├── GRPulidFlux.py
├── LICENSE
├── README.md
├── __init__.py
├── encoders_flux.py
├── eva_clip
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-312.pyc
│ ├── constants.cpython-312.pyc
│ ├── eva_vit_model.cpython-312.pyc
│ ├── factory.cpython-312.pyc
│ ├── hf_configs.cpython-312.pyc
│ ├── hf_model.cpython-312.pyc
│ ├── loss.cpython-312.pyc
│ ├── model.cpython-312.pyc
│ ├── modified_resnet.cpython-312.pyc
│ ├── openai.cpython-312.pyc
│ ├── pretrained.cpython-312.pyc
│ ├── rope.cpython-312.pyc
│ ├── timm_model.cpython-312.pyc
│ ├── tokenizer.cpython-312.pyc
│ ├── transform.cpython-312.pyc
│ ├── transformer.cpython-312.pyc
│ └── utils.cpython-312.pyc
├── bpe_simple_vocab_16e6.txt.gz
├── constants.py
├── eva_vit_model.py
├── factory.py
├── hf_configs.py
├── hf_model.py
├── loss.py
├── model.py
├── model_configs
│ ├── EVA01-CLIP-B-16.json
│ ├── EVA01-CLIP-g-14-plus.json
│ ├── EVA01-CLIP-g-14.json
│ ├── EVA02-CLIP-B-16.json
│ ├── EVA02-CLIP-L-14-336.json
│ ├── EVA02-CLIP-L-14.json
│ ├── EVA02-CLIP-bigE-14-plus.json
│ └── EVA02-CLIP-bigE-14.json
├── modified_resnet.py
├── openai.py
├── pretrained.py
├── rope.py
├── timm_model.py
├── tokenizer.py
├── transform.py
├── transformer.py
└── utils.py
├── examples
└── flux pulid enhanced center_face.json
├── face_restoration_helper.py
├── online_train1.py
├── online_train2.py
├── pyproject.toml
└── requirements.txt
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ### update Jan.09 2025
2 | Due to multiple issues, this repo has been renamed and moved
3 |
4 | Should no longer cause conflicts with existing versions
5 |
6 | Added cleanup and destruction codes to free up resources
7 |
8 | ### update Jan.07 2025
9 | ###
10 | face_select has two new options
11 |
12 | smallest_face and most_prominent
13 |
14 | they do what the names suggest
15 |
16 | ### update Jan.01 2025
17 | #### face number
18 | if face_select option is set to normal
19 |
20 | you can now select different faces from an image, this applies when you have a single image with multiple faces in it, like a group photo
21 |
22 | #### center_face and largest_face
23 |
24 | changed the default to not select center face, this will need selecting normal in the face_select option
25 |
26 | you can also select largest face in the picture by selecting largest_face
27 |
28 | if normal is selected in face_select, you can use the blur settings to ignore blurred faces (this only applies to batches of faces)
29 |
30 | normal usually selects the face to the far right of the image, but don't count on that to happen, did not delve into the mathematics of what gets chosen
31 |
32 | 
33 |
34 | # Installation:
35 | Goto your custom_nodes folder and type the following in terminal/command prompt:
36 |
37 | git clone https://github.com/GraftingRayman/ComfyUI-PuLID-Flux-GR
38 |
39 | Then install the requirements by entering the following in terminal/command prompt:
40 |
41 | pip install -r requirements.txt
42 |
43 | If you are using a portable version of ComfyUI, you need to run the following in terminal/command prompt:
44 |
45 | h:\ComfyUI_windows_portable\ComfyUI\python_embeded\python.exe -m pip install -r h:\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI-PuLID-Flux-GR\requirements.txt
46 |
47 | You will need to fix the path in the above command to match the location of your ComfyUI
48 |
49 |
50 |
51 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 | from .GRPulidFlux import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
2 |
3 | __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
4 |
--------------------------------------------------------------------------------
/encoders_flux.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | import torch
4 | import torch.nn as nn
5 |
6 |
7 | # FFN
8 | def FeedForward(dim, mult=4):
9 | inner_dim = int(dim * mult)
10 | return nn.Sequential(
11 | nn.LayerNorm(dim),
12 | nn.Linear(dim, inner_dim, bias=False),
13 | nn.GELU(),
14 | nn.Linear(inner_dim, dim, bias=False),
15 | )
16 |
17 |
18 | def reshape_tensor(x, heads):
19 | bs, length, width = x.shape
20 | # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
21 | x = x.view(bs, length, heads, -1)
22 | # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
23 | x = x.transpose(1, 2)
24 | # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
25 | x = x.reshape(bs, heads, length, -1)
26 | return x
27 |
28 |
29 | class PerceiverAttentionCA(nn.Module):
30 | def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
31 | super().__init__()
32 | self.scale = dim_head ** -0.5
33 | self.dim_head = dim_head
34 | self.heads = heads
35 | inner_dim = dim_head * heads
36 |
37 | self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
38 | self.norm2 = nn.LayerNorm(dim)
39 |
40 | self.to_q = nn.Linear(dim, inner_dim, bias=False)
41 | self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
42 | self.to_out = nn.Linear(inner_dim, dim, bias=False)
43 |
44 | def forward(self, x, latents):
45 | """
46 | Args:
47 | x (torch.Tensor): image features
48 | shape (b, n1, D)
49 | latent (torch.Tensor): latent features
50 | shape (b, n2, D)
51 | """
52 | x = self.norm1(x)
53 | latents = self.norm2(latents)
54 |
55 | b, seq_len, _ = latents.shape
56 |
57 | q = self.to_q(latents)
58 | k, v = self.to_kv(x).chunk(2, dim=-1)
59 |
60 | q = reshape_tensor(q, self.heads)
61 | k = reshape_tensor(k, self.heads)
62 | v = reshape_tensor(v, self.heads)
63 |
64 | # attention
65 | scale = 1 / math.sqrt(math.sqrt(self.dim_head))
66 | weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
67 | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
68 | out = weight @ v
69 |
70 | out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
71 |
72 | return self.to_out(out)
73 |
74 |
75 | class PerceiverAttention(nn.Module):
76 | def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
77 | super().__init__()
78 | self.scale = dim_head ** -0.5
79 | self.dim_head = dim_head
80 | self.heads = heads
81 | inner_dim = dim_head * heads
82 |
83 | self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
84 | self.norm2 = nn.LayerNorm(dim)
85 |
86 | self.to_q = nn.Linear(dim, inner_dim, bias=False)
87 | self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
88 | self.to_out = nn.Linear(inner_dim, dim, bias=False)
89 |
90 | def forward(self, x, latents):
91 | """
92 | Args:
93 | x (torch.Tensor): image features
94 | shape (b, n1, D)
95 | latent (torch.Tensor): latent features
96 | shape (b, n2, D)
97 | """
98 | x = self.norm1(x)
99 | latents = self.norm2(latents)
100 |
101 | b, seq_len, _ = latents.shape
102 |
103 | q = self.to_q(latents)
104 | kv_input = torch.cat((x, latents), dim=-2)
105 | k, v = self.to_kv(kv_input).chunk(2, dim=-1)
106 |
107 | q = reshape_tensor(q, self.heads)
108 | k = reshape_tensor(k, self.heads)
109 | v = reshape_tensor(v, self.heads)
110 |
111 | # attention
112 | scale = 1 / math.sqrt(math.sqrt(self.dim_head))
113 | weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
114 | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
115 | out = weight @ v
116 |
117 | out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
118 |
119 | return self.to_out(out)
120 |
121 |
122 | class IDFormer(nn.Module):
123 | """
124 | - perceiver resampler like arch (compared with previous MLP-like arch)
125 | - we concat id embedding (generated by arcface) and query tokens as latents
126 | - latents will attend each other and interact with vit features through cross-attention
127 | - vit features are multi-scaled and inserted into IDFormer in order, currently, each scale corresponds to two
128 | IDFormer layers
129 | """
130 | def __init__(
131 | self,
132 | dim=1024,
133 | depth=10,
134 | dim_head=64,
135 | heads=16,
136 | num_id_token=5,
137 | num_queries=32,
138 | output_dim=2048,
139 | ff_mult=4,
140 | ):
141 | super().__init__()
142 |
143 | self.num_id_token = num_id_token
144 | self.dim = dim
145 | self.num_queries = num_queries
146 | assert depth % 5 == 0
147 | self.depth = depth // 5
148 | scale = dim ** -0.5
149 |
150 | self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
151 | self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))
152 |
153 | self.layers = nn.ModuleList([])
154 | for _ in range(depth):
155 | self.layers.append(
156 | nn.ModuleList(
157 | [
158 | PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
159 | FeedForward(dim=dim, mult=ff_mult),
160 | ]
161 | )
162 | )
163 |
164 | for i in range(5):
165 | setattr(
166 | self,
167 | f'mapping_{i}',
168 | nn.Sequential(
169 | nn.Linear(1024, 1024),
170 | nn.LayerNorm(1024),
171 | nn.LeakyReLU(),
172 | nn.Linear(1024, 1024),
173 | nn.LayerNorm(1024),
174 | nn.LeakyReLU(),
175 | nn.Linear(1024, dim),
176 | ),
177 | )
178 |
179 | self.id_embedding_mapping = nn.Sequential(
180 | nn.Linear(1280, 1024),
181 | nn.LayerNorm(1024),
182 | nn.LeakyReLU(),
183 | nn.Linear(1024, 1024),
184 | nn.LayerNorm(1024),
185 | nn.LeakyReLU(),
186 | nn.Linear(1024, dim * num_id_token),
187 | )
188 |
189 | def forward(self, x, y):
190 |
191 | latents = self.latents.repeat(x.size(0), 1, 1)
192 |
193 | x = self.id_embedding_mapping(x)
194 | x = x.reshape(-1, self.num_id_token, self.dim)
195 |
196 | latents = torch.cat((latents, x), dim=1)
197 |
198 | for i in range(5):
199 | vit_feature = getattr(self, f'mapping_{i}')(y[i])
200 | ctx_feature = torch.cat((x, vit_feature), dim=1)
201 | for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]:
202 | latents = attn(ctx_feature, latents) + latents
203 | latents = ff(latents) + latents
204 |
205 | latents = latents[:, :self.num_queries]
206 | latents = latents @ self.proj_out
207 | return latents
208 |
--------------------------------------------------------------------------------
/eva_clip/__init__.py:
--------------------------------------------------------------------------------
1 | from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
2 | from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms
3 | from .factory import list_models, add_model_config, get_model_config, load_checkpoint
4 | from .loss import ClipLoss
5 | from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
6 | convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
7 | from .openai import load_openai_model, list_openai_models
8 | from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
9 | get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
10 | from .tokenizer import SimpleTokenizer, tokenize
11 | from .transform import image_transform
--------------------------------------------------------------------------------
/eva_clip/__pycache__/__init__.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/__init__.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/constants.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/constants.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/eva_vit_model.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/eva_vit_model.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/factory.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/factory.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/hf_configs.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/hf_configs.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/hf_model.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/hf_model.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/loss.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/loss.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/model.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/model.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/modified_resnet.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/modified_resnet.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/openai.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/openai.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/pretrained.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/pretrained.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/rope.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/rope.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/timm_model.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/timm_model.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/tokenizer.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/tokenizer.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/transform.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/transform.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/transformer.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/transformer.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/__pycache__/utils.cpython-312.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/__pycache__/utils.cpython-312.pyc
--------------------------------------------------------------------------------
/eva_clip/bpe_simple_vocab_16e6.txt.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/GraftingRayman/ComfyUI-PuLID-Flux-GR/ada7a7257a824fd696bd8459489b8b35dc302ac5/eva_clip/bpe_simple_vocab_16e6.txt.gz
--------------------------------------------------------------------------------
/eva_clip/constants.py:
--------------------------------------------------------------------------------
1 | OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
2 | OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
3 |
--------------------------------------------------------------------------------
/eva_clip/eva_vit_model.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Adapted from https://github.com/microsoft/unilm/tree/master/beit
3 | # --------------------------------------------------------
4 | import math
5 | import os
6 | from functools import partial
7 | import torch
8 | import torch.nn as nn
9 | import torch.nn.functional as F
10 | try:
11 | from timm.models.layers import drop_path, to_2tuple, trunc_normal_
12 | except:
13 | from timm.layers import drop_path, to_2tuple, trunc_normal_
14 |
15 | from .transformer import PatchDropout
16 | from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
17 |
18 | if os.getenv('ENV_TYPE') == 'deepspeed':
19 | try:
20 | from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
21 | except:
22 | from torch.utils.checkpoint import checkpoint
23 | else:
24 | from torch.utils.checkpoint import checkpoint
25 |
26 | try:
27 | import xformers
28 | import xformers.ops as xops
29 | XFORMERS_IS_AVAILBLE = True
30 | except:
31 | XFORMERS_IS_AVAILBLE = False
32 |
33 | class DropPath(nn.Module):
34 | """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
35 | """
36 | def __init__(self, drop_prob=None):
37 | super(DropPath, self).__init__()
38 | self.drop_prob = drop_prob
39 |
40 | def forward(self, x):
41 | return drop_path(x, self.drop_prob, self.training)
42 |
43 | def extra_repr(self) -> str:
44 | return 'p={}'.format(self.drop_prob)
45 |
46 |
47 | class Mlp(nn.Module):
48 | def __init__(
49 | self,
50 | in_features,
51 | hidden_features=None,
52 | out_features=None,
53 | act_layer=nn.GELU,
54 | norm_layer=nn.LayerNorm,
55 | drop=0.,
56 | subln=False,
57 |
58 | ):
59 | super().__init__()
60 | out_features = out_features or in_features
61 | hidden_features = hidden_features or in_features
62 | self.fc1 = nn.Linear(in_features, hidden_features)
63 | self.act = act_layer()
64 |
65 | self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
66 |
67 | self.fc2 = nn.Linear(hidden_features, out_features)
68 | self.drop = nn.Dropout(drop)
69 |
70 | def forward(self, x):
71 | x = self.fc1(x)
72 | x = self.act(x)
73 | # x = self.drop(x)
74 | # commit this for the orignal BERT implement
75 | x = self.ffn_ln(x)
76 |
77 | x = self.fc2(x)
78 | x = self.drop(x)
79 | return x
80 |
81 | class SwiGLU(nn.Module):
82 | def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
83 | norm_layer=nn.LayerNorm, subln=False):
84 | super().__init__()
85 | out_features = out_features or in_features
86 | hidden_features = hidden_features or in_features
87 |
88 | self.w1 = nn.Linear(in_features, hidden_features)
89 | self.w2 = nn.Linear(in_features, hidden_features)
90 |
91 | self.act = act_layer()
92 | self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
93 | self.w3 = nn.Linear(hidden_features, out_features)
94 |
95 | self.drop = nn.Dropout(drop)
96 |
97 | def forward(self, x):
98 | x1 = self.w1(x)
99 | x2 = self.w2(x)
100 | hidden = self.act(x1) * x2
101 | x = self.ffn_ln(hidden)
102 | x = self.w3(x)
103 | x = self.drop(x)
104 | return x
105 |
106 | class Attention(nn.Module):
107 | def __init__(
108 | self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
109 | proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
110 | super().__init__()
111 | self.num_heads = num_heads
112 | head_dim = dim // num_heads
113 | if attn_head_dim is not None:
114 | head_dim = attn_head_dim
115 | all_head_dim = head_dim * self.num_heads
116 | self.scale = qk_scale or head_dim ** -0.5
117 |
118 | self.subln = subln
119 | if self.subln:
120 | self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
121 | self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
122 | self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
123 | else:
124 | self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
125 |
126 | if qkv_bias:
127 | self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
128 | self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
129 | else:
130 | self.q_bias = None
131 | self.v_bias = None
132 |
133 | if window_size:
134 | self.window_size = window_size
135 | self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
136 | self.relative_position_bias_table = nn.Parameter(
137 | torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
138 | # cls to token & token 2 cls & cls to cls
139 |
140 | # get pair-wise relative position index for each token inside the window
141 | coords_h = torch.arange(window_size[0])
142 | coords_w = torch.arange(window_size[1])
143 | coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
144 | coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
145 | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
146 | relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
147 | relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
148 | relative_coords[:, :, 1] += window_size[1] - 1
149 | relative_coords[:, :, 0] *= 2 * window_size[1] - 1
150 | relative_position_index = \
151 | torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
152 | relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
153 | relative_position_index[0, 0:] = self.num_relative_distance - 3
154 | relative_position_index[0:, 0] = self.num_relative_distance - 2
155 | relative_position_index[0, 0] = self.num_relative_distance - 1
156 |
157 | self.register_buffer("relative_position_index", relative_position_index)
158 | else:
159 | self.window_size = None
160 | self.relative_position_bias_table = None
161 | self.relative_position_index = None
162 |
163 | self.attn_drop = nn.Dropout(attn_drop)
164 | self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
165 | # self.proj = nn.Linear(all_head_dim, all_head_dim)
166 | self.proj = nn.Linear(all_head_dim, dim)
167 | self.proj_drop = nn.Dropout(proj_drop)
168 | self.xattn = xattn
169 | self.xattn_drop = attn_drop
170 |
171 | self.rope = rope
172 |
173 | def forward(self, x, rel_pos_bias=None, attn_mask=None):
174 | B, N, C = x.shape
175 | if self.subln:
176 | q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
177 | k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
178 | v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
179 |
180 | q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
181 | k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
182 | v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
183 | else:
184 |
185 | qkv_bias = None
186 | if self.q_bias is not None:
187 | qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
188 |
189 | qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
190 | qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
191 | q, k, v = qkv[0], qkv[1], qkv[2]
192 |
193 | if self.rope:
194 | # slightly fast impl
195 | q_t = q[:, :, 1:, :]
196 | ro_q_t = self.rope(q_t)
197 | q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
198 |
199 | k_t = k[:, :, 1:, :]
200 | ro_k_t = self.rope(k_t)
201 | k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
202 |
203 | if self.xattn:
204 | q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
205 | k = k.permute(0, 2, 1, 3)
206 | v = v.permute(0, 2, 1, 3)
207 |
208 | x = xops.memory_efficient_attention(
209 | q, k, v,
210 | p=self.xattn_drop,
211 | scale=self.scale,
212 | )
213 | x = x.reshape(B, N, -1)
214 | x = self.inner_attn_ln(x)
215 | x = self.proj(x)
216 | x = self.proj_drop(x)
217 | else:
218 | q = q * self.scale
219 | attn = (q @ k.transpose(-2, -1))
220 |
221 | if self.relative_position_bias_table is not None:
222 | relative_position_bias = \
223 | self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
224 | self.window_size[0] * self.window_size[1] + 1,
225 | self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
226 | relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
227 | attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
228 |
229 | if rel_pos_bias is not None:
230 | attn = attn + rel_pos_bias.type_as(attn)
231 |
232 | if attn_mask is not None:
233 | attn_mask = attn_mask.bool()
234 | attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
235 |
236 | attn = attn.softmax(dim=-1)
237 | attn = self.attn_drop(attn)
238 |
239 | x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
240 | x = self.inner_attn_ln(x)
241 | x = self.proj(x)
242 | x = self.proj_drop(x)
