├── roll no 33.pdf └── README.md /roll no 33.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Guthulasomsunil/python-project-on-data-set-prodution-of-crops-in-india/HEAD/roll no 33.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # python-project-on-data-set-prodution-of-crops-in-india 2 | Crop Analysis in India 3 | Crop Analysis in India is a Python-based data analysis project focused on exploring agricultural patterns, crop production, and related trends across different states and regions of India. 4 | 5 | The project uses powerful data science libraries like Pandas, NumPy, Seaborn, and Matplotlib to clean, analyze, visualize, and derive insights from agricultural datasets. 6 | 7 | Key Objectives: 8 | Analyze crop production data across Indian states. 9 | 10 | Identify major crops grown in different regions. 11 | 12 | Visualize patterns, trends, and comparisons between crops. 13 | 14 | Understand seasonal impacts and yield distributions. 15 | 16 | Technologies Used: 17 | Python 18 | 19 | Pandas (for data manipulation and analysis) 20 | 21 | NumPy (for numerical operations) 22 | 23 | Matplotlib (for basic plotting and visualizations) 24 | 25 | Seaborn (for advanced, beautiful statistical graphics) 26 | 27 | Highlights: 28 | Data cleaning and preprocessing of agricultural datasets. 29 | 30 | Generation of multiple types of plots: bar graphs, line plots, heatmaps, scatter plots, and more. 31 | 32 | Insightful visual storytelling about the Indian agricultural sector. 33 | 34 | Easy-to-read code and well-structured Jupyter notebooks/scripts. 35 | --------------------------------------------------------------------------------