├── .gitattributes ├── .gitignore ├── CITATION.cff ├── LICENSE ├── README.md ├── app.py ├── endpoints ├── chat.py └── ingest.py ├── example.env ├── handlers └── base.py ├── poetry.lock ├── pyproject.toml ├── startup.py ├── ui └── main.py └── utils └── alerts.py /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | 4 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | share/python-wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | MANIFEST 28 | 29 | # PyInstaller 30 | # Usually these files are written by a python script from a template 31 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 32 | *.manifest 33 | *.spec 34 | 35 | # Installer logs 36 | pip-log.txt 37 | pip-delete-this-directory.txt 38 | 39 | # Unit test / coverage reports 40 | htmlcov/ 41 | .tox/ 42 | .nox/ 43 | .coverage 44 | .coverage.* 45 | .cache 46 | nosetests.xml 47 | coverage.xml 48 | *.cover 49 | *.py,cover 50 | .hypothesis/ 51 | .pytest_cache/ 52 | cover/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | .pybuilder/ 76 | target/ 77 | 78 | # Jupyter Notebook 79 | .ipynb_checkpoints 80 | 81 | # IPython 82 | profile_default/ 83 | ipython_config.py 84 | 85 | # pyenv 86 | # For a library or package, you might want to ignore these files since the code is 87 | # intended to run in multiple environments; otherwise, check them in: 88 | # .python-version 89 | 90 | # pipenv 91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 94 | # install all needed dependencies. 95 | #Pipfile.lock 96 | 97 | # poetry 98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. 99 | # This is especially recommended for binary packages to ensure reproducibility, and is more 100 | # commonly ignored for libraries. 101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control 102 | #poetry.lock 103 | 104 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 105 | __pypackages__/ 106 | 107 | # Celery stuff 108 | celerybeat-schedule 109 | celerybeat.pid 110 | 111 | # SageMath parsed files 112 | *.sage.py 113 | 114 | # Environments 115 | .env 116 | .venv 117 | venv2 118 | env/ 119 | venv/ 120 | ENV/ 121 | env.bak/ 122 | venv.bak/ 123 | vectorstore 124 | 125 | # Spyder project settings 126 | .spyderproject 127 | .spyproject 128 | 129 | # Rope project settings 130 | .ropeproject 131 | 132 | # mkdocs documentation 133 | /site 134 | 135 | # mypy 136 | .mypy_cache/ 137 | .dmypy.json 138 | dmypy.json 139 | 140 | # Pyre type checker 141 | .pyre/ 142 | 143 | # pytype static type analyzer 144 | .pytype/ 145 | 146 | # Cython debug symbols 147 | cython_debug/ 148 | 149 | # PyCharm 150 | # JetBrains specific template is maintainted in a separate JetBrains.gitignore that can 151 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore 152 | # and can be added to the global gitignore or merged into this file. For a more nuclear 153 | # option (not recommended) you can uncomment the following to ignore the entire idea folder. 154 | #.idea/ 155 | 156 | .vscode/ 157 | 158 | -------------------------------------------------------------------------------- /CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: "If you use this software, please cite it as below." 3 | authors: 4 | - family-names: "Chase" 5 | given-names: "Harrison" 6 | title: "LangChain" 7 | date-released: 2022-10-17 8 | url: "https://github.com/hwchase17/langchain" 9 | 10 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2023 Haste171 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |
6 | 7 | 8 | 9 |10 | Efficiently use Langchain for Complex Tasks 11 |
12 | 13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 | # 🚀 Installation
26 |
27 | ## User-Setup
28 | Join the [Discord](https://discord.gg/8vzXR9MGyc) server for help
29 |
30 | ## Dev-Setup
31 | Prerequisites:
32 | - [Git](https://git-scm.com/downloads) - Free
33 | - [Pinecone Database](https://youtu.be/tp0bQNDtLPc?t=48) - Free
