,92,Mkt&Fin,63.62,Placed,300000 26 | 25,M,76.50,Others,97.70,Others,Science,78.86,Sci&Tech,No,97.4,Mkt&Fin,74.01,Placed,360000 27 | 26,F,52.58,Others,54.60,Central,Commerce,50.20,Comm&Mgmt,Yes,76,Mkt&Fin,65.33,Not Placed, 28 | 27,M,71.00,Others,79.00,Others,Commerce,66.00,Comm&Mgmt,Yes,94,Mkt&Fin,57.55,Placed,240000 29 | 28,M,63.00,Others,67.00,Others,Commerce,66.00,Comm&Mgmt,No,68,Mkt&HR,57.69,Placed,265000 30 | 29,M,76.76,Others,76.50,Others,Commerce,67.50,Comm&Mgmt,Yes,73.35,Mkt&Fin,64.15,Placed,350000 31 | 30,M,62.00,Central,67.00,Central,Commerce,58.00,Comm&Mgmt,No,77,Mkt&Fin,51.29,Not Placed, 32 | 31,F,64.00,Central,73.50,Central,Commerce,73.00,Comm&Mgmt,No,52,Mkt&HR,56.7,Placed,250000 33 | 32,F,67.00,Central,53.00,Central,Science,65.00,Sci&Tech,No,64,Mkt&HR,58.32,Not Placed, 34 | 33,F,61.00,Central,81.00,Central,Commerce,66.40,Comm&Mgmt,No,50.89,Mkt&HR,62.21,Placed,278000 35 | 34,F,87.00,Others,65.00,Others,Science,81.00,Comm&Mgmt,Yes,88,Mkt&Fin,72.78,Placed,260000 36 | 35,M,62.00,Others,51.00,Others,Science,52.00,Others,No,68.44,Mkt&HR,62.77,Not Placed, 37 | 36,F,69.00,Central,78.00,Central,Commerce,72.00,Comm&Mgmt,No,71,Mkt&HR,62.74,Placed,300000 38 | 37,M,51.00,Central,44.00,Central,Commerce,57.00,Comm&Mgmt,No,64,Mkt&Fin,51.45,Not Placed, 39 | 38,F,79.00,Central,76.00,Central,Science,65.60,Sci&Tech,No,58,Mkt&HR,55.47,Placed,320000 40 | 39,F,73.00,Others,58.00,Others,Science,66.00,Comm&Mgmt,No,53.7,Mkt&HR,56.86,Placed,240000 41 | 40,M,81.00,Others,68.00,Others,Science,64.00,Sci&Tech,No,93,Mkt&Fin,62.56,Placed,411000 42 | 41,F,78.00,Central,77.00,Others,Commerce,80.00,Comm&Mgmt,No,60,Mkt&Fin,66.72,Placed,287000 43 | 42,F,74.00,Others,63.16,Others,Commerce,65.00,Comm&Mgmt,Yes,65,Mkt&HR,69.76,Not Placed, 44 | 43,M,49.00,Others,39.00,Central,Science,65.00,Others,No,63,Mkt&Fin,51.21,Not Placed, 45 | 44,M,87.00,Others,87.00,Others,Commerce,68.00,Comm&Mgmt,No,95,Mkt&HR,62.9,Placed,300000 46 | 45,F,77.00,Others,73.00,Others,Commerce,81.00,Comm&Mgmt,Yes,89,Mkt&Fin,69.7,Placed,200000 47 | 46,F,76.00,Central,64.00,Central,Science,72.00,Sci&Tech,No,58,Mkt&HR,66.53,Not Placed, 48 | 47,F,70.89,Others,71.98,Others,Science,65.60,Comm&Mgmt,No,68,Mkt&HR,71.63,Not Placed, 49 | 48,M,63.00,Central,60.00,Central,Commerce,57.00,Comm&Mgmt,Yes,78,Mkt&Fin,54.55,Placed,204000 50 | 49,M,63.00,Others,62.00,Others,Commerce,68.00,Comm&Mgmt,No,64,Mkt&Fin,62.46,Placed,250000 51 | 50,F,50.00,Others,37.00,Others,Arts,52.00,Others,No,65,Mkt&HR,56.11,Not Placed, 52 | 51,F,75.20,Central,73.20,Central,Science,68.40,Comm&Mgmt,No,65,Mkt&HR,62.98,Placed,200000 53 | 52,M,54.40,Central,61.12,Central,Commerce,56.20,Comm&Mgmt,No,67,Mkt&HR,62.65,Not Placed, 54 | 53,F,40.89,Others,45.83,Others,Commerce,53.00,Comm&Mgmt,No,71.2,Mkt&HR,65.49,Not Placed, 55 | 54,M,80.00,Others,70.00,Others,Science,72.00,Sci&Tech,No,87,Mkt&HR,71.04,Placed,450000 56 | 55,F,74.00,Central,60.00,Others,Science,69.00,Comm&Mgmt,No,78,Mkt&HR,65.56,Placed,216000 57 | 56,M,60.40,Central,66.60,Others,Science,65.00,Comm&Mgmt,No,71,Mkt&HR,52.71,Placed,220000 58 | 57,M,63.00,Others,71.40,Others,Commerce,61.40,Comm&Mgmt,No,68,Mkt&Fin,66.88,Placed,240000 59 | 58,M,68.00,Central,76.00,Central,Commerce,74.00,Comm&Mgmt,No,80,Mkt&Fin,63.59,Placed,360000 60 | 59,M,74.00,Central,62.00,Others,Science,68.00,Comm&Mgmt,No,74,Mkt&Fin,57.99,Placed,268000 61 | 60,M,52.60,Central,65.58,Others,Science,72.11,Sci&Tech,No,57.6,Mkt&Fin,56.66,Placed,265000 62 | 61,M,74.00,Central,70.00,Central,Science,72.00,Comm&Mgmt,Yes,60,Mkt&Fin,57.24,Placed,260000 63 | 62,M,84.20,Central,73.40,Central,Commerce,66.89,Comm&Mgmt,No,61.6,Mkt&Fin,62.48,Placed,300000 64 | 63,F,86.50,Others,64.20,Others,Science,67.40,Sci&Tech,No,59,Mkt&Fin,59.69,Placed,240000 65 | 64,M,61.00,Others,70.00,Others,Commerce,64.00,Comm&Mgmt,No,68.5,Mkt&HR,59.5,Not Placed, 66 | 65,M,80.00,Others,73.00,Others,Commerce,75.00,Comm&Mgmt,No,61,Mkt&Fin,58.78,Placed,240000 67 | 66,M,54.00,Others,47.00,Others,Science,57.00,Comm&Mgmt,No,89.69,Mkt&HR,57.1,Not Placed, 68 | 67,M,83.00,Others,74.00,Others,Science,66.00,Comm&Mgmt,No,68.92,Mkt&HR,58.46,Placed,275000 69 | 68,M,80.92,Others,78.50,Others,Commerce,67.00,Comm&Mgmt,No,68.71,Mkt&Fin,60.99,Placed,275000 70 | 69,F,69.70,Central,47.00,Central,Commerce,72.70,Sci&Tech,No,79,Mkt&HR,59.24,Not Placed, 71 | 70,M,73.00,Central,73.00,Central,Science,66.00,Sci&Tech,Yes,70,Mkt&Fin,68.07,Placed,275000 72 | 71,M,82.00,Others,61.00,Others,Science,62.00,Sci&Tech,No,89,Mkt&Fin,65.45,Placed,360000 73 | 72,M,75.00,Others,70.29,Others,Commerce,71.00,Comm&Mgmt,No,95,Mkt&Fin,66.94,Placed,240000 74 | 73,M,84.86,Others,67.00,Others,Science,78.00,Comm&Mgmt,No,95.5,Mkt&Fin,68.53,Placed,240000 75 | 74,M,64.60,Central,83.83,Others,Commerce,71.72,Comm&Mgmt,No,86,Mkt&Fin,59.75,Placed,218000 76 | 75,M,56.60,Central,64.80,Central,Commerce,70.20,Comm&Mgmt,No,84.27,Mkt&Fin,67.2,Placed,336000 77 | 76,F,59.00,Central,62.00,Others,Commerce,77.50,Comm&Mgmt,No,74,Mkt&HR,67,Not Placed, 78 | 77,F,66.50,Others,70.40,Central,Arts,71.93,Comm&Mgmt,No,61,Mkt&Fin,64.27,Placed,230000 79 | 78,M,64.00,Others,80.00,Others,Science,65.00,Sci&Tech,Yes,69,Mkt&Fin,57.65,Placed,500000 80 | 79,M,84.00,Others,90.90,Others,Science,64.50,Sci&Tech,No,86.04,Mkt&Fin,59.42,Placed,270000 81 | 80,F,69.00,Central,62.00,Central,Science,66.00,Sci&Tech,No,75,Mkt&HR,67.99,Not Placed, 82 | 81,F,69.00,Others,62.00,Others,Commerce,69.00,Comm&Mgmt,Yes,67,Mkt&HR,62.35,Placed,240000 83 | 82,M,81.70,Others,63.00,Others,Science,67.00,Comm&Mgmt,Yes,86,Mkt&Fin,70.2,Placed,300000 84 | 83,M,63.00,Central,67.00,Central,Commerce,74.00,Comm&Mgmt,No,82,Mkt&Fin,60.44,Not Placed, 85 | 84,M,84.00,Others,79.00,Others,Science,68.00,Sci&Tech,Yes,84,Mkt&Fin,66.69,Placed,300000 86 | 85,M,70.00,Central,63.00,Others,Science,70.00,Sci&Tech,Yes,55,Mkt&Fin,62,Placed,300000 87 | 86,F,83.84,Others,89.83,Others,Commerce,77.20,Comm&Mgmt,Yes,78.74,Mkt&Fin,76.18,Placed,400000 88 | 87,M,62.00,Others,63.00,Others,Commerce,64.00,Comm&Mgmt,No,67,Mkt&Fin,57.03,Placed,220000 89 | 88,M,59.60,Central,51.00,Central,Science,60.00,Others,No,75,Mkt&HR,59.08,Not Placed, 90 | 89,F,66.00,Central,62.00,Central,Commerce,73.00,Comm&Mgmt,No,58,Mkt&HR,64.36,Placed,210000 91 | 90,F,84.00,Others,75.00,Others,Science,69.00,Sci&Tech,Yes,62,Mkt&HR,62.36,Placed,210000 92 | 91,F,85.00,Others,90.00,Others,Commerce,82.00,Comm&Mgmt,No,92,Mkt&Fin,68.03,Placed,300000 93 | 92,M,52.00,Central,57.00,Central,Commerce,50.80,Comm&Mgmt,No,67,Mkt&HR,62.79,Not Placed, 94 | 93,F,60.23,Central,69.00,Central,Science,66.00,Comm&Mgmt,No,72,Mkt&Fin,59.47,Placed,230000 95 | 94,M,52.00,Central,62.00,Central,Commerce,54.00,Comm&Mgmt,No,72,Mkt&HR,55.41,Not Placed, 96 | 95,M,58.00,Central,62.00,Central,Commerce,64.00,Comm&Mgmt,No,53.88,Mkt&Fin,54.97,Placed,260000 97 | 96,M,73.00,Central,78.00,Others,Commerce,65.00,Comm&Mgmt,Yes,95.46,Mkt&Fin,62.16,Placed,420000 98 | 97,F,76.00,Central,70.00,Central,Science,76.00,Comm&Mgmt,Yes,66,Mkt&Fin,64.44,Placed,300000 99 | 98,F,70.50,Central,62.50,Others,Commerce,61.00,Comm&Mgmt,No,93.91,Mkt&Fin,69.03,Not Placed, 100 | 99,F,69.00,Central,73.00,Central,Commerce,65.00,Comm&Mgmt,No,70,Mkt&Fin,57.31,Placed,220000 101 | 100,M,54.00,Central,82.00,Others,Commerce,63.00,Sci&Tech,No,50,Mkt&Fin,59.47,Not Placed, 102 | 101,F,45.00,Others,57.00,Others,Commerce,58.00,Comm&Mgmt,Yes,56.39,Mkt&HR,64.95,Not Placed, 103 | 102,M,63.00,Central,72.00,Central,Commerce,68.00,Comm&Mgmt,No,78,Mkt&HR,60.44,Placed,380000 104 | 103,F,77.00,Others,61.00,Others,Commerce,68.00,Comm&Mgmt,Yes,57.5,Mkt&Fin,61.31,Placed,300000 105 | 104,M,73.00,Central,78.00,Central,Science,73.00,Sci&Tech,Yes,85,Mkt&HR,65.83,Placed,240000 106 | 105,M,69.00,Central,63.00,Others,Science,65.00,Comm&Mgmt,Yes,55,Mkt&HR,58.23,Placed,360000 107 | 106,M,59.00,Central,64.00,Others,Science,58.00,Sci&Tech,No,85,Mkt&HR,55.3,Not Placed, 108 | 107,M,61.08,Others,50.00,Others,Science,54.00,Sci&Tech,No,71,Mkt&Fin,65.69,Not Placed, 109 | 108,M,82.00,Others,90.00,Others,Commerce,83.00,Comm&Mgmt,No,80,Mkt&HR,73.52,Placed,200000 110 | 109,M,61.00,Central,82.00,Central,Commerce,69.00,Comm&Mgmt,No,84,Mkt&Fin,58.31,Placed,300000 111 | 110,M,52.00,Central,63.00,Others,Science,65.00,Sci&Tech,Yes,86,Mkt&HR,56.09,Not Placed, 112 | 111,F,69.50,Central,70.00,Central,Science,72.00,Sci&Tech,No,57.2,Mkt&HR,54.8,Placed,250000 113 | 112,M,51.00,Others,54.00,Others,Science,61.00,Sci&Tech,No,60,Mkt&HR,60.64,Not Placed, 114 | 113,M,58.00,Others,61.00,Others,Commerce,61.00,Comm&Mgmt,No,58,Mkt&HR,53.94,Placed,250000 115 | 114,F,73.96,Others,79.00,Others,Commerce,67.00,Comm&Mgmt,No,72.15,Mkt&Fin,63.08,Placed,280000 116 | 115,M,65.00,Central,68.00,Others,Science,69.00,Comm&Mgmt,No,53.7,Mkt&HR,55.01,Placed,250000 117 | 116,F,73.00,Others,63.00,Others,Science,66.00,Comm&Mgmt,No,89,Mkt&Fin,60.5,Placed,216000 118 | 117,M,68.20,Central,72.80,Central,Commerce,66.60,Comm&Mgmt,Yes,96,Mkt&Fin,70.85,Placed,300000 119 | 118,M,77.00,Others,75.00,Others,Science,73.00,Sci&Tech,No,80,Mkt&Fin,67.05,Placed,240000 120 | 119,M,76.00,Central,80.00,Central,Science,78.00,Sci&Tech,Yes,97,Mkt&HR,70.48,Placed,276000 121 | 120,M,60.80,Central,68.40,Central,Commerce,64.60,Comm&Mgmt,Yes,82.66,Mkt&Fin,64.34,Placed,940000 122 | 121,M,58.00,Others,40.00,Others,Science,59.00,Comm&Mgmt,No,73,Mkt&HR,58.81,Not Placed, 123 | 122,F,64.00,Central,67.00,Others,Science,69.60,Sci&Tech,Yes,55.67,Mkt&HR,71.49,Placed,250000 124 | 123,F,66.50,Central,66.80,Central,Arts,69.30,Comm&Mgmt,Yes,80.4,Mkt&Fin,71,Placed,236000 125 | 124,M,74.00,Others,59.00,Others,Commerce,73.00,Comm&Mgmt,Yes,60,Mkt&HR,56.7,Placed,240000 126 | 125,M,67.00,Central,71.00,Central,Science,64.33,Others,Yes,64,Mkt&HR,61.26,Placed,250000 127 | 126,F,84.00,Central,73.00,Central,Commerce,73.00,Comm&Mgmt,No,75,Mkt&Fin,73.33,Placed,350000 128 | 127,F,79.00,Others,61.00,Others,Science,75.50,Sci&Tech,Yes,70,Mkt&Fin,68.2,Placed,210000 129 | 128,F,72.00,Others,60.00,Others,Science,69.00,Comm&Mgmt,No,55.5,Mkt&HR,58.4,Placed,250000 130 | 129,M,80.40,Central,73.40,Central,Science,77.72,Sci&Tech,Yes,81.2,Mkt&HR,76.26,Placed,400000 131 | 130,M,76.70,Central,89.70,Others,Commerce,66.00,Comm&Mgmt,Yes,90,Mkt&Fin,68.55,Placed,250000 132 | 131,M,62.00,Central,65.00,Others,Commerce,60.00,Comm&Mgmt,No,84,Mkt&Fin,64.15,Not Placed, 133 | 132,F,74.90,Others,57.00,Others,Science,62.00,Others,Yes,80,Mkt&Fin,60.78,Placed,360000 134 | 133,M,67.00,Others,68.00,Others,Commerce,64.00,Comm&Mgmt,Yes,74.4,Mkt&HR,53.49,Placed,300000 135 | 134,M,73.00,Central,64.00,Others,Commerce,77.00,Comm&Mgmt,Yes,65,Mkt&HR,60.98,Placed,250000 136 | 135,F,77.44,Central,92.00,Others,Commerce,72.00,Comm&Mgmt,Yes,94,Mkt&Fin,67.13,Placed,250000 137 | 136,F,72.00,Central,56.00,Others,Science,69.00,Comm&Mgmt,No,55.6,Mkt&HR,65.63,Placed,200000 138 | 137,F,47.00,Central,59.00,Central,Arts,64.00,Comm&Mgmt,No,78,Mkt&Fin,61.58,Not Placed, 139 | 138,M,67.00,Others,63.00,Central,Commerce,72.00,Comm&Mgmt,No,56,Mkt&HR,60.41,Placed,225000 140 | 139,F,82.00,Others,64.00,Others,Science,73.00,Sci&Tech,Yes,96,Mkt&Fin,71.77,Placed,250000 141 | 140,M,77.00,Central,70.00,Central,Commerce,59.00,Comm&Mgmt,Yes,58,Mkt&Fin,54.43,Placed,220000 142 | 141,M,65.00,Central,64.80,Others,Commerce,69.50,Comm&Mgmt,Yes,56,Mkt&Fin,56.94,Placed,265000 143 | 142,M,66.00,Central,64.00,Central,Science,60.00,Comm&Mgmt,No,60,Mkt&HR,61.9,Not Placed, 144 | 143,M,85.00,Central,60.00,Others,Science,73.43,Sci&Tech,Yes,60,Mkt&Fin,61.29,Placed,260000 145 | 144,M,77.67,Others,64.89,Others,Commerce,70.67,Comm&Mgmt,No,89,Mkt&Fin,60.39,Placed,300000 146 | 145,M,52.00,Others,50.00,Others,Arts,61.00,Comm&Mgmt,No,60,Mkt&Fin,58.52,Not Placed, 147 | 146,M,89.40,Others,65.66,Others,Science,71.25,Sci&Tech,No,72,Mkt&HR,63.23,Placed,400000 148 | 147,M,62.00,Central,63.00,Others,Science,66.00,Comm&Mgmt,No,85,Mkt&HR,55.14,Placed,233000 149 | 148,M,70.00,Central,74.00,Central,Commerce,65.00,Comm&Mgmt,No,83,Mkt&Fin,62.28,Placed,300000 150 | 149,F,77.00,Central,86.00,Central,Arts,56.00,Others,No,57,Mkt&Fin,64.08,Placed,240000 151 | 150,M,44.00,Central,58.00,Central,Arts,55.00,Comm&Mgmt,Yes,64.25,Mkt&HR,58.54,Not Placed, 152 | 151,M,71.00,Central,58.66,Central,Science,58.00,Sci&Tech,Yes,56,Mkt&Fin,61.3,Placed,690000 153 | 152,M,65.00,Central,65.00,Central,Commerce,75.00,Comm&Mgmt,No,83,Mkt&Fin,58.87,Placed,270000 154 | 153,F,75.40,Others,60.50,Central,Science,84.00,Sci&Tech,No,98,Mkt&Fin,65.25,Placed,240000 155 | 154,M,49.00,Others,59.00,Others,Science,65.00,Sci&Tech,Yes,86,Mkt&Fin,62.48,Placed,340000 156 | 155,M,53.00,Central,63.00,Others,Science,60.00,Comm&Mgmt,Yes,70,Mkt&Fin,53.2,Placed,250000 157 | 156,M,51.57,Others,74.66,Others,Commerce,59.90,Comm&Mgmt,Yes,56.15,Mkt&HR,65.99,Not Placed, 158 | 157,M,84.20,Central,69.40,Central,Science,65.00,Sci&Tech,Yes,80,Mkt&HR,52.72,Placed,255000 159 | 158,M,66.50,Central,62.50,Central,Commerce,60.90,Comm&Mgmt,No,93.4,Mkt&Fin,55.03,Placed,300000 160 | 159,M,67.00,Others,63.00,Others,Science,64.00,Sci&Tech,No,60,Mkt&Fin,61.87,Not Placed, 161 | 160,M,52.00,Central,49.00,Others,Commerce,58.00,Comm&Mgmt,No,62,Mkt&HR,60.59,Not Placed, 162 | 161,M,87.00,Central,74.00,Central,Science,65.00,Sci&Tech,Yes,75,Mkt&HR,72.29,Placed,300000 163 | 162,M,55.60,Others,51.00,Others,Commerce,57.50,Comm&Mgmt,No,57.63,Mkt&HR,62.72,Not Placed, 164 | 163,M,74.20,Central,87.60,Others,Commerce,77.25,Comm&Mgmt,Yes,75.2,Mkt&Fin,66.06,Placed,285000 165 | 164,M,63.00,Others,67.00,Others,Science,64.00,Sci&Tech,No,75,Mkt&Fin,66.46,Placed,500000 166 | 165,F,67.16,Central,72.50,Central,Commerce,63.35,Comm&Mgmt,No,53.04,Mkt&Fin,65.52,Placed,250000 167 | 166,F,63.30,Central,78.33,Others,Commerce,74.00,Comm&Mgmt,No,80,Mkt&Fin,74.56,Not Placed, 168 | 167,M,62.00,Others,62.00,Others,Commerce,60.00,Comm&Mgmt,Yes,63,Mkt&HR,52.38,Placed,240000 169 | 168,M,67.90,Others,62.00,Others,Science,67.00,Sci&Tech,Yes,58.1,Mkt&Fin,75.71,Not Placed, 170 | 169,F,48.00,Central,51.00,Central,Commerce,58.00,Comm&Mgmt,Yes,60,Mkt&HR,58.79,Not Placed, 171 | 170,M,59.96,Others,42.16,Others,Science,61.26,Sci&Tech,No,54.48,Mkt&HR,65.48,Not Placed, 172 | 171,F,63.40,Others,67.20,Others,Commerce,60.00,Comm&Mgmt,No,58.06,Mkt&HR,69.28,Not Placed, 173 | 172,M,80.00,Others,80.00,Others,Commerce,72.00,Comm&Mgmt,Yes,63.79,Mkt&Fin,66.04,Placed,290000 174 | 173,M,73.00,Others,58.00,Others,Commerce,56.00,Comm&Mgmt,No,84,Mkt&HR,52.64,Placed,300000 175 | 174,F,52.00,Others,52.00,Others,Science,55.00,Sci&Tech,No,67,Mkt&HR,59.32,Not Placed, 176 | 175,M,73.24,Others,50.83,Others,Science,64.27,Sci&Tech,Yes,64,Mkt&Fin,66.23,Placed,500000 177 | 176,M,63.00,Others,62.00,Others,Science,65.00,Sci&Tech,No,87.5,Mkt&HR,60.69,Not Placed, 178 | 177,F,59.00,Central,60.00,Others,Commerce,56.00,Comm&Mgmt,No,55,Mkt&HR,57.9,Placed,220000 179 | 178,F,73.00,Central,97.00,Others,Commerce,79.00,Comm&Mgmt,Yes,89,Mkt&Fin,70.81,Placed,650000 180 | 179,M,68.00,Others,56.00,Others,Science,68.00,Sci&Tech,No,73,Mkt&HR,68.07,Placed,350000 181 | 180,F,77.80,Central,64.00,Central,Science,64.20,Sci&Tech,No,75.5,Mkt&HR,72.14,Not Placed, 182 | 181,M,65.00,Central,71.50,Others,Commerce,62.80,Comm&Mgmt,Yes,57,Mkt&Fin,56.6,Placed,265000 183 | 182,M,62.00,Central,60.33,Others,Science,64.21,Sci&Tech,No,63,Mkt&HR,60.02,Not Placed, 184 | 183,M,52.00,Others,65.00,Others,Arts,57.00,Others,Yes,75,Mkt&Fin,59.81,Not Placed, 185 | 184,M,65.00,Central,77.00,Central,Commerce,69.00,Comm&Mgmt,No,60,Mkt&HR,61.82,Placed,276000 186 | 185,F,56.28,Others,62.83,Others,Commerce,59.79,Comm&Mgmt,No,60,Mkt&HR,57.29,Not Placed, 187 | 186,F,88.00,Central,72.00,Central,Science,78.00,Others,No,82,Mkt&HR,71.43,Placed,252000 188 | 187,F,52.00,Central,64.00,Central,Commerce,61.00,Comm&Mgmt,No,55,Mkt&Fin,62.93,Not Placed, 189 | 188,M,78.50,Central,65.50,Central,Science,67.00,Sci&Tech,Yes,95,Mkt&Fin,64.86,Placed,280000 190 | 189,M,61.80,Others,47.00,Others,Commerce,54.38,Comm&Mgmt,No,57,Mkt&Fin,56.13,Not Placed, 191 | 190,F,54.00,Central,77.60,Others,Commerce,69.20,Comm&Mgmt,No,95.65,Mkt&Fin,66.94,Not Placed, 192 | 191,F,64.00,Others,70.20,Central,Commerce,61.00,Comm&Mgmt,No,50,Mkt&Fin,62.5,Not Placed, 193 | 192,M,67.00,Others,61.00,Central,Science,72.00,Comm&Mgmt,No,72,Mkt&Fin,61.01,Placed,264000 194 | 193,M,65.20,Central,61.40,Central,Commerce,64.80,Comm&Mgmt,Yes,93.4,Mkt&Fin,57.34,Placed,270000 195 | 194,F,60.00,Central,63.00,Central,Arts,56.00,Others,Yes,80,Mkt&HR,56.63,Placed,300000 196 | 195,M,52.00,Others,55.00,Others,Commerce,56.30,Comm&Mgmt,No,59,Mkt&Fin,64.74,Not Placed, 197 | 196,M,66.00,Central,76.00,Central,Commerce,72.00,Comm&Mgmt,Yes,84,Mkt&HR,58.95,Placed,275000 198 | 197,M,72.00,Others,63.00,Others,Science,77.50,Sci&Tech,Yes,78,Mkt&Fin,54.48,Placed,250000 199 | 198,F,83.96,Others,53.00,Others,Science,91.00,Sci&Tech,No,59.32,Mkt&HR,69.71,Placed,260000 200 | 199,F,67.00,Central,70.00,Central,Commerce,65.00,Others,No,88,Mkt&HR,71.96,Not Placed, 201 | 200,M,69.00,Others,65.00,Others,Commerce,57.00,Comm&Mgmt,No,73,Mkt&HR,55.8,Placed,265000 202 | 201,M,69.00,Others,60.00,Others,Commerce,65.00,Comm&Mgmt,No,87.55,Mkt&Fin,52.81,Placed,300000 203 | 202,M,54.20,Central,63.00,Others,Science,58.00,Comm&Mgmt,No,79,Mkt&HR,58.44,Not Placed, 204 | 203,M,70.00,Central,63.00,Central,Science,66.00,Sci&Tech,No,61.28,Mkt&HR,60.11,Placed,240000 205 | 204,M,55.68,Others,61.33,Others,Commerce,56.87,Comm&Mgmt,No,66,Mkt&HR,58.3,Placed,260000 206 | 205,F,74.00,Others,73.00,Others,Commerce,73.00,Comm&Mgmt,Yes,80,Mkt&Fin,67.69,Placed,210000 207 | 206,M,61.00,Others,62.00,Others,Commerce,65.00,Comm&Mgmt,No,62,Mkt&Fin,56.81,Placed,250000 208 | 207,M,41.00,Central,42.00,Central,Science,60.00,Comm&Mgmt,No,97,Mkt&Fin,53.39,Not Placed, 209 | 208,M,83.33,Central,78.00,Others,Commerce,61.00,Comm&Mgmt,Yes,88.56,Mkt&Fin,71.55,Placed,300000 210 | 209,F,43.00,Central,60.00,Others,Science,65.00,Comm&Mgmt,No,92.66,Mkt&HR,62.92,Not Placed, 211 | 210,M,62.00,Central,72.00,Central,Commerce,65.00,Comm&Mgmt,No,67,Mkt&Fin,56.49,Placed,216000 212 | 211,M,80.60,Others,82.00,Others,Commerce,77.60,Comm&Mgmt,No,91,Mkt&Fin,74.49,Placed,400000 213 | 212,M,58.00,Others,60.00,Others,Science,72.00,Sci&Tech,No,74,Mkt&Fin,53.62,Placed,275000 214 | 213,M,67.00,Others,67.00,Others,Commerce,73.00,Comm&Mgmt,Yes,59,Mkt&Fin,69.72,Placed,295000 215 | 214,F,74.00,Others,66.00,Others,Commerce,58.00,Comm&Mgmt,No,70,Mkt&HR,60.23,Placed,204000 216 | 215,M,62.00,Central,58.00,Others,Science,53.00,Comm&Mgmt,No,89,Mkt&HR,60.22,Not Placed, 217 | -------------------------------------------------------------------------------- /Campus-Recruitment-Analysis/README.md: -------------------------------------------------------------------------------- 1 | # Campus Recruitment Analysis 2 | --- 3 | 4 | ## Objectives: 5 | The objective is to predict whether a student will be placed during Campus Recruitement or not.
