├── .gitignore ├── LICENSE ├── README.md ├── graphs ├── 3elt.vna ├── CA-GrQc.vna ├── EVA.vna ├── bcsstk09.vna ├── block_2000.vna ├── cage8.vna ├── can_96.vna ├── dwt_1005.vna ├── dwt_419.vna ├── dwt_72.vna ├── grid17.vna ├── jazz.vna ├── lesmis.vna ├── mesh3e1.vna ├── netscience.vna ├── price_1000.vna ├── rajat11.vna ├── sierpinski3d.vna ├── us_powergrid.vna └── visbrazil.vna ├── modules ├── __init__.py ├── distance_matrix.py ├── graph_io.py ├── layout_io.py └── thesne.py ├── pivotmds_layouts ├── 3elt.vna ├── CA-GrQc.vna ├── EVA.vna ├── bcsstk09.vna ├── block_2000.vna ├── cage8.vna ├── can_96.vna ├── dwt_1005.vna ├── dwt_419.vna ├── dwt_72.vna ├── grid17.vna ├── jazz.vna ├── lesmis.vna ├── mesh3e1.vna ├── netscience.vna ├── price_1000.vna ├── rajat11.vna ├── sierpinski3d.vna ├── us_powergrid.vna └── visbrazil.vna └── tsnet.py /.gitignore: -------------------------------------------------------------------------------- 1 | # Created by https://www.gitignore.io/api/python 2 | 3 | ### Python ### 4 | # Byte-compiled / optimized / DLL files 5 | __pycache__/ 6 | *.py[cod] 7 | *$py.class 8 | 9 | # C extensions 10 | *.so 11 | 12 | # Distribution / packaging 13 | .Python 14 | env/ 15 | build/ 16 | develop-eggs/ 17 | dist/ 18 | downloads/ 19 | eggs/ 20 | .eggs/ 21 | lib/ 22 | lib64/ 23 | parts/ 24 | sdist/ 25 | var/ 26 | wheels/ 27 | *.egg-info/ 28 | .installed.cfg 29 | *.egg 30 | 31 | # PyInstaller 32 | # Usually these files are written by a python script from a template 33 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 34 | *.manifest 35 | *.spec 36 | 37 | # Installer logs 38 | pip-log.txt 39 | pip-delete-this-directory.txt 40 | 41 | # Unit test / coverage reports 42 | htmlcov/ 43 | .tox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *,cover 50 | .hypothesis/ 51 | 52 | # Translations 53 | *.mo 54 | *.pot 55 | 56 | # Django stuff: 57 | *.log 58 | local_settings.py 59 | 60 | # Flask stuff: 61 | instance/ 62 | .webassets-cache 63 | 64 | # Scrapy stuff: 65 | .scrapy 66 | 67 | # Sphinx documentation 68 | docs/_build/ 69 | 70 | # PyBuilder 71 | target/ 72 | 73 | # Jupyter Notebook 74 | .ipynb_checkpoints 75 | 76 | # pyenv 77 | .python-version 78 | 79 | # celery beat schedule file 80 | celerybeat-schedule 81 | 82 | # dotenv 83 | .env 84 | 85 | # virtualenv 86 | .venv 87 | venv/ 88 | ENV/ 89 | 90 | # Spyder project settings 91 | .spyderproject 92 | 93 | # Rope project settings 94 | .ropeproject 95 | 96 | # End of https://www.gitignore.io/api/python -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2024 Han Kruiger 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # tsNET 2 | 3 | Graph Layouts by t-SNE 4 | 5 | ``` 6 | usage: tsnet.py [-h] [--star] [--perplexity PERPLEXITY] 7 | [--learning_rate LEARNING_RATE] [--output OUTPUT] 8 | input_graph 9 | 10 | Read a graph, and produce a layout with tsNET(*). 11 | 12 | positional arguments: 13 | input_graph 14 | 15 | optional arguments: 16 | -h, --help show this help message and exit 17 | --star Use the tsNET* scheme. (Requires PivotMDS layout in 18 | ./pivotmds_layouts/ as initialization.) Note: Use 19 | higher learning rates for larger graphs, for faster 20 | convergence. 21 | --perplexity PERPLEXITY, -p PERPLEXITY 22 | Perplexity parameter. 23 | --learning_rate LEARNING_RATE, -l LEARNING_RATE 24 | Learning rate (hyper)parameter for optimization. 25 | --output OUTPUT, -o OUTPUT 26 | Save layout to the specified file. 27 | ``` 28 | 29 | Example: 30 | ```bash 31 | # Read the input graph dwt_72, and save the output in ./output.vna 32 | ./tsnet.py graphs/dwt_72.vna --output ./output.vna 33 | ``` 34 | 35 | # Dependencies 36 | 37 | * `python3` 38 | * [`numpy`](http://www.numpy.org/) 39 | * [`matplotlib`](https://matplotlib.org/) 40 | * [`graph-tool`](https://graph-tool.skewed.de/) 41 | * [`theano`](http://deeplearning.net/software/theano/) 42 | * [`scikit-learn`](http://scikit-learn.org/stable/) 43 | 44 | # Example 45 | 46 | -------------------------------------------------------------------------------- /graphs/can_96.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | *Tie data 100 | from to strength 101 | 1 0 1 102 | 2 1 1 103 | 3 2 1 104 | 4 3 1 105 | 5 4 1 106 | 6 5 1 107 | 7 6 1 108 | 8 7 1 109 | 9 8 1 110 | 10 9 1 111 | 11 10 1 112 | 12 11 1 113 | 13 12 1 114 | 14 13 1 115 | 15 0 1 116 | 15 14 1 117 | 16 0 1 118 | 16 1 1 119 | 16 15 1 120 | 17 0 1 121 | 17 1 1 122 | 17 2 1 123 | 17 16 1 124 | 18 1 1 125 | 18 2 1 126 | 18 3 1 127 | 18 17 1 128 | 19 2 1 129 | 19 3 1 130 | 19 4 1 131 | 19 18 1 132 | 20 3 1 133 | 20 4 1 134 | 20 5 1 135 | 20 19 1 136 | 21 4 1 137 | 21 5 1 138 | 21 6 1 139 | 21 20 1 140 | 22 5 1 141 | 22 6 1 142 | 22 7 1 143 | 22 21 1 144 | 23 6 1 145 | 23 7 1 146 | 23 8 1 147 | 23 22 1 148 | 24 7 1 149 | 24 8 1 150 | 24 9 1 151 | 24 23 1 152 | 25 8 1 153 | 25 9 1 154 | 25 10 1 155 | 25 24 1 156 | 26 9 1 157 | 26 10 1 158 | 26 11 1 159 | 26 25 1 160 | 27 10 1 161 | 27 11 1 162 | 27 12 1 163 | 27 26 1 164 | 28 11 1 165 | 28 12 1 166 | 28 13 1 167 | 28 27 1 168 | 29 12 1 169 | 29 13 1 170 | 29 14 1 171 | 29 28 1 172 | 30 13 1 173 | 30 14 1 174 | 30 15 1 175 | 30 29 1 176 | 31 0 1 177 | 31 14 1 178 | 31 15 1 179 | 31 16 1 180 | 31 30 1 181 | 32 16 1 182 | 32 17 1 183 | 32 31 1 184 | 33 16 1 185 | 33 17 1 186 | 33 18 1 187 | 33 32 1 188 | 34 17 1 189 | 34 18 1 190 | 34 19 1 191 | 34 33 1 192 | 35 18 1 193 | 35 19 1 194 | 35 20 1 195 | 35 34 1 196 | 36 19 1 197 | 36 20 1 198 | 36 21 1 199 | 36 35 1 200 | 37 20 1 201 | 37 21 1 202 | 37 22 1 203 | 37 36 1 204 | 38 21 1 205 | 38 22 1 206 | 38 23 1 207 | 38 37 1 208 | 39 22 1 209 | 39 23 1 210 | 39 24 1 211 | 39 38 1 212 | 40 23 1 213 | 40 24 1 214 | 40 25 1 215 | 40 39 1 216 | 41 24 1 217 | 41 25 1 218 | 41 26 1 219 | 41 40 1 220 | 42 25 1 221 | 42 26 1 222 | 42 27 1 223 | 42 41 1 224 | 43 26 1 225 | 43 27 1 226 | 43 28 1 227 | 43 42 1 228 | 44 27 1 229 | 44 28 1 230 | 44 29 1 231 | 44 43 1 232 | 45 28 1 233 | 45 29 1 234 | 45 30 1 235 | 45 44 1 236 | 46 29 1 237 | 46 30 1 238 | 46 31 1 239 | 46 45 1 240 | 47 16 1 241 | 47 30 1 242 | 47 31 1 243 | 47 32 1 244 | 47 46 1 245 | 48 32 1 246 | 48 33 1 247 | 48 47 1 248 | 49 32 1 249 | 49 33 1 250 | 49 34 1 251 | 49 48 1 252 | 50 33 1 253 | 50 34 1 254 | 50 35 1 255 | 50 49 1 256 | 51 34 1 257 | 51 35 1 258 | 51 36 1 259 | 51 50 1 260 | 52 35 1 261 | 52 36 1 262 | 52 37 1 263 | 52 51 1 264 | 53 36 1 265 | 53 37 1 266 | 53 38 1 267 | 53 52 1 268 | 54 37 1 269 | 54 38 1 270 | 54 39 1 271 | 54 53 1 272 | 55 38 1 273 | 55 39 1 274 | 55 40 1 275 | 55 54 1 276 | 56 39 1 277 | 56 40 1 278 | 56 41 1 279 | 56 55 1 280 | 57 40 1 281 | 57 41 1 282 | 57 42 1 283 | 57 56 1 284 | 58 41 1 285 | 58 42 1 286 | 58 43 1 287 | 58 57 1 288 | 59 42 1 289 | 59 43 1 290 | 59 44 1 291 | 59 58 1 292 | 60 43 1 293 | 60 44 1 294 | 60 45 1 295 | 60 59 1 296 | 61 44 1 297 | 61 45 1 298 | 61 46 1 299 | 61 60 1 300 | 62 45 1 301 | 62 46 1 302 | 62 47 1 303 | 62 61 1 304 | 63 32 1 305 | 63 46 1 306 | 63 47 1 307 | 63 48 1 308 | 63 62 1 309 | 64 48 1 310 | 64 49 1 311 | 64 63 1 312 | 65 48 1 313 | 65 49 1 314 | 65 50 1 315 | 65 64 1 316 | 66 49 1 317 | 66 50 1 318 | 66 51 1 319 | 66 65 1 320 | 67 50 1 321 | 67 51 1 322 | 67 52 1 323 | 67 66 1 324 | 68 51 1 325 | 68 52 1 326 | 68 53 1 327 | 68 67 1 328 | 69 52 1 329 | 69 53 1 330 | 69 54 1 331 | 69 68 1 332 | 70 53 1 333 | 70 54 1 334 | 70 55 1 335 | 70 69 1 336 | 71 54 1 337 | 71 55 1 338 | 71 56 1 339 | 71 70 1 340 | 72 55 1 341 | 72 56 1 342 | 72 57 1 343 | 72 71 1 344 | 73 56 1 345 | 73 57 1 346 | 73 58 1 347 | 73 72 1 348 | 74 57 1 349 | 74 58 1 350 | 74 59 1 351 | 74 73 1 352 | 75 58 1 353 | 75 59 1 354 | 75 60 1 355 | 75 74 1 356 | 76 59 1 357 | 76 60 1 358 | 76 61 1 359 | 76 75 1 360 | 77 60 1 361 | 77 61 1 362 | 77 62 1 363 | 77 76 1 364 | 78 61 1 365 | 78 62 1 366 | 78 63 1 367 | 78 77 1 368 | 79 48 1 369 | 79 62 1 370 | 79 63 1 371 | 79 64 1 372 | 79 78 1 373 | 80 64 1 374 | 80 65 1 375 | 80 79 1 376 | 81 64 1 377 | 81 65 1 378 | 81 66 1 379 | 81 80 1 380 | 82 65 1 381 | 82 66 1 382 | 82 67 1 383 | 82 81 1 384 | 83 66 1 385 | 83 67 1 386 | 83 68 1 387 | 83 82 1 388 | 84 67 1 389 | 84 68 1 390 | 84 69 1 391 | 84 83 1 392 | 85 68 1 393 | 85 69 1 394 | 85 70 1 395 | 85 84 1 396 | 86 69 1 397 | 86 70 1 398 | 86 71 1 399 | 86 85 1 400 | 87 70 1 401 | 87 71 1 402 | 87 72 1 403 | 87 86 1 404 | 88 71 1 405 | 88 72 1 406 | 88 73 1 407 | 88 87 1 408 | 89 72 1 409 | 89 73 1 410 | 89 74 1 411 | 89 88 1 412 | 90 73 1 413 | 90 74 1 414 | 90 75 1 415 | 90 89 1 416 | 91 74 1 417 | 91 75 1 418 | 91 76 1 419 | 91 90 1 420 | 92 75 1 421 | 92 76 1 422 | 92 77 1 423 | 92 91 1 424 | 93 76 1 425 | 93 77 1 426 | 93 78 1 427 | 93 92 1 428 | 94 77 1 429 | 94 78 1 430 | 94 79 1 431 | 94 93 1 432 | 95 64 1 433 | 95 78 1 434 | 95 79 1 435 | 95 80 1 436 | 95 94 1 437 | -------------------------------------------------------------------------------- /graphs/dwt_419.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | 222 226 | 223 227 | 224 228 | 225 229 | 226 230 | 227 231 | 228 232 | 229 233 | 230 234 | 231 235 | 232 236 | 233 237 | 234 238 | 235 239 | 236 240 | 237 241 | 238 242 | 239 243 | 240 244 | 241 245 | 242 246 | 243 247 | 244 248 | 245 249 | 246 250 | 247 251 | 248 252 | 249 253 | 250 254 | 251 255 | 252 256 | 253 257 | 254 258 | 255 259 | 256 260 | 257 261 | 258 262 | 259 263 | 260 264 | 261 265 | 262 266 | 263 267 | 264 268 | 265 269 | 266 270 | 267 271 | 268 272 | 269 273 | 270 274 | 271 275 | 272 276 | 273 277 | 274 278 | 275 279 | 276 280 | 277 281 | 278 282 | 279 283 | 280 284 | 281 285 | 282 286 | 283 287 | 284 288 | 285 289 | 286 290 | 287 291 | 288 292 | 289 293 | 290 294 | 291 295 | 292 296 | 293 297 | 294 298 | 295 299 | 296 300 | 297 301 | 298 302 | 299 303 | 300 304 | 301 305 | 302 306 | 303 307 | 304 308 | 305 309 | 306 310 | 307 311 | 308 312 | 309 313 | 310 314 | 311 315 | 312 316 | 313 317 | 314 318 | 315 319 | 316 320 | 317 321 | 318 322 | 319 323 | 320 324 | 321 325 | 322 326 | 323 327 | 324 328 | 325 329 | 326 330 | 327 331 | 328 332 | 329 333 | 330 334 | 331 335 | 332 336 | 333 337 | 334 338 | 335 339 | 336 340 | 337 341 | 338 342 | 339 343 | 340 344 | 341 345 | 342 346 | 343 347 | 344 348 | 345 349 | 346 350 | 347 351 | 348 352 | 349 353 | 350 354 | 351 355 | 352 356 | 353 357 | 354 358 | 355 359 | 356 360 | 357 361 | 358 362 | 359 363 | 360 364 | 361 365 | 362 366 | 363 367 | 364 368 | 365 369 | 366 370 | 367 371 | 368 372 | 369 373 | 370 374 | 371 375 | 372 376 | 373 377 | 374 378 | 375 379 | 376 380 | 377 381 | 378 382 | 379 383 | 380 384 | 381 385 | 382 386 | 383 387 | 384 388 | 385 389 | 386 390 | 387 391 | 388 392 | 389 393 | 390 394 | 391 395 | 392 396 | 393 397 | 394 398 | 395 399 | 396 400 | 397 401 | 398 402 | 399 403 | 400 404 | 401 405 | 402 406 | 403 407 | 404 408 | 405 409 | 406 410 | 407 411 | 408 412 | 409 413 | 410 414 | 411 415 | 412 416 | 413 417 | 414 418 | 415 419 | 416 420 | 417 421 | 418 422 | *Tie data 423 | from to strength 424 | 1 0 1 425 | 2 1 1 426 | 3 0 1 427 | 3 1 1 428 | 3 2 1 429 | 4 0 1 430 | 4 3 1 431 | 5 0 1 432 | 5 1 1 433 | 5 4 1 434 | 6 0 1 435 | 6 1 1 436 | 6 5 1 437 | 7 1 1 438 | 7 2 1 439 | 7 6 1 440 | 8 1 1 441 | 8 2 1 442 | 8 7 1 443 | 9 2 1 444 | 9 3 1 445 | 9 8 1 446 | 10 2 1 447 | 10 3 1 448 | 10 9 1 449 | 11 0 1 450 | 11 3 1 451 | 11 4 1 452 | 11 10 1 453 | 13 12 1 454 | 14 13 1 455 | 15 4 1 456 | 15 5 1 457 | 15 14 1 458 | 16 12 1 459 | 16 13 1 460 | 17 12 1 461 | 17 13 1 462 | 17 14 1 463 | 17 16 1 464 | 18 13 1 465 | 18 14 1 466 | 18 15 1 467 | 18 17 1 468 | 19 4 1 469 | 19 5 1 470 | 19 14 1 471 | 19 15 1 472 | 19 18 1 473 | 20 8 1 474 | 20 9 1 475 | 21 20 1 476 | 22 21 1 477 | 23 22 1 478 | 24 8 1 479 | 24 9 1 480 | 24 20 1 481 | 24 21 1 482 | 25 20 1 483 | 25 21 1 484 | 25 22 1 485 | 25 24 1 486 | 26 21 1 487 | 26 22 1 488 | 26 23 1 489 | 26 25 1 490 | 27 22 1 491 | 27 23 1 492 | 27 26 1 493 | 28 16 1 494 | 28 17 1 495 | 29 16 1 496 | 29 17 1 497 | 29 28 1 498 | 30 6 1 499 | 30 7 1 500 | 31 6 1 501 | 31 7 1 502 | 31 30 1 503 | 32 22 1 504 | 32 23 1 505 | 33 22 1 506 | 33 23 1 507 | 33 32 1 508 | 34 28 1 509 | 34 29 1 510 | 35 28 1 511 | 35 29 1 512 | 35 34 1 513 | 36 35 1 514 | 37 36 1 515 | 38 30 1 516 | 38 37 1 517 | 39 30 1 518 | 39 31 1 519 | 39 38 1 520 | 40 31 1 521 | 40 39 1 522 | 41 40 1 523 | 42 41 1 524 | 43 32 1 525 | 43 33 1 526 | 43 42 1 527 | 44 32 1 528 | 44 33 1 529 | 44 43 1 530 | 45 34 1 531 | 45 35 1 532 | 46 34 1 533 | 46 35 1 534 | 46 45 1 535 | 47 38 1 536 | 47 39 1 537 | 48 39 1 538 | 48 40 1 539 | 49 43 1 540 | 49 44 1 541 | 50 43 1 542 | 50 44 1 543 | 50 49 1 544 | 51 45 1 545 | 51 46 1 546 | 52 45 1 547 | 52 46 1 548 | 52 51 1 549 | 53 52 1 550 | 54 53 1 551 | 55 54 1 552 | 56 47 1 553 | 56 55 1 554 | 57 48 1 555 | 58 57 1 556 | 59 58 1 557 | 60 59 1 558 | 61 49 1 559 | 61 50 1 560 | 61 60 1 561 | 62 49 1 562 | 62 50 1 563 | 62 61 1 564 | 63 51 1 565 | 63 52 1 566 | 64 63 1 567 | 65 52 1 568 | 65 63 1 569 | 65 64 1 570 | 66 53 1 571 | 66 65 1 572 | 67 54 1 573 | 67 66 1 574 | 68 67 1 575 | 69 68 1 576 | 71 70 1 577 | 72 59 1 578 | 72 71 1 579 | 73 60 1 580 | 73 72 1 581 | 74 61 1 582 | 74 73 1 583 | 75 74 1 584 | 76 61 1 585 | 76 62 1 586 | 76 74 1 587 | 76 75 1 588 | 77 55 1 589 | 77 68 1 590 | 78 55 1 591 | 78 56 1 592 | 78 77 1 593 | 79 55 1 594 | 79 56 1 595 | 79 78 1 596 | 80 57 1 597 | 80 58 1 598 | 81 57 1 599 | 81 58 1 600 | 81 80 1 601 | 82 70 1 602 | 82 71 1 603 | 83 58 1 604 | 83 71 1 605 | 83 81 1 606 | 83 82 1 607 | 84 70 1 608 | 84 71 1 609 | 84 82 1 610 | 85 68 1 611 | 85 69 1 612 | 86 68 1 613 | 86 69 1 614 | 86 77 1 615 | 86 85 1 616 | 87 64 1 617 | 87 65 1 618 | 88 64 1 619 | 88 65 1 620 | 88 87 1 621 | 89 69 1 622 | 90 70 1 623 | 90 89 1 624 | 91 74 1 625 | 91 75 1 626 | 92 74 1 627 | 92 75 1 628 | 92 91 1 629 | 93 87 1 630 | 93 88 1 631 | 94 87 1 632 | 94 88 1 633 | 94 93 1 634 | 95 94 1 635 | 96 95 1 636 | 97 89 1 637 | 97 96 1 638 | 98 89 1 639 | 98 90 1 640 | 98 97 1 641 | 99 90 1 642 | 99 98 1 643 | 100 99 1 644 | 101 100 1 645 | 102 91 1 646 | 102 92 1 647 | 102 101 1 648 | 103 91 1 649 | 103 92 1 650 | 103 102 1 651 | 104 12 1 652 | 104 13 1 653 | 105 12 1 654 | 105 13 1 655 | 105 104 1 656 | 106 10 1 657 | 106 11 1 658 | 107 10 1 659 | 107 11 1 660 | 107 106 1 661 | 108 26 1 662 | 108 27 1 663 | 109 26 1 664 | 109 27 1 665 | 109 108 1 666 | 110 104 1 667 | 110 105 1 668 | 111 104 1 669 | 111 105 1 670 | 111 110 1 671 | 112 111 1 672 | 113 112 1 673 | 114 106 1 674 | 114 113 1 675 | 115 106 1 676 | 115 107 1 677 | 115 114 1 678 | 116 107 1 679 | 116 115 1 680 | 117 116 1 681 | 118 117 1 682 | 119 108 1 683 | 119 109 1 684 | 119 118 1 685 | 120 108 1 686 | 120 109 1 687 | 120 119 1 688 | 121 110 1 689 | 121 111 1 690 | 122 110 1 691 | 122 111 1 692 | 122 121 1 693 | 123 114 1 694 | 123 115 1 695 | 124 115 1 696 | 124 116 1 697 | 125 119 1 698 | 125 120 1 699 | 126 119 1 700 | 126 120 1 701 | 126 125 1 702 | 127 121 1 703 | 127 122 1 704 | 128 127 1 705 | 129 128 1 706 | 130 121 1 707 | 130 122 1 708 | 130 127 1 709 | 130 128 1 710 | 131 130 1 711 | 132 131 1 712 | 133 132 1 713 | 134 123 1 714 | 134 133 1 715 | 135 124 1 716 | 136 135 1 717 | 137 136 1 718 | 138 137 1 719 | 139 125 1 720 | 139 126 1 721 | 139 138 1 722 | 140 125 1 723 | 140 126 1 724 | 140 139 1 725 | 141 128 1 726 | 141 129 1 727 | 141 130 1 728 | 142 131 1 729 | 142 141 1 730 | 143 132 1 731 | 143 142 1 732 | 144 143 1 733 | 145 144 1 734 | 147 146 1 735 | 148 137 1 736 | 148 147 1 737 | 149 138 1 738 | 149 148 1 739 | 150 139 1 740 | 150 149 1 741 | 151 150 1 742 | 152 139 1 743 | 152 140 1 744 | 152 150 1 745 | 152 151 1 746 | 153 133 1 747 | 153 144 1 748 | 154 133 1 749 | 154 134 1 750 | 154 153 1 751 | 155 133 1 752 | 155 134 1 753 | 155 154 1 754 | 156 134 1 755 | 156 135 1 756 | 156 155 1 757 | 157 135 1 758 | 157 136 1 759 | 157 156 1 760 | 158 135 1 761 | 158 136 1 762 | 158 157 1 763 | 159 136 1 764 | 159 147 1 765 | 159 158 1 766 | 160 146 1 767 | 160 147 1 768 | 160 159 1 769 | 161 146 1 770 | 161 147 1 771 | 161 160 1 772 | 162 144 1 773 | 162 145 1 774 | 163 144 1 775 | 163 145 1 776 | 163 153 1 777 | 163 162 1 778 | 164 129 1 779 | 164 141 1 780 | 165 129 1 781 | 165 141 1 782 | 165 164 1 783 | 166 145 1 784 | 167 146 1 785 | 168 150 1 786 | 168 151 1 787 | 169 150 1 788 | 169 151 1 789 | 169 168 1 790 | 170 164 1 791 | 170 165 1 792 | 171 164 1 793 | 171 165 1 794 | 171 170 1 795 | 172 171 1 796 | 173 172 1 797 | 174 166 1 798 | 174 173 1 799 | 175 166 1 800 | 175 167 1 801 | 175 174 1 802 | 176 167 1 803 | 176 175 1 804 | 177 176 1 805 | 178 177 1 806 | 179 168 1 807 | 179 169 1 808 | 179 178 1 809 | 180 168 1 810 | 180 169 1 811 | 180 179 1 812 | 181 69 1 813 | 181 70 1 814 | 181 84 1 815 | 181 85 1 816 | 182 56 1 817 | 182 57 1 818 | 182 79 1 819 | 182 80 1 820 | 183 145 1 821 | 183 146 1 822 | 183 161 1 823 | 183 162 1 824 | 184 153 1 825 | 184 154 1 826 | 184 155 1 827 | 184 156 1 828 | 184 157 1 829 | 184 158 1 830 | 184 159 1 831 | 184 160 1 832 | 184 161 1 833 | 184 162 1 834 | 184 163 1 835 | 184 183 1 836 | 185 4 1 837 | 185 5 1 838 | 185 6 1 839 | 185 7 1 840 | 185 8 1 841 | 185 9 1 842 | 185 10 1 843 | 185 11 1 844 | 186 77 1 845 | 186 78 1 846 | 186 79 1 847 | 186 80 1 848 | 186 81 1 849 | 186 82 1 850 | 186 83 1 851 | 186 84 1 852 | 186 85 1 853 | 186 86 1 854 | 186 181 1 855 | 186 182 1 856 | 187 39 1 857 | 187 47 1 858 | 187 48 1 859 | 187 56 1 860 | 187 57 1 861 | 188 47 1 862 | 188 48 1 863 | 188 56 1 864 | 188 57 1 865 | 188 182 1 866 | 188 187 1 867 | 189 52 1 868 | 189 53 1 869 | 189 63 1 870 | 189 65 1 871 | 189 66 1 872 | 190 52 1 873 | 190 53 1 874 | 190 54 1 875 | 190 65 1 876 | 190 66 1 877 | 190 67 1 878 | 190 189 1 879 | 191 53 1 880 | 191 54 1 881 | 191 55 1 882 | 191 66 1 883 | 191 67 1 884 | 191 68 1 885 | 191 190 1 886 | 192 54 1 887 | 192 55 1 888 | 192 67 1 889 | 192 68 1 890 | 192 77 1 891 | 192 191 1 892 | 193 69 1 893 | 193 70 1 894 | 193 89 1 895 | 193 90 1 896 | 193 181 1 897 | 194 69 1 898 | 194 70 1 899 | 194 89 1 900 | 194 90 1 901 | 194 98 1 902 | 194 193 1 903 | 195 58 1 904 | 195 59 1 905 | 195 71 1 906 | 195 72 1 907 | 195 83 1 908 | 196 58 1 909 | 196 59 1 910 | 196 60 1 911 | 196 71 1 912 | 196 72 1 913 | 196 73 1 914 | 196 195 1 915 | 197 59 1 916 | 197 60 1 917 | 197 61 1 918 | 197 72 1 919 | 197 73 1 920 | 197 74 1 921 | 197 196 1 922 | 198 60 1 923 | 198 61 1 924 | 198 73 1 925 | 198 74 1 926 | 198 76 1 927 | 198 197 1 928 | 199 145 1 929 | 199 146 1 930 | 199 166 1 931 | 199 167 1 932 | 199 175 1 933 | 200 145 1 934 | 200 146 1 935 | 200 166 1 936 | 200 167 1 937 | 200 183 1 938 | 200 199 1 939 | 201 132 1 940 | 201 133 1 941 | 201 143 1 942 | 201 144 1 943 | 201 153 1 944 | 202 131 1 945 | 202 132 1 946 | 202 133 1 947 | 202 142 1 948 | 202 143 1 949 | 202 144 1 950 | 202 201 1 951 | 203 130 1 952 | 203 131 1 953 | 203 132 1 954 | 203 141 1 955 | 203 142 1 956 | 203 143 1 957 | 203 202 1 958 | 204 128 1 959 | 204 130 1 960 | 204 131 1 961 | 204 141 1 962 | 204 142 1 963 | 204 203 1 964 | 205 123 1 965 | 205 124 1 966 | 205 134 1 967 | 205 135 1 968 | 205 156 1 969 | 206 115 1 970 | 206 123 1 971 | 206 124 1 972 | 206 134 1 973 | 206 135 1 974 | 206 205 1 975 | 207 136 1 976 | 207 137 1 977 | 207 147 1 978 | 207 148 1 979 | 207 159 1 980 | 208 136 1 981 | 208 137 1 982 | 208 138 1 983 | 208 147 1 984 | 208 148 1 985 | 208 149 1 986 | 208 207 1 987 | 209 137 1 988 | 209 138 1 989 | 209 139 1 990 | 209 148 1 991 | 209 149 1 992 | 209 150 1 993 | 209 208 1 994 | 210 138 1 995 | 210 139 1 996 | 210 149 1 997 | 210 150 1 998 | 210 152 1 999 | 210 209 1 1000 | 212 1 1 1001 | 212 3 1 1002 | 212 5 1 1003 | 212 8 1 1004 | 212 211 1 1005 | 213 212 1 1006 | 214 1 1 1007 | 214 3 1 1008 | 214 4 1 1009 | 214 9 1 1010 | 214 211 1 1011 | 214 212 1 1012 | 214 213 1 1013 | 215 3 1 1014 | 215 4 1 1015 | 215 15 1 1016 | 215 211 1 1017 | 215 214 1 1018 | 216 1 1 1019 | 216 5 1 1020 | 216 19 1 1021 | 216 211 1 1022 | 216 212 1 1023 | 216 215 1 1024 | 217 211 1 1025 | 217 212 1 1026 | 217 216 1 1027 | 218 212 1 1028 | 218 213 1 1029 | 218 217 1 1030 | 219 1 1 1031 | 219 8 1 1032 | 219 20 1 1033 | 219 212 1 1034 | 219 213 1 1035 | 219 218 1 1036 | 220 3 1 1037 | 220 9 1 1038 | 220 24 1 1039 | 220 213 1 1040 | 220 214 1 1041 | 220 219 1 1042 | 221 213 1 1043 | 221 214 1 1044 | 221 220 1 1045 | 222 211 1 1046 | 222 214 1 1047 | 222 215 1 1048 | 222 221 1 1049 | 223 12 1 1050 | 223 13 1 1051 | 223 16 1 1052 | 223 104 1 1053 | 224 12 1 1054 | 224 13 1 1055 | 224 14 1 1056 | 224 223 1 1057 | 225 13 1 1058 | 225 14 1 1059 | 225 15 1 1060 | 225 224 1 1061 | 226 4 1 1062 | 226 14 1 1063 | 226 15 1 1064 | 226 215 1 1065 | 226 216 1 1066 | 226 225 1 1067 | 227 12 1 1068 | 227 16 1 1069 | 227 17 1 1070 | 227 28 1 1071 | 227 223 1 1072 | 227 224 1 1073 | 228 16 1 1074 | 228 17 1 1075 | 228 18 1 1076 | 228 223 1 1077 | 228 224 1 1078 | 228 225 1 1079 | 228 227 1 1080 | 229 17 1 1081 | 229 18 1 1082 | 229 19 1 1083 | 229 224 1 1084 | 229 225 1 1085 | 229 226 1 1086 | 229 228 1 1087 | 230 5 1 1088 | 230 18 1 1089 | 230 19 1 1090 | 230 215 1 1091 | 230 216 1 1092 | 230 225 1 1093 | 230 226 1 1094 | 230 229 1 1095 | 231 8 1 1096 | 231 20 1 1097 | 231 21 1 1098 | 231 219 1 1099 | 231 220 1 1100 | 232 20 1 1101 | 232 21 1 1102 | 232 22 1 1103 | 232 231 1 1104 | 233 21 1 1105 | 233 22 1 1106 | 233 23 1 1107 | 233 232 1 1108 | 234 22 1 1109 | 234 23 1 1110 | 234 27 1 1111 | 234 33 1 1112 | 234 233 1 1113 | 235 9 1 1114 | 235 24 1 1115 | 235 25 1 1116 | 235 219 1 1117 | 235 220 1 1118 | 235 231 1 1119 | 235 232 1 1120 | 236 24 1 1121 | 236 25 1 1122 | 236 26 1 1123 | 236 231 1 1124 | 236 232 1 1125 | 236 233 1 1126 | 236 235 1 1127 | 237 25 1 1128 | 237 26 1 1129 | 237 27 1 1130 | 237 232 1 1131 | 237 233 1 1132 | 237 234 1 1133 | 237 236 1 1134 | 238 23 1 1135 | 238 26 1 1136 | 238 27 1 1137 | 238 109 1 1138 | 238 233 1 1139 | 238 234 1 1140 | 238 237 1 1141 | 239 16 1 1142 | 239 28 1 1143 | 239 34 1 1144 | 239 227 1 1145 | 239 228 1 1146 | 240 227 1 1147 | 240 228 1 1148 | 240 239 1 1149 | 241 217 1 1150 | 241 218 1 1151 | 242 217 1 1152 | 242 218 1 1153 | 242 241 1 1154 | 243 233 1 1155 | 243 234 1 1156 | 244 23 1 1157 | 244 33 1 1158 | 244 44 1 1159 | 244 233 1 1160 | 244 234 1 1161 | 244 243 1 1162 | 245 28 1 1163 | 245 34 1 1164 | 245 35 1 1165 | 245 45 1 1166 | 245 239 1 1167 | 245 240 1 1168 | 246 34 1 1169 | 246 35 1 1170 | 246 36 1 1171 | 246 239 1 1172 | 246 240 1 1173 | 246 245 1 1174 | 247 35 1 1175 | 247 36 1 1176 | 247 37 1 1177 | 247 246 1 1178 | 248 36 1 1179 | 248 37 1 1180 | 248 38 1 1181 | 248 247 1 1182 | 249 37 1 1183 | 249 38 1 1184 | 249 39 1 1185 | 249 241 1 1186 | 249 248 1 1187 | 250 38 1 1188 | 250 39 1 1189 | 250 40 1 1190 | 250 187 1 1191 | 250 241 1 1192 | 250 242 1 1193 | 250 249 1 1194 | 251 39 1 1195 | 251 40 1 1196 | 251 41 1 1197 | 251 242 1 1198 | 251 250 1 1199 | 252 40 1 1200 | 252 41 1 1201 | 252 42 1 1202 | 252 251 1 1203 | 253 41 1 1204 | 253 42 1 1205 | 253 43 1 1206 | 253 252 1 1207 | 254 42 1 1208 | 254 43 1 1209 | 254 44 1 1210 | 254 243 1 1211 | 254 244 1 1212 | 254 253 1 1213 | 255 33 1 1214 | 255 43 1 1215 | 255 44 1 1216 | 255 50 1 1217 | 255 243 1 1218 | 255 244 1 1219 | 255 254 1 1220 | 256 34 1 1221 | 256 45 1 1222 | 256 51 1 1223 | 256 245 1 1224 | 256 246 1 1225 | 257 245 1 1226 | 257 246 1 1227 | 257 256 1 1228 | 258 249 1 1229 | 258 250 1 1230 | 259 250 1 1231 | 259 251 1 1232 | 260 254 1 1233 | 260 255 1 1234 | 261 44 1 1235 | 261 50 1 1236 | 261 62 1 1237 | 261 254 1 1238 | 261 255 1 1239 | 261 260 1 1240 | 262 45 1 1241 | 262 51 1 1242 | 262 63 1 1243 | 262 256 1 1244 | 262 257 1 1245 | 263 256 1 1246 | 263 257 1 1247 | 263 262 1 1248 | 264 53 1 1249 | 264 263 1 1250 | 265 264 1 1251 | 266 265 1 1252 | 267 258 1 1253 | 267 266 1 1254 | 268 259 1 1255 | 269 268 1 1256 | 270 269 1 1257 | 271 60 1 1258 | 271 270 1 1259 | 272 260 1 1260 | 272 261 1 1261 | 272 271 1 1262 | 273 50 1 1263 | 273 62 1 1264 | 273 76 1 1265 | 273 260 1 1266 | 273 261 1 1267 | 273 272 1 1268 | 274 51 1 1269 | 274 63 1 1270 | 274 64 1 1271 | 274 189 1 1272 | 274 262 1 1273 | 274 263 1 1274 | 275 63 1 1275 | 275 64 1 1276 | 275 87 1 1277 | 275 274 1 1278 | 276 65 1 1279 | 276 263 1 1280 | 276 274 1 1281 | 276 275 1 1282 | 277 264 1 1283 | 277 276 1 1284 | 278 67 1 1285 | 278 265 1 1286 | 278 277 1 1287 | 279 278 1 1288 | 280 279 1 1289 | 282 281 1 1290 | 283 72 1 1291 | 283 270 1 1292 | 283 282 1 1293 | 284 271 1 1294 | 284 283 1 1295 | 285 74 1 1296 | 285 272 1 1297 | 285 284 1 1298 | 286 75 1 1299 | 286 76 1 1300 | 286 92 1 1301 | 286 285 1 1302 | 287 62 1 1303 | 287 75 1 1304 | 287 76 1 1305 | 287 198 1 1306 | 287 272 1 1307 | 287 273 1 1308 | 287 285 1 1309 | 287 286 1 1310 | 288 77 1 1311 | 288 78 1 1312 | 288 86 1 1313 | 288 192 1 1314 | 288 266 1 1315 | 288 279 1 1316 | 289 77 1 1317 | 289 78 1 1318 | 289 79 1 1319 | 289 266 1 1320 | 289 267 1 1321 | 289 288 1 1322 | 290 78 1 1323 | 290 79 1 1324 | 290 182 1 1325 | 290 266 1 1326 | 290 267 1 1327 | 290 289 1 1328 | 291 80 1 1329 | 291 81 1 1330 | 291 182 1 1331 | 291 268 1 1332 | 291 269 1 1333 | 292 80 1 1334 | 292 81 1 1335 | 292 83 1 1336 | 292 268 1 1337 | 292 269 1 1338 | 292 291 1 1339 | 293 82 1 1340 | 293 83 1 1341 | 293 84 1 1342 | 293 281 1 1343 | 293 282 1 1344 | 294 81 1 1345 | 294 82 1 1346 | 294 83 1 1347 | 294 195 1 1348 | 294 269 1 1349 | 294 282 1 1350 | 294 292 1 1351 | 294 293 1 1352 | 295 82 1 1353 | 295 84 1 1354 | 295 181 1 1355 | 295 281 1 1356 | 295 282 1 1357 | 295 293 1 1358 | 296 85 1 1359 | 296 86 1 1360 | 296 181 1 1361 | 296 279 1 1362 | 296 280 1 1363 | 297 77 1 1364 | 297 85 1 1365 | 297 86 1 1366 | 297 279 1 1367 | 297 280 1 1368 | 297 288 1 1369 | 297 296 1 1370 | 298 64 1 1371 | 298 87 1 1372 | 298 93 1 1373 | 298 275 1 1374 | 298 276 1 1375 | 299 275 1 1376 | 299 276 1 1377 | 299 298 1 1378 | 300 280 1 1379 | 301 281 1 1380 | 301 300 1 1381 | 302 285 1 1382 | 302 286 1 1383 | 303 75 1 1384 | 303 92 1 1385 | 303 103 1 1386 | 303 285 1 1387 | 303 286 1 1388 | 303 302 1 1389 | 304 87 1 1390 | 304 93 1 1391 | 304 94 1 1392 | 304 298 1 1393 | 304 299 1 1394 | 305 93 1 1395 | 305 94 1 1396 | 305 95 1 1397 | 305 298 1 1398 | 305 299 1 1399 | 305 304 1 1400 | 306 94 1 1401 | 306 95 1 1402 | 306 96 1 1403 | 306 305 1 1404 | 307 95 1 1405 | 307 96 1 1406 | 307 97 1 1407 | 307 306 1 1408 | 308 96 1 1409 | 308 97 1 1410 | 308 98 1 1411 | 308 300 1 1412 | 308 307 1 1413 | 309 97 1 1414 | 309 98 1 1415 | 309 99 1 1416 | 309 194 1 1417 | 309 300 1 1418 | 309 301 1 1419 | 309 308 1 1420 | 310 98 1 1421 | 310 99 1 1422 | 310 100 1 1423 | 310 301 1 1424 | 310 309 1 1425 | 311 99 1 1426 | 311 100 1 1427 | 311 101 1 1428 | 311 310 1 1429 | 312 100 1 1430 | 312 101 1 1431 | 312 102 1 1432 | 312 311 1 1433 | 313 101 1 1434 | 313 102 1 1435 | 313 103 1 1436 | 313 302 1 1437 | 313 303 1 1438 | 313 312 1 1439 | 314 92 1 1440 | 314 102 1 1441 | 314 103 1 1442 | 314 302 1 1443 | 314 303 1 1444 | 314 313 1 1445 | 315 12 1 1446 | 315 104 1 1447 | 315 110 1 1448 | 315 223 1 1449 | 315 224 1 1450 | 316 223 1 