34 | - [OpenAI API Key](https://platform.openai.com/account/api-keys) - Billing Required
35 |
36 | ### Setup
37 | ```
38 | git clone https://github.com/Haste171/langchain-chatbot.git
39 | ```
40 |
41 | Reference [example.env](https://github.com/Haste171/langchain-chatbot/blob/main/example.env) to create `.env` file
42 | ```python
43 | OPENAI_API_KEY=
44 | PINECONE_API_KEY=
45 | PINECONE_ENV=
46 | PINECONE_INDEX=
47 | ```
48 |
49 | ### Install Requirements
50 |
51 | ```python
52 | poetry install
53 | ```
54 |
55 | ### Activate Environment
56 | ```python
57 | poetry shell
58 | ```
59 |
60 | ### Run Startup
61 | ```python
62 | python3 startup.py
63 | ```
64 |
65 |
66 | # 🔧 Key Features
67 |
68 | ✅ Interactive Ingestion UI for files
69 |
70 | ✅ Chat UI with source, temperature, vector_k, and other parameter changing abilities
71 |
72 | ✅ More features coming very soon
73 |
74 |
75 | Soon:
76 | - Compatibility with many more files types
77 | - Compatibility with offline models (HuggingFace, Vicuna, Alpaca)
78 |
79 | # 💻 Contributing
80 |
81 | If you would like to contribute to the LangChain Chatbot, please follow these steps:
82 |
83 | 1. Fork the repository
84 | 2. Create a new branch for your feature or bug fix
85 | 3. Write tests for your changes
86 | 4. Implement your changes and ensure that all tests pass
87 | 5. Submit a pull request
88 |
89 | # 📝 Credits
90 |
91 | The LangChain Chatbot was developed by [Haste171](https://github.com/Haste171) with much inspiration from [Mayo](https://twitter.com/mayowaoshin) with the [GPT4 & LangChain Chatbot for large PDF docs](https://github.com/mayooear/gpt4-pdf-chatbot-langchain). This project is mainly a port to Python from the Mayo chatbot.
92 |
93 | # 🔨 License
94 |
95 | The LangChain Chatbot is released under the [MIT License](https://opensource.org/licenses/MIT).
96 |
97 |
--------------------------------------------------------------------------------
/app.py:
--------------------------------------------------------------------------------
1 | from fastapi import FastAPI
2 | import uvicorn
3 |
4 | app = FastAPI()
5 |
6 | @app.get("/")
7 | def read_root():
8 | return {"detail": "Langchain Chatbot is Running!"}
9 |
10 | from endpoints import (
11 | ingest,
12 | chat,
13 | )
14 |
15 | for endpoint in [ingest, chat]:
16 | app.include_router(endpoint.router)
17 |
18 | if __name__ == "__main__":
19 | uvicorn.run('app:app', port=9091, reload=True)
--------------------------------------------------------------------------------
/endpoints/chat.py:
--------------------------------------------------------------------------------
1 | from fastapi import APIRouter, HTTPException
2 | from pydantic import BaseModel
3 | from handlers.base import BaseHandler
4 | from typing import Optional
5 |
6 | router = APIRouter()
7 |
8 | class ChatModel(BaseModel):
9 | query: str
10 | model: str = "gpt-3.5-turbo"
11 | temperature: float
12 | vector_fetch_k: Optional[int] = 5 # Number of vectors to fetch from Pinecone as source documents
13 | chat_history: list[str] = [] # Example input: [("You are a helpful assistant.", "What is your name?")]
14 | namespace: Optional[str] = None
15 |
16 | @router.post("/chat")
17 | async def chat(
18 | chat_model: ChatModel,
19 | ):
20 | available_models = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "gpt-4-32k", "gpt-4-1106-preview", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
21 |
22 | if chat_model.model not in available_models:
23 | raise HTTPException(status_code=400, detail=f"Invalid model name. Please select a valid model from the list of available models: \n{str(available_models)}")
24 |
25 | if chat_model.temperature < 0.0 or chat_model.temperature > 2.0:
26 | raise HTTPException(status_code=400, detail="Invalid temperature value. Please select a value between 0.0 and 2.0")
27 |
