├── .Rbuildignore
├── .gitignore
├── COPYING
├── DESCRIPTION
├── NAMESPACE
├── R
├── data.R
├── misc.R
├── mlmm.r
├── mlmm_cof.r
└── plot_mlmm.r
├── README.md
├── data-raw
└── make_data_mlmm.R
├── data
└── example_data.rda
├── inst
└── CITATION
├── man
├── example_data.Rd
├── mlmm.Rd
├── mlmm_cof.Rd
├── plot_GWAS.Rd
├── plot_fwd_GWAS.Rd
├── plot_fwd_region.Rd
├── plot_opt_GWAS.Rd
├── plot_opt_region.Rd
├── plot_region.Rd
├── plot_step_RSS.Rd
├── plot_step_RSS_cof.Rd
├── plot_step_table.Rd
├── qqplot_fwd_GWAS.Rd
└── qqplot_opt_GWAS.Rd
├── misc
├── PCs.txt
├── code_mlmm.r
├── emma.r
├── emmax.r
├── example_data.Rdata
├── example_data_bis.Rdata
├── genot.txt
├── map.txt
└── phenot.txt
├── mlmm.Rproj
└── vignettes
├── mlmm.Rmd
└── mlmm_cof.Rmd
/.Rbuildignore:
--------------------------------------------------------------------------------
1 | ^.*\.Rproj$
2 | ^\.Rproj\.user$
3 | ^data-raw$
4 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *~
2 | .Rproj.user
3 | .Rhistory
4 | .RData
5 | inst/doc
6 |
--------------------------------------------------------------------------------
/COPYING:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/DESCRIPTION:
--------------------------------------------------------------------------------
1 | Package: mlmm
2 | Title: An efficient multi-locus mixed-model approach for genome-wide association
3 | studies in structured populations
4 | Version: 0.1.1
5 | Authors@R: c(
6 | person("Vincent", "Segura", email="vincent.segura@orleans.inra.fr", role=c("aut")),
7 | person("Bjarni J.", "Vilhjalmsson", email="bjvl@birc.au.dk", role=c("aut")),
8 | person("Uemit", "Seren", email="uemit.seren@gmail.com", role=c("cre")),
9 | person("Timothee", "Flutre", email="timothee.flutre@supagro.inra.fr", role=c("ctb"))
10 | )
11 | Description: The mlmm R package contains functions to carry out GWAS with MLMM
12 | and plot the results from the analysis. Two versions are currently available:
13 | mlmm, the original MLMM as described in Segura, Vilhjálmsson et al (Nat Gen
14 | 2012), and mlmm_cof, a modified version of MLMM that allows including a fixed
15 | covariate in the association model, for example a matrix of principal components
16 | scores (MLMM version of the "PK" model) or any feature that would make sense to
17 | regress out (e.g. sex).
18 | Depends:
19 | R (>= 3.2.2),
20 | emma (>= 1.1.2)
21 | License: GPL-3
22 | Encoding: UTF-8
23 | LazyData: true
24 | URL: https://github.com/Gregor-Mendel-Institute/mlmm
25 | BugReports: https://github.com/Gregor-Mendel-Institute/mlmm/issues
26 | Suggests:
27 | knitr,
28 | rmarkdown
29 | VignetteBuilder: knitr
30 | RoxygenNote: 6.0.1
31 |
--------------------------------------------------------------------------------
/NAMESPACE:
--------------------------------------------------------------------------------
1 | # Generated by roxygen2: do not edit by hand
2 |
3 | export(mlmm)
4 | export(mlmm_cof)
5 | export(plot_GWAS)
6 | export(plot_fwd_GWAS)
7 | export(plot_fwd_region)
8 | export(plot_opt_GWAS)
9 | export(plot_opt_region)
10 | export(plot_region)
11 | export(plot_step_RSS)
12 | export(plot_step_RSS_cof)
13 | export(plot_step_table)
14 | export(qqplot_fwd_GWAS)
15 | export(qqplot_opt_GWAS)
16 | import(emma)
17 |
--------------------------------------------------------------------------------
/R/data.R:
--------------------------------------------------------------------------------
1 | #' Genotypes, SNP info, kinship and phenotypes.
2 | #'
3 | #' A dataset used as example for the mlmm function.
4 | #'
5 | #' @format A list with 4 components:
6 | #' \describe{
7 | #' \item{X}{matrix of imputed genotypes}
8 | #' \item{Y}{vector of phenotypes}
9 | #' \item{K}{kinship matrix}
10 | #' \item{snp_info}{SNP coordinates}
11 | #' }
12 | "example_data"
13 |
--------------------------------------------------------------------------------
/R/misc.R:
--------------------------------------------------------------------------------
1 | ##' @import emma
2 |
3 | .onAttach <- function(libname, pkgname) {
4 | if(! requireNamespace("utils", quietly=TRUE))
5 | stop("Pkg utils needed for this function to work. Please install it.",
6 | call.=FALSE)
7 | msg <- paste0("package '", pkgname,
8 | "' (version ", utils::packageVersion(pkgname), ")",
9 | " is loaded",
10 | "\ndev at https://github.com/Gregor-Mendel-Institute/mlmm")
11 | packageStartupMessage(msg)
12 | }
13 |
--------------------------------------------------------------------------------
/R/mlmm.r:
--------------------------------------------------------------------------------
1 | ##############################################################################################################################################
2 | ###MLMM - Multi-Locus Mixed Model
3 | ###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH
4 | #######
5 | #
6 | ##note: require EMMA
7 | #library(emma)
8 | #source('emma.r')
9 | #
10 | ##REQUIRED DATA & FORMAT
11 | #
12 | #PHENOTYPE - Y: a vector of length m, with names(Y)=individual names
13 | #GENOTYPE - X: a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names
14 | #KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names
15 | #each of these data being sorted in the same way, according to the individual name
16 | #
17 | ##FOR PLOTING THE GWAS RESULTS
18 | #SNP INFORMATION - snp_info: a data frame having at least 3 columns:
19 | # - 1 named 'SNP', with SNP names (same as colnames(X)),
20 | # - 1 named 'Chr', with the chromosome number to which belong each SNP
21 | # - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to.
22 | #######
23 | #
24 | ##FUNCTIONS USE
25 | #save this file somewhere on your computer and source it!
26 | #source('path/mlmm.r')
27 | #
28 | ###FORWARD + BACKWARD ANALYSES
29 | #mygwas<-mlmm(Y,X,K,nbchunks,maxsteps)
30 | #X,Y,K as described above
31 | #nbchunks: an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
32 | #maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0,
33 | # however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used.
34 | # It's value must be specified as an integer >= 3
35 | #
36 | ###RESULTS
37 | #
38 | ##STEPWISE TABLE
39 | #mygwas$step_table
40 | #
41 | ##PLOTS
42 | #
43 | ##PLOTS FORM THE FORWARD TABLE
44 | #plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC'))
45 | #
46 | ##RSS PLOT
47 | #plot_step_RSS(mygwas)
48 | #
49 | ##GWAS MANHATTAN PLOTS
50 | #
51 | #FORWARD STEPS
52 | #plot_fwd_GWAS(mygwas,step,snp_info,pval_filt)
53 | #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
54 | #snp_info as described above
55 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
56 | #
57 | #OPTIMAL MODELS
58 | #Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria
59 | #
60 | #plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt)
61 | #snp_info as described above
62 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
63 | #
64 | ##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST
65 | #plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2)
66 | #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
67 | #snp_info as described above
68 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
69 | #chrom is an integer specifying the chromosome on which the region of interest is
70 | #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
71 | #
72 | #plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2)
73 | #snp_info as described above
74 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
75 | #chrom is an integer specifying the chromosome on which the region of interest is
76 | #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
77 | #
78 | ##QQPLOTS of pvalues
79 | #qqplot_fwd_GWAS(mygwas,nsteps)
80 | #nsteps=maximum number of forward steps to be displayed
81 | #
82 | #qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'))
83 | #
84 | ##############################################################################################################################################
85 |
86 | ##' MLMM
87 | ##'
88 | ##' MLMM
89 | ##' @param Y phenotypes, a vector of length m, with names(Y)=individual names
90 | ##' @param X genotypes, a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names
91 | ##' @param K kinship, a n by n matrix, with rownames(K)=colnames(K)=individual names
92 | ##' @param nbchunks an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
93 | ##' @param maxsteps maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. It's value must be specified as an integer >= 3
94 | ##' @param thresh threshold
95 | ##' @return results
96 | ##' @author V. Segura & B. J. Vilhjalmsson
97 | ##' @export
98 | mlmm <- function(Y,X,K,nbchunks,maxsteps,thresh = NULL) {
99 |
100 | n<-length(Y)
101 | m<-ncol(X)
102 |
103 | stopifnot(ncol(K) == n)
104 | stopifnot(nrow(K) == n)
105 | stopifnot(nrow(X) == n)
106 | stopifnot(nbchunks >= 2)
107 | stopifnot(maxsteps >= 3)
108 |
109 | ##INTERCEPT
110 |
111 | Xo<-rep(1,n)
112 |
113 | ##K MATRIX NORMALISATION
114 |
115 | K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K
116 | rm(K)
117 |
118 | ##step 0 : NULL MODEL
119 | cof_fwd<-list()
120 | cof_fwd[[1]]<-as.matrix(Xo)
121 | colnames(cof_fwd[[1]])<-'Xo'
122 |
123 | mod_fwd<-list()
124 | mod_fwd[[1]]<-emma::emma.REMLE(Y,cof_fwd[[1]],K_norm)
125 |
126 | herit_fwd<-list()
127 | herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve)
128 |
129 | RSSf<-list()
130 | RSSf[[1]]<-'NA'
131 |
132 | RSS_H0<-list()
133 | RSS_H0[[1]]<-'NA'
134 |
135 | df1<-1
136 | df2<-list()
137 | df2[[1]]<-'NA'
138 |
139 | Ftest<-list()
140 | Ftest[[1]]<-'NA'
141 |
142 | pval<-list()
143 | pval[[1]]<-'NA'
144 |
145 | fwd_lm<-list()
146 |
147 | cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n')
148 |
149 | ##step 1 : EMMAX
150 |
151 | M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n)))
152 | Y_t<-crossprod(M,Y)
153 | cof_fwd_t<-crossprod(M,cof_fwd[[1]])
154 | fwd_lm[[1]]<-summary(stats::lm(Y_t~0+cof_fwd_t))
155 | Res_H0<-fwd_lm[[1]]$residuals
156 | Q_<-qr.Q(qr(cof_fwd_t))
157 |
158 | RSS<-list()
159 | for (j in 1:(nbchunks-1)) {
160 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
161 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
162 | rm(X_t)}
163 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))])
164 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
165 | rm(X_t,j)
166 |
167 | RSSf[[2]]<-unlist(RSS)
168 | RSS_H0[[2]]<-sum(Res_H0^2)
169 | df2[[2]]<-n-df1-ncol(cof_fwd[[1]])
170 | Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1
171 | pval[[2]]<-stats::pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE)
172 |
173 | cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])])
174 | colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1]))
175 | mod_fwd[[2]]<-emma::emma.REMLE(Y,cof_fwd[[2]],K_norm)
176 | herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve)
177 | rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
178 |
179 | cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n')
180 |
181 | ##FORWARD
182 |
183 | for (i in 3:(maxsteps)) {
184 | if (herit_fwd[[i-2]] < 0.01){
185 | break
186 | } else {
187 |
188 | M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n)))
189 | Y_t<-crossprod(M,Y)
190 | cof_fwd_t<-crossprod(M,cof_fwd[[i-1]])
191 | fwd_lm[[i-1]]<-summary(stats::lm(Y_t~0+cof_fwd_t))
192 | Res_H0<-fwd_lm[[i-1]]$residuals
193 | Q_ <- qr.Q(qr(cof_fwd_t))
194 |
195 | RSS<-list()
196 | for (j in 1:(nbchunks-1)) {
197 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
198 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
199 | rm(X_t)}
200 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))])
201 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
202 | rm(X_t,j)
203 |
204 | RSSf[[i]]<-unlist(RSS)
205 | RSS_H0[[i]]<-sum(Res_H0^2)
206 | df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]])
207 | Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1
208 | pval[[i]]<-stats::pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE)
209 |
210 | cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])])
211 | colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1]))
212 | mod_fwd[[i]]<-emma::emma.REMLE(Y,cof_fwd[[i]],K_norm)
213 | herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve)
214 | rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)}
215 | cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')}
216 | rm(i)
217 |
218 | ##gls at last forward step
219 | M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n)))
220 | Y_t<-crossprod(M,Y)
221 | cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]])
222 | fwd_lm[[length(mod_fwd)]]<-summary(stats::lm(Y_t~0+cof_fwd_t))
223 |
224 | Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals
225 | Q_ <- qr.Q(qr(cof_fwd_t))
226 |
227 | RSS<-list()
228 | for (j in 1:(nbchunks-1)) {
229 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
230 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
231 | rm(X_t)}
232 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))])
233 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
234 | rm(X_t,j)
235 |
236 | RSSf[[length(mod_fwd)+1]]<-unlist(RSS)
237 | RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2)
238 | df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]])
239 | Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1
240 | pval[[length(mod_fwd)+1]]<-stats::pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE)
241 | rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
242 |
243 | ##get max pval at each forward step
244 | max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm))
245 | max_pval_fwd[1]<-0
246 | for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])}
247 | rm(i)
248 |
249 | ##get the number of parameters & Loglikelihood from ML at each step
250 | mod_fwd_LL<-list()
251 | mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma::emma.MLE(Y,cof_fwd[[1]],K_norm)$ML)
252 | for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma::emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)}
253 | rm(i)
254 |
255 | cat('backward analysis','\n')
256 |
257 | ##BACKWARD (1st step == last fwd step)
258 |
259 | dropcof_bwd<-list()
260 | cof_bwd<-list()
261 | mod_bwd <- list()
262 | bwd_lm<-list()
263 | herit_bwd<-list()
264 |
265 | dropcof_bwd[[1]]<-'NA'
266 | cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]])
267 | colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]
268 | mod_bwd[[1]]<-emma::emma.REMLE(Y,cof_bwd[[1]],K_norm)
269 | herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve)
270 | M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n)))
271 | Y_t<-crossprod(M,Y)
272 | cof_bwd_t<-crossprod(M,cof_bwd[[1]])
273 | bwd_lm[[1]]<-summary(stats::lm(Y_t~0+cof_bwd_t))
274 |
275 | rm(M,Y_t,cof_bwd_t)
276 |
277 | for (i in 2:length(mod_fwd)) {
278 | dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))]
279 | cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]])
280 | colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]
281 | mod_bwd[[i]]<-emma::emma.REMLE(Y,cof_bwd[[i]],K_norm)
282 | herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve)
283 | M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n)))
284 | Y_t<-crossprod(M,Y)
285 | cof_bwd_t<-crossprod(M,cof_bwd[[i]])
286 | bwd_lm[[i]]<-summary(stats::lm(Y_t~0+cof_bwd_t))
287 | rm(M,Y_t,cof_bwd_t)}
288 |
289 | rm(i)
290 |
291 | ##get max pval at each backward step
292 | max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm))
293 | for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])}
294 | max_pval_bwd[length(bwd_lm)]<-0
295 |
296 | ##get the number of parameters & Loglikelihood from ML at each step
297 | mod_bwd_LL<-list()
298 | mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma::emma.MLE(Y,cof_bwd[[1]],K_norm)$ML)
299 | for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma::emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)}
300 | rm(i)
301 |
302 | cat('creating output','\n')
303 |
304 | ##Forward Table: Fwd + Bwd Tables
305 | ##Compute parameters for model criteria
306 | BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)}
307 | extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)}
308 |
309 | fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]]
310 | ,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]]))
311 | for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table,
312 | data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]]
313 | ,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))}
314 |
315 | rm(i)
316 |
317 | bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]]
318 | ,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]]))
319 | for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table,
320 | data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]]
321 | ,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))}
322 |
323 | rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd)
324 |
325 | fwdbwd_table<-rbind(fwd_table,bwd_table)
326 |
327 | ##RSS for plot
328 | mod_fwd_RSS<-vector()
329 | mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2)
330 | for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)}
331 | mod_bwd_RSS<-vector()
332 | mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2)
333 | for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)}
334 | expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]}))
335 | h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS)
336 | unexpl_RSS<-1-expl_RSS-h2_RSS
337 | plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum))
338 |
339 | ##GLS pvals at each step
340 | pval_step<-list()
341 | pval_step[[1]]<-list(out=data.frame("SNP"=colnames(X),"pval"=pval[[2]]),"cof"=NA, "coef"=fwd_lm[[1]]$coef)
342 | for (i in 2:(length(mod_fwd))) {pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4]),
343 | data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]])),"cof"=colnames(cof_fwd[[i]])[-1], "coef"=fwd_lm[[i]]$coef)}
344 |
345 | ##GLS pvals for best models according to extBIC and mbonf
346 |
347 | opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],]
348 | opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],]
349 | if(! is.null(thresh)){
350 | opt_thresh<-(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof))[1],]
351 | }
352 | bestmodel_pvals<-function(model) {
353 | if(substr(model$step_,start=0,stop=3)=='fwd') {
354 | pval_step[[as.integer(substring(model$step_,first=4))+1]]
355 | } else if (substr(model$step_,start=0,stop=3)=='bwd') {
356 | cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]]
357 | mixedmod<-emma::emma.REMLE(Y,cof,K_norm)
358 | M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n)))
359 | Y_t<-crossprod(M,Y)
360 | cof_t<-crossprod(M,cof)
361 | GLS_lm<-summary(stats::lm(Y_t~0+cof_t))
362 | Res_H0<-GLS_lm$residuals
363 | Q_ <- qr.Q(qr(cof_t))
364 | RSS<-list()
365 | for (j in 1:(nbchunks-1)) {
366 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
367 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
368 | rm(X_t)}
369 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))])
370 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
371 | rm(X_t,j)
372 | RSSf<-unlist(RSS)
373 | RSS_H0<-sum(Res_H0^2)
374 | df2<-n-df1-ncol(cof)
375 | Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1
376 | pval<-stats::pf(Ftest,df1,df2,lower.tail=FALSE)
377 | list('out'=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4]),
378 | data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval)),
379 | 'cof'=colnames(cof)[-1],
380 | 'coef'=GLS_lm$coef)} else {cat('error \n')}}
381 | opt_extBIC_out<-bestmodel_pvals(opt_extBIC)
382 | opt_mbonf_out<-bestmodel_pvals(opt_mbonf)
383 | if(! is.null(thresh)){
384 | opt_thresh_out<-bestmodel_pvals(opt_thresh)
385 | }
386 | output <- list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)
387 | if(! is.null(thresh)){
388 | output$thresh <- -log10(thresh)
389 | output$opt_thresh <- opt_thresh_out
390 | }
391 | return(output)
392 | }
393 |
--------------------------------------------------------------------------------
/R/mlmm_cof.r:
--------------------------------------------------------------------------------
1 | ##############################################################################################################################################
2 | ###MLMM_COF - Multi-Locus Mixed Model
3 | ###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH
4 | #######
5 | #
6 | ##note: require EMMA
7 | #library(emma)
8 | #source('emma.r')
9 | #
10 | ##REQUIRED DATA & FORMAT
11 | #
12 | #PHENOTYPE - Y: a vector of length m, with names(Y)=individual names
13 | #GENOTYPE - X: a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names
14 | #KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names
15 | #COVARIANCE MATRIX - cofs: a n by p matrix, where n=number of individuals, p=number of covariates in the matrix (e.g. PC axes)
16 | #each of these data being sorted in the same way, according to the individual name
17 | #
18 | ##FOR PLOTING THE GWAS RESULTS
19 | #SNP INFORMATION - snp_info: a data frame having at least 3 columns:
20 | # - 1 named 'SNP', with SNP names (same as colnames(X)),
21 | # - 1 named 'Chr', with the chromosome number to which belong each SNP
22 | # - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to.
23 | #######
24 | #
25 | ##FUNCTIONS USE
26 | #save this file somewhere on your computer and source it!
27 | #source('path/mlmm.r')
28 | #
29 | ###FORWARD + BACKWARD ANALYSES
30 | #mygwas<-mlmm_cof(Y,X,K,nbchunks,maxsteps)
31 | #X,Y,K as described above
32 | #nbchunks: an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
33 | #maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0,
34 | # however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used.