6 | 7 | ## Tools Used: 8 | --- 9 | 10 | 11 | 12 | ## Steps Involved in Making the Model: 13 | --- 14 | 1) Importing our data.
15 | 2) Checking for null values and finding mean of different columns, their min and max values, and getting information about different columns of our data.
16 | 3) Visualizing our data in order to find out the best columns to use as features for our model.
17 | 4) Make a copy of original data to make the changes and seperate out the columns that we will use as our features.
18 | 5) Feeding these features to three different Models i.e. Logistic Regression, KNN and SVM to get the best results.
19 | 6) Concluding our analysis by testing the model with some random user input.
20 | 21 | ## Results: 22 | --- 23 | The Model were able to make a decent prediction about whether a person will be placed or not. Out of the three, Logistic Regression gave us the best results. These models can still be improved to make more accurate predictions.
24 | -------------------------------------------------------------------------------- /Campus-Recruitment-Analysis/result1.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Campus-Recruitment-Analysis/result1.PNG -------------------------------------------------------------------------------- /Campus-Recruitment-Analysis/result2.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Campus-Recruitment-Analysis/result2.PNG -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/Plots/galaxy.csv: -------------------------------------------------------------------------------- 1 | stdDevYAbsGrad,MeanGradX,MeanGradY 2 | 24.01071959,5.7696,6.6864 3 | 26.83103907,28.6683,22.3935 4 | 24.63554285,16.5179,15.4029 5 | 30.11643318,18.5229,21.1515 6 | 17.67997298,10.43,9.7756 7 | 33.08064606,23.9773,27.3875 8 | 33.08030906,26.3301,33.7485 9 | 27.51116183,29.1382,28.2884 10 | 25.12812368,16.7071,21.1005 11 | 23.57849188,29.007,17.7008 12 | 16.34040606,22.2401,12.1563 13 | 34.87572098,31.4384,25.5262 14 | 28.44356823,18.6446,21.9432 15 | 60.93591768,24.8843,29.0551 16 | 24.44979684,10.8278,19.2384 17 | 27.21984165,10.7248,23.0492 18 | 15.24252555,17.4073,13.2309 19 | 15.8170941,14.4787,17.0153 20 | 18.4465268,21.3496,17.993 21 | 17.21673676,8.8969,15.1711 22 | 28.94314744,23.184,34.504 23 | 23.49997148,24.9877,24.4155 24 | 16.63806272,13.159,12.4378 25 | 21.83990085,16.3143,18.8509 26 | 13.5126007,16.2157,15.8329 27 | 14.09052667,11.5425,11.4303 28 | 26.7173567,20.8032,21.9348 29 | 29.94636314,18.9118,20.3926 30 | 38.96799882,28.1021,30.4113 31 | 22.49793465,18.1799,15.3371 32 | 27.34042704,15.0385,16.3411 33 | 17.58976202,22.0593,16.4835 34 | 24.73050965,19.8257,19.5943 35 | 25.56309241,14.0095,14.7625 36 | 22.9559225,14.5494,17.3332 37 | 28.71490204,31.4242,23.349 38 | 20.92517718,29.0421,15.7253 39 | 15.92144531,17.7914,12.8382 40 | 31.80956545,24.8091,22.9081 41 | 11.47942717,5.5902,5.2572 42 | 29.69527297,22.4098,22.8452 43 | 17.0230138,12.7381,12.1261 44 | 17.94903964,15.8698,14.0598 45 | 28.9318257,19.9163,18.0237 46 | 27.41691864,7.5787,11.8165 47 | 25.95019312,18.6935,17.7061 48 | 18.63907819,16.9464,11.6696 49 | 28.82881683,19.9514,19.4004 50 | 32.42486984,21.2386,20.7098 51 | 21.48612049,12.7193,12.8353 52 | 31.99136255,17.4679,19.2079 53 | 27.43670781,21.7748,22.9706 54 | 21.2577209,12.8369,13.6735 55 | 18.58291222,16.194,16.5312 56 | 25.23307156,10.6303,15.7313 57 | 20.75020089,11.4437,11.2889 58 | 24.17229714,26.1628,22.5652 59 | 20.55607091,14.8054,19.7378 60 | 17.64148366,12.4092,14.4038 61 | 12.74528728,10.9249,10.8485 62 | 14.32767526,14.7908,14.6724 63 | 19.93473632,17.9222,17.5298 64 | 77.14467141,16.7624,27.8106 65 | 46.37142926,51.3646,53.9692 66 | 17.7524905,18.014,18.3064 67 | 32.29880561,24.3493,27.7675 68 | 27.1389998,32.7133,27.2753 69 | 15.55618115,16.6385,18.4849 70 | 21.84647429,22.9468,22.481 71 | 41.15880132,19.0906,21.5086 72 | 26.36876325,14.0428,16.1978 73 | 11.40650025,23.4701,11.2601 74 | 29.88692747,19.665,20.7262 75 | 22.34126163,16.0809,16.2667 76 | 13.84671893,13.395,17.6574 77 | 16.57115615,38.7889,13.9463 78 | 12.62582686,20.93,13.736 79 | 44.47049972,17.8011,17.7183 80 | 22.31216182,18.2836,20.0252 81 | 9.555024328,18.6683,10.9753 82 | 14.9110649,35.9191,16.6713 83 | 12.25192343,18.4421,13.8085 84 | 9.726028064,18.3557,10.7553 85 | 13.05569782,15.4253,15.3729 86 | 19.20726881,11.4862,22.365 87 | 12.84850773,12.31,17.507 88 | 12.91082637,19.6456,11.8016 89 | 86.28630797,34.77,39.3694 90 | 49.04475934,32.4351,27.5241 91 | 30.24210163,32.4651,32.8333 92 | 13.23324057,14.8272,11.3898 93 | 40.50106376,25.5989,23.1701 94 | 11.74315624,27.4946,12.7988 95 | 15.75172197,15.4619,15.1567 96 | 12.52030175,12.0556,10.662 97 | 86.39917469,19.917,32.5722 98 | 13.58226576,31.7904,14.2736 99 | 25.6942633,14.4672,17.6812 100 | 21.35789945,13.963,16.2682 101 | 32.52983851,16.5129,24.0975 102 | 16.70600491,7.7464,7.26 103 | 29.74379904,19.142,21.3816 104 | 18.47055988,23.784,20.7458 105 | 25.78645659,16.5074,18.8392 106 | 20.81710005,17.1838,18.9388 107 | 16.42106686,16.3082,17.8518 108 | 12.65908009,14.2385,13.0489 109 | 10.39332358,14.0172,12.695 110 | 37.43637274,9.3981,24.2621 111 | 43.62117843,12.856,27.9106 112 | 34.70325201,16.0119,25.1249 113 | 28.39191637,22.8888,20.9908 114 | 12.34867879,21.165,12.2904 115 | 23.81519167,16.6725,17.8163 116 | 29.48899401,13.2915,22.5885 117 | 48.63303833,54.2332,27.6048 118 | 42.44745505,15.5741,26.7063 119 | 24.40992335,17.5418,18.4486 120 | 31.72965003,23.9111,23.4359 121 | 39.15864005,19.5577,26.7423 122 | 28.73516633,14.6742,29.5402 123 | 34.06227082,27.4543,28.8775 124 | 30.56089002,29.6323,21.4989 125 | 30.98180267,6.7566,13.1952 126 | 70.18806697,29.7853,34.3337 127 | 23.22546292,17.2807,21.7351 128 | 25.2240411,19.8529,23.7493 129 | 20.67605935,11.6878,17.1886 130 | 29.48726114,18.5921,21.1695 131 | 23.98974294,20.3184,19.7442 132 | 18.7154325,18.2023,18.0093 133 | 37.81779351,22.9822,22.5624 134 | 34.53802422,17.9854,18.4482 135 | 27.00148479,20.953,17.9382 136 | 19.59378033,15.7069,17.8165 137 | 18.6094167,21.8199,13.5749 138 | 20.17383123,16.1089,15.3519 139 | 34.32752114,20.6937,21.6315 140 | 25.91794584,18.5906,16.2156 141 | 23.68248814,17.3408,18.2244 142 | 47.134172,50.6487,35.6945 143 | 24.19306857,34.1691,24.1927 144 | 26.63902865,19.5989,19.6943 145 | 21.84148903,31.1085,20.9209 146 | 27.67152204,20.3203,18.8401 147 | 22.19581767,24.1799,25.8697 148 | 30.05279154,13.9985,18.8571 149 | 23.62685337,14.4074,17.56 150 | 58.01806261,33.1142,34.7818 151 | 16.0098686,17.5716,17.2644 152 | 23.21087525,42.5273,16.4545 153 | 18.42994405,16.6823,22.0215 154 | 20.00453683,30.3393,19.7625 155 | 21.79446205,14.754,14.068 156 | 14.63741357,12.701,9.3872 157 | 23.53002805,16.5722,15.8728 158 | 15.08296363,12.1568,13.2298 159 | 14.43451553,13.9494,10.0988 160 | 26.04160107,12.7615,16.0769 161 | 23.12193259,17.0864,19.1812 162 | 36.66474844,37.2515,34.8881 163 | 32.65081335,31.6128,33.8644 164 | 18.44146596,10.3799,19.3073 165 | 15.09764044,9.6353,9.4927 166 | 19.46194173,10.2092,9.7196 167 | 38.36368893,34.2342,26.0444 168 | 21.25195872,16.1083,15.6243 169 | 20.25906406,22.4098,24.7982 170 | 13.2563869,14.7495,16.6225 171 | 24.27210728,15.9352,16.5202 172 | 21.9897567,7.1731,8.4995 173 | 20.08770636,18.4718,19.4646 174 | 28.95247072,15.1864,22.5352 175 | 18.45003406,14.2068,16.0452 176 | 18.16939292,9.9778,8.169 177 | 29.30354122,16.1548,15.9428 178 | 24.950463,10.9368,14.086 179 | 22.62870732,18.4302,20.0246 180 | 15.01313569,14.2776,11.5822 181 | 27.7704472,15.0733,20.6465 182 | 27.92481123,39.1174,25.4424 183 | 21.96851712,14.7421,17.9581 184 | 21.2544111,14.885,23.947 185 | 18.25817678,21.2707,20.7993 186 | 17.2490079,16.8806,16.8738 187 | 24.26162011,14.3126,15.0824 188 | 20.86630851,21.1192,21.163 189 | 24.19390914,13.4684,18.1008 190 | 34.24525075,7.5436,11.001 191 | 16.76930899,14.803,22.526 192 | 25.83957704,15.1427,21.7471 193 | 32.82469788,16.6482,22.803 194 | 16.67521495,10.7969,8.9425 195 | 26.63526504,20.7932,22.816 196 | 17.52575851,14.6564,13.9308 197 | 44.54048783,27.6919,31.7799 198 | 17.580537,11.7346,9.0626 199 | 37.15250064,24.6581,22.7343 200 | 31.38632372,20.3022,29.3018 201 | 28.39049524,17.2037,20.2555 202 | 28.71731083,22.318,20.5816 203 | 16.52363771,17.9448,15.9322 204 | 19.8080566,16.3154,11.4376 205 | 16.14362882,12.1686,9.2808 206 | 19.87431706,14.451,13.6988 207 | 19.58230482,8.3248,10.8786 208 | 15.3262084,14.2611,17.1801 209 | 20.06825373,14.4345,13.2685 210 | 29.26579635,17.2296,18.542 211 | 27.99105951,12.4234,17.6918 212 | 37.86933389,23.0095,22.1259 213 | 25.32947415,21.7546,19.5956 214 | 37.45188014,24.8388,22.9124 215 | 20.16648977,14.6063,14.7071 216 | 37.53623321,5.9563,14.7379 217 | 16.99160469,16.7733,15.9503 218 | 30.67542828,30.556,27.11 219 | 15.16281392,18.3744,10.9914 220 | 17.03297169,12.2408,14.2666 221 | 26.4452249,26.5987,24.9555 222 | 18.66784656,19.9503,19.2191 223 | 38.65055783,5.8084,23.7634 224 | 28.24874714,23.1912,23.0478 225 | 22.12971569,19.6493,17.9323 226 | 20.90601928,20.5304,15.2424 227 | 30.5440893,14.3152,20.797 228 | 23.97686885,7.6394,22.3498 229 | 25.38317432,23.2968,24.1512 230 | 16.23722636,14.6471,13.9805 231 | 15.46942474,10.3668,9.5768 232 | 21.16019081,15.7144,16.9478 233 | 19.69639471,22.3842,20.3166 234 | 18.6086281,13.9175,17.8355 235 | 24.37127185,27.2354,21.1308 236 | 31.7107768,10.0446,14.5252 237 | 22.26633423,7.3772,17.9002 238 | 16.969285,11.1146,14.5238 239 | 14.80249687,13.9109,12.2121 240 | 24.2686615,9.7,13.1878 241 | 21.6821143,6.9474,21.2456 242 | 22.18378867,10.8889,11.6747 243 | 18.82641102,11.4124,13.9396 244 | 30.1932025,9.8545,24.8233 245 | 26.79449914,8.9906,14.7902 246 | 23.42590026,15.4008,18.0346 247 | 22.21310845,22.5983,14.3483 248 | 26.5048696,17.9791,17.6931 249 | 25.56347851,24.5664,25.7716 250 | 35.91643343,18.021,19.1114 251 | 22.9732455,15.1554,17.1944 252 | 24.1602119,14.8218,16.0936 253 | 23.66997889,23.4808,23.1634 254 | 17.57966855,13.7339,10.8769 255 | 24.15028066,14.4213,15.2201 256 | 37.87384783,23.9416,23.6416 257 | 38.00021514,15.752,20.257 258 | 25.11891701,22.0438,14.6594 259 | 26.15605475,24.3176,23.02 260 | 14.04667642,12.939,11.2858 261 | 19.84967908,11.5442,10.5494 262 | 26.22761883,18.9845,17.4321 263 | 47.40425613,31.9248,30.1578 264 | 21.65200333,22.734,13.2428 265 | 26.19676933,28.6005,19.9657 266 | 20.49701988,9.5121,11.6199 267 | 18.55856471,9.7341,9.8801 268 | 23.35777469,10.2883,11.8987 269 | 41.27308832,7.7436,25.7922 270 | 92.28540963,9.6924,28.513 271 | 20.17312074,20.1473,20.0781 272 | 20.37725896,20.6054,18.6154 273 | 40.88839727,20.1964,20.987 274 | 13.0341333,6.0384,6.713 275 | 23.57816276,10.575,11.379 276 | 36.62798979,21.007,30.442 277 | 33.94473675,14.1086,15.4526 278 | 30.87126524,12.1482,24.8826 279 | 19.5488236,19.6472,21.5098 280 | 26.63790067,28.0155,30.5863 281 | 24.6227152,14.1521,15.7147 282 | 32.45727886,17.0598,22.257 283 | 26.17319945,14.6934,20.7084 284 | 27.16550367,12.5161,13.6105 285 | 20.69011433,21.7831,18.0083 286 | 17.40917836,15.351,15.8164 287 | 19.59039226,13.5424,9.7318 288 | 25.80259772,11.473,13.7774 289 | 26.26237879,12.4253,16.3355 290 | 22.02306262,10.5024,7.8208 291 | 15.02408703,16.7052,16.303 292 | 29.25244434,18.129,23.13 293 | 24.65145321,20.0038,14.6116 294 | 16.74414505,24.1762,14.6738 295 | 24.62351215,14.1348,15.5212 296 | 28.58066563,35.4446,22.4404 297 | 29.31075715,26.1156,20.0334 298 | 32.87335594,37.523,28.1946 299 | 35.55655367,15.9794,20.0556 300 | 37.7444463,24.3033,22.0963 301 | 27.69566038,29.7974,28.086 302 | 21.21559665,20.2519,22.3417 303 | 30.76723881,26.0402,23.9796 304 | 36.84975769,9.7408,21.9268 305 | 22.51716798,17.1354,15.2568 306 | 33.18331314,14.3057,15.7411 307 | 16.01403499,11.9683,11.0677 308 | 14.22470723,15.1016,10.8804 309 | 25.09513359,14.5229,14.7295 310 | 21.81993946,15.8556,16.8014 311 | 27.20422105,27.3506,24.0846 312 | 24.69681903,26.9457,20.8969 313 | 18.37557831,10.6582,11.4358 314 | 24.69265368,13.5668,18.3462 315 | 14.35059578,13.9608,13.0008 316 | 22.01708036,23.4973,17.9835 317 | 17.56885491,17.6563,16.3811 318 | 39.8715948,30.91,37.0594 319 | 16.54429109,17.5982,13.3606 320 | 28.64295463,35.3745,20.2499 321 | 19.87970188,16.3648,14.5354 322 | 19.24357548,12.6771,13.1091 323 | 29.37854264,32.8641,30.4943 324 | 18.8795955,7.885,8.4124 325 | 23.29748283,7.5082,12.0624 326 | 21.08785214,13.3349,16.1435 327 | 25.06710603,14.6762,16.9718 328 | 23.08835225,11.3502,15.2362 329 | 18.68288551,16.4872,21.7054 330 | 22.36153266,19.7615,17.3939 331 | 27.86496145,19.8714,18.4518 332 | 38.23072476,30.1381,41.2049 333 | 23.09008086,28.7903,19.7353 334 | 21.13755137,28.1065,15.8665 335 | 29.81008017,25.5684,22.1998 336 | 18.05439443,11.7147,13.2763 337 | 18.72655339,17.5852,14.6732 338 | 26.41252084,20.7572,17.4326 339 | 18.77525463,22.6828,13.3688 340 | 19.91002057,16.2216,15.059 341 | 30.62542114,19.9445,19.9445 342 | 37.3201212,11.4541,18.1177 343 | 22.74641884,10.46,13.3824 344 | 21.86116654,16.0564,15.2912 345 | 20.54324617,12.8562,10.7178 346 | 41.71218658,12.0868,20.8416 347 | 32.65081335,31.6128,33.8644 348 | 27.59521935,20.9448,20.9446 349 | 20.38874861,15.5285,17.2695 350 | 22.81022975,13.2085,16.7417 351 | 29.87690526,15.0125,14.2635 352 | 32.94962477,23.4943,26.9887 353 | 31.40122955,16.406,20.6326 354 | 27.89616271,30.4303,22.9225 355 | 19.0549355,17.4026,17.1464 356 | 26.55136203,18.2413,17.9643 357 | 16.96990958,18.532,13.987 358 | 26.19710818,17.0791,14.3341 359 | 12.74989449,15.0516,9.9084 360 | 13.68596474,4.4264,4.137 361 | 35.60906781,19.5499,22.6187 362 | 34.1669112,17.1731,24.3077 363 | 32.52213227,28.0687,26.1517 364 | 22.92597411,17.2509,16.8877 365 | 26.98733437,26.2584,19.5344 366 | 25.49151561,24.9838,16.4198 367 | 24.47294555,16.1102,26.0902 368 | 31.39191043,8.4072,11.4228 369 | 26.16176864,19.4712,19.1512 370 | 33.01791439,10.9172,15.7212 371 | 19.99794705,4.6708,10.5558 372 | 32.18806623,25.5755,29.1797 373 | 32.61018565,11.057,24.7404 374 | 25.07401922,19.9034,17.7996 375 | 19.87112455,13.8645,10.7661 376 | 7.830247193,5.2347,5.2667 377 | 37.30674179,21.1038,28.0736 378 | 14.43451553,13.9494,10.0988 379 | 25.06152522,11.4761,10.3769 380 | 17.74055774,20.6568,14.4682 381 | 20.34510101,15.5312,15.4136 382 | 27.79943892,14.8161,14.5199 383 | 18.34832107,11.2356,8.2124 384 | 35.87092924,5.2784,14.8166 385 | 31.79226556,24.0331,22.0745 386 | 14.99392928,10.2847,6.7559 387 | 20.33421154,20.8857,15.6739 388 | 18.43796799,16.4785,12.9621 389 | 27.28739167,15.406,17.584 390 | 15.92887252,16.6807,13.3205 391 | 40.50161669,16.2516,18.6976 392 | 32.32353145,28.5398,29.8384 393 | 18.34480717,16.3284,22.0886 394 | 27.14291792,8.0628,22.7526 395 | 20.22840777,12.6715,12.8161 396 | 12.54756486,11.3522,12.196 397 | 20.68726443,18.8718,11.6584 398 | 27.27327987,24.1115,31.0933 399 | 34.21185347,25.6602,25.9832 400 | 18.22226118,14.8796,8.7912 401 | 28.0106085,18.4892,18.0034 402 | 32.69199232,23.3775,28.2697 403 | 21.85180999,17.5124,18.26 404 | 28.46644076,23.3117,21.7745 405 | 20.70705295,16.2687,18.8349 406 | 26.93551927,15.2723,12.3369 407 | 33.53389493,29.8065,28.0243 408 | 20.71046837,28.3713,15.3747 409 | 21.7876874,14.6277,10.3569 410 | 18.86800749,8.4591,16.3611 411 | 23.42241375,14.6588,18.4132 412 | 25.43429074,21.1182,22.3462 413 | 24.59038666,9.1992,18.478 414 | 25.56057858,15.4717,15.7909 415 | 23.90316216,14.1414,17.5874 416 | 24.14122425,14.7624,16.1034 417 | 17.09659121,15.1878,12.713 418 | 18.85988802,17.4308,18.368 419 | 20.84949074,11.8477,13.0603 420 | 32.23183104,33.7127,24.5887 421 | 19.80008353,19.7927,18.7685 422 | 27.04589338,21.9573,19.2489 423 | 35.65799345,20.4963,22.3909 424 | 22.10808111,11.2749,13.1437 425 | 26.80027407,18.0329,21.0031 426 | 29.20381622,13.3233,13.9651 427 | 32.86449816,21.1504,24.631 428 | 18.97736335,15.9742,15.9006 429 | 16.28446848,12.5121,14.2121 430 | 36.57361473,9.0454,20.1758 431 | 16.16518604,8.0606,10.1994 432 | 23.51603317,24.4768,24.4804 433 | 25.11169047,17.9284,17.2358 434 | 32.58784701,24.3572,27.3766 435 | 19.10108349,15.9262,15.1342 436 | -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/Plots/plot.