├── LSTM-pytorch.zip ├── LSTM-pytorch ├── best_model.pt ├── __pycache__ │ └── dataset_model.cpython-38.pyc ├── process_data │ ├── dataset_split.py │ └── 1.data_preparation.py ├── dataset_model.py ├── test.py ├── train.py └── dataset │ └── test_dataset.csv ├── README.md └── .gitignore /LSTM-pytorch.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Garyou19/LSTM_PyTorch_Electric-Load-Forecasting/HEAD/LSTM-pytorch.zip -------------------------------------------------------------------------------- /LSTM-pytorch/best_model.pt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Garyou19/LSTM_PyTorch_Electric-Load-Forecasting/HEAD/LSTM-pytorch/best_model.pt -------------------------------------------------------------------------------- /LSTM-pytorch/__pycache__/dataset_model.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Garyou19/LSTM_PyTorch_Electric-Load-Forecasting/HEAD/LSTM-pytorch/__pycache__/dataset_model.cpython-38.pyc -------------------------------------------------------------------------------- /LSTM-pytorch/process_data/dataset_split.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | from sklearn.model_selection import train_test_split 3 | 4 | # 读取处理后的数据集 5 | df = pd.read_csv('../dataset/processed_dataset.csv') 6 | 7 | # 将数据集划分为训练集、验证集和测试集 8 | train_ratio = 0.7 9 | val_ratio = 0.2 10 | test_ratio = 0.1 11 | 12 | train_data, test_data = train_test_split(df, test_size=test_ratio, shuffle=False) 13 | train_data, val_data = train_test_split(train_data, test_size=val_ratio/(train_ratio+val_ratio), shuffle=False) 14 | 15 | # 保存划分后的数据集为CSV文件 16 | train_data.to_csv('../dataset/train_dataset.csv', index=False) 17 | val_data.to_csv('../dataset/val_dataset.csv', index=False) 18 | test_data.to_csv('../dataset/test_dataset.csv', index=False) 19 | print('数据划分已完成') -------------------------------------------------------------------------------- /LSTM-pytorch/process_data/1.data_preparation.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | from sklearn.preprocessing import MinMaxScaler 3 | 4 | # 读取数据集 5 | df = pd.read_csv('../dataset/YearlyEliaGridLoadByQuarterHour_2022.csv') 6 | 7 | # 处理缺失值 8 | df.fillna(method='ffill', inplace=True) # 使用前向填充方法填充缺失值 9 | 10 | # 去除逗号并将电力负荷值转换为浮点数 11 | df['Elia Grid Load [MW]'] = df['Elia Grid Load [MW]'].str.replace(',', '').astype(float) 12 | 13 | # 将时间列转换为日期时间格式 14 | df['Datetime (CET+1/CEST +2)'] = pd.to_datetime(df['Datetime (CET+1/CEST +2)'], format='%d/%m/%Y %H:%M:%S') 15 | df['Datetime (UTC)'] = pd.to_datetime(df['Datetime (UTC)'], format='%d/%m/%Y %H:%M:%S') 16 | 17 | # 按升序对数据进行排序 18 | df.sort_values('Datetime (UTC)', ascending=True, inplace=True) 19 | 20 | # 只保留 Elia Grid Load 列 21 | df = df[['Elia Grid Load [MW]']] 22 | 23 | # 数据归一化 24 | scaler = MinMaxScaler() 25 | df['Elia Grid Load [MW]'] = scaler.fit_transform(df[['Elia Grid Load [MW]']]) 26 | 27 | # 保存处理后的数据集 28 | df.to_csv('../dataset/processed_dataset.csv', index=False) 29 | print('Data Preparation Complete') -------------------------------------------------------------------------------- /LSTM-pytorch/dataset_model.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | from torch.utils.data import DataLoader, Dataset 4 | 5 | 6 | class TimeSeriesDataset(Dataset): 7 | def __init__(self, data, seq_length): 8 | self.data = data 9 | self.seq_length = seq_length 10 | 11 | def __len__(self): 12 | return len(self.data) - self.seq_length 13 | 14 | def __getitem__(self, index): 15 | x = self.data[index:index + self.seq_length] 16 | y = self.data[index + self.seq_length] 17 | return x, y 18 | 19 | 20 | class LSTMModel(nn.Module): 21 | def __init__(self, input_size, hidden_size, num_layers, output_size): 22 | super(LSTMModel, self).__init__() 23 | self.hidden_size = hidden_size 24 | self.num_layers = num_layers 25 | self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) 26 | self.fc = nn.Linear(hidden_size, output_size) 27 | 28 | def forward(self, x): 29 | h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) 30 | c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) 31 | out, _ = self.lstm(x, (h0, c0)) 32 | out = self.fc(out[:, -1, :]) 33 | return out 34 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 时间序列数据预处理和LSTM模型 2 | 3 | ## data_preparation.py 4 | 这个Python脚本用于对给定的数据集进行数据预处理和准备,以满足后续的数据分析、建模或机器学习任务的需求。 5 | 6 | 功能和作用: 7 | 8 | 1. **处理缺失值**: 使用前向填充的方式(ffill)填充缺失值,确保数据的连续性。 9 | 2. **数据转换**: 将电力负荷列中的逗号去除,并将其转换为浮点数类型,以便后续处理。 10 | 3. **时间列处理**: 将时间列转换为日期时间格式,使其具有时间序列的性质,方便后续时间相关的分析和建模。 11 | 4. **数据排序**: 按照时间升序对数据进行排序,以确保数据按照时间顺序排列。 12 | 5. **保留所需列**: 只保留电力负荷列,去除其他不需要的列,以简化数据集并专注于感兴趣的特征。 13 | 6. **数据归一化**: 使用最小-最大缩放(MinMaxScaler)将电力负荷值归一化到0到1的范围内,以消除不同数值范围的影响,并使得数据更适合某些模型或算法。 14 | 7. **保存处理后的数据集**: 将经过处理和准备的数据保存为新的CSV文件,以便后续使用。 15 | 16 | ## dataset_split.py 17 | 该脚本用于将数据集`YearlyEliaGridLoadByQuarterHour_2022`进行处理,划分为train、val、test三个数据集。 18 | 19 | ## dataset_model.py 20 | 这个Python脚本定义了两个类: 21 | 22 | ### TimeSeriesDataset 23 | 一个自定义的PyTorch数据集,用于处理时间序列数据。它接受输入数据和序列长度作为参数,并在`__getitem__`方法中返回按序列长度切片的输入和目标数据。这个类可以用于创建训练集和验证集的数据集对象。 24 | 25 | ### LSTMModel 26 | 定义了一个LSTM模型的结构,继承自`nn.Module`。在`__init__`方法中定义了LSTM层和线性层,在`forward`方法中实现了模型的前向传播过程。 27 | 28 | 这两个类的目的是为了在时间序列数据上构建和训练LSTM模型。`TimeSeriesDataset`类用于处理数据集的加载和处理,而`LSTMModel`类定义了LSTM模型的结构和前向传播方法。 29 | 30 | ## train.py 31 | 该脚本用于训练LSTM模型,每一轮epoch打印训练loss和验证loss,最终保存训练完成后最好的模型`best.pt`。 32 | 33 | ## test.py 34 | 该脚本用于在测试集上对已训练好的模型进行评估,主要功能包括: 35 | 36 | 1. 加载已训练好的模型参数,使用`torch.load`函数加载已训练好的模型参数,将其应用到模型实例中。 37 | 2. 在测试集上进行预测,使用训练好的LSTM模型在测试集上进行预测,将预测结果存储在列表`predictions`中。 38 | 3. 将预测结果转换为一维数组,使用`np.concatenate`将列表中的预测结果连接为一个一维数组。 39 | 4. 绘制预测值和真实值的曲线图,使用`matplotlib.pyplot`绘制测试集中的真实值和预测值的曲线图,以便进行可视化对比。 40 | -------------------------------------------------------------------------------- /LSTM-pytorch/test.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | import numpy as np 4 | import pandas as pd 5 | import matplotlib.pyplot as plt 6 | from torch.utils.data import DataLoader 7 | from dataset_model import TimeSeriesDataset, LSTMModel 8 | 9 | # 读取测试集的数据 10 | test_df = pd.read_csv('dataset/test_dataset.csv') 11 | 12 | # 将数据集转换为PyTorch的Tensor 13 | test_data = torch.tensor(test_df['Elia Grid Load [MW]'].values, dtype=torch.float32).unsqueeze(1) 14 | 15 | # 创建测试集的数据集对象 16 | seq_length = 10 17 | test_dataset = TimeSeriesDataset(test_data, seq_length) 18 | 19 | # 创建数据加载器 20 | batch_size = 32 21 | test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) 22 | 23 | # 定义模型参数 24 | input_size = 1 25 | hidden_size = 64 26 | num_layers = 2 27 | output_size = 1 28 | 29 | # 创建模型实例 30 | model = LSTMModel(input_size, hidden_size, num_layers, output_size) 31 | 32 | # 设置设备 33 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 34 | 35 | # 加载已训练好的模型参数 36 | model.load_state_dict(torch.load('best_model.pt')) 37 | model.to(device) 38 | model.eval() 39 | 40 | # 在测试集上进行预测 41 | predictions = [] 42 | 43 | with torch.no_grad(): 44 | for inputs, targets in test_dataloader: 45 | inputs = inputs.to(device) 46 | 47 | outputs = model(inputs) 48 | predictions.append(outputs.detach().cpu().numpy()) 49 | # # 预测值和真实值的对比 50 | # print("Predicted Values:") 51 | # print(predictions) 52 | # print("True Values:") 53 | # print(test_df['Elia Grid Load [MW]'].values[seq_length:]) 54 | 55 | # # 打印预测结果 56 | # print("Predictions:") 57 | # print(predictions) 58 | 59 | # 将预测结果转换为一维数组 60 | predictions = np.concatenate(predictions).flatten() 61 | 62 | # 绘制预测值和真实值的曲线图 63 | plt.plot(test_df.index, test_df['Elia Grid Load [MW]'], label='True Values') 64 | plt.plot(test_df.index[seq_length:], predictions, label='Predicted Values') 65 | plt.xlabel('Time') 66 | plt.ylabel('Load [MW]') 67 | plt.title('Predicted vs True Values') 68 | plt.legend() 69 | plt.show() -------------------------------------------------------------------------------- /LSTM-pytorch/train.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | import pandas as pd 4 | import numpy as np 5 | from torch.utils.data import DataLoader 6 | from dataset_model import TimeSeriesDataset, LSTMModel 7 | 8 | # 读取训练集和验证集的数据 9 | train_df = pd.read_csv('dataset/train_dataset.csv') 10 | val_df = pd.read_csv('dataset/val_dataset.csv') 11 | 12 | # 将数据集转换为PyTorch的Tensor 13 | train_data = torch.tensor(train_df['Elia Grid Load [MW]'].values, dtype=torch.float32).unsqueeze(1) 14 | val_data = torch.tensor(val_df['Elia Grid Load [MW]'].values, dtype=torch.float32).unsqueeze(1) 15 | 16 | # 创建训练集和验证集的数据集对象 17 | seq_length = 10 18 | train_dataset = TimeSeriesDataset(train_data, seq_length) 19 | val_dataset = TimeSeriesDataset(val_data, seq_length) 20 | 21 | # 创建数据加载器 22 | batch_size = 32 23 | train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) 24 | val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) 25 | 26 | # 定义模型参数 27 | input_size = 1 28 | hidden_size = 64 29 | num_layers = 2 30 | output_size = 1 31 | 32 | # 创建模型实例 33 | model = LSTMModel(input_size, hidden_size, num_layers, output_size) 34 | 35 | # 设置训练设备 36 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 37 | 38 | # 将模型移动到训练设备 39 | model.to(device) 40 | 41 | # 定义训练参数 42 | num_epochs = 10 43 | learning_rate = 0.001 44 | 45 | # 定义损失函数和优化器 46 | criterion = nn.MSELoss() 47 | optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) 48 | 49 | # 初始化最好的验证集损失 50 | best_val_loss = float('inf') 51 | 52 | # 训练模型 53 | for epoch in range(num_epochs): 54 | model.train() # 设置模型为训练模式 55 | train_loss = 0.0 56 | 57 | for i, (inputs, targets) in enumerate(train_dataloader): 58 | inputs = inputs.to(device) 59 | targets = targets.to(device) 60 | 61 | optimizer.zero_grad() 62 | outputs = model(inputs) 63 | loss = criterion(outputs, targets) 64 | loss.backward() 65 | optimizer.step() 66 | 67 | train_loss += loss.item() 68 | 69 | train_loss /= len(train_dataloader) 70 | 71 | # 在验证集上进行评估 72 | model.eval() # 设置模型为评估模式 73 | val_loss = 0.0 74 | 75 | with torch.no_grad(): 76 | for inputs, targets in val_dataloader: 77 | inputs = inputs.to(device) 78 | targets = targets.to(device) 79 | 80 | outputs = model(inputs) 81 | loss = criterion(outputs, targets) 82 | 83 | val_loss += loss.item() 84 | 85 | val_loss /= len(val_dataloader) 86 | 87 | # 打印训练结果 88 | print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss:.6f}], Val Loss: {val_loss:.6f}') 89 | 90 | # 保存最好的模型 91 | if val_loss < best_val_loss: 92 | best_val_loss = val_loss 93 | torch.save(model.state_dict(), 'best_model.pt') 94 | 95 | print("训练结束了.") -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | share/python-wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | MANIFEST 28 | 29 | # PyInstaller 30 | # Usually these files are written by a python script from a template 31 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 32 | *.manifest 33 | *.spec 34 | 35 | # Installer logs 36 | pip-log.txt 37 | pip-delete-this-directory.txt 38 | 39 | # Unit test / coverage reports 40 | htmlcov/ 41 | .tox/ 42 | .nox/ 43 | .coverage 44 | .coverage.* 45 | .cache 46 | nosetests.xml 47 | coverage.xml 48 | *.cover 49 | *.py,cover 50 | .hypothesis/ 51 | .pytest_cache/ 52 | cover/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | .pybuilder/ 76 | target/ 77 | 78 | # Jupyter Notebook 79 | .ipynb_checkpoints 80 | 81 | # IPython 82 | profile_default/ 83 | ipython_config.py 84 | 85 | # pyenv 86 | # For a library or package, you might want to ignore these files since the code is 87 | # intended to run in multiple environments; otherwise, check them in: 88 | # .python-version 89 | 90 | # pipenv 91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 94 | # install all needed dependencies. 95 | #Pipfile.lock 96 | 97 | # poetry 98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. 99 | # This is especially recommended for binary packages to ensure reproducibility, and is more 100 | # commonly ignored for libraries. 101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control 102 | #poetry.lock 103 | 104 | # pdm 105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. 106 | #pdm.lock 107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it 108 | # in version control. 