├── examples ├── i5.jpg ├── jgz.mp4 ├── qie.mp4 ├── yao.jpg ├── amns.mp4 ├── tiktok.mp4 ├── toon.png ├── chillout.jpg ├── civitai2.jpg ├── helloicon.png ├── majicmix2.jpg └── ComfyUI_Manager.jpg ├── example_workflows ├── image_generation.jpg ├── video_generation.jpg ├── image_style_transfer.jpg ├── hellomeme_image_workflow.jpg ├── hellomeme_style_workflow.jpg ├── hellomeme_video_workflow.jpg ├── image_generation.json ├── video_generation.json └── image_style_transfer.json ├── __init__.py ├── .gitignore ├── requirements.txt ├── hellomeme ├── __init__.py ├── tools │ ├── __init__.py │ ├── hello_arkit.py │ ├── hello_face_alignment.py │ ├── hello_3dmm.py │ ├── utils.py │ ├── pdf.py │ ├── hello_face_det.py │ └── sr.py ├── pipelines │ ├── __init__.py │ ├── pipline_hm_image.py │ └── pipline_hm3_image.py ├── models │ ├── __init__.py │ ├── hm3_denoising_motion.py │ ├── hm_denoising_motion.py │ ├── hm3_denoising_3d.py │ └── hm_denoising_3d.py └── model_config.json ├── pyproject.toml ├── .github └── workflows │ └── publish.yml ├── LICENSE └── README.md /examples/i5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/i5.jpg -------------------------------------------------------------------------------- /examples/jgz.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/jgz.mp4 -------------------------------------------------------------------------------- /examples/qie.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/qie.mp4 -------------------------------------------------------------------------------- /examples/yao.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/yao.jpg -------------------------------------------------------------------------------- /examples/amns.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/amns.mp4 -------------------------------------------------------------------------------- /examples/tiktok.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/tiktok.mp4 -------------------------------------------------------------------------------- /examples/toon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/toon.png -------------------------------------------------------------------------------- /examples/chillout.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/chillout.jpg -------------------------------------------------------------------------------- /examples/civitai2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/civitai2.jpg -------------------------------------------------------------------------------- /examples/helloicon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/helloicon.png -------------------------------------------------------------------------------- /examples/majicmix2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/majicmix2.jpg -------------------------------------------------------------------------------- /examples/ComfyUI_Manager.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/examples/ComfyUI_Manager.jpg -------------------------------------------------------------------------------- /example_workflows/image_generation.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/example_workflows/image_generation.jpg -------------------------------------------------------------------------------- /example_workflows/video_generation.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/example_workflows/video_generation.jpg -------------------------------------------------------------------------------- /__init__.py: -------------------------------------------------------------------------------- 1 | from .meme import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS 2 | 3 | __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS'] -------------------------------------------------------------------------------- /example_workflows/image_style_transfer.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/example_workflows/image_style_transfer.jpg -------------------------------------------------------------------------------- /example_workflows/hellomeme_image_workflow.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/example_workflows/hellomeme_image_workflow.jpg -------------------------------------------------------------------------------- /example_workflows/hellomeme_style_workflow.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/example_workflows/hellomeme_style_workflow.jpg -------------------------------------------------------------------------------- /example_workflows/hellomeme_video_workflow.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/HelloVision/ComfyUI_HelloMeme/HEAD/example_workflows/hellomeme_video_workflow.jpg -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | *.pyc 2 | *.pyd 3 | *.pth 4 | *.pkl 5 | *.pyc* 6 | *.pyd* 7 | *~ 8 | *_fps15.mp4 9 | *__pycache__/* 10 | .idea/ 11 | data/results 12 | pretrained_models/ 13 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | accelerate>=1.1.1 2 | diffusers>=0.33.1 3 | einops>=0.8.0 4 | huggingface-hub>=0.30.2 5 | imageio>=2.36.0 6 | imageio-ffmpeg>=0.5.1 7 | onnxruntime>=1.14.0 8 | opencv-python>=4.10.0.84 9 | peft>=0.15.2 10 | pillow>=10.2.0 11 | safetensors>=0.4.5 12 | tqdm>=4.67.0 13 | transformers>=4.46.3 14 | scikit-image>=0.25.2 15 | modelscope>=1.21.0 16 | torchvision>=0.18.0 -------------------------------------------------------------------------------- /hellomeme/__init__.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : __init__.py.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 8/28/2024 8 | @Desc : 9 | """ 10 | 11 | from .pipelines import (HMImagePipeline, HMVideoPipeline, 12 | HM3ImagePipeline, HM3VideoPipeline, 13 | HM5ImagePipeline, HM5VideoPipeline) 14 | from .tools.utils import download_file_from_cloud, creat_model_from_cloud -------------------------------------------------------------------------------- /hellomeme/tools/__init__.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | # @File : __init__.py 4 | # @Author : Songkey 5 | # @Email : songkey@pku.edu.cn 6 | # @Date : 8/28/2024 7 | # @Desc : 8 | 9 | from .hello_arkit import HelloARKitBSPred 10 | from .hello_face_det import HelloFaceDet 11 | from .hello_camera_demo import HelloCameraDemo 12 | from .hello_3dmm import Hello3DMMPred 13 | from .hello_face_alignment import HelloFaceAlignment 14 | from .pdf import FanEncoder 15 | -------------------------------------------------------------------------------- /hellomeme/pipelines/__init__.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : __init__.py.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 8/29/2024 8 | @Desc : 9 | """ 10 | 11 | from .pipline_hm_image import HMImagePipeline 12 | from .pipline_hm_video import HMVideoPipeline 13 | from .pipline_hm3_image import HM3ImagePipeline 14 | from .pipline_hm3_video import HM3VideoPipeline 15 | from .pipline_hm5_image import HM5ImagePipeline 16 | from .pipline_hm5_video import HM5VideoPipeline -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [project] 2 | name = "comfyui_hellomeme" 3 | description = "This repository is the official implementation of the [a/HelloMeme](https://arxiv.org/pdf/2410.22901) ComfyUI interface" 4 | version = "1.3.28" 5 | license = {file = "LICENSE"} 6 | 7 | [project.urls] 8 | Repository = "https://github.com/HelloVision/ComfyUI_HelloMeme" 9 | # Used by Comfy Registry https://comfyregistry.org 10 | 11 | [tool.comfy] 12 | PublisherId = "hellomeme-api" 13 | DisplayName = "hellomeme-api" 14 | Icon = "https://github.com/HelloVision/ComfyUI_HelloMeme/blob/eee70819a114a44c4c689c865b42fa0e523a31e5/examples/helloicon.png" 15 | -------------------------------------------------------------------------------- /.github/workflows/publish.yml: -------------------------------------------------------------------------------- 1 | name: Publish to Comfy registry 2 | on: 3 | workflow_dispatch: 4 | push: 5 | branches: 6 | - main 7 | - master 8 | paths: 9 | - "pyproject.toml" 10 | 11 | permissions: 12 | issues: write 13 | 14 | jobs: 15 | publish-node: 16 | name: Publish Custom Node to registry 17 | runs-on: ubuntu-latest 18 | if: ${{ github.repository_owner == 'HelloVision' }} 19 | steps: 20 | - name: Check out code 21 | uses: actions/checkout@v4 22 | - name: Publish Custom Node 23 | uses: Comfy-Org/publish-node-action@v1 24 | with: 25 | ## Add your own personal access token to your Github Repository secrets and reference it here. 26 | personal_access_token: ${{ secrets.REGISTRY_ACCESS_TOKEN }} 27 | -------------------------------------------------------------------------------- /hellomeme/models/__init__.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : __init__.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 8/14/2024 8 | @Desc : 9 | """ 10 | 11 | from .hm_denoising_motion import HMDenoisingMotion 12 | from .hm_control import (HMControlNet, HMControlNet2, HMV2ControlNet, HMV2ControlNet2, 13 | HMV3ControlNet, HMControlNetBase, HM5ControlNetBase, 14 | HM4SD15ControlProj, HM5SD15ControlProj) 15 | from .hm_adapters import (HMReferenceAdapter, HM3ReferenceAdapter, HM5ReferenceAdapter, HM5bReferenceAdapter, 16 | HM3MotionAdapter, HM5MotionAdapter, HMPipeline) 17 | from .hm_denoising_3d import HMDenoising3D 18 | from .hm3_denoising_3d import HM3Denoising3D 19 | from .hm3_denoising_motion import HM3DenoisingMotion 20 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2024 HelloVision 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /hellomeme/tools/hello_arkit.py: -------------------------------------------------------------------------------- 1 | """ 2 | @File : test.py 3 | @Author : Songkey 4 | @Email : songkey@pku.edu.cn 5 | @Date : 11/1/2024 6 | @Desc : Created by Shengjie Wu (wu.shengjie@immomo.com) 7 | """ 8 | 9 | import numpy as np 10 | import cv2 11 | import os.path as osp 12 | from .utils import create_onnx_session, get_warp_mat_bbox_by_gt_pts_float, download_file_from_cloud 13 | 14 | class HelloARKitBSPred(object): 15 | def __init__(self, gpu_id=0, modelscope=False): 16 | model_path = download_file_from_cloud(model_id='songkey/hello_group_facemodel', 17 | file_name='hello_arkit_blendshape.onnx', 18 | modelscope=modelscope) 19 | 20 | self.face_rig_net = create_onnx_session(model_path, gpu_id=gpu_id) 21 | self.onnx_input_name = self.face_rig_net.get_inputs()[0].name 22 | self.onnx_output_name = [output.name for output in self.face_rig_net.get_outputs()] 23 | self.image_size = 224 24 | self.expand_ratio = 0.15 25 | 26 | def forward(self, src_image, src_pt): 27 | left_eye_corner = src_pt[74] 28 | right_eye_corner = src_pt[96] 29 | radian = np.arctan2(right_eye_corner[1] - left_eye_corner[1], right_eye_corner[0] - left_eye_corner[0] + 0.00000001) 30 | rotate_angle = np.rad2deg(radian) 31 | align_warp_mat = get_warp_mat_bbox_by_gt_pts_float(src_pt, base_angle=rotate_angle, dst_size=self.image_size, 32 | expand_ratio=self.expand_ratio) 33 | face_rig_input = cv2.warpAffine(src_image, align_warp_mat, (self.image_size, self.image_size)) 34 | 35 | face_rig_onnx_input = face_rig_input.transpose((2, 0, 1)).astype(np.float32)[np.newaxis, :, :, :] / 255.0 36 | face_rig_params = self.face_rig_net.run(self.onnx_output_name, 37 | {self.onnx_input_name: face_rig_onnx_input}) 38 | face_rig_params = face_rig_params[0][0] 39 | return face_rig_params 40 | -------------------------------------------------------------------------------- /hellomeme/model_config.json: -------------------------------------------------------------------------------- 1 | { 2 | "sd15": { 3 | "checkpoints": { 4 | "SD1.5": "songkey/stable-diffusion-v1-5", 5 | "[preset]RealisticVisionV60B1": "songkey/realisticVisionV60B1_v51VAE", 6 | "[preset]DisneyPixarCartoonB": "songkey/disney-pixar-cartoon-b", 7 | "[preset]toonyou_beta6": "songkey/toonyou_beta6", 8 | "[preset]LZ_2DCartoon_V2": "songkey/LZ_2DCartoon_V2", 9 | "[preset]meinamix_v12Final": "songkey/meinamix_v12Final", 10 | "[preset]animedark_v10": "songkey/animedark_v10", 11 | "[preset]absolutereality_v181": "songkey/absolutereality_v181", 12 | "[preset]dreamshaper_8": "songkey/dreamshaper_8", 13 | "[preset]epicphotogasm_ultimateFidelity": "songkey/epicphotogasm_ultimateFidelity", 14 | "[preset]epicrealism_naturalSinRC1VAE": "songkey/epicrealism_naturalSinRC1VAE", 15 | "[preset]xxmix9realistic_v40": "songkey/xxmix9realistic_v40", 16 | "[preset]cyberrealistic_v80": "songkey/cyberrealistic_v80", 17 | "[preset]animeanything_v10": "songkey/animeanything_v10" 18 | }, 19 | "loras": { 20 | "[preset]BabyFaceV1": ["songkey/loras_sd_1_5", "baby_face_v1.safetensors"], 21 | "[preset]MoreDetails": ["songkey/loras_sd_1_5", "more_details.safetensors"], 22 | "[preset]PixelPortraitV1": ["songkey/loras_sd_1_5", "pixel-portrait-v1.safetensors"], 23 | "[preset]Drawing": ["songkey/loras_sd_1_5", "Drawing.safetensors"], 24 | "[preset]anime_extract": ["songkey/loras_sd_1_5", "anime_extract.safetensors"], 25 | "[preset]animemix_v3_offset": ["songkey/loras_sd_1_5", "animemix_v3_offset.safetensors"], 26 | "[preset]animeoutlineV4_16": ["songkey/loras_sd_1_5", "animeoutlineV4_16.safetensors"], 27 | "[preset]ghibli_anime_v1": ["songkey/loras_sd_1_5", "ghibli_anime_v1.safetensors"], 28 | "[preset]zyd232_InkStyle_v1_0": ["songkey/loras_sd_1_5", "zyd232_InkStyle_v1_0.safetensors"] 29 | } 30 | }, 31 | "prompt": "(best quality), highly detailed, ultra-detailed, headshot, person, well-placed five sense organs, looking at the viewer, centered composition, sharp focus, realistic skin texture", 32 | "prompt_new": "best quality, highly detailed, masterpiece, person, portrait, headshot, looking at the viewer, sharp focus." 33 | } -------------------------------------------------------------------------------- /hellomeme/tools/hello_face_alignment.py: -------------------------------------------------------------------------------- 1 | """ 2 | @File : test.py 3 | @Author : Songkey 4 | @Email : songkey@pku.edu.cn 5 | @Date : 11/1/2024 6 | @Desc : Created by Shengjie Wu (wu.shengjie@immomo.com) 7 | """ 8 | 9 | import cv2 10 | import os.path as osp 11 | import numpy as np 12 | from .hello_face_det import HelloFaceDet 13 | from .utils import get_warp_mat_bbox, get_warp_mat_bbox_by_gt_pts_float, transform_points 14 | from .utils import create_onnx_session, download_file_from_cloud 15 | 16 | class HelloFaceAlignment(object): 17 | def __init__(self, gpu_id=None, modelscope=False): 18 | expand_ratio = 0.15 19 | 20 | alignment_model_path = download_file_from_cloud(model_id='songkey/hello_group_facemodel', 21 | file_name='hello_face_landmark.onnx', 22 | modelscope=modelscope) 23 | 24 | det_model_path = download_file_from_cloud(model_id='songkey/hello_group_facemodel', 25 | file_name='hello_face_det.onnx', 26 | modelscope=modelscope) 27 | self.face_alignment_net_222 = ( 28 | create_onnx_session(alignment_model_path, gpu_id=gpu_id)) 29 | self.onnx_input_name_222 = self.face_alignment_net_222.get_inputs()[0].name 30 | self.onnx_output_name_222 = [output.name for output in self.face_alignment_net_222.get_outputs()] 31 | self.face_image_size = 128 32 | 33 | self.face_detector = HelloFaceDet(det_model_path, gpu_id=gpu_id) 34 | self.expand_ratio = expand_ratio 35 | 36 | def onnx_infer(self, input_uint8): 37 | assert input_uint8.shape[0] == input_uint8.shape[1] == self.face_image_size 38 | onnx_input = input_uint8.transpose((2, 0, 1)).astype(np.float32)[np.newaxis, :, :, :] / 255.0 39 | landmark, euler, prob = self.face_alignment_net_222.run(self.onnx_output_name_222, 40 | {self.onnx_input_name_222: onnx_input}) 41 | 42 | landmark = np.reshape(landmark[0], (2, -1)).transpose((1, 0)) * self.face_image_size 43 | left_eye_corner = landmark[74] 44 | right_eye_corner = landmark[96] 45 | radian = np.arctan2(right_eye_corner[1] - left_eye_corner[1], 46 | right_eye_corner[0] - left_eye_corner[0] + 0.00000001) 47 | euler_rad = np.array([euler[0, 0], euler[0, 1], radian], dtype=np.float32) 48 | prob = prob[0] 49 | 50 | return landmark, euler_rad, prob 51 | 52 | def forward(self, src_image, face_box=None, pre_pts=None, iterations=3): 53 | if pre_pts is None: 54 | if face_box is None: 55 | # Detect max size face 56 | bounding_boxes, _, score = self.face_detector.detect(src_image) 57 | print("facedet score", score) 58 | if len(bounding_boxes) == 0: 59 | return None 60 | bbox = np.zeros(4, dtype=np.float32) 61 | if len(bounding_boxes) >= 1: 62 | max_area = 0.0 63 | for each_bbox in bounding_boxes: 64 | area = (each_bbox[2] - each_bbox[0]) * (each_bbox[3] - each_bbox[1]) 65 | if area > max_area: 66 | bbox[:4] = each_bbox[:4] 67 | max_area = area 68 | else: 69 | bbox = bounding_boxes[0, :4] 70 | else: 71 | bbox = face_box.copy() 72 | M_Face = get_warp_mat_bbox(bbox, 0, self.face_image_size, expand_ratio=self.expand_ratio) 73 | else: 74 | left_eye_corner = pre_pts[74] 75 | right_eye_corner = pre_pts[96] 76 | 77 | radian = np.arctan2(right_eye_corner[1] - left_eye_corner[1], 78 | right_eye_corner[0] - left_eye_corner[0] + 0.00000001) 79 | M_Face = get_warp_mat_bbox_by_gt_pts_float(pre_pts, np.rad2deg(radian), self.face_image_size, 80 | expand_ratio=self.expand_ratio) 81 | 82 | face_input = cv2.warpAffine(src_image, M_Face, (self.face_image_size, self.face_image_size)) 83 | landmarks, euler, prob = self.onnx_infer(face_input) 84 | landmarks = transform_points(landmarks, M_Face, invert=True) 85 | 86 | # Repeat 87 | for i in range(iterations - 1): 88 | M_Face = get_warp_mat_bbox_by_gt_pts_float(landmarks, np.rad2deg(euler[2]), self.face_image_size, 89 | expand_ratio=self.expand_ratio) 90 | face_input = cv2.warpAffine(src_image, M_Face, (self.face_image_size, self.face_image_size)) 91 | landmarks, euler, prob = self.onnx_infer(face_input) 92 | landmarks = transform_points(landmarks, M_Face, invert=True) 93 | 94 | return_dict = { 95 | "pt222": landmarks, 96 | "euler_rad": euler, 97 | "prob": prob, 98 | "M_Face": M_Face, 99 | "face_input": face_input 100 | } 101 | 102 | return return_dict 103 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |

HelloMeme: Integrating Spatial Knitting Attentions to Embed High-Level and Fidelity-Rich Conditions in Diffusion Models

2 | 3 |
4 | Shengkai Zhang, Nianhong Jiao, Tian Li, Chaojie Yang, Chenhui Xue*, Boya Niu*, Jun Gao 5 |
6 | 7 |
8 | HelloVision | HelloGroup Inc. 9 |
10 | 11 |
12 | * Intern 13 |
14 | 15 |
16 |
17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | ## 🔆 New Features/Updates 26 | - ✅ `02/09/2025` **HelloMemeV3** is now available. 27 | [YouTube Demo](https://www.youtube.com/watch?v=DAUA0EYjsZA) 28 | 29 | - ✅ `12/17/2024` Support modelscope ([Modelscope Demo](https://www.modelscope.cn/studios/songkey/HelloMeme)). 30 | - ✅ `12/08/2024` Added **HelloMemeV2** (select "v2" in the version option of the LoadHelloMemeImage/Video Node). Its features include: 31 | a. Improved expression consistency between the generated video and the driving video. 32 | b. Better compatibility with third-party checkpoints. 33 | c. Reduced VRAM usage. 34 | [YouTube Demo](https://www.youtube.com/watch?v=-2s_pLAKoRg) 35 | 36 | - ✅ `11/29/2024` a.Optimize the algorithm; b.Add VAE selection functionality; c.Introduce a super-resolution feature. 37 | [YouTube Demo](https://www.youtube.com/watch?v=fM5nyn6q02Y) 38 | 39 | - ✅ `11/14/2024` Added the `HMControlNet2` module, which uses the `PD-FGC` motion module to extract facial expression information (`drive_exp2`); restructured the ComfyUI interface; and optimized VRAM usage. 40 | [YouTube Demo](https://www.youtube.com/watch?v=ZvoMHyRm310) 41 | 42 | - ✅ `11/12/2024` Added a newly fine-tuned version of [`Animatediff`](https://huggingface.co/songkey/hm_animatediff_frame12) with a patch size of 12, which uses less VRAM (Tested on 2080Ti). 43 | - ✅ `11/11/2024` ~~Optimized VRAM usage and added `HMVideoSimplePipeline` (`workflows/hellomeme_video_simple_workflow.json`), which doesn’t use Animatediff and can run on machines with less than 12G VRAM.~~ 44 | - ✅ `11/6/2024` The face proportion in the reference image significantly affects the generation quality. We have encapsulated the **recommended image cropping method** used during training into a `CropReferenceImage` Node. Refer to the workflows in the `ComfyUI_HelloMeme/workflows directory`: `hellomeme_video_cropref_workflow.json` and `hellomeme_image_cropref_workflow.json`. 45 | 46 | 47 | ## Introduction 48 | 49 | This repository is the official implementation of the [`HelloMeme`](https://arxiv.org/pdf/2410.22901) ComfyUI interface, featuring both image and video generation functionalities. Example workflow files can be found in the `ComfyUI_HelloMeme/workflows` directory. Test images and videos are saved in the `ComfyUI_HelloMeme/examples` directory. Below are screenshots of the interfaces for image and video generation. 50 | 51 | > [!Note] 52 | > [Custom models should be placed in the directories listed below.](https://github.com/HelloVision/ComfyUI_HelloMeme/issues/5#issuecomment-2461247829) 53 | > 54 | > **Checkpoints** under: `ComfyUI/models/checkpoints` 55 | > 56 | > **Loras** under: `ComfyUI/models/loras` 57 | 58 | ### Installation 59 | 60 | Keyword of ComfyUI Manager : `hellomeme-api` 61 |

62 | hellomeme-api 63 |

64 | 65 | 66 | ### Workflows 67 | 68 | | workflow file | Video Generation | Image Generation | HMControlNet | HMControlNet2 | 69 | |---------------|------------------|------------------|-----------|---------------| 70 | | image_generation.json | | ✅ | | ✅ | 71 | | image_style_transfer.json | | ✅ | | ✅ | 72 | | video_generation.json | ✅ | | | ✅ | 73 | 74 | ### Image Generation Interface 75 | 76 |

77 | image_generation_interface 78 |

79 | 80 | ### Style Transfer Interface 81 | 82 |

83 | image_generation_interface 84 |

85 | 86 | ### Video Generation Interface 87 | 88 |

89 | video_generation_interface 90 |

