├── .gitignore
├── README.md
├── classification_exercise.ipynb
├── classification_lecture.ipynb
├── data
├── cheese.csv
├── congressional_voting.csv
├── titanic.csv
└── travel-times.csv
├── extra_credit_roc.ipynb
├── images
├── classification.png
├── dtree.gif
├── knn.png
├── linear_regression.png
├── linear_regression_line.png
└── logistic_regression.png
├── regression_exercise.ipynb
├── regression_exercise_soln.ipynb
└── regression_lecture.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 |
5 | # C extensions
6 | *.so
7 |
8 | # Distribution / packaging
9 | .Python
10 | env/
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | *.egg-info/
23 | .installed.cfg
24 | *.egg
25 |
26 | # PyInstaller
27 | # Usually these files are written by a python script from a template
28 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
29 | *.manifest
30 | *.spec
31 |
32 | # Installer logs
33 | pip-log.txt
34 | pip-delete-this-directory.txt
35 |
36 | # Unit test / coverage reports
37 | htmlcov/
38 | .tox/
39 | .coverage
40 | .coverage.*
41 | .cache
42 | nosetests.xml
43 | coverage.xml
44 | *,cover
45 |
46 | # Translations
47 | *.mo
48 | *.pot
49 |
50 | # Django stuff:
51 | *.log
52 |
53 | # Sphinx documentation
54 | docs/_build/
55 |
56 | # PyBuilder
57 | target/
58 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ml-workshop
2 |
3 | Before starting, you should install [anaconda](https://store.continuum.io/cshop/anaconda/).
4 |
5 | Here's the activities for the workshop:
6 |
7 | 1. [regression_lecture.ipynb](regression_lecture.ipynb)
8 | 2. [regression_exercise.ipynb](regression_exercise.ipynb)
9 | 3. [classification_lecture.ipynb](classification_lecture.ipynb)
10 | 4. [classification_exercise.ipynb](classification_exercise.ipynb)
11 |
--------------------------------------------------------------------------------
/classification_exercise.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "### 1. Load in the data using `pandas`."
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {
14 | "collapsed": false
15 | },
16 | "outputs": [],
17 | "source": [
18 | "import pandas as pd\n",
19 | "import numpy as np\n"
20 | ]
21 | },
22 | {
23 | "cell_type": "markdown",
24 | "metadata": {},
25 | "source": [
26 | "### 2. Turn the values into numerical values as such:\n",
27 | "\n",
28 | "* Change the `n`'s to 0.\n",
29 | "* Change the `y`'s to 1.\n",
30 | "* Change the `?`'s to 0.5."
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": null,
36 | "metadata": {
37 | "collapsed": false
38 | },
39 | "outputs": [],
40 | "source": []
41 | },
42 | {
43 | "cell_type": "markdown",
44 | "metadata": {},
45 | "source": [
46 | "### 3. Make your `X` matrix and `y` vector:\n",
47 | "\n",
48 | "* Make a `y` vector to be 1 if the senator is republican and 0 if democrat. It should be a numpy array of length 435.\n",
49 | "* Make a `X` be all the remaining values. It should be a numpy array of dimensions 435 by 16."
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {
56 | "collapsed": false
57 | },
58 | "outputs": [],
59 | "source": []
60 | },
61 | {
62 | "cell_type": "markdown",
63 | "metadata": {},
64 | "source": [
65 | "### 4. Run the commands `y.shape` and `X.shape` to verify that your vectors are the correct sizes."
66 | ]
67 | },
68 | {
69 | "cell_type": "code",
70 | "execution_count": null,
71 | "metadata": {
72 | "collapsed": false
73 | },
74 | "outputs": [],
75 | "source": []
76 | },
77 | {
78 | "cell_type": "markdown",
79 | "metadata": {},
80 | "source": [
81 | "### 5. Use `sklearns`'s `Kfold` method.\n",
82 | "\n",
83 | "* You need to pass it the number of datapoints."
84 | ]
85 | },
86 | {
87 | "cell_type": "code",
88 | "execution_count": 2,
89 | "metadata": {
90 | "collapsed": true
91 | },
92 | "outputs": [],
93 | "source": [
94 | "from sklearn.cross_validation import KFold\n",
95 | "\n"
96 | ]
97 | },
98 | {
99 | "cell_type": "markdown",
100 | "metadata": {},
101 | "source": [
102 | "#### We'll use the same `run_model` function as we did with the previous example. Code is copied here for your convenience."
103 | ]
104 | },
105 | {
106 | "cell_type": "code",
107 | "execution_count": 3,
108 | "metadata": {
109 | "collapsed": true
110 | },
111 | "outputs": [],
112 | "source": [
113 | "from sklearn.metrics import accuracy_score, precision_score, recall_score\n",
114 | "\n",
115 | "def run_model(X, y, kfolds, Model):\n",
116 | " accuracies = []\n",
117 | " precisions = []\n",
118 | " recalls = []\n",
119 | " for train_index, test_index in kfolds:\n",
120 | " X_train, X_test = X[train_index], X[test_index]\n",
121 | " y_train, y_test = y[train_index], y[test_index]\n",
122 | " model = Model()\n",
123 | " model.fit(X_train, y_train)\n",
124 | " y_predict = model.predict(X_test)\n",
125 | " accuracies.append(accuracy_score(y_predict, y_test))\n",
126 | " precisions.append(precision_score(y_predict, y_test))\n",
127 | " recalls.append(recall_score(y_predict, y_test))\n",
128 | "\n",
129 | " print \"accuracy:\", np.mean(accuracies)\n",
130 | " print \"precision:\", np.mean(precisions)\n",
131 | " print \"recall:\", np.mean(recalls)"
132 | ]
133 | },
134 | {
135 | "cell_type": "markdown",
136 | "metadata": {},
137 | "source": [
138 | "### 6. Build a logistic regression model on each of the folds and give the average values for accuracy, precision and recall."
139 | ]
140 | },
141 | {
142 | "cell_type": "code",
143 | "execution_count": 4,
144 | "metadata": {
145 | "collapsed": false
146 | },
147 | "outputs": [],
148 | "source": [
149 | "from sklearn.linear_model import LogisticRegression\n"
150 | ]
151 | },
152 | {
153 | "cell_type": "markdown",
154 | "metadata": {},
155 | "source": [
156 | "### 7. Using the same kfolds, build a Decision Tree and Random Forest classifier to compare which is the best."
157 | ]
158 | },
159 | {
160 | "cell_type": "code",
161 | "execution_count": 5,
162 | "metadata": {
163 | "collapsed": false
164 | },
165 | "outputs": [],
166 | "source": [
167 | "from sklearn.tree import DecisionTreeClassifier\n",
168 | "from sklearn.ensemble import RandomForestClassifier\n"
169 | ]
170 | }
171 | ],
172 | "metadata": {
173 | "kernelspec": {
174 | "display_name": "Python 2",
175 | "language": "python",
176 | "name": "python2"
177 | },
178 | "language_info": {
179 | "codemirror_mode": {
180 | "name": "ipython",
181 | "version": 2
182 | },
183 | "file_extension": ".py",
184 | "mimetype": "text/x-python",
185 | "name": "python",
186 | "nbconvert_exporter": "python",
187 | "pygments_lexer": "ipython2",
188 | "version": "2.7.9"
189 | }
190 | },
191 | "nbformat": 4,
192 | "nbformat_minor": 0
193 | }
194 |
--------------------------------------------------------------------------------
/classification_lecture.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "slideshow": {
7 | "slide_type": "slide"
8 | }
9 | },
10 | "source": [
11 | "# Classification\n",
12 | "\n",
13 | "A classification problem is when we're trying to predict a discrete (categorical) outcome.\n",
14 | "\n",
15 | "Here are some example questions:\n",
16 | "\n",
17 | "* Does a patient have cancer?\n",
18 | "* Will a team win the next game?\n",
19 | "* Will the customer buy my product?\n",
20 | "* Will I get the loan?\n",
21 | "\n",
22 | "In binary classification, we have two labels: 1 or 0."
23 | ]
24 | },
25 | {
26 | "cell_type": "markdown",
27 | "metadata": {
28 | "slideshow": {
29 | "slide_type": "fragment"
30 | }
31 | },
32 | "source": [
33 | "## Classification Algorithms\n",
34 | "\n",
35 | "1. Logistic Regression\n",
36 | "2. Decision Trees\n",
37 | "3. Random Forests"
38 | ]
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "metadata": {
43 | "slideshow": {
44 | "slide_type": "slide"
45 | }
46 | },
47 | "source": [
48 | "### Logistic Regression\n",
49 | "\n",
50 | "Find a line which separates the data.\n",
51 | "\n",
52 | "\n",
53 | "\n",
54 | "There are two classes of data points:\n",
55 | "\n",
56 | "* red circles\n",
57 | "* blue pluses"
58 | ]
59 | },
60 | {
61 | "cell_type": "markdown",
62 | "metadata": {
63 | "slideshow": {
64 | "slide_type": "slide"
65 | }
66 | },
67 | "source": [
68 | "### Logistic Regression\n",
69 | "\n",
70 | ""
71 | ]
72 | },
73 | {
74 | "cell_type": "markdown",
75 | "metadata": {
76 | "slideshow": {
77 | "slide_type": "slide"
78 | }
79 | },
80 | "source": [
81 | "### Decision Trees\n",
82 | "\n",
83 | "\n",
84 | "\n",
85 | "(If you flip it upside down it will look more like a tree.)"
86 | ]
87 | },
88 | {
89 | "cell_type": "markdown",
90 | "metadata": {
91 | "slideshow": {
92 | "slide_type": "slide"
93 | }
94 | },
95 | "source": [
96 | "## Decision Trees: Choosing which feature to split on\n",
97 | "\n",
98 | "A good split:\n",
99 | "* All those with a criminal record shouldn't be given loans and all those without a record should be given loans\n",
100 | "\n",
101 | "A bad split:\n",
102 | "* 50% of women should be given a loan and 50% of men should be given a loan"
103 | ]
104 | },
105 | {
106 | "cell_type": "markdown",
107 | "metadata": {
108 | "slideshow": {
109 | "slide_type": "slide"
110 | }
111 | },
112 | "source": [
113 | "## Downside of Decision Trees: Overfitting\n",
114 | "\n",
115 | "There could just be a single datapoint that has income >$70K and has a criminal record.\n",
116 | "\n",
117 | "We can't extrapolate that all datapoints in this bucket would have the same result."
118 | ]
119 | },
120 | {
121 | "cell_type": "markdown",
122 | "metadata": {
123 | "slideshow": {
124 | "slide_type": "fragment"
125 | }
126 | },
127 | "source": [
128 | "## Solution: Random Forests\n",
129 | "\n",
130 | "A collection of trees, often 10 trees.\n",
131 | "\n",
132 | "* **Bootstrap Aggregation (Bagging):** Each tree gets a random sample *with replacement* of the dataset to build the tree with.\n",
133 | "\n",
134 | "* **Random subset of features:** Only consider a subset of the features when finding the best one to split on."
135 | ]
136 | },
137 | {
138 | "cell_type": "markdown",
139 | "metadata": {
140 | "slideshow": {
141 | "slide_type": "slide"
142 | }
143 | },
144 | "source": [
145 | "# Metrics\n",
146 | "\n",
147 | "We have a couple different metrics we use to evaluate how good the model is:\n",
148 | "\n",
149 | "**Accuracy:** This is the percent of predictions that were correct."
150 | ]
151 | },
152 | {
153 | "cell_type": "markdown",
154 | "metadata": {
155 | "slideshow": {
156 | "slide_type": "fragment"
157 | }
158 | },
159 | "source": [
160 | "**Precision:** This is the fraction of datapoints that you predicted positively that are correct.\n",
161 | "\n",
162 | "```\n",
163 | " number predicted positively that are truly positive\n",
164 | "------------------------------------------------------\n",
165 | " number predicted positively (including misses)\n",
166 | "```\n",
167 | "\n",
168 | "**Recall:** This is the fraction of datapoints that are truely positive that you predicted correctly.\n",
169 | "\n",
170 | "```\n",
171 | " number predicted positively that are truly positive\n",
172 | "------------------------------------------------------\n",
173 | " number of positives\n",
174 | "```"
175 | ]
176 | },
177 | {
178 | "cell_type": "markdown",
179 | "metadata": {
180 | "slideshow": {
181 | "slide_type": "slide"
182 | }
183 | },
184 | "source": [
185 | "# Example: Titanic\n",
186 | "\n",
187 | "Goal: predict if someone survives or not\n",
188 | "\n",
189 | "```\n",
190 | "VARIABLE DESCRIPTIONS:\n",
191 | "survival Survival\n",
192 | " (0 = No; 1 = Yes)\n",
193 | "pclass Passenger Class\n",
194 | " (1 = 1st; 2 = 2nd; 3 = 3rd)\n",
195 | "name Name\n",
196 | "sex Sex\n",
197 | "age Age\n",
198 | "sibsp Number of Siblings/Spouses Aboard\n",
199 | "parch Number of Parents/Children Aboard\n",
200 | "ticket Ticket Number\n",
201 | "fare Passenger Fare\n",
202 | "cabin Cabin\n",
203 | "embarked Port of Embarkation\n",
204 | " (C = Cherbourg; Q = Queenstown; S = Southampton)\n",
205 | "```"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": 1,
211 | "metadata": {
212 | "collapsed": false,
213 | "scrolled": true,
214 | "slideshow": {
215 | "slide_type": "slide"
216 | }
217 | },
218 | "outputs": [
219 | {
220 | "data": {
221 | "text/html": [
222 | "
\n",
223 | "
\n",
224 | " \n",
225 | " \n",
226 | " | \n",
227 | " survived | \n",
228 | " pclass | \n",
229 | " name | \n",
230 | " sex | \n",
231 | " age | \n",
232 | " sibsp | \n",
233 | " parch | \n",
234 | " ticket | \n",
235 | " fare | \n",
236 | " cabin | \n",
237 | " embarked | \n",
238 | "
\n",
239 | " \n",
240 | " \n",
241 | " \n",
242 | " 0 | \n",
243 | " 0 | \n",
244 | " 3 | \n",
245 | " Braund, Mr. Owen Harris | \n",
246 | " male | \n",
247 | " 22 | \n",
248 | " 1 | \n",
249 | " 0 | \n",
250 | " A/5 21171 | \n",
251 | " 7.2500 | \n",
252 | " NaN | \n",
253 | " S | \n",
254 | "
\n",
255 | " \n",
256 | " 1 | \n",
257 | " 1 | \n",
258 | " 1 | \n",
259 | " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
260 | " female | \n",
261 | " 38 | \n",
262 | " 1 | \n",
263 | " 0 | \n",
264 | " PC 17599 | \n",
265 | " 71.2833 | \n",
266 | " C85 | \n",
267 | " C | \n",
268 | "
\n",
269 | " \n",
270 | " 2 | \n",
271 | " 1 | \n",
272 | " 3 | \n",
273 | " Heikkinen, Miss. Laina | \n",
274 | " female | \n",
275 | " 26 | \n",
276 | " 0 | \n",
277 | " 0 | \n",
278 | " STON/O2. 3101282 | \n",
279 | " 7.9250 | \n",
280 | " NaN | \n",
281 | " S | \n",
282 | "
\n",
283 | " \n",
284 | " 3 | \n",
285 | " 1 | \n",
286 | " 1 | \n",
287 | " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
288 | " female | \n",
289 | " 35 | \n",
290 | " 1 | \n",
291 | " 0 | \n",
292 | " 113803 | \n",
293 | " 53.1000 | \n",
294 | " C123 | \n",
295 | " S | \n",
296 | "
\n",
297 | " \n",
298 | " 4 | \n",
299 | " 0 | \n",
300 | " 3 | \n",
301 | " Allen, Mr. William Henry | \n",
302 | " male | \n",
303 | " 35 | \n",
304 | " 0 | \n",
305 | " 0 | \n",
306 | " 373450 | \n",
307 | " 8.0500 | \n",
308 | " NaN | \n",
309 | " S | \n",
310 | "
\n",
311 | " \n",
312 | "
\n",
313 | "
"
314 | ],
315 | "text/plain": [
316 | " survived pclass name \\\n",
317 | "0 0 3 Braund, Mr. Owen Harris \n",
318 | "1 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n",
319 | "2 1 3 Heikkinen, Miss. Laina \n",
320 | "3 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n",
321 | "4 0 3 Allen, Mr. William Henry \n",
322 | "\n",
323 | " sex age sibsp parch ticket fare cabin embarked \n",
324 | "0 male 22 1 0 A/5 21171 7.2500 NaN S \n",
325 | "1 female 38 1 0 PC 17599 71.2833 C85 C \n",
326 | "2 female 26 0 0 STON/O2. 3101282 7.9250 NaN S \n",
327 | "3 female 35 1 0 113803 53.1000 C123 S \n",
328 | "4 male 35 0 0 373450 8.0500 NaN S "
329 | ]
330 | },
331 | "execution_count": 1,
332 | "metadata": {},
333 | "output_type": "execute_result"
334 | }
335 | ],
336 | "source": [
337 | "import pandas as pd\n",
338 | "import numpy as np\n",
339 | "\n",
340 | "df = pd.read_csv('data/titanic.csv')\n",
341 | "df.head()"
342 | ]
343 | },
344 | {
345 | "cell_type": "code",
346 | "execution_count": 2,
347 | "metadata": {
348 | "collapsed": false,
349 | "slideshow": {
350 | "slide_type": "slide"
351 | }
352 | },
353 | "outputs": [
354 | {
355 | "data": {
356 | "text/html": [
357 | "\n",
358 | "
\n",
359 | " \n",
360 | " \n",
361 | " | \n",
362 | " survived | \n",
363 | " pclass | \n",
364 | " age | \n",
365 | " sibsp | \n",
366 | " parch | \n",
367 | " fare | \n",
368 | "
\n",
369 | " \n",
370 | " \n",
371 | " \n",
372 | " count | \n",
373 | " 891.000000 | \n",
374 | " 891.000000 | \n",
375 | " 714.000000 | \n",
376 | " 891.000000 | \n",
377 | " 891.000000 | \n",
378 | " 891.000000 | \n",
379 | "
\n",
380 | " \n",
381 | " mean | \n",
382 | " 0.383838 | \n",
383 | " 2.308642 | \n",
384 | " 29.699118 | \n",
385 | " 0.523008 | \n",
386 | " 0.381594 | \n",
387 | " 32.204208 | \n",
388 | "
\n",
389 | " \n",
390 | " std | \n",
391 | " 0.486592 | \n",
392 | " 0.836071 | \n",
393 | " 14.526497 | \n",
394 | " 1.102743 | \n",
395 | " 0.806057 | \n",
396 | " 49.693429 | \n",
397 | "
\n",
398 | " \n",
399 | " min | \n",
400 | " 0.000000 | \n",
401 | " 1.000000 | \n",
402 | " 0.420000 | \n",
403 | " 0.000000 | \n",
404 | " 0.000000 | \n",
405 | " 0.000000 | \n",
406 | "
\n",
407 | " \n",
408 | " 25% | \n",
409 | " 0.000000 | \n",
410 | " 2.000000 | \n",
411 | " 20.125000 | \n",
412 | " 0.000000 | \n",
413 | " 0.000000 | \n",
414 | " 7.910400 | \n",
415 | "
\n",
416 | " \n",
417 | " 50% | \n",
418 | " 0.000000 | \n",
419 | " 3.000000 | \n",
420 | " 28.000000 | \n",
421 | " 0.000000 | \n",
422 | " 0.000000 | \n",
423 | " 14.454200 | \n",
424 | "
\n",
425 | " \n",
426 | " 75% | \n",
427 | " 1.000000 | \n",
428 | " 3.000000 | \n",
429 | " 38.000000 | \n",
430 | " 1.000000 | \n",
431 | " 0.000000 | \n",
432 | " 31.000000 | \n",
433 | "
\n",
434 | " \n",
435 | " max | \n",
436 | " 1.000000 | \n",
437 | " 3.000000 | \n",
438 | " 80.000000 | \n",
439 | " 8.000000 | \n",
440 | " 6.000000 | \n",
441 | " 512.329200 | \n",
442 | "
\n",
443 | " \n",
444 | "
\n",
445 | "
"
446 | ],
447 | "text/plain": [
448 | " survived pclass age sibsp parch fare\n",
449 | "count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000\n",
450 | "mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208\n",
451 | "std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429\n",
452 | "min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000\n",
453 | "25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400\n",
454 | "50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200\n",
455 | "75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000\n",
456 | "max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200"
457 | ]
458 | },
459 | "execution_count": 2,
460 | "metadata": {},
461 | "output_type": "execute_result"
462 | }
463 | ],
464 | "source": [
465 | "# stats on the data\n",
466 | "df.describe()"
467 | ]
468 | },
469 | {
470 | "cell_type": "markdown",
471 | "metadata": {
472 | "slideshow": {
473 | "slide_type": "fragment"
474 | }
475 | },
476 | "source": [
477 | "* There are 891 datapoints\n",
478 | "* 38% of the people survived\n",
479 | "* Only 714 of the 891 datapoints have the age feature filled in"
480 | ]
481 | },
482 | {
483 | "cell_type": "code",
484 | "execution_count": 3,
485 | "metadata": {
486 | "collapsed": false,
487 | "slideshow": {
488 | "slide_type": "slide"
489 | }
490 | },
491 | "outputs": [
492 | {
493 | "data": {
494 | "text/html": [
495 | "\n",
496 | "
\n",
497 | " \n",
498 | " \n",
499 | " | \n",
500 | " survived | \n",
501 | " pclass | \n",
502 | " name | \n",
503 | " sex | \n",
504 | " age | \n",
505 | " sibsp | \n",
506 | " parch | \n",
507 | " ticket | \n",
508 | " fare | \n",
509 | " cabin | \n",
510 | " embarked | \n",
511 | " C | \n",
512 | " Q | \n",
513 | " S | \n",
514 | " female | \n",
515 | " age_filled | \n",
516 | "
\n",
517 | " \n",
518 | " \n",
519 | " \n",
520 | " 0 | \n",
521 | " 0 | \n",
522 | " 3 | \n",
523 | " Braund, Mr. Owen Harris | \n",
524 | " male | \n",
525 | " 22 | \n",
526 | " 1 | \n",
527 | " 0 | \n",
528 | " A/5 21171 | \n",
529 | " 7.2500 | \n",
530 | " NaN | \n",
531 | " S | \n",
532 | " 0 | \n",
533 | " 0 | \n",
534 | " 1 | \n",
535 | " False | \n",
536 | " 22 | \n",
537 | "
\n",
538 | " \n",
539 | " 1 | \n",
540 | " 1 | \n",
541 | " 1 | \n",
542 | " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
543 | " female | \n",
544 | " 38 | \n",