243 | return x
244 |
245 |
246 | class Block(nn.Module):
247 |
248 | def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
249 | drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
250 | window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
251 | subln=False, naiveswiglu=False):
252 | super().__init__()
253 | self.norm1 = norm_layer(dim)
254 | self.attn = Attention(
255 | dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
256 | attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
257 | xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
258 | # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
259 | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
260 | self.norm2 = norm_layer(dim)
261 | mlp_hidden_dim = int(dim * mlp_ratio)
262 |
263 | if naiveswiglu:
264 | self.mlp = SwiGLU(
265 | in_features=dim,
266 | hidden_features=mlp_hidden_dim,
267 | subln=subln,
268 | norm_layer=norm_layer,
269 | )
270 | else:
271 | self.mlp = Mlp(
272 | in_features=dim,
273 | hidden_features=mlp_hidden_dim,
274 | act_layer=act_layer,
275 | subln=subln,
276 | drop=drop
277 | )
278 |
279 | if init_values is not None and init_values > 0:
280 | self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
281 | self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
282 | else:
283 | self.gamma_1, self.gamma_2 = None, None
284 |
285 | self.postnorm = postnorm
286 |
287 | def forward(self, x, rel_pos_bias=None, attn_mask=None):
288 | if self.gamma_1 is None:
289 | if self.postnorm:
290 | x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
291 | x = x + self.drop_path(self.norm2(self.mlp(x)))
292 | else:
293 | x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
294 | x = x + self.drop_path(self.mlp(self.norm2(x)))
295 | else:
296 | if self.postnorm:
297 | x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
298 | x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
299 | else:
300 | x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
301 | x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
302 | return x
303 |
304 |
305 | class PatchEmbed(nn.Module):
306 | """ Image to Patch Embedding
307 | """
308 | def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
309 | super().__init__()
310 | img_size = to_2tuple(img_size)
311 | patch_size = to_2tuple(patch_size)
312 | num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
313 | self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
314 | self.img_size = img_size
315 | self.patch_size = patch_size
316 | self.num_patches = num_patches
317 |
318 | self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
319 |
320 | def forward(self, x, **kwargs):
321 | B, C, H, W = x.shape
322 | # FIXME look at relaxing size constraints
323 | assert H == self.img_size[0] and W == self.img_size[1], \
324 | f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
325 | x = self.proj(x).flatten(2).transpose(1, 2)
326 | return x
327 |
328 |
329 | class RelativePositionBias(nn.Module):
330 |
331 | def __init__(self, window_size, num_heads):
332 | super().__init__()
333 | self.window_size = window_size
334 | self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
335 | self.relative_position_bias_table = nn.Parameter(
336 | torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
337 | # cls to token & token 2 cls & cls to cls
338 |
339 | # get pair-wise relative position index for each token inside the window
340 | coords_h = torch.arange(window_size[0])
341 | coords_w = torch.arange(window_size[1])
342 | coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
343 | coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
344 | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
345 | relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
346 | relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
347 | relative_coords[:, :, 1] += window_size[1] - 1
348 | relative_coords[:, :, 0] *= 2 * window_size[1] - 1
349 | relative_position_index = \
350 | torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
351 | relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
352 | relative_position_index[0, 0:] = self.num_relative_distance - 3
353 | relative_position_index[0:, 0] = self.num_relative_distance - 2
354 | relative_position_index[0, 0] = self.num_relative_distance - 1
355 |
356 | self.register_buffer("relative_position_index", relative_position_index)
357 |
358 | def forward(self):
359 | relative_position_bias = \
360 | self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
361 | self.window_size[0] * self.window_size[1] + 1,
362 | self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
363 | return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
364 |
365 |
366 | class EVAVisionTransformer(nn.Module):
367 | """ Vision Transformer with support for patch or hybrid CNN input stage
368 | """
369 | def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
370 | num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
371 | drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
372 | use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
373 | use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
374 | pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
375 | super().__init__()
376 |
377 | if not XFORMERS_IS_AVAILBLE:
378 | xattn = False
379 |
380 | self.image_size = img_size
381 | self.num_classes = num_classes
382 | self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
383 |
384 | self.patch_embed = PatchEmbed(
385 | img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
386 | num_patches = self.patch_embed.num_patches
387 |
388 | self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
389 | # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
390 | if use_abs_pos_emb:
391 | self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
392 | else:
393 | self.pos_embed = None
394 | self.pos_drop = nn.Dropout(p=drop_rate)
395 |
396 | if use_shared_rel_pos_bias:
397 | self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
398 | else:
399 | self.rel_pos_bias = None
400 |
401 | if rope:
402 | half_head_dim = embed_dim // num_heads // 2
403 | hw_seq_len = img_size // patch_size
404 | self.rope = VisionRotaryEmbeddingFast(
405 | dim=half_head_dim,
406 | pt_seq_len=pt_hw_seq_len,
407 | ft_seq_len=hw_seq_len if intp_freq else None,
408 | # patch_dropout=patch_dropout
409 | )
410 | else:
411 | self.rope = None
412 |
413 | self.naiveswiglu = naiveswiglu
414 |
415 | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
416 | self.use_rel_pos_bias = use_rel_pos_bias
417 | self.blocks = nn.ModuleList([
418 | Block(
419 | dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
420 | drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
421 | init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
422 | xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
423 | for i in range(depth)])
424 | self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
425 | self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
426 | self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
427 |
428 | if self.pos_embed is not None:
429 | trunc_normal_(self.pos_embed, std=.02)
430 |
431 | trunc_normal_(self.cls_token, std=.02)
432 | # trunc_normal_(self.mask_token, std=.02)
433 |
434 | self.apply(self._init_weights)
435 | self.fix_init_weight()
436 |
437 | if isinstance(self.head, nn.Linear):
438 | trunc_normal_(self.head.weight, std=.02)
439 | self.head.weight.data.mul_(init_scale)
440 | self.head.bias.data.mul_(init_scale)
441 |
442 | # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
443 | self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
444 |
445 | self.grad_checkpointing = grad_checkpointing
446 |
447 | def fix_init_weight(self):
448 | def rescale(param, layer_id):
449 | param.div_(math.sqrt(2.0 * layer_id))
450 |
451 | for layer_id, layer in enumerate(self.blocks):
452 | rescale(layer.attn.proj.weight.data, layer_id + 1)
453 | if self.naiveswiglu:
454 | rescale(layer.mlp.w3.weight.data, layer_id + 1)
455 | else:
456 | rescale(layer.mlp.fc2.weight.data, layer_id + 1)
457 |
458 | def get_cast_dtype(self) -> torch.dtype:
459 | return self.blocks[0].mlp.fc2.weight.dtype
460 |
461 | def _init_weights(self, m):
462 | if isinstance(m, nn.Linear):
463 | trunc_normal_(m.weight, std=.02)
464 | if m.bias is not None:
465 | nn.init.constant_(m.bias, 0)
466 | elif isinstance(m, nn.LayerNorm):
467 | nn.init.constant_(m.bias, 0)
468 | nn.init.constant_(m.weight, 1.0)
469 |
470 | def get_num_layers(self):
471 | return len(self.blocks)
472 |
473 | def lock(self, unlocked_groups=0, freeze_bn_stats=False):
474 | assert unlocked_groups == 0, 'partial locking not currently supported for this model'
475 | for param in self.parameters():
476 | param.requires_grad = False
477 |
478 | @torch.jit.ignore
479 | def set_grad_checkpointing(self, enable=True):
480 | self.grad_checkpointing = enable
481 |
482 | @torch.jit.ignore
483 | def no_weight_decay(self):
484 | return {'pos_embed', 'cls_token'}
485 |
486 | def get_classifier(self):
487 | return self.head
488 |
489 | def reset_classifier(self, num_classes, global_pool=''):
490 | self.num_classes = num_classes
491 | self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
492 |
493 | def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False):
494 |
495 | x = self.patch_embed(x)
496 | batch_size, seq_len, _ = x.size()
497 |
498 | if shuffle:
499 | idx = torch.randperm(x.shape[1]) + 1
500 | zero = torch.LongTensor([0, ])
501 | idx = torch.cat([zero, idx])
502 | pos_embed = self.pos_embed[:, idx]
503 |
504 | cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
505 | x = torch.cat((cls_tokens, x), dim=1)
506 | if shuffle:
507 | x = x + pos_embed
508 | elif self.pos_embed is not None:
509 | x = x + self.pos_embed
510 | x = self.pos_drop(x)
511 |
512 | # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
513 | if os.getenv('RoPE') == '1':
514 | if self.training and not isinstance(self.patch_dropout, nn.Identity):
515 | x, patch_indices_keep = self.patch_dropout(x)
516 | self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
517 | else:
518 | self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
519 | x = self.patch_dropout(x)
520 | else:
521 | x = self.patch_dropout(x)
522 |
523 | rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
524 | hidden_states = []
525 | for idx, blk in enumerate(self.blocks):
526 | if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden:
527 | hidden_states.append(x)
528 | if self.grad_checkpointing:
529 | x = checkpoint(blk, x, (rel_pos_bias,))
530 | else:
531 | x = blk(x, rel_pos_bias=rel_pos_bias)
532 |
533 | if not return_all_features:
534 | x = self.norm(x)
535 | if self.fc_norm is not None:
536 | return self.fc_norm(x.mean(1)), hidden_states
537 | else:
538 | return x[:, 0], hidden_states
539 | return x
540 |
541 | def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False):
542 | if return_all_features:
543 | return self.forward_features(x, return_all_features, return_hidden, shuffle)
544 | x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle)
545 | x = self.head(x)
546 | if return_hidden:
547 | return x, hidden_states
548 | return x
549 |
--------------------------------------------------------------------------------
/eva_clip/factory.py:
--------------------------------------------------------------------------------
1 | import json
2 | import logging
3 | import os
4 | import pathlib
5 | import re
6 | from copy import deepcopy
7 | from pathlib import Path
8 | from typing import Optional, Tuple, Union, Dict, Any
9 | import torch
10 |
11 | from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
12 | from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
13 | get_cast_dtype
14 | from .openai import load_openai_model
15 | from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
16 | from .transform import image_transform
17 | from .tokenizer import HFTokenizer, tokenize
18 | from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
19 |
20 |
21 | _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
22 | _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
23 |
24 |
25 | def _natural_key(string_):
26 | return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
27 |
28 |
29 | def _rescan_model_configs():
30 | global _MODEL_CONFIGS
31 |
32 | config_ext = ('.json',)
33 | config_files = []
34 | for config_path in _MODEL_CONFIG_PATHS:
35 | if config_path.is_file() and config_path.suffix in config_ext:
36 | config_files.append(config_path)
37 | elif config_path.is_dir():
38 | for ext in config_ext:
39 | config_files.extend(config_path.glob(f'*{ext}'))
40 |
41 | for cf in config_files:
42 | with open(cf, "r", encoding="utf8") as f:
43 | model_cfg = json.load(f)
44 | if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
45 | _MODEL_CONFIGS[cf.stem] = model_cfg
46 |
47 | _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
48 |
49 |
50 | _rescan_model_configs() # initial populate of model config registry
51 |
52 |
53 | def list_models():
54 | """ enumerate available model architectures based on config files """
55 | return list(_MODEL_CONFIGS.keys())
56 |
57 |
58 | def add_model_config(path):
59 | """ add model config path or file and update registry """
60 | if not isinstance(path, Path):
61 | path = Path(path)
62 | _MODEL_CONFIG_PATHS.append(path)
63 | _rescan_model_configs()
64 |
65 |
66 | def get_model_config(model_name):
67 | if model_name in _MODEL_CONFIGS:
68 | return deepcopy(_MODEL_CONFIGS[model_name])
69 | else:
70 | return None
71 |
72 |
73 | def get_tokenizer(model_name):
74 | config = get_model_config(model_name)
75 | tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
76 | return tokenizer
77 |
78 |
79 | # loading openai CLIP weights when is_openai=True for training
80 | def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
81 | if is_openai:
82 | model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
83 | state_dict = model.state_dict()
84 | for key in ["input_resolution", "context_length", "vocab_size"]:
85 | state_dict.pop(key, None)
86 | else:
87 | checkpoint = torch.load(checkpoint_path, map_location=map_location)
88 | for mk in model_key.split('|'):
89 | if isinstance(checkpoint, dict) and mk in checkpoint:
90 | state_dict = checkpoint[mk]
91 | break
92 | else:
93 | state_dict = checkpoint
94 | if next(iter(state_dict.items()))[0].startswith('module'):
95 | state_dict = {k[7:]: v for k, v in state_dict.items()}
96 |
97 | for k in skip_list:
98 | if k in list(state_dict.keys()):
99 | logging.info(f"Removing key {k} from pretrained checkpoint")
100 | del state_dict[k]
101 |
102 | if os.getenv('RoPE') == '1':
103 | for k in list(state_dict.keys()):
104 | if 'freqs_cos' in k or 'freqs_sin' in k:
105 | del state_dict[k]
106 | return state_dict
107 |
108 |
109 |
110 | def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
111 | state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
112 | # detect old format and make compatible with new format
113 | if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
114 | state_dict = convert_to_custom_text_state_dict(state_dict)
115 | if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
116 | state_dict['logit_scale'] = state_dict['text.logit_scale']
117 | del state_dict['text.logit_scale']
118 |
119 | # resize_clip_pos_embed for CLIP and open CLIP
120 | if 'visual.positional_embedding' in state_dict:
121 | resize_clip_pos_embed(state_dict, model)
122 | # specified to eva_vit_model
123 | elif 'visual.pos_embed' in state_dict:
124 | resize_evaclip_pos_embed(state_dict, model)
125 |
126 | # resize_clip_pos_embed(state_dict, model)
127 | incompatible_keys = model.load_state_dict(state_dict, strict=strict)
128 | logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
129 | return incompatible_keys
130 |
131 | def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
132 | state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
133 |
134 | for k in list(state_dict.keys()):
135 | if not k.startswith('visual.'):
136 | del state_dict[k]
137 | for k in list(state_dict.keys()):
138 | if k.startswith('visual.'):
139 | new_k = k[7:]
140 | state_dict[new_k] = state_dict[k]
141 | del state_dict[k]
142 | return state_dict
143 |
144 | def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
145 | state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
146 |
147 | for k in list(state_dict.keys()):
148 | if k.startswith('visual.'):
149 | del state_dict[k]
150 | return state_dict
151 |
152 | def get_pretrained_tag(pretrained_model):
153 | pretrained_model = pretrained_model.lower()
154 | if "laion" in pretrained_model or "open_clip" in pretrained_model:
155 | return "open_clip"
156 | elif "openai" in pretrained_model:
157 | return "clip"
158 | elif "eva" in pretrained_model and "clip" in pretrained_model:
159 | return "eva_clip"
160 | else:
161 | return "other"
162 |
163 | def load_pretrained_checkpoint(
164 | model,
165 | visual_checkpoint_path,
166 | text_checkpoint_path,
167 | strict=True,
168 | visual_model=None,
169 | text_model=None,
170 | model_key="model|module|state_dict",
171 | skip_list=[]):
172 | visual_tag = get_pretrained_tag(visual_model)
173 | text_tag = get_pretrained_tag(text_model)
174 |
175 | logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
176 | visual_incompatible_keys, text_incompatible_keys = None, None
177 | if visual_checkpoint_path:
178 | if visual_tag == "eva_clip" or visual_tag == "open_clip":
179 | visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
180 | elif visual_tag == "clip":
181 | visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
182 | else:
183 | visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
184 |
185 | # resize_clip_pos_embed for CLIP and open CLIP
186 | if 'positional_embedding' in visual_state_dict:
187 | resize_visual_pos_embed(visual_state_dict, model)
188 | # specified to EVA model
189 | elif 'pos_embed' in visual_state_dict:
190 | resize_eva_pos_embed(visual_state_dict, model)
191 |
192 | visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
193 | logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
194 | logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
195 |
196 | if text_checkpoint_path:
197 | if text_tag == "eva_clip" or text_tag == "open_clip":
198 | text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
199 | elif text_tag == "clip":
200 | text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
201 | else:
202 | text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
203 |
204 | text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
205 |
206 | logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
207 | logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
208 |
209 | return visual_incompatible_keys, text_incompatible_keys
210 |
211 | def create_model(
212 | model_name: str,
213 | pretrained: Optional[str] = None,
214 | precision: str = 'fp32',
215 | device: Union[str, torch.device] = 'cpu',
216 | jit: bool = False,
217 | force_quick_gelu: bool = False,
218 | force_custom_clip: bool = False,
219 | force_patch_dropout: Optional[float] = None,
220 | pretrained_image: str = '',
221 | pretrained_text: str = '',
222 | pretrained_hf: bool = True,
223 | pretrained_visual_model: str = None,
224 | pretrained_text_model: str = None,
225 | cache_dir: Optional[str] = None,
226 | skip_list: list = [],
227 | ):
228 | model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
229 | if isinstance(device, str):
230 | device = torch.device(device)
231 |
232 | if pretrained and pretrained.lower() == 'openai':
233 | logging.info(f'Loading pretrained {model_name} from OpenAI.')
234 | model = load_openai_model(
235 | model_name,
236 | precision=precision,
237 | device=device,
238 | jit=jit,
239 | cache_dir=cache_dir,
240 | )
241 | else:
242 | model_cfg = get_model_config(model_name)
243 | if model_cfg is not None:
244 | logging.info(f'Loaded {model_name} model config.')
245 | else:
246 | logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
247 | raise RuntimeError(f'Model config for {model_name} not found.')
248 |
249 | if 'rope' in model_cfg.get('vision_cfg', {}):
250 | if model_cfg['vision_cfg']['rope']:
251 | os.environ['RoPE'] = "1"
252 | else:
253 | os.environ['RoPE'] = "0"
254 |
255 | if force_quick_gelu:
256 | # override for use of QuickGELU on non-OpenAI transformer models
257 | model_cfg["quick_gelu"] = True
258 |
259 | if force_patch_dropout is not None:
260 | # override the default patch dropout value
261 | model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
262 |
263 | cast_dtype = get_cast_dtype(precision)
264 | custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
265 |
266 |
267 | if custom_clip:
268 | if 'hf_model_name' in model_cfg.get('text_cfg', {}):
269 | model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
270 | model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
271 | else:
272 | model = CLIP(**model_cfg, cast_dtype=cast_dtype)
273 |
274 | pretrained_cfg = {}
275 | if pretrained:
276 | checkpoint_path = ''
277 | pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
278 | if pretrained_cfg:
279 | checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
280 | elif os.path.exists(pretrained):
281 | checkpoint_path = pretrained
282 |
283 | if checkpoint_path:
284 | logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
285 | load_checkpoint(model,
286 | checkpoint_path,
287 | model_key="model|module|state_dict",
288 | strict=False
289 | )
290 | else:
291 | error_str = (
292 | f'Pretrained weights ({pretrained}) not found for model {model_name}.'
