├── navier-stokes ├── Taylor_Green_vortex │ ├── data │ │ ├── Debonis-TGV-tke-DNS-1600.dat │ │ ├── Beck-TGV-dissrate-DNS2-1600.dat │ │ └── Beck-TGV-dissrate-DG-64x4-1600.dat │ ├── input_TGV_SD_hex │ └── plotstats.py ├── cylinder │ └── input_cylinder_visc └── flatplate │ ├── input_flatplate_a │ ├── flatplate_a0-125-2s.neu │ └── flatplate_a1-125-2s.neu ├── euler └── cylinder │ └── input_cylinder_inv ├── serial_regression.py └── parallel_regression.py /navier-stokes/Taylor_Green_vortex/data/Debonis-TGV-tke-DNS-1600.dat: -------------------------------------------------------------------------------- 1 | 0.0462610753779 0.124673598143 2 | 1.0850604391 0.124237883364 3 | 2.33165041381 0.123797865228 4 | 3.62972696744 0.122114177252 5 | 4.56401626054 0.120023822148 6 | 5.44574313576 0.116277750882 7 | 6.43090424265 0.111286933936 8 | 7.20796735597 0.105472024345 9 | 7.88128885508 0.100073464432 10 | 8.45040766612 0.0938486601963 11 | 8.91578486295 0.0880402056389 12 | 9.38100836849 0.0818175530811 13 | 9.79474529513 0.0768385703637 14 | 10.312223836 0.0714432379679 15 | 10.8811889557 0.0648042357317 16 | 11.5024091108 0.0589925536575 17 | 12.0718353044 0.0535961454227 18 | 12.7971044563 0.048196509671 19 | 13.6264226049 0.0432089202419 20 | 14.5078420976 0.0386344529743 21 | 15.4413629343 0.0344731078682 22 | 16.3232435008 0.0311412346021 23 | 17.2572254113 0.0282224834974 24 | 18.2431549746 0.0253026565538 25 | 19.0735489622 0.023214453128 26 | 19.9560442938 0.0215393718637 27 | -------------------------------------------------------------------------------- /navier-stokes/Taylor_Green_vortex/data/Beck-TGV-dissrate-DNS2-1600.dat: -------------------------------------------------------------------------------- 1 | 0.062893081761 0.000435086440009 2 | 0.566037735849 0.000437517090511 3 | 1.00628930818 0.000439643909701 4 | 1.50943396226 0.000538692917692 5 | 2.01257861635 0.000686051104427 6 | 2.51572327044 0.000833409291162 7 | 2.83018867925 0.0010281651627 8 | 3.20754716981 0.00122322486555 9 | 3.45911949686 0.00141767690578 10 | 3.64779874214 0.0016118251147 11 | 3.77358490566 0.00175736031355 12 | 3.96226415094 0.00199981770121 13 | 4.27672955975 0.00248442864522 14 | 4.52830188679 0.00311366329414 15 | 4.77987421384 0.00369458876432 16 | 5.03144654088 0.00417889587701 17 | 5.47169811321 0.00480904201987 18 | 5.78616352201 0.00519703460639 19 | 6.10062893082 0.00572995472913 20 | 6.35220125786 0.00631088019931 21 | 6.60377358491 0.00698842402698 22 | 6.85534591195 0.00718287606721 23 | 7.10691823899 0.00761887400115 24 | 7.29559748428 0.00810287728253 25 | 7.48427672956 0.00863518974265 26 | 7.61006289308 0.00916719837146 27 | 7.92452830189 0.0101832102817 28 | 8.17610062893 0.0110539908243 29 | 8.42767295597 0.0117798438307 30 | 8.61635220126 0.0123604654696 31 | 8.67924528302 0.0126989335521 32 | 8.8679245283 0.0128447725823 33 | 9.05660377358 0.0128456840762 34 | 9.18238993711 0.0126047458451 35 | 