109 | # https://pdm.fming.dev/#use-with-ide 110 | .pdm.toml 111 | 112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm 113 | __pypackages__/ 114 | 115 | # Celery stuff 116 | celerybeat-schedule 117 | celerybeat.pid 118 | 119 | # SageMath parsed files 120 | *.sage.py 121 | 122 | # Environments 123 | .env 124 | .venv 125 | env/ 126 | venv/ 127 | ENV/ 128 | env.bak/ 129 | venv.bak/ 130 | 131 | # Spyder project settings 132 | .spyderproject 133 | .spyproject 134 | 135 | # Rope project settings 136 | .ropeproject 137 | 138 | # mkdocs documentation 139 | /site 140 | 141 | # mypy 142 | .mypy_cache/ 143 | .dmypy.json 144 | dmypy.json 145 | 146 | # Pyre type checker 147 | .pyre/ 148 | 149 | # pytype static type analyzer 150 | .pytype/ 151 | 152 | # Cython debug symbols 153 | cython_debug/ 154 | 155 | # PyCharm 156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can 157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore 158 | # and can be added to the global gitignore or merged into this file. For a more nuclear 159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder. 160 | #.idea/ 161 | -------------------------------------------------------------------------------- /LSTM-pytorch/dataset/test_dataset.csv: -------------------------------------------------------------------------------- 1 | Elia Grid Load [MW] 2 | 0.332080840273371 3 | 0.3489155425051827 4 | 0.359102538195751 5 | 0.3733183480270736 6 | 0.38528860604316 7 | 0.42202429957583 8 | 0.4556423952103871 9 | 0.479509977221124 10 | 0.5017495494666586 11 | 0.518531616796287 12 | 0.5376256416026268 13 | 0.5340150505218557 14 | 0.5302973535354794 15 | 0.5371538655898409 16 | 0.5362637645114476 17 | 0.5289279280280956 18 | 0.5167493745270126 19 | 0.5126057020531998 20 | 0.4806006213570604 21 | 0.4680930997173322 22 | 0.4497749296900733 23 | 0.4503072970437444 24 | 0.4205409337860071 25 | 0.3988977884262583 26 | 0.3809343939606142 27 | 0.371717267746709 28 | 0.3768967053305386 29 | 0.3704001711246354 30 | 0.3649101264145503 31 | 0.3528877435244025 32 | 0.3416096956754001 33 | 0.3422878290663191 34 | 0.3510210405981365 35 | 0.3608499965471096 36 | 0.3722457588866535 37 | 0.3869129436058845 38 | 0.3866510951680854 39 | 0.3990612014365248 40 | 0.4130549450235587 41 | 0.430886854239369 42 | 0.4460392797138049 43 | 0.4679413153482457 44 | 0.4810261888219992 45 | 0.4986093063199319 46 | 0.5219489072188463 47 | 0.535783828048711 48 | 0.5490564938769595 49 | 0.5640859005683856 50 | 0.5756578266212442 51 | 0.597925960441607 52 | 0.6129677098135837 53 | 0.6310495328091401 54 | 0.6263584981548713 55 | 0.6293581775511938 56 | 0.6209167021051207 57 | 0.6071284998512247 58 | 0.6084752801099949 59 | 0.5810682049386839 60 | 0.5721714783909755 61 | 0.5730129227865366 62 | 0.5536632718854853 63 | 0.5295839261985227 64 | 0.5304307768921763 65 | 0.5124293343286364 66 | 0.510452363322409 67 | 0.5169939840142905 68 | 0.4979234205015596 69 | 0.4919911814097605 70 | 0.4721143654418817 71 | 0.4741839575550516 72 | 0.4894674602568237 73 | 0.4747162229030985 74 | 0.4653629191806378 75 | 0.4700582380711308 76 | 0.4549782365900092 77 | 0.4612315893873757 78 | 0.4473166961479922 79 | 0.4386798799312196 80 | 0.4309791693294385 81 | 0.4329379833345251 82 | 0.4184467583173601 83 | 0.3987503902990203 84 | 0.3875410942408543 85 | 0.3702247214506913 86 | 0.3821779445275053 87 | 0.3618075233432221 88 | 0.3633752477844124 89 | 0.3662593548083054 90 | 0.3556591343333489 91 | 0.3506653469859022 92 | 0.3384834272992145 93 | 0.3497396459445981 94 | 0.3572365493088558 95 | 0.357387721644196 96 | 0.3455836307902345 97 | 0.3452932207776072 98 | 0.342263755738964 99 | 0.3484858948152683 100 | 0.34754846312716 101 | 0.3529890351094178 102 | 0.3650737434360656 103 | 0.3826529847202715 104 | 0.3757482240055752 105 | 0.3800375605110115 106 | 0.3860456917873537 107 | 0.3747665218764832 108 | 0.3789696636293132 109 | 0.3762459094469551 110 | 0.3775520914672193 111 | 0.3746851213882231 112 | 0.3565727987109753 113 | 0.3667114437355847 114 | 0.3801918950207076 115 | 0.3711785760443259 116 | 0.3729071633551731 117 | 0.3615707682890219 118 | 0.3571010858396711 119 | 0.3342756952932871 120 | 0.3206135719911324 121 | 0.3087952003497569 122 | 0.2942379776936141 123 | 0.2636207855228722 124 | 0.2437938503053181 125 | 0.241193726939716 126 | 0.2367229224284969 127 | 0.2506671932877035 128 | 0.2506916746375562 129 | 0.2553122234053741 130 | 0.2654345475300817 131 | 0.2799507639252213 132 | 0.2960882577143539 133 | 0.2855739259751305 134 | 0.3113069868446407 135 | 0.3193046358190098 136 | 0.3439585791881392 137 | 0.3427920428676597 138 | 0.3553027266817438 139 | 0.371288742118663 140 | 0.385177929940701 141 | 0.3931175377147946 142 | 0.4092451369583617 143 | 0.4381194610308423 144 | 0.4524850151187636 145 | 0.4711011435748545 146 | 0.5013329584966657 147 | 0.5093424401234636 148 | 0.5319992153727373 149 | 0.5513975229566208 150 | 0.5611737419977862 151 | 0.5611573190922601 152 | 0.5577497192040175 153 | 0.5529176107712228 154 | 0.5448177521612187 155 | 0.5246306350839574 156 | 0.5094254727017138 157 | 0.507958733828666 158 | 0.5050829912659724 159 | 0.5103883037902943 160 | 0.485154764463403 161 | 0.476886392561913 162 | 0.4644640456185473 163 | 0.4609421994309923 164 | 0.478891007092349 165 | 0.4580379972990951 166 | 0.4452246627974573 167 | 0.4482368888855794 168 | 0.4532035427369394 169 | 0.45867277829965 170 | 0.4429128073263704 171 | 0.4487757845992112 172 | 0.4547707571500077 173 | 0.4496496667833271 174 | 0.4333714052325417 175 | 0.4265634478553878 176 | 0.4330831373380265 177 | 0.4301913798923045 178 | 0.4142226034059066 179 | 0.3938724813408762 180 | 0.38237573343319 181 | 0.3926004712047813 182 | 0.3876508522926937 183 | 0.4049782416902903 184 | 0.4020757736540077 185 | 0.3899208854577824 186 | 0.3978096944309315 187 | 0.3958519004820888 188 | 0.3829023884718955 189 | 0.3847468541720454 190 | 0.3699946987677007 191 | 0.3644679320328365 192 | 0.3698017041263621 193 | 0.3834961632114471 194 | 0.3805839026352235 195 | 0.3839547804986872 196 | 0.3955116097191367 197 | 0.3917411758249526 198 | 0.403728570785936 199 | 0.4025764172584948 200 | 0.4152668349827473 201 | 0.4178495153865794 202 | 0.4283488522990181 203 | 0.4349728935354037 204 | 0.441077420126791 205 | 0.4598820549767473 206 | 0.4566335838625471 207 | 0.4736656669775458 208 | 0.4800938574151102 209 | 0.4518863441092415 210 | 0.4389798784725392 211 | 0.4378656710373697 212 | 0.4197781357268477 213 | 0.4029412913769239 214 | 0.3727108025282298 215 | 0.3785155345895462 216 | 0.3673871289915183 217 | 0.3596054259239746 218 | 0.3505629333390185 219 | 0.3394667615182966 220 | 0.3234077100543169 221 | 0.3148543344382923 222 | 0.3290372984585624 223 | 0.324602093910254 224 | 0.3126170450786316 225 | 0.3170732627855635 226 | 0.2968701308252734 227 | 0.3026421190811619 228 | 0.3125713465589065 229 | 0.3152759236838801 230 | 0.3270462506761698 231 | 0.3239503799760512 232 | 0.3605118479022697 233 | 0.3676396949174984 234 | 0.3953413623320362 235 | 0.4212555851904563 236 | 0.440616966738312 237 | 0.4573687383974977 238 | 0.4925564965801084 239 | 0.4966956808064484 240 | 0.5135316071057527 241 | 0.5354861756367524 242 | 0.5472864922826115 243 | 0.570362510648112 244 | 0.5977774402525007 245 | 0.6190235797221388 246 | 0.6227833030257623 247 | 0.6066419330229031 248 | 0.6152681406547396 249 | 0.6122611168534611 250 | 0.6084111185722558 251 | 0.5933354013273584 252 | 0.5906378625904676 253 | 0.5798041512412913 254 | 0.5658275445991541 255 | 0.561960103356179 256 | 0.5584033712450838 257 | 0.5421072587100308 258 | 0.5336246749973301 259 | 0.5334931897474964 260 | 0.5254580027033531 261 | 0.5210443213417901 262 | 0.4977428705463962 263 | 0.5105047942133434 264 | 0.5061761855425184 265 | 0.498129573868444 266 | 0.5023047660801923 267 | 0.5077652291592054 268 | 0.5042002345925349 269 | 0.4801580189528491 270 | 0.4734990917929233 271 | 0.4753061214289234 272 | 0.4759897631235592 273 | 0.4613445096135711 274 | 0.4502711870527118 275 | 0.4372367043574048 276 | 0.4360401783833557 277 | 0.4218181462089457 278 | 0.4113462488094668 279 | 0.4170687643375281 280 | 0.4221712896805704 281 | 0.422155070786293 282 | 0.4097935191950614 283 | 0.4057262489339138 284 | 0.3981941536292429 285 | 0.396454549710962 286 | 0.3907094909399115 287 | 0.3836547819573676 288 | 0.3821124569166494 289 | 0.3843085360040582 290 | 0.3980838855492815 291 | 0.3880701974145451 292 | 0.389838362907654 293 | 0.3942523502860901 294 | 0.3988139398030129 295 | 0.4179619255846529 296 | 0.4191258097588985 297 | 0.4136872778891282 298 | 0.4230931145081477 299 | 0.4183384283442621 300 | 0.4199724564413032 301 | 0.439350464905934 302 | 0.4348711939278908 303 | 0.4459198311276487 304 | 0.4306243937678236 305 | 0.4330480474032377 306 | 0.4249238094490055 307 | 0.4240847111828053 308 | 0.3973669900210958 309 | 0.3916585512691999 310 | 0.3643056410844381 311 | 0.3597144699364433 312 | 0.335444679748752 313 | 0.3305589163575301 314 | 0.3209541687709576 315 | 0.3080335243524657 316 | 0.3035474189975887 317 | 0.2969147072831302 318 | 0.2920907593002863 319 | 0.2842014402990152 320 | 0.2690816566243829 321 | 0.2698557773078492 322 | 0.2676687767210109 323 | 0.2607328022852525 324 | 0.2670166547643104 325 | 0.2841051469895947 326 | 0.2759190936269844 327 | 0.2883743883870269 328 | 0.3060909292416565 329 | 0.3221923130397564 330 | 0.3379031173020818 331 | 0.3536776750796486 332 | 0.3763958577148027 333 | 0.4119386974759014 334 | 0.4349316832631518 335 | 0.4489931585847781 336 | 0.4727439441555929 337 | 0.5018067746219392 338 | 0.5364741001089319 339 | 0.5590412124143702 340 | 0.590464963057133 341 | 0.6034217174666576 342 | 0.6077726653692233 343 | 0.6151804158177674 344 | 0.615015166706262 345 | 0.5978668991850873 346 | 0.5957153965555353 347 | 0.5820661259620534 348 | 0.5750622157804537 349 | 0.5562275912769279 350 | 0.556095289982099 351 | 0.5383453932882951 352 | 0.5339631296590432 353 | 0.5119531720740018 354 | 0.5096628397896603 355 | 0.5023767820510088 356 | 0.5062741109419291 357 | 0.4935089230950016 358 | 0.487583926402534 359 | 0.4889723249560534 360 | 0.4967581082485726 361 | 0.5049590544323432 362 | 0.480433536144316 363 | 0.4960911954763362 364 | 0.4813097644577926 365 | 0.4750998660564147 366 | 0.4594599557030376 367 | 0.455830187564882 368 | 0.4415098219685637 369 | 0.4432256585763626 370 | 0.4395557002221988 371 | 0.432561480574916 372 | 0.4370218805124478 373 | 0.4183328180349209 374 | 0.4069554167077664 375 | 0.4104528835510933 376 | 0.403277603920525 377 | 0.3990850707526311 378 | 0.397005380082647 379 | 0.39542051869656 380 | 0.4111815097260833 381 | 0.4181080996443982 382 | 0.4135761937641718 383 | 0.4091061032923234 384 | 0.4232621378277556 385 | 0.4323016722496045 386 | 0.4375258903025396 387 | 0.45861626718374 388 | 0.4842032559991293 389 | 0.475874292756754 390 | 0.5088133369497727 391 | 0.537281474625948 392 | 0.5745689165809225 393 | 0.5987513899541392 394 | 0.6214609021112207 395 | 0.6520793183494551 396 | 0.6702393796589157 397 | 0.6944348077464295 398 | 0.6879280729780879 399 | 0.6796296094174041 400 | 0.6624390095621093 401 | 0.6690345912292912 402 | 0.6616054195996259 403 | 0.6608094697125411 404 | 0.6378374970839142 405 | 0.6309243719080182 406 | 0.6185334426969635 407 | 0.5832134852251485 408 | 0.5651913355198579 409 | 0.5646114335452228 410 | 0.5652957892792294 411 | 0.5650451614601126 412 | 0.5588841237528155 413 | 0.5580952122538132 414 | 0.5597522936219659 415 | 0.5506017770807847 416 | 0.5533338957243426 417 | 0.5567480239725457 418 | 0.5873068689261389 419 | 0.5797088779881145 420 | 0.5985069844781101 421 | 0.5994606350604961 422 | 0.6075214255163601 423 | 0.6009354323778704 424 | 0.604623037705053 425 | 0.615074635985279 426 | 0.6392030463775713 427 | 0.6509095178489952 428 | 0.6663037986588505 429 | 0.6681536706570927 430 | 0.6838544783682283 431 | 0.683747678479496 432 | 0.7045818172322387 433 | 0.6947769346106205 434 | 0.7293175691121259 435 | 0.7449943034959061 436 | 0.7622180551791267 437 | 0.776512307335602 438 | 0.7753383246045422 439 | 0.7783360658940013 440 | 0.7609525734029925 441 | 0.7402574683162881 442 | 0.7293648997218409 443 | 0.7066308042092826 444 | 0.6879370494730339 445 | 0.6717218273981191 446 | 0.6600661547276394 447 | 0.6383951618324331 448 | 0.6366922799389314 449 | 0.607176850517184 450 | 0.5849862409713547 451 | 0.5881318904161739 452 | 0.5675998923228629 453 | 0.560186939587475 454 | 0.5583974549188693 455 | 0.5513975229566208 456 | 0.5517214928196712 457 | 0.5479063804620059 458 | 0.5359698863075912 459 | 0.5261508249041835 460 | 0.5051360341906532 461 | 0.4842077442466023 