91 | 92 | -------------------------------------------------------------------------------- /hellomeme/tools/hello_3dmm.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : test.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 11/1/2024 8 | @Desc : Created by Shengjie Wu (wu.shengjie@immomo.com) 9 | 这可能是一个很强大的模型 10 | """ 11 | 12 | import numpy as np 13 | import cv2 14 | import os.path as osp 15 | 16 | from .utils import get_warp_mat_bbox_by_gt_pts_float, create_onnx_session, download_file_from_cloud 17 | 18 | def crop_transl_to_full_transl(crop_trans, crop_center, scale, full_center, focal_length): 19 | """ 20 | :param crop_trans: (3), float 21 | :param crop_center: (2), float 22 | :param scale: (1), float 23 | :param full_center: (2), float 24 | :param focal_length: (1), float 25 | :return: 26 | """ 27 | crop_c_x, crop_c_y = crop_center 28 | full_c_x, full_c_y = full_center 29 | bs = 2 * focal_length / scale / crop_trans[2] 30 | full_x = crop_trans[0] - 2 * (crop_c_x - full_c_x) / bs 31 | full_y = crop_trans[1] + 2 * (crop_c_y - full_c_y) / bs 32 | full_z = crop_trans[2] * scale 33 | 34 | full_trans = np.array([full_x, full_y, full_z], dtype=np.float32) 35 | 36 | return full_trans 37 | 38 | class Hello3DMMPred(object): 39 | def __init__(self, gpu_id=None, modelscope=False): 40 | model_path = download_file_from_cloud(model_id='songkey/hello_group_facemodel', 41 | file_name='hello_3dmm.onnx', 42 | modelscope=modelscope) 43 | self.deep3d_pred_net = create_onnx_session(model_path, gpu_id=gpu_id) 44 | self.deep3d_pred_net_input_name = self.deep3d_pred_net.get_inputs()[0].name 45 | self.deep3d_pred_net_output_name = [output.name for output in self.deep3d_pred_net.get_outputs()] 46 | 47 | self.image_size = 224 48 | self.camera_init_z = -0.4 49 | self.camera_init_focal_len = 386.2879122887948 50 | self.used_focal_len = -5.0 / self.camera_init_z * self.camera_init_focal_len 51 | self.id_dims = 526 52 | self.exp_dims = 203 53 | self.tex_dims = 439 54 | 55 | def forward_params(self, src_image, src_pt): 56 | align_mat_info = get_warp_mat_bbox_by_gt_pts_float(src_pt, base_angle=0, dst_size=self.image_size, expand_ratio=0.35, return_info=True) 57 | align_mat = align_mat_info["M"] 58 | 59 | align_image_rgb_uint8 = cv2.cvtColor(cv2.warpAffine(src_image, align_mat, (self.image_size, self.image_size)), cv2.COLOR_BGR2RGB) 60 | 61 | # cv2.imshow('align_image_rgb_uint8', align_image_rgb_uint8) 62 | 63 | align_image_rgb_fp32 = align_image_rgb_uint8.astype(np.float32) / 255.0 64 | align_image_rgb_fp32_onnx_input = align_image_rgb_fp32.copy().transpose((2, 0, 1))[np.newaxis, ...] 65 | pred_coeffs = self.deep3d_pred_net.run(self.deep3d_pred_net_output_name, 66 | {self.deep3d_pred_net_input_name: align_image_rgb_fp32_onnx_input})[0] 67 | 68 | angles = pred_coeffs[:, self.id_dims + self.exp_dims + self.tex_dims:self.id_dims + self.exp_dims + self.tex_dims + 3] 69 | translations = pred_coeffs[:, self.id_dims + self.exp_dims + self.tex_dims + 3 + 27:] 70 | 71 | crop_global_transl = crop_transl_to_full_transl(translations[0], 72 | crop_center=[align_mat_info["center_x"], 73 | align_mat_info["center_y"]], 74 | scale=align_mat_info["scale"], 75 | full_center=[src_image.shape[1] * 0.5, src_image.shape[0] * 0.5], 76 | focal_length=self.used_focal_len) 77 | return angles, crop_global_transl[np.newaxis, :] 78 | 79 | def compute_rotation_matrix(angles): 80 | n_b = angles.shape[0] 81 | sinx = np.sin(angles[:, 0]) 82 | siny = np.sin(angles[:, 1]) 83 | sinz = np.sin(angles[:, 2]) 84 | cosx = np.cos(angles[:, 0]) 85 | cosy = np.cos(angles[:, 1]) 86 | cosz = np.cos(angles[:, 2]) 87 | rotXYZ = np.eye(3).reshape(1, 3, 3).repeat(n_b*3, 0).reshape(3, n_b, 3, 3) 88 | rotXYZ[0, :, 1, 1] = cosx 89 | rotXYZ[0, :, 1, 2] = -sinx 90 | rotXYZ[0, :, 2, 1] = sinx 91 | rotXYZ[0, :, 2, 2] = cosx 92 | rotXYZ[1, :, 0, 0] = cosy 93 | rotXYZ[1, :, 0, 2] = siny 94 | rotXYZ[1, :, 2, 0] = -siny 95 | rotXYZ[1, :, 2, 2] = cosy 96 | rotXYZ[2, :, 0, 0] = cosz 97 | rotXYZ[2, :, 0, 1] = -sinz 98 | rotXYZ[2, :, 1, 0] = sinz 99 | rotXYZ[2, :, 1, 1] = cosz 100 | rotation = np.matmul(np.matmul(rotXYZ[2], rotXYZ[1]), rotXYZ[0]) 101 | return rotation.transpose(0, 2, 1) 102 | 103 | def rigid_transform(vs, rot, trans): 104 | vs_r = np.matmul(vs, rot) 105 | vs_t = vs_r + trans.reshape(-1, 1, 3) 106 | return vs_t 107 | 108 | def perspective_projection_points(points, image_w, image_h, used_focal_len): 109 | batch_size = points.shape[0] 110 | K = np.zeros([batch_size, 3, 3]) 111 | K[:, 0, 0] = used_focal_len 112 | K[:, 1, 1] = used_focal_len 113 | K[:, 2, 2] = 1. 114 | K[:, 0, 2] = image_w * 0.5 115 | K[:, 1, 2] = image_h * 0.5 116 | 117 | reverse_z = np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]])[np.newaxis, :, :].repeat(batch_size, 0) 118 | 119 | # Transform points 120 | aug_projection = np.matmul(points, reverse_z) 121 | aug_projection = np.matmul(aug_projection, K.transpose((0, 2, 1))) 122 | 123 | # Apply perspective distortion 124 | projected_points = aug_projection[:, :, :2] / aug_projection[:, :, 2:] 125 | return projected_points 126 | 127 | def get_project_points_rect(angle, trans, image_w, image_h, used_focal_len=4828.598903609935): 128 | vs = np.array( 129 | [[-1, -1, 0], [-1, 1, 0], [1, 1, 0], [1, -1, 0]], 130 | ) * 0.05 131 | vs = vs[np.newaxis, :, :] 132 | 133 | rotation = compute_rotation_matrix(angle) 134 | translation = trans.copy() 135 | translation[0, 2] *= 0.05 136 | 137 | vs_t = rigid_transform(vs, rotation, translation) 138 | 139 | project_points = perspective_projection_points(vs_t, image_w, image_h, used_focal_len*0.05) 140 | project_points = np.stack([project_points[:, :, 0], image_h - project_points[:, :, 1]], axis=2) 141 | 142 | return project_points[0] 143 | 144 | -------------------------------------------------------------------------------- /hellomeme/tools/utils.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | # @File : utils.py 4 | # @Author : Songkey 5 | # @Email : songkey@pku.edu.cn 6 | # @Date : 8/18/2024 7 | # @Desc : 8 | 9 | import onnxruntime 10 | import time 11 | import cv2 12 | import numpy as np 13 | import math 14 | import os.path as osp 15 | 16 | def create_onnx_session(onnx_path, gpu_id=None)->onnxruntime.InferenceSession: 17 | start = time.perf_counter() 18 | providers = [ 19 | ('CUDAExecutionProvider', { 20 | 'device_id': int(gpu_id), 21 | 'arena_extend_strategy': 'kNextPowerOfTwo', 22 | #'cuda_mem_limit': 5 * 1024 * 1024 * 1024, 23 | 'cudnn_conv_algo_search': 'EXHAUSTIVE', 24 | 'do_copy_in_default_stream': True, 25 | }), 26 | 'CPUExecutionProvider', 27 | ] if (gpu_id is not None and gpu_id >= 0) else ['CPUExecutionProvider'] 28 | 29 | sess = onnxruntime.InferenceSession(onnx_path, providers=providers) 30 | print('create onnx session cost: {:.3f}s. {}'.format(time.perf_counter() - start, onnx_path)) 31 | return sess 32 | 33 | def smoothing_factor(t_e, cutoff): 34 | r = 2 * math.pi * cutoff * t_e 35 | return r / (r + 1) 36 | 37 | def exponential_smoothing(a, x, x_prev): 38 | return a * x + (1 - a) * x_prev 39 | 40 | class OneEuroFilter: 41 | def __init__(self, dx0=0.0, d_cutoff=1.0): 42 | """Initialize the one euro filter.""" 43 | # self.min_cutoff = float(min_cutoff) 44 | # self.beta = float(beta) 45 | self.d_cutoff = float(d_cutoff) 46 | self.dx_prev = float(dx0) 47 | # self.t_e = fcmin 48 | 49 | def __call__(self, x, x_prev, fcmin=1.0, min_cutoff=1.0, beta=0.0): 50 | if x_prev is None: 51 | return x 52 | # t_e = 1 53 | a_d = smoothing_factor(fcmin, self.d_cutoff) 54 | dx = (x - x_prev) / fcmin 55 | dx_hat = exponential_smoothing(a_d, dx, self.dx_prev) 56 | cutoff = min_cutoff + beta * abs(dx_hat) 57 | a = smoothing_factor(fcmin, cutoff) 58 | x_hat = exponential_smoothing(a, x, x_prev) 59 | self.dx_prev = dx_hat 60 | return x_hat 61 | 62 | def get_warp_mat_bbox(face_bbox, base_angle, dst_size=128, expand_ratio=0.15, aug_angle=0.0, aug_scale=1.0): 63 | face_x_min, face_y_min, face_x_max, face_y_max = face_bbox 64 | face_x_center = (face_x_min + face_x_max) / 2 65 | face_y_center = (face_y_min + face_y_max) / 2 66 | face_width = face_x_max - face_x_min 67 | face_height = face_y_max - face_y_min 68 | scale = dst_size / max(face_width, face_height) * (1 - expand_ratio) * aug_scale 69 | M = cv2.getRotationMatrix2D((face_x_center, face_y_center), angle=base_angle + aug_angle, scale=scale) 70 | offset = [dst_size / 2 - face_x_center, dst_size / 2 - face_y_center] 71 | M[:, 2] += offset 72 | return M 73 | 74 | def transform_points(points, mat, invert=False): 75 | if invert: 76 | mat = cv2.invertAffineTransform(mat) 77 | points = np.expand_dims(points, axis=1) 78 | points = cv2.transform(points, mat, points.shape) 79 | points = np.squeeze(points) 80 | return points 81 | 82 | def get_warp_mat_bbox_by_gt_pts_float(gt_pts, base_angle=0.0, dst_size=128, expand_ratio=0.15, return_info=False): 83 | # step 1 84 | face_x_min, face_x_max = np.min(gt_pts[:, 0]), np.max(gt_pts[:, 0]) 85 | face_y_min, face_y_max = np.min(gt_pts[:, 1]), np.max(gt_pts[:, 1]) 86 | face_x_center = (face_x_min + face_x_max) / 2 87 | face_y_center = (face_y_min + face_y_max) / 2 88 | M_step_1 = cv2.getRotationMatrix2D((face_x_center, face_y_center), angle=base_angle, scale=1.0) 89 | pts_step_1 = transform_points(gt_pts, M_step_1) 90 | face_x_min_step_1, face_x_max_step_1 = np.min(pts_step_1[:, 0]), np.max(pts_step_1[:, 0]) 91 | face_y_min_step_1, face_y_max_step_1 = np.min(pts_step_1[:, 1]), np.max(pts_step_1[:, 1]) 92 | # step 2 93 | face_width = face_x_max_step_1 - face_x_min_step_1 94 | face_height = face_y_max_step_1 - face_y_min_step_1 95 | scale = dst_size / max(face_width, face_height) * (1 - expand_ratio) 96 | M_step_2 = cv2.getRotationMatrix2D((face_x_center, face_y_center), angle=base_angle, scale=scale) 97 | pts_step_2 = transform_points(gt_pts, M_step_2) 98 | face_x_min_step_2, face_x_max_step_2 = np.min(pts_step_2[:, 0]), np.max(pts_step_2[:, 0]) 99 | face_y_min_step_2, face_y_max_step_2 = np.min(pts_step_2[:, 1]), np.max(pts_step_2[:, 1]) 100 | face_x_center_step_2 = (face_x_min_step_2 + face_x_max_step_2) / 2 101 | face_y_center_step_2 = (face_y_min_step_2 + face_y_max_step_2) / 2 102 | 103 | M = cv2.getRotationMatrix2D((face_x_center, face_y_center), angle=base_angle, scale=scale) 104 | offset = [dst_size / 2 - face_x_center_step_2, dst_size / 2 - face_y_center_step_2] 105 | M[:, 2] += offset 106 | 107 | if not return_info: 108 | return M 109 | else: 110 | transform_info = { 111 | "M": M, 112 | "center_x": face_x_center, 113 | "center_y": face_y_center, 114 | "rotate_angle": base_angle, 115 | "scale": scale 116 | } 117 | return transform_info 118 | 119 | 120 | def download_file_from_cloud(model_id, 121 | file_name, 122 | modelscope=False, 123 | cache_dir=None, 124 | hf_token=None): 125 | if modelscope: 126 | from modelscope import snapshot_download 127 | try: 128 | model_path = osp.join(snapshot_download(model_id, cache_dir=cache_dir), file_name) 129 | except Exception as e: 130 | print(e) 131 | assert False, "@@ Failed to download model from modelscope (using `hugginface`)" 132 | else: 133 | from huggingface_hub import hf_hub_download 134 | try: 135 | model_path = hf_hub_download(model_id, filename=file_name, cache_dir=cache_dir, token=hf_token) 136 | except Exception as e: 137 | print(e) 138 | assert False, "@@ `huggingface-cli login` or using `modelscope`" 139 | return model_path 140 | 141 | def creat_model_from_cloud(model_cls, 142 | model_id, 143 | modelscope=False, 144 | cache_dir=None, 145 | subfolder=None, 146 | hf_token=None): 147 | if osp.isdir(model_id): 148 | model = model_cls.from_pretrained(model_id) 149 | elif osp.isfile(model_id) and model_id.endswith('.safetensors'): 150 | model = model_cls.from_single_file(model_id) 151 | else: 152 | if modelscope: 153 | from modelscope import snapshot_download 154 | try: 155 | model_path = snapshot_download(model_id, cache_dir=cache_dir) 156 | except Exception as e: 157 | print(e) 158 | assert False, "@@ Failed to download model from modelscope (using `hugginface`)" 159 | 160 | if subfolder is None: 161 | model = model_cls.from_pretrained(model_path) 162 | else: 163 | model = model_cls.from_pretrained(model_path, subfolder=subfolder) 164 | else: 165 | try: 166 | if subfolder is None: 167 | model = model_cls.from_pretrained(model_id, cache_dir=cache_dir, token=hf_token) 168 | else: 169 | model = model_cls.from_pretrained(model_id, subfolder=subfolder, cache_dir=cache_dir, token=hf_token) 170 | except Exception as e: 171 | print(e) 172 | assert False, "@@ `huggingface-cli login` or using `modelscope`" 173 | return model -------------------------------------------------------------------------------- /hellomeme/tools/pdf.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : pdf.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 11/7/2024 8 | @Desc : Adapted from: https://github.com/Dorniwang/PD-FGC-inference/blob/main/lib/models/networks/encoder.py 9 | """ 10 | 11 | import torch 12 | import torch.nn as nn 13 | import torch.nn.functional as F 14 | 15 | from diffusers.models.modeling_utils import ModelMixin 16 | from diffusers.configuration_utils import ConfigMixin, register_to_config 17 | 18 | def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): 19 | "3x3 convolution with padding" 20 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, 21 | stride=strd, padding=padding, bias=bias) 22 | 23 | class ConvBlock(nn.Module): 24 | def __init__(self, in_planes, out_planes): 25 | super(ConvBlock, self).__init__() 26 | self.bn1 = nn.BatchNorm2d(in_planes) 27 | self.conv1 = conv3x3(in_planes, int(out_planes / 2)) 28 | self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) 29 | self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4)) 30 | self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) 31 | self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4)) 32 | 33 | if in_planes != out_planes: 34 | self.downsample = nn.Sequential( 35 | nn.BatchNorm2d(in_planes), 36 | nn.ReLU(True), 37 | nn.Conv2d(in_planes, out_planes, 38 | kernel_size=1, stride=1, bias=False), 39 | ) 40 | else: 41 | self.downsample = None 42 | 43 | def forward(self, x): 44 | residual = x 45 | 46 | out1 = self.bn1(x) 47 | out1 = F.relu(out1, True) 48 | out1 = self.conv1(out1) 49 | 50 | out2 = self.bn2(out1) 51 | out2 = F.relu(out2, True) 52 | out2 = self.conv2(out2) 53 | 54 | out3 = self.bn3(out2) 55 | out3 = F.relu(out3, True) 56 | out3 = self.conv3(out3) 57 | 58 | out3 = torch.cat((out1, out2, out3), 1) 59 | 60 | if self.downsample is not None: 61 | residual = self.downsample(residual) 62 | 63 | out3 += residual 64 | 65 | return out3 66 | 67 | 68 | class HourGlass(nn.Module): 69 | def __init__(self, num_modules, depth, num_features): 70 | super(HourGlass, self).__init__() 71 | self.num_modules = num_modules 72 | self.depth = depth 73 | self.features = num_features 74 | self.dropout = nn.Dropout(0.5) 75 | 76 | self._generate_network(self.depth) 77 | 78 | def _generate_network(self, level): 79 | self.add_module('b1_' + str(level), ConvBlock(256, 256)) 80 | 81 | self.add_module('b2_' + str(level), ConvBlock(256, 256)) 82 | 83 | if level > 1: 84 | self._generate_network(level - 1) 85 | else: 86 | self.add_module('b2_plus_' + str(level), ConvBlock(256, 256)) 87 | 88 | self.add_module('b3_' + str(level), ConvBlock(256, 256)) 89 | 90 | def _forward(self, level, inp): 91 | # Upper branch 92 | up1 = inp 93 | up1 = self._modules['b1_' + str(level)](up1) 94 | up1 = self.dropout(up1) 95 | # Lower branch 96 | low1 = F.max_pool2d(inp, 2, stride=2) 97 | low1 = self._modules['b2_' + str(level)](low1) 98 | 99 | if level > 1: 100 | low2 = self._forward(level - 1, low1) 101 | else: 102 | low2 = low1 103 | low2 = self._modules['b2_plus_' + str(level)](low2) 104 | 105 | low3 = low2 106 | low3 = self._modules['b3_' + str(level)](low3) 107 | up1size = up1.size() 108 | rescale_size = (up1size[2], up1size[3]) 109 | up2 = F.interpolate(low3, size=rescale_size, mode='bilinear') 110 | 111 | return up1 + up2 112 | 113 | def forward(self, x): 114 | return self._forward(self.depth, x) 115 | 116 | class FAN_use(nn.Module): 117 | def __init__(self): 118 | super(FAN_use, self).__init__() 119 | self.num_modules = 1 120 | 121 | # Base part 122 | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) 123 | self.bn1 = nn.BatchNorm2d(64) 124 | self.conv2 = ConvBlock(64, 128) 125 | self.conv3 = ConvBlock(128, 128) 126 | self.conv4 = ConvBlock(128, 256) 127 | 128 | # Stacking part 129 | hg_module = 0 130 | self.add_module('m' + str(hg_module), HourGlass(1, 4, 256)) 131 | self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) 132 | self.add_module('conv_last' + str(hg_module), 133 | nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) 134 | self.add_module('l' + str(hg_module), nn.Conv2d(256, 135 | 68, kernel_size=1, stride=1, padding=0)) 136 | self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) 137 | 138 | if hg_module < self.num_modules - 1: 139 | self.add_module( 140 | 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) 141 | self.add_module('al' + str(hg_module), nn.Conv2d(68, 142 | 256, kernel_size=1, stride=1, padding=0)) 143 | 144 | self.avgpool = nn.MaxPool2d((2, 2), 2) 145 | self.conv6 = nn.Conv2d(68, 1, 3, 2, 1) 146 | self.fc = nn.Linear(28 * 28, 512) 147 | self.bn5 = nn.BatchNorm2d(68) 148 | self.relu = nn.ReLU(True) 149 | 150 | def forward(self, x): 151 | x = F.relu(self.bn1(self.conv1(x)), True) 152 | x = F.max_pool2d(self.conv2(x), 2) 153 | x = self.conv3(x) 154 | x = self.conv4(x) 155 | 156 | previous = x 157 | 158 | i = 0 159 | hg = self._modules['m' + str(i)](previous) 160 | 161 | ll = hg 162 | ll = self._modules['top_m_' + str(i)](ll) 163 | 164 | ll = self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll)) 165 | tmp_out = self._modules['l' + str(i)](F.relu(ll)) 166 | 167 | net = self.relu(self.bn5(tmp_out)) 168 | net = self.conv6(net) 169 | net = net.view(-1, net.shape[-2] * net.shape[-1]) 170 | net = self.relu(net) 171 | net = self.fc(net) 172 | return net 173 | 174 | class FanEncoder(ModelMixin, ConfigMixin): 175 | @register_to_config 176 | def __init__(self, pose_dim=6, eye_dim=6): 177 | super().__init__() 178 | 179 | self.model = FAN_use() 180 | 181 | self.to_mouth = nn.Sequential(nn.Linear(512, 512), nn.ReLU(), nn.BatchNorm1d(512), nn.Linear(512, 512)) 182 | self.mouth_embed = nn.Sequential(nn.ReLU(), nn.Linear(512, 512 - pose_dim - eye_dim)) 183 | 184 | # self.to_headpose = nn.Sequential(nn.Linear(512, 512), nn.ReLU(), nn.BatchNorm1d(512), nn.Linear(512, 512)) 185 | # self.headpose_embed = nn.Sequential(nn.ReLU(), nn.Linear(512, pose_dim)) 186 | 187 | self.to_eye = nn.Sequential(nn.Linear(512, 512), nn.ReLU(), nn.BatchNorm1d(512), nn.Linear(512, 512)) 188 | self.eye_embed = nn.Sequential(nn.ReLU(), nn.Linear(512, eye_dim)) 189 | 190 | self.to_emo = nn.Sequential(nn.Linear(512, 512), nn.ReLU(), nn.BatchNorm1d(512), nn.Linear(512, 512)) 191 | self.emo_embed = nn.Sequential(nn.ReLU(), nn.Linear(512, 30)) 192 | 193 | def forward_feature(self, x): 194 | net = self.model(x) 195 | return net 196 | 197 | def forward(self, x): 198 | x = self.model(x) 199 | mouth_feat = self.to_mouth(x) 200 | # headpose_feat = self.to_headpose(x) 201 | # headpose_emb = self.headpose_embed(headpose_feat) 202 | eye_feat = self.to_eye(x) 203 | eye_embed = self.eye_embed(eye_feat) 204 | emo_feat = self.to_emo(x) 205 | emo_embed = self.emo_embed(emo_feat) 206 | 207 | return torch.cat([eye_embed, emo_embed, mouth_feat], dim=1) 208 | # return headpose_emb, eye_embed, emo_embed, mouth_feat 209 | -------------------------------------------------------------------------------- /hellomeme/models/hm3_denoising_motion.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : models6/hm_denoising_motion.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 1/3/2025 8 | @Desc : 9 | adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_motion_model.py 10 | """ 11 | 12 | import torch 13 | import torch.utils.checkpoint 14 | from typing import Any, Dict, Optional, Tuple, Union 15 | 16 | from einops import rearrange 17 | 18 | from diffusers.utils import logging 19 | from diffusers.models.unets.unet_motion_model import UNetMotionModel, UNetMotionOutput 20 | from .hm_adapters import InsertReferenceAdapter 21 | 22 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name 23 | 24 | 25 | class HM3DenoisingMotion(UNetMotionModel, InsertReferenceAdapter): 26 | def forward( 27 | self, 28 | sample: torch.Tensor, 29 | timestep: Union[torch.Tensor, float, int], 30 | encoder_hidden_states: torch.Tensor, 31 | reference_hidden_states: Optional[dict] = None, 32 | control_hidden_states: Optional[torch.Tensor] = None, 33 | motion_pad_hidden_states: Optional[dict] = None, 34 | use_motion: bool = False, 35 | timestep_cond: Optional[torch.Tensor] = None, 36 | attention_mask: Optional[torch.Tensor] = None, 37 | cross_attention_kwargs: Optional[Dict[str, Any]] = None, 38 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, 39 | down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, 40 | mid_block_additional_residual: Optional[torch.Tensor] = None, 41 | return_dict: bool = True, 42 | ) -> Union[UNetMotionOutput, Tuple[torch.Tensor]]: 43 | 44 | # By default samples have to be AT least a multiple of the overall upsampling factor. 45 | # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). 46 | # However, the upsampling interpolation output size can be forced to fit any upsampling size 47 | # on the fly if necessary. 