9.30817610063 0.0121222617203 36 | 9.43396226415 0.0117847051317 37 | 9.68553459119 0.0115443745632 38 | 10.0628930818 0.0112563424787 39 | 10.3144654088 0.0111126302677 40 | 10.6918238994 0.0106796706469 41 | 11.0691823899 0.0100534743111 42 | 11.3836477987 0.00942697414396 43 | 11.6981132075 0.00889709233434 44 | 11.9496855346 0.00841521587215 45 | 12.3270440252 0.00764409200012 46 | 12.5157232704 0.00711360252788 47 | 12.8301886792 0.006632029897 48 | 13.2704402516 0.00610275575001 49 | 13.7106918239 0.0056700999605 50 | 14.2767295597 0.00518974265488 51 | 14.6540880503 0.00470847385532 52 | 15.0943396226 0.00432412724455 53 | 15.6603773585 0.00384376993893 54 | 16.3522012579 0.00355725701091 55 | 17.0440251572 0.00327074408289 56 | 17.7987421384 0.00288791662869 57 | 18.679245283 0.00245738765837 58 | 19.8742138365 0.00198006866588 59 | -------------------------------------------------------------------------------- /navier-stokes/Taylor_Green_vortex/data/Beck-TGV-dissrate-DG-64x4-1600.dat: -------------------------------------------------------------------------------- 1 | -0.00201811256023 0.00045947377715 2 | 0.730388570756 0.0004564129731 3 | 1.3497809507 0.000537406557184 4 | 1.9690051546 0.000660191888869 5 | 2.64406380599 0.000908117016893 6 | 3.20627633006 0.00119830478545 7 | 3.71164535035 0.00161410324328 8 | 3.99149029204 0.00207263523456 9 | 4.32716968122 0.00265630702219 10 | 4.60634191872 0.00328200600388 11 | 4.88534598017 0.00394949673318 12 | 5.27719616895 0.00457472482194 13 | 5.66955088587 0.0050745776679 14 | 6.00573480319 0.00553287421273 15 | 6.39674411174 0.0063670610395 16 | 6.61957737359 0.00699299546766 17 | 6.73158262069 0.00715969156513 18 | 6.95643399511 0.00728412502207 19 | 7.06810289011 0.00753440461475 20 | 7.2914406801 0.00803496380011 21 | 7.45810314237 0.00861934192713 22 | 7.68093640423 0.00924527635529 23 | 7.8472625144 0.00991323797751 24 | 8.01375680062 0.0105394078521 25 | 8.18008291079 0.0112073694744 26 | 8.40291617265 0.0118333039025 27 | 8.45790973992 0.0121674024369 28 | 8.51307148323 0.0124597092236 29 | 8.62507673032 0.0126264053211 30 | 8.68091117782 0.0127515451174 31 | 8.84959175265 0.0128344222732 32 | 9.01877685561 0.0127919241862 33 | 9.13229568713 0.0125824945553 34 | 9.30299437451 0.0121638707399 35 | 9.36034240643 0.0119128848078 36 | 9.41684955812 0.0118708576138 37 | 9.5295275094 0.0118703867208 38 | 9.69837626027 0.011911472129 39 | 9.81139056364 0.0118274177409 40 | 9.86806589138 0.0117435987992 41 | 10.0379236985 0.0115339337218 42 | 10.2641204813 0.011324033198 43 | 10.3771347847 0.0112399788098 44 | 10.4903172641 0.0111141326741 45 | 10.6040042717 0.0108629112955 46 | 10.8873809103 0.0104438165872 47 | 11.1145867494 0.00998316557773 48 | 11.4551432439 0.00935487668491 49 | 11.7391925868 0.00876861498617 50 | 11.966902954 0.00818258873389 51 | 12.3074594486 0.00755429984107 52 | 12.647679591 0.00700959444346 53 | 12.9884042616 0.00633951380305 