462 | 0.4671226182069227 463 | 0.4617058135351468 464 | 0.43998504189524 465 | 0.4321826316859459 466 | 0.4174976979880717 467 | 0.3993310063130261 468 | 0.3976387330044604 469 | 0.4004045135040656 470 | 0.398300647501102 471 | 0.4026979059571386 472 | 0.3964882115670093 473 | 0.4059220997327351 474 | 0.3997572878173357 475 | 0.392411760799667 476 | 0.3934949585250232 477 | 0.397669538703025 478 | 0.3780338640311949 479 | 0.380071528383932 480 | 0.3923646342012006 481 | 0.3949260974351604 482 | 0.4141245760008715 483 | 0.4351081529933397 484 | 0.440663481303032 485 | 0.4424264445092974 486 | 0.4597871897460683 487 | 0.4816634179575393 488 | 0.5025471314437335 489 | 0.5143259249028473 490 | 0.5427894723259252 491 | 0.5610667380978054 492 | 0.567635288274525 493 | 0.5883145824894493 494 | 0.5701849188560559 495 | 0.5666307368855705 496 | 0.5574329917402987 497 | 0.5525858884807191 498 | 0.5482534035961675 499 | 0.5485191282476933 500 | 0.5272829853292451 501 | 0.5184041097658043 502 | 0.4957091844130102 503 | 0.4615181231862763 504 | 0.4478089752912796 505 | 0.4429671763241682 506 | 0.4308786937894182 507 | 0.4235711128640211 508 | 0.4286219213554997 509 | 0.4408175097958551 510 | 0.4684537916051616 511 | 0.4691875180613709 512 | 0.4668699502753183 513 | 0.4693582754765933 514 | 0.4746575696690764 515 | 0.4906486853872149 516 | 0.5123266146648795 517 | 0.5122054319831086 518 | 0.5159635231967421 519 | 0.5264792830147069 520 | 0.5477836676958694 521 | 0.5633727792483023 522 | 0.5695156599544586 523 | 0.5825623833246918 524 | 0.5834723754998403 525 | 0.5721485271254887 526 | 0.5736073095598346 527 | 0.577414567484422 528 | 0.5814963225442324 529 | 0.5761316427465177 530 | 0.5975395631364322 531 | 0.6165505553645216 532 | 0.6237404217993772 533 | 0.6318922012721937 534 | 0.6529162744975432 535 | 0.6535523815712152 536 | 0.6422798420259297 537 | 0.6365549803685076 538 | 0.6334113710361762 539 | 0.6299079878666349 540 | 0.6270988549766658 541 | 0.6129973934502801 542 | 0.6020477017061767 543 | 0.5959576599134524 544 | 0.5860560759599163 545 | 0.5788101064316484 546 | 0.5746230815674715 547 | 0.570948940982708 548 | 0.5489855999680111 549 | 0.5434759701780436 550 | 0.5304930003230519 551 | 0.5460731353805386 552 | 0.5596283567883367 553 | 0.5522613065839224 554 | 0.5308813357350899 555 | 0.5289572036422945 556 | 0.4968871453634211 557 | 0.488476067593415 558 | 0.4663203439711259 559 | 0.4698272973375206 560 | 0.4619412425162298 561 | 0.4317771593290111 562 | 0.4360264076240636 563 | 0.4478282543542886 564 | 0.4319789264540468 565 | 0.4152229725642613 566 | 0.3970965731108481 567 | 0.3865327686437975 568 | 0.3756693736579248 569 | 0.384764195128191 570 | 0.3800595937258789 571 | 0.3739366041164778 572 | 0.3825273137910278 573 | 0.3753080697363491 574 | 0.3613522722415869 575 | 0.3635859914043941 576 | 0.3760857606166689 577 | 0.3719351517603977 578 | 0.3818753958455761 579 | 0.3918741911591522 580 | 0.4128427733248356 581 | 0.4198078193635441 582 | 0.4217062460389941 583 | 0.4598282980126958 584 | 0.4911502470423214 585 | 0.5095817453182734 586 | 0.5365383636522951 587 | 0.5559873680314986 588 | 0.5889590540243208 589 | 0.5965542908104868 590 | 0.5941870462853582 591 | 0.5830119221113614 592 | 0.5908150463600264 593 | 0.5855663469572385 594 | 0.5765043712980247 595 | 0.5710117764473297 596 | 0.5647120110908677 597 | 0.5513308112782722 598 | 0.548437931770682 599 | 0.5275149461190991 600 | 0.5206940340276482 601 | 0.5064183468948111 602 | 0.5013955899500386 603 | 0.5136029090371985 604 | 0.5035696358225801 605 | 0.5172599126770652 606 | 0.5182085649838561 607 | 0.5003690053462169 608 | 0.4951013328972933 609 | 0.5167353997564719 610 | 0.5285910034507484 611 | 0.5349105578983415 612 | 0.5468442979008976 613 | 0.550828229566922 614 | 0.5433797788742476 615 | 0.5447054439687695 616 | 0.5390951346275332 617 | 0.5476195406462321 618 | 0.5697628195823461 619 | 0.5972328322239031 620 | 0.6153385245355658 621 | 0.6157001344740147 622 | 0.6185241601851443 623 | 0.6272156514165879 624 | 0.6302891828849659 625 | 0.6232436544086168 626 | 0.6405424822313852 627 | 0.6596913860636449 628 | 0.6802518437261593 629 | 0.6907644413697682 630 | 0.7038127968299916 631 | 0.7016510936380012 632 | 0.6852349204830457 633 | 0.6588606522586442 634 | 0.6496569907871581 635 | 0.6304492297096278 636 | 0.6196694793357516 637 | 0.5855737933678187 638 | 0.5820806107607162 639 | 0.574147429340959 640 | 0.5617958743009173 641 | 0.5387861595912675 642 | 0.5298378181976198 643 | 0.4996233442319542 644 | 0.486012835775739 645 | 0.4552099933686144 646 | 0.4461239443820453 647 | 0.4376397285793544 648 | 0.4343229136968154 649 | 0.4283464041640328 650 | 0.4269049626858326 651 | 0.4206025451831364 652 | 0.3971607346485871 653 | 0.3890862754390552 654 | 0.3538673035353823 655 | 0.3402980053514191 656 | 0.3413090851003342 657 | 0.3268025592395113 658 | 0.2943796635058864 659 | 0.2939424673997675 660 | 0.2887130470599888 661 | 0.2898677507280396 662 | 0.28190009140724 663 | 0.2838901191333888 664 | 0.2867146548726404 665 | 0.2845926318685359 666 | 0.2721822195832233 667 | 0.2850602256507219 668 | 0.2891685021728729 669 | 0.2902719990174818 670 | 0.294852459574916 671 | 0.2860365214817215 672 | 0.2715359119471129 673 | 0.2930743995362416 674 | 0.2875798665786834 675 | 0.3018132213774003 676 | 0.31429473158291 677 | 0.3224172354415278 678 | 0.3408325148232023 679 | 0.3625611408961868 680 | 0.4000663648592256 681 | 0.4253323419746718 682 | 0.4640405182660962 683 | 0.4669368659649156 684 | 0.4872997387329943 685 | 0.5165544417788108 686 | 0.5154244234718615 687 | 0.5105792583191453 688 | 0.509641622619788 689 | 0.5297582538105987 690 | 0.5140735629881161 691 | 0.5311988792438038 692 | 0.5169280883809373 693 | 0.5126808801983724 694 | 0.5096057166400041 695 | 0.5053241325620212 696 | 0.5030632799031274 697 | 0.4979473918232903 698 | 0.495263725851316 699 | 0.4841391964670148 700 | 0.4877697806501656 701 | 0.5026442407981491 702 | 0.4874561133551782 703 | 0.4741063312748938 704 | 0.451028680819403 705 | 0.4297008348446317 706 | 0.4341389975560473 707 | 0.4487653800255238 708 | 0.4337226105973031 709 | 0.4280251884528409 710 | 0.4330766089780658 711 | 0.4443102843804602 712 | 0.4502141659086798 713 | 0.4645669692935529 714 | 0.4690264511804652 715 | 0.483649977492459 716 | 0.4740064677686198 717 | 0.4975972065147728 718 | 0.5318554894479772 719 | 0.5484564967943202 720 | 0.564030817531217 721 | 0.5789048696567032 722 | 0.6023699374736124 723 | 0.6117396641015993 724 | 0.6261688696991374 725 | 0.6443969687600635 726 | 0.6620659749937292 727 | 0.6719382833330665 728 | 0.6590947551666104 729 | 0.6574212508929318 730 | 0.6517049577079581 731 | 0.6314764263471959 732 | 0.6180645228416606 733 | 0.5996678084836242 734 | 0.5987948443501279 735 | 0.5978136522491577 736 | 0.5801839181808808 737 | 0.5722369660018314 738 | 0.5490847494349145 739 | 0.5347594875686257 740 | 0.5274327295858439 741 | 0.5196184867241211 742 | 0.5239333246356539 743 | 0.5392351883498152 744 | 0.5320323672006628 745 | 0.5319532108361391 746 | 0.5254747316257524 747 | 0.525886222314526 748 | 0.5041855457826234 749 | 0.5023916748721691 750 | 0.4992065492507127 751 | 0.4902545356545869 752 | 0.482468548350819 753 | 0.4726571373692402 754 | 0.4569200156558232 755 | 0.4526098700030123 756 | 0.4473921803100379 757 | 0.43467442507845 758 | 0.4331268977508882 759 | 0.4114014338522597 760 | 0.4095993004862302 761 | 0.4084219515695657 762 | 0.4172574747426423 763 | 0.4063203296903385 764 | 0.4024182065350719 765 | 0.4127939126307546 766 | 0.407735963745569 767 | 0.4025171519907265 768 | 0.3993006086369591 769 | 0.4081590830755227 770 | 0.4152233805867588 771 | 0.4293799251503129 772 | 0.4307023260648546 773 | 0.4438749243755802 774 | 0.4618565778479894 775 | 0.4983545982758398 776 | 0.5266807441228696 777 | 0.5495479569752517 778 | 0.5801615789491401 779 | 0.588531650458143 780 | 0.6040353833029646 781 | 0.6186898173191473 782 | 0.6088711639382374 783 | 0.6217537602588332 784 | 0.6255663224758887 785 | 0.6160816355092187 786 | 0.6165632040619455 787 | 0.6108308959939435 788 | 0.6065389073422731 789 | 0.6076656614692422 790 | 0.6122589747353491 791 | 0.615274362997827 792 | 0.6088995215018167 793 | 0.6096153969737583 794 | 0.6093474281984961 795 | 0.6045444933742756 796 | 0.6099572178210764 797 | 0.6140003127492444 798 | 0.6048376575387615 799 | 0.6017815690321533 800 | 0.5885792870847313 801 | 0.5889796591604468 802 | 0.5879353255779818 803 | 0.5912729496078954 804 | 0.5906793788795928 805 | 0.5967338207094064 806 | 0.5865480490863306 807 | 0.6044003594270182 808 | 0.6131435675100254 809 | 0.613007696018343 810 | 0.5999062976334391 811 | 0.6165385187008441 812 | 0.6296712328124348 813 | 0.647021777486767 814 | 0.6401789341860733 815 | 0.6421535590629397 816 | 0.6502756548990598 817 | 0.6704189095578352 818 | 0.6842756595913186 819 | 0.7141651436376899 820 | 0.7277200590286148 821 | 0.7403561077550695 822 | 0.7397183685914075 823 | 0.7369798235935134 824 | 0.7280954397263557 825 | 0.7286386196762118 826 | 0.7205180539244573 827 | 0.706082217961334 828 | 0.6768993268750854 829 | 0.6620024254897368 830 | 0.6551289805017269 831 | 0.635282256193042 832 | 0.62740221970359 833 | 0.6175347056285989 834 | 0.5997078966940079 835 | 0.5953178806373027 836 | 0.5928665834776798 837 | 0.5815572199019909 838 | 0.5685250833360451 839 | 0.5957041759368529 840 | 0.595308190102986 841 | 0.5937377115099374 842 | 0.595303191827391 843 | 0.5929312550435406 844 | 0.5673895567253788 845 | 0.5516998676273013 846 | 0.5464637149163132 847 | 0.5299660392674732 848 | 0.5251468855489754 849 | 0.5185888419515676 850 | 0.4987124340061863 851 | 0.4962164583830823 852 | 0.4735980372485778 853 | 0.4650454776775481 854 | 0.4602794688893556 855 | 0.4585793411477122 856 | 0.448807406342771 857 | 0.4411974807466934 858 | 0.4512209614213708 859 | 0.4264360428305296 860 | 0.424490693567862 861 | 0.4340614732815138 862 | 0.4275643270418645 863 | 0.4262530447403809 864 | 0.4356501088757032 865 | 0.4299695176592648 866 | 0.4224516011363835 867 | 0.4240843031603077 868 | 0.4316434299554409 869 | 0.4458217017169892 870 | 0.4381057922771746 871 | 0.4531114316581188 872 | 0.4541892230853825 873 | 0.4605201001572824 874 | 0.4613020752738264 875 | 0.4796813466700927 876 | 0.4927027726454782 877 | 0.5069195005274201 878 | 0.5125082866819111 879 | 0.5105161168376502 880 | 0.5182877213483796 881 | 0.513257211976154 882 | 0.5391236962023613 883 | 0.5544661581550283 884 | 0.5674602466230783 885 | 0.5748574904923107 886 | 0.5857584235479576 887 | 0.609377825874563 888 | 0.6026238294727095 889 | 0.6134163305496338 890 | 0.5974902944198537 891 | 0.5966505841199072 892 | 0.6014483166572839 893 | 0.6126270110281342 894 | 0.6245478983220176 895 | 0.6167658892376009 896 | 0.5979515638533277 897 | 0.5939773227216203 898 | 0.6074955160877662 899 | 0.6275331949253018 900 | 0.626614430266456 901 | 0.6162376021089051 902 | 0.6207776684390824 903 | 0.598786683900177 904 | 0.5971354168526144 905 | 0.594345767036903 906 | 0.6008126176061097 907 | 0.5969655774880116 908 | 0.6010977233262689 909 | 0.5992811051615765 910 | 0.6113778501519018 911 | 0.6138097662428912 912 | 0.626293418566513 913 | 0.6299528703413648 914 | 0.6522569101415114 915 | 0.6597519774045302 916 | 0.6678397993508567 917 | 0.6750135488970592 918 | 0.6739392256610246 919 | 0.6743668332384511 920 | 0.6674638066193694 921 | 0.6770157152925098 922 | 0.6680946094005731 923 | 0.6582517806866834 924 | 0.6300147877553672 925 | 0.6338225557080768 926 | 0.6172315449129235 927 | 0.612835714535628 928 | 0.5850320414967041 929 | 0.5713617577445986 930 | 0.5706486364245151 931 | 0.5706602650656953 932 | 0.5655902795168319 933 | 0.5456051335758552 934 | 0.5384917713592892 935 | 0.5450877610489688 936 | 0.5518781734587281 937 | 0.5507387706343352 938 | 0.5464519842695086 939 | 0.5590604914773791 940 | 0.5577932756056303 941 | 0.5506652245791528 942 | 0.5424899838127275 943 | 0.5336402818578612 944 | 0.5131158321807547 945 | 0.5022143890969861 946 | 0.5022443787505555 947 | 0.5071472790866742 948 | 0.4849843130650538 949 | 0.4774461994285441 950 | 0.4635599697696131 951 | 0.4535560741748178 952 | 0.4484349838081372 953 | 0.4368927413919749 954 | 0.4401400904443069 955 | 0.4293263721975103 956 | 0.4339163192780124 957 | 0.4257181272461001 