├── .gitignore
├── LICENSE
├── README.md
├── assets
├── ICCV2021_VSOD_FSNet_Chinese.pdf
├── framework.jpg
├── motivation.jpg
├── qualitative.png
└── quantitative.png
├── eval
├── CalMAE.m
├── Enhancedmeasure.m
├── Fmeasure_calu.m
├── README.md
├── S_object.m
├── S_region.m
├── StructureMeasure.m
├── calculateNumber.m
├── fileID.m
├── main_VSOD.m
└── original_WFb.m
├── infer.py
├── lib
├── fsnet.py
└── resnets.py
├── snapshot
└── FSNet
│ └── snapshot.pth
├── train.py
└── utils
├── __init__.py
├── dataloader.py
└── func.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Build and Release Folders
2 | bin-debug/
3 | bin-release/
4 | [Oo]bj/
5 | [Bb]in/
6 |
7 | # Other files and folders
8 | .settings/
9 | .idea/
10 |
11 | # Executables
12 | *.swf
13 | *.air
14 | *.ipa
15 | *.apk
16 |
17 | # Project files, i.e. `.project`, `.actionScriptProperties` and `.flexProperties`
18 | # should NOT be excluded as they contain compiler settings and other important
19 | # information for Eclipse / Flash Builder.
20 | *.xml
21 |
22 | /snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth
23 | /.idea/
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021)
2 |
3 |
4 |
5 | Authors:
6 | [Ge-Peng Ji](https://scholar.google.com/citations?user=oaxKYKUAAAAJ&hl=en),
7 | [Keren Fu](http://www.kerenfu.top/),
8 | [Zhe Wu](https://scholar.google.com/citations?hl=en&user=jT1s8GkAAAAJ),
9 | [Deng-Ping Fan](https://scholar.google.com/citations?hl=en&user=kakwJ5QAAAAJ)*,
10 | [Jianbing Shen](https://scholar.google.com/citations?hl=en&user=_Q3NTToAAAAJ), &
11 | [Ling Shao](https://scholar.google.com/citations?user=z84rLjoAAAAJ&hl=en&oi=ao)
12 |
13 | - This repository provides code for paper "_**Full-Duplex Strategy for Video Object Segmentation**_" accepted by the ICCV-2021 conference ([official version](https://openaccess.thecvf.com/content/ICCV2021/html/Ji_Full-Duplex_Strategy_for_Video_Object_Segmentation_ICCV_2021_paper.html) / [arXiv Version](https://arxiv.org/abs/2108.03151v2) / [Chinese translation](https://drive.google.com/file/d/1P4v_d_jOjG--FCDkxTY0wDl113evj27W/view?usp=sharing)).
14 |
15 | - This project is under construction. If you have any questions about our paper or bugs in our git project, feel free to contact me.
16 |
17 | - If you like our FSNet for your personal research, please cite this paper ([BibTeX](#4-citation)).
18 |
19 | # 1. News
20 |
21 | - [2022/10/22] Our journal extension has been open-accessed. ([Springer Link](https://link.springer.com/article/10.1007/s41095-021-0262-4))
22 | - [2021/10/16] Our journal extension is accepted by [Computational Visual Media](https://www.springer.com/journal/41095). The pre-print version could be found at this [link](https://cg.cs.tsinghua.edu.cn/cvmj/papers/CVM0262.pdf).
23 | - [2021/08/24] Upload the training script for video object segmentation.
24 | - [2021/08/22] Upload the pre-trained snapshot and the pre-computed results on U-VOS and V-SOD tasks.
25 | - [2021/08/20] Release inference code, evaluation code (VSOD).
26 | - [2021/07/20] Create Github page.
27 |
28 | # 2. Introduction
29 |
30 | ## Why?
31 |
32 | Appearance and motion are two important sources of information in video object segmentation (VOS). Previous methods mainly focus on using simplex solutions, lowering the upper bound of feature collaboration among and across these two cues.
33 |
34 |
35 |
36 |
37 | Figure 1: Visual comparison between the simplex (i.e., (a) appearance-refined motion and (b) motion-refined appear- ance) and our full-duplex strategy. In contrast, our FS- Net offers a collaborative way to leverage the appearance and motion cues under the mutual restraint of full-duplex strategy, thus providing more accurate structure details and alleviating the short-term feature drifting issue.
38 |
39 |
40 |
41 | ## What?
42 |
43 | In this paper, we study a novel framework, termed the FSNet (Full-duplex Strategy Network), which designs a relational cross-attention module (RCAM) to achieve bidirectional message propagation across embedding subspaces. Furthermore, the bidirectional purification module (BPM) is introduced to update the inconsistent features between the spatial-temporal embeddings, effectively improving the model's robustness.
44 |
45 |
46 |
47 |
48 | Figure 2: The pipeline of our FSNet. The Relational Cross-Attention Module (RCAM) abstracts more discriminative representations between the motion and appearance cues using the full-duplex strategy. Then four Bidirectional Purification Modules (BPM) are stacked to further re-calibrate inconsistencies between the motion and appearance features. Finally, we utilize the decoder to generate our prediction.
49 |
50 |
51 |
52 | ## How?
53 |
54 | By considering the mutual restraint within the full-duplex strategy, our FSNet performs the cross-modal feature-passing (i.e., transmission and receiving) simultaneously before the fusion and decoding stage, making it robust to various challenging scenarios (e.g., motion blur, occlusion) in VOS. Extensive experiments on five popular benchmarks (i.e., DAVIS16, FBMS, MCL, SegTrack-V2, and DAVSOD19) show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
55 |
56 |
57 |
58 |
59 | Figure 3: Qualitative results on five datasets, including DAVIS16, MCL, FBMS, SegTrack-V2, and DAVSOD19.
60 |
61 |
62 |
63 | # 3. Usage
64 |
65 | ## How to Inference?
66 |
67 | - Download the test dataset from [Baidu Driver](https://pan.baidu.com/s/1lTYWFXvOnAkmH5EdvHgeyQ) (PSW: aaw8) or [Google Driver](https://drive.google.com/file/d/1ZjJoCy8YVLbDlHZXHTZHx7cdaonePlqp/view?usp=sharing) and save it at `./dataset/*`.
68 |
69 | - Install necessary libraries: `PyTorch 1.1+`, `scipy 1.2.2`, `PIL`
70 |
71 | - Download the pre-trained weights from [Baidu Driver](https://pan.baidu.com/s/1GRUg-n1EEV_nku-2nG3QRw) (psw: 36lm) or [Google Driver](https://drive.google.com/file/d/1rXSG2ruiw1pzUJN-m8BJAfEcjxheYe0D/view?usp=sharing).
72 | Saving the pre-trained weights at `./snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth`
73 |
74 | - Just run `python inference.py` to generate the segmentation results.
75 |
76 | - About the post-processing technique DenseCRF we used in the original paper, you can find it here: [DSS-CRF](https://github.com/Andrew-Qibin/dss_crf).
77 |
78 | ## How to train our model from scratch?
79 |
80 | Download the train dataset from [Baidu Driver](https://pan.baidu.com/s/12l1VVZqQsQJL5clty10DbQ) (PSW: u01t) or [Google Driver (VOS-TrainSet_StaticAndVideo.zip)](https://drive.google.com/file/d/1NKjAwqbd6nd1SrlgCB3C1UP5dhouSeIF/view?usp=sharing)/[Google Driver (VOS-TrainSet_Video.zip)](https://drive.google.com/file/d/1aoneB-wbnATRHV8OVcjNd5zBlGOxftQv/view?usp=sharing) and save it at `./dataset/*`. Our training pipeline consists of three steps:
81 |
82 | - First, train the model using the combination of static SOD dataset (i.e., DUTS) with 12,926 samples and U-VOS datasets (i.e., DAVIS16 & FBMS) with 2,373 samples.
83 | - Set `--train_type='pretrain_rgb'` and run `python train.py` in terminal
84 |
85 | - Second, train the model using the optical-flow map of U-VOS datasets (i.e., DAVIS16 & FBMS).
86 | - Set `--train_type='pretrain_flow'` and run `python train.py` in terminal
87 |
88 | - Third, train the model using the pair of frame and optical flow of U-VOS datasets (i.e., DAVIS16 & FBMS).
89 | - Set `--train_type='finetune'` and run `python train.py` in terminal
90 |
91 | # 4. Benchmark
92 |
93 | ## Unsupervised/Zero-shot Video Object Segmentation (U/Z-VOS) task
94 |
95 | > NOTE: In the U-VOS, all the prediction results are strictly binary. We only adopt the naive binarization algorithm
96 | > (i.e., threshold=0.5) in our experiments.
97 |
98 |
99 | - Quantitative results (NOTE: The following results **have slight improvement** compared with the reported results in our conference paper):
100 |
101 | | | mean-J | recall-J | decay-J | mean-F | recall-F | decay-F | T |
102 | |-------|--------|----------|---------|--------|----------|---------|-------|
103 | | FSNet (w/ CRF) | 0.834 | 0.945 | 0.032 | 0.831 | 0.902 | 0.026 | 0.213 |
104 | | FSNet (w/o CRF) | 0.823 | 0.943 | 0.033 | 0.833 | 0.919 | 0.028 | 0.213 |
105 |
106 | - Pre-Computed Results: Please download the prediction results of FSNet, refer to [Baidu Driver](https://pan.baidu.com/s/12fvRu-_Ca9qzYJVnmcucKA) (psw: ojsl) or [Google Driver](https://drive.google.com/file/d/1p3CGVyHuHfrCi6xaNtUdbrFa08H4Uj-b/view?usp=sharing).
107 |
108 | - Evaluation Toolbox: We use the standard evaluation toolbox from [DAVIS16](https://github.com/davisvideochallenge/davis-matlab/tree/davis-2016).
109 | (Note that all the pre-computed segmentations are downloaded from this [link](https://davischallenge.org/davis2016/soa_compare.html)).
110 |
111 |
112 | ## Video Salient Object Detection (V-SOD) task
113 |
114 | > NOTE: In the V-SOD, all the prediction results are non-binary.