48 | default_overall_up_factor = 2 ** self.num_upsamplers 49 | 50 | # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` 51 | forward_upsample_size = False 52 | upsample_size = None 53 | 54 | if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): 55 | logger.info("Forward upsample size to force interpolation output size.") 56 | forward_upsample_size = True 57 | 58 | # prepare attention_mask 59 | if attention_mask is not None: 60 | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 61 | attention_mask = attention_mask.unsqueeze(1) 62 | 63 | # 1. time 64 | timesteps = timestep 65 | if not torch.is_tensor(timesteps): 66 | # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can 67 | # This would be a good case for the `match` statement (Python 3.10+) 68 | is_mps = sample.device.type == "mps" 69 | if isinstance(timestep, float): 70 | dtype = torch.float32 if is_mps else torch.float64 71 | else: 72 | dtype = torch.int32 if is_mps else torch.int64 73 | timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) 74 | elif len(timesteps.shape) == 0: 75 | timesteps = timesteps[None].to(sample.device) 76 | 77 | # broadcast to batch dimension in a way that's compatible with ONNX/Core ML 78 | num_frames = sample.shape[2] 79 | timesteps = timesteps.expand(sample.shape[0]) 80 | 81 | t_emb = self.time_proj(timesteps) 82 | 83 | # timesteps does not contain any weights and will always return f32 tensors 84 | # but time_embedding might actually be running in fp16. so we need to cast here. 85 | # there might be better ways to encapsulate this. 86 | t_emb = t_emb.to(dtype=self.dtype) 87 | 88 | emb = self.time_embedding(t_emb, timestep_cond) 89 | aug_emb = None 90 | 91 | if self.config.addition_embed_type == "text_time": 92 | if "text_embeds" not in added_cond_kwargs: 93 | raise ValueError( 94 | f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" 95 | ) 96 | 97 | text_embeds = added_cond_kwargs.get("text_embeds") 98 | if "time_ids" not in added_cond_kwargs: 99 | raise ValueError( 100 | f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" 101 | ) 102 | time_ids = added_cond_kwargs.get("time_ids") 103 | time_embeds = self.add_time_proj(time_ids.flatten()) 104 | time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) 105 | 106 | add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) 107 | add_embeds = add_embeds.to(emb.dtype) 108 | aug_emb = self.add_embedding(add_embeds) 109 | 110 | emb = emb if aug_emb is None else emb + aug_emb 111 | emb = emb.repeat_interleave(repeats=num_frames, dim=0) 112 | 113 | if len(encoder_hidden_states.shape) == 3: 114 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0) 115 | elif len(encoder_hidden_states.shape) == 4: 116 | encoder_hidden_states = rearrange(encoder_hidden_states, "b f l d -> (b f) l d") 117 | 118 | if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": 119 | if "image_embeds" not in added_cond_kwargs: 120 | raise ValueError( 121 | f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" 122 | ) 123 | image_embeds = added_cond_kwargs.get("image_embeds") 124 | image_embeds = self.encoder_hid_proj(image_embeds) 125 | image_embeds = [image_embed.repeat_interleave(repeats=num_frames, dim=0) for image_embed in image_embeds] 126 | encoder_hidden_states = (encoder_hidden_states, image_embeds) 127 | 128 | # 2. pre-process 129 | sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) 130 | sample = self.conv_in(sample) 131 | 132 | # 3. down 133 | down_block_res_samples = (sample,) 134 | for idx, downsample_block in enumerate(self.down_blocks): 135 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: 136 | sample, res_samples = downsample_block( 137 | hidden_states=sample, 138 | temb=emb, 139 | encoder_hidden_states=encoder_hidden_states, 140 | attention_mask=attention_mask, 141 | num_frames=num_frames, 142 | cross_attention_kwargs=cross_attention_kwargs, 143 | ) 144 | else: 145 | sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) 146 | 147 | if not control_hidden_states is None and f'down3_{idx}' in control_hidden_states: 148 | sample += rearrange(control_hidden_states[f'down3_{idx}'], "b c f h w -> (b f) c h w") 149 | if hasattr(self, 'motion_down') and use_motion: 150 | sample = self.motion_down[idx](sample, motion_pad_hidden_states[f'down_{idx}'], emb, num_frames) 151 | 152 | down_block_res_samples += res_samples 153 | 154 | if down_block_additional_residuals is not None: 155 | new_down_block_res_samples = () 156 | 157 | for down_block_res_sample, down_block_additional_residual in zip( 158 | down_block_res_samples, down_block_additional_residuals 159 | ): 160 | down_block_res_sample = down_block_res_sample + down_block_additional_residual 161 | new_down_block_res_samples += (down_block_res_sample,) 162 | 163 | down_block_res_samples = new_down_block_res_samples 164 | 165 | # 4. mid 166 | if self.mid_block is not None: 167 | # To support older versions of motion modules that don't have a mid_block 168 | if hasattr(self.mid_block, "motion_modules"): 169 | sample = self.mid_block( 170 | sample, 171 | emb, 172 | encoder_hidden_states=encoder_hidden_states, 173 | attention_mask=attention_mask, 174 | num_frames=num_frames, 175 | cross_attention_kwargs=cross_attention_kwargs, 176 | ) 177 | else: 178 | sample = self.mid_block( 179 | sample, 180 | emb, 181 | encoder_hidden_states=encoder_hidden_states, 182 | attention_mask=attention_mask, 183 | cross_attention_kwargs=cross_attention_kwargs, 184 | ) 185 | 186 | if mid_block_additional_residual is not None: 187 | sample = sample + mid_block_additional_residual 188 | 189 | # 5. up 190 | for i, upsample_block in enumerate(self.up_blocks): 191 | is_final_block = i == len(self.up_blocks) - 1 192 | 193 | res_samples = down_block_res_samples[-len(upsample_block.resnets):] 194 | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] 195 | 196 | # if we have not reached the final block and need to forward the 197 | # upsample size, we do it here 198 | if not is_final_block and forward_upsample_size: 199 | upsample_size = down_block_res_samples[-1].shape[2:] 200 | 201 | if not control_hidden_states is None and f'up3_{i}' in control_hidden_states: 202 | sample += rearrange(control_hidden_states[f'up3_{i}'], "b c f h w -> (b f) c h w") 203 | if hasattr(self, "reference_modules_up") and not reference_hidden_states is None and f'up_{i}' in reference_hidden_states: 204 | sample = self.reference_modules_up[i](sample, reference_hidden_states[f'up_{i}'], num_frames) 205 | if hasattr(self, 'motion_up') and use_motion: 206 | sample = self.motion_up[i](sample, motion_pad_hidden_states[f'up_{i}'], emb, num_frames) 207 | 208 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: 209 | sample = upsample_block( 210 | hidden_states=sample, 211 | temb=emb, 212 | res_hidden_states_tuple=res_samples, 213 | encoder_hidden_states=encoder_hidden_states, 214 | upsample_size=upsample_size, 215 | attention_mask=attention_mask, 216 | num_frames=num_frames, 217 | cross_attention_kwargs=cross_attention_kwargs, 218 | ) 219 | else: 220 | sample = upsample_block( 221 | hidden_states=sample, 222 | temb=emb, 223 | res_hidden_states_tuple=res_samples, 224 | upsample_size=upsample_size, 225 | num_frames=num_frames, 226 | ) 227 | 228 | # 6. post-process 229 | if self.conv_norm_out: 230 | sample = self.conv_norm_out(sample) 231 | sample = self.conv_act(sample) 232 | 233 | sample = self.conv_out(sample) 234 | 235 | # reshape to (batch, channel, framerate, width, height) 236 | sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) 237 | 238 | if not return_dict: 239 | return (sample,) 240 | 241 | return UNetMotionOutput(sample=sample) -------------------------------------------------------------------------------- /hellomeme/tools/hello_face_det.py: -------------------------------------------------------------------------------- 1 | """ 2 | @File : test.py 3 | @Author : Songkey 4 | @Email : songkey@pku.edu.cn 5 | @Date : 11/1/2024 6 | @Desc : Created by Zemin An (an.zemin@hellogroup.com) 7 | """ 8 | 9 | from abc import ABCMeta, abstractmethod 10 | import cv2 11 | import numpy as np 12 | from scipy.special import softmax 13 | import os.path as osp 14 | from .utils import create_onnx_session 15 | 16 | songkey_weights_dir = 'pretrained_models' 17 | 18 | _COLORS = ( 19 | np.array( 20 | [ 21 | 0.000, 22 | 0.447, 23 | 0.741, 24 | ] 25 | ) 26 | .astype(np.float32) 27 | .reshape(-1, 3) 28 | ) 29 | 30 | def get_resize_matrix(raw_shape, dst_shape, keep_ratio): 31 | """ 32 | Get resize matrix for resizing raw img to input size 33 | :param raw_shape: (width, height) of raw image 34 | :param dst_shape: (width, height) of input image 35 | :param keep_ratio: whether keep original ratio 36 | :return: 3x3 Matrix 37 | """ 38 | r_w, r_h = raw_shape 39 | d_w, d_h = dst_shape 40 | Rs = np.eye(3) 41 | if keep_ratio: 42 | C = np.eye(3) 43 | C[0, 2] = -r_w / 2 44 | C[1, 2] = -r_h / 2 45 | 46 | if r_w / r_h < d_w / d_h: 47 | ratio = d_h / r_h 48 | else: 49 | ratio = d_w / r_w 50 | Rs[0, 0] *= ratio 51 | Rs[1, 1] *= ratio 52 | 53 | T = np.eye(3) 54 | T[0, 2] = 0.5 * d_w 55 | T[1, 2] = 0.5 * d_h 56 | return T @ Rs @ C 57 | else: 58 | Rs[0, 0] *= d_w / r_w 59 | Rs[1, 1] *= d_h / r_h 60 | return Rs 61 | 62 | def warp_boxes(boxes, M, width, height): 63 | """Apply transform to boxes 64 | Copy from nanodet/data/transform/warp.py 65 | """ 66 | n = len(boxes) 67 | if n: 68 | # warp points 69 | xy = np.ones((n * 4, 3)) 70 | xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( 71 | n * 4, 2 72 | ) # x1y1, x2y2, x1y2, x2y1 73 | xy = xy @ M.T # transform 74 | xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale 75 | # create new boxes 76 | x = xy[:, [0, 2, 4, 6]] 77 | y = xy[:, [1, 3, 5, 7]] 78 | xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T 79 | # clip boxes 80 | xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) 81 | xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) 82 | return xy.astype(np.float32) 83 | else: 84 | return boxes 85 | 86 | def overlay_bbox_cv(img, all_box, class_names): 87 | """Draw result boxes 88 | Copy from nanodet/util/visualization.py 89 | """ 90 | # all_box array of [label, x0, y0, x1, y1, score] 91 | all_box.sort(key=lambda v: v[5]) 92 | for box in all_box: 93 | label, x0, y0, x1, y1, score = box 94 | # color = self.cmap(i)[:3] 95 | color = (_COLORS[label] * 255).astype(np.uint8).tolist() 96 | text = "{}:{:.1f}%".format(class_names[label], score * 100) 97 | txt_color = (0, 0, 0) if np.mean(_COLORS[label]) > 0.5 else (255, 255, 255) 98 | font = cv2.FONT_HERSHEY_SIMPLEX 99 | txt_size = cv2.getTextSize(text, font, 0.5, 2)[0] 100 | cv2.rectangle(img, (x0, y0), (x1, y1), color, 2) 101 | 102 | cv2.rectangle( 103 | img, 104 | (x0, y0 - txt_size[1] - 1), 105 | (x0 + txt_size[0] + txt_size[1], y0 - 1), 106 | color, 107 | -1, 108 | ) 109 | cv2.putText(img, text, (x0, y0 - 1), font, 0.5, txt_color, thickness=1) 110 | return img 111 | 112 | def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): 113 | """ 114 | 115 | Args: 116 | box_scores (N, 5): boxes in corner-form and probabilities. 117 | iou_threshold: intersection over union threshold. 118 | top_k: keep top_k results. If k <= 0, keep all the results. 119 | candidate_size: only consider the candidates with the highest scores. 120 | Returns: 121 | picked: a list of indexes of the kept boxes 122 | """ 123 | scores = box_scores[:, -1] 124 | boxes = box_scores[:, :-1] 125 | picked = [] 126 | # _, indexes = scores.sort(descending=True) 127 | indexes = np.argsort(scores) 128 | # indexes = indexes[:candidate_size] 129 | indexes = indexes[-candidate_size:] 130 | while len(indexes) > 0: 131 | # current = indexes[0] 132 | current = indexes[-1] 133 | picked.append(current) 134 | if 0 < top_k == len(picked) or len(indexes) == 1: 135 | break 136 | current_box = boxes[current, :] 137 | # indexes = indexes[1:] 138 | indexes = indexes[:-1] 139 | rest_boxes = boxes[indexes, :] 140 | iou = iou_of( 141 | rest_boxes, 142 | np.expand_dims(current_box, axis=0), 143 | ) 144 | indexes = indexes[iou <= iou_threshold] 145 | 146 | return box_scores[picked, :] 147 | 148 | 149 | def iou_of(boxes0, boxes1, eps=1e-5): 150 | """Return intersection-over-union (Jaccard index) of boxes. 151 | 152 | Args: 153 | boxes0 (N, 4): ground truth boxes. 154 | boxes1 (N or 1, 4): predicted boxes. 155 | eps: a small number to avoid 0 as denominator. 156 | Returns: 157 | iou (N): IoU values. 158 | """ 159 | overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) 160 | overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) 161 | 162 | overlap_area = area_of(overlap_left_top, overlap_right_bottom) 163 | area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) 164 | area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) 165 | return overlap_area / (area0 + area1 - overlap_area + eps) 166 | 167 | 168 | def area_of(left_top, right_bottom): 169 | """Compute the areas of rectangles given two corners. 170 | 171 | Args: 172 | left_top (N, 2): left top corner. 173 | right_bottom (N, 2): right bottom corner. 174 | 175 | Returns: 176 | area (N): return the area. 177 | """ 178 | hw = np.clip(right_bottom - left_top, 0.0, None) 179 | return hw[..., 0] * hw[..., 1] 180 | 181 | 182 | class NanoDetABC(metaclass=ABCMeta): 183 | def __init__( 184 | self, 185 | input_shape=[272, 160], 186 | reg_max=7, 187 | strides=[8, 16, 32], 188 | prob_threshold=0.4, 189 | iou_threshold=0.3, 190 | num_candidate=1000, 191 | top_k=-1, 192 | class_names=["face"] 193 | ): 194 | self.strides = strides 195 | self.input_shape = input_shape 196 | self.reg_max = reg_max 197 | self.prob_threshold = prob_threshold 198 | self.iou_threshold = iou_threshold 199 | self.num_candidate = num_candidate 200 | self.top_k = top_k 201 | self.img_mean = [103.53, 116.28, 123.675] 202 | self.img_std = [57.375, 57.12, 58.395] 203 | self.input_size = (self.input_shape[1], self.input_shape[0]) 204 | self.class_names = class_names 205 | self.num_classes = len(self.class_names) 206 | 207 | def preprocess(self, img): 208 | # resize image 209 | ResizeM = get_resize_matrix((img.shape[1], img.shape[0]), self.input_size, True) 210 | img_resize = cv2.warpPerspective(img, ResizeM, dsize=self.input_size) 211 | 212 | # normalize image 213 | img_input = img_resize.astype(np.float32) / 255 214 | img_mean = np.array(self.img_mean, dtype=np.float32).reshape(1, 1, 3) / 255 215 | img_std = np.array(self.img_std, dtype=np.float32).reshape(1, 1, 3) / 255 216 | img_input = (img_input - img_mean) / img_std 217 | 218 | # expand dims 219 | img_input = np.transpose(img_input, [2, 0, 1]) 220 | img_input = np.expand_dims(img_input, axis=0) 221 | return img_input, ResizeM 222 | 223 | def postprocess(self, scores, raw_boxes, ResizeM, raw_shape): 224 | # generate centers 225 | decode_boxes = [] 226 | select_scores = [] 227 | for stride, box_distribute, score in zip(self.strides, raw_boxes, scores): 228 | # centers 229 | fm_h = self.input_shape[0] / stride 230 | fm_w = self.input_shape[1] / stride 231 | 232 | h_range = np.arange(fm_h) 233 | w_range = np.arange(fm_w) 234 | ww, hh = np.meshgrid(w_range, h_range) 235 | 236 | ct_row = hh.flatten() * stride 237 | ct_col = ww.flatten() * stride 238 | 239 | center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1) 240 | 241 | # box distribution to distance 242 | reg_range = np.arange(self.reg_max + 1) 243 | box_distance = box_distribute.reshape((-1, self.reg_max + 1)) 244 | box_distance = softmax(box_distance, axis=1) 245 | box_distance = box_distance * np.expand_dims(reg_range, axis=0) 246 | box_distance = np.sum(box_distance, axis=1).reshape((-1, 4)) 247 | box_distance = box_distance * stride 248 | 249 | # top K candidate 250 | topk_idx = np.argsort(score.max(axis=1))[::-1] 251 | topk_idx = topk_idx[: self.num_candidate] 252 | center = center[topk_idx] 253 | score = score[topk_idx] 254 | box_distance = box_distance[topk_idx] 255 | 256 | # decode box 257 | decode_box = center + [-1, -1, 1, 1] * box_distance 258 | 259 | select_scores.append(score) 260 | decode_boxes.append(decode_box) 261 | 262 | # nms 263 | bboxes = np.concatenate(decode_boxes, axis=0) 264 | confidences = np.concatenate(select_scores, axis=0) 265 | picked_box_probs = [] 266 | picked_labels = [] 267 | for class_index in range(0, confidences.shape[1]): 268 | probs = confidences[:, class_index] 269 | mask = probs > self.prob_threshold 270 | probs = probs[mask] 271 | if probs.shape[0] == 0: 272 | continue 273 | subset_boxes = bboxes[mask, :] 274 | box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1) 275 | box_probs = hard_nms( 276 | box_probs, 277 | iou_threshold=self.iou_threshold, 278 | top_k=self.top_k, 279 | ) 280 | picked_box_probs.append(box_probs) 281 | picked_labels.extend([class_index] * box_probs.shape[0]) 282 | if not picked_box_probs: 283 | return np.array([]), np.array([]), np.array([]) 284 | picked_box_probs = np.concatenate(picked_box_probs) 285 | 286 | # resize output boxes 287 | picked_box_probs[:, :4] = warp_boxes( 288 | picked_box_probs[:, :4], np.linalg.inv(ResizeM), raw_shape[1], raw_shape[0] 289 | ) 290 | return ( 291 | picked_box_probs[:, :4].astype(np.int32), 292 | np.array(picked_labels), 293 | picked_box_probs[:, 4], 294 | ) 295 | 296 | @abstractmethod 297 | def infer_image(self, img_input): 298 | pass 299 | 300 | def detect(self, img): 301 | raw_shape = img.shape 302 | img_input, ResizeM = self.preprocess(img) 303 | scores, raw_boxes = self.infer_image(img_input) 304 | if scores[0].ndim == 1: # handling num_classes=1 case 305 | scores = [x[:, None] for x in scores] 306 | bbox, label, score = self.postprocess(scores, raw_boxes, ResizeM, raw_shape) 307 | 308 | return bbox, label, score 309 | 310 | class HelloFaceDet(NanoDetABC): 311 | def __init__(self, model_path=osp.join(songkey_weights_dir, 'face/nanodet_humandet_320-192_220302_model_20220315_test3.onnx'), gpu_id=None, *args, **kwargs): 312 | super(HelloFaceDet, self).__init__(*args, **kwargs) 313 | # print("Using ONNX as inference backend") 314 | # print(f"Using weight: {model_path}") 315 | 316 | # load model 317 | self.model_path = model_path 318 | self.ort_session = create_onnx_session(model_path, gpu_id=gpu_id) 319 | self.input_name = self.ort_session.get_inputs()[0].name 320 | 321 | def infer_image(self, img_input): 322 | inference_results = self.ort_session.run(None, {self.input_name: img_input}) 323 | 324 | scores = [np.squeeze(x) for x in inference_results[:3]] 325 | raw_boxes = [np.squeeze(x) for x in inference_results[3:]] 326 | return scores, raw_boxes 327 | -------------------------------------------------------------------------------- /hellomeme/models/hm_denoising_motion.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : models6/hm_denoising_motion.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 9/9/2024 8 | @Desc : 9 | adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_motion_model.py 10 | """ 11 | 12 | import torch 13 | import torch.utils.checkpoint 14 | from typing import Any, Dict, Optional, Tuple, Union 15 | 16 | from einops import rearrange 17 | 18 | from diffusers.utils import logging 19 | from diffusers.models.unets.unet_motion_model import UNetMotionModel, UNetMotionOutput 20 | from .hm_adapters import InsertReferenceAdapter 21 | 22 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name 23 | 24 | 25 | class HMDenoisingMotion(UNetMotionModel, InsertReferenceAdapter): 26 | def forward( 27 | self, 28 | sample: torch.Tensor, 29 | timestep: Union[torch.Tensor, float, int], 30 | encoder_hidden_states: torch.Tensor, 31 | reference_hidden_states: Optional[dict] = None, 32 | control_hidden_states: Optional[torch.Tensor] = None, 33 | timestep_cond: Optional[torch.Tensor] = None, 34 | attention_mask: Optional[torch.Tensor] = None, 35 | cross_attention_kwargs: Optional[Dict[str, Any]] = None, 36 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, 37 | down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, 38 | mid_block_additional_residual: Optional[torch.Tensor] = None, 39 | return_dict: bool = True, 40 | ) -> Union[UNetMotionOutput, Tuple[torch.Tensor]]: 41 | 42 | # By default samples have to be AT least a multiple of the overall upsampling factor. 43 | # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). 44 | # However, the upsampling interpolation output size can be forced to fit any upsampling size 45 | # on the fly if necessary. 46 | default_overall_up_factor = 2 ** self.num_upsamplers 47 | 48 | # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` 49 | forward_upsample_size = False 50 | upsample_size = None 51 | 52 | if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): 53 | logger.info("Forward upsample size to force interpolation output size.") 54 | forward_upsample_size = True 55 | 56 | # prepare attention_mask 57 | if attention_mask is not None: 58 | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 59 | attention_mask = attention_mask.unsqueeze(1) 60 | 61 | # 1. time 62 | timesteps = timestep 63 | if not torch.is_tensor(timesteps): 64 | # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can 65 | # This would be a good case for the `match` statement (Python 3.10+) 66 | is_mps = sample.device.type == "mps" 67 | if isinstance(timestep, float): 68 | dtype = torch.float32 if is_mps else torch.float64 69 | else: 70 | dtype = torch.int32 if is_mps else torch.int64 71 | timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) 72 | elif len(timesteps.shape) == 0: 73 | timesteps = timesteps[None].to(sample.device) 74 | 75 | # broadcast to batch dimension in a way that's compatible with ONNX/Core ML 76 | num_frames = sample.shape[2] 77 | timesteps = timesteps.expand(sample.shape[0]) 78 | 79 | t_emb = self.time_proj(timesteps) 80 | 81 | # timesteps does not contain any weights and will always return f32 tensors 82 | # but time_embedding might actually be running in fp16. so we need to cast here. 83 | # there might be better ways to encapsulate this. 84 | t_emb = t_emb.to(dtype=self.dtype) 85 | 86 | emb = self.time_embedding(t_emb, timestep_cond) 87 | aug_emb = None 88 | 89 | if self.config.addition_embed_type == "text_time": 90 | if "text_embeds" not in added_cond_kwargs: 91 | raise ValueError( 92 | f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" 93 | ) 94 | 95 | text_embeds = added_cond_kwargs.get("text_embeds") 96 | if "time_ids" not in added_cond_kwargs: 97 | raise ValueError( 98 | f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" 99 | ) 100 | time_ids = added_cond_kwargs.get("time_ids") 101 | time_embeds = self.add_time_proj(time_ids.flatten()) 102 | time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) 103 | 104 | add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) 105 | add_embeds = add_embeds.to(emb.dtype) 106 | aug_emb = self.add_embedding(add_embeds) 107 | 108 | emb = emb if aug_emb is None else emb + aug_emb 109 | emb = emb.repeat_interleave(repeats=num_frames, dim=0) 110 | if len(encoder_hidden_states.shape) == 3: 111 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0) 112 | elif len(encoder_hidden_states.shape) == 4: 113 | encoder_hidden_states = rearrange(encoder_hidden_states, "b f l d -> (b f) l d") 114 | 115 | if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": 116 | if "image_embeds" not in added_cond_kwargs: 117 | raise ValueError( 118 | f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" 119 | ) 120 | image_embeds = added_cond_kwargs.get("image_embeds") 121 | image_embeds = self.encoder_hid_proj(image_embeds) 122 | image_embeds = [image_embed.repeat_interleave(repeats=num_frames, dim=0) for image_embed in image_embeds] 123 | encoder_hidden_states = (encoder_hidden_states, image_embeds) 124 | 125 | # 2. pre-process 126 | sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) 127 | sample = self.conv_in(sample) 