35 | # It's value must be specified as an integer >= 3
36 | #
37 | ###RESULTS
38 | #
39 | ##STEPWISE TABLE
40 | #mygwas$step_table
41 | #
42 | ##PLOTS
43 | #
44 | ##PLOTS FORM THE FORWARD TABLE
45 | #plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC'))
46 | #
47 | ##RSS PLOT
48 | #plot_step_RSS(mygwas)
49 | #
50 | ##GWAS MANHATTAN PLOTS
51 | #
52 | #FORWARD STEPS
53 | #plot_fwd_GWAS(mygwas,step,snp_info,pval_filt)
54 | #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
55 | #snp_info as described above
56 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
57 | #
58 | #OPTIMAL MODELS
59 | #Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria
60 | #
61 | #plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt)
62 | #snp_info as described above
63 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
64 | #
65 | ##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST
66 | #plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2)
67 | #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor)
68 | #snp_info as described above
69 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
70 | #chrom is an integer specifying the chromosome on which the region of interest is
71 | #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
72 | #
73 | #plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2)
74 | #snp_info as described above
75 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
76 | #chrom is an integer specifying the chromosome on which the region of interest is
77 | #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info
78 | #
79 | ##QQPLOTS of pvalues
80 | #qqplot_fwd_GWAS(mygwas,nsteps)
81 | #nsteps=maximum number of forward steps to be displayed
82 | #
83 | #qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'))
84 | #
85 | ##############################################################################################################################################
86 |
87 | ##' MLMM_COF
88 | ##'
89 | ##' MLMM_COF
90 | ##' @param Y phenotypes, a vector of length m, with names(Y)=individual names
91 | ##' @param X genotypes, a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names
92 | ##' @param cofs covariates, a n by p matrix, where n=number of individuals, p=number of covariates in the matrix (e.g. PC axes)
93 | ##' @param K kinship, a n by n matrix, with rownames(K)=colnames(K)=individual names
94 | ##' @param nbchunks an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
95 | ##' @param maxsteps maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. It's value must be specified as an integer >= 3
96 | ##' @param thresh threshold
97 | ##' @return results
98 | ##' @author V. Segura & B. J. Vilhjalmsson
99 | ##' @export
100 | mlmm_cof<-function(Y,X,cofs,K,nbchunks,maxsteps,thresh = NULL) {
101 |
102 | n<-length(Y)
103 | m<-ncol(X)
104 |
105 | stopifnot(ncol(K) == n)
106 | stopifnot(nrow(K) == n)
107 | stopifnot(nrow(X) == n)
108 | stopifnot(nrow(cofs) == n)
109 | stopifnot(nbchunks >= 2)
110 | stopifnot(maxsteps >= 3)
111 |
112 | ##INTERCEPT
113 |
114 | Xo<-rep(1,n)
115 |
116 | ##K MATRIX NORMALISATION
117 |
118 | K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K
119 | rm(K)
120 |
121 | ##step 0 : NULL MODEL
122 |
123 | fix_cofs<-cbind(Xo,cofs)
124 | rm(cofs)
125 |
126 | addcof_fwd<-list()
127 | addcof_fwd[[1]]<-'NA'
128 |
129 | cof_fwd<-list()
130 | cof_fwd[[1]]<-as.matrix(X[,colnames(X) %in% addcof_fwd[[1]]])
131 |
132 | mod_fwd<-list()
133 | mod_fwd[[1]]<-emma::emma.REMLE(Y,cbind(fix_cofs,cof_fwd[[1]]),K_norm)
134 |
135 | herit_fwd<-list()
136 | herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve)
137 |
138 | RSSf<-list()
139 | RSSf[[1]]<-'NA'
140 |
141 | RSS_H0<-list()
142 | RSS_H0[[1]]<-'NA'
143 |
144 | df1<-1
145 | df2<-list()
146 | df2[[1]]<-'NA'
147 |
148 | Ftest<-list()
149 | Ftest[[1]]<-'NA'
150 |
151 | pval<-list()
152 | pval[[1]]<-'NA'
153 |
154 | fwd_lm<-list()
155 |
156 | cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n')
157 |
158 | ##step 1 : EMMAX
159 |
160 | M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n)))
161 | Y_t<-crossprod(M,Y)
162 | cof_fwd_t<-crossprod(M,cbind(fix_cofs,cof_fwd[[1]]))
163 | fwd_lm[[1]]<-summary(stats::lm(Y_t~0+cof_fwd_t))
164 | Res_H0<-fwd_lm[[1]]$residuals
165 | Q_<-qr.Q(qr(cof_fwd_t))
166 |
167 | RSS<-list()
168 | for (j in 1:(nbchunks-1)) {
169 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% addcof_fwd[[1]]])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
170 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
171 | rm(X_t)}
172 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% addcof_fwd[[1]]])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])))])
173 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
174 | rm(X_t,j)
175 |
176 | RSSf[[2]]<-unlist(RSS)
177 | RSS_H0[[2]]<-sum(Res_H0^2)
178 | df2[[2]]<-n-df1-ncol(fix_cofs)-ncol(cof_fwd[[1]])
179 | Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1
180 | pval[[2]]<-stats::pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE)
181 | addcof_fwd[[2]]<-names(which(RSSf[[2]]==min(RSSf[[2]]))[1])
182 | cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% addcof_fwd[[2]]])
183 | colnames(cof_fwd[[2]])[ncol(cof_fwd[[2]])]<-addcof_fwd[[2]]
184 | mod_fwd[[2]]<-emma::emma.REMLE(Y,cbind(fix_cofs,cof_fwd[[2]]),K_norm)
185 | herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve)
186 | rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
187 |
188 | cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n')
189 |
190 | ##FORWARD
191 |
192 | for (i in 3:(maxsteps)) {
193 | if (herit_fwd[[i-2]] < 0.01){
194 | break
195 | } else {
196 |
197 | M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n)))
198 | Y_t<-crossprod(M,Y)
199 | cof_fwd_t<-crossprod(M,cbind(fix_cofs,cof_fwd[[i-1]]))
200 | fwd_lm[[i-1]]<-summary(stats::lm(Y_t~0+cof_fwd_t))
201 | Res_H0<-fwd_lm[[i-1]]$residuals
202 | Q_ <- qr.Q(qr(cof_fwd_t))
203 |
204 | RSS<-list()
205 | for (j in 1:(nbchunks-1)) {
206 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
207 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
208 | rm(X_t)}
209 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])))])
210 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
211 | rm(X_t,j)
212 |
213 | RSSf[[i]]<-unlist(RSS)
214 | RSS_H0[[i]]<-sum(Res_H0^2)
215 | df2[[i]]<-n-df1-ncol(fix_cofs)-ncol(cof_fwd[[i-1]])
216 | Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1
217 | pval[[i]]<-stats::pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE)
218 | addcof_fwd[[i]]<-names(which(RSSf[[i]]==min(RSSf[[i]]))[1])
219 | cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% addcof_fwd[[i]]])
220 | colnames(cof_fwd[[i]])[ncol(cof_fwd[[i]])]<-addcof_fwd[[i]]
221 | mod_fwd[[i]]<-emma::emma.REMLE(Y,cbind(fix_cofs,cof_fwd[[i]]),K_norm)
222 | herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve)
223 | rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)}
224 | cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')}
225 | rm(i)
226 |
227 | ##gls at last forward step
228 | M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n)))
229 | Y_t<-crossprod(M,Y)
230 | cof_fwd_t<-crossprod(M,cbind(fix_cofs,cof_fwd[[length(mod_fwd)]]))
231 | fwd_lm[[length(mod_fwd)]]<-summary(stats::lm(Y_t~0+cof_fwd_t))
232 |
233 | Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals
234 | Q_ <- qr.Q(qr(cof_fwd_t))
235 |
236 | RSS<-list()
237 | for (j in 1:(nbchunks-1)) {
238 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
239 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
240 | rm(X_t)}
241 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])))])
242 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
243 | rm(X_t,j)
244 |
245 | RSSf[[length(mod_fwd)+1]]<-unlist(RSS)
246 | RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2)
247 | df2[[length(mod_fwd)+1]]<-n-df1-ncol(fix_cofs)-ncol(cof_fwd[[length(mod_fwd)]])
248 | Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1
249 | pval[[length(mod_fwd)+1]]<-stats::pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE)
250 | rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)
251 |
252 | ##get max pval at each forward step
253 | max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm))
254 | max_pval_fwd[1]<-0
255 | for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[(ncol(fix_cofs)+1):(ncol(fix_cofs)+ncol(cof_fwd[[i]])),4])}
256 | rm(i)
257 |
258 | ##get the number of parameters & Loglikelihood from ML at each step
259 | mod_fwd_LL<-list()
260 | mod_fwd_LL[[1]]<-list(nfixed=ncol(cbind(fix_cofs,cof_fwd[[1]])),LL=emma::emma.MLE(Y,cbind(fix_cofs,cof_fwd[[1]]),K_norm)$ML)
261 | for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cbind(fix_cofs,cof_fwd[[i]])),LL=emma::emma.MLE(Y,cbind(fix_cofs,cof_fwd[[i]]),K_norm)$ML)}
262 | rm(i)
263 |
264 | cat('backward analysis','\n')
265 |
266 | ##BACKWARD (1st step == last fwd step)
267 |
268 | dropcof_bwd<-list()
269 | cof_bwd<-list()
270 | mod_bwd <- list()
271 | bwd_lm<-list()
272 | herit_bwd<-list()
273 |
274 | dropcof_bwd[[1]]<-'NA'
275 | cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]])
276 | colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]
277 | mod_bwd[[1]]<-emma::emma.REMLE(Y,cbind(fix_cofs,cof_bwd[[1]]),K_norm)
278 | herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve)
279 | M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n)))
280 | Y_t<-crossprod(M,Y)
281 | cof_bwd_t<-crossprod(M,cbind(fix_cofs,cof_bwd[[1]]))
282 | bwd_lm[[1]]<-summary(stats::lm(Y_t~0+cof_bwd_t))
283 |
284 | rm(M,Y_t,cof_bwd_t)
285 |
286 |
287 | for (i in 2:length(mod_fwd)) {
288 | dropcof_bwd[[i]]<-colnames(cof_bwd[[i-1]])[which(abs(bwd_lm[[i-1]]$coef[(ncol(fix_cofs)+1):nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[(ncol(fix_cofs)+1):nrow(bwd_lm[[i-1]]$coef),3])))]
289 | cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]])
290 | colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]
291 | mod_bwd[[i]]<-emma::emma.REMLE(Y,cbind(fix_cofs,cof_bwd[[i]]),K_norm)
292 | herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve)
293 | M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n)))
294 | Y_t<-crossprod(M,Y)
295 | cof_bwd_t<-crossprod(M,cbind(fix_cofs,cof_bwd[[i]]))
296 | bwd_lm[[i]]<-summary(stats::lm(Y_t~0+cof_bwd_t))
297 | rm(M,Y_t,cof_bwd_t)}
298 |
299 | rm(i)
300 |
301 | ##get max pval at each backward step
302 | max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm))
303 | for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[(ncol(fix_cofs)+1):(ncol(fix_cofs)+ncol(cof_bwd[[i]])),4])}
304 | max_pval_bwd[length(bwd_lm)]<-0
305 |
306 | ##get the number of parameters & Loglikelihood from ML at each step
307 | mod_bwd_LL<-list()
308 | mod_bwd_LL[[1]]<-list(nfixed=ncol(cbind(fix_cofs,cof_bwd[[1]])),LL=emma::emma.MLE(Y,cbind(fix_cofs,cof_bwd[[1]]),K_norm)$ML)
309 | for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cbind(fix_cofs,cof_bwd[[i]])),LL=emma::emma.MLE(Y,cbind(fix_cofs,cof_bwd[[i]]),K_norm)$ML)}
310 | rm(i)
311 |
312 | cat('creating output','\n')
313 |
314 | ##Forward Table: Fwd + Bwd Tables
315 | ##Compute parameters for model criteria
316 | BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)}
317 | extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)}
318 |
319 | fwd_table<-data.frame(step=ncol(cof_fwd[[1]]),step_=paste('fwd',ncol(cof_fwd[[1]]),sep=''),cof=paste('+',addcof_fwd[[1]],sep=''),ncof=ncol(cof_fwd[[1]]),h2=herit_fwd[[1]]
320 | ,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]]))
321 | for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table,
322 | data.frame(step=ncol(cof_fwd[[i]]),step_=paste('fwd',ncol(cof_fwd[[i]]),sep=''),cof=paste('+',addcof_fwd[[i]],sep=''),ncof=ncol(cof_fwd[[i]]),h2=herit_fwd[[i]]
323 | ,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))}
324 |
325 | rm(i)
326 |
327 | bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]]),h2=herit_bwd[[1]]
328 | ,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]]))
329 | for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table,
330 | data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]]),h2=herit_bwd[[i]]
331 | ,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))}
332 |
333 | rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd)
334 |
335 | fwdbwd_table<-rbind(fwd_table,bwd_table)
336 |
337 | ##RSS for plot
338 |
339 | ##null model only with intercept
340 | null<-emma::emma.REMLE(Y,as.matrix(Xo),K_norm)
341 | M<-solve(chol(null$vg*K_norm+null$ve*diag(n)))
342 | Y_t<-crossprod(M,Y)
343 | Xo_t<-crossprod(M,as.matrix(Xo))
344 | null_lm<-summary(stats::lm(Y_t~0+Xo_t))
345 | rm(null,M,Y_t,Xo_t)
346 | RSS_null<-sum((Y-as.matrix(Xo)%*%null_lm$coef[,1])^2)
347 |
348 | mod_fwd_RSS<-vector()
349 | mod_fwd_RSS[1]<-sum((Y-cbind(fix_cofs,cof_fwd[[1]])%*%fwd_lm[[1]]$coef[,1])^2)
350 | for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cbind(fix_cofs,cof_fwd[[i]])%*%fwd_lm[[i]]$coef[,1])^2)}
351 | mod_bwd_RSS<-vector()
352 | mod_bwd_RSS[1]<-sum((Y-cbind(fix_cofs,cof_bwd[[1]])%*%bwd_lm[[1]]$coef[,1])^2)
353 | for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cbind(fix_cofs,cof_bwd[[i]])%*%bwd_lm[[i]]$coef[,1])^2)}
354 |
355 | expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/RSS_null}),1-sapply(mod_bwd_RSS,function(x){x/RSS_null}))
356 | fix_cofs_RSS<-rep(expl_RSS[1],length(expl_RSS))
357 | cofs_RSS<-expl_RSS-fix_cofs_RSS
358 | h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS)
359 | unexpl_RSS<-1-expl_RSS-h2_RSS
360 | plot_RSS<-t(apply(cbind(fix_cofs_RSS,cofs_RSS,h2_RSS,unexpl_RSS),1,cumsum))
361 |
362 | ##GLS pvals at each step
363 | pval_step<-list()
364 | pval_step[[1]]<-list(out=data.frame('SNP'=names(pval[[2]]),'pval'=pval[[2]]),cof=addcof_fwd[[1]], "coef"=fwd_lm[[1]]$coef)
365 | for (i in 2:(length(mod_fwd))) {
366 | pval_step[[i]]<-list('out'=rbind(data.frame('SNP'=colnames(cof_fwd[[i]]),'pval'=fwd_lm[[i]]$coef[(ncol(fix_cofs)+1):(ncol(fix_cofs)+ncol(cof_fwd[[i]])),4]),
367 | data.frame('SNP'=names(pval[[i+1]]),'pval'=pval[[i+1]])),
368 | 'cof'=colnames(cof_fwd[[i]]),
369 | 'coef'=fwd_lm[[i]]$coef)
370 | }
371 |
372 | ##GLS pvals for best models according to extBIC and mbonf
373 |
374 | opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],]
375 | opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],]
376 | if(! is.null(thresh)){
377 | opt_thresh<-(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof))[1],]
378 | }
379 | bestmodel_pvals<-function(model) {
380 | if(substr(model$step_,start=0,stop=3)=='fwd') {
381 | pval_step[[as.integer(substring(model$step_,first=4))+1]]
382 | } else if (substr(model$step_,start=0,stop=3)=='bwd') {
383 | cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]]
384 | mixedmod<-emma::emma.REMLE(Y,cbind(fix_cofs,cof),K_norm)
385 | M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n)))
386 | Y_t<-crossprod(M,Y)
387 | cof_t<-crossprod(M,cbind(fix_cofs,cof))
388 | GLS_lm<-summary(stats::lm(Y_t~0+cof_t))
389 | Res_H0<-GLS_lm$residuals
390 | Q_ <- qr.Q(qr(cof_t))
391 | RSS<-list()
392 | for (j in 1:(nbchunks-1)) {
393 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
394 | RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
395 | rm(X_t)}
396 | X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-ncol(cof))])
397 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)})
398 | rm(X_t,j)
399 | RSSf<-unlist(RSS)
400 | RSS_H0<-sum(Res_H0^2)
401 | df2<-n-df1-ncol(fix_cofs)-ncol(cof)
402 | Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1
403 | pval<-stats::pf(Ftest,df1,df2,lower.tail=FALSE)
404 | list('out'=rbind(data.frame(SNP=colnames(cof),'pval'=GLS_lm$coef[(ncol(fix_cofs)+1):(ncol(fix_cofs)+ncol(cof)),4]),
405 | data.frame('SNP'=names(pval),'pval'=pval)),
406 | 'cof'=colnames(cof),
407 | 'coef'=GLS_lm$coef)} else {cat('error \n')}}
408 | opt_extBIC_out<-bestmodel_pvals(opt_extBIC)
409 | opt_mbonf_out<-bestmodel_pvals(opt_mbonf)
410 | if(! is.null(thresh)){
411 | opt_thresh_out<-bestmodel_pvals(opt_thresh)
412 | }
413 | output <- list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)
414 | if(! is.null(thresh)){
415 | output$thresh <- -log10(thresh)
416 | output$opt_thresh <- opt_thresh_out
417 | }
418 | return(output)
419 | }
420 |
--------------------------------------------------------------------------------
/R/plot_mlmm.r:
--------------------------------------------------------------------------------
1 | ##' Plot
2 | ##'
3 | ##' Plot
4 | ##' @param x x
5 | ##' @param type type
6 | ##' @param ... arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}
7 | ##' @author V. Segura & B. J. Vilhjalmsson
8 | ##' @export
9 | plot_step_table<-function(x,type,...){
10 | if (type=='h2') {graphics::plot(x$step_table$step,x$step_table$h2,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='h2',...)
11 | graphics::abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
12 | else if (type=='maxpval'){graphics::plot(x$step_table$step,-log10(x$step_table$maxpval),type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='-log10(max_Pval)',...)
13 | graphics::abline(h=x$bonf_thresh,lty=2)
14 | if(! is.null(x$thresh)){graphics::abline(h=x$thresh,lty=2,col=2)}
15 | graphics::abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
16 | else if (type=='BIC'){graphics::plot(x$step_table$step,x$step_table$BIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='BIC',...)
17 | graphics::abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
18 | else if (type=='extBIC'){graphics::plot(x$step_table$step,x$step_table$extBIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='EBIC',...)
19 | graphics::abline(v=(nrow(x$step_table)/2-0.5),lty=2)}
20 | else {cat('error! \n argument type must be one of h2, maxpval, BIC, extBIC')}}
21 |
22 | ##' Plot
23 | ##'
24 | ##' Plot
25 | ##' @param x x
26 | ##' @param ... arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}
27 | ##' @author V. Segura & B. J. Vilhjalmsson
28 | ##' @export
29 | plot_step_RSS<-function(x,...){
30 | op<-graphics::par(mar=c(5, 5, 2, 2))
31 | graphics::plot(0,0,xlim=c(0,nrow(x$RSSout)-1),ylim=c(0,1),xlab='step',ylab='%var',col=0,...)
32 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,3],0,0), col='brown1', border=0)
33 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,2],0,0), col='forestgreen', border=0)
34 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,1],0,0), col='dodgerblue4', border=0)
35 | graphics::abline(v=(nrow(x$step_table)/2-0.5),lty=2)
36 | graphics::par(op)}
37 |
38 | ##' Plot
39 | ##'
40 | ##' Plot
41 | ##' @param x x
42 | ##' @param ... arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}
43 | ##' @author V. Segura & B. J. Vilhjalmsson
44 | ##' @export
45 | plot_step_RSS_cof<-function(x,...){
46 | op<-graphics::par(mar=c(5, 5, 2, 2))
47 | graphics::plot(0,0,xlim=c(0,nrow(x$RSSout)-1),ylim=c(0,1),xlab='step',ylab='%var',col=0,...)
48 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,4],0,0), col='brown1', border=0)
49 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,3],0,0), col='forestgreen', border=0)
50 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,2],0,0), col='dodgerblue4', border=0)
51 | graphics::polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,1],0,0), col='grey', border=0)
52 | graphics::abline(v=(nrow(x$step_table)/2-0.5),lty=2)
53 | graphics::par(op)}
54 |
55 | ##' Plot
56 | ##'
57 | ##' Plot
58 | ##' @param x x
59 | ##' @param ... arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}
60 | ##' @author V. Segura & B. J. Vilhjalmsson
61 | ##' @export
62 | plot_GWAS<-function(x,...) {
63 | output_<-x$out[order(x$out$Pos),]
64 | output_ok<-output_[order(output_$Chr),]
65 | maxpos<-c(0,cumsum(as.numeric(stats::aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(as.numeric(stats::aggregate(output_ok$Pos,list(output_ok$Chr),max)$x)))/200)))
66 | plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2))
67 | # plot_col<-c('blue','darkgreen','red','cyan','purple')
68 | size<-stats::aggregate(output_ok$Pos,list(output_ok$Chr),length)$x
69 | a<-rep(maxpos[1],size[1])
70 | b<-rep(plot_col[1],size[1])
71 | if (length(unique(output_ok$Chr))>1){
72 | for (i in 2:length(unique(output_ok$Chr))){
73 | a<-c(a,rep(maxpos[i],size[i]))
74 | b<-c(b,rep(plot_col[i],size[i]))}}
75 | output_ok$xpos<-output_ok$Pos+a
76 | output_ok$col<-b
77 | output_ok$col[output_ok$SNP %in% x$cof]<-'red'
78 | d<-(stats::aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+stats::aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2
79 | graphics::plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab=expression(-log[10](italic(p))),xaxt='n',xlab='chromosome',...)
