├── saved_models
└── .gitkeep
├── pretrained_model
└── .gitkeep
├── imgs
└── systemdiagram-q.png
├── config.json
├── run_reg.py
├── log
└── mmregression.log
├── utils.py
├── README.md
├── models.py
└── LICENSE
/saved_models/.gitkeep:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/pretrained_model/.gitkeep:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/imgs/systemdiagram-q.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GeekDream-x/SemEval2022-Task8-TonyX/HEAD/imgs/systemdiagram-q.png
--------------------------------------------------------------------------------
/config.json:
--------------------------------------------------------------------------------
1 | {
2 | "learning_rate":5e-6,
3 | "epoch":2,
4 | "gradient_acc":8,
5 | "batch_size":4,
6 | "max_len":512,
7 | "seed":8824,
8 | "weight_decay":1e-4,
9 | "warmup_rate":0.1,
10 | "overall_weight":0.75,
11 | "rdrop_weight":0.1,
12 | "model_pretrain_dir":"pretrained_models/xlmr-large",
13 | "model_save_path":"saved_models/best_mmregressor.pth",
14 | "training_set_path":"data/training_set.csv",
15 | "testing_set_path":"data/testing_set.csv",
16 | "log_path":"log/mmregression.log"
17 | }
--------------------------------------------------------------------------------
/run_reg.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import argparse
3 | import transformers
4 | from utils import load
5 | from models import Reg_FT_Configer, Reg_Trainer
6 |
7 | transformers.logging.set_verbosity_error()
8 |
9 |
10 | def main():
11 |
12 | parser = argparse.ArgumentParser(description="Reg-Argparser")
13 | parser.add_argument('--params', type=str, required=True, help="JSON dict of parameters for model training.")
14 | args = parser.parse_args()
15 |
16 | params = load(args.params)
17 |
18 | logging.basicConfig(filename=params['log_path'], filemode="w",
19 | format="%(asctime)s %(name)s:%(levelname)s:%(message)s",
20 | datefmt="%d-%m-%Y %H:%M:%S",
21 | level=logging.DEBUG)
22 |
23 | logging.info(f"Params:\n{params}")
24 |
25 |
26 | config = Reg_FT_Configer(params)
27 | trainer = Reg_Trainer(config)
28 | trainer.run_finetune()
29 |
30 | if __name__ == "__main__":
31 | main()
32 |
--------------------------------------------------------------------------------
/log/mmregression.log:
--------------------------------------------------------------------------------
1 | 10-04-2022 16:52:04 root:INFO:Params:
2 | {'learning_rate': 5e-06, 'epoch': 2, 'gradient_acc': 8, 'batch_size': 4, 'max_len': 512, 'seed': 8824, 'weight_decay': 0.0001, 'warmup_rate': 0.1, 'model_pretrain_dir': 'pretrained_models/xlmr-large', 'model_save_dir': 'saved_models/', 'model_save_path': 'saved_models/best_mmregressor.pth', 'training_set_path': 'data/training_set.csv', 'testing_set_path': 'data/testing_set.csv', 'log_path': 'log/mmregression.log', 'overall_weight': 0.75, 'rdrop_weight': 0.1}
3 | 10-04-2022 16:52:23 root:INFO:—————————————————————— Epoch 1 ——————————————————————
4 | 10-04-2022 16:52:40 root:INFO:Epoch 01 | Step 032/320 | Loss 0.9602 | Time 16.87
5 | 10-04-2022 16:52:56 root:INFO:Epoch 01 | Step 064/320 | Loss 0.7350 | Time 32.93
6 | 10-04-2022 16:53:12 root:INFO:Epoch 01 | Step 096/320 | Loss 0.5926 | Time 48.98
7 | 10-04-2022 16:53:28 root:INFO:Epoch 01 | Step 128/320 | Loss 0.5024 | Time 65.02
8 | 10-04-2022 16:53:44 root:INFO:Epoch 01 | Step 160/320 | Loss 0.4448 | Time 81.08
9 | 10-04-2022 16:54:00 root:INFO:Epoch 01 | Step 192/320 | Loss 0.4005 | Time 97.15
10 | 10-04-2022 16:54:16 root:INFO:Epoch 01 | Step 224/320 | Loss 0.3687 | Time 113.24
11 | 10-04-2022 16:54:32 root:INFO:Epoch 01 | Step 256/320 | Loss 0.3424 | Time 129.35
12 | 10-04-2022 16:54:48 root:INFO:Epoch 01 | Step 288/320 | Loss 0.3232 | Time 145.46
13 | 10-04-2022 16:55:04 root:INFO:Epoch 01 | Step 320/320 | Loss 0.3069 | Time 161.59
14 | 10-04-2022 16:55:04 root:INFO:Start evaluating!