293 | f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
294 | logging.warning(error_str)
295 | raise RuntimeError(error_str)
296 | else:
297 | visual_checkpoint_path = ''
298 | text_checkpoint_path = ''
299 |
300 | if pretrained_image:
301 | pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
302 | pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
303 | if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
304 | # pretrained weight loading for timm models set via vision_cfg
305 | model_cfg['vision_cfg']['timm_model_pretrained'] = True
306 | elif pretrained_image_cfg:
307 | visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
308 | elif os.path.exists(pretrained_image):
309 | visual_checkpoint_path = pretrained_image
310 | else:
311 | logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
312 | raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
313 |
314 | if pretrained_text:
315 | pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
316 | pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
317 | if pretrained_image_cfg:
318 | text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
319 | elif os.path.exists(pretrained_text):
320 | text_checkpoint_path = pretrained_text
321 | else:
322 | logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
323 | raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
324 |
325 | if visual_checkpoint_path:
326 | logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
327 | if text_checkpoint_path:
328 | logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
329 |
330 | if visual_checkpoint_path or text_checkpoint_path:
331 | load_pretrained_checkpoint(
332 | model,
333 | visual_checkpoint_path,
334 | text_checkpoint_path,
335 | strict=False,
336 | visual_model=pretrained_visual_model,
337 | text_model=pretrained_text_model,
338 | model_key="model|module|state_dict",
339 | skip_list=skip_list
340 | )
341 |
342 | if "fp16" in precision or "bf16" in precision:
343 | logging.info(f'convert precision to {precision}')
344 | model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
345 |
346 | model.to(device=device)
347 |
348 | # set image / mean metadata from pretrained_cfg if available, or use default
349 | model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
350 | model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
351 |
352 | if jit:
353 | model = torch.jit.script(model)
354 |
355 | return model
356 |
357 |
358 | def create_model_and_transforms(
359 | model_name: str,
360 | pretrained: Optional[str] = None,
361 | precision: str = 'fp32',
362 | device: Union[str, torch.device] = 'cpu',
363 | jit: bool = False,
364 | force_quick_gelu: bool = False,
365 | force_custom_clip: bool = False,
366 | force_patch_dropout: Optional[float] = None,
367 | pretrained_image: str = '',
368 | pretrained_text: str = '',
369 | pretrained_hf: bool = True,
370 | pretrained_visual_model: str = None,
371 | pretrained_text_model: str = None,
372 | image_mean: Optional[Tuple[float, ...]] = None,
373 | image_std: Optional[Tuple[float, ...]] = None,
374 | cache_dir: Optional[str] = None,
375 | skip_list: list = [],
376 | ):
377 | model = create_model(
378 | model_name,
379 | pretrained,
380 | precision=precision,
381 | device=device,
382 | jit=jit,
383 | force_quick_gelu=force_quick_gelu,
384 | force_custom_clip=force_custom_clip,
385 | force_patch_dropout=force_patch_dropout,
386 | pretrained_image=pretrained_image,
387 | pretrained_text=pretrained_text,
388 | pretrained_hf=pretrained_hf,
389 | pretrained_visual_model=pretrained_visual_model,
390 | pretrained_text_model=pretrained_text_model,
391 | cache_dir=cache_dir,
392 | skip_list=skip_list,
393 | )
394 |
395 | image_mean = image_mean or getattr(model.visual, 'image_mean', None)
396 | image_std = image_std or getattr(model.visual, 'image_std', None)
397 | preprocess_train = image_transform(
398 | model.visual.image_size,
399 | is_train=True,
400 | mean=image_mean,
401 | std=image_std
402 | )
403 | preprocess_val = image_transform(
404 | model.visual.image_size,
405 | is_train=False,
406 | mean=image_mean,
407 | std=image_std
408 | )
409 |
410 | return model, preprocess_train, preprocess_val
411 |
412 |
413 | def create_transforms(
414 | model_name: str,
415 | pretrained: Optional[str] = None,
416 | precision: str = 'fp32',
417 | device: Union[str, torch.device] = 'cpu',
418 | jit: bool = False,
419 | force_quick_gelu: bool = False,
420 | force_custom_clip: bool = False,
421 | force_patch_dropout: Optional[float] = None,
422 | pretrained_image: str = '',
423 | pretrained_text: str = '',
424 | pretrained_hf: bool = True,
425 | pretrained_visual_model: str = None,
426 | pretrained_text_model: str = None,
427 | image_mean: Optional[Tuple[float, ...]] = None,
428 | image_std: Optional[Tuple[float, ...]] = None,
429 | cache_dir: Optional[str] = None,
430 | skip_list: list = [],
431 | ):
432 | model = create_model(
433 | model_name,
434 | pretrained,
435 | precision=precision,
436 | device=device,
437 | jit=jit,
438 | force_quick_gelu=force_quick_gelu,
439 | force_custom_clip=force_custom_clip,
440 | force_patch_dropout=force_patch_dropout,
441 | pretrained_image=pretrained_image,
442 | pretrained_text=pretrained_text,
443 | pretrained_hf=pretrained_hf,
444 | pretrained_visual_model=pretrained_visual_model,
445 | pretrained_text_model=pretrained_text_model,
446 | cache_dir=cache_dir,
447 | skip_list=skip_list,
448 | )
449 |
450 |
451 | image_mean = image_mean or getattr(model.visual, 'image_mean', None)
452 | image_std = image_std or getattr(model.visual, 'image_std', None)
453 | preprocess_train = image_transform(
454 | model.visual.image_size,
455 | is_train=True,
456 | mean=image_mean,
457 | std=image_std
458 | )
459 | preprocess_val = image_transform(
460 | model.visual.image_size,
461 | is_train=False,
462 | mean=image_mean,
463 | std=image_std
464 | )
465 | del model
466 |
467 | return preprocess_train, preprocess_val
468 |
469 | def create_model_from_pretrained(
470 | model_name: str,
471 | pretrained: str,
472 | precision: str = 'fp32',
473 | device: Union[str, torch.device] = 'cpu',
474 | jit: bool = False,
475 | force_quick_gelu: bool = False,
476 | force_custom_clip: bool = False,
477 | force_patch_dropout: Optional[float] = None,
478 | return_transform: bool = True,
479 | image_mean: Optional[Tuple[float, ...]] = None,
480 | image_std: Optional[Tuple[float, ...]] = None,
481 | cache_dir: Optional[str] = None,
482 | is_frozen: bool = False,
483 | ):
484 | if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
485 | raise RuntimeError(
486 | f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
487 | f' Use open_clip.list_pretrained() to find one.')
488 |
489 | model = create_model(
490 | model_name,
491 | pretrained,
492 | precision=precision,
493 | device=device,
494 | jit=jit,
495 | force_quick_gelu=force_quick_gelu,
496 | force_custom_clip=force_custom_clip,
497 | force_patch_dropout=force_patch_dropout,
498 | cache_dir=cache_dir,
499 | )
500 |
501 | if is_frozen:
502 | for param in model.parameters():
503 | param.requires_grad = False
504 |
505 | if not return_transform:
506 | return model
507 |
508 | image_mean = image_mean or getattr(model.visual, 'image_mean', None)
509 | image_std = image_std or getattr(model.visual, 'image_std', None)
510 | preprocess = image_transform(
511 | model.visual.image_size,
512 | is_train=False,
513 | mean=image_mean,
514 | std=image_std
515 | )
516 |
517 | return model, preprocess
518 |
--------------------------------------------------------------------------------
/eva_clip/hf_configs.py:
--------------------------------------------------------------------------------
1 | # HF architecture dict:
2 | arch_dict = {
3 | # https://huggingface.co/docs/transformers/model_doc/roberta#roberta
4 | "roberta": {
5 | "config_names": {
6 | "context_length": "max_position_embeddings",
7 | "vocab_size": "vocab_size",
8 | "width": "hidden_size",
9 | "heads": "num_attention_heads",
10 | "layers": "num_hidden_layers",
11 | "layer_attr": "layer",
12 | "token_embeddings_attr": "embeddings"
13 | },
14 | "pooler": "mean_pooler",
15 | },
16 | # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
17 | "xlm-roberta": {
18 | "config_names": {
19 | "context_length": "max_position_embeddings",
20 | "vocab_size": "vocab_size",
21 | "width": "hidden_size",
22 | "heads": "num_attention_heads",
23 | "layers": "num_hidden_layers",
24 | "layer_attr": "layer",
25 | "token_embeddings_attr": "embeddings"
26 | },
27 | "pooler": "mean_pooler",
28 | },
29 | # https://huggingface.co/docs/transformers/model_doc/mt5#mt5
30 | "mt5": {
31 | "config_names": {
32 | # unlimited seqlen
33 | # https://github.com/google-research/text-to-text-transfer-transformer/issues/273
34 | # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
35 | "context_length": "",
36 | "vocab_size": "vocab_size",
37 | "width": "d_model",
38 | "heads": "num_heads",
39 | "layers": "num_layers",
40 | "layer_attr": "block",
41 | "token_embeddings_attr": "embed_tokens"
42 | },
43 | "pooler": "mean_pooler",
44 | },
45 | "bert": {
46 | "config_names": {
47 | "context_length": "max_position_embeddings",
48 | "vocab_size": "vocab_size",
49 | "width": "hidden_size",
50 | "heads": "num_attention_heads",
51 | "layers": "num_hidden_layers",
52 | "layer_attr": "layer",
53 | "token_embeddings_attr": "embeddings"
54 | },
55 | "pooler": "mean_pooler",
56 | }
57 | }
58 |
--------------------------------------------------------------------------------
/eva_clip/hf_model.py:
--------------------------------------------------------------------------------
1 | """ huggingface model adapter
2 |
3 | Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
4 | """
5 |
6 | import re
7 |
8 | import torch
9 | import torch.nn as nn
10 | from torch.nn import functional as F
11 | from torch import TensorType
12 | try:
13 | import transformers
14 | from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
15 | from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
16 | BaseModelOutputWithPoolingAndCrossAttentions
17 | except ImportError as e:
18 | transformers = None
19 |
20 |
21 | class BaseModelOutput:
22 | pass
23 |
24 |
25 | class PretrainedConfig:
26 | pass
27 |
28 | from .hf_configs import arch_dict
29 |
30 | # utils
31 | def _camel2snake(s):
32 | return re.sub(r'(? TensorType:
140 | # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
141 | # attn_mask = (x != self.config.pad_token_id).long()
142 | # out = self.transformer(
143 | # input_ids=x,
144 | # attention_mask=attn_mask,
145 | # encoder_hidden_states = image_embeds,
146 | # encoder_attention_mask = image_atts,
147 | # )
148 | # pooled_out = self.pooler(out, attn_mask)
149 |
150 | # return self.itm_proj(pooled_out)
151 |
152 | def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
153 | if masked_indices is None:
154 | masked_indices = torch.bernoulli(probability_matrix).bool()
155 |
156 | masked_indices[input_ids == self.tokenizer.pad_token_id] = False
157 | masked_indices[input_ids == self.tokenizer.cls_token_id] = False
158 |
159 | if targets is not None:
160 | targets[~masked_indices] = -100 # We only compute loss on masked tokens
161 |
162 | # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
163 | indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
164 | input_ids[indices_replaced] = self.tokenizer.mask_token_id
165 |
166 | # 10% of the time, we replace masked input tokens with random word
167 | indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
168 | random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
169 | input_ids[indices_random] = random_words[indices_random]
170 | # The rest of the time (10% of the time) we keep the masked input tokens unchanged
171 |
172 | if targets is not None:
173 | return input_ids, targets
174 | else:
175 | return input_ids
176 |
177 | def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
178 | labels = input_ids.clone()
179 | attn_mask = (input_ids != self.config.pad_token_id).long()
180 | image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
181 | vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
182 | probability_matrix = torch.full(labels.shape, mlm_probability)
183 | input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
184 | probability_matrix = probability_matrix)
185 | mlm_output = self.transformer(input_ids,
186 | attention_mask = attn_mask,
187 | encoder_hidden_states = image_embeds,
188 | encoder_attention_mask = image_atts,
189 | return_dict = True,
190 | labels = labels,
191 | )
192 | return mlm_output.loss
193 | # mlm_output = self.transformer(input_ids,
194 | # attention_mask = attn_mask,
195 | # encoder_hidden_states = image_embeds,
196 | # encoder_attention_mask = image_atts,
197 | # return_dict = True,
198 | # ).last_hidden_state
199 | # logits = self.mlm_proj(mlm_output)
200 |
201 | # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
202 | # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
203 | # labels = labels[:, 1:].contiguous().view(-1)
204 |
205 | # mlm_loss = F.cross_entropy(
206 | # logits,
207 | # labels,
208 | # # label_smoothing=0.1,
209 | # )
210 | # return mlm_loss
211 |
212 |
213 | def forward(self, x:TensorType) -> TensorType:
214 | attn_mask = (x != self.config.pad_token_id).long()
215 | out = self.transformer(input_ids=x, attention_mask=attn_mask)
216 | pooled_out = self.pooler(out, attn_mask)
217 |
218 | return self.proj(pooled_out)
219 |
220 | def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
221 | if not unlocked_layers: # full freezing
222 | for n, p in self.transformer.named_parameters():
223 | p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
224 | return
225 |
226 | encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
227 | layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
228 | print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
229 | embeddings = getattr(
230 | self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
231 | modules = [embeddings, *layer_list][:-unlocked_layers]
232 | # freeze layers
233 | for module in modules:
234 | for n, p in module.named_parameters():
235 | p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
236 |
237 |
238 | @torch.jit.ignore
239 | def set_grad_checkpointing(self, enable=True):
240 | self.transformer.gradient_checkpointing_enable()
241 |
242 | def get_num_layers(self):
243 | encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
244 | layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
245 | return len(layer_list)
246 |
247 | def init_parameters(self):
248 | pass
249 |
--------------------------------------------------------------------------------
/eva_clip/loss.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | import torch.nn as nn
4 | from torch.nn import functional as F
5 |
6 | try:
7 | import torch.distributed.nn
8 | from torch import distributed as dist
9 | has_distributed = True
10 | except ImportError:
11 | has_distributed = False
12 |
13 | try:
14 | import horovod.torch as hvd
15 | except ImportError:
16 | hvd = None
17 |
18 | from timm.loss import LabelSmoothingCrossEntropy
19 |
20 |
21 | def gather_features(
22 | image_features,
23 | text_features,
24 | local_loss=False,
25 | gather_with_grad=False,
26 | rank=0,
27 | world_size=1,
28 | use_horovod=False
29 | ):
30 | assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
31 | if use_horovod:
32 | assert hvd is not None, 'Please install horovod'
33 | if gather_with_grad:
34 | all_image_features = hvd.allgather(image_features)
35 | all_text_features = hvd.allgather(text_features)
36 | else:
37 | with torch.no_grad():
38 | all_image_features = hvd.allgather(image_features)
39 | all_text_features = hvd.allgather(text_features)
40 | if not local_loss:
41 | # ensure grads for local rank when all_* features don't have a gradient
42 | gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
43 | gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
44 | gathered_image_features[rank] = image_features
45 | gathered_text_features[rank] = text_features
46 | all_image_features = torch.cat(gathered_image_features, dim=0)
47 | all_text_features = torch.cat(gathered_text_features, dim=0)
48 | else:
49 | # We gather tensors from all gpus
50 | if gather_with_grad:
51 | all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
52 | all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
53 | # all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
54 | # all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
55 | else:
56 | gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
57 | gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
58 | dist.all_gather(gathered_image_features, image_features)
59 | dist.all_gather(gathered_text_features, text_features)
60 | if not local_loss:
61 | # ensure grads for local rank when all_* features don't have a gradient
62 | gathered_image_features[rank] = image_features
63 | gathered_text_features[rank] = text_features
64 | all_image_features = torch.cat(gathered_image_features, dim=0)
65 | all_text_features = torch.cat(gathered_text_features, dim=0)
66 |
67 | return all_image_features, all_text_features
68 |
69 |
70 | class ClipLoss(nn.Module):
71 |
72 | def __init__(
73 | self,
74 | local_loss=False,
75 | gather_with_grad=False,
76 | cache_labels=False,
77 | rank=0,
78 | world_size=1,
79 | use_horovod=False,
80 | smoothing=0.,
81 | ):
82 | super().__init__()
83 | self.local_loss = local_loss
84 | self.gather_with_grad = gather_with_grad
85 | self.cache_labels = cache_labels
86 | self.rank = rank
87 | self.world_size = world_size
88 | self.use_horovod = use_horovod
89 | self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
90 |
91 | # cache state
92 | self.prev_num_logits = 0
93 | self.labels = {}
94 |
95 | def forward(self, image_features, text_features, logit_scale=1.):
96 | device = image_features.device
97 | if self.world_size > 1:
98 | all_image_features, all_text_features = gather_features(
99 | image_features, text_features,
100 | self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
101 |
102 | if self.local_loss:
103 | logits_per_image = logit_scale * image_features @ all_text_features.T
104 | logits_per_text = logit_scale * text_features @ all_image_features.T
105 | else:
106 | logits_per_image = logit_scale * all_image_features @ all_text_features.T
107 | logits_per_text = logits_per_image.T
108 | else:
109 | logits_per_image = logit_scale * image_features @ text_features.T
110 | logits_per_text = logit_scale * text_features @ image_features.T
111 | # calculated ground-truth and cache if enabled
112 | num_logits = logits_per_image.shape[0]
113 | if self.prev_num_logits != num_logits or device not in self.labels:
114 | labels = torch.arange(num_logits, device=device, dtype=torch.long)
115 | if self.world_size > 1 and self.local_loss:
116 | labels = labels + num_logits * self.rank
117 | if self.cache_labels:
118 | self.labels[device] = labels
119 | self.prev_num_logits = num_logits
120 | else:
121 | labels = self.labels[device]
122 |
123 | if self.label_smoothing_cross_entropy:
124 | total_loss = (
125 | self.label_smoothing_cross_entropy(logits_per_image, labels) +
126 | self.label_smoothing_cross_entropy(logits_per_text, labels)
127 | ) / 2
128 | else:
129 | total_loss = (
130 | F.cross_entropy(logits_per_image, labels) +
131 | F.cross_entropy(logits_per_text, labels)
132 | ) / 2
133 |
134 | acc = None
135 | i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
136 | t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
137 | acc = {"i2t": i2t_acc, "t2i": t2i_acc}
138 | return total_loss, acc
--------------------------------------------------------------------------------
/eva_clip/model.py:
--------------------------------------------------------------------------------
1 | """ CLIP Model
2 |
3 | Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4 | """
5 | import os
6 | from dataclasses import dataclass
7 | from typing import Optional, Tuple, Union
8 | from functools import partial
9 |
10 | import numpy as np
11 | import torch
12 | import torch.nn.functional as F
13 | from torch import nn
14 |
15 | try:
16 | from .hf_model import HFTextEncoder
17 | except:
18 | HFTextEncoder = None
19 | from .modified_resnet import ModifiedResNet
20 | from .timm_model import TimmModel
21 | from .eva_vit_model import EVAVisionTransformer
22 | from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
23 |
24 | try:
25 | from apex.normalization import FusedLayerNorm
26 | except:
27 | FusedLayerNorm = LayerNorm
28 | print("Nvidia APEX normalization not installed, using PyTorch LayerNorm")
29 |
30 | try:
31 | import xformers.ops as xops
32 | except ImportError:
33 | xops = None
34 | #print("Please 'pip install xformers'")
35 |
36 | @dataclass
37 | class CLIPVisionCfg:
38 | layers: Union[Tuple[int, int, int, int], int] = 12
39 | width: int = 768
40 | head_width: int = 64
41 | mlp_ratio: float = 4.0
42 | patch_size: int = 16
43 | image_size: Union[Tuple[int, int], int] = 224
44 | ls_init_value: Optional[float] = None # layer scale initial value
45 | patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
46 | global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
47 | drop_path_rate: Optional[float] = None # drop path rate
48 | timm_model_name: str = None # a valid model name overrides layers, width, patch_size
49 | timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
50 | timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
51 | timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
52 | timm_proj_bias: bool = False # enable bias final projection
53 | eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
54 | qkv_bias: bool = True
55 | fusedLN: bool = False
56 | xattn: bool = False
57 | postnorm: bool = False
58 | rope: bool = False
59 | pt_hw_seq_len: int = 16 # 224/14
60 | intp_freq: bool = False
61 | naiveswiglu: bool = False
62 | subln: bool = False
63 |
64 |
65 | @dataclass
66 | class CLIPTextCfg:
67 | context_length: int = 77
68 | vocab_size: int = 49408
69 | width: int = 512
70 | heads: int = 8
71 | layers: int = 12
72 | ls_init_value: Optional[float] = None # layer scale initial value
73 | hf_model_name: str = None
74 | hf_tokenizer_name: str = None
75 | hf_model_pretrained: bool = True
76 | proj: str = 'mlp'
77 | pooler_type: str = 'mean_pooler'
78 | masked_language_modeling: bool = False
79 | fusedLN: bool = False
80 | xattn: bool = False
81 | attn_mask: bool = True
82 |
83 | def get_cast_dtype(precision: str):
84 | cast_dtype = None
85 | if precision == 'bf16':
86 | cast_dtype = torch.bfloat16
87 | elif precision == 'fp16':
88 | cast_dtype = torch.float16
89 | return cast_dtype
90 |
91 |
92 | def _build_vision_tower(
93 | embed_dim: int,
94 | vision_cfg: CLIPVisionCfg,
95 | quick_gelu: bool = False,
96 | cast_dtype: Optional[torch.dtype] = None
97 | ):
98 | if isinstance(vision_cfg, dict):
99 | vision_cfg = CLIPVisionCfg(**vision_cfg)
100 |
101 | # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
102 | # memory efficient in recent PyTorch releases (>= 1.10).
