├── Dockerfile
├── LICENSE
├── README.md
├── dice_loss.py
├── eval.py
├── hubconf.py
├── models
├── __init__.py
└── utransformer
│ ├── U_Transformer.py
│ └── __init__.py
├── requirements.txt
├── test.py
├── train.py
└── utils
├── __init__.py
├── base.py
├── data_vis.py
├── dataset.py
├── functional.py
├── losses.py
├── meter.py
├── metrics.py
└── train.py
/Dockerfile:
--------------------------------------------------------------------------------
1 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2 | FROM nvcr.io/nvidia/pytorch:20.12-py3
3 |
4 | # Install linux packages
5 | RUN apt update && apt install -y screen libgl1-mesa-glx
6 |
7 | # Install python dependencies
8 | RUN pip install --upgrade pip
9 | COPY requirements.txt .
10 | RUN pip install -r requirements.txt
11 | RUN pip install gsutil
12 |
13 | # Create working directory
14 | WORKDIR /home/xray/segmentation_models.pytorch/
15 |
16 |
17 | # Copy weights
18 | #RUN python3 -c "from models import *; \
19 | #attempt_download('weights/yolov5s.pt'); \
20 | #attempt_download('weights/yolov5m.pt'); \
21 | #attempt_download('weights/yolov5l.pt')"
22 |
23 |
24 | # --------------------------------------------------- Extras Below ---------------------------------------------------
25 |
26 | # Build and Push
27 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
28 | # for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
29 |
30 | # Pull and Run
31 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
32 |
33 | # Pull and Run with local directory access
34 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
35 |
36 | # Kill all
37 | # sudo docker kill $(sudo docker ps -q)
38 |
39 | # Kill all image-based
40 | # sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
41 |
42 | # Bash into running container
43 | # sudo docker container exec -it ba65811811ab bash
44 |
45 | # Bash into stopped container
46 | # sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
47 |
48 | # Send weights to GCP
49 | # python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
50 |
51 | # Clean up
52 | # docker system prune -a --volumes
53 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | An unofficial implement of paper: U-Net Transformer: Self and Cross Attention for
2 | Medical Image Segmentation (arxiv:2103.06104)
3 |
4 | I am not the author of this paper, and there are still has serious bugs, please help me to improve.
5 |
--------------------------------------------------------------------------------
/dice_loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.autograd import Function
3 |
4 |
5 | class DiceCoeff(Function):
6 | """Dice coeff for individual examples"""
7 |
8 | def forward(self, input, target):
9 | self.save_for_backward(input, target)
10 | eps = 0.0001
11 | self.inter = torch.dot(input.view(-1), target.view(-1))
12 | self.union = torch.sum(input) + torch.sum(target) + eps
13 |
14 | t = (2 * self.inter.float() + eps) / self.union.float()
15 | return t
16 |
17 | # This function has only a single output, so it gets only one gradient
18 | def backward(self, grad_output):
19 |
20 | input, target = self.saved_variables
21 | grad_input = grad_target = None
22 |
23 | if self.needs_input_grad[0]:
24 | grad_input = grad_output * 2 * (target * self.union - self.inter) \
25 | / (self.union * self.union)
26 | if self.needs_input_grad[1]:
27 | grad_target = None
28 |
29 | return grad_input, grad_target
30 |
31 |
32 | def dice_coeff(input, target):
33 | """Dice coeff for batches"""
34 | if input.is_cuda:
35 | s = torch.FloatTensor(1).cuda().zero_()
36 | else:
37 | s = torch.FloatTensor(1).zero_()
38 |
39 | for i, c in enumerate(zip(input, target)):
40 | s = s + DiceCoeff().forward(c[0], c[1])
41 |
42 | return s / (i + 1)
43 |
--------------------------------------------------------------------------------
/eval.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from tqdm import tqdm
4 |
5 | from dice_loss import dice_coeff
6 |
7 |
8 | def eval_net(net, loader, device):
9 | """Evaluation without the densecrf with the dice coefficient"""
10 | net.eval()
11 | mask_type = torch.float32 if net.n_classes == 1 else torch.long
12 | n_val = len(loader) # the number of batch
13 | tot = 0
14 |
15 | with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar:
16 | for batch in loader:
17 | imgs, true_masks = batch['image'], batch['mask']
18 | imgs = imgs.to(device=device, dtype=torch.float32)
19 | true_masks = true_masks.to(device=device, dtype=mask_type)
20 |
21 | with torch.no_grad():
22 | mask_pred = net(imgs)
23 |
24 | if net.n_classes > 1:
25 | tot += F.cross_entropy(mask_pred, true_masks).item()
26 | else:
27 | pred = torch.sigmoid(mask_pred)
28 | pred = (pred > 0.5).float()
29 | tot += dice_coeff(pred, true_masks).item()
30 | pbar.update()
31 |
32 | net.train()
33 | return tot / n_val
34 |
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from unet import UNet as _UNet
3 |
4 | def unet_carvana(pretrained=False):
5 | """
6 | UNet model trained on the Carvana dataset ( https://www.kaggle.com/c/carvana-image-masking-challenge/data ).
7 | Set the scale to 1 (100%) when predicting.
8 | """
9 | net = _UNet(n_channels=3, n_classes=1, bilinear=True)
10 | if pretrained:
11 | checkpoint = 'https://github.com/milesial/Pytorch-UNet/releases/download/v1.0/unet_carvana_scale1_epoch5.pth'
12 | net.load_state_dict(torch.hub.load_state_dict_from_url(checkpoint, progress=True))
13 |
14 | return net
15 |
16 |
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
1 | # from .unet import Unet
2 | from .ddrnet.DDRNet import DualResNet
3 | from .utransformer.U_Transformer import U_Transformer
4 |
5 | from typing import Optional
6 | import torch
7 |
8 |
9 | def create_model(
10 | arch: str,
11 | in_channels: int = 3,
12 | classes: int = 1,
13 | **kwargs,
14 | ) -> torch.nn.Module:
15 | """Models wrapper. Allows to create any model just with parametes
16 |
17 | """
18 |
19 | archs = [DualResNet, U_Transformer]
20 | archs_dict = {a.__name__.lower(): a for a in archs}
21 | try:
22 | model_class = archs_dict[arch.lower()]
23 | except KeyError:
24 | raise KeyError(
25 | "Wrong architecture type `{}`. Avalibale options are: {}".format(
26 | arch,
27 | list(archs_dict.keys()),
28 | ))
29 | return model_class(
30 | in_channels=in_channels,
31 | classes=classes,
32 | **kwargs,
33 | )
34 |
--------------------------------------------------------------------------------
/models/utransformer/U_Transformer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | import torch.nn.functional as F
4 | import math
5 | import numpy as np
6 |
7 |
8 | class DoubleConv(nn.Module):
9 | """(convolution => [BN] => ReLU) * 2"""
10 | def __init__(self, in_channels, out_channels, mid_channels=None):
11 | super().__init__()
12 | if not mid_channels:
13 | mid_channels = out_channels
14 | self.double_conv = nn.Sequential(
15 | nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
16 | nn.BatchNorm2d(mid_channels),
17 | nn.ReLU(inplace=True),
18 | nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
19 | nn.BatchNorm2d(out_channels),
20 | nn.ReLU(inplace=True),
21 | )
22 |
23 | def forward(self, x):
24 | return self.double_conv(x)
25 |
26 |
27 | class Down(nn.Module):
28 | """Downscaling with maxpool then double conv"""
29 | def __init__(self, in_channels, out_channels):
30 | super().__init__()
31 | self.maxpool_conv = nn.Sequential(
32 | nn.MaxPool2d(2),
33 | DoubleConv(in_channels, out_channels),
34 | )
35 |
36 | def forward(self, x):
37 | return self.maxpool_conv(x)
38 |
39 |
40 | class Up(nn.Module):
41 | """Upscaling then double conv"""
42 | def __init__(self, in_channels, out_channels, bilinear=True):
43 | super().__init__()
44 |
45 | # if bilinear, use the normal convolutions to reduce the number of channels
46 | if bilinear:
47 | self.up = nn.Upsample(scale_factor=2,
48 | mode='bilinear',
49 | align_corners=True)
50 | self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
51 | else:
52 | self.up = nn.ConvTranspose2d(
53 | in_channels,
54 | in_channels // 2,
55 | kernel_size=2,
56 | stride=2,
57 | )
58 | self.conv = DoubleConv(in_channels, out_channels)
59 |
60 | def forward(self, x1, x2):
61 | x1 = self.up(x1)
62 | # input is CHW
63 | diffY = x2.size()[2] - x1.size()[2]
64 | diffX = x2.size()[3] - x1.size()[3]
65 |
66 | x1 = F.pad(
67 | x1,
68 | [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2])
69 | # if you have padding issues, see
70 | # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
71 | # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
72 | x = torch.cat([x2, x1], dim=1)
73 | return self.conv(x)
74 |
75 |
76 | class OutConv(nn.Module):
77 | def __init__(self, in_channels, out_channels):
78 | super(OutConv, self).__init__()
79 | self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
80 |
81 | def forward(self, x):
82 | return self.conv(x)
83 |
84 |
85 | class MultiHeadDense(nn.Module):
86 | def __init__(self, d, bias=False):
87 | super(MultiHeadDense, self).__init__()
88 | self.weight = nn.Parameter(torch.Tensor(d, d))
89 | if bias:
90 | raise NotImplementedError()
91 | self.bias = Parameter(torch.Tensor(d, d))
92 | else:
93 | self.register_parameter('bias', None)
94 | self.reset_parameters()
95 |
96 | def reset_parameters(self) -> None:
97 | nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
98 | if self.bias is not None:
99 | fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
100 | bound = 1 / math.sqrt(fan_in)
101 | nn.init.uniform_(self.bias, -bound, bound)
102 |
103 | def forward(self, x):
104 | # x:[b, h*w, d]
105 | b, wh, d = x.size()
106 | x = torch.bmm(x, self.weight.repeat(b, 1, 1))
107 | # x = F.linear(x, self.weight, self.bias)
108 | return x
109 |
110 |
111 | class MultiHeadAttention(nn.Module):
112 | def __init__(self):
113 | super(MultiHeadAttention, self).__init__()
114 |
115 | def positional_encoding_2d(self, d_model, height, width):
116 | """
117 | reference: wzlxjtu/PositionalEncoding2D
118 |
119 | :param d_model: dimension of the model
120 | :param height: height of the positions
121 | :param width: width of the positions
122 | :return: d_model*height*width position matrix
123 | """
124 | if d_model % 4 != 0:
125 | raise ValueError("Cannot use sin/cos positional encoding with "
126 | "odd dimension (got dim={:d})".format(d_model))
127 | pe = torch.zeros(d_model, height, width)
128 | try:
129 | pe = pe.to(torch.device("cuda:0"))
130 | except RuntimeError:
131 | pass
132 | # Each dimension use half of d_model
133 | d_model = int(d_model / 2)
134 | div_term = torch.exp(
135 | torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
136 | pos_w = torch.arange(0., width).unsqueeze(1)
137 | pos_h = torch.arange(0., height).unsqueeze(1)
138 | pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
139 | 0, 1).unsqueeze(1).repeat(1, height, 1)
140 | pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
141 | 0, 1).unsqueeze(1).repeat(1, height, 1)
142 | pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
143 | 0, 1).unsqueeze(2).repeat(1, 1, width)
144 | pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
145 | 0, 1).unsqueeze(2).repeat(1, 1, width)
146 | return pe
147 |
148 | def forward(self, x):
149 | raise NotImplementedError()
150 |
151 |
152 | class PositionalEncoding2D(nn.Module):
153 | def __init__(self, channels):
154 | """
155 | :param channels: The last dimension of the tensor you want to apply pos emb to.