128 | 129 | # 3. down 130 | down_block_res_samples = (sample,) 131 | for idx, downsample_block in enumerate(self.down_blocks): 132 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: 133 | sample, res_samples = downsample_block( 134 | hidden_states=sample, 135 | temb=emb, 136 | encoder_hidden_states=encoder_hidden_states, 137 | attention_mask=attention_mask, 138 | num_frames=num_frames, 139 | cross_attention_kwargs=cross_attention_kwargs, 140 | ) 141 | else: 142 | sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) 143 | 144 | if not control_hidden_states is None and f'down_{idx}' in control_hidden_states: 145 | sample += rearrange(control_hidden_states[f'down_{idx}'], "b c f h w -> (b f) c h w") 146 | if not control_hidden_states is None and f'down2_{idx}' in control_hidden_states: 147 | sample += rearrange(control_hidden_states[f'down2_{idx}'], "b c f h w -> (b f) c h w") 148 | 149 | if hasattr(self, 'reference_modules_down') and not reference_hidden_states is None and f'down_{idx}' in reference_hidden_states: 150 | sample = self.reference_modules_down[idx](sample, reference_hidden_states[f'down_{idx}'], num_frames) 151 | 152 | down_block_res_samples += res_samples 153 | 154 | if down_block_additional_residuals is not None: 155 | new_down_block_res_samples = () 156 | 157 | for down_block_res_sample, down_block_additional_residual in zip( 158 | down_block_res_samples, down_block_additional_residuals 159 | ): 160 | down_block_res_sample = down_block_res_sample + down_block_additional_residual 161 | new_down_block_res_samples += (down_block_res_sample,) 162 | 163 | down_block_res_samples = new_down_block_res_samples 164 | 165 | # 4. mid 166 | if self.mid_block is not None: 167 | # To support older versions of motion modules that don't have a mid_block 168 | if hasattr(self.mid_block, "motion_modules"): 169 | sample = self.mid_block( 170 | sample, 171 | emb, 172 | encoder_hidden_states=encoder_hidden_states, 173 | attention_mask=attention_mask, 174 | num_frames=num_frames, 175 | cross_attention_kwargs=cross_attention_kwargs, 176 | ) 177 | else: 178 | sample = self.mid_block( 179 | sample, 180 | emb, 181 | encoder_hidden_states=encoder_hidden_states, 182 | attention_mask=attention_mask, 183 | cross_attention_kwargs=cross_attention_kwargs, 184 | ) 185 | if hasattr(self, 'reference_modules_mid') and not reference_hidden_states is None and f'mid' in reference_hidden_states: 186 | sample = self.reference_modules_mid(sample, reference_hidden_states[f'mid'], num_frames) 187 | 188 | if mid_block_additional_residual is not None: 189 | sample = sample + mid_block_additional_residual 190 | 191 | # 5. up 192 | for i, upsample_block in enumerate(self.up_blocks): 193 | is_final_block = i == len(self.up_blocks) - 1 194 | 195 | res_samples = down_block_res_samples[-len(upsample_block.resnets):] 196 | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] 197 | 198 | # if we have not reached the final block and need to forward the 199 | # upsample size, we do it here 200 | if not is_final_block and forward_upsample_size: 201 | upsample_size = down_block_res_samples[-1].shape[2:] 202 | 203 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: 204 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: 205 | if not control_hidden_states is None and f'up_v2_{i}' in control_hidden_states: 206 | sample += rearrange(control_hidden_states[f'up_v2_{i}'], "b c f h w -> (b f) c h w") 207 | if not control_hidden_states is None and f'up2_v2_{i}' in control_hidden_states: 208 | sample += rearrange(control_hidden_states[f'up2_v2_{i}'], "b c f h w -> (b f) c h w") 209 | if hasattr(self, 210 | "reference_modules_up") and not reference_hidden_states is None and f'up_{i}' in reference_hidden_states: 211 | sample = self.reference_modules_up[i - 1](sample, reference_hidden_states[f'up_{i}'], 212 | num_frames) 213 | 214 | sample = upsample_block( 215 | hidden_states=sample, 216 | temb=emb, 217 | res_hidden_states_tuple=res_samples, 218 | encoder_hidden_states=encoder_hidden_states, 219 | upsample_size=upsample_size, 220 | attention_mask=attention_mask, 221 | num_frames=num_frames, 222 | cross_attention_kwargs=cross_attention_kwargs, 223 | ) 224 | else: 225 | if not control_hidden_states is None and f'up_v2_{i}' in control_hidden_states: 226 | sample += rearrange(control_hidden_states[f'up_v2_{i}'], "b c f h w -> (b f) c h w") 227 | if not control_hidden_states is None and f'up2_v2_{i}' in control_hidden_states: 228 | sample += rearrange(control_hidden_states[f'up2_v2_{i}'], "b c f h w -> (b f) c h w") 229 | sample = upsample_block( 230 | hidden_states=sample, 231 | temb=emb, 232 | res_hidden_states_tuple=res_samples, 233 | upsample_size=upsample_size, 234 | num_frames=num_frames, 235 | ) 236 | 237 | # 6. post-process 238 | if self.conv_norm_out: 239 | sample = self.conv_norm_out(sample) 240 | sample = self.conv_act(sample) 241 | 242 | sample = self.conv_out(sample) 243 | 244 | # reshape to (batch, channel, framerate, width, height) 245 | sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) 246 | 247 | if not return_dict: 248 | return (sample,) 249 | 250 | return UNetMotionOutput(sample=sample) -------------------------------------------------------------------------------- /hellomeme/models/hm3_denoising_3d.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : models6/hm_denoising_3d.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 1/3/2025 8 | @Desc : 9 | adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_condition.py 10 | """ 11 | 12 | import torch 13 | import torch.utils.checkpoint 14 | from typing import Any, Dict, Optional, Tuple, Union 15 | 16 | from einops import rearrange 17 | 18 | from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers 19 | from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel, UNet2DConditionOutput 20 | from .hm_adapters import CopyWeights, InsertReferenceAdapter 21 | 22 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name 23 | 24 | class HM3Denoising3D(UNet2DConditionModel, CopyWeights, InsertReferenceAdapter): 25 | def forward( 26 | self, 27 | sample: torch.Tensor, 28 | timestep: Union[torch.Tensor, float, int], 29 | encoder_hidden_states: torch.Tensor, 30 | reference_hidden_states: Optional[dict] = None, 31 | control_hidden_states: Optional[dict] = None, 32 | motion_pad_hidden_states: Optional[dict] = None, 33 | use_motion: bool = False, 34 | class_labels: Optional[torch.Tensor] = None, 35 | timestep_cond: Optional[torch.Tensor] = None, 36 | attention_mask: Optional[torch.Tensor] = None, 37 | cross_attention_kwargs: Optional[Dict[str, Any]] = None, 38 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, 39 | down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, 40 | mid_block_additional_residual: Optional[torch.Tensor] = None, 41 | down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, 42 | encoder_attention_mask: Optional[torch.Tensor] = None, 43 | return_dict: bool = True, 44 | ) -> Union[UNet2DConditionOutput, Tuple]: 45 | # By default samples have to be AT least a multiple of the overall upsampling factor. 46 | # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). 47 | # However, the upsampling interpolation output size can be forced to fit any upsampling size 48 | # on the fly if necessary. 49 | default_overall_up_factor = 2**self.num_upsamplers 50 | 51 | # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` 52 | forward_upsample_size = False 53 | upsample_size = None 54 | 55 | for dim in sample.shape[-2:]: 56 | if dim % default_overall_up_factor != 0: 57 | # Forward upsample size to force interpolation output size. 58 | forward_upsample_size = True 59 | break 60 | 61 | # ensure attention_mask is a bias, and give it a singleton query_tokens dimension 62 | # expects mask of shape: 63 | # [batch, key_tokens] 64 | # adds singleton query_tokens dimension: 65 | # [batch, 1, key_tokens] 66 | # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: 67 | # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) 68 | # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) 69 | if attention_mask is not None: 70 | # assume that mask is expressed as: 71 | # (1 = keep, 0 = discard) 72 | # convert mask into a bias that can be added to attention scores: 73 | # (keep = +0, discard = -10000.0) 74 | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 75 | attention_mask = attention_mask.unsqueeze(1) 76 | 77 | # convert encoder_attention_mask to a bias the same way we do for attention_mask 78 | if encoder_attention_mask is not None: 79 | encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 80 | encoder_attention_mask = encoder_attention_mask.unsqueeze(1) 81 | 82 | # 0. center input if necessary 83 | if self.config.center_input_sample: 84 | sample = 2 * sample - 1.0 85 | 86 | # 1. time 87 | t_emb = self.get_time_embed(sample=sample, timestep=timestep) 88 | emb = self.time_embedding(t_emb, timestep_cond) 89 | 90 | class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) 91 | if class_emb is not None: 92 | if self.config.class_embeddings_concat: 93 | emb = torch.cat([emb, class_emb], dim=-1) 94 | else: 95 | emb = emb + class_emb 96 | 97 | aug_emb = self.get_aug_embed( 98 | emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs 99 | ) 100 | if self.config.addition_embed_type == "image_hint": 101 | aug_emb, hint = aug_emb 102 | sample = torch.cat([sample, hint], dim=1) 103 | 104 | emb = emb + aug_emb if aug_emb is not None else emb 105 | 106 | if self.time_embed_act is not None: 107 | emb = self.time_embed_act(emb) 108 | 109 | num_frames = sample.shape[2] 110 | emb = emb.repeat_interleave(repeats=num_frames, dim=0) 111 | 112 | if not added_cond_kwargs is None: 113 | if 'image_embeds' in added_cond_kwargs: 114 | if isinstance(added_cond_kwargs['image_embeds'], torch.Tensor): 115 | added_cond_kwargs['image_embeds'] = added_cond_kwargs['image_embeds'].repeat_interleave(repeats=num_frames, dim=0) 116 | else: 117 | added_cond_kwargs['image_embeds'] = [x.repeat_interleave(repeats=num_frames, dim=0) for x in added_cond_kwargs['image_embeds']] 118 | 119 | if len(encoder_hidden_states.shape) == 3: 120 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0) 121 | elif len(encoder_hidden_states.shape) == 4: 122 | encoder_hidden_states = rearrange(encoder_hidden_states, "b f l d -> (b f) l d") 123 | 124 | encoder_hidden_states = self.process_encoder_hidden_states( 125 | encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs 126 | ) 127 | 128 | # 2. pre-process 129 | sample = rearrange(sample, "b c f h w -> (b f) c h w") 130 | sample = self.conv_in(sample) 131 | 132 | # 2.5 GLIGEN position net 133 | if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: 134 | cross_attention_kwargs = cross_attention_kwargs.copy() 135 | gligen_args = cross_attention_kwargs.pop("gligen") 136 | cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} 137 | 138 | # 3. down 139 | # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated 140 | # to the internal blocks and will raise deprecation warnings. this will be confusing for our users. 141 | if cross_attention_kwargs is not None: 142 | cross_attention_kwargs = cross_attention_kwargs.copy() 143 | lora_scale = cross_attention_kwargs.pop("scale", 1.0) 144 | else: 145 | lora_scale = 1.0 146 | 147 | if USE_PEFT_BACKEND: 148 | # weight the lora layers by setting `lora_scale` for each PEFT layer 149 | scale_lora_layers(self, lora_scale) 150 | 151 | is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None 152 | # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets 153 | is_adapter = down_intrablock_additional_residuals is not None 154 | # maintain backward compatibility for legacy usage, where 155 | # T2I-Adapter and ControlNet both use down_block_additional_residuals arg 156 | # but can only use one or the other 157 | if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: 158 | deprecate( 159 | "T2I should not use down_block_additional_residuals", 160 | "1.3.0", 161 | "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ 162 | and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ 163 | for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", 164 | standard_warn=False, 165 | ) 166 | down_intrablock_additional_residuals = down_block_additional_residuals 167 | is_adapter = True 168 | 169 | res_cache = dict() 170 | down_block_res_samples = (sample,) 171 | for idx, downsample_block in enumerate(self.down_blocks): 172 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: 173 | # For t2i-adapter CrossAttnDownBlock2D 174 | additional_residuals = {} 175 | if is_adapter and len(down_intrablock_additional_residuals) > 0: 176 | additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) 177 | 178 | sample, res_samples = downsample_block( 179 | hidden_states=sample, 180 | temb=emb, 181 | encoder_hidden_states=encoder_hidden_states, 182 | attention_mask=attention_mask, 183 | cross_attention_kwargs=cross_attention_kwargs, 184 | encoder_attention_mask=encoder_attention_mask, 185 | **additional_residuals, 186 | ) 187 | else: 188 | sample, res_samples = downsample_block(hidden_states=sample, temb=emb) 189 | if is_adapter and len(down_intrablock_additional_residuals) > 0: 190 | sample += down_intrablock_additional_residuals.pop(0) 191 | 192 | res_cache[f"down_{idx}"] = sample.clone() 193 | if not control_hidden_states is None and f'down3_{idx}' in control_hidden_states: 194 | sample += rearrange(control_hidden_states[f'down3_{idx}'], "b c f h w -> (b f) c h w") 195 | if hasattr(self, 'motion_down') and use_motion: 196 | sample = self.motion_down[idx](sample, 197 | None if motion_pad_hidden_states is None else motion_pad_hidden_states[f'down_{idx}'], 198 | emb, num_frames) 199 | 200 | down_block_res_samples += res_samples 201 | 202 | if is_controlnet: 203 | new_down_block_res_samples = () 204 | 205 | for down_block_res_sample, down_block_additional_residual in zip( 206 | down_block_res_samples, down_block_additional_residuals 207 | ): 208 | down_block_res_sample = down_block_res_sample + down_block_additional_residual 209 | new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) 210 | 211 | down_block_res_samples = new_down_block_res_samples 212 | 213 | # 4. mid 214 | if self.mid_block is not None: 215 | if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: 216 | sample = self.mid_block( 217 | sample, 218 | emb, 219 | encoder_hidden_states=encoder_hidden_states, 220 | attention_mask=attention_mask, 221 | cross_attention_kwargs=cross_attention_kwargs, 222 | encoder_attention_mask=encoder_attention_mask, 223 | ) 224 | else: 225 | sample = self.mid_block(sample, emb) 226 | 227 | # To support T2I-Adapter-XL 228 | if ( 229 | is_adapter 230 | and len(down_intrablock_additional_residuals) > 0 231 | and sample.shape == down_intrablock_additional_residuals[0].shape 232 | ): 233 | sample += down_intrablock_additional_residuals.pop(0) 234 | 235 | if is_controlnet: 236 | sample = sample + mid_block_additional_residual 237 | 238 | # 5. up 239 | for i, upsample_block in enumerate(self.up_blocks): 240 | is_final_block = i == len(self.up_blocks) - 1 241 | 242 | res_samples = down_block_res_samples[-len(upsample_block.resnets) :] 243 | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] 244 | 245 | # if we have not reached the final block and need to forward the 246 | # upsample size, we do it here 247 | if not is_final_block and forward_upsample_size: 248 | upsample_size = down_block_res_samples[-1].shape[2:] 249 | 250 | res_cache[f"up_{i}"] = sample.clone() 251 | if not control_hidden_states is None and f'up3_{i}' in control_hidden_states: 252 | sample += rearrange(control_hidden_states[f'up3_{i}'], "b c f h w -> (b f) c h w") 253 | if hasattr(self, "reference_modules_up") and not reference_hidden_states is None and f'up_{i}' in reference_hidden_states: 254 | sample = self.reference_modules_up[i](sample, reference_hidden_states[f'up_{i}'], num_frames) 255 | if hasattr(self, 'motion_up') and use_motion: 256 | sample = self.motion_up[i](sample, 257 | None if motion_pad_hidden_states is None else motion_pad_hidden_states[f'up_{i}'], 258 | emb, num_frames) 259 | 260 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: 261 | sample = upsample_block( 262 | hidden_states=sample, 263 | temb=emb, 264 | res_hidden_states_tuple=res_samples, 265 | encoder_hidden_states=encoder_hidden_states, 266 | cross_attention_kwargs=cross_attention_kwargs, 267 | upsample_size=upsample_size, 268 | attention_mask=attention_mask, 269 | encoder_attention_mask=encoder_attention_mask, 270 | ) 271 | else: 272 | sample = upsample_block( 273 | hidden_states=sample, 274 | temb=emb, 275 | res_hidden_states_tuple=res_samples, 276 | upsample_size=upsample_size, 277 | ) 278 | 279 | # 6. post-process 280 | if self.conv_norm_out: 281 | sample = self.conv_norm_out(sample) 282 | sample = self.conv_act(sample) 283 | sample = self.conv_out(sample) 284 | 285 | if USE_PEFT_BACKEND: 286 | # remove `lora_scale` from each PEFT layer 287 | unscale_lora_layers(self, lora_scale) 288 | 289 | # reshape to (batch, channel, framerate, width, height) 290 | sample = rearrange(sample, "(b f) c h w -> b c f h w", f=num_frames) 291 | 292 | if not return_dict: 293 | return (sample, res_cache) 294 | 295 | return (UNet2DConditionOutput(sample=sample), res_cache) 296 | -------------------------------------------------------------------------------- /example_workflows/image_generation.json: -------------------------------------------------------------------------------- 1 | { 2 | "id": "a8e8ebf3-8dc8-4d76-ad73-dfe0b945cc77", 3 | "revision": 0, 4 | "last_node_id": 80, 5 | "last_link_id": 187, 6 | "nodes": [ 7 | { 8 | "id": 2, 9 | "type": "HMFaceToolkitsLoader", 10 | "pos": [ 11 | 45.41996383666992, 12 | 769.9866333007812 13 | ], 14 | "size": [ 15 | 315, 16 | 82 17 | ], 18 | "flags": {}, 19 | "order": 0, 20 | "mode": 0, 21 | "inputs": [], 22 | "outputs": [ 23 | { 24 | "name": "face_toolkits", 25 | "type": "FACE_TOOLKITS", 26 | "slot_index": 0, 27 | "links": [ 28 | 122, 29 | 129, 30 | 147, 31 | 149, 32 | 173, 33 | 174 34 | ] 35 | } 36 | ], 37 | "properties": { 38 | "Node name for S&R": "HMFaceToolkitsLoader" 39 | }, 40 | "widgets_values": [ 41 | 0, 42 | "huggingface" 43 | ] 44 | }, 45 | { 46 | "id": 61, 47 | "type": "GetFaceLandmarks", 48 | "pos": [ 49 | 519.7196655273438, 50 | 938.032958984375 51 | ], 52 | "size": [ 53 | 170.62362670898438, 54 | 46 55 | ], 56 | "flags": {}, 57 | "order": 4, 58 | "mode": 0, 59 | "inputs": [ 60 | { 61 | "name": "face_toolkits", 62 | "type": "FACE_TOOLKITS", 63 | "link": 129 64 | }, 65 | { 66 | "name": "images", 67 | "type": "IMAGE", 68 | "link": 179 69 | } 70 | ], 71 | "outputs": [ 72 | { 73 | "name": "landmarks", 74 | "type": "FACELANDMARKS222", 75 | "links": [ 76 | 145, 77 | 177 78 | ] 79 | } 80 | ], 81 | "properties": { 82 | "Node name for S&R": "GetFaceLandmarks" 83 | }, 84 | "widgets_values": [] 85 | }, 86 | { 87 | "id": 60, 88 | "type": "GetFaceLandmarks", 89 | "pos": [ 90 | 518.9132690429688, 91 | 612.9461669921875 92 | ], 93 | "size": [ 94 | 170.62362670898438, 95 | 46 96 | ], 97 | "flags": {}, 98 | "order": 5, 99 | "mode": 0, 100 | "inputs": [ 101 | { 102 | "name": "face_toolkits", 103 | "type": "FACE_TOOLKITS", 104 | "link": 122 105 | }, 106 | { 107 | "name": "images", 108 | "type": "IMAGE", 109 | "link": 121 110 | } 111 | ], 112 | "outputs": [ 113 | { 114 | "name": "landmarks", 115 | "type": "FACELANDMARKS222", 116 | "links": [ 117 | 143, 118 | 178 119 | ] 120 | } 121 | ], 122 | "properties": { 123 | "Node name for S&R": "GetFaceLandmarks" 124 | }, 125 | "widgets_values": [] 126 | }, 127 | { 128 | "id": 77, 129 | "type": "LoadImage", 130 | "pos": [ 131 | 61.306365966796875, 132 | 1023.740478515625 133 | ], 134 | "size": [ 135 | 270, 136 | 314 137 | ], 138 | "flags": {}, 139 | "order": 1, 140 | "mode": 0, 141 | "inputs": [], 142 | "outputs": [ 143 | { 144 | "name": "IMAGE", 145 | "type": "IMAGE", 146 | "links": [ 147 | 179, 148 | 180, 149 | 181 150 | ] 151 | }, 152 | { 153 | "name": "MASK", 154 | "type": "MASK", 155 | "links": null 156 | } 157 | ], 158 | "properties": { 159 | "Node name for S&R": "LoadImage" 160 | }, 161 | "widgets_values": [ 162 | "yao.jpg", 163 | "image" 164 | ] 165 | }, 166 | { 167 | "id": 67, 168 | "type": "GetHeadPose", 169 | "pos": [ 170 | 814.1528930664062, 171 | 495.9793701171875 172 | ], 173 | "size": [ 174 | 270, 175 | 98 176 | ], 177 | "flags": {}, 178 | "order": 8, 179 | "mode": 0, 180 | "inputs": [ 181 | { 182 | "name": "face_toolkits", 183 | "type": "FACE_TOOLKITS", 184 | "link": 147 185 | }, 186 | { 187 | "name": "images", 188 | "type": "IMAGE", 189 | "link": 151 190 | }, 191 | { 192 | "name": "landmarks", 193 | "type": "FACELANDMARKS222", 194 | "link": 143 195 | } 196 | ], 197 | "outputs": [ 198 | { 199 | "name": "head_pose", 200 | "type": "HEAD_POSE", 201 | "links": [ 202 | 183 203 | ] 204 | } 205 | ], 206 | "properties": { 207 | "Node name for S&R": "GetHeadPose" 208 | }, 209 | "widgets_values": [ 210 | true 211 | ] 212 | }, 213 | { 214 | "id": 75, 215 | "type": "GetExpression2", 216 | "pos": [ 217 | 814.1359252929688, 218 | 689.6795654296875 219 | ], 220 | "size": [ 221 | 191.63729858398438, 222 | 66 223 | ], 224 | "flags": {}, 225 | "order": 9, 226 | "mode": 0, 227 | "inputs": [ 228 | { 229 | "name": "face_toolkits", 230 | "type": "FACE_TOOLKITS", 231 | "link": 173 232 | }, 233 | { 234 | "name": "images", 235 | "type": "IMAGE", 236 | "link": 175 237 | }, 238 | { 239 | "name": "landmarks", 240 | "type": "FACELANDMARKS222", 241 | "link": 178 242 | } 243 | ], 244 | "outputs": [ 245 | { 246 | "name": "expression", 247 | "type": "EXPRESSION", 248 | "links": [ 249 | 184 250 | ] 251 | } 252 | ], 253 | "properties": { 254 | "Node name for S&R": "GetExpression2" 255 | }, 256 | "widgets_values": [] 257 | }, 258 | { 259 | "id": 69, 260 | "type": "GetHeadPose", 261 | "pos": [ 262 | 819.799560546875, 263 | 860.5927734375 264 | ], 265 | "size": [ 266 | 270, 267 | 98 268 | ], 269 | "flags": {}, 270 | "order": 6, 271 | "mode": 0, 272 | "inputs": [ 273 | { 274 | "name": "face_toolkits", 275 | "type": "FACE_TOOLKITS", 276 | "link": 149 277 | }, 278 | { 279 | "name": "images", 280 | "type": "IMAGE", 281 | "link": 180 282 | }, 283 | { 284 | "name": "landmarks", 285 | "type": "FACELANDMARKS222", 286 | "link": 145 287 | } 288 | ], 