15 | 10-04-2022 16:55:52 root:INFO:Current dev pearson is 0.3607, best pearson is 0.3607
16 | 10-04-2022 16:55:52 root:INFO:Time costed : 208.889s
17 |
18 | 10-04-2022 16:55:52 root:INFO:—————————————————————— Epoch 2 ——————————————————————
19 | 10-04-2022 16:56:07 root:INFO:Epoch 02 | Step 032/320 | Loss 0.1643 | Time 15.14
20 | 10-04-2022 16:56:22 root:INFO:Epoch 02 | Step 064/320 | Loss 0.1508 | Time 30.29
21 | 10-04-2022 16:56:37 root:INFO:Epoch 02 | Step 096/320 | Loss 0.1555 | Time 45.44
22 | 10-04-2022 16:56:52 root:INFO:Epoch 02 | Step 128/320 | Loss 0.1529 | Time 60.59
23 | 10-04-2022 16:57:07 root:INFO:Epoch 02 | Step 160/320 | Loss 0.1521 | Time 75.72
24 | 10-04-2022 16:57:22 root:INFO:Epoch 02 | Step 192/320 | Loss 0.1507 | Time 90.87
25 | 10-04-2022 16:57:38 root:INFO:Epoch 02 | Step 224/320 | Loss 0.1497 | Time 106.02
26 | 10-04-2022 16:57:53 root:INFO:Epoch 02 | Step 256/320 | Loss 0.1486 | Time 121.17
27 | 10-04-2022 16:58:08 root:INFO:Epoch 02 | Step 288/320 | Loss 0.1492 | Time 136.32
28 | 10-04-2022 16:58:23 root:INFO:Epoch 02 | Step 320/320 | Loss 0.1484 | Time 151.47
29 | 10-04-2022 16:58:23 root:INFO:Start evaluating!
30 | 10-04-2022 16:59:10 root:INFO:Current dev pearson is 0.4619, best pearson is 0.4619
31 | 10-04-2022 16:59:10 root:INFO:Time costed : 198.82s
32 |
33 |
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | import random
2 | import os
3 | import numpy as np
4 | import torch
5 | import json
6 | from tqdm import tqdm
7 | import pandas as pd
8 | from transformers import XLMRobertaTokenizer
9 |
10 | tokenizer = XLMRobertaTokenizer.from_pretrained("pretrained_model")
11 |
12 |
13 | def set_seed(seed=56):
14 | random.seed(seed)
15 | os.environ['PYTHONHASHSEED']=str(seed)
16 | np.random.seed(seed)
17 | torch.manual_seed(seed)
18 | torch.cuda.manual_seed(seed)
19 | torch.cuda.manual_seed_all(seed)
20 |
21 | def load(json_file):
22 | with open(json_file, 'r') as f:
23 | return json.load(f)
24 |
25 | # truncate text from either head or tail part
26 | def trunc_text(text, trunc_pos, length):
27 |
28 | text_ids = tokenizer.encode(text)[1:-1]
29 |
30 | if trunc_pos == 'head':
31 | text_trunc_ids = text_ids[:length]
32 | elif trunc_pos == 'tail':
33 | text_trunc_ids = text_ids[-length:]
34 |
35 | text_trunc_tokens = tokenizer.convert_ids_to_tokens(text_trunc_ids)
36 | text_trunc_back_sent = ''.join([x.replace('▁', ' ') for x in text_trunc_tokens])[:-1]
37 |
38 | return text_trunc_back_sent
39 |
40 | # extract the title and text parts of a single news by id
41 | def extract_news_byID(raw_data_root_dir, id: str):
42 |
43 | file_path = f"{raw_data_root_dir}/{id[-2:]}/{id}.json"
44 |
45 | if os.path.exists(file_path):