103 | # NOTE: timm models always use native GELU regardless of quick_gelu flag.
104 | act_layer = QuickGELU if quick_gelu else nn.GELU
105 |
106 | if vision_cfg.eva_model_name:
107 | vision_heads = vision_cfg.width // vision_cfg.head_width
108 | norm_layer = LayerNorm
109 |
110 | visual = EVAVisionTransformer(
111 | img_size=vision_cfg.image_size,
112 | patch_size=vision_cfg.patch_size,
113 | num_classes=embed_dim,
114 | use_mean_pooling=vision_cfg.global_average_pool, #False
115 | init_values=vision_cfg.ls_init_value,
116 | patch_dropout=vision_cfg.patch_dropout,
117 | embed_dim=vision_cfg.width,
118 | depth=vision_cfg.layers,
119 | num_heads=vision_heads,
120 | mlp_ratio=vision_cfg.mlp_ratio,
121 | qkv_bias=vision_cfg.qkv_bias,
122 | drop_path_rate=vision_cfg.drop_path_rate,
123 | norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
124 | xattn=vision_cfg.xattn,
125 | rope=vision_cfg.rope,
126 | postnorm=vision_cfg.postnorm,
127 | pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
128 | intp_freq= vision_cfg.intp_freq,
129 | naiveswiglu= vision_cfg.naiveswiglu,
130 | subln= vision_cfg.subln
131 | )
132 | elif vision_cfg.timm_model_name:
133 | visual = TimmModel(
134 | vision_cfg.timm_model_name,
135 | pretrained=vision_cfg.timm_model_pretrained,
136 | pool=vision_cfg.timm_pool,
137 | proj=vision_cfg.timm_proj,
138 | proj_bias=vision_cfg.timm_proj_bias,
139 | embed_dim=embed_dim,
140 | image_size=vision_cfg.image_size
141 | )
142 | act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
143 | elif isinstance(vision_cfg.layers, (tuple, list)):
144 | vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
145 | visual = ModifiedResNet(
146 | layers=vision_cfg.layers,
147 | output_dim=embed_dim,
148 | heads=vision_heads,
149 | image_size=vision_cfg.image_size,
150 | width=vision_cfg.width
151 | )
152 | else:
153 | vision_heads = vision_cfg.width // vision_cfg.head_width
154 | norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
155 | visual = VisionTransformer(
156 | image_size=vision_cfg.image_size,
157 | patch_size=vision_cfg.patch_size,
158 | width=vision_cfg.width,
159 | layers=vision_cfg.layers,
160 | heads=vision_heads,
161 | mlp_ratio=vision_cfg.mlp_ratio,
162 | ls_init_value=vision_cfg.ls_init_value,
163 | patch_dropout=vision_cfg.patch_dropout,
164 | global_average_pool=vision_cfg.global_average_pool,
165 | output_dim=embed_dim,
166 | act_layer=act_layer,
167 | norm_layer=norm_layer,
168 | )
169 |
170 | return visual
171 |
172 |
173 | def _build_text_tower(
174 | embed_dim: int,
175 | text_cfg: CLIPTextCfg,
176 | quick_gelu: bool = False,
177 | cast_dtype: Optional[torch.dtype] = None,
178 | ):
179 | if isinstance(text_cfg, dict):
180 | text_cfg = CLIPTextCfg(**text_cfg)
181 |
182 | if text_cfg.hf_model_name:
183 | text = HFTextEncoder(
184 | text_cfg.hf_model_name,
185 | output_dim=embed_dim,
186 | tokenizer_name=text_cfg.hf_tokenizer_name,
187 | proj=text_cfg.proj,
188 | pooler_type=text_cfg.pooler_type,
189 | masked_language_modeling=text_cfg.masked_language_modeling
190 | )
191 | else:
192 | act_layer = QuickGELU if quick_gelu else nn.GELU
193 | norm_layer = LayerNorm
194 |
195 | text = TextTransformer(
196 | context_length=text_cfg.context_length,
197 | vocab_size=text_cfg.vocab_size,
198 | width=text_cfg.width,
199 | heads=text_cfg.heads,
200 | layers=text_cfg.layers,
201 | ls_init_value=text_cfg.ls_init_value,
202 | output_dim=embed_dim,
203 | act_layer=act_layer,
204 | norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
205 | xattn=text_cfg.xattn,
206 | attn_mask=text_cfg.attn_mask,
207 | )
208 | return text
209 |
210 | class CLIP(nn.Module):
211 | def __init__(
212 | self,
213 | embed_dim: int,
214 | vision_cfg: CLIPVisionCfg,
215 | text_cfg: CLIPTextCfg,
216 | quick_gelu: bool = False,
217 | cast_dtype: Optional[torch.dtype] = None,
218 | ):
219 | super().__init__()
220 | self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
221 |
222 | text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
223 | self.transformer = text.transformer
224 | self.vocab_size = text.vocab_size
225 | self.token_embedding = text.token_embedding
226 | self.positional_embedding = text.positional_embedding
227 | self.ln_final = text.ln_final
228 | self.text_projection = text.text_projection
229 | self.register_buffer('attn_mask', text.attn_mask, persistent=False)
230 |
231 | self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
232 |
233 | def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
234 | # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
235 | self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
236 |
237 | @torch.jit.ignore
238 | def set_grad_checkpointing(self, enable=True):
239 | self.visual.set_grad_checkpointing(enable)
240 | self.transformer.grad_checkpointing = enable
241 |
242 | @torch.jit.ignore
243 | def no_weight_decay(self):
244 | return {'logit_scale'}
245 |
246 | def encode_image(self, image, normalize: bool = False):
247 | features = self.visual(image)
248 | return F.normalize(features, dim=-1) if normalize else features
249 |
250 | def encode_text(self, text, normalize: bool = False):
251 | cast_dtype = self.transformer.get_cast_dtype()
252 |
253 | x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
254 |
255 | x = x + self.positional_embedding.to(cast_dtype)
256 | x = x.permute(1, 0, 2) # NLD -> LND
257 | x = self.transformer(x, attn_mask=self.attn_mask)
258 | x = x.permute(1, 0, 2) # LND -> NLD
259 | x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
260 | # take features from the eot embedding (eot_token is the highest number in each sequence)
261 | x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
262 | return F.normalize(x, dim=-1) if normalize else x
263 |
264 | def forward(self, image, text):
265 | image_features = self.encode_image(image, normalize=True)
266 | text_features = self.encode_text(text, normalize=True)
267 | return image_features, text_features, self.logit_scale.exp()
268 |
269 |
270 | class CustomCLIP(nn.Module):
271 | def __init__(
272 | self,
273 | embed_dim: int,
274 | vision_cfg: CLIPVisionCfg,
275 | text_cfg: CLIPTextCfg,
276 | quick_gelu: bool = False,
277 | cast_dtype: Optional[torch.dtype] = None,
278 | itm_task: bool = False,
279 | ):
280 | super().__init__()
281 | self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
282 | self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
283 | self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
284 |
285 | def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
286 | # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
287 | self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
288 |
289 | def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
290 | self.text.lock(unlocked_layers, freeze_layer_norm)
291 |
292 | @torch.jit.ignore
293 | def set_grad_checkpointing(self, enable=True):
294 | self.visual.set_grad_checkpointing(enable)
295 | self.text.set_grad_checkpointing(enable)
296 |
297 | @torch.jit.ignore
298 | def no_weight_decay(self):
299 | return {'logit_scale'}
300 |
301 | def encode_image(self, image, normalize: bool = False):
302 | features = self.visual(image)
303 | return F.normalize(features, dim=-1) if normalize else features
304 |
305 | def encode_text(self, text, normalize: bool = False):
306 | features = self.text(text)
307 | return F.normalize(features, dim=-1) if normalize else features
308 |
309 | def forward(self, image, text):
310 | image_features = self.encode_image(image, normalize=True)
311 | text_features = self.encode_text(text, normalize=True)
312 | return image_features, text_features, self.logit_scale.exp()
313 |
314 |
315 | def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
316 | """Convert applicable model parameters to low-precision (bf16 or fp16)"""
317 |
318 | def _convert_weights(l):
319 |
320 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
321 | l.weight.data = l.weight.data.to(dtype)
322 | if l.bias is not None:
323 | l.bias.data = l.bias.data.to(dtype)
324 |
325 | if isinstance(l, (nn.MultiheadAttention, Attention)):
326 | for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
327 | tensor = getattr(l, attr, None)
328 | if tensor is not None:
329 | tensor.data = tensor.data.to(dtype)
330 |
331 | if isinstance(l, nn.Parameter):
332 | l.data = l.data.to(dtype)
333 |
334 | for name in ["text_projection", "proj"]:
335 | if hasattr(l, name) and isinstance(l, nn.Parameter):
336 | attr = getattr(l, name, None)
337 | if attr is not None:
338 | attr.data = attr.data.to(dtype)
339 |
340 | model.apply(_convert_weights)
341 |
342 |
343 | convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
344 |
345 |
346 | # used to maintain checkpoint compatibility
347 | def convert_to_custom_text_state_dict(state_dict: dict):
348 | if 'text_projection' in state_dict:
349 | # old format state_dict, move text tower -> .text
350 | new_state_dict = {}
351 | for k, v in state_dict.items():
352 | if any(k.startswith(p) for p in (
353 | 'text_projection',
354 | 'positional_embedding',
355 | 'token_embedding',
356 | 'transformer',
357 | 'ln_final',
358 | 'logit_scale'
359 | )):
360 | k = 'text.' + k
361 | new_state_dict[k] = v
362 | return new_state_dict
363 | return state_dict
364 |
365 |
366 | def build_model_from_openai_state_dict(
367 | state_dict: dict,
368 | quick_gelu=True,
369 | cast_dtype=torch.float16,
370 | ):
371 | vit = "visual.proj" in state_dict
372 |
373 | if vit:
374 | vision_width = state_dict["visual.conv1.weight"].shape[0]
375 | vision_layers = len(
376 | [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
377 | vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
378 | grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
379 | image_size = vision_patch_size * grid_size
380 | else:
381 | counts: list = [
382 | len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
383 | vision_layers = tuple(counts)
384 | vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
385 | output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
386 | vision_patch_size = None
387 | assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
388 | image_size = output_width * 32
389 |
390 | embed_dim = state_dict["text_projection"].shape[1]
391 | context_length = state_dict["positional_embedding"].shape[0]
392 | vocab_size = state_dict["token_embedding.weight"].shape[0]
393 | transformer_width = state_dict["ln_final.weight"].shape[0]
394 | transformer_heads = transformer_width // 64
395 | transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
396 |
397 | vision_cfg = CLIPVisionCfg(
398 | layers=vision_layers,
399 | width=vision_width,
400 | patch_size=vision_patch_size,
401 | image_size=image_size,
402 | )
403 | text_cfg = CLIPTextCfg(
404 | context_length=context_length,
405 | vocab_size=vocab_size,
406 | width=transformer_width,
407 | heads=transformer_heads,
408 | layers=transformer_layers
409 | )
410 | model = CLIP(
411 | embed_dim,
412 | vision_cfg=vision_cfg,
413 | text_cfg=text_cfg,
414 | quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
415 | cast_dtype=cast_dtype,
416 | )
417 |
418 | for key in ["input_resolution", "context_length", "vocab_size"]:
419 | state_dict.pop(key, None)
420 |
421 | convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
422 | model.load_state_dict(state_dict)
423 | return model.eval()
424 |
425 |
426 | def trace_model(model, batch_size=256, device=torch.device('cpu')):
427 | model.eval()
428 | image_size = model.visual.image_size
429 | example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
430 | example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
431 | model = torch.jit.trace_module(
432 | model,
433 | inputs=dict(
434 | forward=(example_images, example_text),
435 | encode_text=(example_text,),
436 | encode_image=(example_images,)
437 | ))
438 | model.visual.image_size = image_size
439 | return model
440 |
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA01-CLIP-B-16.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 512,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 12,
6 | "width": 768,
7 | "patch_size": 16,
8 | "eva_model_name": "eva-clip-b-16",
9 | "ls_init_value": 0.1,
10 | "drop_path_rate": 0.0
11 | },
12 | "text_cfg": {
13 | "context_length": 77,
14 | "vocab_size": 49408,
15 | "width": 512,
16 | "heads": 8,
17 | "layers": 12
18 | }
19 | }
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 1024,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 40,
6 | "width": 1408,
7 | "head_width": 88,
8 | "mlp_ratio": 4.3637,
9 | "patch_size": 14,
10 | "eva_model_name": "eva-clip-g-14-x",
11 | "drop_path_rate": 0,
12 | "xattn": true,
13 | "fusedLN": true
14 | },
15 | "text_cfg": {
16 | "context_length": 77,
17 | "vocab_size": 49408,
18 | "width": 1024,
19 | "heads": 16,
20 | "layers": 24,
21 | "xattn": false,
22 | "fusedLN": true
23 | }
24 | }
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA01-CLIP-g-14.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 1024,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 40,
6 | "width": 1408,
7 | "head_width": 88,
8 | "mlp_ratio": 4.3637,
9 | "patch_size": 14,
10 | "eva_model_name": "eva-clip-g-14-x",
11 | "drop_path_rate": 0.4,
12 | "xattn": true,
13 | "fusedLN": true
14 | },
15 | "text_cfg": {
16 | "context_length": 77,
17 | "vocab_size": 49408,
18 | "width": 768,
19 | "heads": 12,
20 | "layers": 12,
21 | "xattn": false,
22 | "fusedLN": true
23 | }
24 | }
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA02-CLIP-B-16.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 512,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 12,
6 | "width": 768,
7 | "head_width": 64,
8 | "patch_size": 16,
9 | "mlp_ratio": 2.6667,
10 | "eva_model_name": "eva-clip-b-16-X",
11 | "drop_path_rate": 0.0,
12 | "xattn": true,
13 | "fusedLN": true,
14 | "rope": true,
15 | "pt_hw_seq_len": 16,
16 | "intp_freq": true,
17 | "naiveswiglu": true,
18 | "subln": true
19 | },
20 | "text_cfg": {
21 | "context_length": 77,
22 | "vocab_size": 49408,
23 | "width": 512,
24 | "heads": 8,
25 | "layers": 12,
26 | "xattn": true,
27 | "fusedLN": true
28 | }
29 | }
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA02-CLIP-L-14-336.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 768,
3 | "vision_cfg": {
4 | "image_size": 336,
5 | "layers": 24,
6 | "width": 1024,
7 | "drop_path_rate": 0,
8 | "head_width": 64,
9 | "mlp_ratio": 2.6667,
10 | "patch_size": 14,
11 | "eva_model_name": "eva-clip-l-14-336",
12 | "xattn": true,
13 | "fusedLN": true,
14 | "rope": true,
15 | "pt_hw_seq_len": 16,
16 | "intp_freq": true,
17 | "naiveswiglu": true,
18 | "subln": true
19 | },
20 | "text_cfg": {
21 | "context_length": 77,
22 | "vocab_size": 49408,
23 | "width": 768,
24 | "heads": 12,
25 | "layers": 12,
26 | "xattn": false,
27 | "fusedLN": true
28 | }
29 | }
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA02-CLIP-L-14.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 768,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 24,
6 | "width": 1024,
7 | "drop_path_rate": 0,
8 | "head_width": 64,
9 | "mlp_ratio": 2.6667,
10 | "patch_size": 14,
11 | "eva_model_name": "eva-clip-l-14",
12 | "xattn": true,
13 | "fusedLN": true,
14 | "rope": true,
15 | "pt_hw_seq_len": 16,
16 | "intp_freq": true,
17 | "naiveswiglu": true,
18 | "subln": true
19 | },
20 | "text_cfg": {
21 | "context_length": 77,
22 | "vocab_size": 49408,
23 | "width": 768,
24 | "heads": 12,
25 | "layers": 12,
26 | "xattn": false,
27 | "fusedLN": true
28 | }
29 | }
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 1024,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 64,
6 | "width": 1792,
7 | "head_width": 112,
8 | "mlp_ratio": 8.571428571428571,
9 | "patch_size": 14,
10 | "eva_model_name": "eva-clip-4b-14-x",
11 | "drop_path_rate": 0,
12 | "xattn": true,
13 | "postnorm": true,
14 | "fusedLN": true
15 | },
16 | "text_cfg": {
17 | "context_length": 77,
18 | "vocab_size": 49408,
19 | "width": 1280,
20 | "heads": 20,
21 | "layers": 32,
22 | "xattn": false,
23 | "fusedLN": true
24 | }
25 | }
26 |
--------------------------------------------------------------------------------
/eva_clip/model_configs/EVA02-CLIP-bigE-14.json:
--------------------------------------------------------------------------------
1 | {
2 | "embed_dim": 1024,
3 | "vision_cfg": {
4 | "image_size": 224,
5 | "layers": 64,
6 | "width": 1792,
7 | "head_width": 112,
8 | "mlp_ratio": 8.571428571428571,
9 | "patch_size": 14,
10 | "eva_model_name": "eva-clip-4b-14-x",
11 | "drop_path_rate": 0,
12 | "xattn": true,
13 | "postnorm": true,
14 | "fusedLN": true
15 | },
16 | "text_cfg": {
17 | "context_length": 77,
18 | "vocab_size": 49408,
19 | "width": 1024,
20 | "heads": 16,
21 | "layers": 24,
22 | "xattn": false,
23 | "fusedLN": true
24 | }
25 | }
--------------------------------------------------------------------------------
/eva_clip/modified_resnet.py:
--------------------------------------------------------------------------------
1 | from collections import OrderedDict
2 |
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 | from .utils import freeze_batch_norm_2d
8 |
9 |
10 | class Bottleneck(nn.Module):
11 | expansion = 4
12 |
13 | def __init__(self, inplanes, planes, stride=1):
14 | super().__init__()
15 |
16 | # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17 | self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18 | self.bn1 = nn.BatchNorm2d(planes)
19 | self.act1 = nn.ReLU(inplace=True)
20 |
21 | self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22 | self.bn2 = nn.BatchNorm2d(planes)
23 | self.act2 = nn.ReLU(inplace=True)
24 |
25 | self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26 |
27 | self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28 | self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29 | self.act3 = nn.ReLU(inplace=True)
30 |
31 | self.downsample = None
32 | self.stride = stride
33 |
34 | if stride > 1 or inplanes != planes * Bottleneck.expansion:
35 | # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36 | self.downsample = nn.Sequential(OrderedDict([
37 | ("-1", nn.AvgPool2d(stride)),
38 | ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39 | ("1", nn.BatchNorm2d(planes * self.expansion))
40 | ]))
41 |
42 | def forward(self, x: torch.Tensor):
43 | identity = x
44 |
45 | out = self.act1(self.bn1(self.conv1(x)))
46 | out = self.act2(self.bn2(self.conv2(out)))
47 | out = self.avgpool(out)
48 | out = self.bn3(self.conv3(out))
49 |
50 | if self.downsample is not None:
51 | identity = self.downsample(x)
52 |
53 | out += identity
54 | out = self.act3(out)
55 | return out
56 |
57 |
58 | class AttentionPool2d(nn.Module):
59 | def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60 | super().__init__()
61 | self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62 | self.k_proj = nn.Linear(embed_dim, embed_dim)
63 | self.q_proj = nn.Linear(embed_dim, embed_dim)
64 | self.v_proj = nn.Linear(embed_dim, embed_dim)
65 | self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66 | self.num_heads = num_heads
67 |
68 | def forward(self, x):
69 | x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
70 | x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71 | x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72 | x, _ = F.multi_head_attention_forward(
73 | query=x, key=x, value=x,
74 | embed_dim_to_check=x.shape[-1],
75 | num_heads=self.num_heads,
76 | q_proj_weight=self.q_proj.weight,
77 | k_proj_weight=self.k_proj.weight,
78 | v_proj_weight=self.v_proj.weight,
79 | in_proj_weight=None,
80 | in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81 | bias_k=None,
82 | bias_v=None,
83 | add_zero_attn=False,
84 | dropout_p=0.,
85 | out_proj_weight=self.c_proj.weight,
86 | out_proj_bias=self.c_proj.bias,
87 | use_separate_proj_weight=True,
88 | training=self.training,
89 | need_weights=False
90 | )
91 |
92 | return x[0]
93 |
94 |
95 | class ModifiedResNet(nn.Module):
96 | """
97 | A ResNet class that is similar to torchvision's but contains the following changes:
98 | - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
99 | - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
100 | - The final pooling layer is a QKV attention instead of an average pool
101 | """
102 |
103 | def __init__(self, layers, output_dim, heads, image_size=224, width=64):
104 | super().__init__()
105 | self.output_dim = output_dim
106 | self.image_size = image_size
107 |
108 | # the 3-layer stem
109 | self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
110 | self.bn1 = nn.BatchNorm2d(width // 2)
111 | self.act1 = nn.ReLU(inplace=True)
112 | self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
113 | self.bn2 = nn.BatchNorm2d(width // 2)
114 | self.act2 = nn.ReLU(inplace=True)
115 | self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
116 | self.bn3 = nn.BatchNorm2d(width)
117 | self.act3 = nn.ReLU(inplace=True)
118 | self.avgpool = nn.AvgPool2d(2)
119 |