1451 | 316 224 1 1452 | 316 315 1 1453 | 317 221 1 1454 | 317 222 1 1455 | 318 221 1 1456 | 318 222 1 1457 | 318 317 1 1458 | 319 237 1 1459 | 319 238 1 1460 | 320 27 1 1461 | 320 109 1 1462 | 320 120 1 1463 | 320 237 1 1464 | 320 238 1 1465 | 320 319 1 1466 | 321 104 1 1467 | 321 110 1 1468 | 321 111 1 1469 | 321 121 1 1470 | 321 315 1 1471 | 321 316 1 1472 | 322 110 1 1473 | 322 111 1 1474 | 322 112 1 1475 | 322 315 1 1476 | 322 316 1 1477 | 322 321 1 1478 | 323 111 1 1479 | 323 112 1 1480 | 323 113 1 1481 | 323 322 1 1482 | 324 112 1 1483 | 324 113 1 1484 | 324 114 1 1485 | 324 323 1 1486 | 325 113 1 1487 | 325 114 1 1488 | 325 115 1 1489 | 325 317 1 1490 | 325 324 1 1491 | 326 114 1 1492 | 326 115 1 1493 | 326 116 1 1494 | 326 206 1 1495 | 326 317 1 1496 | 326 318 1 1497 | 326 325 1 1498 | 327 115 1 1499 | 327 116 1 1500 | 327 117 1 1501 | 327 318 1 1502 | 327 326 1 1503 | 328 116 1 1504 | 328 117 1 1505 | 328 118 1 1506 | 328 327 1 1507 | 329 117 1 1508 | 329 118 1 1509 | 329 119 1 1510 | 329 328 1 1511 | 330 118 1 1512 | 330 119 1 1513 | 330 120 1 1514 | 330 319 1 1515 | 330 320 1 1516 | 330 329 1 1517 | 331 109 1 1518 | 331 119 1 1519 | 331 120 1 1520 | 331 126 1 1521 | 331 319 1 1522 | 331 320 1 1523 | 331 330 1 1524 | 332 110 1 1525 | 332 121 1 1526 | 332 127 1 1527 | 332 321 1 1528 | 332 322 1 1529 | 333 321 1 1530 | 333 322 1 1531 | 333 332 1 1532 | 334 325 1 1533 | 334 326 1 1534 | 335 326 1 1535 | 335 327 1 1536 | 336 330 1 1537 | 336 331 1 1538 | 337 120 1 1539 | 337 126 1 1540 | 337 140 1 1541 | 337 330 1 1542 | 337 331 1 1543 | 337 336 1 1544 | 338 121 1 1545 | 338 127 1 1546 | 338 128 1 1547 | 338 332 1 1548 | 338 333 1 1549 | 339 127 1 1550 | 339 128 1 1551 | 339 129 1 1552 | 339 204 1 1553 | 339 338 1 1554 | 340 128 1 1555 | 340 129 1 1556 | 340 164 1 1557 | 340 339 1 1558 | 341 332 1 1559 | 341 333 1 1560 | 341 338 1 1561 | 341 339 1 1562 | 342 131 1 1563 | 342 341 1 1564 | 343 342 1 1565 | 344 343 1 1566 | 345 334 1 1567 | 345 344 1 1568 | 346 335 1 1569 | 347 346 1 1570 | 348 347 1 1571 | 349 138 1 1572 | 349 348 1 1573 | 350 336 1 1574 | 350 337 1 1575 | 350 349 1 1576 | 351 126 1 1577 | 351 140 1 1578 | 351 152 1 1579 | 351 336 1 1580 | 351 337 1 1581 | 351 350 1 1582 | 352 141 1 1583 | 352 339 1 1584 | 352 340 1 1585 | 352 341 1 1586 | 353 342 1 1587 | 353 352 1 1588 | 354 143 1 1589 | 354 343 1 1590 | 354 353 1 1591 | 355 354 1 1592 | 356 355 1 1593 | 358 357 1 1594 | 359 148 1 1595 | 359 348 1 1596 | 359 358 1 1597 | 360 349 1 1598 | 360 359 1 1599 | 361 150 1 1600 | 361 350 1 1601 | 361 360 1 1602 | 362 151 1 1603 | 362 152 1 1604 | 362 169 1 1605 | 362 361 1 1606 | 363 140 1 1607 | 363 151 1 1608 | 363 152 1 1609 | 363 210 1 1610 | 363 350 1 1611 | 363 351 1 1612 | 363 361 1 1613 | 363 362 1 1614 | 364 153 1 1615 | 364 154 1 1616 | 364 163 1 1617 | 364 201 1 1618 | 364 344 1 1619 | 364 355 1 1620 | 365 153 1 1621 | 365 154 1 1622 | 365 155 1 1623 | 365 344 1 1624 | 365 345 1 1625 | 365 364 1 1626 | 366 154 1 1627 | 366 155 1 1628 | 366 156 1 1629 | 366 344 1 1630 | 366 345 1 1631 | 366 365 1 1632 | 367 155 1 1633 | 367 156 1 1634 | 367 157 1 1635 | 367 205 1 1636 | 367 345 1 1637 | 367 346 1 1638 | 367 366 1 1639 | 368 156 1 1640 | 368 157 1 1641 | 368 158 1 1642 | 368 346 1 1643 | 368 347 1 1644 | 368 367 1 1645 | 369 157 1 1646 | 369 158 1 1647 | 369 159 1 1648 | 369 346 1 1649 | 369 347 1 1650 | 369 368 1 1651 | 370 158 1 1652 | 370 159 1 1653 | 370 160 1 1654 | 370 207 1 1655 | 370 347 1 1656 | 370 358 1 1657 | 370 369 1 1658 | 371 159 1 1659 | 371 160 1 1660 | 371 161 1 1661 | 371 357 1 1662 | 371 358 1 1663 | 371 370 1 1664 | 372 160 1 1665 | 372 161 1 1666 | 372 183 1 1667 | 372 357 1 1668 | 372 358 1 1669 | 372 371 1 1670 | 373 162 1 1671 | 373 163 1 1672 | 373 183 1 1673 | 373 355 1 1674 | 373 356 1 1675 | 374 153 1 1676 | 374 162 1 1677 | 374 163 1 1678 | 374 355 1 1679 | 374 356 1 1680 | 374 364 1 1681 | 374 373 1 1682 | 375 129 1 1683 | 375 164 1 1684 | 375 170 1 1685 | 375 340 1 1686 | 375 352 1 1687 | 376 340 1 1688 | 376 352 1 1689 | 376 375 1 1690 | 377 356 1 1691 | 378 357 1 1692 | 379 361 1 1693 | 379 362 1 1694 | 380 151 1 1695 | 380 169 1 1696 | 380 180 1 1697 | 380 361 1 1698 | 380 362 1 1699 | 380 379 1 1700 | 381 164 1 1701 | 381 170 1 1702 | 381 171 1 1703 | 381 375 1 1704 | 381 376 1 1705 | 382 170 1 1706 | 382 171 1 1707 | 382 172 1 1708 | 382 375 1 1709 | 382 376 1 1710 | 382 381 1 1711 | 383 171 1 1712 | 383 172 1 1713 | 383 173 1 1714 | 383 382 1 1715 | 384 172 1 1716 | 384 173 1 1717 | 384 174 1 1718 | 384 383 1 1719 | 385 173 1 1720 | 385 174 1 1721 | 385 175 1 1722 | 385 377 1 1723 | 385 384 1 1724 | 386 174 1 1725 | 386 175 1 1726 | 386 176 1 1727 | 386 199 1 1728 | 386 377 1 1729 | 386 378 1 1730 | 386 385 1 1731 | 387 175 1 1732 | 387 176 1 1733 | 387 177 1 1734 | 387 378 1 1735 | 387 386 1 1736 | 388 176 1 1737 | 388 177 1 1738 | 388 178 1 1739 | 388 387 1 1740 | 389 177 1 1741 | 389 178 1 1742 | 389 179 1 1743 | 389 388 1 1744 | 390 178 1 1745 | 390 179 1 1746 | 390 180 1 1747 | 390 379 1 1748 | 390 380 1 1749 | 390 389 1 1750 | 391 169 1 1751 | 391 179 1 1752 | 391 180 1 1753 | 391 379 1 1754 | 391 380 1 1755 | 391 390 1 1756 | 392 84 1 1757 | 392 85 1 1758 | 392 181 1 1759 | 392 193 1 1760 | 392 280 1 1761 | 392 281 1 1762 | 392 295 1 1763 | 392 296 1 1764 | 393 79 1 1765 | 393 80 1 1766 | 393 182 1 1767 | 393 188 1 1768 | 393 267 1 1769 | 393 268 1 1770 | 393 290 1 1771 | 393 291 1 1772 | 394 161 1 1773 | 394 162 1 1774 | 394 183 1 1775 | 394 200 1 1776 | 394 356 1 1777 | 394 357 1 1778 | 394 372 1 1779 | 394 373 1 1780 | 395 39 1 1781 | 395 187 1 1782 | 395 188 1 1783 | 395 250 1 1784 | 395 258 1 1785 | 395 259 1 1786 | 395 267 1 1787 | 395 268 1 1788 | 396 182 1 1789 | 396 187 1 1790 | 396 188 1 1791 | 396 258 1 1792 | 396 259 1 1793 | 396 267 1 1794 | 396 268 1 1795 | 396 393 1 1796 | 396 395 1 1797 | 397 63 1 1798 | 397 189 1 1799 | 397 190 1 1800 | 397 263 1 1801 | 397 264 1 1802 | 397 274 1 1803 | 397 276 1 1804 | 397 277 1 1805 | 398 189 1 1806 | 398 190 1 1807 | 398 191 1 1808 | 398 263 1 1809 | 398 264 1 1810 | 398 265 1 1811 | 398 276 1 1812 | 398 277 1 1813 | 398 278 1 1814 | 398 397 1 1815 | 399 190 1 1816 | 399 191 1 1817 | 399 192 1 1818 | 399 264 1 1819 | 399 265 1 1820 | 399 266 1 1821 | 399 277 1 1822 | 399 278 1 1823 | 399 279 1 1824 | 399 398 1 1825 | 400 77 1 1826 | 400 191 1 1827 | 400 192 1 1828 | 400 265 1 1829 | 400 266 1 1830 | 400 278 1 1831 | 400 279 1 1832 | 400 288 1 1833 | 400 399 1 1834 | 401 181 1 1835 | 401 193 1 1836 | 401 194 1 1837 | 401 280 1 1838 | 401 281 1 1839 | 401 300 1 1840 | 401 301 1 1841 | 401 392 1 1842 | 402 98 1 1843 | 402 193 1 1844 | 402 194 1 1845 | 402 280 1 1846 | 402 281 1 1847 | 402 300 1 1848 | 402 301 1 1849 | 402 309 1 1850 | 402 401 1 1851 | 403 83 1 1852 | 403 195 1 1853 | 403 196 1 1854 | 403 269 1 1855 | 403 270 1 1856 | 403 282 1 1857 | 403 283 1 1858 | 403 294 1 1859 | 404 195 1 1860 | 404 196 1 1861 | 404 197 1 1862 | 404 269 1 1863 | 404 270 1 1864 | 404 271 1 1865 | 404 282 1 1866 | 404 283 1 1867 | 404 284 1 1868 | 404 403 1 1869 | 405 196 1 1870 | 405 197 1 1871 | 405 198 1 1872 | 405 270 1 1873 | 405 271 1 1874 | 405 272 1 1875 | 405 283 1 1876 | 405 284 1 1877 | 405 285 1 1878 | 405 404 1 1879 | 406 76 1 1880 | 406 197 1 1881 | 406 198 1 1882 | 406 271 1 1883 | 406 272 1 1884 | 406 284 1 1885 | 406 285 1 1886 | 406 287 1 1887 | 406 405 1 1888 | 407 175 1 1889 | 407 199 1 1890 | 407 200 1 1891 | 407 356 1 1892 | 407 357 1 1893 | 407 377 1 1894 | 407 378 1 1895 | 407 386 1 1896 | 408 183 1 1897 | 408 199 1 1898 | 408 200 1 1899 | 408 356 1 1900 | 408 357 1 1901 | 408 377 1 1902 | 408 378 1 1903 | 408 394 1 1904 | 408 407 1 1905 | 409 153 1 1906 | 409 201 1 1907 | 409 202 1 1908 | 409 343 1 1909 | 409 344 1 1910 | 409 354 1 1911 | 409 355 1 1912 | 409 364 1 1913 | 410 201 1 1914 | 410 202 1 1915 | 410 203 1 1916 | 410 342 1 1917 | 410 343 1 1918 | 410 344 1 1919 | 410 353 1 1920 | 410 354 1 1921 | 410 355 1 1922 | 410 409 1 1923 | 411 202 1 1924 | 411 203 1 1925 | 411 204 1 1926 | 411 341 1 1927 | 411 342 1 1928 | 411 343 1 1929 | 411 352 1 1930 | 411 353 1 1931 | 411 354 1 1932 | 411 410 1 1933 | 412 128 1 1934 | 412 203 1 1935 | 412 204 1 1936 | 412 339 1 1937 | 412 341 1 1938 | 412 342 1 1939 | 412 352 1 1940 | 412 353 1 1941 | 412 411 1 1942 | 413 156 1 1943 | 413 205 1 1944 | 413 206 1 1945 | 413 334 1 1946 | 413 335 1 1947 | 413 345 1 1948 | 413 346 1 1949 | 413 367 1 1950 | 414 115 1 1951 | 414 205 1 1952 | 414 206 1 1953 | 414 326 1 1954 | 414 334 1 1955 | 414 335 1 1956 | 414 345 1 1957 | 414 346 1 1958 | 414 413 1 1959 | 415 159 1 1960 | 415 207 1 1961 | 415 208 1 1962 | 415 347 1 1963 | 415 348 1 1964 | 415 358 1 1965 | 415 359 1 1966 | 415 370 1 1967 | 416 207 1 1968 | 416 208 1 1969 | 416 209 1 1970 | 416 347 1 1971 | 416 348 1 1972 | 416 349 1 1973 | 416 358 1 1974 | 416 359 1 1975 | 416 360 1 1976 | 416 415 1 1977 | 417 208 1 1978 | 417 209 1 1979 | 417 210 1 1980 | 417 348 1 1981 | 417 349 1 1982 | 417 350 1 1983 | 417 359 1 1984 | 417 360 1 1985 | 417 361 1 1986 | 417 416 1 1987 | 418 152 1 1988 | 418 209 1 1989 | 418 210 1 1990 | 418 349 1 1991 | 418 350 1 1992 | 418 360 1 1993 | 418 361 1 1994 | 418 363 1 1995 | 418 417 1 1996 | -------------------------------------------------------------------------------- /graphs/dwt_72.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | *Tie data 76 | from to strength 77 | 1 0 1 78 | 2 1 1 79 | 3 2 1 80 | 4 3 1 81 | 5 4 1 82 | 6 5 1 83 | 7 6 1 84 | 8 7 1 85 | 9 8 1 86 | 10 9 1 87 | 11 10 1 88 | 12 5 1 89 | 13 11 1 90 | 15 14 1 91 | 16 15 1 92 | 17 16 1 93 | 18 17 1 94 | 19 12 1 95 | 19 18 1 96 | 20 19 1 97 | 21 20 1 98 | 22 21 1 99 | 23 22 1 100 | 24 23 1 101 | 25 13 1 102 | 25 24 1 103 | 26 19 1 104 | 27 25 1 105 | 29 28 1 106 | 30 29 1 107 | 31 30 1 108 | 32 31 1 109 | 33 26 1 110 | 33 32 1 111 | 34 33 1 112 | 35 34 1 113 | 36 35 1 114 | 37 36 1 115 | 38 37 1 116 | 39 27 1 117 | 39 38 1 118 | 40 33 1 119 | 41 39 1 120 | 43 42 1 121 | 44 43 1 122 | 45 44 1 123 | 46 45 1 124 | 47 40 1 125 | 47 46 1 126 | 48 47 1 127 | 49 48 1 128 | 50 49 1 129 | 51 50 1 130 | 52 51 1 131 | 53 41 1 132 | 53 52 1 133 | 54 47 1 134 | 55 53 1 135 | 57 56 1 136 | 58 57 1 137 | 59 58 1 138 | 60 59 1 139 | 61 54 1 140 | 61 60 1 141 | 62 61 1 142 | 63 62 1 143 | 64 63 1 144 | 65 64 1 145 | 66 65 1 146 | 67 55 1 147 | 67 66 1 148 | 68 61 1 149 | 69 67 1 150 | 70 68 1 151 | 71 69 1 152 | -------------------------------------------------------------------------------- /graphs/grid17.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | 222 226 | 223 227 | 224 228 | 225 229 | 226 230 | 227 231 | 228 232 | 229 233 | 230 234 | 231 235 | 232 236 | 233 237 | 234 238 | 235 239 | 236 240 | 237 241 | 238 242 | 239 243 | 240 244 | 241 245 | 242 246 | 243 247 | 244 248 | 245 249 | 246 250 | 247 251 | 248 252 | 249 253 | 250 254 | 251 255 | 252 256 | 253 257 | 254 258 | 255 259 | 256 260 | 257 261 | 258 262 | 259 263 | 260 264 | 261 265 | 262 266 | 263 267 | 264 268 | 265 269 | 266 270 | 267 271 | 268 272 | 269 273 | 270 274 | 271 275 | 272 276 | 273 277 | 274 278 | 275 279 | 276 280 | 277 281 | 278 282 | 279 283 | 280 284 | 281 285 | 282 286 | 283 287 | 284 288 | 285 289 | 286 290 | 287 291 | 288 292 | *Tie data 293 | from to strength 294 | 1 0 1 295 | 2 1 1 296 | 3 2 1 297 | 4 3 1 298 | 5 4 1 299 | 6 5 1 300 | 7 6 1 301 | 8 7 1 302 | 9 8 1 303 | 10 9 1 304 | 11 10 1 305 | 12 11 1 306 | 13 12 1 307 | 14 13 1 308 | 15 14 1 309 | 16 15 1 310 | 17 0 1 311 | 18 1 1 312 | 18 17 1 313 | 19 2 1 314 | 19 18 1 315 | 20 3 1 316 | 20 19 1 317 | 21 4 1 318 | 21 20 1 319 | 22 5 1 320 | 22 21 1 321 | 23 6 1 322 | 23 22 1 323 | 24 7 1 324 | 24 23 1 325 | 25 8 1 326 | 25 24 1 327 | 26 9 1 328 | 26 25 1 329 | 27 10 1 330 | 27 26 1 331 | 28 11 1 332 | 28 27 1 333 | 29 12 1 334 | 29 28 1 335 | 30 13 1 336 | 30 29 1 337 | 31 14 1 338 | 31 30 1 339 | 32 15 1 340 | 32 31 1 341 | 33 16 1 342 | 33 32 1 343 | 34 17 1 344 | 35 18 1 345 | 35 34 1 346 | 36 19 1 347 | 36 35 1 348 | 37 20 1 349 | 37 36 1 350 | 38 21 1 351 | 38 37 1 352 | 39 22 1 353 | 39 38 1 354 | 40 23 1 355 | 40 39 1 356 | 41 24 1 357 | 41 40 1 358 | 42 25 1 359 | 42 41 1 360 | 43 26 1 361 | 43 42 1 362 | 44 27 1 363 | 44 43 1 364 | 45 28 1 365 | 45 44 1 366 | 46 29 1 367 | 46 45 1 368 | 47 30 1 369 | 47 46 1 370 | 48 31 1 371 | 48 47 1 372 | 49 32 1 373 | 49 48 1 374 | 50 33 1 375 | 50 49 1 376 | 51 34 1 377 | 52 35 1 378 | 52 51 1 379 | 53 36 1 380 | 53 52 1 381 | 54 37 1 382 | 54 53 1 383 | 55 38 1 384 | 55 54 1 385 | 56 39 1 386 | 56 55 1 387 | 57 40 1 388 | 57 56 1 389 | 58 41 1 390 | 58 57 1 391 | 59 42 1 392 | 59 58 1 393 | 60 43 1 394 | 60 59 1 395 | 61 44 1 396 | 61 60 1 397 | 62 45 1 398 | 62 61 1 399 | 63 46 1 400 | 63 62 1 401 | 64 47 1 402 | 64 63 1 403 | 65 48 1 404 | 65 64 1 405 | 66 49 1 406 | 66 65 1 407 | 67 50 1 408 | 67 66 1 409 | 68 51 1 410 | 69 52 1 411 | 69 68 1 412 | 70 53 1 413 | 70 69 1 414 | 71 54 1 415 | 71 70 1 416 | 72 55 1 417 | 72 71 1 418 | 73 56 1 419 | 73 72 1 420 | 74 57 1 421 | 74 73 1 422 | 75 58 1 423 | 75 74 1 424 | 76 59 1 425 | 76 75 1 426 | 77 60 1 427 | 77 76 1 428 | 78 61 1 429 | 78 77 1 430 | 79 62 1 431 | 79 78 1 432 | 80 63 1 433 | 80 79 1 434 | 81 64 1 435 | 81 80 1 436 | 82 65 1 437 | 82 81 1 438 | 83 66 1 439 | 83 82 1 440 | 84 67 1 441 | 84 83 1 442 | 85 68 1 443 | 86 69 1 444 | 86 85 1 445 | 87 70 1 446 | 87 86 1 447 | 88 71 1 448 | 88 87 1 449 | 89 72 1 450 | 89 88 1 451 | 90 73 1 452 | 90 89 1 453 | 91 74 1 454 | 91 90 1 455 | 92 75 1 456 | 92 91 1 457 | 93 76 1 458 | 93 92 1 459 | 94 77 1 460 | 94 93 1 461 | 95 78 1 462 | 95 94 1 463 | 96 79 1 464 | 96 95 1 465 | 97 80 1 466 | 97 96 1 467 | 98 81 1 468 | 98 97 1 469 | 99 82 1 470 | 99 98 1 471 | 100 83 1 472 | 100 99 1 473 | 101 84 1 474 | 101 100 1 475 | 102 85 1 476 | 103 86 1 477 | 103 102 1 478 | 104 87 1 479 | 104 103 1 480 | 105 88 1 481 | 105 104 1 482 | 106 89 1 483 | 106 105 1 484 | 107 90 1 485 | 107 106 1 486 | 108 91 1 487 | 108 107 1 488 | 109 92 1 489 | 109 108 1 490 | 110 93 1 491 | 110 109 1 492 | 111 94 1 493 | 111 110 1 494 | 112 95 1 495 | 112 111 1 496 | 113 96 1 497 | 113 112 1 498 | 114 97 1 499 | 114 113 1 500 | 115 98 1 501 | 115 114 1 502 | 116 99 1 503 | 116 115 1 504 | 117 100 1 505 | 117 116 1 506 | 118 101 1 507 | 118 117 1 508 | 119 102 1 509 | 120 103 1 510 | 120 119 1 511 | 121 104 1 512 | 121 120 1 513 | 122 105 1 514 | 122 121 1 515 | 123 106 1 516 | 123 122 1 517 | 124 107 1 518 | 124 123 1 519 | 125 108 1 520 | 125 124 1 521 | 126 109 1 522 | 126 125 1 523 | 127 110 1 524 | 127 126 1 525 | 128 111 1 526 | 128 127 1 527 | 129 112 1 528 | 129 128 1 529 | 130 113 1 530 | 130 129 1 531 | 131 114 1 532 | 131 130 1 533 | 132 115 1 534 | 132 131 1 535 | 133 116 1 536 | 133 132 1 537 | 134 117 1 538 | 134 133 1 539 | 135 118 1 540 | 135 134 1 541 | 136 119 1 542 | 137 120 1 543 | 137 136 1 544 | 138 121 1 545 | 138 137 1 546 | 139 122 1 547 | 139 138 1 548 | 140 123 1 549 | 140 139 1 550 | 141 124 1 551 | 141 140 1 552 | 142 125 1 553 | 142 141 1 554 | 143 126 1 555 | 143 142 1 556 | 144 127 1 557 | 144 143 1 558 | 145 128 1 559 | 145 144 1 560 | 146 129 1 561 | 146 145 1 562 | 147 130 1 563 | 147 146 1 564 | 148 131 1 565 | 148 147 1 566 | 149 132 1 567 | 149 148 1 568 | 150 133 1 569 | 150 149 1 570 | 151 134 1 571 | 151 150 1 572 | 152 135 1 573 | 152 151 1 574 | 153 136 1 575 | 154 137 1 576 | 154 153 1 577 | 155 138 1 578 | 155 154 1 579 | 156 139 1 580 | 156 155 1 581 | 157 140 1 582 | 157 156 1 583 | 158 141 1 584 | 158 157 1 585 | 159 142 1 586 | 159 158 1 587 | 160 143 1 588 | 160 159 1 589 | 161 144 1 590 | 161 160 1 591 | 162 145 1 592 | 162 161 1 593 | 163 146 1 594 | 163 162 1 595 | 164 147 1 596 | 164 163 1 597 | 165 148 1 598 | 165 164 1 599 | 166 149 1 600 | 166 165 1 601 | 167 150 1 602 | 167 166 1 603 | 168 151 1 604 | 168 167 1 605 | 169 152 1 606 | 169 168 1 607 | 170 153 1 608 | 171 154 1 609 | 171 170 1 610 | 172 155 1 611 | 172 171 1 612 | 173 156 1 613 | 173 172 1 614 | 174 157 1 615 | 174 173 1 616 | 175 158 1 617 | 175 174 1 618 | 176 159 1 619 | 176 175 1 620 | 177 160 1 621 | 177 176 1 622 | 178 161 1 623 | 178 177 1 624 | 179 162 1 625 | 179 178 1 626 | 180 163 1 627 | 180 179 1 628 | 181 164 1 629 | 181 180 1 630 | 182 165 1 631 | 182 181 1 632 | 183 166 1 633 | 183 182 1 634 | 184 167 1 635 | 184 183 1 636 | 185 168 1 637 | 185 184 1 638 | 186 169 1 639 | 186 185 1 640 | 187 170 1 641 | 188 171 1 642 | 188 187 1 643 | 189 172 1 644 | 189 188 1 645 | 190 173 1 646 | 190 189 1 647 | 191 174 1 648 | 191 190 1 649 | 192 175 1 650 | 192 191 1 651 | 193 176 1 652 | 193 192 1 653 | 194 177 1 654 | 194 193 1 655 | 195 178 1 656 | 195 194 1 657 | 196 179 1 658 | 196 195 1 659 | 197 180 1 660 | 197 196 1 661 | 198 181 1 662 | 198 197 1 663 | 199 182 1 664 | 199 198 1 665 | 200 183 1 666 | 200 199 1 667 | 201 184 1 668 | 201 200 1 669 | 202 185 1 670 | 202 201 1 671 | 203 186 1 672 | 203 202 1 673 | 204 187 1 674 | 205 188 1 675 | 205 204 1 676 | 206 189 1 677 | 206 205 1 678 | 207 190 1 679 | 207 206 1 680 | 208 191 1 681 | 208 207 1 682 | 209 192 1 683 | 209 208 1 684 | 210 193 1 685 | 210 209 1 686 | 211 194 1 687 | 211 210 1 688 | 212 195 1 689 | 212 211 1 690 | 213 196 1 691 | 213 212 1 692 | 214 197 1 693 | 214 213 1 694 | 215 198 1 695 | 215 214 1 696 | 216 199 1 697 | 216 215 1 698 | 217 200 1 699 | 217 216 1 700 | 218 201 1 701 | 218 217 1 702 | 219 202 1 703 | 219 218 1 704 | 220 203 1 705 | 220 219 1 706 | 221 204 1 707 | 222 205 1 708 | 222 221 1 709 | 223 206 1 710 | 223 222 1 711 | 224 207 1 712 | 224 223 1 713 | 225 208 1 714 | 225 224 1 715 | 226 209 1 716 | 226 225 1 717 | 227 210 1 718 | 227 226 1 719 | 228 211 1 720 | 228 227 1 721 | 229 212 1 722 | 229 228 1 723 | 230 213 1 724 | 230 229 1 725 | 231 214 1 726 | 231 230 1 727 | 232 215 1 728 | 232 231 1 729 | 233 216 1 730 | 233 232 1 731 | 234 217 1 732 | 234 233 1 733 | 235 218 1 734 | 235 234 1 735 | 236 219 1 736 | 236 235 1 737 | 237 220 1 738 | 237 236 1 739 | 238 221 1 740 | 239 222 1 741 | 239 238 1 742 | 240 223 1 743 | 240 239 1 744 | 241 224 1 745 | 241 240 1 746 | 242 225 1 747 | 242 241 1 748 | 243 226 1 749 | 243 242 1 750 | 244 227 1 751 | 244 243 1 752 | 245 228 1 753 | 245 244 1 754 | 246 229 1 755 | 246 245 1 756 | 247 230 1 757 | 247 246 1 758 | 248 231 1 759 | 248 247 1 760 | 249 232 1 761 | 249 248 1 762 | 250 233 1 763 | 250 249 1 764 | 251 234 1 765 | 251 250 1 766 | 252 235 1 767 | 252 251 1 768 | 253 236 1 769 | 253 252 1 770 | 254 237 1 771 | 254 253 1 772 | 255 238 1 773 | 256 239 1 774 | 256 255 1 775 | 257 240 1 776 | 257 256 1 777 | 258 241 1 778 | 258 257 1 779 | 259 242 1 780 | 259 258 1 781 | 260 243 1 782 | 260 259 1 783 | 261 244 1 784 | 261 260 1 785 | 262 245 1 786 | 262 261 1 787 | 263 246 1 788 | 263 262 1 789 | 264 247 1 790 | 264 263 1 791 | 265 248 1 792 | 265 264 1 793 | 266 249 1 794 | 266 265 1 795 | 267 250 1 796 | 267 266 1 797 | 268 251 1 798 | 268 267 1 799 | 269 252 1 800 | 269 268 1 801 | 270 253 1 802 | 270 269 1 803 | 271 254 1 804 | 271 270 1 805 | 272 255 1 806 | 273 256 1 807 | 273 272 1 808 | 274 257 1 809 | 274 273 1 810 | 275 258 1 811 | 275 274 1 812 | 276 259 1 813 | 276 275 1 814 | 277 260 1 815 | 277 276 1 816 | 278 261 1 817 | 278 277 1 818 | 279 262 1 819 | 279 278 1 820 | 280 263 1 821 | 280 279 1 822 | 281 264 1 823 | 281 280 1 824 | 282 265 1 825 | 282 281 1 826 | 283 266 1 827 | 283 282 1 828 | 284 267 1 829 | 284 283 1 830 | 285 268 1 831 | 285 284 1 832 | 286 269 1 833 | 286 285 1 834 | 287 270 1 835 | 287 286 1 836 | 288 271 1 837 | 288 287 1 838 | -------------------------------------------------------------------------------- /graphs/lesmis.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | *Tie data 81 | from to strength 82 | 1 0 1 83 | 2 0 1 84 | 3 0 1 85 | 3 2 1 86 | 4 0 1 87 | 5 0 1 88 | 6 0 1 89 | 7 0 1 90 | 8 0 1 91 | 9 0 1 92 | 11 0 1 93 | 11 2 1 94 | 11 3 1 95 | 11 10 1 96 | 12 11 1 97 | 13 11 1 98 | 14 11 1 99 | 15 11 1 100 | 17 16 1 101 | 18 16 1 102 | 18 17 1 103 | 19 16 1 104 | 19 17 1 105 | 19 18 1 106 | 20 16 1 107 | 20 17 1 108 | 20 18 1 109 | 20 19 1 110 | 21 16 1 111 | 21 17 1 112 | 21 18 1 113 | 21 19 1 114 | 21 20 1 115 | 22 16 1 116 | 22 17 1 117 | 22 18 1 118 | 22 19 1 119 | 22 20 1 120 | 22 21 1 121 | 23 11 1 122 | 23 12 1 123 | 23 16 1 124 | 23 17 1 125 | 23 18 1 126 | 23 19 1 127 | 23 20 1 128 | 23 21 1 129 | 23 22 1 130 | 24 11 1 131 | 24 23 1 132 | 25 11 1 133 | 25 23 1 134 | 25 24 1 135 | 26 11 1 136 | 26 16 1 137 | 26 24 1 138 | 26 25 1 139 | 27 11 1 140 | 27 23 1 141 | 27 24 1 142 | 27 25 1 143 | 27 26 1 144 | 28 11 1 145 | 28 27 1 146 | 29 11 1 147 | 29 23 1 148 | 29 27 1 149 | 30 23 1 150 | 31 11 1 151 | 31 23 1 152 | 31 27 1 153 | 31 30 1 154 | 32 11 1 155 | 33 11 1 156 | 33 27 1 157 | 34 11 1 158 | 34 29 1 159 | 35 11 1 160 | 35 29 1 161 | 35 34 1 162 | 36 11 1 163 | 36 29 1 164 | 36 34 1 165 | 36 35 1 166 | 37 11 1 167 | 37 29 1 168 | 37 34 1 169 | 37 35 1 170 | 37 36 1 171 | 38 11 1 172 | 38 29 1 173 | 38 34 1 174 | 38 35 1 175 | 38 36 1 176 | 38 37 1 177 | 39 25 1 178 | 40 25 1 179 | 41 24 1 180 | 41 25 1 181 | 42 24 1 182 | 42 25 1 183 | 42 41 1 184 | 43 11 1 185 | 43 26 1 186 | 43 27 1 187 | 44 11 1 188 | 44 28 1 189 | 45 28 1 190 | 47 46 1 191 | 48 11 1 192 | 48 25 1 193 | 48 27 1 194 | 48 47 1 195 | 49 11 1 196 | 49 26 1 197 | 50 24 1 198 | 50 49 1 199 | 51 11 1 200 | 51 26 1 201 | 51 49 1 202 | 52 39 1 203 | 52 51 1 204 | 53 51 1 205 | 54 26 1 206 | 54 49 1 207 | 54 51 1 208 | 55 11 1 209 | 55 16 1 210 | 55 25 1 211 | 55 26 1 212 | 55 39 1 213 | 55 41 1 214 | 55 48 1 215 | 55 49 1 216 | 55 51 1 217 | 55 54 1 218 | 56 49 1 219 | 56 55 1 220 | 57 41 1 221 | 57 48 1 222 | 57 55 1 223 | 58 11 1 224 | 58 27 1 225 | 58 48 1 226 | 58 55 1 227 | 58 57 1 228 | 59 48 1 229 | 59 55 1 230 | 59 57 1 231 | 59 58 1 232 | 60 48 1 233 | 60 58 1 234 | 60 59 1 235 | 61 48 1 236 | 61 55 1 237 | 61 57 1 238 | 61 58 1 239 | 61 59 1 240 | 61 60 1 241 | 62 41 1 242 | 62 48 1 243 | 62 55 1 244 | 62 57 1 245 | 62 58 1 246 | 62 59 1 247 | 62 60 1 248 | 62 61 1 249 | 63 48 1 250 | 63 55 1 251 | 63 57 1 252 | 63 58 1 253 | 63 59 1 254 | 63 60 1 255 | 63 61 1 256 | 63 62 1 257 | 64 11 1 258 | 64 48 1 259 | 64 55 1 260 | 64 57 1 261 | 64 58 1 262 | 64 59 1 263 | 64 60 1 264 | 64 61 1 265 | 64 62 1 266 | 64 63 1 267 | 65 48 1 268 | 65 55 1 269 | 65 57 1 270 | 65 58 1 271 | 65 59 1 272 | 65 60 1 273 | 65 61 1 274 | 65 62 1 275 | 65 63 1 276 | 65 64 1 277 | 66 48 1 278 | 66 58 1 279 | 66 59 1 280 | 66 60 1 281 | 66 61 1 282 | 66 62 1 283 | 66 63 1 284 | 66 64 1 285 | 66 65 1 286 | 67 57 1 287 | 68 11 1 288 | 68 24 1 289 | 68 25 1 290 | 68 27 1 291 | 68 41 1 292 | 68 48 1 293 | 69 11 1 294 | 69 24 1 295 | 69 25 1 296 | 69 27 1 297 | 69 41 1 298 | 69 48 1 299 | 69 68 1 300 | 70 11 1 301 | 70 24 1 302 | 70 25 1 303 | 70 27 1 304 | 70 41 1 305 | 70 58 1 306 | 70 68 1 307 | 70 69 1 308 | 71 11 1 309 | 71 25 1 310 | 71 27 1 311 | 71 41 1 312 | 71 48 1 313 | 71 68 1 314 | 71 69 1 315 | 71 70 1 316 | 72 11 1 317 | 72 26 1 318 | 72 27 1 319 | 73 48 1 320 | 74 48 1 321 | 74 73 1 322 | 75 25 1 323 | 75 41 1 324 | 75 48 1 325 | 75 68 1 326 | 75 69 1 327 | 75 70 1 328 | 75 71 1 329 | 76 48 1 330 | 76 58 1 331 | 76 62 1 332 | 76 63 1 333 | 76 64 1 334 | 76 65 1 335 | 76 66 1 336 | -------------------------------------------------------------------------------- /graphs/mesh3e1.