289 | "outputs": [ 290 | { 291 | "name": "head_pose", 292 | "type": "HEAD_POSE", 293 | "links": [ 294 | 185 295 | ] 296 | } 297 | ], 298 | "properties": { 299 | "Node name for S&R": "GetHeadPose" 300 | }, 301 | "widgets_values": [ 302 | true 303 | ] 304 | }, 305 | { 306 | "id": 76, 307 | "type": "GetExpression2", 308 | "pos": [ 309 | 833.6573486328125, 310 | 1042.0396728515625 311 | ], 312 | "size": [ 313 | 191.63729858398438, 314 | 66 315 | ], 316 | "flags": {}, 317 | "order": 7, 318 | "mode": 0, 319 | "inputs": [ 320 | { 321 | "name": "face_toolkits", 322 | "type": "FACE_TOOLKITS", 323 | "link": 174 324 | }, 325 | { 326 | "name": "images", 327 | "type": "IMAGE", 328 | "link": 181 329 | }, 330 | { 331 | "name": "landmarks", 332 | "type": "FACELANDMARKS222", 333 | "link": 177 334 | } 335 | ], 336 | "outputs": [ 337 | { 338 | "name": "expression", 339 | "type": "EXPRESSION", 340 | "links": [ 341 | 186 342 | ] 343 | } 344 | ], 345 | "properties": { 346 | "Node name for S&R": "GetExpression2" 347 | }, 348 | "widgets_values": [] 349 | }, 350 | { 351 | "id": 79, 352 | "type": "HMPipelineImage", 353 | "pos": [ 354 | 1334.226318359375, 355 | 613.9535522460938 356 | ], 357 | "size": [ 358 | 270, 359 | 306 360 | ], 361 | "flags": {}, 362 | "order": 10, 363 | "mode": 0, 364 | "inputs": [ 365 | { 366 | "name": "hm_image_pipeline", 367 | "type": "HMIMAGEPIPELINE", 368 | "link": 182 369 | }, 370 | { 371 | "name": "ref_head_pose", 372 | "type": "HEAD_POSE", 373 | "link": 183 374 | }, 375 | { 376 | "name": "ref_expression", 377 | "type": "EXPRESSION", 378 | "link": 184 379 | }, 380 | { 381 | "name": "drive_head_pose", 382 | "type": "HEAD_POSE", 383 | "link": 185 384 | }, 385 | { 386 | "name": "drive_expression", 387 | "type": "EXPRESSION", 388 | "link": 186 389 | } 390 | ], 391 | "outputs": [ 392 | { 393 | "name": "IMAGE", 394 | "type": "IMAGE", 395 | "links": [ 396 | 187 397 | ] 398 | }, 399 | { 400 | "name": "LATENT", 401 | "type": "LATENT", 402 | "links": null 403 | } 404 | ], 405 | "properties": { 406 | "Node name for S&R": "HMPipelineImage" 407 | }, 408 | "widgets_values": [ 409 | 0, 410 | "", 411 | "", 412 | 25, 413 | 815482659530374, 414 | "randomize", 415 | 1.5, 416 | 0 417 | ] 418 | }, 419 | { 420 | "id": 58, 421 | "type": "LoadImage", 422 | "pos": [ 423 | 37.4466552734375, 424 | 260.9000244140625 425 | ], 426 | "size": [ 427 | 315, 428 | 314 429 | ], 430 | "flags": {}, 431 | "order": 2, 432 | "mode": 0, 433 | "inputs": [], 434 | "outputs": [ 435 | { 436 | "name": "IMAGE", 437 | "type": "IMAGE", 438 | "slot_index": 0, 439 | "links": [ 440 | 121, 441 | 151, 442 | 175 443 | ] 444 | }, 445 | { 446 | "name": "MASK", 447 | "type": "MASK", 448 | "links": null 449 | } 450 | ], 451 | "properties": { 452 | "Node name for S&R": "LoadImage" 453 | }, 454 | "widgets_values": [ 455 | "chillout.jpg", 456 | "image" 457 | ] 458 | }, 459 | { 460 | "id": 80, 461 | "type": "PreviewImage", 462 | "pos": [ 463 | 1703.6793212890625, 464 | 613.9529418945312 465 | ], 466 | "size": [ 467 | 210, 468 | 258 469 | ], 470 | "flags": {}, 471 | "order": 11, 472 | "mode": 0, 473 | "inputs": [ 474 | { 475 | "name": "images", 476 | "type": "IMAGE", 477 | "link": 187 478 | } 479 | ], 480 | "outputs": [], 481 | "properties": { 482 | "Node name for S&R": "PreviewImage" 483 | }, 484 | "widgets_values": [] 485 | }, 486 | { 487 | "id": 78, 488 | "type": "HMImagePipelineLoader", 489 | "pos": [ 490 | 797.7930297851562, 491 | 188.84007263183594 492 | ], 493 | "size": [ 494 | 298.3472595214844, 495 | 226 496 | ], 497 | "flags": {}, 498 | "order": 3, 499 | "mode": 0, 500 | "inputs": [], 501 | "outputs": [ 502 | { 503 | "name": "hm_image_pipeline", 504 | "type": "HMIMAGEPIPELINE", 505 | "links": [ 506 | 182 507 | ] 508 | } 509 | ], 510 | "properties": { 511 | "Node name for S&R": "HMImagePipelineLoader" 512 | }, 513 | "widgets_values": [ 514 | "[preset]DisneyPixarCartoonB", 515 | "None", 516 | "same as checkpoint", 517 | "v5c", 518 | "x1", 519 | "huggingface", 520 | 1, 521 | "fp32" 522 | ] 523 | } 524 | ], 525 | "links": [ 526 | [ 527 | 121, 528 | 58, 529 | 0, 530 | 60, 531 | 1, 532 | "IMAGE" 533 | ], 534 | [ 535 | 122, 536 | 2, 537 | 0, 538 | 60, 539 | 0, 540 | "FACE_TOOLKITS" 541 | ], 542 | [ 543 | 129, 544 | 2, 545 | 0, 546 | 61, 547 | 0, 548 | "FACE_TOOLKITS" 549 | ], 550 | [ 551 | 143, 552 | 60, 553 | 0, 554 | 67, 555 | 2, 556 | "FACELANDMARKS222" 557 | ], 558 | [ 559 | 145, 560 | 61, 561 | 0, 562 | 69, 563 | 2, 564 | "FACELANDMARKS222" 565 | ], 566 | [ 567 | 147, 568 | 2, 569 | 0, 570 | 67, 571 | 0, 572 | "FACE_TOOLKITS" 573 | ], 574 | [ 575 | 149, 576 | 2, 577 | 0, 578 | 69, 579 | 0, 580 | "FACE_TOOLKITS" 581 | ], 582 | [ 583 | 151, 584 | 58, 585 | 0, 586 | 67, 587 | 1, 588 | "IMAGE" 589 | ], 590 | [ 591 | 173, 592 | 2, 593 | 0, 594 | 75, 595 | 0, 596 | "FACE_TOOLKITS" 597 | ], 598 | [ 599 | 174, 600 | 2, 601 | 0, 602 | 76, 603 | 0, 604 | "FACE_TOOLKITS" 605 | ], 606 | [ 607 | 175, 608 | 58, 609 | 0, 610 | 75, 611 | 1, 612 | "IMAGE" 613 | ], 614 | [ 615 | 177, 616 | 61, 617 | 0, 618 | 76, 619 | 2, 620 | "FACELANDMARKS222" 621 | ], 622 | [ 623 | 178, 624 | 60, 625 | 0, 626 | 75, 627 | 2, 628 | "FACELANDMARKS222" 629 | ], 630 | [ 631 | 179, 632 | 77, 633 | 0, 634 | 61, 635 | 1, 636 | "IMAGE" 637 | ], 638 | [ 639 | 180, 640 | 77, 641 | 0, 642 | 69, 643 | 1, 644 | "IMAGE" 645 | ], 646 | [ 647 | 181, 648 | 77, 649 | 0, 650 | 76, 651 | 1, 652 | "IMAGE" 653 | ], 654 | [ 655 | 182, 656 | 78, 657 | 0, 658 | 79, 659 | 0, 660 | "HMIMAGEPIPELINE" 661 | ], 662 | [ 663 | 183, 664 | 67, 665 | 0, 666 | 79, 667 | 1, 668 | "HEAD_POSE" 669 | ], 670 | [ 671 | 184, 672 | 75, 673 | 0, 674 | 79, 675 | 2, 676 | "EXPRESSION" 677 | ], 678 | [ 679 | 185, 680 | 69, 681 | 0, 682 | 79, 683 | 3, 684 | "HEAD_POSE" 685 | ], 686 | [ 687 | 186, 688 | 76, 689 | 0, 690 | 79, 691 | 4, 692 | "EXPRESSION" 693 | ], 694 | [ 695 | 187, 696 | 79, 697 | 0, 698 | 80, 699 | 0, 700 | "IMAGE" 701 | ] 702 | ], 703 | "groups": [], 704 | "config": {}, 705 | "extra": { 706 | "ds": { 707 | "scale": 0.8264462809917358, 708 | "offset": [ 709 | 493.27712102477454, 710 | -69.45337656976547 711 | ] 712 | }, 713 | "frontendVersion": "1.19.2" 714 | }, 715 | "version": 0.4 716 | } -------------------------------------------------------------------------------- /hellomeme/models/hm_denoising_3d.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : models6/hm_denoising_3d.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 8/14/2024 8 | @Desc : 删除实验代码,精简结构 9 | adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_condition.py 10 | """ 11 | 12 | import torch 13 | import torch.utils.checkpoint 14 | from typing import Any, Dict, Optional, Tuple, Union 15 | 16 | from einops import rearrange 17 | 18 | from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers 19 | from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel, UNet2DConditionOutput 20 | from .hm_adapters import CopyWeights, InsertReferenceAdapter 21 | 22 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name 23 | 24 | 25 | class HMDenoising3D(UNet2DConditionModel, CopyWeights, InsertReferenceAdapter): 26 | def forward( 27 | self, 28 | sample: torch.Tensor, 29 | timestep: Union[torch.Tensor, float, int], 30 | encoder_hidden_states: torch.Tensor, 31 | reference_hidden_states: Optional[dict] = None, 32 | control_hidden_states: Optional[torch.Tensor] = None, 33 | class_labels: Optional[torch.Tensor] = None, 34 | timestep_cond: Optional[torch.Tensor] = None, 35 | attention_mask: Optional[torch.Tensor] = None, 36 | cross_attention_kwargs: Optional[Dict[str, Any]] = None, 37 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, 38 | down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, 39 | mid_block_additional_residual: Optional[torch.Tensor] = None, 40 | down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, 41 | encoder_attention_mask: Optional[torch.Tensor] = None, 42 | return_dict: bool = True, 43 | ) -> Union[UNet2DConditionOutput, Tuple]: 44 | # By default samples have to be AT least a multiple of the overall upsampling factor. 45 | # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). 46 | # However, the upsampling interpolation output size can be forced to fit any upsampling size 47 | # on the fly if necessary. 48 | default_overall_up_factor = 2**self.num_upsamplers 49 | 50 | # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` 51 | forward_upsample_size = False 52 | upsample_size = None 53 | 54 | for dim in sample.shape[-2:]: 55 | if dim % default_overall_up_factor != 0: 56 | # Forward upsample size to force interpolation output size. 57 | forward_upsample_size = True 58 | break 59 | 60 | # ensure attention_mask is a bias, and give it a singleton query_tokens dimension 61 | # expects mask of shape: 62 | # [batch, key_tokens] 63 | # adds singleton query_tokens dimension: 64 | # [batch, 1, key_tokens] 65 | # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: 66 | # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) 67 | # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) 68 | if attention_mask is not None: 69 | # assume that mask is expressed as: 70 | # (1 = keep, 0 = discard) 71 | # convert mask into a bias that can be added to attention scores: 72 | # (keep = +0, discard = -10000.0) 73 | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 74 | attention_mask = attention_mask.unsqueeze(1) 75 | 76 | # convert encoder_attention_mask to a bias the same way we do for attention_mask 77 | if encoder_attention_mask is not None: 78 | encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 79 | encoder_attention_mask = encoder_attention_mask.unsqueeze(1) 80 | 81 | # 0. center input if necessary 82 | if self.config.center_input_sample: 83 | sample = 2 * sample - 1.0 84 | 85 | # 1. time 86 | t_emb = self.get_time_embed(sample=sample, timestep=timestep) 87 | emb = self.time_embedding(t_emb, timestep_cond) 88 | aug_emb = None 89 | 90 | class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) 91 | if class_emb is not None: 92 | if self.config.class_embeddings_concat: 93 | emb = torch.cat([emb, class_emb], dim=-1) 94 | else: 95 | emb = emb + class_emb 96 | 97 | aug_emb = self.get_aug_embed( 98 | emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs 99 | ) 100 | if self.config.addition_embed_type == "image_hint": 101 | aug_emb, hint = aug_emb 102 | sample = torch.cat([sample, hint], dim=1) 103 | 104 | emb = emb + aug_emb if aug_emb is not None else emb 105 | 106 | if self.time_embed_act is not None: 107 | emb = self.time_embed_act(emb) 108 | 109 | num_frames = sample.shape[2] 110 | emb = emb.repeat_interleave(repeats=num_frames, dim=0) 111 | 112 | if len(encoder_hidden_states.shape) == 3: 113 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0) 114 | elif len(encoder_hidden_states.shape) == 4: 115 | encoder_hidden_states = rearrange(encoder_hidden_states, "b f l d -> (b f) l d") 116 | 117 | if not added_cond_kwargs is None and 'image_embeds' in added_cond_kwargs: 118 | if isinstance(added_cond_kwargs['image_embeds'], torch.Tensor): 119 | added_cond_kwargs['image_embeds'] = added_cond_kwargs['image_embeds'].repeat_interleave(repeats=num_frames, dim=0) 120 | else: 121 | added_cond_kwargs['image_embeds'] = [x.repeat_interleave(repeats=num_frames, dim=0) for x in added_cond_kwargs['image_embeds']] 122 | 123 | encoder_hidden_states = self.process_encoder_hidden_states( 124 | encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs 125 | ) 126 | 127 | # 2. pre-process 128 | sample = rearrange(sample, "b c f h w -> (b f) c h w") 129 | sample = self.conv_in(sample) 130 | 131 | # 2.5 GLIGEN position net 132 | if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: 133 | cross_attention_kwargs = cross_attention_kwargs.copy() 134 | gligen_args = cross_attention_kwargs.pop("gligen") 135 | cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} 136 | 137 | # 3. down 138 | # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated 139 | # to the internal blocks and will raise deprecation warnings. this will be confusing for our users. 140 | if cross_attention_kwargs is not None: 141 | cross_attention_kwargs = cross_attention_kwargs.copy() 142 | lora_scale = cross_attention_kwargs.pop("scale", 1.0) 143 | else: 144 | lora_scale = 1.0 145 | 146 | if USE_PEFT_BACKEND: 147 | # weight the lora layers by setting `lora_scale` for each PEFT layer 148 | scale_lora_layers(self, lora_scale) 149 | 150 | is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None 151 | # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets 152 | is_adapter = down_intrablock_additional_residuals is not None 153 | # maintain backward compatibility for legacy usage, where 154 | # T2I-Adapter and ControlNet both use down_block_additional_residuals arg 155 | # but can only use one or the other 156 | if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: 157 | deprecate( 158 | "T2I should not use down_block_additional_residuals", 159 | "1.3.0", 160 | "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ 161 | and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ 162 | for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", 163 | standard_warn=False, 164 | ) 165 | down_intrablock_additional_residuals = down_block_additional_residuals 166 | is_adapter = True 167 | 168 | res_cache = dict() 169 | down_block_res_samples = (sample,) 170 | for idx, downsample_block in enumerate(self.down_blocks): 171 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: 172 | # For t2i-adapter CrossAttnDownBlock2D 173 | additional_residuals = {} 174 | if is_adapter and len(down_intrablock_additional_residuals) > 0: 175 | additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) 176 | 177 | sample, res_samples = downsample_block( 178 | hidden_states=sample, 179 | temb=emb, 180 | encoder_hidden_states=encoder_hidden_states, 181 | attention_mask=attention_mask, 182 | cross_attention_kwargs=cross_attention_kwargs, 183 | encoder_attention_mask=encoder_attention_mask, 184 | **additional_residuals, 185 | ) 186 | res_cache[f"down_{idx}"] = sample.clone() 187 | else: 188 | sample, res_samples = downsample_block(hidden_states=sample, temb=emb) 189 | if is_adapter and len(down_intrablock_additional_residuals) > 0: 190 | sample += down_intrablock_additional_residuals.pop(0) 191 | 192 | if not control_hidden_states is None and f'down_{idx}' in control_hidden_states: 193 | sample += rearrange(control_hidden_states[f'down_{idx}'], "b c f h w -> (b f) c h w") 194 | if not control_hidden_states is None and f'down2_{idx}' in control_hidden_states: 195 | sample += rearrange(control_hidden_states[f'down2_{idx}'], "b c f h w -> (b f) c h w") 196 | if hasattr(self, 'reference_modules_down') and not reference_hidden_states is None and f'down_{idx}' in reference_hidden_states: 197 | sample = self.reference_modules_down[idx](sample, reference_hidden_states[f'down_{idx}'], num_frames) 198 | 199 | down_block_res_samples += res_samples 200 | 201 | if is_controlnet: 202 | new_down_block_res_samples = () 203 | 204 | for down_block_res_sample, down_block_additional_residual in zip( 205 | down_block_res_samples, down_block_additional_residuals 206 | ): 207 | down_block_res_sample = down_block_res_sample + down_block_additional_residual 208 | new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) 209 | 210 | down_block_res_samples = new_down_block_res_samples 211 | 212 | # 4. mid 213 | if self.mid_block is not None: 214 | if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: 215 | sample = self.mid_block( 216 | sample, 217 | emb, 218 | encoder_hidden_states=encoder_hidden_states, 219 | attention_mask=attention_mask, 220 | cross_attention_kwargs=cross_attention_kwargs, 221 | encoder_attention_mask=encoder_attention_mask, 222 | ) 223 | else: 224 | sample = self.mid_block(sample, emb) 225 | if hasattr(self, 'reference_modules_mid') and not reference_hidden_states is None and f'mid' in reference_hidden_states: 226 | sample = self.reference_modules_mid(sample, reference_hidden_states[f'mid'], num_frames) 227 | 228 | # To support T2I-Adapter-XL 229 | if ( 230 | is_adapter 231 | and len(down_intrablock_additional_residuals) > 0 232 | and sample.shape == down_intrablock_additional_residuals[0].shape 233 | ): 234 | sample += down_intrablock_additional_residuals.pop(0) 235 | res_cache[f"mid"] = sample.clone() 236 | 237 | if is_controlnet: 238 | sample = sample + mid_block_additional_residual 239 | 240 | # 5. up 241 | for i, upsample_block in enumerate(self.up_blocks): 242 | is_final_block = i == len(self.up_blocks) - 1 243 | 244 | res_samples = down_block_res_samples[-len(upsample_block.resnets) :] 245 | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] 246 | 247 | # if we have not reached the final block and need to forward the 248 | # upsample size, we do it here 249 | if not is_final_block and forward_upsample_size: 250 | upsample_size = down_block_res_samples[-1].shape[2:] 251 | 252 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: 253 | res_cache[f"up_{i}"] = sample.clone() 254 | if not control_hidden_states is None and f'up_v2_{i}' in control_hidden_states: 255 | sample += rearrange(control_hidden_states[f'up_v2_{i}'], "b c f h w -> (b f) c h w") 256 | if not control_hidden_states is None and f'up2_v2_{i}' in control_hidden_states: 257 | sample += rearrange(control_hidden_states[f'up2_v2_{i}'], "b c f h w -> (b f) c h w") 258 | if hasattr(self, "reference_modules_up") and not reference_hidden_states is None and f'up_{i}' in reference_hidden_states: 259 | sample = self.reference_modules_up[i-1](sample, reference_hidden_states[f'up_{i}'], num_frames) 260 | 261 | sample = upsample_block( 262 | hidden_states=sample, 263 | temb=emb, 264 | res_hidden_states_tuple=res_samples, 265 | encoder_hidden_states=encoder_hidden_states, 266 | cross_attention_kwargs=cross_attention_kwargs, 267 | upsample_size=upsample_size, 268 | attention_mask=attention_mask, 269 | encoder_attention_mask=encoder_attention_mask, 270 | ) 271 | else: 272 | if not control_hidden_states is None and f'up_v2_{i}' in control_hidden_states: 273 | sample += rearrange(control_hidden_states[f'up_v2_{i}'], "b c f h w -> (b f) c h w") 274 | if not control_hidden_states is None and f'up2_v2_{i}' in control_hidden_states: 275 | sample += rearrange(control_hidden_states[f'up2_v2_{i}'], "b c f h w -> (b f) c h w") 276 | sample = upsample_block( 277 | hidden_states=sample, 278 | temb=emb, 279 | res_hidden_states_tuple=res_samples, 280 | upsample_size=upsample_size, 281 | ) 282 | 283 | # 6. post-process 284 | if self.conv_norm_out: 285 | sample = self.conv_norm_out(sample) 286 | sample = self.conv_act(sample) 287 | sample = self.conv_out(sample) 288 | 289 | if USE_PEFT_BACKEND: 290 | # remove `lora_scale` from each PEFT layer 291 | unscale_lora_layers(self, lora_scale) 292 | 293 | # reshape to (batch, channel, framerate, width, height) 294 | sample = rearrange(sample, "(b f) c h w -> b c f h w", f=num_frames) 295 | 296 | if not return_dict: 297 | return (sample, res_cache) 298 | 299 | return (UNet2DConditionOutput(sample=sample), res_cache) 300 | -------------------------------------------------------------------------------- /hellomeme/tools/sr.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : sr.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 5/30/2025 8 | @Desc : adapted from: https://github.com/xinntao/Real-ESRGAN 9 | """ 10 | 11 | import torch 12 | from torch import nn as nn 13 | from torch.nn import functional as F 14 | import cv2 15 | import numpy as np 16 | import math 17 | import os.path as osp 18 | from .utils import download_file_from_cloud 19 | 20 | def pixel_unshuffle(x, scale): 21 | """ Pixel unshuffle. 22 | 23 | Args: 24 | x (Tensor): Input feature with shape (b, c, hh, hw). 25 | scale (int): Downsample ratio. 26 | 27 | Returns: 28 | Tensor: the pixel unshuffled feature. 29 | """ 30 | b, c, hh, hw = x.size() 31 | out_channel = c * (scale**2) 32 | assert hh % scale == 0 and hw % scale == 0 33 | h = hh // scale 34 | w = hw // scale 35 | x_view = x.view(b, c, h, scale, w, scale) 36 | return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) 37 | 38 | def make_layer(basic_block, num_basic_block, **kwarg): 39 | """Make layers by stacking the same blocks. 40 | 41 | Args: 42 | basic_block (nn.module): nn.module class for basic block. 43 | num_basic_block (int): number of blocks. 44 | 45 | Returns: 46 | nn.Sequential: Stacked blocks in nn.Sequential. 47 | """ 48 | layers = [] 49 | for _ in range(num_basic_block): 50 | layers.append(basic_block(**kwarg)) 51 | return nn.Sequential(*layers) 52 | 53 | class ResidualDenseBlock(nn.Module): 54 | """Residual Dense Block. 55 | 56 | Used in RRDB block in ESRGAN. 57 | 58 | Args: 59 | num_feat (int): Channel number of intermediate features. 60 | num_grow_ch (int): Channels for each growth. 61 | """ 62 | 63 | def __init__(self, num_feat=64, num_grow_ch=32): 64 | super(ResidualDenseBlock, self).__init__() 65 | self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) 66 | self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) 67 | self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) 68 | self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) 69 | self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) 70 | 71 | self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) 72 | 73 | # initialization 74 | # default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) 75 | 76 | def forward(self, x): 77 | x1 = self.lrelu(self.conv1(x)) 78 | x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) 79 | x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) 80 | x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) 81 | x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) 82 | # Empirically, we use 0.2 to scale the residual for better performance 83 | return x5 * 0.2 + x 84 | 85 | 86 | class RRDB(nn.Module): 87 | """Residual in Residual Dense Block. 88 | 89 | Used in RRDB-Net in ESRGAN. 90 | 91 | Args: 92 | num_feat (int): Channel number of intermediate features. 93 | num_grow_ch (int): Channels for each growth. 94 | """ 95 | 96 | def __init__(self, num_feat, num_grow_ch=32): 97 | super(RRDB, self).