46 |
47 | with open(file_path, 'r', encoding='utf-8') as f:
48 | json_file = json.load(f)
49 | news_text = f"{json_file['title']} {json_file['text']}"
50 | news_truncated_text = f"{trunc_text(news_text, 'head', 200)} {trunc_text(news_text, 'tail', 56)}"
51 | return news_truncated_text
52 | else:
53 | return None
54 |
55 |
56 | def extract_data_from_raw(data_link_filepath, raw_data_root_dir, manual_crawl_file, dataset_save_filepath):
57 |
58 | # read the news missed by the tool provided by the organizers and crawled manually
59 | with open(manual_crawl_file, 'r', encoding='utf-8') as f:
60 | manual_crawl_dict = json.load(f)
61 |
62 | final_data = []
63 | final_columns = ['pair_id', 'lang1', 'lang2', 'text1', 'text2', 'Geography', 'Entities', 'Time', 'Narrative', 'Overall', 'Style', 'Tone']
64 |
65 | for _, row in tqdm(pd.read_csv(data_link_filepath).iterrows()):
66 |
67 | id1, id2 = row['pair_id'].strip().split('_')
68 | text1, text2 = extract_news_byID(raw_data_root_dir, id1), extract_news_byID(raw_data_root_dir, id2)
69 |
70 | if not text1: text1 = manual_crawl_dict[f"{row['pair_id']}"]['text1']
71 | if not text2: text2 = manual_crawl_dict[f"{row['pair_id']}"]['text2']
72 |
73 | cur_data = [row['pair_id'], row['lang1'], row['lang2'], text1, text2, row['Geography'], row['Entities'], row['Time'], row['Narrative'], row['Overall'], row['Style'], row['Tone']]
74 | final_data.append(cur_data)
75 |
76 | pd.DataFrame(final_data, columns=final_columns).to_csv(dataset_save_filepath)
77 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity
2 |
3 |
4 | # Introduction
5 |
6 | Here, we provide the implementation of our winning system in Semeval-2022 Task8 —— Multilingual News Article Similarity. This is a competition about assessing the similarity of multilingual and crosslingual news articles which covers 18 language pairs.
7 |
8 | We proposed a linguistics-inspired model trained with a few task-specific strategies. The main techniques of our system are: 1) data augmentation, 2) multi-label loss, 3) adapted R-Drop, 4) samples reconstruction with the head-tail combination. We also present a brief analysis of some negative methods like two-tower architecture in our paper. Our system ranked 1st on the leaderboard while achieving a Pearson's Correlation Coefficient of 0.818 on the official evaluation set.
9 |
10 | For more imformation about the contest, please refer to the official site [Semeval2022-Task8](https://competitions.codalab.org/competitions/33835).
11 |
12 | For more detailed description of our system, please refer to our paper [HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity](https://aclanthology.org/2022.semeval-1.157/).