115 |
116 | - Pre-Computed Results: Please download the prediction results of FSNet ([Baidu Driver](https://pan.baidu.com/s/1xWvuTIXM6YujhYFaWC9hsQ), PSW: rgk1) or [Google Driver](https://drive.google.com/file/d/1gScv9xmFRN6hX0ZehDMXhwtm6oNobkke/view?usp=sharing).
117 |
118 | - Evaluation Toolbox: We use the standard evaluation toolbox from [DAVSOD benchmark](https://github.com/DengPingFan/DAVSOD).
119 |
120 | # 4. Citation
121 |
122 | @article{ji2022fsnet-CVMJ,
123 | title={Full-Duplex Strategy for Video Object Segmentation},
124 | author={Ji, Ge-Peng and Fan, Deng-Ping and Fu, Keren and Wu, Zhe and Shen, Jianbing and Shao, Ling},
125 | journal={Computational Visual Media},
126 | pages={155–175},
127 | volume={8},
128 | issue={1},
129 | year={2022},
130 | publisher={Springer}
131 | }
132 |
133 | @inproceedings{ji2021full,
134 | title={Full-Duplex Strategy for Video Object Segmentation},
135 | author={Ji, Ge-Peng and Fu, Keren and Wu, Zhe and Fan, Deng-Ping and Shen, Jianbing and Shao, Ling},
136 | booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
137 | pages={4922--4933},
138 | year={2021}
139 | }
140 |
141 | # 5. Acknowledgements
142 |
143 | Many thanks to my collaborator [Ph.D. Zhe Wu](https://scholar.google.com/citations?hl=en&user=jT1s8GkAAAAJ),
144 | who provides excellent work [SCRN](https://github.com/wuzhe71/SCRN) and design inspirations.
145 |
--------------------------------------------------------------------------------
/assets/ICCV2021_VSOD_FSNet_Chinese.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GewelsJI/FSNet/0125cbb8af05962c384dcca5a094c9fc119f1b4a/assets/ICCV2021_VSOD_FSNet_Chinese.pdf
--------------------------------------------------------------------------------
/assets/framework.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GewelsJI/FSNet/0125cbb8af05962c384dcca5a094c9fc119f1b4a/assets/framework.jpg
--------------------------------------------------------------------------------
/assets/motivation.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GewelsJI/FSNet/0125cbb8af05962c384dcca5a094c9fc119f1b4a/assets/motivation.jpg
--------------------------------------------------------------------------------
/assets/qualitative.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GewelsJI/FSNet/0125cbb8af05962c384dcca5a094c9fc119f1b4a/assets/qualitative.png
--------------------------------------------------------------------------------
/assets/quantitative.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GewelsJI/FSNet/0125cbb8af05962c384dcca5a094c9fc119f1b4a/assets/quantitative.png
--------------------------------------------------------------------------------
/eval/CalMAE.m:
--------------------------------------------------------------------------------
1 | function mae = CalMAE(smap, gtImg)
2 | % eval Author: Wangjiang Zhu
3 | % Email: wangjiang88119@gmail.com
4 | % Date: 3/24/2014
5 | if size(smap, 1) ~= size(gtImg, 1) || size(smap, 2) ~= size(gtImg, 2)
6 | error('Saliency map and gt Image have different sizes!\n');
7 | end
8 |
9 | if ~islogical(gtImg)
10 | gtImg = gtImg(:,:,1) > 128;
11 | end
12 |
13 | smap = im2double(smap(:,:,1));
14 | fgPixels = smap(gtImg);
15 | fgErrSum = length(fgPixels) - sum(fgPixels);
16 | bgErrSum = sum(smap(~gtImg));
17 | mae = (fgErrSum + bgErrSum) / numel(gtImg);
--------------------------------------------------------------------------------
/eval/Enhancedmeasure.m:
--------------------------------------------------------------------------------
1 | function [score]= Emeasure(FM,GT)
2 | % Emeasure Compute the Enhanced Alignment measure (as proposed in "Enhanced-alignment
3 | % Measure for Binary Foreground Map Evaluation" [Deng-Ping Fan et. al - IJCAI'18 oral paper])
4 | % Usage:
5 | % score = Emeasure(FM,GT)
6 | % Input:
7 | % FM - Binary foreground map. Type: double.
8 | % GT - Binary ground truth. Type: double.
9 | % Output:
10 | % score - The Enhanced alignment score
11 |
12 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Important Note:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 | %The code is for academic purposes only. Please cite this paper if you make use of it:
14 |
15 | %@conference{Fan2018Enhanced, title={Enhanced-alignment Measure for Binary Foreground Map Evaluation},
16 | % author={Fan, Deng-Ping and Gong, Cheng and Cao, Yang and Ren, Bo and Cheng, Ming-Ming and Borji, Ali},
17 | % year = {2018},
18 | % booktitle = {IJCAI}
19 | % }
20 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 |
22 | FM = logical(FM);
23 | GT = logical(GT);
24 |
25 | %Use double for computations.
26 | dFM = double(FM);
27 | dGT = double(GT);
28 |
29 | %Special case:
30 | if (sum(dGT(:))==0)% if the GT is completely black
31 | enhanced_matrix = 1.0 - dFM; %only calculate the black area of intersection
32 | elseif(sum(~dGT(:))==0)%if the GT is completely white
33 | enhanced_matrix = dFM; %only calcualte the white area of intersection
34 | else
35 | %Normal case:
36 |
37 | %1.compute alignment matrix
38 | align_matrix = AlignmentTerm(dFM,dGT);
39 | %2.compute enhanced alignment matrix
40 | enhanced_matrix = EnhancedAlignmentTerm(align_matrix);
41 | end
42 |
43 | %3.Emeasure score
44 | [w,h] = size(GT);
45 | score = sum(enhanced_matrix(:))./(w*h - 1 + eps);
46 | end
47 |
48 | % Alignment Term
49 | function [align_Matrix] = AlignmentTerm(dFM,dGT)
50 |
51 | %compute global mean
52 | mu_FM = mean2(dFM);
53 | mu_GT = mean2(dGT);
54 |
55 | %compute the bias matrix
56 | align_FM = dFM - mu_FM;
57 | align_GT = dGT - mu_GT;
58 |
59 | %compute alignment matrix
60 | align_Matrix = 2.*(align_GT.*align_FM)./(align_GT.*align_GT + align_FM.*align_FM + eps);
61 |
62 | end
63 |
64 | % Enhanced Alignment Term function. f(x) = 1/4*(1 + x)^2)
65 | function enhanced = EnhancedAlignmentTerm(align_Matrix)
66 | enhanced = ((align_Matrix + 1).^2)/4;
67 | end
68 |
69 |
70 |
--------------------------------------------------------------------------------
/eval/Fmeasure_calu.m:
--------------------------------------------------------------------------------
1 | %%
2 | function [PreFtem, RecallFtem, FmeasureF] = Fmeasure_calu(sMap,gtMap,gtsize, threshold)
3 | %threshold = 2* mean(sMap(:)) ;
4 | if ( threshold > 1 )
5 | threshold = 1;
6 | end
7 |
8 | Label3 = zeros( gtsize );
9 | Label3( sMap>=threshold ) = 1;
10 |
11 | NumRec = length( find( Label3==1 ) );
12 | LabelAnd = Label3 & gtMap;
13 | NumAnd = length( find ( LabelAnd==1 ) );
14 | num_obj = sum(sum(gtMap));
15 |
16 | if NumAnd == 0
17 | PreFtem = 0;
18 | RecallFtem = 0;
19 | FmeasureF = 0;
20 | else
21 | PreFtem = NumAnd/NumRec;
22 | RecallFtem = NumAnd/num_obj;
23 | FmeasureF = ( ( 1.3* PreFtem * RecallFtem ) / ( .3 * PreFtem + RecallFtem ) );
24 | end
25 |
26 | %Fmeasure = [PreFtem, RecallFtem, FmeasureF];
27 |
28 |
--------------------------------------------------------------------------------
/eval/README.md:
--------------------------------------------------------------------------------
1 | # Evaluation Toolboox for VSOD task
2 |
3 | ## Introduction
4 |
5 | - We directly utilize the benchmark tool from [DAVSOD](https://github.com/DengPingFan/DAVSOD/tree/master/EvaluateTool)
6 | - You can evaluate the model performance (S-measure, E-measure, F-measure and MAE) using the one-key matlab
7 | code `main_VSOD.m` in `./FSNet/eval/` directory.
8 |
9 |
10 | ## Related Citations (BibTeX)
11 |
12 | If you find this useful, please cite the related works as follows: SSAV model/DAVSOD dataset
13 | ```
14 | @InProceedings{Fan_2019_CVPR,
15 | author = {Fan, Deng-Ping and Wang, Wenguan and Cheng, Ming-Ming and Shen, Jianbing},
16 | title = {Shifting More Attention to Video Salient Object Detection},
17 | booktitle = {IEEE CVPR},
18 | year = {2019}
19 | }
20 | ```
21 |
22 | Metrics
23 | ```
24 | @inproceedings{Fan2018Enhanced,
25 | author={Fan, Deng-Ping and Gong, Cheng and Cao, Yang and Ren, Bo and Cheng, Ming-Ming and Borji, Ali},
26 | title={{Enhanced-alignment Measure for Binary Foreground Map Evaluation}},
27 | booktitle={IJCAI},
28 | pages={698--704},
29 | year={2018}
30 | }
31 |
32 | @inproceedings{fan2017structure,
33 | author = {Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
34 | title = {{Structure-measure: A New Way to Evaluate Foreground Maps}},
35 | booktitle = {IEEE ICCV},
36 | year = {2017},
37 | pages = {4548-4557}
38 | }
39 | ```
--------------------------------------------------------------------------------
/eval/S_object.m:
--------------------------------------------------------------------------------
1 | function Q = S_object(prediction,GT)
2 | % S_object Computes the object similarity between foreground maps and ground
3 | % truth(as proposed in "Structure-measure:A new way to evaluate foreground
4 | % maps" [Deng-Ping Fan et. al - ICCV 2017])
5 | % Usage:
6 | % Q = S_object(prediction,GT)
7 | % Input:
8 | % prediction - Binary/Non binary foreground map with values in the range
9 | % [0 1]. Type: double.