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | from pandas import DataFrame 3 | import matplotlib.pyplot as plt 4 | from mpl_toolkits.mplot3d import Axes3D 5 | 6 | df = pd.read_csv('star.csv', parse_dates=True) 7 | 8 | df1 = pd.read_csv('galaxy.csv', parse_dates=True) 9 | 10 | plot = plt.figure().gca(projection='3d') 11 | plot.scatter(df['stdDevYAbsGrad'], df['MeanGradX'], df['MeanGradY'], color = '#0000FF') 12 | plot.set_xlabel('stdDevYAbsGrad') 13 | plot.set_ylabel('Xmeangrad') 14 | plot.set_zlabel('Ymeangrad') 15 | 16 | 17 | plot.scatter(df1['stdDevYAbsGrad'], df1['MeanGradX'], df1['MeanGradY'], color = '#FF0000') 18 | plot.set_xlabel('stdDevYAbsGrad') 19 | plot.set_ylabel('Xmeangrad') 20 | plot.set_zlabel('Ymeangrad') 21 | 22 | plt.show() 23 | -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/Plots/plot1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Celestial-Bodies-Classification/Plots/plot1.png -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/Plots/plot2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Celestial-Bodies-Classification/Plots/plot2.png -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/Plots/readme.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Celestial-Bodies-Classification/Plots/readme.jpg -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/Plots/star.csv: -------------------------------------------------------------------------------- 1 | stdDevYAbsGrad,MeanGradX,MeanGradY 2 | 25.16030897,10.4356,11.4708 3 | 23.40660037,7.3516,7.5382 4 | 14.42029475,10.3362,14.1044 5 | 14.74115247,5.128,4.832 6 | 12.1592233,4.3016,4.3192 7 | 12.76711237,3.4718,3.6358 8 | 15.77328767,5.9696,5.914 9 | 12.90540844,3.7556,4.3536 10 | 18.04670162,6.4956,7.1008 11 | 17.64263631,4.9266,6.372 12 | 12.69578347,5.2114,5.3514 13 | 9.859728552,4.6249,3.2483 14 | 29.45423517,10.7261,12.5493 15 | 9.061646365,4.255,5.1754 16 | 11.83724899,2.3126,3.2194 17 | 34.20613535,6.3156,10.4408 18 | 26.50295219,4.7618,6.5112 19 | 30.96707655,5.2758,7.6886 20 | 6.029646146,1.1478,1.2144 21 | 25.91042437,10.9604,9.8554 22 | 17.59885117,8.4308,8.8912 23 | 24.47547296,9.4196,10.1656 24 | 15.13469718,3.603,4.3546 25 | 24.42635001,8.4496,8.525 26 | 11.38413699,3.8686,2.905 27 | 15.60749942,5.0224,5.7986 28 | 27.55672018,19.5332,23.6964 29 | 19.95130249,4.5782,4.477 30 | 12.91112376,3.6596,3.3018 31 | 20.92243683,4.7456,5.9236 32 | 18.30804348,4.7338,4.4372 33 | 13.94497928,4.4348,4.4536 34 | 11.54624178,3.151,3.1578 35 | 19.82596782,5.785,6.1 36 | 14.42983592,12.3268,9.3244 37 | 8.778333974,2.2754,2.5292 38 | 9.44799021,2.1224,2.691 39 | 5.249107318,2.2128,1.6894 40 | 24.97357857,10.3224,12.0646 41 | 22.66202001,12.015,11.057 42 | 26.34729372,6.6718,8.1188 43 | 13.11881348,5.6778,4.6036 44 | 23.13365151,14.7168,24.1702 45 | 20.92634878,10.191,10.1474 46 | 27.57122548,11.6906,12.5112 47 | 38.29520491,22.5834,24.841 48 | 17.21661628,15.5066,18.818 49 | 14.2786659,12.6418,13.05 50 | 28.40736285,7.6714,9.1172 51 | 27.70823204,12.2904,11.9912 52 | 15.62831026,6.124,5.2062 53 | 21.42536497,8.0624,9.144 54 | 13.3295925,3.03,3.0128 55 | 3.610141133,1.554,1.309 56 | 30.65225528,18.702,21.1762 57 | 8.171249853,2.956,2.9672 58 | 29.17741089,15.3648,16.9376 59 | 21.92123015,12.8704,11.2308 60 | 10.61001545,3.3442,4.0904 61 | 19.79199172,11.3643,9.1287 62 | 11.97154422,8.8142,7.0336 63 | 18.56025279,11.2402,8.3194 64 | 17.3293126,6.0402,5.6978 65 | 19.59350651,4.474,4.9826 66 | 9.784877538,3.9728,3.0466 67 | 27.01964457,9.5232,10.0144 68 | 26.08866276,13.1778,12.2334 69 | 23.31453989,12.0939,11.6563 70 | 17.83685236,7.972,7.5714 71 | 13.17136524,15.7386,14.4458 72 | 5.833819318,3.084,3.0596 73 | 9.235521477,3.4778,3.2952 74 | 40.25000518,26.184,25.5518 75 | 32.64080596,18.1884,20.1216 76 | 16.58730041,5.2538,4.4136 77 | 12.76006202,4.6099,5.7223 78 | 10.22276499,3.6986,4.126 79 | 15.4866166,10.3771,11.3225 80 | 27.69979217,22.876,23.9442 81 | 6.675627503,3.216,3.2912 82 | 6.630149196,5.0862,3.6858 83 | 7.135398492,2.8576,2.5094 84 | 9.978144316,3.8872,4.606 85 | 6.86833597,2.6936,3.819 86 | 4.106129545,3.4234,2.7504 87 | 21.34278445,6.0226,6.7572 88 | 24.65686405,5.9594,6.0752 89 | 18.54047895,11.8985,12.5429 90 | 4.942578016,3.4234,3.8984 91 | 23.37975131,10.9638,10.0378 92 | 12.56231404,6.7184,6.3686 93 | 19.7871788,10.151,11.1748 94 | 18.80556794,15.5172,15.0884 95 | 19.55125661,19.1736,21.4022 96 | 17.59084826,7.7978,7.8542 97 | 15.69178294,13.5844,10.8104 98 | 20.40311017,13.7599,15.7711 99 | 12.08112902,4.296,4.6858 100 | 13.08760482,7.754,6.6 101 | 21.11238268,6.6608,8.7924 102 | 18.666476,10.1948,9.0942 103 | 18.13826526,9.4674,8.0688 104 | 18.44001887,12.3846,12.048 105 | 21.27820195,13.1664,16.1514 106 | 18.89058076,12.3729,10.4043 107 | 22.6708304,13.3222,15.907 108 | 25.38860022,20.7978,27.1148 109 | 17.97586074,19.5898,20.8726 110 | 17.53098814,21.1029,19.7183 111 | 18.46927544,25.8881,20.9809 112 | 16.17618847,16.3134,14.6238 113 | 45.68619607,25.8038,31.6808 114 | 22.73654558,15.2585,14.7711 115 | 17.49298835,18.5172,19.4438 116 | 12.68859166,25.8178,13.5724 117 | 25.24924604,14.7414,16.8962 118 | 18.33691225,11.8908,9.693 119 | 18.94805134,13.0493,9.9505 120 | 14.64233093,18.6999,16.5441 121 | 24.45416479,16.3806,18.5206 122 | 10.53295611,9.8186,12.6834 123 | 9.951566984,11.8462,11.8384 124 | 25.48177822,11.5552,12.1816 125 | 18.1852376,7.5562,7.5688 126 | 35.38658927,10.2836,13.47 127 | 31.89669952,19.0748,24.4002 128 | 25.86143135,19.737,21.3906 129 | 23.78106784,25.7303,25.0807 130 | 16.03121666,5.9289,5.8565 131 | 9.175721179,3.821,4.8078 132 | 29.29417202,13.2272,13.8976 133 | 19.87643296,16.9286,16.6778 134 | 22.54258013,10.924,9.659 135 | 21.3037164,18.9228,18.9234 136 | 16.49677132,5.9934,7.244 137 | 21.21702665,15.3977,19.8003 138 | 38.63091595,18.6362,24.8964 139 | 17.20493531,7.7032,13.2064 140 | 18.17713643,7.3808,6.7152 141 | 21.41557813,14.3319,25.8927 142 | 24.19944066,10.5384,13.9428 143 | 15.06883511,4.6861,3.8779 144 | 17.01082452,3.3872,3.407 145 | 22.85852541,8.1666,9.696 146 | 10.17326134,7.4272,6.9876 147 | 22.11366676,12.6654,12.3668 148 | 20.47127058,7.0404,9.209 149 | 11.73901775,5.3495,6.3215 150 | 27.69084277,16.9731,16.2633 151 | 31.00572677,17.2507,19.2311 152 | 14.23220956,6.5812,5.0348 153 | 13.2669771,3.9702,3.9374 154 | 25.08418433,6.186,7.1694 155 | 37.22753311,17.3416,20.6232 156 | 29.67663733,11.7538,10.2764 157 | 40.11047558,10.8232,13.9692 158 | 20.35775245,6.8856,8.0756 159 | 13.53346169,4.2544,5.7074 160 | 24.70425694,11.9836,13.233 161 | 5.486450925,2.9599,3.2525 162 | 17.36084763,17.6926,15.6788 163 | 23.62277872,10.4628,12.5976 164 | 7.783633678,4.9938,4.2974 165 | 19.56661826,10.4558,9.4114 166 | 10.98881874,11.244,8.7826 167 | 10.45777168,6.576,7.7466 168 | 20.71182116,15.3026,15.2794 169 | 7.506875345,4.1894,3.8516 170 | 24.89415626,4.2344,4.928 171 | 18.69463224,2.0328,2.0112 172 | 11.94182816,0.9888,0.9496 173 | 20.24643741,9.9923,9.5915 174 | 25.34373715,6.2878,7.0948 175 | 11.92924977,1.6426,1.76 176 | 19.97256971,2.2276,2.3044 177 | 25.0736874,3.7674,4 178 | 21.23165659,3.6547,3.2471 179 | 15.0363468,2.7596,3.1252 180 | 12.85531572,3.3306,3.5076 181 | 7.9776437,1.313,1.599 182 | 16.79650461,1.2514,1.3536 183 | 13.81841933,1.0063,1.6723 184 | 20.24920859,4.6346,4.1056 185 | 31.02000799,10.329,13.752 186 | 9.44010376,16.651,10.171 187 | 18.19727826,9.8954,10.0898 188 | 12.92434103,2.5068,2.103 189 | 31.88464858,17.5453,12.2211 190 | 20.49268812,2.6398,3.8624 191 | 16.11621019,9.2004,8.837 192 | 21.5082272,2.2558,2.6984 193 | 18.90336742,9.302,10.15 194 | 36.25613791,7.0684,9.108 195 | 24.08095011,4.4112,3.8014 196 | 23.64594058,3.6636,3.1868 197 | 19.27097187,2.2048,1.9844 198 | 20.20634551,1.773,1.951 199 | 27.40191486,4.0418,3.5668 200 | 18.59396434,4.2869,5.1749 201 | 22.24107784,7.9236,9.1306 202 | 15.82847987,7.1054,8.385 203 | 21.58994247,5.4476,5.972 204 | 28.60951667,6.5438,6.266 205 | 22.33131004,3.178,3.7698 206 | 19.97994517,4.0415,4.3217 207 | 9.642158928,2.4555,2.4761 208 | 19.71110831,4.8948,4.253 209 | 5.409178777,1.3954,1.5136 210 | 30.34623823,12.4628,11.455 211 | 18.50575058,3.2562,3.3666 212 | 18.84382382,2.8464,2.848 213 | 18.20516015,7.1358,8.012 214 | 19.47916756,3.2326,2.9944 215 | 14.49196152,6.1708,5.6818 216 | 6.525386119,0.78,0.956 217 | 24.07933458,3.4138,3.9932 218 | 26.862239,24.9501,17.0147 219 | 16.62406313,16.2066,18.1254 220 | 26.48398812,13.0257,13.2927 221 | 27.12691259,24.3024,30.9854 222 | 15.27799836,5.7733,6.3897 223 | 16.38168903,8.8707,5.8229 224 | 28.49053941,12.1098,13.458 225 | 17.63147539,11.5552,11.0166 226 | 28.25776381,6.0038,7.7408 227 | 31.01665926,15.0994,20.7808 228 | 25.81323864,3.8152,3.7848 229 | 20.17074944,9.9373,8.9689 230 | 21.79640752,7.8128,8.4382 231 | 29.67992291,15.0242,14.976 232 | 21.34445749,9.8994,8.0116 233 | 9.220872061,5.1052,6.2062 234 | 19.14800752,6.6949,7.8053 235 | 18.40544558,2.4912,3.5646 236 | 16.69440544,9.088,8.0052 237 | 12.8674847,2.7054,2.6088 238 | 12.70978387,16.8386,14.1414 239 | 11.15786438,1.3494,1.5516 240 | 24.2024943,5.9501,7.0563 241 | 37.67740537,28.7451,37.4771 242 | 26.99063746,3.8706,4.0842 243 | 9.880801231,17.705,9.1448 244 | 14.30220492,3.0126,2.9538 245 | 15.11706502,17.7203,21.4023 246 | 7.78042816,1.6008,6.3042 247 | 18.03649384,11.2816,10.2114 248 | 5.806393714,0.8942,1.7698 249 | 3.181912658,0.5498,1.0428 250 | 5.509754106,8.9269,8.0437 251 | 25.41101805,4.8118,6.5276 252 | 19.13961057,2.5756,4.2052 253 | 28.13760602,20.4781,10.4561 254 | 35.08300249,18.7364,25.9694 255 | 17.55838775,9.9994,8.5634 256 | 30.93220144,13.0768,12.2086 257 | 17.36224958,4.2742,5.6658 258 | 11.9888047,7.9084,5.0276 259 | 10.02198805,12.2716,12.1666 260 | 22.19945495,5.1084,6.6 261 | 18.70594781,9.3858,21.9892 262 | 10.18197972,5.83,4.567 263 | 14.69434426,12.579,13.5474 264 | 16.96629213,6.3828,7.7556 265 | 15.967017,7.3928,6.9604 266 | 5.267268043,1.3862,1.8856 267 | 15.64128503,15.5212,15.5016 268 | 19.6457788,6.4046,7.1256 269 | 17.92134856,7.3746,6.9742 270 | 18.96586475,3.2268,3.1462 271 | 25.09324513,5.526,6.207 272 | 25.11597695,5.6138,5.0224 273 | 15.86049522,9.8504,6.5556 274 | 22.31604425,5.4864,5.487 275 | 16.87540397,16.0474,16.4422 276 | 26.30974125,26.0067,20.5227 277 | 13.8111956,8.004,7.074 278 | 16.37382147,1.8092,1.7416 279 | 18.08631171,2.0088,2.0808 280 | 5.371163881,10.2444,5.5316 281 | 21.73561363,4.3498,3.61 282 | 29.85310256,10.6537,13.4069 283 | 19.40504661,23.43,10.7932 284 | 26.16256484,3.7554,3.851 285 | 28.60031576,17.8615,19.1471 286 | 24.20462944,5.4418,6.6942 287 | 14.783916,3.7984,3.6234 288 | 14.6317533,11.0016,10.0244 289 | 20.09638848,2.1011,2.5705 290 | 20.74758368,2.2494,2.6318 291 | 13.43781584,8.7012,6.4612 292 | 22.86625794,3.3854,3.6202 293 | 23.07834774,6.6246,6.2758 294 | 6.782568056,0.986,1.2584 295 | 28.79020469,3.4614,4.4586 296 | 25.0079956,8.6522,14.834 297 | 20.77766086,4.4964,4.597 298 | 16.70761401,2.8704,3.1632 299 | 13.01944023,2.2558,2.424 300 | 6.069365581,2.4196,2.4988 301 | 9.575659307,1.8716,1.7378 302 | 25.13015887,5.5784,10.0756 303 | 16.20178027,12.966,7.946 304 | 18.54047525,2.8222,3.1542 305 | 18.95271842,3.1096,3.4706 306 | 21.58432996,8.1086,11.7496 307 | 13.34017237,12.5001,14.8739 308 | 12.21125453,4.376,5.5326 309 | 20.24361952,15.4912,16.6878 310 | 18.94597246,2.6286,2.9144 311 | 26.1651845,6.4264,6.9004 312 | 25.05596264,3.6598,3.644 313 | 17.7801422,21.3124,19.7656 314 | 24.54569288,4.0932,4.969 315 | 17.78376986,2.348,2.5658 316 | 7.53622579,1.1186,1.0922 317 | 27.38896584,8.3215,11.8679 318 | 23.7978108,6.4058,7.551 319 | 24.08294115,5.5392,6.5524 320 | 25.764262,4.7636,7.1844 321 | 34.6605671,14.0665,17.4543 322 | 23.27119746,10.3416,9.063 323 | 31.72916136,7.1142,11.7456 324 | 18.34978177,7.1762,7.1622 325 | 23.00288347,4.4968,4.6198 326 | 34.5916619,8.9028,11.8526 327 | 27.05839493,8.3359,7.1731 328 | 29.16829748,5.2365,5.3665 329 | 23.77823697,4.8072,6.5738 330 | 11.11805467,2.2807,2.3605 331 | 7.360543686,1.1632,1.8108 332 | 11.20728473,25.1008,11.737 333 | 23.83555391,10.8567,9.1499 334 | 8.959903258,1.9737,2.5231 335 | 10.88842963,4.7823,5.4005 336 | 13.14354814,5.6751,6.4815 337 | 22.98132257,8.83,8.0722 338 | 31.08550404,8.0134,7.3374 339 | 18.63999334,2.134,2.7906 340 | 34.68421658,3.5206,6.4004 341 | 16.69529263,17.7142,20.6304 342 | 14.26428024,8.4846,20.6446 343 | 15.51415393,9.4055,21.9887 344 | 17.19897293,11.9897,21.3945 345 | 23.00481086,4.3108,10.6846 346 | 19.99185286,9.352,13.0148 347 | 13.66569618,9.664,8.8472 348 | 21.44555238,10.384,15.4482 349 | 35.82541915,5.43,19.0338 350 | 27.96981698,4.7162,11.8714 351 | 35.52522191,3.7356,15.6594 352 | 19.85018085,6.8096,8.6006 353 | 22.05882439,16.499,13.5216 354 | 21.91613358,7.6238,8.283 355 | 19.6934983,24.8326,17.4478 356 | 18.61869804,23.6702,18.9482 357 | 19.03880183,5.4426,4.805 358 | 4.260168818,3.13,3.1642 359 | 12.44776523,14.6748,8.8078 360 | 16.61615705,10.3108,9.9478 361 | 22.62342851,2.804,3.5984 362 | 10.02591996,1.1656,1.573 363 | 17.67796777,3.0379,3.0419 364 | 8.068048339,6.5444,4.086 365 | 19.37889965,5.7078,9.2094 366 | 11.41543215,10.0218,9.9122 367 | 15.51098273,14.4264,10.2926 368 | 25.52583733,15.031,11.0378 369 | 16.49419288,16.5735,15.1261 370 | 17.18466856,3.5363,7.6121 371 | 19.28910498,10.0184,10.2836 372 | 20.03788979,8.5142,9.7222 373 | 19.41757162,10.775,10.4894 374 | 23.54432702,5.6206,6.9136 375 | 17.01290874,10.3914,8.2806 376 | 15.01868776,11.2502,11.0286 377 | 18.83763997,10.2625,18.5179 378 | 31.72837637,16.702,23.3722 379 | 23.82312794,13.5298,16.3744 380 | 11.31197815,9.4118,12.1468 381 | 24.5223472,14.8612,12.6972 382 | 17.35781654,17.2108,14.2478 383 | 13.59649772,13.7078,9.7342 384 | 15.97538271,8.8502,11.5418 385 | 18.99187102,9.8694,16.3718 386 | 21.62685797,8.6818,15.8868 387 | 14.18600471,11.4564,15.0638 388 | 15.92711066,12.2842,13.5186 389 | 13.68846138,10.096,6.895 390 | 15.86676096,15.0488,12.5608 391 | 12.70786565,10.2376,8.3916 392 | 13.14660716,10.0194,8.9004 393 | 25.87166849,4.5095,5.4281 394 | 11.19389619,2.1833,2.6053 395 | 14.18244936,1.1913,1.3945 396 | 20.04421645,2.5465,2.2617 397 | 12.2061079,1.2546,1.4886 398 | 21.04477942,3.7394,3.3044 399 | 13.25068451,1.7142,1.8498 400 | 21.19315689,7.614,8.4078 401 | 27.50494917,11.6357,7.7877 402 | 13.52225652,15.428,14.3184 403 | 16.54813053,2.1748,2.424 404 | 14.01141529,2.4436,1.8988 405 | 24.78530595,6.6972,5.153 406 | 17.28548452,3.7812,2.525 407 | 18.01068529,2.3936,1.6744 408 | 23.07225197,4.053,3.7946 409 | 22.08613764,4.389,4.582 410 | 23.01009063,5.81,5.823 411 | 22.40682221,4.0038,4.1316 412 | 21.51082695,2.7214,3.482 413 | 11.38522371,5.343,7.091 414 | 16.18676103,2.3859,2.4689 415 | 17.72382581,6.3358,5.4684 416 | 17.45940846,3.3973,3.4525 417 | 21.35318479,3.2646,2.8618 418 | 21.91612394,5.008,4.4056 419 | 18.99901208,2.176,1.9496 420 | 26.45104392,2.3478,2.6244 421 | 20.41753578,3.634,3.9792 422 | 6.876144196,12.7632,13.429 423 | 16.58597695,12.8944,9.9808 424 | 17.63954092,6.841,6.486 425 | 17.65478078,12.1434,14.5334 426 | 19.28135433,11.7193,11.5773 427 | 22.82687228,5.1976,10.0224 428 | 22.93689322,7.9788,11.7788 429 | 17.61244311,8.4268,13.4028 430 | 30.37390829,4.6878,13.2256 431 | 17.86192983,9.7202,10.7174 432 | 19.12985727,8.9108,8.031 433 | 31.17881614,9.7632,12.7196 434 | 32.29187557,10.7643,16.3943 435 | 9.282191498,5.7604,4.861 436 | 25.61047533,13.1564,15.0188 437 | 15.52941953,15.7742,8.823 438 | 19.32172819,11.7192,11.0634 439 | 12.20697869,8.0294,6.7056 440 | 33.49675848,10.6234,12.5466 441 | 14.26128719,7.9727,7.3181 442 | 19.86852554,14.5194,21.7278 443 | 25.44581691,26.1732,27.0142 444 | 19.0245801,9.465,6.8698 445 | 26.6906302,17.0056,18.3634 446 | 28.38741922,9.3674,11.0532 447 | 17.70089557,8.2444,8.164 448 | 25.80529803,11.4587,13.4213 449 | 25.52740105,12.5994,12.6334 450 | 25.81479902,9.2047,9.9619 451 | 11.01306786,1.5384,1.9694 452 | 14.53406862,2.5601,2.7673 453 | 29.50408012,19.6552,18.3204 454 | 18.2475506,11.7119,7.1811 455 | 12.79453166,11.1521,9.2531 456 | 55.0194412,24.7238,25.9158 457 | 50.89216159,28.4802,25.533 458 | 16.26111999,5.6036,7.6392 459 | 20.56965676,29.0038,23.6436 460 | 36.23870631,9.9956,18.6522 461 | 21.32301846,17.4264,15.5434 462 | 27.18866613,16.481,14.5586 463 | 19.48287102,3.9568,5.3264 464 | 21.23702249,12.9438,11.2334 465 | 34.01435003,21.1468,17.4802 466 | 23.29458444,5.9862,8.644 467 | 17.90641918,6.5736,5.4404 468 | 16.92143351,1.68,2.2202 469 | 10.85389128,6.4746,5.162 470 | 20.59350941,7.6389,7.1705 471 | 13.81604835,4.2464,3.9798 472 | 16.2285965,4.7703,4.6663 473 | 8.814959167,17.9013,13.2433 474 | 20.33283298,9.2735,10.1233 475 | 17.61219357,8.4397,7.2637 476 | 17.94249724,10.4104,8.8464 477 | 23.80177615,7.427,8.8096 478 | 11.52169606,4.7664,3.5228 479 | 19.15164369,23.9976,13.688 480 | 12.13579079,6.1143,5.2851 481 | 19.13273506,12.8438,9.957 482 | 53.82466442,22.8226,21.49 483 | 18.70909763,11.901,16.5476 484 | 14.30762628,19.8289,23.5695 485 | 13.02782972,6.3722,4.8278 486 | 18.42994072,11.0395,9.7211 487 | 39.54512239,6.2918,8.8248 488 | 34.84840422,7.5568,7.4066 