13 |
14 | Citation:
15 | ```
16 | @inproceedings{xu-etal-2022-hfl,
17 | title = "{HFL} at {S}em{E}val-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity",
18 | author = "Xu, Zihang and
19 | Yang, Ziqing and
20 | Cui, Yiming and
21 | Chen, Zhigang",
22 | booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
23 | month = jul,
24 | year = "2022",
25 | address = "Seattle, United States",
26 | publisher = "Association for Computational Linguistics",
27 | url = "https://aclanthology.org/2022.semeval-1.157",
28 | pages = "1114--1120",
29 | abstract = "This paper describes our system designed for SemEval-2022 Task 8: Multilingual News Article Similarity. We proposed a linguistics-inspired model trained with a few task-specific strategies. The main techniques of our system are: 1) data augmentation, 2) multi-label loss, 3) adapted R-Drop, 4) samples reconstruction with the head-tail combination. We also present a brief analysis of some negative methods like two-tower architecture. Our system ranked 1st on the leaderboard while achieving a Pearson{'}s Correlation Coefficient of 0.818 on the official evaluation set.",
30 | }
31 |
32 | ```
33 |
34 | # System Overview
35 |
36 | ### System Structure
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 | ### System Performance
47 |
48 | Finally, our system got 0.818 on the evaluation set according to the official scoring system and ranked 1st out of more than 30 teams. The performance of our system on individual language pairs on the official evaluation set is as displayed below:
49 |
50 | | **Language** | en | de | es | pl | tr | ar | ru | zh | fr | it | esen | deen | plen | zhen | esit | defr | depl | frpl |
51 | | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: |
52 | | **Pearson's CC** | 87.19 | 84.96 | 86.64 | 75.29 | 83.54 | 79.42 | 78.47 | 76.78 | 86.53 | 86.17 | 86.35 | 85.98 | 88.18 | 81.00 | 81.97 | 68.89 | 64.31 | 82.68 |
53 |
54 | # Project Structure
55 |
56 | - `data/`
57 | - `training_set.csv`: an example of training set
58 | - `testing_set.csv`: an example of testing set
59 | - `log/`
60 | - `mmregression.log`: an example of training log
61 | - `pretrained_model/`: pretrained model files like `pytorch_model.bin` and `config.json`
62 | - `saved_models`: models saved during training
63 | - `config.json`: configuration file for training parameters
64 | - `models.py`: main classes
65 | - `run_reg.py`: project entry
66 | - `utils.py`: helpful functions for data processing
67 |
68 |
69 | # Preparation
70 |
71 | ### Model
72 |
73 | In this project, the foundation model we choose is XLM-RoBERTa and it is easily accessible on [Hugging Face](https://huggingface.co/).
74 |
75 | ### Data
76 |
77 | 1. Download dataset files where the news is provided via links.
78 |
79 | These files are provided on the official website of this [task](https://competitions.codalab.org/competitions/33835#learn_the_details-timetable).
80 |
81 | 2. Crawl the news based on the files downloaded.
82 |
83 | The task organizers offered [a python script](https://github.com/euagendas/semeval_8_2022_ia_downloader) that helps with this.
84 |
85 | 3. Make the training and testing datasets.
86 |
87 | With the help of the functions provided in `utils.py`, you can easily transfer the data crawled into datasets for training. As for the dataset format, you can refer to the files in `data/`.
88 |
89 | 4. Clean the texts.
90 |
91 | Feel free to customize your own function to clean the data like removing the URLs in the texts.
92 |
93 | 5. Combine the head and tail parts.
94 |
95 | For the detailed description of this operation, please read our [paper](https://arxiv.org/abs/2204.04844). Helpful functions are also provided in `utils.py`.
96 |
97 | ### Requirements
98 |
99 | Main tools and libraries:
100 |
101 | - NumPy: 1.21.2
102 | - pandas: 1.2.4
103 | - Python: 3.7.10
104 | - PyTorch: 1.9.0
105 | - Transformers: 4.5.1
106 |
107 |
108 | # Training
109 |
110 | ### Parameters Configuration
111 |
112 | Customize the training parameters in `config.json` as you need. This is a Json dictionary like:
113 |
114 | ```json
115 | {
116 | "learning_rate":5e-6,
117 | "epoch":2,
118 | "gradient_acc":8,
119 | "batch_size":4,
120 | "max_len":512,
121 | "seed":8824,
122 | "weight_decay":1e-4,
123 | "warmup_rate":0.1,
124 | "overall_weight":0.75,
125 | "rdrop_weight":0.1,
126 | "model_pretrain_dir":"pretrained_models/xlmr-large",
127 | "model_save_path":"saved_models/best_mmregressor.pth",
128 | "training_set_path":"data/training_set.csv",
129 | "testing_set_path":"data/testing_set.csv",
130 | "log_path":"log/mmregression.log"
131 | }
132 | ```
133 |
134 | ### Run command
135 |
136 | ```shell
137 | python run_reg.py --params config.json
138 | ```
139 | After running this program, you could check the log messages and model testing results in `log/mmregression.log`.
140 |
141 |
142 |
143 | # Notice
144 |
145 | For copyright reasons, the complete datasets including the augmented one will not be provided here but the method of generating it has been introduced in our paper detailedly.