10 | % GT - Binary ground truth. Type: logical.
11 | % Output:
12 | % Q - The object similarity score
13 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 |
15 | % compute the similarity of the foreground in the object level
16 | prediction_fg = prediction;
17 | prediction_fg(~GT)=0;
18 | O_FG = Object(prediction_fg,GT);
19 |
20 | % compute the similarity of the background
21 | prediction_bg = 1.0 - prediction;
22 | prediction_bg(GT) = 0;
23 | O_BG = Object(prediction_bg,~GT);
24 |
25 | % combine the foreground measure and background measure together
26 | u = mean2(GT);
27 | Q = u * O_FG + (1 - u) * O_BG;
28 |
29 | end
30 |
31 | function score = Object(prediction,GT)
32 |
33 | % check the input
34 | if isempty(prediction)
35 | score = 0;
36 | return;
37 | end
38 | if isinteger(prediction)
39 | prediction = double(prediction);
40 | end
41 | if (~isa( prediction, 'double' ))
42 | error('prediction should be of type: double');
43 | end
44 | if ((max(prediction(:))>1) || min(prediction(:))<0)
45 | error('prediction should be in the range of [0 1]');
46 | end
47 | if(~islogical(GT))
48 | error('GT should be of type: logical');
49 | end
50 |
51 | % compute the mean of the foreground or background in prediction
52 | x = mean2(prediction(GT));
53 |
54 | % compute the standard deviations of the foreground or background in prediction
55 | sigma_x = std(prediction(GT));
56 |
57 | score = 2.0 * x./(x^2 + 1.0 + sigma_x + eps);
58 | end
--------------------------------------------------------------------------------
/eval/S_region.m:
--------------------------------------------------------------------------------
1 | function Q = S_region(prediction,GT)
2 | % S_region computes the region similarity between the foreground map and
3 | % ground truth(as proposed in "Structure-measure:A new way to evaluate
4 | % foreground maps" [Deng-Ping Fan et. al - ICCV 2017])
5 | % Usage:
6 | % Q = S_region(prediction,GT)
7 | % Input:
8 | % prediction - Binary/Non binary foreground map with values in the range
9 | % [0 1]. Type: double.
10 | % GT - Binary ground truth. Type: logical.
11 | % Output:
12 | % Q - The region similarity score
13 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 |
15 | % find the centroid of the GT
16 | [X,Y] = centroid(GT);
17 |
18 | % divide GT into 4 regions
19 | [GT_1,GT_2,GT_3,GT_4,w1,w2,w3,w4] = divideGT(GT,X,Y);
20 |
21 | %Divede prediction into 4 regions
22 | [prediction_1,prediction_2,prediction_3,prediction_4] = Divideprediction(prediction,X,Y);
23 |
24 | %Compute the ssim score for each regions
25 | Q1 = ssim(prediction_1,GT_1);
26 | Q2 = ssim(prediction_2,GT_2);
27 | Q3 = ssim(prediction_3,GT_3);
28 | Q4 = ssim(prediction_4,GT_4);
29 |
30 | %Sum the 4 scores
31 | Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4;
32 |
33 | end
34 |
35 | function [X,Y] = centroid(GT)
36 | % Centroid Compute the centroid of the GT
37 | % Usage:
38 | % [X,Y] = Centroid(GT)
39 | % Input:
40 | % GT - Binary ground truth. Type: logical.
41 | % Output:
42 | % [X,Y] - The coordinates of centroid.
43 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 | [rows,cols] = size(GT);
45 |
46 | if(sum(GT(:))==0)
47 | X = round(cols/2);
48 | Y = round(rows/2);
49 | else
50 | total=sum(GT(:));
51 | i=1:cols;
52 | j=(1:rows)';
53 | X=round(sum(sum(GT,1).*i)/total);
54 | Y=round(sum(sum(GT,2).*j)/total);
55 |
56 | %dGT = double(GT);
57 | %x = ones(rows,1)*(1:cols);
58 | %y = (1:rows)'*ones(1,cols);
59 | %area = sum(dGT(:));
60 | %X = round(sum(sum(dGT.*x))/area);
61 | %Y = round(sum(sum(dGT.*y))/area);
62 | end
63 |
64 | end
65 |
66 | % divide the GT into 4 regions according to the centroid of the GT and return the weights
67 | function [LT,RT,LB,RB,w1,w2,w3,w4] = divideGT(GT,X,Y)
68 | % LT - left top;
69 | % RT - right top;
70 | % LB - left bottom;
71 | % RB - right bottom;
72 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
73 |
74 | %width and height of the GT
75 | [hei,wid] = size(GT);
76 | area = wid * hei;
77 |
78 | %copy the 4 regions
79 | LT = GT(1:Y,1:X);
80 | RT = GT(1:Y,X+1:wid);
81 | LB = GT(Y+1:hei,1:X);
82 | RB = GT(Y+1:hei,X+1:wid);
83 |
84 | %The different weight (each block proportional to the GT foreground region).
85 | w1 = (X*Y)./area;
86 | w2 = ((wid-X)*Y)./area;
87 | w3 = (X*(hei-Y))./area;
88 | w4 = 1.0 - w1 - w2 - w3;
89 | end
90 |
91 | %Divide the prediction into 4 regions according to the centroid of the GT
92 | function [LT,RT,LB,RB] = Divideprediction(prediction,X,Y)
93 |
94 | %width and height of the prediction
95 | [hei,wid] = size(prediction);
96 |
97 | %copy the 4 regions
98 | LT = prediction(1:Y,1:X);
99 | RT = prediction(1:Y,X+1:wid);
100 | LB = prediction(Y+1:hei,1:X);
101 | RB = prediction(Y+1:hei,X+1:wid);
102 |
103 | end
104 |
105 | function Q = ssim(prediction,GT)
106 | % ssim computes the region similarity between foreground maps and ground
107 | % truth(as proposed in "Structure-measure: A new way to evaluate foreground
108 | % maps" [Deng-Ping Fan et. al - ICCV 2017])
109 | % Usage:
110 | % Q = ssim(prediction,GT)
111 | % Input:
112 | % prediction - Binary/Non binary foreground map with values in the range
113 | % [0 1]. Type: double.
114 | % GT - Binary ground truth. Type: logical.
115 | % Output:
116 | % Q - The region similarity score
117 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
118 |
119 | dGT = double(GT);
120 |
121 | [hei,wid] = size(prediction);
122 | N = wid*hei;
123 |
124 | %Compute the mean of SM,GT
125 | x = mean2(prediction);
126 | y = mean2(dGT);
127 |
128 | %Compute the variance of SM,GT
129 | sigma_x2 = sum(sum((prediction - x).^2))./(N - 1 + eps);%sigma_x2 = var(prediction(:))
130 | sigma_y2 = sum(sum((dGT - y).^2))./(N - 1 + eps); %sigma_y2 = var(dGT(:));
131 |
132 | %Compute the covariance between SM and GT
133 | sigma_xy = sum(sum((prediction - x).*(dGT - y)))./(N - 1 + eps);
134 |
135 | alpha = 4 * x * y * sigma_xy;
136 | beta = (x.^2 + y.^2).*(sigma_x2 + sigma_y2);
137 |
138 | if(alpha ~= 0)
139 | Q = alpha./(beta + eps);
140 | elseif(alpha == 0 && beta == 0)
141 | Q = 1.0;
142 | else
143 | Q = 0;
144 | end
145 |
146 | end
147 |
--------------------------------------------------------------------------------
/eval/StructureMeasure.m:
--------------------------------------------------------------------------------
1 | function Q = StructureMeasure(prediction,GT)
2 | % StructureMeasure computes the similarity between the foreground map and
3 | % ground truth(as proposed in "Structure-measure: A new way to evaluate
4 | % foreground maps" [Deng-Ping Fan et. al - ICCV 2017])
5 | % Usage:
6 | % Q = StructureMeasure(prediction,GT)
7 | % Input:
8 | % prediction - Binary/Non binary foreground map with values in the range
9 | % [0 1]. Type: double.
10 | % GT - Binary ground truth. Type: logical.