__init__() 98 | self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) 99 | self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) 100 | self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) 101 | 102 | def forward(self, x): 103 | out = self.rdb1(x) 104 | out = self.rdb2(out) 105 | out = self.rdb3(out) 106 | # Empirically, we use 0.2 to scale the residual for better performance 107 | return out * 0.2 + x 108 | 109 | class RRDBNet(nn.Module): 110 | """Networks consisting of Residual in Residual Dense Block, which is used 111 | in ESRGAN. 112 | 113 | ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. 114 | 115 | We extend ESRGAN for scale x2 and scale x1. 116 | Note: This is one option for scale 1, scale 2 in RRDBNet. 117 | We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size 118 | and enlarge the channel size before feeding inputs into the main ESRGAN architecture. 119 | 120 | Args: 121 | num_in_ch (int): Channel number of inputs. 122 | num_out_ch (int): Channel number of outputs. 123 | num_feat (int): Channel number of intermediate features. 124 | Default: 64 125 | num_block (int): Block number in the trunk network. Defaults: 23 126 | num_grow_ch (int): Channels for each growth. Default: 32. 127 | """ 128 | 129 | def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32): 130 | super(RRDBNet, self).__init__() 131 | self.scale = scale 132 | if scale == 2: 133 | num_in_ch = num_in_ch * 4 134 | elif scale == 1: 135 | num_in_ch = num_in_ch * 16 136 | self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) 137 | self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch) 138 | self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) 139 | # upsample 140 | self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) 141 | self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) 142 | self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) 143 | self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) 144 | 145 | self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) 146 | 147 | def forward(self, x): 148 | if self.scale == 2: 149 | feat = pixel_unshuffle(x, scale=2) 150 | elif self.scale == 1: 151 | feat = pixel_unshuffle(x, scale=4) 152 | else: 153 | feat = x 154 | feat = self.conv_first(feat) 155 | body_feat = self.conv_body(self.body(feat)) 156 | feat = feat + body_feat 157 | # upsample 158 | feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) 159 | feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) 160 | out = self.conv_last(self.lrelu(self.conv_hr(feat))) 161 | return out 162 | 163 | class RealESRGANer(): 164 | def __init__(self, 165 | scale, 166 | tile=0, 167 | tile_pad=10, 168 | pre_pad=10, 169 | half=True, 170 | device=None, 171 | gpu_id=None, 172 | modelscope=False): 173 | self.scale = scale 174 | self.tile_size = tile 175 | self.tile_pad = tile_pad 176 | self.pre_pad = pre_pad 177 | self.mod_scale = None 178 | self.half = half 179 | 180 | # initialize model 181 | if gpu_id: 182 | self.device = torch.device( 183 | f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device 184 | else: 185 | self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device 186 | 187 | model_path = download_file_from_cloud(model_id='songkey/ESRGAN', file_name='RealESRGAN_x2plus.pth', modelscope=modelscope) 188 | loadnet = torch.load(model_path, map_location=torch.device('cpu')) 189 | 190 | # prefer to use params_ema 191 | if 'params_ema' in loadnet: 192 | keyname = 'params_ema' 193 | else: 194 | keyname = 'params' 195 | self.model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) 196 | self.model.load_state_dict(loadnet[keyname], strict=True) 197 | 198 | self.model.eval() 199 | self.model = self.model.to(self.device) 200 | if self.half: 201 | self.model = self.model.half() 202 | 203 | def dni(self, net_a, net_b, dni_weight, key='params', loc='cpu'): 204 | """Deep network interpolation. 205 | 206 | ``Paper: Deep Network Interpolation for Continuous Imagery Effect Transition`` 207 | """ 208 | net_a = torch.load(net_a, map_location=torch.device(loc)) 209 | net_b = torch.load(net_b, map_location=torch.device(loc)) 210 | for k, v_a in net_a[key].items(): 211 | net_a[key][k] = dni_weight[0] * v_a + dni_weight[1] * net_b[key][k] 212 | return net_a 213 | 214 | def pre_process(self, img): 215 | """Pre-process, such as pre-pad and mod pad, so that the images can be divisible 216 | """ 217 | img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() 218 | self.img = img.unsqueeze(0).to(self.device) 219 | if self.half: 220 | self.img = self.img.half() 221 | 222 | # pre_pad 223 | if self.pre_pad != 0: 224 | self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect') 225 | # mod pad for divisible borders 226 | if self.scale == 2: 227 | self.mod_scale = 2 228 | elif self.scale == 1: 229 | self.mod_scale = 4 230 | if self.mod_scale is not None: 231 | self.mod_pad_h, self.mod_pad_w = 0, 0 232 | _, _, h, w = self.img.size() 233 | if (h % self.mod_scale != 0): 234 | self.mod_pad_h = (self.mod_scale - h % self.mod_scale) 235 | if (w % self.mod_scale != 0): 236 | self.mod_pad_w = (self.mod_scale - w % self.mod_scale) 237 | self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect') 238 | 239 | def process(self): 240 | # model inference 241 | self.output = self.model(self.img) 242 | 243 | def tile_process(self): 244 | """It will first crop input images to tiles, and then process each tile. 245 | Finally, all the processed tiles are merged into one images. 246 | 247 | Modified from: https://github.com/ata4/esrgan-launcher 248 | """ 249 | batch, channel, height, width = self.img.shape 250 | output_height = height * self.scale 251 | output_width = width * self.scale 252 | output_shape = (batch, channel, output_height, output_width) 253 | 254 | # start with black image 255 | self.output = self.img.new_zeros(output_shape) 256 | tiles_x = math.ceil(width / self.tile_size) 257 | tiles_y = math.ceil(height / self.tile_size) 258 | 259 | # loop over all tiles 260 | for y in range(tiles_y): 261 | for x in range(tiles_x): 262 | # extract tile from input image 263 | ofs_x = x * self.tile_size 264 | ofs_y = y * self.tile_size 265 | # input tile area on total image 266 | input_start_x = ofs_x 267 | input_end_x = min(ofs_x + self.tile_size, width) 268 | input_start_y = ofs_y 269 | input_end_y = min(ofs_y + self.tile_size, height) 270 | 271 | # input tile area on total image with padding 272 | input_start_x_pad = max(input_start_x - self.tile_pad, 0) 273 | input_end_x_pad = min(input_end_x + self.tile_pad, width) 274 | input_start_y_pad = max(input_start_y - self.tile_pad, 0) 275 | input_end_y_pad = min(input_end_y + self.tile_pad, height) 276 | 277 | # input tile dimensions 278 | input_tile_width = input_end_x - input_start_x 279 | input_tile_height = input_end_y - input_start_y 280 | tile_idx = y * tiles_x + x + 1 281 | input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] 282 | 283 | # upscale tile 284 | try: 285 | with torch.no_grad(): 286 | output_tile = self.model(input_tile) 287 | except RuntimeError as error: 288 | print('Error', error) 289 | print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') 290 | 291 | # output tile area on total image 292 | output_start_x = input_start_x * self.scale 293 | output_end_x = input_end_x * self.scale 294 | output_start_y = input_start_y * self.scale 295 | output_end_y = input_end_y * self.scale 296 | 297 | # output tile area without padding 298 | output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale 299 | output_end_x_tile = output_start_x_tile + input_tile_width * self.scale 300 | output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale 301 | output_end_y_tile = output_start_y_tile + input_tile_height * self.scale 302 | 303 | # put tile into output image 304 | self.output[:, :, output_start_y:output_end_y, 305 | output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile, 306 | output_start_x_tile:output_end_x_tile] 307 | 308 | def post_process(self): 309 | # remove extra pad 310 | if self.mod_scale is not None: 311 | _, _, h, w = self.output.size() 312 | self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale] 313 | # remove prepad 314 | if self.pre_pad != 0: 315 | _, _, h, w = self.output.size() 316 | self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale] 317 | return self.output 318 | 319 | @torch.no_grad() 320 | def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'): 321 | h_input, w_input = img.shape[0:2] 322 | # img: numpy 323 | img = img.astype(np.float32) 324 | if np.max(img) > 256: # 16-bit image 325 | max_range = 65535 326 | print('\tInput is a 16-bit image') 327 | else: 328 | max_range = 255 329 | img = img / max_range 330 | if len(img.shape) == 2: # gray image 331 | img_mode = 'L' 332 | img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) 333 | elif img.shape[2] == 4: # RGBA image with alpha channel 334 | img_mode = 'RGBA' 335 | alpha = img[:, :, 3] 336 | img = img[:, :, 0:3] 337 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 338 | if alpha_upsampler == 'realesrgan': 339 | alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB) 340 | else: 341 | img_mode = 'RGB' 342 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 343 | 344 | # ------------------- process image (without the alpha channel) ------------------- # 345 | self.pre_process(img) 346 | if self.tile_size > 0: 347 | self.tile_process() 348 | else: 349 | self.process() 350 | output_img = self.post_process() 351 | output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy() 352 | output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0)) 353 | if img_mode == 'L': 354 | output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY) 355 | 356 | # ------------------- process the alpha channel if necessary ------------------- # 357 | if img_mode == 'RGBA': 358 | if alpha_upsampler == 'realesrgan': 359 | self.pre_process(alpha) 360 | if self.tile_size > 0: 361 | self.tile_process() 362 | else: 363 | self.process() 364 | output_alpha = self.post_process() 365 | output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy() 366 | output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0)) 367 | output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY) 368 | else: # use the cv2 resize for alpha channel 369 | h, w = alpha.shape[0:2] 370 | output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR) 371 | 372 | # merge the alpha channel 373 | output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA) 374 | output_img[:, :, 3] = output_alpha 375 | 376 | # ------------------------------ return ------------------------------ # 377 | if max_range == 65535: # 16-bit image 378 | output = (output_img * 65535.0).round().astype(np.uint16) 379 | else: 380 | output = (output_img * 255.0).round().astype(np.uint8) 381 | 382 | if outscale is not None and outscale != float(self.scale): 383 | output = cv2.resize( 384 | output, ( 385 | int(w_input * outscale), 386 | int(h_input * outscale), 387 | ), interpolation=cv2.INTER_LANCZOS4) 388 | 389 | return output, img_mode -------------------------------------------------------------------------------- /hellomeme/pipelines/pipline_hm_image.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : hm_pipline_image.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 8/29/2024 8 | @Desc : 9 | adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py 10 | """ 11 | 12 | import copy 13 | from typing import Any, Callable, Dict, List, Optional, Union 14 | import torch 15 | 16 | from diffusers import EulerDiscreteScheduler 17 | from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback 18 | from diffusers.image_processor import PipelineImageInput 19 | from diffusers.utils import deprecate 20 | from diffusers.utils.torch_utils import randn_tensor 21 | from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput 22 | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import retrieve_timesteps, retrieve_latents 23 | 24 | from ..models import HMDenoising3D, HMControlNet, HMControlNet2, HMV2ControlNet, HMV2ControlNet2, HMPipeline 25 | from ..models import HMReferenceAdapter 26 | from ..tools.utils import creat_model_from_cloud 27 | 28 | 29 | class HMImagePipeline(HMPipeline): 30 | def caryomitosis(self, **kwargs): 31 | if hasattr(self, "unet_ref"): 32 | del self.unet_ref 33 | self.unet_ref = HMDenoising3D.from_unet2d(self.unet) 34 | self.unet_ref.cpu() 35 | 36 | if not isinstance(self.unet, HMDenoising3D): 37 | unet = HMDenoising3D.from_unet2d(unet=self.unet) 38 | # todo: 不够优雅 39 | del self.unet 40 | self.unet = unet 41 | self.unet.cpu() 42 | 43 | self.vae.cpu() 44 | self.vae_decode = copy.deepcopy(self.vae) 45 | self.text_encoder.cpu() 46 | self.text_encoder_ref = copy.deepcopy(self.text_encoder) 47 | if hasattr(self, 'safety_checker'): 48 | del self.safety_checker 49 | 50 | def insert_hm_modules(self, version, dtype, modelscope=False): 51 | self.version = version 52 | 53 | if version == 'v1': 54 | hm_reference_dir = 'songkey/hm_reference' 55 | hm_control_dir = 'songkey/hm_control' 56 | hm_control2_dir = 'songkey/hm_control2' 57 | else: 58 | hm_reference_dir = 'songkey/hm2_reference' 59 | hm_control_dir = 'songkey/hm2_control' 60 | hm_control2_dir = 'songkey/hm2_control2' 61 | 62 | if isinstance(self.unet, HMDenoising3D): 63 | hm_adapter = creat_model_from_cloud(HMReferenceAdapter, hm_reference_dir, modelscope=modelscope) 64 | self.unet.insert_reference_adapter(hm_adapter) 65 | self.unet.to(device='cpu', dtype=dtype).eval() 66 | 67 | if hasattr(self, "unet_ref"): 68 | self.unet_ref.to(device='cpu', dtype=dtype).eval() 69 | 70 | if hasattr(self, "mp_control"): 71 | del self.mp_control 72 | if version == 'v1': 73 | self.mp_control = creat_model_from_cloud(HMControlNet, hm_control_dir, modelscope=modelscope) 74 | else: 75 | self.mp_control = creat_model_from_cloud(HMV2ControlNet, hm_control_dir, modelscope=modelscope) 76 | self.mp_control.to(device='cpu', dtype=dtype).eval() 77 | 78 | if hasattr(self, "mp_control2"): 79 | del self.mp_control2 80 | if version == 'v1': 81 | self.mp_control2 = creat_model_from_cloud(HMControlNet2, hm_control2_dir, modelscope=modelscope) 82 | else: 83 | self.mp_control2 = creat_model_from_cloud(HMV2ControlNet2, hm_control2_dir, modelscope=modelscope) 84 | self.mp_control2.to(device='cpu', dtype=dtype).eval() 85 | 86 | self.vae.to(device='cpu', dtype=dtype).eval() 87 | self.vae_decode.to(device='cpu', dtype=dtype).eval() 88 | self.text_encoder.to(device='cpu', dtype=dtype).eval() 89 | self.text_encoder_ref.to(device='cpu', dtype=dtype).eval() 90 | 91 | @torch.no_grad() 92 | def __call__( 93 | self, 94 | prompt: Union[str, List[str]] = None, 95 | image: PipelineImageInput = None, 96 | drive_params: Dict[str, Any] = None, 97 | strength: float = 0.8, 98 | num_inference_steps: Optional[int] = 50, 99 | timesteps: List[int] = None, 100 | sigmas: List[float] = None, 101 | guidance_scale: Optional[float] = 7.5, 102 | negative_prompt: Optional[Union[str, List[str]]] = None, 103 | eta: Optional[float] = 0.0, 104 | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, 105 | prompt_embeds: Optional[torch.Tensor] = None, 106 | negative_prompt_embeds: Optional[torch.Tensor] = None, 107 | ip_adapter_image: Optional[PipelineImageInput] = None, 108 | ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, 109 | output_type: Optional[str] = "pil", 110 | device: Optional[str] = "cpu", 111 | return_dict: bool = True, 112 | cross_attention_kwargs: Optional[Dict[str, Any]] = None, 113 | clip_skip: int = None, 114 | callback_on_step_end: Optional[ 115 | Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] 116 | ] = None, 117 | callback_on_step_end_tensor_inputs: List[str] = ["latents"], 118 | **kwargs, 119 | ): 120 | callback = kwargs.pop("callback", None) 121 | callback_steps = kwargs.pop("callback_steps", None) 122 | num_images_per_prompt = 1 123 | 124 | if callback is not None: 125 | deprecate( 126 | "callback", 127 | "1.0.0", 128 | "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", 129 | ) 130 | if callback_steps is not None: 131 | deprecate( 132 | "callback_steps", 133 | "1.0.0", 134 | "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", 135 | ) 136 | 137 | if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): 138 | callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs 139 | 140 | # 1. Check inputs. Raise error if not correct 141 | self.check_inputs( 142 | prompt, 143 | strength, 144 | callback_steps, 145 | negative_prompt, 146 | prompt_embeds, 147 | negative_prompt_embeds, 148 | ip_adapter_image, 149 | ip_adapter_image_embeds, 150 | callback_on_step_end_tensor_inputs, 151 | ) 152 | 153 | self._guidance_scale = guidance_scale 154 | self._clip_skip = clip_skip 155 | self._cross_attention_kwargs = cross_attention_kwargs 156 | self._interrupt = False 157 | 158 | # 2. Define call parameters 159 | if prompt is not None and isinstance(prompt, str): 160 | batch_size = 1 161 | elif prompt is not None and isinstance(prompt, list): 162 | batch_size = len(prompt) 163 | else: 164 | batch_size = prompt_embeds.shape[0] 165 | 166 | # device = self.device 167 | 168 | # 3. Encode input prompt 169 | text_encoder_lora_scale = ( 170 | self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None 171 | ) 172 | 173 | self.text_encoder_ref.to(device=device) 174 | prompt_embeds_ref, negative_prompt_embeds_ref = self.encode_prompt_sk( 175 | self.text_encoder_ref, 176 | prompt, 177 | device, 178 | num_images_per_prompt, 179 | self.do_classifier_free_guidance, 180 | negative_prompt, 181 | prompt_embeds=prompt_embeds, 182 | negative_prompt_embeds=negative_prompt_embeds, 183 | lora_scale=text_encoder_lora_scale, 184 | clip_skip=self.clip_skip, 185 | ) 186 | self.text_encoder_ref.cpu() 187 | 188 | self.text_encoder.to(device=device) 189 | prompt_embeds, negative_prompt_embeds = self.encode_prompt_sk( 190 | self.text_encoder, 191 | prompt, 192 | device, 193 | num_images_per_prompt, 194 | self.do_classifier_free_guidance, 195 | negative_prompt, 196 | prompt_embeds=prompt_embeds, 197 | negative_prompt_embeds=negative_prompt_embeds, 198 | lora_scale=text_encoder_lora_scale, 199 | clip_skip=self.clip_skip, 200 | ) 201 | self.text_encoder.cpu() 202 | 203 | # For classifier free guidance, we need to do two forward passes. 204 | # Here we concatenate the unconditional and text embeddings into a single batch 205 | # to avoid doing two forward passes 206 | if self.do_classifier_free_guidance: 207 | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) 208 | prompt_embeds_ref = torch.cat([negative_prompt_embeds_ref, prompt_embeds_ref]) 209 | 210 | if ip_adapter_image is not None or ip_adapter_image_embeds is not None: 211 | image_embeds = self.prepare_ip_adapter_image_embeds( 212 | ip_adapter_image, 213 | ip_adapter_image_embeds, 214 | device, 215 | batch_size * num_images_per_prompt, 216 | self.do_classifier_free_guidance, 217 | ) 218 | 219 | # 4. Preprocess 220 | image = self.image_processor.preprocess(image).to(device=device, dtype=prompt_embeds.dtype) 221 | 222 | scheduler = EulerDiscreteScheduler( 223 | num_train_timesteps=1000, 224 | beta_start=0.00085, 225 | beta_end=0.012, 226 | beta_schedule="scaled_linear", 227 | ) 228 | 229 | # 5. set timesteps 230 | timesteps, num_inference_steps = retrieve_timesteps( 231 | scheduler, num_inference_steps, device, timesteps, sigmas 232 | ) 233 | # timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) 234 | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) 235 | 236 | # 6. Prepare reference latents 237 | self.vae.to(device=device) 238 | ref_latents = [ 239 | retrieve_latents(self.vae.encode(image[i: i + 1].to(device=device)), generator=generator) 240 | for i in range(batch_size) 241 | ] 242 | self.vae.cpu() 243 | 244 | ref_latents = torch.cat(ref_latents, dim=0) 245 | ref_latents = self.vae.config.scaling_factor * ref_latents 246 | c, h, w = ref_latents.shape[1:] 247 | 248 | condition = drive_params['condition'].clone().to(device=device) 249 | if self.do_classifier_free_guidance: 250 | condition = torch.cat([torch.ones_like(condition) * -1, condition], dim=0) 251 | 252 | control_latents = {} 253 | if 'drive_coeff' in drive_params: 254 | self.mp_control.to(device=device) 255 | drive_coeff = drive_params['drive_coeff'].clone().to(device=device) 256 | face_parts = drive_params['face_parts'].clone().to(device=device) 257 | if self.do_classifier_free_guidance: 258 | drive_coeff = torch.cat([torch.zeros_like(drive_coeff), drive_coeff], dim=0) 259 | face_parts = torch.cat([torch.zeros_like(face_parts), face_parts], dim=0) 260 | control_latents1 = self.mp_control(condition=condition, drive_coeff=drive_coeff, face_parts=face_parts) 261 | control_latents.update(control_latents1) 262 | self.mp_control.cpu() 263 | 264 | if 'pd_fpg' in drive_params: 265 | self.mp_control2.to(device=device) 266 | pd_fpg = drive_params['pd_fpg'].clone().to(device=device) 267 | if self.do_classifier_free_guidance: 268 | neg_pd_fpg = drive_params['neg_pd_fpg'].clone().to(device=device) 269 | neg_pd_fpg.repeat_interleave(pd_fpg.size(1), dim=1) 270 | pd_fpg = torch.cat([neg_pd_fpg, pd_fpg], dim=0) 271 | control_latents2 = self.mp_control2(condition=condition, emo_embedding=pd_fpg) 272 | control_latents.update(control_latents2) 273 | self.mp_control2.cpu() 274 | 275 | # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline 276 | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) 277 | 278 | # 7.1 Add image embeds for IP-Adapter 279 | added_cond_kwargs = ( 280 | {"image_embeds": image_embeds} 281 | if ip_adapter_image is not None or ip_adapter_image_embeds is not None 282 | else None 283 | ) 284 | 285 | latent_model_input = torch.cat([torch.zeros_like(ref_latents), ref_latents]) if self.do_classifier_free_guidance else ref_latents 286 | self.unet_ref.to(device=device) 287 | cached_res = self.unet_ref( 288 | latent_model_input.unsqueeze(2), 289 | 0, 290 | encoder_hidden_states=prompt_embeds_ref, 291 | return_dict=False, 292 | )[1] 293 | self.unet_ref.cpu() 294 | 295 | # 7.2 Optionally get Guidance Scale Embedding 296 | timestep_cond = None 297 | if self.unet.config.time_cond_proj_dim is not None: 298 | guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) 299 | timestep_cond = self.get_guidance_scale_embedding( 300 | guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim 301 | ).to(device=device, dtype=prompt_embeds.dtype) 302 | 303 | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) 304 | base_noise = randn_tensor([batch_size, c, h, w], dtype=prompt_embeds.dtype, generator=generator).to(device=device) 305 | latents = base_noise * scheduler.init_noise_sigma 306 | # 8. Denoising loop 307 | num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order 308 | self._num_timesteps = len(timesteps) 309 | self.unet.to(device=device) 310 | with self.progress_bar(total=num_inference_steps) as progress_bar: 311 | for i, t in enumerate(timesteps): 312 | if self.interrupt: 313 | continue 314 | 315 | # expand the latents if we are doing classifier free guidance 316 | latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents 317 | latent_model_input = scheduler.scale_model_input(latent_model_input, t) 318 | 319 | # predict the noise residual 320 | noise_pred = self.unet( 321 | latent_model_input.unsqueeze(2), 322 | t, 323 | encoder_hidden_states=prompt_embeds, 324 | reference_hidden_states=cached_res, 325 | control_hidden_states=control_latents, 326 | timestep_cond=timestep_cond, 327 | cross_attention_kwargs=self.cross_attention_kwargs, 328 | added_cond_kwargs=added_cond_kwargs, 329 | return_dict=False, 330 | )[0][:,:,0,:,:] 331 | 332 | # perform guidance 333 | if self.do_classifier_free_guidance: 334 | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) 335 | noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) 336 | 337 | # compute the previous noisy sample x_t -> x_t-1 338 | latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] 339 | 340 | if callback_on_step_end is not None: 341 | callback_kwargs = {} 342 | for k in callback_on_step_end_tensor_inputs: 343 | callback_kwargs[k] = locals()[k] 344 | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) 345 | 346 | latents = callback_outputs.pop("latents", latents) 347 | prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) 348 | negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) 349 | 350 | # call the callback, if provided 351 | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): 352 | progress_bar.update() 353 | if callback is not None and i % callback_steps == 0: 354 | step_idx = i // getattr(scheduler, "order", 1) 355 | callback(step_idx, t, latents) 356 | 357 | self.unet.cpu() 358 | 359 | self.vae_decode.to(device=device) 360 | if not output_type == "latent": 361 | image = self.vae_decode.