146 |
147 |
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import time
3 | import logging
4 | import numpy as np
5 | import torch
6 | import torch.nn as nn
7 | from torch.utils.data import TensorDataset, DataLoader
8 | from transformers import XLMRobertaConfig, XLMRobertaModel, XLMRobertaTokenizer, AdamW, get_cosine_schedule_with_warmup
9 |
10 | from utils import set_seed
11 |
12 | class MMRegressor(nn.Module):
13 |
14 | def __init__(self, model_path):
15 |
16 | super(MMRegressor, self).__init__()
17 | self.config = XLMRobertaConfig.from_pretrained(model_path)
18 | self.reg_model = XLMRobertaModel.from_pretrained(model_path)
19 |
20 | self.fc1 = nn.Linear(self.config.hidden_size, 512)
21 | self.fc2 = nn.Linear(512, 7)
22 | self.activation = nn.GELU()
23 |
24 | def forward(self, input_ids, attention_mask):
25 |
26 | output1 = self.reg_model(input_ids, attention_mask)[1]
27 | logits1 = self.fc2(self.activation(self.fc1(output1)))
28 |
29 | output2 = self.reg_model(input_ids, attention_mask)[1]
30 | logits2 = self.fc2(self.activation(self.fc1(output2)))
31 |
32 | return logits1, logits2
33 |
34 | class Reg_FT_Configer():
35 |
36 | def __init__(self, params_dict: dict):
37 |
38 | super().__init__()
39 |
40 | self.learning_rate = params_dict['learning_rate']
41 | self.epoch =params_dict['epoch']
42 | self.gradient_acc = params_dict['gradient_acc']
43 | self.batch_size = params_dict['batch_size']
44 | self.max_len = params_dict['max_len']
45 | self.model_save_path = params_dict['model_save_path']
46 | self.warmup_rate = params_dict['warmup_rate']
47 | self.weight_decay = params_dict['weight_decay']
48 | self.model_pretrain_dir = params_dict['model_pretrain_dir']
49 | self.training_set_path = params_dict['training_set_path']
50 | self.testing_set_path = params_dict['testing_set_path']
51 | self.seed = params_dict['seed']
52 |
53 | # weights for the 7 sub-dimensions
54 | self.dims_weights = [params_dict['overall_weight'] if i == 4 else (1-params_dict['overall_weight'])/6 for i in range(7)]
55 |
56 | # weights for forward loss and adapted R-Drop loss
57 | self.losses_weights = {
58 | 'forward_weight': (1-params_dict['rdrop_weight'])/2,
59 | 'rdrop_weight': params_dict['rdrop_weight']
60 | }
61 |
62 |
63 | class Reg_Trainer():
64 |
65 | def __init__(self, config: Reg_FT_Configer):
66 |
67 | super().__init__()
68 |
69 | self.config = config
70 | self.device = torch.device("cuda")
71 | self.tokenizer = XLMRobertaTokenizer.from_pretrained(self.config.model_pretrain_dir)
72 |
73 | set_seed(self.config.seed)
74 |
75 |
76 | def dataset(self, data_path):
77 |
78 | input_ids, attention_masks, labels = [], [], []
79 |
80 | for idx, row in pd.read_csv(data_path).iterrows():
81 | text1, text2 = row['text1'], row['text2']
82 | encode_dict = self.tokenizer.__call__(text1,text2,
83 | max_length=self.config.max_len,
84 | padding='max_length',
85 | truncation=True,
86 | add_special_tokens=True
87 | )
88 | input_ids.append(encode_dict['input_ids'])
89 | attention_masks.append(encode_dict['attention_mask'])
90 | labels.append([float(x) for x in [row['Geography'],row['Entities'],row['Time'],row['Narrative'],row['Overall'],row['Style'],row['Tone']]])
91 |
92 | return torch.tensor(input_ids), torch.tensor(attention_masks), torch.tensor(labels)
93 |
94 |
95 | def data_loader(self, input_ids, attention_masks, labels):
96 |
97 | data = TensorDataset(input_ids, attention_masks, labels)
98 | loader = DataLoader(data, batch_size=self.config.batch_size, shuffle=True, drop_last=True)
99 |
100 | return loader
101 |
102 | def predict(self, model, data_loader):