11 | % Output:
12 | % Q - The computed similarity score
13 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 |
15 | % Check input
16 | if (~isa(prediction,'double'))
17 | error('The prediction should be double type...');
18 | end
19 | if ((max(prediction(:))>1) || min(prediction(:))<0)
20 | error('The prediction should be in the range of [0 1]...');
21 | end
22 | if (~islogical(GT))
23 | error('GT should be logical type...');
24 | end
25 |
26 | y = mean2(GT);
27 |
28 | if (y==0)% if the GT is completely black
29 | x = mean2(prediction);
30 | Q = 1.0 - x; %only calculate the area of intersection
31 | elseif(y==1)%if the GT is completely white
32 | x = mean2(prediction);
33 | Q = x; %only calcualte the area of intersection
34 | else
35 | alpha = 0.5;
36 | Q = alpha*S_object(prediction,GT)+(1-alpha)*S_region(prediction,GT);
37 | if (Q<0)
38 | Q=0;
39 | end
40 | end
41 |
42 | end
43 |
--------------------------------------------------------------------------------
/eval/calculateNumber.m:
--------------------------------------------------------------------------------
1 | function [NUM,file,fileExt] = calculateNumber(imgPath)
2 | imgExt = {'*.bmp', '*.jpg', '*.png'};
3 | k=1;
4 | d1 = dir([imgPath char(imgExt(k))]);
5 | file = {d1(~[d1.isdir]).name};
6 | if isempty(file)
7 | k = k + 1;
8 | d1 = dir([imgPath char(imgExt(k))]);
9 | file = {d1(~[d1.isdir]).name};
10 | if isempty(file)
11 | k = k + 1;
12 | d1 = dir([imgPath char(imgExt(k))]);
13 | file = {d1(~[d1.isdir]).name};
14 | NUM = length(file);
15 | else
16 | NUM = length(file);
17 | end
18 | else
19 | NUM = length(file);
20 | end
21 | fileExt = char(imgExt(k));
22 | end
--------------------------------------------------------------------------------
/eval/fileID.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GewelsJI/FSNet/0125cbb8af05962c384dcca5a094c9fc119f1b4a/eval/fileID.m
--------------------------------------------------------------------------------
/eval/main_VSOD.m:
--------------------------------------------------------------------------------
1 | clear; close; clc;
2 |
3 | %set Dataset Path
4 | salDir = '../result/';
5 | gtDir = '/media/nercms/NERCMS/YuchengChou/VSOD_TestSet/';
6 | Results_Save_Path = './EvalTxt/FSNet-c/';
7 |
8 | Models = {'FSNet-New'}; %'2015-CVPR-SAG', '2014-TCSVT-SPVM',
9 | Datasets = {'DAVIS'};%, 'FBMS', 'SegTrack-V2', 'MCL', 'DAVSOD', 'DAVSOD-Difficult-20', 'DAVSOD-Normal-25'}; %', 'DAVSOD-Difficult-20', 'FBMS', 'SegTrack-V2', 'ViSal','YouTube-Objects', 'DAVSOD', 'DAVSOD-Normal-25' ,'MCL', 'UVSD', 'VOS'
10 |
11 | Thresholds = 1:-1/255:0;
12 |
13 | for m = 1:length(Models)
14 |
15 | modelName = Models{m}
16 |
17 | resVideoPath = [salDir modelName '/'];
18 |
19 | videoFiles = dir(gtDir);
20 |
21 | videoNUM = length(videoFiles)-2;
22 |
23 | [video_Smeasure, video_wFmeasure, video_adpFmeasure, video_adpEmeasure, video_MAE] = deal(zeros(1,videoNUM));
24 | [video_Fmeasure,video_Emeasure] = deal(zeros(videoNUM,256));
25 |
26 | for videonum = 1:length(Datasets)
27 | videofolder = Datasets{videonum}
28 | filePath = [Results_Save_Path modelName '/'];
29 |
30 | if ~exist(filePath, 'dir')
31 | mkdir(filePath);
32 | end
33 |
34 | fileID = fopen([filePath modelName '_' videofolder '_result.txt'], 'w');
35 |
36 |
37 | seqPath = [gtDir '/' videofolder '/']; % modified by Gepeng_Ji
38 | seqFiles = dir(seqPath);
39 |
40 | seqNUM = length(seqFiles)-2;
41 |
42 | [seq_Smeasure, seq_wFmeasure, seq_adpFmeasure, seq_adpEmeasure, seq_MAE] = deal(zeros(1,seqNUM));
43 | [seq_Fmeasure,seq_Emeasure] = deal(zeros(seqNUM,256));
44 |
45 | for seqnum = 1: seqNUM
46 |
47 | seqfolder = seqFiles(seqnum+2).name;
48 |
49 | gt_imgPath = [seqPath seqfolder '/GT/'];
50 | [fileNUM, gt_imgFiles, fileExt] = calculateNumber(gt_imgPath);
51 | resPath = [resVideoPath videofolder '/' seqfolder '/'];
52 |
53 | [Smeasure, wFmeasure, adpFmeasure, adpEmeasure, mae] = deal(zeros(1, fileNUM-2));
54 | [threshold_Fmeasure, threshold_Emeasure] = deal(zeros(fileNUM-2,256));
55 |
56 | tic;
57 | for i = 2:fileNUM-1 %skip the first and last gt file for some of the optical-flow based method
58 |
59 | name = char(gt_imgFiles{i});
60 | fprintf('[Processing] Model: %s, Dataset: %s, Seq: %s (%d/%d), Name: %s (%d/%d)\n',modelName, videofolder, seqfolder, seqnum, seqNUM, name, i-1, fileNUM-2);
61 |
62 | %load gt
63 | gt = imread([gt_imgPath name]);
64 | if numel(size(gt))>2
65 | gt = rgb2gray(gt);
66 | end
67 | if ~islogical(gt)
68 | gt = gt(:,:,1) > 128;
69 | end
70 |
71 | %load salency
72 | sal = imread([resPath name]);
73 | %check size
74 | if size(sal, 1) ~= size(gt, 1) || size(sal, 2) ~= size(gt, 2)
75 | sal = imresize(sal,size(gt));
76 | imwrite(sal,[resPath name]);
77 | fprintf('Error occurs in the path: %s!!!\n', [resPath name]);
78 | end
79 |
80 | sal = im2double(sal(:,:,1));
81 |
82 | %normalize sal to [0, 1]
83 | sal = reshape(mapminmax(sal(:)',0,1),size(sal));
84 |
85 | Smeasure(i-1) = StructureMeasure(sal,logical(gt));
86 |
87 | wFmeasure(i-1) = original_WFb(sal, logical(gt));
88 |
89 | % Using the 2 times of average of sal map as the threshold.
90 | threshold = 2* mean(sal(:)) ;
91 | [~,~,adpFmeasure(i-1)] = Fmeasure_calu(sal,double(gt),size(gt),threshold);
92 | % Mean Absolute Error
93 | mae(i-1) = mean2(abs(double(logical(gt)) - sal));
94 |
95 | Bi_sal = zeros(size(sal));
96 | Bi_sal(sal>threshold) = 1;
97 | adpEmeasure(i) = Enhancedmeasure(Bi_sal, gt);
98 |
99 | for t = 1:length(Thresholds)
100 | threshold = Thresholds(t);
101 | [~, ~, threshold_Fmeasure(i-1,t)] = Fmeasure_calu(sal, double(gt), size(gt), threshold);
102 | Bi_sal = zeros(size(sal));
103 | Bi_sal(sal>threshold) = 1;
104 | threshold_Emeasure(i-1,t) = Enhancedmeasure(Bi_sal, gt);
105 | end
106 |
107 | end
108 | toc;
109 |
110 | seq_Smeasure(seqnum) = mean2(Smeasure);
111 |
112 | seq_wFmeasure(seqnum)= mean2(wFmeasure);
113 |
114 | seq_adpFmeasure(seqnum) = mean2(adpFmeasure);
115 | seq_Fmeasure(seqnum,:) = mean(threshold_Fmeasure,1);
116 | seq_maxF = max(seq_Fmeasure(seqnum,:));
117 | seq_meanF = mean(seq_Fmeasure(seqnum,:));
118 |
119 | seq_adpEmeasure(seqnum) = mean2(adpEmeasure);
120 | seq_Emeasure(seqnum,:) = mean(threshold_Emeasure,1);
121 | seq_meanE = mean(seq_Emeasure(seqnum,:));
122 | seq_maxE = max(seq_Emeasure(seqnum,:));
123 |
124 |
125 | seq_MAE(seqnum) = mean2(mae);
126 |
127 | fprintf(fileID,'(%s Dataset, %s Sequence) seq_Smeasure:%.3f;seq_wFmeasure:%.3f;seq_adpFmeasure:%.3f;seq_maxF:%.3f;seq_meanF:%.3f;seq_adpEmeasure:%.3f;seq_maxE:%.3f;seq_meanE:%.3f;seq_MAE:%.3f\n', ...
128 | videofolder,seqfolder,seq_Smeasure(seqnum),seq_wFmeasure(seqnum), seq_adpFmeasure(seqnum),seq_maxF,seq_meanF,seq_adpEmeasure(seqnum),seq_maxE,seq_meanE,seq_MAE(seqnum));
129 | fprintf('(%s Dataset, %s Sequence) seq_Smeasure:%.3f;seq_wFmeasure:%.3f;seq_adpFmeasure:%.3f;seq_maxF:%.3f;seq_meanF:%.3f;seq_adpEmeasure:%.3f;seq_maxE:%.3f;seq_meanE:%.3f;seq_MAE:%.3f\n', ...
130 | videofolder,seqfolder,seq_Smeasure(seqnum),seq_wFmeasure(seqnum), seq_adpFmeasure(seqnum),seq_maxF,seq_meanF,seq_adpEmeasure(seqnum),seq_maxE,seq_meanE,seq_MAE(seqnum));
131 |
132 | end
133 |
134 | video_Smeasure(videonum) = mean2(seq_Smeasure);
135 | video_wFmeasure(videonum) = mean2(seq_wFmeasure);
136 | video_adpFmeasure(videonum) = mean2(seq_adpFmeasure);
137 | video_adpEmeasure(videonum) = mean2(seq_adpEmeasure);
138 |
139 | video_Fmeasure(videonum,:) = mean(seq_Fmeasure,1);
140 | maxF = max(video_Fmeasure(videonum,:));
141 | meanF = mean(video_Fmeasure(videonum,:));
142 |
143 | video_Emeasure(videonum,:) = mean(seq_Emeasure,1);
144 | maxE = max(video_Emeasure(videonum,:));
145 | meanE = mean(video_Emeasure(videonum,:));
146 |
147 | video_MAE(videonum) = mean2(seq_MAE);
148 | % TODO: PR-Curve
149 | % save([resPath])
150 | fprintf(fileID,'(%s Dataset) seq_Smeasure:%.3f;seq_wFmeasure:%.3f;seq_adpF:%.3f;seq_maxF:%.3f;seq_meanF:%.3f;seq_adpE:%.3f;seq_maxE:%.3f;seq_meanE:%.3f;seq_MAE:%.3f\n',...
151 | videofolder,video_Smeasure(videonum),video_wFmeasure(videonum),video_adpFmeasure(videonum),maxF,meanF,video_adpEmeasure(videonum),maxE,meanE,video_MAE(videonum));
152 | fprintf('(%s Dataset) seq_Smeasure:%.3f;seq_wFmeasure:%.3f;seq_adpF:%.3f;seq_maxF:%.3f;seq_meanF:%.3f;seq_adpE:%.3f;seq_maxE:%.3f;seq_meanE:%.3f;seq_MAE:%.3f\n',...