120 | # residual layers
121 | self._inplanes = width # this is a *mutable* variable used during construction
122 | self.layer1 = self._make_layer(width, layers[0])
123 | self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
124 | self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
125 | self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
126 |
127 | embed_dim = width * 32 # the ResNet feature dimension
128 | self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
129 |
130 | self.init_parameters()
131 |
132 | def _make_layer(self, planes, blocks, stride=1):
133 | layers = [Bottleneck(self._inplanes, planes, stride)]
134 |
135 | self._inplanes = planes * Bottleneck.expansion
136 | for _ in range(1, blocks):
137 | layers.append(Bottleneck(self._inplanes, planes))
138 |
139 | return nn.Sequential(*layers)
140 |
141 | def init_parameters(self):
142 | if self.attnpool is not None:
143 | std = self.attnpool.c_proj.in_features ** -0.5
144 | nn.init.normal_(self.attnpool.q_proj.weight, std=std)
145 | nn.init.normal_(self.attnpool.k_proj.weight, std=std)
146 | nn.init.normal_(self.attnpool.v_proj.weight, std=std)
147 | nn.init.normal_(self.attnpool.c_proj.weight, std=std)
148 |
149 | for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
150 | for name, param in resnet_block.named_parameters():
151 | if name.endswith("bn3.weight"):
152 | nn.init.zeros_(param)
153 |
154 | def lock(self, unlocked_groups=0, freeze_bn_stats=False):
155 | assert unlocked_groups == 0, 'partial locking not currently supported for this model'
156 | for param in self.parameters():
157 | param.requires_grad = False
158 | if freeze_bn_stats:
159 | freeze_batch_norm_2d(self)
160 |
161 | @torch.jit.ignore
162 | def set_grad_checkpointing(self, enable=True):
163 | # FIXME support for non-transformer
164 | pass
165 |
166 | def stem(self, x):
167 | x = self.act1(self.bn1(self.conv1(x)))
168 | x = self.act2(self.bn2(self.conv2(x)))
169 | x = self.act3(self.bn3(self.conv3(x)))
170 | x = self.avgpool(x)
171 | return x
172 |
173 | def forward(self, x):
174 | x = self.stem(x)
175 | x = self.layer1(x)
176 | x = self.layer2(x)
177 | x = self.layer3(x)
178 | x = self.layer4(x)
179 | x = self.attnpool(x)
180 |
181 | return x
182 |
--------------------------------------------------------------------------------
/eva_clip/openai.py:
--------------------------------------------------------------------------------
1 | """ OpenAI pretrained model functions
2 |
3 | Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4 | """
5 |
6 | import os
7 | import warnings
8 | from typing import List, Optional, Union
9 |
10 | import torch
11 |
12 | from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
13 | from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
14 |
15 | __all__ = ["list_openai_models", "load_openai_model"]
16 |
17 |
18 | def list_openai_models() -> List[str]:
19 | """Returns the names of available CLIP models"""
20 | return list_pretrained_models_by_tag('openai')
21 |
22 |
23 | def load_openai_model(
24 | name: str,
25 | precision: Optional[str] = None,
26 | device: Optional[Union[str, torch.device]] = None,
27 | jit: bool = True,
28 | cache_dir: Optional[str] = None,
29 | ):
30 | """Load a CLIP model
31 |
32 | Parameters
33 | ----------
34 | name : str
35 | A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
36 | precision: str
37 | Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
38 | device : Union[str, torch.device]
39 | The device to put the loaded model
40 | jit : bool
41 | Whether to load the optimized JIT model (default) or more hackable non-JIT model.
42 | cache_dir : Optional[str]
43 | The directory to cache the downloaded model weights
44 |
45 | Returns
46 | -------
47 | model : torch.nn.Module
48 | The CLIP model
49 | preprocess : Callable[[PIL.Image], torch.Tensor]
50 | A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
51 | """
52 | if device is None:
53 | device = "cuda" if torch.cuda.is_available() else "cpu"
54 | if precision is None:
55 | precision = 'fp32' if device == 'cpu' else 'fp16'
56 |
57 | if get_pretrained_url(name, 'openai'):
58 | model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
59 | elif os.path.isfile(name):
60 | model_path = name
61 | else:
62 | raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
63 |
64 | try:
65 | # loading JIT archive
66 | model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
67 | state_dict = None
68 | except RuntimeError:
69 | # loading saved state dict
70 | if jit:
71 | warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
72 | jit = False
73 | state_dict = torch.load(model_path, map_location="cpu")
74 |
75 | if not jit:
76 | # Build a non-jit model from the OpenAI jitted model state dict
77 | cast_dtype = get_cast_dtype(precision)
78 | try:
79 | model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
80 | except KeyError:
81 | sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
82 | model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
83 |
84 | # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
85 | model = model.to(device)
86 | if precision.startswith('amp') or precision == 'fp32':
87 | model.float()
88 | elif precision == 'bf16':
89 | convert_weights_to_lp(model, dtype=torch.bfloat16)
90 |
91 | return model
92 |
93 | # patch the device names
94 | device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
95 | device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
96 |
97 | def patch_device(module):
98 | try:
99 | graphs = [module.graph] if hasattr(module, "graph") else []
100 | except RuntimeError:
101 | graphs = []
102 |
103 | if hasattr(module, "forward1"):
104 | graphs.append(module.forward1.graph)
105 |
106 | for graph in graphs:
107 | for node in graph.findAllNodes("prim::Constant"):
108 | if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
109 | node.copyAttributes(device_node)
110 |
111 | model.apply(patch_device)
112 | patch_device(model.encode_image)
113 | patch_device(model.encode_text)
114 |
115 | # patch dtype to float32 (typically for CPU)
116 | if precision == 'fp32':
117 | float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
118 | float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
119 | float_node = float_input.node()
120 |
121 | def patch_float(module):
122 | try:
123 | graphs = [module.graph] if hasattr(module, "graph") else []
124 | except RuntimeError:
125 | graphs = []
126 |
127 | if hasattr(module, "forward1"):
128 | graphs.append(module.forward1.graph)
129 |
130 | for graph in graphs:
131 | for node in graph.findAllNodes("aten::to"):
132 | inputs = list(node.inputs())
133 | for i in [1, 2]: # dtype can be the second or third argument to aten::to()
134 | if inputs[i].node()["value"] == 5:
135 | inputs[i].node().copyAttributes(float_node)
136 |
137 | model.apply(patch_float)
138 | patch_float(model.encode_image)
139 | patch_float(model.encode_text)
140 | model.float()
141 |
142 | # ensure image_size attr available at consistent location for both jit and non-jit
143 | model.visual.image_size = model.input_resolution.item()
144 | return model
145 |
--------------------------------------------------------------------------------
/eva_clip/pretrained.py:
--------------------------------------------------------------------------------
1 | import hashlib
2 | import os
3 | import urllib
4 | import warnings
5 | from functools import partial
6 | from typing import Dict, Union
7 |
8 | from tqdm import tqdm
9 |
10 | try:
11 | from huggingface_hub import hf_hub_download
12 | _has_hf_hub = True
13 | except ImportError:
14 | hf_hub_download = None
15 | _has_hf_hub = False
16 |
17 |
18 | def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
19 | return dict(
20 | url=url,
21 | hf_hub=hf_hub,
22 | mean=mean,
23 | std=std,
24 | )
25 |
26 | _VITB32 = dict(
27 | openai=_pcfg(
28 | "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
29 | laion400m_e31=_pcfg(
30 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
31 | laion400m_e32=_pcfg(
32 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
33 | laion2b_e16=_pcfg(
34 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
35 | laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
36 | )
37 |
38 | _VITB32_quickgelu = dict(
39 | openai=_pcfg(
40 | "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
41 | laion400m_e31=_pcfg(
42 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
43 | laion400m_e32=_pcfg(
44 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
45 | )
46 |
47 | _VITB16 = dict(
48 | openai=_pcfg(
49 | "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
50 | laion400m_e31=_pcfg(
51 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
52 | laion400m_e32=_pcfg(
53 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
54 | laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
55 | )
56 |
57 | _EVAB16 = dict(
58 | eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
59 | eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
60 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
61 | eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
62 | )
63 |
64 | _VITB16_PLUS_240 = dict(
65 | laion400m_e31=_pcfg(
66 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
67 | laion400m_e32=_pcfg(
68 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
69 | )
70 |
71 | _VITL14 = dict(
72 | openai=_pcfg(
73 | "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
74 | laion400m_e31=_pcfg(
75 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
76 | laion400m_e32=_pcfg(
77 | "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
78 | laion2b_s32b_b82k=_pcfg(
79 | hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
80 | mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
81 | )
82 |
83 | _EVAL14 = dict(
84 | eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
85 | eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
86 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
87 | eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
88 | )
89 |
90 | _VITL14_336 = dict(
91 | openai=_pcfg(
92 | "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
93 | )
94 |
95 | _EVAL14_336 = dict(
96 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
97 | eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
98 | eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
99 | eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
100 | )
101 |
102 | _VITH14 = dict(
103 | laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
104 | )
105 |
106 | _VITg14 = dict(
107 | laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
108 | laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
109 | )
110 |
111 | _EVAg14 = dict(
112 | eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
113 | eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
114 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
115 | eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
116 | )
117 |
118 | _EVAg14_PLUS = dict(
119 | eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
120 | eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
121 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
122 | eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
123 | )
124 |
125 | _VITbigG14 = dict(
126 | laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
127 | )
128 |
129 | _EVAbigE14 = dict(
130 | eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
131 | eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
132 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
133 | eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
134 | )
135 |
136 | _EVAbigE14_PLUS = dict(
137 | eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
138 | eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
139 | eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
140 | eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
141 | )
142 |
143 |
144 | _PRETRAINED = {
145 | # "ViT-B-32": _VITB32,
146 | "OpenaiCLIP-B-32": _VITB32,
147 | "OpenCLIP-B-32": _VITB32,
148 |
149 | # "ViT-B-32-quickgelu": _VITB32_quickgelu,
150 | "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
151 | "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
152 |
153 | # "ViT-B-16": _VITB16,
154 | "OpenaiCLIP-B-16": _VITB16,
155 | "OpenCLIP-B-16": _VITB16,
156 |
157 | "EVA02-B-16": _EVAB16,
158 | "EVA02-CLIP-B-16": _EVAB16,
159 |
160 | # "ViT-B-16-plus-240": _VITB16_PLUS_240,
161 | "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
162 |
163 | # "ViT-L-14": _VITL14,
164 | "OpenaiCLIP-L-14": _VITL14,
165 | "OpenCLIP-L-14": _VITL14,
166 |
167 | "EVA02-L-14": _EVAL14,
168 | "EVA02-CLIP-L-14": _EVAL14,
169 |
170 | # "ViT-L-14-336": _VITL14_336,
171 | "OpenaiCLIP-L-14-336": _VITL14_336,
172 |
173 | "EVA02-CLIP-L-14-336": _EVAL14_336,
174 |
175 | # "ViT-H-14": _VITH14,
176 | # "ViT-g-14": _VITg14,
177 | "OpenCLIP-H-14": _VITH14,
178 | "OpenCLIP-g-14": _VITg14,
179 |
180 | "EVA01-CLIP-g-14": _EVAg14,
181 | "EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
182 |
183 | # "ViT-bigG-14": _VITbigG14,
184 | "OpenCLIP-bigG-14": _VITbigG14,
185 |
186 | "EVA02-CLIP-bigE-14": _EVAbigE14,
187 | "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
188 | }
189 |
190 |
191 | def _clean_tag(tag: str):
192 | # normalize pretrained tags
193 | return tag.lower().replace('-', '_')
194 |
195 |
196 | def list_pretrained(as_str: bool = False):
197 | """ returns list of pretrained models
198 | Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
199 | """
200 | return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
201 |
202 |
203 | def list_pretrained_models_by_tag(tag: str):
204 | """ return all models having the specified pretrain tag """
205 | models = []
206 | tag = _clean_tag(tag)
207 | for k in _PRETRAINED.keys():
208 | if tag in _PRETRAINED[k]:
209 | models.append(k)
210 | return models
211 |
212 |
213 | def list_pretrained_tags_by_model(model: str):
214 | """ return all pretrain tags for the specified model architecture """
215 | tags = []
216 | if model in _PRETRAINED:
217 | tags.extend(_PRETRAINED[model].keys())
218 | return tags
219 |
220 |
221 | def is_pretrained_cfg(model: str, tag: str):
222 | if model not in _PRETRAINED:
223 | return False
224 | return _clean_tag(tag) in _PRETRAINED[model]
225 |
226 |
227 | def get_pretrained_cfg(model: str, tag: str):
228 | if model not in _PRETRAINED:
229 | return {}
230 | model_pretrained = _PRETRAINED[model]
231 | return model_pretrained.get(_clean_tag(tag), {})
232 |
233 |
234 | def get_pretrained_url(model: str, tag: str):
235 | cfg = get_pretrained_cfg(model, _clean_tag(tag))
236 | return cfg.get('url', '')
237 |
238 |
239 | def download_pretrained_from_url(
240 | url: str,
241 | cache_dir: Union[str, None] = None,
242 | ):
243 | if not cache_dir:
244 | cache_dir = os.path.expanduser("~/.cache/clip")
245 | os.makedirs(cache_dir, exist_ok=True)
246 | filename = os.path.basename(url)
247 |
248 | if 'openaipublic' in url:
249 | expected_sha256 = url.split("/")[-2]
250 | elif 'mlfoundations' in url:
251 | expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
252 | else:
253 | expected_sha256 = ''
254 |
255 | download_target = os.path.join(cache_dir, filename)
256 |
257 | if os.path.exists(download_target) and not os.path.isfile(download_target):
258 | raise RuntimeError(f"{download_target} exists and is not a regular file")
259 |
260 | if os.path.isfile(download_target):
261 | if expected_sha256:
262 | if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
263 | return download_target
264 | else:
265 | warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
266 | else:
267 | return download_target
268 |
269 | with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
270 | with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
271 | while True:
272 | buffer = source.read(8192)
273 | if not buffer:
274 | break
275 |
276 | output.write(buffer)
277 | loop.update(len(buffer))
278 |
279 | if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
280 | raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
281 |
282 | return download_target
283 |
284 |
285 | def has_hf_hub(necessary=False):
286 | if not _has_hf_hub and necessary:
287 | # if no HF Hub module installed, and it is necessary to continue, raise error
288 | raise RuntimeError(
289 | 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
290 | return _has_hf_hub
291 |
292 |
293 | def download_pretrained_from_hf(
294 | model_id: str,
295 | filename: str = 'open_clip_pytorch_model.bin',
296 | revision=None,
297 | cache_dir: Union[str, None] = None,
298 | ):
299 | has_hf_hub(True)
300 | cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
301 | return cached_file
302 |
303 |
304 | def download_pretrained(
305 | cfg: Dict,
306 | force_hf_hub: bool = False,
307 | cache_dir: Union[str, None] = None,
308 | ):
309 | target = ''
310 | if not cfg:
311 | return target
312 |
313 | download_url = cfg.get('url', '')
314 | download_hf_hub = cfg.get('hf_hub', '')
315 | if download_hf_hub and force_hf_hub:
316 | # use HF hub even if url exists
317 | download_url = ''
318 |
319 | if download_url:
320 | target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
321 | elif download_hf_hub:
322 | has_hf_hub(True)
323 | # we assume the hf_hub entries in pretrained config combine model_id + filename in
324 | # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
325 | # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
326 | model_id, filename = os.path.split(download_hf_hub)
327 | if filename:
328 | target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
329 | else:
330 | target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
331 |
332 | return target
333 |
--------------------------------------------------------------------------------
/eva_clip/rope.py:
--------------------------------------------------------------------------------
1 | from math import pi
2 | import torch
3 | from torch import nn
4 | from einops import rearrange, repeat
5 | import logging
6 |
7 | def broadcat(tensors, dim = -1):
8 | num_tensors = len(tensors)
9 | shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
10 | assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
11 | shape_len = list(shape_lens)[0]
12 | dim = (dim + shape_len) if dim < 0 else dim
13 | dims = list(zip(*map(lambda t: list(t.shape), tensors)))
14 | expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
15 | assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
16 | max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
17 | expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
18 | expanded_dims.insert(dim, (dim, dims[dim]))
19 | expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
20 | tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
21 | return torch.cat(tensors, dim = dim)
22 |
23 | def rotate_half(x):
24 | x = rearrange(x, '... (d r) -> ... d r', r = 2)
25 | x1, x2 = x.unbind(dim = -1)
26 | x = torch.stack((-x2, x1), dim = -1)
27 | return rearrange(x, '... d r -> ... (d r)')
28 |
29 |
30 | class VisionRotaryEmbedding(nn.Module):
31 | def __init__(
32 | self,
33 | dim,
34 | pt_seq_len,
35 | ft_seq_len=None,
36 | custom_freqs = None,
37 | freqs_for = 'lang',
38 | theta = 10000,
39 | max_freq = 10,
40 | num_freqs = 1,
41 | ):
42 | super().__init__()
43 | if custom_freqs:
44 | freqs = custom_freqs
45 | elif freqs_for == 'lang':
46 | freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
47 | elif freqs_for == 'pixel':
48 | freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
49 | elif freqs_for == 'constant':
50 | freqs = torch.ones(num_freqs).float()
51 | else:
52 | raise ValueError(f'unknown modality {freqs_for}')
53 |
54 | if ft_seq_len is None: ft_seq_len = pt_seq_len
55 | t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
56 |
57 | freqs_h = torch.einsum('..., f -> ... f', t, freqs)
58 | freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
59 |
60 | freqs_w = torch.einsum('..., f -> ... f', t, freqs)
61 | freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
62 |
63 | freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
64 |
65 | self.register_buffer("freqs_cos", freqs.cos())
66 | self.register_buffer("freqs_sin", freqs.sin())
67 |
68 | logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
69 |
70 | def forward(self, t, start_index = 0):
71 | rot_dim = self.freqs_cos.shape[-1]
72 | end_index = start_index + rot_dim
73 | assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
74 | t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
75 | t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
76 |
77 | return torch.cat((t_left, t, t_right), dim = -1)
78 |
79 | class VisionRotaryEmbeddingFast(nn.Module):
80 | def __init__(
81 | self,
82 | dim,
83 | pt_seq_len,
84 | ft_seq_len=None,
85 | custom_freqs = None,
86 | freqs_for = 'lang',
87 | theta = 10000,
88 | max_freq = 10,
89 | num_freqs = 1,
90 | patch_dropout = 0.