80 | graphics::axis(1,tick=FALSE,at=d,labels=unique(output_ok$Chr))
81 | graphics::abline(h=x$bonf_thresh,lty=3,col='black')}
82 |
83 | ##' Plot
84 | ##'
85 | ##' Plot
86 | ##' @param x x
87 | ##' @param chrom chrom
88 | ##' @param pos1 pos1
89 | ##' @param pos2 pos2
90 | ##' @author V. Segura & B. J. Vilhjalmsson
91 | ##' @export
92 | plot_region<-function(x,chrom,pos1,pos2){
93 | Chr<-Pos<-NULL # to avoid R CMD check issuing a NOTE
94 | region<-subset(x$out,Chr==chrom & Pos>=pos1 & Pos <=pos2)
95 | region$col<- if (chrom %% 2 == 0) {'gray60'} else {'gray10'}
96 | region$col[which(region$SNP %in% x$cof)]<-'red'
97 | graphics::plot(region$Pos,-log10(region$pval),type='p',pch=20,main=paste('chromosome',chrom,sep=''),xlab='position (bp)',ylab=expression(-log[10](italic(p))),col=region$col,xlim=c(pos1,pos2))
98 | graphics::abline(h=x$bonf_thresh,lty=3,col='black')}
99 |
100 | ##' Plot
101 | ##'
102 | ##' Plot
103 | ##' @param x x
104 | ##' @param step step
105 | ##' @param snp_info snp_info
106 | ##' @param pval_filt pval_filt
107 | ##' @param ... arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}
108 | ##' @author V. Segura & B. J. Vilhjalmsson
109 | ##' @export
110 | plot_fwd_GWAS<-function(x,step,snp_info,pval_filt,...) {
111 | stopifnot(step<=length(x$pval_step))
112 | pval<-NULL # to avoid R CMD check issuing a NOTE
113 | output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh)
114 | plot_GWAS(output,...)}
115 |
116 | ##' Plot
117 | ##'
118 | ##' Plot
119 | ##' @param x x
120 | ##' @param step step
121 | ##' @param snp_info snp_info
122 | ##' @param pval_filt pval_filt
123 | ##' @param chrom chrom
124 | ##' @param pos1 pos1
125 | ##' @param pos2 pos2
126 | ##' @author V. Segura & B. J. Vilhjalmsson
127 | ##' @export
128 | plot_fwd_region<-function(x,step,snp_info,pval_filt,chrom,pos1,pos2) {
129 | stopifnot(step<=length(x$pval_step))
130 | pval<-NULL # to avoid R CMD check issuing a NOTE
131 | output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh)
132 | plot_region(output,chrom,pos1,pos2)}
133 |
134 | ##' Plot
135 | ##'
136 | ##' Plot
137 | ##' @param x x
138 | ##' @param opt opt
139 | ##' @param snp_info snp_info
140 | ##' @param pval_filt pval_filt
141 | ##' @param ... arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}
142 | ##' @author V. Segura & B. J. Vilhjalmsson
143 | ##' @export
144 | plot_opt_GWAS<-function(x,opt,snp_info,pval_filt,...) {
145 | pval<-NULL # to avoid R CMD check issuing a NOTE
146 | if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh)
147 | plot_GWAS(output,...)}
148 | else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh)
149 | plot_GWAS(output,...)}
150 | else if (opt=='thresh') {output<-list(out=subset(merge(snp_info,x$opt_thresh$out,by='SNP'),pval<=pval_filt),cof=x$opt_thresh$cof,bonf_thresh=x$thresh)
151 | plot_GWAS(output,...)}
152 | else {cat('error! \n opt must be extBIC, mbonf or thresh')}}
153 |
154 | ##' Plot
155 | ##'
156 | ##' Plot
157 | ##' @param x x
158 | ##' @param opt opt
159 | ##' @param snp_info snp_info
160 | ##' @param pval_filt pval_filt
161 | ##' @param chrom chrom
162 | ##' @param pos1 pos1
163 | ##' @param pos2 pos2
164 | ##' @author V. Segura & B. J. Vilhjalmsson
165 | ##' @export
166 | plot_opt_region<-function(x,opt,snp_info,pval_filt,chrom,pos1,pos2) {
167 | pval<-NULL # to avoid R CMD check issuing a NOTE
168 | if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh)
169 | plot_region(output,chrom,pos1,pos2)}
170 | else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh)
171 | plot_region(output,chrom,pos1,pos2)}
172 | else if (opt=='thresh') {output<-list(out=subset(merge(snp_info,x$opt_thresh$out,by='SNP'),pval<=pval_filt),cof=x$opt_thresh$cof,bonf_thresh=x$thresh)
173 | plot_region(output,chrom,pos1,pos2)}
174 | else {cat('error! \n opt must be extBIC, mbonf or thresh')}}
175 |
176 | ##' Plot
177 | ##'
178 | ##' Plot
179 | ##' @param x x
180 | ##' @param nsteps nsteps
181 | ##' @author V. Segura & B. J. Vilhjalmsson
182 | ##' @export
183 | qqplot_fwd_GWAS<-function(x,nsteps){
184 | stopifnot(nsteps<=length(x$pval_step))
185 | e<--log10(stats::ppoints(nrow(x$pval_step[[1]]$out)))
186 | ostep<-list()
187 | ostep[[1]]<--log10(sort(x$pval_step[[1]]$out$pval))
188 | for (i in 2:nsteps) {ostep[[i]]<--log10(sort(x$pval_step[[i]]$out$pval))}
189 |
190 | maxp<-ceiling(max(unlist(ostep)))
191 |
192 | graphics::plot(e,ostep[[1]],type='l',col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp))
193 | graphics::abline(0,1,col="dark grey")
194 |
195 | for (i in 2:nsteps) {
196 | graphics::par(new=T)
197 | graphics::plot(e,ostep[[i]],type='l',col=i,axes='F',xlab='',ylab='',xlim=c(0,max(e)+1),ylim=c(0,maxp))}
198 | graphics::legend(0,maxp,lty=1,pch=20,col=c(1:length(ostep)),paste(c(0:(length(ostep)-1)),'cof',sep=' '))
199 | }
200 |
201 | ##' Plot
202 | ##'
203 | ##' Plot
204 | ##' @param x x
205 | ##' @param opt opt
206 | ##' @author V. Segura & B. J. Vilhjalmsson
207 | ##' @export
208 | qqplot_opt_GWAS<-function(x,opt){
209 | if (opt=='extBIC') {
210 | e<--log10(stats::ppoints(nrow(x$opt_extBIC$out)))
211 | o<--log10(sort(x$opt_extBIC$out$pval))
212 | maxp<-ceiling(max(o))
213 | graphics::plot(e,o,type='l',col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to extBIC'))
214 | graphics::abline(0,1,col="dark grey")}
215 | else if (opt=='mbonf') {
216 | e<--log10(stats::ppoints(nrow(x$opt_mbonf$out)))
217 | o<--log10(sort(x$opt_mbonf$out$pval))
218 | maxp<-ceiling(max(o))
219 | graphics::plot(e,o,type='l',col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to mbonf'))
220 | graphics::abline(0,1,col="dark grey")}
221 | else if (opt=='thresh') {
222 | e<--log10(stats::ppoints(nrow(x$opt_thresh$out)))
223 | o<--log10(sort(x$opt_thresh$out$pval))
224 | maxp<-ceiling(max(o))
225 | graphics::plot(e,o,type='l',col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to the user defined threshold'))
226 | graphics::abline(0,1,col="dark grey")}
227 | else {cat('error! \n opt must be extBIC, mbonf or thresh')}}
228 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # MLMM
2 |
3 | ## Introduction
4 |
5 | This directory contains the `mlmm` package for the R programming language. It implements an efficient multi-locus mixed-model approach for genome-wide association studies in structured populations.
6 |
7 | ## Authors and license
8 |
9 | The main authors are Vincent Segura and Bjarni J. Vilhjalmsson. The code is available under the GNU Public License (version 3 and later). See the COPYING file for usage permissions.
10 |
11 | ## Development
12 |
13 | The content of this directory is versioned using git, the central repository being hosted on [GitHub](https://github.com/Gregor-Mendel-Institute/mlmm). Please report issues directly [online](https://github.com/Gregor-Mendel-Institute/mlmm/issues).
14 |
15 | ## Installation
16 |
17 | For users, the easiest is to directly install the package from GitHub:
18 | ```
19 | R> library(devtools); install_github("Gregor-Mendel-Institute/MultLocMixMod")
20 | ```
21 |
22 | Note that this package depends on the `emma` package (not the one on CRAN, but the one from UCLA available [here](http://mouse.cs.ucla.edu/emma/)).
23 |
24 | There is an issue in installing the original `emma` package on Windows, so Windows users must in place use [emma_1.1.2.tar.gz](https://github.com/Gregor-Mendel-Institute/mlmm/files/1356516/emma_1.1.2.tar.gz) which can be installed with the following command:
25 | ```
26 | R> install.packages("https://github.com/Gregor-Mendel-Institute/mlmm/files/1356516/emma_1.1.2.tar.gz", repos = NULL)
27 | ```
28 |
29 | For developpers, when editing the content of this repo, increment the version of the package in `DESCRIPTION` and execute the following commands:
30 | ```
31 | $ Rscript -e 'library(devtools); devtools::document()'
32 | $ R CMD build mlmm
33 | $ R CMD check mlmm_.tar.gz
34 | $ sudo R CMD INSTALL mlmm_.tar.gz
35 | ```
36 |
37 | More information is available in Hadley Wickham's [book](http://r-pkgs.had.co.nz/).
38 |
39 | ## Usage
40 |
41 | Two main functions can be used to carry out GWAS with MLMM and plot the results from the analysis:
42 |
43 | * `mlmm`, the original MLMM as described in [Segura, Vilhjálmsson et al. (Nat Gen 2012)](http://www.nature.com/ng/journal/v44/n7/full/ng.2314.html).
44 |
45 | * `mlmm_cof`, a modified version of MLMM that allows including a fixed covariate in the association model. This could be for example a matrix of principal components scores (MLMM version of the "PK" model) or any feature that would make sense to regress out (e.g. sex).
46 |
47 | In their current versions, the MLMM functions do not allow for missing values in the genotype matrix. Whenever possible we would suggest imputing the genotypic data prior to the analysis.
48 |
49 | Once the package is installed, browse the vignettes:
50 | ```
51 | R> library(mlmm)
52 | R> browseVignettes("mlmm")
53 | ```
54 |
55 | When used for a scientific article, don't forget to cite it:
56 | ```
57 | R> citation("mlmm")
58 | ```
59 |
60 | See also `citation()` for citing R itself.
61 |
--------------------------------------------------------------------------------
/data-raw/make_data_mlmm.R:
--------------------------------------------------------------------------------
1 | library(devtools)
2 |
3 | setwd("/mlmm")
4 |
5 | ## load all input files
6 | genot <- read.table("misc/genot.txt", sep = "\t", header = T)
7 | genot_mat <- as.matrix(genot[, 2:ncol(genot)])
8 | rownames(genot_mat) <- genot$Ind_id
9 |
10 | phenot <- read.table("misc/phenot.txt", sep = "\t", header = T)
11 |
12 | map <- read.table("misc/map.txt", sep = "\t", header = T)
13 |
14 | PCs <- read.table("misc/PCs.txt", sep = "\t", header = T)
15 | PC_mat <- as.matrix(PCs[, 2:ncol(PCs)])
16 | rownames(PC_mat) <- PCs$Ind_id
17 |
18 | ## impute the missing genotypes and calculate the kinship matrix
19 | genot_imp <- genot_mat
20 | average <- colMeans(genot_imp, na.rm = T)
21 | for (i in 1:ncol(genot_imp))
22 | genot_imp[is.na(genot_imp[,i]), i] <- average[i]
23 | stdev <- apply(genot_imp, 2, sd)
24 | genot_stand <- sweep(sweep(genot_imp, 2, average, "-"), 2, stdev, "/")
25 | K_mat <- (genot_stand %*% t(genot_stand)) / ncol(genot_stand)
26 |
27 | ## format the data for the examples and save them
28 | example_data <- list(X=genot_imp,
29 | Y=phenot$Phenot1,
30 | K=K_mat,
31 | snp_info=map,
32 | PC=PC_mat)
33 | devtools::use_data(example_data, overwrite=TRUE)
34 |
--------------------------------------------------------------------------------
/data/example_data.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gregor-Mendel-Institute/MultLocMixMod/e1aa9ab4779d98b95d1f83a4edc7f9df5f4e7c14/data/example_data.rda
--------------------------------------------------------------------------------
/inst/CITATION:
--------------------------------------------------------------------------------
1 | citHeader("To cite the mlmm function in publications, use:")
2 |
3 | citEntry(entry = "Article",
4 | title = "An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations",
5 | author = personList(as.person("Segura, Vilhjalmsson et al")),
6 | journal = "Nature Genetics",
7 | year = "2012",
8 | volume = "44",
9 | pages = "825--830",
10 | url = "http://www.nature.com/ng/journal/v44/n7/full/ng.2314.html",
11 |
12 | textVersion =
13 | paste("Segura, Vilhjalmsson et al (2012).",
14 | "An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations.",
15 | "Nature Genetics, 44, 825-830.",
16 | "URL http://www.nature.com/ng/journal/v44/n7/full/ng.2314.html.")
17 | )
18 |
--------------------------------------------------------------------------------
/man/example_data.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/data.R
3 | \docType{data}
4 | \name{example_data}
5 | \alias{example_data}
6 | \title{Genotypes, SNP info, kinship and phenotypes.}
7 | \format{A list with 4 components:
8 | \describe{
9 | \item{X}{matrix of imputed genotypes}
10 | \item{Y}{vector of phenotypes}
11 | \item{K}{kinship matrix}
12 | \item{snp_info}{SNP coordinates}
13 | }}
14 | \usage{
15 | example_data
16 | }
17 | \description{
18 | A dataset used as example for the mlmm function.
19 | }
20 | \keyword{datasets}
21 |
--------------------------------------------------------------------------------
/man/mlmm.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/mlmm.r
3 | \name{mlmm}
4 | \alias{mlmm}
5 | \title{MLMM}
6 | \usage{
7 | mlmm(Y, X, K, nbchunks, maxsteps, thresh = NULL)
8 | }
9 | \arguments{
10 | \item{Y}{phenotypes, a vector of length m, with names(Y)=individual names}
11 |
12 | \item{X}{genotypes, a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names}
13 |
14 | \item{K}{kinship, a n by n matrix, with rownames(K)=colnames(K)=individual names}
15 |
16 | \item{nbchunks}{an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory}
17 |
18 | \item{maxsteps}{maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. It's value must be specified as an integer >= 3}
19 |
20 | \item{thresh}{threshold}
21 | }
22 | \value{
23 | results
24 | }
25 | \description{
26 | MLMM
27 | }
28 | \author{
29 | V. Segura & B. J. Vilhjalmsson
30 | }
31 |
--------------------------------------------------------------------------------
/man/mlmm_cof.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/mlmm_cof.r
3 | \name{mlmm_cof}
4 | \alias{mlmm_cof}
5 | \title{MLMM_COF}
6 | \usage{
7 | mlmm_cof(Y, X, cofs, K, nbchunks, maxsteps, thresh = NULL)
8 | }
9 | \arguments{
10 | \item{Y}{phenotypes, a vector of length m, with names(Y)=individual names}
11 |
12 | \item{X}{genotypes, a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names}
13 |
14 | \item{cofs}{covariates, a n by p matrix, where n=number of individuals, p=number of covariates in the matrix (e.g. PC axes)}
15 |
16 | \item{K}{kinship, a n by n matrix, with rownames(K)=colnames(K)=individual names}
17 |
18 | \item{nbchunks}{an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory}
19 |
20 | \item{maxsteps}{maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. It's value must be specified as an integer >= 3}
21 |
22 | \item{thresh}{threshold}
23 | }
24 | \value{
25 | results
26 | }
27 | \description{
28 | MLMM_COF
29 | }
30 | \author{
31 | V. Segura & B. J. Vilhjalmsson
32 | }
33 |
--------------------------------------------------------------------------------
/man/plot_GWAS.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_GWAS}
4 | \alias{plot_GWAS}
5 | \title{Plot}
6 | \usage{
7 | plot_GWAS(x, ...)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{...}{arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}}
13 | }
14 | \description{
15 | Plot
16 | }
17 | \author{
18 | V. Segura & B. J. Vilhjalmsson
19 | }
20 |
--------------------------------------------------------------------------------
/man/plot_fwd_GWAS.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_fwd_GWAS}
4 | \alias{plot_fwd_GWAS}
5 | \title{Plot}
6 | \usage{
7 | plot_fwd_GWAS(x, step, snp_info, pval_filt, ...)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{step}{step}
13 |
14 | \item{snp_info}{snp_info}
15 |
16 | \item{pval_filt}{pval_filt}
17 |
18 | \item{...}{arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}}
19 | }
20 | \description{
21 | Plot
22 | }
23 | \author{
24 | V. Segura & B. J. Vilhjalmsson
25 | }
26 |
--------------------------------------------------------------------------------
/man/plot_fwd_region.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_fwd_region}
4 | \alias{plot_fwd_region}
5 | \title{Plot}
6 | \usage{
7 | plot_fwd_region(x, step, snp_info, pval_filt, chrom, pos1, pos2)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{step}{step}
13 |
14 | \item{snp_info}{snp_info}
15 |
16 | \item{pval_filt}{pval_filt}
17 |
18 | \item{chrom}{chrom}
19 |
20 | \item{pos1}{pos1}
21 |
22 | \item{pos2}{pos2}
23 | }
24 | \description{
25 | Plot
26 | }
27 | \author{
28 | V. Segura & B. J. Vilhjalmsson
29 | }
30 |
--------------------------------------------------------------------------------
/man/plot_opt_GWAS.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_opt_GWAS}
4 | \alias{plot_opt_GWAS}
5 | \title{Plot}
6 | \usage{
7 | plot_opt_GWAS(x, opt, snp_info, pval_filt, ...)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{opt}{opt}
13 |
14 | \item{snp_info}{snp_info}
15 |
16 | \item{pval_filt}{pval_filt}
17 |
18 | \item{...}{arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}}
19 | }
20 | \description{
21 | Plot
22 | }
23 | \author{
24 | V. Segura & B. J. Vilhjalmsson
25 | }
26 |
--------------------------------------------------------------------------------
/man/plot_opt_region.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_opt_region}
4 | \alias{plot_opt_region}
5 | \title{Plot}
6 | \usage{
7 | plot_opt_region(x, opt, snp_info, pval_filt, chrom, pos1, pos2)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{opt}{opt}
13 |
14 | \item{snp_info}{snp_info}
15 |
16 | \item{pval_filt}{pval_filt}
17 |
18 | \item{chrom}{chrom}
19 |
20 | \item{pos1}{pos1}
21 |
22 | \item{pos2}{pos2}
23 | }
24 | \description{
25 | Plot
26 | }
27 | \author{
28 | V. Segura & B. J. Vilhjalmsson
29 | }
30 |
--------------------------------------------------------------------------------
/man/plot_region.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_region}
4 | \alias{plot_region}
5 | \title{Plot}
6 | \usage{
7 | plot_region(x, chrom, pos1, pos2)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{chrom}{chrom}
13 |
14 | \item{pos1}{pos1}
15 |
16 | \item{pos2}{pos2}
17 | }
18 | \description{
19 | Plot
20 | }
21 | \author{
22 | V. Segura & B. J. Vilhjalmsson
23 | }
24 |
--------------------------------------------------------------------------------
/man/plot_step_RSS.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_step_RSS}
4 | \alias{plot_step_RSS}
5 | \title{Plot}
6 | \usage{
7 | plot_step_RSS(x, ...)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{...}{arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}}
13 | }
14 | \description{
15 | Plot
16 | }
17 | \author{
18 | V. Segura & B. J. Vilhjalmsson
19 | }
20 |
--------------------------------------------------------------------------------
/man/plot_step_RSS_cof.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_step_RSS_cof}
4 | \alias{plot_step_RSS_cof}
5 | \title{Plot}
6 | \usage{
7 | plot_step_RSS_cof(x, ...)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{...}{arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}}
13 | }
14 | \description{
15 | Plot
16 | }
17 | \author{
18 | V. Segura & B. J. Vilhjalmsson
19 | }
20 |
--------------------------------------------------------------------------------
/man/plot_step_table.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{plot_step_table}
4 | \alias{plot_step_table}
5 | \title{Plot}
6 | \usage{
7 | plot_step_table(x, type, ...)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{type}{type}
13 |
14 | \item{...}{arguments to be passed to \code{\link[graphics]{plot}}, such as \code{main}}
15 | }
16 | \description{
17 | Plot
18 | }
19 | \author{
20 | V. Segura & B. J. Vilhjalmsson
21 | }
22 |
--------------------------------------------------------------------------------
/man/qqplot_fwd_GWAS.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{qqplot_fwd_GWAS}
4 | \alias{qqplot_fwd_GWAS}
5 | \title{Plot}
6 | \usage{
7 | qqplot_fwd_GWAS(x, nsteps)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{nsteps}{nsteps}
13 | }
14 | \description{
15 | Plot
16 | }
17 | \author{
18 | V. Segura & B. J. Vilhjalmsson
19 | }
20 |
--------------------------------------------------------------------------------
/man/qqplot_opt_GWAS.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot_mlmm.r
3 | \name{qqplot_opt_GWAS}
4 | \alias{qqplot_opt_GWAS}
5 | \title{Plot}
6 | \usage{
7 | qqplot_opt_GWAS(x, opt)
8 | }
9 | \arguments{
10 | \item{x}{x}
11 |
12 | \item{opt}{opt}
13 | }
14 | \description{
15 | Plot
16 | }
17 | \author{
18 | V. Segura & B. J. Vilhjalmsson
19 | }
20 |
--------------------------------------------------------------------------------
/misc/code_mlmm.r:
--------------------------------------------------------------------------------
1 | #load the tutorial data for carrying out mlmm analysis
2 | genot <- read.table("data/genot.txt", sep = "\t", header = T)
3 | genot_mat <- as.matrix(genot[, 2:ncol(genot)])
4 | rownames(genot_mat) <- genot$Ind_id
5 |
6 | phenot <- read.table("data/phenot.txt", sep = "\t", header = T)
7 |
8 | map <- read.table("data/map.txt", sep = "\t", header = T)
9 |
10 | genot_imp <- genot_mat
11 | average <- colMeans(genot_imp, na.rm = T)
12 |
13 | for (i in 1:ncol(genot_imp)){
14 | genot_imp[is.na(genot_imp[,i]), i] <- average[i]
15 | }
16 |
17 | stdev <- apply(genot_imp, 2, sd)
18 | genot_stand <- sweep(sweep(genot_imp, 2, average, "-"), 2, stdev, "/")
19 | K_mat <- (genot_stand %*% t(genot_stand)) / ncol(genot_stand)
20 |
21 | #load the mlmm function as well as the emma package (if it does not install with your current R version, just download and source it, as recommended on the emma website).
22 | source("mlmm.r")
23 | source("emma.r")
24 |
25 | #perform mlmm (10 steps), it can take few minutes...