545 | " 1 | \n",
546 | " 0 | \n",
547 | " PC 17599 | \n",
548 | " 71.2833 | \n",
549 | " C85 | \n",
550 | " C | \n",
551 | " 1 | \n",
552 | " 0 | \n",
553 | " 0 | \n",
554 | " True | \n",
555 | " 38 | \n",
556 | "
\n",
557 | " \n",
558 | " 2 | \n",
559 | " 1 | \n",
560 | " 3 | \n",
561 | " Heikkinen, Miss. Laina | \n",
562 | " female | \n",
563 | " 26 | \n",
564 | " 0 | \n",
565 | " 0 | \n",
566 | " STON/O2. 3101282 | \n",
567 | " 7.9250 | \n",
568 | " NaN | \n",
569 | " S | \n",
570 | " 0 | \n",
571 | " 0 | \n",
572 | " 1 | \n",
573 | " True | \n",
574 | " 26 | \n",
575 | "
\n",
576 | " \n",
577 | " 3 | \n",
578 | " 1 | \n",
579 | " 1 | \n",
580 | " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
581 | " female | \n",
582 | " 35 | \n",
583 | " 1 | \n",
584 | " 0 | \n",
585 | " 113803 | \n",
586 | " 53.1000 | \n",
587 | " C123 | \n",
588 | " S | \n",
589 | " 0 | \n",
590 | " 0 | \n",
591 | " 1 | \n",
592 | " True | \n",
593 | " 35 | \n",
594 | "
\n",
595 | " \n",
596 | " 4 | \n",
597 | " 0 | \n",
598 | " 3 | \n",
599 | " Allen, Mr. William Henry | \n",
600 | " male | \n",
601 | " 35 | \n",
602 | " 0 | \n",
603 | " 0 | \n",
604 | " 373450 | \n",
605 | " 8.0500 | \n",
606 | " NaN | \n",
607 | " S | \n",
608 | " 0 | \n",
609 | " 0 | \n",
610 | " 1 | \n",
611 | " False | \n",
612 | " 35 | \n",
613 | "
\n",
614 | " \n",
615 | "
\n",
616 | "
"
617 | ],
618 | "text/plain": [
619 | " survived pclass name \\\n",
620 | "0 0 3 Braund, Mr. Owen Harris \n",
621 | "1 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n",
622 | "2 1 3 Heikkinen, Miss. Laina \n",
623 | "3 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n",
624 | "4 0 3 Allen, Mr. William Henry \n",
625 | "\n",
626 | " sex age sibsp parch ticket fare cabin embarked C Q \\\n",
627 | "0 male 22 1 0 A/5 21171 7.2500 NaN S 0 0 \n",
628 | "1 female 38 1 0 PC 17599 71.2833 C85 C 1 0 \n",
629 | "2 female 26 0 0 STON/O2. 3101282 7.9250 NaN S 0 0 \n",
630 | "3 female 35 1 0 113803 53.1000 C123 S 0 0 \n",
631 | "4 male 35 0 0 373450 8.0500 NaN S 0 0 \n",
632 | "\n",
633 | " S female age_filled \n",
634 | "0 1 False 22 \n",
635 | "1 0 True 38 \n",
636 | "2 1 True 26 \n",
637 | "3 1 True 35 \n",
638 | "4 1 False 35 "
639 | ]
640 | },
641 | "execution_count": 3,
642 | "metadata": {},
643 | "output_type": "execute_result"
644 | }
645 | ],
646 | "source": [
647 | "df = pd.concat([df, pd.get_dummies(df['embarked'])], axis=1)\n",
648 | "df['female'] = df['sex'] == 'female'\n",
649 | "df['age_filled'] = df['age'].fillna(df['age'].mean())\n",
650 | "df.head()"
651 | ]
652 | },
653 | {
654 | "cell_type": "code",
655 | "execution_count": 4,
656 | "metadata": {
657 | "collapsed": false,
658 | "slideshow": {
659 | "slide_type": "slide"
660 | }
661 | },
662 | "outputs": [
663 | {
664 | "name": "stdout",
665 | "output_type": "stream",
666 | "text": [
667 | "X dimensions: (891, 9)\n",
668 | "y dimensions: (891,)\n"
669 | ]
670 | }
671 | ],
672 | "source": [
673 | "features = ['pclass', 'age_filled', 'sibsp', 'parch', 'fare', 'C', 'Q', 'S', 'female']\n",
674 | "X = df[features].values.astype(float)\n",
675 | "y = df['survived'].values\n",
676 | "\n",
677 | "print \"X dimensions:\", X.shape\n",
678 | "print \"y dimensions:\", y.shape"
679 | ]
680 | },
681 | {
682 | "cell_type": "code",
683 | "execution_count": 5,
684 | "metadata": {
685 | "collapsed": false,
686 | "slideshow": {
687 | "slide_type": "slide"
688 | }
689 | },
690 | "outputs": [
691 | {
692 | "name": "stdout",
693 | "output_type": "stream",
694 | "text": [
695 | "Logistic Regression:\n",
696 | "accuracy: 0.789001122334\n",
697 | "precision: 0.675874970883\n",
698 | "recall: 0.747860965872\n"
699 | ]
700 | }
701 | ],
702 | "source": [
703 | "from sklearn.cross_validation import KFold\n",
704 | "from sklearn.linear_model import LogisticRegression\n",
705 | "from sklearn.metrics import accuracy_score, precision_score, recall_score\n",
706 | "\n",
707 | "kfolds = KFold(len(X))\n",
708 | "\n",
709 | "def run_model(X, y, kfolds, Model):\n",
710 | " accuracies = []\n",
711 | " precisions = []\n",
712 | " recalls = []\n",
713 | " for train_index, test_index in kfolds:\n",
714 | " X_train, X_test = X[train_index], X[test_index]\n",
715 | " y_train, y_test = y[train_index], y[test_index]\n",
716 | " model = Model()\n",
717 | " model.fit(X_train, y_train)\n",
718 | " y_predict = model.predict(X_test)\n",
719 | " accuracies.append(accuracy_score(y_predict, y_test))\n",
720 | " precisions.append(precision_score(y_predict, y_test))\n",
721 | " recalls.append(recall_score(y_predict, y_test))\n",
722 | "\n",
723 | " print \"accuracy:\", np.mean(accuracies)\n",
724 | " print \"precision:\", np.mean(precisions)\n",
725 | " print \"recall:\", np.mean(recalls)\n",
726 | "\n",
727 | "print \"Logistic Regression:\"\n",
728 | "run_model(X, y, kfolds, LogisticRegression)\n"
729 | ]
730 | },
731 | {
732 | "cell_type": "code",
733 | "execution_count": 6,
734 | "metadata": {
735 | "collapsed": false,
736 | "slideshow": {
737 | "slide_type": "slide"
738 | }
739 | },
740 | "outputs": [
741 | {
742 | "name": "stdout",
743 | "output_type": "stream",
744 | "text": [
745 | "Decision Tree:\n",
746 | "accuracy: 0.757575757576\n",
747 | "precision: 0.670857718961\n",
748 | "recall: 0.686929824561\n"
749 | ]
750 | }
751 | ],
752 | "source": [
753 | "from sklearn.tree import DecisionTreeClassifier\n",
754 | "\n",
755 | "print \"Decision Tree:\"\n",
756 | "run_model(X, y, kfolds, DecisionTreeClassifier)"
757 | ]
758 | },
759 | {
760 | "cell_type": "code",
761 | "execution_count": 7,
762 | "metadata": {
763 | "collapsed": false,
764 | "slideshow": {
765 | "slide_type": "fragment"
766 | }
767 | },
768 | "outputs": [
769 | {
770 | "name": "stdout",
771 | "output_type": "stream",
772 | "text": [
773 | "Random Forest:\n",
774 | "accuracy: 0.79797979798\n",
775 | "precision: 0.683279830538\n",
776 | "recall: 0.759372435843\n"
777 | ]
778 | }
779 | ],
780 | "source": [
781 | "from sklearn.ensemble import RandomForestClassifier\n",
782 | "\n",
783 | "print \"Random Forest:\"\n",
784 | "run_model(X, y, kfolds, RandomForestClassifier)"
785 | ]
786 | },
787 | {
788 | "cell_type": "markdown",
789 | "metadata": {
790 | "slideshow": {
791 | "slide_type": "slide"
792 | }
793 | },
794 | "source": [
795 | "Let's see if we can add some additional features that will help us. This is called *feature engineering*.\n",
796 | "\n",
797 | "1. A missing age might mean something!\n",
798 | "2. The length of the name might have some status.\n",
799 | "3. Use the cabin column. Did they have an assigned cabin?"
800 | ]
801 | },
802 | {
803 | "cell_type": "code",
804 | "execution_count": 8,
805 | "metadata": {
806 | "collapsed": false,
807 | "slideshow": {
808 | "slide_type": "fragment"
809 | }
810 | },
811 | "outputs": [],
812 | "source": [
813 | "df['missing_age'] = pd.isnull(df['age'])\n",
814 | "df['name_length'] = df['name'].apply(lambda x: len(x))\n",
815 | "df['no_cabin'] = pd.isnull(df['cabin'])"
816 | ]
817 | },
818 | {
819 | "cell_type": "code",
820 | "execution_count": 9,
821 | "metadata": {
822 | "collapsed": false,
823 | "slideshow": {
824 | "slide_type": "fragment"
825 | }
826 | },
827 | "outputs": [
828 | {
829 | "name": "stdout",
830 | "output_type": "stream",
831 | "text": [
832 | "Random Forest:\n",
833 | "accuracy: 0.794612794613\n",
834 | "precision: 0.660883269276\n",
835 | "recall: 0.769083820663\n"
836 | ]
837 | }
838 | ],
839 | "source": [
840 | "new_features = features + ['missing_age', 'name_length', 'no_cabin']\n",
841 | "X = df[new_features].values.astype(float)\n",
842 | "y = df['survived'].values\n",
843 | "\n",
844 | "print \"Random Forest:\"\n",
845 | "run_model(X, y, kfolds, RandomForestClassifier)"
846 | ]
847 | },
848 | {
849 | "cell_type": "code",
850 | "execution_count": 10,
851 | "metadata": {
852 | "collapsed": false,
853 | "slideshow": {
854 | "slide_type": "slide"
855 | }
856 | },
857 | "outputs": [
858 | {
859 | "name": "stdout",
860 | "output_type": "stream",
861 | "text": [
862 | "feature importances:\n"
863 | ]
864 | },
865 | {
866 | "data": {
867 | "text/plain": [
868 | "[(0.24996092924865998, 'female'),\n",
869 | " (0.18060870673998769, 'fare'),\n",
870 | " (0.17764809383355634, 'age_filled'),\n",
871 | " (0.16876470705763175, 'name_length'),\n",
872 | " (0.075846096630100765, 'pclass'),\n",
873 | " (0.036383190959322818, 'sibsp'),\n",
874 | " (0.031386514124276281, 'no_cabin'),\n",
875 | " (0.029385544726632774, 'parch'),\n",
876 | " (0.015162873337054216, 'missing_age'),\n",
877 | " (0.01500098039067875, 'S'),\n",
878 | " (0.013131614687145129, 'C'),\n",
879 | " (0.0067207482649535603, 'Q')]"
880 | ]
881 | },
882 | "execution_count": 10,
883 | "metadata": {},
884 | "output_type": "execute_result"
885 | }
886 | ],
887 | "source": [
888 | "print \"feature importances:\"\n",
889 | "rf_model = RandomForestClassifier().fit(X, y)\n",
890 | "sorted(zip(rf_model.feature_importances_, new_features), reverse=True)"
891 | ]
892 | }
893 | ],
894 | "metadata": {
895 | "celltoolbar": "Slideshow",
896 | "kernelspec": {
897 | "display_name": "Python 2",
898 | "language": "python",
899 | "name": "python2"
900 | },
901 | "language_info": {
902 | "codemirror_mode": {
903 | "name": "ipython",
904 | "version": 2
905 | },
906 | "file_extension": ".py",
907 | "mimetype": "text/x-python",
908 | "name": "python",
909 | "nbconvert_exporter": "python",
910 | "pygments_lexer": "ipython2",
911 | "version": "2.7.9"
912 | }
913 | },
914 | "nbformat": 4,
915 | "nbformat_minor": 0
916 | }
917 |
--------------------------------------------------------------------------------
/data/cheese.csv:
--------------------------------------------------------------------------------
1 | Case,taste,Acetic,H2S,Lactic
2 | 1,12.3,93.97229455035794,22.988635842034803,0.86
3 | 2,20.9,173.9903782027133,154.93412088167287,1.53
4 | 3,39.0,214.00513284687926,229.98175967098499,1.57
5 | 4,47.9,317.0311392102188,1800.82468987104,1.81
6 | 5,5.6,105.95346624121831,45.01519052366997,0.99
7 | 6,25.9,297.97214232356816,2000.1950904302855,1.09
8 | 7,37.3,362.12881823371424,6161.0346186664965,1.29
9 | 8,21.9,436.15600980492945,2881.309046796117,1.78
10 | 9,18.1,134.02146852616139,46.993063231579285,1.29
11 | 10,21.0,189.04782020236823,64.97483233043849,1.58
12 | 11,34.9,311.06441098139294,464.9826067271843,1.68
13 | 12,57.2,630.1765385172663,2718.9471305583256,1.9
14 | 13,0.7,87.97036531689318,20.005355245758658,1.06
15 | 14,25.9,187.91692934639244,140.05006978607565,1.3
16 | 15,54.9,469.18633860603165,855.768589308044,1.52
17 | 16,40.9,581.1448283170228,14588.66301153218,1.74
18 | 17,15.9,119.9410053724344,49.99884974182383,1.16
19 | 18,6.4,224.07929841740724,109.94717245212352,1.49
20 | 19,18.0,189.99542634455688,480.1026811082229,1.63
21 | 20,38.9,229.98175967098499,8638.63618171464,1.99
22 | 21,14.0,95.96657943780268,141.03385952151402,1.15
23 | 22,15.2,199.93653676147963,184.9341840706834,1.33
24 | 23,32.0,233.92487106947016,10321.661250847777,1.44
25 | 24,56.7,348.9749000539856,26876.296335333554,2.01
26 | 25,16.8,214.00513284687926,39.017099548496596,1.31
27 | 26,11.6,421.1546054009281,25.003104571046247,1.46
28 | 27,26.5,637.7842117268708,1055.7429330294667,1.72
29 | 28,0.7,206.02551080883075,49.99884974182383,1.25
30 | 29,13.4,330.9608200692076,800.3106781756247,1.08
31 | 30,5.5,481.063847316259,119.9410053724344,1.25
32 |
--------------------------------------------------------------------------------
/data/congressional_voting.csv:
--------------------------------------------------------------------------------
1 | party,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
2 | republican,n,y,n,y,y,y,n,n,n,y,?,y,y,y,n,y
3 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,?
4 | democrat,?,y,y,?,y,y,n,n,n,n,y,n,y,y,n,n
5 | democrat,n,y,y,n,?,y,n,n,n,n,y,n,y,n,n,y
6 | democrat,y,y,y,n,y,y,n,n,n,n,y,?,y,y,y,y
7 | democrat,n,y,y,n,y,y,n,n,n,n,n,n,y,y,y,y
8 | democrat,n,y,n,y,y,y,n,n,n,n,n,n,?,y,y,y
9 | republican,n,y,n,y,y,y,n,n,n,n,n,n,y,y,?,y
10 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
11 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,?,?
12 | republican,n,y,n,y,y,n,n,n,n,n,?,?,y,y,n,n
13 | republican,n,y,n,y,y,y,n,n,n,n,y,?,y,y,?,?
14 | democrat,n,y,y,n,n,n,y,y,y,n,n,n,y,n,?,?
15 | democrat,y,y,y,n,n,y,y,y,?,y,y,?,n,n,y,?
16 | republican,n,y,n,y,y,y,n,n,n,n,n,y,?,?,n,?
17 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,?,n,?
18 | democrat,y,n,y,n,n,y,n,y,?,y,y,y,?,n,n,y
19 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,y,n,y,y
20 | republican,n,y,n,y,y,y,n,n,n,n,n,?,y,y,n,n
21 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
22 | democrat,y,y,y,n,n,?,y,y,n,n,y,n,n,n,y,y
23 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,?,?,y,y
24 | democrat,y,?,y,n,n,n,y,y,y,n,n,?,n,n,y,y
25 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
26 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
27 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
28 | democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
29 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
30 | republican,y,n,n,y,y,n,y,y,y,n,n,y,y,y,n,y
31 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
32 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
33 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,?
34 | democrat,y,y,y,n,n,n,y,y,y,y,n,n,y,n,y,y
35 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
36 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
37 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
38 | republican,y,?,n,y,y,y,n,n,n,y,n,y,?,y,n,y
39 | republican,y,y,n,y,y,y,n,n,n,n,n,n,y,y,n,y
40 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
41 | democrat,y,n,y,n,n,n,y,y,y,y,y,n,y,n,y,y
42 | democrat,y,y,y,n,n,n,y,y,y,n,?,n,n,n,n,?
43 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,?
44 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y
45 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
46 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,?
47 | democrat,y,y,y,n,n,n,y,y,?,n,y,n,n,n,y,?
48 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y
49 | democrat,y,n,y,n,n,n,y,y,?,n,n,n,n,n,n,?
50 | democrat,y,y,y,n,n,n,y,y,n,n,n,n,n,y,n,y
51 | republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,n
52 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
53 | republican,n,y,n,y,y,y,n,?,n,n,n,y,y,y,n,y
54 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,?,?
55 | republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
56 | democrat,y,y,y,n,n,y,?,y,n,n,y,y,n,y,n,?
57 | republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,n
58 | republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,y
59 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
60 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
61 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,?
62 | democrat,y,y,y,n,n,?,y,y,y,y,n,n,n,n,y,?
63 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
64 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,?
65 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,y
66 | democrat,y,y,y,n,n,n,y,y,y,n,y,?,n,n,n,y
67 | republican,y,y,n,y,y,y,y,n,n,n,n,y,y,y,n,y
68 | republican,n,y,n,y,y,y,y,n,n,n,y,y,y,y,n,y
69 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
70 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,y,n,y,y
71 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
72 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,y,n,y,?
73 | republican,y,y,y,y,n,n,y,y,y,y,y,n,n,y,n,y
74 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,?
75 | republican,y,n,y,y,y,n,y,n,y,y,n,n,y,y,n,y
76 | democrat,y,n,y,n,n,y,y,y,y,y,y,n,n,y,y,y
77 | democrat,n,y,y,y,y,y,n,n,n,y,y,n,y,y,n,n
78 | democrat,n,y,y,n,y,y,n,n,n,y,y,y,y,y,n,?
79 | democrat,n,y,y,y,y,y,n,y,y,y,y,y,y,y,n,y
80 | democrat,y,y,y,n,y,y,n,n,n,y,y,n,y,y,n,y
81 | republican,n,n,n,y,y,n,n,n,n,y,n,y,y,y,n,n
82 | democrat,y,n,y,n,n,y,y,y,y,y,n,y,n,y,n,?
83 | democrat,y,n,y,n,n,n,y,y,?,y,y,y,n,y,n,y
84 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
85 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
86 | republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,n
87 | democrat,n,n,y,n,y,y,n,n,n,y,y,y,y,y,n,y
88 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
89 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
90 | democrat,n,y,y,n,y,y,y,n,y,y,y,n,y,y,n,y
91 | republican,n,n,n,y,y,y,n,n,n,y,n,?,y,y,n,?
92 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
93 | democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
94 | democrat,y,y,y,n,n,n,y,y,n,y,y,n,n,?,y,y
95 | democrat,y,n,y,n,n,n,y,n,y,y,y,n,n,n,y,y
96 | democrat,y,n,y,n,y,y,n,n,n,n,n,n,n,n,n,y
97 | democrat,y,n,y,n,y,y,n,?,?,n,y,?,?,?,y,y
98 | democrat,n,n,?,n,y,y,n,n,n,n,y,y,y,y,n,y
99 | democrat,y,n,n,n,y,y,y,n,n,y,y,n,n,y,n,y
100 | democrat,y,y,y,n,n,y,y,y,y,y,n,n,n,n,n,y
101 | republican,n,n,n,y,y,y,n,n,n,y,?,y,y,y,n,n
102 | democrat,y,n,n,n,y,y,n,n,n,n,y,y,n,y,n,y
103 | democrat,y,n,y,n,y,y,y,n,n,n,y,n,n,y,n,y
104 | democrat,y,n,y,n,y,y,y,n,?,n,y,n,y,y,y,?
105 | democrat,y,n,n,n,y,y,?,n,?,n,n,n,n,y,?,n
106 | democrat,?,?,?,?,n,y,y,y,y,y,?,n,y,y,n,?
107 | democrat,y,y,y,n,n,n,n,y,y,n,y,n,n,n,y,y
108 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
109 | republican,n,?,?,?,?,?,?,?,?,?,?,?,?,y,?,?
110 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
111 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
112 | democrat,n,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
113 | republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
114 | democrat,n,?,y,n,n,y,y,y,n,y,n,n,n,n,y,?
115 | republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,n
116 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
117 | democrat,n,?,y,n,?,?,y,y,y,y,?,?,n,n,y,y
118 | democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
119 | republican,y,y,y,y,y,n,y,n,n,n,n,y,y,y,n,y
120 | democrat,n,y,y,n,n,n,n,y,y,y,y,n,n,n,y,y
121 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
122 | republican,n,?,?,y,y,y,n,n,n,y,n,y,y,y,?,y
123 | republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
124 | republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
125 | republican,y,?,n,y,y,y,n,y,n,n,n,y,y,y,n,y
126 | democrat,n,?,y,n,n,n,y,y,y,n,n,n,n,n,y,y
127 | republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
128 | republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,n
129 | democrat,n,?,y,n,n,n,y,y,y,y,y,n,n,y,y,y
130 | democrat,n,?,y,n,n,y,n,y,n,y,y,n,n,n,y,y
131 | democrat,?,?,y,n,n,n,y,y,?,n,?,?,?,?,?,?
132 | democrat,y,?,y,n,?,?,y,y,y,n,n,n,n,n,y,?
133 | democrat,n,n,y,n,n,y,n,y,y,y,n,n,n,y,n,y
134 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,?
135 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
136 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,?
137 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
138 | republican,n,y,n,y,y,y,n,n,n,y,y,y,y,n,n,y
139 | democrat,n,?,y,n,n,y,y,y,y,y,n,n,n,y,y,y
140 | democrat,n,n,y,n,n,y,y,y,y,y,n,n,n,y,n,y
141 | democrat,y,n,y,n,n,y,y,y,y,n,n,n,n,n,y,y
142 | republican,n,n,n,y,n,n,y,y,y,y,n,n,y,y,n,y
143 | republican,n,n,n,y,y,y,y,y,y,y,n,y,y,y,?,y
144 | republican,n,n,n,y,y,y,y,y,y,y,n,y,y,y,n,y
145 | democrat,?,y,n,n,n,n,y,y,y,y,y,n,n,y,y,y
146 | democrat,n,?,n,n,n,y,y,y,y,y,n,n,n,y,n,?