91 | ):
92 | super().__init__()
93 | if custom_freqs:
94 | freqs = custom_freqs
95 | elif freqs_for == 'lang':
96 | freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
97 | elif freqs_for == 'pixel':
98 | freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
99 | elif freqs_for == 'constant':
100 | freqs = torch.ones(num_freqs).float()
101 | else:
102 | raise ValueError(f'unknown modality {freqs_for}')
103 |
104 | if ft_seq_len is None: ft_seq_len = pt_seq_len
105 | t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
106 |
107 | freqs = torch.einsum('..., f -> ... f', t, freqs)
108 | freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
109 | freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
110 |
111 | freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
112 | freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
113 |
114 | self.patch_dropout = patch_dropout
115 |
116 | self.register_buffer("freqs_cos", freqs_cos)
117 | self.register_buffer("freqs_sin", freqs_sin)
118 |
119 | logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
120 |
121 | def forward(self, t, patch_indices_keep=None):
122 | if patch_indices_keep is not None:
123 | batch = t.size()[0]
124 | batch_indices = torch.arange(batch)
125 | batch_indices = batch_indices[..., None]
126 |
127 | freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
128 | freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
129 |
130 | freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
131 | freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
132 | freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
133 | freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
134 |
135 | return t * freqs_cos + rotate_half(t) * freqs_sin
136 |
137 | return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
--------------------------------------------------------------------------------
/eva_clip/timm_model.py:
--------------------------------------------------------------------------------
1 | """ timm model adapter
2 |
3 | Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
4 | """
5 | import logging
6 | from collections import OrderedDict
7 |
8 | import torch
9 | import torch.nn as nn
10 |
11 | try:
12 | import timm
13 | from timm.models.layers import Mlp, to_2tuple
14 | try:
15 | # old timm imports < 0.8.1
16 | from timm.models.layers.attention_pool2d import RotAttentionPool2d
17 | from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
18 | except ImportError:
19 | # new timm imports >= 0.8.1
20 | from timm.layers import RotAttentionPool2d
21 | from timm.layers import AttentionPool2d as AbsAttentionPool2d
22 | except ImportError:
23 | timm = None
24 |
25 | from .utils import freeze_batch_norm_2d
26 |
27 |
28 | class TimmModel(nn.Module):
29 | """ timm model adapter
30 | # FIXME this adapter is a work in progress, may change in ways that break weight compat
31 | """
32 |
33 | def __init__(
34 | self,
35 | model_name,
36 | embed_dim,
37 | image_size=224,
38 | pool='avg',
39 | proj='linear',
40 | proj_bias=False,
41 | drop=0.,
42 | pretrained=False):
43 | super().__init__()
44 | if timm is None:
45 | raise RuntimeError("Please `pip install timm` to use timm models.")
46 |
47 | self.image_size = to_2tuple(image_size)
48 | self.trunk = timm.create_model(model_name, pretrained=pretrained)
49 | feat_size = self.trunk.default_cfg.get('pool_size', None)
50 | feature_ndim = 1 if not feat_size else 2
51 | if pool in ('abs_attn', 'rot_attn'):
52 | assert feature_ndim == 2
53 | # if attn pooling used, remove both classifier and default pool
54 | self.trunk.reset_classifier(0, global_pool='')
55 | else:
56 | # reset global pool if pool config set, otherwise leave as network default
57 | reset_kwargs = dict(global_pool=pool) if pool else {}
58 | self.trunk.reset_classifier(0, **reset_kwargs)
59 | prev_chs = self.trunk.num_features
60 |
61 | head_layers = OrderedDict()
62 | if pool == 'abs_attn':
63 | head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
64 | prev_chs = embed_dim
65 | elif pool == 'rot_attn':
66 | head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
67 | prev_chs = embed_dim
68 | else:
69 | assert proj, 'projection layer needed if non-attention pooling is used.'
70 |
71 | # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
72 | if proj == 'linear':
73 | head_layers['drop'] = nn.Dropout(drop)
74 | head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
75 | elif proj == 'mlp':
76 | head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
77 |
78 | self.head = nn.Sequential(head_layers)
79 |
80 | def lock(self, unlocked_groups=0, freeze_bn_stats=False):
81 | """ lock modules
82 | Args:
83 | unlocked_groups (int): leave last n layer groups unlocked (default: 0)
84 | """
85 | if not unlocked_groups:
86 | # lock full model
87 | for param in self.trunk.parameters():
88 | param.requires_grad = False
89 | if freeze_bn_stats:
90 | freeze_batch_norm_2d(self.trunk)
91 | else:
92 | # NOTE: partial freeze requires latest timm (master) branch and is subject to change
93 | try:
94 | # FIXME import here until API stable and in an official release
95 | from timm.models.helpers import group_parameters, group_modules
96 | except ImportError:
97 | raise RuntimeError(
98 | 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
99 | matcher = self.trunk.group_matcher()
100 | gparams = group_parameters(self.trunk, matcher)
101 | max_layer_id = max(gparams.keys())
102 | max_layer_id = max_layer_id - unlocked_groups
103 | for group_idx in range(max_layer_id + 1):
104 | group = gparams[group_idx]
105 | for param in group:
106 | self.trunk.get_parameter(param).requires_grad = False
107 | if freeze_bn_stats:
108 | gmodules = group_modules(self.trunk, matcher, reverse=True)
109 | gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
110 | freeze_batch_norm_2d(self.trunk, gmodules)
111 |
112 | @torch.jit.ignore
113 | def set_grad_checkpointing(self, enable=True):
114 | try:
115 | self.trunk.set_grad_checkpointing(enable)
116 | except Exception as e:
117 | logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
118 |
119 | def forward(self, x):
120 | x = self.trunk(x)
121 | x = self.head(x)
122 | return x
123 |
--------------------------------------------------------------------------------
/eva_clip/tokenizer.py:
--------------------------------------------------------------------------------
1 | """ CLIP tokenizer
2 |
3 | Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4 | """
5 | import gzip
6 | import html
7 | import os
8 | from functools import lru_cache
9 | from typing import Union, List
10 |
11 | import ftfy
12 | import regex as re
13 | import torch
14 |
15 | # https://stackoverflow.com/q/62691279
16 | import os
17 | os.environ["TOKENIZERS_PARALLELISM"] = "false"
18 |
19 |
20 | @lru_cache()
21 | def default_bpe():
22 | return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
23 |
24 |
25 | @lru_cache()
26 | def bytes_to_unicode():
27 | """
28 | Returns list of utf-8 byte and a corresponding list of unicode strings.
29 | The reversible bpe codes work on unicode strings.
30 | This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
31 | When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
32 | This is a signficant percentage of your normal, say, 32K bpe vocab.
33 | To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
34 | And avoids mapping to whitespace/control characters the bpe code barfs on.
35 | """
36 | bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
37 | cs = bs[:]
38 | n = 0
39 | for b in range(2**8):
40 | if b not in bs:
41 | bs.append(b)
42 | cs.append(2**8+n)
43 | n += 1
44 | cs = [chr(n) for n in cs]
45 | return dict(zip(bs, cs))
46 |
47 |
48 | def get_pairs(word):
49 | """Return set of symbol pairs in a word.
50 | Word is represented as tuple of symbols (symbols being variable-length strings).
51 | """
52 | pairs = set()
53 | prev_char = word[0]
54 | for char in word[1:]:
55 | pairs.add((prev_char, char))
56 | prev_char = char
57 | return pairs
58 |
59 |
60 | def basic_clean(text):
61 | text = ftfy.fix_text(text)
62 | text = html.unescape(html.unescape(text))
63 | return text.strip()
64 |
65 |
66 | def whitespace_clean(text):
67 | text = re.sub(r'\s+', ' ', text)
68 | text = text.strip()
69 | return text
70 |
71 |
72 | class SimpleTokenizer(object):
73 | def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
74 | self.byte_encoder = bytes_to_unicode()
75 | self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
76 | merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
77 | merges = merges[1:49152-256-2+1]
78 | merges = [tuple(merge.split()) for merge in merges]
79 | vocab = list(bytes_to_unicode().values())
80 | vocab = vocab + [v+'' for v in vocab]
81 | for merge in merges:
82 | vocab.append(''.join(merge))
83 | if not special_tokens:
84 | special_tokens = ['', '']
85 | else:
86 | special_tokens = ['', ''] + special_tokens
87 | vocab.extend(special_tokens)
88 | self.encoder = dict(zip(vocab, range(len(vocab))))
89 | self.decoder = {v: k for k, v in self.encoder.items()}
90 | self.bpe_ranks = dict(zip(merges, range(len(merges))))
91 | self.cache = {t:t for t in special_tokens}
92 | special = "|".join(special_tokens)
93 | self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
94 |
95 | self.vocab_size = len(self.encoder)
96 | self.all_special_ids = [self.encoder[t] for t in special_tokens]
97 |
98 | def bpe(self, token):
99 | if token in self.cache:
100 | return self.cache[token]
101 | word = tuple(token[:-1]) + ( token[-1] + '',)
102 | pairs = get_pairs(word)
103 |
104 | if not pairs:
105 | return token+''
106 |
107 | while True:
108 | bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
109 | if bigram not in self.bpe_ranks:
110 | break
111 | first, second = bigram
112 | new_word = []
113 | i = 0
114 | while i < len(word):
115 | try:
116 | j = word.index(first, i)
117 | new_word.extend(word[i:j])
118 | i = j
119 | except:
120 | new_word.extend(word[i:])
121 | break
122 |
123 | if word[i] == first and i < len(word)-1 and word[i+1] == second:
124 | new_word.append(first+second)
125 | i += 2
126 | else:
127 | new_word.append(word[i])
128 | i += 1
129 | new_word = tuple(new_word)
130 | word = new_word
131 | if len(word) == 1:
132 | break
133 | else:
134 | pairs = get_pairs(word)
135 | word = ' '.join(word)
136 | self.cache[token] = word
137 | return word
138 |
139 | def encode(self, text):
140 | bpe_tokens = []
141 | text = whitespace_clean(basic_clean(text)).lower()
142 | for token in re.findall(self.pat, text):
143 | token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
144 | bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
145 | return bpe_tokens
146 |
147 | def decode(self, tokens):
148 | text = ''.join([self.decoder[token] for token in tokens])
149 | text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ')
150 | return text
151 |
152 |
153 | _tokenizer = SimpleTokenizer()
154 |
155 |
156 | def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
157 | """
158 | Returns the tokenized representation of given input string(s)
159 |
160 | Parameters
161 | ----------
162 | texts : Union[str, List[str]]
163 | An input string or a list of input strings to tokenize
164 | context_length : int
165 | The context length to use; all CLIP models use 77 as the context length
166 |
167 | Returns
168 | -------
169 | A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
170 | """
171 | if isinstance(texts, str):
172 | texts = [texts]
173 |
174 | sot_token = _tokenizer.encoder[""]
175 | eot_token = _tokenizer.encoder[""]
176 | all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
177 | result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
178 |
179 | for i, tokens in enumerate(all_tokens):
180 | if len(tokens) > context_length:
181 | tokens = tokens[:context_length] # Truncate
182 | tokens[-1] = eot_token
183 | result[i, :len(tokens)] = torch.tensor(tokens)
184 |
185 | return result
186 |
187 |
188 | class HFTokenizer:
189 | "HuggingFace tokenizer wrapper"
190 | def __init__(self, tokenizer_name:str):
191 | from transformers import AutoTokenizer
192 | self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
193 |
194 | def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
195 | # same cleaning as for default tokenizer, except lowercasing
196 | # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
197 | if isinstance(texts, str):
198 | texts = [texts]
199 | texts = [whitespace_clean(basic_clean(text)) for text in texts]
200 | input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
201 | return input_ids
202 |
--------------------------------------------------------------------------------
/eva_clip/transform.py:
--------------------------------------------------------------------------------
1 | from typing import Optional, Sequence, Tuple
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torchvision.transforms.functional as F
6 |
7 | from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
8 | CenterCrop
9 |
10 | from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
11 |
12 |
13 | class ResizeMaxSize(nn.Module):
14 |
15 | def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
16 | super().__init__()
17 | if not isinstance(max_size, int):
18 | raise TypeError(f"Size should be int. Got {type(max_size)}")
19 | self.max_size = max_size
20 | self.interpolation = interpolation
21 | self.fn = min if fn == 'min' else min
22 | self.fill = fill
23 |
24 | def forward(self, img):
25 | if isinstance(img, torch.Tensor):
26 | height, width = img.shape[:2]
27 | else:
28 | width, height = img.size
29 | scale = self.max_size / float(max(height, width))
30 | if scale != 1.0:
31 | new_size = tuple(round(dim * scale) for dim in (height, width))
32 | img = F.resize(img, new_size, self.interpolation)
33 | pad_h = self.max_size - new_size[0]
34 | pad_w = self.max_size - new_size[1]
35 | img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
36 | return img
37 |
38 |
39 | def _convert_to_rgb(image):
40 | return image.convert('RGB')
41 |
42 |
43 | # class CatGen(nn.Module):
44 | # def __init__(self, num=4):
45 | # self.num = num
46 | # def mixgen_batch(image, text):
47 | # batch_size = image.shape[0]
48 | # index = np.random.permutation(batch_size)
49 |
50 | # cat_images = []
51 | # for i in range(batch_size):
52 | # # image mixup
53 | # image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
54 | # # text concat
55 | # text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
56 | # text = torch.stack(text)
57 | # return image, text
58 |
59 |
60 | def image_transform(
61 | image_size: int,
62 | is_train: bool,
63 | mean: Optional[Tuple[float, ...]] = None,
64 | std: Optional[Tuple[float, ...]] = None,
65 | resize_longest_max: bool = False,
66 | fill_color: int = 0,
67 | ):
68 | mean = mean or OPENAI_DATASET_MEAN
69 | if not isinstance(mean, (list, tuple)):
70 | mean = (mean,) * 3
71 |
72 | std = std or OPENAI_DATASET_STD
73 | if not isinstance(std, (list, tuple)):
74 | std = (std,) * 3
75 |
76 | if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
77 | # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
78 | image_size = image_size[0]
79 |
80 | normalize = Normalize(mean=mean, std=std)
81 | if is_train:
82 | return Compose([
83 | RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
84 | _convert_to_rgb,
85 | ToTensor(),
86 | normalize,
87 | ])
88 | else:
89 | if resize_longest_max:
90 | transforms = [
91 | ResizeMaxSize(image_size, fill=fill_color)
92 | ]
93 | else:
94 | transforms = [
95 | Resize(image_size, interpolation=InterpolationMode.BICUBIC),
96 | CenterCrop(image_size),
97 | ]
98 | transforms.extend([
99 | _convert_to_rgb,
100 | ToTensor(),
101 | normalize,
102 | ])
103 | return Compose(transforms)
104 |
--------------------------------------------------------------------------------
/eva_clip/utils.py:
--------------------------------------------------------------------------------
1 | from itertools import repeat
2 | import collections.abc
3 | import logging
4 | import math
5 | import numpy as np
6 |
7 | import torch
8 | from torch import nn as nn
9 | from torchvision.ops.misc import FrozenBatchNorm2d
10 | import torch.nn.functional as F
11 |
12 | # open CLIP
13 | def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
14 | # Rescale the grid of position embeddings when loading from state_dict
15 | old_pos_embed = state_dict.get('visual.positional_embedding', None)
16 | if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
17 | return
18 | grid_size = to_2tuple(model.visual.grid_size)
19 | extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
20 | new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
21 | if new_seq_len == old_pos_embed.shape[0]:
22 | return
23 |
24 | if extra_tokens:
25 | pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
26 | else:
27 | pos_emb_tok, pos_emb_img = None, old_pos_embed
28 | old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
29 |
30 | logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
31 | pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
32 | pos_emb_img = F.interpolate(
33 | pos_emb_img,
34 | size=grid_size,
35 | mode=interpolation,
36 | align_corners=True,
37 | )
38 | pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
39 | if pos_emb_tok is not None:
40 | new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
41 | else:
42 | new_pos_embed = pos_emb_img
43 | state_dict['visual.positional_embedding'] = new_pos_embed
44 |
45 |
46 | def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
47 | # Rescale the grid of position embeddings when loading from state_dict
48 | old_pos_embed = state_dict.get('positional_embedding', None)
49 | if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
50 | return
51 | grid_size = to_2tuple(model.visual.grid_size)
52 | extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
53 | new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
54 | if new_seq_len == old_pos_embed.shape[0]:
55 | return
56 |
57 | if extra_tokens:
58 | pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
59 | else:
60 | pos_emb_tok, pos_emb_img = None, old_pos_embed
61 | old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
62 |
63 | logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
64 | pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
65 | pos_emb_img = F.interpolate(
66 | pos_emb_img,
67 | size=grid_size,
68 | mode=interpolation,
69 | align_corners=True,
70 | )
71 | pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
72 | if pos_emb_tok is not None:
73 | new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
74 | else:
75 | new_pos_embed = pos_emb_img
76 | state_dict['positional_embedding'] = new_pos_embed
77 |
78 | def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
79 | all_keys = list(state_dict.keys())
80 | # interpolate position embedding
81 | if 'visual.pos_embed' in state_dict:
82 | pos_embed_checkpoint = state_dict['visual.pos_embed']
83 | embedding_size = pos_embed_checkpoint.shape[-1]
84 | num_patches = model.visual.patch_embed.num_patches
85 | num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
86 | # height (== width) for the checkpoint position embedding
87 | orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