153 | videofolder,video_Smeasure(videonum),video_wFmeasure(videonum),video_adpFmeasure(videonum),maxF,meanF,video_adpEmeasure(videonum),maxE,meanE,video_MAE(videonum));
154 | end
155 |
156 | fclose(fileID);
157 |
158 | end
159 |
160 |
--------------------------------------------------------------------------------
/eval/original_WFb.m:
--------------------------------------------------------------------------------
1 | function [Q]= original_WFb(FG,GT)
2 | % WFb Compute the Weighted F-beta measure (as proposed in "How to Evaluate
3 | % Foreground Maps?" [Margolin et. al - CVPR'14])
4 | % Usage:
5 | % Q = FbW(FG,GT)
6 | % Input:
7 | % FG - Binary/Non binary foreground map with values in the range [0 1]. Type: double.
8 | % GT - Binary ground truth. Type: logical.
9 | % Output:
10 | % Q - The Weighted F-beta score
11 |
12 | %Check input
13 | if (~isa( FG, 'double' ))
14 | error('FG should be of type: double');
15 | end
16 | if ((max(FG(:))>1) || min(FG(:))<0)
17 | error('FG should be in the range of [0 1]');
18 | end
19 | if (~islogical(GT))
20 | error('GT should be of type: logical');
21 | end
22 |
23 | dGT = double(GT); %Use double for computations.
24 |
25 | if~(max(dGT(:)))
26 | Q = 0;
27 | else
28 | E = abs(FG-dGT);
29 | % [Ef, Et, Er] = deal(abs(FG-GT));
30 |
31 | [Dst,IDXT] = bwdist(dGT);
32 | %Pixel dependency
33 | K = fspecial('gaussian',7,5);
34 | Et = E;
35 | Et(~GT)=Et(IDXT(~GT)); %To deal correctly with the edges of the foreground region
36 | EA = imfilter(Et,K);
37 | MIN_E_EA = E;
38 | MIN_E_EA(GT & EA 1:
19 | # for the multiple gpus
20 | model = torch.nn.DataParallel(model, device_ids=opt.gpu_id)
21 | model.load_state_dict(pretrain)
22 | else:
23 | # for a single gpu
24 | new_dict = collections.OrderedDict()
25 | for k, v in pretrain.items():
26 | new_dict[k.replace('module.', '')] = v
27 | model.load_state_dict(new_dict)
28 |
29 | model.eval()
30 |
31 | for dataset in opt.test_dataset:
32 | save_path = opt.test_save + dataset + '/'
33 | os.makedirs(save_path, exist_ok=True)
34 |
35 | test_loader, dataset_size = get_test_loader(
36 | test_root=opt.dataset_path + dataset, batchsize=opt.batchsize,
37 | trainsize=opt.testsize, shuffle=False, num_workers=3, pin_memory=True)
38 | with torch.no_grad():
39 | img_count = 1
40 | time_total = 0
41 | for step, data_pack in enumerate(test_loader):
42 | images, flows, img_paths = data_pack
43 | bs, _, _, _ = images.size()
44 |
45 | images = images.cuda()
46 | flows = flows.cuda()
47 |
48 | time_start = time.clock()
49 | sals, edge = model(images, flows)
50 | cur_time = (time.clock() - time_start)
51 |
52 | time_total += cur_time
53 |
54 | for index in range(bs):
55 | sal = sals[index, :, :, :].unsqueeze(0)
56 | tmp = img_paths[index].split('/')
57 | os.makedirs(os.path.join(save_path, tmp[-3]), exist_ok=True)
58 | sal_name = tmp[-3] + '/' + tmp[-1].replace('.jpg', '.png')
59 |
60 | gt = Image.open(img_paths[index])
61 | gt = np.asarray(gt, np.float32)
62 | gt /= (gt.max() + 1e-8)
63 |
64 | sal = F.upsample(sal, size=(gt.shape[0], gt.shape[1]), mode='bilinear', align_corners=True)
65 | sal = sal.sigmoid().data.cpu().numpy().squeeze()
66 | sal = (sal - sal.min()) / (sal.max() - sal.min() + 1e-8)
67 | misc.imsave(save_path + sal_name, sal)
68 |
69 | print('[INFO-Test] Dataset: {}, Image: {} ({}/{}), '
70 | 'TimeCom: {}'.format(dataset, sal_name, img_count, dataset_size, cur_time / bs))
71 | img_count += 1
72 | print("\n[INFO-Test-Done] FPS: {}".format(dataset_size / time_total))
73 |
74 |
75 | if __name__ == "__main__":
76 | parser = argparse.ArgumentParser()
77 | parser.add_argument('--gpu_id', type=list,
78 | default=[0], help='choose the specific device')
79 | parser.add_argument('--testsize', type=int,
80 | default=352, help='the model input')
81 | parser.add_argument('--test_dataset', type=list, help='your test dataset name assigned in the img/gt dictionary',
82 | default=['DAVIS', 'FBMS', 'SegTrack-V2', 'MCL', 'DAVSOD', 'DAVSOD-Difficult-20', 'DAVSOD-Normal-25'])
83 | parser.add_argument('--model_path', type=str,
84 | default='./snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth')
85 | parser.add_argument('--test_save', type=str,
86 | default='./result/FSNet-New/')
87 | parser.add_argument('--batchsize', type=int,
88 | default=32) # we only set BS=24 for efficient inference
89 | parser.add_argument('-dataset_path', type=str,
90 | default='./dataset/TestSet/')
91 |
92 | option = parser.parse_args()
93 |
94 | demo(opt=option)
95 |
--------------------------------------------------------------------------------
/lib/fsnet.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | import torchvision.models as models
6 | from lib.resnets import ResNet50
7 |
8 |
9 | class BasicConv2d(nn.Module):
10 | def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
11 | super(BasicConv2d, self).__init__()
12 | self.conv_bn = nn.Sequential(
13 | nn.Conv2d(in_planes, out_planes,
14 | kernel_size=kernel_size, stride=stride,
15 | padding=padding, dilation=dilation, bias=False),
16 | nn.BatchNorm2d(out_planes)
17 | )
18 |
19 | def forward(self, x):
20 | x = self.conv_bn(x)
21 | return x
22 |
23 |
24 | class DimReduce(nn.Module):
25 | def __init__(self, in_channel, out_channel):
26 | super(DimReduce, self).__init__()
27 | self.reduce = nn.Sequential(
28 | BasicConv2d(in_channel, out_channel, 1),
29 | BasicConv2d(out_channel, out_channel, 3, padding=1),
30 | BasicConv2d(out_channel, out_channel, 3, padding=1)
31 | )
32 |
33 | def forward(self, x):
34 | return self.reduce(x)
35 |
36 |
37 | class conv_upsample(nn.Module):
38 | def __init__(self, channel):
39 | super(conv_upsample, self).__init__()
40 | self.conv = BasicConv2d(channel, channel, 1)
41 |
42 | def forward(self, x, target):
43 | if x.size()[2:] != target.size()[2:]:
44 | x = self.conv(F.upsample(x, size=target.size()[2:], mode='bilinear', align_corners=True))
45 | return x
46 |
47 |
48 | class BPM(nn.Module):
49 | def __init__(self, channel):
50 | super(BPM, self).__init__()
51 | self.conv1 = conv_upsample(channel)
52 | self.conv2 = conv_upsample(channel)
53 | self.conv3 = conv_upsample(channel)
54 | self.conv4 = conv_upsample(channel)
55 | self.conv5 = conv_upsample(channel)
56 | self.conv6 = conv_upsample(channel)
57 | self.conv7 = conv_upsample(channel)
58 | self.conv8 = conv_upsample(channel)
59 | self.conv9 = conv_upsample(channel)
60 | self.conv10 = conv_upsample(channel)
61 | self.conv11 = conv_upsample(channel)
62 | self.conv12 = conv_upsample(channel)
63 |
64 | self.conv_f1 = nn.Sequential(
65 | BasicConv2d(5*channel, channel, 3, padding=1),
66 | BasicConv2d(channel, channel, 3, padding=1)
67 | )
68 | self.conv_f2 = nn.Sequential(
69 | BasicConv2d(4*channel, channel, 3, padding=1),
70 | BasicConv2d(channel, channel, 3, padding=1)
71 | )
72 | self.conv_f3 = nn.Sequential(
73 | BasicConv2d(3*channel, channel, 3, padding=1),
74 | BasicConv2d(channel, channel, 3, padding=1)
75 | )
76 | self.conv_f4 = nn.Sequential(
77 | BasicConv2d(2*channel, channel, 3, padding=1),
78 | BasicConv2d(channel, channel, 3, padding=1)
79 | )
80 |
81 | self.conv_f5 = nn.Sequential(
82 | BasicConv2d(channel, channel, 3, padding=1),
83 | BasicConv2d(channel, channel, 3, padding=1)
84 | )
85 | self.conv_f6 = nn.Sequential(
86 | BasicConv2d(channel, channel, 3, padding=1),
87 | BasicConv2d(channel, channel, 3, padding=1)
88 | )
89 | self.conv_f7 = nn.Sequential(
90 | BasicConv2d(channel, channel, 3, padding=1),
91 | BasicConv2d(channel, channel, 3, padding=1)
92 | )
93 | self.conv_f8 = nn.Sequential(
94 | BasicConv2d(channel, channel, 3, padding=1),
95 | BasicConv2d(channel, channel, 3, padding=1)
96 | )
97 |
98 | def forward(self, x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4):
99 | x_sf1 = x_s1 + self.conv_f1(torch.cat((x_s1, x_e1,
100 | self.conv1(x_e2, x_s1),
101 | self.conv2(x_e3, x_s1),
102 | self.conv3(x_e4, x_s1)), 1))
103 | x_sf2 = x_s2 + self.conv_f2(torch.cat((x_s2, x_e2,
104 | self.conv4(x_e3, x_s2),
105 | self.conv5(x_e4, x_s2)), 1))
106 | x_sf3 = x_s3 + self.conv_f3(torch.cat((x_s3, x_e3,
107 | self.conv6(x_e4, x_s3)), 1))
108 | x_sf4 = x_s4 + self.conv_f4(torch.cat((x_s4, x_e4), 1))
109 |
110 | x_ef1 = x_e1 + self.conv_f5(x_e1 * x_s1 *
111 | self.conv7(x_s2, x_e1) *
112 | self.conv8(x_s3, x_e1) *
113 | self.conv9(x_s4, x_e1))
114 | x_ef2 = x_e2 + self.conv_f6(x_e2 * x_s2 *
115 | self.conv10(x_s3, x_e2) *
116 | self.conv11(x_s4, x_e2))
117 | x_ef3 = x_e3 + self.conv_f7(x_e3 * x_s3 *
118 | self.conv12(x_s4, x_e3))
119 | x_ef4 = x_e4 + self.conv_f8(x_e4 * x_s4)
120 |
121 | return x_sf1, x_sf2, x_sf3, x_sf4, x_ef1, x_ef2, x_ef3, x_ef4
122 |
123 |
124 | class PyramidPooling(nn.Module):
125 | """
126 | Pyramid pooling module
127 | """
128 | def __init__(self, in_channels, out_channels, **kwargs):
129 | super(PyramidPooling, self).__init__()
130 | inter_channels = int(in_channels / 4)
131 | self.conv1 = BasicConv2d(in_channels, inter_channels, 1, **kwargs)
132 | self.conv2 = BasicConv2d(in_channels, inter_channels, 1, **kwargs)