54 | 13.3844588515 0.00591994820178 55 | 13.894200449 0.00524916122197 56 | 14.2337478873 0.00487162281476 57 | 14.5166199978 0.00457790334923 58 | 14.7423122525 0.00449337806816 59 | 15.0813551626 0.00424121490376 60 | 15.4767370483 0.0039888162929 61 | 15.8722871101 0.00369462593443 62 | 16.267837172 0.00340043557596 63 | 16.8327405128 0.00302195538289 64 | 17.3411367019 0.0026855023839 65 | 17.9620426663 0.00239037023957 66 | 18.4137635277 0.00213773618224 67 | 18.9218233647 0.00188486667844 68 | 19.4858858253 0.00171534522338 69 | 19.9369339825 0.00162987815645 70 | -------------------------------------------------------------------------------- /euler/cylinder/input_cylinder_inv: -------------------------------------------------------------------------------- 1 | ---------------------------- 2 | Solver parameters 3 | ---------------------------- 4 | equation // 0: Euler/Navier-Stokes, 1:Advection/Adv-Diffusion 5 | 0 6 | viscous 7 | 0 8 | riemann_solve_type // 0: Rusanov, 1: Lax-Friedrich, 2: Roe 9 | 0 10 | vis_riemann_solve_type 11 | 0 12 | ic_form // 0: Isentropic Vortex, 1: Uniform flow, 2: Sine Wave 13 | 1 14 | test_case // 0: Normal (doesn't have an analytical solution), 1:Isentropic Vortex, 2: Advection-Equation 15 | 0 16 | order // Order of basis polynomials 17 | 3 18 | dt_type // 0: User-supplied, 1: Global, 2: Local 19 | 1 20 | dt 21 | 0.0001 22 | CFL 23 | 3.5 24 | n_steps 25 | 50000 26 | adv_type // 0: Forward Euler, 3: RK45 27 | 3 28 | tau 29 | 1.0 30 | pen_fact 31 | 0.5 32 | ----------------------- 33 | Restart options 34 | ----------------------- 35 | restart_flag 36 | 0 37 | restart_iter 38 | 2000000 39 | n_restart_files 40 | 3 41 | ----------------------- 42 | Mesh options 43 | ----------------------- 44 | mesh_file 45 | cylinder_2ndorder_tri_vis.neu 46 | dx_cyclic 47 | 200000000.0 48 | dy_cyclic 49 | 200000000.0 50 | dz_cyclic 51 | 200000000.0 52 | ----------------------------------- 53 | Monitoring, plotting parameters 54 | ----------------------------------- 55 | p_res // Plotting resolution, number of nodes per direction 56 | 6 57 | write_type // 0: Paraview, 1: Tecplot 58 | 1 59 | inters_cub_order // Order of cubature rule for integrating over element interfaces 60 | 12 61 | volume_cub_order // Order of cubature rule for integrating over element volumes 62 | 12 63 | plot_freq 64 | 1000 65 | restart_dump_freq 66 | 100000 67 | monitor_res_freq 68 | 100 69 | res_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 70 | 1 71 | error_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 72 | 1 73 | res_norm_field // Density 74 | 0 75 | --------------------------- 76 | Wave Equation parameters 77 | --------------------------- 78 | wave_speed_x 79 | 1. 80 | wave_speed_y 81 | 0. 82 | wave_speed_z 83 | 0. 