489 | 26.34730022,5.651,8.1182 490 | 19.49389822,8.3588,6.2904 491 | 10.65065369,5.2568,5.276 492 | 17.20692872,7.4926,6.398 493 | 25.84596252,8.5976,8.4488 494 | 30.06431005,5.1144,4.9546 495 | 25.72263663,6.8254,4.2092 496 | 37.39374695,5.2498,6.883 497 | 49.53813138,12.7212,19.2382 498 | 19.46544436,5.8164,6.326 499 | 29.22537256,18.3792,18.5316 500 | 13.9444571,6.408,4.2296 501 | 24.5469504,11.678,12.0814 502 | 16.35988521,7.4644,7.334 503 | 12.54503535,3.8675,3.9803 504 | 34.58083907,16.759,18.387 505 | 23.10612785,14.5318,8.284 506 | 22.42952803,4.5372,3.8106 507 | 26.29778539,4.2916,4.7128 508 | 34.57568012,19.8694,15.8196 509 | 15.40432817,6.1304,6.4058 510 | 9.798390723,2.1032,1.9882 511 | 20.21899239,5.4504,4.9216 512 | 11.04484462,1.6064,1.5144 513 | 15.13719979,17.5296,19.3484 514 | 18.81318686,1.4488,1.38 515 | 23.03120053,8.376,9.2514 516 | 20.40367503,7.324,6.6888 517 | 21.87752549,5.6214,6.9316 518 | 17.86376369,11.4243,11.5367 519 | 28.02085279,9.1698,7.003 520 | 26.58835752,8.8832,9.0696 521 | 34.34344826,16.1608,14.6642 522 | 25.47697221,4.0875,5.2561 523 | 20.275964,2.5282,3.2128 524 | 14.85985712,14.036,13.5738 525 | 25.96996143,8.9274,9.9344 526 | 22.59751804,7.6718,7.6816 527 | 21.52694104,8.384,7.4212 528 | 14.46565848,4.2388,2.9478 529 | 29.17784008,4.2246,5.9396 530 | 31.78900687,23.9137,22.5815 531 | 25.89457432,5.982,6.1078 532 | 17.98872978,5.113,4.149 533 | 22.74031771,6.288,5.6084 534 | 25.38730342,12.3316,8.345 535 | 15.01828765,12.396,9.506 536 | 19.01122613,2.3846,1.841 537 | 10.99161724,13.626,6.3638 538 | 15.55070182,6.3061,6.5409 539 | 14.42263763,7.6595,6.8463 540 | 30.06825459,2.6702,3.4524 541 | 22.27615205,9.638,12.7658 542 | 26.97278839,13.8058,16.5262 543 | 24.1090712,10.4729,10.1949 544 | 21.57218933,5.4906,5.6856 545 | 20.17378594,11.0926,8.969 546 | 14.24035584,15.4208,12.1388 547 | 30.12635584,11.1548,19.122 548 | 17.978042,2.593,2.5024 549 | 9.00997409,4.9085,11.1633 550 | 12.08858132,1.7442,2.2358 551 | 6.888406257,1.1944,1.2882 552 | 21.10598393,30.6753,14.4185 553 | 29.08486243,23.7222,18.0958 554 | 17.73205377,19.571,17.9446 555 | 15.88514241,16.8373,14.3757 556 | 24.41421328,16.8831,15.1187 557 | 32.14425848,15.9861,16.8459 558 | 12.77425131,5.769,5.4344 559 | 25.40324938,13.482,11.461 560 | 37.36020089,37.384,24.5824 561 | 17.53312957,2.2392,1.7144 562 | 20.01217793,18.7352,20.4884 563 | 16.2058261,10.5119,15.3743 564 | 15.49695474,9.3858,6.1876 565 | 15.0129669,8.6922,11.515 566 | 23.82262982,6.3182,6.6308 567 | 26.09380982,21.7134,18.483 568 | 51.59468674,20.6146,24.29 569 | 9.855546578,3.498,2.7358 570 | 24.01259371,17.0362,24.2344 571 | 14.68533748,2.8286,4.4048 572 | 21.18800545,13.7448,21.745 573 | 22.26032819,6.1235,12.7083 574 | 7.855794574,4.3499,13.2619 575 | 25.45495132,5.9472,6.7146 576 | 25.70535693,3.8846,4.875 577 | 28.51441017,3.4028,5.0708 578 | 12.86253722,14.7334,20.0796 579 | 11.59340059,1.4318,1.9674 580 | 29.58040296,22.0554,23.4064 581 | 17.72400807,3.3618,5.1286 582 | 12.3921847,1.7524,3.0732 583 | 14.43451134,14.0604,21.0168 584 | 24.00009315,3.3642,4.273 585 | 19.73377605,20.2835,23.4909 586 | 19.44959824,19.0514,25.0594 587 | 11.91172516,9.7197,12.3537 588 | 32.18481483,4.6354,4.8116 589 | 18.67653226,3.9756,3.3174 590 | 25.37290573,24.7718,18.7426 591 | 9.847885538,7.5238,8.1362 592 | 21.2931273,3.9722,2.7614 593 | 34.63695678,22.245,19.965 594 | 23.36760263,3.574,3.4766 595 | 24.7593122,16.7876,14.4618 596 | 13.39996781,12.5712,6.5326 597 | 16.17662808,14.84,14.6628 598 | 15.19143568,10.6111,8.4047 599 | 16.91026702,3.6598,4.0712 600 | 23.80185349,2.2164,2.4032 601 | 22.82991677,9.7967,9.0005 602 | 31.25131005,11.7445,15.6001 603 | 26.83739337,6.4934,7.1346 604 | 24.14132293,4.5186,4.7448 605 | 21.92227455,2.8334,2.8938 606 | 9.778513998,0.7836,1.808 607 | 17.5094446,2.0192,2.7176 608 | 18.89228425,1.726,1.886 609 | 26.71323741,6.5184,6.7082 610 | 17.95213975,8.015,5.8732 611 | 19.73859614,6.1834,5.8338 612 | 19.28905435,11.3141,9.5135 613 | 8.516197987,2.8618,2.8072 614 | 30.78039192,30.4444,22.4464 615 | 13.64341183,1.2462,1.3058 616 | 19.20619825,5.342,5.3836 617 | 13.84960556,14.836,15.1686 618 | 9.37507213,5.2194,9.3516 619 | 35.62588082,9.1009,9.5147 620 | 25.45542655,3.155,2.8044 621 | 14.19579574,9.4134,5.0344 622 | 18.60920168,5.7898,6.6778 623 | 28.92070196,11.4093,9.5721 624 | 16.05319208,6.1222,4.732 625 | 23.98369688,11.136,11.2304 626 | 19.73871302,2.7096,2.8406 627 | 32.56384547,8.2323,15.6207 628 | 9.227184888,1.1884,1.4148 629 | 24.70475501,13.0522,12.3772 630 | 21.02709745,1.8184,1.6708 631 | 16.40142077,3.3948,3.1892 632 | 11.74780074,2.067,1.8924 633 | 26.92977715,6.8842,8.3838 634 | 17.44172165,2.1928,1.9476 635 | 15.56476248,11.8288,11.913 636 | 8.515800571,1.1552,1.3492 637 | 21.16986915,4.946,4.6002 638 | 20.42988626,4.8798,5.2266 639 | 27.60531737,2.9532,4.0354 640 | 9.045899624,1.4662,1.07 641 | 28.51636962,18.6934,11.7372 642 | 17.59157938,4.802,4.1074 643 | 20.66692634,7.7656,13.3334 644 | 16.05910419,10.3612,10.8292 645 | 12.36979538,6.8235,6.6215 646 | 19.53910551,5.9636,6.334 647 | 17.71844594,2.8658,3.9058 648 | 34.55125231,5.4546,6.342 649 | 28.22704951,10.1692,7.974 650 | 5.721015994,3.5726,3.276 651 | 22.50474332,8.474,8.1798 652 | 23.25279932,8.8666,7.682 653 | 30.39303301,16.217,20.8408 654 | 20.93985696,8.0984,7.7362 655 | 11.62205082,13.5821,11.9941 656 | 20.54449814,9.968,8.6296 657 | 25.11255002,13.4444,13.4944 658 | 19.90522476,5.2948,6.5918 659 | 25.036974,15.5314,13.6036 660 | 13.84814546,5.1088,4.9918 661 | 18.21993038,9.1517,10.1133 662 | 15.90918057,9.6114,10.4688 663 | 28.81062116,11.6953,14.6221 664 | 25.08305592,8.0762,8.6758 665 | 22.40163859,6.535,6.4308 666 | 22.21648448,5.5518,6.6588 667 | 25.01463793,9.9358,10.867 668 | 18.3449168,5.8929,6.1137 669 | 17.40499689,9.1751,9.0677 670 | 24.1562298,7.6248,9.5486 671 | 9.168421803,10.0798,7.3858 672 | 2.52856114,1.3892,1.3184 673 | 17.36298079,8.6846,6.5714 674 | 15.27763785,6.4472,7.6224 675 | 7.105701215,3.4444,2.4968 676 | 20.63251546,8.4628,9.5742 677 | 16.22828897,5.4266,5.7654 678 | 18.63744644,9.3445,9.2247 679 | 16.24273831,22.2947,18.4547 680 | 18.30948374,17.0164,16.5246 681 | 14.52392039,6.064,5.4608 682 | 13.65227448,6.1738,5.9988 683 | 16.93586344,10.122,8.8158 684 | 13.90864606,14.833,15.8478 685 | 21.97268249,7.2826,9.732 686 | 16.67838493,8.182,8.974 687 | 18.5507044,8.2357,9.2647 688 | 18.23941622,9.6833,9.0199 689 | 19.86262101,17.1754,21.5262 690 | 18.17675258,10.2458,12.5476 691 | 23.48646871,14.6538,15.1356 692 | 12.51772254,5.9856,6.4162 693 | 14.22624314,14.1409,10.5025 694 | 14.03683009,18.4728,17.001 695 | 17.55638662,11.5342,11.183 696 | 15.35903307,18.0294,17.8048 697 | 20.09284042,12.1028,16.642 698 | 15.9562599,17.5402,15.3114 699 | 14.32295617,5.7486,5.5716 700 | 6.949161658,10.8935,8.6515 701 | 18.19013796,8.528,7.941 702 | 18.19013796,, 703 | 26.06680604,, 704 | -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/kernel_svm.py: -------------------------------------------------------------------------------- 1 | # Kernel SVM 2 | 3 | # Importing the libraries 4 | import numpy as np 5 | import matplotlib.pyplot as plt 6 | import pandas as pd 7 | from sklearn import metrics 8 | import pickle 9 | from sklearn.model_selection import train_test_split 10 | from sklearn.preprocessing import StandardScaler 11 | from sklearn.svm import SVC 12 | from sklearn.metrics import confusion_matrix 13 | 14 | import time 15 | start_time = time.time() 16 | 17 | # Importing the dataset 18 | dataset = pd.read_csv('DataSheet.csv') 19 | X = dataset.iloc[:, [1,6,7]].values 20 | y = dataset.iloc[:, 10].values 21 | 22 | # Splitting the dataset into the Training set and Test set 23 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) 24 | 25 | # Feature Scaling 26 | sc = StandardScaler() 27 | X_train = sc.fit_transform(X_train) 28 | X_test = sc.transform(X_test) 29 | 30 | # Fitting Kernel SVM to the Training set 31 | clf = SVC(kernel = 'rbf', C=2) 32 | clf.fit(X_train, y_train) 33 | 34 | 35 | # Accuracy 36 | acc = clf.score(X_test, y_test) 37 | print("\nAccuracy = ", acc*100,"%") 38 | 39 | # Predicting the Test set results 40 | svmPickle = open('k_svmpickle_file', 'wb') 41 | 42 | pickle.dump(clf, svmPickle) 43 | 44 | # Loading the model 45 | loaded_model = pickle.load(open('k_svmpickle_file', 'rb')) 46 | result = loaded_model.predict(X_test) 47 | 48 | # Displaying the predicted and actual values 49 | print("\n0 = star , 1 = galaxy") 50 | for x in range(len(result)): 51 | print("Predicted: ", result[x], " Data: ", X_test[x], " Actual: ", y_test[x]) 52 | 53 | # Making the Confusion Matrix 54 | cm = confusion_matrix(y_test, result) 55 | print("\n The Confusion Matrix:") 56 | print(cm) 57 | 58 | sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1]) 59 | print('Sensitivity : ', sensitivity1 ) 60 | 61 | specificity1 = cm[1,1]/(cm[1,0]+cm[1,1]) 62 | print('Specificity : ', specificity1) 63 | 64 | 65 | # Visualising the Training set results 66 | from matplotlib.colors import ListedColormap 67 | X_set, y_set = X_train, y_train 68 | X1, X2, X3 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), 69 | np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01) 70 | np.arange(start = X_set[:, 2].min() - 1, stop = X_set[:, 2].max() + 1, step = 0.01)) 71 | plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), 72 | alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 73 | plt.xlim(X1.min(), X1.max()) 74 | plt.ylim(X2.min(), X2.max()) 75 | for i, j in enumerate(np.unique(y_set)): 76 | plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 77 | c = ListedColormap(('red', 'green'))(i), label = j) 78 | plt.title('Kernel SVM (Training set)') 79 | plt.xlabel('Age') 80 | plt.ylabel('Estimated Salaryry') 81 | plt.legend() 82 | plt.show() 83 | 84 | # Visualising the Test set results 85 | from matplotlib.colors import ListedColormap 86 | X_set, y_set = X_test, y_test 87 | X1, X2, X3 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), 88 | np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01), 89 | np.arange(start = X_set[:, 2].min() - 1, stop = X_set[:, 2].max() + 1, step = 0.01)) 90 | plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), 91 | alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 92 | plt.xlim(X1.min(), X1.max()) 93 | plt.ylim(X2.min(), X2.max()) 94 | for i, j in enumerate(np.unique(y_set)): 95 | plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 96 | c = ListedColormap(('red', 'green'))(i), label = j) 97 | plt.title('Kernel SVM (Test set)') 98 | plt.xlabel('Age') 99 | plt.ylabel('Estimated Salary') 100 | plt.legend() 101 | plt.show() 102 | 103 | print("--- %s seconds ---" % (time.time() - start_time)) 104 | -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/knn.py: -------------------------------------------------------------------------------- 1 | # K-Nearest Neighbors (K-NN) 2 | 3 | # Importing the libraries 4 | import numpy as np 5 | import matplotlib.pyplot as plt 6 | import pandas as pd 7 | import pickle 8 | from sklearn.model_selection import train_test_split 9 | from sklearn.preprocessing import StandardScaler 10 | from sklearn.neighbors import KNeighborsClassifier 11 | from sklearn.metrics import confusion_matrix 12 | import seaborn as sns 13 | import time 14 | start_time = time.time() 15 | 16 | # Importing the dataset 17 | dataset = pd.read_csv('DataSheet.csv') 18 | X = dataset.iloc[:, [1,6,7]].values 19 | y = dataset.iloc[:, 10].values 20 | 21 | # Splitting the dataset into the Training set and Test set 22 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) 23 | 24 | # Feature Scaling 25 | sc = StandardScaler() 26 | X_train = sc.fit_transform(X_train) 27 | X_test = sc.transform(X_test) 28 | 29 | sns.countplot(x= 'name', data= dataset) 30 | 31 | # Fitting K-NN to the Training set 32 | classifier = KNeighborsClassifier(n_neighbors = 7, metric = 'minkowski', p = 2) 33 | classifier.fit(X_train, y_train) 34 | 35 | # Accuracy 36 | acc = classifier.score(X_test, y_test) 37 | print("\nAccuracy = ", acc*100,"%") 38 | 39 | # Predicting the Test set results 40 | knnPickle = open('knnpickle_file', 'wb') 41 | 42 | pickle.dump(classifier, knnPickle) 43 | 44 | # Loading the model 45 | loaded_model = pickle.load(open('knnpickle_file', 'rb')) 46 | result = loaded_model.predict(X_test) 47 | 48 | # Displaying the predicted and actual values 49 | print("\n0 = star , 1 = galaxy") 50 | for x in range(len(result)): 51 | print("Predicted: ", result[x], " Data: ", X_test[x], " Actual: ", y_test[x]) 52 | 53 | # Making the Confusion Matrix 54 | cm = confusion_matrix(y_test, result) 55 | print("\n The Confusion Matrix:") 56 | print(cm) 57 | 58 | sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1]) 59 | print('Sensitivity : ', sensitivity1 ) 60 | 61 | specificity1 = cm[1,1]/(cm[1,0]+cm[1,1]) 62 | print('Specificity : ', specificity1) 63 | 64 | # Visualising the Training set results 65 | from matplotlib.colors import ListedColormap 66 | X_set, y_set = X_train, y_train 67 | X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), 68 | np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) 69 | plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), 70 | alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 71 | plt.xlim(X1.min(), X1.max()) 72 | plt.ylim(X2.min(), X2.max()) 73 | for i, j in enumerate(np.unique(y_set)): 74 | plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 75 | c = ListedColormap(('red', 'green'))(i), label = j) 76 | plt.title('K-NN (Training set)') 77 | plt.xlabel('DistictNumpyArray') 78 | plt.ylabel('Star or Galaxy') 79 | plt.legend() 80 | plt.show() 81 | 82 | # Visualising the Test set results 83 | from matplotlib.colors import ListedColormap 84 | X_set, y_set = X_test, y_test 85 | X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), 86 | np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) 87 | plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), 88 | alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 89 | plt.xlim(X1.min(), X1.max()) 90 | plt.ylim(X2.min(), X2.max()) 91 | for i, j in enumerate(np.unique(y_set)): 92 | plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 93 | c = ListedColormap(('red', 'green'))(i), label = j) 94 | plt.title('K-NN (Test set)') 95 | plt.xlabel('DistictNumpyArray') 96 | plt.ylabel('Star or Galaxy') 97 | plt.legend() 98 | plt.show() 99 | 100 | print("--- %s seconds ---" % (time.time() - start_time)) 101 | -------------------------------------------------------------------------------- /Celestial-Bodies-Classification/svm.py: -------------------------------------------------------------------------------- 1 | # Support Vector Machine (SVM) 2 | 3 | # Importing the libraries 4 | import numpy as np 5 | import matplotlib.pyplot as plt 6 | import pandas as pd 7 | import sklearn 8 | from sklearn import datasets 9 | from sklearn import svm 10 | from sklearn import metrics 11 | import pickle 12 | import time 13 | start_time = time.time() 14 | 15 | # Importing the dataset 16 | dataset = pd.read_csv('DataSheet.csv') 17 | X = dataset.iloc[:, [1,6,7]].values 18 | y = dataset.iloc[:, 10].values 19 | 20 | # Splitting the dataset into the Training set and Test set 21 | from sklearn.model_selection import train_test_split 22 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 23 | 24 | # Feature Scaling 25 | from sklearn.preprocessing import StandardScaler 26 | sc = StandardScaler() 27 | X_train = sc.fit_transform(X_train) 28 | X_test = sc.transform(X_test) 29 | 30 | # Fitting SVM to the Training set 31 | clf = svm.SVC(kernel = 'linear', C=2) 32 | clf.fit(X_train, y_train) 33 | 34 | # Accuracy 35 | acc = clf.score(X_test, y_test) 36 | print("\nAccuracy = ", acc*100,"%") 37 | 38 | 39 | svmPickle = open('svmpickle_file', 'wb') 40 | 41 | pickle.dump(clf, svmPickle) 42 | 43 | # Loading the model 44 | loaded_model = pickle.load(open('svmpickle_file', 'rb')) 45 | 46 | # Predicting the Test set results 47 | result = loaded_model.predict(X_test) 48 | 49 | # Displaying the predicted and actual values 50 | print("\n0 = star , 1 = galaxy") 51 | for x in range(len(result)): 52 | print("Predicted: ", result[x], " Data: ", X_test[x], " Actual: ", y_test[x]) 53 | 54 | # Making the Confusion Matrix 55 | from sklearn.metrics import confusion_matrix 56 | cm = confusion_matrix(y_test, result) 57 | print("\n The Confusion Matrix:") 58 | print(cm) 59 | 60 | sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1]) 61 | print('Sensitivity : ', sensitivity1 ) 62 | 63 | specificity1 = cm[1,1]/(cm[1,0]+cm[1,1]) 64 | print('Specificity : ', specificity1) 65 | 66 | 67 | # Visualising the Training set results 68 | from matplotlib.colors import ListedColormap 69 | X_set, y_set = X_train, y_train 70 | X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), 71 | np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) 72 | plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), 73 | alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 74 | plt.xlim(X1.min(), X1.max()) 75 | plt.ylim(X2.min(), X2.max()) 76 | for i, j in enumerate(np.unique(y_set)): 77 | plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 78 | c = ListedColormap(('red', 'green'))(i), label = j) 79 | plt.title('SVM (Training set)') 80 | plt.xlabel('Age') 81 | plt.ylabel('Estimated Salary') 82 | plt.legend() 83 | plt.show() 84 | 85 | # Visualising the Test set results 86 | from matplotlib.colors import ListedColormap 87 | X_set, y_set = X_test, y_test 88 | X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), 89 | np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) 90 | plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), 91 | alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 92 | plt.xlim(X1.min(), X1.max()) 93 | plt.ylim(X2.min(), X2.max()) 94 | for i, j in enumerate(np.unique(y_set)): 95 | plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 96 | c = ListedColormap(('red', 'green'))(i), label = j) 97 | plt.title('SVM (Test set)') 98 | plt.xlabel('Age') 99 | plt.ylabel('Estimated Salary') 100 | plt.legend() 101 | plt.show() 102 | 103 | print("--- %s seconds ---" % (time.time() - start_time)) 104 | -------------------------------------------------------------------------------- /Cervical-Cancer-Risk/cervical-cancer-awareness.