133 | self.conv3 = BasicConv2d(in_channels, inter_channels, 1, **kwargs)
134 | self.conv4 = BasicConv2d(in_channels, inter_channels, 1, **kwargs)
135 | self.out = BasicConv2d(in_channels * 2, out_channels, 1)
136 |
137 | def pool(self, x, size):
138 | avgpool = nn.AdaptiveAvgPool2d(size)
139 | return avgpool(x)
140 |
141 | def upsample(self, x, size):
142 | return F.interpolate(x, size, mode='bilinear', align_corners=True)
143 |
144 | def forward(self, x):
145 | size = x.size()[2:]
146 |
147 | feat1 = self.upsample(self.conv1(self.pool(x, 1)), size)
148 | feat2 = self.upsample(self.conv2(self.pool(x, 2)), size)
149 | feat3 = self.upsample(self.conv3(self.pool(x, 3)), size)
150 | feat4 = self.upsample(self.conv4(self.pool(x, 6)), size)
151 | x = torch.cat([x, feat1, feat2, feat3, feat4], dim=1)
152 | x = self.out(x)
153 | return x
154 |
155 |
156 | class Decoder(nn.Module):
157 | def __init__(self, channel):
158 | super(Decoder, self).__init__()
159 | self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
160 | self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1)
161 | self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1)
162 | self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1)
163 |
164 | self.ppm1 = PyramidPooling(channel, channel)
165 | self.ppm2 = PyramidPooling(channel, channel)
166 | self.ppm3 = PyramidPooling(channel, channel)
167 | self.ppm4 = PyramidPooling(channel, channel)
168 |
169 | self.conv_cat1 = nn.Sequential(
170 | BasicConv2d(2*channel, 2*channel, 3, padding=1),
171 | BasicConv2d(2*channel, channel, 1)
172 | )
173 | self.conv_cat2 = nn.Sequential(
174 | BasicConv2d(2*channel, 2*channel, 3, padding=1),
175 | BasicConv2d(2*channel, channel, 1)
176 | )
177 | self.conv_cat3 = nn.Sequential(
178 | BasicConv2d(2*channel, 2*channel, 3, padding=1),
179 | BasicConv2d(2*channel, channel, 1)
180 | )
181 | self.output = nn.Sequential(
182 | BasicConv2d(channel, channel, 3, padding=1),
183 | nn.Conv2d(channel, 1, 1)
184 | )
185 |
186 | def forward(self, x1, x2, x3, x4):
187 | x4 = self.ppm4(x4)
188 | x3 = torch.cat((x3, self.conv_upsample1(self.upsample(x4))), 1)
189 | x3 = self.conv_cat1(x3)
190 |
191 | x3 = self.ppm3(x3)
192 | x2 = torch.cat((x2, self.conv_upsample2(self.upsample(x3))), 1)
193 | x2 = self.conv_cat2(x2)
194 |
195 | x2 = self.ppm2(x2)
196 | x1 = torch.cat((x1, self.conv_upsample3(self.upsample(x2))), 1)
197 | x1 = self.conv_cat3(x1)
198 |
199 | x1 = self.ppm1(x1)
200 | x = self.output(x1)
201 |
202 | return x
203 |
204 |
205 | class FSNet(nn.Module):
206 | def __init__(self, channel=32):
207 | super(FSNet, self).__init__()
208 | self.resnet = ResNet50()
209 |
210 | # Attention Channel
211 | self.atten_rgb_0 = self.channel_attention(64)
212 | self.atten_flow_0 = self.channel_attention(64)
213 |
214 | self.maxpool_m = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
215 |
216 | self.atten_rgb_1 = self.channel_attention(64 * 4)
217 | self.atten_flow_1 = self.channel_attention(64 * 4)
218 |
219 | self.atten_rgb_2 = self.channel_attention(128 * 4)
220 | self.atten_flow_2 = self.channel_attention(128 * 4)
221 |
222 | self.atten_rgb_3 = self.channel_attention(256 * 4)
223 | self.atten_flow_3 = self.channel_attention(256 * 4)
224 |
225 | self.atten_rgb_4 = self.channel_attention(512 * 4)
226 | self.atten_flow_4 = self.channel_attention(512 * 4)
227 |
228 | self.reduce_a1 = DimReduce(256, channel)
229 | self.reduce_a2 = DimReduce(512, channel)
230 | self.reduce_a3 = DimReduce(1024, channel)
231 | self.reduce_a4 = DimReduce(2048, channel)
232 |
233 | self.reduce_m1 = DimReduce(256, channel)
234 | self.reduce_m2 = DimReduce(512, channel)
235 | self.reduce_m3 = DimReduce(1024, channel)
236 | self.reduce_m4 = DimReduce(2048, channel)
237 |
238 | self.bpm1 = BPM(channel)
239 | self.bpm2 = BPM(channel)
240 | self.bpm3 = BPM(channel)
241 | self.bpm4 = BPM(channel)
242 |
243 | self.output_s = Decoder(channel)
244 | self.output_e = Decoder(channel)
245 |
246 | self.RGBF_conv3 = BasicConv2d(2048, 1024, kernel_size=3, padding=1)
247 |
248 | for m in self.modules():
249 | if isinstance(m, nn.Conv2d):
250 | m.weight.data.normal_(std=0.01)
251 | elif isinstance(m, nn.BatchNorm2d):
252 | m.weight.data.fill_(1)
253 | m.bias.data.zero_()
254 |
255 | self.initialize_weights()
256 |
257 | def forward(self, x, y):
258 | size = x.size()[2:]
259 | # ---- block_0 ----
260 | x = self.resnet.conv1_rgb(x)
261 | x = self.resnet.bn1_rgb(x)
262 | x = self.resnet.relu_rgb(x)
263 | y = self.resnet.conv1_flow(y)
264 | y = self.resnet.bn1_flow(y)
265 | y = self.resnet.relu_flow(y)
266 |
267 | atten_rgb = self.atten_rgb_0(x)
268 | atten_flow = self.atten_flow_0(y)
269 | m0 = x.mul(atten_flow) + y.mul(atten_rgb) # (BS, 64, 176, 176)
270 |
271 | # ---- block_1 ----
272 | x = self.resnet.maxpool_rgb(x)
273 | y = self.resnet.maxpool_flow(y)
274 | m0 = self.resnet.maxpool(m0)
275 |
276 | x1 = self.resnet.layer1_rgb(x)
277 | y1 = self.resnet.layer1_flow(y)
278 | m1 = self.resnet.layer1(m0)
279 |
280 | atten_rgb = self.atten_rgb_1(x1)
281 | atten_flow = self.atten_flow_1(y1)
282 | m1 = m1 + x1.mul(atten_flow) + y1.mul(atten_rgb) # (BS, 256, 88, 88)
283 |
284 | # ---- block_2 ----
285 | x2 = self.resnet.layer2_rgb(x1)
286 | y2 = self.resnet.layer2_flow(y1)
287 | m2 = self.resnet.layer2(m1)
288 |
289 | atten_rgb = self.atten_rgb_2(x2)
290 | atten_flow = self.atten_flow_2(y2)
291 | m2 = m2 + x2.mul(atten_flow) + y2.mul(atten_rgb) # (bs, 512, 44, 44)
292 |
293 | # ---- block_3 ----
294 | x3 = self.resnet.layer3_rgb(x2)
295 | y3 = self.resnet.layer3_flow(y2)
296 | m3 = self.resnet.layer3(m2)
297 |
298 | atten_rgb = self.atten_rgb_3(x3)
299 | atten_flow = self.atten_flow_3(y3)
300 | m3 = m3 + x3.mul(atten_flow) + y3.mul(atten_rgb)
301 |
302 | # ---- block_4 ----
303 | x4 = self.resnet.layer4_rgb(x3)
304 | y4 = self.resnet.layer4_flow(y3)
305 | m4 = self.resnet.layer4(m3)
306 |
307 | atten_rgb = self.atten_rgb_4(x4)
308 | atten_flow = self.atten_flow_4(y4)
309 | m4 = m4 + x4.mul(atten_flow) + y4.mul(atten_rgb)
310 |
311 | # ---- feature abstraction ----
312 | x_s1 = self.reduce_a1(m1)
313 | x_s2 = self.reduce_a2(m2)
314 | x_s3 = self.reduce_a3(m3)
315 | x_s4 = self.reduce_a4(m4)
316 |
317 | x_e1 = self.reduce_m1(y1)
318 | x_e2 = self.reduce_m2(y2)
319 | x_e3 = self.reduce_m3(y3)
320 | x_e4 = self.reduce_m4(y4)
321 |
322 | # ---- four bi- refinement units ----
323 | x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4 = self.bpm1(x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4)
324 | x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4 = self.bpm2(x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4)
325 | x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4 = self.bpm3(x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4)
326 | x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4 = self.bpm4(x_s1, x_s2, x_s3, x_s4, x_e1, x_e2, x_e3, x_e4)
327 |
328 | # ---- feature aggregation using naive u-net ----
329 | pred_s = self.output_s(x_s1, x_s2, x_s3, x_s4)
330 | pred_e = self.output_e(x_e1, x_e2, x_e3, x_e4)
331 |
332 | pred_s = F.upsample(pred_s, size=size, mode='bilinear', align_corners=True)
333 | pred_e = F.upsample(pred_e, size=size, mode='bilinear', align_corners=True)
334 |
335 | return pred_s, pred_e
336 |
337 | def channel_attention(self, num_channel, ablation=False):
338 | # todo add convolution here
339 | pool = nn.AdaptiveAvgPool2d(1)
340 | conv = nn.Conv2d(num_channel, num_channel, kernel_size=1)
341 |
342 | activation = nn.Sigmoid() # todo: modify the activation function
343 |
344 | return nn.Sequential(*[pool, conv, activation])
345 |
346 | def initialize_weights(self):
347 | res50 = models.resnet50(pretrained=True)
348 | pretrained_dict = res50.state_dict()
349 | all_params = {}
350 | for k, v in self.resnet.state_dict().items():
351 | if k in pretrained_dict.keys():
352 | v = pretrained_dict[k]
353 | all_params[k] = v
354 | elif '_flow' in k:
355 | name = k.split('_flow')[0] + k.split('_flow')[1]
356 | v = pretrained_dict[name]
357 | all_params[k] = v
358 | elif '_rgb' in k:
359 | name = k.split('_rgb')[0] + k.split('_rgb')[1]
360 | v = pretrained_dict[name]
361 | all_params[k] = v
362 |
363 | assert len(all_params.keys()) == len(self.resnet.state_dict().keys())
364 | self.resnet.load_state_dict(all_params)
--------------------------------------------------------------------------------
/lib/resnets.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | import math
3 |
4 |
5 | def conv3x3(in_planes, out_planes, stride=1):
6 | """3x3 convolution with padding"""
7 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
8 | padding=1, bias=False)
9 |
10 |
11 | class BasicBlock(nn.Module):
12 | expansion = 1
13 |
14 | def __init__(self, inplanes, planes, stride=1, downsample=None):
15 | super(BasicBlock, self).__init__()
16 | self.conv1 = conv3x3(inplanes, planes, stride)
17 | self.bn1 = nn.BatchNorm2d(planes)
18 | self.relu = nn.ReLU(inplace=True)