26 | mygwas <- mlmm(Y = phenot$Phenot1, X = genot_imp, K = K_mat, nbchunks = 2, maxsteps = 10, thresh = 1.2 * 10^-5)
27 |
28 | #display and plot the results
29 | source("plot_mlmm.r")
30 | #mlmm stepwise table
31 | mygwas$step_table
32 | #EBIC plot
33 | plot_step_table(mygwas, "extBIC")
34 | #mbonf criterion plot
35 | plot_step_table(mygwas, "maxpval") #user define threshold if defined is automatically drawn in red
36 | #% variance plot
37 | plot_step_RSS(mygwas)
38 | #1st mlmm step plot
39 | plot_fwd_GWAS(mygwas, step = 1, snp_info = map, pval_filt = 0.1)
40 | #2nd mlmm step plot
41 | plot_fwd_GWAS(mygwas, step = 2, snp_info = map, pval_filt = 0.1)
42 | #3rd mlmm step plot
43 | plot_fwd_GWAS(mygwas, step = 3, snp_info = map, pval_filt = 0.1)
44 | #QQplot 7 steps
45 | qqplot_fwd_GWAS(mygwas, nsteps = 7)
46 |
47 | #optimal step according to ebic plot
48 | plot_opt_GWAS(mygwas, opt = "extBIC", snp_info = map, pval_filt = 0.1)
49 | qqplot_opt_GWAS(mygwas, opt = "extBIC")
50 | #optimal step according to mbonf plot
51 | plot_opt_GWAS(mygwas, opt = "mbonf", snp_info = map, pval_filt = 0.1)
52 | qqplot_opt_GWAS(mygwas, opt = "mbonf")
53 | #optimal step according to user defined threshold
54 | plot_opt_GWAS(mygwas, opt = "thresh", snp_info = map, pval_filt = 0.1)#dotted line correspond to the user defined threshold
55 | qqplot_opt_GWAS(mygwas, opt = "thresh")
56 |
57 | #plot a region
58 | plot_fwd_region(mygwas, step = 4, snp_info = map, pval_filt = 0.1, chrom = 2, pos1 = 17000000, pos2 = 19000000)
59 | plot_opt_region(mygwas, opt = "thresh", snp_info = map, pval_filt = 0.1, chrom = 2, pos1 = 17000000, pos2 = 19000000)
60 |
61 | #retrieving pvals
62 | #step 1
63 | head(mygwas$pval_step[[1]]$out)
64 | #step 2
65 | head(mygwas$pval_step[[2]]$out)
66 | #opt extBIC
67 | head(mygwas$opt_extBIC$out)
68 | #including SNP effects
69 | mygwas$opt_extBIC$coef
70 |
71 | ############
72 | ##including PCs to the model
73 | PCs <- read.table("data/PCs.txt", sep = "\t", header = T)
74 | PC_mat <- as.matrix(PCs[, 2:ncol(PCs)])
75 | rownames(PC_mat) <- PCs$Ind_id
76 |
77 | source("mlmm_cof.r")
78 | mygwas_cof <- mlmm_cof(Y = phenot$Phenot1, X = genot_imp, cofs = PC_mat, K = K_mat, nbchunks = 2, maxsteps = 10, thresh = 10^-5)
79 |
80 | #mlmm stepwise table
81 | mygwas_cof$step_table
82 | #EBIC plot
83 | plot_step_table(mygwas_cof, "extBIC")
84 | #mbonf criterion plot
85 | plot_step_table(mygwas_cof, "maxpval")
86 | #% variance plot
87 | plot_step_RSS_cof(mygwas_cof)
88 | #1st mlmm step plot
89 | plot_fwd_GWAS(mygwas_cof, step = 1, snp_info = map, pval_filt = 0.1)
90 | #2nd mlmm step plot
91 | plot_fwd_GWAS(mygwas_cof, step = 2, snp_info = map, pval_filt = 0.1)
92 | #3rd mlmm step plot
93 | plot_fwd_GWAS(mygwas_cof, step = 3, snp_info = map, pval_filt = 0.1)
94 | #QQplot 7 steps
95 | qqplot_fwd_GWAS(mygwas_cof, nsteps = 7)
96 |
97 | #optimal step according to ebic plot
98 | plot_opt_GWAS(mygwas_cof, opt = "extBIC", snp_info = map, pval_filt = 0.1)
99 | qqplot_opt_GWAS(mygwas_cof, opt = "extBIC")
100 | #optimal step according to mbonf plot
101 | plot_opt_GWAS(mygwas_cof, opt = "mbonf", snp_info = map, pval_filt = 0.1)
102 | qqplot_opt_GWAS(mygwas_cof, opt = "mbonf")
103 | #optimal step according to user defined threshold
104 | plot_opt_GWAS(mygwas_cof, opt = "thresh", snp_info = map, pval_filt = 0.1)
105 | qqplot_opt_GWAS(mygwas_cof, opt = "thresh")
106 |
107 | #plot a region
108 | plot_fwd_region(mygwas_cof, step = 4, snp_info = map, pval_filt = 0.1, chrom = 2, pos1 = 17000000, pos2 = 19000000)
109 | plot_opt_region(mygwas_cof, opt = "thresh", snp_info = map, pval_filt = 0.1, chrom = 2, pos1 = 17000000, pos2 = 19000000)
110 |
111 | #retrieving pvals
112 | #step 1
113 | head(mygwas_cof$pval_step[[1]]$out)
114 | #step 2
115 | head(mygwas_cof$pval_step[[2]]$out)
116 | #opt extBIC
117 | head(mygwas_cof$opt_extBIC$out)
118 | #including SNP effects
119 | mygwas_cof$opt_extBIC$coef
120 |
121 |
--------------------------------------------------------------------------------
/misc/emma.r:
--------------------------------------------------------------------------------
1 | emma.kinship <- function(snps, method="additive", use="all") {
2 | n0 <- sum(snps==0,na.rm=TRUE)
3 | nh <- sum(snps==0.5,na.rm=TRUE)
4 | n1 <- sum(snps==1,na.rm=TRUE)
5 | nNA <- sum(is.na(snps))
6 |
7 | stopifnot(n0+nh+n1+nNA == length(snps))
8 |
9 | if ( method == "dominant" ) {
10 | flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) > 0.5),nrow(snps),ncol(snps))
11 | snps[!is.na(snps) & (snps == 0.5)] <- flags[!is.na(snps) & (snps == 0.5)]
12 | }
13 | else if ( method == "recessive" ) {
14 | flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) < 0.5),nrow(snps),ncol(snps))
15 | snps[!is.na(snps) & (snps == 0.5)] <- flags[!is.na(snps) & (snps == 0.5)]
16 | }
17 | else if ( ( method == "additive" ) && ( nh > 0 ) ) {
18 | dsnps <- snps
19 | rsnps <- snps
20 | flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) > 0.5),nrow(snps),ncol(snps))
21 | dsnps[!is.na(snps) & (snps==0.5)] <- flags[!is.na(snps) & (snps==0.5)]
22 | flags <- matrix(as.double(rowMeans(snps,na.rm=TRUE) < 0.5),nrow(snps),ncol(snps))
23 | rsnps[!is.na(snps) & (snps==0.5)] <- flags[!is.na(snps) & (snps==0.5)]
24 | snps <- rbind(dsnps,rsnps)
25 | }
26 |
27 | if ( use == "all" ) {
28 | mafs <- matrix(rowMeans(snps,na.rm=TRUE),nrow(snps),ncol(snps))
29 | snps[is.na(snps)] <- mafs[is.na(snps)]
30 | }
31 | else if ( use == "complete.obs" ) {
32 | snps <- snps[rowSums(is.na(snps))==0,]
33 | }
34 |
35 | n <- ncol(snps)
36 | K <- matrix(nrow=n,ncol=n)
37 | diag(K) <- 1
38 |
39 | for(i in 2:n) {
40 | for(j in 1:(i-1)) {
41 | x <- snps[,i]*snps[,j] + (1-snps[,i])*(1-snps[,j])
42 | K[i,j] <- sum(x,na.rm=TRUE)/sum(!is.na(x))
43 | K[j,i] <- K[i,j]
44 | }
45 | }
46 | return(K)
47 | }
48 |
49 | emma.eigen.L <- function(Z,K,complete=TRUE) {
50 | if ( is.null(Z) ) {
51 | return(emma.eigen.L.wo.Z(K))
52 | }
53 | else {
54 | return(emma.eigen.L.w.Z(Z,K,complete))
55 | }
56 | }
57 |
58 | emma.eigen.L.wo.Z <- function(K) {
59 | eig <- eigen(K,symmetric=TRUE)
60 | return(list(values=eig$values,vectors=eig$vectors))
61 | }
62 |
63 | emma.eigen.L.w.Z <- function(Z,K,complete=TRUE) {
64 | if ( complete == FALSE ) {
65 | vids <- colSums(Z)>0
66 | Z <- Z[,vids]
67 | K <- K[vids,vids]
68 | }
69 | eig <- eigen(K%*%crossprod(Z,Z),symmetric=FALSE,EISPACK=TRUE)
70 | return(list(values=eig$values,vectors=qr.Q(qr(Z%*%eig$vectors),complete=TRUE)))
71 | }
72 |
73 | emma.eigen.R <- function(Z,K,X,complete=TRUE) {
74 | if ( ncol(X) == 0 ) {
75 | return(emma.eigen.L(Z,K))
76 | }
77 | else if ( is.null(Z) ) {
78 | return(emma.eigen.R.wo.Z(K,X))
79 | }
80 | else {
81 | return(emma.eigen.R.w.Z(Z,K,X,complete))
82 | }
83 | }
84 |
85 | emma.eigen.R.wo.Z <- function(K, X) {
86 | n <- nrow(X)
87 | q <- ncol(X)
88 | S <- diag(n)-X%*%solve(crossprod(X,X))%*%t(X)
89 | eig <- eigen(S%*%(K+diag(1,n))%*%S,symmetric=TRUE)
90 | stopifnot(!is.complex(eig$values))
91 | return(list(values=eig$values[1:(n-q)]-1,vectors=eig$vectors[,1:(n-q)]))
92 | }
93 |
94 | emma.eigen.R.w.Z <- function(Z, K, X, complete = TRUE) {
95 | if ( complete == FALSE ) {
96 | vids <- colSums(Z) > 0
97 | Z <- Z[,vids]
98 | K <- K[vids,vids]
99 | }
100 | n <- nrow(Z)
101 | t <- ncol(Z)
102 | q <- ncol(X)
103 |
104 | SZ <- Z - X%*%solve(crossprod(X,X))%*%crossprod(X,Z)
105 | eig <- eigen(K%*%crossprod(Z,SZ),symmetric=FALSE,EISPACK=TRUE)
106 | if ( is.complex(eig$values) ) {
107 | eig$values <- Re(eig$values)
108 | eig$vectors <- Re(eig$vectors)
109 | }
110 | qr.X <- qr.Q(qr(X))
111 | return(list(values=eig$values[1:(t-q)],
112 | vectors=qr.Q(qr(cbind(SZ%*%eig$vectors[,1:(t-q)],qr.X)),
113 | complete=TRUE)[,c(1:(t-q),(t+1):n)]))
114 | }
115 |
116 | emma.delta.ML.LL.wo.Z <- function(logdelta, lambda, etas, xi) {
117 | n <- length(xi)
118 | delta <- exp(logdelta)
119 | return( 0.5*(n*(log(n/(2*pi))-1-log(sum((etas*etas)/(lambda+delta))))-sum(log(xi+delta))) )
120 | }
121 |
122 | emma.delta.ML.LL.w.Z <- function(logdelta, lambda, etas.1, xi.1, n, etas.2.sq ) {
123 | t <- length(xi.1)
124 | delta <- exp(logdelta)
125 | # stopifnot(length(lambda) == length(etas.1))
126 | return( 0.5*(n*(log(n/(2*pi))-1-log(sum(etas.1*etas.1/(lambda+delta))+etas.2.sq/delta))-(sum(log(xi.1+delta))+(n-t)*logdelta)) )
127 | }
128 |
129 | emma.delta.ML.dLL.wo.Z <- function(logdelta, lambda, etas, xi) {
130 | n <- length(xi)
131 | delta <- exp(logdelta)
132 | etasq <- etas*etas
133 | ldelta <- lambda+delta
134 | return( 0.5*(n*sum(etasq/(ldelta*ldelta))/sum(etasq/ldelta)-sum(1/(xi+delta))) )
135 | }
136 |
137 | emma.delta.ML.dLL.w.Z <- function(logdelta, lambda, etas.1, xi.1, n, etas.2.sq ) {
138 | t <- length(xi.1)
139 | delta <- exp(logdelta)
140 | etasq <- etas.1*etas.1
141 | ldelta <- lambda+delta
142 | return( 0.5*(n*(sum(etasq/(ldelta*ldelta))+etas.2.sq/(delta*delta))/(sum(etasq/ldelta)+etas.2.sq/delta)-(sum(1/(xi.1+delta))+(n-t)/delta) ) )
143 | }
144 |
145 | emma.delta.REML.LL.wo.Z <- function(logdelta, lambda, etas) {
146 | nq <- length(etas)
147 | delta <- exp(logdelta)
148 | return( 0.5*(nq*(log(nq/(2*pi))-1-log(sum(etas*etas/(lambda+delta))))-sum(log(lambda+delta))) )
149 | }
150 |
151 | emma.delta.REML.LL.w.Z <- function(logdelta, lambda, etas.1, n, t, etas.2.sq ) {
152 | tq <- length(etas.1)
153 | nq <- n - t + tq
154 | delta <- exp(logdelta)
155 | return( 0.5*(nq*(log(nq/(2*pi))-1-log(sum(etas.1*etas.1/(lambda+delta))+etas.2.sq/delta))-(sum(log(lambda+delta))+(n-t)*logdelta)) )
156 | }
157 |
158 | emma.delta.REML.dLL.wo.Z <- function(logdelta, lambda, etas) {
159 | nq <- length(etas)
160 | delta <- exp(logdelta)
161 | etasq <- etas*etas
162 | ldelta <- lambda+delta
163 | return( 0.5*(nq*sum(etasq/(ldelta*ldelta))/sum(etasq/ldelta)-sum(1/ldelta)) )
164 | }
165 |
166 | emma.delta.REML.dLL.w.Z <- function(logdelta, lambda, etas.1, n, t1, etas.2.sq ) {
167 | t <- t1
168 | tq <- length(etas.1)
169 | nq <- n - t + tq
170 | delta <- exp(logdelta)
171 | etasq <- etas.1*etas.1
172 | ldelta <- lambda+delta
173 | return( 0.5*(nq*(sum(etasq/(ldelta*ldelta))+etas.2.sq/(delta*delta))/(sum(etasq/ldelta)+etas.2.sq/delta)-(sum(1/ldelta)+(n-t)/delta)) )
174 | }
175 |
176 | emma.MLE <- function(y, X, K, Z=NULL, ngrids=100, llim=-10, ulim=10,
177 | esp=1e-10, eig.L = NULL, eig.R = NULL)
178 | {
179 | n <- length(y)
180 | t <- nrow(K)
181 | q <- ncol(X)
182 |
183 | # stopifnot(nrow(K) == t)
184 | stopifnot(ncol(K) == t)
185 | stopifnot(nrow(X) == n)
186 |
187 | if ( det(crossprod(X,X)) == 0 ) {
188 | warning("X is singular")
189 | return (list(ML=0,delta=0,ve=0,vg=0))
190 | }
191 |
192 | if ( is.null(Z) ) {
193 | if ( is.null(eig.L) ) {
194 | eig.L <- emma.eigen.L.wo.Z(K)
195 | }
196 | if ( is.null(eig.R) ) {
197 | eig.R <- emma.eigen.R.wo.Z(K,X)
198 | }
199 | etas <- crossprod(eig.R$vectors,y)
200 |
201 |
202 | logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim
203 | m <- length(logdelta)
204 | delta <- exp(logdelta)
205 | Lambdas <- matrix(eig.R$values,n-q,m) + matrix(delta,n-q,m,byrow=TRUE)
206 | Xis <- matrix(eig.L$values,n,m) + matrix(delta,n,m,byrow=TRUE)
207 | Etasq <- matrix(etas*etas,n-q,m)
208 | LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)))-colSums(log(Xis)))
209 | dLL <- 0.5*delta*(n*colSums(Etasq/(Lambdas*Lambdas))/colSums(Etasq/Lambdas)-colSums(1/Xis))
210 |
211 | optlogdelta <- vector(length=0)
212 | optLL <- vector(length=0)
213 | if ( dLL[1] < esp ) {
214 | optlogdelta <- append(optlogdelta, llim)
215 | optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,eig.R$values,etas,eig.L$values))
216 | }
217 | if ( dLL[m-1] > 0-esp ) {
218 | optlogdelta <- append(optlogdelta, ulim)
219 | optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,eig.R$values,etas,eig.L$values))
220 | }
221 |
222 | for( i in 1:(m-1) )
223 | {
224 | if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
225 | {
226 | r <- uniroot(emma.delta.ML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas=etas, xi=eig.L$values)
227 | optlogdelta <- append(optlogdelta, r$root)
228 | optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,eig.R$values, etas, eig.L$values))
229 | }
230 | }
231 | # optdelta <- exp(optlogdelta)
232 | }
233 | else {
234 | if ( is.null(eig.L) ) {
235 | eig.L <- emma.eigen.L.w.Z(Z,K)
236 | }
237 | if ( is.null(eig.R) ) {
238 | eig.R <- emma.eigen.R.w.Z(Z,K,X)
239 | }
240 | etas <- crossprod(eig.R$vectors,y)
241 | etas.1 <- etas[1:(t-q)]
242 | etas.2 <- etas[(t-q+1):(n-q)]
243 | etas.2.sq <- sum(etas.2*etas.2)
244 |
245 | logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim
246 |
247 | m <- length(logdelta)
248 | delta <- exp(logdelta)
249 | Lambdas <- matrix(eig.R$values,t-q,m) + matrix(delta,t-q,m,byrow=TRUE)
250 | Xis <- matrix(eig.L$values,t,m) + matrix(delta,t,m,byrow=TRUE)
251 | Etasq <- matrix(etas.1*etas.1,t-q,m)
252 | #LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)+etas.2.sq/delta))-colSums(log(Xis))+(n-t)*log(deltas))
253 | dLL <- 0.5*delta*(n*(colSums(Etasq/(Lambdas*Lambdas))+etas.2.sq/(delta*delta))/(colSums(Etasq/Lambdas)+etas.2.sq/delta)-(colSums(1/Xis)+(n-t)/delta))
254 |
255 | optlogdelta <- vector(length=0)
256 | optLL <- vector(length=0)
257 | if ( dLL[1] < esp ) {
258 | optlogdelta <- append(optlogdelta, llim)
259 | optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,eig.R$values,etas.1,eig.L$values,n,etas.2.sq))
260 | }
261 | if ( dLL[m-1] > 0-esp ) {
262 | optlogdelta <- append(optlogdelta, ulim)
263 | optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,eig.R$values,etas.1,eig.L$values,n,etas.2.sq))
264 | }
265 |
266 | for( i in 1:(m-1) )
267 | {
268 | if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
269 | {
270 | r <- uniroot(emma.delta.ML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas.1=etas.1, xi.1=eig.L$values, n=n, etas.2.sq = etas.2.sq )
271 | optlogdelta <- append(optlogdelta, r$root)
272 | optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,eig.R$values, etas.1, eig.L$values, n, etas.2.sq ))
273 | }
274 | }
275 | # optdelta <- exp(optlogdelta)
276 | }
277 |
278 | maxdelta <- exp(optlogdelta[which.max(optLL)])
279 | maxLL <- max(optLL)
280 | if ( is.null(Z) ) {
281 | maxva <- sum(etas*etas/(eig.R$values+maxdelta))/n
282 | }
283 | else {
284 | maxva <- (sum(etas.1*etas.1/(eig.R$values+maxdelta))+etas.2.sq/maxdelta)/n
285 | }
286 | maxve <- maxva*maxdelta
287 |
288 | return (list(ML=maxLL,delta=maxdelta,ve=maxve,vg=maxva))
289 | }
290 |
291 | emma.MLE.noX <- function(y, K, Z=NULL, ngrids=100, llim=-10, ulim=10,
292 | esp=1e-10, eig.L = NULL)
293 | {
294 | n <- length(y)
295 | t <- nrow(K)
296 |
297 | # stopifnot(nrow(K) == t)
298 | stopifnot(ncol(K) == t)
299 |
300 | if ( is.null(Z) ) {
301 | if ( is.null(eig.L) ) {
302 | eig.L <- emma.eigen.L.wo.Z(K)
303 | }
304 | etas <- crossprod(eig.L$vectors,y)
305 |
306 | logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim
307 | m <- length(logdelta)
308 | delta <- exp(logdelta)
309 | Xis <- matrix(eig.L$values,n,m) + matrix(delta,n,m,byrow=TRUE)
310 | Etasq <- matrix(etas*etas,n,m)
311 | LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Xis)))-colSums(log(Xis)))
312 | dLL <- 0.5*delta*(n*colSums(Etasq/(Xis*Xis))/colSums(Etasq/Xis)-colSums(1/Xis))
313 |
314 | optlogdelta <- vector(length=0)
315 | optLL <- vector(length=0)
316 | #print(dLL)
317 | if ( dLL[1] < esp ) {
318 | optlogdelta <- append(optlogdelta, llim)
319 | optLL <- append(optLL, emma.delta.ML.LL.wo.Z(llim,eig.L$values,etas,eig.L$values))
320 | }
321 | if ( dLL[m-1] > 0-esp ) {