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Cervical-Cancer-Risk/cervical-cancer-awareness.png -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Drowsiness Detection model.py: -------------------------------------------------------------------------------- 1 | # Importing Project Dependencies 2 | import numpy as np 3 | import os 4 | import cv2 5 | import tensorflow as tf 6 | from tensorflow import keras 7 | from tensorflow.keras import layers 8 | 9 | # Setting up config for GPU training 10 | if tf.test.is_gpu_available: 11 | physical_devices = tf.config.list_physical_devices("GPU") 12 | tf.config.experimental.set_memory_growth(physical_devices[0], True) 13 | 14 | # Loading in all the images and assigning target classes 15 | def load_images(folder): 16 | imgs, targets = [], [] 17 | for foldername in os.listdir(folder): 18 | loc = folder + "/" + foldername 19 | targets.append(len(os.listdir(loc))) 20 | for filename in os.listdir(loc): 21 | img = cv2.imread(os.path.join(loc, filename)) 22 | img = cv2.resize(img, (86, 86)) 23 | if img is not None and img.shape == (86, 86, 3): 24 | imgs.append(img) 25 | print(foldername) 26 | imgs = np.array(imgs) 27 | y = np.zeros(imgs.shape[0]).astype(int) 28 | j, n = 0, 0 29 | for i in targets: 30 | y[j:i + j] = n 31 | n += 1 32 | j = i + j 33 | return imgs, y 34 | 35 | 36 | folder = "../input/drowsiness-detection" 37 | X, y = load_images(folder) 38 | 39 | # Splitting the data into 2 separate training and testing sets 40 | def train_test_split(X, y, testing_size=0.2): 41 | no_of_rows = X.shape[0] 42 | no_of_test_rows = int(no_of_rows * testing_size) 43 | rand_row_num = np.random.randint(0, no_of_rows, no_of_test_rows) 44 | 45 | X_test = np.array([X[i] for i in rand_row_num]) 46 | X_train = np.delete(X, rand_row_num, axis=0) 47 | 48 | y_test = np.array([y[i] for i in rand_row_num]) 49 | y_train = np.delete(y, rand_row_num, axis=0) 50 | 51 | return X_train, y_train, X_test, y_test 52 | 53 | 54 | X_train, y_train, X_test, y_test = train_test_split(X, y, testing_size=0.2) 55 | print(X_train[0].shape) 56 | 57 | # Model building using sequential API 58 | model = keras.Sequential( 59 | [ 60 | keras.Input(shape=(86, 86, 3)), 61 | layers.Conv2D(75, 3, padding='valid', activation='relu'), 62 | layers.MaxPooling2D(pool_size=(5, 5)), 63 | layers.Conv2D(64, 2, padding='valid', activation='relu'), 64 | layers.MaxPooling2D(pool_size=(2, 2)), 65 | layers.Conv2D(128, 3, padding='valid', activation='relu'), 66 | layers.MaxPooling2D(pool_size=(2, 2)), 67 | layers.Flatten(), 68 | layers.Dense(64, activation='relu'), 69 | layers.Dense(2, activation='softmax'), 70 | ] 71 | ) 72 | print(model.summary()) 73 | 74 | # Model compilation with keeping track of accuracy while training & evaluation process 75 | model.compile( 76 | loss=keras.losses.SparseCategoricalCrossentropy(from_logits=False), 77 | optimizer=keras.optimizers.Adam(), 78 | metrics=['accuracy'] 79 | ) 80 | 81 | model.fit(X_train, y_train, batch_size=32, epochs=10) 82 | 83 | model.evaluate(X_test, y_test, batch_size=32) 84 | 85 | # Saving the model 86 | model.save('my_model (1).h5') 87 | -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Eye_patch_extractor_&_GUI.py: -------------------------------------------------------------------------------- 1 | # Importing Project Dependencies 2 | import numpy as np 3 | import cv2 4 | import pandas as pd 5 | import tensorflow as tf 6 | from tensorflow import keras 7 | import time 8 | import winsound 9 | import streamlit as st 10 | 11 | # Setting up config for GPU usage 12 | physical_devices = tf.config.list_physical_devices("GPU") 13 | tf.config.experimental.set_memory_growth(physical_devices[0], True) 14 | 15 | # Using Har-cascade classifier from OpenCV 16 | face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') 17 | 18 | # Loading the trained model for prediction purpose 19 | model = keras.models.load_model('my_model (1).h5') 20 | 21 | # Title for GUI 22 | st.title('Drowsiness Detection') 23 | img = [] 24 | 25 | # Navigation Bar 26 | nav_choice = st.sidebar.radio('Navigation', ('Home', 'Sleep Detection', 'Help Us Improve'), index=0) 27 | # Home page 28 | if nav_choice == 'Home': 29 | st.header('Prevents sleep deprivation road accidents, by alerting drowsy drivers.') 30 | st.image('ISHN0619_C3_pic.jpg') 31 | st.markdown('In accordance with the survey taken by the Times Of India, about 40 % of road ' 32 | 'accidents are caused ' 33 | 'due to sleep deprivation & fatigued drivers. In order to address this issue, this app will ' 34 | 'alert such drivers with the help of deep learning models and computer vision.' 35 | '', unsafe_allow_html=True) 36 | st.image('sleep.jfif', width=300) 37 | st.markdown('

How to use?

' 38 | '1. Go to Sleep Detection page from the Navigation Side-Bar.
' 39 | '2. Make sure that, you have sufficient amount of light, in your room.
' 40 | '3. Align yourself such that, you are clearly visible in the web-cam and ' 41 | 'stay closer to the web-cam.
' 42 | '4. Web-cam will take 3 pictures of you, so keep your eyes in the same state' 43 | ' (open or closed) for about 5 seconds.
' 44 | '5. If your eyes are closed, the model will make a beep sound to alert you.
' 45 | '6. Otherwise, the model will continue taking your pictures at regular intervals of time.
' 46 | '
For the purpose of the training process of the model, ' 47 | 'dataset used is available here
' 49 | , unsafe_allow_html=True) 50 | 51 | # Sleep Detection page 52 | elif nav_choice == 'Sleep Detection': 53 | st.header('Image Prediction') 54 | cap = 0 55 | st.success('Please look at your web-cam, while following all the instructions given on the Home page.') 56 | st.warning( 57 | 'Keeping the eyes in the same state is important but you can obviously blink your eyes, if they are open!!!') 58 | b = st.progress(0) 59 | for i in range(100): 60 | time.sleep(0.0001) 61 | b.progress(i + 1) 62 | 63 | start = st.radio('Options', ('Start', 'Stop'), key='Start_pred', index=1) 64 | 65 | if start == 'Start': 66 | decision = 0 67 | st.markdown('Detected Facial Region of Interest(ROI)     Extractd' 68 | ' Eye Features from the ROI', unsafe_allow_html=True) 69 | 70 | # Best of 3 mechanism for drowsiness detection 71 | for _ in range(3): 72 | cap = cv2.VideoCapture(0) 73 | ret, frame = cap.read() 74 | gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 75 | faces = face_cascade.detectMultiScale(gray, 1.3, 5) 76 | # Proposal of face region by the har cascade classifier 77 | for (x, y, w, h) in faces: 78 | cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 5) 79 | roi_gray = gray[y:y + w, x:x + w] 80 | roi_color = frame[y:y + h, x:x + w] 81 | frame1 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 82 | 83 | try: 84 | # Cenentroid method for extraction of eye-patch 85 | centx, centy = roi_color.shape[:2] 86 | centx //= 2 87 | centy //= 2 88 | eye_1 = roi_color[centy - 40: centy, centx - 70: centx] 89 | eye_1 = cv2.resize(eye_1, (86, 86)) 90 | eye_2 = roi_color[centy - 40: centy, centx: centx + 70] 91 | eye_2 = cv2.resize(eye_2, (86, 86)) 92 | cv2.rectangle(frame1, (x + centx - 60, y + centy - 40), (x + centx - 10, y + centy), (0, 255, 0), 5) 93 | cv2.rectangle(frame1, (x + centx + 10, y + centy - 40), (x + centx + 60, y + centy), (0, 255, 0), 5) 94 | preds_eye1 = model.predict(np.expand_dims(eye_1, axis=0)) 95 | preds_eye2 = model.predict(np.expand_dims(eye_2, axis=0)) 96 | e1, e2 = np.argmax(preds_eye1), np.argmax(preds_eye2) 97 | 98 | # Display of face image and extracted eye-patch 99 | img_container = st.beta_columns(4) 100 | img_container[0].image(frame1, width=250) 101 | img_container[2].image(cv2.cvtColor(eye_1, cv2.COLOR_BGR2RGB), width=150) 102 | img_container[3].image(cv2.cvtColor(eye_2, cv2.COLOR_BGR2RGB), width=150) 103 | print(e1, e2) 104 | 105 | # Decision variable for prediction 106 | if e1 == 1 or e2 == 1: 107 | pass 108 | else: 109 | decision += 1 110 | 111 | except NameError: 112 | st.warning('Hold your camera closer!!!\nTrying again in 2s') 113 | cap.release() 114 | time.sleep(1) 115 | continue 116 | 117 | except: 118 | cap.release() 119 | continue 120 | 121 | finally: 122 | cap.release() 123 | 124 | # If found drowsy, then make a beep sound to alert the driver 125 | if decision == 0: 126 | st.error('Eye(s) are closed') 127 | winsound.Beep(2500, 2000) 128 | 129 | else: 130 | st.success('Eyes are Opened') 131 | st.warning('Please select "Stop" and then "Start" to try again') 132 | 133 | # Help Us Improve page 134 | else: 135 | st.header('Help Us Improve') 136 | st.success('We would appreciate your Help!!!') 137 | st.markdown( 138 | 'To make this app better, we would appreciate your small amount of time.' 139 | 'Let me take you through, some of the basic statistical analysis of this ' 140 | 'model.
Accuracy with naked eyes = 99.5%
Accuracy with spectacles = 96.8%

' 141 | 'As we can see here, accuracy with spectacles is not at all spectacular, and hence to make this app ' 142 | 'better, and to use it in real-time situations, we require as much data as we can gather. ' 143 | , unsafe_allow_html=True) 144 | st.warning('NOTE: Your identity will be kept anonymous, and only your eye-patch will be extracted!!!') 145 | # Image upload 146 | img_upload = st.file_uploader('Upload Image Here', ['png', 'jpg', 'jpeg']) 147 | if img_upload is not None: 148 | prog = st.progress(0) 149 | to_add = cv2.imread(str(img_upload.read()), 0) 150 | to_add = pd.DataFrame(to_add) 151 | 152 | # Save it in the database 153 | to_add.to_csv('Data_from_users.csv', mode='a', header=False, index=False, sep=';') 154 | for i in range(100): 155 | time.sleep(0.001) 156 | prog.progress(i + 1) 157 | st.success('Uploaded Successfully!!! Thank you for contributing.') 158 | -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/ISHN0619_C3_pic.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/ISHN0619_C3_pic.jpg -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Pics-for-Readme/2021-04-10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/Pics-for-Readme/2021-04-10.png -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (1).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (1).png -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (2).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (2).png -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (3).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (3).png -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (4).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/Pics-for-Readme/2021-05-03 (4).png -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/README.md: -------------------------------------------------------------------------------- 1 | # Drowsiness Detection Web app 2 | Prevents sleep deprivation road accidents, by alerting drowsy drivers. 3 | In this project, we have trained a convolutional neural network, to determine whether the eyes are closed or not, further, eye-patches are extracted from the face image to make all predictions. The dataset used for the training process can be accessed from the link given below: 4 |
https://www.kaggle.com/kutaykutlu/drowsiness-detection. 5 | 6 | ## Live Testing The App 7 | ```sh 8 | $ pip install -r requirements.txt 9 | ``` 10 | Then download `Eye_patch_extractor_&_GUI.py`, `ISHN0619_C3_pic.jpg`, `my_model (1).h5` & `sleep.jfif` files. 11 | ```sh 12 | $ streamlit run Eye_patch_extractor_&_GUI.py 13 | ``` 14 | 15 | ## Understanding The Problem Statement 16 | According to the survey done by 'The Times of Inidia', nearly 40% of road accidents are caused by sleep deprivation. Fatigued drivers, long-duty driving are the major causes for the same. To solve this issue, this app primarily aims to predict whether or not the driver is sleeping, if found sleeping, it alerts the driver by making a high-frequency sound. This project is to avoid such sleep deprivation accidents! 17 | 18 | ## Implementation 19 | 1. A Deep Learning Model will be trained to detect whether the driver's eyelids are open or not. This will be achieved by training a Convolutional Neural Network using Tensorflow.
20 | 2. A web-cam will take a picture of the driver's face at regular intervals of time and the patch of the driver's eye will be extracted from that picture. This task will be achieved by using OpenCV.
21 | 3. This patch will be further used for the prediction purpose with the model trained in step 1.
22 | 4. Using this prediction, if the driver's eyes are closed a beep sound will be played, to alert the driver.
23 | 24 | ## Drowsiness Detetction Model Insights 25 | This model is trained with the help of TensorFlow and is based upon convolutional neural networks. It takes RGB images with the dimensions (86 * 86 * 3). 26 | ### Model Architecture 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
Layer NumberLayer TypeOutput ShapeTrainable ParametersActivation Funtion
1CONV2D(None, 84, 84, 75)2,100Relu
2MaxPooling2D(None, 16, 16, 75)0None
3Conv2D(None, 15, 15, 64)19,264Relu
4MaxPooling2D(None, 7, 7, 64)0None
5Conv2D(None, 5, 5, 128)73,856Relu
6MaxPooling2D(None, 2, 2, 128)0None
7Flattern(None, 512)0None
8Dense(None, 64)32,832Sigmoid
9Dense(None, 2)130Softmax
39 | 40 | ## Eye Patch Extractor & Predictor Insights 41 | This model uses OpenCV's "Haar Cascade Classifier" for face detection and after the proposal of the region of interest, it extracts the eye patch by the "Centroid Method" developed by us. These extracted features will be then passed to the trained model for Drowsiness Detection. 42 | -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/my_model (1).h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/my_model (1).h5 -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/requirements.txt: -------------------------------------------------------------------------------- 1 | opencv_python==4.5.1.48 2 | tensorflow_gpu==2.3.1 3 | numpy==1.18.5 4 | pandas==1.1.4 5 | streamlit==0.73.1 6 | tensorflow==2.4.1 7 | -------------------------------------------------------------------------------- /Drowsiness-Detection-web-app/sleep.jfif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Drowsiness-Detection-web-app/sleep.jfif -------------------------------------------------------------------------------- /Kaggle 2020 Survey Analysis/README.md: -------------------------------------------------------------------------------- 1 |

2 | drawing 3 |

4 | 5 | # Kaggle-Survey-2020-Commpetition 6 | 7 | The code in this Repo is submission for the annual Kaggle ML & DS survey Competition. 8 | 9 | # Our goal 10 | In this competition we were given the data of the annual survey that Kaggle conducts every year and we were asked to explore this data and come up with some conclusions that might be unique and wouldn't be visible if we just glanced through the data.
11 | 12 | I performed EDA on the data on features like - Age of a person, the country they live in, The Language they use to code, the IDEs they preder, their job titles and much more. After exploration we were able to come up with some conclusions which i have mentioned at the end of my notebook.
13 | 14 | # Few Results and Observations 15 | 1. Most Kaggle user's are quite young with their age between 22-29.
16 | 2. The Number of Men using Kaggle is huge as compared to the Woman. But we could see a significant growth in number of female Kagglers recently.
17 | 3. Most Kaggler's are from India followed by USA and other countries.
18 | 4. Most Kagglers have a Master's Degree.
19 | 5. Majority of Kagglers are Students followed by Data Scientists and Machine Learning Engineers.
20 | 6. Most Kagglers have Experience of 3-5 Years in the Programming and then there are Kagglers with an experience of 1-2 years.
21 | 7. Most Kagglers use Python followed by SQL and R.
22 | 8. The most Preffered IDEs are Jupyter, VScode and PyCharm.
23 | 9. Most Recommended Languages for Data Science Beginners is Python followed by R.
24 | 10. The most used data visualization Libraries are Matplotlib and Seaborn.
25 | 11. The most used framework for Machine learning and Deep learning is Sci-Kit learn followed by Tensorflow along with Keras.
26 | 12. The Most commonly used algorithms are Regression based followed by Decision trees, random forests and so on.