88 | # height (== width) for the new position embedding
89 | new_size = int(num_patches ** 0.5)
90 | # class_token and dist_token are kept unchanged
91 | if orig_size != new_size:
92 | print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
93 | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
94 | # only the position tokens are interpolated
95 | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
96 | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
97 | pos_tokens = torch.nn.functional.interpolate(
98 | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
99 | pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
100 | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
101 | state_dict['visual.pos_embed'] = new_pos_embed
102 |
103 | patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
104 | patch_size = model.visual.patch_embed.patch_size
105 | state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
106 | patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
107 |
108 |
109 | def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
110 | all_keys = list(state_dict.keys())
111 | # interpolate position embedding
112 | if 'pos_embed' in state_dict:
113 | pos_embed_checkpoint = state_dict['pos_embed']
114 | embedding_size = pos_embed_checkpoint.shape[-1]
115 | num_patches = model.visual.patch_embed.num_patches
116 | num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
117 | # height (== width) for the checkpoint position embedding
118 | orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
119 | # height (== width) for the new position embedding
120 | new_size = int(num_patches ** 0.5)
121 | # class_token and dist_token are kept unchanged
122 | if orig_size != new_size:
123 | print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
124 | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
125 | # only the position tokens are interpolated
126 | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
127 | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
128 | pos_tokens = torch.nn.functional.interpolate(
129 | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
130 | pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
131 | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
132 | state_dict['pos_embed'] = new_pos_embed
133 |
134 | patch_embed_proj = state_dict['patch_embed.proj.weight']
135 | patch_size = model.visual.patch_embed.patch_size
136 | state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
137 | patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
138 |
139 |
140 | def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
141 | all_keys = list(state_dict.keys())
142 | for key in all_keys:
143 | if "relative_position_index" in key:
144 | state_dict.pop(key)
145 |
146 | if "relative_position_bias_table" in key:
147 | rel_pos_bias = state_dict[key]
148 | src_num_pos, num_attn_heads = rel_pos_bias.size()
149 | dst_num_pos, _ = model.visual.state_dict()[key].size()
150 | dst_patch_shape = model.visual.patch_embed.patch_shape
151 | if dst_patch_shape[0] != dst_patch_shape[1]:
152 | raise NotImplementedError()
153 | num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
154 | src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
155 | dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
156 | if src_size != dst_size:
157 | print("Position interpolate for %s from %dx%d to %dx%d" % (
158 | key, src_size, src_size, dst_size, dst_size))
159 | extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
160 | rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
161 |
162 | def geometric_progression(a, r, n):
163 | return a * (1.0 - r ** n) / (1.0 - r)
164 |
165 | left, right = 1.01, 1.5
166 | while right - left > 1e-6:
167 | q = (left + right) / 2.0
168 | gp = geometric_progression(1, q, src_size // 2)
169 | if gp > dst_size // 2:
170 | right = q
171 | else:
172 | left = q
173 |
174 | # if q > 1.090307:
175 | # q = 1.090307
176 |
177 | dis = []
178 | cur = 1
179 | for i in range(src_size // 2):
180 | dis.append(cur)
181 | cur += q ** (i + 1)
182 |
183 | r_ids = [-_ for _ in reversed(dis)]
184 |
185 | x = r_ids + [0] + dis
186 | y = r_ids + [0] + dis
187 |
188 | t = dst_size // 2.0
189 | dx = np.arange(-t, t + 0.1, 1.0)
190 | dy = np.arange(-t, t + 0.1, 1.0)
191 |
192 | print("Original positions = %s" % str(x))
193 | print("Target positions = %s" % str(dx))
194 |
195 | all_rel_pos_bias = []
196 |
197 | for i in range(num_attn_heads):
198 | z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
199 | f = F.interpolate.interp2d(x, y, z, kind='cubic')
200 | all_rel_pos_bias.append(
201 | torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
202 |
203 | rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
204 |
205 | new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
206 | state_dict[key] = new_rel_pos_bias
207 |
208 | # interpolate position embedding
209 | if 'pos_embed' in state_dict:
210 | pos_embed_checkpoint = state_dict['pos_embed']
211 | embedding_size = pos_embed_checkpoint.shape[-1]
212 | num_patches = model.visual.patch_embed.num_patches
213 | num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
214 | # height (== width) for the checkpoint position embedding
215 | orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
216 | # height (== width) for the new position embedding
217 | new_size = int(num_patches ** 0.5)
218 | # class_token and dist_token are kept unchanged
219 | if orig_size != new_size:
220 | print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
221 | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
222 | # only the position tokens are interpolated
223 | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
224 | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
225 | pos_tokens = torch.nn.functional.interpolate(
226 | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
227 | pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
228 | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
229 | state_dict['pos_embed'] = new_pos_embed
230 |
231 | patch_embed_proj = state_dict['patch_embed.proj.weight']
232 | patch_size = model.visual.patch_embed.patch_size
233 | state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
234 | patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
235 |
236 |
237 | def freeze_batch_norm_2d(module, module_match={}, name=''):
238 | """
239 | Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
240 | itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
241 | returned. Otherwise, the module is walked recursively and submodules are converted in place.
242 |
243 | Args:
244 | module (torch.nn.Module): Any PyTorch module.
245 | module_match (dict): Dictionary of full module names to freeze (all if empty)
246 | name (str): Full module name (prefix)
247 |
248 | Returns:
249 | torch.nn.Module: Resulting module
250 |
251 | Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
252 | """
253 | res = module
254 | is_match = True
255 | if module_match:
256 | is_match = name in module_match
257 | if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
258 | res = FrozenBatchNorm2d(module.num_features)
259 | res.num_features = module.num_features
260 | res.affine = module.affine
261 | if module.affine:
262 | res.weight.data = module.weight.data.clone().detach()
263 | res.bias.data = module.bias.data.clone().detach()
264 | res.running_mean.data = module.running_mean.data
265 | res.running_var.data = module.running_var.data
266 | res.eps = module.eps
267 | else:
268 | for child_name, child in module.named_children():
269 | full_child_name = '.'.join([name, child_name]) if name else child_name
270 | new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
271 | if new_child is not child:
272 | res.add_module(child_name, new_child)
273 | return res
274 |
275 |
276 | # From PyTorch internals
277 | def _ntuple(n):
278 | def parse(x):
279 | if isinstance(x, collections.abc.Iterable):
280 | return x
281 | return tuple(repeat(x, n))
282 | return parse
283 |
284 |
285 | to_1tuple = _ntuple(1)
286 | to_2tuple = _ntuple(2)
287 | to_3tuple = _ntuple(3)
288 | to_4tuple = _ntuple(4)
289 | to_ntuple = lambda n, x: _ntuple(n)(x)
290 |
291 |
292 | def is_logging(args):
293 | def is_global_master(args):
294 | return args.rank == 0
295 |
296 | def is_local_master(args):
297 | return args.local_rank == 0
298 |
299 | def is_master(args, local=False):
300 | return is_local_master(args) if local else is_global_master(args)
301 | return is_master
302 |
303 |
304 | class AllGather(torch.autograd.Function):
305 | """An autograd function that performs allgather on a tensor.
306 | Performs all_gather operation on the provided tensors.
307 | *** Warning ***: torch.distributed.all_gather has no gradient.
308 | """
309 |
310 | @staticmethod
311 | def forward(ctx, tensor, rank, world_size):
312 | tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
313 | torch.distributed.all_gather(tensors_gather, tensor)
314 | ctx.rank = rank
315 | ctx.batch_size = tensor.shape[0]
316 | return torch.cat(tensors_gather, 0)
317 |
318 | @staticmethod
319 | def backward(ctx, grad_output):
320 | return (
321 | grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
322 | None,
323 | None
324 | )
325 |
326 | allgather = AllGather.apply
--------------------------------------------------------------------------------
/examples/flux pulid enhanced center_face.json:
--------------------------------------------------------------------------------
1 | {"last_node_id": 97, "last_link_id": 230, "nodes": [{"id": 87, "type": "GRPulidFluxEvaClipLoader", "pos": [-900, 510], "size": [330, 30], "flags": {}, "order": 0, "mode": 0, "inputs": [], "outputs": [{"name": "EVA_CLIP", "type": "EVA_CLIP", "links": [202], "slot_index": 0}], "properties": {"Node name for S&R": "GRPulidFluxEvaClipLoader"}, "widgets_values": []}, {"id": 82, "type": "CLIPTextEncode", "pos": [-210, 390], "size": [300, 150], "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 217}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [191], "slot_index": 0}], "title": "CLIP Text Encode (Positive Prompt)", "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""]}, {"id": 85, "type": "GRPulidFluxModelLoader", "pos": [-900, 390], "size": [330, 60], "flags": {}, "order": 1, "mode": 0, "inputs": [], "outputs": [{"name": "PULIDFLUX", "type": "PULIDFLUX", "links": [200], "slot_index": 0}], "properties": {"Node name for S&R": "GRPulidFluxModelLoader"}, "widgets_values": ["pulid_flux_v0.9.1.safetensors"]}, {"id": 92, "type": "DualCLIPLoader", "pos": [-540, 90], "size": [300, 120], "flags": {}, "order": 2, "mode": 0, "inputs": [], "outputs": [{"name": "CLIP", "type": "CLIP", "links": [217, 230], "slot_index": 0}], "properties": {"Node name for S&R": "DualCLIPLoader"}, "widgets_values": ["t5\\google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors", "clip_l.safetensors", "flux", "default"]}, {"id": 69, "type": "GR Image Size", "pos": [-540, 810], "size": [300, 302], "flags": {}, "order": 3, "mode": 0, "inputs": [{"name": "dimensions", "type": "IMAGE", "link": null, "shape": 7}], "outputs": [{"name": "height", "type": "INT", "links": null}, {"name": "width", "type": "INT", "links": null}, {"name": "batch_size", "type": "INT", "links": null}, {"name": "samples", "type": "LATENT", "links": [156], "slot_index": 3}, {"name": "seed", "type": "INT", "links": [152, 194], "slot_index": 4}, {"name": "empty_image", "type": "IMAGE", "links": null}], "properties": {"Node name for S&R": "GR Image Size"}, "widgets_values": [512, 512, "(SDXL) 1024x1024", 1, 284431169981285, "randomize", "white"]}, {"id": 6, "type": "CLIPTextEncode", "pos": [-210, 180], "size": [300, 150], "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 230}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [189], "slot_index": 0}], "title": "CLIP Text Encode (Positive Prompt)", "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["close up face of a woman looking at camera"]}, {"id": 83, "type": "GRApplyPulidFlux", "pos": [-540, 270], "size": [300, 450], "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 216}, {"name": "pulid_flux", "type": "PULIDFLUX", "link": 200}, {"name": "eva_clip", "type": "EVA_CLIP", "link": 202}, {"name": "face_analysis", "type": "FACEANALYSIS", "link": 201}, {"name": "image", "type": "IMAGE", "link": 219}, {"name": "attn_mask", "type": "MASK", "link": null, "shape": 7}, {"name": "prior_image", "type": "IMAGE", "link": null, "shape": 7}], "outputs": [{"name": "MODEL", "type": "MODEL", "links": [229], "slot_index": 0}], "properties": {"Node name for S&R": "GRApplyPulidFlux"}, "widgets_values": [1, 0, 1, false, 0, 0.01, "largest_face", "norm_id", 1, 0, 1000, true]}, {"id": 79, "type": "ImpactQueueTrigger", "pos": [-210, 930], "size": [300, 60], "flags": {}, "order": 10, "mode": 4, "inputs": [{"name": "signal", "type": "*", "link": 194}], "outputs": [{"name": "signal_opt", "type": "*", "links": null}], "properties": {"Node name for S&R": "ImpactQueueTrigger"}, "widgets_values": [false]}, {"id": 86, "type": "GRPulidFluxInsightFaceLoader", "pos": [-900, 600], "size": [330, 60], "flags": {}, "order": 4, "mode": 0, "inputs": [], "outputs": [{"name": "FACEANALYSIS", "type": "FACEANALYSIS", "links": [201], "slot_index": 0}], "properties": {"Node name for S&R": "GRPulidFluxInsightFaceLoader"}, "widgets_values": ["CUDA"]}, {"id": 93, "type": "LoadImage", "pos": [-900, 720], "size": [330, 420], "flags": {}, "order": 5, "mode": 0, "inputs": [], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [219], "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["00001.jpeg", "image"]}, {"id": 71, "type": "KSampler", "pos": [120, 300], "size": [315, 446], "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 229}, {"name": "positive", "type": "CONDITIONING", "link": 189}, {"name": "negative", "type": "CONDITIONING", "link": 191}, {"name": "latent_image", "type": "LATENT", "link": 156}, {"name": "seed", "type": "INT", "link": 152, "widget": {"name": "seed"}}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [157], "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [835363998199966, "randomize", 10, 1, "dpmpp_2m", "sgm_uniform", 1]}, {"id": 91, "type": "UNETLoader", "pos": [-900, 240], "size": [330, 90], "flags": {}, "order": 6, "mode": 0, "inputs": [], "outputs": [{"name": "MODEL", "type": "MODEL", "links": [216], "slot_index": 0}], "properties": {"Node name for S&R": "UNETLoader"}, "widgets_values": ["FLUX1\\flux1-dev.safetensors", "default"]}, {"id": 49, "type": "VAEDecode", "pos": [330, 180], "size": [210, 46], "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 157}, {"name": "vae", "type": "VAE", "link": 88}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [228], "slot_index": 0, "shape": 3}], "properties": {"Node name for S&R": "VAEDecode"}, "widgets_values": []}, {"id": 97, "type": "PreviewImage", "pos": [480, 300], "size": [210, 26], "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 228, "localized_name": "images"}], "outputs": [], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 10, "type": "VAELoader", "pos": [-210, 600], "size": [311.81634521484375, 60.429901123046875], "flags": {}, "order": 7, "mode": 0, "inputs": [], "outputs": [{"name": "VAE", "type": "VAE", "links": [88], "slot_index": 0, "shape": 3}], "properties": {"Node name for S&R": "VAELoader"}, "widgets_values": ["FLUX1\\ae.safetensors"]}], "links": [[88, 10, 0, 49, 1, "VAE"], [152, 69, 4, 71, 4, "INT"], [156, 69, 3, 71, 3, "LATENT"], [157, 71, 0, 49, 0, "LATENT"], [189, 6, 0, 71, 1, "CONDITIONING"], [191, 82, 0, 71, 2, "CONDITIONING"], [194, 69, 4, 79, 0, "*"], [200, 85, 0, 83, 1, "PULIDFLUX"], [201, 86, 0, 83, 3, "FACEANALYSIS"], [202, 87, 0, 83, 2, "EVA_CLIP"], [216, 91, 0, 83, 0, "MODEL"], [217, 92, 0, 82, 0, "CLIP"], [219, 93, 0, 83, 4, "IMAGE"], [228, 49, 0, 97, 0, "IMAGE"], [229, 83, 0, 71, 0, "MODEL"], [230, 92, 0, 6, 0, "CLIP"]], "groups": [], "config": {}, "extra": {"ds": {"scale": 1.015255979947712, "offset": [1329.1742180874276, -12.822105597663544]}, "info": {"name": "workflow", "author": "", "description": "", "version": "1", "created": "2025-01-09T15:47:37.441Z", "modified": "2025-01-10T11:11:46.825Z", "software": "ComfyUI"}, "node_versions": {"ComfyUI-PuLID-Flux-GR": "4a70f169568370dfcad383fdf491e29c628c9d21", "comfy-core": "v0.3.10-43-g129d8908", "ComfyUI_GraftingRayman": "8c7c1e8c70b1b7ad3de2ed675bb348406160adf6", "ComfyUI-Impact-Pack": "8e8621df49434e065f7a9de60fc9523252fdaa39"}}, "version": 0.4}
2 |
--------------------------------------------------------------------------------
/face_restoration_helper.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import numpy as np
3 | import os
4 | import torch
5 | from torchvision.transforms.functional import normalize
6 |
7 | from facexlib.detection import init_detection_model
8 | from facexlib.parsing import init_parsing_model
9 | from facexlib.utils.misc import img2tensor, imwrite
10 |
11 | def get_smallest_face(det_faces, h, w):
12 |
13 | def get_location(val, length):
14 | if val < 0:
15 | return 0
16 | elif val > length:
17 | return length
18 | else:
19 | return val
20 |
21 | face_areas = []
22 | for det_face in det_faces:
23 | left = get_location(det_face[0], w)
24 | right = get_location(det_face[2], w)
25 | top = get_location(det_face[1], h)
26 | bottom = get_location(det_face[3], h)
27 | face_area = (right - left) * (bottom - top)
28 | face_areas.append(face_area)
29 | smallest_idx = face_areas.index(min(face_areas))
30 | return det_faces[smallest_idx], smallest_idx
31 |
32 | def get_most_prominent_face(det_faces, h, w):
33 |
34 | def get_center_distance(face, img_center):
35 | face_center_x = (face[0] + face[2]) / 2
36 | face_center_y = (face[1] + face[3]) / 2
37 | return ((face_center_x - img_center[0]) ** 2 + (face_center_y - img_center[1]) ** 2) ** 0.5
38 |
39 | img_center = (w / 2, h / 2)
40 | distances = [get_center_distance(face, img_center) for face in det_faces]
41 | prominent_idx = distances.index(min(distances)) # Closest to the center
42 | return det_faces[prominent_idx], prominent_idx
43 |
44 | def get_largest_face(det_faces, h, w):
45 |
46 | def get_location(val, length):
47 | if val < 0:
48 | return 0
49 | elif val > length:
50 | return length
51 | else:
52 | return val
53 |
54 | face_areas = []
55 | for det_face in det_faces:
56 | left = get_location(det_face[0], w)
57 | right = get_location(det_face[2], w)
58 | top = get_location(det_face[1], h)
59 | bottom = get_location(det_face[3], h)
60 | face_area = (right - left) * (bottom - top)
61 | face_areas.append(face_area)
62 | largest_idx = face_areas.index(max(face_areas))
63 | return det_faces[largest_idx], largest_idx
64 |
65 |
66 | def get_center_face(det_faces, h=0, w=0, center=None):
67 | if center is not None:
68 | center = np.array(center)
69 | else:
70 | center = np.array([w / 2, h / 2])
71 | center_dist = []
72 | for det_face in det_faces:
73 | face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
74 | dist = np.linalg.norm(face_center - center)
75 | center_dist.append(dist)
76 | center_idx = center_dist.index(min(center_dist))
77 | return det_faces[center_idx], center_idx
78 |
79 |
80 | class FaceRestoreHelper(object):
81 | """Helper for the face restoration pipeline (base class)."""