156 | """
157 | super(PositionalEncoding2D, self).__init__()
158 | channels = int(np.ceil(channels / 2))
159 | self.channels = channels
160 | inv_freq = 1. / (10000
161 | **(torch.arange(0, channels, 2).float() / channels))
162 | self.register_buffer('inv_freq', inv_freq)
163 |
164 | def forward(self, tensor):
165 | """
166 | :param tensor: A 4d tensor of size (batch_size, x, y, ch)
167 | :return: Positional Encoding Matrix of size (batch_size, x, y, ch)
168 | """
169 | if len(tensor.shape) != 4:
170 | raise RuntimeError("The input tensor has to be 4d!")
171 | batch_size, x, y, orig_ch = tensor.shape
172 | pos_x = torch.arange(x,
173 | device=tensor.device).type(self.inv_freq.type())
174 | pos_y = torch.arange(y,
175 | device=tensor.device).type(self.inv_freq.type())
176 | sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
177 | sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
178 | emb_x = torch.cat((sin_inp_x.sin(), sin_inp_x.cos()),
179 | dim=-1).unsqueeze(1)
180 | emb_y = torch.cat((sin_inp_y.sin(), sin_inp_y.cos()), dim=-1)
181 | emb = torch.zeros((x, y, self.channels * 2),
182 | device=tensor.device).type(tensor.type())
183 | emb[:, :, :self.channels] = emb_x
184 | emb[:, :, self.channels:2 * self.channels] = emb_y
185 |
186 | return emb[None, :, :, :orig_ch].repeat(batch_size, 1, 1, 1)
187 |
188 |
189 | class PositionalEncodingPermute2D(nn.Module):
190 | def __init__(self, channels):
191 | """
192 | Accepts (batchsize, ch, x, y) instead of (batchsize, x, y, ch)
193 | """
194 | super(PositionalEncodingPermute2D, self).__init__()
195 | self.penc = PositionalEncoding2D(channels)
196 |
197 | def forward(self, tensor):
198 | tensor = tensor.permute(0, 2, 3, 1)
199 | enc = self.penc(tensor)
200 | return enc.permute(0, 3, 1, 2)
201 |
202 |
203 | class MultiHeadSelfAttention(MultiHeadAttention):
204 | def __init__(self, channel):
205 | super(MultiHeadSelfAttention, self).__init__()
206 | self.query = MultiHeadDense(channel, bias=False)
207 | self.key = MultiHeadDense(channel, bias=False)
208 | self.value = MultiHeadDense(channel, bias=False)
209 | self.softmax = nn.Softmax(dim=1)
210 | self.pe = PositionalEncodingPermute2D(channel)
211 |
212 | def forward(self, x):
213 | b, c, h, w = x.size()
214 | # pe = self.positional_encoding_2d(c, h, w)
215 | pe = self.pe(x)
216 | x = x + pe
217 | x = x.reshape(b, c, h * w).permute(0, 2, 1) #[b, h*w, d]
218 | Q = self.query(x)
219 | K = self.key(x)
220 | A = self.softmax(torch.bmm(Q, K.permute(0, 2, 1)) /
221 | math.sqrt(c)) #[b, h*w, h*w]
222 | V = self.value(x)
223 | x = torch.bmm(A, V).permute(0, 2, 1).reshape(b, c, h, w)
224 | return x
225 |
226 |
227 | class MultiHeadCrossAttention(MultiHeadAttention):
228 | def __init__(self, channelY, channelS):
229 | super(MultiHeadCrossAttention, self).__init__()
230 | self.Sconv = nn.Sequential(
231 | nn.MaxPool2d(2), nn.Conv2d(channelS, channelS, kernel_size=1),
232 | nn.BatchNorm2d(channelS), nn.ReLU(inplace=True))
233 | self.Yconv = nn.Sequential(
234 | nn.Conv2d(channelY, channelS, kernel_size=1),
235 | nn.BatchNorm2d(channelS), nn.ReLU(inplace=True))
236 | self.query = MultiHeadDense(channelS, bias=False)
237 | self.key = MultiHeadDense(channelS, bias=False)
238 | self.value = MultiHeadDense(channelS, bias=False)
239 | self.conv = nn.Sequential(
240 | nn.Conv2d(channelS, channelS, kernel_size=1),
241 | nn.BatchNorm2d(channelS), nn.ReLU(inplace=True),
242 | nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True))
243 | self.Yconv2 = nn.Sequential(
244 | nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
245 | nn.Conv2d(channelY, channelY, kernel_size=3, padding=1),
246 | nn.Conv2d(channelY, channelS, kernel_size=1),
247 | nn.BatchNorm2d(channelS), nn.ReLU(inplace=True))
248 | self.softmax = nn.Softmax(dim=1)
249 | self.Spe = PositionalEncodingPermute2D(channelS)
250 | self.Ype = PositionalEncodingPermute2D(channelY)
251 |
252 | def forward(self, Y, S):
253 | Sb, Sc, Sh, Sw = S.size()
254 | Yb, Yc, Yh, Yw = Y.size()
255 | # Spe = self.positional_encoding_2d(Sc, Sh, Sw)
256 | Spe = self.Spe(S)
257 | S = S + Spe
258 | S1 = self.Sconv(S).reshape(Yb, Sc, Yh * Yw).permute(0, 2, 1)
259 | V = self.value(S1)
260 | # Ype = self.positional_encoding_2d(Yc, Yh, Yw)
261 | Ype = self.Ype(Y)
262 | Y = Y + Ype
263 | Y1 = self.Yconv(Y).reshape(Yb, Sc, Yh * Yw).permute(0, 2, 1)
264 | Y2 = self.Yconv2(Y)
265 | Q = self.query(Y1)
266 | K = self.key(Y1)
267 | A = self.softmax(torch.bmm(Q, K.permute(0, 2, 1)) / math.sqrt(Sc))
268 | x = torch.bmm(A, V).permute(0, 2, 1).reshape(Yb, Sc, Yh, Yw)
269 | Z = self.conv(x)
270 | Z = Z * S
271 | Z = torch.cat([Z, Y2], dim=1)
272 | return Z
273 |
274 |
275 | class TransformerUp(nn.Module):
276 | def __init__(self, Ychannels, Schannels):
277 | super(TransformerUp, self).__init__()
278 | self.MHCA = MultiHeadCrossAttention(Ychannels, Schannels)
279 | self.conv = nn.Sequential(
280 | nn.Conv2d(Ychannels,
281 | Schannels,
282 | kernel_size=3,
283 | stride=1,
284 | padding=1,
285 | bias=True), nn.BatchNorm2d(Schannels),
286 | nn.ReLU(inplace=True),
287 | nn.Conv2d(Schannels,
288 | Schannels,
289 | kernel_size=3,
290 | stride=1,
291 | padding=1,
292 | bias=True), nn.BatchNorm2d(Schannels),
293 | nn.ReLU(inplace=True))
294 |
295 | def forward(self, Y, S):
296 | x = self.MHCA(Y, S)
297 | x = self.conv(x)
298 | return x
299 |
300 |
301 | class U_Transformer(nn.Module):
302 | def __init__(self, in_channels, classes, bilinear=True):
303 | super(U_Transformer, self).__init__()
304 | self.in_channels = in_channels
305 | self.classes = classes
306 | self.bilinear = bilinear
307 |
308 | self.inc = DoubleConv(in_channels, 64)
309 | self.down1 = Down(64, 128)
310 | self.down2 = Down(128, 256)
311 | self.down3 = Down(256, 512)
312 | self.MHSA = MultiHeadSelfAttention(512)
313 | self.up1 = TransformerUp(512, 256)
314 | self.up2 = TransformerUp(256, 128)
315 | self.up3 = TransformerUp(128, 64)
316 | self.outc = OutConv(64, classes)
317 |
318 | def forward(self, x):
319 | x1 = self.inc(x)
320 | x2 = self.down1(x1)
321 | x3 = self.down2(x2)
322 | x4 = self.down3(x3)
323 | x4 = self.MHSA(x4)
324 | x = self.up1(x4, x3)
325 | x = self.up2(x, x2)
326 | x = self.up3(x, x1)
327 | logits = self.outc(x)
328 | return logits
--------------------------------------------------------------------------------
/models/utransformer/__init__.py:
--------------------------------------------------------------------------------
1 | from .U_Transformer import U_Transformer
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | matplotlib
2 | numpy
3 | Pillow
4 | torch
5 | torchvision
6 | tensorboard
7 | future
8 | tqdm
9 |
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import os
4 | import os.path as osp
5 | from glob import glob
6 |
7 | import numpy as np
8 | import pandas as pd
9 | import torch
10 | import torch.nn.functional as F
11 | from PIL import Image
12 | from torchvision import transforms
13 |
14 | from unet import *
15 | from utils.data_vis import plot_img_and_mask
16 | from utils.dataset import BasicDataset
17 |
18 | os.environ["CUDA_VISIBLE_DEVICES"] = "4"
19 | dir_img = osp.join("..", "unet_dataset", "images", "test")
20 | dir_mask = osp.join("..", "unet_dataset", "labels", "test")
21 |
22 | def predict_img(net,
23 | full_img,
24 | device,
25 | scale_factor=1,
26 | out_threshold=0.5):
27 | net.eval()
28 |
29 | img = torch.from_numpy(BasicDataset.preprocess(full_img, scale_factor))
30 |
31 | img = img.unsqueeze(0)
32 | img = img.to(device=device, dtype=torch.float32)
33 |
34 | with torch.no_grad():
35 | output = net(img)
36 |
37 | if net.n_classes > 1:
38 | probs = F.softmax(output, dim=1)
39 | else:
40 | probs = torch.sigmoid(output)
41 |
42 | probs = probs.squeeze(0)
43 |
44 | # tf = transforms.Compose(
45 | # [
46 | # transforms.ToPILImage(),
47 | # transforms.Resize(full_img.size[1]),
48 | # transforms.ToTensor()
49 | # ]
50 | # )
51 |
52 | # probs = tf(probs.cpu())
53 | full_mask = probs.squeeze().cpu().numpy()
54 |
55 | return (full_mask > out_threshold)
56 |
57 |
58 | def get_args():
59 | parser = argparse.ArgumentParser(description='Predict masks from input images',
60 | formatter_class=argparse.ArgumentDefaultsHelpFormatter)
61 | parser.add_argument('--model', '-m', default='MODEL.pth',
62 | metavar='FILE',
63 | help="Specify the file in which the model is stored")
64 | parser.add_argument('--viz', '-v', action='store_true',
65 | help="Visualize the images as they are processed",
66 | default=False)
67 | parser.add_argument('--mask-threshold', '-t', type=float,
68 | help="Minimum probability value to consider a mask pixel white",
69 | default=0.5)
70 | parser.add_argument('--scale', '-s', type=float,
71 | help="Scale factor for the input images",
72 | default=1)
73 | parser.add_argument('--model_type', type=str, default='unet',
74 | help="Model which choosed.")