322 | optlogdelta <- append(optlogdelta, ulim)
323 | optLL <- append(optLL, emma.delta.ML.LL.wo.Z(ulim,eig.L$values,etas,eig.L$values))
324 | }
325 |
326 | for( i in 1:(m-1) )
327 | {
328 | #if ( ( dLL[i]*dLL[i+1] < 0 ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
329 | if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
330 | {
331 | r <- uniroot(emma.delta.ML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.L$values, etas=etas, xi=eig.L$values)
332 | optlogdelta <- append(optlogdelta, r$root)
333 | optLL <- append(optLL, emma.delta.ML.LL.wo.Z(r$root,eig.L$values, etas, eig.L$values))
334 | }
335 | }
336 | # optdelta <- exp(optlogdelta)
337 | }
338 | else {
339 | if ( is.null(eig.L) ) {
340 | eig.L <- emma.eigen.L.w.Z(Z,K)
341 | }
342 | etas <- crossprod(eig.L$vectors,y)
343 | etas.1 <- etas[1:t]
344 | etas.2 <- etas[(t+1):n]
345 | etas.2.sq <- sum(etas.2*etas.2)
346 |
347 | logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim
348 |
349 | m <- length(logdelta)
350 | delta <- exp(logdelta)
351 | Xis <- matrix(eig.L$values,t,m) + matrix(delta,t,m,byrow=TRUE)
352 | Etasq <- matrix(etas.1*etas.1,t,m)
353 | #LL <- 0.5*(n*(log(n/(2*pi))-1-log(colSums(Etasq/Lambdas)+etas.2.sq/delta))-colSums(log(Xis))+(n-t)*log(deltas))
354 | dLL <- 0.5*delta*(n*(colSums(Etasq/(Xis*Xis))+etas.2.sq/(delta*delta))/(colSums(Etasq/Xis)+etas.2.sq/delta)-(colSums(1/Xis)+(n-t)/delta))
355 |
356 | optlogdelta <- vector(length=0)
357 | optLL <- vector(length=0)
358 | if ( dLL[1] < esp ) {
359 | optlogdelta <- append(optlogdelta, llim)
360 | optLL <- append(optLL, emma.delta.ML.LL.w.Z(llim,eig.L$values,etas.1,eig.L$values,n,etas.2.sq))
361 | }
362 | if ( dLL[m-1] > 0-esp ) {
363 | optlogdelta <- append(optlogdelta, ulim)
364 | optLL <- append(optLL, emma.delta.ML.LL.w.Z(ulim,eig.L$values,etas.1,eig.L$values,n,etas.2.sq))
365 | }
366 |
367 | for( i in 1:(m-1) )
368 | {
369 | if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
370 | {
371 | r <- uniroot(emma.delta.ML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.L$values, etas.1=etas.1, xi.1=eig.L$values, n=n, etas.2.sq = etas.2.sq )
372 | optlogdelta <- append(optlogdelta, r$root)
373 | optLL <- append(optLL, emma.delta.ML.LL.w.Z(r$root,eig.L$values, etas.1, eig.L$values, n, etas.2.sq ))
374 | }
375 | }
376 | # optdelta <- exp(optlogdelta)
377 | }
378 |
379 | maxdelta <- exp(optlogdelta[which.max(optLL)])
380 | maxLL <- max(optLL)
381 | if ( is.null(Z) ) {
382 | maxva <- sum(etas*etas/(eig.L$values+maxdelta))/n
383 | }
384 | else {
385 | maxva <- (sum(etas.1*etas.1/(eig.L$values+maxdelta))+etas.2.sq/maxdelta)/n
386 | }
387 | maxve <- maxva*maxdelta
388 |
389 | return (list(ML=maxLL,delta=maxdelta,ve=maxve,vg=maxva))
390 | }
391 |
392 | emma.REMLE <- function(y, X, K, Z=NULL, ngrids=100, llim=-10, ulim=10,
393 | esp=1e-10, eig.L = NULL, eig.R = NULL) {
394 | n <- length(y)
395 | t <- nrow(K)
396 | q <- ncol(X)
397 |
398 | # stopifnot(nrow(K) == t)
399 | stopifnot(ncol(K) == t)
400 | stopifnot(nrow(X) == n)
401 |
402 | if ( det(crossprod(X,X)) == 0 ) {
403 | warning("X is singular")
404 | return (list(REML=0,delta=0,ve=0,vg=0))
405 | }
406 |
407 | if ( is.null(Z) ) {
408 | if ( is.null(eig.R) ) {
409 | eig.R <- emma.eigen.R.wo.Z(K,X)
410 | }
411 | etas <- crossprod(eig.R$vectors,y)
412 |
413 | logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim
414 | m <- length(logdelta)
415 | delta <- exp(logdelta)
416 | Lambdas <- matrix(eig.R$values,n-q,m) + matrix(delta,n-q,m,byrow=TRUE)
417 | Etasq <- matrix(etas*etas,n-q,m)
418 | LL <- 0.5*((n-q)*(log((n-q)/(2*pi))-1-log(colSums(Etasq/Lambdas)))-colSums(log(Lambdas)))
419 | dLL <- 0.5*delta*((n-q)*colSums(Etasq/(Lambdas*Lambdas))/colSums(Etasq/Lambdas)-colSums(1/Lambdas))
420 |
421 | optlogdelta <- vector(length=0)
422 | optLL <- vector(length=0)
423 | if ( dLL[1] < esp ) {
424 | optlogdelta <- append(optlogdelta, llim)
425 | optLL <- append(optLL, emma.delta.REML.LL.wo.Z(llim,eig.R$values,etas))
426 | }
427 | if ( dLL[m-1] > 0-esp ) {
428 | optlogdelta <- append(optlogdelta, ulim)
429 | optLL <- append(optLL, emma.delta.REML.LL.wo.Z(ulim,eig.R$values,etas))
430 | }
431 |
432 | for( i in 1:(m-1) )
433 | {
434 | if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
435 | {
436 | r <- uniroot(emma.delta.REML.dLL.wo.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas=etas)
437 | optlogdelta <- append(optlogdelta, r$root)
438 | optLL <- append(optLL, emma.delta.REML.LL.wo.Z(r$root,eig.R$values, etas))
439 | }
440 | }
441 | # optdelta <- exp(optlogdelta)
442 | }
443 | else {
444 | if ( is.null(eig.R) ) {
445 | eig.R <- emma.eigen.R.w.Z(Z,K,X)
446 | }
447 | etas <- crossprod(eig.R$vectors,y)
448 | etas.1 <- etas[1:(t-q)]
449 | etas.2 <- etas[(t-q+1):(n-q)]
450 | etas.2.sq <- sum(etas.2*etas.2)
451 |
452 | logdelta <- (0:ngrids)/ngrids*(ulim-llim)+llim
453 | m <- length(logdelta)
454 | delta <- exp(logdelta)
455 | Lambdas <- matrix(eig.R$values,t-q,m) + matrix(delta,t-q,m,byrow=TRUE)
456 | Etasq <- matrix(etas.1*etas.1,t-q,m)
457 | dLL <- 0.5*delta*((n-q)*(colSums(Etasq/(Lambdas*Lambdas))+etas.2.sq/(delta*delta))/(colSums(Etasq/Lambdas)+etas.2.sq/delta)-(colSums(1/Lambdas)+(n-t)/delta))
458 |
459 | optlogdelta <- vector(length=0)
460 | optLL <- vector(length=0)
461 | if ( dLL[1] < esp ) {
462 | optlogdelta <- append(optlogdelta, llim)
463 | optLL <- append(optLL, emma.delta.REML.LL.w.Z(llim,eig.R$values,etas.1,n,t,etas.2.sq))
464 | }
465 | if ( dLL[m-1] > 0-esp ) {
466 | optlogdelta <- append(optlogdelta, ulim)
467 | optLL <- append(optLL, emma.delta.REML.LL.w.Z(ulim,eig.R$values,etas.1,n,t,etas.2.sq))
468 | }
469 |
470 | for( i in 1:(m-1) )
471 | {
472 | if ( ( dLL[i]*dLL[i+1] < 0-esp*esp ) && ( dLL[i] > 0 ) && ( dLL[i+1] < 0 ) )
473 | {
474 | r <- uniroot(emma.delta.REML.dLL.w.Z, lower=logdelta[i], upper=logdelta[i+1], lambda=eig.R$values, etas.1=etas.1, n=n, t1=t, etas.2.sq = etas.2.sq )
475 | optlogdelta <- append(optlogdelta, r$root)
476 | optLL <- append(optLL, emma.delta.REML.LL.w.Z(r$root,eig.R$values, etas.1, n, t, etas.2.sq ))
477 | }
478 | }
479 | # optdelta <- exp(optlogdelta)
480 | }
481 |
482 | maxdelta <- exp(optlogdelta[which.max(optLL)])
483 | maxLL <- max(optLL)
484 | if ( is.null(Z) ) {
485 | maxva <- sum(etas*etas/(eig.R$values+maxdelta))/(n-q)
486 | }
487 | else {
488 | maxva <- (sum(etas.1*etas.1/(eig.R$values+maxdelta))+etas.2.sq/maxdelta)/(n-q)
489 | }
490 | maxve <- maxva*maxdelta
491 |
492 | return (list(REML=maxLL,delta=maxdelta,ve=maxve,vg=maxva))
493 | }
494 |
495 | emma.ML.LRT <- function(ys, xs, K, Z=NULL, X0 = NULL, ngrids=100, llim=-10, ulim=10, esp=1e-10, ponly = FALSE) {
496 | if ( is.null(dim(ys)) || ncol(ys) == 1 ) {
497 | ys <- matrix(ys,1,length(ys))
498 | }
499 | if ( is.null(dim(xs)) || ncol(xs) == 1 ) {
500 | xs <- matrix(xs,1,length(xs))
501 | }
502 | if ( is.null(X0) ) {
503 | X0 <- matrix(1,ncol(ys),1)
504 | }
505 |
506 | g <- nrow(ys)
507 | n <- ncol(ys)
508 | m <- nrow(xs)
509 | t <- ncol(xs)
510 | q0 <- ncol(X0)
511 | q1 <- q0 + 1
512 |
513 | if ( !ponly ) {
514 | ML1s <- matrix(nrow=m,ncol=g)
515 | ML0s <- matrix(nrow=m,ncol=g)
516 | vgs <- matrix(nrow=m,ncol=g)
517 | ves <- matrix(nrow=m,ncol=g)
518 | }
519 | stats <- matrix(nrow=m,ncol=g)
520 | ps <- matrix(nrow=m,ncol=g)
521 | ML0 <- vector(length=g)
522 |
523 | stopifnot(nrow(K) == t)
524 | stopifnot(ncol(K) == t)
525 | stopifnot(nrow(X0) == n)
526 |
527 | if ( sum(is.na(ys)) == 0 ) {
528 | eig.L <- emma.eigen.L(Z,K)
529 | eig.R0 <- emma.eigen.R(Z,K,X0)
530 |
531 | for(i in 1:g) {
532 | ML0[i] <- emma.MLE(ys[i,],X0,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R0)$ML
533 | }
534 |
535 | x.prev <- vector(length=0)
536 |
537 | for(i in 1:m) {
538 | vids <- !is.na(xs[i,])
539 | nv <- sum(vids)
540 | xv <- xs[i,vids]
541 |
542 | if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) {
543 | if (!ponly) {
544 | stats[i,] <- rep(NA,g)
545 | vgs[i,] <- rep(NA,g)
546 | ves[i,] <- rep(NA,g)
547 | ML1s[i,] <- rep(NA,g)
548 | ML0s[i,] <- rep(NA,g)
549 | }
550 | ps[i,] = rep(1,g)
551 | }
552 | else if ( identical(x.prev, xv) ) {
553 | if ( !ponly ) {
554 | stats[i,] <- stats[i-1,]
555 | vgs[i,] <- vgs[i-1,]
556 | ves[i,] <- ves[i-1,]
557 | ML1s[i,] <- ML1s[i-1,]
558 | ML0s[i,] <- ML0s[i-1,]
559 | }
560 | ps[i,] <- ps[i-1,]
561 | }
562 | else {
563 | if ( is.null(Z) ) {
564 | X <- cbind(X0[vids,,drop=FALSE],xs[i,vids])
565 | eig.R1 = emma.eigen.R.wo.Z(K[vids,vids],X)
566 | }
567 | else {
568 | vrows <- as.logical(rowSums(Z[,vids]))
569 | nr <- sum(vrows)
570 | X <- cbind(X0[vrows,,drop=FALSE],Z[vrows,vids]%*%t(xs[i,vids,drop=FALSE]))
571 | eig.R1 = emma.eigen.R.w.Z(Z[vrows,vids],K[vids,vids],X)
572 | }
573 |
574 | for(j in 1:g) {
575 | if ( nv == t ) {
576 | MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1)
577 | # MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1)
578 | if (!ponly) {
579 | ML1s[i,j] <- MLE$ML
580 | vgs[i,j] <- MLE$vg
581 | ves[i,j] <- MLE$ve
582 | }
583 | stats[i,j] <- 2*(MLE$ML-ML0[j])
584 |
585 | }
586 | else {
587 | if ( is.null(Z) ) {
588 | eig.L0 <- emma.eigen.L.wo.Z(K[vids,vids])
589 | MLE0 <- emma.MLE(ys[j,vids],X0[vids,,drop=FALSE],K[vids,vids],NULL,ngrids,llim,ulim,esp,eig.L0)
590 | MLE1 <- emma.MLE(ys[j,vids],X,K[vids,vids],NULL,ngrids,llim,ulim,esp,eig.L0)
591 | }
592 | else {
593 | if ( nr == n ) {
594 | MLE1 <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L)
595 | }
596 | else {
597 | eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vids],K[vids,vids])
598 | MLE0 <- emma.MLE(ys[j,vrows],X0[vrows,,drop=FALSE],K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp,eig.L0)
599 | MLE1 <- emma.MLE(ys[j,vrows],X,K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp,eig.L0)
600 | }
601 | }
602 | if (!ponly) {
603 | ML1s[i,j] <- MLE1$ML
604 | ML0s[i,j] <- MLE0$ML
605 | vgs[i,j] <- MLE1$vg
606 | ves[i,j] <- MLE1$ve
607 | }
608 | stats[i,j] <- 2*(MLE1$ML-MLE0$ML)
609 | }
610 | }
611 | if ( ( nv == t ) && ( !ponly ) ) {
612 | ML0s[i,] <- ML0
613 | }
614 | ps[i,] <- pchisq(stats[i,],1,lower.tail=FALSE)
615 | }
616 | }
617 | }
618 | else {
619 | eig.L <- emma.eigen.L(Z,K)
620 | eig.R0 <- emma.eigen.R(Z,K,X0)
621 |
622 | for(i in 1:g) {
623 | vrows <- !is.na(ys[i,])
624 | if ( is.null(Z) ) {
625 | ML0[i] <- emma.MLE(ys[i,vrows],X0[vrows,,drop=FALSE],K[vrows,vrows],NULL,ngrids,llim,ulim,esp)$ML
626 | }
627 | else {
628 | vids <- colSums(Z[vrows,]>0)
629 |
630 | ML0[i] <- emma.MLE(ys[i,vrows],X0[vrows,,drop=FALSE],K[vids,vids],Z[vrows,vids],ngrids,llim,ulim,esp)$ML
631 | }
632 | }
633 |
634 | x.prev <- vector(length=0)
635 |
636 | for(i in 1:m) {
637 | vids <- !is.na(xs[i,])
638 | nv <- sum(vids)
639 | xv <- xs[i,vids]
640 |
641 | if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) {
642 | if (!ponly) {
643 | stats[i,] <- rep(NA,g)
644 | vgs[i,] <- rep(NA,g)
645 | ves[i,] <- rep(NA,g)
646 | ML1s[i,] <- rep(NA,g)
647 | ML0s[,i] <- rep(NA,g)
648 | }
649 | ps[i,] = rep(1,g)
650 | }
651 | else if ( identical(x.prev, xv) ) {
652 | if ( !ponly ) {
653 | stats[i,] <- stats[i-1,]
654 | vgs[i,] <- vgs[i-1,]
655 | ves[i,] <- ves[i-1,]
656 | ML1s[i,] <- ML1s[i-1,]
657 | }
658 | ps[i,] = ps[i-1,]
659 | }
660 | else {
661 | if ( is.null(Z) ) {
662 | X <- cbind(X0,xs[i,])
663 | if ( nv == t ) {
664 | eig.R1 = emma.eigen.R.wo.Z(K,X)
665 | }
666 | }
667 | else {
668 | vrows <- as.logical(rowSums(Z[,vids]))
669 | X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE]))
670 | if ( nv == t ) {
671 | eig.R1 = emma.eigen.R.w.Z(Z,K,X)
672 | }
673 | }
674 |
675 | for(j in 1:g) {
676 | # print(j)
677 | vrows <- !is.na(ys[j,])
678 | if ( nv == t ) {
679 | nr <- sum(vrows)
680 | if ( is.null(Z) ) {
681 | if ( nr == n ) {
682 | MLE <- emma.MLE(ys[j,],X,K,NULL,ngrids,llim,ulim,esp,eig.L,eig.R1)
683 | }
684 | else {
685 | MLE <- emma.MLE(ys[j,vrows],X[vrows,],K[vrows,vrows],NULL,ngrids,llim,ulim,esp)
686 | }
687 | }
688 | else {
689 | if ( nr == n ) {
690 | MLE <- emma.MLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.L,eig.R1)
691 | }
692 | else {
693 | vtids <- as.logical(colSums(Z[vrows,,drop=FALSE]))
694 | MLE <- emma.MLE(ys[j,vrows],X[vrows,],K[vtids,vtids],Z[vrows,vtids],ngrids,llim,ulim,esp)
695 | }
696 | }
697 |
698 | if (!ponly) {
699 | ML1s[i,j] <- MLE$ML
700 | vgs[i,j] <- MLE$vg
701 | ves[i,j] <- MLE$ve
702 | }
703 | stats[i,j] <- 2*(MLE$ML-ML0[j])
704 | }
705 | else {
706 | if ( is.null(Z) ) {
707 | vtids <- vrows & vids
708 | eig.L0 <- emma.eigen.L(NULL,K[vtids,vtids])
709 | MLE0 <- emma.MLE(ys[j,vtids],X0[vtids,,drop=FALSE],K[vtids,vtids],NULL,ngrids,llim,ulim,esp,eig.L0)
710 | MLE1 <- emma.MLE(ys[j,vtids],X[vtids,],K[vtids,vtids],NULL,ngrids,llim,ulim,esp,eig.L0)
711 | }
712 | else {
713 | vtids <- as.logical(colSums(Z[vrows,])) & vids
714 | vtrows <- vrows & as.logical(rowSums(Z[,vids]))
715 | eig.L0 <- emma.eigen.L(Z[vtrows,vtids],K[vtids,vtids])
716 | MLE0 <- emma.MLE(ys[j,vtrows],X0[vtrows,,drop=FALSE],K[vtids,vtids],Z[vtrows,vtids],ngrids,llim,ulim,esp,eig.L0)
717 | MLE1 <- emma.MLE(ys[j,vtrows],X[vtrows,],K[vtids,vtids],Z[vtrows,vtids],ngrids,llim,ulim,esp,eig.L0)
718 | }
719 | if (!ponly) {
720 | ML1s[i,j] <- MLE1$ML
721 | vgs[i,j] <- MLE1$vg
722 | ves[i,j] <- MLE1$ve
723 | ML0s[i,j] <- MLE0$ML
724 | }
725 | stats[i,j] <- 2*(MLE1$ML-MLE0$ML)
726 | }
727 | }
728 | if ( ( nv == t ) && ( !ponly ) ) {
729 | ML0s[i,] <- ML0
730 | }
731 | ps[i,] <- pchisq(stats[i,],1,lower.tail=FALSE)
732 | }
733 | }
734 | }
735 | if ( ponly ) {
736 | return (ps)
737 | }
738 | else {
739 | return (list(ps=ps,ML1s=ML1s,ML0s=ML0s,stats=stats,vgs=vgs,ves=ves))
740 | }
741 | }
742 |
743 | emma.test <- function(ys, xs, K, Z=NULL, x0s = NULL, X0 = NULL, dfxs = 1, dfx0s = 1, use.MLE = FALSE, use.LRT = FALSE, ngrids = 100, llim = -10, ulim = 10, esp=1e-10, ponly = FALSE)
744 | {
745 | stopifnot (dfxs > 0)
746 |
747 | if ( is.null(dim(ys)) || ncol(ys) == 1 ) {
748 | ys <- matrix(ys,1,length(ys))
749 | }
750 |
751 | if ( is.null(dim(xs)) || ncol(xs) == 1 ) {
752 | xs <- matrix(xs,1,length(xs))
753 | }
754 | nx <- nrow(xs)/dfxs
755 |
756 | if ( is.null(x0s) ) {
757 | dfx0s = 0
758 | x0s <- matrix(NA,0,ncol(xs))
759 | }
760 | # X0 automatically contains intercept. If no intercept is to be used,
761 | # X0 should be matrix(nrow=ncol(ys),ncol=0)
762 | if ( is.null(X0) ) {
763 | X0 <- matrix(1,ncol(ys),1)
764 | }
765 |
766 | stopifnot(Z == NULL) # The case where Z is not null is not implemented
767 |
768 | ny <- nrow(ys)
769 | iy <- ncol(ys)
770 | ix <- ncol(xs)
771 |
772 | stopifnot(nrow(K) == ix)
773 | stopifnot(ncol(K) == ix)
774 | stopifnot(nrow(X0) == iy)
775 |
776 | if ( !ponly ) {
777 | LLs <- matrix(nrow=m,ncol=g)
778 | vgs <- matrix(nrow=m,ncol=g)
779 | ves <- matrix(nrow=m,ncol=g)
780 | }
781 | dfs <- matrix(nrow=m,ncol=g)
782 | stats <- matrix(nrow=m,ncol=g)
783 | ps <- matrix(nrow=m,ncol=g)
784 |
785 | # The case with no missing phenotypes
786 | if ( sum(is.na(ys)) == 0 ) {
787 | if ( ( use.MLE ) || ( !use.LRT ) ) {
788 | eig.L0 <- emma.eigen.L(Z,K)
789 | }
790 | if ( dfx0s == 0 ) {
791 | eig.R0 <- emma.eigen.R(Z,K,X0)
792 | }
793 | x.prev <- NULL
794 |
795 | for(i in 1:ix) {
796 | x1 <- t(xs[(dfxs*(i-1)+1):(dfxs*i),,drop=FALSE])
797 | if ( dfxs0 == 0 ) {
798 | x0 <- X0
799 | }
800 | else {
801 | x0 <- cbind(t(x0s[(dfx0s*(i-1)+1):(dfx0s*i),,drop=FALSE]),X0)
802 | }
803 | x <- cbind(x1,x0)
804 | xvids <- rowSums(is.na(x) == 0)
805 | nxv <- sum(xvids)
806 | xv <- x[xvids,,drop=FALSE]
807 | Kv <- K[xvids,xvids,drop=FALSE]
808 | yv <- ys[j,xvids]
809 |