28 | handler = BaseHandler(chat_model=chat_model.model, openai_chat_temperature=chat_model.temperature)
29 | response = handler.chat(
30 | chat_model.query,
31 | chat_model.chat_history,
32 | namespace=(chat_model.namespace or None),
33 | search_kwargs=({"k": chat_model.vector_fetch_k} or {"k": 5})
34 | )
35 | return {"response": response}
36 |
--------------------------------------------------------------------------------
/endpoints/ingest.py:
--------------------------------------------------------------------------------
1 | from fastapi import APIRouter
2 | from typing import List
3 | from fastapi import UploadFile, Form
4 | from handlers.base import BaseHandler
5 | from typing import Optional
6 |
7 | router = APIRouter()
8 |
9 | @router.post("/ingest")
10 | async def ingest_documents(
11 | files: List[UploadFile],
12 | namespace: Optional[str] = Form(None),
13 | ):
14 | handler = BaseHandler(
15 | #embeddings_model='text-embedding-3-large' # Uncomment this kwarg to use the large embeddings model if you have Pinecone configured to that dimension size
16 | )
17 | documents = handler.load_documents(files, namespace)
18 | handler.ingest_documents(documents)
19 | return {"message": "Documents ingested"}
--------------------------------------------------------------------------------
/example.env:
--------------------------------------------------------------------------------
1 | OPENAI_API_KEY=
2 | PINECONE_API_KEY=
3 | PINECONE_ENV=
4 | PINECONE_INDEX=
5 |
--------------------------------------------------------------------------------
/handlers/base.py:
--------------------------------------------------------------------------------
1 | import tempfile
2 | import pinecone
3 | import os
4 | from utils.alerts import alert_exception, alert_info
5 | from typing import List
6 | from pinecone.core.client.exceptions import ApiException
7 | from langchain.chains import ConversationalRetrievalChain
8 | from langchain_openai.embeddings import OpenAIEmbeddings
9 | from langchain_openai.chat_models import ChatOpenAI
10 | from langchain_anthropic import ChatAnthropic
11 | from langchain_community.vectorstores.pinecone import Pinecone
12 | from langchain_community.document_loaders import TextLoader, PyMuPDFLoader, Docx2txtLoader
13 | from fastapi import UploadFile
14 | from fastapi import HTTPException
15 | from dotenv import load_dotenv
16 | # from langchain.chains.question_answering import load_qa_chain
17 | # from langchain.chains.llm import LLMChain
18 | # from langchain.chains.conversational_retrieval.prompts import (
19 | # from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
20 | # )
21 | # QA_PROMPT,
22 | # CONDENSE_QUESTION_PROMPT,
23 | from langchain.text_splitter import (
24 | TokenTextSplitter,
25 | TextSplitter,
26 | Tokenizer,
27 | Language,
28 | RecursiveCharacterTextSplitter,
29 | RecursiveJsonSplitter,
30 | LatexTextSplitter,
31 | PythonCodeTextSplitter,
32 | KonlpyTextSplitter,
33 | SpacyTextSplitter,
34 | NLTKTextSplitter,
35 | SentenceTransformersTokenTextSplitter,
36 | ElementType,
37 | HeaderType,
38 | LineType,
39 | HTMLHeaderTextSplitter,
40 | MarkdownHeaderTextSplitter,
41 | MarkdownTextSplitter,
42 | CharacterTextSplitter,
43 | )
44 |
45 | load_dotenv()
46 |
47 | class BaseHandler():
48 | def __init__(
49 | self,
50 | chat_model: str = 'gpt-3.5-turbo',
51 | temperature: float = 0.7,
52 | **kwargs
53 | ):
54 |
55 | self.pinecone_api_key = os.getenv('PINECONE_API_KEY')
56 | self.pinecone_env = os.getenv('PINECONE_ENV')
57 | self.pinecone_index = os.getenv('PINECONE_INDEX')
58 | self.llm_map = {
59 | 'gpt-4': lambda: ChatOpenAI(model='gpt-4', temperature=temperature, openai_api_key=os.getenv('OPENAI_API_KEY')),
60 | 'gpt-4-32k': lambda: ChatOpenAI(model='gpt-4-32k', temperature=temperature, openai_api_key=os.getenv('OPENAI_API_KEY')),
61 | 'gpt-4-1106-preview': lambda: ChatOpenAI(model='gpt-4', temperature=temperature, openai_api_key=os.getenv('OPENAI_API_KEY')),