75 |
76 | return parser.parse_args()
77 |
78 |
79 | def get_output_filenames(args):
80 | in_files = args.input
81 | out_files = []
82 |
83 | if not args.output:
84 | for f in in_files:
85 | pathsplit = os.path.splitext(f)
86 | out_files.append("{}_OUT{}".format(pathsplit[0], pathsplit[1]))
87 | elif len(in_files) != len(args.output):
88 | logging.error("Input files and output files are not of the same length")
89 | raise SystemExit()
90 | else:
91 | out_files = args.output
92 |
93 | return out_files
94 |
95 | def caculate_dice(y_true, y_pred, threshold = 0.5, smooth = 0.000001):
96 | y_true = (y_true > 0.5).astype(np.int_)
97 | y_pred = (y_pred > 0.5).astype(np.int_)
98 | return (2. * np.sum(y_true * y_pred)) / (np.sum(y_true) + np.sum(y_pred) + smooth)
99 |
100 | def Evaluate(true_mask, pred_mask):
101 | """
102 | Get the DICE/IOU between each predicted mask and each true mask.
103 |
104 | Inputs:
105 | masks_true : array-like
106 | A 2D array of shape (image_height, image_width)
107 | masks_pred : array-like
108 | A 2D array of shape (image_height, image_width)
109 |
110 | Returns:
111 | array-like
112 | A 2D array of shape (n_true_masks, n_predicted_masks), where
113 | the element at position (i, j) denotes the dice between the `i`th true
114 | mask and the `j`th predicted mask.
115 | """
116 | assert true_mask.shape == pred_mask.shape, "Gt and pred must have same shape."
117 | height, width = true_mask.shape
118 | m_true = true_mask.copy().reshape(height * width).T
119 | m_pred = pred_mask.copy().reshape(height * width)
120 | TP = np.dot(m_pred, m_true)
121 | TN = np.dot(1 - m_pred, 1 - m_true)
122 | FP = np.dot(m_pred, 1 - m_true)
123 | FN = np.dot(1 - m_pred, m_true)
124 | dice = 2*TP/(2*TP+FP+FN)
125 | iou = TP/(TP+FP+FN)
126 | precision = TP/(TP+FP)
127 | recall = sensitivity = TP/(TP+FN)
128 | specificity = TN/(FP+TN)
129 | return dice, iou, precision, recall, specificity
130 |
131 | # def Evaluate(true_mask, pred_mask):
132 | # """
133 | # Get the DICE/IOU between each predicted mask and each true mask.
134 |
135 | # Inputs:
136 | # masks_true : array-like
137 | # A 2D array of shape (image_height, image_width)
138 | # masks_pred : array-like
139 | # A 2D array of shape (image_height, image_width)
140 |
141 | # Returns:
142 | # array-like
143 | # A 2D array of shape (n_true_masks, n_predicted_masks), where
144 | # the element at position (i, j) denotes the dice between the `i`th true
145 | # mask and the `j`th predicted mask.
146 | # """
147 | # assert true_mask.shape == pred_mask.shape, "Gt and pred must have same shape."
148 | # masks_true = true_mask[np.newaxis, ...]
149 | # masks_pred = pred_mask[np.newaxis, ...]
150 | # n_true_masks, height, width = masks_true.shape
151 | # n_pred_masks = masks_pred.shape[0]
152 | # m_true = masks_true.copy().reshape(n_true_masks, height * width).T
153 | # m_pred = masks_pred.copy().reshape(n_pred_masks, height * width)
154 | # numerator = np.dot(m_pred, m_true)
155 | # denominator = m_pred.sum(1).reshape(-1, 1) + m_true.sum(0).reshape(1, -1)
156 | # dice = 2*numerator / denominator
157 | # iou = numerator / (denominator - numerator)
158 | # sensitivity = numerator / m_true.sum(0).reshape(1, -1)
159 | # specificity = numerator / m_pred.sum(1).reshape(-1, 1)
160 | # return dice, iou, sensitivity, specificity
161 |
162 | def mask_to_image(mask):
163 | return Image.fromarray((mask * 255).astype(np.uint8))
164 |
165 |
166 | if __name__ == "__main__":
167 | args = get_args()
168 | in_files = sorted(glob(osp.join(dir_img, "**", "*.npy"), recursive=True))
169 |
170 | nets = {
171 | "unet": UNet,
172 | "inunet": InUNet,
173 | "attunet": AttU_Net,
174 | "inattunet": InAttU_Net,
175 | "att2uneta": Att2U_NetA,
176 | "att2unetb": Att2U_NetB,
177 | "att2unetc": Att2U_NetC,
178 | }
179 | try:
180 | net_type = nets[args.model_type.lower()]
181 | net = net_type(n_channels=1, n_classes=1, bilinear=True)
182 | except KeyError:
183 | os._exit(0)
184 |
185 | logging.info("Loading model {}".format(args.model))
186 |
187 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
188 | logging.info(f'Using device {device}')
189 | net.to(device=device)
190 | net.load_state_dict(torch.load(args.model, map_location=device))
191 |
192 | logging.info("Model loaded !")
