├── .idea
├── SystolicPressure.iml
├── misc.xml
├── modules.xml
├── vcs.xml
└── workspace.xml
├── main.py
├── ppg_params.mat
├── ppg_params_new.mat
├── systolicpres.mat
└── systolicpres_new.mat
/.idea/SystolicPressure.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 | 1527592010381
270 |
271 |
272 | 1527592010381
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | import scipy.io as sio
2 | from scipy import signal as sig
3 | import numpy as np
4 | import tensorflow as tf
5 |
6 | matpath = 'C:/Users/Vlad/Desktop/Machine Learning/Projects/SystolicPressure/'
7 | filename_sp = 'systolicpres.mat'
8 | filename_params = 'ppg_params.mat'
9 |
10 | systolic_pressure = sio.loadmat(matpath + filename_sp)
11 | ppg_params = sio.loadmat(matpath + filename_params)
12 |
13 | def feature_normalize(X):
14 | mean = np.mean(X, axis=0)
15 | std = np.std(X, axis=0)
16 | return (X - mean) / std
17 |
18 | y_data = np.transpose(systolic_pressure.get('BP_l'))
19 | y_train = y_data[0:500, :]
20 | y_test = y_data[500:, :]
21 |
22 | x_data = np.transpose(ppg_params.get('PeakSys_l'))
23 | x_data = feature_normalize(x_data)
24 | x_train = x_data[0:500, :]
25 | x_test = x_data[500:, :]
26 |
27 | print(x_data)
28 |
29 | def hiddenlayer(x_input, input_size, output_size):
30 | W = tf.Variable(tf.truncated_normal([input_size, output_size], stddev = 0.01))
31 | b = tf.Variable(tf.truncated_normal([1], stddev = 0.01))
32 | return tf.matmul(x_input, W) + b
33 |
34 | with tf.variable_scope('Initialization'):
35 | n_epoch, n_hidden = 100000000, 10
36 | n_row, n_col = np.shape(x_train)
37 | n_row_test, n_col_test = np.shape(x_test)
38 | n_input = n_row
39 | y_input = tf.placeholder(tf.float32, [None, 1])
40 | x_input = tf.placeholder(tf.float32, [None, n_col])
41 | h1 = tf.sigmoid(hiddenlayer(x_input, n_col, n_hidden))
42 | y_pred = hiddenlayer(h1, n_hidden, 1)
43 |
44 |
45 | loss_function = tf.reduce_sum(tf.square(y_pred - y_input) / (2 * n_input))
46 | train = tf.train.GradientDescentOptimizer(0.0002).minimize(loss_function)
47 |
48 | loss_history = []
49 | result = []
50 | with tf.Session() as sess:
51 | sess.run(tf.global_variables_initializer())
52 | for epoch in range(n_epoch):
53 | _, loss = sess.run([train, loss_function], feed_dict={x_input: x_train, y_input: y_train})
54 | loss_history.append(loss)
55 | print("Epoch: ", epoch, ", loss: ", loss)
56 |
57 | print(n_row_test, n_col_test)
58 | x_test = x_test.reshape(n_row_test, n_col_test)
59 | print(np.shape(x_test))
60 | for i in range(n_row_test):
61 | x_to_feed = x_test[i,:].reshape(1, n_col_test)
62 | result.append(sess.run(y_pred, feed_dict={x_input: x_to_feed}))
63 |
64 |
65 | np.save('C:/Users/Vlad/Desktop/Machine Learning/Projects/SystolicPressure/' + 'loss_history.npy', loss_history)
66 | np.save('C:/Users/Vlad/Desktop/Machine Learning/Projects/SystolicPressure/' + 'result_prediction.npy', result)
--------------------------------------------------------------------------------
/ppg_params.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gagampy/Machine-Learning---Multivariable-Regression/a5be88654740bc97b48a721e1ab8485f3a133f97/ppg_params.mat
--------------------------------------------------------------------------------
/ppg_params_new.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gagampy/Machine-Learning---Multivariable-Regression/a5be88654740bc97b48a721e1ab8485f3a133f97/ppg_params_new.mat
--------------------------------------------------------------------------------
/systolicpres.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gagampy/Machine-Learning---Multivariable-Regression/a5be88654740bc97b48a721e1ab8485f3a133f97/systolicpres.mat
--------------------------------------------------------------------------------
/systolicpres_new.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gagampy/Machine-Learning---Multivariable-Regression/a5be88654740bc97b48a721e1ab8485f3a133f97/systolicpres_new.mat
--------------------------------------------------------------------------------