27 | 13. Most users share their work on Github followed by Kaggle and Colab. There are also many who dont like to share their work.
28 | 14. Most users preferred Coursera to learn Data science and Machine Learning followed by Kaggle Courses and Udemy.
29 | 15. Most users make use of Kaggle notebooks and forums to stay updated about latest Data science and ML topics followed by Youtube and Blogs on various websites.
30 | -------------------------------------------------------------------------------- /Kaggle 2020 Survey Analysis/images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Kaggle 2020 Survey Analysis/images.png -------------------------------------------------------------------------------- /Noise-Removal-and-OCR-Using-CNNs-Autoencoders/images/result.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/Noise-Removal-and-OCR-Using-CNNs-Autoencoders/images/result.jpg -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Machine Learning @ DSC VIT(2020-2021) 2 | --- 3 | An Open source repository that was active during the term 2020-2021 at DSC-VIT,Bhopal. This repository consists of multiple ML and DL projects for people to learn from. Students could also contribute to it during the 2020-2021 season of DSC.
4 | **Currently, the repository is not maintained and all the contributors are requested to contribute to the new repositories that are there for the term 2021-2022** 5 | 6 | ### PROJECTS ON SHOWCASE: 7 | --- 8 | Here's a list of the showcased projects in this repo: 9 | ### 🔴Noise Removal and OCR Using CNNs and Autoencoders 10 | 11 | 12 | 13 |
14 | 15 | 16 | > This project deals with the age old problem in optical character recognition— Dealing w/ noise in the image data that can lead up to misrepresentation and inaccuracies during inference. Here, we implement an AutoEncoder model using TensorFlow and Keras that eliminates noise/distortions within the image data for better OCR operation. 17 | 18 | Link to the project. 19 | 20 | --- 21 | ### 🔴Book Recommender System 22 | 23 | 24 | 25 |
26 | 27 | 28 | > A Machine Learning project that makes the use of the KNN algorithm to recommend books to the users based off of the average ratings of the books in the data, the language they are written in, and the rating for that book. 29 | 30 | Link to the project. 31 | 32 | --- 33 | ### 🔴User Price Predictor (Web App) 34 | 35 | 36 | 37 |
38 | 39 | 40 | > A Flask-based web application that uses Machine Learning to predict the selling price of a car. 41 | 42 | Link to the project. 43 | 44 | --- 45 | ### 🔴Drowsiness Detection Web App 46 | 47 | 48 | 49 |
50 | 51 | 52 | > A model that aims to prevent road accidents caused due to sleep depriviation, by alerting drowsy drivers. In this project, a convolutional neural network has been trained to determine whether the eyes of the driver are closed or not. Further, eye-patches are extracted from the face image to make all predictions. 53 | 54 | Link to the project. 55 | 56 | --- 57 | ### 🔴Celestial Bodies' Classification 58 | 59 | 60 | 61 | 62 |
63 | 64 | 65 | > The Deep Space comprises of innumerable celetial bodies— planets, stars, galaxies, asteroids, etc. As a result, it is not possible to label each of these celetial bodies via a more traditional manual method. This is where machine learning shines, which allows Scientists to label a celestial body based on a variety of features like its gradient and standard deviation in a 2 dimensional space, etc. In this project, some models have been implemented, based on the same principles for classification of celestial bodies based on their features. 66 | 67 | Link to the project. 68 | 69 | --- 70 | ### 🔴Cervical Cancer Risk Prediction 71 | 72 | 73 | 74 |
75 | 76 | 77 | > Each year, hundreds of thousands of women lose their lives to cervical cancer, especially in developing countries where people often neglect/can't afford regular checkups and pap tests. This beginner-level project aims at an early detection of the risk of cervical cancer using different machine algorithms. 78 | 79 | Link to the project. 80 | 81 | --- 82 | ### 🔴Twitch Top Streamers' Analysis 83 | 84 | 85 | 86 |
87 | 88 | 89 | 90 | > The objective of this project was to predict the amount of followers gained by a streamer on Twitch based on the streaming data. Different visualization and data analysis techniques were used for understanding the data as well as deriving various insights from it. 91 | 92 | Link to the project. 93 | 94 | --- 95 | ### 🔴Kaggle 2020 Survey Analysis 96 | 97 | 98 | 99 |
100 | 101 | 102 | > A detailed data analysis for the Kaggle ML & DS survey. 103 | 104 | Link to the project. 105 | 106 | --- 107 | ### 🔴Campus Recruitment Analysis 108 | 109 | 110 | 111 |
112 | 113 | 114 | > A beginner-level project that uses different machine algorithms to predict whether a student will get placed into a job via campus recruitment or not. 115 | 116 | Link to the project. 117 | 118 | --- 119 | ### 🔴Titanic Disaster Prediction 120 | 121 | 122 | 123 |
124 | 125 | > The "Titanic-Machine Learning from Disaster" competition is an introductory kaggle competition for getting started with machine learning.
126 | This Machine Learning/Data Analysis project uses a relatively small dataset that exemplifies many of the practical problems that one deals with while doing machine learning projects. A great tutorial for beginners in ML. 127 | 128 | Link to the project. 129 |
130 | 131 | ### 👤PROJECT ADMIN(2020-2021) 132 | 133 | | | 134 | | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | 135 | | **[Aman Sharma](https://www.linkedin.com/in/amansharma2910/)** | 136 | | | 137 | | *"Let The Dataset change your Mindset"* | 138 | 139 | > **_Need help?_** 140 | > **_Feel free to contact me @ [amansharma2910@gmail.com](mailto:amansharma2910@gmail.com?Subject=ML@DSC-VIT)_** 141 | 142 | ## Like This? Star ⭐ this Repo. 143 | 144 | > Aman Sharma, ML Lead @ DSC VIT © 2020 145 |

146 | [![ForTheBadge built-with-love](http://ForTheBadge.com/images/badges/built-with-love.svg)](https://github.com/amansharma2910) 147 | [![ForTheBadge built-by-developers](http://ForTheBadge.com/images/badges/built-by-developers.svg)](https://github.com/amansharma2910) 148 | 149 | *** 150 | 151 | ### CONTRIBUTORS ✨ 152 | > 1. [amansharma2910](https://github.com/amansharma2910) 153 | >> __Contributions by amansharma2910:__ 154 | >> [Noise Removal and OCR Using CNNs and Autoencoders](https://github.com/DSC-VIT-BHOPAL/Machine-Learning-Projects/blob/main/Noise-Removal-and-OCR-Using-CNNs-Autoencoders) || 155 | >> [Cervical Cancer Risk Prediction](https://github.com/DSC-VIT-BHOPAL/Machine-Learning-Projects/tree/main/Cervical-Cancer-Risk) 156 | 157 | > 2. [AM1CODES](https://github.com/AM1CODES) 158 | >> __Contributions by AM1CODES:__ 159 | >> [Book Recommender System](https://github.com/DSC-VIT-BHOPAL/Machine-Learning-Projects/tree/main/Book-Recommender-System) || 160 | >> [Campus Recruitment Analysis](https://github.com/DSC-VIT-BHOPAL/Machine-Learning-Projects/tree/main/Campus-Recruitment-Analysis) || 161 | >> [Kaggle 2020 Suvey Analysis](https://github.com/DSCVITBHOPAL/Machine-Learning-Projects/tree/main/Kaggle%202020%20Survey%20Analysis) 162 | 163 | > 3. [kritikashah20](https://github.com/kritikashah20) 164 | >> __Contributions by kritikashah20:__ 165 | >> [Celestial Bodies' Classification](https://github.com/DSCVITBHOPAL/Machine-Learning-Projects/blob/main/Celestial-Bodies-Classification) 166 | 167 | > 4. [Ani0202](https://github.com/Ani0202) 168 | >> __Contributions by Ani0202:__ 169 | >> Added KNN, Logistic Regression and SVM Classifiers; improved Decision Tree Classifier in [Cervical Cancer Detection project](https://github.com/DSC-VIT-BHOPAL/Machine-Learning-Projects/blob/main/Cervical-Cancer-Risk) 170 | 171 | > 5. [AndroAvi](https://github.com/AndroAvi) 172 | >> __Contributions by AndroAvi:__ 173 | >> [Celestial Bodies' Classification](https://github.com/DSCVITBHOPAL/Machine-Learning-Projects/tree/main/Titanic-Survival-Dataset-Analysis) 174 | 175 | 176 | > 6. [Jackson-hub](https://github.com/Jackson-hub) 177 | >> __Contributions by Jackson-hub:__ 178 | >> [Used Price Predictor](https://github.com/DSCVITBHOPAL/Machine-Learning-Projects/tree/main/UsedCarPricePredictor) 179 | 180 | > 7. [mayureshagashe2105](https://github.com/mayureshagashe2105) 181 | >> __Contributions by mayureshagashe2105:__ 182 | >> [Drowsiness Detection Web App](https://github.com/DSCVITBHOPAL/Machine-Learning-Projects/tree/main/Drowsiness-Detection-web-app) 183 | -------------------------------------------------------------------------------- /Titanic-Survival-Dataset-Analysis/README.md: -------------------------------------------------------------------------------- 1 | # Titanic-Survival-Dataset-Analysis 2 | 3 | A project depicting the analysis of the Titanic Dataset available at : 4 | https://www.kaggle.com/c/titanic 5 | 6 | The "Titanic-Machine Learning from Disaster" competition is an introductory kaggle competition for getting started with machine learning. 7 | 8 | This relatively small dataset exemplifies many of the practical problems that one deals with while doing machine learning projects, namely: 9 | 1. Correlated Data 10 | 2. Missing Values 11 | 3. Different kinds of features-categorical, ordinal, numeric, alphanumeric, as well as textual. 12 | 4. Outliers 13 | 14 | The goal here is to present and implement various methods of understanding the information contained inside the dataset that is explained with abstract information in several books and courses. 15 | 16 | 17 | The notebook contains the following files: 18 | 1. training_data.csv : The training data which I've analyzed. 19 | 2. test_data.csv: The test data to train the classifier model on. 20 | 3. ground_truth.csv: The actual class labels for test_data.csv for confidence and accuracy score calculation. 21 | 4. titanic_survival.ipynb: The jupyter notebook which consists of explanation and code in python. 22 | 23 | 24 | A basic outline of the workflow: 25 | 1. Clean the dataset by removing useless and filling in the missing values. 26 | 2. Visualize individual features' correlation with the label. 27 | 3. Plot feature grids to observe biases with survival, correlation within features and wrangle accordingly. 28 | 4. Categorize the feature types. 29 | 5. Convert non numerical categorical features into numerical ones. 30 | 6. Convert quantitative features into ordinal features based on their correlation with survival. 31 | 7. Using the scaler and model object(s) of one's choice, pipeline the training process and print the average accuracy. -------------------------------------------------------------------------------- /Titanic-Survival-Dataset-Analysis/ground_truth.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,1 8 | 898,0 9 | 899,1 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,0 21 | 911,1 22 | 912,0 23 | 913,1 24 | 914,1 25 | 915,1 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,1 39 | 929,0 40 | 930,1 41 | 931,1 42 | 932,1 43 | 933,0 44 | 934,0 45 | 935,0 46 | 936,1 47 | 937,0 48 | 938,1 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,1 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,1 67 | 957,0 68 | 958,0 69 | 959,0 70 | 960,1 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,0 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,0 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,0 89 | 979,1 90 | 980,0 91 | 981,1 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,1 98 | 988,1 99 | 989,0 100 | 990,0 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,1 106 | 996,1 107 | 997,0 108 | 998,1 109 | 999,1 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,0 115 | 1005,0 116 | 1006,0 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,0 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,1 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,1 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,0 156 | 1046,0 157 | 1047,1 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,0 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,1 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,1 194 | 1084,0 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,1 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,1 208 | 1098,0 209 | 1099,1 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,1 214 | 1104,0 215 | 1105,0 216 | 1106,0 217 | 1107,0 218 | 1108,0 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,1 226 | 1116,1 227 | 1117,1 228 | 1118,1 229 | 1119,0 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,0 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,1 245 | 1135,1 246 | 1136,0 247 | 1137,0 248 | 1138,0 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,1 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,1 262 | 1152,1 263 | 1153,0 264 | 1154,1 265 | 1155,0 266 | 1156,1 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,0 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,1 282 | 1172,0 283 | 1173,0 284 | 1174,0 285 | 1175,1 286 | 1176,0 287 | 1177,0 288 | 1178,0 289 | 1179,1 290 | 1180,0 291 | 1181,0 292 | 1182,1 293 | 1183,1 294 | 1184,0 295 | 1185,1 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,1 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,1 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,1 314 | 1204,0 315 | 1205,0 316 | 1206,1 317 | 1207,0 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,1 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,1 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,1 361 | 1251,0 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,1 372 | 1262,0 373 | 1263,1 374 | 1264,1 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,0 385 | 1275,0 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,1 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,1 407 | 1297,1 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,0 412 | 1302,0 413 | 1303,1 414 | 1304,0 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,1 420 | -------------------------------------------------------------------------------- /Titanic-Survival-Dataset-Analysis/titanic_test.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2 | 892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q 3 | 893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S 4 | 894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q 5 | 895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S 6 | 896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S 7 | 897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S 8 | 898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q 9 | 899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S 10 | 900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C 11 | 901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S 12 | 902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S 13 | 903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S 14 | 904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S 15 | 905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S 16 | 906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S 17 | 907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C 18 | 908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q 19 | 909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C 20 | 910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S 21 | 911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C 22 | 912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C 23 | 913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S 24 | 914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S 25 | 915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C 26 | 916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C 27 | 917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S 28 | 918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C 29 | 919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C 30 | 920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S 31 | 921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C 32 | 922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S 33 | 923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S 34 | 924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S 35 | 925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S 36 | 926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C 37 | 927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C 38 | 928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S 39 | 929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S 40 | 930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S 41 | 931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S 42 | 932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C 43 | 933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S 44 | 934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S 45 | 935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S 46 | 936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S 47 | 937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S 48 | 938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C 49 | 939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q 50 | 940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C 51 | 941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S 52 | 942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S 53 | 943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C 54 | 944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S 55 | 945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S 56 | 946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C 57 | 947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q 58 | 948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S 59 | 949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S 60 | 950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S 61 | 951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C 62 | 952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S 63 | 953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S 64 | 954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S 65 | 955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q 66 | 956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C 67 | 957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S 68 | 958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q 69 | 959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S 70 | 960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C 71 | 961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S 72 | 962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q 73 | 963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S 74 | 964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S 75 | 965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C 76 | 966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C 77 | 967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C 78 | 968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S 79 | 969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S 80 | 970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S 81 | 971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q 82 | 972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C 83 | 973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S 84 | 974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S 85 | 975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S 86 | 976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q 87 | 977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C 88 | 978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q 89 | 979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S 90 | 980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q 91 | 981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S 92 | 982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S 93 | 983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S 94 | 984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S 95 | 985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S 96 | 986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C 97 | 987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S 98 | 988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S 99 | 989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S 100 | 990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S 101 | 991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S 102 | 992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C 103 | 993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S 104 | 994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q 105 | 995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S 106 | 996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C 107 | 997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S 108 | 998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q 109 | 999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q 110 | 1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S 111 | 1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S 112 | 1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C 113 | 1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q 114 | 1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C 115 | 1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q 116 | 1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S 117 | 1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C 118 | 1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C 119 | 1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S 120 | 1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C 121 | 1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S 122 | 1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S 123 | 1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q 124 | 1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C 125 | 1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S 126 | 1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q 127 | 1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S 128 | 1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S 129 | 1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q 130 | 1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S 131 | 1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S 132 | 1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S 133 | 1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C 134 | 1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S 135 | 1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C 136 | 1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S 137 | 1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S 138 | 1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C 139 | 1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S 140 | 1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S 141 | 1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S 142 | 1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S 143 | 1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S 144 | 1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C 145 | 1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S 146 | 1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S 147 | 1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S 148 | 1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S 149 | 1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S 150 | 1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S 151 | 1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S 152 | 1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C 153 | 1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C 154 | 1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S 155 | 1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S 156 | 1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S 157 | 1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S 158 | 1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S 159 | 1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S 160 | 1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S 161 | 1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S 162 | 1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q 163 | 1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C 164 | 1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S 165 | 1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S 166 | 1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S 167 | 1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S 168 | 1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C 169 | 1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S 170 | 1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C 171 | 1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S 172 | 1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S 173 | 1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C 174 | 1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S 175 | 1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C 176 | 1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S 177 | 1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S 178 | 1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S 179 | 1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C 180 | 1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S 181 | 1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C 182 | 1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S 183 | 1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C 184 | 1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S 185 | 1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q 186 | 1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C 187 | 1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S 188 | 1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S 189 | 1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S 190 | 1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S 191 | 1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S 192 | 1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S 193 | 1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S 194 | 1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S 195 | 1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q 196 | 1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S 197 | 1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S 198 | 1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C 199 | 1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S 200 | 1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S 201 | 1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S 202 | 1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q 203 | 1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S 204 | 1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C 205 | 1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S 206 | 1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S 207 | 1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C 208 | 1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q 209 | 1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S 210 | 1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C 211 | 1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S 212 | 1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S 213 | 1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S 214 | 1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S 215 | 1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S 216 | 1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S 217 | 1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S 218 | 1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q 219 | 1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S 220 | 1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C 221 | 1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S 222 | 1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C 223 | 1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S 224 | 1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S 225 | 1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S 226 | 1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C 227 | 1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C 228 | 1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S 229 | 1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q 230 | 1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S 231 | 1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S 232 | 1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S 233 | 1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S 234 | 1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S 235 | 1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q 236 | 1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C 237 | 1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S 238 | 1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C 239 | 1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C 240 | 1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S 241 | 1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C 242 | 1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C 243 | 1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S 244 | 1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C 245 | 1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S 246 | 1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S 247 | 1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S 248 | 1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S 249 | 1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S 250 | 1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S 251 | 1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C 252 | 1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S 253 | 1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S 254 | 1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C 255 | 1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S 256 | 1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S 257 | 1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S 258 | 1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q 259 | 1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S 260 | 1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S 261 | 1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S 262 | 1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S 263 | 1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S 264 | 1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S 265 | 1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S 266 | 1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C 267 | 1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S 268 | 1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S 269 | 1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S 270 | 1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S 271 | 1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S 272 | 1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C 273 | 1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q 274 | 1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C 275 | 1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q 276 | 1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C 277 | 1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S 278 | 1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S 279 | 1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S 280 | 1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S 281 | 1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S 282 | 1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S 283 | 1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S 284 | 1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q 285 | 1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C 286 | 1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S 287 | 1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S 288 | 1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S 289 | 1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S 290 | 1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C 291 | 1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S 292 | 1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S 293 | 1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q 294 | 1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C 295 | 1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S 296 | 1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S 297 | 1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S 298 | 1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C 299 | 1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C 300 | 1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S 301 | 1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S 302 | 1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S 303 | 1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C 304 | 1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S 305 | 1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S 306 | 1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q 307 | 1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S 308 | 1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S 309 | 1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S 310 | 1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S 311 | 1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S 312 | 1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S 313 | 1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C 314 | 1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S 315 | 1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q 316 | 1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C 317 | 1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q 318 | 1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C 319 | 1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S 320 | 1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S 321 | 1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S 322 | 1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S 323 | 1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C 324 | 1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S 325 | 1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S 326 | 1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S 327 | 1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S 328 | 1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S 329 | 1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C 330 | 1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S 331 | 1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S 332 | 1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S 333 | 1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C 334 | 1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C 335 | 1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C 336 | 1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S 337 | 1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S 338 | 1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S 339 | 1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C 340 | 1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S 341 | 1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C 342 | 1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S 343 | 1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S 344 | 1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S 345 | 1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C 346 | 1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S 347 | 1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S 348 | 1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S 349 | 1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C 350 | 1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S 351 | 1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S 352 | 1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C 353 | 1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S 354 | 1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S 355 | 1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S 356 | 1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S 357 | 1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S 358 | 1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S 359 | 1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S 360 | 1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q 361 | 1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S 362 | 1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S 363 | 1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C 364 | 1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S 365 | 1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S 366 | 1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C 367 | 1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S 368 | 1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C 369 | 1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S 370 | 1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C 371 | 1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C 372 | 1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S 373 | 1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C 374 | 1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S 375 | 1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S 376 | 1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S 377 | 1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C 378 | 1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S 379 | 1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S 380 | 1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S 381 | 1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S 382 | 1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q 383 | 1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q 384 | 1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S 385 | 1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S 386 | 1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S 387 | 1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S 388 | 1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S 389 | 1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S 390 | 1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q 391 | 1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S 392 | 1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S 393 | 1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S 394 | 1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S 395 | 1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S 396 | 1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S 397 | 1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S 398 | 1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q 399 | 1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C 400 | 1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S 401 | 1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q 402 | 1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S 403 | 1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S 404 | 1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C 405 | 1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S 406 | 1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C 407 | 1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C 408 | 1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S 409 | 1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C 410 | 1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q 411 | 1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S 412 | 1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q 413 | 1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q 414 | 1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S 415 | 1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S 416 | 1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C 417 | 1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S 418 | 1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S 419 | 1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C 420 | -------------------------------------------------------------------------------- /TwitchTopStreamers-Analysis/README.md: -------------------------------------------------------------------------------- 1 | # Twitch Top Streamers Analysis 2 | 3 | # Objectives 4 | The objective is to predict the followers gained by a streamer on Twitch during the past year of streaming.
5 | 6 | # Tools Used 7 | 8 | 9 | # Data Set used 10 | The data set used is a custom made data set compiled by taking the stats from different websites. 11 | 12 | # Contents of our Data set 13 | 1) Channel - The name of the Streamer's channel
14 | 2) Watch time(minutes) - The amount of time people have watched a particular streamer.
15 | 3) Stream time(minutes) - The total amount of time the streamer streamed in the past year.
16 | 4) Peak viewers - The maximum number of viewers the streamer had during his stream in the past year.
17 | 5) Average viewers - The average number of viewers a streamer had while streaming.
18 | 6) Followers - Number of Followers a Streamer had on Twitch.
19 | 7) Followers gained - The amount of followers a particular streamer gained in a year on Twitch.
20 | 8) Views gained - The amount of views a streamer gained in a year.
21 | 9) Partnered - Whether the streamer is Twitch Partnered or not.
22 | 10) Mature -Whether the streams are 18+ or not.
23 | 11) Language - The language used by a streamer during the stream.
24 | 25 | 26 | # Steps involved in making the model 27 | 1) Importing our data.
28 | 2) Checking for null values and finding mean of different columns, their min and max values, and getting information about different columns of our data.
29 | 3) Visualizing our data in order to find out the best columns to use as features for our model.
30 | 4) Make a copy of original data to make the changes and seperate out the columns that we will use as our features.
31 | 5) Using these features, we will train our Linear Regression Model.
32 | 6) Concluding our analysis by testing the model with some random user input.
33 | 34 | # Result 35 | Our model was able to predict a certain number of Followers gained but the error can be decresed further by optimizing it. We can also try and use a few features like whether the streamer is twitch partnered or not,etc.