147 | democrat,n,n,y,n,n,y,y,y,y,y,n,n,n,y,?,y
148 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
149 | democrat,n,n,n,n,n,n,y,y,y,y,n,y,y,y,y,y
150 | republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,y
151 | democrat,n,n,y,n,n,n,y,y,y,y,n,n,y,n,y,y
152 | republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
153 | democrat,y,y,?,y,y,y,n,n,y,n,y,?,y,y,n,n
154 | democrat,n,y,y,n,n,y,n,y,y,y,y,n,y,n,y,y
155 | democrat,n,n,y,n,n,y,y,y,y,y,y,n,y,y,n,y
156 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
157 | republican,y,y,n,y,y,y,n,?,n,n,y,y,y,y,n,n
158 | republican,y,y,n,y,y,y,y,n,n,n,n,y,y,y,n,n
159 | democrat,n,y,y,n,n,y,n,y,y,n,y,n,?,?,?,?
160 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
161 | democrat,n,y,y,n,?,y,y,y,y,y,y,n,n,?,n,?
162 | democrat,n,y,n,n,y,y,n,n,n,n,n,y,y,y,y,y
163 | democrat,n,n,n,n,y,y,y,n,n,n,n,y,y,y,n,y
164 | democrat,n,y,y,n,y,y,y,n,n,n,y,y,y,y,n,y
165 | republican,n,y,n,y,y,y,y,n,n,n,n,y,y,y,n,y
166 | democrat,y,y,n,n,y,y,n,n,n,y,y,y,y,y,n,?
167 | democrat,n,y,y,n,n,y,y,y,y,y,y,n,y,n,y,?
168 | republican,y,n,y,y,y,y,y,y,n,y,n,y,n,y,y,y
169 | republican,y,n,y,y,y,y,y,y,n,y,y,y,n,y,y,y
170 | democrat,n,n,y,y,y,y,n,n,y,n,n,n,y,y,y,?
171 | democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,y,n,y
172 | democrat,y,n,y,n,n,n,?,y,y,?,n,n,n,n,y,?
173 | republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
174 | democrat,n,y,y,n,n,n,y,y,y,y,n,n,?,n,y,y
175 | democrat,n,n,n,n,y,y,n,n,n,y,y,y,y,y,n,y
176 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
177 | democrat,n,y,y,n,n,n,y,y,y,y,n,n,n,n,y,y
178 | republican,n,n,y,y,n,n,y,y,y,y,n,n,n,y,y,y
179 | democrat,n,n,y,n,n,n,y,y,y,y,y,?,n,n,y,y
180 | democrat,?,n,y,n,n,n,y,y,y,y,y,?,n,n,y,?
181 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
182 | democrat,?,?,y,n,n,n,y,y,y,?,?,n,n,n,?,?
183 | democrat,n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
184 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,y
185 | democrat,?,?,?,?,?,?,?,?,y,?,?,?,?,?,?,?
186 | democrat,n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
187 | democrat,y,n,y,n,n,n,y,y,y,y,n,?,n,n,y,y
188 | democrat,n,y,y,n,n,n,y,y,y,y,y,n,n,n,y,y
189 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
190 | republican,y,?,n,y,y,y,y,y,n,n,n,y,?,y,?,?
191 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
192 | republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,?
193 | republican,n,y,n,y,y,y,n,?,n,y,n,y,y,y,n,?
194 | democrat,n,n,n,n,n,y,y,y,y,n,y,n,n,y,y,y
195 | democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
196 | democrat,n,n,y,n,n,y,y,?,y,y,y,n,n,n,y,y
197 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,?
198 | democrat,n,n,y,n,n,y,y,y,y,n,y,y,n,y,y,?
199 | republican,n,?,y,y,y,y,n,n,n,y,n,n,n,y,n,y
200 | democrat,n,n,y,n,n,n,y,y,y,y,y,n,?,n,y,?
201 | democrat,y,y,n,n,n,n,y,y,?,n,y,n,n,n,y,?
202 | democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,y,y,y
203 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
204 | democrat,y,n,y,n,n,y,y,y,y,y,y,n,n,n,y,y
205 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
206 | republican,n,n,y,y,y,y,y,n,n,n,n,y,y,y,n,y
207 | democrat,n,n,y,n,n,y,y,y,y,y,n,y,n,n,n,y
208 | republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
209 | republican,y,?,n,y,y,y,y,n,n,y,n,y,y,y,n,y
210 | democrat,n,n,y,n,n,n,y,y,y,n,n,?,n,n,y,y
211 | democrat,y,y,y,n,n,n,y,y,y,y,y,n,n,n,n,y
212 | democrat,n,n,y,n,n,y,y,y,y,n,n,n,n,n,y,y
213 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
214 | democrat,n,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
215 | democrat,n,y,y,n,n,y,n,y,y,n,y,n,y,n,y,y
216 | republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
217 | democrat,n,y,y,y,y,y,n,n,n,y,y,y,y,y,y,?
218 | democrat,y,y,y,n,y,y,n,n,?,y,n,n,n,y,y,?
219 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
220 | democrat,y,?,y,n,n,n,y,y,y,n,?,n,n,n,y,?
221 | democrat,n,y,y,n,n,n,n,y,y,n,y,n,n,y,y,y
222 | democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
223 | democrat,n,y,y,n,y,y,n,n,n,n,y,n,n,n,y,?
224 | democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,?
225 | republican,n,n,n,y,y,n,n,n,n,n,n,y,y,y,n,y
226 | republican,n,y,n,y,y,y,n,n,n,y,n,?,y,y,n,n
227 | republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,y
228 | democrat,n,n,y,n,n,y,y,y,y,n,y,n,n,y,y,y
229 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,?,y
230 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,?,n,y
231 | republican,n,y,y,y,y,y,y,n,y,y,n,y,y,y,n,y
232 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
233 | republican,n,y,n,y,y,y,n,n,y,y,n,y,y,y,n,y
234 | democrat,n,y,y,n,n,n,y,y,n,n,y,n,n,n,y,?
235 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
236 | democrat,n,n,y,n,n,y,y,y,y,y,n,y,n,y,y,?
237 | republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
238 | democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
239 | democrat,y,n,y,n,n,y,y,y,n,n,n,y,y,n,n,y
240 | democrat,y,y,y,n,n,n,y,y,?,y,n,n,n,n,y,?
241 | republican,n,n,n,y,y,y,y,n,n,y,n,n,n,y,y,y
242 | republican,n,n,n,y,n,y,y,?,y,n,n,y,y,y,n,y
243 | democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,y,y,y
244 | republican,n,n,n,n,y,y,y,n,n,n,n,?,n,y,y,y
245 | democrat,n,y,y,n,n,n,y,y,?,y,n,n,y,n,y,y
246 | democrat,y,n,y,n,n,n,n,y,y,y,n,n,n,n,y,y
247 | democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
248 | democrat,n,n,y,n,y,n,y,y,y,n,n,n,n,y,?,y
249 | republican,n,y,n,y,y,y,?,n,n,n,n,?,y,y,n,n
250 | republican,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?
251 | democrat,y,n,y,n,n,n,y,y,?,n,y,n,n,n,y,y
252 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
253 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
254 | democrat,y,y,y,n,n,y,y,y,y,n,n,n,n,n,y,y
255 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
256 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
257 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,y,y,y
258 | republican,n,n,n,y,y,n,n,n,n,n,n,y,n,y,n,n
259 | republican,n,n,n,y,y,n,n,n,n,n,n,y,n,y,?,y
260 | democrat,n,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
261 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y
262 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
263 | democrat,y,n,y,n,n,?,y,y,y,n,?,?,n,?,?,?
264 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,?,n,y,y
265 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
266 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
267 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
268 | republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
269 | republican,y,n,n,n,n,n,y,y,y,y,n,n,n,y,n,y
270 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
271 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y
272 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
273 | democrat,n,y,y,n,n,y,y,y,y,n,?,n,n,n,n,y
274 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,?
275 | republican,n,n,n,y,y,n,y,y,n,y,n,y,y,y,?,y
276 | republican,y,n,n,y,y,n,y,n,n,y,n,n,n,y,y,y
277 | democrat,n,n,y,n,y,y,n,n,n,n,?,n,y,y,n,n
278 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,y,n
279 | republican,n,n,y,y,y,y,y,y,n,y,n,n,n,y,n,y
280 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
281 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
282 | democrat,n,n,y,n,n,n,y,y,y,y,n,n,n,y,n,y
283 | republican,y,n,y,y,y,y,y,y,n,n,n,n,n,y,n,?
284 | republican,y,n,n,y,y,y,n,n,n,y,n,?,y,y,n,n
285 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
286 | democrat,n,n,y,n,n,y,y,y,y,y,y,n,n,n,?,y
287 | democrat,n,n,y,n,n,y,y,y,y,y,y,n,n,n,y,y
288 | democrat,n,n,y,n,n,y,?,y,?,y,y,y,n,y,y,?
289 | democrat,y,y,y,?,n,y,y,y,y,n,y,n,y,n,?,y
290 | democrat,y,y,y,n,y,y,n,y,n,y,y,n,y,y,y,y
291 | democrat,y,y,y,n,y,y,n,y,n,y,y,n,y,y,n,?
292 | democrat,y,n,y,n,?,y,?,y,y,y,n,n,y,y,n,y
293 | democrat,y,n,y,n,n,y,y,y,y,y,n,?,n,y,n,y
294 | democrat,y,n,y,n,n,y,y,y,n,y,y,n,y,y,y,y
295 | democrat,y,y,y,n,n,y,y,y,y,y,y,n,y,y,y,y
296 | democrat,n,y,y,n,n,y,y,y,n,y,y,n,y,y,n,?
297 | republican,n,y,n,y,y,y,?,?,n,y,n,y,?,?,?,?
298 | republican,n,n,y,y,y,y,n,n,n,y,n,y,y,y,y,y
299 | democrat,y,y,y,n,n,y,y,y,y,y,n,n,?,n,y,?
300 | democrat,n,y,n,n,n,n,y,y,y,y,y,n,n,n,y,y
301 | democrat,n,y,y,n,n,y,y,y,y,y,n,n,y,y,y,y
302 | republican,n,n,n,y,y,n,y,y,y,y,n,y,y,y,n,y
303 | democrat,n,n,?,n,n,y,y,y,y,n,n,n,n,n,y,y
304 | republican,n,n,n,y,y,y,y,n,n,y,n,y,y,y,n,y
305 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
306 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,?
307 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
308 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
309 | democrat,y,n,y,n,n,y,y,y,y,n,n,n,n,y,n,?
310 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
311 | democrat,y,n,n,n,n,y,y,y,y,y,n,n,n,y,y,y
312 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,y,n
313 | democrat,n,n,y,n,n,y,y,y,y,y,n,n,y,n,n,y
314 | democrat,y,y,y,n,n,n,y,y,y,y,n,n,n,n,y,y
315 | republican,n,y,y,y,y,y,n,n,n,y,n,y,y,y,n,y
316 | republican,n,y,n,y,y,y,y,y,n,n,y,y,y,y,y,y
317 | republican,n,y,y,y,y,y,y,?,n,n,n,n,?,?,y,?
318 | democrat,n,n,n,n,n,y,n,y,y,n,y,y,y,y,y,n
319 | democrat,y,n,n,n,n,n,y,y,y,y,n,n,n,n,y,y
320 | democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
321 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
322 | democrat,n,y,y,n,n,y,n,y,y,y,n,n,y,y,n,y
323 | democrat,y,y,y,n,n,n,y,y,y,y,n,n,y,n,n,y
324 | democrat,y,y,y,n,?,y,n,?,n,n,y,n,y,y,n,?
325 | democrat,y,y,y,n,y,y,n,y,?,y,n,n,y,y,n,?
326 | republican,n,y,n,y,y,y,n,n,n,n,y,y,y,y,n,n
327 | democrat,n,y,n,n,y,y,n,n,?,n,n,y,y,y,n,y
328 | democrat,y,y,n,y,n,n,y,y,y,n,y,n,n,y,n,y
329 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
330 | democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,y
331 | democrat,y,?,y,n,n,y,y,y,y,y,n,n,n,n,y,?
332 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
333 | democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
334 | democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,?
335 | democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
336 | democrat,n,y,y,n,n,y,y,y,?,n,y,y,n,n,y,y
337 | republican,n,n,n,y,y,y,n,n,n,y,y,y,y,y,n,?
338 | democrat,n,n,y,n,n,y,y,y,n,n,y,n,n,y,?,y
339 | democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
340 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,y,y,y
341 | republican,y,n,n,y,y,y,n,n,n,n,y,y,y,y,n,n
342 | republican,n,n,n,y,y,y,n,n,n,y,y,y,n,y,n,y
343 | democrat,n,?,y,?,n,y,y,y,y,y,y,n,?,?,y,y
344 | democrat,n,y,y,n,y,?,y,n,n,y,y,n,y,n,y,y
345 | republican,n,n,n,y,y,n,y,n,y,y,n,n,n,y,n,y
346 | democrat,n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
347 | republican,n,n,n,y,y,y,y,n,n,y,n,y,n,y,y,y
348 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
349 | republican,y,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
350 | democrat,y,n,y,n,n,n,y,y,y,y,n,y,n,n,y,?
351 | republican,n,y,y,y,y,y,y,y,y,n,n,y,y,y,n,y
352 | democrat,n,y,n,n,n,y,y,n,y,n,y,n,n,n,y,y
353 | republican,n,n,y,y,y,y,y,y,y,y,n,y,y,y,y,y
354 | democrat,n,y,n,y,n,y,y,y,y,n,y,n,y,n,y,?
355 | republican,n,n,y,y,y,y,y,n,n,y,y,y,y,y,n,y
356 | democrat,n,y,y,n,n,y,y,y,y,y,n,?,n,n,y,y
357 | republican,y,n,y,y,n,n,n,y,y,y,n,n,n,y,y,y
358 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
359 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
360 | democrat,y,y,y,n,n,y,y,y,y,y,y,y,y,y,n,?
361 | republican,n,n,n,y,y,y,n,n,n,y,?,y,y,y,n,y
362 | democrat,y,n,y,n,n,y,y,y,y,y,n,n,y,n,n,y
363 | democrat,y,n,y,n,y,y,y,n,y,y,n,n,y,y,n,?
364 | democrat,y,y,y,n,n,y,y,y,y,y,y,y,y,n,n,y
365 | republican,y,y,n,y,y,y,n,n,n,y,y,n,y,n,n,n
366 | republican,y,y,n,y,y,y,n,n,n,n,y,n,y,y,n,y
367 | democrat,n,y,n,n,y,y,n,n,n,y,y,n,y,y,n,n
368 | democrat,y,n,y,n,n,n,y,y,n,y,y,n,n,n,n,?
369 | democrat,y,y,y,n,y,y,y,y,n,y,y,n,n,n,y,?
370 | democrat,n,y,y,n,n,y,y,y,n,y,n,n,n,n,y,y
371 | republican,n,y,n,y,y,y,n,n,n,n,n,n,y,y,n,y
372 | democrat,y,y,y,n,?,y,y,y,n,y,?,?,n,n,y,y
373 | democrat,y,y,y,n,?,n,y,y,y,y,n,n,n,n,y,?
374 | democrat,n,y,y,y,y,y,n,n,n,n,y,y,?,y,n,n
375 | democrat,n,y,y,?,y,y,n,y,n,y,?,n,y,y,?,y
376 | republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
377 | democrat,n,y,n,y,y,y,n,n,n,n,y,y,n,y,n,n
378 | democrat,y,?,y,n,n,n,y,y,y,n,y,n,n,n,y,y
379 | republican,n,y,n,y,y,y,?,?,n,n,?,?,y,?,?,?
380 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
381 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
382 | democrat,y,y,y,n,n,y,?,y,y,n,y,n,y,n,y,y
383 | democrat,y,y,y,n,y,y,y,y,y,y,y,n,y,y,n,?
384 | democrat,y,y,n,y,y,y,n,n,n,n,y,n,y,y,n,?
385 | democrat,y,y,y,n,y,y,n,y,y,y,y,n,n,n,n,y
386 | democrat,y,y,y,y,y,y,n,n,n,n,y,y,y,y,n,y
387 | democrat,y,y,n,n,y,y,n,n,n,n,y,y,y,y,y,n
388 | democrat,n,?,y,n,y,y,n,y,n,n,y,n,n,n,n,?
389 | democrat,y,y,y,n,y,y,n,y,y,n,y,n,n,y,n,?
390 | democrat,n,y,y,y,y,y,n,n,n,n,n,y,y,y,n,?
391 | democrat,y,n,y,n,n,n,y,y,y,?,y,n,n,n,y,?
392 | democrat,?,?,n,n,?,y,?,n,n,n,y,y,n,y,n,?
393 | democrat,y,y,n,n,n,n,n,y,y,n,y,n,n,n,y,n
394 | republican,y,y,n,y,y,y,n,n,n,n,y,y,y,y,n,y
395 | republican,?,?,?,?,n,y,n,y,y,n,n,y,y,n,n,?
396 | democrat,y,y,?,?,?,y,n,n,n,n,y,n,y,n,n,y
397 | democrat,y,y,y,?,n,n,n,y,n,n,y,?,n,n,y,y
398 | democrat,y,y,y,n,y,y,n,y,n,n,y,n,y,n,y,y
399 | democrat,y,y,n,n,y,?,n,n,n,n,y,n,y,y,n,y
400 | democrat,n,y,y,n,y,y,n,y,n,n,n,n,n,n,n,y
401 | republican,n,y,n,y,?,y,n,n,n,y,n,y,y,y,n,n
402 | republican,n,y,n,y,y,y,n,?,n,n,?,?,?,y,n,?
403 | republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,n
404 | republican,?,n,y,y,n,y,y,y,y,y,n,y,n,y,n,y
405 | republican,n,y,n,y,y,y,n,n,n,y,n,y,?,y,n,n
406 | republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
407 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
408 | democrat,y,n,y,n,y,y,n,n,y,y,n,n,y,y,n,y
409 | democrat,n,n,n,y,y,y,n,n,n,n,y,y,y,y,n,n
410 | democrat,y,n,y,n,n,y,y,y,y,n,n,y,?,y,y,y
411 | republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
412 | republican,n,n,n,y,y,y,n,n,n,n,y,y,y,y,n,y
413 | democrat,y,n,y,n,n,y,y,y,y,y,y,n,n,n,n,y
414 | republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
415 | republican,y,y,y,y,y,y,y,y,n,y,?,?,?,y,n,y
416 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y
417 | democrat,n,y,y,n,n,y,y,y,?,y,n,n,n,n,n,y
418 | republican,y,y,n,y,y,y,n,n,n,y,n,n,y,y,n,y
419 | democrat,y,y,y,n,n,n,y,y,y,y,y,n,y,n,n,y
420 | democrat,y,y,y,n,n,n,y,y,n,y,n,n,n,n,n,y
421 | democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y
422 | republican,y,y,y,y,y,y,y,y,n,y,n,n,y,y,n,y
423 | democrat,n,y,y,n,y,y,y,y,n,n,y,n,y,n,y,y
424 | democrat,n,n,y,n,n,y,y,y,y,n,y,n,n,n,y,y
425 | democrat,n,y,y,n,n,y,y,y,y,n,y,n,n,y,y,y
426 | democrat,n,y,y,n,n,?,y,y,y,y,y,n,?,y,y,y
427 | democrat,n,n,y,n,n,n,y,y,n,y,y,n,n,n,y,?