958 | 0.4233555749796933 959 | 0.4141975100223076 960 | 0.4174080350442363 961 | 0.4083406530869299 962 | 0.4181224824374367 963 | 0.4172811400475 964 | 0.4185865060227691 965 | 0.417439656787796 966 | 0.4218006012415513 967 | 0.4323540011349145 968 | 0.4359481693101595 969 | 0.4385926651223695 970 | 0.4422816985282935 971 | 0.4522957946855274 972 | 0.4442051165817181 973 | 0.4621121019370767 974 | 0.4612492363603944 975 | 0.4665024240106551 976 | 0.4709223277153055 977 | 0.4735038860572695 978 | 0.4755758242998003 979 | 0.4883830384639748 980 | 0.4760339315589183 981 | 0.4926100495329111 982 | 0.504006321900577 983 | 0.4852327987660583 984 | 0.5022620257235744 985 | 0.5122300153385857 986 | 0.514474037069456 987 | 0.5080357480750775 988 | 0.5121007742124886 989 | 0.5184695973766602 990 | 0.5279945765649627 991 | 0.5259270245642804 992 | 0.5276177677884804 993 | 0.5199170571866991 994 | 0.5151065739462743 995 | 0.5128445992255122 996 | 0.5140322507102397 997 | 0.5027813363573241 998 | 0.4869103832647125 999 | 0.4800995697300758 1000 | 0.4839982246941132 1001 | 0.4661241871554314 1002 | 0.4510877420759226 1003 | 0.4527987844193753 1004 | 0.4415364454365285 1005 | 0.4396240439905376 1006 | 0.4463075545059403 1007 | 0.4360481348220579 1008 | 0.4439172567097004 1009 | 0.4442188873410103 1010 | 0.4460982389647001 1011 | 0.4761749033318199 1012 | 0.4815268324264863 1013 | 0.4920578930881091 1014 | 0.5201557503477627 1015 | 0.5144168119141754 1016 | 0.5094948365262963 1017 | 0.5073268089855938 1018 | 0.5234850099164767 1019 | 0.5166003443097846 1020 | 0.5008372111621491 1021 | 0.5030563435206692 1022 | 0.5014765824158012 1023 | 0.4954143881585343 1024 | 0.4877516236490247 1025 | 0.4685392723183971 1026 | 0.4605746731663291 1027 | 0.4518439097694969 1028 | 0.4515673725217862 1029 | 0.4511518016080371 1030 | 0.4409125790377829 1031 | 0.4311339118616322 1032 | 0.4459406402750235 1033 | 0.4504046104094087 1034 | 0.4387757652181426 1035 | 0.4366579244446381 1036 | 0.4360655777838279 1037 | 0.4156647589234776 1038 | 0.4139301532807916 1039 | 0.4014992378649774 1040 | 0.4021472795967024 1041 | 0.4025672367523 1042 | 0.377985003337114 1043 | 0.388704468386978 1044 | 0.3722282139192591 1045 | 0.3552326488177905 1046 | 0.3662183485473022 1047 | 0.3521033202728732 1048 | 0.3612003858668759 1049 | 0.3535775055565014 1050 | 0.347857846185923 1051 | 0.3408366970538022 1052 | 0.3525621415713619 1053 | 0.3555159184367107 1054 | 0.3694438683960157 1055 | 0.3767780727893775 1056 | 0.3738949858217282 1057 | 0.3736145723602909 1058 | 0.3937471164285056 1059 | 0.4193342072495193 1060 | 0.4351691523567226 1061 | 0.4355010786584751 1062 | 0.4575906006305376 1063 | 0.4969871108753195 1064 | 0.5257499428003463 1065 | 0.5423752274852931 1066 | 0.5522835438100386 1067 | 0.5819806452488179 1068 | 0.6099903696490017 1069 | 0.6267588702305869 1070 | 0.63367495356959 1071 | 0.6357928963487189 1072 | 0.6343952152833803 1073 | 0.642802212828411 1074 | 0.6394665269053605 1075 | 0.6313320883886897 1076 | 0.622848994647867 1077 | 0.6102676209360831 1078 | 0.6064734197314172 1079 | 0.6043013119657392 1080 | 0.5971744850067544 1081 | 0.5882402203892718 1082 | 0.5882273676805991 1083 | 0.5915351040625678 1084 | 0.5955114873123875 1085 | 0.6088157748841956 1086 | 0.6122689712865388 1087 | 0.6070348586880383 1088 | 0.5981408862921884 1089 | 0.6050232057695197 1090 | 0.6078450893625373 1091 | 0.6246388873389701 1092 | 0.6302479726127139 1093 | 0.6303345753878178 1094 | 0.6220544728395234 1095 | 0.6163112501697119 1096 | 0.6248149490466606 1097 | 0.6305321602822538 1098 | 0.6385241989472816 1099 | 0.6354821872168388 1100 | 0.6269960333072846 1101 | 0.6278118742911247 1102 | 0.6246969285392459 1103 | 0.6305565396264821 1104 | 0.6559435974180745 1105 | 0.673223146177834 1106 | 0.6962085835488798 1107 | 0.7203301595643381 1108 | 0.7150623851097901 1109 | 0.7184369351757318 1110 | 0.7184963024491244 1111 | 0.7037646501752814 1112 | 0.6842606647645337 1113 | 0.6715121038343812 1114 | 0.6544318740646722 1115 | 0.6492968089274507 1116 | 0.6264671341448425 1117 | 0.5955534116240102 1118 | 0.5968402125756411 1119 | 0.5823306265460866 1120 | 0.572092322026452 1121 | 0.555843234084241 1122 | 0.5388078867892618 1123 | 0.5456437937074974 1124 | 0.5263146459369477 1125 | 0.5116010486586209 1126 | 0.4910269222424386 1127 | 0.5099251982555815 1128 | 0.5172145201742133 1129 | 0.5079593458624121 1130 | 0.518240492744289 1131 | 0.5190798970273622 1132 | 0.5135737354286241 1133 | 0.5175229851823571 1134 | 0.4945401999575453 1135 | 0.4741716148745009 1136 | 0.4396572978240874 1137 | 0.4068164850473526 1138 | 0.3997617760648087 1139 | 0.3850487908202283 1140 | 0.3672538076404457 1141 | 0.3710523950869603 1142 | 0.3570028544233872 1143 | 0.3509489226216956 1144 | 0.343313393613897 1145 | 0.349301327776611 1146 | 0.347919661594301 1147 | 0.3339043948205216 1148 | 0.3389222554953235 1149 | 0.3527624806176563 1150 | 0.3460507145442985 1151 | 0.3521092365990876 1152 | 0.3527391213296719 1153 | 0.3511690507591208 1154 | 0.3470555719501262 1155 | 0.3611815148263645 1156 | 0.3763326142276833 1157 | 0.3938003633644352 1158 | 0.4213916606933873 1159 | 0.4617585504429544 1160 | 0.4911872750839736 1161 | 0.5180296471186829 1162 | 0.5431650570349149 1163 | 0.5526454597653605 1164 | 0.5711993647905758 1165 | 0.598972436142184 1166 | 0.6026464747213232 1167 | 0.6102036634095931 1168 | 0.6167955728742971 1169 | 0.6258706052534324 1170 | 0.6269595152937544 1171 | 0.6167140703804126 1172 | 0.5960773125108572 1173 | 0.6047293275656633 1174 | 0.6016612023953778 1175 | 0.5939925215596538 1176 | 0.5891794881786192 1177 | 0.593976200659752 1178 | 0.5850544827340691 1179 | 0.5863096619421402 1180 | 0.6050291220957342 1181 | 0.6079960576866288 1182 | 0.6078554939362246 1183 | 0.594437470093226 1184 | 0.5809770119104827 1185 | 0.5766517694252626 1186 | 0.5779072546502069 1187 | 0.5860630123423747 1188 | 0.5937013975076557 1189 | 0.5996283323069869 1190 | 0.5967783971672631 1191 | 0.5850854924438824 1192 | 0.5755732639586282 1193 | 0.576801921704359 1194 | 0.5791775306906872 1195 | 0.5969345677781981 1196 | 0.595298193551796 1197 | 0.6068932748813904 1198 | 0.5956698000414347 1199 | 0.5977357199521267 1200 | 0.601491159019526 1201 | 0.6044776796903029 1202 | 0.611653979377115 1203 | 0.6331995053543262 1204 | 0.6497448176297544 1205 | 0.6650097553078882 1206 | 0.6685355797147943 1207 | 0.662780014364432 1208 | 0.6665056677895107 1209 | 0.6513448778538751 1210 | 0.6351465887126084 1211 | 0.6151701132497045 1212 | 0.5831589122161018 1213 | 0.5630911417193722 1214 | 0.5543322247702094 1215 | 0.5559184122294136 1216 | 0.5381123104365728 1217 | 0.5394933645851365 1218 | 0.5252894894118671 1219 | 0.4988823753764135 1220 | 0.4840209719483513 1221 | 0.4759282537320543 1222 | 0.4557452168797684 1223 | 0.4721932157895323 1224 | 0.4779484751230213 1225 | 0.4812380545038493 1226 | 0.4725808371621995 1227 | 0.4919884272579022 1228 | 0.4770437872403408 1229 | 0.4602650860963171 1230 | 0.4508758763940726 1231 | 0.4358443275845343 1232 | 0.4151874746069748 1233 | 0.3986519548714877 1234 | 0.3822089542373187 1235 | 0.386267656026018 1236 | 0.3745185462036006 1237 | 0.364472828302807 1238 | 0.3480765462446069 1239 | 0.35143671351751 1240 | 0.3546552969837651 1241 | 0.3471875672280818 1242 | 0.3499189718322689 1243 | 0.3461770995129129 1244 | 0.3505391660285364 1245 | 0.3433988743271327 1246 | 0.3467630198193868 1247 | 0.350707067286276 1248 | 0.3538281333756181 1249 | 0.3587525568984823 1250 | 0.3715035659636201 1251 | 0.3968158536325376 1252 | 0.3989628680146166 1253 | 0.4124692287283336 1254 | 0.4339528372915426 1255 | 0.4671395511405709 1256 | 0.493059894336454 1257 | 0.5145703303788765 1258 | 0.5297663122549252 1259 | 0.5480167505475917 1260 | 0.5661158124936694 1261 | 0.5797243828430212 1262 | 0.5874373341197288 1263 | 0.5910848512365274 1264 | 0.5916066100052626 1265 | 0.5954279447060153 1266 | 0.5956407284384846 1267 | 0.5817337916378034 1268 | 0.5761428633652004 1269 | 0.567798293262294 1270 | 0.5471028821587165 1271 | 0.5421126650081232 1272 | 0.5322532093774588 1273 | 0.5180994189657631 1274 | 0.505315870106446 1275 | 0.4809361178556663 1276 | 0.478507669955906 1277 | 0.4740288070003604 1278 | 0.4790680888562834 1279 | 0.4790131078247393 1280 | 0.4738161252735154 1281 | 0.4983484779383766 1282 | 0.5217443859419522 1283 | 0.5514519939600431 1284 | 0.5745794231602344 1285 | 0.5895088643397619 1286 | 0.5924594790307549 1287 | 0.5934118035400235 1288 | 0.585303886485693 1289 | 0.5898278359272173 1290 | 0.593551653251057 1291 | 0.5967537118061617 1292 | 0.5983894739988174 1293 | 0.5977885588655587 1294 | 0.6004388689983589 1295 | 0.6149979277557407 1296 | 0.6299517482794967 1297 | 0.6330065107129876 1298 | 0.6456264425507894 1299 | 0.6702472340919934 1300 | 0.6764130660636367 1301 | 0.685380584514669 1302 | 0.6880550699804486 1303 | 0.6735039676617689 1304 | 0.6543732208306503 1305 | 0.6486724325005833 1306 | 0.6360346496785141 1307 | 0.6331298355128705 1308 | 0.6237751037116686 1309 | 0.6020132238051341 1310 | 0.591389032008447 1311 | 0.5694211007406527 1312 | 0.543816056929747 1313 | 0.5360457784921346 1314 | 0.5183511688467479 1315 | 0.5084117408065647 1316 | 0.4965616454160049 1317 | 0.4690247170848506 1318 | 0.4449985163281933 1319 | 0.4570322218426479 1320 | 0.4697643598672744 1321 | 0.4661249011948021 1322 | 0.4475046925137358 1323 | 0.4408913618679107 1324 | 0.4325874920091344 1325 | 0.4192491345587814 1326 | 0.4107836877909774 1327 | 0.403752338096418 1328 | 0.3930389933840172 1329 | 0.3801120246168133 1330 | 0.363721760890452 1331 | 0.3681428886625951 1332 | 0.3466134795740368 1333 | 0.336051001180103 1334 | 0.3416704910275343 1335 | 0.3369425303372378 1336 | 0.3340265975585362 1337 | 0.3233679278608064 1338 | 0.3206708991520374 1339 | 0.3266044643169535 1340 | 0.3270282976862779 1341 | 0.3191456090505918 1342 | 0.312497494486851 1343 | 0.2958994453036151 1344 | 0.3063408430214026 1345 | 0.3145540298800995 1346 | 0.3238722436677714 1347 | 0.3495141115090804 1348 | 0.3696443094479344 1349 | 0.390392355453695 1350 | 0.4102672333147105 1351 | 0.4275403557201337 1352 | 0.4133914615784085 1353 | 0.4955639284038843 1354 | 0.5176689552308535 1355 | 0.5370910301252192 1356 | 0.557326599874064 1357 | 0.5819149536267132 1358 | 0.5877739526802028 1359 | 0.5892273288164562 1360 | 0.5895358958302244 1361 | 0.5817368518065349 1362 | 0.5802736831303406 1363 | 0.5661621230471405 1364 | 0.5627810446212385 1365 | 0.5460091778540486 1366 | 0.526395842413959 1367 | 0.5108220317051841 1368 | 0.4868184761971406 1369 | 0.4739367979271642 1370 | 0.4654618646362923 1371 | 0.4539738892123034 1372 | 0.4425647641359649 1373 | 0.4468832742499756 1374 | 0.4457023551364575 1375 | 0.4365982511543722 1376 | 0.4213981890533481 1377 | 0.4274483466469375 1378 | 0.4333917043517946 1379 | 0.4469301968371932 1380 | 0.4438594195206736 1381 | 0.4439101163159935 1382 | 0.4504602034746992 1383 | 0.474272804453892 1384 | 0.5129128409882264 1385 | 0.5249757201112555 1386 | 0.5338713245970956 1387 | 0.5561570033848526 1388 | 0.554314373785942 1389 | 0.5588538280823729 1390 | 0.5620577227387165 1391 | 0.5662000691394122 1392 | 0.5731203347090152 1393 | 0.5931264938086156 1394 | 0.6136161595678062 1395 | 0.6231133932262758 1396 | 0.6312811875821209 1397 | 0.6328899182843144 1398 | 0.6291214224969937 1399 | 0.6190271499189923 1400 | 0.6140836513443679 1401 | 0.6165827891418278 1402 | 0.6065282987573368 1403 | 0.5926833813762824 1404 | 0.5657493062852501 1405 | 0.5486515315481466 1406 | 0.5415059355542746 1407 | 0.5219832831142643 1408 | 0.4957245872622924 1409 | 0.4852167838830297 1410 | 0.4837148530695686 1411 | 0.4698634073285533 1412 | 0.4628345057689791 1413 | 0.4533253374524564 1414 | 0.435238720192554 1415 | 0.4556270943667292 1416 | 0.4536673623110231 1417 | 0.4557651079765236 1418 | 0.4465323749020873 1419 | 0.4500563632077546 1420 | 0.4328092522365498 1421 | 0.4233900528807358 1422 | 0.4120471294546239 1423 | 0.3995636811422509 1424 | 0.3984574301457834 1425 | 0.4026408848131068 1426 | 0.4056503567493705 1427 | 0.4026296641944244 1428 | 0.4077873745802596 1429 | 0.3995903046102156 1430 | 0.4078796896703291 1431 | 0.4107906241734357 1432 | 0.3962422760066145 1433 | 0.3955767913131194 1434 | 0.3919789509353967 1435 | 0.3832608362359884 1436 | 0.3763377145089026 