193 |
194 | n = len(in_files)
195 | test_res = []
196 | print("main_id\t\t\t\tdice\t\t\tiou\t\t\tprecision\t\tsensitivity/recall\tspecificity")
197 | TN = TP = FP = FN = 0
198 | for i, fn in enumerate(in_files):
199 | main_id = osp.basename(fn).split(".")[0]
200 | logging.info("\nPredicting image {} ...".format(fn))
201 |
202 | img = np.load(fn)
203 |
204 | pred_mask = predict_img(net=net,
205 | full_img=img,
206 | scale_factor=args.scale,
207 | out_threshold=args.mask_threshold,
208 | device=device).astype(np.int)
209 | true_mask = np.load(fn.replace("images", "labels"))
210 | dice, iou, precision, recall, specificity = Evaluate(true_mask, pred_mask)
211 | print(f"{i+1}/{n}-{main_id}:\t{dice}\t{iou}\t{precision}\t{recall}\t{specificity}")
212 | test_res.append((main_id, dice, iou, precision, recall, specificity))
213 | if dice == 0:
214 | if pred_mask.sum() == 0 and true_mask.sum() != 0:
215 | FN += 1
216 | elif pred_mask.sum() != 0 and true_mask.sum() == 0:
217 | FP += 1
218 | elif pred_mask.sum() == 0 and true_mask.sum() == 0:
219 | TN += 1
220 | else:
221 | TP += 1
222 | if args.viz:
223 | logging.info("Visualizing results for image {}, close to continue ...".format(fn))
224 | plot_img_and_mask(img, mask)
225 |
226 | test_res.sort(key = lambda x:x[0])
227 | ids, dice, iou, precision, recall, specificity = zip(*test_res)
228 | dice_max = np.max(dice)
229 | dice_min = np.min(dice)
230 | dice_mean = np.mean(dice)
231 | dice_var = np.var(dice)
232 | print("dice_max: {}, dice_min: {}, dice_mean: {}, dice_var: {}".format(dice_max, dice_min, dice_mean, dice_var))
233 | print(f"bump TP: {TP}, TN: {TN}, FP: {FP}, FN: {FN}")
234 |
235 | writer = pd.ExcelWriter(osp.join(osp.dirname(args.model), "test_res.xlsx"))
236 |
237 | res = {
238 | "id": ids,
239 | "dice": dice,
240 | "iou": iou,
241 | "precisions": precision,
242 | "sensitivity/recall": recall,
243 | "specificity": specificity,
244 | }
245 | res = pd.DataFrame(res)
246 | res.to_excel(writer, sheet_name="result", index=False)
247 |
248 | writer.close()
249 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | # %%
2 | import argparse
3 | import logging
4 | import os
5 | import os.path as osp
6 | import sys
7 |
8 | import numpy as np
9 | import torch
10 | import torch.nn as nn
11 | from torch import optim
12 | from torch.cuda import amp
13 | from torch.nn.modules import activation
14 | from torch.nn.modules.activation import Threshold
15 | from tqdm import tqdm
16 |
17 | from eval import eval_net
18 |
19 | from torch.utils.tensorboard import SummaryWriter
20 | from torch.utils.data import DataLoader, random_split
21 | from torch.utils.data.distributed import DistributedSampler
22 | import utils
23 | import models
24 | from utils.dataset import BasicDataset
25 | # %%
26 | logger = logging.getLogger(__name__)
27 |
28 | dir_img = osp.join("..", "unet_dataset", "images", "trainval")
29 | dir_mask = osp.join("..", "unet_dataset", "labels", "trainval")
30 |
31 |
32 | def is_parallel(model):
33 | return type(model) in (nn.parallel.DataParallel,
34 | nn.parallel.DistributedDataParallel)
35 |
36 |
37 | def get_args():
38 | parser = argparse.ArgumentParser(
39 | description='Train the UNet on images and target masks',
40 | formatter_class=argparse.ArgumentDefaultsHelpFormatter)
41 | parser.add_argument('-e',
42 | '--epochs',
43 | metavar='E',
44 | type=int,
45 | default=5,
46 | help='Number of epochs',
47 | dest='epochs')
48 | parser.add_argument('-b',
49 | '--batch_size',
50 | metavar='B',
51 | type=int,
52 | nargs='?',
53 | default=1,
54 | help='Batch size',
55 | dest='batchsize')
56 | parser.add_argument('-l',
57 | '--learning_rate',
58 | metavar='LR',
59 | type=float,
60 | nargs='?',
61 | default=0.0001,
62 | help='Learning rate',
63 | dest='lr')
64 | parser.add_argument('-f',
65 | '--load',
66 | dest='load',
67 | type=str,
68 | default=False,
69 | help='Load model from a .pth file')
70 | parser.add_argument('-s',
71 | '--scale',
72 | dest='scale',
73 | type=float,
74 | default=0.5,
75 | help='Downscaling factor of the images')
76 | parser.add_argument('-v',
77 | '--validation',
78 | dest='val',
79 | type=float,
80 | default=0.1,
81 | help='Percent of the data \
82 | that is used as validation (0-100)')
83 | parser.add_argument('-d',
84 | '--device',
85 | default='',
86 | help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
87 | parser.add_argument('--local_rank',
88 | type=int,
89 | default=-1,
90 | help='DDP parameter, do not modify')
91 | parser.add_argument('--model_type',
92 | type=str,
93 | default='unet',
94 | help="Model which choosed.")
95 | parser.add_argument('--split_seed', type=int, default=None, help='')
96 | return parser.parse_args()
97 |
98 |
99 | def select_device(device='', batch_size=None):
100 | # device = 'cpu' or '0' or '0,1,2,3'
101 | s = f'UNetHX torch {torch.__version__} '
102 | cpu = device.lower() == 'cpu'
103 | if cpu:
104 | os.environ[
105 | 'CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
106 | elif device: # non-cpu device requested
107 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
108 | assert torch.cuda.is_available(
109 | ), f'CUDA unavailable, invalid device {device} requested' # check availability
110 |
111 | cuda = not cpu and torch.cuda.is_available()
112 | if cuda:
113 | n = torch.cuda.device_count()
114 | if n > 1 and batch_size: # check that batch_size is compatible with device_count
115 | assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
116 | space = ' ' * len(s)
117 | for i, d in enumerate(device.split(',') if device else range(n)):
118 | p = torch.cuda.get_device_properties(i)
119 | s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
120 | else:
121 | s += 'CPU\n'
122 |
123 | logger.info(s) # skip a line
124 | return torch.device('cuda:0' if cuda else 'cpu')
125 |
126 |
127 | def train_net(model,
128 | device,
129 | epochs=5,
130 | batch_size=1,
131 | lr=0.001,
132 | val_percent=0.1,
133 | save_all_cp=True,
134 | dir_checkpoint='runs',
135 | split_seed=None):
136 |
137 | dataset = BasicDataset(dir_img, dir_mask)
138 | n_val = int(len(dataset) *
139 | val_percent) if val_percent < 1 else int(val_percent)
140 | n_train = len(dataset) - n_val
141 | if split_seed:
142 | train, val = random_split(
143 | dataset, [n_train, n_val],
144 | generator=torch.Generator().manual_seed(split_seed))
145 | else:
146 | train, val = random_split(dataset, [n_train, n_val])
147 | if type(model) == nn.parallel.DistributedDataParallel:
148 | train_loader = DataLoader(train,
149 | batch_size=batch_size,
150 | shuffle=False,
151 | num_workers=0,
152 | pin_memory=True,
153 | sampler=DistributedSampler(train))
154 | val_loader = DataLoader(val,
155 | batch_size=batch_size,
156 | shuffle=False,
157 | num_workers=0,
158 | pin_memory=True,
159 | drop_last=True,
160 | sampler=DistributedSampler(val))
161 | else:
162 | train_loader = DataLoader(train,
163 | batch_size=batch_size,
164 | shuffle=True,
165 | num_workers=8,
166 | pin_memory=True)
167 | val_loader = DataLoader(val,
168 | batch_size=batch_size,
169 | shuffle=False,
170 | num_workers=8,
171 | pin_memory=True,
172 | drop_last=True)
173 |
174 | logging.info(f'''Starting training:
175 | Epochs: {epochs}
176 | Batch size: {batch_size}
177 | Learning rate: {lr}
178 | Training size: {n_train}
179 | Validation size: {n_val}
180 | Checkpoints: {save_all_cp}
181 | Device: {device.type}
182 | ''')
183 |
184 | # loss = nn.BCEWithLogitsLoss()
185 | # loss.__name__ = 'BCEWithLogitLoss'
186 | # loss = nn.BCELoss()
187 | # loss.__name__ = 'BCELoss'
188 | loss = utils.losses.NoiseRobustDiceLoss(eps=1e-7, activation='sigmoid')
189 | metrics = [
190 | utils.metrics.Dice(threshold=0.5, activation='sigmoid'),
191 | utils.metrics.Fscore(threshold=None, activation='sigmoid')
192 | ]
193 | optimizer = torch.optim.Adam([
194 | dict(params=model.parameters(), lr=lr),
195 | ])
196 |
197 | train_epoch = utils.train.TrainEpoch(
198 | model,
199 | loss=loss,
200 | metrics=metrics,
201 | optimizer=optimizer,
202 | device=device,
203 | verbose=True,
204 | )
205 | valid_epoch = utils.train.ValidEpoch(
206 | model,
207 | loss=loss,
208 | metrics=metrics,
209 | device=device,
210 | verbose=True,
211 | )
212 |
213 | max_score = 0
214 | os.makedirs(dir_checkpoint, exist_ok=True)
215 | for i in range(0, epochs):
216 | print('\nEpoch: {}'.format(i + 1))
217 | train_logs = train_epoch.run(train_loader)
218 | valid_logs = valid_epoch.run(val_loader)
219 |
220 | # do something (save model, change lr, etc.)
221 | if max_score < valid_logs['dice_score']:
222 | max_score = valid_logs['dice_score']
223 | torch.save(model, osp.join(dir_checkpoint, 'best_model.pt'))
224 | torch.save(model.state_dict(),
225 | osp.join(dir_checkpoint, 'best_model_dict.pth'))
226 | print('Model saved!')
227 |
228 | if save_all_cp:
229 | torch.save(model.state_dict(),
230 | osp.join(dir_checkpoint, f'CP_epoch{i + 1}.pth'))
231 | # writer = SummaryWriter(log_dir=dir_checkpoint)
232 | # global_step = 0
233 |
234 | # optimizer = optim.RMSprop(net.parameters(),
235 | # lr=lr,
236 | # weight_decay=1e-8,
237 | # momentum=0.9)
238 | # scheduler = optim.lr_scheduler.ReduceLROnPlateau(
239 | # optimizer, 'min' if net.n_classes > 1 else 'max', patience=2)
240 | # if net.n_classes > 1:
241 | # criterion = nn.CrossEntropyLoss()
242 | # else:
243 | # criterion = nn.BCEWithLogitsLoss()
244 |
245 | # for epoch in range(epochs):
246 | # net.train()
247 |
248 | # epoch_loss = 0
249 | # with tqdm(total=n_train,
250 | # desc=f'Epoch {epoch + 1}/{epochs}',
251 | # unit='img') as pbar:
252 | # for batch in train_loader:
253 | # imgs = batch['image']
254 | # true_masks = batch['mask']
255 | # assert imgs.shape[1] == net.n_channels, \
256 | # f'Network has been defined with {net.n_channels} input channels, ' \
257 | # f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
258 | # 'the images are loaded correctly.'