428 | democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
429 | republican,n,n,n,y,y,y,y,y,n,y,n,y,y,y,n,y
430 | democrat,?,?,?,n,n,n,y,y,y,y,n,n,y,n,y,y
431 | democrat,y,n,y,n,?,n,y,y,y,y,n,y,n,?,y,y
432 | republican,n,n,y,y,y,y,n,n,y,y,n,y,y,y,n,y
433 | democrat,n,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
434 | republican,n,?,n,y,y,y,n,n,n,n,y,y,y,y,n,y
435 | republican,n,n,n,y,y,y,?,?,?,?,n,y,y,y,n,y
436 | republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,?,n
--------------------------------------------------------------------------------
/data/titanic.csv:
--------------------------------------------------------------------------------
1 | survived,pclass,name,sex,age,sibsp,parch,ticket,fare,cabin,embarked
2 | 0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
3 | 1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
4 | 1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
5 | 1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
6 | 0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
7 | 0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
8 | 0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
9 | 0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
10 | 1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
11 | 1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
12 | 1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
13 | 1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
14 | 0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
15 | 0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
16 | 0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
17 | 1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
18 | 0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
19 | 1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
20 | 0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
21 | 1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
22 | 0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
23 | 1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
24 | 1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
25 | 1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
26 | 0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
27 | 1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
28 | 0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
29 | 0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
30 | 1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
31 | 0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
32 | 0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
33 | 1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
34 | 1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
35 | 0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
36 | 0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
37 | 0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
38 | 1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
39 | 0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
40 | 0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
41 | 1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
42 | 0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
43 | 0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
44 | 0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
45 | 1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
46 | 1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
47 | 0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
48 | 0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
49 | 1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
50 | 0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
51 | 0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
52 | 0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
53 | 0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
54 | 1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
55 | 1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
56 | 0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
57 | 1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
58 | 1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
59 | 0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
60 | 1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
61 | 0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
62 | 0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
63 | 1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
64 | 0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
65 | 0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
66 | 0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
67 | 1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
68 | 1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
69 | 0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
70 | 1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
71 | 0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
72 | 0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
73 | 0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
74 | 0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
75 | 0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
76 | 1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
77 | 0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
78 | 0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
79 | 0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
80 | 1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
81 | 1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
82 | 0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
83 | 1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
84 | 1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
85 | 0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
86 | 1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
87 | 1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
88 | 0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
89 | 0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
90 | 1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
91 | 0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
92 | 0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
93 | 0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
94 | 0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
95 | 0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
96 | 0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
97 | 0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
98 | 0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
99 | 1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
100 | 1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
101 | 0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
102 | 0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
103 | 0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
104 | 0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
105 | 0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
106 | 0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
107 | 0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
108 | 1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
109 | 1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
110 | 0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
111 | 1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
112 | 0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
113 | 0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
114 | 0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
115 | 0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
116 | 0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
117 | 0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
118 | 0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
119 | 0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
120 | 0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
121 | 0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
122 | 0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
123 | 0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
124 | 0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
125 | 1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
126 | 0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
127 | 1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
128 | 0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
129 | 1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
130 | 1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
131 | 0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
132 | 0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
133 | 0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
134 | 0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
135 | 1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
136 | 0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
137 | 0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
138 | 1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
139 | 0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
140 | 0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
141 | 0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
142 | 0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
143 | 1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
144 | 1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
145 | 0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
146 | 0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
147 | 0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
148 | 1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
149 | 0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
150 | 0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
151 | 0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
152 | 0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
153 | 1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
154 | 0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
155 | 0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
156 | 0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
157 | 0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
158 | 1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
159 | 0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
160 | 0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
161 | 0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
162 | 0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
163 | 1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
164 | 0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
165 | 0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
166 | 0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
167 | 1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
168 | 1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
169 | 0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
170 | 0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
171 | 0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
172 | 0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
173 | 0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
174 | 1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
175 | 0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
176 | 0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
177 | 0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
178 | 0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
179 | 0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
180 | 0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
181 | 0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
182 | 0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
183 | 0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
184 | 0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
185 | 1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
186 | 1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
187 | 0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
188 | 1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
189 | 1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
190 | 0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
191 | 0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
192 | 1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
193 | 0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
194 | 1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
195 | 1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
196 | 1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
197 | 1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
198 | 0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
199 | 0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
200 | 1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
201 | 0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
202 | 0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
203 | 0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
204 | 0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
205 | 0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
206 | 1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
207 | 0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
208 | 0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
209 | 1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
210 | 1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
211 | 1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
212 | 0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
213 | 1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
214 | 0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
215 | 0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
216 | 0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
217 | 1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
218 | 1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
219 | 0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
220 | 1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
221 | 0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
222 | 1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
223 | 0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
224 | 0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
225 | 0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
226 | 1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
227 | 0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
228 | 1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
229 | 0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
230 | 0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
231 | 0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
232 | 1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
233 | 0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
234 | 0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
235 | 1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
236 | 0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
237 | 0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
238 | 0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
239 | 1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
240 | 0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
241 | 0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
242 | 0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
243 | 1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
244 | 0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
245 | 0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
246 | 0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
247 | 0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
248 | 0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
249 | 1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
250 | 1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
251 | 0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
252 | 0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
253 | 0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
254 | 0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
255 | 0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
256 | 0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
257 | 1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
258 | 1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
259 | 1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
260 | 1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
261 | 1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
262 | 0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
263 | 1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
264 | 0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
265 | 0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
266 | 0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
267 | 0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
268 | 0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
269 | 1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
270 | 1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
271 | 1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
272 | 0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
273 | 1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
274 | 1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
275 | 0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
276 | 1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
277 | 1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
278 | 0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
279 | 0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
280 | 0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
281 | 1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
282 | 0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
283 | 0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
284 | 0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
285 | 1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
286 | 0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
287 | 0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
288 | 1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
289 | 0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
290 | 1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
291 | 1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
292 | 1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
293 | 1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
294 | 0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
295 | 0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
296 | 0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
297 | 0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
298 | 0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
299 | 0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
300 | 1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
301 | 1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
302 | 1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
303 | 1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
304 | 0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
305 | 1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
306 | 0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
307 | 1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
308 | 1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
309 | 1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
310 | 0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
311 | 1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
312 | 1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
313 | 1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
314 | 0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
315 | 0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
316 | 0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
317 | 1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
318 | 1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
319 | 0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
320 | 1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
321 | 1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
322 | 0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
323 | 0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
324 | 1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
325 | 1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
326 | 0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
327 | 1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
328 | 0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
329 | 1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
330 | 1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
331 | 1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
332 | 1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
333 | 0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
334 | 0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
335 | 0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
336 | 1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
337 | 0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
338 | 0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
339 | 1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
340 | 1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
341 | 0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
342 | 1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
343 | 1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
344 | 0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
345 | 0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
346 | 0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
347 | 1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
348 | 1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
349 | 1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
350 | 1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
351 | 0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
352 | 0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
353 | 0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
354 | 0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
355 | 0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
356 | 0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
357 | 0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
358 | 1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
359 | 0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
360 | 1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
361 | 1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
362 | 0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
363 | 0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
364 | 0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
365 | 0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
366 | 0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
367 | 0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
368 | 1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
369 | 1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
370 | 1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
371 | 1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
372 | 1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
373 | 0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
374 | 0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
375 | 0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
376 | 0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
377 | 1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
378 | 1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
379 | 0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
380 | 0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
381 | 0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
382 | 1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
383 | 1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
384 | 0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
385 | 1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
386 | 0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
387 | 0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
388 | 0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
389 | 1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
390 | 0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
391 | 1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
392 | 1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
393 | 1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
394 | 0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
395 | 1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
396 | 1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
397 | 0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
398 | 0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
399 | 0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
400 | 0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
401 | 1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
402 | 1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
403 | 0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
404 | 0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
405 | 0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
406 | 0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
407 | 0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
408 | 0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
409 | 1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
410 | 0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
411 | 0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
412 | 0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
413 | 0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
414 | 1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
415 | 0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
416 | 1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
417 | 0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
418 | 1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
419 | 1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
420 | 0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
421 | 0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
422 | 0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
423 | 0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
424 | 0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
425 | 0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
426 | 0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
427 | 0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
428 | 1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
429 | 1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
430 | 0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
431 | 1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
432 | 1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
433 | 1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
434 | 1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
435 | 0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
436 | 0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
437 | 1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
438 | 0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
439 | 1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
440 | 0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
441 | 0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
442 | 1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
443 | 0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
444 | 0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
445 | 1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
446 | 1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
447 | 1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
448 | 1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
449 | 1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
450 | 1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
451 | 1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
452 | 0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
453 | 0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
454 | 0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
455 | 1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
456 | 0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
457 | 1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
458 | 0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
459 | 1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
460 | 1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
461 | 0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
462 | 1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
463 | 0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
464 | 0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
465 | 0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
466 | 0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
467 | 0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
468 | 0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
469 | 0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
470 | 0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
471 | 1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
472 | 0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
473 | 0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
474 | 1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
475 | 1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
476 | 0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
477 | 0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
478 | 0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
479 | 0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
480 | 0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
481 | 1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
482 | 0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
483 | 0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
484 | 0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
485 | 1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
486 | 1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
487 | 0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
488 | 1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
489 | 0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
490 | 0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
491 | 1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
492 | 0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
493 | 0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
494 | 0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
495 | 0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
496 | 0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
497 | 0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
498 | 1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
499 | 0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
500 | 0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
501 | 0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
502 | 0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
503 | 0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
504 | 0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
505 | 0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
506 | 1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
507 | 0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
508 | 1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
509 | 1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
510 | 0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
511 | 1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
512 | 1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
513 | 0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
514 | 1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
515 | 1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
516 | 0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
517 | 0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
518 | 1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
519 | 0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
520 | 1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
521 | 0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
522 | 1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
523 | 0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
524 | 0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
525 | 1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
526 | 0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
527 | 0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
528 | 1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
529 | 0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
530 | 0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
531 | 0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
532 | 1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
533 | 0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
534 | 0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
535 | 1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
536 | 0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
537 | 1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
538 | 0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
539 | 1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
540 | 0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
541 | 1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
542 | 1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
543 | 0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
544 | 0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
545 | 1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
546 | 0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
547 | 0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
548 | 1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
549 | 1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
550 | 0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
551 | 1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
552 | 1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
553 | 0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
554 | 0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
555 | 1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
556 | 1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
557 | 0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
558 | 1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
559 | 0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
560 | 1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
561 | 1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
562 | 0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
563 | 0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
564 | 0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
565 | 0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
566 | 0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
567 | 0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
568 | 0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
569 | 0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
570 | 0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
571 | 1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
572 | 1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
573 | 1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
574 | 1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
575 | 1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
576 | 0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
577 | 0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
578 | 1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
579 | 1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
580 | 0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
581 | 1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
582 | 1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
583 | 1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
584 | 0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
585 | 0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
586 | 0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
587 | 1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
588 | 0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
589 | 1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
590 | 0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
591 | 0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
592 | 0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
593 | 1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
594 | 0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
595 | 0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
596 | 0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
597 | 0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
598 | 1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
599 | 0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
600 | 0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
601 | 1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
602 | 1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
603 | 0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
604 | 0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
605 | 0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
606 | 1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
607 | 0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
608 | 0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
609 | 1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
610 | 1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
611 | 1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
612 | 0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
613 | 0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
614 | 1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
615 | 0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
616 | 0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
617 | 1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
618 | 0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
619 | 0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
620 | 1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
621 | 0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
622 | 0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
623 | 1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
624 | 1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
625 | 0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
626 | 0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
627 | 0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
628 | 0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
629 | 1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
630 | 0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
631 | 0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
632 | 1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
633 | 0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
634 | 1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
635 | 0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
636 | 0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
637 | 1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
638 | 0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
639 | 0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
640 | 0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
641 | 0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
642 | 0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
643 | 1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
644 | 0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
645 | 1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
646 | 1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
647 | 1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
648 | 0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
649 | 1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
650 | 0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
651 | 1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
652 | 0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
653 | 1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
654 | 0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
655 | 1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
656 | 0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
657 | 0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
658 | 0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
659 | 0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
660 | 0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
661 | 0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
662 | 1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
663 | 0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
664 | 0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
665 | 0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
666 | 1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
667 | 0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
668 | 0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
669 | 0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
670 | 0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
671 | 1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
672 | 1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
673 | 0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
674 | 0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
675 | 1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
676 | 0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
677 | 0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
678 | 0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
679 | 1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
680 | 0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
681 | 1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
682 | 0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
683 | 1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
684 | 0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
685 | 0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
686 | 0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
687 | 0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
688 | 0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
689 | 0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
690 | 0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
691 | 1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
692 | 1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
693 | 1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
694 | 1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
695 | 0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
696 | 0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
697 | 0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
698 | 0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
699 | 1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
700 | 0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
701 | 0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
702 | 1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
703 | 1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
704 | 0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
705 | 0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
706 | 0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
707 | 0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
708 | 1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
709 | 1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
710 | 1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
711 | 1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
712 | 1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
713 | 0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
714 | 1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
715 | 0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
716 | 0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
717 | 0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
718 | 1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
719 | 1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
720 | 0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
721 | 0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
722 | 1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
723 | 0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
724 | 0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
725 | 0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
726 | 1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
727 | 0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
728 | 1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
729 | 1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
730 | 0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
731 | 0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
732 | 1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
733 | 0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
734 | 0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
735 | 0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
736 | 0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
737 | 0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
738 | 0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
739 | 1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
740 | 0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
741 | 0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
742 | 1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
743 | 0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
744 | 1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
745 | 0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
746 | 1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
747 | 0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
748 | 0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
749 | 1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
750 | 0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
751 | 0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
752 | 1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
753 | 1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
754 | 0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
755 | 0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
756 | 1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
757 | 1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
758 | 0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
759 | 0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
760 | 0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
761 | 1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
762 | 0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
763 | 0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
764 | 1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
765 | 1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
766 | 0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
767 | 1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
768 | 0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
769 | 0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
770 | 0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
771 | 0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
772 | 0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
773 | 0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
774 | 0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
775 | 0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
776 | 1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
777 | 0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
778 | 0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
779 | 1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
780 | 0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
781 | 1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
782 | 1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
783 | 1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
784 | 0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
785 | 0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
786 | 0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
787 | 0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
788 | 1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
789 | 0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
790 | 1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
791 | 0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
792 | 0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
793 | 0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
794 | 0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
795 | 0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
796 | 0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
797 | 0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
798 | 1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
799 | 1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
800 | 0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
801 | 0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
802 | 0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
803 | 1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
804 | 1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
805 | 1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
806 | 1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
807 | 0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
808 | 0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
809 | 0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
810 | 0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
811 | 1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
812 | 0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
813 | 0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
814 | 0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
815 | 0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
816 | 0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
817 | 0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
818 | 0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
819 | 0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
820 | 0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
821 | 0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
822 | 1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
823 | 1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
824 | 0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
825 | 1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
826 | 0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
827 | 0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
828 | 0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
829 | 1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
830 | 1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
831 | 1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
832 | 1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
833 | 1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
834 | 0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
835 | 0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
836 | 0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
837 | 1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
838 | 0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
839 | 0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
840 | 1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
841 | 1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
842 | 0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
843 | 0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
844 | 1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
845 | 0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
846 | 0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
847 | 0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
848 | 0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
849 | 0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
850 | 0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
851 | 1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
852 | 0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
853 | 0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
854 | 0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
855 | 1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
856 | 0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
857 | 1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
858 | 1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
859 | 1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
860 | 1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
861 | 0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
862 | 0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
863 | 0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
864 | 1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
865 | 0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
866 | 0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
867 | 1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
868 | 1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
869 | 0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
870 | 0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
871 | 1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
872 | 0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
873 | 1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
874 | 0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
875 | 0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
876 | 1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
877 | 1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
878 | 0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
879 | 0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
880 | 0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
881 | 1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
882 | 1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
883 | 0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
884 | 0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
885 | 0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
886 | 0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
887 | 0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
888 | 0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
889 | 1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
890 | 0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
891 | 1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
892 | 0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
893 |
--------------------------------------------------------------------------------
/data/travel-times.csv:
--------------------------------------------------------------------------------
1 | Date,StartTime,DayOfWeek,GoingTo,Distance,MaxSpeed,AvgSpeed,AvgMovingSpeed,FuelEconomy,TotalTime,MovingTime,Take407All,Comments
2 | 1/6/2012,16:37,Friday,Home,51.29,127.4,78.3,84.8,,39.3,36.3,No,
3 | 1/6/2012,08:20,Friday,GSK,51.63,130.3,81.8,88.9,,37.9,34.9,No,
4 | 1/4/2012,16:17,Wednesday,Home,51.27,127.4,82.0,85.8,,37.5,35.9,No,
5 | 1/4/2012,07:53,Wednesday,GSK,49.17,132.3,74.2,82.9,,39.8,35.6,No,
6 | 1/3/2012,18:57,Tuesday,Home,51.15,136.2,83.4,88.1,,36.8,34.8,No,
7 | 1/3/2012,07:57,Tuesday,GSK,51.80,135.8,84.5,88.8,,36.8,35.0,No,
8 | 1/2/2012,17:31,Monday,Home,51.37,123.2,82.9,87.3,-,37.2,35.3,No,
9 | 1/2/2012,07:34,Monday,GSK,49.01,128.3,77.5,85.9,-,37.9,34.3,No,
10 | 12/23/2011,08:01,Friday,GSK,52.91,130.3,80.9,88.3,8.89,39.3,36.0,No,
11 | 12/22/2011,17:19,Thursday,Home,51.17,122.3,70.6,78.1,8.89,43.5,39.3,No,
12 | 12/22/2011,08:16,Thursday,GSK,49.15,129.4,74.0,81.4,8.89,39.8,36.2,No,
13 | 12/21/2011,07:45,Wednesday,GSK,51.77,124.8,71.7,78.9,8.89,43.3,39.4,No,
14 | 12/20/2011,16:05,Tuesday,Home,51.45,130.1,75.2,82.7,8.89,41.1,37.3,No,
15 | 12/20/2011,06:04,Tuesday,GSK,49.01,119.0,77.4,82.0,8.89,38.0,35.9,No,
16 | 12/19/2011,16:18,Monday,Home,51.04,132.2,77.5,83.5,8.89,39.5,36.7,No,
17 | 12/19/2011,07:34,Monday,GSK,52.00,137.8,76.5,87.8,8.89,40.8,35.5,No,Put snow tires on
18 | 12/16/2011,12:22,Friday,Home,51.05,128.4,86.9,90.6,9.08,35.2,33.8,No,
19 | 12/16/2011,07:21,Friday,GSK,49.04,124.6,71.1,80.2,9.08,41.4,36.7,No,
20 | 12/15/2011,16:14,Thursday,Home,51.06,126.9,80.5,84.9,9.08,38.1,36.1,No,
21 | 12/15/2011,07:19,Thursday,GSK,51.68,123.5,68.1,75.8,9.08,45.6,40.9,No,
22 | 12/14/2011,16:20,Wednesday,Home,51.04,123.4,75.1,79.4,9.08,40.8,38.6,No,
23 | 12/14/2011,07:23,Wednesday,GSK,51.67,123.5,76.6,82.7,9.08,40.5,37.5,No,
24 | 12/13/2011,17:43,Tuesday,Home,51.15,130.6,74.8,82.4,9.08,41.0,37.2,No,
25 | 12/13/2011,07:25,Tuesday,GSK,49.19,126.1,65.4,74.2,9.08,45.1,39.8,No,
26 | 12/12/2011,07:20,Monday,GSK,49.02,126.1,65.7,74.0,9.76,44.8,39.7,No,
27 | 12/9/2011,12:04,Friday,Home,51.14,126.8,87.3,90.2,9.76,35.2,34.0,No,
28 | 12/9/2011,07:22,Friday,GSK,51.69,128.4,74.0,77.3,9.76,41.9,40.1,No,
29 | 12/8/2011,17:41,Thursday,Home,51.07,125.0,74.6,81.5,9.76,41.1,37.6,No,
30 | 12/8/2011,07:14,Thursday,GSK,51.63,134.4,76.5,84.3,9.76,40.5,36.7,No,
31 | 12/7/2011,16:12,Wednesday,Home,51.10,126.5,79.9,85.6,9.76,38.4,35.8,No,
32 | 12/7/2011,07:18,Wednesday,GSK,51.64,124.6,73.6,82.0,9.76,42.1,37.8,No,
33 | 12/6/2011,17:24,Tuesday,Home,51.25,123.5,77.3,81.9,9.16,39.8,37.6,No,
34 | 12/6/2011,07:24,Tuesday,GSK,51.64,122.3,69.3,74.7,9.16,44.7,41.5,No,
35 | 12/5/2011,16:18,Monday,Home,50.18,124.0,71.0,79.5,9.16,42.4,37.9,No,
36 | 12/1/2011,16:15,Thursday,Home,51.55,129.6,74.2,83.7,,41.7,36.9,No,
37 | 12/1/2011,07:24,Thursday,GSK,51.38,124.6,80.1,84.4,,38.5,36.5,No,
38 | 11/30/2011,16:11,Wednesday,Home,51.09,128.7,71.5,76.7,,42.9,39.9,No,
39 | 11/30/2011,07:19,Wednesday,GSK,51.71,125.6,76.3,81.8,,40.7,37.9,No,
40 | 11/29/2011,16:52,Tuesday,Home,51.00,121.4,68.4,75.4,,44.7,40.6,No,
41 | 11/29/2011,07:23,Tuesday,GSK,51.74,112.2,55.3,61.0,,56.2,50.9,No,Heavy rain
42 | 11/28/2011,16:16,Monday,Home,51.05,128.2,72.4,78.8,,42.3,38.9,No,
43 | 11/28/2011,07:26,Monday,GSK,51.63,127.1,71.0,75.5,,43.6,41.1,No,
44 | 11/24/2011,16:15,Thursday,Home,51.49,126.6,74.0,82.8,9.3,41.8,37.3,No,
45 | 11/24/2011,07:23,Thursday,GSK,51.69,124.9,73.3,80.3,9.3,42.3,38.6,No,
46 | 11/23/2011,16:17,Wednesday,Home,60.32,129.4,68.9,74.6,9.3,52.5,48.5,No,
47 | 11/23/2011,07:22,Wednesday,GSK,51.60,126.4,67.3,73.6,9.3,46.0,42.1,No,
48 | 11/22/2011,16:15,Tuesday,Home,51.49,129.6,78.6,83.8,9.3,39.3,36.9,No,
49 | 11/22/2011,07:27,Tuesday,GSK,51.65,128.6,76.1,82.6,9.3,40.7,37.5,No,
50 | 11/21/2011,16:50,Monday,Home,51.31,123.1,60.9,67.2,10.05,50.6,45.8,No,
51 | 11/21/2011,07:24,Monday,GSK,52.25,127.3,38.1,50.3,10.05,82.3,62.4,No,Huge traffic backup
52 | 11/17/2011,16:16,Thursday,Home,51.16,127.6,72.4,77.4,10.05,42.4,39.6,No,Pumped tires up: check fuel economy improved?