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 362 | 0 363 | ] 364 | else: 365 | image = latents 366 | self.vae_decode.cpu() 367 | 368 | do_denormalize = [True] * image.shape[0] 369 | 370 | image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) 371 | 372 | # Offload all models 373 | self.maybe_free_model_hooks() 374 | 375 | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None), latents.detach().cpu() / self.vae.config.scaling_factor 376 | -------------------------------------------------------------------------------- /hellomeme/pipelines/pipline_hm3_image.py: -------------------------------------------------------------------------------- 1 | # coding: utf-8 2 | 3 | """ 4 | @File : hm_pipline_image.py 5 | @Author : Songkey 6 | @Email : songkey@pku.edu.cn 7 | @Date : 1/3/2025 8 | @Desc : 9 | adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py 10 | """ 11 | 12 | import copy 13 | from typing import Any, Callable, Dict, List, Optional, Union 14 | import torch 15 | 16 | from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback 17 | from diffusers.image_processor import PipelineImageInput 18 | from diffusers.utils import deprecate 19 | from diffusers.utils.torch_utils import randn_tensor 20 | from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput 21 | from diffusers import DPMSolverMultistepScheduler 22 | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import retrieve_timesteps, retrieve_latents 23 | from ..models import HM3Denoising3D, HMV3ControlNet, HMPipeline, HM3ReferenceAdapter, HMControlNetBase, HM4SD15ControlProj 24 | from ..tools.utils import creat_model_from_cloud 25 | 26 | 27 | class HM3ImagePipeline(HMPipeline): 28 | def caryomitosis(self, **kwargs): 29 | if hasattr(self, "unet_ref"): 30 | del self.unet_ref 31 | self.unet_ref = HM3Denoising3D.from_unet2d(self.unet) 32 | self.unet_ref.cpu() 33 | 34 | if not isinstance(self.unet, HM3Denoising3D): 35 | unet = HM3Denoising3D.from_unet2d(unet=self.unet) 36 | # todo: 不够优雅 37 | del self.unet 38 | self.unet = unet 39 | self.unet.cpu() 40 | 41 | self.vae.cpu() 42 | self.vae_decode = copy.deepcopy(self.vae) 43 | self.text_encoder.cpu() 44 | self.text_encoder_ref = copy.deepcopy(self.text_encoder) 45 | if hasattr(self, 'safety_checker'): 46 | del self.safety_checker 47 | 48 | def insert_hm_modules(self, version='v3', dtype=torch.float16, modelscope=False): 49 | self.version = version 50 | 51 | if version == 'v3': 52 | hm_reference_dir = 'songkey/hm3_reference' 53 | hm_control_dir = 'songkey/hm3_control_mix' 54 | else: 55 | hm_reference_dir = 'songkey/hm4_reference' 56 | hm_control_dir = 'songkey/hm_control_base' 57 | hm_control_proj_dir = 'songkey/hm4_control_proj' 58 | 59 | if isinstance(self.unet, HM3Denoising3D): 60 | hm_adapter = creat_model_from_cloud(HM3ReferenceAdapter, hm_reference_dir, modelscope=modelscope) 61 | self.unet.insert_reference_adapter(hm_adapter) 62 | self.unet.to(device='cpu', dtype=dtype).eval() 63 | 64 | if hasattr(self, "unet_ref"): 65 | self.unet_ref.to(device='cpu', dtype=dtype).eval() 66 | 67 | if hasattr(self, "mp_control"): 68 | del self.mp_control 69 | 70 | if hasattr(self, "mp_control_proj"): 71 | del self.mp_control_proj 72 | 73 | if version == 'v3': 74 | self.mp_control = creat_model_from_cloud(HMV3ControlNet, hm_control_dir, modelscope=modelscope) 75 | else: 76 | self.mp_control = creat_model_from_cloud(HMControlNetBase, hm_control_dir, modelscope=modelscope) 77 | self.mp_control_proj = creat_model_from_cloud(HM4SD15ControlProj, hm_control_proj_dir, modelscope=modelscope) 78 | 79 | self.mp_control_proj.to(device='cpu', dtype=dtype).eval() 80 | 81 | self.mp_control.to(device='cpu', dtype=dtype).eval() 82 | 83 | self.vae.to(device='cpu', dtype=dtype).eval() 84 | self.vae_decode.to(device='cpu', dtype=dtype).eval() 85 | self.text_encoder.to(device='cpu', dtype=dtype).eval() 86 | self.text_encoder_ref.to(device='cpu', dtype=dtype).eval() 87 | 88 | @torch.no_grad() 89 | def __call__( 90 | self, 91 | prompt: Union[str, List[str]] = None, 92 | image: PipelineImageInput = None, 93 | drive_params: Dict[str, Any] = None, 94 | strength: float = 0.8, 95 | num_inference_steps: Optional[int] = 50, 96 | timesteps: List[int] = None, 97 | sigmas: List[float] = None, 98 | guidance_scale: Optional[float] = 7.5, 99 | negative_prompt: Optional[Union[str, List[str]]] = None, 100 | eta: Optional[float] = 0.0, 101 | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, 102 | prompt_embeds: Optional[torch.Tensor] = None, 103 | negative_prompt_embeds: Optional[torch.Tensor] = None, 104 | ip_adapter_image: Optional[PipelineImageInput] = None, 105 | ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, 106 | output_type: Optional[str] = "pil", 107 | device: Optional[str] = "cpu", 108 | return_dict: bool = True, 109 | cross_attention_kwargs: Optional[Dict[str, Any]] = None, 110 | clip_skip: int = None, 111 | callback_on_step_end: Optional[ 112 | Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] 113 | ] = None, 114 | callback_on_step_end_tensor_inputs: List[str] = ["latents"], 115 | **kwargs, 116 | ): 117 | callback = kwargs.pop("callback", None) 118 | callback_steps = kwargs.pop("callback_steps", None) 119 | num_images_per_prompt = 1 120 | 121 | if callback is not None: 122 | deprecate( 123 | "callback", 124 | "1.0.0", 125 | "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", 126 | ) 127 | if callback_steps is not None: 128 | deprecate( 129 | "callback_steps", 130 | "1.0.0", 131 | "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", 132 | ) 133 | 134 | if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): 135 | callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs 136 | 137 | # 1. Check inputs. Raise error if not correct 138 | self.check_inputs( 139 | prompt, 140 | strength, 141 | callback_steps, 142 | negative_prompt, 143 | prompt_embeds, 144 | negative_prompt_embeds, 145 | ip_adapter_image, 146 | ip_adapter_image_embeds, 147 | callback_on_step_end_tensor_inputs, 148 | ) 149 | 150 | self._guidance_scale = guidance_scale 151 | self._clip_skip = clip_skip 152 | self._cross_attention_kwargs = cross_attention_kwargs 153 | self._interrupt = False 154 | 155 | # 2. Define call parameters 156 | if prompt is not None and isinstance(prompt, str): 157 | batch_size = 1 158 | elif prompt is not None and isinstance(prompt, list): 159 | batch_size = len(prompt) 160 | else: 161 | batch_size = prompt_embeds.shape[0] 162 | 163 | # device = self.device 164 | 165 | # 3. Encode input prompt 166 | text_encoder_lora_scale = ( 167 | self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None 168 | ) 169 | 170 | self.text_encoder_ref.to(device=device) 171 | prompt_embeds_ref, negative_prompt_embeds_ref = self.encode_prompt_sk( 172 | self.text_encoder_ref, 173 | prompt, 174 | device, 175 | num_images_per_prompt, 176 | self.do_classifier_free_guidance, 177 | negative_prompt, 178 | prompt_embeds=prompt_embeds, 179 | negative_prompt_embeds=negative_prompt_embeds, 180 | lora_scale=text_encoder_lora_scale, 181 | clip_skip=self.clip_skip, 182 | ) 183 | self.text_encoder_ref.cpu() 184 | 185 | self.text_encoder.to(device=device) 186 | prompt_embeds, negative_prompt_embeds = self.encode_prompt_sk( 187 | self.text_encoder, 188 | prompt, 189 | device, 190 | num_images_per_prompt, 191 | self.do_classifier_free_guidance, 192 | negative_prompt, 193 | prompt_embeds=prompt_embeds, 194 | negative_prompt_embeds=negative_prompt_embeds, 195 | lora_scale=text_encoder_lora_scale, 196 | clip_skip=self.clip_skip, 197 | ) 198 | self.text_encoder.cpu() 199 | 200 | # For classifier free guidance, we need to do two forward passes. 201 | # Here we concatenate the unconditional and text embeddings into a single batch 202 | # to avoid doing two forward passes 203 | if self.do_classifier_free_guidance: 204 | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) 205 | prompt_embeds_ref = torch.cat([negative_prompt_embeds_ref, prompt_embeds_ref]) 206 | 207 | if ip_adapter_image is not None or ip_adapter_image_embeds is not None: 208 | image_embeds = self.prepare_ip_adapter_image_embeds( 209 | ip_adapter_image, 210 | ip_adapter_image_embeds, 211 | device, 212 | batch_size * num_images_per_prompt, 213 | self.do_classifier_free_guidance, 214 | ) 215 | 216 | # 4. Preprocess 217 | image = self.image_processor.preprocess(image).to(device=device, dtype=prompt_embeds.dtype) 218 | 219 | scheduler = DPMSolverMultistepScheduler( 220 | num_train_timesteps=1000, 221 | beta_start=0.00085, 222 | beta_end=0.012, 223 | beta_schedule="scaled_linear", 224 | # use_karras_sigmas=True, 225 | algorithm_type="sde-dpmsolver++", 226 | ) 227 | 228 | # 5. set timesteps 229 | timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device, timesteps, sigmas) 230 | 231 | # 6. Prepare reference latents 232 | self.vae.to(device=device) 233 | ref_latents = [ 234 | retrieve_latents(self.vae.encode(image[i: i + 1].to(device=device)), generator=generator) 235 | for i in range(batch_size) 236 | ] 237 | self.vae.cpu() 238 | 239 | ref_latents = torch.cat(ref_latents, dim=0) 240 | ref_latents = self.vae.config.scaling_factor * ref_latents 241 | c, h, w = ref_latents.shape[1:] 242 | 243 | condition = drive_params['condition'].clone().to(device=device) 244 | if self.do_classifier_free_guidance: 245 | condition = torch.cat([torch.ones_like(condition) * -1, condition], dim=0) 246 | 247 | control_latents = {} 248 | self.mp_control.to(device=device) 249 | if hasattr(self, 'mp_control_proj') and self.version == 'v4': 250 | self.mp_control_proj.to(device=device) 251 | if 'drive_coeff' in drive_params: 252 | drive_coeff = drive_params['drive_coeff'].clone().to(device=device) 253 | face_parts = drive_params['face_parts'].clone().to(device=device) 254 | if self.do_classifier_free_guidance: 255 | drive_coeff = torch.cat([torch.zeros_like(drive_coeff), drive_coeff], dim=0) 256 | face_parts = torch.cat([torch.zeros_like(face_parts), face_parts], dim=0) 257 | control_latents1 = self.mp_control(condition=condition, drive_coeff=drive_coeff, face_parts=face_parts) 258 | if self.version == 'v4': 259 | control_latents1 = self.mp_control_proj(control_latents1) 260 | control_latents.update(control_latents1) 261 | elif 'pd_fpg' in drive_params: 262 | pd_fpg = drive_params['pd_fpg'].clone().to(device=device) 263 | if self.do_classifier_free_guidance: 264 | pd_fpg = torch.cat([torch.zeros_like(pd_fpg), pd_fpg], dim=0) 265 | control_latents2 = self.mp_control(condition=condition, emo_embedding=pd_fpg) 266 | if self.version == 'v4': 267 | control_latents2 = self.mp_control_proj(control_latents2) 268 | control_latents.update(control_latents2) 269 | self.mp_control.cpu() 270 | if self.version == 'v4': 271 | self.mp_control_proj.cpu() 272 | 273 | # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline 274 | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) 275 | 276 | # 7.1 Add image embeds for IP-Adapter 277 | added_cond_kwargs = ( 278 | {"image_embeds": image_embeds} 279 | if ip_adapter_image is not None or ip_adapter_image_embeds is not None 280 | else None 281 | ) 282 | base_noise = randn_tensor([batch_size, c, h, w], dtype=prompt_embeds.dtype, generator=generator).to(device=device) 283 | 284 | latent_model_input = torch.cat([torch.zeros_like(ref_latents), ref_latents]) if ( 285 | self.do_classifier_free_guidance) else ref_latents 286 | # latent_model_input = torch.cat([ref_latents_neg, ref_latents], dim=0) 287 | self.unet_ref.to(device=device) 288 | cached_res = self.unet_ref( 289 | latent_model_input.unsqueeze(2), 290 | 0, 291 | encoder_hidden_states=prompt_embeds_ref, 292 | return_dict=False, 293 | )[1] 294 | self.unet_ref.cpu() 295 | 296 | # 7.2 Optionally get Guidance Scale Embedding 297 | timestep_cond = None 298 | if self.unet.config.time_cond_proj_dim is not None: 299 | guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) 300 | timestep_cond = self.get_guidance_scale_embedding( 301 | guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim 302 | ).to(device=device, dtype=prompt_embeds.dtype) 303 | 304 | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) 305 | # base_noise = randn_tensor([batch_size, c, h, w], dtype=prompt_embeds.dtype, generator=generator).to(device=device) 306 | latents = base_noise * scheduler.init_noise_sigma 307 | # 8. Denoising loop 308 | num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order 309 | self._num_timesteps = len(timesteps) 310 | self.unet.to(device=device) 311 | with self.progress_bar(total=num_inference_steps) as progress_bar: 312 | for i, t in enumerate(timesteps): 313 | if self.interrupt: 314 | continue 315 | 316 | # expand the latents if we are doing classifier free guidance 317 | latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents 318 | latent_model_input = scheduler.scale_model_input(latent_model_input, t) 319 | 320 | # predict the noise residual 321 | noise_pred = self.unet( 322 | latent_model_input.unsqueeze(2), 323 | t, 324 | encoder_hidden_states=prompt_embeds, 325 | reference_hidden_states=cached_res, 326 | control_hidden_states=control_latents, 327 | timestep_cond=timestep_cond, 328 | cross_attention_kwargs=self.cross_attention_kwargs, 329 | added_cond_kwargs=added_cond_kwargs, 330 | return_dict=False, 331 | )[0][:,:,0,:,:] 332 | 333 | # perform guidance 334 | if self.do_classifier_free_guidance: 335 | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) 336 | noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) 337 | 338 | # compute the previous noisy sample x_t -> x_t-1 339 | latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] 340 | 341 | if callback_on_step_end is not None: 342 | callback_kwargs = {} 343 | for k in callback_on_step_end_tensor_inputs: 344 | callback_kwargs[k] = locals()[k] 345 | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) 346 | 347 | latents = callback_outputs.pop("latents", latents) 348 | prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) 349 | negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) 350 | 351 | # call the callback, if provided 352 | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): 353 | progress_bar.update() 354 | if callback is not None and i % callback_steps == 0: 355 | step_idx = i // getattr(scheduler, "order", 1) 356 | callback(step_idx, t, latents) 357 | 358 | self.unet.cpu() 359 | 360 | self.vae_decode.to(device=device) 361 | if not output_type == "latent": 362 | image = self.vae_decode.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 363 | 0 364 | ] 365 | else: 366 | image = latents 367 | self.vae_decode.cpu() 368 | 369 | do_denormalize = [True] * image.shape[0] 370 | 371 | image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) 372 | 373 | # Offload all models 374 | self.maybe_free_model_hooks() 375 | 376 | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None), latents.detach().cpu() / self.vae.config.scaling_factor 377 | -------------------------------------------------------------------------------- /example_workflows/video_generation.json: -------------------------------------------------------------------------------- 1 | { 2 | "id": "4c8b7397-a69c-46cc-b553-00e600557365", 3 | "revision": 0, 4 | "last_node_id": 76, 5 | "last_link_id": 178, 6 | "nodes": [ 7 | { 8 | "id": 75, 9 | "type": "GetExpression2", 10 | "pos": [ 11 | 814.1359252929688, 12 | 689.6795654296875 13 | ], 14 | "size": [ 15 | 191.63729858398438, 16 | 66 17 | ], 18 | "flags": {}, 19 | "order": 9, 20 | "mode": 0, 21 | "inputs": [ 22 | { 23 | "name": "face_toolkits", 24 | "type": "FACE_TOOLKITS", 25 | "link": 173 26 | }, 27 | { 28 | "name": "images", 29 | "type": "IMAGE", 30 | "link": 175 31 | }, 32 | { 33 | "name": "landmarks", 34 | "type": "FACELANDMARKS222", 35 | "link": 178 36 | } 37 | ], 38 | "outputs": [ 39 | { 40 | "name": "expression", 41 | "type": "EXPRESSION", 42 | "links": [ 43 | 171 44 | ] 45 | } 46 | ], 47 | "properties": { 48 | "Node name for S&R": "GetExpression2" 49 | }, 50 | "widgets_values": [] 51 | }, 52 | { 53 | "id": 76, 54 | "type": "GetExpression2", 55 | "pos": [ 56 | 833.6573486328125, 57 | 1042.0396728515625 58 | ], 59 | "size": [ 60 | 191.63729858398438, 61 | 66 62 | ], 63 | "flags": {}, 64 | "order": 7, 65 | "mode": 0, 66 | "inputs": [ 67 | { 68 | "name": "face_toolkits", 69 | "type": "FACE_TOOLKITS", 70 | "link": 174 71 | }, 72 | { 73 | "name": "images", 74 | "type": "IMAGE", 75 | "link": 176 76 | }, 77 | { 78 | "name": "landmarks", 79 | "type": "FACELANDMARKS222", 80 | "link": 177 81 | } 82 | ], 83 | "outputs": [ 84 | { 85 | "name": "expression", 86 | "type": "EXPRESSION", 87 | "links": [ 88 | 172 89 | ] 90 | } 91 | ], 92 | "properties": { 93 | "Node name for S&R": "GetExpression2" 94 | }, 95 | "widgets_values": [] 96 | }, 97 | { 98 | "id": 2, 99 | "type": "HMFaceToolkitsLoader", 100 | "pos": [ 101 | 45.41996383666992, 102 | 769.9866333007812 103 | ], 104 | "size": [ 105 | 315, 106 | 82 107 | ], 108 | "flags": {}, 109 | "order": 0, 110 | "mode": 0, 111 | "inputs": [], 112 | "outputs": [ 113 | { 114 | "name": "face_toolkits", 115 | "type": "FACE_TOOLKITS", 116 | "slot_index": 0, 117 | "links": [ 118 | 122, 119 | 129, 120 | 147, 121 | 149, 122 | 173, 123 | 174 124 | ] 125 | } 126 | ], 127 | "properties": { 128 | "Node name for S&R": "HMFaceToolkitsLoader" 129 | }, 130 | "widgets_values": [ 131 | 0, 132 | "huggingface" 133 | ] 134 | }, 135 | { 136 | "id": 61, 137 | "type": "GetFaceLandmarks", 138 | "pos": [ 139 | 519.7196655273438, 140 | 938.032958984375 141 | ], 142 | "size": [ 143 | 170.62362670898438, 144 | 46 145 | ], 146 | "flags": {}, 147 | "order": 4, 148 | "mode": 0, 149 | "inputs": [ 150 | { 151 | "name": "face_toolkits", 152 | "type": "FACE_TOOLKITS", 153 | "link": 129 154 | }, 155 | { 156 | "name": "images", 157 | "type": "IMAGE", 158 | "link": 131 159 | } 160 | ], 161 | "outputs": [ 162 | { 163 | "name": "landmarks", 164 | "type": "FACELANDMARKS222", 165 | "links": [ 166 | 145, 167 | 177 168 | ] 169 | } 170 | ], 171 | "properties": { 172 | "Node name for S&R": "GetFaceLandmarks" 173 | }, 174 | "widgets_values": [] 175 | }, 176 | { 177 | "id": 60, 178 | "type": "GetFaceLandmarks", 179 | "pos": [ 180 | 518.9132690429688, 181 | 612.9461669921875 182 | ], 183 | "size": [ 184 | 170.62362670898438, 185 | 46 186 | ], 187 | "flags": {}, 188 | "order": 5, 189 | "mode": 0, 190 | "inputs": [ 191 | { 192 | "name": "face_toolkits", 193 | "type": "FACE_TOOLKITS", 194 | "link": 122 195 | }, 196 | { 197 | "name": "images", 198 | "type": "IMAGE", 199 | "link": 121 200 | } 201 | ], 202 | "outputs": [ 203 | { 204 | "name": "landmarks", 205 | "type": "FACELANDMARKS222", 206 | "links": [ 207 | 143, 208 | 178 209 | ] 210 | } 211 | ], 212 | "properties": { 213 | "Node name for S&R": "GetFaceLandmarks" 214 | }, 215 | "widgets_values": [] 216 | }, 217 | { 218 | "id": 59, 219 | "type": "VHS_VideoCombine", 220 | "pos": [ 221 | 1658.52490234375, 222 | 685.6950073242188 223 | ], 224 | "size": [ 225 | 329.22479248046875, 226 | 633.2247924804688 227 | ], 228 | "flags": {}, 229 | "order": 11, 230 | "mode": 0, 231 | "inputs": [ 232 | { 233 | "name": "images", 234 | "type": "IMAGE", 235 | "link": 170 236 | }, 237 | { 238 | "name": "audio", 239 | "shape": 7, 240 | "type": "AUDIO", 241 | "link": 118 242 | }, 243 | { 244 | "name": "meta_batch", 245 | "shape": 7, 246 | "type": "VHS_BatchManager", 247 | "link": null 248 | }, 249 | { 250 | "name": "vae", 251 | "shape": 7, 252 | "type": "VAE", 253 | "link": null 254 | } 255 | ], 256 | "outputs": [ 257 | { 258 | "name": "Filenames", 259 | "type": "VHS_FILENAMES", 260 | "links": null 261 | } 262 | ], 263 | "properties": { 264 | "Node name for S&R": "VHS_VideoCombine" 265 | }, 266 | "widgets_values": { 267 | "frame_rate": 8, 268 | "loop_count": 0, 269 | "filename_prefix": "AnimateDiff", 270 | "format": "video/h264-mp4", 271 | "pix_fmt": "yuv420p", 272 | "crf": 18, 273 | "save_metadata": true, 274 | "pingpong": false, 275 | "save_output": true, 276 | "videopreview": { 277 | "hidden": false, 278 | "paused": false, 