36 | Our Result:
37 | 38 | ![alt text](https://github.com/AM1CODES/TwitchTopStreamers-Analysis/blob/main/Twitch-Result.PNG?raw=true) 39 | -------------------------------------------------------------------------------- /TwitchTopStreamers-Analysis/Twitch-Result.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/TwitchTopStreamers-Analysis/Twitch-Result.PNG -------------------------------------------------------------------------------- /UsedCarPricePredictor/Procfile: -------------------------------------------------------------------------------- 1 | web: gunicorn app:app 2 | -------------------------------------------------------------------------------- /UsedCarPricePredictor/README.md: -------------------------------------------------------------------------------- 1 | ## CarPricePredictor 2 | A used-car price predictor created using Machine-Learning and Web Development. 3 | 4 | #### Problem Statement: 5 | The auto industry is changing rapidly and car prices are only going up. So to speak, new cars are getting costlier each year, making them a very high value purchase for the common man. And quite ironically, the average life span of a car is going down despite the steady rise in prices, which brings in good news for potential used car buyers! Thanks to manufacturers launching newer versions of their models sooner now as compared to a few years ago, more and more modern cars are now entering the used car market, which makes it easy for you to make a good buy without having to bust your wallet.
6 | And as the market for used-cars is increasing, the number of sellers is also increasing. Keeping this in mind, I have created a web application for sellers, to know what will be the price of their car, in the market. 7 | 8 | #### Dataset used: 9 | For solving this problem, I have used the CarDekho dataset, which was avaliable on Kaggle. This is the link: https://www.kaggle.com/shindenikhil/car-dekho-data 10 | 11 | #### References Used: 12 | I have used this video as a reference. A quick shoutout to Krish Naik, whom I have been following since May.

He uploads very informative and concise videos for Machine Learning and many other topics in the field of AI.

13 | 14 | #### Algorithms used: 15 | After experimenting with a lot of Regression-based algorithms, Random Forest has worked out the best for me in terms of accuracy. If you want an in-depth explaination on random Forest and how do they work, feel free to checkout this article. 16 | 17 | #### Features used: 18 | Since this is a very basic used-car price predictor, I have only used a handful of features. Some of the features are: 19 | 1. Year: The total life-span of the car(currentYear - yearOfPurchasing) 20 | 2. Showroom Price: The price of the car when the seller first bought it. 21 | 3. Kilometers Driven: The total number of kilometers the car has driven. 22 | 4. Previous Owners: The number of owners the car has had. 23 | 5. Fuel Type: Specifies if the car runs on Petrol, Diesel or CNG. 24 | 6. Dealer/Individual: Specifies if the seller is a dealer or an individual. 25 | 7. Transmission Type: Specifies whether the car is a manual one or automatic. 26 | 27 | #### NOTE: 28 | "Success is the project that's always under construction": Keeping this quote in mind, I'd like to add many features into this project in the future. So stay updated! 29 | 30 | #### To run this on your machine: 31 | 1. Make sure you have Python3, Flask installed. 32 | 2. In you terminal, cd to the folder you got this project in, and type python run app.py 33 | 3. And voila!! 34 | 35 | #### P.S: I will be deploying this project fully in the upcoming days, so that you guys don't have to download the project folder everytime. 36 | 37 | #### Here are some screenshots of the application: 38 | ![carPred1](https://user-images.githubusercontent.com/55303125/111125944-2c519780-8598-11eb-925b-12ba4cfef0a1.png) 39 |
40 | ![carPred2](https://user-images.githubusercontent.com/55303125/111126311-8f432e80-8598-11eb-9b7e-d17dd4f9f99a.png) 41 | 42 | -------------------------------------------------------------------------------- /UsedCarPricePredictor/app.py: -------------------------------------------------------------------------------- 1 | from flask import Flask, render_template, request 2 | import jsonify 3 | import requests 4 | import pickle 5 | import numpy as np 6 | import sklearn 7 | 8 | # Initializing Flask framework 9 | app = Flask(__name__) 10 | model = pickle.load(open('random_forest_regression_model.pkl', 'rb')) 11 | 12 | @app.route('/') 13 | def home(): 14 | return render_template("index.html") 15 | 16 | 17 | @app.route("/predict", methods=['GET', 'POST']) 18 | def predict(): 19 | Fuel_Type_Diesel=0 20 | if request.method == 'POST': 21 | 22 | # Number of years of the car 23 | Year = int(request.form['Year']) 24 | 25 | # Present price of the car 26 | Present_Price=float(request.form['Present_Price']) 27 | 28 | # Total Kms driven in the car 29 | Kms_Driven=int(request.form['Kms_Driven']) 30 | Kms_Driven2=np.log(Kms_Driven) 31 | 32 | # Total owners of the car 33 | Owner=int(request.form['Owner']) 34 | 35 | # Fuel type 36 | Fuel_Type_Petrol=request.form['Fuel_Type_Petrol'] 37 | if(Fuel_Type_Petrol=='Petrol'): 38 | Fuel_Type_Petrol=1 39 | Fuel_Type_Diesel=0 40 | else: 41 | Fuel_Type_Petrol=0 42 | Fuel_Type_Diesel=1 43 | 44 | # Updating the year: 45 | Year=2020-Year 46 | 47 | # If seller is individual or Dealer 48 | Seller_Type_Individual=request.form['Seller_Type_Individual'] 49 | if(Seller_Type_Individual=='Individual'): 50 | Seller_Type_Individual=1 51 | else: 52 | Seller_Type_Individual=0 53 | Transmission_Mannual=request.form['Transmission_Mannual'] 54 | 55 | # Transmission Manual 56 | if(Transmission_Mannual=='Mannual'): 57 | Transmission_Mannual=1 58 | else: 59 | Transmission_Mannual=0 60 | 61 | # Predicting the price 62 | prediction=model.predict([[Present_Price,Kms_Driven2,Owner,Year,Fuel_Type_Diesel,Fuel_Type_Petrol,Seller_Type_Individual,Transmission_Mannual]]) 63 | output=round(prediction[0],2) 64 | if output < 0: 65 | return render_template('index.html', prediction_text = "Sorry you cannot sell this car") 66 | else: 67 | return render_template('index.html',prediction_text = "You Can Sell The Car at {}".format(output)) 68 | 69 | return render_template('index.html') 70 | 71 | if __name__=="__main__": 72 | app.run(debug=True) 73 | 74 | -------------------------------------------------------------------------------- /UsedCarPricePredictor/car_data.csv: -------------------------------------------------------------------------------- 1 | Car_Name,company,Year,Selling_Price,Present_Price,Kms_Driven,Fuel_Type,Seller_Type,Transmission,Owner 2 | ritz,maruti suzuki,2014,3.35,5.59,27000,Petrol,Dealer,Manual,0 3 | sx4,maruti suzuki,2013,4.75,9.54,43000,Diesel,Dealer,Manual,0 4 | ciaz,maruti suzuki,2017,7.25,9.85,6900,Petrol,Dealer,Manual,0 5 | wagon r,maruti suzuki,2011,2.85,4.15,5200,Petrol,Dealer,Manual,0 6 | swift,maruti suzuki,2014,4.6,6.87,42450,Diesel,Dealer,Manual,0 7 | vitara brezza,maruti suzuki,2018,9.25,9.83,2071,Diesel,Dealer,Manual,0 8 | ciaz,maruti suzuki,2015,6.75,8.12,18796,Petrol,Dealer,Manual,0 9 | s cross,maruti suzuki,2015,6.5,8.61,33429,Diesel,Dealer,Manual,0 10 | ciaz,maruti suzuki,2016,8.75,8.89,20273,Diesel,Dealer,Manual,0 11 | ciaz,maruti suzuki,2015,7.45,8.92,42367,Diesel,Dealer,Manual,0 12 | alto 800,maruti suzuki,2017,2.85,3.6,2135,Petrol,Dealer,Manual,0 13 | ciaz,maruti suzuki,2015,6.85,10.38,51000,Diesel,Dealer,Manual,0 14 | ciaz,maruti suzuki,2015,7.5,9.94,15000,Petrol,Dealer,Automatic,0 15 | ertiga,maruti suzuki,2015,6.1,7.71,26000,Petrol,Dealer,Manual,0 16 | dzire,maruti suzuki,2009,2.25,7.21,77427,Petrol,Dealer,Manual,0 17 | ertiga,maruti suzuki,2016,7.75,10.79,43000,Diesel,Dealer,Manual,0 18 | ertiga,maruti suzuki,2015,7.25,10.79,41678,Diesel,Dealer,Manual,0 19 | ertiga,maruti suzuki,2016,7.75,10.79,43000,Diesel,Dealer,Manual,0 20 | wagon r,maruti suzuki,2015,3.25,5.09,35500,CNG,Dealer,Manual,0 21 | sx4,maruti suzuki,2010,2.65,7.98,41442,Petrol,Dealer,Manual,0 22 | alto k10,maruti suzuki,2016,2.85,3.95,25000,Petrol,Dealer,Manual,0 23 | ignis,maruti suzuki,2017,4.9,5.71,2400,Petrol,Dealer,Manual,0 24 | sx4,maruti suzuki,2011,4.4,8.01,50000,Petrol,Dealer,Automatic,0 25 | alto k10,maruti suzuki,2014,2.5,3.46,45280,Petrol,Dealer,Manual,0 26 | wagon r,maruti suzuki,2013,2.9,4.41,56879,Petrol,Dealer,Manual,0 27 | swift,maruti suzuki,2011,3,4.99,20000,Petrol,Dealer,Manual,0 28 | swift,maruti suzuki,2013,4.15,5.87,55138,Petrol,Dealer,Manual,0 29 | swift,maruti suzuki,2017,6,6.49,16200,Petrol,Individual,Manual,0 30 | alto k10,maruti suzuki,2010,1.95,3.95,44542,Petrol,Dealer,Manual,0 31 | ciaz,maruti suzuki,2015,7.45,10.38,45000,Diesel,Dealer,Manual,0 32 | ritz,maruti suzuki,2012,3.1,5.98,51439,Diesel,Dealer,Manual,0 33 | ritz,maruti suzuki,2011,2.35,4.89,54200,Petrol,Dealer,Manual,0 34 | swift,maruti suzuki,2014,4.95,7.49,39000,Diesel,Dealer,Manual,0 35 | ertiga,maruti suzuki,2014,6,9.95,45000,Diesel,Dealer,Manual,0 36 | dzire,maruti suzuki,2014,5.5,8.06,45000,Diesel,Dealer,Manual,0 37 | sx4,maruti suzuki,2011,2.95,7.74,49998,CNG,Dealer,Manual,0 38 | dzire,maruti suzuki,2015,4.65,7.2,48767,Petrol,Dealer,Manual,0 39 | 800,maruti suzuki,2003,0.35,2.28,127000,Petrol,Individual,Manual,0 40 | alto k10,maruti suzuki,2016,3,3.76,10079,Petrol,Dealer,Manual,0 41 | sx4,maruti suzuki,2003,2.25,7.98,62000,Petrol,Dealer,Manual,0 42 | baleno,maruti suzuki,2016,5.85,7.87,24524,Petrol,Dealer,Automatic,0 43 | alto k10,maruti suzuki,2014,2.55,3.98,46706,Petrol,Dealer,Manual,0 44 | sx4,maruti suzuki,2008,1.95,7.15,58000,Petrol,Dealer,Manual,0 45 | dzire,maruti suzuki,2014,5.5,8.06,45780,Diesel,Dealer,Manual,0 46 | omni,maruti suzuki,2012,1.25,2.69,50000,Petrol,Dealer,Manual,0 47 | ciaz,maruti suzuki,2014,7.5,12.04,15000,Petrol,Dealer,Automatic,0 48 | ritz,maruti suzuki,2013,2.65,4.89,64532,Petrol,Dealer,Manual,0 49 | wagon r,maruti suzuki,2006,1.05,4.15,65000,Petrol,Dealer,Manual,0 50 | ertiga,maruti suzuki,2015,5.8,7.71,25870,Petrol,Dealer,Manual,0 51 | ciaz,maruti suzuki,2017,7.75,9.29,37000,Petrol,Dealer,Automatic,0 52 | fortuner,toyota,2012,14.9,30.61,104707,Diesel,Dealer,Automatic,0 53 | fortuner,toyota,2015,23,30.61,40000,Diesel,Dealer,Automatic,0 54 | innova,other,2017,18,19.77,15000,Diesel,Dealer,Automatic,0 55 | fortuner,toyota,2013,16,30.61,135000,Diesel,Individual,Automatic,0 56 | innova,other,2005,2.75,10.21,90000,Petrol,Individual,Manual,0 57 | corolla altis,toyota,2009,3.6,15.04,70000,Petrol,Dealer,Automatic,0 58 | etios cross,other,2015,4.5,7.27,40534,Petrol,Dealer,Manual,0 59 | corolla altis,toyota,2010,4.75,18.54,50000,Petrol,Dealer,Manual,0 60 | etios g,toyota,2014,4.1,6.8,39485,Petrol,Dealer,Manual,1 61 | fortuner,toyota,2014,19.99,35.96,41000,Diesel,Dealer,Automatic,0 62 | corolla altis,toyota,2013,6.95,18.61,40001,Petrol,Dealer,Manual,0 63 | etios cross,other,2015,4.5,7.7,40588,Petrol,Dealer,Manual,0 64 | fortuner,toyota,2014,18.75,35.96,78000,Diesel,Dealer,Automatic,0 65 | fortuner,toyota,2015,23.5,35.96,47000,Diesel,Dealer,Automatic,0 66 | fortuner,toyota,2017,33,36.23,6000,Diesel,Dealer,Automatic,0 67 | etios liva,toyota,2014,4.75,6.95,45000,Diesel,Dealer,Manual,0 68 | innova,other,2017,19.75,23.15,11000,Petrol,Dealer,Automatic,0 69 | fortuner,toyota,2010,9.25,20.45,59000,Diesel,Dealer,Manual,0 70 | corolla altis,toyota,2011,4.35,13.74,88000,Petrol,Dealer,Manual,0 71 | corolla altis,toyota,2016,14.25,20.91,12000,Petrol,Dealer,Manual,0 72 | etios liva,toyota,2014,3.95,6.76,71000,Diesel,Dealer,Manual,0 73 | corolla altis,toyota,2011,4.5,12.48,45000,Diesel,Dealer,Manual,0 74 | corolla altis,toyota,2013,7.45,18.61,56001,Petrol,Dealer,Manual,0 75 | etios liva,toyota,2011,2.65,5.71,43000,Petrol,Dealer,Manual,0 76 | etios cross,other,2014,4.9,8.93,83000,Diesel,Dealer,Manual,0 77 | etios g,toyota,2015,3.95,6.8,36000,Petrol,Dealer,Manual,0 78 | corolla altis,toyota,2013,5.5,14.68,72000,Petrol,Dealer,Manual,0 79 | corolla,toyota,2004,1.5,12.35,135154,Petrol,Dealer,Automatic,0 80 | corolla altis,toyota,2010,5.25,22.83,80000,Petrol,Dealer,Automatic,0 81 | fortuner,toyota,2012,14.5,30.61,89000,Diesel,Dealer,Automatic,0 82 | corolla altis,toyota,2016,14.73,14.89,23000,Diesel,Dealer,Manual,0 83 | etios gd,toyota,2015,4.75,7.85,40000,Diesel,Dealer,Manual,0 84 | innova,other,2017,23,25.39,15000,Diesel,Dealer,Automatic,0 85 | innova,other,2015,12.5,13.46,38000,Diesel,Dealer,Manual,0 86 | innova,other,2005,3.49,13.46,197176,Diesel,Dealer,Manual,0 87 | camry,other,2006,2.5,23.73,142000,Petrol,Individual,Automatic,3 88 | land cruiser,other,2010,35,92.6,78000,Diesel,Dealer,Manual,0 89 | corolla altis,toyota,2012,5.9,13.74,56000,Petrol,Dealer,Manual,0 90 | etios liva,toyota,2013,3.45,6.05,47000,Petrol,Dealer,Manual,0 91 | etios g,toyota,2014,4.75,6.76,40000,Petrol,Dealer,Manual,0 92 | corolla altis,toyota,2009,3.8,18.61,62000,Petrol,Dealer,Manual,0 93 | innova,other,2014,11.25,16.09,58242,Diesel,Dealer,Manual,0 94 | innova,other,2005,3.51,13.7,75000,Petrol,Dealer,Manual,0 95 | fortuner,toyota,2015,23,30.61,40000,Diesel,Dealer,Automatic,0 96 | corolla altis,toyota,2008,4,22.78,89000,Petrol,Dealer,Automatic,0 97 | corolla altis,toyota,2012,5.85,18.61,72000,Petrol,Dealer,Manual,0 98 | innova,other,2016,20.75,25.39,29000,Diesel,Dealer,Automatic,0 99 | corolla altis,toyota,2017,17,18.64,8700,Petrol,Dealer,Manual,0 100 | corolla altis,toyota,2013,7.05,18.61,45000,Petrol,Dealer,Manual,0 101 | fortuner,toyota,2010,9.65,20.45,50024,Diesel,Dealer,Manual,0 102 | Royal Enfield Thunder 500,other,2016,1.75,1.9,3000,Petrol,Individual,Manual,0 103 | UM Renegade Mojave,other,2017,1.7,1.82,1400,Petrol,Individual,Manual,0 104 | KTM RC200,other,2017,1.65,1.78,4000,Petrol,Individual,Manual,0 105 | Bajaj Dominar 400,bajaj,2017,1.45,1.6,1200,Petrol,Individual,Manual,0 106 | Royal Enfield Classic 350,other,2017,1.35,1.47,4100,Petrol,Individual,Manual,0 107 | KTM RC390,other,2015,1.35,2.37,21700,Petrol,Individual,Manual,0 108 | Hyosung GT250R,other,2014,1.35,3.45,16500,Petrol,Individual,Manual,1 109 | Royal Enfield Thunder 350,other,2013,1.25,1.5,15000,Petrol,Individual,Manual,0 110 | Royal Enfield Thunder 350,other,2016,1.2,1.5,18000,Petrol,Individual,Manual,0 111 | Royal Enfield Classic 350,other,2017,1.2,1.47,11000,Petrol,Individual,Manual,0 112 | KTM RC200,other,2016,1.2,1.78,6000,Petrol,Individual,Manual,0 113 | Royal Enfield Thunder 350,other,2016,1.15,1.5,8700,Petrol,Individual,Manual,0 114 | KTM 390 Duke ,other,2014,1.15,2.4,7000,Petrol,Individual,Manual,0 115 | Mahindra Mojo XT300,other,2016,1.15,1.4,35000,Petrol,Individual,Manual,0 116 | Royal Enfield Classic 350,other,2015,1.15,1.47,17000,Petrol,Individual,Manual,0 117 | Royal Enfield Classic 350,other,2015,1.11,1.47,17500,Petrol,Individual,Manual,0 118 | Royal Enfield Classic 350,other,2013,1.1,1.47,33000,Petrol,Individual,Manual,0 119 | Royal Enfield Thunder 500,other,2015,1.1,1.9,14000,Petrol,Individual,Manual,0 120 | Royal Enfield Classic 350,other,2015,1.1,1.47,26000,Petrol,Individual,Manual,0 121 | Royal Enfield Thunder 500,other,2013,1.05,1.9,5400,Petrol,Individual,Manual,0 122 | Bajaj Pulsar RS200,bajaj,2016,1.05,1.26,5700,Petrol,Individual,Manual,0 123 | Royal Enfield Thunder 350,other,2011,1.05,1.5,6900,Petrol,Individual,Manual,0 124 | Royal Enfield Bullet 350,other,2016,1.05,1.17,6000,Petrol,Individual,Manual,0 125 | Royal Enfield Classic 350,other,2013,1,1.47,46500,Petrol,Individual,Manual,0 126 | Royal Enfield Classic 500,other,2012,0.95,1.75,11500,Petrol,Individual,Manual,0 127 | Royal Enfield Classic 500,other,2009,0.9,1.75,40000,Petrol,Individual,Manual,0 128 | Bajaj Avenger 220,bajaj,2017,0.9,0.95,1300,Petrol,Individual,Manual,0 129 | Bajaj Avenger 150,bajaj,2016,0.75,0.8,7000,Petrol,Individual,Manual,0 130 | Honda CB Hornet 160R,honda,2017,0.8,0.87,3000,Petrol,Individual,Manual,0 131 | Yamaha FZ S V 2.0,yamaha,2017,0.78,0.84,5000,Petrol,Individual,Manual,0 132 | Honda CB Hornet 160R,honda,2017,0.75,0.87,11000,Petrol,Individual,Manual,0 133 | Yamaha FZ 16,yamaha,2015,0.75,0.82,18000,Petrol,Individual,Manual,0 134 | Bajaj Avenger 220,bajaj,2017,0.75,0.95,3500,Petrol,Individual,Manual,0 135 | Bajaj Avenger 220,bajaj,2016,0.72,0.95,500,Petrol,Individual,Manual,0 136 | TVS Apache RTR 160,tvs,2017,0.65,0.81,11800,Petrol,Individual,Manual,0 137 | Bajaj Pulsar 150,bajaj,2015,0.65,0.74,5000,Petrol,Individual,Manual,0 138 | Honda CBR 150,honda,2014,0.65,1.2,23500,Petrol,Individual,Manual,0 139 | Hero Extreme,hero,2013,0.65,0.787,16000,Petrol,Individual,Manual,0 140 | Honda CB Hornet 160R,honda,2016,0.6,0.87,15000,Petrol,Individual,Manual,0 141 | Bajaj Avenger 220 dtsi,bajaj,2015,0.6,0.95,16600,Petrol,Individual,Manual,0 142 | Honda CBR 150,honda,2013,0.6,1.2,32000,Petrol,Individual,Manual,0 143 | Bajaj Avenger 150 street,bajaj,2016,0.6,0.8,20000,Petrol,Individual,Manual,0 144 | Yamaha FZ v 2.0,yamaha,2015,0.6,0.84,29000,Petrol,Individual,Manual,0 145 | Yamaha FZ v 2.0,yamaha,2016,0.6,0.84,25000,Petrol,Individual,Manual,0 146 | Bajaj Pulsar NS 200,bajaj,2014,0.6,0.99,25000,Petrol,Individual,Manual,0 