62 | 'gpt-3.5-turbo-16k': lambda: ChatOpenAI(model='gpt-3.5-turbo-16k', temperature=temperature, openai_api_key=os.getenv('OPENAI_API_KEY')),
63 | 'gpt-3.5-turbo': lambda: ChatOpenAI(model='gpt-3.5-turbo', temperature=temperature, openai_api_key=os.getenv('OPENAI_API_KEY')),
64 | 'claude-3-sonnet-20240229': lambda: ChatAnthropic(model_name='claude-3-sonnet-20240229', temperature=temperature, anthropic_api_key=os.getenv('ANTHROPIC_API_KEY')),
65 | 'claude-3-opus-20240229': lambda: ChatAnthropic(model_name='claude-3-opus-20240229', temperature=temperature, anthropic_api_key=os.getenv('ANTHROPIC_API_KEY')),
66 | }
67 | self.chat_model = chat_model
68 | # self.streaming_llm = ChatOpenAI(
69 | # model=openai_chat_model,
70 | # streaming=True,
71 | # callbacks=[StreamingStdOutCallbackHandler()],
72 | # temperature=0,
73 | # openai_api_key=os.getenv('OPENAI_API_KEY'),
74 | # )
75 |
76 | if kwargs.get('embeddings_model') == 'text-embedding-3-large':
77 | self.embeddings = OpenAIEmbeddings(
78 | openai_api_key=os.getenv('OPENAI_API_KEY'),
79 | model='text-embedding-3-large'
80 | )
81 | self.dimensions = 3072
82 | else:
83 | self.embeddings = OpenAIEmbeddings(
84 | openai_api_key=os.getenv('OPENAI_API_KEY'),
85 | model='text-embedding-3-small'
86 | )
87 | self.dimensions = 1536
88 |
89 | def load_documents(self, files: list[UploadFile], namespace: str = None) -> list[list[str]]:
90 | documents = []
91 |
92 | loader_map = {
93 | 'txt': TextLoader,
94 | 'pdf': PyMuPDFLoader,
95 | 'docx': Docx2txtLoader,
96 | }
97 |
98 | allowed_extensions = [key for key in loader_map.keys()]
99 | try:
100 | for file in files:
101 | if file.filename.split(".")[-1] not in allowed_extensions:
102 | raise HTTPException(status_code=400, detail="File type not permitted")
103 |
104 | with tempfile.NamedTemporaryFile(delete=True, prefix=file.filename + '___') as temp:
105 | temp.write(file.file.read())
106 | temp.seek(0)
107 | loader = loader_map[file.filename.split(".")[-1]](temp.name)
108 | documents.append(loader.load())
109 | except Exception as e:
110 | alert_exception(e, "Error loading documents")
111 | raise HTTPException(status_code=500, detail=f"Error loading documents: {str(e)}")
112 |
113 |
114 | return documents
115 |
116 | def ingest_documents(self, documents: list[list[str]], chunk_size: int = 1000, chunk_overlap: int = 100, **kwargs):
117 | """
118 | documents: list of loaded documents
119 | chunk_size: number of documents to ingest at a time
120 | chunk_overlap: number of documents to overlap when ingesting
121 |
122 | kwargs:
123 | split_method: 'recursive', 'token', 'text', 'tokenizer', 'language', 'json', 'latex', 'python', 'konlpy', 'spacy', 'nltk', 'sentence_transformers', 'element_type', 'header_type', 'line_type', 'html_header', 'markdown_header', 'markdown', 'character'
124 | """
125 | pinecone.init(api_key=self.pinecone_api_key, environment=self.pinecone_env)
126 |
127 | splitter_map = {
128 | 'recursive': RecursiveCharacterTextSplitter,
129 | 'token': TokenTextSplitter,
130 | 'text': TextSplitter,
131 | 'tokenizer': Tokenizer,
132 | 'language': Language,
133 | 'json': RecursiveJsonSplitter,
134 | 'latex': LatexTextSplitter,
135 | 'python': PythonCodeTextSplitter,
136 | 'konlpy': KonlpyTextSplitter,
137 | 'spacy': SpacyTextSplitter,
138 | 'nltk': NLTKTextSplitter,
139 | 'sentence_transformers': SentenceTransformersTokenTextSplitter,
140 | 'element_type': ElementType,
141 | 'header_type': HeaderType,
142 | 'line_type': LineType,
143 | 'html_header': HTMLHeaderTextSplitter,
144 | 'markdown_header': MarkdownHeaderTextSplitter,
145 | 'markdown': MarkdownTextSplitter,
146 | 'character': CharacterTextSplitter
147 | }
148 |
149 | split_method = kwargs.get('split_method', 'recursive')
150 | test_splitter = splitter_map[split_method](chunk_size=chunk_size, chunk_overlap=chunk_overlap)