19 | self.conv2 = conv3x3(planes, planes)
20 | self.bn2 = nn.BatchNorm2d(planes)
21 | self.downsample = downsample
22 | self.stride = stride
23 |
24 | def forward(self, x):
25 | residual = x
26 |
27 | out = self.conv1(x)
28 | out = self.bn1(out)
29 | out = self.relu(out)
30 |
31 | out = self.conv2(out)
32 | out = self.bn2(out)
33 |
34 | if self.downsample is not None:
35 | residual = self.downsample(x)
36 |
37 | out += residual
38 | out = self.relu(out)
39 |
40 | return out
41 |
42 |
43 | class Bottleneck(nn.Module):
44 | expansion = 4
45 |
46 | def __init__(self, inplanes, planes, stride=1, downsample=None):
47 | super(Bottleneck, self).__init__()
48 | self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
49 | self.bn1 = nn.BatchNorm2d(planes)
50 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
51 | padding=1, bias=False)
52 | self.bn2 = nn.BatchNorm2d(planes)
53 | self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
54 | self.bn3 = nn.BatchNorm2d(planes * 4)
55 | self.relu = nn.ReLU(inplace=True)
56 | self.downsample = downsample
57 | self.stride = stride
58 |
59 | def forward(self, x):
60 | residual = x
61 |
62 | out = self.conv1(x)
63 | out = self.bn1(out)
64 | out = self.relu(out)
65 |
66 | out = self.conv2(out)
67 | out = self.bn2(out)
68 | out = self.relu(out)
69 |
70 | out = self.conv3(out)
71 | out = self.bn3(out)
72 |
73 | if self.downsample is not None:
74 | residual = self.downsample(x)
75 |
76 | out += residual
77 | out = self.relu(out)
78 |
79 | return out
80 |
81 |
82 | class ResNet50(nn.Module):
83 | # ResNet (modified)
84 | def __init__(self):
85 | super(ResNet50, self).__init__()
86 | # ---- rgb ----
87 | self.inplanes = 64
88 | self.conv1_rgb = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
89 | self.bn1_rgb = nn.BatchNorm2d(64)
90 | self.relu_rgb = nn.ReLU(inplace=True)
91 | self.maxpool_rgb = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
92 | self.layer1_rgb = self._make_layer(Bottleneck, 64, 3)
93 | self.layer2_rgb = self._make_layer(Bottleneck, 128, 4, stride=2)
94 | self.layer3_rgb = self._make_layer(Bottleneck, 256, 6, stride=2)
95 | self.layer4_rgb = self._make_layer(Bottleneck, 512, 3, stride=2)
96 | # ---- flow ---
97 | self.inplanes = 64
98 | self.conv1_flow = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
99 | self.bn1_flow = nn.BatchNorm2d(64)
100 | self.relu_flow = nn.ReLU(inplace=True)
101 | self.maxpool_flow = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
102 | self.layer1_flow = self._make_layer(Bottleneck, 64, 3)
103 | self.layer2_flow = self._make_layer(Bottleneck, 128, 4, stride=2)
104 | self.layer3_flow = self._make_layer(Bottleneck, 256, 6, stride=2)
105 | self.layer4_flow = self._make_layer(Bottleneck, 512, 3, stride=2)
106 | # ---- merge ----
107 | self.inplanes = 64
108 | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
109 | self.bn1 = nn.BatchNorm2d(64)
110 | self.relu = nn.ReLU(inplace=True)
111 | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
112 | self.layer1 = self._make_layer(Bottleneck, 64, 3)
113 | self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2)
114 | self.layer3 = self._make_layer(Bottleneck, 256, 6, stride=2)
115 | self.layer4 = self._make_layer(Bottleneck, 512, 3, stride=2)
116 |
117 | for m in self.modules():
118 | if isinstance(m, nn.Conv2d):
119 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
120 | m.weight.data.normal_(0, math.sqrt(2. / n))
121 | elif isinstance(m, nn.BatchNorm2d):
122 | m.weight.data.fill_(1)
123 | m.bias.data.zero_()
124 |
125 | def _make_layer(self, block, planes, blocks, stride=1):
126 | downsample = None
127 | if stride != 1 or self.inplanes != planes * block.expansion:
128 | downsample = nn.Sequential(
129 | nn.Conv2d(self.inplanes, planes * block.expansion,
130 | kernel_size=1, stride=stride, bias=False),
131 | nn.BatchNorm2d(planes * block.expansion),
132 | )
133 |
134 | layers = []
135 | layers.append(block(self.inplanes, planes, stride, downsample))
136 | self.inplanes = planes * block.expansion
137 | for i in range(1, blocks):
138 | layers.append(block(self.inplanes, planes))
139 |
140 | return nn.Sequential(*layers)
141 |
142 | def forward(self, x):
143 | x = self.conv1(x) # 1/2
144 | x = self.bn1(x)
145 | x = self.relu(x)
146 | x = self.maxpool(x) # 1/4
147 |
148 | x = self.layer1(x)
149 | x = self.layer2(x) # 1/8
150 | x = self.layer3(x) # 1/ 16
151 | x = self.layer4(x) # 1/32
152 |
153 | return x
--------------------------------------------------------------------------------
/snapshot/FSNet/snapshot.pth:
--------------------------------------------------------------------------------
1 | please download the pre-trained snapshot!
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch.optim import lr_scheduler
4 | from torch.autograd import Variable
5 | import os
6 | import argparse
7 | from datetime import datetime
8 | from utils.dataloader import get_train_loader
9 | from utils.func import AvgMeter, update_predict
10 | from lib.fsnet import FSNet
11 |
12 |
13 | def main():
14 | parser = argparse.ArgumentParser()
15 | parser.add_argument('--epoch', type=int, default=20, help='epoch number')
16 | parser.add_argument('--lr', type=float, default=2e-3, help='learning rate')
17 | parser.add_argument('--batchsize', type=int, default=16, help='batch size')
18 | parser.add_argument('--trainsize', type=int, default=352, help='input size')
19 | parser.add_argument('--trainset', type=str, default='FSNet')
20 | parser.add_argument('--train_type', type=str, default='finetune', help='finetune or pretrain_rgb or pretrain_flow')
21 | opt = parser.parse_args()
22 |
23 | # build models
24 | model = FSNet().cuda()
25 |
26 | if opt.train_type == 'finetune':
27 | save_path = '../snapshot/{}/'.format(opt.trainset)
28 | # ---- data preparing ----
29 | src_dir = './dataset/TrainSet_Video'
30 | image_root = src_dir + '/Imgs/'
31 | flow_root = src_dir + '/Flow/'
32 | gt_root = src_dir + '/ground-truth/'
33 |
34 | train_loader = get_train_loader(image_root=image_root, flow_root=flow_root, gt_root=gt_root,
35 | batchsize=opt.batchsize, trainsize=opt.trainsize, shuffle=True,
36 | num_workers=4, pin_memory=True)
37 | total_step = len(train_loader)
38 | #
39 | update_predict(model)
40 | elif opt.train_type == 'pretrain_rgb':
41 | save_path = '../snapshot/{}_rgb/'.format(opt.trainset)
42 | # ---- data preparing ----
43 | src_dir = './data/TrainSet_StaticAndVideo'
44 | image_root = src_dir + '/Imgs/'
45 | gt_root = src_dir + '/GTs/'
46 |
47 | train_loader = get_train_loader(image_root=image_root, flow_root=image_root, gt_root=gt_root,
48 | batchsize=opt.batchsize, trainsize=opt.trainsize, shuffle=True,
49 | num_workers=4, pin_memory=True)
50 | total_step = len(train_loader)
51 | elif opt.train_type == 'pretrain_flow':
52 | save_path = '../snapshot/{}_flow/'.format(opt.trainset)
53 | # ---- data preparing ----
54 | src_dir = './dataset/TrainSet_Video'
55 | flow_root = src_dir + '/Flow/'
56 | gt_root = src_dir + '/ground-truth/'
57 |
58 | train_loader = get_train_loader(image_root=flow_root, flow_root=flow_root, gt_root=gt_root,
59 | batchsize=opt.batchsize, trainsize=opt.trainsize, shuffle=True,
60 | num_workers=4, pin_memory=True)
61 | total_step = len(train_loader)
62 | else:
63 | raise AttributeError('No train_type: {}'.format(opt.train_type))
64 |
65 | # ---- parallel model ----
66 | model = torch.nn.DataParallel(model, device_ids=[0, 1])
67 |
68 | params = model.parameters()
69 | optimizer = torch.optim.SGD(params, opt.lr, momentum=0.9, weight_decay=5e-4)
70 | scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
71 | BCE = torch.nn.BCEWithLogitsLoss()
72 |
73 | # ---- multi-scale training ----
74 | size_rates = [0.75, 1, 1.25]
75 |
76 | # training
77 | for epoch in range(0, opt.epoch):
78 | scheduler.step()
79 | model.train()
80 | loss_record1, loss_record2 = AvgMeter(), AvgMeter()
81 |
82 | for i, pack in enumerate(train_loader, start=1):
83 | for rate in size_rates:
84 | optimizer.zero_grad()
85 | # ---- get data ----
86 | images, flows, gts = pack
87 | images = Variable(images).cuda()
88 | flows = Variable(flows).cuda()
89 | gts = Variable(gts).cuda()
90 | # ---- multi-scale training ----
91 | trainsize = int(round(opt.trainsize*rate/32)*32)
92 | if rate != 1:
93 | images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
94 | flows = F.upsample(flows, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
95 | gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
96 | # ---- forward ----
97 | preds = model(images, flows)
98 | # ---- cal loss ----
99 | loss1 = BCE(preds[0], gts)
100 | loss2 = BCE(preds[1], gts)
101 | loss = loss1 + loss2
102 | # ---- backward ----
103 | loss.backward()
104 | optimizer.step()
105 | # ---- show loss ----
106 | if rate == 1:
107 | loss_record1.update(loss1.data, opt.batchsize)
108 | loss_record2.update(loss2.data, opt.batchsize)
109 | if i % 25 == 0 or i == total_step:
110 | print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss1: {:.4f}, Loss2: {:.4f}'.