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | 222 226 | 223 227 | 224 228 | 225 229 | 226 230 | 227 231 | 228 232 | 229 233 | 230 234 | 231 235 | 232 236 | 233 237 | 234 238 | 235 239 | 236 240 | 237 241 | 238 242 | 239 243 | 240 244 | 241 245 | 242 246 | 243 247 | 244 248 | 245 249 | 246 250 | 247 251 | 248 252 | 249 253 | 250 254 | 251 255 | 252 256 | 253 257 | 254 258 | 255 259 | 256 260 | 257 261 | 258 262 | 259 263 | 260 264 | 261 265 | 262 266 | 263 267 | 264 268 | 265 269 | 266 270 | 267 271 | 268 272 | 269 273 | 270 274 | 271 275 | 272 276 | 273 277 | 274 278 | 275 279 | 276 280 | 277 281 | 278 282 | 279 283 | 280 284 | 281 285 | 282 286 | 283 287 | 284 288 | 285 289 | 286 290 | 287 291 | 288 292 | *Tie data 293 | from to strength 294 | 1 0 1 295 | 2 1 1 296 | 3 2 1 297 | 4 3 1 298 | 5 4 1 299 | 6 5 1 300 | 7 6 1 301 | 8 7 1 302 | 9 8 1 303 | 10 9 1 304 | 11 10 1 305 | 12 11 1 306 | 13 12 1 307 | 14 13 1 308 | 15 14 1 309 | 16 15 1 310 | 17 16 1 311 | 18 17 1 312 | 19 18 1 313 | 20 19 1 314 | 21 20 1 315 | 22 21 1 316 | 23 22 1 317 | 24 23 1 318 | 25 24 1 319 | 26 25 1 320 | 27 26 1 321 | 28 27 1 322 | 29 28 1 323 | 30 29 1 324 | 31 30 1 325 | 32 31 1 326 | 33 32 1 327 | 34 33 1 328 | 35 34 1 329 | 36 35 1 330 | 37 36 1 331 | 38 37 1 332 | 39 38 1 333 | 40 39 1 334 | 41 40 1 335 | 42 41 1 336 | 43 42 1 337 | 44 43 1 338 | 45 44 1 339 | 46 45 1 340 | 47 46 1 341 | 48 47 1 342 | 49 48 1 343 | 50 49 1 344 | 51 50 1 345 | 52 51 1 346 | 53 52 1 347 | 54 53 1 348 | 55 54 1 349 | 56 55 1 350 | 57 56 1 351 | 58 57 1 352 | 59 58 1 353 | 60 59 1 354 | 61 60 1 355 | 62 61 1 356 | 63 0 1 357 | 63 62 1 358 | 64 23 1 359 | 64 24 1 360 | 64 25 1 361 | 65 25 1 362 | 65 26 1 363 | 65 64 1 364 | 66 26 1 365 | 66 27 1 366 | 66 65 1 367 | 67 27 1 368 | 67 28 1 369 | 67 66 1 370 | 68 28 1 371 | 68 29 1 372 | 68 67 1 373 | 69 29 1 374 | 69 30 1 375 | 69 68 1 376 | 70 30 1 377 | 70 31 1 378 | 70 69 1 379 | 71 31 1 380 | 71 32 1 381 | 71 70 1 382 | 72 32 1 383 | 72 33 1 384 | 72 71 1 385 | 73 33 1 386 | 73 34 1 387 | 73 72 1 388 | 74 34 1 389 | 74 35 1 390 | 74 73 1 391 | 75 35 1 392 | 75 36 1 393 | 75 74 1 394 | 76 36 1 395 | 76 37 1 396 | 76 75 1 397 | 77 37 1 398 | 77 38 1 399 | 77 76 1 400 | 78 38 1 401 | 78 39 1 402 | 78 40 1 403 | 78 41 1 404 | 78 77 1 405 | 79 22 1 406 | 79 23 1 407 | 79 64 1 408 | 80 64 1 409 | 80 65 1 410 | 80 79 1 411 | 81 65 1 412 | 81 66 1 413 | 81 80 1 414 | 82 66 1 415 | 82 67 1 416 | 82 81 1 417 | 83 67 1 418 | 83 68 1 419 | 83 82 1 420 | 84 68 1 421 | 84 69 1 422 | 84 83 1 423 | 85 69 1 424 | 85 70 1 425 | 85 84 1 426 | 86 70 1 427 | 86 71 1 428 | 86 85 1 429 | 87 71 1 430 | 87 72 1 431 | 87 86 1 432 | 88 72 1 433 | 88 73 1 434 | 88 87 1 435 | 89 73 1 436 | 89 74 1 437 | 89 88 1 438 | 90 74 1 439 | 90 75 1 440 | 90 89 1 441 | 91 75 1 442 | 91 76 1 443 | 91 90 1 444 | 92 76 1 445 | 92 77 1 446 | 92 91 1 447 | 93 41 1 448 | 93 42 1 449 | 93 77 1 450 | 93 78 1 451 | 93 92 1 452 | 94 21 1 453 | 94 22 1 454 | 94 79 1 455 | 95 79 1 456 | 95 80 1 457 | 95 94 1 458 | 96 80 1 459 | 96 81 1 460 | 96 95 1 461 | 97 81 1 462 | 97 82 1 463 | 97 96 1 464 | 98 82 1 465 | 98 83 1 466 | 98 97 1 467 | 99 83 1 468 | 99 84 1 469 | 99 98 1 470 | 100 84 1 471 | 100 85 1 472 | 100 99 1 473 | 101 85 1 474 | 101 86 1 475 | 101 100 1 476 | 102 86 1 477 | 102 87 1 478 | 102 101 1 479 | 103 87 1 480 | 103 88 1 481 | 103 102 1 482 | 104 88 1 483 | 104 89 1 484 | 104 103 1 485 | 105 89 1 486 | 105 90 1 487 | 105 104 1 488 | 106 90 1 489 | 106 91 1 490 | 106 105 1 491 | 107 91 1 492 | 107 92 1 493 | 107 106 1 494 | 108 42 1 495 | 108 43 1 496 | 108 92 1 497 | 108 93 1 498 | 108 107 1 499 | 109 20 1 500 | 109 21 1 501 | 109 94 1 502 | 110 94 1 503 | 110 95 1 504 | 110 109 1 505 | 111 95 1 506 | 111 96 1 507 | 111 110 1 508 | 112 96 1 509 | 112 97 1 510 | 112 111 1 511 | 113 97 1 512 | 113 98 1 513 | 113 112 1 514 | 114 98 1 515 | 114 99 1 516 | 114 113 1 517 | 115 99 1 518 | 115 100 1 519 | 115 114 1 520 | 116 100 1 521 | 116 101 1 522 | 116 115 1 523 | 117 101 1 524 | 117 102 1 525 | 117 116 1 526 | 118 102 1 527 | 118 103 1 528 | 118 117 1 529 | 119 103 1 530 | 119 104 1 531 | 119 118 1 532 | 120 104 1 533 | 120 105 1 534 | 120 119 1 535 | 121 105 1 536 | 121 106 1 537 | 121 120 1 538 | 122 106 1 539 | 122 107 1 540 | 122 121 1 541 | 123 43 1 542 | 123 44 1 543 | 123 107 1 544 | 123 108 1 545 | 123 122 1 546 | 124 19 1 547 | 124 20 1 548 | 124 109 1 549 | 125 109 1 550 | 125 110 1 551 | 125 124 1 552 | 126 110 1 553 | 126 111 1 554 | 126 125 1 555 | 127 111 1 556 | 127 112 1 557 | 127 126 1 558 | 128 112 1 559 | 128 113 1 560 | 128 127 1 561 | 129 113 1 562 | 129 114 1 563 | 129 128 1 564 | 130 114 1 565 | 130 115 1 566 | 130 129 1 567 | 131 115 1 568 | 131 116 1 569 | 131 130 1 570 | 132 116 1 571 | 132 117 1 572 | 132 131 1 573 | 133 117 1 574 | 133 118 1 575 | 133 132 1 576 | 134 118 1 577 | 134 119 1 578 | 134 133 1 579 | 135 119 1 580 | 135 120 1 581 | 135 134 1 582 | 136 120 1 583 | 136 121 1 584 | 136 135 1 585 | 137 121 1 586 | 137 122 1 587 | 137 136 1 588 | 138 44 1 589 | 138 45 1 590 | 138 122 1 591 | 138 123 1 592 | 138 137 1 593 | 139 18 1 594 | 139 19 1 595 | 139 124 1 596 | 140 124 1 597 | 140 125 1 598 | 140 139 1 599 | 141 125 1 600 | 141 126 1 601 | 141 140 1 602 | 142 126 1 603 | 142 127 1 604 | 142 141 1 605 | 143 127 1 606 | 143 128 1 607 | 143 142 1 608 | 144 128 1 609 | 144 129 1 610 | 144 143 1 611 | 145 129 1 612 | 145 130 1 613 | 145 144 1 614 | 146 130 1 615 | 146 131 1 616 | 146 145 1 617 | 147 131 1 618 | 147 132 1 619 | 147 146 1 620 | 148 132 1 621 | 148 133 1 622 | 148 147 1 623 | 149 133 1 624 | 149 134 1 625 | 149 148 1 626 | 150 134 1 627 | 150 135 1 628 | 150 149 1 629 | 151 135 1 630 | 151 136 1 631 | 151 150 1 632 | 152 136 1 633 | 152 137 1 634 | 152 151 1 635 | 153 45 1 636 | 153 46 1 637 | 153 137 1 638 | 153 138 1 639 | 153 152 1 640 | 154 17 1 641 | 154 18 1 642 | 154 139 1 643 | 155 139 1 644 | 155 140 1 645 | 155 154 1 646 | 156 140 1 647 | 156 141 1 648 | 156 155 1 649 | 157 141 1 650 | 157 142 1 651 | 157 156 1 652 | 158 142 1 653 | 158 143 1 654 | 158 157 1 655 | 159 143 1 656 | 159 144 1 657 | 159 158 1 658 | 160 144 1 659 | 160 145 1 660 | 160 159 1 661 | 161 145 1 662 | 161 146 1 663 | 161 160 1 664 | 162 146 1 665 | 162 147 1 666 | 162 161 1 667 | 163 147 1 668 | 163 148 1 669 | 163 162 1 670 | 164 148 1 671 | 164 149 1 672 | 164 163 1 673 | 165 149 1 674 | 165 150 1 675 | 165 164 1 676 | 166 150 1 677 | 166 151 1 678 | 166 165 1 679 | 167 151 1 680 | 167 152 1 681 | 167 166 1 682 | 168 46 1 683 | 168 47 1 684 | 168 152 1 685 | 168 153 1 686 | 168 167 1 687 | 169 16 1 688 | 169 17 1 689 | 169 154 1 690 | 170 154 1 691 | 170 155 1 692 | 170 169 1 693 | 171 155 1 694 | 171 156 1 695 | 171 170 1 696 | 172 156 1 697 | 172 157 1 698 | 172 171 1 699 | 173 157 1 700 | 173 158 1 701 | 173 172 1 702 | 174 158 1 703 | 174 159 1 704 | 174 173 1 705 | 175 159 1 706 | 175 160 1 707 | 175 174 1 708 | 176 160 1 709 | 176 161 1 710 | 176 175 1 711 | 177 161 1 712 | 177 162 1 713 | 177 176 1 714 | 178 162 1 715 | 178 163 1 716 | 178 177 1 717 | 179 163 1 718 | 179 164 1 719 | 179 178 1 720 | 180 164 1 721 | 180 165 1 722 | 180 179 1 723 | 181 165 1 724 | 181 166 1 725 | 181 180 1 726 | 182 166 1 727 | 182 167 1 728 | 182 181 1 729 | 183 47 1 730 | 183 48 1 731 | 183 167 1 732 | 183 168 1 733 | 183 182 1 734 | 184 15 1 735 | 184 16 1 736 | 184 169 1 737 | 185 169 1 738 | 185 170 1 739 | 185 184 1 740 | 186 170 1 741 | 186 171 1 742 | 186 185 1 743 | 187 171 1 744 | 187 172 1 745 | 187 186 1 746 | 188 172 1 747 | 188 173 1 748 | 188 187 1 749 | 189 173 1 750 | 189 174 1 751 | 189 188 1 752 | 190 174 1 753 | 190 175 1 754 | 190 189 1 755 | 191 175 1 756 | 191 176 1 757 | 191 190 1 758 | 192 176 1 759 | 192 177 1 760 | 192 191 1 761 | 193 177 1 762 | 193 178 1 763 | 193 192 1 764 | 194 178 1 765 | 194 179 1 766 | 194 193 1 767 | 195 179 1 768 | 195 180 1 769 | 195 194 1 770 | 196 180 1 771 | 196 181 1 772 | 196 195 1 773 | 197 181 1 774 | 197 182 1 775 | 197 196 1 776 | 198 48 1 777 | 198 49 1 778 | 198 182 1 779 | 198 183 1 780 | 198 197 1 781 | 199 14 1 782 | 199 15 1 783 | 199 184 1 784 | 200 184 1 785 | 200 185 1 786 | 200 199 1 787 | 201 185 1 788 | 201 186 1 789 | 201 200 1 790 | 202 186 1 791 | 202 187 1 792 | 202 201 1 793 | 203 187 1 794 | 203 188 1 795 | 203 202 1 796 | 204 188 1 797 | 204 189 1 798 | 204 203 1 799 | 205 189 1 800 | 205 190 1 801 | 205 204 1 802 | 206 190 1 803 | 206 191 1 804 | 206 205 1 805 | 207 191 1 806 | 207 192 1 807 | 207 206 1 808 | 208 192 1 809 | 208 193 1 810 | 208 207 1 811 | 209 193 1 812 | 209 194 1 813 | 209 208 1 814 | 210 194 1 815 | 210 195 1 816 | 210 209 1 817 | 211 195 1 818 | 211 196 1 819 | 211 210 1 820 | 212 196 1 821 | 212 197 1 822 | 212 211 1 823 | 213 49 1 824 | 213 50 1 825 | 213 197 1 826 | 213 198 1 827 | 213 212 1 828 | 214 13 1 829 | 214 14 1 830 | 214 199 1 831 | 215 199 1 832 | 215 200 1 833 | 215 214 1 834 | 216 200 1 835 | 216 201 1 836 | 216 215 1 837 | 217 201 1 838 | 217 202 1 839 | 217 216 1 840 | 218 202 1 841 | 218 203 1 842 | 218 217 1 843 | 219 203 1 844 | 219 204 1 845 | 219 218 1 846 | 220 204 1 847 | 220 205 1 848 | 220 219 1 849 | 221 205 1 850 | 221 206 1 851 | 221 220 1 852 | 222 206 1 853 | 222 207 1 854 | 222 221 1 855 | 223 207 1 856 | 223 208 1 857 | 223 222 1 858 | 224 208 1 859 | 224 209 1 860 | 224 223 1 861 | 225 209 1 862 | 225 210 1 863 | 225 224 1 864 | 226 210 1 865 | 226 211 1 866 | 226 225 1 867 | 227 211 1 868 | 227 212 1 869 | 227 226 1 870 | 228 50 1 871 | 228 51 1 872 | 228 212 1 873 | 228 213 1 874 | 228 227 1 875 | 229 12 1 876 | 229 13 1 877 | 229 214 1 878 | 230 214 1 879 | 230 215 1 880 | 230 229 1 881 | 231 215 1 882 | 231 216 1 883 | 231 230 1 884 | 232 216 1 885 | 232 217 1 886 | 232 231 1 887 | 233 217 1 888 | 233 218 1 889 | 233 232 1 890 | 234 218 1 891 | 234 219 1 892 | 234 233 1 893 | 235 219 1 894 | 235 220 1 895 | 235 234 1 896 | 236 220 1 897 | 236 221 1 898 | 236 235 1 899 | 237 221 1 900 | 237 222 1 901 | 237 236 1 902 | 238 222 1 903 | 238 223 1 904 | 238 237 1 905 | 239 223 1 906 | 239 224 1 907 | 239 238 1 908 | 240 224 1 909 | 240 225 1 910 | 240 239 1 911 | 241 225 1 912 | 241 226 1 913 | 241 240 1 914 | 242 226 1 915 | 242 227 1 916 | 242 241 1 917 | 243 51 1 918 | 243 52 1 919 | 243 227 1 920 | 243 228 1 921 | 243 242 1 922 | 244 11 1 923 | 244 12 1 924 | 244 229 1 925 | 245 229 1 926 | 245 230 1 927 | 245 244 1 928 | 246 230 1 929 | 246 231 1 930 | 246 245 1 931 | 247 231 1 932 | 247 232 1 933 | 247 246 1 934 | 248 232 1 935 | 248 233 1 936 | 248 247 1 937 | 249 233 1 938 | 249 234 1 939 | 249 248 1 940 | 250 234 1 941 | 250 235 1 942 | 250 249 1 943 | 251 235 1 944 | 251 236 1 945 | 251 250 1 946 | 252 236 1 947 | 252 237 1 948 | 252 251 1 949 | 253 237 1 950 | 253 238 1 951 | 253 252 1 952 | 254 238 1 953 | 254 239 1 954 | 254 253 1 955 | 255 239 1 956 | 255 240 1 957 | 255 254 1 958 | 256 240 1 959 | 256 241 1 960 | 256 255 1 961 | 257 241 1 962 | 257 242 1 963 | 257 256 1 964 | 258 52 1 965 | 258 53 1 966 | 258 242 1 967 | 258 243 1 968 | 258 257 1 969 | 259 10 1 970 | 259 11 1 971 | 259 244 1 972 | 260 244 1 973 | 260 245 1 974 | 260 259 1 975 | 261 245 1 976 | 261 246 1 977 | 261 260 1 978 | 262 246 1 979 | 262 247 1 980 | 262 261 1 981 | 263 247 1 982 | 263 248 1 983 | 263 262 1 984 | 264 248 1 985 | 264 249 1 986 | 264 263 1 987 | 265 249 1 988 | 265 250 1 989 | 265 264 1 990 | 266 250 1 991 | 266 251 1 992 | 266 265 1 993 | 267 251 1 994 | 267 252 1 995 | 267 266 1 996 | 268 252 1 997 | 268 253 1 998 | 268 267 1 999 | 269 253 1 1000 | 269 254 1 1001 | 269 268 1 1002 | 270 254 1 1003 | 270 255 1 1004 | 270 269 1 1005 | 271 255 1 1006 | 271 256 1 1007 | 271 270 1 1008 | 272 256 1 1009 | 272 257 1 1010 | 272 271 1 1011 | 273 53 1 1012 | 273 54 1 1013 | 273 257 1 1014 | 273 258 1 1015 | 273 272 1 1016 | 274 7 1 1017 | 274 8 1 1018 | 274 9 1 1019 | 274 10 1 1020 | 274 259 1 1021 | 275 6 1 1022 | 275 7 1 1023 | 275 259 1 1024 | 275 260 1 1025 | 275 274 1 1026 | 276 5 1 1027 | 276 6 1 1028 | 276 260 1 1029 | 276 261 1 1030 | 276 275 1 1031 | 277 4 1 1032 | 277 5 1 1033 | 277 261 1 1034 | 277 262 1 1035 | 277 276 1 1036 | 278 3 1 1037 | 278 4 1 1038 | 278 262 1 1039 | 278 263 1 1040 | 278 277 1 1041 | 279 2 1 1042 | 279 3 1 1043 | 279 263 1 1044 | 279 264 1 1045 | 279 278 1 1046 | 280 1 1 1047 | 280 2 1 1048 | 280 264 1 1049 | 280 265 1 1050 | 280 279 1 1051 | 281 0 1 1052 | 281 1 1 1053 | 281 265 1 1054 | 281 266 1 1055 | 281 280 1 1056 | 282 0 1 1057 | 282 63 1 1058 | 282 266 1 1059 | 282 267 1 1060 | 282 281 1 1061 | 283 62 1 1062 | 283 63 1 1063 | 283 267 1 1064 | 283 268 1 1065 | 283 282 1 1066 | 284 61 1 1067 | 284 62 1 1068 | 284 268 1 1069 | 284 269 1 1070 | 284 283 1 1071 | 285 60 1 1072 | 285 61 1 1073 | 285 269 1 1074 | 285 270 1 1075 | 285 284 1 1076 | 286 59 1 1077 | 286 60 1 1078 | 286 270 1 1079 | 286 271 1 1080 | 286 285 1 1081 | 287 58 1 1082 | 287 59 1 1083 | 287 271 1 1084 | 287 272 1 1085 | 287 286 1 1086 | 288 54 1 1087 | 288 55 1 1088 | 288 56 1 1089 | 288 57 1 1090 | 288 58 1 1091 | 288 272 1 1092 | 288 273 1 1093 | 288 287 1 1094 | -------------------------------------------------------------------------------- /graphs/netscience.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | 222 226 | 223 227 | 224 228 | 225 229 | 226 230 | 227 231 | 228 232 | 229 233 | 230 234 | 231 235 | 232 236 | 233 237 | 234 238 | 235 239 | 236 240 | 237 241 | 238 242 | 239 243 | 240 244 | 241 245 | 242 246 | 243 247 | 244 248 | 245 249 | 246 250 | 247 251 | 248 252 | 249 253 | 250 254 | 251 255 | 252 256 | 253 257 | 254 258 | 255 259 | 256 260 | 257 261 | 258 262 | 259 263 | 260 264 | 261 265 | 262 266 | 263 267 | 264 268 | 265 269 | 266 270 | 267 271 | 268 272 | 269 273 | 270 274 | 271 275 | 272 276 | 273 277 | 274 278 | 275 279 | 276 280 | 277 281 | 278 282 | 279 283 | 280 284 | 281 285 | 282 286 | 283 287 | 284 288 | 285 289 | 286 290 | 287 291 | 288 292 | 289 293 | 290 294 | 291 295 | 292 296 | 293 297 | 294 298 | 295 299 | 296 300 | 297 301 | 298 302 | 299 303 | 300 304 | 301 305 | 302 306 | 303 307 | 304 308 | 305 309 | 306 310 | 307 311 | 308 312 | 309 313 | 310 314 | 311 315 | 312 316 | 313 317 | 314 318 | 315 319 | 316 320 | 317 321 | 318 322 | 319 323 | 320 324 | 321 325 | 322 326 | 323 327 | 324 328 | 325 329 | 326 330 | 327 331 | 328 332 | 329 333 | 330 334 | 331 335 | 332 336 | 333 337 | 334 338 | 335 339 | 336 340 | 337 341 | 338 342 | 339 343 | 340 344 | 341 345 | 342 346 | 343 347 | 344 348 | 345 349 | 346 350 | 347 351 | 348 352 | 349 353 | 350 354 | 351 355 | 352 356 | 353 357 | 354 358 | 355 359 | 356 360 | 357 361 | 358 362 | 359 363 | 360 364 | 361 365 | 362 366 | 363 367 | 364 368 | 365 369 | 366 370 | 367 371 | 368 372 | 369 373 | 370 374 | 371 375 | 372 376 | 373 377 | 374 378 | 375 379 | 376 380 | 377 381 | 378 382 | *Tie data 383 | from to strength 384 | 1 0 1 385 | 2 0 1 386 | 2 1 1 387 | 3 0 1 388 | 4 0 1 389 | 4 3 1 390 | 6 5 1 391 | 7 5 1 392 | 7 6 1 393 | 9 8 1 394 | 10 8 1 395 | 10 9 1 396 | 11 8 1 397 | 11 9 1 398 | 11 10 1 399 | 12 3 1 400 | 13 12 1 401 | 13 3 1 402 | 14 12 1 403 | 14 13 1 404 | 14 3 1 405 | 14 4 1 406 | 15 12 1 407 | 15 13 1 408 | 15 14 1 409 | 15 3 1 410 | 15 4 1 411 | 15 0 1 412 | 16 12 1 413 | 17 12 1 414 | 17 16 1 415 | 18 12 1 416 | 19 12 1 417 | 19 18 1 418 | 21 20 1 419 | 22 20 1 420 | 22 21 1 421 | 23 20 1 422 | 23 21 1 423 | 23 22 1 424 | 25 24 1 425 | 25 7 1 426 | 26 24 1 427 | 26 25 1 428 | 27 24 1 429 | 27 25 1 430 | 27 26 1 431 | 28 16 1 432 | 30 29 1 433 | 31 29 1 434 | 31 30 1 435 | 32 29 1 436 | 32 30 1 437 | 32 31 1 438 | 32 20 1 439 | 33 29 1 440 | 33 30 1 441 | 33 31 1 442 | 33 32 1 443 | 34 29 1 444 | 34 31 1 445 | 34 32 1 446 | 35 29 1 447 | 35 34 1 448 | 35 31 1 449 | 35 32 1 450 | 37 36 1 451 | 39 38 1 452 | 39 25 1 453 | 41 40 1 454 | 42 40 1 455 | 42 41 1 456 | 43 3 1 457 | 43 0 1 458 | 43 4 1 459 | 44 3 1 460 | 44 4 1 461 | 44 14 1 462 | 44 15 1 463 | 45 3 1 464 | 45 4 1 465 | 45 44 1 466 | 45 14 1 467 | 45 15 1 468 | 46 3 1 469 | 46 4 1 470 | 46 44 1 471 | 46 45 1 472 | 46 14 1 473 | 46 15 1 474 | 48 47 1 475 | 49 22 1 476 | 50 49 1 477 | 50 22 1 478 | 50 31 1 479 | 50 29 1 480 | 51 49 1 481 | 51 22 1 482 | 51 50 1 483 | 51 41 1 484 | 52 49 1 485 | 53 22 1 486 | 54 22 1 487 | 54 53 1 488 | 56 55 1 489 | 57 16 1 490 | 57 17 1 491 | 58 57 1 492 | 59 57 1 493 | 59 58 1 494 | 60 3 1 495 | 61 7 1 496 | 62 61 1 497 | 62 7 1 498 | 63 61 1 499 | 63 62 1 500 | 63 7 1 501 | 64 61 1 502 | 64 7 1 503 | 65 43 1 504 | 66 9 1 505 | 66 48 1 506 | 67 66 1 507 | 67 9 1 508 | 68 66 1 509 | 68 67 1 510 | 68 9 1 511 | 69 66 1 512 | 69 68 1 513 | 70 66 1 514 | 70 69 1 515 | 70 68 1 516 | 71 66 1 517 | 71 69 1 518 | 71 70 1 519 | 72 66 1 520 | 72 69 1 521 | 72 70 1 522 | 72 71 1 523 | 73 66 1 524 | 73 48 1 525 | 74 66 1 526 | 74 70 1 527 | 74 69 1 528 | 74 68 1 529 | 75 50 1 530 | 75 31 1 531 | 75 29 1 532 | 75 51 1 533 | 77 76 1 534 | 78 76 1 535 | 78 77 1 536 | 78 23 1 537 | 79 67 1 538 | 79 66 1 539 | 79 68 1 540 | 80 67 1 541 | 80 66 1 542 | 80 79 1 543 | 80 68 1 544 | 82 81 1 545 | 83 81 1 546 | 83 82 1 547 | 84 81 1 548 | 84 82 1 549 | 84 83 1 550 | 85 81 1 551 | 85 82 1 552 | 85 83 1 553 | 85 84 1 554 | 86 81 1 555 | 86 82 1 556 | 86 83 1 557 | 86 84 1 558 | 86 85 1 559 | 87 81 1 560 | 87 82 1 561 | 87 83 1 562 | 87 84 1 563 | 87 85 1 564 | 87 86 1 565 | 88 81 1 566 | 88 82 1 567 | 88 83 1 568 | 88 84 1 569 | 88 85 1 570 | 88 86 1 571 | 88 87 1 572 | 90 89 1 573 | 91 89 1 574 | 91 90 1 575 | 93 92 1 576 | 94 92 1 577 | 94 93 1 578 | 94 25 1 579 | 94 50 1 580 | 95 92 1 581 | 95 93 1 582 | 95 94 1 583 | 96 92 1 584 | 96 93 1 585 | 96 94 1 586 | 96 95 1 587 | 97 92 1 588 | 97 93 1 589 | 97 94 1 590 | 97 95 1 591 | 97 96 1 592 | 98 92 1 593 | 98 93 1 594 | 98 94 1 595 | 98 95 1 596 | 98 96 1 597 | 98 97 1 598 | 99 65 1 599 | 99 50 1 600 | 99 51 1 601 | 99 55 1 602 | 100 99 1 603 | 100 65 1 604 | 101 99 1 605 | 101 65 1 606 | 101 100 1 607 | 102 99 1 608 | 102 100 1 609 | 103 25 1 610 | 104 103 1 611 | 104 25 1 612 | 105 103 1 613 | 105 104 1 614 | 105 25 1 615 | 105 84 1 616 | 105 85 1 617 | 105 87 1 618 | 106 103 1 619 | 106 104 1 620 | 106 105 1 621 | 106 25 1 622 | 107 103 1 623 | 107 25 1 624 | 107 106 1 625 | 108 32 1 626 | 108 20 1 627 | 109 65 1 628 | 109 99 1 629 | 109 55 1 630 | 110 65 1 631 | 110 109 1 632 | 110 99 1 633 | 112 111 1 634 | 112 0 1 635 | 113 111 1 636 | 113 112 1 637 | 114 111 1 638 | 114 112 1 639 | 114 113 1 640 | 115 51 1 641 | 116 115 1 642 | 116 51 1 643 | 118 117 1 644 | 118 71 1 645 | 118 69 1 646 | 119 117 1 647 | 119 118 1 648 | 120 80 1 649 | 120 66 1 650 | 121 120 1 651 | 121 80 1 652 | 121 66 1 653 | 122 120 1 654 | 122 121 1 655 | 122 80 1 656 | 122 66 1 657 | 123 25 1 658 | 124 123 1 659 | 124 25 1 660 | 124 107 1 661 | 125 3 1 662 | 126 125 1 663 | 126 3 1 664 | 127 125 1 665 | 127 126 1 666 | 127 3 1 667 | 128 125 1 668 | 128 126 1 669 | 128 127 1 670 | 129 90 1 671 | 129 91 1 672 | 130 129 1 673 | 130 90 1 674 | 130 91 1 675 | 130 112 1 676 | 130 113 1 677 | 130 0 1 678 | 131 129 1 679 | 131 130 1 680 | 131 90 1 681 | 131 91 1 682 | 132 129 1 683 | 132 130 1 684 | 132 90 1 685 | 132 131 1 686 | 132 91 1 687 | 133 129 1 688 | 133 130 1 689 | 133 90 1 690 | 133 131 1 691 | 133 91 1 692 | 133 132 1 693 | 134 130 1 694 | 134 112 1 695 | 134 113 1 696 | 135 130 1 697 | 135 112 1 698 | 136 7 1 699 | 137 136 1 700 | 139 138 1 701 | 139 23 1 702 | 140 95 1 703 | 142 141 1 704 | 143 141 1 705 | 143 142 1 706 | 144 141 1 707 | 144 142 1 708 | 144 143 1 709 | 144 99 1 710 | 145 3 1 711 | 146 145 1 712 | 147 145 1 713 | 147 146 1 714 | 149 148 1 715 | 149 72 1 716 | 149 69 1 717 | 150 148 1 718 | 150 149 1 719 | 151 3 1 720 | 152 3 1 721 | 152 15 1 722 | 153 152 1 723 | 153 3 1 724 | 153 15 1 725 | 154 107 1 726 | 154 25 1 727 | 155 154 1 728 | 155 107 1 729 | 156 154 1 730 | 157 154 1 731 | 157 107 1 732 | 158 101 1 733 | 159 50 1 734 | 160 159 1 735 | 161 159 1 736 | 161 160 1 737 | 162 159 1 738 | 162 161 1 739 | 163 60 1 740 | 163 3 1 741 | 164 163 1 742 | 164 60 1 743 | 164 3 1 744 | 165 163 1 745 | 165 164 1 746 | 165 60 1 747 | 165 3 1 748 | 167 166 1 749 | 168 166 1 750 | 168 167 1 751 | 168 121 1 752 | 168 66 1 753 | 168 51 1 754 | 168 50 1 755 | 168 75 1 756 | 169 166 1 757 | 169 167 1 758 | 169 168 1 759 | 169 51 1 760 | 169 50 1 761 | 169 75 1 762 | 169 41 1 763 | 169 52 1 764 | 171 170 1 765 | 171 16 1 766 | 171 17 1 767 | 171 114 1 768 | 172 39 1 769 | 173 172 1 770 | 173 39 1 771 | 174 172 1 772 | 174 173 1 773 | 174 39 1 774 | 175 3 1 775 | 175 14 1 776 | 175 4 1 777 | 175 45 1 778 | 175 15 1 779 | 175 44 1 780 | 175 46 1 781 | 176 175 1 782 | 176 3 1 783 | 176 14 1 784 | 176 4 1 785 | 176 45 1 786 | 176 15 1 787 | 176 44 1 788 | 176 46 1 789 | 177 94 1 790 | 177 96 1 791 | 178 177 1 792 | 178 94 1 793 | 179 177 1 794 | 179 94 1 795 | 180 48 1 796 | 181 180 1 797 | 181 48 1 798 | 182 180 1 799 | 182 181 1 800 | 182 48 1 801 | 184 183 1 802 | 184 105 1 803 | 185 183 1 804 | 185 184 1 805 | 186 183 1 806 | 186 184 1 807 | 186 185 1 808 | 187 90 1 809 | 187 131 1 810 | 187 91 1 811 | 188 112 1 812 | 188 134 1 813 | 188 7 1 814 | 189 6 1 815 | 190 189 1 816 | 190 6 1 817 | 191 189 1 818 | 191 6 1 819 | 192 189 1 820 | 192 6 1 821 | 192 191 1 822 | 193 55 1 823 | 193 109 1 824 | 193 99 1 825 | 193 144 1 826 | 194 193 1 827 | 194 55 1 828 | 194 109 1 829 | 194 99 1 830 | 195 193 1 831 | 196 25 1 832 | 197 25 1 833 | 198 4 1 834 | 199 198 1 835 | 200 198 1 836 | 200 199 1 837 | 200 4 1 838 | 200 16 1 839 | 200 17 1 840 | 201 198 1 841 | 201 199 1 842 | 201 200 1 843 | 201 4 1 844 | 202 198 1 845 | 202 200 1 846 | 202 201 1 847 | 203 198 1 848 | 203 4 1 849 | 203 200 1 850 | 203 201 1 851 | 204 167 1 852 | 204 168 1 853 | 205 139 1 854 | 206 205 1 855 | 206 139 1 856 | 207 18 1 857 | 208 117 1 858 | 210 209 1 859 | 211 209 1 860 | 211 210 1 861 | 212 209 1 862 | 212 210 1 863 | 212 211 1 864 | 213 209 1 865 | 213 210 1 866 | 213 211 1 867 | 213 212 1 868 | 213 69 1 869 | 213 118 1 870 | 214 209 1 871 | 214 210 1 872 | 214 211 1 873 | 214 212 1 874 | 214 213 1 875 | 215 31 1 876 | 216 215 1 877 | 216 31 1 878 | 217 215 1 879 | 217 31 1 880 | 217 216 1 881 | 218 32 1 882 | 218 29 1 883 | 218 31 1 884 | 218 34 1 885 | 219 32 1 886 | 219 20 1 887 | 219 22 1 888 | 219 23 1 889 | 220 32 1 890 | 220 219 1 891 | 220 20 1 892 | 221 211 1 893 | 222 211 1 894 | 222 221 1 895 | 223 211 1 896 | 223 221 1 897 | 223 222 1 898 | 224 211 1 899 | 224 221 1 900 | 224 222 1 901 | 224 223 1 902 | 225 48 1 903 | 225 182 1 904 | 226 22 1 905 | 227 226 1 906 | 227 22 1 907 | 228 139 1 908 | 228 23 1 909 | 229 139 1 910 | 230 4 1 911 | 230 25 1 912 | 231 230 1 913 | 231 20 1 914 | 231 23 1 915 | 232 230 1 916 | 232 231 1 917 | 232 20 1 918 | 232 23 1 919 | 233 230 1 920 | 233 25 1 921 | 233 124 1 922 | 234 230 1 923 | 234 4 1 924 | 235 230 1 925 | 235 4 1 926 | 236 230 1 927 | 236 235 1 928 | 236 4 1 929 | 237 230 1 930 | 237 235 1 931 | 237 236 1 932 | 237 4 1 933 | 238 230 1 934 | 238 235 1 935 | 238 39 1 936 | 239 230 1 937 | 239 238 1 938 | 239 235 1 939 | 239 39 1 940 | 240 41 1 941 | 240 40 1 942 | 241 240 1 943 | 241 41 1 944 | 241 40 1 945 | 242 240 1 946 | 242 241 1 947 | 242 41 1 948 | 242 40 1 949 | 243 240 1 950 | 243 241 1 951 | 243 41 1 952 | 243 242 1 953 | 243 40 1 954 | 244 235 1 955 | 244 203 1 956 | 244 200 1 957 | 245 244 1 958 | 245 235 1 959 | 245 238 1 960 | 245 230 1 961 | 245 239 1 962 | 246 244 1 963 | 246 235 1 964 | 246 245 1 965 | 247 121 1 966 | 247 66 1 967 | 247 168 1 968 | 248 4 1 969 | 248 3 1 970 | 248 15 1 971 | 249 4 1 972 | 249 0 1 973 | 249 15 1 974 | 249 3 1 975 | 250 197 1 976 | 250 25 1 977 | 251 200 1 978 | 252 251 1 979 | 252 200 1 980 | 253 200 1 981 | 253 4 1 982 | 254 124 1 983 | 255 254 1 984 | 255 124 1 985 | 256 235 1 986 | 256 238 1 987 | 256 230 1 988 | 256 239 1 989 | 256 245 1 990 | 257 198 1 991 | 257 200 1 992 | 257 201 1 993 | 257 16 1 994 | 257 17 1 995 | 258 130 1 996 | 258 0 1 997 | 258 112 1 998 | 259 105 1 999 | 259 84 1 1000 | 259 85 1 1001 | 259 87 1 1002 | 260 16 1 1003 | 260 17 1 1004 | 261 82 1 1005 | 261 84 1 1006 | 261 85 1 1007 | 261 87 1 1008 | 262 82 1 1009 | 262 84 1 1010 | 262 85 1 1011 | 262 261 1 1012 | 262 87 1 1013 | 263 64 1 1014 | 264 263 1 1015 | 264 64 1 1016 | 265 169 1 1017 | 265 51 1 1018 | 266 265 1 1019 | 266 169 1 1020 | 266 51 1 1021 | 267 232 1 1022 | 267 231 1 1023 | 267 20 1 1024 | 267 23 1 1025 | 269 268 1 1026 | 269 149 1 1027 | 269 148 1 1028 | 270 268 1 1029 | 270 269 1 1030 | 270 149 1 1031 | 271 268 1 1032 | 271 269 1 1033 | 272 25 1 1034 | 273 12 1 1035 | 273 3 1 1036 | 274 41 1 1037 | 274 42 1 1038 | 275 41 1 1039 | 275 42 1 1040 | 275 274 1 1041 | 276 41 1 1042 | 276 42 1 1043 | 276 274 1 1044 | 276 275 1 1045 | 277 14 1 1046 | 278 277 1 1047 | 278 14 1 1048 | 279 101 1 1049 | 280 279 1 1050 | 281 174 1 1051 | 281 39 1 1052 | 282 106 1 1053 | 283 282 1 1054 | 283 106 1 1055 | 284 74 1 1056 | 284 68 1 1057 | 284 66 1 1058 | 285 94 1 1059 | 286 20 1 1060 | 287 286 1 1061 | 287 20 1 1062 | 288 168 1 1063 | 289 168 1 1064 | 289 288 1 1065 | 290 168 1 1066 | 290 289 1 1067 | 290 51 1 1068 | 291 168 1 1069 | 291 289 1 1070 | 292 149 1 1071 | 292 148 1 1072 | 292 269 1 1073 | 293 149 1 1074 | 293 269 1 1075 | 293 270 1 1076 | 294 25 1 1077 | 295 25 1 1078 | 295 294 1 1079 | 296 25 1 1080 | 296 230 1 1081 | 297 203 1 1082 | 297 244 1 1083 | 297 200 1 1084 | 297 4 1 1085 | 298 264 1 1086 | 298 64 1 1087 | 299 298 1 1088 | 299 264 1 1089 | 299 64 1 1090 | 300 298 1 1091 | 300 299 1 1092 | 300 264 1 1093 | 300 64 1 1094 | 301 298 1 1095 | 301 64 1 1096 | 301 264 1 1097 | 302 71 1 1098 | 302 118 1 1099 | 302 69 1 1100 | 302 213 1 1101 | 303 37 1 1102 | 303 59 1 1103 | 304 37 1 1104 | 304 303 1 1105 | 305 25 1 1106 | 306 50 1 1107 | 306 31 1 1108 | 307 50 1 1109 | 307 94 1 1110 | 308 183 1 1111 | 308 184 1 1112 | 308 185 1 1113 | 309 308 1 1114 | 309 183 1 1115 | 309 184 1 1116 | 309 185 1 1117 | 310 100 1 1118 | 311 112 1 1119 | 311 113 1 1120 | 312 15 1 1121 | 312 4 1 1122 | 312 249 1 1123 | 312 3 1 1124 | 313 312 1 1125 | 313 15 1 1126 | 313 4 1 1127 | 313 249 1 1128 | 313 3 1 1129 | 314 25 1 1130 | 315 314 1 1131 | 315 25 1 1132 | 316 314 1 1133 | 316 315 1 1134 | 316 25 1 1135 | 317 115 1 1136 | 318 317 1 1137 | 318 115 1 1138 | 319 317 1 1139 | 319 115 1 1140 | 319 318 1 1141 | 320 317 1 1142 | 320 115 1 1143 | 320 318 1 1144 | 320 319 1 1145 | 321 159 1 1146 | 321 50 1 1147 | 322 44 1 1148 | 322 15 1 1149 | 322 3 1 1150 | 323 44 1 1151 | 323 322 1 1152 | 323 15 1 1153 | 323 3 1 1154 | 324 171 1 1155 | 325 238 1 1156 | 325 239 1 1157 | 325 39 1 1158 | 326 125 1 1159 | 326 126 1 1160 | 326 127 1 1161 | 327 302 1 1162 | 327 69 1 1163 | 328 327 1 1164 | 328 302 1 1165 | 328 69 1 1166 | 329 125 1 1167 | 329 126 1 1168 | 329 3 1 1169 | 329 127 1 1170 | 331 330 1 1171 | 332 330 1 1172 | 332 331 1 1173 | 333 330 1 1174 | 333 331 1 1175 | 333 332 1 1176 | 333 14 1 1177 | 334 330 1 1178 | 334 331 1 1179 | 334 332 1 1180 | 334 333 1 1181 | 335 169 1 1182 | 336 94 1 1183 | 336 50 1 1184 | 336 307 1 1185 | 337 94 1 1186 | 338 94 1 1187 | 338 337 1 1188 | 339 127 1 1189 | 340 339 1 1190 | 340 127 1 1191 | 341 7 1 1192 | 341 136 1 1193 | 342 7 1 1194 | 342 341 1 1195 | 342 136 1 1196 | 343 7 1 1197 | 344 64 1 1198 | 345 344 1 1199 | 345 64 1 1200 | 346 114 1 1201 | 346 171 1 1202 | 347 302 1 1203 | 347 69 1 1204 | 347 118 1 1205 | 347 213 1 1206 | 348 347 1 1207 | 348 302 1 1208 | 348 69 1 1209 | 348 118 1 1210 | 348 213 1 1211 | 349 347 1 1212 | 349 302 1 1213 | 349 348 1 1214 | 349 69 1 1215 | 349 118 1 1216 | 349 213 1 1217 | 350 347 1 1218 | 350 302 1 1219 | 350 348 1 1220 | 350 69 1 1221 | 350 118 1 1222 | 350 349 1 1223 | 350 213 1 1224 | 351 112 1 1225 | 351 134 1 1226 | 352 351 1 1227 | 352 112 1 1228 | 352 134 1 1229 | 353 351 1 1230 | 353 352 1 1231 | 353 112 1 1232 | 353 134 1 1233 | 354 351 1 1234 | 354 352 1 1235 | 354 112 1 1236 | 354 353 1 1237 | 354 134 1 1238 | 355 351 1 1239 | 355 352 1 1240 | 355 112 1 1241 | 355 353 1 1242 | 355 134 1 1243 | 355 354 1 1244 | 356 59 1 1245 | 356 303 1 1246 | 357 59 1 1247 | 357 356 1 1248 | 357 303 1 1249 | 358 59 1 1250 | 358 356 1 1251 | 358 303 1 1252 | 358 357 1 1253 | 359 101 1 1254 | 359 279 1 1255 | 360 359 1 1256 | 360 101 1 1257 | 360 279 1 1258 | 361 96 1 1259 | 361 94 1 1260 | 362 66 1 1261 | 363 169 1 1262 | 363 41 1 1263 | 363 51 1 1264 | 364 16 1 1265 | 364 17 1 1266 | 365 14 1 1267 | 365 333 1 1268 | 366 14 1 1269 | 366 365 1 1270 | 366 333 1 1271 | 367 14 1 1272 | 367 365 1 1273 | 367 333 1 1274 | 367 366 1 1275 | 368 31 1 1276 | 369 368 1 1277 | 369 31 1 1278 | 370 15 1 1279 | 370 3 1 1280 | 371 106 1 1281 | 372 4 1 1282 | 372 3 1 1283 | 372 15 1 1284 | 373 372 1 1285 | 373 4 1 1286 | 373 3 1 1287 | 374 206 1 1288 | 375 374 1 1289 | 375 206 1 1290 | 376 374 1 1291 | 376 206 1 1292 | 376 375 1 1293 | 377 302 1 1294 | 377 69 1 1295 | 378 377 1 1296 | 378 302 1 1297 | 378 69 1 1298 | -------------------------------------------------------------------------------- /graphs/price_1000.