53 | 11/17/2011,07:42,Thursday,GSK,51.67,127.0,70.9,77.7,10.05,43.7,39.9,No,
54 | 11/16/2011,16:13,Wednesday,Home,51.12,125.1,65.0,73.1,9.53,47.2,41.9,No,Backed up at Bronte
55 | 11/16/2011,07:26,Wednesday,GSK,51.70,129.8,73.4,80.4,9.53,42.3,38.6,No,
56 | 11/15/2011,17:36,Tuesday,Home,51.06,122.8,61.4,70.9,9.53,49.9,43.2,No,Backed up at Bronte
57 | 11/15/2011,07:21,Tuesday,GSK,51.50,127.6,70.5,77.7,9.53,43.8,39.8,No,
58 | 11/14/2011,16:15,Monday,Home,51.06,119.5,64.4,70.2,9.53,47.6,43.6,No,
59 | 11/14/2011,07:19,Monday,GSK,51.66,126.4,55.2,59.1,9.53,56.1,52.5,No,
60 | 11/10/2011,16:11,Thursday,Home,51.07,129.8,75.2,82.6,9.53,40.8,37.1,No,
61 | 11/10/2011,07:25,Thursday,GSK,51.68,132.5,69.8,74.7,9.53,44.4,41.5,No,
62 | 11/9/2011,16:15,Wednesday,Home,51.28,121.4,65.9,71.8,9.35,46.7,42.1,No,Rainy
63 | 11/9/2011,07:25,Wednesday,GSK,51.79,127.5,65.6,72.4,9.35,47.3,42.9,No,
64 | 11/8/2011,17:24,Tuesday,Home,50.75,131.3,89.5,93.5,9.35,34.3,32.6,Yes,
65 | 11/8/2011,07:25,Tuesday,GSK,51.82,126.8,66.1,73.9,9.35,47.0,42.1,No,
66 | 11/7/2011,16:05,Monday,Home,51.06,127.4,80.4,85.2,9.35,38.1,36.0,No,
67 | 11/7/2011,07:19,Monday,GSK,51.62,125.4,74.9,82.9,9.35,41.4,37.4,No,
68 | 11/4/2011,12:12,Friday,Home,51.03,128.4,82.2,89.7,9.35,37.2,34.1,No,
69 | 11/4/2011,08:16,Friday,GSK,51.81,130.2,82.1,85.0,9.35,37.9,36.6,No,
70 | 11/3/2011,17:00,Thursday,Home,51.07,130.3,75.8,81.7,8.32,40.4,37.5,No,
71 | 11/3/2011,07:46,Thursday,GSK,51.83,133.0,80.6,85.4,8.32,38.6,36.4,No,
72 | 11/2/2011,16:45,Wednesday,Home,51.27,121.5,75.1,79.1,8.32,41.0,38.9,No,
73 | 11/2/2011,07:51,Wednesday,GSK,51.83,129.3,72.5,78.1,8.32,42.9,39.8,No,
74 | 11/1/2011,08:13,Tuesday,GSK,51.74,129.7,71.8,79.4,8.32,43.2,39.1,No,
75 | 10/31/2011,15:49,Monday,Home,51.06,125.0,76.4,85.7,8.32,40.1,35.7,No,
76 | 10/31/2011,06:21,Monday,GSK,50.58,125.0,104.4,106.2,8.32,29.1,28.6,Yes,
77 | 10/28/2011,12:14,Friday,Home,51.28,120.5,83.0,89.5,8.32,37.1,34.4,No,
78 | 10/27/2011,08:20,Thursday,GSK,51.77,125.6,82.4,89.5,8.97,37.7,34.7,No,
79 | 10/26/2011,08:20,Wednesday,GSK,51.75,127.9,74.6,81.7,8.97,41.6,38.0,No,
80 | 10/25/2011,17:24,Tuesday,Home,52.87,123.5,65.1,72.4,8.97,48.7,43.8,No,"Rain, rain, rain"
81 | 10/25/2011,08:13,Tuesday,GSK,51.75,127.4,72.1,82.0,8.97,43.1,37.8,No,
82 | 10/24/2011,17:29,Monday,Home,51.06,126.5,71.6,78.6,8.97,42.8,39.0,No,
83 | 10/21/2011,08:31,Friday,GSK,50.64,129.0,106.6,112.1,8.97,28.5,27.1,Yes,
84 | 10/20/2011,17:37,Thursday,Home,51.33,125.2,72.5,79.6,8.75,42.5,38.7,No,
85 | 10/20/2011,08:22,Thursday,GSK,51.74,124.5,68.9,79.2,8.75,45.0,39.2,No,
86 | 10/19/2011,17:39,Wednesday,Home,51.30,126.2,63.4,73.3,8.75,48.6,42.0,No,
87 | 10/19/2011,08:24,Wednesday,GSK,51.68,130.2,75.7,81.6,8.75,41.0,38.0,No,
88 | 10/18/2011,17:28,Tuesday,Home,51.36,133.1,69.5,79.1,8.75,44.4,38.9,No,
89 | 10/18/2011,08:14,Tuesday,GSK,51.74,130.8,80.8,85.2,8.75,38.4,36.5,No,
90 | 10/17/2011,16:58,Monday,Home,51.30,127.3,78.6,82.9,8.75,39.1,37.1,No,
91 | 10/17/2011,08:22,Monday,GSK,50.61,137.1,93.7,100.3,8.75,32.4,30.3,Yes,
92 | 10/13/2011,08:36,Thursday,GSK,50.66,128.3,105.5,111.3,8.75,28.8,27.3,Yes,
93 | 10/12/2011,17:47,Wednesday,Home,51.40,114.4,59.7,65.8,8.75,51.7,46.9,No,"Rain, rain, rain"
94 | 10/12/2011,08:28,Wednesday,GSK,50.58,128.4,59.5,67.3,8.75,51.0,45.1,Yes,Accident: backup from Hamilton to 407 ramp
95 | 10/11/2011,17:17,Tuesday,Home,51.52,135.1,67.3,78.4,7.81,46.0,39.5,No,
96 | 10/11/2011,08:25,Tuesday,GSK,48.94,130.8,85.7,93.2,7.81,34.3,31.5,Yes,
97 | 10/7/2011,12:15,Friday,Home,51.02,124.8,80.4,88.9,7.97,38.1,34.4,Yes,
98 | 10/7/2011,08:23,Friday,GSK,50.68,128.3,101.9,107.2,7.97,29.9,28.4,Yes,
99 | 10/6/2011,17:58,Thursday,Home,51.29,126.0,73.3,76.3,7.97,42.0,40.3,No,
100 | 10/6/2011,08:22,Thursday,GSK,50.63,125.6,38.5,103.8,7.97,30.8,29.3,Yes,
101 | 10/5/2011,17:10,Wednesday,Home,51.31,127.5,69.5,75.5,7.97,44.3,40.8,No,
102 | 10/5/2011,08:36,Wednesday,GSK,50.59,128.5,103.4,108.0,7.97,29.4,28.1,Yes,
103 | 10/4/2011,17:39,Tuesday,Home,51.15,128.8,76.0,85.2,7.97,40.4,36.0,No,
104 | 10/4/2011,07:42,Tuesday,GSK,50.67,127.3,94.9,97.9,7.97,32.0,31.1,Yes,
105 | 10/3/2011,17:31,Monday,Home,51.22,126.7,81.2,86.4,7.97,37.8,35.6,No,
106 | 10/3/2011,07:41,Monday,GSK,50.65,127.4,91.1,95.2,7.97,33.4,31.9,Yes,
107 | 9/29/2011,17:17,Thursday,Home,51.39,128.4,65.3,71.9,8.93,47.2,42.9,No,
108 | 9/29/2011,08:22,Thursday,GSK,50.65,122.8,83.5,86.9,8.93,36.4,35.0,Yes,
109 | 9/28/2011,17:53,Wednesday,Home,51.23,124.9,79.2,81.5,8.93,38.8,37.7,No,
110 | 9/28/2011,07:57,Wednesday,GSK,50.65,128.8,102.2,105.7,8.93,29.7,28.7,Yes,
111 | 9/27/2011,17:26,Tuesday,Home,51.11,130.1,69.8,75.6,8.31,44.0,40.6,No,
112 | 9/27/2011,07:36,Tuesday,GSK,50.65,128.1,86.3,88.6,8.31,35.2,34.3,Yes,Raining
113 | 9/26/2011,17:37,Monday,Home,50.69,132.3,97.2,103.6,8.31,31.3,29.3,Yes,
114 | 9/26/2011,08:02,Monday,GSK,50.65,129.4,88.2,91.3,8.31,34.4,33.3,Yes,
115 | 9/22/2011,17:27,Thursday,Home,51.11,124.8,74.3,79.6,8.31,41.3,38.5,No,
116 | 9/22/2011,07:37,Thursday,GSK,50.67,130.0,97.6,101.6,8.31,31.1,29.9,Yes,
117 | 9/21/2011,18:05,Wednesday,Home,51.74,133.3,82.9,89.2,8.33,37.4,34.8,Yes,
118 | 9/21/2011,08:02,Wednesday,GSK,49.16,128.7,59.5,68.0,8.33,49.6,43.4,No,
119 | 9/20/2011,17:20,Tuesday,Home,51.23,127.2,71.7,76.9,8.33,42.9,40.0,No,
120 | 9/20/2011,08:10,Tuesday,GSK,51.69,128.7,70.4,70.1,8.33,44.1,39.7,No,
121 | 9/19/2011,16:43,Monday,Home,51.30,123.9,69.6,75.2,8.33,44.2,40.9,No,
122 | 9/19/2011,06:34,Monday,GSK,49.09,123.7,69.4,79.1,8.33,42.4,37.3,No,
123 | 9/15/2011,17:50,Thursday,Home,51.13,127.5,69.0,75.9,8.33,44.4,40.4,No,
124 | 9/15/2011,08:08,Thursday,GSK,50.67,129.3,99.0,103.3,8.33,30.7,29.4,Yes,
125 | 9/14/2011,17:36,Wednesday,Home,51.77,127.0,71.1,79.6,8.33,43.7,39.0,No,
126 | 9/14/2011,08:11,Wednesday,GSK,50.54,126.8,98.7,103.7,8.33,30.7,29.3,Yes,
127 | 9/13/2011,17:22,Tuesday,Home,51.58,134.3,70.0,80.0,8.5,44.2,38.7,No,
128 | 9/13/2011,07:51,Tuesday,GSK,49.12,129.1,52.7,63.2,8.5,55.9,46.6,No,
129 | 9/12/2011,17:04,Monday,Home,51.43,131.1,75.1,79.5,8.5,40.6,38.8,No,
130 | 9/12/2011,08:05,Monday,GSK,49.12,127.5,65.7,73.1,8.5,44.8,40.3,No,
131 | 9/8/2011,16:37,Thursday,Home,50.92,137.0,66.9,77.7,8.5,45.6,39.3,No,
132 | 9/8/2011,07:23,Thursday,GSK,49.25,124.7,53.5,63.1,8.5,55.2,46.9,No,
133 | 9/7/2011,17:24,Wednesday,Home,51.34,132.8,71.5,76.6,8.5,43.1,40.2,No,
134 | 9/7/2011,07:57,Wednesday,GSK,49.08,125.1,56.5,66.5,8.5,52.1,44.3,No,Back to school traffic?
135 | 9/6/2011,16:27,Tuesday,Home,52.88,131.6,95.4,98.3,8.5,33.3,32.3,Yes,Took 407 all the way (to McMaster)
136 | 9/6/2011,07:50,Tuesday,GSK,54.36,132.5,95.1,98.0,8.5,34.3,33.3,Yes,
137 | 9/2/2011,17:07,Friday,Home,51.17,129.7,77.7,87.9,8.5,39.5,34.9,No,
138 | 9/2/2011,07:39,Friday,GSK,51.65,132.7,82.6,91.4,8.5,37.5,33.9,No,
139 | 9/1/2011,17:33,Thursday,Home,52.42,128.9,81.6,88.0,8.5,38.5,35.7,No,
140 | 9/1/2011,08:08,Thursday,GSK,49.13,126.8,67.3,73.9,8.5,43.8,39.9,No,
141 | 8/31/2011,17:14,Wednesday,Home,51.15,140.9,71.5,79.5,8.5,42.9,38.6,No,
142 | 8/31/2011,08:09,Wednesday,GSK,49.07,127.7,65.9,77.3,8.5,44.7,38.1,No,
143 | 8/30/2011,17:38,Tuesday,Home,51.66,138.0,67.1,73.2,8.5,46.2,42.4,No,
144 | 8/30/2011,07:57,Tuesday,GSK,49.04,133.5,69.1,77.8,8.5,42.6,37.8,No,
145 | 8/29/2011,17:11,Monday,Home,51.04,131.0,75.5,84.1,8.5,40.5,36.4,No,
146 | 8/29/2011,07:48,Monday,GSK,49.15,124.0,63.9,74.0,8.5,46.1,39.9,No,
147 | 8/26/2011,16:29,Friday,Home,50.88,132.7,81.1,86.9,8.54,37.6,35.2,No,
148 | 8/26/2011,07:49,Friday,GSK,49.01,129.1,76.3,83.3,8.54,38.6,35.3,No,
149 | 8/25/2011,17:39,Thursday,Home,51.23,132.8,64.2,70.6,8.54,47.9,43.5,No,
150 | 8/25/2011,09:09,Thursday,GSK,50.45,133.5,106.8,111.1,8.54,28.3,27.3,Yes,
151 | 8/24/2011,16:47,Wednesday,Home,51.01,132.9,79.6,86.1,8.54,38.5,38.5,No,
152 | 8/24/2011,07:59,Wednesday,GSK,49.07,127.1,58.5,71.5,8.54,50.3,41.1,No,Heavy volume on Derry
153 | 8/23/2011,17:23,Tuesday,Home,51.22,129.7,79.7,84.5,8.54,38.5,36.4,No,
154 | 8/23/2011,07:54,Tuesday,GSK,49.20,124.5,71.0,76.7,8.54,41.6,38.5,No,
155 | 8/22/2011,16:44,Monday,Home,51.12,126.8,77.9,85.2,8.54,39.6,36.0,No,
156 | 8/22/2011,07:49,Monday,GSK,49.18,123.8,65.6,73.3,8.54,45.0,40.2,No,
157 | 8/19/2011,17:42,Friday,Home,51.09,126.5,78.1,81.6,8.37,39.3,37.6,No,
158 | 8/19/2011,07:05,Friday,GSK,49.18,123.0,72.0,81.4,8.37,41.0,36.3,No,Start early to run a batch
159 | 8/18/2011,17:05,Thursday,Home,50.97,129.6,66.6,76.2,8.37,45.9,40.2,No,
160 | 8/18/2011,08:11,Thursday,GSK,52.26,137.7,51.2,64.1,8.37,61.2,48.9,No,Accident at 403/highway 6; detour along Dundas
161 | 8/17/2011,17:17,Wednesday,Home,51.11,129.8,68.9,75.7,8.37,44.5,40.5,No,
162 | 8/17/2011,08:10,Wednesday,GSK,49.10,124.8,67.9,76.2,8.37,43.4,38.7,No,
163 | 8/16/2011,17:27,Tuesday,Home,51.14,133.4,82.4,87.0,8.37,37.2,35.3,No,
164 | 8/16/2011,08:15,Tuesday,GSK,49.14,131.7,75.0,80.2,8.37,39.3,36.7,No,
165 | 8/15/2011,17:38,Monday,Home,51.11,132.3,78.0,83.7,8.37,39.3,36.7,No,
166 | 8/15/2011,08:15,Monday,GSK,49.20,124.7,71.3,75.7,8.37,41.4,39.0,No,
167 | 8/12/2011,17:25,Friday,Home,55.57,127.7,69.6,77.1,8.54,47.9,43.2,No,Detour taken
168 | 8/12/2011,08:05,Friday,GSK,49.02,128.4,76.7,82.9,8.54,38.4,35.5,No,Must be Friday
169 | 8/11/2011,17:25,Thursday,Home,51.18,133.6,80.7,86.0,8.54,38.0,35.7,No,
170 | 8/11/2011,08:13,Thursday,GSK,48.99,125.5,68.3,79.5,8.54,43.0,37.0,No,
171 | 8/10/2011,17:14,Wednesday,Home,51.03,127.4,73.5,79.3,8.54,41.7,38.6,No,
172 | 8/10/2011,08:13,Wednesday,GSK,48.98,124.8,72.8,78.8,8.54,40.4,37.3,No,
173 | 8/9/2011,17:13,Tuesday,Home,51.15,127.1,72.1,82.3,8.54,42.5,37.3,No,
174 | 8/9/2011,08:15,Tuesday,GSK,49.08,134.8,60.5,67.2,8.54,48.7,43.8,No,Medium amount of rain
175 | 8/8/2011,17:05,Monday,Home,52.35,127.5,76.9,84.2,8.54,40.9,37.3,No,
176 | 8/8/2011,08:07,Monday,GSK,49.25,126.3,68.5,78.2,8.54,43.1,37.8,No,New tires
177 | 8/5/2011,17:00,Friday,Home,51.94,126.7,74.5,82.6,8.48,41.9,37.7,No,
178 | 8/5/2011,08:20,Friday,GSK,49.13,123.9,74.1,79.9,8.48,39.8,36.9,No,
179 | 8/4/2011,17:38,Thursday,Home,50.96,131.9,70.3,78.5,8.48,43.5,38.9,No,
180 | 8/4/2011,08:17,Thursday,GSK,49.12,122.4,71.5,77.3,8.48,41.2,38.2,No,
181 | 8/3/2011,17:14,Wednesday,Home,51.64,125.0,72.2,78.7,8.48,42.9,39.4,No,
182 | 8/3/2011,08:06,Wednesday,GSK,49.06,121.9,71.5,78.7,8.48,41.2,37.4,No,
183 | 8/2/2011,17:22,Tuesday,Home,51.16,124.2,76.3,83.2,8.48,40.2,36.9,No,
184 | 8/2/2011,07:38,Tuesday,GSK,53.48,124.9,68.8,78.8,8.48,46.7,40.7,No,Turn around on Derry
185 | 7/29/2011,20:31,Friday,Home,50.68,135.6,107.7,110.4,8.45,28.2,27.6,Yes,
186 | 7/29/2011,08:22,Friday,GSK,49.07,121.1,73.2,77.7,8.45,40.2,37.9,No,Empty roads
187 | 7/28/2011,17:46,Thursday,Home,51.09,128.5,76.0,84.8,8.45,40.3,36.2,No,
188 | 7/28/2011,08:11,Thursday,GSK,49.11,120.1,69.1,73.1,8.45,42.6,40.3,No,
189 | 7/27/2011,17:24,Wednesday,Home,50.98,124.9,68.3,71.9,8.45,44.8,42.6,No,Police slowdown on 403
190 | 7/27/2011,08:15,Wednesday,GSK,48.82,124.5,70.4,77.8,8.45,41.6,37.6,No,
191 | 7/26/2011,17:15,Tuesday,Home,51.28,122.1,43.7,51.5,8.45,70.5,59.8,No,Accident blocked 407 exit
192 | 7/26/2011,08:11,Tuesday,GSK,49.16,122.6,71.9,76.8,8.45,41.0,38.4,No,
193 | 7/25/2011,16:59,Monday,Home,51.05,126.6,70.4,78.8,8.45,51.1,38.9,No,
194 | 7/25/2011,08:06,Monday,GSK,48.32,121.2,63.4,78.4,8.45,45.7,37.0,No,
195 | 7/22/2011,16:47,Friday,Home,51.24,126.3,75.8,81.8,8.28,40.6,37.6,No,
196 | 7/22/2011,08:28,Friday,GSK,51.05,123.3,88.9,96.7,8.28,34.5,31.7,Yes,
197 | 7/21/2011,07:59,Thursday,GSK,48.35,129.3,81.5,89.0,8.28,35.6,32.6,Yes,
198 | 7/20/2011,17:17,Wednesday,Home,53.47,124.0,58.6,71.0,7.89,54.8,45.2,No,
199 | 7/20/2011,08:24,Wednesday,GSK,48.50,125.8,75.7,87.3,7.89,38.5,33.3,Yes,
200 | 7/19/2011,17:17,Tuesday,Home,51.16,126.7,92.2,102.6,7.89,33.3,29.9,Yes,
201 | 7/19/2011,08:11,Tuesday,GSK,50.96,124.3,82.3,96.4,7.89,37.2,31.7,Yes,
202 | 7/18/2011,08:09,Monday,GSK,54.52,125.6,49.9,82.4,7.89,65.5,39.7,No,
203 | 7/14/2011,08:03,Thursday,GSK,50.90,123.7,76.2,95.1,7.89,40.1,32.1,Yes,
204 | 7/13/2011,17:08,Wednesday,Home,51.96,132.6,57.5,76.7,,54.2,40.6,Yes,
205 | 7/12/2011,17:51,Tuesday,Home,53.28,125.8,61.6,87.6,,51.9,36.5,Yes,
206 | 7/11/2011,16:56,Monday,Home,51.73,125.0,62.8,92.5,,49.5,33.6,Yes,
--------------------------------------------------------------------------------
/extra_credit_roc.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# ROC Curve\n",
8 | "\n",
9 | "Logistic Regression doesn't just predict which class a datapoint belongs to, it actually gives a probability. This is a value from 0 to 1 which indicates the probability of it belonging to class 1. We typically say if the value is 0.5 or above it belongs in class 1, and if the value is below 0.5 we put it in class 0.\n",
10 | "\n",
11 | "However, we can vary this threshold which will affect the precision and recall values. Varying the threshold gives us an infinite number of models. We plot two values, one of which is the recall. The other is the false positive rate, which catches the same idea as the precision.\n",
12 | "\n",
13 | "Here are the two values (and their many names):\n",
14 | "\n",
15 | "* **True Positive Rate (Sensitivity, Recall)**\n",
16 | "\n",
17 | " ```\n",
18 | " number predicted positively that are truely positive\n",
19 | " ------------------------------------------------------\n",
20 | " number truely positive\n",
21 | " ```\n",
22 | "\n",
23 | "* **False Positive Rate (1 - Specificity)**\n",
24 | "\n",
25 | " ```\n",
26 | " number predicted positively that are incorrect\n",
27 | " ------------------------------------------------\n",
28 | " number truely negative\n",
29 | " ```"
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "Follow the [sklearn's example](http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html) to build an ROC curve for one or both of the example datasets we've used for classification."
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": null,
42 | "metadata": {
43 | "collapsed": false
44 | },
45 | "outputs": [],
46 | "source": []
47 | }
48 | ],
49 | "metadata": {
50 | "kernelspec": {
51 | "display_name": "Python 2",
52 | "language": "python",
53 | "name": "python2"
54 | },
55 | "language_info": {
56 | "codemirror_mode": {
57 | "name": "ipython",
58 | "version": 2
59 | },
60 | "file_extension": ".py",
61 | "mimetype": "text/x-python",
62 | "name": "python",
63 | "nbconvert_exporter": "python",
64 | "pygments_lexer": "ipython2",
65 | "version": "2.7.9"
66 | }
67 | },
68 | "nbformat": 4,
69 | "nbformat_minor": 0
70 | }
71 |
--------------------------------------------------------------------------------
/images/classification.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GalvanizeDataScience/ml-workshop/3517b067211423dc559eeb3bb2dd6560094c62fb/images/classification.png
--------------------------------------------------------------------------------
/images/dtree.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GalvanizeDataScience/ml-workshop/3517b067211423dc559eeb3bb2dd6560094c62fb/images/dtree.gif
--------------------------------------------------------------------------------
/images/knn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GalvanizeDataScience/ml-workshop/3517b067211423dc559eeb3bb2dd6560094c62fb/images/knn.png
--------------------------------------------------------------------------------
/images/linear_regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GalvanizeDataScience/ml-workshop/3517b067211423dc559eeb3bb2dd6560094c62fb/images/linear_regression.png
--------------------------------------------------------------------------------
/images/linear_regression_line.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GalvanizeDataScience/ml-workshop/3517b067211423dc559eeb3bb2dd6560094c62fb/images/linear_regression_line.png
--------------------------------------------------------------------------------
/images/logistic_regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GalvanizeDataScience/ml-workshop/3517b067211423dc559eeb3bb2dd6560094c62fb/images/logistic_regression.png
--------------------------------------------------------------------------------
/regression_exercise.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Travel times\n",
8 | "##Description:\t\n",
9 | "A driver uses an app to track GPS coordinates as he drives to work and back each day. The app collects the location and elevation data. Data for about 200 trips are summarized in this data set.\n",
10 | "##Data source:\t\n",
11 | "* Date of travel\n",
12 | "* StartTime: when getting into the car\n",
13 | "* DayOfWeek: the day name\n",
14 | "* GoingTo: direction of travel\n",
15 | "* Distance travelled in kilometers\n",
16 | "* MaxSpeed: fastest speed recorded (all trips are on the 407 highway for some portion)\n",
17 | "* AvgSpeed: the average speed for the entire trip\n",
18 | "* AvgMovingSpeed: the average speed recorded only while the car is moving\n",
19 | "* FuelEconomy: a rough estimate of fuel economy (it is inaccurate)\n",
20 | "* TotalTime: duration of the entire trip, in minutes\n",
21 | "* MovingTime: duration when the car was considered to be moving (i.e. not counting traffic delays, accidents, or time while the car is stationary)\n",
22 | "* Take407All: is Yes if the 407 toll highway was taken for the entire trip. I try to avoid taking the 407, taking slower back routes to save costs. But some days I'm running late, or just lazy, and take it all the way.\n",
23 | "\n",
24 | "##Comments\n",
25 | "* Data shape:\t205 rows and 13 columns\n",
26 | "* Usage restrictions:\tNone\n",
27 | "* Contact person:\tKevin Dunn\n",
28 | "* Contact details:\tdatasets@connectmv.com\n",
29 | "* Added here on:\t17 September 2015\n",
30 | "* Last updated:\t09 January 2012 13:21\n",
31 | "\n",
32 | "#Task\n",
33 | "\n",
34 | "Build a regression model to predict the total travel time.\n",
35 | "\n",
36 | "##Extension\n",
37 | "Many of the data points in this data set are only available _after_ the drive. But what if we want to predict how long it will take _before_ we leave?\n",
38 | "\n",
39 | "Build a model that makes a prediction based only on data available to the driver _before_ they leave?"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": 1,
45 | "metadata": {
46 | "collapsed": false
47 | },
48 | "outputs": [
49 | {
50 | "name": "stdout",
51 | "output_type": "stream",
52 | "text": [
53 | "Populating the interactive namespace from numpy and matplotlib\n"
54 | ]
55 | }
56 | ],
57 | "source": [
58 | "import pandas as pd\n",
59 | "import numpy as np\n",
60 | "import matplotlib.pyplot as plt\n",
61 | "%pylab inline"
62 | ]
63 | },
64 | {
65 | "cell_type": "markdown",
66 | "metadata": {},
67 | "source": [
68 | "##1. Read the data into a data frame using pandas."