111 | format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record1.show(), loss_record2.show()))
112 |
113 | os.makedirs(save_path, exist_ok=True)
114 | if epoch > 15:
115 | if (epoch+1) % 1 == 0:
116 | torch.save(model.state_dict(), save_path + opt.trainset + '-{}epoch.pth'.format(epoch))
117 | print('[Model Saved] Path: {}'.format(save_path + opt.trainset + '-{}epoch.pth'.format(epoch)))
118 |
119 |
120 | if __name__ == '__main__':
121 | main()
122 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/utils/dataloader.py:
--------------------------------------------------------------------------------
1 | import os, glob, random
2 | from PIL import Image
3 | import torch.utils.data as data
4 | import torchvision.transforms as transforms
5 |
6 |
7 | class VideoObjDataset(data.Dataset):
8 | def __init__(self, image_root, flow_root, gt_root, trainsize):
9 | self.trainsize = trainsize
10 | self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg')]
11 | self.flows = [flow_root + f for f in os.listdir(flow_root) if f.endswith('.jpg')]
12 | self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.png')]
13 |
14 | self.images = sorted(self.images)
15 | self.flows = sorted(self.flows)
16 | self.gts = sorted(self.gts)
17 |
18 | self.size = len(self.images)
19 |
20 | self.img_transform = transforms.Compose([
21 | transforms.Resize((self.trainsize, self.trainsize)),
22 | transforms.ToTensor(),
23 | transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
24 | self.gt_transform = transforms.Compose([
25 | transforms.Resize((self.trainsize, self.trainsize)),
26 | transforms.ToTensor()])
27 |
28 | def __getitem__(self, index):
29 | image = self.rgb_loader(self.images[index])
30 | flow = self.rgb_loader(self.flows[index])
31 | gt = self.binary_loader(self.gts[index])
32 |
33 | image = self.img_transform(image)
34 | flow = self.img_transform(flow)
35 | gt = self.gt_transform(gt)
36 |
37 | return image, flow, gt
38 |
39 | def rgb_loader(self, path):
40 | with open(path, 'rb') as f:
41 | img = Image.open(f)
42 | return img.convert('RGB')
43 |
44 | def binary_loader(self, path):
45 | with open(path, 'rb') as f:
46 | img = Image.open(f)
47 | return img.convert('L')
48 |
49 | def __len__(self):
50 | return self.size
51 |
52 |
53 | def get_train_loader(image_root, flow_root, gt_root, batchsize, trainsize,
54 | shuffle=True, num_workers=12, pin_memory=True):
55 |
56 | dataset = VideoObjDataset(image_root, flow_root, gt_root, trainsize)
57 | data_loader = data.DataLoader(dataset=dataset,
58 | batch_size=batchsize,
59 | shuffle=shuffle,
60 | num_workers=num_workers,
61 | pin_memory=pin_memory)
62 | return data_loader
63 |
64 |
65 | class test_loader(data.Dataset):
66 | def __init__(self, test_root, testsize):
67 | self.testsize = testsize
68 | self.images, self.flows = [], []
69 |
70 | for seqName in os.listdir(test_root):
71 | seqImage = os.path.join(test_root, seqName, 'Frame')
72 | seqFlow = os.path.join(test_root, seqName, 'OF_FlowNet2')
73 | self.images += sorted([seqImage + '/' + f for f in os.listdir(seqImage) if f.endswith('.jpg')])[:-1]
74 | self.flows += sorted([seqFlow + "/" + f for f in os.listdir(seqFlow) if f.endswith('.jpg')])
75 | assert len(self.images) == len(self.flows)
76 |
77 | self.transform = transforms.Compose([
78 | transforms.Resize((self.testsize, self.testsize)),
79 | transforms.ToTensor(),
80 | transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
81 |
82 | self.size = len(self.images)
83 |
84 | def __getitem__(self, index):
85 | assert self.images[index].split('/')[-1] == self.flows[index].split('/')[-1]
86 | images = self.rgb_loader(self.images[index])
87 | flows = self.rgb_loader(self.flows[index])
88 |
89 | images = self.transform(images)
90 | flows = self.transform(flows)
91 |
92 | img_path_list = self.images[index]
93 |
94 | return images, flows, img_path_list
95 |
96 | def rgb_loader(self, path):
97 | with open(path, 'rb') as f:
98 | img = Image.open(f)
99 | return img.convert('RGB')
100 |
101 | def binary_loader(self, path):
102 | with open(path, 'rb') as f:
103 | img = Image.open(f)
104 | return img.convert('L')
105 |
106 | def __len__(self):
107 | return self.size
108 |
109 |
110 | def get_test_loader(test_root, batchsize, trainsize, shuffle=False, num_workers=12, pin_memory=True):
111 |
112 | dataset = test_loader(test_root, trainsize)
113 | dataset_size = dataset.size
114 |
115 | data_loader = data.DataLoader(dataset=dataset,
116 | batch_size=batchsize,
117 | shuffle=shuffle,
118 | num_workers=num_workers,
119 | pin_memory=pin_memory)
120 | return data_loader, dataset_size
--------------------------------------------------------------------------------
/utils/func.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.autograd import Variable
3 | import numpy as np
4 |
5 | fx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).astype(np.float32)
6 | fy = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]).astype(np.float32)
7 | fx = np.reshape(fx, (1, 1, 3, 3))
8 | fy = np.reshape(fy, (1, 1, 3, 3))
9 | fx = Variable(torch.from_numpy(fx)).cuda()
10 | fy = Variable(torch.from_numpy(fy)).cuda()
11 | contour_th = 1.5
12 |
13 |
14 | class AvgMeter(object):
15 | def __init__(self, num=40):
16 | self.num = num
17 | self.reset()
18 |
19 | def reset(self):
20 | self.val = 0
21 | self.avg = 0
22 | self.sum = 0
23 | self.count = 0
24 | self.losses = []
25 |
26 | def update(self, val, n=1):
27 | self.val = val
28 | self.sum += val * n
29 | self.count += n
30 | self.avg = self.sum / self.count
31 | self.losses.append(val)
32 |
33 | def show(self):
34 | return torch.mean(torch.stack(self.losses[np.maximum(len(self.losses)-self.num, 0):]))
35 |
36 |
37 | def update_predict(model):
38 | # load pretrained model (rgb+interaction modules)
39 | # ---- copy model-a to model-b ----
40 | model_dict = model.state_dict() # copy base models to the object models
41 | state_dict = torch.load('../snapshot/FSNet/2021-ICCV-FSNet_rgb-20epoch-new.pth') #
42 | # ---- for checking state_dict ----
43 | # for k, v in state_dict.items():
44 | # print(k, ':', v.min(), v.max())
45 | new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items() if k.replace('module.', '') in model_dict}
46 | model_dict.update(new_state_dict)
47 | model.load_state_dict(model_dict)
48 |
49 | # load pretrained model (flow)
50 | # ---- copy model-a to model-b ----
51 | model_dict = model.state_dict() # copy base models to the object models
52 | state_dict = torch.load('../snapshot/FSNet/2021-ICCV-FSNet_flow-20epoch-new.pth') #
53 | # new_state_dict = {k: v for k, v in state_dict.items() if k in model_dict}
54 | load_keyword_list = ['resnet.conv1_flow', 'resnet.bn1_flow', 'resnet.layer1_flow', 'resnet.layer2_flow',
55 | 'resnet.layer3_flow', 'resnet.layer4_flow']
56 | for keyword in load_keyword_list:
57 | for k, v in state_dict.items():
58 | if 'running_mean' not in k and 'running_var' not in k:
59 | if keyword in k:
60 | model_dict[k] = v
61 | print('[Checking] load flow branch -> key-name: {}'.format(k))
62 | # model_dict.update(new_state_dict)
63 | model.load_state_dict(model_dict)
--------------------------------------------------------------------------------