279 | "params": { 280 | "filename": "AnimateDiff_00703-audio.mp4", 281 | "subfolder": "", 282 | "type": "output", 283 | "format": "video/h264-mp4", 284 | "frame_rate": 8 285 | }, 286 | "muted": false 287 | } 288 | } 289 | }, 290 | { 291 | "id": 74, 292 | "type": "HMPipelineVideo", 293 | "pos": [ 294 | 1296.2967529296875, 295 | 659.4104614257812 296 | ], 297 | "size": [ 298 | 270, 299 | 330 300 | ], 301 | "flags": {}, 302 | "order": 10, 303 | "mode": 0, 304 | "inputs": [ 305 | { 306 | "name": "hm_video_pipeline", 307 | "type": "HMVIDEOPIPELINE", 308 | "link": 165 309 | }, 310 | { 311 | "name": "ref_head_pose", 312 | "type": "HEAD_POSE", 313 | "link": 166 314 | }, 315 | { 316 | "name": "ref_expression", 317 | "type": "EXPRESSION", 318 | "link": 171 319 | }, 320 | { 321 | "name": "drive_head_pose", 322 | "type": "HEAD_POSE", 323 | "link": 168 324 | }, 325 | { 326 | "name": "drive_expression", 327 | "type": "EXPRESSION", 328 | "link": 172 329 | } 330 | ], 331 | "outputs": [ 332 | { 333 | "name": "IMAGE", 334 | "type": "IMAGE", 335 | "links": [ 336 | 170 337 | ] 338 | }, 339 | { 340 | "name": "LATENT", 341 | "type": "LATENT", 342 | "links": null 343 | } 344 | ], 345 | "properties": { 346 | "Node name for S&R": "HMPipelineVideo" 347 | }, 348 | "widgets_values": [ 349 | 0, 350 | 4, 351 | "", 352 | "", 353 | 25, 354 | 1075819929118817, 355 | "randomize", 356 | 1.5, 357 | 0 358 | ] 359 | }, 360 | { 361 | "id": 69, 362 | "type": "GetHeadPose", 363 | "pos": [ 364 | 819.799560546875, 365 | 860.5927734375 366 | ], 367 | "size": [ 368 | 270, 369 | 98 370 | ], 371 | "flags": {}, 372 | "order": 6, 373 | "mode": 0, 374 | "inputs": [ 375 | { 376 | "name": "face_toolkits", 377 | "type": "FACE_TOOLKITS", 378 | "link": 149 379 | }, 380 | { 381 | "name": "images", 382 | "type": "IMAGE", 383 | "link": 153 384 | }, 385 | { 386 | "name": "landmarks", 387 | "type": "FACELANDMARKS222", 388 | "link": 145 389 | } 390 | ], 391 | "outputs": [ 392 | { 393 | "name": "head_pose", 394 | "type": "HEAD_POSE", 395 | "links": [ 396 | 168 397 | ] 398 | } 399 | ], 400 | "properties": { 401 | "Node name for S&R": "GetHeadPose" 402 | }, 403 | "widgets_values": [ 404 | true 405 | ] 406 | }, 407 | { 408 | "id": 48, 409 | "type": "VHS_LoadVideo", 410 | "pos": [ 411 | 74.54000091552734, 412 | 996.8733520507812 413 | ], 414 | "size": [ 415 | 247.455078125, 416 | 262 417 | ], 418 | "flags": {}, 419 | "order": 1, 420 | "mode": 0, 421 | "inputs": [ 422 | { 423 | "name": "meta_batch", 424 | "shape": 7, 425 | "type": "VHS_BatchManager", 426 | "link": null 427 | }, 428 | { 429 | "name": "vae", 430 | "shape": 7, 431 | "type": "VAE", 432 | "link": null 433 | } 434 | ], 435 | "outputs": [ 436 | { 437 | "name": "IMAGE", 438 | "type": "IMAGE", 439 | "slot_index": 0, 440 | "links": [ 441 | 131, 442 | 153, 443 | 176 444 | ] 445 | }, 446 | { 447 | "name": "frame_count", 448 | "type": "INT", 449 | "links": null 450 | }, 451 | { 452 | "name": "audio", 453 | "type": "AUDIO", 454 | "slot_index": 2, 455 | "links": [ 456 | 118 457 | ] 458 | }, 459 | { 460 | "name": "video_info", 461 | "type": "VHS_VIDEOINFO", 462 | "links": null 463 | } 464 | ], 465 | "properties": { 466 | "Node name for S&R": "VHS_LoadVideo" 467 | }, 468 | "widgets_values": { 469 | "video": "jgz.mp4", 470 | "force_rate": 8, 471 | "force_size": "Disabled", 472 | "custom_width": 512, 473 | "custom_height": 512, 474 | "frame_load_cap": 0, 475 | "skip_first_frames": 0, 476 | "select_every_nth": 1, 477 | "choose video to upload": "image", 478 | "videopreview": { 479 | "hidden": false, 480 | "paused": false, 481 | "params": { 482 | "force_rate": 8, 483 | "frame_load_cap": 0, 484 | "skip_first_frames": 0, 485 | "select_every_nth": 1, 486 | "filename": "jgz.mp4", 487 | "type": "input", 488 | "format": "video/mp4" 489 | }, 490 | "muted": false 491 | } 492 | } 493 | }, 494 | { 495 | "id": 58, 496 | "type": "LoadImage", 497 | "pos": [ 498 | 37.4466552734375, 499 | 260.9000244140625 500 | ], 501 | "size": [ 502 | 315, 503 | 314 504 | ], 505 | "flags": {}, 506 | "order": 2, 507 | "mode": 0, 508 | "inputs": [], 509 | "outputs": [ 510 | { 511 | "name": "IMAGE", 512 | "type": "IMAGE", 513 | "slot_index": 0, 514 | "links": [ 515 | 121, 516 | 151, 517 | 175 518 | ] 519 | }, 520 | { 521 | "name": "MASK", 522 | "type": "MASK", 523 | "links": null 524 | } 525 | ], 526 | "properties": { 527 | "Node name for S&R": "LoadImage" 528 | }, 529 | "widgets_values": [ 530 | "i5.jpg", 531 | "image" 532 | ] 533 | }, 534 | { 535 | "id": 67, 536 | "type": "GetHeadPose", 537 | "pos": [ 538 | 814.1528930664062, 539 | 495.9793701171875 540 | ], 541 | "size": [ 542 | 270, 543 | 98 544 | ], 545 | "flags": {}, 546 | "order": 8, 547 | "mode": 0, 548 | "inputs": [ 549 | { 550 | "name": "face_toolkits", 551 | "type": "FACE_TOOLKITS", 552 | "link": 147 553 | }, 554 | { 555 | "name": "images", 556 | "type": "IMAGE", 557 | "link": 151 558 | }, 559 | { 560 | "name": "landmarks", 561 | "type": "FACELANDMARKS222", 562 | "link": 143 563 | } 564 | ], 565 | "outputs": [ 566 | { 567 | "name": "head_pose", 568 | "type": "HEAD_POSE", 569 | "links": [ 570 | 166 571 | ] 572 | } 573 | ], 574 | "properties": { 575 | "Node name for S&R": "GetHeadPose" 576 | }, 577 | "widgets_values": [ 578 | true 579 | ] 580 | }, 581 | { 582 | "id": 57, 583 | "type": "HMVideoPipelineLoader", 584 | "pos": [ 585 | 798.4796752929688, 586 | 193.7666015625 587 | ], 588 | "size": [ 589 | 352.79998779296875, 590 | 226 591 | ], 592 | "flags": {}, 593 | "order": 3, 594 | "mode": 0, 595 | "inputs": [], 596 | "outputs": [ 597 | { 598 | "name": "hm_video_pipeline", 599 | "type": "HMVIDEOPIPELINE", 600 | "slot_index": 0, 601 | "links": [ 602 | 165 603 | ] 604 | } 605 | ], 606 | "properties": { 607 | "Node name for S&R": "HMVideoPipelineLoader" 608 | }, 609 | "widgets_values": [ 610 | "[preset]RealisticVisionV60B1", 611 | "None", 612 | "same as checkpoint", 613 | "v5", 614 | "x1", 615 | "huggingface", 616 | 1, 617 | "fp32" 618 | ] 619 | } 620 | ], 621 | "links": [ 622 | [ 623 | 118, 624 | 48, 625 | 2, 626 | 59, 627 | 1, 628 | "AUDIO" 629 | ], 630 | [ 631 | 121, 632 | 58, 633 | 0, 634 | 60, 635 | 1, 636 | "IMAGE" 637 | ], 638 | [ 639 | 122, 640 | 2, 641 | 0, 642 | 60, 643 | 0, 644 | "FACE_TOOLKITS" 645 | ], 646 | [ 647 | 129, 648 | 2, 649 | 0, 650 | 61, 651 | 0, 652 | "FACE_TOOLKITS" 653 | ], 654 | [ 655 | 131, 656 | 48, 657 | 0, 658 | 61, 659 | 1, 660 | "IMAGE" 661 | ], 662 | [ 663 | 143, 664 | 60, 665 | 0, 666 | 67, 667 | 2, 668 | "FACELANDMARKS222" 669 | ], 670 | [ 671 | 145, 672 | 61, 673 | 0, 674 | 69, 675 | 2, 676 | "FACELANDMARKS222" 677 | ], 678 | [ 679 | 147, 680 | 2, 681 | 0, 682 | 67, 683 | 0, 684 | "FACE_TOOLKITS" 685 | ], 686 | [ 687 | 149, 688 | 2, 689 | 0, 690 | 69, 691 | 0, 692 | "FACE_TOOLKITS" 693 | ], 694 | [ 695 | 151, 696 | 58, 697 | 0, 698 | 67, 699 | 1, 700 | "IMAGE" 701 | ], 702 | [ 703 | 153, 704 | 48, 705 | 0, 706 | 69, 707 | 1, 708 | "IMAGE" 709 | ], 710 | [ 711 | 165, 712 | 57, 713 | 0, 714 | 74, 715 | 0, 716 | "HMVIDEOPIPELINE" 717 | ], 718 | [ 719 | 166, 720 | 67, 721 | 0, 722 | 74, 723 | 1, 724 | "HEAD_POSE" 725 | ], 726 | [ 727 | 168, 728 | 69, 729 | 0, 730 | 74, 731 | 3, 732 | "HEAD_POSE" 733 | ], 734 | [ 735 | 170, 736 | 74, 737 | 0, 738 | 59, 739 | 0, 740 | "IMAGE" 741 | ], 742 | [ 743 | 171, 744 | 75, 745 | 0, 746 | 74, 747 | 2, 748 | "EXPRESSION" 749 | ], 750 | [ 751 | 172, 752 | 76, 753 | 0, 754 | 74, 755 | 4, 756 | "EXPRESSION" 757 | ], 758 | [ 759 | 173, 760 | 2, 761 | 0, 762 | 75, 763 | 0, 764 | "FACE_TOOLKITS" 765 | ], 766 | [ 767 | 174, 768 | 2, 769 | 0, 770 | 76, 771 | 0, 772 | "FACE_TOOLKITS" 773 | ], 774 | [ 775 | 175, 776 | 58, 777 | 0, 778 | 75, 779 | 1, 780 | "IMAGE" 781 | ], 782 | [ 783 | 176, 784 | 48, 785 | 0, 786 | 76, 787 | 1, 788 | "IMAGE" 789 | ], 790 | [ 791 | 177, 792 | 61, 793 | 0, 794 | 76, 795 | 2, 796 | "FACELANDMARKS222" 797 | ], 798 | [ 799 | 178, 800 | 60, 801 | 0, 802 | 75, 803 | 2, 804 | "FACELANDMARKS222" 805 | ] 806 | ], 807 | "groups": [], 808 | "config": {}, 809 | "extra": { 810 | "ds": { 811 | "scale": 0.8264462809917358, 812 | "offset": [ 813 | 493.27712102477454, 814 | -69.45337656976547 815 | ] 816 | }, 817 | "frontendVersion": "1.19.2" 818 | }, 819 | "version": 0.4 820 | } -------------------------------------------------------------------------------- /example_workflows/image_style_transfer.json: -------------------------------------------------------------------------------- 1 | { 2 | "id": "a8e8ebf3-8dc8-4d76-ad73-dfe0b945cc77", 3 | "revision": 0, 4 | "last_node_id": 87, 5 | "last_link_id": 213, 6 | "nodes": [ 7 | { 8 | "id": 58, 9 | "type": "LoadImage", 10 | "pos": [ 11 | 41.47996520996094, 12 | 358.5067138671875 13 | ], 14 | "size": [ 15 | 315, 16 | 314 17 | ], 18 | "flags": {}, 19 | "order": 0, 20 | "mode": 0, 21 | "inputs": [], 22 | "outputs": [ 23 | { 24 | "name": "IMAGE", 25 | "type": "IMAGE", 26 | "slot_index": 0, 27 | "links": [ 28 | 121, 29 | 151, 30 | 175 31 | ] 32 | }, 33 | { 34 | "name": "MASK", 35 | "type": "MASK", 36 | "links": null 37 | } 38 | ], 39 | "properties": { 40 | "cnr_id": "comfy-core", 41 | "ver": "0.3.39", 42 | "Node name for S&R": "LoadImage" 43 | }, 44 | "widgets_values": [ 45 | "chillout.jpg", 46 | "image" 47 | ] 48 | }, 49 | { 50 | "id": 2, 51 | "type": "HMFaceToolkitsLoader", 52 | "pos": [ 53 | 45.41996383666992, 54 | 769.9866333007812 55 | ], 56 | "size": [ 57 | 315, 58 | 82 59 | ], 60 | "flags": {}, 61 | "order": 1, 62 | "mode": 0, 63 | "inputs": [], 64 | "outputs": [ 65 | { 66 | "name": "face_toolkits", 67 | "type": "FACE_TOOLKITS", 68 | "slot_index": 0, 69 | "links": [ 70 | 122, 71 | 147, 72 | 173, 73 | 193, 74 | 194, 75 | 210 76 | ] 77 | } 78 | ], 79 | "properties": { 80 | "cnr_id": "comfyui_hellomeme", 81 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 82 | "Node name for S&R": "HMFaceToolkitsLoader" 83 | }, 84 | "widgets_values": [ 85 | 0, 86 | "huggingface" 87 | ] 88 | }, 89 | { 90 | "id": 60, 91 | "type": "GetFaceLandmarks", 92 | "pos": [ 93 | 438.875732421875, 94 | 586.59228515625 95 | ], 96 | "size": [ 97 | 170.62362670898438, 98 | 46 99 | ], 100 | "flags": {}, 101 | "order": 3, 102 | "mode": 0, 103 | "inputs": [ 104 | { 105 | "name": "face_toolkits", 106 | "type": "FACE_TOOLKITS", 107 | "link": 122 108 | }, 109 | { 110 | "name": "images", 111 | "type": "IMAGE", 112 | "link": 121 113 | } 114 | ], 115 | "outputs": [ 116 | { 117 | "name": "landmarks", 118 | "type": "FACELANDMARKS222", 119 | "links": [ 120 | 143, 121 | 178 122 | ] 123 | } 124 | ], 125 | "properties": { 126 | "cnr_id": "comfyui_hellomeme", 127 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 128 | "Node name for S&R": "GetFaceLandmarks" 129 | }, 130 | "widgets_values": [] 131 | }, 132 | { 133 | "id": 75, 134 | "type": "GetExpression2", 135 | "pos": [ 136 | 689.199462890625, 137 | 676.9906616210938 138 | ], 139 | "size": [ 140 | 191.63729858398438, 141 | 66 142 | ], 143 | "flags": {}, 144 | "order": 5, 145 | "mode": 0, 146 | "inputs": [ 147 | { 148 | "name": "face_toolkits", 149 | "type": "FACE_TOOLKITS", 150 | "link": 173 151 | }, 152 | { 153 | "name": "images", 154 | "type": "IMAGE", 155 | "link": 175 156 | }, 157 | { 158 | "name": "landmarks", 159 | "type": "FACELANDMARKS222", 160 | "link": 178 161 | } 162 | ], 163 | "outputs": [ 164 | { 165 | "name": "expression", 166 | "type": "EXPRESSION", 167 | "links": [ 168 | 184, 169 | 207 170 | ] 171 | } 172 | ], 173 | "properties": { 174 | "cnr_id": "comfyui_hellomeme", 175 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 176 | "Node name for S&R": "GetExpression2" 177 | }, 178 | "widgets_values": [] 179 | }, 180 | { 181 | "id": 78, 182 | "type": "HMImagePipelineLoader", 183 | "pos": [ 184 | 689.4496459960938, 185 | 203.48110961914062 186 | ], 187 | "size": [ 188 | 298.3472595214844, 189 | 226 190 | ], 191 | "flags": {}, 192 | "order": 2, 193 | "mode": 0, 194 | "inputs": [], 195 | "outputs": [ 196 | { 197 | "name": "hm_image_pipeline", 198 | "type": "HMIMAGEPIPELINE", 199 | "links": [ 200 | 182, 201 | 199 202 | ] 203 | } 204 | ], 205 | "properties": { 206 | "cnr_id": "comfyui_hellomeme", 207 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 208 | "Node name for S&R": "HMImagePipelineLoader" 209 | }, 210 | "widgets_values": [ 211 | "[preset]animeanything_v10", 212 | "[preset]ghibli_anime_v1", 213 | "same as checkpoint", 214 | "v5c", 215 | "x1", 216 | "huggingface", 217 | 1.2, 218 | "fp32" 219 | ] 220 | }, 221 | { 222 | "id": 67, 223 | "type": "GetHeadPose", 224 | "pos": [ 225 | 688.240234375, 226 | 516.476806640625 227 | ], 228 | "size": [ 229 | 270, 230 | 98 231 | ], 232 | "flags": {}, 233 | "order": 4, 234 | "mode": 0, 235 | "inputs": [ 236 | { 237 | "name": "face_toolkits", 238 | "type": "FACE_TOOLKITS", 239 | "link": 147 240 | }, 241 | { 242 | "name": "images", 243 | "type": "IMAGE", 244 | "link": 151 245 | }, 246 | { 247 | "name": "landmarks", 248 | "type": "FACELANDMARKS222", 249 | "link": 143 250 | } 251 | ], 252 | "outputs": [ 253 | { 254 | "name": "head_pose", 255 | "type": "HEAD_POSE", 256 | "links": [ 257 | 183, 258 | 206 259 | ] 260 | } 261 | ], 262 | "properties": { 263 | "cnr_id": "comfyui_hellomeme", 264 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 265 | "Node name for S&R": "GetHeadPose" 266 | }, 267 | "widgets_values": [ 268 | true 269 | ] 270 | }, 271 | { 272 | "id": 81, 273 | "type": "GetFaceLandmarks", 274 | "pos": [ 275 | 1466.214111328125, 276 | 510.1761169433594 277 | ], 278 | "size": [ 279 | 170.62362670898438, 280 | 46 281 | ], 282 | "flags": {}, 283 | "order": 8, 284 | "mode": 0, 285 | "inputs": [ 286 | { 287 | "name": "face_toolkits", 288 | "type": "FACE_TOOLKITS", 289 | "link": 193 290 | }, 291 | { 292 | "name": "images", 293 | "type": "IMAGE", 294 | "link": 191 295 | } 296 | ], 297 | "outputs": [ 298 | { 299 | "name": "landmarks", 300 | "type": "FACELANDMARKS222", 301 | "links": [ 302 | 195, 303 | 208 304 | ] 305 | } 306 | ], 307 | "properties": { 308 | "cnr_id": "comfyui_hellomeme", 309 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 310 | "Node name for S&R": "GetFaceLandmarks" 311 | }, 312 | "widgets_values": [] 313 | }, 314 | { 315 | "id": 82, 316 | "type": "GetHeadPose", 317 | "pos": [ 318 | 1726.154052734375, 319 | 420.4497375488281 320 | ], 321 | "size": [ 322 | 270, 323 | 98 324 | ], 325 | "flags": {}, 326 | "order": 9, 327 | "mode": 0, 328 | "inputs": [ 329 | { 330 | "name": "face_toolkits", 331 | "type": "FACE_TOOLKITS", 332 | "link": 194 333 | }, 334 | { 335 | "name": "images", 336 | "type": "IMAGE", 337 | "link": 192 338 | }, 339 | { 340 | "name": "landmarks", 341 | "type": "FACELANDMARKS222", 342 | "link": 195 343 | } 344 | ], 345 | "outputs": [ 346 | { 347 | "name": "head_pose", 348 | "type": "HEAD_POSE", 349 | "links": [ 350 | 200, 351 | 211 352 | ] 353 | } 354 | ], 355 | "properties": { 356 | "cnr_id": "comfyui_hellomeme", 357 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 358 | "Node name for S&R": "GetHeadPose" 359 | }, 360 | "widgets_values": [ 361 | false 362 | ] 363 | }, 364 | { 365 | "id": 80, 366 | "type": "PreviewImage", 367 | "pos": [ 368 | 1597.02294921875, 369 | -149.21035766601562 370 | ], 371 | "size": [ 372 | 426.67877197265625, 373 | 454.14093017578125 374 | ], 375 | "flags": {}, 376 | "order": 7, 377 | "mode": 0, 378 | "inputs": [ 379 | { 380 | "name": "images", 381 | "type": "IMAGE", 382 | "link": 187 383 | } 384 | ], 385 | "outputs": [], 386 | "properties": { 387 | "cnr_id": "comfy-core", 388 | "ver": "0.3.39", 389 | "Node name for S&R": "PreviewImage" 390 | }, 391 | "widgets_values": [] 392 | }, 393 | { 394 | "id": 85, 395 | "type": "HMPipelineImage", 396 | "pos": [ 397 | 2126.16357421875, 398 | 485.0890197753906 399 | ], 400 | "size": [ 401 | 270, 402 | 306 403 | ], 404 | "flags": {}, 405 | "order": 11, 406 | "mode": 0, 407 | "inputs": [ 408 | { 409 | "name": "hm_image_pipeline", 410 | "type": "HMIMAGEPIPELINE", 411 | "link": 199 412 | }, 413 | { 414 | "name": "ref_head_pose", 415 | "type": "HEAD_POSE", 416 | "link": 200 417 | }, 418 | { 419 | "name": "ref_expression", 420 | "type": "EXPRESSION", 421 | "link": 212 422 | }, 423 | { 424 | "name": "drive_head_pose", 425 | "type": "HEAD_POSE", 426 | "link": 211 427 | }, 428 | { 429 | "name": "drive_expression", 430 | "type": "EXPRESSION", 431 | "link": 213 432 | } 433 | ], 434 | "outputs": [ 435 | { 436 | "name": "IMAGE", 437 | "type": "IMAGE", 438 | "links": [ 439 | 204 440 | ] 441 | }, 442 | { 443 | "name": "LATENT", 444 | "type": "LATENT", 445 | "links": null 446 | } 447 | ], 448 | "properties": { 449 | "cnr_id": "comfyui_hellomeme", 450 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 451 | "Node name for S&R": "HMPipelineImage" 452 | }, 453 | "widgets_values": [ 454 | 0, 455 | "", 456 | "", 457 | 25, 458 | 431229341494867, 459 | "randomize", 460 | 1.2000000000000002, 461 | 0 462 | ] 463 | }, 464 | { 465 | "id": 87, 466 | "type": "GetExpression2", 467 | "pos": [ 468 | 1735.521728515625, 469 | 590.853759765625 470 | ], 471 | "size": [ 472 | 191.63729858398438, 473 | 66 474 | ], 475 | "flags": {}, 476 | "order": 10, 477 | "mode": 0, 478 | "inputs": [ 479 | { 480 | "name": "face_toolkits", 481 | "type": "FACE_TOOLKITS", 482 | "link": 210 483 | }, 484 | { 485 | "name": "images", 486 | "type": "IMAGE", 487 | "link": 209 488 | }, 489 | { 490 | "name": "landmarks", 491 | "type": "FACELANDMARKS222", 492 | "link": 208 493 | } 494 | ], 495 | "outputs": [ 496 | { 497 | "name": "expression", 498 | "type": "EXPRESSION", 499 | "links": [ 500 | 212, 501 | 213 502 | ] 503 | } 504 | ], 505 | "properties": { 506 | "cnr_id": "comfyui_hellomeme", 507 | "ver": "47fe61445e785922239b772517bd55673d752c7c", 508 | "Node name for S&R": "GetExpression2" 509 | } 510 | }, 511 | { 512 | "id": 86, 513 | "type": "PreviewImage", 514 | "pos": [ 515 | 2487.072509765625, 516 | 485.347412109375 517 | ], 518 | "size": [ 519 | 522.350341796875, 520 | 553.1380004882812 521 | ], 522 | "flags": {}, 523 | "order": 12, 524 | "mode": 0, 525 | "inputs": [ 526 | { 527 | "name": "images", 528 | "type": "IMAGE", 529 | "link": 204 530 | } 531 | ], 532 | "outputs": [], 533 | "properties": { 534 | "cnr_id": "comfy-core", 535 | "ver": "0.3.39", 536 | "Node name for S&R": "PreviewImage" 537 | }, 538 | "widgets_values": [] 539 | }, 540 | { 541 | "id": 79, 542 | "type": "HMPipelineImage", 543 | "pos": [ 544 | 1077.52099609375, 545 | 489.0169372558594 546 | ], 547 | "size": [ 548 | 270, 549 | 306 550 | ], 551 | "flags": {}, 552 | "order": 6, 553 | "mode": 0, 554 | "inputs": [ 555 | { 556 | "name": "hm_image_pipeline", 557 | "type": "HMIMAGEPIPELINE", 558 | "link": 182 559 | }, 560 | { 561 | "name": "ref_head_pose", 562 | "type": "HEAD_POSE", 563 | "link": 183 564 | }, 565 | { 566 | "name": "ref_expression", 567 | "type": "EXPRESSION", 568 | "link": 184 569 | }, 570 | { 571 | "name": "drive_head_pose", 572 | "type": "HEAD_POSE", 573 | "link": 206 574 | }, 575 | { 576 | "name": "drive_expression", 577 | "type": "EXPRESSION", 578 | "link": 207 579 | } 580 | ], 581 | "outputs": [ 582 | { 583 | "name": "IMAGE", 584 | "type": "IMAGE", 585 | "links": [ 586 | 187, 587 | 191, 588 | 192, 589 | 209 590 | ] 591 | }, 592 | { 593 | "name": "LATENT", 594 | "type": "LATENT", 595 | "links": null 596 | } 597 | ], 598 | "properties": { 599 | "cnr_id": "comfyui_hellomeme", 600 | "ver": "56e8052c9b449621b029226988b0ed7d2dc96b4c", 601 | "Node name for S&R": "HMPipelineImage" 602 | }, 603 | "widgets_values": [ 604 | 0, 605 | "", 606 | "", 607 | 25, 608 | 1116653258512514, 609 | "randomize", 610 | 1.2000000000000002, 611 | 0 612 | ] 613 | } 614 | ], 615 | "links": [ 616 | [ 617 | 121, 618 | 58, 619 | 0, 620 | 60, 621 | 1, 622 | "IMAGE" 623 | ], 624 | [ 625 | 122, 626 | 2, 627 | 0, 628 | 60, 629 | 0, 630 | "FACE_TOOLKITS" 631 | ], 632 | [ 633 | 143, 634 | 60, 635 | 0, 636 | 67, 637 | 2, 638 | "FACELANDMARKS222" 639 | ], 640 | [ 641 | 147, 642 | 2, 643 | 0, 644 | 67, 645 | 0, 646 | "FACE_TOOLKITS" 647 | ], 648 | [ 649 | 151, 650 | 58, 651 | 0, 652 | 67, 653 | 1, 654 | "IMAGE" 655 | ], 656 | [ 657 | 173, 658 | 2, 659 | 0, 660 | 75, 661 | 0, 662 | "FACE_TOOLKITS" 663 | ], 664 | [ 665 | 175, 666 | 58, 667 | 0, 668 | 75, 669 | 1, 670 | "IMAGE" 671 | ], 672 | [ 673 | 178, 674 | 60, 675 | 0, 676 | 75, 677 | 2, 678 | "FACELANDMARKS222" 679 | ], 680 | [ 681 | 182, 682 | 78, 683 | 0, 684 | 79, 685 | 0, 686 | "HMIMAGEPIPELINE" 687 | ], 688 | [ 689 | 183, 690 | 67, 691 | 0, 692 | 79, 693 | 1, 694 | "HEAD_POSE" 695 | ], 696 | [ 697 | 184, 698 | 75, 699 | 0, 700 | 79, 701 | 2, 702 | "EXPRESSION" 703 | ], 704 | [ 705 | 187, 706 | 79, 707 | 0, 708 | 80, 709 | 0, 710 | "IMAGE" 711 | ], 712 | [ 713 | 191, 714 | 79, 715 | 0, 716 | 81, 717 | 1, 718 | "IMAGE" 719 | ], 720 | [ 721 | 192, 722 | 79, 723 | 0, 724 | 82, 725 | 1, 726 | "IMAGE" 727 | ], 728 | [ 729 | 193, 730 | 2, 731 | 0, 732 | 81, 733 | 0, 734 | "FACE_TOOLKITS" 735 | ], 736 | [ 737 | 194, 738 | 2, 739 | 0, 740 | 82, 741 | 0, 742 | "FACE_TOOLKITS" 743 | ], 744 | [ 745 | 195, 746 | 81, 747 | 0, 748 | 82, 749 | 2, 750 | "FACELANDMARKS222" 751 | ], 752 | [ 753 | 199, 754 | 78, 755 | 0, 756 | 85, 757 | 0, 758 | "HMIMAGEPIPELINE" 759 | ], 760 | [ 761 | 200, 762 | 82, 763 | 0, 764 | 85, 765 | 1, 766 | "HEAD_POSE" 767 | ], 768 | [ 769 | 204, 770 | 85, 771 | 0, 772 | 86, 773 | 0, 774 | "IMAGE" 775 | ], 776 | [ 777 | 206, 778 | 67, 779 | 0, 780 | 79, 781 | 3, 782 | "HEAD_POSE" 783 | ], 784 | [ 785 | 207, 786 | 75, 787 | 0, 788 | 79, 789 | 4, 790 | "EXPRESSION" 791 | ], 792 | [ 793 | 208, 794 | 81, 795 | 0, 796 | 87, 797 | 2, 798 | "FACELANDMARKS222" 799 | ], 800 | [ 801 | 209, 802 | 79, 803 | 0, 804 | 87, 805 | 1, 806 | "IMAGE" 807 | ], 808 | [ 809 | 210, 810 | 2, 811 | 0, 812 | 87, 813 | 0, 814 | "FACE_TOOLKITS" 815 | ], 816 | [ 817 | 211, 818 | 82, 819 | 0, 820 | 85, 821 | 3, 822 | "HEAD_POSE" 823 | ], 824 | [ 825 | 212, 826 | 87, 827 | 0, 828 | 85, 829 | 2, 830 | "EXPRESSION" 831 | ], 832 | [ 833 | 213, 834 | 87, 835 | 0, 836 | 85, 837 | 4, 838 | "EXPRESSION" 839 | ] 840 | ], 841 | "groups": [], 842 | "config": {}, 843 | "extra": { 844 | "ds": { 845 | "scale": 0.8264462809917358, 846 | "offset": [ 847 | 134.29123083527662, 848 | 160.15280889275093 849 | ] 850 | }, 851 | "frontendVersion": "1.19.2" 852 | }, 853 | "version": 0.4 854 | } --------------------------------------------------------------------------------