82 |
83 | def __init__(self,
84 | upscale_factor,
85 | face_size=512,
86 | crop_ratio=(1, 1),
87 | det_model='retinaface_resnet50',
88 | save_ext='png',
89 | template_3points=False,
90 | pad_blur=False,
91 | use_parse=False,
92 | device=None,
93 | model_rootpath=None):
94 | self.template_3points = template_3points # improve robustness
95 | self.upscale_factor = upscale_factor
96 | # the cropped face ratio based on the square face
97 | self.crop_ratio = crop_ratio # (h, w)
98 | assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
99 | self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
100 |
101 | if self.template_3points:
102 | self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
103 | else:
104 | # standard 5 landmarks for FFHQ faces with 512 x 512
105 | self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
106 | [201.26117, 371.41043], [313.08905, 371.15118]])
107 | self.face_template = self.face_template * (face_size / 512.0)
108 | if self.crop_ratio[0] > 1:
109 | self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
110 | if self.crop_ratio[1] > 1:
111 | self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
112 | self.save_ext = save_ext
113 | self.pad_blur = pad_blur
114 | if self.pad_blur is True:
115 | self.template_3points = False
116 |
117 | self.all_landmarks_5 = []
118 | self.det_faces = []
119 | self.affine_matrices = []
120 | self.inverse_affine_matrices = []
121 | self.cropped_faces = []
122 | self.restored_faces = []
123 | self.pad_input_imgs = []
124 |
125 | if device is None:
126 | self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
127 | else:
128 | self.device = device
129 |
130 | # init face detection model
131 | self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath)
132 |
133 | # init face parsing model
134 | self.use_parse = use_parse
135 | self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath)
136 |
137 | def set_upscale_factor(self, upscale_factor):
138 | self.upscale_factor = upscale_factor
139 |
140 | def read_image(self, img):
141 | """img can be image path or cv2 loaded image."""
142 | # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
143 | if isinstance(img, str):
144 | img = cv2.imread(img)
145 |
146 | if np.max(img) > 256: # 16-bit image
147 | img = img / 65535 * 255
148 | if len(img.shape) == 2: # gray image
149 | img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
150 | elif img.shape[2] == 4: # RGBA image with alpha channel
151 | img = img[:, :, 0:3]
152 |
153 | self.input_img = img
154 |
155 | def get_face_landmarks_5(self,
156 | only_keep_largest=False,
157 | only_center_face=False,
158 | only_keep_smallest=False,
159 | only_keep_most_prominent=False,
160 | resize=None,
161 | blur_ratio=0.01,
162 | eye_dist_threshold=None,
163 | select_by_index=None):
164 |
165 |
166 | if resize is None:
167 | scale = 1
168 | input_img = self.input_img
169 | else:
170 | h, w = self.input_img.shape[0:2]
171 | scale = min(h, w) / resize
172 | h, w = int(h / scale), int(w / scale)
173 | input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4)
174 |
175 | with torch.no_grad():
176 | bboxes = self.face_det.detect_faces(input_img, 0.97) * scale
177 | for bbox in bboxes:
178 | # remove faces with too small eye distance: side faces or too small faces
179 | eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]])
180 | if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
181 | continue
182 |
183 | if self.template_3points:
184 | landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
185 | else:
186 | landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
187 | self.all_landmarks_5.append(landmark)
188 | self.det_faces.append(bbox[0:5])
189 | if len(self.det_faces) == 0:
190 | return 0
191 |
192 | if select_by_index is not None and select_by_index < len(self.det_faces):
193 | # Select the specific face by index
194 | self.det_faces = [self.det_faces[select_by_index]]
195 | self.all_landmarks_5 = [self.all_landmarks_5[select_by_index]]
196 | elif only_keep_largest:
197 | h, w, _ = self.input_img.shape
198 | self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
199 | self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
200 | elif only_keep_smallest: # Add this condition
201 | h, w, _ = self.input_img.shape
202 | self.det_faces, smallest_idx = get_smallest_face(self.det_faces, h, w)
203 | self.all_landmarks_5 = [self.all_landmarks_5[smallest_idx]]
204 |
205 | elif only_center_face:
206 | h, w, _ = self.input_img.shape
207 | self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
208 | self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
209 |
210 | # pad blurry images
211 | if self.pad_blur:
212 | self.pad_input_imgs = []
213 | for landmarks in self.all_landmarks_5:
214 | # get landmarks
215 | eye_left = landmarks[0, :]
216 | eye_right = landmarks[1, :]
217 | eye_avg = (eye_left + eye_right) * 0.5
218 | mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
219 | eye_to_eye = eye_right - eye_left
220 | eye_to_mouth = mouth_avg - eye_avg
221 |
222 | # Get the oriented crop rectangle
223 | # x: half width of the oriented crop rectangle
224 | x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
225 | # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
226 | # norm with the hypotenuse: get the direction
227 | x /= np.hypot(*x) # get the hypotenuse of a right triangle
228 | rect_scale = 1.5
229 | x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
230 | # y: half height of the oriented crop rectangle
231 | y = np.flipud(x) * [-1, 1]
232 |
233 | # c: center
234 | c = eye_avg + eye_to_mouth * 0.1
235 | # quad: (left_top, left_bottom, right_bottom, right_top)
236 | quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
237 | # qsize: side length of the square
238 | qsize = np.hypot(*x) * 2
239 | border = max(int(np.rint(qsize * 0.1)), 3)
240 |
241 | # get pad
242 | # pad: (width_left, height_top, width_right, height_bottom)
243 | pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
244 | int(np.ceil(max(quad[:, 1]))))
245 | pad = [
246 | max(-pad[0] + border, 1),
247 | max(-pad[1] + border, 1),
248 | max(pad[2] - self.input_img.shape[0] + border, 1),
249 | max(pad[3] - self.input_img.shape[1] + border, 1)
250 | ]
251 |
252 | if max(pad) > 1:
253 | # pad image
254 | pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
255 | # modify landmark coords
256 | landmarks[:, 0] += pad[0]
257 | landmarks[:, 1] += pad[1]
258 | # blur pad images
259 | h, w, _ = pad_img.shape
260 | y, x, _ = np.ogrid[:h, :w, :1]
261 | mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
262 | np.float32(w - 1 - x) / pad[2]),
263 | 1.0 - np.minimum(np.float32(y) / pad[1],
264 | np.float32(h - 1 - y) / pad[3]))
265 | blur = int(qsize * blur_ratio)
266 | if blur % 2 == 0:
267 | blur += 1
268 | blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
269 | # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
270 |
271 | pad_img = pad_img.astype('float32')
272 | pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
273 | pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
274 | pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
275 | self.pad_input_imgs.append(pad_img)
276 | else:
277 | self.pad_input_imgs.append(np.copy(self.input_img))
278 |
279 | return len(self.all_landmarks_5)
280 |
281 | def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
282 | """Align and warp faces with face template.
283 | """
284 | if self.pad_blur:
285 | assert len(self.pad_input_imgs) == len(
286 | self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
287 | for idx, landmark in enumerate(self.all_landmarks_5):
288 | # use 5 landmarks to get affine matrix
289 | # use cv2.LMEDS method for the equivalence to skimage transform
290 | # ref: https://blog.csdn.net/yichxi/article/details/115827338
291 | affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
292 | self.affine_matrices.append(affine_matrix)
293 | # warp and crop faces
294 | if border_mode == 'constant':
295 | border_mode = cv2.BORDER_CONSTANT
296 | elif border_mode == 'reflect101':
297 | border_mode = cv2.BORDER_REFLECT101
298 | elif border_mode == 'reflect':
299 | border_mode = cv2.BORDER_REFLECT
300 | if self.pad_blur:
301 | input_img = self.pad_input_imgs[idx]
302 | else:
303 | input_img = self.input_img
304 | cropped_face = cv2.warpAffine(
305 | input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
306 | self.cropped_faces.append(cropped_face)
307 | # save the cropped face
308 | if save_cropped_path is not None:
309 | path = os.path.splitext(save_cropped_path)[0]
310 | save_path = f'{path}_{idx:02d}.{self.save_ext}'
311 | imwrite(cropped_face, save_path)
312 |
313 | def get_inverse_affine(self, save_inverse_affine_path=None):
314 | """Get inverse affine matrix."""
315 | for idx, affine_matrix in enumerate(self.affine_matrices):
316 | inverse_affine = cv2.invertAffineTransform(affine_matrix)
317 | inverse_affine *= self.upscale_factor
318 | self.inverse_affine_matrices.append(inverse_affine)
319 | # save inverse affine matrices
320 | if save_inverse_affine_path is not None:
321 | path, _ = os.path.splitext(save_inverse_affine_path)
322 | save_path = f'{path}_{idx:02d}.pth'
323 | torch.save(inverse_affine, save_path)
324 |
325 | def add_restored_face(self, face):
326 | self.restored_faces.append(face)
327 |
328 | def paste_faces_to_input_image(self, save_path=None, upsample_img=None):
329 | h, w, _ = self.input_img.shape
330 | h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
331 |
332 | if upsample_img is None:
333 | # simply resize the background
334 | upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
335 | else:
336 | upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
337 |
338 | assert len(self.restored_faces) == len(
339 | self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
340 | for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
341 | # Add an offset to inverse affine matrix, for more precise back alignment
342 | if self.upscale_factor > 1:
343 | extra_offset = 0.5 * self.upscale_factor
344 | else:
345 | extra_offset = 0
346 | inverse_affine[:, 2] += extra_offset
347 | inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
348 |
349 | if self.use_parse:
350 | # inference
351 | face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
352 | face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
353 | normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
354 | face_input = torch.unsqueeze(face_input, 0).to(self.device)
355 | with torch.no_grad():
356 | out = self.face_parse(face_input)[0]
357 | out = out.argmax(dim=1).squeeze().cpu().numpy()
358 |
359 | mask = np.zeros(out.shape)
360 | MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
361 | for idx, color in enumerate(MASK_COLORMAP):
362 | mask[out == idx] = color
363 | # blur the mask
364 | mask = cv2.GaussianBlur(mask, (101, 101), 11)
365 | mask = cv2.GaussianBlur(mask, (101, 101), 11)
366 | # remove the black borders
367 | thres = 10
368 | mask[:thres, :] = 0
369 | mask[-thres:, :] = 0
370 | mask[:, :thres] = 0
371 | mask[:, -thres:] = 0
372 | mask = mask / 255.
373 |
374 | mask = cv2.resize(mask, restored_face.shape[:2])
375 | mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3)
376 | inv_soft_mask = mask[:, :, None]
377 | pasted_face = inv_restored
378 |
379 | else: # use square parse maps
380 | mask = np.ones(self.face_size, dtype=np.float32)
381 | inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
382 | # remove the black borders
383 | inv_mask_erosion = cv2.erode(
384 | inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
385 | pasted_face = inv_mask_erosion[:, :, None] * inv_restored
386 | total_face_area = np.sum(inv_mask_erosion) # // 3
387 | # compute the fusion edge based on the area of face
388 | w_edge = int(total_face_area**0.5) // 20
389 | erosion_radius = w_edge * 2
390 | inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
391 | blur_size = w_edge * 2
392 | inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
393 | if len(upsample_img.shape) == 2: # upsample_img is gray image
394 | upsample_img = upsample_img[:, :, None]
395 | inv_soft_mask = inv_soft_mask[:, :, None]
396 |
397 | if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
398 | alpha = upsample_img[:, :, 3:]
399 | upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
400 | upsample_img = np.concatenate((upsample_img, alpha), axis=2)
401 | else:
402 | upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
403 |
404 | if np.max(upsample_img) > 256: # 16-bit image
405 | upsample_img = upsample_img.astype(np.uint16)
406 | else:
407 | upsample_img = upsample_img.astype(np.uint8)
408 | if save_path is not None:
409 | path = os.path.splitext(save_path)[0]
410 | save_path = f'{path}.{self.save_ext}'
411 | imwrite(upsample_img, save_path)
412 | return upsample_img
413 |
414 | def clean_all(self):
415 | self.all_landmarks_5 = []
416 | self.restored_faces = []
417 | self.affine_matrices = []
418 | self.cropped_faces = []
419 | self.inverse_affine_matrices = []
420 | self.det_faces = []
421 | self.pad_input_imgs = []
422 |
--------------------------------------------------------------------------------
/online_train1.py:
--------------------------------------------------------------------------------
1 | # supervised by a global average embedding, which is a biased estimation of the true embedding
2 | # use projection to enable a complex decoding
3 | # makes no big difference than mean so far, the decoding may not work 🤦
4 |
5 | import torch.nn as nn
6 | import torch.nn.functional as F
7 | import torch.optim as optim
8 | import torch
9 | from tqdm import tqdm
10 | import random
11 |
12 | class Transform(nn.Module):
13 | def __init__(self, n=2, token_size=32, input_dim=2048):
14 | super().__init__()
15 |
16 | self.n=n
17 | self.dim= input_dim*token_size
18 | self.token_size=token_size
19 | self.input_dim=input_dim
20 |
21 | self.weight = nn.Parameter(torch.ones(self.n,1),requires_grad=True)
22 |
23 | self.projections = nn.ModuleList([nn.Sequential(
24 | nn.Linear(self.dim, 512),
25 | nn.ReLU(),
26 | nn.Linear(512, self.dim)
27 | ) for _ in range(self.n)])
28 |
29 | def encode(self, x):
30 | x = x.view(-1, self.dim)
31 | x = self.weight*x
32 | return x
33 |
34 | def decode(self, x):
35 | out=[]
36 | for i in range(self.n):
37 | t = self.projections[i](x[i])
38 | out.append(t)
39 | x = torch.stack(out, dim=0)
40 | x=x.view(self.n,self.token_size,self.input_dim)
41 | x=torch.mean(x,dim=0)
42 | return x
43 |
44 | def forward(self, x):
45 | x = self.encode(x)
46 | x = self.decode(x)
47 | return x
48 |
49 | def online_train(cond, device="cuda:1",step=1000):
50 | old_device=cond.device
51 | dtype=cond.dtype
52 | cond = cond.clone().to(device,torch.float32)
53 | cond.requires_grad=False
54 | torch.set_grad_enabled(True)
55 |
56 | print("online training, initializing model...")
57 | n=cond.shape[0]
58 | model=Transform(n=n)
59 | optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.0001)
60 | criterion = nn.MSELoss()
61 | model.to(device)
62 | model.train()
63 |
64 | y=torch.mean(cond,dim=0)
65 |
66 | random.seed(42)
67 | bar=tqdm(range(step))
68 | for s in bar:
69 | optimizer.zero_grad()
70 | attack_weight=[random.uniform(0.5,1.5) for _ in range(n)]
71 | attack_weight=torch.tensor(attack_weight)[:,None,None].to(device)
72 | x=attack_weight*cond
73 | output = model(x)
74 | loss = criterion(output, y)
75 | loss.backward()
76 | optimizer.step()
77 | bar.set_postfix(loss=loss.item())
78 |
79 | weight=model.weight
80 | cond=weight[:,:,None]*cond
81 | print(weight)
82 |
83 | print("online training, ending...")
84 | del model
85 | del optimizer
86 |
87 | cond=torch.mean(cond,dim=0).unsqueeze(0)
88 | return cond.to(old_device,dtype=dtype)
--------------------------------------------------------------------------------
/online_train2.py:
--------------------------------------------------------------------------------
1 | # self-supervised learning, one of the embedding acts as the target, the other as the support
2 | # works nicely
3 |
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | import torch.optim as optim
7 | import torch
8 | from tqdm import tqdm
9 | import random
10 |
11 | class Transform(nn.Module):
12 | def __init__(self, n=2, token_size=32, input_dim=2048):
13 | super().__init__()
14 |
15 | self.n=n
16 | self.token_size=token_size
17 |
18 | self.weight = nn.Parameter(torch.ones(self.n,self.token_size),requires_grad=True)
19 |
20 | def encode(self, x):
21 | x = torch.einsum('bij,bi->ij', x, self.weight)
22 | return x
23 |
24 | def forward(self, x):
25 | x = self.encode(x)
26 | return x
27 |
28 | def criterion(output, target, token_sample_rate=0.25):
29 | t=target-output
30 | t=torch.norm(t,dim=1)
31 | s=random.sample(range(t.shape[0]),int(token_sample_rate*t.shape[0]))
32 | return torch.mean(t[s])
33 |
34 | def online_train(cond, device="cuda:1",step=1000):
35 | old_device=cond.device
36 | dtype=cond.dtype
37 | cond = cond.clone().to(device,torch.float32)
38 | # cond.requires_grad=False
39 | # torch.set_grad_enabled(True)
40 |
41 | y=cond[0,:,:]
42 | cond=cond[1:,:,:]
43 |
44 | print("online training, initializing model...")
45 | n=cond.shape[0]
46 | model=Transform(n=n)
47 | optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.0001)
48 | model.to(device)
49 | model.train()
50 |
51 | random.seed(42)
52 | bar=tqdm(range(step))
53 | for s in bar:
54 | optimizer.zero_grad()
55 | x=cond
56 | output = model(x)
57 | loss = criterion(output, y)
58 | loss.backward()
59 | optimizer.step()
60 | bar.set_postfix(loss=loss.item())
61 |
62 | weight=model.weight
63 | print(weight)
64 | cond=weight[:,:,None]*cond+y[None,:,:]*(1.0/n)
65 |
66 | print("online training, ending...")
67 | del model
68 | del optimizer
69 |
70 | cond=torch.mean(cond,dim=0).unsqueeze(0)
71 | return cond.to(old_device,dtype=dtype)
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [project]
2 | name = "pulid-flux-gr"
3 | description = "This is a PuLID node that has been extended with new features."
4 | version = "1.0.0"
5 | license = {file = "LICENSE"}
6 | dependencies = ["facexlib", "insightface", "onnxruntime", "onnxruntime-gpu", "ftfy", "timm", "torch"]
7 |
8 | [project.urls]
9 | Repository = "https://github.com/GraftingRayman/ComfyUI-PuLID-Flux-GR"
10 | # Used by Comfy Registry https://comfyregistry.org
11 |
12 | [tool.comfy]
13 | PublisherId = ""
14 | DisplayName = "ComfyUI-PuLID-Flux-GR"
15 | Icon = ""
16 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | facexlib
2 | insightface
3 | onnxruntime
4 | onnxruntime-gpu
5 | ftfy
6 | timm
7 | torch
8 | filterpy
9 |
--------------------------------------------------------------------------------