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | 222 226 | 223 227 | 224 228 | 225 229 | 226 230 | 227 231 | 228 232 | 229 233 | 230 234 | 231 235 | 232 236 | 233 237 | 234 238 | 235 239 | 236 240 | 237 241 | 238 242 | 239 243 | 240 244 | 241 245 | 242 246 | 243 247 | 244 248 | 245 249 | 246 250 | 247 251 | 248 252 | 249 253 | 250 254 | 251 255 | 252 256 | 253 257 | 254 258 | 255 259 | 256 260 | 257 261 | 258 262 | 259 263 | 260 264 | 261 265 | 262 266 | 263 267 | 264 268 | 265 269 | 266 270 | 267 271 | 268 272 | 269 273 | 270 274 | 271 275 | 272 276 | 273 277 | 274 278 | 275 279 | 276 280 | 277 281 | 278 282 | 279 283 | 280 284 | 281 285 | 282 286 | 283 287 | 284 288 | 285 289 | 286 290 | 287 291 | 288 292 | 289 293 | 290 294 | 291 295 | 292 296 | 293 297 | 294 298 | 295 299 | 296 300 | 297 301 | 298 302 | 299 303 | 300 304 | 301 305 | 302 306 | 303 307 | 304 308 | 305 309 | 306 310 | 307 311 | 308 312 | 309 313 | 310 314 | 311 315 | 312 316 | 313 317 | 314 318 | 315 319 | 316 320 | 317 321 | 318 322 | 319 323 | 320 324 | 321 325 | 322 326 | 323 327 | 324 328 | 325 329 | 326 330 | 327 331 | 328 332 | 329 333 | 330 334 | 331 335 | 332 336 | 333 337 | 334 338 | 335 339 | 336 340 | 337 341 | 338 342 | 339 343 | 340 344 | 341 345 | 342 346 | 343 347 | 344 348 | 345 349 | 346 350 | 347 351 | 348 352 | 349 353 | 350 354 | 351 355 | 352 356 | 353 357 | 354 358 | 355 359 | 356 360 | 357 361 | 358 362 | 359 363 | 360 364 | 361 365 | 362 366 | 363 367 | 364 368 | 365 369 | 366 370 | 367 371 | 368 372 | 369 373 | 370 374 | 371 375 | 372 376 | 373 377 | 374 378 | 375 379 | 376 380 | 377 381 | 378 382 | 379 383 | 380 384 | 381 385 | 382 386 | 383 387 | 384 388 | 385 389 | 386 390 | 387 391 | 388 392 | 389 393 | 390 394 | 391 395 | 392 396 | 393 397 | 394 398 | 395 399 | 396 400 | 397 401 | 398 402 | 399 403 | 400 404 | 401 405 | 402 406 | 403 407 | 404 408 | 405 409 | 406 410 | 407 411 | 408 412 | 409 413 | 410 414 | 411 415 | 412 416 | 413 417 | 414 418 | 415 419 | 416 420 | 417 421 | 418 422 | 419 423 | 420 424 | 421 425 | 422 426 | 423 427 | 424 428 | 425 429 | 426 430 | 427 431 | 428 432 | 429 433 | 430 434 | 431 435 | 432 436 | 433 437 | 434 438 | 435 439 | 436 440 | 437 441 | 438 442 | 439 443 | 440 444 | 441 445 | 442 446 | 443 447 | 444 448 | 445 449 | 446 450 | 447 451 | 448 452 | 449 453 | 450 454 | 451 455 | 452 456 | 453 457 | 454 458 | 455 459 | 456 460 | 457 461 | 458 462 | 459 463 | 460 464 | 461 465 | 462 466 | 463 467 | 464 468 | 465 469 | 466 470 | 467 471 | 468 472 | 469 473 | 470 474 | 471 475 | 472 476 | 473 477 | 474 478 | 475 479 | 476 480 | 477 481 | 478 482 | 479 483 | 480 484 | 481 485 | 482 486 | 483 487 | 484 488 | 485 489 | 486 490 | 487 491 | 488 492 | 489 493 | 490 494 | 491 495 | 492 496 | 493 497 | 494 498 | 495 499 | 496 500 | 497 501 | 498 502 | 499 503 | 500 504 | 501 505 | 502 506 | 503 507 | 504 508 | 505 509 | 506 510 | 507 511 | 508 512 | 509 513 | 510 514 | 511 515 | 512 516 | 513 517 | 514 518 | 515 519 | 516 520 | 517 521 | 518 522 | 519 523 | 520 524 | 521 525 | 522 526 | 523 527 | 524 528 | 525 529 | 526 530 | 527 531 | 528 532 | 529 533 | 530 534 | 531 535 | 532 536 | 533 537 | 534 538 | 535 539 | 536 540 | 537 541 | 538 542 | 539 543 | 540 544 | 541 545 | 542 546 | 543 547 | 544 548 | 545 549 | 546 550 | 547 551 | 548 552 | 549 553 | 550 554 | 551 555 | 552 556 | 553 557 | 554 558 | 555 559 | 556 560 | 557 561 | 558 562 | 559 563 | 560 564 | 561 565 | 562 566 | 563 567 | 564 568 | 565 569 | 566 570 | 567 571 | 568 572 | 569 573 | 570 574 | 571 575 | 572 576 | 573 577 | 574 578 | 575 579 | 576 580 | 577 581 | 578 582 | 579 583 | 580 584 | 581 585 | 582 586 | 583 587 | 584 588 | 585 589 | 586 590 | 587 591 | 588 592 | 589 593 | 590 594 | 591 595 | 592 596 | 593 597 | 594 598 | 595 599 | 596 600 | 597 601 | 598 602 | 599 603 | 600 604 | 601 605 | 602 606 | 603 607 | 604 608 | 605 609 | 606 610 | 607 611 | 608 612 | 609 613 | 610 614 | 611 615 | 612 616 | 613 617 | 614 618 | 615 619 | 616 620 | 617 621 | 618 622 | 619 623 | 620 624 | 621 625 | 622 626 | 623 627 | 624 628 | 625 629 | 626 630 | 627 631 | 628 632 | 629 633 | 630 634 | 631 635 | 632 636 | 633 637 | 634 638 | 635 639 | 636 640 | 637 641 | 638 642 | 639 643 | 640 644 | 641 645 | 642 646 | 643 647 | 644 648 | 645 649 | 646 650 | 647 651 | 648 652 | 649 653 | 650 654 | 651 655 | 652 656 | 653 657 | 654 658 | 655 659 | 656 660 | 657 661 | 658 662 | 659 663 | 660 664 | 661 665 | 662 666 | 663 667 | 664 668 | 665 669 | 666 670 | 667 671 | 668 672 | 669 673 | 670 674 | 671 675 | 672 676 | 673 677 | 674 678 | 675 679 | 676 680 | 677 681 | 678 682 | 679 683 | 680 684 | 681 685 | 682 686 | 683 687 | 684 688 | 685 689 | 686 690 | 687 691 | 688 692 | 689 693 | 690 694 | 691 695 | 692 696 | 693 697 | 694 698 | 695 699 | 696 700 | 697 701 | 698 702 | 699 703 | 700 704 | 701 705 | 702 706 | 703 707 | 704 708 | 705 709 | 706 710 | 707 711 | 708 712 | 709 713 | 710 714 | 711 715 | 712 716 | 713 717 | 714 718 | 715 719 | 716 720 | 717 721 | 718 722 | 719 723 | 720 724 | 721 725 | 722 726 | 723 727 | 724 728 | 725 729 | 726 730 | 727 731 | 728 732 | 729 733 | 730 734 | 731 735 | 732 736 | 733 737 | 734 738 | 735 739 | 736 740 | 737 741 | 738 742 | 739 743 | 740 744 | 741 745 | 742 746 | 743 747 | 744 748 | 745 749 | 746 750 | 747 751 | 748 752 | 749 753 | 750 754 | 751 755 | 752 756 | 753 757 | 754 758 | 755 759 | 756 760 | 757 761 | 758 762 | 759 763 | 760 764 | 761 765 | 762 766 | 763 767 | 764 768 | 765 769 | 766 770 | 767 771 | 768 772 | 769 773 | 770 774 | 771 775 | 772 776 | 773 777 | 774 778 | 775 779 | 776 780 | 777 781 | 778 782 | 779 783 | 780 784 | 781 785 | 782 786 | 783 787 | 784 788 | 785 789 | 786 790 | 787 791 | 788 792 | 789 793 | 790 794 | 791 795 | 792 796 | 793 797 | 794 798 | 795 799 | 796 800 | 797 801 | 798 802 | 799 803 | 800 804 | 801 805 | 802 806 | 803 807 | 804 808 | 805 809 | 806 810 | 807 811 | 808 812 | 809 813 | 810 814 | 811 815 | 812 816 | 813 817 | 814 818 | 815 819 | 816 820 | 817 821 | 818 822 | 819 823 | 820 824 | 821 825 | 822 826 | 823 827 | 824 828 | 825 829 | 826 830 | 827 831 | 828 832 | 829 833 | 830 834 | 831 835 | 832 836 | 833 837 | 834 838 | 835 839 | 836 840 | 837 841 | 838 842 | 839 843 | 840 844 | 841 845 | 842 846 | 843 847 | 844 848 | 845 849 | 846 850 | 847 851 | 848 852 | 849 853 | 850 854 | 851 855 | 852 856 | 853 857 | 854 858 | 855 859 | 856 860 | 857 861 | 858 862 | 859 863 | 860 864 | 861 865 | 862 866 | 863 867 | 864 868 | 865 869 | 866 870 | 867 871 | 868 872 | 869 873 | 870 874 | 871 875 | 872 876 | 873 877 | 874 878 | 875 879 | 876 880 | 877 881 | 878 882 | 879 883 | 880 884 | 881 885 | 882 886 | 883 887 | 884 888 | 885 889 | 886 890 | 887 891 | 888 892 | 889 893 | 890 894 | 891 895 | 892 896 | 893 897 | 894 898 | 895 899 | 896 900 | 897 901 | 898 902 | 899 903 | 900 904 | 901 905 | 902 906 | 903 907 | 904 908 | 905 909 | 906 910 | 907 911 | 908 912 | 909 913 | 910 914 | 911 915 | 912 916 | 913 917 | 914 918 | 915 919 | 916 920 | 917 921 | 918 922 | 919 923 | 920 924 | 921 925 | 922 926 | 923 927 | 924 928 | 925 929 | 926 930 | 927 931 | 928 932 | 929 933 | 930 934 | 931 935 | 932 936 | 933 937 | 934 938 | 935 939 | 936 940 | 937 941 | 938 942 | 939 943 | 940 944 | 941 945 | 942 946 | 943 947 | 944 948 | 945 949 | 946 950 | 947 951 | 948 952 | 949 953 | 950 954 | 951 955 | 952 956 | 953 957 | 954 958 | 955 959 | 956 960 | 957 961 | 958 962 | 959 963 | 960 964 | 961 965 | 962 966 | 963 967 | 964 968 | 965 969 | 966 970 | 967 971 | 968 972 | 969 973 | 970 974 | 971 975 | 972 976 | 973 977 | 974 978 | 975 979 | 976 980 | 977 981 | 978 982 | 979 983 | 980 984 | 981 985 | 982 986 | 983 987 | 984 988 | 985 989 | 986 990 | 987 991 | 988 992 | 989 993 | 990 994 | 991 995 | 992 996 | 993 997 | 994 998 | 995 999 | 996 1000 | 997 1001 | 998 1002 | 999 1003 | *Tie data 1004 | from to strength 1005 | 1 0 1 1006 | 2 1 1 1007 | 3 1 1 1008 | 4 1 1 1009 | 5 4 1 1010 | 6 1 1 1011 | 7 1 1 1012 | 8 1 1 1013 | 9 3 1 1014 | 10 0 1 1015 | 11 0 1 1016 | 12 5 1 1017 | 13 0 1 1018 | 14 0 1 1019 | 15 10 1 1020 | 16 0 1 1021 | 17 5 1 1022 | 18 1 1 1023 | 19 7 1 1024 | 20 1 1 1025 | 21 3 1 1026 | 22 7 1 1027 | 23 5 1 1028 | 24 0 1 1029 | 25 2 1 1030 | 26 23 1 1031 | 27 1 1 1032 | 28 7 1 1033 | 29 0 1 1034 | 30 9 1 1035 | 31 5 1 1036 | 32 13 1 1037 | 33 7 1 1038 | 34 10 1 1039 | 35 1 1 1040 | 36 1 1 1041 | 37 1 1 1042 | 38 1 1 1043 | 39 3 1 1044 | 40 1 1 1045 | 41 3 1 1046 | 42 10 1 1047 | 43 1 1 1048 | 44 3 1 1049 | 45 5 1 1050 | 46 12 1 1051 | 47 17 1 1052 | 48 36 1 1053 | 49 44 1 1054 | 50 0 1 1055 | 51 27 1 1056 | 52 44 1 1057 | 53 0 1 1058 | 54 40 1 1059 | 55 4 1 1060 | 56 53 1 1061 | 57 1 1 1062 | 58 0 1 1063 | 59 25 1 1064 | 60 23 1 1065 | 61 16 1 1066 | 62 3 1 1067 | 63 36 1 1068 | 64 12 1 1069 | 65 45 1 1070 | 66 27 1 1071 | 67 12 1 1072 | 68 1 1 1073 | 69 1 1 1074 | 70 63 1 1075 | 71 1 1 1076 | 72 6 1 1077 | 73 25 1 1078 | 74 46 1 1079 | 75 9 1 1080 | 76 62 1 1081 | 77 7 1 1082 | 78 1 1 1083 | 79 0 1 1084 | 80 36 1 1085 | 81 60 1 1086 | 82 55 1 1087 | 83 12 1 1088 | 84 4 1 1089 | 85 1 1 1090 | 86 80 1 1091 | 87 1 1 1092 | 88 80 1 1093 | 89 6 1 1094 | 90 4 1 1095 | 91 10 1 1096 | 92 1 1 1097 | 93 6 1 1098 | 94 78 1 1099 | 95 44 1 1100 | 96 67 1 1101 | 97 6 1 1102 | 98 17 1 1103 | 99 7 1 1104 | 100 81 1 1105 | 101 3 1 1106 | 102 69 1 1107 | 103 72 1 1108 | 104 83 1 1109 | 105 0 1 1110 | 106 12 1 1111 | 107 45 1 1112 | 108 1 1 1113 | 109 0 1 1114 | 110 26 1 1115 | 111 42 1 1116 | 112 32 1 1117 | 113 26 1 1118 | 114 8 1 1119 | 115 53 1 1120 | 116 53 1 1121 | 117 98 1 1122 | 118 1 1 1123 | 119 63 1 1124 | 120 81 1 1125 | 121 31 1 1126 | 122 36 1 1127 | 123 27 1 1128 | 124 1 1 1129 | 125 53 1 1130 | 126 6 1 1131 | 127 44 1 1132 | 128 54 1 1133 | 129 7 1 1134 | 130 6 1 1135 | 131 17 1 1136 | 132 52 1 1137 | 133 0 1 1138 | 134 17 1 1139 | 135 26 1 1140 | 136 26 1 1141 | 137 1 1 1142 | 138 12 1 1143 | 139 0 1 1144 | 140 109 1 1145 | 141 27 1 1146 | 142 72 1 1147 | 143 36 1 1148 | 144 14 1 1149 | 145 1 1 1150 | 146 44 1 1151 | 147 44 1 1152 | 148 3 1 1153 | 149 1 1 1154 | 150 16 1 1155 | 151 42 1 1156 | 152 34 1 1157 | 153 1 1 1158 | 154 98 1 1159 | 155 56 1 1160 | 156 0 1 1161 | 157 41 1 1162 | 158 12 1 1163 | 159 88 1 1164 | 160 3 1 1165 | 161 72 1 1166 | 162 98 1 1167 | 163 2 1 1168 | 164 137 1 1169 | 165 17 1 1170 | 166 123 1 1171 | 167 87 1 1172 | 168 2 1 1173 | 169 7 1 1174 | 170 10 1 1175 | 171 2 1 1176 | 172 72 1 1177 | 173 26 1 1178 | 174 4 1 1179 | 175 45 1 1180 | 176 1 1 1181 | 177 91 1 1182 | 178 8 1 1183 | 179 52 1 1184 | 180 148 1 1185 | 181 27 1 1186 | 182 4 1 1187 | 183 1 1 1188 | 184 0 1 1189 | 185 2 1 1190 | 186 148 1 1191 | 187 27 1 1192 | 188 72 1 1193 | 189 188 1 1194 | 190 119 1 1195 | 191 26 1 1196 | 192 136 1 1197 | 193 27 1 1198 | 194 26 1 1199 | 195 3 1 1200 | 196 44 1 1201 | 197 1 1 1202 | 198 0 1 1203 | 199 159 1 1204 | 200 58 1 1205 | 201 178 1 1206 | 202 64 1 1207 | 203 113 1 1208 | 204 124 1 1209 | 205 83 1 1210 | 206 136 1 1211 | 207 128 1 1212 | 208 23 1 1213 | 209 120 1 1214 | 210 119 1 1215 | 211 64 1 1216 | 212 13 1 1217 | 213 124 1 1218 | 214 1 1 1219 | 215 152 1 1220 | 216 145 1 1221 | 217 202 1 1222 | 218 217 1 1223 | 219 45 1 1224 | 220 12 1 1225 | 221 14 1 1226 | 222 124 1 1227 | 223 38 1 1228 | 224 123 1 1229 | 225 72 1 1230 | 226 183 1 1231 | 227 114 1 1232 | 228 222 1 1233 | 229 137 1 1234 | 230 98 1 1235 | 231 46 1 1236 | 232 16 1 1237 | 233 135 1 1238 | 234 42 1 1239 | 235 188 1 1240 | 236 62 1 1241 | 237 232 1 1242 | 238 44 1 1243 | 239 2 1 1244 | 240 132 1 1245 | 241 1 1 1246 | 242 45 1 1247 | 243 233 1 1248 | 244 50 1 1249 | 245 126 1 1250 | 246 42 1 1251 | 247 10 1 1252 | 248 1 1 1253 | 249 27 1 1254 | 250 23 1 1255 | 251 217 1 1256 | 252 165 1 1257 | 253 3 1 1258 | 254 3 1 1259 | 255 6 1 1260 | 256 191 1 1261 | 257 200 1 1262 | 258 255 1 1263 | 259 87 1 1264 | 260 193 1 1265 | 261 143 1 1266 | 262 196 1 1267 | 263 23 1 1268 | 264 62 1 1269 | 265 173 1 1270 | 266 173 1 1271 | 267 7 1 1272 | 268 152 1 1273 | 269 42 1 1274 | 270 52 1 1275 | 271 16 1 1276 | 272 6 1 1277 | 273 131 1 1278 | 274 251 1 1279 | 275 111 1 1280 | 276 17 1 1281 | 277 272 1 1282 | 278 180 1 1283 | 279 150 1 1284 | 280 51 1 1285 | 281 67 1 1286 | 282 26 1 1287 | 283 280 1 1288 | 284 7 1 1289 | 285 1 1 1290 | 286 0 1 1291 | 287 0 1 1292 | 288 16 1 1293 | 289 52 1 1294 | 290 60 1 1295 | 291 52 1 1296 | 292 150 1 1297 | 293 181 1 1298 | 294 243 1 1299 | 295 83 1 1300 | 296 63 1 1301 | 297 103 1 1302 | 298 135 1 1303 | 299 246 1 1304 | 300 201 1 1305 | 301 113 1 1306 | 302 200 1 1307 | 303 7 1 1308 | 304 7 1 1309 | 305 34 1 1310 | 306 149 1 1311 | 307 0 1 1312 | 308 246 1 1313 | 309 222 1 1314 | 310 24 1 1315 | 311 208 1 1316 | 312 38 1 1317 | 313 268 1 1318 | 314 36 1 1319 | 315 124 1 1320 | 316 119 1 1321 | 317 161 1 1322 | 318 27 1 1323 | 319 13 1 1324 | 320 298 1 1325 | 321 207 1 1326 | 322 54 1 1327 | 323 27 1 1328 | 324 314 1 1329 | 325 7 1 1330 | 326 12 1 1331 | 327 207 1 1332 | 328 137 1 1333 | 329 119 1 1334 | 330 320 1 1335 | 331 98 1 1336 | 332 0 1 1337 | 333 123 1 1338 | 334 328 1 1339 | 335 153 1 1340 | 336 4 1 1341 | 337 4 1 1342 | 338 12 1 1343 | 339 282 1 1344 | 340 46 1 1345 | 341 282 1 1346 | 342 52 1 1347 | 343 44 1 1348 | 344 0 1 1349 | 345 7 1 1350 | 346 55 1 1351 | 347 3 1 1352 | 348 162 1 1353 | 349 265 1 1354 | 350 146 1 1355 | 351 3 1 1356 | 352 173 1 1357 | 353 145 1 1358 | 354 289 1 1359 | 355 42 1 1360 | 356 27 1 1361 | 357 7 1 1362 | 358 111 1 1363 | 359 0 1 1364 | 360 88 1 1365 | 361 0 1 1366 | 362 46 1 1367 | 363 307 1 1368 | 364 13 1 1369 | 365 55 1 1370 | 366 66 1 1371 | 367 254 1 1372 | 368 293 1 1373 | 369 53 1 1374 | 370 135 1 1375 | 371 99 1 1376 | 372 358 1 1377 | 373 119 1 1378 | 374 64 1 1379 | 375 261 1 1380 | 376 78 1 1381 | 377 36 1 1382 | 378 124 1 1383 | 379 162 1 1384 | 380 32 1 1385 | 381 23 1 1386 | 382 69 1 1387 | 383 145 1 1388 | 384 63 1 1389 | 385 80 1 1390 | 386 120 1 1391 | 387 53 1 1392 | 388 105 1 1393 | 389 129 1 1394 | 390 7 1 1395 | 391 162 1 1396 | 392 164 1 1397 | 393 350 1 1398 | 394 290 1 1399 | 395 120 1 1400 | 396 135 1 1401 | 397 340 1 1402 | 398 311 1 1403 | 399 27 1 1404 | 400 3 1 1405 | 401 76 1 1406 | 402 74 1 1407 | 403 53 1 1408 | 404 287 1 1409 | 405 10 1 1410 | 406 36 1 1411 | 407 16 1 1412 | 408 64 1 1413 | 409 118 1 1414 | 410 16 1 1415 | 411 261 1 1416 | 412 2 1 1417 | 413 44 1 1418 | 414 3 1 1419 | 415 206 1 1420 | 416 14 1 1421 | 417 123 1 1422 | 418 328 1 1423 | 419 33 1 1424 | 420 255 1 1425 | 421 31 1 1426 | 422 137 1 1427 | 423 302 1 1428 | 424 75 1 1429 | 425 335 1 1430 | 426 45 1 1431 | 427 132 1 1432 | 428 1 1 1433 | 429 328 1 1434 | 430 289 1 1435 | 431 0 1 1436 | 432 45 1 1437 | 433 173 1 1438 | 434 299 1 1439 | 435 309 1 1440 | 436 416 1 1441 | 437 63 1 1442 | 438 117 1 1443 | 439 27 1 1444 | 440 46 1 1445 | 441 197 1 1446 | 442 314 1 1447 | 443 324 1 1448 | 444 388 1 1449 | 445 220 1 1450 | 446 72 1 1451 | 447 134 1 1452 | 448 121 1 1453 | 449 52 1 1454 | 450 135 1 1455 | 451 63 1 1456 | 452 142 1 1457 | 453 12 1 1458 | 454 120 1 1459 | 455 16 1 1460 | 456 387 1 1461 | 457 391 1 1462 | 458 451 1 1463 | 459 137 1 1464 | 460 120 1 1465 | 461 319 1 1466 | 462 268 1 1467 | 463 286 1 1468 | 464 108 1 1469 | 465 428 1 1470 | 466 16 1 1471 | 467 16 1 1472 | 468 56 1 1473 | 469 266 1 1474 | 470 44 1 1475 | 471 455 1 1476 | 472 7 1 1477 | 473 306 1 1478 | 474 144 1 1479 | 475 173 1 1480 | 476 33 1 1481 | 477 30 1 1482 | 478 120 1 1483 | 479 0 1 1484 | 480 58 1 1485 | 481 6 1 1486 | 482 153 1 1487 | 483 42 1 1488 | 484 124 1 1489 | 485 1 1 1490 | 486 82 1 1491 | 487 269 1 1492 | 488 173 1 1493 | 489 294 1 1494 | 490 409 1 1495 | 491 338 1 1496 | 492 258 1 1497 | 493 44 1 1498 | 494 9 1 1499 | 495 123 1 1500 | 496 1 1 1501 | 497 307 1 1502 | 498 421 1 1503 | 499 115 1 1504 | 500 27 1 1505 | 501 9 1 1506 | 502 399 1 1507 | 503 52 1 1508 | 504 28 1 1509 | 505 34 1 1510 | 506 325 1 1511 | 507 12 1 1512 | 508 76 1 1513 | 509 30 1 1514 | 510 234 1 1515 | 511 357 1 1516 | 512 173 1 1517 | 513 127 1 1518 | 514 298 1 1519 | 515 36 1 1520 | 516 315 1 1521 | 517 3 1 1522 | 518 6 1 1523 | 519 153 1 1524 | 520 78 1 1525 | 521 327 1 1526 | 522 371 1 1527 | 523 55 1 1528 | 524 2 1 1529 | 525 63 1 1530 | 526 482 1 1531 | 527 1 1 1532 | 528 39 1 1533 | 529 297 1 1534 | 530 72 1 1535 | 531 136 1 1536 | 532 120 1 1537 | 533 406 1 1538 | 534 144 1 1539 | 535 125 1 1540 | 536 45 1 1541 | 537 282 1 1542 | 538 408 1 1543 | 539 279 1 1544 | 540 302 1 1545 | 541 120 1 1546 | 542 120 1 1547 | 543 63 1 1548 | 544 42 1 1549 | 545 306 1 1550 | 546 5 1 1551 | 547 544 1 1552 | 548 162 1 1553 | 549 2 1 1554 | 550 391 1 1555 | 551 393 1 1556 | 552 161 1 1557 | 553 30 1 1558 | 554 274 1 1559 | 555 246 1 1560 | 556 60 1 1561 | 557 144 1 1562 | 558 80 1 1563 | 559 298 1 1564 | 560 353 1 1565 | 561 26 1 1566 | 562 45 1 1567 | 563 162 1 1568 | 564 246 1 1569 | 565 123 1 1570 | 566 83 1 1571 | 567 1 1 1572 | 568 148 1 1573 | 569 44 1 1574 | 570 1 1 1575 | 571 24 1 1576 | 572 417 1 1577 | 573 166 1 1578 | 574 159 1 1579 | 575 134 1 1580 | 576 208 1 1581 | 577 38 1 1582 | 578 319 1 1583 | 579 7 1 1584 | 580 42 1 1585 | 581 181 1 1586 | 582 1 1 1587 | 583 283 1 1588 | 584 306 1 1589 | 585 386 1 1590 | 586 503 1 1591 | 587 24 1 1592 | 588 319 1 1593 | 589 7 1 1594 | 590 145 1 1595 | 591 144 1 1596 | 592 78 1 1597 | 593 288 1 1598 | 594 3 1 1599 | 595 217 1 1600 | 596 23 1 1601 | 597 2 1 1602 | 598 594 1 1603 | 599 152 1 1604 | 600 154 1 1605 | 601 324 1 1606 | 602 332 1 1607 | 603 273 1 1608 | 604 591 1 1609 | 605 563 1 1610 | 606 1 1 1611 | 607 124 1 1612 | 608 288 1 1613 | 609 72 1 1614 | 610 170 1 1615 | 611 248 1 1616 | 612 537 1 1617 | 613 472 1 1618 | 614 6 1 1619 | 615 459 1 1620 | 616 453 1 1621 | 617 512 1 1622 | 618 268 1 1623 | 619 7 1 1624 | 620 1 1 1625 | 621 151 1 1626 | 622 58 1 1627 | 623 209 1 1628 | 624 344 1 1629 | 625 128 1 1630 | 626 9 1 1631 | 627 7 1 1632 | 628 76 1 1633 | 629 59 1 1634 | 630 44 1 1635 | 631 421 1 1636 | 632 27 1 1637 | 633 36 1 1638 | 634 320 1 1639 | 635 143 1 1640 | 636 45 1 1641 | 637 0 1 1642 | 638 314 1 1643 | 639 525 1 1644 | 640 335 1 1645 | 641 1 1 1646 | 642 34 1 1647 | 643 60 1 1648 | 644 133 1 1649 | 645 150 1 1650 | 646 150 1 1651 | 647 44 1 1652 | 648 97 1 1653 | 649 34 1 1654 | 650 255 1 1655 | 651 622 1 1656 | 652 448 1 1657 | 653 451 1 1658 | 654 6 1 1659 | 655 299 1 1660 | 656 567 1 1661 | 657 497 1 1662 | 658 387 1 1663 | 659 397 1 1664 | 660 306 1 1665 | 661 59 1 1666 | 662 4 1 1667 | 663 23 1 1668 | 664 359 1 1669 | 665 165 1 1670 | 666 319 1 1671 | 667 86 1 1672 | 668 7 1 1673 | 669 622 1 1674 | 670 361 1 1675 | 671 128 1 1676 | 672 98 1 1677 | 673 74 1 1678 | 674 120 1 1679 | 675 10 1 1680 | 676 88 1 1681 | 677 179 1 1682 | 678 9 1 1683 | 679 3 1 1684 | 680 145 1 1685 | 681 517 1 1686 | 682 604 1 1687 | 683 10 1 1688 | 684 482 1 1689 | 685 114 1 1690 | 686 0 1 1691 | 687 493 1 1692 | 688 604 1 1693 | 689 82 1 1694 | 690 566 1 1695 | 691 390 1 1696 | 692 234 1 1697 | 693 539 1 1698 | 694 421 1 1699 | 695 570 1 1700 | 696 16 1 1701 | 697 406 1 1702 | 698 615 1 1703 | 699 552 1 1704 | 700 153 1 1705 | 701 9 1 1706 | 702 42 1 1707 | 703 87 1 1708 | 704 564 1 1709 | 705 3 1 1710 | 706 552 1 1711 | 707 98 1 1712 | 708 504 1 1713 | 709 562 1 1714 | 710 145 1 1715 | 711 306 1 1716 | 712 0 1 1717 | 713 135 1 1718 | 714 228 1 1719 | 715 572 1 1720 | 716 686 1 1721 | 717 668 1 1722 | 718 524 1 1723 | 719 124 1 1724 | 720 1 1 1725 | 721 135 1 1726 | 722 26 1 1727 | 723 617 1 1728 | 724 512 1 1729 | 725 169 1 1730 | 726 204 1 1731 | 727 63 1 1732 | 728 117 1 1733 | 729 499 1 1734 | 730 128 1 1735 | 731 574 1 1736 | 732 162 1 1737 | 733 256 1 1738 | 734 404 1 1739 | 735 642 1 1740 | 736 586 1 1741 | 737 118 1 1742 | 738 78 1 1743 | 739 387 1 1744 | 740 483 1 1745 | 741 246 1 1746 | 742 78 1 1747 | 743 716 1 1748 | 744 72 1 1749 | 745 686 1 1750 | 746 124 1 1751 | 747 191 1 1752 | 748 3 1 1753 | 749 572 1 1754 | 750 735 1 1755 | 751 343 1 1756 | 752 1 1 1757 | 753 7 1 1758 | 754 361 1 1759 | 755 24 1 1760 | 756 87 1 1761 | 757 120 1 1762 | 758 138 1 1763 | 759 230 1 1764 | 760 150 1 1765 | 761 56 1 1766 | 762 142 1 1767 | 763 16 1 1768 | 764 87 1 1769 | 765 530 1 1770 | 766 627 1 1771 | 767 246 1 1772 | 768 0 1 1773 | 769 37 1 1774 | 770 709 1 1775 | 771 91 1 1776 | 772 100 1 1777 | 773 548 1 1778 | 774 42 1 1779 | 775 134 1 1780 | 776 131 1 1781 | 777 179 1 1782 | 778 126 1 1783 | 779 208 1 1784 | 780 57 1 1785 | 781 72 1 1786 | 782 98 1 1787 | 783 0 1 1788 | 784 232 1 1789 | 785 161 1 1790 | 786 37 1 1791 | 787 611 1 1792 | 788 187 1 1793 | 789 406 1 1794 | 790 145 1 1795 | 791 201 1 1796 | 792 3 1 1797 | 793 258 1 1798 | 794 108 1 1799 | 795 6 1 1800 | 796 78 1 1801 | 797 5 1 1802 | 798 664 1 1803 | 799 18 1 1804 | 800 112 1 1805 | 801 52 1 1806 | 802 135 1 1807 | 803 415 1 1808 | 804 641 1 1809 | 805 170 1 1810 | 806 181 1 1811 | 807 500 1 1812 | 808 714 1 1813 | 809 561 1 1814 | 810 519 1 1815 | 811 347 1 1816 | 812 763 1 1817 | 813 699 1 1818 | 814 553 1 1819 | 815 90 1 1820 | 816 591 1 1821 | 817 123 1 1822 | 818 98 1 1823 | 819 234 1 1824 | 820 31 1 1825 | 821 220 1 1826 | 822 810 1 1827 | 823 2 1 1828 | 824 546 1 1829 | 825 1 1 1830 | 826 711 1 1831 | 827 6 1 1832 | 828 0 1 1833 | 829 181 1 1834 | 830 807 1 1835 | 831 497 1 1836 | 832 1 1 1837 | 833 143 1 1838 | 834 328 1 1839 | 835 237 1 1840 | 836 304 1 1841 | 837 281 1 1842 | 838 60 1 1843 | 839 732 1 1844 | 840 590 1 1845 | 841 613 1 1846 | 842 484 1 1847 | 843 35 1 1848 | 844 36 1 1849 | 845 105 1 1850 | 846 283 1 1851 | 847 36 1 1852 | 848 746 1 1853 | 849 7 1 1854 | 850 80 1 1855 | 851 139 1 1856 | 852 128 1 1857 | 853 441 1 1858 | 854 151 1 1859 | 855 100 1 1860 | 856 128 1 1861 | 857 709 1 1862 | 858 811 1 1863 | 859 200 1 1864 | 860 98 1 1865 | 861 757 1 1866 | 862 399 1 1867 | 863 625 1 1868 | 864 49 1 1869 | 865 2 1 1870 | 866 10 1 1871 | 867 328 1 1872 | 868 488 1 1873 | 869 705 1 1874 | 870 299 1 1875 | 871 111 1 1876 | 872 0 1 1877 | 873 273 1 1878 | 874 721 1 1879 | 875 298 1 1880 | 876 117 1 1881 | 877 65 1 1882 | 878 6 1 1883 | 879 38 1 1884 | 880 347 1 1885 | 881 872 1 1886 | 882 98 1 1887 | 883 88 1 1888 | 884 100 1 1889 | 885 572 1 1890 | 886 794 1 1891 | 887 46 1 1892 | 888 213 1 1893 | 889 6 1 1894 | 890 441 1 1895 | 891 375 1 1896 | 892 16 1 1897 | 893 561 1 1898 | 894 403 1 1899 | 895 248 1 1900 | 896 683 1 1901 | 897 298 1 1902 | 898 103 1 1903 | 899 0 1 1904 | 900 358 1 1905 | 901 891 1 1906 | 902 0 1 1907 | 903 121 1 1908 | 904 173 1 1909 | 905 78 1 1910 | 906 83 1 1911 | 907 293 1 1912 | 908 9 1 1913 | 909 740 1 1914 | 910 193 1 1915 | 911 731 1 1916 | 912 123 1 1917 | 913 23 1 1918 | 914 476 1 1919 | 915 1 1 1920 | 916 26 1 1921 | 917 7 1 1922 | 918 850 1 1923 | 919 120 1 1924 | 920 230 1 1925 | 921 283 1 1926 | 922 340 1 1927 | 923 114 1 1928 | 924 124 1 1929 | 925 871 1 1930 | 926 94 1 1931 | 927 613 1 1932 | 928 181 1 1933 | 929 117 1 1934 | 930 36 1 1935 | 931 120 1 1936 | 932 7 1 1937 | 933 924 1 1938 | 934 459 1 1939 | 935 299 1 1940 | 936 2 1 1941 | 937 120 1 1942 | 938 324 1 1943 | 939 290 1 1944 | 940 1 1 1945 | 941 306 1 1946 | 942 44 1 1947 | 943 0 1 1948 | 944 42 1 1949 | 945 821 1 1950 | 946 246 1 1951 | 947 307 1 1952 | 948 36 1 1953 | 949 58 1 1954 | 950 618 1 1955 | 951 2 1 1956 | 952 217 1 1957 | 953 3 1 1958 | 954 494 1 1959 | 955 181 1 1960 | 956 2 1 1961 | 957 1 1 1962 | 958 1 1 1963 | 959 835 1 1964 | 960 72 1 1965 | 961 240 1 1966 | 962 169 1 1967 | 963 112 1 1968 | 964 4 1 1969 | 965 415 1 1970 | 966 933 1 1971 | 967 664 1 1972 | 968 280 1 1973 | 969 544 1 1974 | 970 576 1 1975 | 971 30 1 1976 | 972 1 1 1977 | 973 595 1 1978 | 974 623 1 1979 | 975 10 1 1980 | 976 728 1 1981 | 977 90 1 1982 | 978 914 1 1983 | 979 90 1 1984 | 980 722 1 1985 | 981 78 1 1986 | 982 290 1 1987 | 983 149 1 1988 | 984 6 1 1989 | 985 411 1 1990 | 986 110 1 1991 | 987 411 1 1992 | 988 63 1 1993 | 989 297 1 1994 | 990 216 1 1995 | 991 593 1 1996 | 992 1 1 1997 | 993 892 1 1998 | 994 45 1 1999 | 995 3 1 2000 | 996 121 1 2001 | 997 668 1 2002 | 998 109 1 2003 | 999 387 1 2004 | -------------------------------------------------------------------------------- /graphs/rajat11.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | *Tie data 139 | from to strength 140 | 3 1 1 141 | 4 0 1 142 | 4 2 1 143 | 4 3 1 144 | 5 0 1 145 | 5 2 1 146 | 5 3 1 147 | 5 4 1 148 | 6 2 1 149 | 6 0 1 150 | 6 3 1 151 | 6 4 1 152 | 6 5 1 153 | 7 0 1 154 | 7 2 1 155 | 7 3 1 156 | 7 4 1 157 | 7 5 1 158 | 7 6 1 159 | 8 2 1 160 | 8 5 1 161 | 8 7 1 162 | 9 2 1 163 | 9 6 1 164 | 9 7 1 165 | 10 1 1 166 | 11 0 1 167 | 11 10 1 168 | 12 0 1 169 | 12 10 1 170 | 12 11 1 171 | 13 0 1 172 | 13 10 1 173 | 13 11 1 174 | 13 12 1 175 | 14 0 1 176 | 14 10 1 177 | 14 11 1 178 | 14 12 1 179 | 14 13 1 180 | 15 12 1 181 | 15 14 1 182 | 16 13 1 183 | 16 14 1 184 | 19 18 1 185 | 20 2 1 186 | 20 17 1 187 | 20 19 1 188 | 21 17 1 189 | 21 2 1 190 | 21 19 1 191 | 21 20 1 192 | 22 2 1 193 | 22 17 1 194 | 22 19 1 195 | 22 20 1 196 | 22 21 1 197 | 23 17 1 198 | 23 2 1 199 | 23 19 1 200 | 23 20 1 201 | 23 21 1 202 | 23 22 1 203 | 24 2 1 204 | 24 21 1 205 | 24 23 1 206 | 25 2 1 207 | 25 22 1 208 | 25 23 1 209 | 26 18 1 210 | 27 17 1 211 | 27 26 1 212 | 28 17 1 213 | 28 26 1 214 | 28 27 1 215 | 29 17 1 216 | 29 26 1 217 | 29 27 1 218 | 29 28 1 219 | 30 17 1 220 | 30 26 1 221 | 30 27 1 222 | 30 28 1 223 | 30 29 1 224 | 31 28 1 225 | 31 30 1 226 | 32 29 1 227 | 32 30 1 228 | 35 2 1 229 | 35 33 1 230 | 35 34 1 231 | 36 33 1 232 | 36 2 1 233 | 36 34 1 234 | 36 35 1 235 | 37 2 1 236 | 37 33 1 237 | 37 34 1 238 | 37 35 1 239 | 37 36 1 240 | 38 33 1 241 | 38 2 1 242 | 38 34 1 243 | 38 35 1 244 | 38 36 1 245 | 38 37 1 246 | 39 2 1 247 | 39 36 1 248 | 39 38 1 249 | 40 2 1 250 | 40 37 1 251 | 40 38 1 252 | 42 18 1 253 | 43 33 1 254 | 43 41 1 255 | 43 42 1 256 | 44 33 1 257 | 44 41 1 258 | 44 42 1 259 | 44 43 1 260 | 45 41 1 261 | 45 33 1 262 | 45 42 1 263 | 45 43 1 264 | 45 44 1 265 | 46 33 1 266 | 46 41 1 267 | 46 42 1 268 | 46 43 1 269 | 46 44 1 270 | 46 45 1 271 | 47 44 1 272 | 47 46 1 273 | 48 45 1 274 | 48 46 1 275 | 49 0 1 276 | 50 41 1 277 | 50 49 1 278 | 51 41 1 279 | 51 49 1 280 | 51 50 1 281 | 52 41 1 282 | 52 49 1 283 | 52 50 1 284 | 52 51 1 285 | 53 41 1 286 | 53 49 1 287 | 53 50 1 288 | 53 51 1 289 | 53 52 1 290 | 54 51 1 291 | 54 53 1 292 | 55 52 1 293 | 55 53 1 294 | 58 2 1 295 | 58 56 1 296 | 58 57 1 297 | 59 56 1 298 | 59 2 1 299 | 59 57 1 300 | 59 58 1 301 | 60 2 1 302 | 60 56 1 303 | 60 57 1 304 | 60 58 1 305 | 60 59 1 306 | 61 56 1 307 | 61 2 1 308 | 61 57 1 309 | 61 58 1 310 | 61 59 1 311 | 61 60 1 312 | 62 2 1 313 | 62 59 1 314 | 62 61 1 315 | 63 2 1 316 | 63 60 1 317 | 63 61 1 318 | 65 17 1 319 | 66 56 1 320 | 66 64 1 321 | 66 65 1 322 | 67 56 1 323 | 67 64 1 324 | 67 65 1 325 | 67 66 1 326 | 68 64 1 327 | 68 56 1 328 | 68 65 1 329 | 68 66 1 330 | 68 67 1 331 | 69 56 1 332 | 69 64 1 333 | 69 65 1 334 | 69 66 1 335 | 69 67 1 336 | 69 68 1 337 | 70 67 1 338 | 70 69 1 339 | 71 68 1 340 | 71 69 1 341 | 72 1 1 342 | 73 64 1 343 | 73 72 1 344 | 74 64 1 345 | 74 72 1 346 | 74 73 1 347 | 75 64 1 348 | 75 72 1 349 | 75 73 1 350 | 75 74 1 351 | 76 64 1 352 | 76 72 1 353 | 76 73 1 354 | 76 74 1 355 | 76 75 1 356 | 77 74 1 357 | 77 76 1 358 | 78 75 1 359 | 78 76 1 360 | 81 2 1 361 | 81 79 1 362 | 81 80 1 363 | 82 79 1 364 | 82 2 1 365 | 82 80 1 366 | 82 81 1 367 | 83 2 1 368 | 83 79 1 369 | 83 80 1 370 | 83 81 1 371 | 83 82 1 372 | 84 79 1 373 | 84 2 1 374 | 84 80 1 375 | 84 81 1 376 | 84 82 1 377 | 84 83 1 378 | 85 2 1 379 | 85 82 1 380 | 85 84 1 381 | 86 2 1 382 | 86 83 1 383 | 86 84 1 384 | 88 33 1 385 | 89 79 1 386 | 89 87 1 387 | 89 88 1 388 | 90 79 1 389 | 90 87 1 390 | 90 88 1 391 | 90 89 1 392 | 91 87 1 393 | 91 79 1 394 | 91 88 1 395 | 91 89 1 396 | 91 90 1 397 | 92 79 1 398 | 92 87 1 399 | 92 88 1 400 | 92 89 1 401 | 92 90 1 402 | 92 91 1 403 | 93 90 1 404 | 93 92 1 405 | 94 91 1 406 | 94 92 1 407 | 95 56 1 408 | 96 87 1 409 | 96 95 1 410 | 97 87 1 411 | 97 95 1 412 | 97 96 1 413 | 98 87 1 414 | 98 95 1 415 | 98 96 1 416 | 98 97 1 417 | 99 87 1 418 | 99 95 1 419 | 99 96 1 420 | 99 97 1 421 | 99 98 1 422 | 100 97 1 423 | 100 99 1 424 | 101 98 1 425 | 101 99 1 426 | 103 79 1 427 | 104 2 1 428 | 104 102 1 429 | 104 103 1 430 | 105 102 1 431 | 105 2 1 432 | 105 103 1 433 | 105 104 1 434 | 106 2 1 435 | 106 102 1 436 | 106 103 1 437 | 106 104 1 438 | 106 105 1 439 | 107 102 1 440 | 107 2 1 441 | 107 103 1 442 | 107 104 1 443 | 107 105 1 444 | 107 106 1 445 | 108 2 1 446 | 108 105 1 447 | 108 107 1 448 | 109 2 1 449 | 109 106 1 450 | 109 107 1 451 | 110 79 1 452 | 111 102 1 453 | 111 110 1 454 | 112 102 1 455 | 112 110 1 456 | 112 111 1 457 | 113 102 1 458 | 113 110 1 459 | 113 111 1 460 | 113 112 1 461 | 114 102 1 462 | 114 110 1 463 | 114 111 1 464 | 114 112 1 465 | 114 113 1 466 | 115 112 1 467 | 115 114 1 468 | 116 113 1 469 | 116 114 1 470 | 118 56 1 471 | 119 2 1 472 | 119 117 1 473 | 119 118 1 474 | 120 117 1 475 | 120 2 1 476 | 120 118 1 477 | 120 119 1 478 | 121 2 1 479 | 121 117 1 480 | 121 118 1 481 | 121 119 1 482 | 121 120 1 483 | 122 117 1 484 | 122 2 1 485 | 122 118 1 486 | 122 119 1 487 | 122 120 1 488 | 122 121 1 489 | 123 2 1 490 | 123 120 1 491 | 123 122 1 492 | 124 2 1 493 | 124 121 1 494 | 124 122 1 495 | 125 56 1 496 | 126 117 1 497 | 126 125 1 498 | 127 117 1 499 | 127 125 1 500 | 127 126 1 501 | 128 117 1 502 | 128 125 1 503 | 128 126 1 504 | 128 127 1 505 | 129 117 1 506 | 129 125 1 507 | 129 126 1 508 | 129 127 1 509 | 129 128 1 510 | 130 127 1 511 | 130 129 1 512 | 131 128 1 513 | 131 129 1 514 | 132 2 1 515 | 133 18 1 516 | 134 1 1 517 | -------------------------------------------------------------------------------- /graphs/visbrazil.