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": null,
74 | "metadata": {
75 | "collapsed": false
76 | },
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "##2. Create X and y matrices\n",
85 | "\n",
86 | "Take only the columns which have numeric values and make that the `X` matrix. Make the `TotalTime` the `y` vector. Make sure that the Total Time *isn't* in your X matrix!"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": null,
92 | "metadata": {
93 | "collapsed": false
94 | },
95 | "outputs": [],
96 | "source": []
97 | },
98 | {
99 | "cell_type": "markdown",
100 | "metadata": {},
101 | "source": [
102 | "##3. Build a baseline KNN model with k=10"
103 | ]
104 | },
105 | {
106 | "cell_type": "code",
107 | "execution_count": 2,
108 | "metadata": {
109 | "collapsed": false
110 | },
111 | "outputs": [],
112 | "source": [
113 | "from sklearn.neighbors import KNeighborsRegressor\n",
114 | "\n"
115 | ]
116 | },
117 | {
118 | "cell_type": "markdown",
119 | "metadata": {},
120 | "source": [
121 | "## 4. Calculate the root mean squared error of the baseline."
122 | ]
123 | },
124 | {
125 | "cell_type": "code",
126 | "execution_count": 3,
127 | "metadata": {
128 | "collapsed": false
129 | },
130 | "outputs": [],
131 | "source": [
132 | "from sklearn.metrics import mean_squared_error\n",
133 | "\n"
134 | ]
135 | },
136 | {
137 | "cell_type": "markdown",
138 | "metadata": {},
139 | "source": [
140 | "## Challenge 1: Use Cross-Validation to compare performance of different values of k."
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": 4,
146 | "metadata": {
147 | "collapsed": false
148 | },
149 | "outputs": [],
150 | "source": [
151 | "from sklearn.cross_validation import KFold\n",
152 | "\n",
153 | "# function from lecture notes\n",
154 | "def kfold_cv_error(model, X, y, folds):\n",
155 | " test_error = []\n",
156 | " for train_index, test_index in folds:\n",
157 | " model.fit(X[train_index], y[train_index])\n",
158 | " predict = model.predict(X[test_index])\n",
159 | " fold_error = np.sqrt(mean_squared_error(y[test_index], predict))\n",
160 | " test_error.append(fold_error)\n",
161 | " return np.mean(test_error)\n",
162 | "\n"
163 | ]
164 | },
165 | {
166 | "cell_type": "markdown",
167 | "metadata": {
168 | "collapsed": true
169 | },
170 | "source": [
171 | "## Challenge 2: Transform non-numeric data\n",
172 | "\n",
173 | "* Make the `Take407All` variable a boolean column.\n",
174 | "* Make the `GoingTo` column a boolean column.\n",
175 | "* Make the pandas function `get_dummies` to create dummy columns for the DayOfWeek"
176 | ]
177 | },
178 | {
179 | "cell_type": "code",
180 | "execution_count": null,
181 | "metadata": {
182 | "collapsed": false
183 | },
184 | "outputs": [],
185 | "source": []
186 | }
187 | ],
188 | "metadata": {
189 | "kernelspec": {
190 | "display_name": "Python 2",
191 | "language": "python",
192 | "name": "python2"
193 | },
194 | "language_info": {
195 | "codemirror_mode": {
196 | "name": "ipython",
197 | "version": 2
198 | },
199 | "file_extension": ".py",
200 | "mimetype": "text/x-python",
201 | "name": "python",
202 | "nbconvert_exporter": "python",
203 | "pygments_lexer": "ipython2",
204 | "version": "2.7.9"
205 | }
206 | },
207 | "nbformat": 4,
208 | "nbformat_minor": 0
209 | }
210 |
--------------------------------------------------------------------------------
/regression_exercise_soln.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Travel times\n",
8 | "##Description:\t\n",
9 | "A driver uses an app to track GPS coordinates as he drives to work and back each day. The app collects the location and elevation data. Data for about 200 trips are summarized in this data set.\n",
10 | "##Data source:\t\n",
11 | "* Date of travel\n",
12 | "* StartTime: when getting into the car\n",
13 | "* DayOfWeek: the day name\n",
14 | "* GoingTo: direction of travel\n",
15 | "* Distance travelled in kilometers\n",
16 | "* MaxSpeed: fastest speed recorded (all trips are on the 407 highway for some portion)\n",
17 | "* AvgSpeed: the average speed for the entire trip\n",
18 | "* AvgMovingSpeed: the average speed recorded only while the car is moving\n",
19 | "* FuelEconomy: a rough estimate of fuel economy (it is inaccurate)\n",
20 | "* TotalTime: duration of the entire trip, in minutes\n",
21 | "* MovingTime: duration when the car was considered to be moving (i.e. not counting traffic delays, accidents, or time while the car is stationary)\n",
22 | "* Take407All: is Yes if the 407 toll highway was taken for the entire trip. I try to avoid taking the 407, taking slower back routes to save costs. But some days I'm running late, or just lazy, and take it all the way.\n",
23 | "\n",
24 | "##Comments\n",
25 | "* Data shape:\t205 rows and 13 columns\n",
26 | "* Usage restrictions:\tNone\n",
27 | "* Contact person:\tKevin Dunn\n",
28 | "* Contact details:\tdatasets@connectmv.com\n",
29 | "* Added here on:\t17 September 2015\n",
30 | "* Last updated:\t09 January 2012 13:21\n",
31 | "\n",
32 | "#Task\n",
33 | "\n",
34 | "Build a regression model to predict the total travel time.\n",
35 | "\n",
36 | "##Extension\n",
37 | "Many of the data points in this data set are only available _after_ the drive. But what if we want to predict how long it will take _before_ we leave?\n",
38 | "\n",
39 | "Build a model that makes a prediction based only on data available to the driver _before_ they leave?"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": 1,
45 | "metadata": {
46 | "collapsed": false
47 | },
48 | "outputs": [
49 | {
50 | "name": "stdout",
51 | "output_type": "stream",
52 | "text": [
53 | "Populating the interactive namespace from numpy and matplotlib\n"
54 | ]
55 | }
56 | ],
57 | "source": [
58 | "import pandas as pd\n",
59 | "import numpy as np\n",
60 | "import matplotlib.pyplot as plt\n",
61 | "%pylab inline"
62 | ]
63 | },
64 | {
65 | "cell_type": "markdown",
66 | "metadata": {},
67 | "source": [
68 | "##1. Read the data into a data frame using pandas."
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": 2,
74 | "metadata": {
75 | "collapsed": false
76 | },
77 | "outputs": [
78 | {
79 | "data": {
80 | "text/html": [
81 | "\n",
82 | "
\n",
83 | " \n",
84 | " \n",
85 | " | \n",
86 | " Date | \n",
87 | " StartTime | \n",
88 | " DayOfWeek | \n",
89 | " GoingTo | \n",
90 | " Distance | \n",
91 | " MaxSpeed | \n",
92 | " AvgSpeed | \n",
93 | " AvgMovingSpeed | \n",
94 | " FuelEconomy | \n",
95 | " TotalTime | \n",
96 | " MovingTime | \n",
97 | " Take407All | \n",
98 | " Comments | \n",
99 | "
\n",
100 | " \n",
101 | " \n",
102 | " \n",
103 | " 0 | \n",
104 | " 1/6/2012 | \n",
105 | " 16:37 | \n",
106 | " Friday | \n",
107 | " Home | \n",
108 | " 51.29 | \n",
109 | " 127.4 | \n",
110 | " 78.3 | \n",
111 | " 84.8 | \n",
112 | " NaN | \n",
113 | " 39.3 | \n",
114 | " 36.3 | \n",
115 | " No | \n",
116 | " NaN | \n",
117 | "
\n",
118 | " \n",
119 | " 1 | \n",
120 | " 1/6/2012 | \n",
121 | " 08:20 | \n",
122 | " Friday | \n",
123 | " GSK | \n",
124 | " 51.63 | \n",
125 | " 130.3 | \n",
126 | " 81.8 | \n",
127 | " 88.9 | \n",
128 | " NaN | \n",
129 | " 37.9 | \n",
130 | " 34.9 | \n",
131 | " No | \n",
132 | " NaN | \n",
133 | "
\n",
134 | " \n",
135 | " 2 | \n",
136 | " 1/4/2012 | \n",
137 | " 16:17 | \n",
138 | " Wednesday | \n",
139 | " Home | \n",
140 | " 51.27 | \n",
141 | " 127.4 | \n",
142 | " 82.0 | \n",
143 | " 85.8 | \n",
144 | " NaN | \n",
145 | " 37.5 | \n",
146 | " 35.9 | \n",
147 | " No | \n",
148 | " NaN | \n",
149 | "
\n",
150 | " \n",
151 | " 3 | \n",
152 | " 1/4/2012 | \n",
153 | " 07:53 | \n",
154 | " Wednesday | \n",
155 | " GSK | \n",
156 | " 49.17 | \n",
157 | " 132.3 | \n",
158 | " 74.2 | \n",
159 | " 82.9 | \n",
160 | " NaN | \n",
161 | " 39.8 | \n",
162 | " 35.6 | \n",
163 | " No | \n",
164 | " NaN | \n",
165 | "
\n",
166 | " \n",
167 | " 4 | \n",
168 | " 1/3/2012 | \n",
169 | " 18:57 | \n",
170 | " Tuesday | \n",
171 | " Home | \n",
172 | " 51.15 | \n",
173 | " 136.2 | \n",
174 | " 83.4 | \n",
175 | " 88.1 | \n",
176 | " NaN | \n",
177 | " 36.8 | \n",
178 | " 34.8 | \n",
179 | " No | \n",
180 | " NaN | \n",
181 | "
\n",
182 | " \n",
183 | "
\n",
184 | "
"
185 | ],
186 | "text/plain": [
187 | " Date StartTime DayOfWeek GoingTo Distance MaxSpeed AvgSpeed \\\n",
188 | "0 1/6/2012 16:37 Friday Home 51.29 127.4 78.3 \n",
189 | "1 1/6/2012 08:20 Friday GSK 51.63 130.3 81.8 \n",
190 | "2 1/4/2012 16:17 Wednesday Home 51.27 127.4 82.0 \n",
191 | "3 1/4/2012 07:53 Wednesday GSK 49.17 132.3 74.2 \n",
192 | "4 1/3/2012 18:57 Tuesday Home 51.15 136.2 83.4 \n",
193 | "\n",
194 | " AvgMovingSpeed FuelEconomy TotalTime MovingTime Take407All Comments \n",
195 | "0 84.8 NaN 39.3 36.3 No NaN \n",
196 | "1 88.9 NaN 37.9 34.9 No NaN \n",
197 | "2 85.8 NaN 37.5 35.9 No NaN \n",
198 | "3 82.9 NaN 39.8 35.6 No NaN \n",
199 | "4 88.1 NaN 36.8 34.8 No NaN "
200 | ]
201 | },
202 | "execution_count": 2,
203 | "metadata": {},
204 | "output_type": "execute_result"
205 | }
206 | ],
207 | "source": [
208 | "df = pd.read_csv('data/travel-times.csv')\n",
209 | "df.head()"
210 | ]
211 | },
212 | {
213 | "cell_type": "markdown",
214 | "metadata": {},
215 | "source": [
216 | "##2. Create X and y matrices\n",
217 | "\n",
218 | "Take only the columns which have numeric values and make that the `X` matrix. Make the `TotalTime` the `y` vector. Make sure that the Total Time *isn't* in your X matrix!"
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": 3,
224 | "metadata": {
225 | "collapsed": false
226 | },
227 | "outputs": [],
228 | "source": [
229 | "regression_columns = ['Distance', 'MaxSpeed', 'AvgSpeed', 'AvgMovingSpeed', 'MovingTime']\n",
230 | "X = df[regression_columns].values\n",
231 | "y = df['TotalTime'].values"
232 | ]
233 | },
234 | {
235 | "cell_type": "markdown",
236 | "metadata": {},
237 | "source": [
238 | "##3. Build a baseline KNN model with k=10"
239 | ]
240 | },
241 | {
242 | "cell_type": "code",
243 | "execution_count": 4,
244 | "metadata": {
245 | "collapsed": false
246 | },
247 | "outputs": [
248 | {
249 | "data": {
250 | "text/plain": [
251 | "KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',\n",
252 | " metric_params=None, n_neighbors=10, p=2, weights='uniform')"
253 | ]
254 | },
255 | "execution_count": 4,
256 | "metadata": {},
257 | "output_type": "execute_result"
258 | }
259 | ],
260 | "source": [
261 | "from sklearn.neighbors import KNeighborsRegressor\n",
262 | "\n",
263 | "baseline = KNeighborsRegressor(n_neighbors=10)\n",
264 | "baseline.fit(X, y)"
265 | ]
266 | },
267 | {
268 | "cell_type": "markdown",
269 | "metadata": {},
270 | "source": [
271 | "## 4. Calculate the root mean squared error of the baseline."
272 | ]
273 | },
274 | {
275 | "cell_type": "code",
276 | "execution_count": 5,
277 | "metadata": {
278 | "collapsed": false
279 | },
280 | "outputs": [
281 | {
282 | "data": {
283 | "text/plain": [
284 | "2.7731230083629885"
285 | ]
286 | },
287 | "execution_count": 5,
288 | "metadata": {},
289 | "output_type": "execute_result"
290 | }
291 | ],
292 | "source": [
293 | "from sklearn.metrics import mean_squared_error\n",
294 | "\n",
295 | "predict = baseline.predict(X)\n",
296 | "np.sqrt(mean_squared_error(predict, df.TotalTime))"
297 | ]
298 | },
299 | {
300 | "cell_type": "markdown",
301 | "metadata": {},
302 | "source": [
303 | "## Challenge 1: Use Cross-Validation to compare performance of different values of k."
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": 6,
309 | "metadata": {
310 | "collapsed": false
311 | },
312 | "outputs": [
313 | {
314 | "data": {
315 | "text/plain": [
316 | "[]"
317 | ]
318 | },
319 | "execution_count": 6,
320 | "metadata": {},
321 | "output_type": "execute_result"
322 | },
323 | {
324 | "data": {