1437 | 0.3709879275323482 1438 | 0.3790385174257738 1439 | 0.3847146203947393 1440 | 0.3904854865887595 1441 | 0.4028947768122039 1442 | 0.4010645918994681 1443 | 0.4272167938795809 1444 | 0.4322056849570572 1445 | 0.4424516398985207 1446 | 0.4654950164642178 1447 | 0.4833697680422703 1448 | 0.5079434329850079 1449 | 0.5440601563889029 1450 | 0.5569713142843271 1451 | 0.5695701309578809 1452 | 0.5943919755847498 1453 | 0.6068900107014101 1454 | 0.6096144789231388 1455 | 0.5997082027108811 1456 | 0.6155592647067374 1457 | 0.6089603168539508 1458 | 0.6208633531635668 1459 | 0.6076038460608642 1460 | 0.5890225015226891 1461 | 0.5838053218578367 1462 | 0.5733320983852408 1463 | 0.5547935962093078 1464 | 0.525610909134308 1465 | 0.5044569827491148 1466 | 0.4933323513591892 1467 | 0.4841191013590107 1468 | 0.4790125977966173 1469 | 0.4835156360851425 1470 | 0.4604329873540567 1471 | 0.4398297893349244 1472 | 0.4327532511487619 1473 | 0.434287925767651 1474 | 0.438144452408817 1475 | 0.4529431223778817 1476 | 0.4609952423556731 1477 | 0.4754502553761809 1478 | 0.4802241185974512 1479 | 0.4831976845539309 1480 | 0.4923196395202839 1481 | 0.5189479017494067 1482 | 0.5331910490880647 1483 | 0.559272867187351 1484 | 0.5745835033852098 1485 | 0.5936415202061411 1486 | 0.6070047670288445 1487 | 0.618905253197851 1488 | 0.6463588429338818 1489 | 0.6538023973565854 1490 | 0.6733993098911488 1491 | 0.6881427948174208 1492 | 0.6926322663579025 1493 | 0.692217919511646 1494 | 0.7037256840267658 1495 | 0.7060771176801146 1496 | 0.6933847618489988 1497 | 0.6960492507635887 1498 | 0.6759144625716373 1499 | 0.6658793532557798 1500 | 0.6451335513737557 1501 | 0.6426969430240446 1502 | 0.6208172466213442 1503 | 0.6108419126013771 1504 | 0.601639883219881 1505 | 0.5780489404624793 1506 | 0.5676533432700412 1507 | 0.5638196658887378 1508 | 0.5599275392846612 1509 | 0.5359180674504032 1510 | 0.5360743400669628 1511 | 0.555923308499384 1512 | 0.5507932416377574 1513 | 0.5618040347508682 1514 | 0.5558503744779479 1515 | 0.5614119251307279 1516 | 0.5391956101675535 1517 | 0.5195126048860081 1518 | 0.5095586920471622 1519 | 0.4949577089781576 1520 | 0.4804513871285835 1521 | 0.4701043446133533 1522 | 0.4625194103952504 1523 | 0.458876483531549 1524 | 0.4477674590021545 1525 | 0.4548729667856426 1526 | 0.4425014186432212 1527 | 0.4258000377624821 1528 | 0.41240170100499 1529 | 0.4124322006866814 1530 | 0.4123115280330326 1531 | 0.4044015018900113 1532 | 0.4051772546634677 1533 | 0.3895230635226765 1534 | 0.3878714904582409 1535 | 0.3911211856399338 1536 | 0.3889027673207846 1537 | 0.3749248346055305 1538 | 0.3701150654044763 1539 | 0.3698754541927933 1540 | 0.3734205576627085 1541 | 0.3886900855939395 1542 | 0.3898343846883029 1543 | 0.4011902628287119 1544 | 0.4231391190447459 1545 | 0.425990992291333 1546 | 0.4340561689890457 1547 | 0.4358362691402078 1548 | 0.4514007973371636 1549 | 0.4683584163463605 1550 | 0.4893757572005006 1551 | 0.4850304196072764 1552 | 0.4775498371429204 1553 | 0.4733942300110543 1554 | 0.4699923424377774 1555 | 0.4681827626611676 1556 | 0.4713759467269506 1557 | 0.4467392423083424 1558 | 0.4482033290351564 1559 | 0.4572621425200143 1560 | 0.4507005287257529 1561 | 0.4388978659505327 1562 | 0.4219192337827124 1563 | 0.410685048352196 1564 | 0.410587020947161 1565 | 0.4205663331864792 1566 | 0.425282461224347 1567 | 0.4222410615276505 1568 | 0.4086839020129892 1569 | 0.3934694571189266 1570 | 0.3682955910823011 1571 | 0.3631047288685403 1572 | 0.3614286744542521 1573 | 0.359559319381752 1574 | 0.3762911999441825 1575 | 0.392543858083247 1576 | 0.40227978490278 1577 | 0.4011191649085148 1578 | 0.4166798168917437 1579 | 0.4350245083813431 1580 | 0.466017897294821 1581 | 0.4863752617591829 1582 | 0.501575323860207 1583 | 0.5071227977368216 1584 | 0.5122609230427748 1585 | 0.526630149333174 1586 | 0.5456470578874779 1587 | 0.5672665379423691 1588 | 0.5670808877059863 1589 | 0.5819042430361525 1590 | 0.5852436011616808 1591 | 0.5846778779688355 1592 | 0.5678936685210949 1593 | 0.5563091957764368 1594 | 0.5385155386697713 1595 | 0.5462106389622112 1596 | 0.524413669120888 1597 | 0.5137843770429815 1598 | 0.5037647725820307 1599 | 0.4985486129734222 1600 | 0.4821529429489683 1601 | 0.4798640387433683 1602 | 0.4734882791967383 1603 | 0.4728669629386026 1604 | 0.4637809139520335 1605 | 0.4501861143619737 1606 | 0.4374727453722344 1607 | 0.4430484748068039 1608 | 0.4462476772044257 1609 | 0.4364820667481964 1610 | 0.4396660703077846 1611 | 0.4417991099193227 1612 | 0.4279962188555152 1613 | 0.4208547030866188 1614 | 0.4122552209283716 1615 | 0.4046705927271418 1616 | 0.3841574656743423 1617 | 0.3713675924663134 1618 | 0.3707259770889248 1619 | 0.3700988465101989 1620 | 0.3495415510220402 1621 | 0.3281355687389891 1622 | 0.3338768533019373 1623 | 0.3188696838366274 1624 | 0.3003296515763287 1625 | 0.2888208670049649 1626 | 0.2834477207404262 1627 | 0.2848929364267287 1628 | 0.2753035916894386 1629 | 0.2875803766068054 1630 | 0.2966718318914669 1631 | 0.2875125428665886 1632 | 0.2813150891513856 1633 | 0.2746858456281563 1634 | 0.2862961257957842 1635 | 0.294847971327443 1636 | 0.3093601074976073 1637 | 0.2916930393708049 1638 | 0.2886963181375895 1639 | 0.3141479454894184 1640 | 0.3155485847178642 1641 | 0.3298844551690891 1642 | 0.3336350999721423 1643 | 0.3293548419672764 1644 | 0.3323939975402364 1645 | 0.3563583828885158 1646 | 0.3666245349436077 1647 | 0.3754995342933219 1648 | 0.3779768428871631 1649 | 0.3825660759282945 1650 | 0.406263410551931 1651 | 0.4176614170152113 1652 | 0.4370092318150239 1653 | 0.437149285537306 1654 | 0.438170871865533 1655 | 0.4461992245328423 1656 | 0.4464051738884779 1657 | 0.4336012239042836 1658 | 0.4503701325083662 1659 | 0.456448647665535 1660 | 0.4749182960450074 1661 | 0.4841929534310663 1662 | 0.487554854799584 1663 | 0.4904507944759058 1664 | 0.4744028616249843 1665 | 0.4735221450640346 1666 | 0.4716432014628423 1667 | 0.4715243649104324 1668 | 0.4699930564771481 1669 | 0.4744010255237453 1670 | 0.4703517082524897 1671 | 0.4714274595672656 1672 | 0.47180059614127 1673 | 0.449248070640119 1674 | 0.4497340254346945 1675 | 0.4582755683982903 1676 | 0.4590718243022484 1677 | 0.4470333245234476 1678 | 0.4527147317848811 1679 | 0.4684085011079341 1680 | 0.4843430037045382 1681 | 0.4828818751408315 1682 | 0.5093461123259415 1683 | 0.5200025378999347 1684 | 0.5303582508932378 1685 | 0.5533008459020414 1686 | 0.549108924767894 1687 | 0.556667745546154 1688 | 0.5448425395279446 1689 | 0.5424882497171128 1690 | 0.5283389475528901 1691 | 0.5300294867658413 1692 | 0.5295112981939598 1693 | 0.5287033116431974 1694 | 0.5097870826401627 1695 | 0.5172217625735449 1696 | 0.507113107202505 1697 | 0.5032183284521943 1698 | 0.4841375643770246 1699 | 0.4732930404316633 1700 | 0.4610993900981713 1701 | 0.4444030074930271 1702 | 0.4273329782857567 1703 | 0.4320933767646081 1704 | 0.442183569117634 1705 | 0.4492223652227736 1706 | 0.433968546157698 1707 | 0.4248129293352977 1708 | 0.4148301489047504 1709 | 0.3988556601033868 1710 | 0.3870191314608704 1711 | 0.3745013072530793 1712 | 0.3664996800593591 1713 | 0.3469508121738816 1714 | 0.3530555427765177 1715 | 0.3619735884997228 1716 | 0.3480211571905652 1717 | 0.3318570399334679 1718 | 0.3371623524577898 1719 | 0.3347767469202717 1720 | 0.3458016168095476 1721 | 0.3448635730876929 1722 | 0.3504033965424786 1723 | 0.3386068541047216 1724 | 0.3428952725595384 1725 | 0.3430965296564522 1726 | 0.3468780821636943 1727 | 0.3484258135025049 1728 | 0.3731793143610353 1729 | 0.3763182314346449 1730 | 0.3810744476828964 1731 | 0.4102165365193906 1732 | 0.4246242189301834 1733 | 0.4313715849664519 1734 | 0.4637337873535671 1735 | 0.4982981891655543 1736 | 0.5252219616885236 1737 | 0.5350607101774378 1738 | 0.5651523693713425 1739 | 0.594546004077573 1740 | 0.6237807140210097 1741 | 0.64481294769631 1742 | 0.6699967082785012 1743 | 0.689846594761542 1744 | 0.6960601653653979 1745 | 0.6976984776986634 1746 | 0.6995396792188329 1747 | 0.7101649930773883 1748 | 0.7138162844022895 1749 | 0.7121588970172639 1750 | 0.714179934453226 1751 | 0.7009456227397466 1752 | 0.6887826760991949 1753 | 0.6971260221346085 1754 | 0.6898205833273237 1755 | 0.6902732842883492 1756 | 0.6920833740930807 1757 | 0.7024500016881932 1758 | 0.7011779915520981 1759 | 0.683692697447952 1760 | 0.6666147118019794 1761 | 0.657002619810451 1762 | 0.6587166203170112 1763 | 0.672456471904948 1764 | 0.6629929001025259 1765 | 0.6596725150231333 1766 | 0.6458545271269167 1767 | 0.6555662786134702 1768 | 0.6467238190579352 1769 | 0.6649842539017916 1770 | 0.6522997525037535 1771 | 0.6588135256601779 1772 | 0.6623095644247634 1773 | 0.6801253567519205 1774 | 0.6813459560533248 1775 | 0.6837053461453757 1776 | 0.690429148882411 1777 | 0.7020073992839817 1778 | 0.7405472662951691 1779 | 0.748646308860178 1780 | 0.7666816172910143 1781 | 0.7697077161440529 1782 | 0.7900316227636162 1783 | 0.7679823930131862 1784 | 0.774954681451226 1785 | 0.7700363782658248 1786 | 0.7592570359144464 1787 | 0.7447950865114801 1788 | 0.7391702923715808 1789 | 0.7225372552591804 1790 | 0.7060424357678234 1791 | 0.6899518645659084 1792 | 0.670161549367509 1793 | 0.659513080232218 1794 | 0.631782647231603 1795 | 0.6248621776507512 1796 | 0.6053693108530618 1797 | 0.6005706602650658 1798 | 0.5906882533689144 1799 | 0.5925535282164389 1800 | 0.5857704602116351 1801 | 0.5890429026475663 1802 | 0.5935351283399064 1803 | 0.6023066939864932 1804 | 0.5754433087931603 1805 | 0.5604311410522553 1806 | 0.5543826155486562 1807 | 0.5418726457739427 1808 | 0.5365688633339865 1809 | 0.5177039431600179 1810 | 0.5028326451863903 1811 | 0.4815721229237138 1812 | 0.4806634568216822 1813 | 0.4800514230753656 1814 | 0.4746008545419177 1815 | 0.4645614609898361 1816 | 0.4612993211219681 1817 | 0.4598018785559798 1818 | 0.4478726268008966 1819 | 0.4437989301854125 1820 | 0.4411666750481288 1821 | 0.4390363895884492 1822 | 0.4399072116038334 1823 | 0.4455473065873906 1824 | 0.4496288576359523 1825 | 0.4490660926062141 1826 | 0.451382946352896 1827 | 0.4694587510166135 1828 | 0.4774549719122413 1829 | 0.4904529365940179 1830 | 0.5091102753223609 1831 | 0.5394175744062177 1832 | 0.5679853715774181 1833 | 0.5916327234451053 1834 | 0.6125569331641809 1835 | 0.6321215099158137 1836 | 0.6593755766505454 1837 | 0.6812234472984371 1838 | 0.6948225311247211 1839 | 0.7009080846699727 1840 | 0.671501189232572 1841 | 0.6676505789176204 1842 | 0.6764935485012773 1843 | 0.6795746283858599 1844 | 0.6763852185281793 1845 | 0.6715590264215989 1846 | 0.6624319711740267 1847 | 0.6524323598154556 1848 | 0.6428400569150583 1849 | 0.6367046226194821 1850 | 0.6301110810647879 1851 | 0.6234430754042917 1852 | 0.6234430754042917 1853 | 0.6204554326716467 1854 | 0.6176773094914907 1855 | 0.6027660253131037 1856 | 0.6157103350364532 1857 | 0.6271117076853383 1858 | 0.627218099551573 1859 | 0.6366290364518119 1860 | 0.6446524928491508 1861 | 0.6503936754064745 1862 | 0.6489292826627875 1863 | 0.651858374167035 1864 | 0.6538255526333212 1865 | 0.6609343245967896 1866 | 0.6646183597271187 1867 | 0.6704678722575406 1868 | 0.6694056876908079 1869 | 0.6846566505984006 1870 | 0.6907471004136227 1871 | 0.6979455353209265 1872 | 0.6988285980112372 1873 | 0.712850597156226 1874 | 0.7311407156367788 1875 | 0.754078720392485 1876 | 0.7713365419542504 1877 | 0.7770625256735406 1878 | 0.7901541315185039 1879 | 0.7841355956684741 1880 | 0.7809704631493972 1881 | 0.7665863440378378 1882 | 0.7675663120713152 1883 | 0.7533193905245548 1884 | 0.734479257717312 1885 | 0.7274532123152206 1886 | 0.7052599506231576 1887 | 0.6868933279243152 1888 | 0.6750303798250827 1889 | 0.6632425078653987 1890 | 0.6436818073274924 1891 | 0.6304990084543283 1892 | 0.6214264242101781 1893 | 0.60938914849887 1894 | 0.5891944830054039 1895 | 0.6041322886461313 1896 | 0.6131899800691212 1897 | 0.6184360273256748 1898 | 0.6028339610589448 1899 | 0.611618583425453 1900 | 0.5882191052250239 1901 | 0.5763404482596362 1902 | 0.5547813555343815 1903 | 0.5556588079153508 1904 | 0.5482006666883599 1905 | 0.5366356770179594 1906 | 0.5213732894804355 1907 | 0.521116949346353 1908 | 0.4948680460343223 1909 | 0.4955026230236283 1910 | 0.4903376702384617 1911 | 0.4902435190471533 1912 | 0.4857344624267893 1913 | 0.4830201947674991 