147 | TVS Apache RTR 160,tvs,2012,0.6,0.81,19000,Petrol,Individual,Manual,0 148 | Hero Extreme,hero,2014,0.55,0.787,15000,Petrol,Individual,Manual,0 149 | Yamaha FZ S V 2.0,yamaha,2015,0.55,0.84,58000,Petrol,Individual,Manual,0 150 | Bajaj Pulsar 220 F,bajaj,2010,0.52,0.94,45000,Petrol,Individual,Manual,0 151 | Bajaj Pulsar 220 F,bajaj,2016,0.51,0.94,24000,Petrol,Individual,Manual,0 152 | TVS Apache RTR 180,tvs,2011,0.5,0.826,6000,Petrol,Individual,Manual,0 153 | Hero Passion X pro,hero,2016,0.5,0.55,31000,Petrol,Individual,Manual,0 154 | Bajaj Pulsar NS 200,bajaj,2012,0.5,0.99,13000,Petrol,Individual,Manual,0 155 | Bajaj Pulsar NS 200,bajaj,2013,0.5,0.99,45000,Petrol,Individual,Manual,0 156 | Yamaha Fazer ,yamaha,2014,0.5,0.88,8000,Petrol,Individual,Manual,0 157 | Honda Activa 4G,honda,2017,0.48,0.51,4300,Petrol,Individual,Automatic,0 158 | TVS Sport ,tvs,2017,0.48,0.52,15000,Petrol,Individual,Manual,0 159 | Yamaha FZ S V 2.0,yamaha,2015,0.48,0.84,23000,Petrol,Individual,Manual,0 160 | Honda Dream Yuga ,honda,2017,0.48,0.54,8600,Petrol,Individual,Manual,0 161 | Honda Activa 4G,honda,2017,0.45,0.51,4000,Petrol,Individual,Automatic,0 162 | Bajaj Avenger Street 220,bajaj,2011,0.45,0.95,24000,Petrol,Individual,Manual,0 163 | TVS Apache RTR 180,tvs,2014,0.45,0.826,23000,Petrol,Individual,Manual,0 164 | Bajaj Pulsar NS 200,bajaj,2012,0.45,0.99,14500,Petrol,Individual,Manual,0 165 | Bajaj Avenger 220 dtsi,bajaj,2010,0.45,0.95,27000,Petrol,Individual,Manual,0 166 | Hero Splender iSmart,hero,2016,0.45,0.54,14000,Petrol,Individual,Manual,0 167 | Activa 3g,honda,2016,0.45,0.54,500,Petrol,Individual,Automatic,0 168 | Hero Passion Pro,hero,2016,0.45,0.55,1000,Petrol,Individual,Manual,0 169 | TVS Apache RTR 160,tvs,2014,0.42,0.81,42000,Petrol,Individual,Manual,0 170 | Honda CB Trigger,honda,2013,0.42,0.73,12000,Petrol,Individual,Manual,0 171 | Hero Splender iSmart,hero,2015,0.4,0.54,14000,Petrol,Individual,Manual,0 172 | Yamaha FZ S ,yamaha,2012,0.4,0.83,5500,Petrol,Individual,Manual,0 173 | Hero Passion Pro,hero,2015,0.4,0.55,6700,Petrol,Individual,Manual,0 174 | Bajaj Pulsar 135 LS,bajaj,2014,0.4,0.64,13700,Petrol,Individual,Manual,0 175 | Activa 4g,honda,2017,0.4,0.51,1300,Petrol,Individual,Automatic,0 176 | Honda CB Unicorn,honda,2015,0.38,0.72,38600,Petrol,Individual,Manual,0 177 | Hero Honda CBZ extreme,hero,2011,0.38,0.787,75000,Petrol,Individual,Manual,0 178 | Honda Karizma,honda,2011,0.35,1.05,30000,Petrol,Individual,Manual,0 179 | Honda Activa 125,honda,2016,0.35,0.57,24000,Petrol,Individual,Automatic,0 180 | TVS Jupyter,tvs,2014,0.35,0.52,19000,Petrol,Individual,Automatic,0 181 | Honda Karizma,honda,2010,0.31,1.05,213000,Petrol,Individual,Manual,0 182 | Hero Honda Passion Pro,hero,2012,0.3,0.51,60000,Petrol,Individual,Manual,0 183 | Hero Splender Plus,hero,2016,0.3,0.48,50000,Petrol,Individual,Manual,0 184 | Honda CB Shine,honda,2013,0.3,0.58,30000,Petrol,Individual,Manual,0 185 | Bajaj Discover 100,bajaj,2013,0.27,0.47,21000,Petrol,Individual,Manual,0 186 | Bajaj Pulsar 150,bajaj,2008,0.25,0.75,26000,Petrol,Individual,Manual,1 187 | Suzuki Access 125,other,2008,0.25,0.58,1900,Petrol,Individual,Automatic,0 188 | TVS Wego,tvs,2010,0.25,0.52,22000,Petrol,Individual,Automatic,0 189 | Honda CB twister,honda,2013,0.25,0.51,32000,Petrol,Individual,Manual,0 190 | Hero Glamour,hero,2013,0.25,0.57,18000,Petrol,Individual,Manual,0 191 | Hero Super Splendor,hero,2005,0.2,0.57,55000,Petrol,Individual,Manual,0 192 | Bajaj Pulsar 150,bajaj,2008,0.2,0.75,60000,Petrol,Individual,Manual,0 193 | Bajaj Discover 125,bajaj,2012,0.2,0.57,25000,Petrol,Individual,Manual,1 194 | Hero Hunk,hero,2007,0.2,0.75,49000,Petrol,Individual,Manual,1 195 | Hero Ignitor Disc,hero,2013,0.2,0.65,24000,Petrol,Individual,Manual,1 196 | Hero CBZ Xtreme,hero,2008,0.2,0.787,50000,Petrol,Individual,Manual,0 197 | Bajaj ct 100,bajaj,2015,0.18,0.32,35000,Petrol,Individual,Manual,0 198 | Activa 3g,honda,2008,0.17,0.52,500000,Petrol,Individual,Automatic,0 199 | Honda CB twister,honda,2010,0.16,0.51,33000,Petrol,Individual,Manual,0 200 | Bajaj Discover 125,bajaj,2011,0.15,0.57,35000,Petrol,Individual,Manual,1 201 | Honda CB Shine,honda,2007,0.12,0.58,53000,Petrol,Individual,Manual,0 202 | Bajaj Pulsar 150,bajaj,2006,0.1,0.75,92233,Petrol,Individual,Manual,0 203 | i20,hyndai,2010,3.25,6.79,58000,Diesel,Dealer,Manual,1 204 | grand i10,hyndai,2015,4.4,5.7,28200,Petrol,Dealer,Manual,0 205 | i10,hyndai,2011,2.95,4.6,53460,Petrol,Dealer,Manual,0 206 | eon,hyndai,2015,2.75,4.43,28282,Petrol,Dealer,Manual,0 207 | grand i10,hyndai,2016,5.25,5.7,3493,Petrol,Dealer,Manual,1 208 | xcent,hyndai,2017,5.75,7.13,12479,Petrol,Dealer,Manual,0 209 | grand i10,hyndai,2015,5.15,5.7,34797,Petrol,Dealer,Automatic,0 210 | i20,hyndai,2017,7.9,8.1,3435,Petrol,Dealer,Manual,0 211 | grand i10,hyndai,2015,4.85,5.7,21125,Diesel,Dealer,Manual,0 212 | i10,hyndai,2012,3.1,4.6,35775,Petrol,Dealer,Manual,0 213 | elantra,hyndai,2015,11.75,14.79,43535,Diesel,Dealer,Manual,0 214 | creta,hyndai,2016,11.25,13.6,22671,Petrol,Dealer,Manual,0 215 | i20,hyndai,2011,2.9,6.79,31604,Petrol,Dealer,Manual,0 216 | grand i10,hyndai,2017,5.25,5.7,20114,Petrol,Dealer,Manual,0 217 | verna,hyndai,2012,4.5,9.4,36100,Petrol,Dealer,Manual,0 218 | eon,hyndai,2016,2.9,4.43,12500,Petrol,Dealer,Manual,0 219 | eon,hyndai,2016,3.15,4.43,15000,Petrol,Dealer,Manual,0 220 | verna,hyndai,2014,6.45,9.4,45078,Petrol,Dealer,Manual,0 221 | verna,hyndai,2012,4.5,9.4,36000,Petrol,Dealer,Manual,0 222 | eon,hyndai,2017,3.5,4.43,38488,Petrol,Dealer,Manual,0 223 | i20,hyndai,2013,4.5,6.79,32000,Petrol,Dealer,Automatic,0 224 | i20,hyndai,2014,6,7.6,77632,Diesel,Dealer,Manual,0 225 | verna,hyndai,2015,8.25,9.4,61381,Diesel,Dealer,Manual,0 226 | verna,hyndai,2013,5.11,9.4,36198,Petrol,Dealer,Automatic,0 227 | i10,hyndai,2011,2.7,4.6,22517,Petrol,Dealer,Manual,0 228 | grand i10,hyndai,2015,5.25,5.7,24678,Petrol,Dealer,Manual,0 229 | i10,hyndai,2011,2.55,4.43,57000,Petrol,Dealer,Manual,0 230 | verna,hyndai,2012,4.95,9.4,60000,Diesel,Dealer,Manual,0 231 | i20,hyndai,2012,3.1,6.79,52132,Diesel,Dealer,Manual,0 232 | verna,hyndai,2013,6.15,9.4,45000,Diesel,Dealer,Manual,0 233 | verna,hyndai,2017,9.25,9.4,15001,Petrol,Dealer,Manual,0 234 | elantra,hyndai,2015,11.45,14.79,12900,Petrol,Dealer,Automatic,0 235 | grand i10,hyndai,2013,3.9,5.7,53000,Diesel,Dealer,Manual,0 236 | grand i10,hyndai,2015,5.5,5.7,4492,Petrol,Dealer,Manual,0 237 | verna,hyndai,2017,9.1,9.4,15141,Petrol,Dealer,Manual,0 238 | eon,hyndai,2016,3.1,4.43,11849,Petrol,Dealer,Manual,0 239 | creta,hyndai,2015,11.25,13.6,68000,Diesel,Dealer,Manual,0 240 | verna,hyndai,2013,4.8,9.4,60241,Petrol,Dealer,Manual,0 241 | eon,hyndai,2012,2,4.43,23709,Petrol,Dealer,Manual,0 242 | verna,hyndai,2012,5.35,9.4,32322,Diesel,Dealer,Manual,0 243 | xcent,hyndai,2015,4.75,7.13,35866,Petrol,Dealer,Manual,1 244 | xcent,hyndai,2014,4.4,7.13,34000,Petrol,Dealer,Manual,0 245 | i20,hyndai,2016,6.25,7.6,7000,Petrol,Dealer,Manual,0 246 | verna,hyndai,2013,5.95,9.4,49000,Diesel,Dealer,Manual,0 247 | verna,hyndai,2012,5.2,9.4,71000,Diesel,Dealer,Manual,0 248 | i20,hyndai,2012,3.75,6.79,35000,Petrol,Dealer,Manual,0 249 | verna,hyndai,2015,5.95,9.4,36000,Petrol,Dealer,Manual,0 250 | i10,hyndai,2013,4,4.6,30000,Petrol,Dealer,Manual,0 251 | i20,hyndai,2016,5.25,7.6,17000,Petrol,Dealer,Manual,0 252 | creta,hyndai,2016,12.9,13.6,35934,Diesel,Dealer,Manual,0 253 | city,honda,2013,5,9.9,56701,Petrol,Dealer,Manual,0 254 | brio,honda,2015,5.4,6.82,31427,Petrol,Dealer,Automatic,0 255 | city,honda,2014,7.2,9.9,48000,Diesel,Dealer,Manual,0 256 | city,honda,2013,5.25,9.9,54242,Petrol,Dealer,Manual,0 257 | brio,honda,2012,3,5.35,53675,Petrol,Dealer,Manual,0 258 | city,honda,2016,10.25,13.6,49562,Petrol,Dealer,Manual,0 259 | city,honda,2015,8.5,13.6,40324,Petrol,Dealer,Manual,0 260 | city,honda,2015,8.4,13.6,25000,Petrol,Dealer,Manual,0 261 | amaze,honda,2014,3.9,7,36054,Petrol,Dealer,Manual,0 262 | city,honda,2016,9.15,13.6,29223,Petrol,Dealer,Manual,0 263 | brio,honda,2016,5.5,5.97,5600,Petrol,Dealer,Manual,0 264 | amaze,honda,2015,4,5.8,40023,Petrol,Dealer,Manual,0 265 | jazz,honda,2016,6.6,7.7,16002,Petrol,Dealer,Manual,0 266 | amaze,honda,2015,4,7,40026,Petrol,Dealer,Manual,0 267 | jazz,honda,2017,6.5,8.7,21200,Petrol,Dealer,Manual,0 268 | amaze,honda,2014,3.65,7,35000,Petrol,Dealer,Manual,0 269 | city,honda,2016,8.35,9.4,19434,Diesel,Dealer,Manual,0 270 | brio,honda,2017,4.8,5.8,19000,Petrol,Dealer,Manual,0 271 | city,honda,2015,6.7,10,18828,Petrol,Dealer,Manual,0 272 | city,honda,2011,4.1,10,69341,Petrol,Dealer,Manual,0 273 | city,honda,2009,3,10,69562,Petrol,Dealer,Manual,0 274 | city,honda,2015,7.5,10,27600,Petrol,Dealer,Manual,0 275 | jazz,honda,2010,2.25,7.5,61203,Petrol,Dealer,Manual,0 276 | brio,honda,2014,5.3,6.8,16500,Petrol,Dealer,Manual,0 277 | city,honda,2016,10.9,13.6,30753,Petrol,Dealer,Automatic,0 278 | city,honda,2015,8.65,13.6,24800,Petrol,Dealer,Manual,0 279 | city,honda,2015,9.7,13.6,21780,Petrol,Dealer,Manual,0 280 | jazz,honda,2016,6,8.4,4000,Petrol,Dealer,Manual,0 281 | city,honda,2014,6.25,13.6,40126,Petrol,Dealer,Manual,0 282 | brio,honda,2015,5.25,5.9,14465,Petrol,Dealer,Manual,0 283 | city,honda,2006,2.1,7.6,50456,Petrol,Dealer,Manual,0 284 | city,honda,2014,8.25,14,63000,Diesel,Dealer,Manual,0 285 | city,honda,2016,8.99,11.8,9010,Petrol,Dealer,Manual,0 286 | brio,honda,2013,3.5,5.9,9800,Petrol,Dealer,Manual,0 287 | jazz,honda,2016,7.4,8.5,15059,Petrol,Dealer,Automatic,0 288 | jazz,honda,2016,5.65,7.9,28569,Petrol,Dealer,Manual,0 289 | amaze,honda,2015,5.75,7.5,44000,Petrol,Dealer,Automatic,0 290 | city,honda,2015,8.4,13.6,34000,Petrol,Dealer,Manual,0 291 | city,honda,2016,10.11,13.6,10980,Petrol,Dealer,Manual,0 292 | amaze,honda,2014,4.5,6.4,19000,Petrol,Dealer,Manual,0 293 | brio,honda,2015,5.4,6.1,31427,Petrol,Dealer,Manual,0 294 | jazz,honda,2016,6.4,8.4,12000,Petrol,Dealer,Manual,0 295 | city,honda,2010,3.25,9.9,38000,Petrol,Dealer,Manual,0 296 | amaze,honda,2014,3.75,6.8,33019,Petrol,Dealer,Manual,0 297 | city,honda,2015,8.55,13.09,60076,Diesel,Dealer,Manual,0 298 | city,honda,2016,9.5,11.6,33988,Diesel,Dealer,Manual,0 299 | brio,honda,2015,4,5.9,60000,Petrol,Dealer,Manual,0 300 | city,honda,2009,3.35,11,87934,Petrol,Dealer,Manual,0 301 | city,honda,2017,11.5,12.5,9000,Diesel,Dealer,Manual,0 302 | brio,honda,2016,5.3,5.9,5464,Petrol,Dealer,Manual,0 303 | -------------------------------------------------------------------------------- /UsedCarPricePredictor/main.py: -------------------------------------------------------------------------------- 1 | from flask import Flask, render_template, request 2 | import jsonify 3 | import requests 4 | import pickle 5 | import numpy as np 6 | import sklearn 7 | from sklearn.preprocessing import StandardScaler 8 | app = Flask(__name__) 9 | model = pickle.load(open('random_forest_regression_model.pkl', 'rb')) 10 | @app.route('/',methods=['GET']) 11 | def Home(): 12 | return render_template('index.html') 13 | 14 | 15 | standard_to = StandardScaler() 16 | @app.route("/predict", methods=['POST']) 17 | def predict(): 18 | Fuel_Type_Diesel=0 19 | if request.method == 'POST': 20 | Year = int(request.form['Year']) 21 | Present_Price=float(request.form['Present_Price']) 22 | Kms_Driven=int(request.form['Kms_Driven']) 23 | Kms_Driven2=np.log(Kms_Driven) 24 | Owner=int(request.form['Owner']) 25 | Fuel_Type_Petrol=request.form['Fuel_Type_Petrol'] 26 | if(Fuel_Type_Petrol=='Petrol'): 27 | Fuel_Type_Petrol=1 28 | Fuel_Type_Diesel=0 29 | else: 30 | Fuel_Type_Petrol=0 31 | Fuel_Type_Diesel=1 32 | Year=2020-Year 33 | Seller_Type_Individual=request.form['Seller_Type_Individual'] 34 | if(Seller_Type_Individual=='Individual'): 35 | Seller_Type_Individual=1 36 | else: 37 | Seller_Type_Individual=0 38 | Transmission_Mannual=request.form['Transmission_Mannual'] 39 | if(Transmission_Mannual=='Mannual'): 40 | Transmission_Mannual=1 41 | else: 42 | Transmission_Mannual=0 43 | prediction=model.predict([[Present_Price,Kms_Driven2,Owner,Year,Fuel_Type_Diesel,Fuel_Type_Petrol,Seller_Type_Individual,Transmission_Mannual]]) 44 | output=round(prediction[0],2) 45 | if output<0: 46 | return render_template('index.html',prediction_texts="Sorry you cannot sell this car") 47 | else: 48 | return render_template('index.html',prediction_text="You Can Sell The Car at {}".format(output)) 49 | else: 50 | return render_template('index.html') 51 | 52 | if __name__=="__main__": 53 | app.run(debug=True) 54 | 55 | -------------------------------------------------------------------------------- /UsedCarPricePredictor/random_forest_regression_model.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/GDGCVITBHOPAL/Machine-Learning-Projects/caf9ea86bf495228a41e77e818359ad5a7258f1e/UsedCarPricePredictor/random_forest_regression_model.pkl -------------------------------------------------------------------------------- /UsedCarPricePredictor/requirements.txt: -------------------------------------------------------------------------------- 1 | certifi==2020.12.5 2 | pandas==1.1.2 3 | python-dateutil==2.8.1 4 | pytz==2020.1 5 | six==1.15.0 6 | -------------------------------------------------------------------------------- /UsedCarPricePredictor/static/stylesheets/styles.css: -------------------------------------------------------------------------------- 1 | body { 2 | background-color: #e1f4f3; 3 | text-align: center; 4 | /*padding: 0px;*/ 5 | font-family: 'Mukta', sans-serif; 6 | } 7 | 8 | .heading-text { 9 | margin: 25px; 10 | } 11 | 12 | #research { 13 | font-size: 18px; 14 | width: 100px; 15 | height: 23px; 16 | top: 23px; 17 | } 18 | 19 | #box { 20 | border-radius: 60px; 21 | border-color: 45px; 22 | border-style: solid; 23 | font-family: cursive; 24 | text-align: center; 25 | background-color: blue; 26 | font-size: medium; 27 | position: absolute; 28 | width: 700px; 29 | bottom: 9%; 30 | height: 850px; 31 | right: 30%; 32 | padding: 0px; 33 | margin: 0px; 34 | font-size: 14px; 35 | } 36 | 37 | .card{ 38 | margin-bottom: 10px; 39 | background-color: #e1f4f3; 40 | border: 1px; 41 | } 42 | 43 | #fuel { 44 | width: 83px; 45 | height: 43px; 46 | text-align: center; 47 | border-radius: 14px; 48 | font-size: 20px; 49 | } 50 | 51 | #fuel:hover { 52 | background-color: whitesmoke; 53 | } 54 | 55 | 56 | 57 | #research { 58 | width: 110px; 59 | height: 43px; 60 | text-align: center; 61 | border-radius: 14px; 62 | font-size: 18px; 63 | } 64 | 65 | #research:hover { 66 | background-color: whitesmoke; 67 | } 68 | 69 | #resea { 70 | width: 99px; 71 | height: 43px; 72 | text-align: center; 73 | border-radius: 14px; 74 | font-size: 18px; 75 | } 76 | 77 | #resea:hover { 78 | background-color: coral; 79 | } 80 | 81 | #sub { 82 | width: 120px; 83 | height: 43px; 84 | text-align: center; 85 | border-radius: 14px; 86 | font-size: 18px; 87 | } 88 | 89 | #sub:hover { 90 | background-color: darkcyan; 91 | } 92 | 93 | #first { 94 | border-radius: 14px; 95 | height: 25px; 96 | font-size: 20px; 97 | text-align: center; 98 | } 99 | 100 | #second { 101 | border-radius: 14px; 102 | height: 25px; 103 | font-size: 20px; 104 | text-align: center; 105 | } 106 | 107 | #third { 108 | border-radius: 14px; 109 | height: 25px; 110 | font-size: 20px; 111 | text-align: center; 112 | } 113 | 114 | #fourth { 115 | border-radius: 14px; 116 | height: 25px; 117 | font-size: 20px; 118 | text-align: center; 119 | } 120 | 121 | .transmission-card { 122 | position: relative; 123 | left: 330px; 124 | } 125 | 126 | 127 | 128 | .card-km, .card-dealer { 129 | padding-bottom: 25px; 130 | } 131 | 132 | 133 | .submit-button { 134 | margin-top: 25px; 135 | } -------------------------------------------------------------------------------- /UsedCarPricePredictor/templates/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | CarPricePredictor 8 | 9 | 10 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 34 | 35 |
36 |
37 | 38 |

Used-Car Price Predictor

39 | 40 |
41 | 42 |
43 |
44 |
45 |
Year
46 | 47 |
48 |
49 |
50 | 51 |
52 |
53 |
54 | 55 |
56 |
57 |
58 |
Showroom Price(In Lakhs)
59 | 60 |
61 |
62 |
63 | 64 |
65 |
66 |
67 | 68 |
69 | 70 |
71 | 72 |
73 |
74 |
75 |
Kilometers Driven
76 | 77 |
78 |
79 |
80 | 81 | 82 |
83 |
84 |
85 |
Previous Owners(0, 1, or 3)
86 |
87 |
88 |
89 |
90 |
91 | 92 |
93 | 94 |
95 |
96 |
97 |
Fuel Type
98 |
103 |
104 |
105 |
106 | 107 |
108 |
109 |
110 |
Dealer or Individual?
111 | 115 |
116 |
117 |
118 |
119 | 120 |
121 |
122 |
123 |
124 |
Transmission Type
125 |
129 |
130 |
131 |
132 |
133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 |
142 | 143 | 144 |
145 |
146 | 147 |
148 |

{{ prediction_text }}

149 |
150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 164 | 167 | 168 | 169 | 170 | -------------------------------------------------------------------------------- /contribution.md: -------------------------------------------------------------------------------- 1 | # Contribution Guidelines for the Project 2 | --- 3 | 4 | TODO: Content to be added. --------------------------------------------------------------------------------