151 |
152 | alert_info(f"Ingesting {len(documents)} document(s)...\nParams: chunk_size={chunk_size}, chunk_overlap={chunk_overlap}, split_method={split_method}")
153 | for document in documents:
154 | split_document = test_splitter.split_documents(document)
155 | try:
156 | Pinecone.from_documents(
157 | split_document,
158 | self.embeddings,
159 | index_name=self.pinecone_index,
160 | namespace=kwargs.get('namespace', None) # You can only specify a namespace if you have a premium Pinecone pod
161 | )
162 | except ApiException as e:
163 | alert_exception(e, "Error ingesting documents - Make sure you\'re dimensions match the embeddings model (1536 for text-embedding-3-small, 3072 for text-embedding-3-large)")
164 | raise HTTPException(status_code=500, detail=f"Error ingesting documents: {str(e)}")
165 |
166 | def chat(self, query: str, chat_history: list[str] = [], **kwargs):
167 | """
168 | query: str
169 | chat_history: list of previous chat messages
170 | kwargs:
171 | namespace: str
172 | search_kwargs: dict
173 | """
174 | # alert_info(f"Querying with: {query} and chat history: {chat_history}\nParams: namespace={kwargs.get('namespace', None)}, search_kwargs={kwargs.get('search_kwargs', {'k': 5})}\nModel: {self.llm.model_name} with temperature: {self.llm.temperature}")
175 | try:
176 | pinecone.init(api_key=self.pinecone_api_key, environment=self.pinecone_env)
177 |
178 | vectorstore = Pinecone.from_existing_index(
179 | index_name=self.pinecone_index,
180 | embedding=self.embeddings,
181 | text_key='text',
182 | namespace=kwargs.get('namespace', None) # You can only specify a namespace if you have a premium Pinecone pod
183 | )
184 |
185 | retriever = vectorstore.as_retriever(search_kwargs=kwargs.get('search_kwargs', {"k": 5}))
186 |
187 | bot = ConversationalRetrievalChain.from_llm(
188 | self.llm_map[self.chat_model],
189 | retriever,
190 | return_source_documents=True
191 | )
192 |
193 | # question_generator = LLMChain(llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT)
194 | # doc_chain = load_qa_chain(self.streaming_llm, chain_type="stuff", prompt=QA_PROMPT)
195 |
196 | # bot = ConversationalRetrievalChain(
197 | # retriever=retriever,
198 | # combine_docs_chain=doc_chain,
199 | # question_generator=question_generator,
200 | # return_source_documents=True,
201 | # )
202 |
203 | result = bot.invoke({"question": query, "chat_history": chat_history})
204 | return result
205 | except ApiException as e:
206 | alert_exception(e, "Pinecone API Error")
207 | raise HTTPException(status_code=500, detail=f"Error chatting: {str(e)}")
208 | except Exception as e:
209 | alert_exception(e, "Error chatting")
210 | raise HTTPException(status_code=500, detail=f"Error chatting: {str(e)}")
211 | # for chunk in result:
212 | # yield chunk
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.poetry]
2 | name = "langchain-chatbot"
3 | version = "0.1.0"
4 | description = ""
5 | authors = ["Your Name <34923485+Haste171@users.noreply.github.com>"]
6 | license = "MIT"
7 | readme = "README.md"
8 |
9 | [tool.poetry.dependencies]
10 | python = "^3.10"
11 | langchain = "^0.1.11"
12 | langchain-openai = "^0.0.8"
13 | python-dotenv = "^1.0.1"
14 | pinecone-client = "2.2.1"
15 | colorama = "^0.4.6"
16 | streamlit = "^1.32.0"
17 | watchdog = "^4.0.0"
18 | python-multipart = "^0.0.9"
19 | pymupdf = "^1.23.26"
20 | fastapi = "^0.110.0"
21 | uvicorn = "^0.28.0"
22 | langchain-anthropic = "^0.1.4"
23 | docx2txt = "^0.8"
24 |
25 |
26 | [build-system]
27 | requires = ["poetry-core"]
28 | build-backend = "poetry.core.masonry.api"
29 |
--------------------------------------------------------------------------------
/startup.py:
--------------------------------------------------------------------------------
1 | import subprocess
2 | import threading
3 |
4 | print('Make sure to set .env variables.')