259 |
260 | # imgs = imgs.to(device=device, dtype=torch.float32)
261 | # mask_type = torch.float32 if net.n_classes == 1 else torch.long
262 | # true_masks = true_masks.to(device=device, dtype=mask_type)
263 |
264 | # masks_pred = net(imgs)
265 | # loss = criterion(masks_pred, true_masks)
266 | # epoch_loss += loss.item()
267 | # writer.add_scalar('Loss/train', loss.item(), global_step)
268 |
269 | # pbar.set_postfix(**{'loss (batch)': loss.item()})
270 |
271 | # optimizer.zero_grad()
272 | # loss.backward()
273 | # # for name, param in net.named_parameters():
274 | # # print(name, param.grad)
275 | # nn.utils.clip_grad_value_(net.parameters(), 0.1)
276 | # optimizer.step()
277 |
278 | # pbar.update(imgs.shape[0])
279 | # global_step += 1
280 | # if global_step % (n_train // (10 * batch_size)) == 0:
281 | # for tag, value in net.named_parameters():
282 | # try:
283 | # tag = tag.replace('.', '/')
284 | # writer.add_histogram('weights/' + tag,
285 | # value.data.cpu().numpy(),
286 | # global_step)
287 | # writer.add_histogram('grads/' + tag,
288 | # value.grad.data.cpu().numpy(),
289 | # global_step)
290 | # except AttributeError:
291 | # pass
292 | # val_score = eval_net(net, val_loader, device)
293 | # scheduler.step(val_score)
294 | # writer.add_scalar('learning_rate',
295 | # optimizer.param_groups[0]['lr'],
296 | # global_step)
297 |
298 | # if net.n_classes > 1:
299 | # logging.info(
300 | # 'Validation cross entropy: {}'.format(val_score))
301 | # writer.add_scalar('Loss/test', val_score, global_step)
302 | # else:
303 | # logging.info(
304 | # 'Validation Dice Coeff: {}'.format(val_score))
305 | # writer.add_scalar('Dice/test', val_score, global_step)
306 |
307 | # writer.add_images('images', imgs, global_step)
308 | # if net.n_classes == 1:
309 | # writer.add_images('masks/true', true_masks,
310 | # global_step)
311 | # writer.add_images('masks/pred',
312 | # torch.sigmoid(masks_pred) > 0.5,
313 | # global_step)
314 |
315 | # if save_cp:
316 | # try:
317 | # os.mkdir(dir_checkpoint)
318 | # logging.info('Created checkpoint directory')
319 | # except OSError:
320 | # pass
321 | # torch.save(net.state_dict(),
322 | # osp.join(dir_checkpoint, f'CP_epoch{epoch + 1}.pth'))
323 | # logging.info(f'Checkpoint {epoch + 1} saved !')
324 |
325 | # writer.close()
326 |
327 |
328 | if __name__ == '__main__':
329 | logging.basicConfig(level=logging.INFO,
330 | format='%(levelname)s: %(message)s')
331 | args = get_args()
332 | # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
333 | device = select_device(args.device, batch_size=args.batchsize)
334 | logging.info(f'Using device {device}')
335 |
336 | import socket
337 | from datetime import datetime
338 | current_time = datetime.now().strftime('%b%d_%H-%M-%S')
339 | comment = f'MT_{args.model_type}_SS_{args.split_seed}_LR_{args.lr}_BS_{args.batchsize}'
340 | dir_checkpoint = osp.join(
341 | ".", "checkpoints",
342 | f"{current_time}_{socket.gethostname()}_" + comment)
343 | # Change here to adapt to your data
344 | # n_channels=3 for RGB images
345 | # n_classes is the number of probabilities you want to get per pixel
346 | # - For 1 class and background, use n_classes=1
347 | # - For 2 classes, use n_classes=1
348 | # - For N > 2 classes, use n_classes=N
349 | nets = {
350 | # "unet": models.UNet,
351 | # "inunet": InUNet,
352 | # "attunet": AttU_Net,
353 | # "inattunet": InAttU_Net,
354 | # "att2uneta": Att2U_NetA,
355 | # "att2unetb": Att2U_NetB,
356 | # "att2unetc": Att2U_NetC,
357 | # "ecaunet": ECAU_Net,
358 | # "gsaunet": GsAUNet,
359 | # "utnet": U_Transformer,
360 | "ddrnet": models.DualResNet,
361 | "utrans": models.U_Transformer,
362 | }
363 | try:
364 | net_type = nets[args.model_type.lower()]
365 | net = net_type(in_channels=1, classes=1)
366 | except KeyError:
367 | os._exit(0)
368 | net.to(device=device)
369 | # net.apply(weight_init)
370 |
371 | cuda = device.type != 'cpu'
372 | # DP mode
373 | if cuda and args.local_rank == -1 and torch.cuda.device_count() > 1:
374 | print(f"DP Use multiple gpus: {args.device}")
375 | net = nn.DataParallel(net)
376 | # DDP mode
377 | if cuda and args.local_rank != -1 and torch.cuda.device_count() > 1:
378 | print(f"DDP Use multiple gpus: {args.device}")
379 | assert torch.cuda.device_count() > args.local_rank
380 | device = torch.device('cuda', args.local_rank)
381 | torch.distributed.init_process_group(backend="nccl")
382 | net = nn.parallel.DistributedDataParallel(net)
383 | net = net.to(device=device)
384 |
385 | net = net.module if is_parallel(net) else net
386 | net = net.to(device=device)
387 | # logging.info(
388 | # f'Network:\n'
389 | # f'\t{net.n_channels} input channels\n'
390 | # f'\t{net.n_classes} output channels (classes)\n'
391 | # f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
392 |
393 | if args.load:
394 | net.load_state_dict(torch.load(args.load, map_location=device))
395 | logging.info(f'Model loaded from {args.load}')
396 |
397 | train_net(model=net,
398 | epochs=args.epochs,
399 | batch_size=args.batchsize,
400 | lr=args.lr,
401 | device=device,
402 | val_percent=args.val,
403 | dir_checkpoint=dir_checkpoint,
404 | split_seed=args.split_seed,
405 | save_all_cp=True)
406 |
407 | # %%
408 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from . import train
2 | from . import losses
3 | from . import metrics
4 | from . import dataset
--------------------------------------------------------------------------------
/utils/base.py:
--------------------------------------------------------------------------------
1 | import re
2 | import torch
3 | import torch.nn as nn
4 |
5 |
6 | class BaseObject(nn.Module):
7 | def __init__(self, name=None):
8 | super().__init__()
9 | self._name = name
10 |
11 | @property
12 | def __name__(self):
13 | if self._name is None:
14 | name = self.__class__.__name__
15 | s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
16 | return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
17 | else:
18 | return self._name
19 |
20 |
21 | class Metric(BaseObject):
22 | pass
23 |
24 |
25 | class Loss(BaseObject):
26 | def __add__(self, other):
27 | if isinstance(other, Loss):
28 | return SumOfLosses(self, other)
29 | else:
30 | raise ValueError('Loss should be inherited from `Loss` class')
31 |
32 | def __radd__(self, other):
33 | return self.__add__(other)
34 |
35 | def __mul__(self, value):
36 | if isinstance(value, (int, float)):
37 | return MultipliedLoss(self, value)
38 | else:
39 | raise ValueError('Loss should be inherited from `BaseLoss` class')
40 |
41 | def __rmul__(self, other):
42 | return self.__mul__(other)
43 |
44 |
45 | class SumOfLosses(Loss):
46 | def __init__(self, l1, l2):
47 | name = '{} + {}'.format(l1.__name__, l2.__name__)
48 | super().__init__(name=name)
49 | self.l1 = l1
50 | self.l2 = l2
51 |
52 | def __call__(self, *inputs):
53 | return self.l1.forward(*inputs) + self.l2.forward(*inputs)
54 |
55 |
56 | # # class Loss(BaseObject):
57 | # # def __add__(self, *other):
58 | # # assert len(other) > 1
59 | # # if isinstance(other[0], Loss):
60 | # # res = SumOfLosses(self, other[0])
61 | # # else:
62 | # # raise ValueError('Loss should be inherited from `Loss` class')
63 | # # for x in other[1:]:
64 | # # if isinstance(x, Loss):
65 | # # res += SumOfLosses(self, x)
66 | # # else:
67 | # # raise ValueError('Loss should be inherited from `Loss` class')
68 | # # return res
69 |
70 | # def __radd__(self, other):
71 | # return self.__add__(other)
72 |
73 | # def __mul__(self, value):
74 | # if isinstance(value, (int, float)):
75 | # return MultipliedLoss(self, value)
76 | # else:
77 | # raise ValueError('Loss should be inherited from `BaseLoss` class')
78 |
79 | # def __rmul__(self, other):
80 | # return self.__mul__(other)
81 |
82 | # class SumOfLosses(Loss):
83 | # def __init__(self, *losses):
84 | # name = ""
85 | # for loss in losses:
86 | # name += '{} + '.format(loss.__name__)
87 | # name = name[:-3]
88 | # super().__init__(name=name)
89 | # self.losses = losses
90 |
91 | # def __call__(self, *inputs):
92 | # assert len(self.losses) > 1
93 | # res = self.losses[0].forward(*inputs)
94 | # for loss in self.losses[1:]:
95 | # res += loss.forward(*inputs)
96 | # return res
97 |
98 |
99 | class MultipliedLoss(Loss):
100 | def __init__(self, loss, multiplier):
101 |
102 | # resolve name
103 | if len(loss.__name__.split('+')) > 1:
104 | name = '{} * ({})'.format(multiplier, loss.__name__)
105 | else:
106 | name = '{} * {}'.format(multiplier, loss.__name__)
107 | super().__init__(name=name)
108 | self.loss = loss
109 | self.multiplier = multiplier
110 |
111 | def __call__(self, *inputs):
112 | return self.multiplier * self.loss.forward(*inputs)
113 |
--------------------------------------------------------------------------------
/utils/data_vis.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 |
3 |
4 | def plot_img_and_mask(img, mask):
5 | classes = mask.shape[2] if len(mask.shape) > 2 else 1
6 | fig, ax = plt.subplots(1, classes + 1)
7 | ax[0].set_title('Input image')
8 | ax[0].imshow(img)
9 | if classes > 1:
10 | for i in range(classes):
11 | ax[i+1].set_title(f'Output mask (class {i+1})')
12 | ax[i+1].imshow(mask[:, :, i])
13 | else:
14 | ax[1].set_title(f'Output mask')
15 | ax[1].imshow(mask)
16 | plt.xticks([]), plt.yticks([])
17 | plt.show()
18 |
--------------------------------------------------------------------------------
/utils/dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import os.path as osp
3 | import numpy as np
4 | from glob import glob
5 | import torch
6 | from torch.utils.data import Dataset
7 | import logging
8 | from PIL import Image
9 |
10 |
11 | class BasicDataset(Dataset):
12 | def __init__(self, imgs_dir, masks_dir, mask_suffix=''):
13 | self.imgs_dir = imgs_dir
14 | self.masks_dir = masks_dir
15 | self.mask_suffix = mask_suffix
16 |
17 | self.ids = [
18 | osp.splitext(file)[0] for file in os.listdir(imgs_dir)
19 | if not file.startswith('.')