810 | if ( identical(x.prev, xv) ) {
811 | if ( !ponly ) {
812 | vgs[i,] <- vgs[i-1,]
813 | ves[i,] <- ves[i-1,]
814 | dfs[i,] <- dfs[i-1,]
815 | REMLs[i,] <- REMLs[i-1,]
816 | stats[i,] <- stats[i-1,]
817 | }
818 | ps[i,] <- ps[i-1,]
819 | }
820 | else {
821 | eig.R1 = emma.eigen.R.wo.Z(Kv,xv)
822 |
823 | for(j in 1:iy) {
824 | if ( ( use.MLE ) || ( !use.LRT ) ) {
825 | if ( nxv < t ) {
826 | # NOTE: this complexity can be improved by avoiding eigen computation for identical missing patterns
827 | eig.L0v <- emma.eigen.L.wo.Z(Kv)
828 | }
829 | else {
830 | eig.L0v <- eig.L0
831 | }
832 | }
833 |
834 | if ( use.MLE ) {
835 | MLE <- emma.REMLE(yv,xv,Kv,NULL,ngrids,llim,ulim,esp,eig.R1)
836 | stop("Not implemented yet")
837 | }
838 | else {
839 | REMLE <- emma.REMLE(yv,xv,Kv,NULL,ngrids,llim,ulim,esp,eig.R1)
840 | if ( use.LRT ) {
841 | stop("Not implemented yet")
842 | }
843 | else {
844 | U <- eig.L0v$vectors * matrix(sqrt(1/(eig.L0v$values+REMLE$delta)),t,t,byrow=TRUE)
845 | dfs[i,j] <- length(eig.R1$values)
846 | yt <- crossprod(U,yv)
847 | xt <- crossprod(U,xv)
848 | ixx <- solve(crossprod(xt,xt))
849 | beta <- ixx%*%crossprod(xt,yt)
850 | if ( dfxs == 1 ) {
851 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
852 | }
853 | else {
854 | model.m <- c(rep(1,dfxs),rep(0,ncol(xv)-dfxs))
855 | stats[i,j] <-
856 | crossprod(crossprod(solve(crossprod(crossprod(iXX,model.m),
857 | model.m)),
858 | model.m*beta),model.m*beta)
859 |
860 | }
861 | if ( !ponly ) {
862 | vgs[i,j] <- REMLE$vg
863 | ves[i,j] <- REMLE$ve
864 | REMLs[i,j] <- REMLE$REML
865 | }
866 | }
867 | }
868 | }
869 | if ( dfxs == 1 ) {
870 | ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE)
871 | }
872 | else {
873 | ps[i,] <- pf(abs(stats[i,]),dfs[i,],lower.tail=FALSE)
874 | }
875 | }
876 | }
877 | }
878 | # The case with missing genotypes - not implemented yet
879 | else {
880 | stop("Not implemented yet")
881 | eig.L <- emma.eigen.L(Z,K)
882 | eig.R0 <- emma.eigen.R(Z,K,X0)
883 |
884 | x.prev <- vector(length=0)
885 |
886 | for(i in 1:m) {
887 | vids <- !is.na(xs[i,])
888 | nv <- sum(vids)
889 | xv <- xs[i,vids]
890 |
891 | if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) {
892 | if (!ponly) {
893 | vgs[i,] <- rep(NA,g)
894 | ves[i,] <- rep(NA,g)
895 | REMLs[i,] <- rep(NA,g)
896 | dfs[i,] <- rep(NA,g)
897 | }
898 | ps[i,] = rep(1,g)
899 | }
900 | else if ( identical(x.prev, xv) ) {
901 | if ( !ponly ) {
902 | stats[i,] <- stats[i-1,]
903 | vgs[i,] <- vgs[i-1,]
904 | ves[i,] <- ves[i-1,]
905 | REMLs[i,] <- REMLs[i-1,]
906 | dfs[i,] <- dfs[i-1,]
907 | }
908 | ps[i,] = ps[i-1,]
909 | }
910 | else {
911 | if ( is.null(Z) ) {
912 | X <- cbind(X0,xs[i,])
913 | if ( nv == t ) {
914 | eig.R1 = emma.eigen.R.wo.Z(K,X)
915 | }
916 | }
917 | else {
918 | vrows <- as.logical(rowSums(Z[,vids,drop=FALSE]))
919 | X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE]))
920 | if ( nv == t ) {
921 | eig.R1 = emma.eigen.R.w.Z(Z,K,X)
922 | }
923 | }
924 |
925 | for(j in 1:g) {
926 | vrows <- !is.na(ys[j,])
927 | if ( nv == t ) {
928 | yv <- ys[j,vrows]
929 | nr <- sum(vrows)
930 | if ( is.null(Z) ) {
931 | if ( nr == n ) {
932 | REMLE <- emma.REMLE(yv,X,K,NULL,ngrids,llim,ulim,esp,eig.R1)
933 | U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),n,n,byrow=TRUE)
934 | }
935 | else {
936 | eig.L0 <- emma.eigen.L.wo.Z(K[vrows,vrows,drop=FALSE])
937 | REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vrows,vrows,drop=FALSE],NULL,ngrids,llim,ulim,esp)
938 | U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE)
939 | }
940 | dfs[i,j] <- nr-q1
941 | }
942 | else {
943 | if ( nr == n ) {
944 | REMLE <- emma.REMLE(yv,X,K,Z,ngrids,llim,ulim,esp,eig.R1)
945 | U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE)
946 | }
947 | else {
948 | vtids <- as.logical(colSums(Z[vrows,,drop=FALSE]))
949 | eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE])
950 | REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vrows,vtids,drop=FALSE],ngrids,llim,ulim,esp)
951 | U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE)
952 | }
953 | dfs[i,j] <- nr-q1
954 | }
955 |
956 | yt <- crossprod(U,yv)
957 | Xt <- crossprod(U,X[vrows,,drop=FALSE])
958 | iXX <- solve(crossprod(Xt,Xt))
959 | beta <- iXX%*%crossprod(Xt,yt)
960 | if ( !ponly ) {
961 | vgs[i,j] <- REMLE$vg
962 | ves[i,j] <- REMLE$ve
963 | REMLs[i,j] <- REMLE$REML
964 | }
965 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
966 | }
967 | else {
968 | if ( is.null(Z) ) {
969 | vtids <- vrows & vids
970 | eig.L0 <- emma.eigen.L.wo.Z(K[vtids,vtids,drop=FALSE])
971 | yv <- ys[j,vtids]
972 | nr <- sum(vtids)
973 | REMLE <- emma.REMLE(yv,X[vtids,,drop=FALSE],K[vtids,vtids,drop=FALSE],NULL,ngrids,llim,ulim,esp)
974 | U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE)
975 | Xt <- crossprod(U,X[vtids,,drop=FALSE])
976 | dfs[i,j] <- nr-q1
977 | }
978 | else {
979 | vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) & vids
980 | vtrows <- vrows & as.logical(rowSums(Z[,vids,drop=FALSE]))
981 | eig.L0 <- emma.eigen.L.w.Z(Z[vtrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE])
982 | yv <- ys[j,vtrows]
983 | nr <- sum(vtrows)
984 | REMLE <- emma.REMLE(yv,X[vtrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vtrows,vtids,drop=FALSE],ngrids,llim,ulim,esp)
985 | U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE)
986 | Xt <- crossprod(U,X[vtrows,,drop=FALSE])
987 | dfs[i,j] <- nr-q1
988 | }
989 | yt <- crossprod(U,yv)
990 | iXX <- solve(crossprod(Xt,Xt))
991 | beta <- iXX%*%crossprod(Xt,yt)
992 | if ( !ponly ) {
993 | vgs[i,j] <- REMLE$vg
994 | ves[i,j] <- REMLE$ve
995 | REMLs[i,j] <- REMLE$REML
996 | }
997 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
998 |
999 | }
1000 | }
1001 | ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE)
1002 | }
1003 | }
1004 | }
1005 | if ( ponly ) {
1006 | return (ps)
1007 | }
1008 | else {
1009 | return (list(ps=ps,REMLs=REMLs,stats=stats,dfs=dfs,vgs=vgs,ves=ves))
1010 | }
1011 | }
1012 |
1013 | emma.REML.t <- function(ys, xs, K, Z=NULL, X0 = NULL, ngrids=100, llim=-10, ulim=10, esp=1e-10, ponly = FALSE) {
1014 | if ( is.null(dim(ys)) || ncol(ys) == 1 ) {
1015 | ys <- matrix(ys,1,length(ys))
1016 | }
1017 | if ( is.null(dim(xs)) || ncol(xs) == 1 ) {
1018 | xs <- matrix(xs,1,length(xs))
1019 | }
1020 | if ( is.null(X0) ) {
1021 | X0 <- matrix(1,ncol(ys),1)
1022 | }
1023 |
1024 | g <- nrow(ys)
1025 | n <- ncol(ys)
1026 | m <- nrow(xs)
1027 | t <- ncol(xs)
1028 | q0 <- ncol(X0)
1029 | q1 <- q0 + 1
1030 |
1031 | stopifnot(nrow(K) == t)
1032 | stopifnot(ncol(K) == t)
1033 | stopifnot(nrow(X0) == n)
1034 |
1035 | if ( !ponly ) {
1036 | REMLs <- matrix(nrow=m,ncol=g)
1037 | vgs <- matrix(nrow=m,ncol=g)
1038 | ves <- matrix(nrow=m,ncol=g)
1039 | }
1040 | dfs <- matrix(nrow=m,ncol=g)
1041 | stats <- matrix(nrow=m,ncol=g)
1042 | ps <- matrix(nrow=m,ncol=g)
1043 |
1044 | if ( sum(is.na(ys)) == 0 ) {
1045 | eig.L <- emma.eigen.L(Z,K)
1046 |
1047 | x.prev <- vector(length=0)
1048 |
1049 | for(i in 1:m) {
1050 | vids <- !is.na(xs[i,])
1051 | nv <- sum(vids)
1052 | xv <- xs[i,vids]
1053 |
1054 | if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) {
1055 | if ( !ponly ) {
1056 | vgs[i,] <- rep(NA,g)
1057 | ves[i,] <- rep(NA,g)
1058 | dfs[i,] <- rep(NA,g)
1059 | REMLs[i,] <- rep(NA,g)
1060 | stats[i,] <- rep(NA,g)
1061 | }
1062 | ps[i,] = rep(1,g)
1063 |
1064 | }
1065 | else if ( identical(x.prev, xv) ) {
1066 | if ( !ponly ) {
1067 | vgs[i,] <- vgs[i-1,]
1068 | ves[i,] <- ves[i-1,]
1069 | dfs[i,] <- dfs[i-1,]
1070 | REMLs[i,] <- REMLs[i-1,]
1071 | stats[i,] <- stats[i-1,]
1072 | }
1073 | ps[i,] <- ps[i-1,]
1074 | }
1075 | else {
1076 | if ( is.null(Z) ) {
1077 | X <- cbind(X0[vids,,drop=FALSE],xs[i,vids])
1078 | eig.R1 = emma.eigen.R.wo.Z(K[vids,vids],X)
1079 | }
1080 | else {
1081 | vrows <- as.logical(rowSums(Z[,vids]))
1082 | X <- cbind(X0[vrows,,drop=FALSE],Z[vrows,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE]))
1083 | eig.R1 = emma.eigen.R.w.Z(Z[vrows,vids],K[vids,vids],X)
1084 | }
1085 |
1086 | for(j in 1:g) {
1087 | if ( nv == t ) {
1088 | REMLE <- emma.REMLE(ys[j,],X,K,Z,ngrids,llim,ulim,esp,eig.R1)
1089 | if ( is.null(Z) ) {
1090 | U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),t,t,byrow=TRUE)
1091 | dfs[i,j] <- nv - q1
1092 | }
1093 | else {
1094 | U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE)
1095 | dfs[i,j] <- n - q1
1096 | }
1097 | yt <- crossprod(U,ys[j,])
1098 | Xt <- crossprod(U,X)
1099 | iXX <- solve(crossprod(Xt,Xt))
1100 | beta <- iXX%*%crossprod(Xt,yt)
1101 |
1102 | if ( !ponly ) {
1103 | vgs[i,j] <- REMLE$vg
1104 | ves[i,j] <- REMLE$ve
1105 | REMLs[i,j] <- REMLE$REML
1106 | }
1107 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
1108 | }
1109 | else {
1110 | if ( is.null(Z) ) {
1111 | eig.L0 <- emma.eigen.L.wo.Z(K[vids,vids])
1112 | nr <- sum(vids)
1113 | yv <- ys[j,vids]
1114 | REMLE <- emma.REMLE(yv,X,K[vids,vids,drop=FALSE],NULL,ngrids,llim,ulim,esp,eig.R1)
1115 | U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE)
1116 | dfs[i,j] <- nr - q1
1117 | }
1118 | else {
1119 | eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vids,drop=FALSE],K[vids,vids])
1120 | yv <- ys[j,vrows]
1121 | nr <- sum(vrows)
1122 | tv <- sum(vids)
1123 | REMLE <- emma.REMLE(yv,X,K[vids,vids,drop=FALSE],Z[vrows,vids,drop=FALSE],ngrids,llim,ulim,esp,eig.R1)
1124 | U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-tv)),nr,nr,byrow=TRUE)
1125 | dfs[i,j] <- nr - q1
1126 | }
1127 | yt <- crossprod(U,yv)
1128 | Xt <- crossprod(U,X)
1129 | iXX <- solve(crossprod(Xt,Xt))
1130 | beta <- iXX%*%crossprod(Xt,yt)
1131 | if (!ponly) {
1132 | vgs[i,j] <- REMLE$vg
1133 | ves[i,j] <- REMLE$ve
1134 | REMLs[i,j] <- REMLE$REML
1135 | }
1136 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
1137 | }
1138 | }
1139 | ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE)
1140 | }
1141 | }
1142 | }
1143 | else {
1144 | eig.L <- emma.eigen.L(Z,K)
1145 | eig.R0 <- emma.eigen.R(Z,K,X0)
1146 |
1147 | x.prev <- vector(length=0)
1148 |
1149 | for(i in 1:m) {
1150 | vids <- !is.na(xs[i,])
1151 | nv <- sum(vids)
1152 | xv <- xs[i,vids]
1153 |
1154 | if ( ( mean(xv) <= 0 ) || ( mean(xv) >= 1 ) ) {
1155 | if (!ponly) {
1156 | vgs[i,] <- rep(NA,g)
1157 | ves[i,] <- rep(NA,g)
1158 | REMLs[i,] <- rep(NA,g)
1159 | dfs[i,] <- rep(NA,g)
1160 | }
1161 | ps[i,] = rep(1,g)
1162 | }
1163 | else if ( identical(x.prev, xv) ) {
1164 | if ( !ponly ) {
1165 | stats[i,] <- stats[i-1,]
1166 | vgs[i,] <- vgs[i-1,]
1167 | ves[i,] <- ves[i-1,]
1168 | REMLs[i,] <- REMLs[i-1,]
1169 | dfs[i,] <- dfs[i-1,]
1170 | }
1171 | ps[i,] = ps[i-1,]
1172 | }
1173 | else {
1174 | if ( is.null(Z) ) {
1175 | X <- cbind(X0,xs[i,])
1176 | if ( nv == t ) {
1177 | eig.R1 = emma.eigen.R.wo.Z(K,X)
1178 | }
1179 | }
1180 | else {
1181 | vrows <- as.logical(rowSums(Z[,vids,drop=FALSE]))
1182 | X <- cbind(X0,Z[,vids,drop=FALSE]%*%t(xs[i,vids,drop=FALSE]))
1183 | if ( nv == t ) {
1184 | eig.R1 = emma.eigen.R.w.Z(Z,K,X)
1185 | }
1186 | }
1187 |
1188 | for(j in 1:g) {
1189 | vrows <- !is.na(ys[j,])
1190 | if ( nv == t ) {
1191 | yv <- ys[j,vrows]
1192 | nr <- sum(vrows)
1193 | if ( is.null(Z) ) {
1194 | if ( nr == n ) {
1195 | REMLE <- emma.REMLE(yv,X,K,NULL,ngrids,llim,ulim,esp,eig.R1)
1196 | U <- eig.L$vectors * matrix(sqrt(1/(eig.L$values+REMLE$delta)),n,n,byrow=TRUE)
1197 | }
1198 | else {
1199 | eig.L0 <- emma.eigen.L.wo.Z(K[vrows,vrows,drop=FALSE])
1200 | REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vrows,vrows,drop=FALSE],NULL,ngrids,llim,ulim,esp)
1201 | U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE)
1202 | }
1203 | dfs[i,j] <- nr-q1
1204 | }
1205 | else {
1206 | if ( nr == n ) {
1207 | REMLE <- emma.REMLE(yv,X,K,Z,ngrids,llim,ulim,esp,eig.R1)
1208 | U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),n-t)),n,n,byrow=TRUE)
1209 | }
1210 | else {
1211 | vtids <- as.logical(colSums(Z[vrows,,drop=FALSE]))
1212 | eig.L0 <- emma.eigen.L.w.Z(Z[vrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE])
1213 | REMLE <- emma.REMLE(yv,X[vrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vrows,vtids,drop=FALSE],ngrids,llim,ulim,esp)
1214 | U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE)
1215 | }
1216 | dfs[i,j] <- nr-q1
1217 | }
1218 |
1219 | yt <- crossprod(U,yv)
1220 | Xt <- crossprod(U,X[vrows,,drop=FALSE])
1221 | iXX <- solve(crossprod(Xt,Xt))
1222 | beta <- iXX%*%crossprod(Xt,yt)
1223 | if ( !ponly ) {
1224 | vgs[i,j] <- REMLE$vg
1225 | ves[i,j] <- REMLE$ve
1226 | REMLs[i,j] <- REMLE$REML
1227 | }
1228 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
1229 | }
1230 | else {
1231 | if ( is.null(Z) ) {
1232 | vtids <- vrows & vids
1233 | eig.L0 <- emma.eigen.L.wo.Z(K[vtids,vtids,drop=FALSE])
1234 | yv <- ys[j,vtids]
1235 | nr <- sum(vtids)
1236 | REMLE <- emma.REMLE(yv,X[vtids,,drop=FALSE],K[vtids,vtids,drop=FALSE],NULL,ngrids,llim,ulim,esp)
1237 | U <- eig.L0$vectors * matrix(sqrt(1/(eig.L0$values+REMLE$delta)),nr,nr,byrow=TRUE)
1238 | Xt <- crossprod(U,X[vtids,,drop=FALSE])
1239 | dfs[i,j] <- nr-q1
1240 | }
1241 | else {
1242 | vtids <- as.logical(colSums(Z[vrows,,drop=FALSE])) & vids
1243 | vtrows <- vrows & as.logical(rowSums(Z[,vids,drop=FALSE]))
1244 | eig.L0 <- emma.eigen.L.w.Z(Z[vtrows,vtids,drop=FALSE],K[vtids,vtids,drop=FALSE])
1245 | yv <- ys[j,vtrows]
1246 | nr <- sum(vtrows)
1247 | REMLE <- emma.REMLE(yv,X[vtrows,,drop=FALSE],K[vtids,vtids,drop=FALSE],Z[vtrows,vtids,drop=FALSE],ngrids,llim,ulim,esp)
1248 | U <- eig.L0$vectors * matrix(c(sqrt(1/(eig.L0$values+REMLE$delta)),rep(sqrt(1/REMLE$delta),nr-sum(vtids))),nr,nr,byrow=TRUE)
1249 | Xt <- crossprod(U,X[vtrows,,drop=FALSE])
1250 | dfs[i,j] <- nr-q1
1251 | }
1252 | yt <- crossprod(U,yv)
1253 | iXX <- solve(crossprod(Xt,Xt))
1254 | beta <- iXX%*%crossprod(Xt,yt)
1255 | if ( !ponly ) {
1256 | vgs[i,j] <- REMLE$vg
1257 | ves[i,j] <- REMLE$ve
1258 | REMLs[i,j] <- REMLE$REML
1259 | }
1260 | stats[i,j] <- beta[q1]/sqrt(iXX[q1,q1]*REMLE$vg)
1261 |
1262 | }
1263 | }
1264 | ps[i,] <- 2*pt(abs(stats[i,]),dfs[i,],lower.tail=FALSE)
1265 | }
1266 | }
1267 | }
1268 | if ( ponly ) {
1269 | return (ps)
1270 | }
1271 | else {
1272 | return (list(ps=ps,REMLs=REMLs,stats=stats,dfs=dfs,vgs=vgs,ves=ves))
1273 | }
1274 | }
1275 |
--------------------------------------------------------------------------------
/misc/emmax.r:
--------------------------------------------------------------------------------
1 | ##############################################################################################################################################
2 | ###EMMAX
3 | ###SET OF FUNCTIONS TO RUN GWAS CORRECTING FOR POPULATION STRUCTURE WITH EMMAX (Kang et al. 2010, NatGen 42:348-354)
4 | #######
5 | #
6 | ##note: require EMMA
7 | #library(emma)
8 | #source('emma.r')
9 | #
10 | ##REQUIRED DATA & FORMAT
11 | #
12 | #PHENOTYPE - Y: a vector of length n with names(Y)=ecotype names
13 | #GENOTYPE - X: a n by m matrix, where n=number of ecotypes, m=number of markers, with rownames(X)=ecotype names, and colnames(X)=SNP names
14 | #KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=ecotype names
15 | #each of these data being sorted in the same way, according to the ecotype name
16 | #
17 | ##FOR PLOTING THE GWAS RESULTS
18 | #SNP INFORMATION - snp_info: a data frame having at least 3 columns:
19 | # - 1 named 'SNP', with SNP names (same as colnames(X)),
20 | # - 1 named 'Chr', with the chromosome number to which belong each SNP
21 | # - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to.