103 |
104 | model.eval()
105 | test_pred, test_true = [], []
106 | with torch.no_grad():
107 | for idx, (ids, att, y) in enumerate(data_loader):
108 | y_pred = model(ids.to(self.device), att.to(self.device))
109 | y_pred = torch.squeeze(torch.add(torch.mul(y_pred[0], 0.5), torch.mul(y_pred[1], 0.5))).detach().cpu().numpy().tolist()
110 | y = y.squeeze().cpu().numpy().tolist()
111 |
112 | test_true.extend([x[4] for x in y])
113 | test_pred.extend([x[4] for x in y_pred])
114 |
115 | return test_true, test_pred
116 |
117 |
118 | def calculate_weighted_loss(self, y_pred, y, criterion):
119 |
120 | loss = 0.0
121 | for i in range(7):
122 | y_pred_i, y_i = y_pred[:, i], y[:, i]
123 | loss += criterion(y_pred_i, y_i) * self.config.dims_weights[i]
124 | return loss
125 |
126 |
127 | def train(self, model, train_loader, valid_loader, optimizer, schedule):
128 |
129 | best_pearson = 0.0
130 | criterion = nn.MSELoss()
131 | model.train()
132 |
133 | for i in range(self.config.epoch):
134 | start_time = time.time()
135 | train_loss_sum = 0.0
136 |
137 | logging.info(f"—————————————————————— Epoch {i+1} ——————————————————————")
138 |
139 | for idx, (ids, att, y) in enumerate(train_loader):
140 |
141 | ids, att, y = ids.to(self.device), att.to(self.device), y.to(self.device)
142 | y_pred1, y_pred2 = model(ids, att)
143 | y_pred1, y_pred2, y = torch.squeeze(y_pred1), torch.squeeze(y_pred2), torch.squeeze(y)
144 |
145 | loss1 = self.calculate_weighted_loss(y_pred1, y, criterion) * self.config.losses_weights['forward_weight']
146 | loss2 = self.calculate_weighted_loss(y_pred2, y, criterion) * self.config.losses_weights['forward_weight']
147 | loss_r = self.calculate_weighted_loss(y_pred1, y_pred2, criterion) * self.config.losses_weights['rdrop_weight']
148 | loss = (loss1 + loss2 + loss_r) / self.config.gradient_acc
149 |
150 | optimizer.zero_grad()
151 | loss.backward()
152 | optimizer.step()
153 | schedule.step()
154 | train_loss_sum += loss.item()
155 |
156 | if (idx+1) % (len(train_loader) // 10) == 0:
157 | logging.info("Epoch {:02d} | Step {:03d}/{:03d} | Loss {:.4f} | Time {:.2f}".format(i+1, idx+1, len(train_loader), train_loss_sum/(idx+1), time.time()-start_time))
158 |
159 |
160 | logging.info("Start evaluating!")
161 | dev_true, dev_pred = self.predict(model, valid_loader)
162 | cur_pearson = np.corrcoef(dev_true, dev_pred)[0][1]
163 |
164 | if cur_pearson > best_pearson:
165 | best_pearson = cur_pearson
166 | torch.save(model.state_dict(), self.config.model_save_path)
167 |
168 | logging.info("Current dev pearson is {:.4f}, best pearson is {:.4f}".format(cur_pearson, best_pearson))
169 | logging.info("Time costed : {}s \n".format(round(time.time() - start_time, 3)))
170 |
171 |
172 | def run_finetune(self):
173 |
174 | train_loader = self.data_loader(*self.dataset(self.config.training_set_path))
175 | dev_loader = self.data_loader(*self.dataset(self.config.testing_set_path))
176 |
177 | model = MMRegressor(self.config.model_pretrain_dir).to(self.device)
178 |
179 | for param in model.parameters():
180 | param.requires_grad = True
181 |
182 | total_steps = len(train_loader) * self.config.epoch
183 |
184 | optimizer = AdamW(params=model.parameters(),
185 | lr=self.config.learning_rate,
186 | weight_decay=self.config.weight_decay)
187 | schedule = get_cosine_schedule_with_warmup(optimizer=optimizer,
188 | num_warmup_steps=self.config.warmup_rate*total_steps,
189 | num_training_steps=total_steps)
190 |
191 | self.train(model, train_loader, dev_loader, optimizer, schedule)
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------