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | *Tie data 226 | from to strength 227 | 1 0 1 228 | 2 0 1 229 | 4 1 1 230 | 4 2 1 231 | 7 5 1 232 | 9 8 1 233 | 10 8 1 234 | 11 8 1 235 | 13 7 1 236 | 15 14 1 237 | 17 16 1 238 | 19 18 1 239 | 21 20 1 240 | 25 24 1 241 | 32 31 1 242 | 35 19 1 243 | 35 25 1 244 | 36 35 1 245 | 39 38 1 246 | 41 40 1 247 | 44 35 1 248 | 44 43 1 249 | 46 30 1 250 | 46 45 1 251 | 47 45 1 252 | 48 45 1 253 | 49 41 1 254 | 51 50 1 255 | 58 57 1 256 | 59 15 1 257 | 59 19 1 258 | 59 32 1 259 | 60 31 1 260 | 60 59 1 261 | 61 31 1 262 | 61 59 1 263 | 62 6 1 264 | 62 59 1 265 | 63 62 1 266 | 65 62 1 267 | 69 23 1 268 | 69 68 1 269 | 72 35 1 270 | 72 43 1 271 | 72 59 1 272 | 72 71 1 273 | 73 71 1 274 | 74 59 1 275 | 74 71 1 276 | 76 42 1 277 | 76 75 1 278 | 77 25 1 279 | 79 7 1 280 | 81 51 1 281 | 82 62 1 282 | 85 11 1 283 | 85 46 1 284 | 85 9 1 285 | 85 58 1 286 | 87 86 1 287 | 88 32 1 288 | 88 60 1 289 | 91 76 1 290 | 92 59 1 291 | 92 91 1 292 | 93 59 1 293 | 93 64 1 294 | 93 91 1 295 | 94 59 1 296 | 94 64 1 297 | 94 91 1 298 | 95 59 1 299 | 95 91 1 300 | 96 91 1 301 | 97 59 1 302 | 97 64 1 303 | 97 91 1 304 | 98 55 1 305 | 98 59 1 306 | 98 91 1 307 | 101 54 1 308 | 101 80 1 309 | 101 100 1 310 | 103 59 1 311 | 103 102 1 312 | 104 1 1 313 | 104 2 1 314 | 104 39 1 315 | 104 48 1 316 | 104 47 1 317 | 104 58 1 318 | 104 87 1 319 | 105 36 1 320 | 108 56 1 321 | 108 67 1 322 | 108 90 1 323 | 108 107 1 324 | 109 62 1 325 | 112 3 1 326 | 112 78 1 327 | 112 104 1 328 | 112 110 1 329 | 112 111 1 330 | 113 21 1 331 | 114 72 1 332 | 114 44 1 333 | 114 60 1 334 | 114 62 1 335 | 114 74 1 336 | 114 94 1 337 | 114 93 1 338 | 115 46 1 339 | 115 17 1 340 | 115 21 1 341 | 115 41 1 342 | 115 51 1 343 | 115 69 1 344 | 116 104 1 345 | 116 115 1 346 | 117 98 1 347 | 118 72 1 348 | 118 97 1 349 | 119 62 1 350 | 120 10 1 351 | 120 11 1 352 | 120 46 1 353 | 120 2 1 354 | 120 9 1 355 | 120 48 1 356 | 120 47 1 357 | 120 108 1 358 | 121 108 1 359 | 123 59 1 360 | 123 89 1 361 | 123 114 1 362 | 123 122 1 363 | 124 61 1 364 | 125 17 1 365 | 125 69 1 366 | 126 1 1 367 | 126 2 1 368 | 126 39 1 369 | 126 48 1 370 | 126 47 1 371 | 126 87 1 372 | 126 108 1 373 | 126 112 1 374 | 127 104 1 375 | 127 115 1 376 | 127 126 1 377 | 128 104 1 378 | 128 126 1 379 | 129 104 1 380 | 129 120 1 381 | 129 126 1 382 | 130 85 1 383 | 130 104 1 384 | 130 115 1 385 | 130 126 1 386 | 131 22 1 387 | 131 70 1 388 | 131 104 1 389 | 131 126 1 390 | 132 104 1 391 | 132 126 1 392 | 134 59 1 393 | 134 133 1 394 | 135 59 1 395 | 135 133 1 396 | 136 60 1 397 | 137 87 1 398 | 137 131 1 399 | 138 120 1 400 | 138 137 1 401 | 140 59 1 402 | 140 139 1 403 | 141 59 1 404 | 141 139 1 405 | 144 35 1 406 | 144 59 1 407 | 144 143 1 408 | 146 7 1 409 | 147 123 1 410 | 149 108 1 411 | 150 108 1 412 | 152 28 1 413 | 152 151 1 414 | 153 151 1 415 | 154 151 1 416 | 155 151 1 417 | 156 120 1 418 | 156 151 1 419 | 157 52 1 420 | 157 84 1 421 | 157 151 1 422 | 158 52 1 423 | 158 151 1 424 | 159 120 1 425 | 159 151 1 426 | 160 151 1 427 | 161 26 1 428 | 161 33 1 429 | 161 151 1 430 | 162 151 1 431 | 163 12 1 432 | 163 151 1 433 | 164 37 1 434 | 164 104 1 435 | 164 151 1 436 | 165 74 1 437 | 166 101 1 438 | 167 53 1 439 | 167 59 1 440 | 167 114 1 441 | 167 165 1 442 | 169 83 1 443 | 169 91 1 444 | 169 168 1 445 | 171 91 1 446 | 171 170 1 447 | 173 29 1 448 | 173 49 1 449 | 173 66 1 450 | 173 172 1 451 | 174 44 1 452 | 174 51 1 453 | 176 35 1 454 | 176 43 1 455 | 176 175 1 456 | 178 98 1 457 | 179 116 1 458 | 180 17 1 459 | 180 25 1 460 | 180 36 1 461 | 180 44 1 462 | 180 51 1 463 | 180 69 1 464 | 184 59 1 465 | 184 91 1 466 | 184 182 1 467 | 185 59 1 468 | 185 118 1 469 | 185 181 1 470 | 186 91 1 471 | 186 183 1 472 | 187 34 1 473 | 187 91 1 474 | 187 183 1 475 | 188 91 1 476 | 188 183 1 477 | 190 90 1 478 | 190 120 1 479 | 190 121 1 480 | 190 126 1 481 | 190 142 1 482 | 190 177 1 483 | 190 189 1 484 | 191 103 1 485 | 192 108 1 486 | 193 62 1 487 | 194 59 1 488 | 194 193 1 489 | 195 59 1 490 | 195 193 1 491 | 196 59 1 492 | 196 193 1 493 | 197 41 1 494 | 198 39 1 495 | 199 104 1 496 | 199 126 1 497 | 199 198 1 498 | 200 157 1 499 | 201 155 1 500 | 201 7 1 501 | 201 101 1 502 | 201 163 1 503 | 201 161 1 504 | 201 152 1 505 | 201 158 1 506 | 201 159 1 507 | 201 156 1 508 | 201 160 1 509 | 201 162 1 510 | 201 153 1 511 | 201 154 1 512 | 202 155 1 513 | 202 7 1 514 | 202 101 1 515 | 202 163 1 516 | 202 161 1 517 | 202 152 1 518 | 202 164 1 519 | 202 157 1 520 | 202 158 1 521 | 202 159 1 522 | 202 156 1 523 | 202 160 1 524 | 202 162 1 525 | 202 153 1 526 | 202 154 1 527 | 203 123 1 528 | 203 167 1 529 | 204 27 1 530 | 204 59 1 531 | 204 114 1 532 | 204 145 1 533 | 204 203 1 534 | 205 134 1 535 | 206 59 1 536 | 206 136 1 537 | 206 205 1 538 | 207 59 1 539 | 207 136 1 540 | 207 205 1 541 | 208 21 1 542 | 208 103 1 543 | 209 112 1 544 | 210 123 1 545 | 211 173 1 546 | 212 58 1 547 | 213 173 1 548 | 214 190 1 549 | 215 61 1 550 | 215 60 1 551 | 216 59 1 552 | 216 124 1 553 | 216 215 1 554 | 218 120 1 555 | 218 148 1 556 | 218 217 1 557 | 220 43 1 558 | 220 99 1 559 | 220 106 1 560 | 220 114 1 561 | 220 219 1 562 | 221 190 1 563 | -------------------------------------------------------------------------------- /modules/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HanKruiger/tsNET/21d563af14448ad9b4b53efd3bd7afcf1edbc5e2/modules/__init__.py -------------------------------------------------------------------------------- /modules/distance_matrix.py: -------------------------------------------------------------------------------- 1 | import graph_tool.all as gt 2 | import numpy as np 3 | import itertools 4 | 5 | 6 | def get_modified_adjacency_matrix(g, k): 7 | # Get regular adjacency matrix 8 | adj = gt.adjacency(g) 9 | 10 | # Initialize the modified adjacency matrix 11 | X = np.zeros(adj.shape) 12 | 13 | # Loop over nonzero elements 14 | for i, j in zip(*adj.nonzero()): 15 | X[i, j] = 1 / adj[i, j] 16 | 17 | adj_max = adj.max() 18 | 19 | # Loop over zero elements 20 | for i, j in set(itertools.product(range(adj.shape[0]), range(adj.shape[1]))).difference(zip(*adj.nonzero())): 21 | X[i, j] = k * adj_max 22 | 23 | return X 24 | 25 | 26 | def get_shortest_path_distance_matrix(g, k=10, weights=None): 27 | # Used to find which vertices are not connected. This has to be this weird, 28 | # since graph_tool uses maxint for the shortest path distance between 29 | # unconnected vertices. 30 | def get_unconnected_distance(): 31 | g_mock = gt.Graph() 32 | g_mock.add_vertex(2) 33 | shortest_distances_mock = gt.shortest_distance(g_mock) 34 | unconnected_dist = shortest_distances_mock[0][1] 35 | return unconnected_dist 36 | 37 | # Get the value (usually maxint) that graph_tool uses for distances between 38 | # unconnected vertices. 39 | unconnected_dist = get_unconnected_distance() 40 | 41 | # Get shortest distances for all pairs of vertices in a NumPy array. 42 | X = gt.shortest_distance(g, weights=weights).get_2d_array(range(g.num_vertices())) 43 | 44 | if len(X[X == unconnected_dist]) > 0: 45 | print('[distance_matrix] There were disconnected components!') 46 | 47 | # Get maximum shortest-path distance (ignoring maxint) 48 | X_max = X[X != unconnected_dist].max() 49 | 50 | # Set the unconnected distances to k times the maximum of the other 51 | # distances. 52 | X[X == unconnected_dist] = k * X_max 53 | 54 | return X 55 | 56 | 57 | # Return the distance matrix of g, with the specified metric. 58 | def get_distance_matrix(g, distance_metric, normalize=True, k=10.0, verbose=True, weights=None): 59 | if verbose: 60 | print('[distance_matrix] Computing distance matrix (metric: {0})'.format(distance_metric)) 61 | 62 | if distance_metric == 'shortest_path' or distance_metric == 'spdm': 63 | X = get_shortest_path_distance_matrix(g, weights=weights) 64 | elif distance_metric == 'modified_adjacency' or distance_metric == 'mam': 65 | X = get_modified_adjacency_matrix(g, k) 66 | else: 67 | raise Exception('Unknown distance metric.') 68 | 69 | # Just to make sure, symmetrize the matrix. 70 | X = (X + X.T) / 2 71 | 72 | # Force diagonal to zero 73 | X[range(X.shape[0]), range(X.shape[1])] = 0 74 | 75 | # Normalize matrix s.t. max is 1. 76 | if normalize: 77 | X /= np.max(X) 78 | if verbose: 79 | print('[distance_matrix] Done!') 80 | 81 | return X 82 | -------------------------------------------------------------------------------- /modules/graph_io.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | import graph_tool.all as gt 4 | 5 | 6 | def load_graph(in_file): 7 | extension = os.path.splitext(in_file)[1] 8 | if extension == '.vna': 9 | g = load_vna(in_file) 10 | return g 11 | 12 | 13 | def save_graph(out_file, g): 14 | extension = os.path.splitext(out_file)[1] 15 | if extension == '.vna': 16 | save_vna(out_file, g) 17 | 18 | 19 | def load_vna(in_file): 20 | with open(in_file) as f: 21 | all_lines = f.read().splitlines() 22 | 23 | it = iter(all_lines) 24 | 25 | # Ignore preamble 26 | line = next(it) 27 | while not (line.lower().startswith('*node properties') or line.lower().startswith('*node data')): 28 | line = next(it) 29 | 30 | node_properties = next(it).split(' ') 31 | node_properties = [word.lower() for word in node_properties] 32 | assert('id' in node_properties) 33 | 34 | vertices = dict() 35 | line = next(it) 36 | gt_idx = 0 # Index for gt 37 | while not line.startswith('*'): 38 | entries = line.split(' ') 39 | vna_id = entries[0] 40 | vertex = dict() 41 | for i, prop in enumerate(node_properties): 42 | vertex[prop] = entries[i] 43 | vertex['id'] = gt_idx # Replace VNA ID by numerical gt index 44 | vertices[vna_id] = vertex # Retain VNA ID as key of the vertices dict 45 | 46 | gt_idx += 1 47 | line = next(it) 48 | 49 | # Skip node properties, if any 50 | while not (line.lower().startswith('*tie data')): 51 | line = next(it) 52 | 53 | edge_properties = next(it).split(' ') 54 | assert(edge_properties[0] == 'from' and edge_properties[1] == 'to') 55 | 56 | edges = [] 57 | try: 58 | while True: 59 | line = next(it) 60 | entries = line.split(' ') 61 | v_i = vertices[entries[0]]['id'] 62 | v_j = vertices[entries[1]]['id'] 63 | edges.append((v_i, v_j)) 64 | except StopIteration: 65 | pass 66 | 67 | g = gt.Graph(directed=False) 68 | g.add_vertex(len(vertices)) 69 | for v_i, v_j in edges: 70 | g.add_edge(v_i, v_j) 71 | 72 | gt.remove_parallel_edges(g) 73 | 74 | return g 75 | return None 76 | 77 | 78 | def save_vna(out_file, g): 79 | with open(out_file, 'w') as f: 80 | f.write('*Node data\n') 81 | f.write('ID\n') 82 | for v in g.vertices(): 83 | f.write('{0}\n'.format(int(v))) 84 | f.write('*Tie data\n') 85 | f.write('from to strength\n') 86 | for v1, v2 in g.edges(): 87 | f.write('{0} {1} 1\n'.format(int(v1), int(v2))) 88 | f.close() 89 | -------------------------------------------------------------------------------- /modules/layout_io.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | import graph_tool.all as gt 4 | import modules.graph_io as graph_io 5 | 6 | 7 | def load_layout(in_file): 8 | extension = os.path.splitext(in_file)[1] 9 | if extension == '.vna': 10 | return load_vna(in_file) 11 | 12 | 13 | def save_layout(out_file, g, Y): 14 | extension = os.path.splitext(out_file)[1] 15 | if extension == '.vna': 16 | save_vna(out_file, g, Y) 17 | 18 | def load_vna(in_file): 19 | with open(in_file) as f: 20 | all_lines = f.read().splitlines() 21 | 22 | it = iter(all_lines) 23 | 24 | # Ignore preamble 25 | line = next(it) 26 | while not line.lower().startswith('*node data'): 27 | line = next(it) 28 | 29 | node_data = [word.lower() for word in next(it).split(' ')] 30 | assert('id' in node_data) 31 | 32 | vertices = dict() 33 | line = next(it) 34 | gt_idx = 0 # Index for gt 35 | while not line.lower().startswith('*'): 36 | entries = line.split(' ') 37 | vna_id = entries[0] 38 | vertex = dict() 39 | vertex['id'] = gt_idx # Replace VNA ID by numerical gt index 40 | vertices[vna_id] = vertex # Retain VNA ID as key of the vertices dict 41 | 42 | gt_idx += 1 43 | line = next(it) 44 | 45 | assert(line.lower().startswith('*node properties')) 46 | line = next(it) 47 | node_properties = [word.lower() for word in line.split(' ')] 48 | assert('x' in node_properties and 'y' in node_properties) 49 | 50 | line = next(it) 51 | # Read node properties (x and y) 52 | while not line.lower().startswith('*'): 53 | entries = line.split(' ') 54 | vna_id = entries[0] 55 | vertex = vertices[vna_id] 56 | for i, prop in enumerate(node_properties[1:]): 57 | vertex[prop] = entries[i + 1] 58 | line = next(it) 59 | 60 | assert(line.lower().startswith('*tie data')) 61 | edge_properties = next(it).split(' ') 62 | assert(edge_properties[0] == 'from' and edge_properties[1] == 'to') 63 | 64 | edges = [] 65 | try: 66 | while True: 67 | line = next(it) 68 | entries = line.split(' ') 69 | v_i = vertices[entries[0]]['id'] 70 | v_j = vertices[entries[1]]['id'] 71 | edges.append((v_i, v_j)) 72 | except StopIteration: 73 | pass 74 | 75 | g = gt.Graph(directed=False) 76 | g.add_vertex(len(vertices)) 77 | for v_i, v_j in edges: 78 | g.add_edge(v_i, v_j) 79 | 80 | gt.remove_parallel_edges(g) 81 | 82 | Y = np.zeros((g.num_vertices(), 2)) 83 | for v in vertices.keys(): 84 | Y[vertices[v]['id'], 0] = float(vertices[v]['x']) 85 | Y[vertices[v]['id'], 1] = float(vertices[v]['y']) 86 | pos = g.new_vertex_property('vector') 87 | pos.set_2d_array(Y.T) 88 | 89 | return g, Y 90 | return None 91 | 92 | 93 | def save_vna(out_file, g, Y): 94 | with open(out_file, 'w') as f: 95 | f.write('*Node data\n') 96 | f.write('ID\n') 97 | for v in g.vertices(): 98 | f.write('{0}\n'.format(int(v))) 99 | f.write('*Node properties\n') 100 | f.write('ID x y\n') 101 | for v in g.vertices(): 102 | x = Y[int(v), 0] 103 | y = Y[int(v), 1] 104 | f.write('{0} {1} {2}\n'.format(int(v), x, y)) 105 | f.write('*Tie data\n') 106 | f.write('from to strength\n') 107 | for v1, v2 in g.edges(): 108 | f.write('{0} {1} 1\n'.format(int(v1), int(v2))) 109 | f.close() 110 | 111 | 112 | # Normalize in [0, 1] x [0, 1] (without changing aspect ratio) 113 | def normalize_layout(Y, verbose=False): 114 | Y_cpy = Y.copy() 115 | # Translate s.t. smallest values for both x and y are 0. 116 | for dim in range(Y.shape[1]): 117 | Y_cpy[:, dim] += -Y_cpy[:, dim].min() 118 | 119 | # Scale s.t. max(max(x, y)) = 1 (while keeping the same aspect ratio!) 120 | scaling = 1 / (np.absolute(Y_cpy).max()) 121 | Y_cpy *= scaling 122 | 123 | if verbose: 124 | print("[layout_io] Normalized layout by factor {0}".format(scaling)) 125 | 126 | return Y_cpy -------------------------------------------------------------------------------- /modules/thesne.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) 2016 Paulo Eduardo Rauber 2 | 3 | # Permission is hereby granted, free of charge, to any person obtaining a copy 4 | # of this software and associated documentation files (the "Software"), to deal 5 | # in the Software without restriction, including without limitation the rights 6 | # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 | # copies of the Software, and to permit persons to whom the Software is 8 | # furnished to do so, subject to the following conditions: 9 | 10 | # The above copyright notice and this permission notice shall be included in 11 | # all copies or substantial portions of the Software. 12 | 13 | # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 | # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 | # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 | # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 | # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 | # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 | # THE SOFTWARE. 20 | 21 | # ^ 22 | # / \ 23 | # | 24 | # | 25 | # 26 | # License included because this module is a heavily modified version based on 27 | # Paulo Rauber's implementation of dynamic t-SNE. 28 | # (https://github.com/paulorauber/thesne) 29 | 30 | import math 31 | import numpy as np 32 | import theano 33 | import theano.tensor as T 34 | from sklearn.utils import check_random_state 35 | from scipy.spatial.distance import pdist 36 | 37 | epsilon = 1e-16 38 | floath = np.float32 39 | 40 | 41 | class SigmaTooLowException(Exception): 42 | pass 43 | 44 | 45 | class NaNException(Exception): 46 | pass 47 | 48 | 49 | # Squared Euclidean distance between all pairs of row-vectors 50 | def sqeuclidean_var(X): 51 | N = X.shape[0] 52 | ss = (X ** 2).sum(axis=1) 53 | return ss.reshape((N, 1)) + ss.reshape((1, N)) - 2 * X.dot(X.T) 54 | 55 | 56 | # Euclidean distance between all pairs of row-vectors 57 | def euclidean_var(X): 58 | return T.maximum(sqeuclidean_var(X), epsilon) ** 0.5 59 | 60 | 61 | # Conditional probabilities of picking (ordered) pairs in high-dim space. 62 | def p_ij_conditional_var(X, sigma): 63 | N = X.shape[0] 64 | 65 | sqdistance = X**2 66 | 67 | esqdistance = T.exp(-sqdistance / ((2 * (sigma**2)).reshape((N, 1)))) 68 | esqdistance_zd = T.fill_diagonal(esqdistance, 0) 69 | 70 | row_sum = T.sum(esqdistance_zd, axis=1).reshape((N, 1)) 71 | 72 | return esqdistance_zd / row_sum # Possibly dangerous 73 | 74 | 75 | # Symmetrized probabilities of picking pairs in high-dim space. 76 | def p_ij_sym_var(p_ij_conditional): 77 | return (p_ij_conditional + p_ij_conditional.T) / (2 * p_ij_conditional.shape[0]) 78 | 79 | 80 | # Probabilities of picking pairs in low-dim space (using Student 81 | # t-distribution). 82 | def q_ij_student_t_var(Y): 83 | sqdistance = sqeuclidean_var(Y) 84 | one_over = T.fill_diagonal(1 / (sqdistance + 1), 0) 85 | return one_over / one_over.sum() 86 | 87 | 88 | # Probabilities of picking pairs in low-dim space (using Gaussian). 89 | def q_ij_gaussian_var(Y): 90 | sqdistance = sqeuclidean_var(Y) 91 | gauss = T.fill_diagonal(T.exp(-sqdistance), 0) 92 | return gauss / gauss.sum() 93 | 94 | 95 | # Per point cost function 96 | def cost_var(X, Y, sigma, l_kl, l_c, l_r, r_eps): 97 | N = X.shape[0] 98 | 99 | # Used to normalize s.t. the l_*'s sum up to one. 100 | l_sum = l_kl + l_c + l_r 101 | 102 | p_ij_conditional = p_ij_conditional_var(X, sigma) 103 | p_ij = p_ij_sym_var(p_ij_conditional) 104 | q_ij = q_ij_student_t_var(Y) 105 | 106 | p_ij_safe = T.maximum(p_ij, epsilon) 107 | q_ij_safe = T.maximum(q_ij, epsilon) 108 | 109 | # Kullback-Leibler term 110 | kl = T.sum(p_ij * T.log(p_ij_safe / q_ij_safe), axis=1) 111 | 112 | # Compression term 113 | compression = (1 / (2 * N)) * T.sum(Y**2, axis=1) 114 | 115 | # Repulsion term 116 | repulsion = -(1 / (2 * N**2)) * T.sum(T.fill_diagonal(T.log(euclidean_var(Y) + r_eps), 0), axis=1) 117 | 118 | # Sum of all terms. 119 | cost = (l_kl / l_sum) * kl + (l_c / l_sum) * compression + (l_r / l_sum) * repulsion 120 | 121 | return cost 122 | 123 | 124 | # Binary search on sigma for a given perplexity 125 | def find_sigma(X_shared, sigma_shared, N, perplexity, sigma_iters, verbose=0): 126 | X = T.fmatrix('X') 127 | sigma = T.fvector('sigma') 128 | 129 | target = np.log(perplexity) 130 | 131 | P = T.maximum(p_ij_conditional_var(X, sigma), epsilon) 132 | 133 | entropy = -T.sum(P * T.log(P), axis=1) 134 | 135 | # Setting update for binary search interval 136 | sigmin_shared = theano.shared(np.full(N, np.sqrt(epsilon), dtype=floath)) 137 | sigmax_shared = theano.shared(np.full(N, np.inf, dtype=floath)) 138 | 139 | sigmin = T.fvector('sigmin') 140 | sigmax = T.fvector('sigmax') 141 | 142 | upmin = T.switch(T.lt(entropy, target), sigma, sigmin) 143 | upmax = T.switch(T.gt(entropy, target), sigma, sigmax) 144 | 145 | givens = {X: X_shared, sigma: sigma_shared, sigmin: sigmin_shared, 146 | sigmax: sigmax_shared} 147 | updates = [(sigmin_shared, upmin), (sigmax_shared, upmax)] 148 | 149 | update_intervals = theano.function([], entropy, givens=givens, updates=updates) 150 | 151 | # Setting update for sigma according to search interval 152 | upsigma = T.switch(T.isinf(sigmax), sigma * 2, (sigmin + sigmax) / 2.) 153 | 154 | givens = {sigma: sigma_shared, sigmin: sigmin_shared, 155 | sigmax: sigmax_shared} 156 | updates = [(sigma_shared, upsigma)] 157 | 158 | update_sigma = theano.function([], sigma, givens=givens, updates=updates) 159 | 160 | for i in range(sigma_iters): 161 | e = update_intervals() 162 | update_sigma() 163 | if verbose: 164 | print('Finding sigmas... Iteration {0}/{1}: Perplexities in [{2:.4f}, {3:.4f}].'.format(i + 1, sigma_iters, np.exp(e.min()), np.exp(e.max())), end='\r') 165 | if np.any(np.isnan(np.exp(e))): 166 | raise SigmaTooLowException('Invalid sigmas. The perplexity is probably too low.') 167 | if verbose: 168 | print('\nDone. Perplexities in [{0:.4f}, {1:.4f}].'.format(np.exp(e.min()), np.exp(e.max()))) 169 | 170 | 171 | # Perform momentum-based gradient descent on the cost function with the given 172 | # parameters. Return the vertex coordinates and per-vertex cost. 173 | def find_Y(X_shared, Y_shared, sigma_shared, N, output_dims, n_epochs, 174 | initial_lr, final_lr, lr_switch, init_stdev, initial_momentum, 175 | final_momentum, momentum_switch, 176 | initial_l_kl, final_l_kl, l_kl_switch, 177 | initial_l_c, final_l_c, l_c_switch, 178 | initial_l_r, final_l_r, l_r_switch, 179 | r_eps, autostop=False, window_size=10, verbose=0): 180 | # Optimization hyperparameters 181 | initial_lr = np.array(initial_lr, dtype=floath) 182 | final_lr = np.array(final_lr, dtype=floath) 183 | initial_momentum = np.array(initial_momentum, dtype=floath) 184 | final_momentum = np.array(final_momentum, dtype=floath) 185 | 186 | # Hyperparameters used within Theano 187 | lr = T.fscalar('lr') 188 | lr_shared = theano.shared(initial_lr) 189 | momentum = T.fscalar('momentum') 190 | momentum_shared = theano.shared(initial_momentum) 191 | 192 | # Cost parameters 193 | initial_l_kl = np.array(initial_l_kl, dtype=floath) 194 | final_l_kl = np.array(final_l_kl, dtype=floath) 195 | initial_l_c = np.array(initial_l_c, dtype=floath) 196 | final_l_c = np.array(final_l_c, dtype=floath) 197 | initial_l_r = np.array(initial_l_r, dtype=floath) 198 | final_l_r = np.array(final_l_r, dtype=floath) 199 | 200 | # Cost parameters used within Theano 201 | l_kl = T.fscalar('l_kl') 202 | l_kl_shared = theano.shared(initial_l_kl) 203 | l_c = T.fscalar('l_c') 204 | l_c_shared = theano.shared(initial_l_c) 205 | l_r = T.fscalar('l_r') 206 | l_r_shared = theano.shared(initial_l_r) 207 | 208 | # High-dimensional observations (connectivities of vertices) 209 | X = T.fmatrix('X') 210 | # 2D projection (coordinates of vertices) 211 | Y = T.fmatrix('Y') 212 | 213 | # Standard deviations used for Gaussians to attain perplexity 214 | sigma = T.fvector('sigma') 215 | 216 | # Y velocities (for momentum-based descent) 217 | Yv = T.fmatrix('Yv') 218 | Yv_shared = theano.shared(np.zeros((N, output_dims), dtype=floath)) 219 | 220 | # Function for retrieving cost for all individual data points 221 | costs = cost_var(X, Y, sigma, l_kl, l_c, l_r, r_eps) 222 | 223 | # Sum of all costs (scalar) 224 | cost = T.sum(costs) 225 | 226 | # Gradient of the cost w.r.t. Y 227 | grad_Y = T.grad(cost, Y) 228 | 229 | # Returns relative magnitude of stepsize, normalized by N, lr, and the range of the layout. 230 | stepsize = T.sum(T.sum(Yv ** 2, axis=1) ** 0.5) / (N * lr * T.max(T.max(Y, axis=0) - T.min(Y, axis=0))) 231 | 232 | # Update step for velocity 233 | update_Yv = theano.function( 234 | [], stepsize, # Returns the normalized stepsize 235 | givens={ 236 | X: X_shared, 237 | sigma: sigma_shared, 238 | Y: Y_shared, 239 | Yv: Yv_shared, 240 | lr: lr_shared, 241 | momentum: momentum_shared, 242 | l_kl: l_kl_shared, 243 | l_c: l_c_shared, 244 | l_r: l_r_shared 245 | }, 246 | updates=[ 247 | (Yv_shared, momentum * Yv - lr * grad_Y) 248 | ] 249 | ) 250 | 251 | # Gradient descent step 252 | update_Y = theano.function( 253 | [], None, 254 | givens={ 255 | Y: Y_shared, Yv: Yv_shared 256 | }, 257 | updates=[ 258 | (Y_shared, Y + Yv) 259 | ] 260 | ) 261 | 262 | # Build function to retrieve cost 263 | get_cost = theano.function( 264 | [], cost, 265 | givens={ 266 | X: X_shared, 267 | sigma: sigma_shared, 268 | Y: Y_shared, 269 | l_kl: l_kl_shared, 270 | l_c: l_c_shared, 271 | l_r: l_r_shared 272 | } 273 | ) 274 | 275 | # Build function to retrieve per-vertex cost 276 | get_costs = theano.function( 277 | [], costs, 278 | givens={ 279 | X: X_shared, 280 | sigma: sigma_shared, 281 | Y: Y_shared, 282 | l_kl: l_kl_shared, 283 | l_c: l_c_shared, 284 | l_r: l_r_shared 285 | } 286 | ) 287 | 288 | # Build a list of the stepsizes over time. For convergence detection. 289 | stepsize_over_time = np.zeros(n_epochs) 290 | 291 | # Function that checks if we're converged. 292 | def is_converged(epoch, stepsize_over_time, tol=1e-8): 293 | if epoch > window_size: 294 | max_stepsize = stepsize_over_time[epoch - window_size:epoch].max() 295 | return max_stepsize < tol 296 | return False 297 | 298 | # Optimization loop 299 | converged = False 300 | for epoch in range(n_epochs): 301 | 302 | # Switch parameters if a switching point is reached. 303 | if epoch == lr_switch: 304 | lr_shared.set_value(final_lr) 305 | if epoch == momentum_switch: 306 | momentum_shared.set_value(final_momentum) 307 | if epoch == l_kl_switch: 308 | l_kl_shared.set_value(final_l_kl) 309 | if epoch == l_c_switch: 310 | l_c_shared.set_value(final_l_c) 311 | if epoch == l_r_switch: 312 | s1 = epoch 313 | l_r_shared.set_value(final_l_r) 314 | 315 | # Do update step for velocity 316 | dY_norm = update_Yv() 317 | stepsize_over_time[epoch] = dY_norm # Save normalized stepsize 318 | 319 | # Do a gradient descent step 320 | update_Y() 321 | 322 | 323 | c = get_cost() 324 | if np.isnan(float(c)): 325 | raise NaNException('Encountered NaN for cost.') 326 | 327 | if verbose: 328 | if autostop and epoch >= window_size: 329 | dlast_period = stepsize_over_time[epoch - window_size:epoch] 330 | max_stepsize = dlast_period.max() 331 | print('Epoch: {0}. Cost: {1:.6f}. Max step size of last {2}: {3:.2e}'.format(epoch + 1, float(c), window_size, max_stepsize), end='\r') 332 | else: 333 | print('Epoch: {0}. Cost: {1:.6f}.'