20 | ]
21 | logging.info(f'Creating dataset with {len(self.ids)} examples')
22 |
23 | def __len__(self):
24 | return len(self.ids)
25 |
26 | @classmethod
27 | def preprocess(cls, img_nd):
28 | if len(img_nd.shape) == 2:
29 | img_nd = np.expand_dims(img_nd, axis=2)
30 | # img_nd = np.repeat(img_nd, 3, 2) # make 1 channel pic to 3 channels pic
31 |
32 | # HWC to CHW
33 | img_trans = img_nd.transpose((2, 0, 1))
34 |
35 | if 255 >= img_trans.max() > 1 and img_trans.min() > 0:
36 | # Normally UINT8 pic
37 | img_trans = img_trans / 255.0
38 | elif 0 < img_trans.all() <= 1:
39 | # Normally FLOAT pic
40 | pass
41 | else:
42 | # DICOM pic
43 | pass
44 |
45 | return img_trans
46 |
47 | def __getitem__(self, i):
48 | idx = self.ids[i]
49 | # print(
50 | # self.masks_dir,
51 | # idx,
52 | # self.mask_suffix, #0.5
53 | # )
54 | mask_file = glob(
55 | osp.join(self.masks_dir, idx + self.mask_suffix + '.*'))
56 | img_file = glob(osp.join(self.imgs_dir, idx + '.*'))
57 |
58 | assert len(mask_file) == 1, \
59 | f'Either no mask or multiple masks found for the ID {idx}: {mask_file}'
60 | assert len(img_file) == 1, \
61 | f'Either no image or multiple images found for the ID {idx}: {img_file}'
62 | mask = np.load(mask_file[0])
63 | img = np.load(img_file[0])
64 |
65 | assert img.size == mask.size, \
66 | f'Image and mask {idx} should be the same size, but are {img.size} and {mask.size}'
67 |
68 | img = self.preprocess(img)
69 | mask = self.preprocess(mask)
70 |
71 | return torch.from_numpy(img).type(
72 | torch.FloatTensor), torch.from_numpy(mask).type(torch.FloatTensor)
73 |
74 |
75 | class CarvanaDataset(BasicDataset):
76 | def __init__(self, imgs_dir, masks_dir, scale=1):
77 | super().__init__(imgs_dir, masks_dir, scale, mask_suffix='_mask')
78 |
--------------------------------------------------------------------------------
/utils/functional.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def _take_channels(*xs, ignore_channels=None):
5 | if ignore_channels is None:
6 | return xs
7 | else:
8 | channels = [
9 | channel for channel in range(xs[0].shape[1])
10 | if channel not in ignore_channels
11 | ]
12 | xs = [
13 | torch.index_select(x,
14 | dim=1,
15 | index=torch.tensor(channels).to(x.device))
16 | for x in xs
17 | ]
18 | return xs
19 |
20 |
21 | def _threshold(x, threshold=None):
22 | if threshold is not None:
23 | return (x > threshold).type(x.dtype)
24 | else:
25 | return x
26 |
27 |
28 | def iou(pr, gt, eps=1e-7, threshold=None, ignore_channels=None):
29 | """Calculate Intersection over Union between ground truth and prediction
30 | Args:
31 | pr (torch.Tensor): predicted tensor
32 | gt (torch.Tensor): ground truth tensor
33 | eps (float): epsilon to avoid zero division
34 | threshold: threshold for outputs binarization
35 | Returns:
36 | float: IoU (Jaccard) score
37 | """
38 |
39 | pr = _threshold(pr, threshold=threshold)
40 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
41 |
42 | intersection = torch.sum(gt * pr)
43 | union = torch.sum(gt) + torch.sum(pr) - intersection + eps
44 | return (intersection + eps) / union
45 |
46 |
47 | jaccard = iou
48 |
49 |
50 | def dice(pr, gt, eps=1e-7, threshold=None, ignore_channels=None):
51 | """Calculate Dice cofficient between ground truth and prediction
52 | Args:
53 | pr (torch.Tensor): predicted tensor
54 | gt (torch.Tensor): ground truth tensor
55 | eps (float): epsilon to avoid zero division
56 | threshold: threshold for outputs binarization
57 | Returns:
58 | float: dice score
59 | """
60 |
61 | pr = _threshold(pr, threshold=threshold)
62 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
63 |
64 | intersection = torch.sum(gt * pr)
65 | union = torch.sum(gt) + torch.sum(pr) - intersection + eps
66 | return (2 * intersection + eps) / (union + intersection)
67 |
68 |
69 | def noise_robust_dice(pr,
70 | gt,
71 | eps=1e-7,
72 | gamma=1.5,
73 | threshold=None,
74 | ignore_channels=None):
75 | """Calculate Noise Robust Dice cofficient between ground truth and prediction
76 | Args:
77 | pr (torch.Tensor): predicted tensor
78 | gt (torch.Tensor): ground truth tensor
79 | eps (float): epsilon to avoid zero division
80 | gamma: scalar, [1.0, 2.0].
81 | When γ = 2.0, LNR-Dice equals to the Dice loss LDice.
82 | When γ = 1.0, LNR-Dice becomes a weighted version of LMAE.
83 | threshold: threshold for outputs binarization
84 | Returns:
85 | float: dice score
86 | """
87 |
88 | pr = _threshold(pr, threshold=threshold)
89 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
90 |
91 | intersection = torch.sum(torch.pow(torch.abs(pr - gt), gamma))
92 | union = torch.sum(torch.square(gt)) + torch.sum(torch.square(pr)) + eps
93 | return 1 - intersection / union
94 |
95 |
96 | def tversky(pr,
97 | gt,
98 | eps=1e-7,
99 | alpha=0.5,
100 | beta=0.5,
101 | threshold=None,
102 | ignore_channels=None):
103 | """Calculate tversky cofficient between ground truth and prediction
104 | Args:
105 | pr (torch.Tensor): predicted tensor
106 | gt (torch.Tensor): ground truth tensor
107 | eps (float): epsilon to avoid zero division
108 | threshold: threshold for outputs binarization
109 | Returns:
110 | float: dice score
111 | """
112 |
113 | pr = _threshold(pr, threshold=threshold)
114 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
115 |
116 | tp = torch.sum(gt * pr)
117 | fp = torch.sum(pr) - tp
118 | fn = torch.sum(gt) - tp
119 |
120 | tversky = (tp + eps) / (tp + alpha * fn + beta * fp + eps)
121 | return tversky
122 |
123 |
124 | def f_score(pr, gt, beta=1, eps=1e-7, threshold=None, ignore_channels=None):
125 | """Calculate F-score between ground truth and prediction
126 | Args:
127 | pr (torch.Tensor): predicted tensor
128 | gt (torch.Tensor): ground truth tensor
129 | beta (float): positive constant
130 | eps (float): epsilon to avoid zero division
131 | threshold: threshold for outputs binarization
132 | Returns:
133 | float: F score
134 | """
135 |
136 | pr = _threshold(pr, threshold=threshold)
137 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
138 |
139 | tp = torch.sum(gt * pr)
140 | fp = torch.sum(pr) - tp
141 | fn = torch.sum(gt) - tp
142 |
143 | score = ((1 + beta ** 2) * tp + eps) \
144 | / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + eps)
145 |
146 | return score
147 |
148 |
149 | def binary_cross_entropy(pr,
150 | gt,
151 | pos_weight=1,
152 | reduction='mean',
153 | threshold=None,
154 | ignore_channels=None):
155 | """Calculate binary cross entropy between ground truth and prediction
156 | Args:
157 | pr (torch.Tensor): predicted tensor
158 | gt (torch.Tensor): ground truth tensor
159 | threshold: threshold for outputs binarization
160 | Returns:
161 | float: binary cross entropy
162 | """
163 |
164 | pr = _threshold(pr, threshold=threshold)
165 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
166 |
167 | bce = pos_weight * gt * torch.log(pr) + (1 - gt) * torch.log(1 - pr)
168 | if reduction == 'mean':
169 | bce = bce.mean()
170 | elif reduction == 'sum':
171 | bce = bce.sum()
172 | return bce
173 |
174 |
175 | def accuracy(pr, gt, threshold=0.5, ignore_channels=None):
176 | """Calculate accuracy score between ground truth and prediction
177 | Args:
178 | pr (torch.Tensor): predicted tensor
179 | gt (torch.Tensor): ground truth tensor
180 | eps (float): epsilon to avoid zero division
181 | threshold: threshold for outputs binarization
182 | Returns:
183 | float: precision score
184 | """
185 | pr = _threshold(pr, threshold=threshold)
186 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
187 |
188 | tp = torch.sum(gt == pr, dtype=pr.dtype)
189 | score = tp / gt.view(-1).shape[0]
190 | return score
191 |
192 |
193 | def precision(pr, gt, eps=1e-7, threshold=None, ignore_channels=None):
194 | """Calculate precision score between ground truth and prediction
195 | Args:
196 | pr (torch.Tensor): predicted tensor
197 | gt (torch.Tensor): ground truth tensor
198 | eps (float): epsilon to avoid zero division
199 | threshold: threshold for outputs binarization
200 | Returns:
201 | float: precision score
202 | """
203 |
204 | pr = _threshold(pr, threshold=threshold)