5 | input('Also make sure you are in the Poetry shell before running this... (enter to start)')
6 |
7 | def run_app():
8 | subprocess.run(['python3', 'app.py'])
9 |
10 | def run_streamlit():
11 | subprocess.run(['streamlit', 'run', 'ui/main.py'])
12 |
13 | def run():
14 | # Run each process in a separate thread
15 | t1 = threading.Thread(target=run_app)
16 | t2 = threading.Thread(target=run_streamlit)
17 | t1.start()
18 | t2.start()
19 |
20 | run()
21 |
--------------------------------------------------------------------------------
/ui/main.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | import requests
3 | import json
4 |
5 | def post_data(api_endpoint, data):
6 | try:
7 | response = requests.post(api_endpoint, data=json.dumps(data))
8 | if response.status_code == 200:
9 | return response.json()
10 | else:
11 | return None
12 | except Exception as e:
13 | st.error(f"Error occurred: {e}")
14 | return None
15 |
16 | def chat_page():
17 | st.title("Langchain Chatbot Interface")
18 | api_endpoint = "http://localhost:9091/chat"
19 |
20 | param1 = st.text_input("Query")
21 | namespace = st.text_input("Namespace (Optional)", value=None)
22 | # make default model_selector to gpt-3.5-turbo
23 | model_selector = st.selectbox("Chat Model",
24 | ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "gpt-4-32k", "gpt-4-1106-preview", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
25 | )
26 | temperature = st.slider("Temperature", 0.0, 2.0, 0.7)
27 | source_documents = st.slider("Number of Source Documents", 1, 10, 5)
28 |
29 |
30 | if api_endpoint:
31 | if st.button("Send"):
32 | data = {
33 | "query": str(param1),
34 | "chat_history": [],
35 | "model": model_selector,
36 | "temperature": temperature,
37 | "vector_fetch_k": source_documents,
38 | "namespace": namespace if namespace else None
39 | }
40 |
41 | data = post_data(api_endpoint, data)
42 |
43 | if data:
44 | st.markdown(data['response']['answer'])
45 | st.header("Source Documents")
46 | doc_num_init = 1
47 | for msg in data['response']['source_documents']:
48 | st.markdown(f"""### Document **[{doc_num_init}]**: \n__{msg.get('metadata').get('source')}__\n\n*Page Content:*\n\n```{msg.get('page_content')}```""")
49 | doc_num_init += 1
50 | else:
51 | st.warning("Failed to fetch data from the API endpoint. Please check the endpoint URL.")
52 |
53 | def ingest_page():
54 | st.title("Document Ingestion")
55 | FASTAPI_URL = "http://localhost:9091/ingest"
56 |
57 | uploaded_files = st.file_uploader("Upload Document(s)", accept_multiple_files=True)
58 | namespace = st.text_input("Namespace (Optional)")
59 |
60 | if st.button("Ingest Documents"):
61 | if uploaded_files:
62 | try:
63 | files = [("files", file) for file in uploaded_files]
64 | payload = {"namespace": namespace}
65 | response = requests.post(FASTAPI_URL, files=files, data=payload)
66 |
67 | if response.status_code == 200:
68 | st.success("Documents ingested successfully!")
69 | else:
70 | st.error(f"Failed to ingest documents. Error: {response.text}")
71 | except Exception as e:
72 | st.error(f"An error occurred: {str(e)}")
73 | else:
74 | st.warning("Please upload at least one document.")
75 |
76 | def main():
77 | st.sidebar.title("Navigation")
78 | tabs = ["Ingestion", "Chat"]
79 | selected_tab = st.sidebar.radio("Go to", tabs)
80 |
81 | if selected_tab == "Chat":
82 | chat_page()
83 | elif selected_tab == "Ingestion":
84 | ingest_page()
85 |
86 | if __name__ == "__main__":
87 | main()
88 |
--------------------------------------------------------------------------------
/utils/alerts.py:
--------------------------------------------------------------------------------
1 | import logging
2 | from colorama import Fore, Style, init
3 |
4 | # logging config to print in color
5 | logging.basicConfig(level=logging.INFO)
6 | logging.addLevelName(logging.INFO, f"{Fore.GREEN}{Style.BRIGHT}{logging.getLevelName(logging.INFO)}{Style.RESET_ALL}")
7 |
8 | init(autoreset=True)
9 |
10 | def alert_exception(e: Exception, message: str = None):
11 | """
12 | Print an error message to the console and log the exception
13 | """
14 | if message:
15 | print(f"{Fore.RED}{message}{Style.RESET_ALL}")
16 | print(f"{Fore.RED}{e}{Style.RESET_ALL}")
17 | logging.exception(e)
18 |
19 | def alert_info(message: str):
20 | """
21 | Print an info message to the console and log the message
22 | """
23 | print(f"{Fore.MAGENTA}{message}{Style.RESET_ALL}")
24 | logging.info(message)
--------------------------------------------------------------------------------