22 | #######
23 | #
24 | ##FUNCTIONS USE
25 | #save this file somewhere on your computer and source it!
26 | #source('path/fwd_emmax.r')
27 | #
28 | ###EMMAX SCAN
29 | #mygwas<-emmax(Y,X,K,nbchunks)
30 | #X,Y,K as described above
31 | #nbchunks: an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory
32 | #
33 | ###RESULTS
34 | #
35 | ##FUNCTION OUTPUT
36 | #A LIST:
37 | # $output: a data.frame with the F statitics, pvals and R2 for each SNP tested
38 | # $bonf_thresh: pval threshold according to a bonferonni correction for an alpha of 0.05
39 | #
40 | ##PLOTS
41 | #
42 | #GWAS MANHATTAN PLOT
43 | #plot_GWAS(mygwas,snp_info,pval_filt)
44 | #snp_info as described above
45 | #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot
46 | #
47 | #GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST
48 | #plot_region(mygwas,snp_info,chrom,pos1,pos2)
49 | #step, snp_info as described above
50 | #chrom=on which chromosome is the region of interest
51 | #pos1, pos2=delimitations of the region of interest in the same unit as Pos in snp_info
52 | #
53 | #p-values QQplot
54 | #qqplot_GWAS(mygwas)
55 | ##############################################################################################################################################
56 |
57 | emmax<-function(Y,X,K,nbchunks) {
58 |
59 | n<-length(Y)
60 | m<-ncol(X)
61 |
62 | stopifnot(ncol(K) == n)
63 | stopifnot(nrow(K) == n)
64 | stopifnot(nrow(X) == n)
65 | stopifnot(nbchunks >= 2)
66 |
67 | #INTERCEPT
68 |
69 | Xo<-rep(1,n)
70 |
71 | #K MATRIX NORMALISATION
72 |
73 | K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K
74 | rm(K)
75 |
76 | #NULL MODEL
77 |
78 | null<-emma.REMLE(Y,as.matrix(Xo),K_norm)
79 |
80 | pseudoh<-null$vg/(null$vg+null$ve)
81 |
82 | cat('null model done! pseudo-h =',round(pseudoh,3),'\n')
83 |
84 | #EMMAX
85 |
86 | M<-solve(chol(null$vg*K_norm+null$ve*diag(n)))
87 | Y_t<-crossprod(M,Y)
88 | Xo_t<-crossprod(M,Xo)
89 |
90 | RSS<-list()
91 | for (j in 1:(nbchunks-1)) {
92 | X_t<-crossprod(M,X[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))])
93 | RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(cbind(Xo_t,x),Y_t,intercept = FALSE)$residuals^2)})
94 | rm(X_t)}
95 | X_t<-crossprod(M,X[,((j)*round(m/nbchunks)+1):(m)])
96 | RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(cbind(Xo_t,x),Y_t,intercept = FALSE)$residuals^2)})
97 | rm(X_t,j)
98 |
99 | RSSf<-unlist(RSS)
100 | RSS_H0<-rep(sum(lsfit(Xo_t,Y_t,intercept = FALSE)$residuals^2),m)
101 | df1<-1
102 | df2<-n-df1-1
103 | R2<-1-1/(RSS_H0/RSSf)
104 | F<-(RSS_H0/RSSf-1)*df2/df1
105 | pval<-pf(F,df1,df2,lower.tail=FALSE)
106 |
107 | cat('EMMAX scan done! \n')
108 |
109 | cat('creating output','\n')
110 |
111 | list(output=data.frame(SNP=colnames(X),'F'=F,'pval'=pval,'Rsq'=R2),bonf_thresh=-log10(0.05/m))}
112 |
113 | linreg<-function(Y,X,nbchunks) {
114 |
115 | n<-length(Y)
116 | m<-ncol(X)
117 |
118 | stopifnot(nrow(X) == n)
119 | stopifnot(nbchunks >= 2)
120 |
121 | #INTERCEPT
122 |
123 | Xo<-rep(1,n)
124 |
125 | RSS<-list()
126 | for (j in 1:(nbchunks-1)) {RSS[[j]]<-apply(X[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))],2,function(x){sum(lsfit(cbind(Xo,x),Y,intercept=FALSE)$residuals^2)})}
127 | RSS[[nbchunks]]<-apply(X[,((j)*round(m/nbchunks)+1):(m)],2,function(x){sum(lsfit(cbind(Xo,x),Y,intercept=FALSE)$residuals^2)})
128 | rm(j)
129 |
130 | RSSf<-unlist(RSS)
131 | RSS_H0<-rep(sum(lsfit(Xo,Y,intercept=FALSE)$residuals^2),m)
132 | df1<-1
133 | df2<-n-df1-1
134 | R2<-1-1/(RSS_H0/RSSf)
135 | F<-(RSS_H0/RSSf-1)*df2/df1
136 | pval<-pf(F,df1,df2,lower.tail=FALSE)
137 |
138 | cat('linreg scan done! \n')
139 |
140 | cat('creating output','\n')
141 |
142 | list(output=data.frame(SNP=colnames(X),'F'=F,'pval'=pval,'Rsq'=R2),bonf_thresh=-log10(0.05/m))}
143 |
144 |
145 | plot_GWAS<-function(x,snp_info,pval_filt) {
146 |
147 | output<-subset(merge(snp_info,x$output,by='SNP'),pval<=pval_filt)
148 | output_<-output[order(output$Pos),]
149 | output_ok<-output_[order(output_$Chr),]
150 |
151 | maxpos<-c(0,cumsum(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x))/100))
152 | plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2))
153 | #plot_col<-c('blue','darkgreen','red','cyan','purple')
154 | size<-aggregate(output_ok$Pos,list(output_ok$Chr),length)$x
155 |
156 | a<-rep(maxpos[1],size[1])
157 | b<-rep(plot_col[1],size[1])
158 | if (length(unique(output_ok$Chr))>1){
159 | for (i in 2:length(unique(output_ok$Chr))){
160 | a<-c(a,rep(maxpos[i],size[i]))
161 | b<-c(b,rep(plot_col[i],size[i]))}}
162 |
163 | output_ok$xpos<-output_ok$Pos+a
164 | output_ok$col<-b
165 |
166 | d<-(aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2
167 |
168 | plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab='-log10(pval)',xaxt='n',xlab='chromosome')
169 | axis(1,tick=FALSE,at=d,labels=unique(output_ok$Chr))
170 | abline(h=x$bonf_thresh,lty=3,col='black')}
171 |
172 |
173 | plot_region<-function(x,snp_info,chrom,pos1,pos2){
174 |
175 | output<-merge(snp_info,x$output,by='SNP')
176 | region<-subset(output,Chr==chrom & Pos>=pos1 & Pos <=pos2)
177 |
178 | plot(region$Pos,-log10(region$pval),type='p',pch=20,main=paste('chromosome',chrom,sep=''),xlab='position (bp)',ylab='-log10(pval)',col='gray40',xlim=c(pos1,pos2))
179 | abline(h=x$bonf_thresh,lty=3,col='black')}
180 |
181 | qqplot_GWAS<-function(x){
182 | e<--log10(ppoints(nrow(x$output)))
183 | o<--log10(sort(x$output$pval))
184 |
185 | plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))))
186 | abline(0,1,col="dark grey")}
187 |
--------------------------------------------------------------------------------
/misc/example_data.Rdata:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gregor-Mendel-Institute/MultLocMixMod/e1aa9ab4779d98b95d1f83a4edc7f9df5f4e7c14/misc/example_data.Rdata
--------------------------------------------------------------------------------
/misc/example_data_bis.Rdata:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Gregor-Mendel-Institute/MultLocMixMod/e1aa9ab4779d98b95d1f83a4edc7f9df5f4e7c14/misc/example_data_bis.Rdata
--------------------------------------------------------------------------------
/misc/phenot.txt:
--------------------------------------------------------------------------------
1 | Ind_id Phenot1 Phenot2
2 | Ind1 -2.9985936006411 -2.9985936006411
3 | Ind2 -2.68669426456267 -2.68669426456267
4 | Ind3 -18.2181577678362 -18.2181577678362
5 | Ind4 -12.5401016500159 -12.5401016500159
6 | Ind5 7.72670043773802 7.72670043773802
7 | Ind6 5.25010246801007 5.25010246801007
8 | Ind7 0.417402126827894 0.417402126827894
9 | Ind8 10.6214497655125 10.6214497655125
10 | Ind9 -18.3014674338768 -18.3014674338768
11 | Ind10 -18.6098675031914 NA
12 | Ind11 -4.03477186214533 -4.03477186214533
13 | Ind12 -15.9882829569252 -15.9882829569252
14 | Ind13 -1.04632067604619 -1.04632067604619
15 | Ind14 -5.66838909636386 -5.66838909636386
16 | Ind15 2.58509745805752 2.58509745805752
17 | Ind16 -3.24187957417854 -3.24187957417854
18 | Ind17 -23.2729677083008 -23.2729677083008
19 | Ind18 6.96435357361898 6.96435357361898
20 | Ind19 -8.86432852665433 -8.86432852665433
21 | Ind20 -2.43021151820351 -2.43021151820351
22 | Ind21 -11.4044395258052 -11.4044395258052
23 | Ind22 4.77444855571111 4.77444855571111
24 | Ind23 18.2425783461208 NA
25 | Ind24 -16.1003230103367 -16.1003230103367
26 | Ind25 3.48578405180521 3.48578405180521
27 | Ind26 -13.6317796013066 -13.6317796013066
28 | Ind27 -17.8299036740888 -17.8299036740888
29 | Ind28 12.8760218262878 12.8760218262878
30 | Ind29 0.982337452944073 0.982337452944073
31 | Ind30 6.89441228302578 NA
32 | Ind31 -9.79070987759412 -9.79070987759412
33 | Ind32 -7.33335887602666 -7.33335887602666
34 | Ind33 -9.38112263525387 -9.38112263525387
35 | Ind34 -17.418514681802 -17.418514681802
36 | Ind35 -1.36926657800065 NA
37 | Ind36 -15.8925185459182 -15.8925185459182
38 | Ind37 -16.6664415036233 -16.6664415036233
39 | Ind38 -17.6113176227666 -17.6113176227666
40 | Ind39 8.09960655518536 8.09960655518536
41 | Ind40 -14.9600772642048 -14.9600772642048
42 | Ind41 -2.46258520207899 -2.46258520207899
43 | Ind42 3.52692956060259 3.52692956060259
44 | Ind43 -2.56849421725468 NA
45 | Ind44 0.462204831714866 0.462204831714866
46 | Ind45 -3.38429200532215 -3.38429200532215
47 | Ind46 -9.02868604003372 -9.02868604003372
48 | Ind47 5.19312365030726 5.19312365030726
49 | Ind48 11.362118479605 11.362118479605
50 | Ind49 -4.7016396675323 -4.7016396675323
51 | Ind50 -6.49221835766938 -6.49221835766938
52 | Ind51 8.74611923535598 8.74611923535598
53 | Ind52 20.0594288752544 20.0594288752544
54 | Ind53 -1.11475618282811 -1.11475618282811
55 | Ind54 -10.6088037144513 -10.6088037144513
56 | Ind55 -1.02045642033812 -1.02045642033812
57 | Ind56 -9.96139275677573 -9.96139275677573
58 | Ind57 3.07304203895751 3.07304203895751
59 | Ind58 -12.1924312705288 -12.1924312705288
60 | Ind59 3.05865100310952 3.05865100310952
61 | Ind60 7.09555942891504 7.09555942891504
62 | Ind61 -11.8186149500922 -11.8186149500922
63 | Ind62 -1.65105172480334 -1.65105172480334
64 | Ind63 1.30018923413375 1.30018923413375
65 | Ind64 -13.4333408135065 -13.4333408135065
66 | Ind65 -7.02813352566701 -7.02813352566701
67 | Ind66 13.8480146064731 13.8480146064731
68 | Ind67 -0.984981720446856 -0.984981720446856
69 | Ind68 -16.5795212756351 -16.5795212756351
70 | Ind69 4.17245531503865 4.17245531503865
71 | Ind70 -6.42799646672008 -6.42799646672008
72 | Ind71 13.5192944193829 13.5192944193829
73 | Ind72 -2.80402277594647 -2.80402277594647
74 | Ind73 -15.0486960942153 -15.0486960942153
75 | Ind74 0.0372137470215899 0.0372137470215899
76 | Ind75 -0.854371678661337 -0.854371678661337
77 | Ind76 11.5856619179338 11.5856619179338
78 | Ind77 -26.4907768158664 -26.4907768158664
79 | Ind78 -3.12931669517017 -3.12931669517017
80 | Ind79 -13.760048976086 -13.760048976086
81 | Ind80 -1.03667332000764 -1.03667332000764
82 | Ind81 1.98118654229534 1.98118654229534
83 | Ind82 -9.63094615407686 -9.63094615407686
84 | Ind83 -11.6395266623602 -11.6395266623602
85 | Ind84 -7.08357127398883 -7.08357127398883
86 | Ind85 12.9387551173972 12.9387551173972
87 | Ind86 -1.30834381449001 -1.30834381449001
88 | Ind87 13.6609913266554 13.6609913266554
89 | Ind88 6.39847190987683 6.39847190987683
90 | Ind89 -1.34730952287177 -1.34730952287177
91 | Ind90 -16.6048003152535 -16.6048003152535
92 | Ind91 16.6084424113242 16.6084424113242
93 | Ind92 6.64141034078026 NA
94 | Ind93 -9.40744181889942 -9.40744181889942
95 | Ind94 14.4360126037192 14.4360126037192
96 | Ind95 17.0774285382076 17.0774285382076
97 | Ind96 21.5510873447909 21.5510873447909
98 | Ind97 -8.72639590607163 -8.72639590607163
99 | Ind98 -8.68619309548353 -8.68619309548353
100 | Ind99 8.40048931868843 8.40048931868843
101 | Ind100 13.1300525230761 13.1300525230761
102 | Ind101 -2.92830356953823 -2.92830356953823
103 | Ind102 -2.94262901105908 -2.94262901105908
104 | Ind103 3.82836898455099 3.82836898455099
105 | Ind104 -9.10393737141981 -9.10393737141981
106 | Ind105 -4.85359562916628 -4.85359562916628
107 | Ind106 -16.3977102849185 -16.3977102849185
108 | Ind107 14.3067808268272 NA
109 | Ind108 -10.7110724319878 -10.7110724319878
110 | Ind109 -13.793436350179 -13.793436350179
111 | Ind110 5.97728570044173 5.97728570044173
112 | Ind111 17.1428248668007 17.1428248668007
113 | Ind112 12.4605869492483 12.4605869492483
114 | Ind113 3.75244657699406 3.75244657699406
115 | Ind114 -18.7971775261737 -18.7971775261737
116 | Ind115 -9.1709149242581 -9.1709149242581
117 | Ind116 -29.3270528589892 NA
118 | Ind117 -22.3814867931523 -22.3814867931523
119 | Ind118 1.28363190425234 1.28363190425234
120 | Ind119 -14.050944671816 -14.050944671816
121 | Ind120 -10.3732426881542 -10.3732426881542
122 | Ind121 -5.17498301406097 -5.17498301406097
123 | Ind122 2.90844279253387 2.90844279253387
124 | Ind123 -0.146565603565181 -0.146565603565181
125 | Ind124 -10.9243149535139 NA
126 | Ind125 -5.00827211221728 -5.00827211221728
127 | Ind126 -18.1213282800367 -18.1213282800367
128 | Ind127 4.14427812212841 4.14427812212841
129 | Ind128 0.804018588062293 0.804018588062293
130 | Ind129 -3.60570310975079 -3.60570310975079
131 | Ind130 -6.21857387301066 -6.21857387301066
132 | Ind131 -8.76660307460427 -8.76660307460427
133 | Ind132 -21.0015355437525 -21.0015355437525
134 | Ind133 -11.6823507360326 -11.6823507360326
135 | Ind134 -3.66842415962014 -3.66842415962014
136 | Ind135 -5.36621147209504 -5.36621147209504
137 | Ind136 4.35407712512925 4.35407712512925
138 | Ind137 -2.78914861613039 -2.78914861613039
139 | Ind138 1.05480446657816 1.05480446657816
140 | Ind139 0.817741011930843 0.817741011930843
141 | Ind140 -7.488134380328 -7.488134380328
142 | Ind141 -18.8417124408817 -18.8417124408817
143 | Ind142 7.86611857010879 7.86611857010879
144 | Ind143 -3.57321345565342 -3.57321345565342
145 | Ind144 1.33350838474607 1.33350838474607
146 | Ind145 -15.0218067857209 -15.0218067857209
147 | Ind146 -6.0890403283266 -6.0890403283266
148 | Ind147 -11.1983489132634 -11.1983489132634
149 | Ind148 8.88229065380888 8.88229065380888
150 | Ind149 -2.254091293164 -2.254091293164
151 | Ind150 -13.0978058402696 -13.0978058402696
152 | Ind151 0.534854717387266 0.534854717387266
153 | Ind152 7.17175734100575 7.17175734100575
154 | Ind153 -5.07571735672902 -5.07571735672902
155 | Ind154 5.15096178583793 5.15096178583793
156 | Ind155 2.9595766045094 2.9595766045094
157 | Ind156 -4.35882640452958 -4.35882640452958
158 | Ind157 -15.9604112424327 -15.9604112424327
159 | Ind158 -14.6692853963644 -14.6692853963644
160 | Ind159 -16.0822058113192 -16.0822058113192
161 | Ind160 3.60131510823639 3.60131510823639
162 | Ind161 12.6261685927466 12.6261685927466
163 | Ind162 12.8491127253766 12.8491127253766
164 | Ind163 -7.57846722041949 -7.57846722041949
165 | Ind164 -8.99044093923668 -8.99044093923668
166 | Ind165 -18.2010242462012 -18.2010242462012
167 | Ind166 0.0971652315124167 0.0971652315124167
168 | Ind167 7.98511217698198 7.98511217698198
169 | Ind168 -12.5595908253226 -12.5595908253226
170 | Ind169 -19.268360017165 -19.268360017165
171 | Ind170 -8.44358628215928 -8.44358628215928
172 | Ind171 -1.40270042453906 -1.40270042453906
173 | Ind172 5.27488162654375 5.27488162654375
174 | Ind173 -7.77350565768314 -7.77350565768314
175 | Ind174 2.41079646458619 2.41079646458619
176 | Ind175 -7.77007029594849 -7.77007029594849
177 | Ind176 4.16103859171198 4.16103859171198
178 | Ind177 13.7235336938684 13.7235336938684
179 | Ind178 -6.14271890464263 NA
180 | Ind179 -9.33983756951788 -9.33983756951788
181 | Ind180 -8.59252105055351 -8.59252105055351
182 | Ind181 -8.90543844445217 -8.90543844445217
183 | Ind182 -3.86947268831417 -3.86947268831417
184 | Ind183 3.02034433484337 3.02034433484337
185 | Ind184 -15.1333319967984 -15.1333319967984
186 | Ind185 8.56712696044838 8.56712696044838
187 | Ind186 -24.6653144941308 -24.6653144941308
188 | Ind187 4.47197229405334 4.47197229405334
189 | Ind188 21.570009247379 21.570009247379
190 | Ind189 8.06529969199982 8.06529969199982
191 | Ind190 1.45948181345615 1.45948181345615
192 | Ind191 12.0848887401151 12.0848887401151
193 | Ind192 -0.534808502956222 -0.534808502956222
194 | Ind193 3.26249249163004 3.26249249163004
195 | Ind194 -6.7375128754922 -6.7375128754922
196 | Ind195 13.4438565144384 13.4438565144384
197 | Ind196 13.7654162494864 13.7654162494864
198 | Ind197 -6.89801032155838 -6.89801032155838
199 | Ind198 10.3654528153198 10.3654528153198
200 | Ind199 -1.88088038414184 NA
201 | Ind200 -2.0923519085769 NA
202 | Ind201 -21.9201339707461 -21.9201339707461
203 | Ind202 -13.3348697854015 -13.3348697854015
204 | Ind203 7.53458551198368 7.53458551198368
205 | Ind204 -8.36959296588587 -8.36959296588587
206 | Ind205 5.94328584128221 5.94328584128221
207 | Ind206 -7.4207205804062 -7.4207205804062
208 | Ind207 -4.2895173279968 -4.2895173279968
209 | Ind208 -11.9853354755388 -11.9853354755388
210 | Ind209 -18.9105153044226 -18.9105153044226
211 | Ind210 -0.0192079561930187 -0.0192079561930187
212 | Ind211 0.0727256907528968 0.0727256907528968
213 | Ind212 0.160497797951634 0.160497797951634
214 | Ind213 2.02757848484629 2.02757848484629
215 | Ind214 -0.786148539497564 -0.786148539497564
216 | Ind215 -19.7964056829759 -19.7964056829759
217 | Ind216 -8.91259853485513 -8.91259853485513
218 | Ind217 -12.0577132753139 -12.0577132753139
219 | Ind218 -6.01154843007384 -6.01154843007384
220 | Ind219 5.29809804075035 5.29809804075035
221 | Ind220 -10.045617932656 -10.045617932656
222 | Ind221 4.13470933878406 4.13470933878406
223 | Ind222 -6.15163736919749 -6.15163736919749
224 | Ind223 -6.45951957655563 -6.45951957655563
225 | Ind224 5.92593035169213 5.92593035169213
226 | Ind225 11.6296956939284 11.6296956939284
227 | Ind226 1.28928656926097 1.28928656926097
228 | Ind227 -22.4206562755942 -22.4206562755942
229 | Ind228 3.36641564850795 3.36641564850795
230 | Ind229 3.75600758539542 3.75600758539542
231 | Ind230 -10.0776515107476 -10.0776515107476
232 | Ind231 -8.9001832294721 -8.9001832294721
233 | Ind232 -7.93429595471802 -7.93429595471802
234 | Ind233 -23.620523239262 -23.620523239262