205 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
206 |
207 | tp = torch.sum(gt * pr)
208 | fp = torch.sum(pr) - tp
209 |
210 | score = (tp + eps) / (tp + fp + eps)
211 |
212 | return score
213 |
214 |
215 | def recall(pr, gt, eps=1e-7, threshold=None, ignore_channels=None):
216 | """Calculate Recall between ground truth and prediction
217 | Args:
218 | pr (torch.Tensor): A list of predicted elements
219 | gt (torch.Tensor): A list of elements that are to be predicted
220 | eps (float): epsilon to avoid zero division
221 | threshold: threshold for outputs binarization
222 | Returns:
223 | float: recall score
224 | """
225 |
226 | pr = _threshold(pr, threshold=threshold)
227 | pr, gt = _take_channels(pr, gt, ignore_channels=ignore_channels)
228 |
229 | tp = torch.sum(gt * pr)
230 | fn = torch.sum(gt) - tp
231 |
232 | score = (tp + eps) / (tp + fn + eps)
233 |
234 | return score
235 |
--------------------------------------------------------------------------------
/utils/losses.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | import torch
3 |
4 | from . import base
5 | from . import functional as F
6 | from .metrics import Activation
7 |
8 |
9 | class JaccardLoss(base.Loss):
10 | def __init__(self,
11 | eps=1.,
12 | activation=None,
13 | ignore_channels=None,
14 | **kwargs):
15 | super().__init__(**kwargs)
16 | self.eps = eps
17 | self.activation = Activation(activation)
18 | self.ignore_channels = ignore_channels
19 |
20 | def forward(self, y_pr, y_gt):
21 | y_pr = self.activation(y_pr)
22 | return 1 - F.jaccard(
23 | y_pr,
24 | y_gt,
25 | eps=self.eps,
26 | threshold=None,
27 | ignore_channels=self.ignore_channels,
28 | )
29 |
30 |
31 | class DiceLoss(base.Loss):
32 | def __init__(self,
33 | eps=1.,
34 | activation=None,
35 | ignore_channels=None,
36 | **kwargs):
37 | super().__init__(**kwargs)
38 | self.eps = eps
39 | self.activation = Activation(activation)
40 | self.ignore_channels = ignore_channels
41 |
42 | def forward(self, y_pr, y_gt):
43 | y_pr = self.activation(y_pr)
44 | return 1 - F.dice(
45 | y_pr,
46 | y_gt,
47 | eps=self.eps,
48 | threshold=None,
49 | ignore_channels=self.ignore_channels,
50 | )
51 |
52 |
53 | class NoiseRobustDiceLoss(base.Loss):
54 | def __init__(self,
55 | eps=1.,
56 | activation=None,
57 | gamma=1.5,
58 | ignore_channels=None,
59 | **kwargs):
60 | super().__init__(**kwargs)
61 | self.eps = eps
62 | self.activation = Activation(activation)
63 | self.gamma = gamma
64 | self.ignore_channels = ignore_channels
65 |
66 | def forward(self, y_pr, y_gt):
67 | y_pr = self.activation(y_pr)
68 | return 1 - F.noise_robust_dice(
69 | y_pr,
70 | y_gt,
71 | eps=self.eps,
72 | threshold=None,
73 | gamma=self.gamma,
74 | ignore_channels=self.ignore_channels,
75 | )
76 |
77 |
78 | class TverskyLoss(base.Loss):
79 | def __init__(self,
80 | eps=1.,
81 | activation=None,
82 | alpha=0.5,
83 | beta=0.5,
84 | ignore_channles=None,
85 | **kwargs):
86 | super().__init__(**kwargs)
87 | self.eps = eps
88 | self.activation = Activation(activation)
89 | self.alpha = alpha
90 | self.beta = beta
91 | self.ignore_channels = ignore_channles
92 |
93 | def forward(self, y_pr, y_gt):
94 | return 1 - F.tversky(
95 | y_pr,
96 | y_gt,
97 | eps=self.eps,
98 | threshold=None,
99 | alpha=self.alpha,
100 | beta=self.beta,
101 | ignore_channels=self.ignore_channels,
102 | )
103 |
104 |
105 | class FLoss(base.Loss):
106 | def __init__(self,
107 | eps=1.,
108 | beta=1.,
109 | activation=None,
110 | ignore_channels=None,
111 | **kwargs):
112 | super().__init__(**kwargs)
113 | self.eps = eps
114 | self.beta = beta
115 | self.activation = Activation(activation)
116 | self.ignore_channels = ignore_channels
117 |
118 | def forward(self, y_pr, y_gt):
119 | y_pr = self.activation(y_pr)
120 | return 1 - F.f_score(
121 | y_pr,
122 | y_gt,
123 | eps=self.eps,
124 | beta=self.beta,
125 | threshold=None,
126 | ignore_channels=self.ignore_channels,
127 | )
128 |
129 |
130 | class L1Loss(nn.L1Loss, base.Loss):
131 | pass
132 |
133 |
134 | class MSELoss(nn.MSELoss, base.Loss):
135 | pass
136 |
137 |
138 | class CrossEntropyLoss(nn.CrossEntropyLoss, base.Loss):
139 | pass
140 |
141 |
142 | class NLLLoss(nn.NLLLoss, base.Loss):
143 | pass
144 |
145 |
146 | class BCELoss(nn.BCELoss, base.Loss):
147 | pass
148 |
149 |
150 | class BCEWithLogitsLoss(nn.BCEWithLogitsLoss, base.Loss):
151 | pass
152 |
--------------------------------------------------------------------------------
/utils/meter.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | class Meter(object):
5 | '''Meters provide a way to keep track of important statistics in an online manner.
6 | This class is abstract, but provides a standard interface for all meters to follow.
7 | '''
8 |
9 | def reset(self):
10 | '''Resets the meter to default settings.'''
11 | pass
12 |
13 | def add(self, value):
14 | '''Log a new value to the meter
15 | Args:
16 | value: Next result to include.
17 | '''
18 | pass
19 |
20 | def value(self):
21 | '''Get the value of the meter in the current state.'''
22 | pass
23 |
24 |
25 | class AverageValueMeter(Meter):
26 | def __init__(self):
27 | super(AverageValueMeter, self).__init__()
28 | self.reset()
29 | self.val = 0
30 |
31 | def add(self, value, n=1):
32 | self.val = value
33 | self.sum += value
34 | self.var += value * value
35 | self.n += n
36 |
37 | if self.n == 0:
38 | self.mean, self.std = np.nan, np.nan
39 | elif self.n == 1:
40 | self.mean = 0.0 + self.sum # This is to force a copy in torch/numpy
41 | self.std = np.inf
42 | self.mean_old = self.mean
43 | self.m_s = 0.0
44 | else:
45 | self.mean = self.mean_old + (value - n * self.mean_old) / float(self.n)
46 | self.m_s += (value - self.mean_old) * (value - self.mean)
47 | self.mean_old = self.mean
48 | self.std = np.sqrt(self.m_s / (self.n - 1.0))
49 |
50 | def value(self):
51 | return self.mean, self.std
52 |
53 | def reset(self):
54 | self.n = 0
55 | self.sum = 0.0
56 | self.var = 0.0
57 | self.val = 0.0
58 | self.mean = np.nan
59 | self.mean_old = 0.0
60 | self.m_s = 0.0
61 | self.std = np.nan
62 |
--------------------------------------------------------------------------------
/utils/metrics.py:
--------------------------------------------------------------------------------
1 | from . import base
2 | from . import functional as F
3 | from torch import nn
4 |
5 |
6 | class Activation(nn.Module):
7 | def __init__(self, name, **params):
8 |
9 | super().__init__()
10 |
11 | if name is None or name == 'identity':
12 | self.activation = nn.Identity(**params)
13 | elif name == 'sigmoid':
14 | self.activation = nn.Sigmoid()
15 | elif name == 'softmax2d':
16 | self.activation = nn.Softmax(dim=1, **params)
17 | elif name == 'softmax':
18 | self.activation = nn.Softmax(**params)
19 | elif name == 'logsoftmax':
20 | self.activation = nn.LogSoftmax(**params)
21 | elif name == 'tanh':
22 | self.activation = nn.Tanh()
23 | elif name == 'argmax':
24 | self.activation = ArgMax(**params)
25 | elif name == 'argmax2d':
26 | self.activation = ArgMax(dim=1, **params)
27 | elif callable(name):
28 | self.activation = name(**params)
29 | else:
30 | raise ValueError(
31 | 'Activation should be callable/sigmoid/softmax/logsoftmax/tanh/None; got {}'
32 | .format(name))
33 |
34 | def forward(self, x):
35 | return self.activation(x)
36 |
37 |
38 | class IoU(base.Metric):
39 | __name__ = 'iou_score'
40 |
41 | def __init__(self,
42 | eps=1e-7,
43 | threshold=0.5,
44 | activation=None,
45 | ignore_channels=None,
46 | **kwargs):
47 | super().__init__(**kwargs)
48 | self.eps = eps
49 | self.threshold = threshold
50 | self.activation = Activation(activation)
51 | self.ignore_channels = ignore_channels
52 |
53 | def forward(self, y_pr, y_gt):
54 | y_pr = self.activation(y_pr)
55 | return F.iou(
56 | y_pr,
57 | y_gt,
58 | eps=self.eps,
59 | threshold=self.threshold,
60 | ignore_channels=self.ignore_channels,
61 | )
62 |
63 |
64 | class Dice(base.Metric):
65 | __name__ = 'dice_score'
66 |
67 | def __init__(self,
68 | eps=1e-7,
69 | threshold=0.5,
70 | activation=None,
71 | ignore_channels=None,
72 | **kwargs):