325 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG4RJREFUeJzt3XuUXFWd9vHvI4abCTeRBCQxakCQiRIcUEClIdwCAnFk\nEhCUm8ggGIgjI2ReIToqvvOqgKBMQIQoDPcBIgIKQlBQcIEJ4RIuEnwBJdy9hJsBfvPHPpG26a6u\n6q6qXefU81kry+qq03V+qy2e3v07e++jiMDMzKrhDbkLMDOz5nGom5lViEPdzKxCHOpmZhXiUDcz\nqxCHuplZhdQMdUljJd0g6W5Jd0ma0c8x60q6RtLC4pgDW1atmZnVpFrz1CWNAcZExEJJI4HbgakR\nsbjXMbOBVSLiOEnrAvcBoyPi5daWbmZmfdUcqUfE0ohYWDxeBiwGNuhz2GPAGsXjNYCnHehmZnm8\nsd4DJY0HJgG39nnpTOB6SX8ARgHTmlWcmZk1pq4LpUXr5RLgqGLE3tssYGFEbABsDnxH0qjmlmlm\nZvUYdKQuaQRwKXBuRFzezyHbAF8FiIgHJT0EvAu4rc/7eJMZM7MhiAjVe2zNUJck4Czgnog4eYDD\n7gV2BG6WNJoU6EuGW5jVJml2RMzOXUcV+GfZXP55NlejA+LBRurbAvsDiyQtKJ6bBYwDiIg5wNeA\nsyXdQWrn/FtEPNNQ1WZm1hQ1Qz0ibmLwGTJPAXs0sygzMxsarygtr/m5C6iQ+bkLqJj5uQvoZjUX\nHzX1RFK4p25m1phGs9MjdTOzCnGom5lViEPdzKxCHOpmZhXiUDczawGJVaT2Z6xD3cysySTeAtxA\nhg0OHepmZk0ksQlwC3A9cFG7z1/31rtmZlabxA7A+cAXIjgnRw0OdTOzJpA4CPg6MD0i36pah7qZ\n2TAUF0O/QuqffziC+3LW41A3MxsiidWAc4ANga0jeDJvRb5QamY2JBLrkS6GvgJM7oRAB4e6mVnD\nJDYlzXC5Ftgvghczl/Q3br+YmTVAYjLw38AxEfwgdz19eaRuZlYniUNIgT6tEwMdPFI3MxtUMcPl\nq8DedMAMl1oc6mZmNRQzXOYC65NmuDyVuaSa3H4xMxuAxGjSHi7LgR07PdDBoW5m1i+Jd5NmuFwD\n7B/BS5lLqovbL2ZmvUisD+wLHAv8awQ/zFxSQzxSN7OuJzFK4pMSPwXuASYCu5Ut0MEjdTPrUhIj\ngF2A/YApwI3A94C9InghZ23DoYhoz4mkiAi15WRmZv2QEPABUpBPA+4HzgMu7tSLoI1mp0fqZlZ5\nEu8iBfl+wF+Bc4H3R/BQ1sJawKFuZpVUTEfcB9iftIvi+aTR+W8iaE+LIgO3X8ysUiQ2BM4Atgbm\nkUbl10fwStbChsjtFzPrWhLjSNvhzgX2juD5zCW1nUPdzCpBYjwp0E+N4KTM5WTjUDez0pN4B/Az\n4JsRnJa7npy8+MjMSk1iAml/lv/s9kAHh7qZlZjExqRA/0oEp+eupxO4/WJmpSSxCXAdcHwE389d\nT6dwqJtZ6UhsBvwUOK5T70CUi0PdzEpFYiIp0D8fwXm56+k0NXvqksZKukHS3ZLukjSjn2M+L2lB\n8e9OSS9LWqt1JZtZt5J4LynQj3ag96/milJJY4AxEbFQ0kjgdmBqRCwe4PiPAEdHxI79vOYVpWY2\nZBJbAFcBR0ZwSe562qXR7Kw5Uo+IpRGxsHi8DFgMbFDjWz5O2l/BzKxpJLYErgYO76ZAH4q6936R\nNJ603/BmRcD3fX114BHgnRHxx35e90jdzBom8QHSHi6fimBe7nrarSV7vxStl0uAo/oL9MIewE39\nBXqv95nd68v5ETG/zjrNrAtJbANcDhwUwY9z19MOknqAniF//2AjdUkjgCuBqyPi5BrHXQZcGBEX\nDPC6R+pmVjeJDwGXAp+I4Ce568ml0ewc7EKpSLudPR0RM2sctyawBNgwIvq9DZRD3czqJdEDXAzs\nG8F1mcvJqtntl21JG8wvkrSgeG4WMA4gIuYUz00FfjJQoJuZ1UtiMnABMD2C63PXUza+SYaZdYxi\nL5ebSXuh35i7nk7Q1CmNZmbtIrEacBHwRQf60HmkbmYdQeK/gLVIffTK3kO0Ub6dnZmVjsS+wGTg\nfQ704XGom1lWRR/928DOEfw5dz1l5566mWXTp4++YLDjbXDuqZtZNu6jD849dTMrBYl9cB+96Rzq\nZtZ2EhuR+ui7uI/eXO6pm1lbSaxK2gLgePfRm680oS5xjcTquesws2E7CbgPmDPYgda4MrVfxgET\ngEW5CzGzoSn66DviPnrLlGakDjwAbJS7CDMbmqKPfiowzX301nGom1nLuY/ePg51M2uHFX30/8pd\nSNU51M2spXr10Q91H731ynSh1KFuVjK9+uje16VNyjRS/z2wpsSo3IWY2eDcR8+jNKEewavAg6Rp\njWbW+dxHz6BM7Rd4rQXj3/pmHUxiOp6PnkVZQ93MOlSvPrr3dcmgNO2XgkPdrIMVffSLgBPcR8/D\noW5mTSGxCjCX9N+p++iZONTNbNgk1gZ+QmrpHuA+ej5lC/XHgNUl1sxdiJklEuOBm4HfkPZ1eSFv\nRd2tVKFe/Pb/LR6tm3UEiX8kBfrpEXwugldy19TtShXqBbdgzDqAxB7A1cBnIjg1dz2WlG1KIzjU\nzbKTOAL4d2D3CH6dux57TVlDfYfcRZh1I4k3AP8JfAT4YARLMpdkfbj9YmZ1kVgNuBDYEtjGgd6Z\nHOpmNiiJdYHrgOWkHRefyVySDaCMof4EMEJindyFmHUDiQnAr4Abgf0jeClzSVZD6UK9mNbo0bpZ\nG0hsA9wE/L8IZhW7pVoHK12oFxzqZi0m8THgCuCgCM7IXY/Vp4yzX8ChbtYyEgJmAp8j9c+9MVeJ\nlDnUd81dhFnVSKwEnAxsT5rh8nDmkqxBNdsvksZKukHS3ZLukjRjgON6JC0ojpnfkkr/nkfqZk0m\nsTrwP8CmwLYO9HJSxMCbqUkaA4yJiIWSRgK3A1MjYnGvY9Yi7f2wS0Q8KmndiHiqn/eKiFBTik7T\nq34LrO3d4MyGrxihXw78BTgwgr9mLskKjWZnzZF6RCyNiIXF42XAYmCDPod9HLg0Ih4tjntdoLfA\n00AA67bhXGaVVvTQTwFWJW2b60Avsbpnv0gaD0wCbu3z0kbAOkWb5jZJn2heef3ztEazpvocsB2w\ndwTLcxdjw1PXhdKi9XIJcFQxYu9tBLAFMBlYHfiVpFsi4oGmVvp6K0L9ly0+j1llSexNmumydQR/\nyl2PDd+goS5pBHApcG5EXN7PIY8AT0XEC8ALkn4OvJcUun3fa3avL+dHxPyhFF3wSN1sGCS2Br5L\nukH0I7nrsURSD9Az5O8f5EKpSPccfDoiZg5wzCbAacAuwCqk9sz0iLinz3FNu1Ca3o/9gD0jmN6s\n9zTrFsXS/18AB0dwde56bGCNZudgI/Vtgf2BRZJWLECYBYwDiIg5EXGvpGuARcCrwJl9A71FPFI3\nG4Ji9thVwGwHevXUHKk39UTNH6mvDTwMrOFpjWb1kViVtNviTREcm7seG1xTpzR2sgieBV4CRueu\nxawMihtc/IB0HWxW5nKsRcq6TcAKK1owS3MXYlYCJwLrAzt5t8XqKu1IveC+ulkdJP4FmApMjeDF\n3PVY61RlpG5mA5DYHTiBdE/Rp3PXY63lkbpZhUlsAZwDfDSCBzOXY23gUDerKIlxwDzgsAhuyV2P\ntUdppzSm92QN4DFgpKc1mr1GYi3SbejOiuCk3PXY0HXNlEaACP4MLOP1O0eadS2JlUlbe1xPuuGF\ndZFSh3rBLRizQrGN7hmkwc5M/wXbfRzqZtVyPLAZ8PEIXsldjLVf2ac0gkPdDACJA4ADSNvoPpe7\nHsujKqH+8dxFmOUgsQ7wUWA6acvrnggez1uV5eT2i1nJSKwp8UmJHwMPAbsB3wPeEcHi2t9tVVfq\nKY3pfRkJPAm8yftZWFUVn/OPkEbkOwA3AhcC8yL4S87arLWavZ96x4tgmcSzwIakrXjNKkFiNdIo\nfDrpJjS/JAX5QRH8MWdt1rlKH+qFFS0Yh7qVmsQqpACfDuwO3EYK8sO9b4vVo2qh/rPchZgNhcQH\ngUOAvYA7SUH+OV/0tEZV4UIp+GKplZjEQcBFwB3AxAi2i+C7DnQbiiqN1LfNXYRZoyQ+CxwDbB/B\nfbnrsfKrUqh7pG6lUSznPw44GPhwBL/LW5FVRemnNKb3ZnXgGdK0Ri+Nto5WBPqJpCmKO0XwWOaS\nrIN11S6NK0TwPGmu+rjctZjVUtz8+TRgMrCdA92arRKhXnALxjqaxBuBs4GJwGRPUbRWcKibtUEx\n//xCYAywa3EvALOmc6ibtVhxzecKQMCeRbvQrCUc6mYtVNxy8RrgCWBaBC9lLskqzqFu1iISbyat\ncr4LODCClzOXZF2gSqG+BBhXXIwyy0pifdJOitcDR3gHUWuXyoR6BC8CS4HxmUuxLifxNuDnwPnA\nsb5PqLVTZUK94BaMZSWxMSnQT4vgqw50azeHulmTSLwHmA98KYJTMpdjXapq/WeHumUh8X5gHjAj\nggtz12PdyyN1s2GS6AF+BBzsQLfcHOpmwyCxG2kv9OkR/Dh3PWaV2KXxtXOwMvAXYFQEf23lucwk\n/pm0OddeEdySux6rpq7cpXGFIsgfBd6euxarNokDgW8DOzvQrZPUDHVJYyXdIOluSXdJmtHPMT2S\n/iRpQfHv/7Su3Lq4BWMtJXEk8GXS3YruyF2PWW+DzX5ZDsyMiIWSRgK3S7o2Ihb3Oe7GiNizNSU2\nzKFuLSNxHPAp0l7oD+Wux6yvmqEeEUtJqzSJiGWSFgMbAH1DvaW98gY9AGySuwirluJuRV8F9gI+\nFMEfMpdk1q+6e+qSxgOTgFv7vBTANpLukHSVpHc3r7wh8Ujdmqq4W9EpwC6kEboD3TpWXYuPitbL\nJcBREbGsz8u/AcZGxPOSpgCXAxs3t8yGONStaSRWAr5H+kztEMGfMpdkVtOgUxoljQCuBK6OiJMH\nfUPpIeB9EfFMn+cD+FKvp+ZHxPyGKx70/LwRWAasVWzyZTYkxRTZc4G1gakRPJe5JOsCknqAnl5P\nndDIlMaaoS5JwFzg6YiYOcAxo4EnIiIkbQVcFBHj+zmu5fPUXzsX95P+I7ynHeez6pFYjfTX6cuk\nhUUeIFgWjWbnYO2XbYH9gUWSFhTPzQLGAUTEHGBv4HBJLwPPA/s0XHXzrWjBONStYRKjSPu4PAYc\nEMHyzCWZ1a1SK0pfOxcnA49G8I12nM+qQ2Id4GrgDuDwCF7JXJJ1ua5eUdqLL5ZawyRGAzcANwGH\nOdCtjBzqZoDEWNLNLS4DPu+bW1hZVW0/9RUc6lY3iQnAtaS7FX0zdz1mw1HVkfrDwFskVs9diHUu\nCUlMId2t6EQHulVBJUfqEbwi8RDwTuDO3PVYZymW/O8CzAZGAf8SwZVZizJrkkqGemFFC8ahbsDf\nwnxnUpivSVoMd4kviFqVdEOoW5crwnwnUpivRdo292KHuVVR1UP9H3MXYfkUYb4jKczXIYX5RQ5z\nq7Kqh/q+uYuw9ivCfDIpzNclhfmFDnPrBlUPdbdfukgR5juQwnw9Uphf4DC3blLJbQLS+XgDabfG\n9SLou12wVYjD3KrM2wQUIngVWAJMyF2LtY5ED3AjcDowB9gsgvMc6NatKhvqBbdgKkziENJ+52cC\n747g3AhezlyWWVZV7qmDQ72yJKaT2iw9ETyQux6zTuGRupWOxO7At4EpDnSzv+dQt1KR2B44B9gz\ngkWZyzHrOA51Kw2J9wMXAdMiuDV3PWadqOqh/gdgpMQauQux4ZF4D+kWcwdFcEPuesw6VaVDvbjR\nwW/xaL3UJDYGrgFmeDdFs9oqHeoFt2BKTGIc6QYWX4zgwtz1mHU6h7p1LIkxwHXASRGclbseszJw\nqFtHklgH+ClwbgQn567HrCwc6tZxJEYBV5FC/T8yl2NWKt0Q6r5QWiISqwFXAIuAY4qL3WZWp24I\n9aXAKhJr5y7EapMYAVxM+v/scAe6WeMqH+qe1lgOEisBPwReBQ7wLotmQ1P5UC+4r97Biv3Q5wBv\nIa0WXZ65JLPSqvoujSs41DtUEejfAjYDdorgxcwlmZWaR+qW2wnA9sBuvkOV2fA51C0LiTdLfAXY\nB9g5gmdz12RWBV0V6sWf+paJxAiJPSUuBR4E3gnsGMETmUszq4xu6ak/SfoF9mbgqcy1dJXiF+nm\nwAHAvsD9wFzg4Aj+lLM2syrqilCPIKS/tWAc6m0gsT6wHynMRwI/ALaJ4MGshZlVXFeEemFFqP8q\ndyFVJbEqsBcpyLcGLgOOBH4Rwas5azPrFt0Y6tZERXtla1KQ7w38htRe+ecInstZm1k36rZQ3z13\nEVUhsR7waeCTpFWgc4HNI3gka2FmXa7m7BdJYyXdIOluSXdJmlHj2C0lvSzpn5pfZlMsBt4ndc2M\nn5aRmAjcBowDPgFsGsGJDnSz/AYLuOXAzIjYDPgAcISkTfseJGkl4P+SbjnWqdMGbweeJbUIbIgk\nJgM/A74QwacjuNUbb5l1jpqhHhFLI2Jh8XgZabS7QT+Hfha4hDR1sCMVwXM8MLvYPMoaJHEA8N/A\n3hGcn7seM3u9ulsRksYDk4Bb+zz/VtKMh9OLpzp51PYT4I+kVYxWJwlJ6Rci0BPBzzOXZGYDqOtC\nqaSRpJH4UcWIvbeTgWMjIiSJGu0XSbN7fTk/IuY3Vu7wFPPVvwicLnFhBC+38/xlVOxxfgYwEdg6\ngqWZSzKrNEk9QM+Qvz+i9sBa0gjgSuDqiHjdvSIlLeG1IF8XeB44NCLm9TkuIiJ7v72Ygjcf+H4E\nczOX09Ek1iD9Mn8J2MdTFM3ar9HsrBnqxch7LvB0RMys4+RnAz+KiP8ZbmGtJLEd8H1gE+/d3T+J\nDYEfAzcDM/xXjVkejWbnYD31bYH9ge0lLSj+TZF0mKTDhlVpRhHcCDxEWjBjfUi8B/glcB5whAPd\nrDwGbb807UQdNFIHkNgGOB/YOIKXctfTKSR2IoX5ZyO4MHc9Zt2u2SP1yorgl8A9wMG5a+kUEgcB\n5wIfc6CblVPXjtQBJLYCLgU26ubbqBUXj08gLfnfLYJ7M5dkZgWP1BsQwa+BBaQ9TLqSxMrA2aR9\ncbZ2oJuVW1eP1AEkJpFmeUyI4Pnc9bSTxJqkKYsvAPt6yqJZ5/FIvUERLABuAQ7PXUs7FVMWf0G6\nE9FHHehm1dD1I3X4266D15JG65W/o73Eh0h7uJwCfNMbcpl1Lo/UhyCCO4EbgSNy19JKEmtIfAe4\nAPhMBN9woJtVi0P9NbOBfy2WxleOxG7AncAqwD9E8KPMJZlZC7j90ovEucC9EXwldy3NIrEucBJp\ndfCnI7guc0lm1gC3X4bny8DREmu14s0lJkjcI3GzxDSpdbcTLLbLnU4anT8JTHSgm1WfR+p9SJwN\nPBzBCU1+3y2BK4AvAU8BRwHjge8AZ0bwTBPP9Vbgu8AE4JAIbmnWe5tZe3mkPnz/ARwp8eZmvaHE\nFNJc+MMimBPBpRF8GJgKbAo8KDFHYrNhnkcShwILSYuqtnCgm3UXj9T7IXEG8FQEs5rwXgcCXyfN\nBf/VAMeMBg4jzZW/izTV8KoIXm3gPBNIN7MYSRqd3znM0s2sAzR1P/VmKlmov4000n1XxNDuu1rs\npzIL+BSwawT31fE9KwPTSK2ZtYBTgXMi+HON71kJOBo4DvgacEoErwylZjPrPA71JpH4LvBcBMcM\n4XtXAr5NmnEyJYLHGvx+AduQwn1H4AfAqRE82Oe4icBZwDLg0L6vm1n5uafePF8DDpEY08g3SawG\nXAy8C/hwo4EO6V6qEdwcwTTgvcCLwC0S8yQmS6wi8SXgeuBMYLID3czAI/WaJE4BIoKj6zx+HWAe\n8DBwYAR/bWItqwP7kUbvbyMF+mci+H2zzmFmncftlyYqRun3kOZ41wxPiXHANcBVwL81cpGzwZoE\nvANY4iX+ZtXnUG8yiW8Aq0ZwZI1jJpLC/FsRnNS24sys8hzqTSaxHrAYmBTBw/283gNcBMyI4II2\nl2dmFecLpU0WwROk+d//3vc1iWmkQN/HgW5mncAj9ToUq0vvB7aMYEnx3FHAMcDuEdyRsz4zqy63\nX1pE4svAhqTFRF8H9gR2ieD/Zy3MzCrNod4iEmsDDwA3A28B9ojg6bxVmVnVuafeIhE8S1qQ9CKw\nowPdzDqRR+pmZh3MI3Uzsy7mUDczqxCHuplZhTjUzcwqxKFuZlYhDnUzswpxqJuZVYhD3cysQhzq\nZmYVUjPUJY2VdIOkuyXdJWlGP8fsJekOSQsk3S5ph9aVa2ZmtdTcJkDSGGBMRCyUNBK4HZgaEYt7\nHfOmiHiueDwRuCwiJvTzXt4moIkk9UTE/Nx1VIF/ls3ln2dzNXWbgIhYGhELi8fLSHcA2qDPMc/1\n+nIk8FT95dow9OQuoEJ6chdQMT25C+hmb6z3QEnjgUnArf28NhU4EVgf2LlJtZmZWYPqulBatF4u\nAY4qRux/JyIuj4hNgT2AHza3RDMzq9egW+9KGgFcCVwdEScP+obSg8BWEfF0n+fbs8evmVnFNNJT\nr9l+kSTgLOCegQJd0juBJRERkrYoCnjdDSR8kdTMrPUG66lvC+wPLJK0oHhuFjAOICLmAB8DPilp\nObAM2KdFtZqZ2SDaducjMzNrvZavKJW0q6R7JT0g6QutPl/VSfqdpEXFYq9f566nbCR9X9Ljku7s\n9dw6kq6VdL+kn0paK2eNZTLAz3O2pEeLz+gCSbvmrLEsBlrs2ejns6WhLmkl4DRgV+DdwL6SNm3l\nObtAAD0RMSkitspdTAmdTfo89nYscG1EbAz8rPja6tPfzzOAbxWf0UkRcU2GuspoOTAzIjYDPgAc\nUeRlQ5/PVo/UtwJ+GxG/i4jlwAXAXi0+ZzfwRechiohfAM/2eXpPYG7xeC4wta1FldgAP0/wZ7Rh\nAyz2fCsNfj5bHepvBR7p9fWjxXM2dAFcJ+k2SYfmLqYiRkfE48Xjx4HROYupiM8We0Kd5XZW4/os\n9mzo89nqUPdV2ObbNiImAVNIf559KHdBVRJp5oA/t8NzOvB2YHPgMeCbecspl2Kx56WkxZ5/6f1a\nPZ/PVof674Gxvb4eSxqt2xBFxGPF/z4JXEZqcdnwPF5sXoek9YEnMtdTahHxRBSA7+HPaN2KxZ6X\nAj+MiMuLpxv6fLY61G8DNpI0XtLKwHRgXovPWVmSVpc0qnj8JtI+O3fW/i6rwzzggOLxAcDlNY61\nQRTBs8JH8We0LjUWezb0+Wz5PHVJU4CTgZWAsyLixJaesMIkvZ00Ooe0cOw8/zwbI+l8YDtgXVJ/\n8njgCuAi0qK63wHTIuKPuWosk35+nieQdmncnNQmeAg4rFdP2AYg6YPAz4FFvNZiOQ74NQ18Pr34\nyMysQnw7OzOzCnGom5lViEPdzKxCHOpmZhXiUDczqxCHuplZhTjUzcwqxKFuZlYh/ws+zuJ38tXT\npwAAAABJRU5ErkJggg==\n",
326 | "text/plain": [
327 | ""
328 | ]
329 | },
330 | "metadata": {},
331 | "output_type": "display_data"
332 | }
333 | ],
334 | "source": [
335 | "from sklearn.cross_validation import KFold\n",
336 | "\n",
337 | "# function from lecture notes\n",
338 | "def kfold_cv_error(model, X, y, folds):\n",
339 | " test_error = []\n",
340 | " for train_index, test_index in folds:\n",
341 | " model.fit(X[train_index], y[train_index])\n",
342 | " predict = model.predict(X[test_index])\n",
343 | " fold_error = np.sqrt(mean_squared_error(y[test_index], predict))\n",
344 | " test_error.append(fold_error)\n",
345 | " return np.mean(test_error)\n",
346 | "\n",
347 | "#What values of k to test.\n",
348 | "neighbors = range(1, 20)\n",
349 | "#What errors for those k\n",
350 | "folds = KFold(df.shape[0], n_folds=10)\n",
351 | "errors = [kfold_cv_error(KNeighborsRegressor(k), X, y, folds) for k in neighbors]\n",
352 | "\n",
353 | "plt.plot(neighbors, errors)"
354 | ]
355 | },
356 | {
357 | "cell_type": "markdown",
358 | "metadata": {
359 | "collapsed": true
360 | },
361 | "source": [
362 | "## Challenge 2: Transform non-numeric data\n",
363 | "\n",
364 | "* Make the `Take407All` variable a boolean column.\n",
365 | "* Make the `GoingTo` column a boolean column.\n",
366 | "* Make the pandas function `get_dummies` to create dummy columns for the DayOfWeek"
367 | ]
368 | },
369 | {
370 | "cell_type": "code",
371 | "execution_count": 7,
372 | "metadata": {
373 | "collapsed": false
374 | },
375 | "outputs": [
376 | {
377 | "data": {
378 | "text/html": [
379 | "\n",
380 | "
\n",
381 | " \n",
382 | " \n",
383 | " | \n",
384 | " Distance | \n",
385 | " MaxSpeed | \n",
386 | " AvgSpeed | \n",
387 | " AvgMovingSpeed | \n",
388 | " MovingTime | \n",
389 | " Friday | \n",
390 | " Monday | \n",
391 | " Thursday | \n",
392 | " Tuesday | \n",
393 | " Wednesday | \n",
394 | "
\n",
395 | " \n",
396 | " \n",
397 | " \n",
398 | " 0 | \n",
399 | " 51.29 | \n",
400 | " 127.4 | \n",
401 | " 78.3 | \n",
402 | " 84.8 | \n",
403 | " 36.3 | \n",
404 | " 1 | \n",
405 | " 0 | \n",
406 | " 0 | \n",
407 | " 0 | \n",
408 | " 0 | \n",
409 | "
\n",
410 | " \n",
411 | " 1 | \n",
412 | " 51.63 | \n",
413 | " 130.3 | \n",
414 | " 81.8 | \n",
415 | " 88.9 | \n",
416 | " 34.9 | \n",
417 | " 1 | \n",
418 | " 0 | \n",
419 | " 0 | \n",
420 | " 0 | \n",
421 | " 0 | \n",
422 | "
\n",
423 | " \n",
424 | " 2 | \n",
425 | " 51.27 | \n",
426 | " 127.4 | \n",
427 | " 82.0 | \n",
428 | " 85.8 | \n",
429 | " 35.9 | \n",
430 | " 0 | \n",
431 | " 0 | \n",
432 | " 0 | \n",
433 | " 0 | \n",
434 | " 1 | \n",
435 | "
\n",
436 | " \n",
437 | " 3 | \n",
438 | " 49.17 | \n",
439 | " 132.3 | \n",
440 | " 74.2 | \n",
441 | " 82.9 | \n",
442 | " 35.6 | \n",
443 | " 0 | \n",
444 | " 0 | \n",
445 | " 0 | \n",
446 | " 0 | \n",
447 | " 1 | \n",
448 | "
\n",
449 | " \n",
450 | " 4 | \n",
451 | " 51.15 | \n",
452 | " 136.2 | \n",
453 | " 83.4 | \n",
454 | " 88.1 | \n",
455 | " 34.8 | \n",
456 | " 0 | \n",
457 | " 0 | \n",
458 | " 0 | \n",
459 | " 1 | \n",