.format(epoch + 1, float(c)), end='\r') 334 | 335 | # Switch phases if we're converged. Or exit if we're already in the last phase. 336 | if autostop and is_converged(epoch, stepsize_over_time, tol=autostop): 337 | if epoch < lr_switch: 338 | lr_switch = epoch + 1 339 | momentum_switch = epoch + 1 340 | l_kl_switch = epoch + 1 341 | l_c_switch = epoch + 1 342 | l_r_switch = epoch + 1 343 | print('\nAuto-switching at epoch {0}'.format(epoch)) 344 | elif epoch > lr_switch + window_size: 345 | print('\nAuto-stopping at epoch {0}'.format(epoch)) 346 | converged = True 347 | break 348 | 349 | if not converged: 350 | print('\nWarning: Did not converge!') 351 | 352 | return np.array(Y_shared.get_value()) 353 | 354 | 355 | def tsnet(X, perplexity=30, Y=None, output_dims=2, n_epochs=1000, 356 | initial_lr=10, final_lr=4, lr_switch=None, init_stdev=1e-4, 357 | sigma_iters=50, initial_momentum=0.5, final_momentum=0.8, 358 | momentum_switch=250, 359 | initial_l_kl=None, final_l_kl=None, l_kl_switch=None, 360 | initial_l_c=None, final_l_c=None, l_c_switch=None, 361 | initial_l_r=None, final_l_r=None, l_r_switch=None, 362 | r_eps=1, random_state=None, 363 | autostop=False, window_size=10, verbose=1): 364 | random_state = check_random_state(random_state) 365 | 366 | # Number of vertices/observations 367 | N = X.shape[0] 368 | 369 | X_shared = theano.shared(np.asarray(X, dtype=floath)) 370 | sigma_shared = theano.shared(np.ones(N, dtype=floath)) 371 | 372 | # Randomly initialize Y if it's not defined. 373 | if Y is None: 374 | Y = random_state.normal(0, init_stdev, size=(N, output_dims)) 375 | Y_shared = theano.shared(np.asarray(Y, dtype=floath)) 376 | 377 | # Find sigmas to attain the given perplexity. 378 | find_sigma(X_shared, sigma_shared, N, perplexity, sigma_iters, verbose) 379 | 380 | # Do the optimization to find Y (the node coordinates). 381 | Y = find_Y( 382 | X_shared, Y_shared, sigma_shared, N, output_dims, n_epochs, 383 | initial_lr, final_lr, lr_switch, init_stdev, initial_momentum, 384 | final_momentum, momentum_switch, 385 | initial_l_kl, final_l_kl, l_kl_switch, 386 | initial_l_c, final_l_c, l_c_switch, 387 | initial_l_r, final_l_r, l_r_switch, 388 | r_eps, autostop, window_size, verbose 389 | ) 390 | 391 | # Return the vertex coordinates. 392 | return Y 393 | -------------------------------------------------------------------------------- /pivotmds_layouts/can_96.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | *Node properties 100 | ID x y 101 | 0 0.21175492271937435 0.2558965682162848 102 | 1 0.1334466125586124 0.4087300309314773 103 | 2 0.04723359153626335 0.56236814466414 104 | 3 0.09487335398636323 0.7197132289145624 105 | 4 0.13460648287232538 0.8778627238446362 106 | 5 0.27322156022505234 0.9576476695643397 107 | 6 0.4652223966006619 0.9473251602452406 108 | 7 0.6638202657655601 0.944039742261723 109 | 8 0.8690182921113918 0.9477914156137868 110 | 9 0.8957702947262672 0.7643968361929528 111 | 10 0.9291219738464386 0.5880393481077002 112 | 11 0.8425210475844849 0.38703305366022484 113 | 12 0.7945592324571418 0.20573061495237707 114 | 13 0.671352453007948 0.09402736486405291 115 | 14 0.5195639791290638 0.07844626406877506 116 | 15 0.38622431689983444 0.17446122269461958 117 | 16 0.18932155037120177 0.23170440370985457 118 | 17 0.09787517334365184 0.41234975882099884 119 | 18 0.015662815653682816 0.5664019746155196 120 | 19 0.059300953420127325 0.723332716466265 121 | 20 0.10162444331752714 0.87888175619651 122 | 21 0.2630449359619882 0.9885022387467826 123 | 22 0.4945755754288228 0.975084178321048 124 | 23 0.6935140032830147 0.9757090566500273 125 | 24 0.8955059231255453 0.9766800214381335 126 | 25 0.9254640322437218 0.796066150581257 127 | 26 0.9689916146135008 0.5888557756782935 128 | 27 0.8933476895123788 0.36857049468733255 129 | 28 0.8166534881429337 0.1625080212747037 130 | 29 0.696785000997402 0.04833193536835374 131 | 30 0.5449950850916048 0.032748431194887545 132 | 31 0.3717863589060784 0.12794816393923297 133 | 32 0.17845347420334023 0.21964905871693252 134 | 33 0.09900956784856796 0.4015369603514701 135 | 34 0.0 0.5704600786866019 136 | 35 0.05140345269310543 0.7195930600051432 137 | 36 0.10147543386984748 0.8950805251862016 138 | 37 0.26187881686498543 0.9929653120426071 139 | 38 0.4856431800538838 0.987346213838171 140 | 39 0.7059731158115848 0.980261054938822 141 | 40 0.9089816646278008 0.9929653120426071 142 | 41 0.9468565014985064 0.7883561133529289 143 | 42 1.0 0.5894905078578451 144 | 43 0.9143460047442686 0.3766273393882441 145 | 44 0.8442250427200473 0.15899764709275357 146 | 45 0.7046055936223956 0.023639627860921292 147 | 46 0.5318176028225273 0.0 148 | 47 0.36091812171187826 0.11589329962194864 149 | 48 0.19915521256678387 0.22180128388462822 150 | 49 0.11971226756328696 0.4036894258569846 151 | 50 0.03364489125915388 0.5596150749493488 152 | 51 0.07869861877855513 0.7258081960002981 153 | 52 0.12707501664339396 0.8817369694843071 154 | 53 0.2674736409497189 0.9775500443423276 155 | 54 0.4752091539868439 0.9580201931835389 156 | 55 0.6825954561731971 0.9639325035269575 157 | 56 0.9134062838726114 0.9599501058688091 158 | 57 0.9529755023661258 0.7748995988761804 159 | 58 0.9894347494838747 0.5884037002410588 160 | 59 0.91980888336646 0.3894508521177367 161 | 60 0.8496879213422386 0.17182087141686356 162 | 61 0.6901108197682663 0.032152393404168894 163 | 62 0.5158293697621377 0.012451902394005026 164 | 63 0.36161506773921426 0.11597501448035359 165 | 64 0.23942405445093626 0.23691853268954843 166 | 65 0.17810234065001768 0.4006106983976678 167 | 66 0.1005020657035529 0.5656146279210058 168 | 67 0.14318077489719552 0.7044229368800786 169 | 68 0.16743734993907436 0.8493418348831118 170 | 69 0.2853958724382993 0.9256827396588646 171 | 70 0.4651245791083948 0.9032520110266992 172 | 71 0.6759020479185542 0.8988778627238446 173 | 72 0.8885938074557599 0.9130914413299335 174 | 73 0.9180928713399554 0.7456312592980694 175 | 74 0.9569266561078251 0.5865194517413677 176 | 75 0.8873007899904106 0.38756636328022676 177 | 76 0.8263294887293582 0.18913889362888478 178 | 77 0.6852872397441845 0.07462248937105997 179 | 78 0.5131969496324034 0.05106457636854364 180 | 79 0.3785246141977163 0.1484090838082008 181 | 80 0.2925257341719521 0.2638719383966103 182 | 81 0.2640591615574852 0.40832410035545963 183 | 82 0.18340587529831934 0.5381214234728334 184 | 83 0.2260857861810561 0.6769306937831817 185 | 84 0.2214905270848705 0.7968111978196555 186 | 85 0.311669362455868 0.8491976321918089 187 | 86 0.49252885856359696 0.8233396862630112 188 | 87 0.6672979540041483 0.8152378983899771 189 | 88 0.849954696321149 0.8517187759114212 190 | 89 0.8561554120471736 0.7076530771652635 191 | 90 0.8994186228162306 0.5486306752771697 192 | 91 0.8284156209968733 0.38479382620210967 193 | 92 0.7875197377433721 0.22531358076912908 194 | 93 0.6753300439097195 0.13583557047786368 195 | 94 0.5392471658162713 0.11600625839680256 196 | 95 0.41114879074026456 0.20178330661577917 197 | *Tie data 198 | from to strength 199 | 1 0 1 200 | 2 1 1 201 | 3 2 1 202 | 4 3 1 203 | 5 4 1 204 | 6 5 1 205 | 7 6 1 206 | 8 7 1 207 | 9 8 1 208 | 10 9 1 209 | 11 10 1 210 | 12 11 1 211 | 13 12 1 212 | 14 13 1 213 | 15 0 1 214 | 15 14 1 215 | 16 0 1 216 | 16 1 1 217 | 16 15 1 218 | 17 0 1 219 | 17 1 1 220 | 17 2 1 221 | 17 16 1 222 | 18 1 1 223 | 18 2 1 224 | 18 3 1 225 | 18 17 1 226 | 19 2 1 227 | 19 3 1 228 | 19 4 1 229 | 19 18 1 230 | 20 3 1 231 | 20 4 1 232 | 20 5 1 233 | 20 19 1 234 | 21 4 1 235 | 21 5 1 236 | 21 6 1 237 | 21 20 1 238 | 22 5 1 239 | 22 6 1 240 | 22 7 1 241 | 22 21 1 242 | 23 6 1 243 | 23 7 1 244 | 23 8 1 245 | 23 22 1 246 | 24 7 1 247 | 24 8 1 248 | 24 9 1 249 | 24 23 1 250 | 25 8 1 251 | 25 9 1 252 | 25 10 1 253 | 25 24 1 254 | 26 9 1 255 | 26 10 1 256 | 26 11 1 257 | 26 25 1 258 | 27 10 1 259 | 27 11 1 260 | 27 12 1 261 | 27 26 1 262 | 28 11 1 263 | 28 12 1 264 | 28 13 1 265 | 28 27 1 266 | 29 12 1 267 | 29 13 1 268 | 29 14 1 269 | 29 28 1 270 | 30 13 1 271 | 30 14 1 272 | 30 15 1 273 | 30 29 1 274 | 31 0 1 275 | 31 14 1 276 | 31 15 1 277 | 31 16 1 278 | 31 30 1 279 | 32 16 1 280 | 32 17 1 281 | 32 31 1 282 | 33 16 1 283 | 33 17 1 284 | 33 18 1 285 | 33 32 1 286 | 34 17 1 287 | 34 18 1 288 | 34 19 1 289 | 34 33 1 290 | 35 18 1 291 | 35 19 1 292 | 35 20 1 293 | 35 34 1 294 | 36 19 1 295 | 36 20 1 296 | 36 21 1 297 | 36 35 1 298 | 37 20 1 299 | 37 21 1 300 | 37 22 1 301 | 37 36 1 302 | 38 21 1 303 | 38 22 1 304 | 38 23 1 305 | 38 37 1 306 | 39 22 1 307 | 39 23 1 308 | 39 24 1 309 | 39 38 1 310 | 40 23 1 311 | 40 24 1 312 | 40 25 1 313 | 40 39 1 314 | 41 24 1 315 | 41 25 1 316 | 41 26 1 317 | 41 40 1 318 | 42 25 1 319 | 42 26 1 320 | 42 27 1 321 | 42 41 1 322 | 43 26 1 323 | 43 27 1 324 | 43 28 1 325 | 43 42 1 326 | 44 27 1 327 | 44 28 1 328 | 44 29 1 329 | 44 43 1 330 | 45 28 1 331 | 45 29 1 332 | 45 30 1 333 | 45 44 1 334 | 46 29 1 335 | 46 30 1 336 | 46 31 1 337 | 46 45 1 338 | 47 16 1 339 | 47 30 1 340 | 47 31 1 341 | 47 32 1 342 | 47 46 1 343 | 48 32 1 344 | 48 33 1 345 | 48 47 1 346 | 49 32 1 347 | 49 33 1 348 | 49 34 1 349 | 49 48 1 350 | 50 33 1 351 | 50 34 1 352 | 50 35 1 353 | 50 49 1 354 | 51 34 1 355 | 51 35 1 356 | 51 36 1 357 | 51 50 1 358 | 52 35 1 359 | 52 36 1 360 | 52 37 1 361 | 52 51 1 362 | 53 36 1 363 | 53 37 1 364 | 53 38 1 365 | 53 52 1 366 | 54 37 1 367 | 54 38 1 368 | 54 39 1 369 | 54 53 1 370 | 55 38 1 371 | 55 39 1 372 | 55 40 1 373 | 55 54 1 374 | 56 39 1 375 | 56 40 1 376 | 56 41 1 377 | 56 55 1 378 | 57 40 1 379 | 57 41 1 380 | 57 42 1 381 | 57 56 1 382 | 58 41 1 383 | 58 42 1 384 | 58 43 1 385 | 58 57 1 386 | 59 42 1 387 | 59 43 1 388 | 59 44 1 389 | 59 58 1 390 | 60 43 1 391 | 60 44 1 392 | 60 45 1 393 | 60 59 1 394 | 61 44 1 395 | 61 45 1 396 | 61 46 1 397 | 61 60 1 398 | 62 45 1 399 | 62 46 1 400 | 62 47 1 401 | 62 61 1 402 | 63 32 1 403 | 63 46 1 404 | 63 47 1 405 | 63 48 1 406 | 63 62 1 407 | 64 48 1 408 | 64 49 1 409 | 64 63 1 410 | 65 48 1 411 | 65 49 1 412 | 65 50 1 413 | 65 64 1 414 | 66 49 1 415 | 66 50 1 416 | 66 51 1 417 | 66 65 1 418 | 67 50 1 419 | 67 51 1 420 | 67 52 1 421 | 67 66 1 422 | 68 51 1 423 | 68 52 1 424 | 68 53 1 425 | 68 67 1 426 | 69 52 1 427 | 69 53 1 428 | 69 54 1 429 | 69 68 1 430 | 70 53 1 431 | 70 54 1 432 | 70 55 1 433 | 70 69 1 434 | 71 54 1 435 | 71 55 1 436 | 71 56 1 437 | 71 70 1 438 | 72 55 1 439 | 72 56 1 440 | 72 57 1 441 | 72 71 1 442 | 73 56 1 443 | 73 57 1 444 | 73 58 1 445 | 73 72 1 446 | 74 57 1 447 | 74 58 1 448 | 74 59 1 449 | 74 73 1 450 | 75 58 1 451 | 75 59 1 452 | 75 60 1 453 | 75 74 1 454 | 76 59 1 455 | 76 60 1 456 | 76 61 1 457 | 76 75 1 458 | 77 60 1 459 | 77 61 1 460 | 77 62 1 461 | 77 76 1 462 | 78 61 1 463 | 78 62 1 464 | 78 63 1 465 | 78 77 1 466 | 79 48 1 467 | 79 62 1 468 | 79 63 1 469 | 79 64 1 470 | 79 78 1 471 | 80 64 1 472 | 80 65 1 473 | 80 79 1 474 | 81 64 1 475 | 81 65 1 476 | 81 66 1 477 | 81 80 1 478 | 82 65 1 479 | 82 66 1 480 | 82 67 1 481 | 82 81 1 482 | 83 66 1 483 | 83 67 1 484 | 83 68 1 485 | 83 82 1 486 | 84 67 1 487 | 84 68 1 488 | 84 69 1 489 | 84 83 1 490 | 85 68 1 491 | 85 69 1 492 | 85 70 1 493 | 85 84 1 494 | 86 69 1 495 | 86 70 1 496 | 86 71 1 497 | 86 85 1 498 | 87 70 1 499 | 87 71 1 500 | 87 72 1 501 | 87 86 1 502 | 88 71 1 503 | 88 72 1 504 | 88 73 1 505 | 88 87 1 506 | 89 72 1 507 | 89 73 1 508 | 89 74 1 509 | 89 88 1 510 | 90 73 1 511 | 90 74 1 512 | 90 75 1 513 | 90 89 1 514 | 91 74 1 515 | 91 75 1 516 | 91 76 1 517 | 91 90 1 518 | 92 75 1 519 | 92 76 1 520 | 92 77 1 521 | 92 91 1 522 | 93 76 1 523 | 93 77 1 524 | 93 78 1 525 | 93 92 1 526 | 94 77 1 527 | 94 78 1 528 | 94 79 1 529 | 94 93 1 530 | 95 64 1 531 | 95 78 1 532 | 95 79 1 533 | 95 80 1 534 | 95 94 1 535 | -------------------------------------------------------------------------------- /pivotmds_layouts/dwt_72.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | *Node properties 76 | ID x y 77 | 0 1.0 0.12479737630882139 78 | 1 0.9499137940514842 0.13364744638552084 79 | 2 0.8998263661901615 0.14249739427093963 80 | 3 0.8497401602416456 0.1513474643476391 81 | 4 0.799652732380323 0.1601974122330579 82 | 5 0.7495653045190003 0.16904748230975736 83 | 6 0.7481759896577301 0.2643268665634558 84 | 7 0.74678667479646 0.3596064951997156 85 | 8 0.7453961380223831 0.45488514630572996 86 | 9 0.744006823161113 0.5501650193245511 87 | 10 0.7426175082998429 0.6454436704305655 88 | 11 0.7412281934385727 0.7407235434493866 89 | 12 0.6871255600942829 0.15548767151073636 90 | 13 0.6728719472035916 0.7003038897150378 91 | 14 0.7799506102843514 0.05563979965517621 92 | 15 0.7488969182137102 0.07289748518125244 93 | 16 0.7178444480558757 0.09015517070732867 94 | 17 0.6867907559852345 0.10741273404212423 95 | 18 0.6557382858274 0.1246702973769198 96 | 19 0.6246845937567588 0.14192798290299602 97 | 20 0.6048517269904655 0.19837424501062453 98 | 21 0.6047845217860944 0.2906761943281252 99 | 22 0.6047173165817235 0.3829780214543451 100 | 23 0.6046501113773524 0.4752800929631264 101 | 24 0.6045829061729814 0.5675821644719077 102 | 25 0.6045157009686104 0.6598842359806889 103 | 26 0.55199788853467 0.13516005224899164 104 | 27 0.5136176072747802 0.6344061320472295 105 | 28 0.5064645297040894 0.008504513134951713 106 | 29 0.5010343491909105 0.03248210814172724 107 | 30 0.49560294676492483 0.05645970314850273 108 | 31 0.4901727662517459 0.08043729815527825 109 | 32 0.48474136382576016 0.10441477097077308 110 | 33 0.47931118331258116 0.12839212159498722 111 | 34 0.4492900075636404 0.1711319189285291 112 | 35 0.44397590876710225 0.25869128250746287 113 | 36 0.43866180997056414 0.3462509882219825 114 | 37 0.4333489330868328 0.43380959421497606 115 | 38 0.42803483429029476 0.5213694221207764 116 | 39 0.42272073549375666 0.60892802811377 117 | 40 0.4060074121230857 0.13098831973548034 118 | 41 0.33046387475882505 0.6040513741020469 119 | 42 0.22962393189546781 0.0 120 | 43 0.25023967819704324 0.026717123519499907 121 | 44 0.27085530230733795 0.05343424703899979 122 | 45 0.29147104860891343 0.08015063741081566 123 | 46 0.31208630614536614 0.1068675165477542 124 | 47 0.33270241902078357 0.13358439568469277 125 | 48 0.29224635228479373 0.16636318425589788 126 | 49 0.2814385335091259 0.25292556473755146 127 | 50 0.27063071473345807 0.33948770083664376 128 | 51 0.2598228959577903 0.42605044789213936 129 | 52 0.24901507718212249 0.5126119730348282 130 | 53 0.23820725840645468 0.5991747200903239 131 | 54 0.26858596584264943 0.14788187524514626 132 | 55 0.1661640124683983 0.6200413250911242 133 | 56 0.0 0.04248957402897644 134 | 57 0.040893755903366254 0.06642782344337474 135 | 58 0.08178775618929385 0.09036570628393101 136 | 59 0.1226816342839408 0.11430358912448725 137 | 60 0.16357563456986837 0.1382415941563242 138 | 61 0.20446951266451532 0.16217947699688048 139 | 62 0.15725321332520356 0.1896779037841418 140 | 63 0.1446266995279751 0.279923728202603 141 | 64 0.13200018573074665 0.3701699314140342 142 | 65 0.1193736719335182 0.46041552366906213 143 | 66 0.10674715813628972 0.55066111592409 144 | 67 0.09412064433906127 0.6409067081791178 145 | 68 0.18047582506607496 0.15144240697272326 146 | 69 0.059257883475950936 0.6908157367706557 147 | 70 0.15648218634414687 0.14070545913984672 148 | 71 0.02439548918668261 0.7407235434493866 149 | *Tie data 150 | from to strength 151 | 1 0 1 152 | 2 1 1 153 | 3 2 1 154 | 4 3 1 155 | 5 4 1 156 | 6 5 1 157 | 7 6 1 158 | 8 7 1 159 | 9 8 1 160 | 10 9 1 161 | 11 10 1 162 | 12 5 1 163 | 13 11 1 164 | 15 14 1 165 | 16 15 1 166 | 17 16 1 167 | 18 17 1 168 | 19 12 1 169 | 19 18 1 170 | 20 19 1 171 | 21 20 1 172 | 22 21 1 173 | 23 22 1 174 | 24 23 1 175 | 25 13 1 176 | 25 24 1 177 | 26 19 1 178 | 27 25 1 179 | 29 28 1 180 | 30 29 1 181 | 31 30 1 182 | 32 31 1 183 | 33 26 1 184 | 33 32 1 185 | 34 33 1 186 | 35 34 1 187 | 36 35 1 188 | 37 36 1 189 | 38 37 1 190 | 39 27 1 191 | 39 38 1 192 | 40 33 1 193 | 41 39 1 194 | 43 42 1 195 | 44 43 1 196 | 45 44 1 197 | 46 45 1 198 | 47 40 1 199 | 47 46 1 200 | 48 47 1 201 | 49 48 1 202 | 50 49 1 203 | 51 50 1 204 | 52 51 1 205 | 53 41 1 206 | 53 52 1 207 | 54 47 1 208 | 55 53 1 209 | 57 56 1 210 | 58 57 1 211 | 59 58 1 212 | 60 59 1 213 | 61 54 1 214 | 61 60 1 215 | 62 61 1 216 | 63 62 1 217 | 64 63 1 218 | 65 64 1 219 | 66 65 1 220 | 67 55 1 221 | 67 66 1 222 | 68 61 1 223 | 69 67 1 224 | 70 68 1 225 | 71 69 1 226 | -------------------------------------------------------------------------------- /pivotmds_layouts/grid17.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | 222 226 | 223 227 | 224 228 | 225 229 | 226 230 | 227 231 | 228 232 | 229 233 | 230 234 | 231 235 | 232 236 | 233 237 | 234 238 | 235 239 | 236 240 | 237 241 | 238 242 | 239 243 | 240 244 | 241 245 | 242 246 | 243 247 | 244 248 | 245 249 | 246 250 | 247 251 | 248 252 | 249 253 | 250 254 | 251 255 | 252 256 | 253 257 | 254 258 | 255 259 | 256 260 | 257 261 | 258 262 | 259 263 | 260 264 | 261 265 | 262 266 | 263 267 | 264 268 | 265 269 | 266 270 | 267 271 | 268 272 | 269 273 | 270 274 | 271 275 | 272 276 | 273 277 | 274 278 | 275 279 | 276 280 | 277 281 | 278 282 | 279 283 | 280 284 | 281 285 | 282 286 | 283 287 | 284 288 | 285 289 | 286 290 | 287 291 | 288 292 | *Node properties 293 | ID x y 294 | 0 0.10892153317867095 0.01559854560481145 295 | 1 0.1508238802886332 0.028372833622670235 296 | 2 0.19272600281626243 0.04114712164052902 297 | 3 0.24113360178408202 0.0514766063812824 298 | 4 0.2895405270049026 0.06180618095496899 299 | 5 0.34387148500576054 0.06587134576471407 300 | 6 0.3982001971832883 0.06993651057445914 301 | 7 0.45357321720929494 0.07456874577504485 302 | 8 0.5089439914119716 0.07920120555796356 303 | 9 0.5637375890188222 0.07203613080573404 304 | 10 0.6185334324490029 0.0648712806358375 305 | 11 0.6721030563409698 0.05820702448621176 306 | 12 0.7256749260562668 0.051542723420119424 307 | 13 0.7724891133714075 0.03829187169162151 308 | 14 0.8193033006865481 0.02504099750489028 309 | 15 0.86289697734638 0.01252050998156179 310 | 16 0.9064906540062119 0.0 311 | 17 0.12414596953316069 0.05971442110534932 312 | 18 0.16520456081801868 0.07150005277684825 313 | 19 0.20626315210287666 0.08328590903068019 314 | 20 0.25268274825892545 0.09257126558882119 315 | 21 0.2991032427443063 0.10185639756462918 316 | 22 0.35103566142865805 0.10576210891793984 317 | 23 0.40297032593633986 0.10966782027125052 318 | 24 0.4556708161995728 0.11385717911114802 319 | 25 0.5083690606394756 0.11804676253337855 320 | 26 0.560537290773484 0.11152983239420487 321 | 27 0.6127055209074922 0.1050129022550312 322 | 28 0.6639664384161554 0.098731109818515 323 | 29 0.7152273559248188 0.09244909279966582 324 | 30 0.7602224263426093 0.080486265667425 325 | 31 0.8052174967603998 0.06852321395285119 326 | 32 0.8478275028016644 0.056947566762713044 327 | 33 0.8904352630195992 0.0453721441549079 328 | 34 0.13937018130531742 0.1038302516894206 329 | 35 0.17958524134740414 0.11462749651335927 330 | 36 0.21980030138949086 0.12542474133729795 331 | 37 0.26423234389843486 0.13366579004696014 332 | 38 0.3086637126603798 0.14190683875662236 333 | 39 0.35820208367488565 0.14565287207116562 334 | 40 0.40774045468939135 0.14939912996804192 335 | 41 0.4577661693665206 0.1531456124472512 336 | 42 0.5077941298669798 0.1568923195087935 337 | 43 0.5573369925281457 0.15102330940034267 338 | 44 0.6068776093659816 0.14515429929189191 339 | 45 0.6558298204913412 0.13925497056848524 340 | 46 0.7047797857933706 0.1333556418450786 341 | 47 0.7479557393138111 0.12268056981029529 342 | 48 0.7911316928342513 0.11200527319317898 343 | 49 0.832755782433619 0.1013748930426639 344 | 50 0.8743798720329866 0.0907442883098158 345 | 51 0.1484266884661251 0.1577374228278958 346 | 52 0.18782606547473335 0.16629917510909087 347 | 53 0.2272254424833416 0.17486092739028591 348 | 54 0.2705678115125395 0.18152877685723973 349 | 55 0.31390995595940446 0.18819662632419357 350 | 56 0.36195036281275894 0.19125431478807287 351 | 57 0.40999076966611336 0.19431177866961916 352 | 58 0.45855220753204223 0.19765289003775227 353 | 59 0.5071158912213012 0.20099400140588536 354 | 60 0.5552349018912077 0.1958106411601025 355 | 61 0.6033561583844446 0.19062705633198657 356 | 62 0.6508665509319044 0.18569388080517257 357 | 63 0.6983746976560341 0.18076070527835855 358 | 64 0.7405984220845282 0.17195707782451583 359 | 65 0.7828221465130223 0.16315345037067314 360 | 66 0.823435615613862 0.15471476920796548 361 | 67 0.8640468388913717 0.1462763126275908 362 | 68 0.1574831956269328 0.211644593966371 363 | 69 0.19606688960206253 0.21797085370482244 364 | 70 0.2346503589948593 0.22429733802560683 365 | 71 0.2769032791266442 0.2293917636675193 366 | 72 0.3191561992584291 0.23448641389176475 367 | 73 0.36570088777396237 0.23685553292264708 368 | 74 0.4122433304661655 0.2392244273711964 369 | 75 0.45933824569756393 0.24216016762825332 370 | 76 0.5064354067522924 0.24509590788531027 371 | 77 0.5531350570775998 0.24059797291986226 372 | 78 0.5998347074029073 0.23609981337208125 373 | 79 0.6459032813724674 0.23213279104185985 374 | 80 0.6919696095186975 0.22816576871163852 375 | 81 0.7332411048552453 0.22123358583873637 376 | 82 0.7745126001917932 0.21430140296583428 377 | 83 0.8141132029707749 0.20805486995560005 378 | 84 0.8537138057497569 0.20180833694536582 379 | 85 0.15596165032081585 0.27282037231259165 380 | 86 0.19475353211864235 0.27647432687060236 381 | 87 0.23354541391646882 0.2801282814286131 382 | 88 0.2757332051716819 0.2832117968607881 383 | 89 0.3179209964268951 0.2862975581162932 384 | 90 0.3645375512889903 0.287885355210647 385 | 91 0.41115186032775547 0.28947315230500076 386 | 92 0.45835232925566677 0.2919098706181179 387 | 93 0.5055505523602479 0.29434883475456514 388 | 94 0.552380460438699 0.29072183007651514 389 | 95 0.5992081226938201 0.28709482539846515 390 | 96 0.6453822503598932 0.28428080876589756 391 | 97 0.6915563780259661 0.28146454630999995 392 | 98 0.7328413483024944 0.27690103330331417 393 | 99 0.7741285644023527 0.27233527447329825 394 | 100 0.8136820048914032 0.2687778903184802 395 | 101 0.8532354453804536 0.2652205061636621 396 | 102 0.15444010501469888 0.33399659982347824 397 | 103 0.19344017463522215 0.33497802461871534 398 | 104 0.23244024425574536 0.33595944941395234 399 | 105 0.27456313121671966 0.33703295296572194 400 | 106 0.316685793595361 0.33810645651749155 401 | 107 0.3633742148040182 0.33891270709298377 402 | 108 0.4100626360126754 0.33972120349180607 403 | 109 0.4573641669904395 0.34165934902564954 404 | 110 0.5046656979682036 0.34359974038282304 405 | 111 0.5516236179764682 0.34084411515683705 406 | 112 0.5985815379847328 0.33809073575418114 407 | 113 0.6448634651706489 0.33642658066660525 408 | 114 0.6911453923565648 0.33476467140235944 409 | 115 0.7324438375730734 0.33256825618555885 410 | 116 0.7737422827895819 0.33037184096875827 411 | 117 0.8132485609887011 0.3295004615166943 412 | 118 0.8527570850111504 0.32863132788796035 413 | 119 0.1474762560328429 0.3953188058508189 414 | 120 0.18673369700699122 0.39359176771000126 415 | 121 0.22599113798113957 0.39186248374585364 416 | 122 0.2688250526084115 0.3909551711205086 417 | 123 0.3116596409826824 0.39004785849516355 418 | 124 0.35919698341010303 0.3901040040784151 419 | 125 0.4067343258375236 0.3901579038383366 420 | 126 0.4551610143036487 0.39162891811952716 421 | 127 0.5035899485931039 0.3930999324007177 422 | 128 0.5516954843230302 0.3912448823300866 423 | 129 0.5998032658762865 0.3893898322594554 424 | 130 0.6469183935176555 0.3888935053035118 425 | 131 0.6940335211590245 0.3883971783475681 426 | 132 0.7360730880744535 0.38858133586063315 427 | 133 0.7781104091665525 0.3887654933736982 428 | 134 0.817522362785809 0.39062054344432934 429 | 135 0.8569343164050656 0.39247559351496053 430 | 136 0.14051240705098691 0.4566410118781596 431 | 137 0.18002721937876032 0.4522032649779572 432 | 138 0.21954225628886676 0.44776776390108486 433 | 139 0.2630869740001033 0.4448796350986253 434 | 140 0.30663348837000387 0.4419915062961657 435 | 141 0.3550197520161879 0.44129305524051643 436 | 142 0.4034060156623719 0.4405946041848671 437 | 143 0.45295786161685797 0.44159624139007475 438 | 144 0.5025119533946741 0.4425978785952824 439 | 145 0.5517695964929222 0.4416434036800061 440 | 146 0.6010272395911703 0.44068892876472976 441 | 147 0.6489755676879922 0.4413581841170882 442 | 148 0.6969238957848141 0.44202743946944667 443 | 149 0.7397023385758336 0.44459441553570744 444 | 150 0.782480781366853 0.4471613916019682 445 | 151 0.8217961645829169 0.4517406253719644 446 | 152 0.8611115477989808 0.4563198591419607 447 | 153 0.12366289293486436 0.5112482061486151 448 | 154 0.16438775487287516 0.504609552384952 449 | 155 0.2051126168108859 0.497970898621289 450 | 156 0.25032238793903033 0.4936072638909787 451 | 157 0.2955323836495078 0.4892436291606684 452 | 158 0.3461959121523746 0.4879904597424939 453 | 159 0.39685944065524137 0.48673953614764937 454 | 160 0.4489647877360079 0.4874694287299195 455 | 161 0.5010723806401045 0.4881993213121896 456 | 162 0.5528767873946427 0.4880241470924448 457 | 163 0.604681194149181 0.4878467270493699 458 | 164 0.6548596248127544 0.48955804442687706 459 | 165 0.705040301299658 0.4912716076277143 460 | 166 0.7494177703016814 0.49576100846450805 461 | 167 0.7937974851270349 0.5002504093013019 462 | 168 0.8338764482753198 0.5070956788113306 463 | 169 0.873957657246935 0.5139409483213593 464 | 170 0.10681337881874182 0.5658554004190706 465 | 171 0.14874829036698997 0.5570158397919469 466 | 172 0.1906832019152381 0.5481740333414932 467 | 173 0.23755712813095842 0.5423348926833321 468 | 174 0.28443127892901177 0.5364979978485012 469 | 175 0.3373720722885613 0.5346901100678013 470 | 176 0.39031286564811085 0.5328822222871015 471 | 177 0.4449717138551578 0.5333426160697642 472 | 178 0.4996305620622048 0.5338007640290968 473 | 179 0.5539839782963633 0.5344026446815534 474 | 180 0.6083351487071917 0.5350022795106799 475 | 181 0.6607459277608467 0.537757904736666 476 | 182 0.7131567068145017 0.5405135299626519 477 | 183 0.7591332020275292 0.5469253555699787 478 | 184 0.8051119430638869 0.5533394270006355 479 | 185 0.8459567319677229 0.5624484864273667 480 | 186 0.8868015208715591 0.5715597916774279 481 | 187 0.09065423079428034 0.6197910935138377 482 | 188 0.13345400890693532 0.6090852536994324 483 | 189 0.1762537870195903 0.5983771680616972 484 | 190 0.225137051368717 0.5907278937995063 485 | 191 0.2740196419708447 0.5830786195373154 486 | 192 0.32958355697990654 0.5803813857179111 487 | 193 0.3851474719889685 0.5776841518985066 488 | 194 0.44270343229179526 0.5775359275587225 489 | 195 0.5002616384179522 0.5773877032189385 490 | 196 0.5575076751012304 0.5784297652440872 491 | 197 0.6147514659611786 0.579471827269236 492 | 198 0.6697382043744146 