73 | super().__init__(**kwargs)
74 | self.eps = eps
75 | self.threshold = threshold
76 | self.activation = Activation(activation)
77 | self.ignore_channels = ignore_channels
78 |
79 | def forward(self, y_pr, y_gt):
80 | y_pr = self.activation(y_pr)
81 | return F.dice(
82 | y_pr,
83 | y_gt,
84 | eps=self.eps,
85 | threshold=self.threshold,
86 | ignore_channels=self.ignore_channels,
87 | )
88 |
89 |
90 | class Fscore(base.Metric):
91 | __name__ = 'f_score'
92 |
93 | def __init__(self,
94 | beta=1,
95 | eps=1e-7,
96 | threshold=0.5,
97 | activation=None,
98 | ignore_channels=None,
99 | **kwargs):
100 | super().__init__(**kwargs)
101 | self.eps = eps
102 | self.beta = beta
103 | self.threshold = threshold
104 | self.activation = Activation(activation)
105 | self.ignore_channels = ignore_channels
106 |
107 | def forward(self, y_pr, y_gt):
108 | y_pr = self.activation(y_pr)
109 | return F.f_score(
110 | y_pr,
111 | y_gt,
112 | eps=self.eps,
113 | beta=self.beta,
114 | threshold=self.threshold,
115 | ignore_channels=self.ignore_channels,
116 | )
117 |
118 |
119 | class Accuracy(base.Metric):
120 | def __init__(self,
121 | threshold=0.5,
122 | activation=None,
123 | ignore_channels=None,
124 | **kwargs):
125 | super().__init__(**kwargs)
126 | self.threshold = threshold
127 | self.activation = Activation(activation)
128 | self.ignore_channels = ignore_channels
129 |
130 | def forward(self, y_pr, y_gt):
131 | y_pr = self.activation(y_pr)
132 | return F.accuracy(
133 | y_pr,
134 | y_gt,
135 | threshold=self.threshold,
136 | ignore_channels=self.ignore_channels,
137 | )
138 |
139 |
140 | class Recall(base.Metric):
141 | def __init__(self,
142 | eps=1e-7,
143 | threshold=0.5,
144 | activation=None,
145 | ignore_channels=None,
146 | **kwargs):
147 | super().__init__(**kwargs)
148 | self.eps = eps
149 | self.threshold = threshold
150 | self.activation = Activation(activation)
151 | self.ignore_channels = ignore_channels
152 |
153 | def forward(self, y_pr, y_gt):
154 | y_pr = self.activation(y_pr)
155 | return F.recall(
156 | y_pr,
157 | y_gt,
158 | eps=self.eps,
159 | threshold=self.threshold,
160 | ignore_channels=self.ignore_channels,
161 | )
162 |
163 |
164 | class Precision(base.Metric):
165 | def __init__(self,
166 | eps=1e-7,
167 | threshold=0.5,
168 | activation=None,
169 | ignore_channels=None,
170 | **kwargs):
171 | super().__init__(**kwargs)
172 | self.eps = eps
173 | self.threshold = threshold
174 | self.activation = Activation(activation)
175 | self.ignore_channels = ignore_channels
176 |
177 | def forward(self, y_pr, y_gt):
178 | y_pr = self.activation(y_pr)
179 | return F.precision(
180 | y_pr,
181 | y_gt,
182 | eps=self.eps,
183 | threshold=self.threshold,
184 | ignore_channels=self.ignore_channels,
185 | )
186 |
--------------------------------------------------------------------------------
/utils/train.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import torch
3 | from tqdm import tqdm as tqdm
4 | from .meter import AverageValueMeter
5 |
6 |
7 | class Epoch:
8 | def __init__(self,
9 | model,
10 | loss,
11 | metrics,
12 | stage_name,
13 | device='cpu',
14 | verbose=True):
15 | self.model = model
16 | self.loss = loss
17 | self.metrics = metrics
18 | self.stage_name = stage_name
19 | self.verbose = verbose
20 | self.device = device
21 |
22 | self._to_device()
23 |
24 | def _to_device(self):
25 | self.model.to(self.device)
26 | self.loss.to(self.device)
27 | for metric in self.metrics:
28 | metric.to(self.device)
29 |
30 | def _format_logs(self, logs):
31 | str_logs = ['{} - {:.4}'.format(k, v) for k, v in logs.items()]
32 | s = ', '.join(str_logs)
33 | return s
34 |
35 | def batch_update(self, x, y):
36 | raise NotImplementedError
37 |
38 | def on_epoch_start(self):
39 | pass
40 |
41 | def run(self, dataloader):
42 |
43 | self.on_epoch_start()
44 |
45 | logs = {}
46 | loss_meter = AverageValueMeter()
47 | metrics_meters = {
48 | metric.__name__: AverageValueMeter()
49 | for metric in self.metrics
50 | }
51 |
52 | with tqdm(dataloader,
53 | desc=self.stage_name,
54 | file=sys.stdout,
55 | disable=not (self.verbose)) as iterator:
56 | for x, y in iterator:
57 | x, y = x.to(self.device), y.to(self.device)
58 | loss, y_pred = self.batch_update(x, y)
59 |
60 | # update loss logs
61 | loss_value = loss.cpu().detach().numpy()
62 | loss_meter.add(loss_value)
63 | loss_logs = {self.loss.__name__: loss_meter.mean}
64 | logs.update(loss_logs)
65 |
66 | # update metrics logs
67 | for metric_fn in self.metrics:
68 | metric_value = metric_fn(y_pred, y).cpu().detach().numpy()
69 | metrics_meters[metric_fn.__name__].add(metric_value)
70 | metrics_logs = {k: v.mean for k, v in metrics_meters.items()}
71 | logs.update(metrics_logs)
72 |
73 | if self.verbose:
74 | s = self._format_logs(logs)
75 | iterator.set_postfix_str(s)
76 |
77 | return logs
78 |
79 |
80 | class TrainEpoch(Epoch):
81 | def __init__(self,
82 | model,
83 | loss,
84 | metrics,
85 | optimizer,
86 | device='cpu',
87 | verbose=True):
88 | super().__init__(
89 | model=model,
90 | loss=loss,
91 | metrics=metrics,
92 | stage_name='train',
93 | device=device,
94 | verbose=verbose,
95 | )
96 | self.optimizer = optimizer
97 |
98 | def on_epoch_start(self):
99 | self.model.train()
100 |
101 | def batch_update(self, x, y):
102 | self.optimizer.zero_grad()
103 | prediction = self.model.forward(x)
104 | loss = self.loss(prediction, y)
105 | loss.backward()
106 | self.optimizer.step()
107 | return loss, prediction
108 |
109 |
110 | class ValidEpoch(Epoch):
111 | def __init__(self, model, loss, metrics, device='cpu', verbose=True):
112 | super().__init__(
113 | model=model,
114 | loss=loss,
115 | metrics=metrics,
116 | stage_name='valid',
117 | device=device,
118 | verbose=verbose,
119 | )
120 |
121 | def on_epoch_start(self):
122 | self.model.eval()
123 |
124 | def batch_update(self, x, y):
125 | with torch.no_grad():
126 | prediction = self.model.forward(x)
127 | loss = self.loss(prediction, y)
128 | return loss, prediction
129 |
130 |
131 | class TestEpoch(ValidEpoch):
132 | def __init__(self, model, loss, metrics, device='cpu', verbose=True):
133 | super().__init__(
134 | model=model,
135 | loss=loss,
136 | metrics=metrics,
137 | stage_name='test',
138 | device=device,
139 | verbose=verbose,
140 | )
141 |
142 | def run(self, dataloader):
143 |
144 | self.on_epoch_start()
145 |
146 | logs = {}
147 | loss_meter = AverageValueMeter()
148 | metrics_meters = {
149 | metric.__name__: AverageValueMeter()
150 | for metric in self.metrics
151 | }
152 | TP = FTP = FP = FN = TN = 0
153 |
154 | with tqdm(dataloader,
155 | desc=self.stage_name,
156 | file=sys.stdout,
157 | disable=not (self.verbose)) as iterator:
158 | for x, y in iterator:
159 | x, y = x.to(self.device), y.to(self.device)
160 | loss, y_pred = self.batch_update(x, y)
161 |
162 | # update loss logs
163 | loss_value = loss.cpu().detach().numpy()
164 | loss_meter.add(loss_value)
165 | loss_logs = {self.loss.__name__: loss_meter.mean}
166 | logs.update(loss_logs)
167 |
168 | # update metrics logs
169 | for metric_fn in self.metrics:
170 | metric_value = metric_fn(y_pred, y).cpu().detach().numpy()
171 | metrics_meters[metric_fn.__name__].add(metric_value)
172 | metrics_logs = {k: v.mean for k, v in metrics_meters.items()}
173 | logs.update(metrics_logs)
174 |
175 | # update metrics logs
176 | if torch.sum(y) > 0 and torch.sum(y_pred) > 0:
177 | if torch.sum(y * y_pred) > 0:
178 | TP += 1
179 | else:
180 | FTP += 1
181 | elif torch.sum(y) > 0 and torch.sum(y_pred) == 0:
182 | FN += 1
183 | elif torch.sum(y) == 0 and torch.sum(y_pred) > 0:
184 | FP += 1
185 | elif torch.sum(y) == 0 and torch.sum(y_pred) == 0:
186 | TN += 1
187 | ACC = (TP + TN) / (TP + TN + FP + FN + FTP)
188 | bump_metrics_logs = {
189 | "TP": TP,
190 | "FTP": FTP,
191 | "FN": FN,
192 | "FP": FP,
193 | "TN": TN,
194 | "ACC": ACC,
195 | }
196 | logs.update(bump_metrics_logs)
197 |
198 | if self.verbose:
199 | s = self._format_logs(logs)
200 | iterator.set_postfix_str(s)
201 |
202 | return logs
--------------------------------------------------------------------------------