460 | " 0 | \n",
461 | "
\n",
462 | " \n",
463 | "
\n",
464 | "
"
465 | ],
466 | "text/plain": [
467 | " Distance MaxSpeed AvgSpeed AvgMovingSpeed MovingTime Friday Monday \\\n",
468 | "0 51.29 127.4 78.3 84.8 36.3 1 0 \n",
469 | "1 51.63 130.3 81.8 88.9 34.9 1 0 \n",
470 | "2 51.27 127.4 82.0 85.8 35.9 0 0 \n",
471 | "3 49.17 132.3 74.2 82.9 35.6 0 0 \n",
472 | "4 51.15 136.2 83.4 88.1 34.8 0 0 \n",
473 | "\n",
474 | " Thursday Tuesday Wednesday \n",
475 | "0 0 0 0 \n",
476 | "1 0 0 0 \n",
477 | "2 0 0 1 \n",
478 | "3 0 0 1 \n",
479 | "4 0 1 0 "
480 | ]
481 | },
482 | "execution_count": 7,
483 | "metadata": {},
484 | "output_type": "execute_result"
485 | }
486 | ],
487 | "source": [
488 | "df['Take407All_bool'] = df['Take407All'] == 'Yes'\n",
489 | "df['GoingHome_bool'] = df['GoingTo'] == 'Home'\n",
490 | "columns = regression_columns + ['Take407All_bool', 'GoingHome_bool']\n",
491 | "tt_transformed = pd.concat([df[regression_columns],\n",
492 | " pd.get_dummies(df['DayOfWeek'])], axis=1)\n",
493 | "tt_transformed.head()"
494 | ]
495 | },
496 | {
497 | "cell_type": "code",
498 | "execution_count": 8,
499 | "metadata": {
500 | "collapsed": false
501 | },
502 | "outputs": [
503 | {
504 | "data": {
505 | "text/plain": [
506 | "[]"
507 | ]
508 | },
509 | "execution_count": 8,
510 | "metadata": {},
511 | "output_type": "execute_result"
512 | },
513 | {
514 | "data": {
515 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG69JREFUeJzt3XmUJFWB/fHvZREFBOQgS0Pzw3EF9acNirIoLbIpA7Qb\nOIigIm6jLDo/FNSxnTOKIyjMKDKogAgOoCzN2uw0ijqMQDfN0jiOyMi+NG6tqCD390dEY1FUZW2Z\n9TIi7+ccDllZURmXOsnt1y8j3pNtIiKiHVYoHSAiIronpR4R0SIp9YiIFkmpR0S0SEo9IqJFUuoR\nES3SsdQlzZR0laRbJN0s6cARjllH0sWSFtXHvKtnaSMioiN1uk5d0vrA+rYXSVoduB6YY3vJkGPm\nAqvYPkzSOsBPgfVsP9bb6BERMVzHkbrt+2wvqh8vA5YAM4Yddi+wRv14DWBpCj0iooyVxnugpE2A\nWcC1w771DeBKSfcAzwT27Fa4iIiYmHF9UFpPvZwJHFSP2Ic6HFhkewbwcuBYSc/sbsyIiBiPMUfq\nklYGzgJOtT1vhEO2Bj4HYPvnkn4BvBC4btjrZJGZiIhJsK3xHtux1CUJOAG41fYxoxx2G7AD8ENJ\n61EV+u1TDRadSZpre27pHG2Q32V35ffZXRMdEI81Ut8G2AdYLGlh/dzhwMYAto8HPg+cJOlGqumc\nQ20/PKHUERHRFR1L3fY1jH2FzEPAbt0MFRERk5M7SptrQekALbKgdICWWVA6wCDrePNRV08kOXPq\nERETM9HuzEg9IqJFUuoRES2SUo+IaJGUekREi6TUIyK6TOJpEp+U2G66z51Sj4joIomtgRuArYA7\npvv8416lMSIiRiexFnAEsAdwMPA9m2lf8yoj9YiIKZCQxFuBWwABm9l8t0ShQ0bqERGTJjETOBZ4\nHrCXzTWFI2WkHhExURIrShwELAR+Aszqh0KHjNQjIiZEYhbwdeD3wDY2Py0c6UkyUo+IGAeJ1SSO\nBC4GjgNe12+FDin1iIgxSewC3AxsALzU5sRSH4SOJdMvERGjkFgPOBp4NfABm0sKRxpTRuoREcPU\nlynuD9wE3Am8pAmFDhmpR0Q8icTfAN8EVgd2tLmxcKQJyUg9IgKQWEHiI8C1wEXAVk0rdMhIPSIC\niecDJ9ZfbmPz3yXzTEVG6hExsOqbiD4G/Aj4HrBdkwsdMlKPiAElsRnV6PwPwKtsbi8cqSsyUo+I\ngSKxksRhwNXAt4Ad2lLo0KCRusQ1wC42y0pniYhmkvi/wEnAQ8ArbP63cKSua9JIfV1go9IhIqJ5\n6p2IPgNcTrWq4i5tLHRo0Eid6gaAmcBtpYNERHNIbE41Or+TajXFuwtH6qkmjdSXl3pExJgkVpH4\nHDAfOBLYre2FDs0cqUdEdCTxKqrR+W3Ay2zuKxxp2mSkHhGtIrE3cB4wF3jLIBU6pNQjokUk9gK+\nBGxfcp/QkjL9EhGtIPEW4F+BnWxuKZ2nlMaN1CVUOkhE9BeJOfz1UsXFpfOU1JhSt/kNYGDN0lki\non9I7AYcD7zRZlHpPKU1ptRrmYKJiCdI7AqcAOxqc0PpPP0gpR4RjSSxM9Vli7vZXFc6T79IqUdE\n40jsAJwCzLG5tnSeftKx1CXNlHSVpFsk3SzpwBGO+QdJC+t/bpL0mKS1epT3LlLqEQNNYnvgP4A3\n2/yodJ5+I3v0yzglrQ+sb3uRpNWB64E5tpeMcvzfAgfb3mGE79n2lK5ckXgP1SL2+03ldSKimSS2\no9rM4m02V5fOMx0m2p0dR+q277O9qH68DFgCzOjwI3sDp4335JOQ6ZeIASWxLVWhv31QCn0yxj2n\nLmkTYBaMPH8laVVgZ+CsbgQbRUo9YgBJbAWcDextc2XpPP1sXHeU1lMvZwIH1SP2kewGXGP71x1e\nZ+6QLxfYXjDOnMvdCWwkoUG8/TdiENWLc50LvNPm8tJ5ek3SbGD2pH++05x6fYKVgQuA+baP6XDc\nOcAZtk8f5ftTnlOvXoeHgRfYPDTV14qI/ibxCuBC4N02F5XOU0JX59QlierC/lvHKPQ1gddS/Wna\na5mCiRgA9eYWFwLvHdRCn4yxpl+2AfYBFktaWD93OLAxgO3j6+fmAJfYfqQnKZ9seakvHOvAiGgm\niZcDFwEfsDm/dJ4mGXP6pWsn6t70y3HAzTbHdiFWRPQZiZcClwIftnt64UUjdHX6pU9l+iWipST+\nD3AxcHAKfXJS6hHRFyTWoLoo40ibM0rnaaqUekQUJ7Ei1Y2LP6Ta6CImKaUeEf3gKOBpwEdyD8rU\nNGk7u+XuAmZIrGDzeOkwETE1Eh8AdgG2snm0dJ6ma9xI3eZPwK+B9UpniYipkdgRmAv8rc2od6PH\n+DWu1GuZgoloOIlNge8Ae9r8vHSetkipR8S0k1iH6kqXQ22+XzpPmzS11LNZRkRDSaxCteLid22+\nVThO6zS11DNSj2ggCQFfBx4CPlk4Tis18eoXqEr9FaVDRMSEfQJ4CfDaXL3WG00u9YzUIxpE4i3A\nh4BX2fy+dJ62SqlHRM/V66L/O7CzzT2l87RZU+fU7wHWlRr7h1LEwJDYCJgHHGBzQ+k8bdfIUq/v\nOnsQ2KB0logYncTqwPnAv9nMK51nEDSy1GuZgonoY/UiXd+h2tDmyMJxBkaTpy9S6hH97QhgLeBt\nWaRr+qTUI6LrJN4LvAl4tc2fS+cZJE0v9U1Kh4iIJ5N4HfA5qmvRl5bOM2gypx4RXSPxAuB0YG+b\nn5bOM4hS6hHRFXWhXw4cbnNF6TyDKqUeEVMm8VJgATDX5oTCcQZak0v9fuBZ9YpvEVGIxCupRugf\ntTmxdJ5B19hSt/kLcC+wYeksEYNKYlvgQuB9NqeXzhMNLvVapmAiCqm3ojsHeIfNuaXzRKXppZ7N\nMiIKkNiN6m7RN9tcVjpP/FXTSz0j9YhpJrEX8E1gV5sflM4TT5ZSj4hxk3g3cDSwo81PSueJp0qp\nR8S4SHwY+CzwOpvFpfPEyJq8TACk1COmhcTHgfdR3fp/R+E40UFKPSJGVW8U/U/AW6kK/e7CkWIM\nTS/1B4HVJFa1+UPpMBFtUhf6l4Dtge1sHigcKcah0XPq9RrNdwEblc4S0SYSK1DtKbo11Rx6Cr0h\nGl3qtUzBRHRRvffvycALqa5y+VXhSDEBTZ9+gZR6RNdIPA04DVgVeGOmNZun40hd0kxJV0m6RdLN\nkg4c5bjZkhbWxyzoSdLRpdQjukDiGcA8QMCcFHozjTVSfxQ4xPYiSasD10u6zPaS5QdIWgs4FtjZ\n9l2S1ulh3pHcCWw+zeeMaJV6hH4m8BvgnTaPFY4Uk9RxpG77PtuL6sfLgCXAjGGH7Q2cZfuu+riH\nehG0g4zUI6ZAYkWqOfS/APum0Jtt3B+UStoEmAVcO+xbzwfWrqdprpP0zu7FG5eUesQk1ZctHgus\nD+xp82jhSDFF4/qgtJ56ORM4qB6xD7Uy1fTH66k+XPmxpP+0/bOuJh1dSj1i8j4PbAFsb/PH0mFi\n6sYsdUkrA2cBp9qeN8IhdwIP2X4EeETS94GXAU8pdUlzh3y5wPaCyYQe5tfAihJr2Py2C68XMRAk\nDgV2p7qx6Hel80RF0mxg9qR/3nanFxfVXNtS24eMcsyLgK8COwOrUE3P7GX71mHH2bYmG7QTiSXA\nW21u6cXrR7SNxPuAw4Btc+t/f5tod441Ut8G2AdYLGlh/dzhwMYAto+3fZuki4HFwOPAN4YX+jRY\nvllGSj1iDPV66J+hGqGn0Fum40i9qyfq7Uj9RODHNt/oxetHtIXEG4BvUd0pmuVzG6DbI/WmyIel\nEWOQeA3wbWD3FHp7tWHtF0ipR3QkMYvqgoe9bX5cOk/0Tko9ouUkXghcCHwgm0S3X0o9osUkNgYu\nBT5pc3bpPNF7rSr1+u64iAAk1gUuA46xOal0npgerSj1+saJPwNrl84S0Q8k1gQuBs6wObp0npg+\nrSj12p1kB6QIJFYFLgCuoboePQZI20o98+ox0IYsofsL4OB6y8cYICn1iJaol9D9NtU+CPvbPF44\nUhTQlpuPIKUeA2zIErrrUm1DlyV0B1RG6hENVxf6UVRLYO+RJXQHW0bqEc33T1T7GWyfJXQjpR7R\nYBKHA2+hWnHx4dJ5orw2lfpdwIYSK+QDohgEEgcD7wZea/Ng6TzRH1ozp27zCLAMeHbpLBG9JvF+\n4GDg9Tb3ls4T/aM1pV7LFEy0nsS+wKeoCv2XpfNEf0mpRzSIxJ7AF4CdbH5eOk/0nzbNqUNKPVpM\nYnfg36gKfUnpPNGfUuoRDSCxE/BNqhuLsmtRjCrTLxF9TmI74FTgTTbXlc4T/S2lHtHHJLYCvge8\n3eaHpfNE/0upR/Qpic2BecB+NleWzhPNIHt6VuaUZNs93ZmoXnZ0GfAMm7/08lwRvSTxEuBy4IM2\n55TOE+VMtDtbNVK3+TOwFNigdJaIyao3ir4EOCSFHhPVqlKvZQomGkviOVT7in7K5rTSeaJ52lrq\n2dYuGkdiI+AK4AvZKDomq62lnpF6NIrE+lSFfqzN10rnieZq281HkFKPPlNvM7cuMIPq854Nhjxe\n/u/nAkfbfKlUzmiHtpb6VqVDxOCQWAfYmieX9NDHzwYeBu4B7h3y7xuBi+vHd9ncPe3ho3XaWuoZ\nqce0qOfBrwb+B/glVWHfwJML/IHsGRrTJaUeMUkSGwBXAsfZHFU6TwS084PS+4B16huRInpC4tlU\nNwednEKPftK6Urd5DLifaj4zousk1qa6lvxsm8+VzhMxVOtKvZYpmOgJiTWBS6lK/R8Lx4l4ipR6\nxDhJPBOYD/wIONRmehZOipiAlHrEOEisClwA3AQclEKPftWx1CXNlHSVpFsk3SzpwBGOmS3pN5IW\n1v98qndxxy2lHl0j8XTgXOAXVKsmptCjb411SeOjwCG2F0laHbhe0mW2h++PeLXt3XsTcVLuBLYv\nHSKaT2IV4CzgIWB/m8cLR4roqONI3fZ9thfVj5cBSxj5qpKerpM+CRmpx5RJrAycDvwJ2Ddr9EcT\njHtOXdImwCzg2mHfMrC1pBslXSRps+7Fm7SUekyJxEpU+4KuTLWVXO4IjUYY1x2l9dTLmcBB9Yh9\nqBuAmbb/IOkNVNtvvaC7MSfsAWANiWfYPFI4SzSMxArAicCzgN3rzVciGmHMUpe0MtWc4qm25w3/\nvu3fDXk8X9LXJK1t++ERXmvukC8X2F4wqdRjsHlc4m6qddV/1otzRDvVhX48sDHwRps/Fo4UA0bS\nbGD2pH++0x6lkgScDCy1fcgox6wHPGDbkrYEvmt7kxGO6/kepU8+H1cDn82GvTFeEgK+QjXNuLPN\n8L+VRky7iXbnWCP1bYB9gMWSFtbPHU41isH28cBbgQ9Kegz4A/D2CafujeyAFONWF/pRwJbAjin0\naKqOI/Wunmj6R+pHAMuyNkeMh8Q/A7sC29v8qnSeiOUm2p1tvaMUcgVMjJPEp4A5wE4p9Gi6lHoM\nLInnSZxBNcW4g82DpTNFTFVKPQaOxLoSXwH+E1gMbGFzX+FYEV3R5lK/i5R6DCGxmsSngVuBx4FN\nbT5n8/vC0SK6ps2lvhRYRWL10kGiLImVJN5Pdc/CZsCWNgdluiXaqI17lAJgY+mJ0frwBchiANSX\nKc4BjgDupro79LqyqSJ6q7WlXls+r55SHzAS2wBfBFYHDgYuyZK5MQgGpdRjQEhsSjUynwV8GvhO\nVleMQdLmOXVIqQ8MiRkSXwe+D1wDvNDm2yn0GDQp9Wg0iTXqu0FvAn4NvMDmqCzEFYMqpR6NJTEL\nuI1qjZ9ZNofmjtAYdJlTj0aS2By4CPiQzdml80T0i4EYqdeXtkVLSGwBzKfaBDqFHjFEq0vd5jdU\ndw6uVTpLdIfEK6hG6O+3Oad0noh+0+pSr2UKpiUkXglcCLzP5im7cEVESj0aQmJLqkJ/r825pfNE\n9KuUevS9utAvAPa3Ob90noh+Niilnm3tGkriVVSF/p4UesTYBqXUM1JvIIlXA+cD77K5oHSeiCYY\nhFLPuuoNJLEVcB5VoV9UOk9EU7T95iPISL1xJLYG5gH72lxcOk9EkwzCSP1OYKPcgNQM9ZK584B3\nptAjJq71pV5vVfYIsE7pLNGZxLbAOVSFfknpPBFN1PpSr2UKps9JvAY4G9gnhR4xeSn1KE7itVSF\nvrfNpaXzRDRZSj2Kqgv9LODvbC4vnSei6VLqUYzE64Azgben0CO6I6Ue005iE4lTgNOoCv2K0pki\n2iKlHtNGYh2JLwPXA7dTbT13ZeFYEa2SUo+ek1hV4jCqreeeDrzY5jM2vy0cLaJ1BqXU7wJmSKxY\nOsggkVhJ4gDgZ8DmwNY2H7K5r3C0iNYahGUCsPmTxK+A9YB7Sudpu/ru3T2AI4D7gTfbXFs2VcRg\nGIhSry2fgkmp91B9m/8XgTWAjwHzbVw2VcTgGJTpF8i8ek9JbCYxj+qKlq8DL7e5KIUeMb1S6jEl\nEhtKfBO4GriG6oqWk23+UjhaxEAatFLPDkhdIrGGxOeBxcBSqjI/yuaPhaNFDLSOpS5ppqSrJN0i\n6WZJB3Y49pWSHpP05u7H7IpsltElEutSjcpnUk2zfNzmV4VjRQRjf1D6KHCI7UWSVgeul3SZ7SVD\nD5K0IvAvwMXQt+uW/xLYVGIFm8dLh2kqiRnAFcAZwGczZx7RXzqO1G3fZ3tR/XgZsASYMcKhH6Fa\nw+PBrifsnmuBZcDBpYM0lcRMqrnzU2zmptAj+s+459QlbQLMgidfbyxpQ6prko+rn+rL/9FtHgPe\nARwmsXnpPE0j8RyqQj/O5vOl80TEyMZ1nXo99XImcFA9Yh/qGOATti1JdJh+kTR3yJcLbC+YWNyp\nsbld4iDgNIktbIb/t8QIJJ4PXA580ebY0nki2kzSbGD2pH/e7jywlrQycAEw3/YxI3z/dv5a5OsA\nfwAOsH3esONsuy/m2yVOBh6z2b90ln4nsSlwGdX8+TdK54kYNBPtzo6lXo+8TwaW2j5kHCc/CTjf\n9tlTDdZLEs8EbgA+afPd0nn6lcRLgUuAT9h8u3SeiEE00e4ca/plG2AfYLGkhfVzhwMbA9g+flIp\nC7P5ncTewIUS19r8b+lM/UZiFjAfONjm9NJ5ImJ8xpx+6dqJ+mikvpzEocDuwOz6g9QAJLYEzgc+\naPOUv3VFxPSZaHcO0h2lIzkK+CPwqdJB+kW9INcFwP4p9IjmGeiROjxxM80NwNtsflA6T0kSs4Hv\nAe+wubRwnIggI/UJs7kHOAA4VeJZpfOUIrETVaHvmUKPaK6BH6kvJ/EVqk009hq0OyUldgVOotrM\n4prSeSLirzJSn7z/B7wIeE/pINNJ4k3AicBuKfSI5stIfQiJzahuhX+NzW2l8/SaxF7AvwJvtLmh\ndJ6IeKqM1KfA5lbg01TLCKzSzdeWWEHiXRJ3SJwisVY3X38SefYFjgZ2TKFHtEdK/amOB+6A7i1a\nJfFa4CfA+4D9gN8CN9ZXm0wriVUl/oXqv+/1NjdNd4aI6J2U+jD1h6TvBfaU2GUqryXxXImzgG9T\nbca8jc3VNn8PfAD4jsSR3f5bQYc8OwE3UW1usYXNkjF+JCIaJqU+ApulwL7AiRLrTfTnJdaUOJJq\nmeLrgE1tzhh6VY3NfOBlwN8AP6nXWekJiXUlTqX6W8iHbfa2ub9X54uIclLqo7C5iuoyv29J4/s9\nSawk8UHgp8CzgJfYHGHzyCjneAh4K/Bl4EqJj433XOPMI4l3UY3O76vzzO/W60dE/8nVLx1IrAz8\nADjD5ugxjt0Z+BLwAPBRm0UTPNdzqKZpHgP2s/nl5FI/8XrPpxqZrwkckA9DI5opV790kc2jwN7A\n4fWqhU8hsanERcBXgU9Sffg4oUKvz/ULqoXxLwGuk3iHNPH9XiWeJnE48GOqNVxelUKPGBwp9THY\n3A5P7Ja02vLnJdaR+CrwfapNJF5sc+5U7ka1+YvNF4Cdqf6AOG0iSxdIbAVcD2wLvMLmy1l9MmKw\npNTHweY/qD70PKYeCX+UahNuU30IerTNn7t4voXAFlTz4DdK7NDpeIk16j9gzgb+GdjV5o5u5YmI\n5sic+jgN2S3p6cBi4B+m45JAiR2pbuM/Czhs+IeuEnOArwAXAx+3ebjXmSJi+nR1O7tuanqpA0i8\nCNjQ5oppPu/awHHAS6iWxV0ksSFVmW8GvN/m6unMFBHTI6XeUvWHpu+guvzxPGAP4GvAETZ/LJkt\nInonpd5yEhsDBwIn1mvVRESLpdQjIlok16lHRAywlHpERIuk1CMiWiSlHhHRIin1iIgWSalHRLRI\nSj0iokVS6hERLZJSj4hokZR6RESLpNQjIlokpR4R0SIp9YiIFkmpR0S0SEo9IqJFOpa6pJmSrpJ0\ni6SbJR04wjF7SLpR0kJJ10vavndxIyKik46bZEhaH1jf9iJJqwPXA3NsLxlyzGq2f18/filwju3n\njfBa2SSjiyTNtr2gdI42yO+yu/L77K6ubpJh+z7bi+rHy4AlwIxhx/x+yJerAw+NP25MwezSAVpk\ndukALTO7dIBBttJ4D5S0CTALuHaE780BjgA2AHbqUraIiJigcX1QWk+9nAkcVI/Yn8T2PNubArsB\np3Q3YkREjNeYG09LWhm4AJhv+5gxX1D6ObCl7aXDnp+eHa4jIlpmInPqHadfJAk4Abh1tEKX9Fzg\ndtuWtHkdYOnw4/IhaURE7401p74NsA+wWNLC+rnDgY0BbB8PvAXYV9KjwDLg7T3KGhERYxhz+iUi\nIpqj53eUStpF0m2Sfibp470+X9tJukPS4vpmr/8qnadpJJ0o6X5JNw15bm1Jl0n6b0mXSlqrZMYm\nGeX3OVfSXfV7dKGkXUpmbIrRbvac6Puzp6UuaUXgq8AuwGbA30natJfnHAAGZtueZXvL0mEa6CSq\n9+NQnwAus/0C4Ir66xifkX6fBr5cv0dn2b64QK4mehQ4xPaLgVcDf1/35YTen70eqW8J/I/tO2w/\nCpwO7NHjcw6CfOg8SbZ/APxq2NO7AyfXj08G5kxrqAYb5fcJeY9O2Cg3e27IBN+fvS71DYE7h3x9\nV/1cTJ6ByyVdJ+mA0mFaYj3b99eP7wfWKxmmJT5Srwl1QqazJm7YzZ4Ten/2utTzKWz3bWN7FvAG\nqr+evaZ0oDZxdeVA3rdTcxzwHODlwL3Al8rGaZb6Zs+zqG72/N3Q743n/dnrUr8bmDnk65lUo/WY\nJNv31v9+EDiHaoorpub+evE6JG0APFA4T6PZfsA14JvkPTpu9c2eZwGn2J5XPz2h92evS/064PmS\nNpH0NGAv4Lwen7O1JK0q6Zn149Wo1tm5qfNPxTicB+xXP94PmNfh2BhDXTzLvYm8R8elw82eE3p/\n9vw6dUlvAI4BVgROsH1ET0/YYpKeQzU6h+rGse/k9zkxkk4DtgPWoZqf/EfgXOC7VDfV3QHsafvX\npTI2yQi/z89QrdL4cqppgl8A7x8yJxyjkLQt8H1gMX+dYjkM+C8m8P7MzUcRES2S7ewiIlokpR4R\n0SIp9YiIFkmpR0S0SEo9IqJFUuoRES2SUo+IaJGUekREi/x/SRo6X6d4brgAAAAASUVORK5CYII=\n",
516 | "text/plain": [
517 | ""
518 | ]
519 | },
520 | "metadata": {},
521 | "output_type": "display_data"
522 | }
523 | ],
524 | "source": [
525 | "X_transformed = tt_transformed.values\n",
526 | "\n",
527 | "neighbors = range(1, 20)\n",
528 | "folds = KFold(df.shape[0], n_folds=10)\n",
529 | "errors = [kfold_cv_error(KNeighborsRegressor(k), X_transformed, y, folds) for k in neighbors]\n",
530 | "\n",
531 | "plt.plot(neighbors, errors)"
532 | ]
533 | }
534 | ],
535 | "metadata": {
536 | "kernelspec": {
537 | "display_name": "Python 2",
538 | "language": "python",
539 | "name": "python2"
540 | },
541 | "language_info": {
542 | "codemirror_mode": {
543 | "name": "ipython",
544 | "version": 2
545 | },
546 | "file_extension": ".py",
547 | "mimetype": "text/x-python",
548 | "name": "python",
549 | "nbconvert_exporter": "python",
550 | "pygments_lexer": "ipython2",
551 | "version": "2.7.9"
552 | }
553 | },
554 | "nbformat": 4,
555 | "nbformat_minor": 0
556 | }
557 |
--------------------------------------------------------------------------------