1914 | 0.47471928307183 1915 | 0.4636129106886695 1916 | 0.4654529901469708 1917 | 0.4704752370636212 1918 | 0.472710180293921 1919 | 0.4691563043403088 1920 | 0.4684004426636076 1921 | 0.4779363364537194 1922 | 0.4932219812736034 1923 | 0.4955462814308656 1924 | 0.4959088094199338 1925 | 0.5080945033147237 1926 | 0.5233357756879999 1927 | 0.560217031246669 1928 | 0.5863698452605279 1929 | 0.6127200401575743 1930 | 0.6253240591179716 1931 | 0.6393018898276013 1932 | 0.6722276732894499 1933 | 0.6936129484307507 1934 | 0.7128502911393528 1935 | 0.7211283535751596 1936 | 0.7114534261190093 1937 | 0.7296564317963365 1938 | 0.7422450479074516 1939 | 0.752315043146849 1940 | 0.7530164338201282 1941 | 0.748642330640827 1942 | 0.7395241498825762 1943 | 0.7390935841420425 1944 | 0.7337491014579562 1945 | 0.7135317907158765 1946 | 0.7118148320462094 1947 | 0.7065287985848965 1948 | 0.7000383847164566 1949 | 0.7051284653733239 1950 | 0.6972790305711878 1951 | 0.6874191669180256 1952 | 0.6717077506219538 1953 | 0.6727716692843011 1954 | 0.6720788470834704 1955 | 0.6768299630505028 1956 | 0.6643841548135281 1957 | 0.6633918440994999 1958 | 0.6717650777828588 1959 | 0.6762212954897908 1960 | 0.6793319570054455 1961 | 0.676915341758114 1962 | 0.6805625528580395 1963 | 0.6948959751742791 1964 | 0.7023540143956457 1965 | 0.7034512888971673 1966 | 0.7051228550639825 1967 | 0.7192639967782544 1968 | 0.7179448600436931 1969 | 0.7246681527526064 1970 | 0.7473763388365708 1971 | 0.7735435356434683 1972 | 0.7920036974998728 1973 | 0.8028666844632479 1974 | 0.7847460993304249 1975 | 0.7827577036942663 1976 | 0.7820864046801814 1977 | 0.771060922757159 1978 | 0.7648811160149749 1979 | 0.7585803306022689 1980 | 0.7340955125583715 1981 | 0.7213636805506183 1982 | 0.7093625148303428 1983 | 0.6975351666940213 1984 | 0.6762852530162808 1985 | 0.644900876544531 1986 | 0.6368540608592077 1987 | 0.6279073515555502 1988 | 0.6070054810682153 1989 | 0.604214097156889 1990 | 0.5887459642749782 1991 | 0.5920960329910672 1992 | 0.6036231785748203 1993 | 0.613426123089575 1994 | 0.6082956482054509 1995 | 0.598494539791935 1996 | 0.5806811955997631 1997 | 0.581896184591826 1998 | 0.5681238952153345 1999 | 0.5624087240922291 2000 | 0.5414052560030056 2001 | 0.5368428504410876 2002 | 0.5192892125686026 2003 | 0.5147771977851314 2004 | 0.4994312676412352 2005 | 0.4943093612295595 2006 | 0.4927353124396573 2007 | 0.4854563950947128 2008 | 0.4703967947384683 2009 | 0.4585726087765028 2010 | 0.4574051544054037 2011 | 0.4368032824593883 2012 | 0.4432752333098143 2013 | 0.4380899814053947 2014 | 0.4371700946846807 2015 | 0.4415519502914352 2016 | 0.4411576985531828 2017 | 0.4460894664810028 2018 | 0.4510903942221566 2019 | 0.4695924803901838 2020 | 0.4903505229471342 2021 | 0.5054321565182462 2022 | 0.524239851536934 2023 | 0.5571944005848595 2024 | 0.5843011711979775 2025 | 0.5985132068211978 2026 | 0.6144647443570743 2027 | 0.6363845289701584 2028 | 0.6608779154865041 2029 | 0.677950188817511 2030 | 0.6895288472415793 2031 | 0.7006757158576211 2032 | 0.7024863156904746 2033 | 0.7140202956510617 2034 | 0.7208461040124832 2035 | 0.7290625550511605 2036 | 0.7332005152100076 2037 | 0.7312530238292279 2038 | 0.72728133283813 2039 | 0.720347296509235 2040 | 0.7144406608291569 2041 | 0.7074309363269673 2042 | 0.6998042818084904 2043 | 0.6977354037346912 2044 | 0.6952069903230325 2045 | 0.6908835839390512 2046 | 0.6871291649278959 2047 | 0.6656433122409504 2048 | 0.6538789015748752 2049 | 0.6524104286062125 2050 | 0.6544264677665799 2051 | 0.6647232215089875 2052 | 0.6659078128249836 2053 | 0.6642417549618851 2054 | 0.6569215253390641 2055 | 0.6530019592220275 2056 | 0.6510386569694679 2057 | 0.6587093779176796 2058 | 0.6677820641674541 2059 | 0.6613559138423775 2060 | 0.674205664351921 2061 | 0.6897734567288571 2062 | 0.6958650286059473 2063 | 0.7041368686986664 2064 | 0.7003589883939021 2065 | 0.700894721933178 2066 | 0.7354862572412517 2067 | 0.7551782390177431 2068 | 0.7598780461557091 2069 | 0.7574003295393703 2070 | 0.7503674497604449 2071 | 0.774679674287881 2072 | 0.7707833654532044 2073 | 0.7669208204801998 2074 | 0.750660919941804 2075 | 0.730080061154412 2076 | 0.7179171145138601 2077 | 0.709876929194122 2078 | 0.6945212065102846 2079 | 0.6784037058235317 2080 | 0.6688748504215025 2081 | 0.6530349070387043 2082 | 0.6410944346649385 2083 | 0.617845414760479 2084 | 0.6195767562231846 2085 | 0.6079468909756747 2086 | 0.6101290972981668 2087 | 0.6164234563565367 2088 | 0.6101057380101824 2089 | 0.62611195056073 2090 | 0.6139944984286545 2091 | 0.6275641026294909 2092 | 0.6172551082121567 2093 | 0.6002821883593017 2094 | 0.5931205774824013 2095 | 0.5784325836157955 2096 | 0.5673718077467356 2097 | 0.5535947241058978 2098 | 0.5445843632926233 2099 | 0.5394928545570146 2100 | 0.5303742657762665 2101 | 0.4959672586427071 2102 | 0.4897551161175925 2103 | 0.4841966256335442 2104 | 0.4835757173979059 2105 | 0.4832525635798507 2106 | 0.474576883220187 2107 | 0.486588759531023 2108 | 0.4763630017031879 2109 | 0.4760333195251719 2110 | 0.4639864552851715 2111 | 0.4636681977370868 2112 | 0.4668564855328993 2113 | 0.4735545828525894 2114 | 0.4853828490395304 2115 | 0.5085510804894762 2116 | 0.5137701982611917 2117 | 0.5189456576256701 2118 | 0.5277701641913133 2119 | 0.5761143017903723 2120 | 0.6045832555115425 2121 | 0.6202268380673974 2122 | 0.6312199842074893 2123 | 0.6468734613089098 2124 | 0.6672874388948058 2125 | 0.6962196001563135 2126 | 0.7099254838713298 2127 | 0.7245021896017303 2128 | 0.723153471236097 2129 | 0.7350772146874636 2130 | 0.7434811520637625 2131 | 0.7526407471055141 2132 | 0.7486956795823809 2133 | 0.7517626826907984 2134 | 0.7532177929226662 2135 | 0.7481510715537834 2136 | 0.7543644381463905 2137 | 0.7496049577181587 2138 | 0.7506522494637311 2139 | 0.7493152617449022 2140 | 0.7563495696025688 2141 | 0.7535989879409972 2142 | 0.7453785586829687 2143 | 0.7231426586399121 2144 | 0.7126411796093612 2145 | 0.7253009956462979 2146 | 0.7175545865247919 2147 | 0.7142441979965892 2148 | 0.6971857974304987 2149 | 0.6936146825263652 2150 | 0.6932781659715155 2151 | 0.6897272481810102 2152 | 0.6945516041863518 2153 | 0.6900338770879149 2154 | 0.6943467768925844 2155 | 0.6926201276886006 2156 | 0.6951693502476339 2157 | 0.699526520493287 2158 | 0.7003714330800772 2159 | 0.69513181217786 2160 | 0.707248040242443 2161 | 0.7075351860750898 2162 | 0.7258268346400085 2163 | 0.7240770301592889 2164 | 0.7227092367418955 2165 | 0.7282810899627383 2166 | 0.7227776825158585 2167 | 0.7043681154491497 2168 | 0.6923274735522367 2169 | 0.6750643476980034 2170 | 0.6700445489163382 2171 | 0.667654965159469 2172 | 0.6425507689642993 2173 | 0.6291772195735328 2174 | 0.6227420927535103 2175 | 0.6086868397749716 2176 | 0.5984433329684933 2177 | 0.5767727480957845 2178 | 0.5785696791749704 2179 | 0.57987830933022 2180 | 0.5567897442729197 2181 | 0.5343301458955845 2182 | 0.5306842608687758 2183 | 0.5476269870568125 2184 | 0.5603626952782923 2185 | 0.5681685736788156 2186 | 0.5627023982848367 2187 | 0.5645877682403653 2188 | 0.5579403677159951 2189 | 0.550819763100098 2190 | 0.529070429885363 2191 | 0.5217293911151673 2192 | 0.514152821358264 2193 | 0.492045448401934 2194 | 0.490242396985285 2195 | 0.4784390201706942 2196 | 0.4833708901041386 2197 | 0.4645567687311143 2198 | 0.4466409088864342 2199 | 0.4385442124507862 2200 | 0.4492880568448783 2201 | 0.4429072990226535 2202 | 0.4450865471820386 2203 | 0.4311015760787018 2204 | 0.4317297267136715 2205 | 0.4267471599849072 2206 | 0.4271236627445164 2207 | 0.4067608919820621 2208 | 0.4287156645243106 2209 | 0.4207053668525175 2210 | 0.4265021424751318 2211 | 0.4144428335489562 2212 | 0.4225847184762073 2213 | 0.4223319485389785 2214 | 0.4283895525431482 2215 | 0.439163692607683 2216 | 0.4624747319317693 2217 | 0.4740263588653752 2218 | 0.4973382142344565 2219 | 0.5106197545520266 2220 | 0.5134241951832741 2221 | 0.5262661932653643 2222 | 0.5415510220402533 2223 | 0.5636135125218535 2224 | 0.5764529604633342 2225 | 0.5711115379479794 2226 | 0.5857425106705534 2227 | 0.5969084543383554 2228 | 0.603936947875432 2229 | 0.6073627047648154 2230 | 0.614184330895637 2231 | 0.6130872604053643 2232 | 0.615522950704456 2233 | 0.6192457479720517 2234 | 0.6273539710432554 2235 | 0.6273944672761367 2236 | 0.6235640540748135 2237 | 0.6361888821825858 2238 | 0.6378730970468249 2239 | 0.6281401283903993 2240 | 0.6100117908301228 2241 | 0.6180846179496646 2242 | 0.6017930956677089 2243 | 0.5973976733129112 2244 | 0.5979734950625708 2245 | 0.6004249962334423 2246 | 0.581880067703173 2247 | 0.5833260994344707 2248 | 0.5840986900335712 2249 | 0.6069177562312431 2250 | 0.6165479032182877 2251 | 0.6169266501016333 2252 | 0.6143935444312529 2253 | 0.6186556454349781 2254 | 0.6228488926422426 2255 | 0.6206354725986882 2256 | 0.6334554374659109 2257 | 0.6419102756487787 2258 | 0.6711433535022255 2259 | 0.6772093219675948 2260 | 0.6830505720424414 2261 | 0.689567915395719 2262 | 0.6904644428284488 2263 | 0.6954370130060232 2264 | 0.6826633586922717 2265 | 0.6742254534430521 2266 | 0.6572082631492135 2267 | 0.6459622450662685 2268 | 0.6354650502719419 2269 | 0.6316701350279053 2270 | 0.620895382929624 2271 | 0.6071893972089835 2272 | 0.612830920271282 2273 | 0.6100613655635745 2274 | 0.5992165356013401 2275 | 0.5903922330469458 2276 | 0.589230388985188 2277 | 0.5749353207837173 2278 | 0.5680622838182052 2279 | 0.5693712199903278 2280 | 0.5800535549929153 2281 | 0.5621222922989528 2282 | 0.5529329116148807 2283 | 0.5747445702661154 2284 | 0.5662671888402584 2285 | 0.5532622877760234 2286 | 0.5581954837825849 2287 | 0.5433379565682492 2288 | 0.5343630937122612 2289 | 0.5245324036676735 2290 | 0.4972529375324697 2291 | 0.4984791471432152 2292 | 0.4904979210743722 2293 | 0.4794519360208484 2294 | 0.4657064741235703 2295 | 0.452289878359313 2296 | 0.4558286574805162 2297 | 0.4501226668636055 2298 | 0.4392618220183424 2299 | 0.439729823823026 2300 | 0.4300248047076819 2301 | 0.423338336029172 2302 | 0.41424779879513 2303 | 0.4097627134964968 2304 | 0.4135093800801989 2305 | 0.4260772890495636 2306 | 0.4295383398849846 2307 | 0.4083720708192408 2308 | 0.4264958181264198 2309 | 0.4178764448714173 2310 | 0.4231821654182369 2311 | 0.4375406811180755 2312 | 0.4508767944446921 2313 | 0.4648944073478323 2314 | 0.464438850229324 2315 | 0.4618135314744985 2316 | 0.4655166416565877 2317 | 0.4703938365753611 2318 | 0.4823141118354984 2319 | 0.5039968353775091 2320 | 0.5116643941513648 2321 | 0.5140294965583814 2322 | 0.5400655141323183 2323 | 0.554152490860041 2324 | 0.5674460678412887 2325 | 0.5674953365578672 2326 | 0.5784754259780376 2327 | 0.5825295375136395 2328 | 0.5872922821218516 2329 | 0.5844728466638194 2330 | 0.5887439241624906 2331 | 0.5937380175268105 2332 | 0.5941623609242568 2333 | 0.6018937752189781 2334 | 0.59895815535477 2335 | 0.604397197252662 2336 | 0.620179405452058 2337 | 0.620146967663503 2338 | 0.6053061693715669 2339 | 0.6163357315195646 2340 | 0.6124078009413283 2341 | 0.6079130251083784 2342 | 0.5930089833293228 2343 | 0.5994432941043504 2344 | 0.594578237854879 2345 | 0.57841106042905 2346 | 0.588814308043317 2347 | 0.5914755327779264 2348 | 0.5949629010644388 2349 | 0.6035685035601492 2350 | 0.5999955525547769 2351 | 0.6087027526523758 2352 | 0.6124304461899421 2353 | 0.6212334295688395 2354 | 0.6347311198044838 2355 | 0.6514988043410739 2356 | 0.6665682992428836 2357 | 0.6676037583360273 2358 | 0.6755816182192653 2359 | 0.6736498357046412 2360 | 0.6761632542895151 2361 | 0.6813754356787725 2362 | 0.6704747066343744 2363 | 0.6660295055348762 2364 | 0.6660403181310612 2365 | 0.6602187551417211 2366 | 0.6634224457868159 2367 | 0.6630333963354071 2368 | 0.6469369088072778 2369 | 0.6359491689652785 2370 | 0.630283674581249 2371 | 0.6227474990516026 2372 | 0.6127842016953131 2373 | 0.5912649931691933 2374 | 0.5923943994423966 2375 | 0.5935744005052952 2376 | 0.5998674334905478 2377 | 0.5934854516008303 2378 | 0.5924482584120723 2379 | 0.6024294067526295 2380 | 0.5821661934795761 2381 | 0.5753422212193937 2382 | 0.5573183374184887 2383 | 0.5524580754333632 2384 | 0.5564958660690633 2385 | 0.5463982273054573 2386 | 0.5371898735752492 2387 | 0.5201952265244001 2388 | 0.5231060590218823 2389 | 0.5138938290779478 2390 | 0.507827452590081 2391 | 0.5006882829505455 