0.5829348868441914 493 | 199 0.7247226969643205 0.5863979464191469 494 | 200 0.7726463210045117 0.5943975691208275 495 | 201 0.8205721908680331 0.6023971918225081 496 | 202 0.8625264164969197 0.6134376593130925 497 | 203 0.9044806421258064 0.6244803726270068 498 | 204 0.07449508276981884 0.6737267866086045 499 | 205 0.11815972744688066 0.6611546676069179 500 | 206 0.1618243721239425 0.6485803027819013 501 | 207 0.2127167500241426 0.6391208949156805 502 | 208 0.2636102508360077 0.6296614870494597 503 | 209 0.32179504167125184 0.6260726613680208 504 | 210 0.379979832506496 0.6224860815099119 505 | 211 0.44043739655176284 0.621731484871011 506 | 212 0.5008927147736996 0.6209746424087802 507 | 213 0.5610313719060976 0.6224591316299511 508 | 214 0.6211677832151656 0.6239436208511221 509 | 215 0.6787304809879825 0.628111868951717 510 | 216 0.7362909329374694 0.6322823628756419 511 | 217 0.7861594399814943 0.6418697826716763 512 | 218 0.8360301928488493 0.6514572024677105 513 | 219 0.8790938552027865 0.6644268321988183 514 | 220 0.9221575175567238 0.6773987077532557 515 | 221 0.05587123347354756 0.7198919309813574 516 | 222 0.10044355010768721 0.7064169910009859 517 | 223 0.1450157319924271 0.6929420510206143 518 | 224 0.19796011866930474 0.6826382135822903 519 | 225 0.2509045053461824 0.6723321303206361 520 | 226 0.31224355504849854 0.6678674335404731 521 | 227 0.3735814818391496 0.6634004909369798 522 | 228 0.43746841810942094 0.6620507511156126 523 | 229 0.5013531085563623 0.6607010112942454 524 | 230 0.5649144004437746 0.6626391568280888 525 | 231 0.6284756923311869 0.6645773023619322 526 | 232 0.6891421179461497 0.6694664597514771 527 | 233 0.7498107893844422 0.6743533713176918 528 | 234 0.8015837546123596 0.6845628841761533 529 | 235 0.8533544740169469 0.6947746428579449 530 | 236 0.8974871482759936 0.708709976620979 531 | 237 0.9416175767117102 0.7226453103840134 532 | 238 0.03724749646844281 0.76605482953078 533 | 239 0.08272714818616078 0.7516815602183837 534 | 240 0.12820709186091164 0.7373060450826574 535 | 241 0.18320326273213391 0.7261555322489001 536 | 242 0.23819965818568914 0.7150027735918125 537 | 243 0.3026920684257452 0.7096599598895952 538 | 244 0.36718313117180323 0.7043149003640479 539 | 245 0.4344994396670791 0.7023722631835443 540 | 246 0.501813502339025 0.7004273801797107 541 | 247 0.5687974289814517 0.7028191820262266 542 | 248 0.6357813556238785 0.7052109838727426 543 | 249 0.6995560007276467 0.7108188047279073 544 | 250 0.763330645831415 0.7164266255830719 545 | 251 0.8170058234198947 0.7272582315039604 546 | 252 0.8706810010083746 0.738089837424849 547 | 253 0.9158804413492008 0.7529908752198099 548 | 254 0.9610776358666968 0.7678919130147708 549 | 255 0.018623737005104755 0.8122199739035328 550 | 256 0.06501097084696734 0.7969438836124516 551 | 257 0.11139822714706324 0.7816677933213705 552 | 258 0.16844663137729607 0.7696706050921798 553 | 259 0.2254950356075289 0.757675662686319 554 | 260 0.29314058180299185 0.7514524862387175 555 | 261 0.3607847805044568 0.7452315556144459 556 | 262 0.43153046122473726 0.742691529428146 557 | 263 0.5022738961216876 0.740153749065176 558 | 264 0.5726804575191288 0.7429992072243644 559 | 265 0.6430892647398999 0.7458446653835529 560 | 266 0.7099698835091438 0.7521711497043373 561 | 267 0.7768527481017178 0.7584998798484518 562 | 268 0.8324301380507599 0.7699535788317676 563 | 269 0.8880075279998023 0.7814072778150833 564 | 270 0.9342737344224078 0.7972717738186407 565 | 271 0.9805376950216834 0.8131385156455282 566 | 272 0.0 0.8583851182762856 567 | 273 0.047294815966007216 0.8422084528298497 568 | 274 0.09458958701554782 0.8260295415600836 569 | 275 0.15369000002245822 0.8131879237587895 570 | 276 0.21279018844703562 0.8003463059574955 571 | 277 0.2835890951802385 0.7932472584111697 572 | 278 0.35438867566044047 0.786145965041514 573 | 279 0.42856148278239536 0.7830130414960776 574 | 280 0.5027342899043503 0.7798801179506412 575 | 281 0.5765657318801358 0.7831792324225021 576 | 282 0.6503949280325912 0.7864783468943631 577 | 283 0.7203837662906409 0.7935257405040974 578 | 284 0.7903726045486905 0.8005708882905017 579 | 285 0.8478522068582952 0.8126466803362447 580 | 286 0.9053318091678999 0.8247247182053176 581 | 287 0.9526647816722849 0.8415549182408016 582 | 288 0.9999999999999999 0.8583851182762856 583 | *Tie data 584 | from to strength 585 | 1 0 1 586 | 2 1 1 587 | 3 2 1 588 | 4 3 1 589 | 5 4 1 590 | 6 5 1 591 | 7 6 1 592 | 8 7 1 593 | 9 8 1 594 | 10 9 1 595 | 11 10 1 596 | 12 11 1 597 | 13 12 1 598 | 14 13 1 599 | 15 14 1 600 | 16 15 1 601 | 17 0 1 602 | 18 1 1 603 | 18 17 1 604 | 19 2 1 605 | 19 18 1 606 | 20 3 1 607 | 20 19 1 608 | 21 4 1 609 | 21 20 1 610 | 22 5 1 611 | 22 21 1 612 | 23 6 1 613 | 23 22 1 614 | 24 7 1 615 | 24 23 1 616 | 25 8 1 617 | 25 24 1 618 | 26 9 1 619 | 26 25 1 620 | 27 10 1 621 | 27 26 1 622 | 28 11 1 623 | 28 27 1 624 | 29 12 1 625 | 29 28 1 626 | 30 13 1 627 | 30 29 1 628 | 31 14 1 629 | 31 30 1 630 | 32 15 1 631 | 32 31 1 632 | 33 16 1 633 | 33 32 1 634 | 34 17 1 635 | 35 18 1 636 | 35 34 1 637 | 36 19 1 638 | 36 35 1 639 | 37 20 1 640 | 37 36 1 641 | 38 21 1 642 | 38 37 1 643 | 39 22 1 644 | 39 38 1 645 | 40 23 1 646 | 40 39 1 647 | 41 24 1 648 | 41 40 1 649 | 42 25 1 650 | 42 41 1 651 | 43 26 1 652 | 43 42 1 653 | 44 27 1 654 | 44 43 1 655 | 45 28 1 656 | 45 44 1 657 | 46 29 1 658 | 46 45 1 659 | 47 30 1 660 | 47 46 1 661 | 48 31 1 662 | 48 47 1 663 | 49 32 1 664 | 49 48 1 665 | 50 33 1 666 | 50 49 1 667 | 51 34 1 668 | 52 35 1 669 | 52 51 1 670 | 53 36 1 671 | 53 52 1 672 | 54 37 1 673 | 54 53 1 674 | 55 38 1 675 | 55 54 1 676 | 56 39 1 677 | 56 55 1 678 | 57 40 1 679 | 57 56 1 680 | 58 41 1 681 | 58 57 1 682 | 59 42 1 683 | 59 58 1 684 | 60 43 1 685 | 60 59 1 686 | 61 44 1 687 | 61 60 1 688 | 62 45 1 689 | 62 61 1 690 | 63 46 1 691 | 63 62 1 692 | 64 47 1 693 | 64 63 1 694 | 65 48 1 695 | 65 64 1 696 | 66 49 1 697 | 66 65 1 698 | 67 50 1 699 | 67 66 1 700 | 68 51 1 701 | 69 52 1 702 | 69 68 1 703 | 70 53 1 704 | 70 69 1 705 | 71 54 1 706 | 71 70 1 707 | 72 55 1 708 | 72 71 1 709 | 73 56 1 710 | 73 72 1 711 | 74 57 1 712 | 74 73 1 713 | 75 58 1 714 | 75 74 1 715 | 76 59 1 716 | 76 75 1 717 | 77 60 1 718 | 77 76 1 719 | 78 61 1 720 | 78 77 1 721 | 79 62 1 722 | 79 78 1 723 | 80 63 1 724 | 80 79 1 725 | 81 64 1 726 | 81 80 1 727 | 82 65 1 728 | 82 81 1 729 | 83 66 1 730 | 83 82 1 731 | 84 67 1 732 | 84 83 1 733 | 85 68 1 734 | 86 69 1 735 | 86 85 1 736 | 87 70 1 737 | 87 86 1 738 | 88 71 1 739 | 88 87 1 740 | 89 72 1 741 | 89 88 1 742 | 90 73 1 743 | 90 89 1 744 | 91 74 1 745 | 91 90 1 746 | 92 75 1 747 | 92 91 1 748 | 93 76 1 749 | 93 92 1 750 | 94 77 1 751 | 94 93 1 752 | 95 78 1 753 | 95 94 1 754 | 96 79 1 755 | 96 95 1 756 | 97 80 1 757 | 97 96 1 758 | 98 81 1 759 | 98 97 1 760 | 99 82 1 761 | 99 98 1 762 | 100 83 1 763 | 100 99 1 764 | 101 84 1 765 | 101 100 1 766 | 102 85 1 767 | 103 86 1 768 | 103 102 1 769 | 104 87 1 770 | 104 103 1 771 | 105 88 1 772 | 105 104 1 773 | 106 89 1 774 | 106 105 1 775 | 107 90 1 776 | 107 106 1 777 | 108 91 1 778 | 108 107 1 779 | 109 92 1 780 | 109 108 1 781 | 110 93 1 782 | 110 109 1 783 | 111 94 1 784 | 111 110 1 785 | 112 95 1 786 | 112 111 1 787 | 113 96 1 788 | 113 112 1 789 | 114 97 1 790 | 114 113 1 791 | 115 98 1 792 | 115 114 1 793 | 116 99 1 794 | 116 115 1 795 | 117 100 1 796 | 117 116 1 797 | 118 101 1 798 | 118 117 1 799 | 119 102 1 800 | 120 103 1 801 | 120 119 1 802 | 121 104 1 803 | 121 120 1 804 | 122 105 1 805 | 122 121 1 806 | 123 106 1 807 | 123 122 1 808 | 124 107 1 809 | 124 123 1 810 | 125 108 1 811 | 125 124 1 812 | 126 109 1 813 | 126 125 1 814 | 127 110 1 815 | 127 126 1 816 | 128 111 1 817 | 128 127 1 818 | 129 112 1 819 | 129 128 1 820 | 130 113 1 821 | 130 129 1 822 | 131 114 1 823 | 131 130 1 824 | 132 115 1 825 | 132 131 1 826 | 133 116 1 827 | 133 132 1 828 | 134 117 1 829 | 134 133 1 830 | 135 118 1 831 | 135 134 1 832 | 136 119 1 833 | 137 120 1 834 | 137 136 1 835 | 138 121 1 836 | 138 137 1 837 | 139 122 1 838 | 139 138 1 839 | 140 123 1 840 | 140 139 1 841 | 141 124 1 842 | 141 140 1 843 | 142 125 1 844 | 142 141 1 845 | 143 126 1 846 | 143 142 1 847 | 144 127 1 848 | 144 143 1 849 | 145 128 1 850 | 145 144 1 851 | 146 129 1 852 | 146 145 1 853 | 147 130 1 854 | 147 146 1 855 | 148 131 1 856 | 148 147 1 857 | 149 132 1 858 | 149 148 1 859 | 150 133 1 860 | 150 149 1 861 | 151 134 1 862 | 151 150 1 863 | 152 135 1 864 | 152 151 1 865 | 153 136 1 866 | 154 137 1 867 | 154 153 1 868 | 155 138 1 869 | 155 154 1 870 | 156 139 1 871 | 156 155 1 872 | 157 140 1 873 | 157 156 1 874 | 158 141 1 875 | 158 157 1 876 | 159 142 1 877 | 159 158 1 878 | 160 143 1 879 | 160 159 1 880 | 161 144 1 881 | 161 160 1 882 | 162 145 1 883 | 162 161 1 884 | 163 146 1 885 | 163 162 1 886 | 164 147 1 887 | 164 163 1 888 | 165 148 1 889 | 165 164 1 890 | 166 149 1 891 | 166 165 1 892 | 167 150 1 893 | 167 166 1 894 | 168 151 1 895 | 168 167 1 896 | 169 152 1 897 | 169 168 1 898 | 170 153 1 899 | 171 154 1 900 | 171 170 1 901 | 172 155 1 902 | 172 171 1 903 | 173 156 1 904 | 173 172 1 905 | 174 157 1 906 | 174 173 1 907 | 175 158 1 908 | 175 174 1 909 | 176 159 1 910 | 176 175 1 911 | 177 160 1 912 | 177 176 1 913 | 178 161 1 914 | 178 177 1 915 | 179 162 1 916 | 179 178 1 917 | 180 163 1 918 | 180 179 1 919 | 181 164 1 920 | 181 180 1 921 | 182 165 1 922 | 182 181 1 923 | 183 166 1 924 | 183 182 1 925 | 184 167 1 926 | 184 183 1 927 | 185 168 1 928 | 185 184 1 929 | 186 169 1 930 | 186 185 1 931 | 187 170 1 932 | 188 171 1 933 | 188 187 1 934 | 189 172 1 935 | 189 188 1 936 | 190 173 1 937 | 190 189 1 938 | 191 174 1 939 | 191 190 1 940 | 192 175 1 941 | 192 191 1 942 | 193 176 1 943 | 193 192 1 944 | 194 177 1 945 | 194 193 1 946 | 195 178 1 947 | 195 194 1 948 | 196 179 1 949 | 196 195 1 950 | 197 180 1 951 | 197 196 1 952 | 198 181 1 953 | 198 197 1 954 | 199 182 1 955 | 199 198 1 956 | 200 183 1 957 | 200 199 1 958 | 201 184 1 959 | 201 200 1 960 | 202 185 1 961 | 202 201 1 962 | 203 186 1 963 | 203 202 1 964 | 204 187 1 965 | 205 188 1 966 | 205 204 1 967 | 206 189 1 968 | 206 205 1 969 | 207 190 1 970 | 207 206 1 971 | 208 191 1 972 | 208 207 1 973 | 209 192 1 974 | 209 208 1 975 | 210 193 1 976 | 210 209 1 977 | 211 194 1 978 | 211 210 1 979 | 212 195 1 980 | 212 211 1 981 | 213 196 1 982 | 213 212 1 983 | 214 197 1 984 | 214 213 1 985 | 215 198 1 986 | 215 214 1 987 | 216 199 1 988 | 216 215 1 989 | 217 200 1 990 | 217 216 1 991 | 218 201 1 992 | 218 217 1 993 | 219 202 1 994 | 219 218 1 995 | 220 203 1 996 | 220 219 1 997 | 221 204 1 998 | 222 205 1 999 | 222 221 1 1000 | 223 206 1 1001 | 223 222 1 1002 | 224 207 1 1003 | 224 223 1 1004 | 225 208 1 1005 | 225 224 1 1006 | 226 209 1 1007 | 226 225 1 1008 | 227 210 1 1009 | 227 226 1 1010 | 228 211 1 1011 | 228 227 1 1012 | 229 212 1 1013 | 229 228 1 1014 | 230 213 1 1015 | 230 229 1 1016 | 231 214 1 1017 | 231 230 1 1018 | 232 215 1 1019 | 232 231 1 1020 | 233 216 1 1021 | 233 232 1 1022 | 234 217 1 1023 | 234 233 1 1024 | 235 218 1 1025 | 235 234 1 1026 | 236 219 1 1027 | 236 235 1 1028 | 237 220 1 1029 | 237 236 1 1030 | 238 221 1 1031 | 239 222 1 1032 | 239 238 1 1033 | 240 223 1 1034 | 240 239 1 1035 | 241 224 1 1036 | 241 240 1 1037 | 242 225 1 1038 | 242 241 1 1039 | 243 226 1 1040 | 243 242 1 1041 | 244 227 1 1042 | 244 243 1 1043 | 245 228 1 1044 | 245 244 1 1045 | 246 229 1 1046 | 246 245 1 1047 | 247 230 1 1048 | 247 246 1 1049 | 248 231 1 1050 | 248 247 1 1051 | 249 232 1 1052 | 249 248 1 1053 | 250 233 1 1054 | 250 249 1 1055 | 251 234 1 1056 | 251 250 1 1057 | 252 235 1 1058 | 252 251 1 1059 | 253 236 1 1060 | 253 252 1 1061 | 254 237 1 1062 | 254 253 1 1063 | 255 238 1 1064 | 256 239 1 1065 | 256 255 1 1066 | 257 240 1 1067 | 257 256 1 1068 | 258 241 1 1069 | 258 257 1 1070 | 259 242 1 1071 | 259 258 1 1072 | 260 243 1 1073 | 260 259 1 1074 | 261 244 1 1075 | 261 260 1 1076 | 262 245 1 1077 | 262 261 1 1078 | 263 246 1 1079 | 263 262 1 1080 | 264 247 1 1081 | 264 263 1 1082 | 265 248 1 1083 | 265 264 1 1084 | 266 249 1 1085 | 266 265 1 1086 | 267 250 1 1087 | 267 266 1 1088 | 268 251 1 1089 | 268 267 1 1090 | 269 252 1 1091 | 269 268 1 1092 | 270 253 1 1093 | 270 269 1 1094 | 271 254 1 1095 | 271 270 1 1096 | 272 255 1 1097 | 273 256 1 1098 | 273 272 1 1099 | 274 257 1 1100 | 274 273 1 1101 | 275 258 1 1102 | 275 274 1 1103 | 276 259 1 1104 | 276 275 1 1105 | 277 260 1 1106 | 277 276 1 1107 | 278 261 1 1108 | 278 277 1 1109 | 279 262 1 1110 | 279 278 1 1111 | 280 263 1 1112 | 280 279 1 1113 | 281 264 1 1114 | 281 280 1 1115 | 282 265 1 1116 | 282 281 1 1117 | 283 266 1 1118 | 283 282 1 1119 | 284 267 1 1120 | 284 283 1 1121 | 285 268 1 1122 | 285 284 1 1123 | 286 269 1 1124 | 286 285 1 1125 | 287 270 1 1126 | 287 286 1 1127 | 288 271 1 1128 | 288 287 1 1129 | -------------------------------------------------------------------------------- /pivotmds_layouts/lesmis.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | *Node properties 81 | ID x y 82 | 0 0.819153364577576 0.49212147860194 83 | 1 0.9387030694283783 0.568404139690941 84 | 2 0.8104096338013121 0.4774307945502699 85 | 3 0.8104096338013121 0.4774307945502699 86 | 4 0.9387030694283783 0.568404139690941 87 | 5 0.9387030694283783 0.568404139690941 88 | 6 0.9387030694283783 0.568404139690941 89 | 7 0.9387030694283783 0.568404139690941 90 | 8 0.9387030694283783 0.568404139690941 91 | 9 0.9387030694283783 0.568404139690941 92 | 10 0.7841780305442949 0.4333591533234848 93 | 11 0.6996040706549991 0.4158384065847138 94 | 12 0.7953195275147266 0.35699184102008824 95 | 13 0.7841780305442949 0.4333591533234848 96 | 14 0.7841780305442949 0.4333591533234848 97 | 15 0.7841780305442949 0.4333591533234848 98 | 16 0.6024072175433478 0.05910791591586654 99 | 17 0.8330419167336136 0.0343577089107731 100 | 18 0.8330419167336136 0.0343577089107731 101 | 19 0.8330419167336136 0.0343577089107731 102 | 20 0.8330419167336136 0.0343577089107731 103 | 21 0.8330419167336136 0.0343577089107731 104 | 22 0.8330419167336136 0.0343577089107731 105 | 23 0.8450886885842084 0.23880354137944498 106 | 24 0.7622233682553836 0.183015103666918 107 | 25 0.6337026482269474 0.2941514640345344 108 | 26 0.7731594011132046 0.14863273906263166 109 | 27 0.6446161622180262 0.394967772953937 110 | 28 0.8498020353274995 0.5434928488215606 111 | 29 0.7953195275147266 0.35699184102008824 112 | 30 0.9558096005161258 0.16628210633589685 113 | 31 0.7953195275147266 0.35699184102008824 114 | 32 0.7841780305442949 0.4333591533234848 115 | 33 0.7841780305442949 0.4333591533234848 116 | 34 0.7841780305442949 0.4333591533234848 117 | 35 0.7841780305442949 0.4333591533234848 118 | 36 0.7841780305442949 0.4333591533234848 119 | 37 0.7841780305442949 0.4333591533234848 120 | 38 0.7841780305442949 0.4333591533234848 121 | 39 0.6417458696576762 0.06844420519289997 122 | 40 0.6870736362833186 0.23719393552125217 123 | 41 0.5646597617027223 0.0 124 | 42 0.6254362105842783 0.12420305607321101 125 | 43 0.7953195275147266 0.35699184102008824 126 | 44 0.8251931876318822 0.5021929184738948 127 | 45 1.0 0.6711472910584073 128 | 46 0.0 0.6711472910584073 129 | 47 0.19752087001723842 0.5423315656570845 130 | 48 0.3950433837473778 0.41351542932753654 131 | 49 0.7887372792031281 0.1744513594533011 132 | 50 0.9289891371123663 0.020151920164864376 133 | 51 0.7814860397408686 0.1951703605689712 134 | 52 0.9072350077973631 0.0823048142296226 135 | 53 0.881090932252318 0.12135532347242572 136 | 54 0.6630918650593894 0.039272410484422746 137 | 55 0.5671240982693758 0.20927752654082676 138 | 56 0.6343357653435463 0.06247341808043101 139 | 57 0.34430771949217487 0.15214617538827582 140 | 58 0.4885990018553409 0.3506668337774782 141 | 59 0.3874588814944638 0.1808454026377483 142 | 60 0.3507979198813239 0.4183549310359706 143 | 61 0.3874588814944638 0.1808454026377483 144 | 62 0.3874588814944638 0.1808454026377483 145 | 63 0.3874588814944638 0.1808454026377483 146 | 64 0.4885990018553409 0.3506668337774782 147 | 65 0.3874588814944638 0.1808454026377483 148 | 66 0.3507979198813239 0.4183549310359706 149 | 67 0.21728898321974593 0.01753019808795099 150 | 68 0.5924595492528297 0.40250173103514875 151 | 69 0.5924595492528297 0.40250173103514875 152 | 70 0.7265765775020907 0.29402202164358965 153 | 71 0.5516177216906409 0.46023262646829793 154 | 72 0.7953195275147266 0.35699184102008824 155 | 73 0.3507979198813239 0.4183549310359706 156 | 74 0.3507979198813239 0.4183549310359706 157 | 75 0.4504776013297638 0.29041324996969403 158 | 76 0.3507979198813239 0.4183549310359706 159 | *Tie data 160 | from to strength 161 | 1 0 1 162 | 2 0 1 163 | 3 0 1 164 | 3 2 1 165 | 4 0 1 166 | 5 0 1 167 | 6 0 1 168 | 7 0 1 169 | 8 0 1 170 | 9 0 1 171 | 11 0 1 172 | 11 2 1 173 | 11 3 1 174 | 11 10 1 175 | 12 11 1 176 | 13 11 1 177 | 14 11 1 178 | 15 11 1 179 | 17 16 1 180 | 18 16 1 181 | 18 17 1 182 | 19 16 1 183 | 19 17 1 184 | 19 18 1 185 | 20 16 1 186 | 20 17 1 187 | 20 18 1 188 | 20 19 1 189 | 21 16 1 190 | 21 17 1 191 | 21 18 1 192 | 21 19 1 193 | 21 20 1 194 | 22 16 1 195 | 22 17 1 196 | 22 18 1 197 | 22 19 1 198 | 22 20 1 199 | 22 21 1 200 | 23 11 1 201 | 23 12 1 202 | 23 16 1 203 | 23 17 1 204 | 23 18 1 205 | 23 19 1 206 | 23 20 1 207 | 23 21 1 208 | 23 22 1 209 | 24 11 1 210 | 24 23 1 211 | 25 11 1 212 | 25 23 1 213 | 25 24 1 214 | 26 11 1 215 | 26 16 1 216 | 26 24 1 217 | 26 25 1 218 | 27 11 1 219 | 27 23 1 220 | 27 24 1 221 | 27 25 1 222 | 27 26 1 223 | 28 11 1 224 | 28 27 1 225 | 29 11 1 226 | 29 23 1 227 | 29 27 1 228 | 30 23 1 229 | 31 11 1 230 | 31 23 1 231 | 31 27 1 232 | 31 30 1 233 | 32 11 1 234 | 33 11 1 235 | 33 27 1 236 | 34 11 1 237 | 34 29 1 238 | 35 11 1 239 | 35 29 1 240 | 35 34 1 241 | 36 11 1 242 | 36 29 1 243 | 36 34 1 244 | 36 35 1 245 | 37 11 1 246 | 37 29 1 247 | 37 34 1 248 | 37 35 1 249 | 37 36 1 250 | 38 11 1 251 | 38 29 1 252 | 38 34 1 253 | 38 35 1 254 | 38 36 1 255 | 38 37 1 256 | 39 25 1 257 | 40 25 1 258 | 41 24 1 259 | 41 25 1 260 | 42 24 1 261 | 42 25 1 262 | 42 41 1 263 | 43 11 1 264 | 43 26 1 265 | 43 27 1 266 | 44 11 1 267 | 44 28 1 268 | 45 28 1 269 | 47 46 1 270 | 48 11 1 271 | 48 25 1 272 | 48 27 1 273 | 48 47 1 274 | 49 11 1 275 | 49 26 1 276 | 50 24 1 277 | 50 49 1 278 | 51 11 1 279 | 51 26 1 280 | 51 49 1 281 | 52 39 1 282 | 52 51 1 283 | 53 51 1 284 | 54 26 1 285 | 54 49 1 286 | 54 51 1 287 | 55 11 1 288 | 55 16 1 289 | 55 25 1 290 | 55 26 1 291 | 55 39 1 292 | 55 41 1 293 | 55 48 1 294 | 55 49 1 295 | 55 51 1 296 | 55 54 1 297 | 56 49 1 298 | 56 55 1 299 | 57 41 1 300 | 57 48 1 301 | 57 55 1 302 | 58 11 1 303 | 58 27 1 304 | 58 48 1 305 | 58 55 1 306 | 58 57 1 307 | 59 48 1 308 | 59 55 1 309 | 59 57 1 310 | 59 58 1 311 | 60 48 1 312 | 60 58 1 313 | 60 59 1 314 | 61 48 1 315 | 61 55 1 316 | 61 57 1 317 | 61 58 1 318 | 61 59 1 319 | 61 60 1 320 | 62 41 1 321 | 62 48 1 322 | 62 55 1 323 | 62 57 1 324 | 62 58 1 325 | 62 59 1 326 | 62 60 1 327 | 62 61 1 328 | 63 48 1 329 | 63 55 1 330 | 63 57 1 331 | 63 58 1 332 | 63 59 1 333 | 63 60 1 334 | 63 61 1 335 | 63 62 1 336 | 64 11 1 337 | 64 48 1 338 | 64 55 1 339 | 64 57 1 340 | 64 58 1 341 | 64 59 1 342 | 64 60 1 343 | 64 61 1 344 | 64 62 1 345 | 64 63 1 346 | 65 48 1 347 | 65 55 1 348 | 65 57 1 349 | 65 58 1 350 | 65 59 1 351 | 65 60 1 352 | 65 61 1 353 | 65 62 1 354 | 65 63 1 355 | 65 64 1 356 | 66 48 1 357 | 66 58 1 358 | 66 59 1 359 | 66 60 1 360 | 66 61 1 361 | 66 62 1 362 | 66 63 1 363 | 66 64 1 364 | 66 65 1 365 | 67 57 1 366 | 68 11 1 367 | 68 24 1 368 | 68 25 1 369 | 68 27 1 370 | 68 41 1 371 | 68 48 1 372 | 69 11 1 373 | 69 24 1 374 | 69 25 1 375 | 69 27 1 376 | 69 41 1 377 | 69 48 1 378 | 69 68 1 379 | 70 11 1 380 | 70 24 1 381 | 70 25 1 382 | 70 27 1 383 | 70 41 1 384 | 70 58 1 385 | 70 68 1 386 | 70 69 1 387 | 71 11 1 388 | 71 25 1 389 | 71 27 1 390 | 71 41 1 391 | 71 48 1 392 | 71 68 1 393 | 71 69 1 394 | 71 70 1 395 | 72 11 1 396 | 72 26 1 397 | 72 27 1 398 | 73 48 1 399 | 74 48 1 400 | 74 73 1 401 | 75 25 1 402 | 75 41 1 403 | 75 48 1 404 | 75 68 1 405 | 75 69 1 406 | 75 70 1 407 | 75 71 1 408 | 76 48 1 409 | 76 58 1 410 | 76 62 1 411 | 76 63 1 412 | 76 64 1 413 | 76 65 1 414 | 76 66 1 415 | -------------------------------------------------------------------------------- /pivotmds_layouts/rajat11.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | *Node properties 139 | ID x y 140 | 0 0.6220164670213715 0.6430217821889196 141 | 1 0.42133443942141147 0.8280933761717283 142 | 2 0.479368935318167 0.42399337428020956 143 | 3 0.5051327711019178 0.7014008047060986 144 | 4 0.5251936780040695 0.5811042686172728 145 | 5 0.5251936780040695 0.5811042686172728 146 | 6 0.5251936780040695 0.5811042686172728 147 | 7 0.5251936780040695 0.5811042686172728 148 | 8 0.5150159563113225 0.5058029091557612 149 | 9 0.5150159563113225 0.5058029091557612 150 | 10 0.5294104136210964 0.9654487087682702 151 | 11 0.6128939425464707 0.8005042248421258 152 | 12 0.6128939425464707 0.8005042248421258 153 | 13 0.6128939425464707 0.8005042248421258 154 | 14 0.6128939425464707 0.8005042248421258 155 | 15 0.6547708154877552 0.8627905845603435 156 | 16 0.6547708154877552 0.8627905845603435 157 | 17 0.34999581163716353 0.5204986583728076 158 | 18 0.6934672348428554 0.5135338163011082 159 | 19 0.5324854825939747 0.5011524753224365 160 | 20 0.45729220991534103 0.46755640103439056 161 | 21 0.4570355038060059 0.4673631959099962 162 | 22 0.4570355038060059 0.4673631959099962 163 | 23 0.4570355038060059 0.4673631959099962 164 | 24 0.5083456507229654 0.4192740351228001 165 | 25 0.5083456507229654 0.4192740351228001 166 | 26 0.5658734898249805 0.5862748700931978 167 | 27 0.40724938052762566 0.566173430647467 168 | 28 0.40724938052762566 0.566173430647467 169 | 29 0.40724938052762566 0.566173430647467 170 | 30 0.40724938052762566 0.566173430647467 171 | 31 0.41158906486017627 0.5833538247859206 172 | 32 0.41158906486017627 0.5833538247859206 173 | 33 0.6650998586765314 0.3362193405084943 174 | 34 0.5971011124832127 0.3868480002594083 175 | 35 0.5615202946445701 0.40329205318950584 176 | 36 0.5615202946445701 0.40329205318950584 177 | 37 0.5615202946445701 0.40329205318950584 178 | 38 0.5615202946445701 0.40329205318950584 179 | 39 0.5071134613981566 0.408350514628195 180 | 40 0.5071134613981566 0.408350514628195 181 | 41 0.9092179110607908 0.496433136165027 182 | 42 0.8137556644229652 0.4237109975599409 183 | 43 0.8105225185301278 0.3643335233859266 184 | 44 0.8105225185301278 0.3643335233859266 185 | 45 0.8105225185301278 0.3643335233859266 186 | 46 0.8105225185301278 0.3643335233859266 187 | 47 0.8888908404558019 0.34924460849616157 188 | 48 0.8888908404558019 0.34924460849616157 189 | 49 0.7457474606361447 0.7091722443950248 190 | 50 0.8769148249129226 0.6558733006731104 191 | 51 0.8882044893845269 0.6616937739310893 192 | 52 0.8769148249129226 0.6558733006731104 193 | 53 0.8882044893845269 0.6616937739310893 194 | 54 1.0 0.7084818400693917 195 | 55 0.9849462133146702 0.7007212090587532 196 | 56 0.18050465718925726 0.4148208596682276 197 | 57 0.3087461122535284 0.42005496212909343 198 | 58 0.3275773968919646 0.43192289088909486 199 | 59 0.3275773968919646 0.43192289088909486 200 | 60 0.3275773968919646 0.43192289088909486 201 | 61 0.3275773968919646 0.43192289088909486 202 | 62 0.41497623441861475 0.42513504092435817 203 | 63 0.41497623441861475 0.42513504092435817 204 | 64 0.0 0.6470750365468435 205 | 65 0.15542555117503845 0.5558389831195467 206 | 66 0.10153253547273107 0.5377114785461248 207 | 67 0.0935653235983171 0.5385113207394218 208 | 68 0.10153253547273107 0.5377114785461248 209 | 69 0.0935653235983171 0.5385113207394218 210 | 70 0.01666833300456938 0.5541095945934992 211 | 71 0.027290561591902136 0.5530422376125792 212 | 72 0.2553658332274984 0.8669613832946473 213 | 73 0.08405692930854182 0.8510307425832201 214 | 74 0.07594204386702083 0.8601194899384716 215 | 75 0.08405692930854182 0.8510307425832201 216 | 76 0.07594204386702083 0.8601194899384716 217 | 77 0.0 0.9476076341694746 218 | 78 0.010819486966085078 0.9354911058088541 219 | 79 0.5124434908788267 0.13803587400323722 220 | 80 0.5245613703242333 0.26574148884139076 221 | 81 0.5002269822440438 0.30768213298457336 222 | 82 0.5002269822440438 0.30768213298457336 223 | 83 0.5002269822440438 0.30768213298457336 224 | 84 0.5002269822440438 0.30768213298457336 225 | 85 0.5100115382640722 0.3823367281590389 226 | 86 0.5100115382640722 0.3823367281590389 227 | 87 0.3581590659140224 0.09271143801358112 228 | 88 0.7085318302064728 0.14830438859360182 229 | 89 0.5645872571087326 0.12500074309663228 230 | 90 0.5673758961069844 0.11691233891691641 231 | 91 0.5645872571087326 0.12500074309663228 232 | 92 0.5673758961069844 0.11691233891691641 233 | 93 0.6025513885098346 0.02745134068143313 234 | 94 0.5988345542636183 0.03823569944308285 235 | 95 0.12457744823318642 0.3171425637644465 236 | 96 0.18857144401239756 0.15567023262977844 237 | 97 0.18253587805649157 0.1481933294241947 238 | 98 0.18857144401239756 0.15567023262977844 239 | 99 0.18253587805649157 0.1481933294241947 240 | 100 0.13207934650731074 0.07058782996868185 241 | 101 0.140126677709533 0.08055694417047446 242 | 102 0.5454883225741948 0.2806278761217382 243 | 103 0.5093035698362215 0.2038221810291483 244 | 104 0.5156806900260219 0.3428742437302911 245 | 105 0.5156806900260219 0.3428742437302911 246 | 106 0.5156806900260219 0.3428742437302911 247 | 107 0.5156806900260219 0.3428742437302911 248 | 108 0.50383978296174 0.3867264026286706 249 | 109 0.50383978296174 0.3867264026286706 250 | 110 0.5416715080538165 0.03339341157014968 251 | 111 0.5401636974326688 0.09351695476297921 252 | 112 0.5416552950363848 0.08512266498771863 253 | 113 0.5401636974326688 0.09351695476297921 254 | 114 0.5416552950363848 0.08512266498771863 255 | 115 0.5680446830760417 0.0 256 | 116 0.5660572373558731 0.01119238636701408 257 | 117 0.3557581882493454 0.3970000513412219 258 | 118 0.22901305958554127 0.42957605661585685 259 | 119 0.38433768472706736 0.4168758596276951 260 | 120 0.38433768472706736 0.4168758596276951 261 | 121 0.38433768472706736 0.4168758596276951 262 | 122 0.38433768472706736 0.4168758596276951 263 | 123 0.4803363120249249 0.4066224771869334 264 | 124 0.4803363120249249 0.4066224771869334 265 | 125 0.10475879083315995 0.39392498236834356 266 | 126 0.15063446941549372 0.40717236869482504 267 | 127 0.1442907210199069 0.40541055413391414 268 | 128 0.15063446941549372 0.40717236869482504 269 | 129 0.1442907210199069 0.40541055413391414 270 | 130 0.08494337603661982 0.3882936609804012 271 | 131 0.09340170723073557 0.39064319742321113 272 | 132 0.4993676923201638 0.4119092719544522 273 | 133 0.746382470485553 0.5220361928592467 274 | 134 0.42311111591496814 0.9131036309052538 275 | *Tie data 276 | from to strength 277 | 3 1 1 278 | 4 0 1 279 | 4 2 1 280 | 4 3 1 281 | 5 0 1 282 | 5 2 1 283 | 5 3 1 284 | 5 4 1 285 | 6 2 1 286 | 6 0 1 287 | 6 3 1 288 | 6 4 1 289 | 6 5 1 290 | 7 0 1 291 | 7 2 1 292 | 7 3 1 293 | 7 4 1 294 | 7 5 1 295 | 7 6 1 296 | 8 2 1 297 | 8 5 1 298 | 8 7 1 299 | 9 2 1 300 | 9 6 1 301 | 9 7 1 302 | 10 1 1 303 | 11 0 1 304 | 11 10 1 305 | 12 0 1 306 | 12 10 1 307 | 12 11 1 308 | 13 0 1 309 | 13 10 1 310 | 13 11 1 311 | 13 12 1 312 | 14 0 1 313 | 14 10 1 314 | 14 11 1 315 | 14 12 1 316 | 14 13 1 317 | 15 12 1 318 | 15 14 1 319 | 16 13 1 320 | 16 14 1 321 | 19 18 1 322 | 20 2 1 323 | 20 17 1 324 | 20 19 1 325 | 21 17 1 326 | 21 2 1 327 | 21 19 1 328 | 21 20 1 329 | 22 2 1 330 | 22 17 1 331 | 22 19 1 332 | 22 20 1 333 | 22 21 1 334 | 23 17 1 335 | 23 2 1 336 | 23 19 1 337 | 23 20 1 338 | 23 21 1 339 | 23 22 1 340 | 24 2 1 341 | 24 21 1 342 | 24 23 1 343 | 25 2 1 344 | 25 22 1 345 | 25 23 1 346 | 26 18 1 347 | 27 17 1 348 | 27 26 1 349 | 28 17 1 350 | 28 26 1 351 | 28 27 1 352 | 29 17 1 353 | 29 26 1 354 | 29 27 1 355 | 29 28 1 356 | 30 17 1 357 | 30 26 1 358 | 30 27 1 359 | 30 28 1 360 | 30 29 1 361 | 31 28 1 362 | 31 30 1 363 | 32 29 1 364 | 32 30 1 365 | 35 2 1 366 | 35 33 1 367 | 35 34 1 368 | 36 33 1 369 | 36 2 1 370 | 36 34 1 371 | 36 35 1 372 | 37 2 1 373 | 37 33 1 374 | 37 34 1 375 | 37 35 1 376 | 37 36 1 377 | 38 33 1 378 | 38 2 1 379 | 38 34 1 380 | 38 35 1 381 | 38 36 1 382 | 38 37 1 383 | 39 2 1 384 | 39 36 1 385 | 39 38 1 386 | 40 2 1 387 | 40 37 1 388 | 40 38 1 389 | 42 18 1 390 | 43 33 1 391 | 43 41 1 392 | 43 42 1 393 | 44 33 1 394 | 44 41 1 395 | 44 42 1 396 | 44 43 1 397 | 45 41 1 398 | 45 33 1 399 | 45 42 1 400 | 45 43 1 401 | 45 44 1 402 | 46 33 1 403 | 46 41 1 404 | 46 42 1 405 | 46 43 1 406 | 46 44 1 407 | 46 45 1 408 | 47 44 1 409 | 47 46 1 410 | 48 45 1 411 | 48 46 1 412 | 49 0 1 413 | 50 41 1 414 | 50 49 1 415 | 51 41 1 416 | 51 49 1 417 | 51 50 1 418 | 52 41 1 419 | 52 49 1 420 | 52 50 1 421 | 52 51 1 422 | 53 41 1 423 | 53 49 1 424 | 53 50 1 425 | 53 51 1 426 | 53 52 1 427 | 54 51 1 428 | 54 53 1 429 | 55 52 1 430 | 55 53 1 431 | 58 2 1 432 | 58 56 1 433 | 58 57 1 434 | 59 56 1 435 | 59 2 1 436 | 59 57 1 437 | 59 58 1 438 | 60 2 1 439 | 60 56 1 440 | 60 57 1 441 | 60 58 1 442 | 60 59 1 443 | 61 56 1 444 | 61 2 1 445 | 61 57 1 446 | 61 58 1 447 | 61 59 1 448 | 61 60 1 449 | 62 2 1 450 | 62 59 1 451 | 62 61 1 452 | 63 2 1 453 | 63 60 1 454 | 63 61 1 455 | 65 17 1 456 | 66 56 1 457 | 66 64 1 458 | 66 65 1 459 | 67 56 1 460 | 67 64 1 461 | 67 65 1 462 | 67 66 1 463 | 68 64 1 464 | 68 56 1 465 | 68 65 1 466 | 68 66 1 467 | 68 67 1 468 | 69 56 1 469 | 69 64 1 470 | 69 65 1 471 | 69 66 1 472 | 69 67 1 473 | 69 68 1 474 | 70 67 1 475 | 70 69 1 476 | 71 68 1 477 | 71 69 1 478 | 72 1 1 479 | 73 64 1 480 | 73 72 1 481 | 74 64 1 482 | 74 72 1 483 | 74 73 1 484 | 75 64 1 485 | 75 72 1 486 | 75 73 1 487 | 75 74 1 488 | 76 64 1 489 | 76 72 1 490 | 76 73 1 491 | 76 74 1 492 | 76 75 1 493 | 77 74 1 494 | 77 76 1 495 | 78 75 1 496 | 78 76 1 497 | 81 2 1 498 | 81 79 1 499 | 81 80 1 500 | 82 79 1 501 | 82 2 1 502 | 82 80 1 503 | 82 81 1 504 | 83 2 1 505 | 83 79 1 506 | 83 80 1 507 | 83 81 1 508 | 83 82 1 509 | 84 79 1 510 | 84 2 1 511 | 84 80 1 512 | 84 81 1 513 | 84 82 1 514 | 84 83 1 515 | 85 2 1 516 | 85 82 1 517 | 85 84 1 518 | 86 2 1 519 | 86 83 1 520 | 86 84 1 521 | 88 33 1 522 | 89 79 1 523 | 89 87 1 524 | 89 88 1 525 | 90 79 1 526 | 90 87 1 527 | 90 88 1 528 | 90 89 1 529 | 91 87 1 530 | 91 79 1 531 | 91 88 1 532 | 91 89 1 533 | 91 90 1 534 | 92 79 1 535 | 92 87 1 536 | 92 88 1 537 | 92 89 1 538 | 92 90 1 539 | 92 91 1 540 | 93 90 1 541 | 93 92 1 542 | 94 91 1 543 | 94 92 1 544 | 95 56 1 545 | 96 87 1 546 | 96 95 1 547 | 97 87 1 548 | 97 95 1 549 | 97 96 1 550 | 98 87 1 551 | 98 95 1 552 | 98 96 1 553 | 98 97 1 554 | 99 87 1 555 | 99 95 1 556 | 99 96 1 557 | 99 97 1 558 | 99 98 1 559 | 100 97 1 560 | 100 99 1 561 | 101 98 1 562 | 101 99 1 563 | 103 79 1 564 | 104 2 1 565 | 104 102 1 566 | 104 103 1 567 | 105 102 1 568 | 105 2 1 569 | 105 103 1 570 | 105 104 1 571 | 106 2 1 572 | 106 102 1 573 | 106 103 1 574 | 106 104 1 575 | 106 105 1 576 | 107 102 1 577 | 107 2 1 578 | 107 103 1 579 | 107 104 1 580 | 107 105 1 581 | 107 106 1 582 | 108 2 1 583 | 108 105 1 584 | 108 107 1 585 | 109 2 1 586 | 109 106 1 587 | 109 107 1 588 | 110 79 1 589 | 111 102 1 590 | 111 110 1 591 | 112 102 1 592 | 112 110 1 593 | 112 111 1 594 | 113 102 1 595 | 113 110 1 596 | 113 111 1 597 | 113 112 1 598 | 114 102 1 599 | 114 110 1 600 | 114 111 1 601 | 114 112 1 602 | 114 113 1 603 | 115 112 1 604 | 115 114 1 605 | 116 113 1 606 | 116 114 1 607 | 118 56 1 608 | 119 2 1 609 | 119 117 1 610 | 119 118 1 611 | 120 117 1 612 | 120 2 1 613 | 120 118 1 614 | 120 119 1 615 | 121 2 1 616 | 121 117 1 617 | 121 118 1 618 | 121 119 1 619 | 121 120 1 620 | 122 117 1 621 | 122 2 1 622 | 122 118 1 623 | 122 119 1 624 | 122 120 1 625 | 122 121 1 626 | 123 2 1 627 | 123 120 1 628 | 123 122 1 629 | 124 2 1 630 | 124 121 1 631 | 124 122 1 632 | 125 56 1 633 | 126 117 1 634 | 126 125 1 635 | 127 117 1 636 | 127 125 1 637 | 127 126 1 638 | 128 117 1 639 | 128 125 1 640 | 128 126 1 641 | 128 127 1 642 | 129 117 1 643 | 129 125 1 644 | 129 126 1 645 | 129 127 1 646 | 129 128 1 647 | 130 127 1 648 | 130 129 1 649 | 131 128 1 650 | 131 129 1 651 | 132 2 1 652 | 133 18 1 653 | 134 1 1 654 | -------------------------------------------------------------------------------- /pivotmds_layouts/visbrazil.vna: -------------------------------------------------------------------------------- 1 | *Node data 2 | ID 3 | 0 4 | 1 5 | 2 6 | 3 7 | 4 8 | 5 9 | 6 10 | 7 11 | 8 12 | 9 13 | 10 14 | 11 15 | 12 16 | 13 17 | 14 18 | 15 19 | 16 20 | 17 21 | 18 22 | 19 23 | 20 24 | 21 25 | 22 26 | 23 27 | 24 28 | 25 29 | 26 30 | 27 31 | 28 32 | 29 33 | 30 34 | 31 35 | 32 36 | 33 37 | 34 38 | 35 39 | 36 40 | 37 41 | 38 42 | 39 43 | 40 44 | 41 45 | 42 46 | 43 47 | 44 48 | 45 49 | 46 50 | 47 51 | 48 52 | 49 53 | 50 54 | 51 55 | 52 56 | 53 57 | 54 58 | 55 59 | 56 60 | 57 61 | 58 62 | 59 63 | 60 64 | 61 65 | 62 66 | 63 67 | 64 68 | 65 69 | 66 70 | 67 71 | 68 72 | 69 73 | 70 74 | 71 75 | 72 76 | 73 77 | 74 78 | 75 79 | 76 80 | 77 81 | 78 82 | 79 83 | 80 84 | 81 85 | 82 86 | 83 87 | 84 88 | 85 89 | 86 90 | 87 91 | 88 92 | 89 93 | 90 94 | 91 95 | 92 96 | 93 97 | 94 98 | 95 99 | 96 100 | 97 101 | 98 102 | 99 103 | 100 104 | 101 105 | 102 106 | 103 107 | 104 108 | 105 109 | 106 110 | 107 111 | 108 112 | 109 113 | 110 114 | 111 115 | 112 116 | 113 117 | 114 118 | 115 119 | 116 120 | 117 121 | 118 122 | 119 123 | 120 124 | 121 125 | 122 126 | 123 127 | 124 128 | 125 129 | 126 130 | 127 131 | 128 132 | 129 133 | 130 134 | 131 135 | 132 136 | 133 137 | 134 138 | 135 139 | 136 140 | 137 141 | 138 142 | 139 143 | 140 144 | 141 145 | 142 146 | 143 147 | 144 148 | 145 149 | 146 150 | 147 151 | 148 152 | 149 153 | 150 154 | 151 155 | 152 156 | 153 157 | 154 158 | 155 159 | 156 160 | 157 161 | 158 162 | 159 163 | 160 164 | 161 165 | 162 166 | 163 167 | 164 168 | 165 169 | 166 170 | 167 171 | 168 172 | 169 173 | 170 174 | 171 175 | 172 176 | 173 177 | 174 178 | 175 179 | 176 180 | 177 181 | 178 182 | 179 183 | 180 184 | 181 185 | 182 186 | 183 187 | 184 188 | 185 189 | 186 190 | 187 191 | 188 192 | 189 193 | 190 194 | 191 195 | 192 196 | 193 197 | 194 198 | 195 199 | 196 200 | 197 201 | 198 202 | 199 203 | 200 204 | 201 205 | 202 206 | 203 207 | 204 208 | 205 209 | 206 210 | 207 211 | 208 212 | 209 213 | 210 214 | 211 215 | 212 216 | 213 217 | 214 218 | 215 219 | 216 220 | 217 221 | 218 222 | 219 223 | 220 224 | 221 225 | *Node properties 226 | ID x y 227 | 0 0.07078116584649663 0.6438229022952464 228 | 1 0.14446499583151964 0.6564818025542087 229 | 2 0.12933053467216563 0.6465925439534901 230 | 3 0.08993514877417165 0.6562966187352904 231 | 4 0.07293106882788233 0.644547406319859 232 | 5 0.002698076596749326 0.9812381493422654 233 | 6 0.8396138437815864 0.303746467858434 234 | 7 0.05076058166901529 0.9174567105156374 235 | 8 0.0929466360732177 0.6358563091610657 236 | 9 0.14681505964984767 0.6399775713621709 237 | 10 0.14681505964984767 0.6399775713621709 238 | 11 0.14681505964984767 0.6399775713621709 239 | 12 0.002336562368582207 0.98050774304454 240 | 13 0.002023741893596773 0.9749448506356009 241 | 14 0.8780295261212475 0.3782088076670528 242 | 15 0.8186792188341535 0.40041389690204443 243 | 16 0.37178639673604297 0.3684685814624357 244 | 17 0.39791428423871744 0.4250566249326772 245 | 18 0.8364443231199417 0.28750341225164344 246 | 19 0.7842815089161214 0.32559225621767585 247 | 20 0.4054920651315838 0.40704436296028507 248 | 21 0.424371961251577 0.45346131428866543 249 | 22 0.08995410982654695 0.6563135877704902 250 | 23 0.3716646623530887 0.368248721788979 251 | 24 0.5543901845198133 0.3023727137913989 252 | 25 0.5486074324374175 0.35696874008602564 253 | 26 0.0024870703329619784 0.9808102345415778 254 | 27 0.8395238341166142 0.3036793295017744 255 | 28 0.002336562368582207 0.98050774304454 256 | 29 0.0 0.0 257 | 30 0.22014076921374345 0.5136659756088564 258 | 31 0.8397451693583492 0.3040046923071248 259 | 32 0.8176809968939288 0.3984506533078552 260 | 33 0.0018651183036867117 0.9746276034557809 261 | 34 1.0 0.2691975121918829 262 | 35 0.6741251724570425 0.3489379597317417 263 | 36 0.5494721154484621 0.36279502143262926 264 | 37 0.11025769840859961 0.7951033266686832 265 | 38 0.09829896488885281 0.6590817538604555 266 | 39 0.14876487557270496 0.6579300728192946 267 | 40 0.18400358563091612 0.2750754384282247 268 | 41 0.2339616794918143 0.34080093846142495 269 | 42 0.9803528083753255 0.2589607572616404 270 | 43 0.6670269512546019 0.35637777499059325 271 | 44 0.6155893788595334 0.38857172368508425 272 | 45 0.20064187220103144 0.5243881925026376 273 | 46 0.266065618521333 0.5438885650836278 274 | 47 0.13363041441335094 0.6480415520027151 275 | 48 0.13363041441335094 0.6480415520027151 276 | 49 0.15597472351539388 0.22720062564094998 277 | 50 0.38209250337536244 0.388437446971765 278 | 51 0.4030677064504467 0.43504105768734186 279 | 52 0.0 0.956072332356999 280 | 53 0.8274116319047373 0.3003364295674371 281 | 54 0.0 0.956072332356999 282 | 55 0.8882552142894032 0.38340944806368554 283 | 56 0.07983429368235442 0.6310075917987915 284 | 57 0.07938092532886729 0.6467209183936964 285 | 58 0.13363041441335094 0.6480415520027151 286 | 59 0.759331862683616 0.42261972392117514 287 | 60 0.7865797065094695 0.33821279170140406 288 | 61 0.8176809968939288 0.3984506533078552 289 | 62 0.7865140437210881 0.33808367947705864 290 | 63 0.8365631063663393 0.30289358939361527 291 | 64 0.85197099032765 0.31313181989213595 292 | 65 0.8365631063663393 0.30289358939361527 293 | 66 0.009343298337772341 0.015958270929091568 294 | 67 0.07983429368235442 0.6310075917987915 295 | 68 0.3742719915007267 0.3732959030846755 296 | 69 0.39785378593930987 0.42494669509594885 297 | 70 0.0920403420367269 0.6570056292929815 298 | 71 0.8444581344390258 0.28864402653071763 299 | 72 0.7882884145756635 0.32616256335721294 300 | 73 0.9006278543023882 0.2511254897042224 301 | 74 0.7900170428136136 0.33781660161869836 302 | 75 0.9803528083753255 0.2589607572616404 303 | 76 0.9235286739805668 0.28988497945271174 304 | 77 0.5548225260253355 0.30528622335677025 305 | 78 0.09202610280284194 0.6569930869626165 306 | 79 0.002023741893596773 0.9749448506356009 307 | 80 0.0 0.956072332356999 308 | 81 0.38209250337536244 0.388437446971765 309 | 82 0.8365631063663393 0.30289358939361527 310 | 83 0.9803528083753255 0.2589607572616404 311 | 84 0.0 0.956072332356999 312 | 85 0.19481190193373224 0.5228196634228758 313 | 86 0.09829896488885281 0.6590817538604555 314 | 87 0.14876487557270496 0.6579300728192946 315 | 88 0.836661969440981 0.30308762662220284 316 | 89 0.8274116319047373 0.3003364295674371 317 | 90 0.07983429368235442 0.6310075917987915 318 | 91 0.8667045395858081 0.32080920164378307 319 | 92 0.8311610508997278 0.4068532768682539 320 | 93 0.8000597605152685 0.3466154152618027 321 | 94 0.8000597605152685 0.3466154152618027 322 | 95 0.8311610508997278 0.4068532768682539 323 | 96 0.9235286739805668 0.28988497945271174 324 | 97 0.8311610508997278 0.4068532768682539 325 | 98 0.8311610508997278 0.4068532768682539 326 | 99 0.8022258947477147 0.3048656863974738 327 | 100 0.0 0.956072332356999 328 | 101 0.04941161714905453 0.9048701131023086 329 | 102 0.6775020104617792 0.40766188828472566 330 | 103 0.6485432452173143 0.43872702724636825 331 | 104 0.19923049114290142 0.6567791295622727 332 | 105 0.5561188127577634 0.31402675205288444 333 | 106 0.8022258947477147 0.3048656863974738 334 | 107 0.07983429368235442 0.6310075917987915 335 | 108 0.13399310909614068 0.6354704480563077 336 | 109 0.8365631063663393 0.30289358939361527 337 | 110 0.09202610280284194 0.6569930869626165 338 | 111 0.09202610280284194 0.6569930869626165 339 | 112 0.14458296751536437 0.6565378741487815 340 | 113 0.40645192229657445 0.4093573162364155 341 | 114 0.7190702444278853 0.3769892504850931 342 | 115 0.3119491519171321 0.45440125128189995 343 | 116 0.2604481300860994 0.5568964372403923 344 | 117 0.8882552142894032 0.38340944806368554 345 | 118 0.8626172154551022 0.300481035258704 346 | 119 0.8365631063663393 0.30289358939361527 347 | 120 0.20068318811282196 0.6440988335632761 348 | 121 0.07983429368235442 0.6310075917987915 349 | 122 0.8274116319047373 0.3003364295674371 350 | 123 0.7804133066747332 0.3363786603315602 351 | 124 0.8729461934027342 0.37336525479375243 352 | 125 0.36654222707520234 0.35831888506060894 353 | 126 0.18718100058284948 0.5238990416184033 354 | 127 0.2604481300860994 0.5568964372403923 355 | 128 0.14876487557270496 0.6579300728192946 356 | 129 0.13363041441335094 0.6480415520027151 357 | 130 0.2526748363963671 0.5548055569901359 358 | 131 0.14459241115234503 0.656546727558451 359 | 132 0.14876487557270496 0.6579300728192946 360 | 133 0.8636943802982124 0.37061331995484764 361 | 134 0.8115145970591924 0.3966165219380114 362 | 135 0.8115145970591924 0.3966165219380114 363 | 136 0.836661969440981 0.30308762662220284 364 | 137 0.07312222869832743 0.6446447938262223 365 | 138 0.14235692521082183 0.6382555831814728 366 | 139 0.8636943802982124 0.37061331995484764 367 | 140 0.8115145970591924 0.3966165219380114 368 | 141 0.8115145970591924 0.3966165219380114 369 | 142 0.07983429368235442 0.6310075917987915 370 | 143 0.825251399945404 0.28576888174058035 371 | 144 0.778684678436783 0.32472535985421386 372 | 145 0.8364959680096797 0.3028434200721553 373 | 146 0.002023741893596773 0.9749448506356009 374 | 147 0.8274116319047373 0.3003364295674371 375 | 148 0.10072015109819168 0.6379479271954612 376 | 149 0.07983429368235442 0.6310075917987915 377 | 150 0.07983429368235442 0.6310075917987915 378 | 151 0.09679971373975402 0.8347998022738508 379 | 152 0.050579676998103895 0.917087818446079 380 | 153 0.04941161714905453 0.9048701131023086 381 | 154 0.04941161714905453 0.9048701131023086 382 | 155 0.04941161714905453 0.9048701131023086 383 | 156 0.1601961768025911 0.7523546380799906 384 | 157 0.04941161714905453 0.9048701131023086 385 | 158 0.04941161714905453 0.9048701131023086 386 | 159 0.1601961768025911 0.7523546380799906 387 | 160 0.04941161714905453 0.9048701131023086 388 | 161 0.050655004758707704 0.9172427531152936 389 | 162 0.04941161714905453 0.9048701131023086 390 | 163 0.050579676998103895 0.917087818446079 391 | 164 0.15844061944356322 0.7629765163308518 392 | 165 0.8402166134232446 0.30225319276086204 393 | 166 0.0 0.956072332356999 394 | 167 0.7804133066747332 0.3363786603315602 395 | 168 0.9803528083753255 0.2589607572616404 396 | 169 0.9235286739805668 0.28988497945271174 397 | 170 0.9803528083753255 0.2589607572616404 398 | 171 0.9235286739805668 0.28988497945271174 399 | 172 0.009343298337772341 0.015958270929091568 400 | 173 0.07798732486848999 0.1136002242863783 401 | 174 0.5205598306047616 0.437712574055083 402 | 175 0.7338657675537292 0.2615252949292096 403 | 176 0.7039958388974554 0.30523162733047565 404 | 177 0.07983429368235442 0.6310075917987915 405 | 178 0.8882552142894032 0.38340944806368554 406 | 179 0.2158793280262061 0.5328505765783047 407 | 180 0.5037125297880346 0.39885348344781285 408 | 181 0.8636943802982124 0.37061331995484764 409 | 182 0.8882552142894032 0.38340944806368554 410 | 183 0.9950863576334836 0.2666381390132875 411 | 184 0.8311610508997278 0.4068532768682539 412 | 185 0.8115145970591924 0.3966165219380114 413 | 186 0.9235286739805668 0.28988497945271174 414 | 187 0.9333485808722085 0.2950029880257634 415 | 188 0.9235286739805668 0.28988497945271174 416 | 189 0.07983429368235442 0.6310075917987915 417 | 190 0.13399310909614068 0.6354704480563077 418 | 191 0.6775020104617792 0.40766188828472566 419 | 192 0.07983429368235442 0.6310075917987915 420 | 193 0.8365631063663393 0.30289358939361527 421 | 194 0.8115145970591924 0.3966165219380114 422 | 195 0.8115145970591924 0.3966165219380114 423 | 196 0.8115145970591924 0.3966165219380114 424 | 197 0.18400358563091612 0.2750754384282247 425 | 198 0.09829896488885281 0.6590817538604555 426 | 199 0.14876487557270496 0.6579300728192946 427 | 200 0.0 0.956072332356999 428 | 201 0.11998103894762471 0.8511815612987953 429 | 202 0.09882316051969516 0.8536678938476181 430 | 203 0.8364959680096797 0.3028434200721553 431 | 204 0.786469038888602 0.33805047919079834 432 | 205 0.8636943802982124 0.37061331995484764 433 | 206 0.8115145970591924 0.3966165219380114 434 | 207 0.8115145970591924 0.3966165219380114 435 | 208 0.5377538899668735 0.45483433057156136 436 | 209 0.09202610280284194 0.6569930869626165 437 | 210 0.8274116319047373 0.3003364295674371 438 | 211 0.009343298337772341 0.015958270929091568 439 | 212 0.07938092532886729 0.6467209183936964 440 | 213 0.009343298337772341 0.015958270929091568 441 | 214 0.07983429368235442 0.6310075917987915 442 | 215 0.836661969440981 0.30308762662220284 443 | 216 0.8115145970591924 0.3966165219380114 444 | 217 0.10072015109819168 0.6379479271954612 445 | 218 0.1507017802731277 0.6410230114872991 446 | 219 0.8022258947477147 0.3048656863974738 447 | 220 0.7606480695878001 0.340927837333353 448 | 221 0.07983429368235442 0.6310075917987915 449 | *Tie data 450 | from to strength 451 | 1 0 1 452 | 2 0 1 453 | 4 1 1 454 | 4 2 1 455 | 7 5 1 456 | 9 8 1 457 | 10 8 1 458 | 11 8 1 459 | 13 7 1 460 | 15 14 1 461 | 17 16 1 462 | 19 18 1 463 | 21 20 1 464 | 25 24 1 465 | 32 31 1 466 | 35 19 1 467 | 35 25 1 468 | 36 35 1 469 | 39 38 1 470 | 41 40 1 471 | 44 35 1 472 | 44 43 1 473 | 46 30 1 474 | 46 45 1 475 | 47 45 1 476 | 48 45 1 477 | 49 41 1 478 | 51 50 1 479 | 58 57 1 480 | 59 15 1 481 | 59 19 1 482 | 59 32 1 483 | 60 31 1 484 | 60 59 1 485 | 61 31 1 486 | 61 59 1 487 | 62 6 1 488 | 62 59 1 489 | 63 62 1 490 | 65 62 1 491 | 69 23 1 492 | 69 68 1 493 | 72 35 1 494 | 72 43 1 495 | 72 59 1 496 | 72 71 1 497 | 73 71 1 498 | 74 59 1 499 | 74 71 1 500 | 76 42 1 501 | 76 75 1 502 | 77 25 1 503 | 79 7 1 504 | 81 51 1 505 | 82 62 1 506 | 85 11 1 507 | 85 46 1 508 | 85 9 1 509 | 85 58 1 510 | 87 86 1 511 | 88 32 1 512 | 88 60 1 513 | 91 76 1 514 | 92 59 1 515 | 92 91 1 516 | 93 59 1 517 | 93 64 1 518 | 93 91 1 519 | 94 59 1 520 | 94 64 1 521 | 94 91 1 522 | 95 59 1 523 | 95 91 1 524 | 96 91 1 525 | 97 59 1 526 | 97 64 1 527 | 97 91 1 528 | 98 55 1 529 | 98 59 1 530 | 98 91 1 531 | 101 54 1 532 | 101 80 1 533 | 101 100 1 534 | 103 59 1 535 | 103 102 1 536 | 104 1 1 537 | 104 2 1 538 | 104 39 1 539 | 104 48 1 540 | 104 47 1 541 | 104 58 1 542 | 104 87 1 543 | 105 36 1 544 | 108 56 1 545 | 108 67 1 546 | 108 90 1 547 | 108 107 1 548 | 109 62 1 549 | 112 3 1 550 | 112 78 1 551 | 112 104 1 552 | 112 110 1 553 | 112 111 1 554 | 113 21 1 555 | 114 72 1 556 | 114 44 1 557 | 114 60 1 558 | 114 62 1 559 | 114 74 1 560 | 114 94 1 561 | 114 93 1 562 | 115 46 1 563 | 115 17 1 564 | 115 21 1 565 | 115 41 1 566 | 115 51 1 567 | 115 69 1 568 | 116 104 1 569 | 116 115 1 570 | 117 98 1 571 | 118 72 1 572 | 118 97 1 573 | 119 62 1 574 | 120 10 1 575 | 120 11 1 576 | 120 46 1 577 | 120 2 1 578 | 120 9 1 579 | 120 48 1 580 | 120 47 1 581 | 120 108 1 582 | 121 108 1 583 | 123 59 1 584 | 123 89 1 585 | 123 114 1 586 | 123 122 1 587 | 124 61 1 588 | 125 17 1 589 | 125 69 1 590 | 126 1 1 591 | 126 2 1 592 | 126 39 1 593 | 126 48 1 594 | 126 47 1 595 | 126 87 1 596 | 126 108 1 597 | 126 112 1 598 | 127 104 1 599 | 127 115 1 600 | 127 126 1 601 | 128 104 1 602 | 128 126 1 603 | 129 104 1 604 | 129 120 1 605 | 129 126 1 606 | 130 85 1 607 | 130 104 1 608 | 130 115 1 609 | 130 126 1 610 | 131 22 1 611 | 131 70 1 612 | 131 104 1 613 | 131 126 1 614 | 132 104 1 615 | 132 126 1 616 | 134 59 1 617 | 134 133 1 618 | 135 59 1 619 | 135 133 1 620 | 136 60 1 621 | 137 87 1 622 | 137 131 1 623 | 138 120 1 624 | 138 137 1 625 | 140 59 1 626 | 140 139 1 627 | 141 59 1 628 | 141 139 1 629 | 144 35 1 630 | 144 59 1 631 | 144 143 1 632 | 146 7 1 633 | 147 123 1 634 | 149 108 1 635 | 150 108 1 636 | 152 28 1 637 | 152 151 1 638 | 153 151 1 639 | 154 151 1 640 | 155 151 1 641 | 156 120 1 642 | 156 151 1 643 | 157 52 1 644 | 157 84 1 645 | 157 151 1 646 | 158 52 1 647 | 158 151 1 648 | 159 120 1 649 | 159 151 1 650 | 160 151 1 651 | 161 26 1 652 | 161 33 1 653 | 161 151 1 654 | 162 151 1 655 | 163 12 1 656 | 163 151 1 657 | 164 37 1 658 | 164 104 1 659 | 164 151 1 660 | 165 74 1 661 | 166 101 1 662 | 167 53 1 663 | 167 59 1 664 | 167 114 1 665 | 167 165 1 666 | 169 83 1 667 | 169 91 1 668 | 169 168 1 669 | 171 91 1 670 | 171 170 1 671 | 173 29 1 672 | 173 49 1 673 | 173 66 1 674 | 173 172 1 675 | 174 44 1 676 | 174 51 1 677 | 176 35 1 678 | 176 43 1 679 | 176 175 1 680 | 178 98 1 681 | 179 116 1 682 | 180 17 1 683 | 180 25 1 684 | 180 36 1 685 | 180 44 1 686 | 180 51 1 687 | 180 69 1 688 | 184 59 1 689 | 184 91 1 690 | 184 182 1 691 | 185 59 1 692 | 185 118 1 693 | 185 181 1 694 | 186 91 1 695 | 186 183 1 696 | 187 34 1 697 | 187 91 1 698 | 187 183 1 699 | 188 91 1 700 | 188 183 1 701 | 190 90 1 702 | 190 120 1 703 | 190 121 1 704 | 190 126 1 705 | 190 142 1 706 | 190 177 1 707 | 190 189 1 708 | 191 103 1 709 | 192 108 1 710 | 193 62 1 711 | 194 59 1 712 | 194 193 1 713 | 195 59 1 714 | 195 193 1 715 | 196 59 1 716 | 196 193 1 717 | 197 41 1 718 | 198 39 1 719 | 199 104 1 720 | 199 126 1 721 | 199 198 1 722 | 200 157 1 723 | 201 155 1 724 | 201 7 1 725 | 201 101 1 726 | 201 163 1 727 | 201 161 1 728 | 201 152 1 729 | 201 158 1 730 | 201 159 1 731 | 201 156 1 732 | 201 160 1 733 | 201 162 1 734 | 201 153 1 735 | 201 154 1 736 | 202 155 1 737 | 202 7 1 738 | 202 101 1 739 | 202 163 1 740 | 202 161 1 741 | 202 152 1 742 | 202 164 1 743 | 202 157 1 744 | 202 158 1 745 | 202 159 1 746 | 202 156 1 747 | 202 160 1 748 | 202 162 1 749 | 202 153 1 750 | 202 154 1 751 | 203 123 1 752 | 203 167 1 753 | 204 27 1 754 | 204 59 1 755 | 204 114 1 756 | 204 145 1 757 | 204 203 1 758 | 205 134 1 759 | 206 59 1 760 | 206 136 1 761 | 206 205 1 762 | 207 59 1 763 | 207 136 1 764 | 207 205 1 765 | 208 21 1 766 | 208 103 1 767 | 209 112 1 768 | 210 123 1 769 | 211 173 1 770 | 212 58 1 771 | 213 173 1 772 | 214 190 1 773 | 215 61 1 774 | 215 60 1 775 | 216 59 1 776 | 216 124 1 777 | 216 215 1 778 | 218 120 1 779 | 218 148 1 780 | 218 217 1 781 | 220 43 1 782 | 220 99 1 783 | 220 106 1 784 | 220 114 1 785 | 220 219 1 786 | 221 190 1 787 | -------------------------------------------------------------------------------- /tsnet.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | 3 | if __name__ == '__main__': 4 | from argparse import ArgumentParser 5 | parser = ArgumentParser(description='Read a graph, and produce a layout with tsNET(*).') 6 | 7 | # Input 8 | parser.add_argument('input_graph') 9 | parser.add_argument('--star', action='store_true', help='Use the tsNET* scheme. (Requires PivotMDS layout in ./pivotmds_layouts/ as initialization.)\nNote: Use higher learning rates for larger graphs, for faster convergence.') 10 | parser.add_argument('--perplexity', '-p', type=float, default=40, help='Perplexity parameter.') 11 | parser.add_argument('--learning_rate', '-l', type=float, default=50, help='Learning rate (hyper)parameter for optimization.') 12 | parser.add_argument('--output', '-o', type=str, help='Save layout to the specified file.') 13 | 14 | args = parser.parse_args() 15 | 16 | import os 17 | import time 18 | import graph_tool.all as gt 19 | import modules.layout_io as layout_io 20 | import modules.graph_io as graph_io 21 | import modules.distance_matrix as distance_matrix 22 | import modules.thesne as thesne 23 | 24 | # Check for valid input 25 | assert(os.path.isfile(args.input_graph)) 26 | graph_name = os.path.splitext(os.path.basename(args.input_graph))[0] 27 | if args.star: 28 | assert(os.path.isfile('./pivotmds_layouts/{0}.vna'.format(graph_name))) 29 | 30 | # Global hyperparameters 31 | n = 5000 # Maximum #iterations before giving up 32 | momentum = 0.5 33 | tolerance = 1e-7 34 | window_size = 40 35 | 36 | # Cost function parameters 37 | r_eps = 0.05 38 | 39 | # Phase 2 cost function parameters 40 | lambdas_2 = [1, 1.2, 0] 41 | if args.star: 42 | lambdas_2[1] = 0.1 43 | 44 | # Phase 3 cost function parameters 45 | lambdas_3 = [1, 0.01, 0.6] 46 | 47 | # Read input graph 48 | print('Reading graph: {0}...'.format(args.input_graph), end=' ', flush=True) 49 | g = graph_io.load_graph(args.input_graph) 50 | print('Done.') 51 | 52 | print('Input graph: {0}, (|V|, |E|) = ({1}, {2})'.format(graph_name, g.num_vertices(), g.num_edges())) 53 | 54 | # Load the PivotMDS layout for initial placement 55 | if args.star: 56 | print('Reading PivotMDS layout...', end=' ', flush=True) 57 | _, Y_init = layout_io.load_layout('./pivotmds_layouts/{0}.vna'.format(graph_name)) 58 | print('Done.') 59 | else: 60 | Y_init = None 61 | 62 | # Time the method including SPDM calculations 63 | start_time = time.time() 64 | 65 | # Compute the shortest-path distance matrix. 66 | print('Computing SPDM...'.format(graph_name), end=' ', flush=True) 67 | X = distance_matrix.get_distance_matrix(g, 'spdm', verbose=False) 68 | print('Done.') 69 | 70 | # The actual optimization is done in the thesne module. 71 | Y = thesne.tsnet( 72 | X, output_dims=2, random_state=1, perplexity=args.perplexity, n_epochs=n, 73 | Y=Y_init, 74 | initial_lr=args.learning_rate, final_lr=args.learning_rate, lr_switch=n // 2, 75 | initial_momentum=momentum, final_momentum=momentum, momentum_switch=n // 2, 76 | initial_l_kl=lambdas_2[0], final_l_kl=lambdas_3[0], l_kl_switch=n // 2, 77 | initial_l_c=lambdas_2[1], final_l_c=lambdas_3[1], l_c_switch=n // 2, 78 | initial_l_r=lambdas_2[2], final_l_r=lambdas_3[2], l_r_switch=n // 2, 79 | r_eps=r_eps, autostop=tolerance, window_size=window_size, 80 | verbose=True 81 | ) 82 | 83 | Y = layout_io.normalize_layout(Y) 84 | 85 | end_time = time.time() 86 | comp_time = end_time - start_time 87 | print('tsNET took {0:.2f} s.'.format(comp_time)) 88 | 89 | # Convert layout to vertex property 90 | pos = g.new_vp('vector') 91 | pos.set_2d_array(Y.T) 92 | 93 | # Show layout on the screen 94 | gt.graph_draw(g, pos=pos) 95 | 96 | if args.output is not None: 97 | layout_io.save_vna(args.output, g, Y) 98 | print('Saved layout data in "{}"'.format(args.output)) 99 | --------------------------------------------------------------------------------