235 | Ind234 -3.20607073192818 -3.20607073192818
236 | Ind235 -2.69697816837255 -2.69697816837255
237 | Ind236 -16.4799607284778 -16.4799607284778
238 | Ind237 0.488956323716927 0.488956323716927
239 | Ind238 -5.00820287274718 -5.00820287274718
240 | Ind239 -10.5169717844646 -10.5169717844646
241 | Ind240 -18.9530968440583 -18.9530968440583
242 | Ind241 8.67616457549299 8.67616457549299
243 | Ind242 -7.01684005949727 -7.01684005949727
244 | Ind243 -5.0246056176016 -5.0246056176016
245 | Ind244 3.77027275248025 3.77027275248025
246 | Ind245 -3.81478914430244 -3.81478914430244
247 | Ind246 -7.26475947536474 -7.26475947536474
248 | Ind247 -8.60662346567962 -8.60662346567962
249 | Ind248 -2.70269743251903 -2.70269743251903
250 | Ind249 -2.54481604112126 -2.54481604112126
251 | Ind250 -13.7929257735676 -13.7929257735676
252 | Ind251 7.93220285782777 7.93220285782777
253 | Ind252 -13.5558785801114 -13.5558785801114
254 | Ind253 9.45199045080389 9.45199045080389
255 | Ind254 5.32481032092939 5.32481032092939
256 | Ind255 -2.48938461691617 -2.48938461691617
257 | Ind256 5.78233459717692 5.78233459717692
258 | Ind257 -12.6834394252676 -12.6834394252676
259 | Ind258 0.0258155892380869 0.0258155892380869
260 | Ind259 4.74192466967429 4.74192466967429
261 | Ind260 2.68731832494476 2.68731832494476
262 | Ind261 -22.7964905826344 -22.7964905826344
263 | Ind262 -0.833885484652638 -0.833885484652638
264 | Ind263 1.91968508068336 1.91968508068336
265 | Ind264 -6.76510250624199 -6.76510250624199
266 | Ind265 -8.58359103228776 -8.58359103228776
267 | Ind266 -4.48540475330758 -4.48540475330758
268 | Ind267 -12.5327962996933 -12.5327962996933
269 | Ind268 -14.9219959125905 -14.9219959125905
270 | Ind269 -12.2322883145138 -12.2322883145138
271 | Ind270 -7.67598402043898 -7.67598402043898
272 | Ind271 -2.34362418897725 -2.34362418897725
273 | Ind272 4.36337827290926 4.36337827290926
274 | Ind273 -17.9467087802355 -17.9467087802355
275 | Ind274 -1.19041276947988 NA
276 | Ind275 7.72310795563776 7.72310795563776
277 | Ind276 3.5016576294811 3.5016576294811
278 | Ind277 -14.8164758269748 -14.8164758269748
279 | Ind278 6.47458625706743 6.47458625706743
280 | Ind279 -11.0601124021084 -11.0601124021084
281 | Ind280 5.80223419603082 5.80223419603082
282 | Ind281 3.60510461117572 3.60510461117572
283 | Ind282 6.05566907450489 6.05566907450489
284 | Ind283 -3.10086193507285 -3.10086193507285
285 | Ind284 -19.1041779629724 -19.1041779629724
286 | Ind285 -15.1130411906293 -15.1130411906293
287 | Ind286 -0.0667396166575374 -0.0667396166575374
288 | Ind287 -7.64651391164885 -7.64651391164885
289 | Ind288 2.02979157289482 NA
290 | Ind289 -10.8448549255713 -10.8448549255713
291 | Ind290 4.80856865719752 4.80856865719752
292 | Ind291 16.1646672390601 16.1646672390601
293 | Ind292 -0.567870439225785 -0.567870439225785
294 | Ind293 -4.20859502012268 -4.20859502012268
295 | Ind294 -7.28669071671718 -7.28669071671718
296 | Ind295 10.3464246678888 10.3464246678888
297 | Ind296 -6.74349162732319 -6.74349162732319
298 | Ind297 8.96957748948525 8.96957748948525
299 | Ind298 9.93652300752593 9.93652300752593
300 | Ind299 3.35113650538986 3.35113650538986
301 | Ind300 -3.383235716659 -3.383235716659
302 | Ind301 8.95951138238703 8.95951138238703
303 | Ind302 3.06891557818857 3.06891557818857
304 | Ind303 4.03404531375539 4.03404531375539
305 | Ind304 -16.1895162404003 -16.1895162404003
306 | Ind305 -4.15364879433127 -4.15364879433127
307 | Ind306 9.79863365897241 9.79863365897241
308 | Ind307 18.0625003790269 18.0625003790269
309 | Ind308 -13.4650724901232 -13.4650724901232
310 | Ind309 -3.33772724225896 -3.33772724225896
311 | Ind310 -11.3401865713567 -11.3401865713567
312 | Ind311 6.78794120666559 6.78794120666559
313 | Ind312 -5.6392572368876 -5.6392572368876
314 | Ind313 -10.6988844455389 -10.6988844455389
315 | Ind314 -8.34314976446663 -8.34314976446663
316 | Ind315 -2.72242100540515 -2.72242100540515
317 | Ind316 -4.33849107597602 NA
318 | Ind317 -10.1730647960328 -10.1730647960328
319 | Ind318 -8.49575963920392 NA
320 | Ind319 -12.772266161195 -12.772266161195
321 | Ind320 19.8551330501056 19.8551330501056
322 | Ind321 -13.9676231153734 -13.9676231153734
323 | Ind322 -13.4989455309342 NA
324 | Ind323 -23.8265009039074 -23.8265009039074
325 | Ind324 2.12873500115358 2.12873500115358
326 | Ind325 -11.0419035408938 -11.0419035408938
327 | Ind326 -7.68462385453668 -7.68462385453668
328 | Ind327 0.680589353140042 0.680589353140042
329 | Ind328 -6.62909412213503 -6.62909412213503
330 | Ind329 -1.41353659900502 -1.41353659900502
331 | Ind330 1.57313311665376 1.57313311665376
332 | Ind331 -14.7968731503767 -14.7968731503767
333 | Ind332 -17.1515186016499 -17.1515186016499
334 | Ind333 21.1212349101327 21.1212349101327
335 | Ind334 13.0338757470657 13.0338757470657
336 | Ind335 6.62632736793051 6.62632736793051
337 | Ind336 7.65469728540538 7.65469728540538
338 | Ind337 -7.82644378710383 -7.82644378710383
339 | Ind338 6.50830211794911 NA
340 | Ind339 2.8155359671071 2.8155359671071
341 | Ind340 4.01316776310646 4.01316776310646
342 | Ind341 -2.52055097156208 -2.52055097156208
343 | Ind342 9.68125999702142 9.68125999702142
344 | Ind343 -23.0380872017253 -23.0380872017253
345 | Ind344 6.0546633723654 6.0546633723654
346 | Ind345 -8.70457002019241 -8.70457002019241
347 | Ind346 -15.8223562118312 -15.8223562118312
348 | Ind347 17.8578918896843 17.8578918896843
349 | Ind348 2.56011393577987 2.56011393577987
350 | Ind349 16.5382242070131 16.5382242070131
351 | Ind350 -0.418502173399471 -0.418502173399471
352 | Ind351 -5.48006711752555 -5.48006711752555
353 | Ind352 19.3258241951788 19.3258241951788
354 | Ind353 -3.92923821934185 -3.92923821934185
355 | Ind354 -14.3720408668199 -14.3720408668199
356 | Ind355 8.03437461732022 8.03437461732022
357 | Ind356 -6.9808072207318 -6.9808072207318
358 | Ind357 -2.5461722752345 -2.5461722752345
359 | Ind358 7.40558820019407 7.40558820019407
360 | Ind359 16.2502057086946 16.2502057086946
361 | Ind360 -1.01095696373171 -1.01095696373171
362 | Ind361 -3.73272987168673 -3.73272987168673
363 | Ind362 8.13317846226302 NA
364 | Ind363 -20.3449108109546 -20.3449108109546
365 | Ind364 9.2218922429141 9.2218922429141
366 | Ind365 -5.00081165625105 -5.00081165625105
367 | Ind366 -4.04736694631235 -4.04736694631235
368 | Ind367 2.38411348535499 2.38411348535499
369 | Ind368 -1.39287622541061 -1.39287622541061
370 | Ind369 -16.5117491999506 NA
371 | Ind370 -14.6494091055374 -14.6494091055374
372 | Ind371 -7.11238835713166 -7.11238835713166
373 | Ind372 -14.1516523426913 -14.1516523426913
374 | Ind373 12.0306115988504 12.0306115988504
375 | Ind374 -8.40454161192661 -8.40454161192661
376 | Ind375 -5.20558362752534 -5.20558362752534
377 | Ind376 -2.738445702205 NA
378 | Ind377 -3.46991640567611 -3.46991640567611
379 | Ind378 3.56873471713344 3.56873471713344
380 | Ind379 -8.61635774156941 -8.61635774156941
381 | Ind380 -10.2803455043502 -10.2803455043502
382 | Ind381 -6.82617455466369 -6.82617455466369
383 | Ind382 10.6747020342023 10.6747020342023
384 | Ind383 7.45614888073872 7.45614888073872
385 | Ind384 0.0258033523950927 0.0258033523950927
386 | Ind385 -10.2548123063749 -10.2548123063749
387 | Ind386 6.0718619347095 6.0718619347095
388 | Ind387 -7.93275993000319 -7.93275993000319
389 | Ind388 -1.49012871721596 -1.49012871721596
390 | Ind389 4.46218352304845 4.46218352304845
391 | Ind390 6.31742473301081 6.31742473301081
392 | Ind391 8.11941301453443 8.11941301453443
393 | Ind392 19.4539305886578 19.4539305886578
394 | Ind393 -5.93244201270524 -5.93244201270524
395 | Ind394 -5.04383025801379 -5.04383025801379
396 | Ind395 20.5704126628621 20.5704126628621
397 | Ind396 7.95489939103644 7.95489939103644
398 | Ind397 8.86435303756314 8.86435303756314
399 | Ind398 -13.2428299993248 -13.2428299993248
400 | Ind399 3.78285212162381 3.78285212162381
401 | Ind400 -4.02253528029895 -4.02253528029895
402 | Ind401 8.09637270590488 8.09637270590488
403 | Ind402 -5.07311160743699 -5.07311160743699
404 | Ind403 25.3246706605623 25.3246706605623
405 | Ind404 -9.37831355864463 -9.37831355864463
406 | Ind405 1.51090747802638 1.51090747802638
407 | Ind406 5.43167444762335 5.43167444762335
408 | Ind407 8.87906274024805 8.87906274024805
409 | Ind408 -4.66094750608225 -4.66094750608225
410 | Ind409 13.9523371383942 13.9523371383942
411 | Ind410 -21.7489986447953 -21.7489986447953
412 | Ind411 3.63087289660466 3.63087289660466
413 | Ind412 -7.28557138176745 -7.28557138176745
414 | Ind413 9.90771261975745 9.90771261975745
415 | Ind414 -6.63360770716923 -6.63360770716923
416 | Ind415 -11.6462997607846 -11.6462997607846
417 | Ind416 -5.16413899142312 -5.16413899142312
418 | Ind417 4.18820760770602 4.18820760770602
419 | Ind418 -7.99453947508391 -7.99453947508391
420 | Ind419 -7.36353065076308 -7.36353065076308
421 | Ind420 1.55602020780775 1.55602020780775
422 | Ind421 -9.49723313250572 -9.49723313250572
423 | Ind422 -6.88614454868852 -6.88614454868852
424 | Ind423 -12.3248092127303 -12.3248092127303
425 | Ind424 -18.671461132403 -18.671461132403
426 | Ind425 1.36473273071079 NA
427 | Ind426 -5.8867712610241 -5.8867712610241
428 | Ind427 -9.50273004869248 -9.50273004869248
429 | Ind428 -4.81943622063048 -4.81943622063048
430 | Ind429 -26.2142525264157 -26.2142525264157
431 | Ind430 14.8425350408079 14.8425350408079
432 | Ind431 -9.16761728314715 -9.16761728314715
433 | Ind432 -1.00320200216495 -1.00320200216495
434 | Ind433 13.774402701527 13.774402701527
435 | Ind434 -13.1693917708243 -13.1693917708243
436 | Ind435 -15.6696471881704 -15.6696471881704
437 | Ind436 -3.67159990332953 -3.67159990332953
438 | Ind437 13.5297254120583 13.5297254120583
439 | Ind438 -0.112602110411935 -0.112602110411935
440 | Ind439 -13.8888752459368 -13.8888752459368
441 | Ind440 -5.06357674519975 -5.06357674519975
442 | Ind441 3.70142882013138 3.70142882013138
443 | Ind442 -8.99091178928531 -8.99091178928531
444 | Ind443 7.17805994018753 7.17805994018753
445 | Ind444 -0.266253301970805 -0.266253301970805
446 | Ind445 8.94133832711641 8.94133832711641
447 | Ind446 11.8626382537432 11.8626382537432
448 | Ind447 1.46579823769644 1.46579823769644
449 | Ind448 4.97944326839486 4.97944326839486
450 | Ind449 -6.12599552963873 -6.12599552963873
451 | Ind450 2.02124592400588 2.02124592400588
452 | Ind451 5.99343387340862 5.99343387340862
453 | Ind452 5.91859404910017 5.91859404910017
454 | Ind453 5.26076650830962 NA
455 | Ind454 21.079384146455 21.079384146455
456 | Ind455 -19.8109434066481 -19.8109434066481
457 | Ind456 -1.95890830148838 -1.95890830148838
458 | Ind457 -21.7572487645643 -21.7572487645643
459 | Ind458 6.68427079420261 6.68427079420261
460 | Ind459 -0.00848186185855004 -0.00848186185855004
461 | Ind460 0.173826840582155 0.173826840582155
462 | Ind461 2.91595224945219 2.91595224945219
463 | Ind462 -9.29007019936385 -9.29007019936385
464 | Ind463 0.381452713728563 0.381452713728563
465 | Ind464 -3.89608517962285 -3.89608517962285
466 | Ind465 13.158651656358 13.158651656358
467 | Ind466 -2.4007151168472 -2.4007151168472
468 | Ind467 13.4474547090651 13.4474547090651
469 | Ind468 12.856692609112 12.856692609112
470 | Ind469 -3.25976986805755 -3.25976986805755
471 | Ind470 -6.35949771507445 -6.35949771507445
472 | Ind471 20.3208227858756 NA
473 | Ind472 5.67442559054238 5.67442559054238
474 | Ind473 -4.47561172897561 -4.47561172897561
475 | Ind474 -9.14418324318106 -9.14418324318106
476 | Ind475 1.1887403231858 1.1887403231858
477 | Ind476 -13.5862130319871 -13.5862130319871
478 | Ind477 16.6879999050854 16.6879999050854
479 | Ind478 -17.1389687195975 -17.1389687195975
480 | Ind479 -13.551122507557 -13.551122507557
481 | Ind480 -8.94167774042331 -8.94167774042331
482 | Ind481 7.29409149872752 7.29409149872752
483 | Ind482 -1.77917153389365 -1.77917153389365
484 | Ind483 -7.09889887976419 -7.09889887976419
485 | Ind484 -24.1386330395452 -24.1386330395452
486 | Ind485 0.834467682805625 0.834467682805625
487 | Ind486 -2.57299735289436 -2.57299735289436
488 | Ind487 -21.3142343190533 -21.3142343190533
489 | Ind488 -15.3242121153467 -15.3242121153467
490 | Ind489 -1.26949587391629 -1.26949587391629
491 | Ind490 -17.2632576427363 -17.2632576427363
492 | Ind491 2.62910436373452 2.62910436373452
493 | Ind492 -11.4255273107226 -11.4255273107226
494 | Ind493 -8.51899200969042 -8.51899200969042
495 | Ind494 -1.07660369147835 -1.07660369147835
496 | Ind495 -13.876458194635 NA
497 | Ind496 -16.303864296789 -16.303864296789
498 | Ind497 0.539683578070243 0.539683578070243
499 | Ind498 -0.51004693545679 -0.51004693545679
500 | Ind499 -6.12081197198746 -6.12081197198746
501 | Ind500 -9.94515897141559 -9.94515897141559
502 |
--------------------------------------------------------------------------------
/mlmm.Rproj:
--------------------------------------------------------------------------------
1 | Version: 1.0
2 |
3 | RestoreWorkspace: No
4 | SaveWorkspace: No
5 | AlwaysSaveHistory: Default
6 |
7 | EnableCodeIndexing: Yes
8 | Encoding: UTF-8
9 |
10 | AutoAppendNewline: Yes
11 | StripTrailingWhitespace: Yes
12 |
13 | BuildType: Package
14 | PackageUseDevtools: Yes
15 | PackageInstallArgs: --no-multiarch --with-keep.source
16 | PackageRoxygenize: rd,collate,namespace
17 |
--------------------------------------------------------------------------------
/vignettes/mlmm.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | title: "How to use MLMM"
3 | author: "Vincent Segura & Bjarni J. Vilhjalmsson"
4 | date: "`r Sys.Date()`"
5 | output: rmarkdown::html_vignette
6 | vignette: >
7 | %\VignetteIndexEntry{MLMM}
8 | %\VignetteEngine{knitr::rmarkdown}
9 | %\VignetteEncoding{UTF-8}
10 | ---
11 |
12 | Load the `emma` package (available [online](http://mouse.cs.ucla.edu/emma/)):
13 | ```{r load_emma}
14 | library(emma)
15 | ```
16 |
17 | Load the `mlmm` package:
18 | ```{r load_mlmm}
19 | library(mlmm)
20 | ```
21 |
22 | Retrieve the data provided with the package:
23 | ```{r get_data}
24 | data(example_data, package="mlmm")
25 | str(example_data)
26 | ```
27 |
28 | Perform mlmm (10 steps), it can take few minutes...
29 | ```{r fit_mlmm}
30 | mygwas <- mlmm(Y=example_data$Y, X=example_data$X, K=example_data$K,
31 | nbchunks=2, maxsteps=10)
32 | ```
33 |
34 | Display the results (stepwise table):
35 | ```{r res}
36 | mygwas$step_table
37 | ```
38 |
39 | Plot the results:
40 | ```{r plots}
41 | plot_step_table(mygwas,'extBIC') # EBIC plot
42 | plot_step_table(mygwas,'maxpval') # mbonf criterion plot
43 | plot_step_RSS(mygwas) # % variance plot
44 | plot_fwd_GWAS(mygwas,1,example_data$snp_info,0.1,main="step 1") # 1st mlmm step plot
45 | plot_fwd_GWAS(mygwas,2,example_data$snp_info,0.1,main="step 2") # 2nd mlmm step plot
46 | plot_fwd_GWAS(mygwas,3,example_data$snp_info,0.1,main="step 3") # 3rd mlmm step plot
47 | plot_opt_GWAS(mygwas,'extBIC',example_data$snp_info,0.1,main="optimal (EBIC)") # optimal step according to eBIC plot
48 | plot_opt_GWAS(mygwas,'mbonf',example_data$snp_info,0.1,main="optimal (mBonf)") # optimal step according to mbonf plot
49 | ```
50 |
--------------------------------------------------------------------------------
/vignettes/mlmm_cof.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | title: "How to use MLMM_COF"
3 | author: "Vincent Segura & Bjarni J. Vilhjalmsson"
4 | date: "`r Sys.Date()`"
5 | output: rmarkdown::html_vignette
6 | vignette: >
7 | %\VignetteIndexEntry{MLMM_COF}
8 | %\VignetteEngine{knitr::rmarkdown}
9 | %\VignetteEncoding{UTF-8}
10 | ---
11 |
12 | Load the `emma` package (available [online](http://mouse.cs.ucla.edu/emma/)):
13 | ```{r load_emma}
14 | library(emma)
15 | ```
16 |
17 | Load the `mlmm` package:
18 | ```{r load_mlmm}
19 | library(mlmm)
20 | ```
21 |
22 | Retrieve the data provided with the package:
23 | ```{r get_data}
24 | data(example_data, package="mlmm")
25 | str(example_data)
26 | ```
27 |
28 | Perform mlmm (5 steps), it can take few minutes...
29 | ```{r fit_mlmm_cof}
30 | mygwas <- mlmm_cof(Y=example_data$Y, X=example_data$X,
31 | cofs=example_data$PC[,1:10], K=example_data$K,
32 | nbchunks=10, maxsteps=5)
33 | ```
34 |
35 | Display the results (stepwise table):
36 | ```{r res}
37 | mygwas$step_table
38 | ```
39 |
40 | Plot the results:
41 | ```{r plots}
42 | plot_step_table(mygwas,'extBIC') # EBIC plot
43 | plot_step_table(mygwas,'maxpval') # mbonf criterion plot
44 | plot_step_RSS(mygwas) # % variance plot
45 | plot_fwd_GWAS(mygwas,1,example_data$snp_info,0.1) # 1st mlmm step plot
46 | plot_fwd_GWAS(mygwas,2,example_data$snp_info,0.1) # 2nd mlmm step plot
47 | plot_fwd_GWAS(mygwas,3,example_data$snp_info,0.1) # 3rd mlmm step plot
48 | plot_opt_GWAS(mygwas,'extBIC',example_data$snp_info,0.1) # optimal step according to eBIC plot
49 | plot_opt_GWAS(mygwas,'mbonf',example_data$snp_info,0.1) # optimal step according to mbonf plot
50 | qqplot_fwd_GWAS(mygwas,5) # qqplot for 5 steps
51 | qqplot_opt_GWAS(mygwas,'extBIC') # qqplot for optimal model according to eBIC
52 | qqplot_opt_GWAS(mygwas,'mbonf') # qqplot for optimal model according to mbonf
53 | ```
54 |
--------------------------------------------------------------------------------