2392 | 0.4988042390681338 2393 | 0.4923832910299008 2394 | 0.4911394344461365 2395 | 0.4793158605179172 2396 | 0.4845983237823767 2397 | 0.4844826494043229 2398 | 0.4854362999867087 2399 | 0.4962885763595233 2400 | 0.4984943459812487 2401 | 0.5035986054199058 2402 | 0.5029510737163025 2403 | 0.5223737606444145 2404 | 0.5421613216909555 2405 | 0.5420243281374049 2406 | 0.5800673257522073 2407 | 0.6121956292426052 2408 | 0.6326986577385905 2409 | 0.6675480632651123 2410 | 0.7006677594189188 2411 | 0.7256156829975291 2412 | 0.7420923454877455 2413 | 0.7475669873485484 2414 | 0.7538018771279011 2415 | 0.7912042794215588 2416 | 0.7901232238143148 2417 | 0.80460608437028 2418 | 0.8100984752097262 2419 | 0.8150914465121779 2420 | 0.8296232697678485 2421 | 0.8319319630645796 2422 | 0.8303138478449426 2423 | 0.8294042636922916 2424 | 0.8306449581016999 2425 | 0.8318228170464865 2426 | 0.8176093533445248 2427 | 0.8228424458867813 2428 | 0.8369698168417612 2429 | 0.8477494652100128 2430 | 0.827891112260148 2431 | 0.814610387987573 2432 | 0.8101211204583398 2433 | 0.807182134408527 2434 | 0.8057806791350863 2435 | 0.8053472572370697 2436 | 0.8034644374221507 2437 | 0.7944171505728483 2438 | 0.7980828246907878 2439 | 0.8046742241273701 2440 | 0.7954394509404461 2441 | 0.8098522336324581 2442 | 0.7952192207973965 2443 | 0.7971022446235643 2444 | 0.7942150774309396 2445 | 0.7966612743093431 2446 | 0.7836271996365336 2447 | 0.7855299105482079 2448 | 0.7899077879356113 2449 | 0.7934243298306982 2450 | 0.8113731374920552 2451 | 0.8225768232408799 2452 | 0.8323207064991152 2453 | 0.8393911243478145 2454 | 0.848456976220755 2455 | 0.848859082392085 2456 | 0.8571302084454333 2457 | 0.8339451460674641 2458 | 0.8305233673974317 2459 | 0.8074714223592863 2460 | 0.793392300064641 2461 | 0.7774595315636514 2462 | 0.7643056002821884 2463 | 0.7593358862620969 2464 | 0.7389430238404486 2465 | 0.711475255322628 2466 | 0.7039509124454104 2467 | 0.7032225922872937 2468 | 0.683564578383723 2469 | 0.6784702134906315 2470 | 0.6557973213527049 2471 | 0.6651727602956572 2472 | 0.6688230315643144 2473 | 0.6762713802513642 2474 | 0.6675121572853284 2475 | 0.6761846754706362 2476 | 0.650664296327971 2477 | 0.642808843193996 2478 | 0.635460868041342 2479 | 0.6188231386702201 2480 | 0.6107838714011014 2481 | 0.5949429079620592 2482 | 0.584394812361164 2483 | 0.5760497322301357 2484 | 0.5584063294081909 2485 | 0.5681891788149416 2486 | 0.549476145015684 2487 | 0.5482706425466888 2488 | 0.537984701400466 2489 | 0.5272613601368752 2490 | 0.5347213374651052 2491 | 0.5205173602862114 2492 | 0.5172239046916569 2493 | 0.5191120287990441 2494 | 0.5122458262103655 2495 | 0.5148667587233424 2496 | 0.5278045400867313 2497 | 0.5332008416280056 2498 | 0.5416108993417679 2499 | 0.5525581429508861 2500 | 0.5553750282683088 2501 | 0.5800895629783236 2502 | 0.5972242637514549 2503 | 0.6303873122956254 2504 | 0.6628728394826235 2505 | 0.6854602509073147 2506 | 0.7165626838332613 2507 | 0.7316817534685227 2508 | 0.7431411673176835 2509 | 0.7699812952286564 2510 | 0.7788348733972494 2511 | 0.7772246126106903 2512 | 0.7727192281928041 2513 | 0.7861467385588707 2514 | 0.7836013922135641 2515 | 0.7766407324167042 2516 | 0.7934561555855069 2517 | 0.788806841231612 2518 | 0.784733960661123 2519 | 0.7646072309134981 2520 | 0.7515459207389779 2521 | 0.736548849830482 2522 | 0.7177593118129348 2523 | 0.6938662283961015 2524 | 0.6751342215507079 2525 | 0.6634685523290385 2526 | 0.6506263502356993 2527 | 0.6334441148416041 2528 | 0.6166071684860561 2529 | 0.6089087020080113 2530 | 0.596054259239746 2531 | 0.5916829102123033 2532 | 0.592823027076067 2533 | 0.6028236584908819 2534 | 0.6150411781404803 2535 | 0.6202377526692067 2536 | 0.6216559368650469 2537 | 0.6461405508976954 2538 | 0.6712395448060215 2539 | 0.6834593085793566 2540 | 0.6972727062224757 2541 | 0.7024329667489206 2542 | 0.7103450330044299 2543 | 0.7330029303155718 2544 | 0.7429100225728247 2545 | 0.7634211095131365 2546 | 0.7841645652657998 2547 | 0.7900380491179524 2548 | 0.7938088910346339 2549 | 0.8091268716374485 2550 | 0.8159662467469133 2551 | 0.8036886457845513 2552 | 0.7840046204467623 2553 | 0.7849317495668078 2554 | 0.7787706098538862 2555 | 0.7771179147275824 2556 | 0.7514466692664501 2557 | 0.7433270215653152 2558 | 0.7220780259381943 2559 | 0.7165665600469879 2560 | 0.7025818949605245 2561 | 0.6800898587946342 2562 | 0.677254816476071 2563 | 0.6649056075653901 2564 | 0.6617999443253302 2565 | 0.6367016644563748 2566 | 0.6220102023985399 2567 | 0.628686368508987 2568 | 0.6392563953191253 2569 | 0.6268304781789058 2570 | 0.6280316964116768 2571 | 0.626894435705396 2572 | 0.6174305578861008 2573 | 0.5987265005817892 2574 | 0.5908864502970965 2575 | 0.5814631707163069 2576 | 0.5733022107372956 2577 | 0.5512124847539843 2578 | 0.5512873568822838 2579 | 0.5378433216050666 2580 | 0.5270882565922921 2581 | 0.5094277168254504 2582 | 0.5101574650623086 2583 | 0.5055002962753361 2584 | 0.5041368890997913 2585 | 0.4923182114415425 2586 | 0.4937314993674122 2587 | 0.4906621501296339 2588 | 0.480994669084064 2589 | 0.4863113042326928 2590 | 0.4844030850173017 2591 | 0.4945844703985289 2592 | 0.4876417635915609 2593 | 0.5001904955035412 2594 | 0.5045923442126752 2595 | 0.5276963121192577 2596 | 0.5319897288496693 2597 | 0.5465487876070512 2598 | 0.5608634408884037 2599 | 0.5984050808593484 2600 | 0.6346456390912483 2601 | 0.6634374406136005 2602 | 0.6962360230618396 2603 | 0.711996504063241 2604 | 0.7192611406207716 2605 | 0.7482365522670189 2606 | 0.7409993552224483 2607 | 0.7672047021328663 2608 | 0.7716365404955698 2609 | 0.7715322907474473 2610 | 0.7728142974347321 2611 | 0.7744856595902987 2612 | 0.7724019907009634 2613 | 0.759525106695333 2614 | 0.7506287881701221 2615 | 0.7430513003625994 2616 | 0.7256885150133408 2617 | 0.7196044915524553 2618 | 0.7209749371160827 2619 | 0.706963036527908 2620 | 0.7066073429156738 2621 | 0.6989460064849056 2622 | 0.7106975644423084 2623 | 0.6974724332350237 2624 | 0.6714593669265736 2625 | 0.6765900458219465 2626 | 0.6724010828509064 2627 | 0.6854689213853873 2628 | 0.6908020814451667 2629 | 0.6943179093008831 2630 | 0.681401957141113 2631 | 0.6967167755695713 2632 | 0.6907562809198173 2633 | 0.6898123208717484 2634 | 0.709619875020669 2635 | 0.7152607860492213 2636 | 0.7235170192814091 2637 | 0.7273982312836766 2638 | 0.7432218537665731 2639 | 0.7398852497929032 2640 | 0.7467503303197134 2641 | 0.7687240759080975 2642 | 0.7947373462277965 2643 | 0.7899371655554346 2644 | 0.8111683101982878 2645 | 0.8132548352451059 2646 | 0.8222046047174951 2647 | 0.814383221462065 2648 | 0.8114995224606696 2649 | 0.800013791160417 2650 | 0.7865625134838685 2651 | 0.7837245130021979 2652 | 0.7786043406861369 2653 | 0.763522197086903 2654 | 0.7492698692420503 2655 | 0.7306755699895782 2656 | 0.7143320248391856 2657 | 0.7001453886164375 2658 | 0.6812580272051041 2659 | 0.677319284030683 2660 | 0.6481544479399506 2661 | 0.6487107866153525 2662 | 0.6266591087299371 2663 | 0.6389746557845708 2664 | 0.6490447530295926 2665 | 0.6377259029308358 2666 | 0.6296897978360732 2667 | 0.6345680128110904 2668 | 0.6153950356514757 2669 | 0.6061298647884847 2670 | 0.5850731497633317 2671 | 0.5717760025852305 2672 | 0.5640596851229183 2673 | 0.5532732023778328 2674 | 0.5513771218317436 2675 | 0.5353839660011175 2676 | 0.5175871467200959 2677 | 0.5085860684186405 2678 | 0.485329398092352 2679 | 0.4995024675670568 2680 | 0.4842830243973993 2681 | 0.476475819923759 2682 | 0.4765007092961091 2683 | 0.4806866120984179 2684 | 0.4743931710906676 2685 | 0.4770433792178434 2686 | 0.4810280249232382 2687 | 0.4789889324917597 2688 | 0.4825171030280268 2689 | 0.4785618349424551 2690 | 0.4897919401479959 2691 | 0.5139884902973781 2692 | 0.5264084911113829 2693 | 0.5375375087431571 2694 | 0.5565283038576181 2695 | 0.5758063468103505 2696 | 0.6083877592842715 2697 | 0.6390615645765476 2698 | 0.6624437018208311 2699 | 0.6748176980982379 2700 | 0.6827421070342976 2701 | 0.7116117388480567 2702 | 0.7328462496765147 2703 | 0.7502852332271899 2704 | 0.7525352732898987 2705 | 0.7417515446966716 2706 | 0.753901944645424 2707 | 0.7593888271811533 2708 | 0.7530165358257526 2709 | 0.7445555773054215 2710 | 0.7402137079034263 2711 | 0.7383121190536204 2712 | 0.718492222224149 2713 | 0.7019770016079148 2714 | 0.7028447634545674 2715 | 0.6927506948878148 2716 | 0.6847628384533866 2717 | 0.6886512928549855 2718 | 0.6837673655650025 2719 | 0.6631101045649455 2720 | 0.65655583517564 2721 | 0.6506164556901339 2722 | 0.6440203639948301 2723 | 0.6592683687393155 2724 | 0.6647885051085947 2725 | 0.6818437435003293 2726 | 0.683511739470291 2727 | 0.700988771118862 2728 | 0.7108225213321813 2729 | 0.7140596698220747 2730 | 0.7165809428400263 2731 | 0.7190318319771516 2732 | 0.727299795856144 2733 | 0.7397037817871202 2734 | 0.7381021914786339 2735 | 0.7577349079873568 2736 | 0.7577272575655278 2737 | 0.7743428517161581 2738 | 0.7835101991853628 2739 | 0.8021417304907359 2740 | 0.8118585822585087 2741 | 0.8287911078841066 2742 | 0.8155832156273435 2743 | 0.8037966697407763 2744 | 0.8144610517534716 2745 | 0.8007967863332051 2746 | 0.7821641329659637 2747 | 0.7617458711438432 2748 | 0.7423773492022803 2749 | 0.7394013351108153 2750 | 0.7205989443845955 2751 | 0.7121422701004889 2752 | 0.6937003672508495 2753 | 0.6847562080878016 2754 | 0.6745046428369967 2755 | 0.6665368815105728 2756 | 0.6552076268381286 2757 | 0.6572640602257527 2758 | 0.6425342440531487 2759 | 0.6530190961669244 2760 | 0.6502814692196499 2761 | 0.6435991827717398 2762 | 0.6494827651807067 2763 | 0.6581354942748834 2764 | 0.6532590133954805 2765 | 0.6351404683751454 2766 | 0.6251726827713826 2767 | 0.6232261094412224 2768 | 0.5928442442459392 2769 | 0.5920852203948821 2770 | 0.579176102611946 2771 | 0.5804074125039107 2772 | 0.5632155885811232 2773 | 0.5574713458550677 2774 | 0.5501363254167109 2775 | 0.5547322908290517 2776 | 0.5445652882408631 2777 | 0.5497288129472884 2778 | 0.540057761704865 2779 | 0.542288828721438 2780 | 0.5365972208975658 2781 | 0.5345325250543664 2782 | 0.5269951254572276 2783 | 0.534043918113557 2784 | 0.5403910140797343 2785 | 0.5374062275045721 2786 | 0.5412385788127587 2787 | 0.5586051383701196 2788 | 0.5791985438493108 2789 | 0.5929328871335309 2790 | 0.6100482068380286 2791 | 0.6398671029923249 2792 | 0.6582285234043235 2793 | 0.6840730764212877 2794 | 0.7089303169998187 2795 | 0.7293510269569243 2796 | 0.7430529324525896 2797 | 0.7713217511387145 2798 | 0.7701911207980188 2799 | 0.794456116721364 2800 | 0.7970048292522753 2801 | 0.8003568360752276 2802 | 0.8041494051899034 2803 | 0.8099899412253795 2804 | 0.7995469114176019 2805 | 0.7987852354203107 2806 | 0.7879400994412031 2807 | 0.7833897305429627 2808 | 0.7670599561518625 2809 | 0.7640451799231307 2810 | 0.7661633267135084 2811 | 0.7635792182309349 2812 | 0.7676636254369795 2813 | 0.7622518190407983 2814 | 0.7641348428669661 2815 | 0.7389210926312055 2816 | 0.7292142374146227 2817 | 0.7344048956171345 2818 | 0.7375346321845495 2819 | 0.7280249538399048 2820 | 0.7273317236165768 2821 | 0.7446992012245572 2822 | 0.7311904943814793 2823 | 0.7367586753998443 2824 | 0.7555603520866934 2825 | 0.7449979756983842 2826 | 0.7468256104705102 2827 | 0.750384892722215 2828 | 0.753683754614862 2829 | 0.7445286478205835 2830 | 0.7462395881584121 2831 | 0.7530989563702564 2832 | 0.7773520176355484 2833 | 0.7685186365805838 2834 | 0.7920960125899423 2835 | 0.8226674042353348 2836 | 0.8225237803161991 2837 | 0.825158177571595 2838 | 0.8280445287192246 2839 | 0.8113574286258998 2840 | 0.7938240898726676 2841 | 0.798409140683199 2842 | 0.7968235652577413 2843 | 0.7768193442650042 2844 | 0.7638217876057252 2845 | 0.7489392690134149 2846 | 0.7380201789566274 2847 | 0.7204292070256171 2848 | 0.7023426917713389 2849 | 0.6942054991028095 2850 | 0.6778622599692903 2851 | 0.6714693634777635 2852 | 0.6653796277019122 2853 | 0.6494158494911093 2854 | 0.6345870878628506 2855 | 0.651995265714961 2856 | 0.6606408544154307 2857 | 0.6716829632552279 2858 | 0.6587199865026159 2859 | 0.6758477508932887 2860 | 0.668853021217884 2861 | 0.6548014404418232 2862 | 0.6495300957904218 2863 | 0.642539650351241 2864 | 0.6195669636832437 2865 | 0.6111506836263938 2866 | 0.5976460570082913 2867 | 0.5834510563243436 2868 | 0.573089324999202 2869 | 0.5644763780985356 2870 | 0.5474945837563592 2871 | 0.5319132246313798 2872 | 0.5288292885893142 2873 | 0.5131371513562515 2874 | 0.5182090750119781 2875 | 0.5157363566712341 2876 | 0.5161683504905095 2877 | 0.5132239581426041 2878 | 0.5040101981143037 2879 | 0.510265591024158 2880 | 0.5098581805603597 2881 | 0.5043146849030962 2882 | 0.5065563605046055 2883 | 0.4979938043823861 2884 | 0.5025416231400168 2885 | 0.511373066088118 2886 | 0.5132844474778651 2887 | 0.5323371600063285 2888 | 0.5337729911751874 2889 | 0.5458033305040373 2890 | 0.5555616985609353 2891 | 0.5592507319668591 2892 | 0.5738278457197574 2893 | 0.5931694381764823 2894 | 0.6021296122225588 2895 | 0.621696637109177 2896 | 0.6285265256955739 2897 | 0.6427894621253627 2898 | 0.6484195605577301 2899 | 0.652839872284878 2900 | 0.6512424642069914 2901 | 0.6616275548201178 2902 | 0.666143343811691 2903 | 0.66319160705883 2904 | 0.6642398168550219 2905 | 0.6554650890340792 2906 | 0.6539233760271075 2907 | 0.6511453548525759 2908 | 0.6501361112048996 2909 | 0.6548277578929147 2910 | 0.6445372264935945 2911 | 0.642932984038874 2912 | 0.6364451203110437 2913 | 0.63790716692537 2914 | 0.6394923343283303 2915 | 0.6268143612902528 2916 | 0.629209453350839 2917 | 0.6267865137547954 2918 | 0.6266060658052564 2919 | 0.6257372839023598 2920 | 0.6267189860314519 2921 | 0.6385401118246858 2922 | 0.6421628415747589 2923 | 0.6437199574310128 2924 | 0.6528433404761071 2925 | 0.6563545780787261 2926 | 0.6681073601036214 2927 | 0.6706332233746706 2928 | 0.6747696534491519 2929 | 0.6790065590636536 2930 | 0.6962045033239044 2931 | 0.7022913829422728 2932 | 0.7091347362710885 2933 | 0.7165677841144806 2934 | 0.7087028444574377 2935 | 0.7113819201763147 2936 | 0.7224110743018148 2937 | 0.7184260205739224 2938 | 0.7172736630352325 2939 | 0.6979526757146337 2940 | 0.684689496409453 2941 | 0.6687877376182769 2942 | 0.6662916599895485 2943 | 0.6554134741881399 2944 | 0.639204066433815 2945 | 0.6374143777539607 2946 | 0.6253400740010002 2947 | 0.6327107964078924 2948 | 0.6117142647011271 2949 | 0.6150776961540105 2950 | 0.6012456314816286 2951 | 0.605741325365198 2952 | 0.614058047932647 2953 | 0.621387254050414 2954 | 0.6200904565475931 2955 | 0.6247055990173187 2956 | 0.6148414511279323 2957 | 0.603666122942687 2958 | 0.5983539760415311 2959 | 0.5918980400741336 2960 | 0.5729167314827406 2961 | 0.5569125590446806 2962 | 0.550152748322237 2963 | 0.5597762649436966 2964 | 0.5335438865428161 2965 | 0.5226000091193028 2966 | 0.5159915747434483 2967 | 0.5124463692679087 2968 | 0.4941820582103256 2969 | 0.4839333491170036 2970 | 0.4850420482484563 2971 | 0.4789414998764202 2972 | 0.4785683633024157 2973 | 0.4729054190589961 2974 | 0.4733526117163049 2975 | 0.47046381243369 2976 | 0.476182859770522 2977 | 0.4676482531893843 2978 | 0.4715367075909831 2979 | 0.4781873722953336 2980 | 0.4829227793962103 2981 | 0.4748859602620769 2982 | 0.476053924661298 2983 | 0.4779437828642995 2984 | 0.4996622083748454 2985 | 0.5134525527468534 2986 | 0.5034519213320385 2987 | 0.5101864346596343 2988 | 0.5099057151813238 2989 | 0.5268031508721329 2990 | 0.5305330885334356 2991 | 0.5542783658005335 2992 | 0.5725672602135936 2993 | 0.5773587704078829 2994 | 0.5868841576186827 2995 | 0.5995978326252953 2996 | 0.6120113050793394 2997 | 0.6252258277016878 2998 | 0.6132751547654836 2999 | 0.6305600078177112 3000 | 0.640154554841845 3001 | 0.6435670510000582 3002 | 0.6334173893680151 3003 | 0.6301426008027231 3004 | 0.6298758560949533 3005 | 0.6242445335950935 3006 | 0.627983141734469 3007 | 0.6368522247579687 3008 | 0.6291829318884985 3009 | 0.6391705065833921 3010 | 0.6364915328701395 3011 | 0.626915040841522 3012 | 0.6275855238106118 3013 | 0.6371297820619233 3014 | 0.629303502536523 3015 | 0.6306792523926186 3016 | 0.6216787861249093 3017 | 0.6214534557006404 3018 | 0.6209121118520233 3019 | 0.6228185969717999 3020 | 0.6311735716483935 3021 | 0.6193164378697513 3022 | 0.6312737411715408 3023 | 0.6411009630248994 3024 | 0.6440594321489699 3025 | 0.6630762386976494 3026 | 0.6657202244817375 3027 | 0.6751391178206785 3028 | 0.6892074275191387 3029 | 0.6980237736348307 3030 | 0.7072669112829544 3031 | 0.710582808114874 3032 | 0.7115041229143293 3033 | 0.7027075658897681 3034 | 0.7089291949379506 3035 | 0.7073388252481465 3036 | 0.6856842552584665 3037 | 0.6805900943766239 3038 | 0.6707769492994304 3039 | 0.6758841669011946 3040 | 0.65779540752318 3041 | 0.6553815464277071 3042 | 0.6361573624446506 3043 | 0.6376235912895765 3044 | 0.6147244506767615 3045 | 0.6271090555391043 3046 | 0.6229691572733937 3047 | 0.6114343612678117 3048 | 0.6248085226923243 3049 | 0.6234255304368972 3050 | 0.623510501122011 3051 | 0.6264671341448425 3052 | 0.6080485905831876 3053 | 0.6119174599049042 3054 | 0.6009528753396405 3055 | 0.5801225107950003 3056 | 0.5628822342006294 3057 | 0.5598400184589378 3058 | 0.5457944560147159 3059 | 0.5454571234148708 3060 | 0.5269670739105212 3061 | 0.5188166205108218 3062 | 0.5212033481102081 3063 | 0.5154235054212419 3064 | 0.5096477429572512 3065 | 0.5101024840307646 3066 | 0.5039408342897211 3067 | 0.5014945354056932 3068 | 0.5043120327568622 3069 | 0.5051947894302997 3070 | 0.5101811303671662 3071 | 0.5043121347624866 3072 | 0.5014271096879741 3073 | 0.5210457494205316 3074 | 0.5232012302694347 3075 | 0.5333040713198844 3076 | 0.5369608709485023 3077 | 0.5686019955768322 3078 | 0.584341973447732 3079 | 0.6253675135139602 3080 | 0.6457787369479979 3081 | 0.674605322388266 3082 | 0.7029210636616081 3083 | 0.7213811235123884 3084 | 0.7303127359836368 3085 | 0.7431913540848816 3086 | 0.7537768857499265 3087 | 0.7786385125703061 3088 | 0.7892725989125589 3089 | 0.7937568681661971 3090 | 0.8023997027148084 3091 | 0.7904278126087316 3092 | 0.7772386893868555 3093 | 0.7672588671194154 3094 | 0.7584858733940874 3095 | 0.7448768950222378 3096 | 0.7220433440259029 3097 | 0.6988212536062814 3098 | 0.6931106727362735 3099 | 0.6717090766950709 3100 | 0.6596302846946376 3101 | 0.6383344684859233 3102 | 0.6320802996435617 3103 | 0.604129024466151 3104 | 0.591012325237589 3105 | 0.585816362742609 3106 | 0.5919664858480966 3107 | 0.588908357229001 3108 | 0.5845656717820107 3109 | 0.5995048034958552 3110 | 0.6072094923169875 3111 | 0.6129885189609585 3112 | 0.623710228134559 3113 | 0.6412402007021865 3114 | 0.6464324909946886 3115 | 0.674563602087892 3116 | 0.6976978656649171 3117 | 0.7076985990853564 3118 | 0.7287556201273826 3119 | 0.7575777173201776 3120 | 0.7699654843568766 3121 | 0.7922739103988716 3122 | 0.8191728955551152 3123 | 0.8430030415017025 3124 | 0.8378756267863099 3125 | 0.8504980067590968 3126 | 0.8523973514851664 3127 | 0.8523938832939373 3128 | 0.8421790400679114 3129 | 0.8348028093573026 3130 | 0.8249242786748776 3131 | 0.8083980414512097 3132 | 0.7992412005613168 3133 | 0.7857874747497828 3134 | 0.7689264550668795 3135 | 0.7519964795818912 3136 | 0.7320861037635893 3137 | 0.7239003564178521 3138 | 0.7079714641305892 3139 | 0.6898083426523973 3140 | 0.6788064240286082 3141 | 0.6660852006057911 3142 | 0.6512275713858311 3143 | 0.6691903538177288 3144 | 0.6834508421125325 3145 | 0.6857792224947699 3146 | 0.6812162048991057 3147 | 0.6937761574297685 3148 | 0.6819309583091793 3149 | 0.6742129067512526 3150 | 0.6660783662289571 3151 | 0.6455681973392648 3152 | 0.6397976371621179 3153 | 0.6357113938548344 3154 | 0.6187097084159028 3155 | 0.6038984917550385 3156 | 0.5896856400868231 3157 | 0.5710803242269173 3158 | 0.5618156633920481 3159 | 0.5579823940332422 3160 | 0.5405891090022923 3161 | 0.5369116022319238 3162 | 0.5365399957422852 3163 | 0.5310174112380208 3164 | 0.5242435237394121 3165 | 0.5223928356961747 3166 | 0.5247284584777436 3167 | 0.518898837044077 3168 | 0.5131941725002833 3169 | 0.5226000091193028 3170 | 0.5256937377013093 3171 | 0.541739834450992 3172 | 0.5445907896469595 3173 | 0.5577339083322377 3174 | 0.5789795377737539 3175 | 0.6136835852855256 3176 | 0.6462570413207445 3177 | 0.6641081275939393 3178 | 0.6954807734188848 3179 | 0.7145211432667975 3180 | 0.7366263741050154 3181 | 0.7679352664147197 3182 | 0.7832026522278386 3183 | 0.7974462075889941 3184 | 0.7980254975298828 3185 | 0.8003182779492097 3186 | 0.8085292206841701 3187 | 0.794168970888717 3188 | 0.7718986949502422 3189 | 0.7672016419641348 3190 | 0.7539879353867815 3191 | 0.7243000144541971 3192 | 0.7163008353954621 3193 | 0.7035340154585443 3194 | 0.6875898223276236 3195 | 0.6774254718856689 3196 | 0.669468319144181 3197 | 0.6512139026321633 3198 | 0.6469919918444464 3199 | 0.6341473416161221 3200 | 0.6310975774582259 3201 | 0.6413849466831902 3202 | 0.6557448904617704 3203 | 0.6822144319393484 3204 | 0.6850767097596229 3205 | 0.6902878710926363 3206 | 0.7067284235918201 3207 | 0.7208951687178129 3208 | 0.7290285871782398 3209 | 0.7264398884425689 3210 | 0.7317949797115915 3211 | 0.7502480011742889 3212 | 0.7530788612622523 3213 | 0.7639686757048412 3214 | 0.7725685658855859 3215 | 0.7815633198383294 3216 | 0.793950780858155 3217 | 0.7998722073537692 3218 | 0.8235112967658811 3219 | 0.8401631029131686 3220 | 0.8409046838024556 3221 | 0.8494611195872119 3222 | 0.8616609922637914 3223 | 0.8571784571057681 3224 | 0.852304832383848 3225 | 0.8497772350171844 3226 | 0.8415646601922337 3227 | 0.8250056791631377 3228 | 0.809283144254008 3229 | 0.7994834639192336 3230 | 0.785236950394971 3231 | 0.7603622668546699 3232 | 0.7400537630843891 3233 | 0.7204837800346635 3234 | 0.7165581955857883 3235 | 0.7074452171143812 3236 | 0.6800837384571712 3237 | 0.6782204017165099 3238 | 0.6627983753768216 3239 | 0.6735084559092419 3240 | 0.685903669356521 3241 | 0.6918508012694804 3242 | 0.6922931996624431 3243 | 0.7001777243993679 3244 | 0.6852177835381488 3245 | 0.6741443589716651 3246 | 0.6755402039357647 3247 | 0.6619997733435026 3248 | 0.6552135431643431 3249 | 0.6453054308508464 3250 | 0.625374347890794 3251 | 0.6170709880601397 3252 | 0.6057962043911178 3253 | 0.5952369901771644 3254 | 0.592767842033274 3255 | 0.5919394543576344 3256 | 0.5833260994344707 3257 | 0.5875114922086575 3258 | 0.5816815647581177 3259 | 0.582050213084649 3260 | 0.5801958528389339 3261 | 0.5742543312353157 3262 | 0.5728135017908618 3263 | 0.5765212022260484 3264 | 0.5824371204179457 3265 | 0.5841575472788418 3266 | 0.5854605671247501 3267 | 0.5985329959123287 3268 | 0.6061200722485436 3269 | 0.6192772677099871 3270 | 0.6482762426554676 3271 | 0.6780362815644929 3272 | 0.696897631541608 3273 | 0.7270963966411181 3274 | 0.7488934684880657 3275 | 0.7697600450293629 3276 | 0.7937956303034637 3277 | 0.801924356505169 3278 | 0.8172238740899698 3279 | 0.8442222127243653 3280 | 0.8508027995647625 3281 | 0.8617223996496719 3282 | 0.8610173367739151 3283 | 0.8606346116712185 3284 | 0.8566568003426573 3285 | 0.8408525589283944 3286 | 0.8343554126887449 3287 | 0.7973318592840573 3288 | 0.7810006568142156 3289 | 0.763245047805446 3290 | 0.7422743235216505 3291 | 0.7155616006355359 3292 | 0.700599109633707 3293 | 0.6874668035446139 3294 | 0.6690533602641784 3295 | 0.6410419017683797 3296 | 0.6298244452602628 3297 | 0.6203112987243891 3298 | 0.618810183955923 3299 | 0.6112886972361882 3300 | 0.6232333518405537 3301 | 0.642356040227346 3302 | 0.6352622630906624 3303 | 0.6497404313879058 3304 | 0.6675387807532933 3305 | 0.677135163878666 3306 | 0.6910086428345488 3307 | 0.7202386605192637 3308 | 0.748492280367355 3309 | 0.7784473540302066 3310 | 0.7928830879877056 3311 | 0.8165791985438495 3312 | 0.8328376710035039 3313 | 0.8331648030409102 3314 | 0.8527131608982657 3315 | 0.8682765670333532 3316 | 0.8801007529953189 3317 | 0.9013245532332164 3318 | 0.9000557052714773 3319 | 0.9007925939020428 3320 | 0.8988945752490902 3321 | 0.8938214275258711 3322 | 0.892532484456128 3323 | 0.8752033609629168 3324 | 0.8566870960131001 3325 | 0.8534029229303646 3326 | 0.8412690478927629 3327 | 0.8169547832528392 3328 | 0.7943188171509401 3329 | 0.7718312692325231 3330 | 0.777342633118105 3331 | 0.7650844132243764 3332 | 0.7498853711795963 3333 | 0.7367541871523713 3334 | 0.7214762947599405 3335 | 0.733549578456657 3336 | 0.7435225663472633 3337 | 0.7435748952325734 3338 | 0.7431900280117645 3339 | 0.758854623726243 3340 | 0.7460436353539663 3341 | 0.7426441959156744 3342 | 0.7275241062241691 3343 | --------------------------------------------------------------------------------