84 | lambda // 1: upwind 85 | 1 86 | --------------------------- 87 | Element parameters 88 | --------------------------- 89 | upts_type_tri 90 | 0 91 | fpts_type_tri 92 | 0 93 | vcjh_scheme_tri 94 | 3 95 | c_tri 96 | 0.0 97 | sparse_tri 98 | 0 99 | upts_type_quad 100 | 0 101 | vcjh_scheme_quad 102 | 3 103 | eta_quad 104 | 0.0 105 | sparse_quad 106 | 0 107 | upts_type_hexa 108 | 0 109 | vcjh_scheme_hexa 110 | 0 111 | eta_hexa 112 | 0. 113 | sparse_hexa 114 | 0 115 | upts_type_tet 116 | 1 117 | fpts_type_tet 118 | 0 119 | vcjh_scheme_tet 120 | 0 121 | eta_tet 122 | 0.0 123 | sparse_tet 124 | 0 125 | upts_type_pri_tri 126 | 0 127 | upts_type_pri_1d 128 | 0 129 | vcjh_scheme_pri_1d 130 | 0 131 | eta_pri 132 | 0.0 133 | sparse_pri 134 | 0 135 | ------------------------------------ 136 | Fluid Parameters 137 | ------------------------------------ 138 | gamma 139 | 1.4 140 | prandtl 141 | 0.72 142 | S_gas 143 | 120. 144 | T_gas 145 | 291.15 146 | R_gas 147 | 286.9 148 | mu_gas 149 | 1.827E-05 150 | ----------------------------------- 151 | Boundary conditions 152 | ----------------------------------- 153 | --------- 154 | Viscous 155 | --------- 156 | fix_vis // 0: Sutherland's law, 1: Constant viscosity 157 | 0. 158 | Mach_free_stream 159 | 0.2 160 | nx_free_stream 161 | 1. 162 | ny_free_stream 163 | 0. 164 | nz_free_stream 165 | 0. 166 | Re_free_stream 167 | 100. 168 | L_free_stream 169 | 1. 170 | T_free_stream 171 | 300 172 | Mach_wall 173 | 0.0 174 | nx_wall 175 | 1. 176 | ny_wall 177 | 0. 178 | nz_wall 179 | 0. 180 | T_wall 181 | 300 182 | Mach_c_ic 183 | 0.2 184 | nx_c_ic 185 | 1. 186 | ny_c_ic 187 | 0. 188 | nz_c_ic 189 | 0. 190 | Re_c_ic 191 | 100 192 | T_c_ic 193 | 300 194 | ----------- 195 | Inviscid 196 | ----------- 197 | rho_c_ic 198 | 1.0 199 | u_c_ic 200 | 1.0 201 | v_c_ic 202 | 1.0 203 | w_c_ic 204 | 0.0 205 | p_c_ic 206 | 17.857142857142854098 207 | rho_bound 208 | 1. 209 | u_bound 210 | 1.0 211 | v_bound 212 | 1.0 213 | w_bound 214 | 0.0 215 | p_bound 216 | 17.857142857142854098 217 | -------------------------------------------------------------------------------- /navier-stokes/cylinder/input_cylinder_visc: -------------------------------------------------------------------------------- 1 | ---------------------------- 2 | Solver parameters 3 | ---------------------------- 4 | equation // 0: Euler/Navier-Stokes, 1:Advection/Adv-Diffusion 5 | 0 6 | viscous 7 | 1 8 | riemann_solve_type // 0: Rusanov, 1: Lax-Friedrich, 2: Roe 9 | 0 10 | vis_riemann_solve_type 11 | 0 12 | ic_form // 0: Isentropic Vortex, 1: Uniform flow, 2: Sine Wave 13 | 1 14 | test_case // 0: Normal (doesn't have an analytical solution), 1:Isentropic Vortex, 2: Advection-Equation 15 | 0 16 | order // Order of basis polynomials 17 | 3 18 | dt_type 19 | 0 20 | dt 21 | 0.0001 22 | n_steps 23 | 100 24 | adv_type // 0: Forward Euler, 3: RK45 25 | 0 26 | tau 27 | 1.0 28 | pen_fact 29 | 0.5 30 | ----------------------- 31 | Restart options 32 | ----------------------- 33 | restart_flag 34 | 0 35 | restart_iter 36 | 2000000 37 | n_restart_files 38 | 3 39 | ----------------------- 40 | Mesh options 41 | ----------------------- 42 | mesh_file 43 | cylinder_2ndorder_tri_vis.neu 44 | dx_cyclic 45 | 200000000.0 46 | dy_cyclic 47 | 200000000.0 48 | dz_cyclic 49 | 200000000.0 50 | ----------------------------------- 51 | Monitoring, plotting parameters 52 | ----------------------------------- 53 | p_res // Plotting resolution, number of nodes per direction 54 | 4 55 | write_type // 0: Paraview, 1: Tecplot 56 | 0 57 | n_diagnostic_fields 58 | 0 59 | inters_cub_order // Order of cubature rule for integrating over element interfaces 60 | 6 61 | volume_cub_order // Order of cubature rule for integrating over element volumes 62 | 6 63 | plot_freq 64 | 1000 65 | restart_dump_freq 66 | 10000 67 | monitor_integrals_freq 68 | 0 69 | monitor_res_freq 70 | 1 71 | monitor_cp_freq // specify output frequency of file containing cp point values on surface. 0: no output. 72 | 100 73 | res_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 74 | 1 75 | error_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 76 | 1 77 | res_norm_field // Density 78 | 0 79 | --------------------------- 80 | Wave Equation parameters 81 | --------------------------- 82 | wave_speed_x 83 | 1. 84 | wave_speed_y 85 | 0. 86 | wave_speed_z 87 | 0. 88 | lambda // 1: upwind 89 | 1 90 | --------------------------- 91 | Element parameters 92 | --------------------------- 93 | upts_type_tri 94 | 0 95 | fpts_type_tri 96 | 0 97 | vcjh_scheme_tri 98 | 1 99 | c_tri 100 | 0.0 101 | sparse_tri 102 | 0 103 | upts_type_quad 104 | 0 105 | vcjh_scheme_quad 106 | 0 107 | eta_quad 108 | 0.0 109 | sparse_quad 110 | 0 111 | upts_type_hexa 112 | 0 113 | vcjh_scheme_hexa 114 | 0 115 | eta_hexa 116 | 0. 117 | sparse_hexa 118 | 0 119 | upts_type_tet 120 | 1 121 | fpts_type_tet 122 | 0 123 | vcjh_scheme_tet 124 | 0 125 | eta_tet 126 | 0.0 127 | sparse_tet 128 | 0 129 | upts_type_pri_tri 130 | 0 131 | upts_type_pri_1d 132 | 0 133 | vcjh_scheme_pri_1d 134 | 0 135 | eta_pri 136 | 0.0 137 | sparse_pri 138 | 0 139 | ------------------------------------ 140 | Fluid Parameters 141 | ------------------------------------ 142 | gamma 143 | 1.4 144 | prandtl 145 | 0.72 146 | S_gas 147 | 120. 148 | T_gas 149 | 291.15 150 | R_gas 151 | 286.9 152 | mu_gas 153 | 1.827E-05 154 | ----------------------------------- 155 | Boundary conditions 156 | ----------------------------------- 157 | --------- 158 | Viscous 159 | --------- 160 | fix_vis // 0: Sutherland's law, 1: Constant viscosity 161 | 0. 162 | Mach_free_stream 163 | 0.2 164 | nx_free_stream 165 | 1. 166 | ny_free_stream 167 | 0. 168 | nz_free_stream 169 | 0. 170 | Re_free_stream 171 | 20. 172 | L_free_stream 173 | 1. 174 | T_free_stream 175 | 300 176 | Mach_wall 177 | 0.0 178 | nx_wall 179 | 1. 180 | ny_wall 181 | 0. 182 | nz_wall 183 | 0. 184 | T_wall 185 | 300 186 | Mach_c_ic 187 | 0.2 188 | nx_c_ic 189 | 1. 190 | ny_c_ic 191 | 0. 192 | nz_c_ic 193 | 0. 194 | Re_c_ic 195 | 20 196 | T_c_ic 197 | 300 198 | ----------- 199 | Inviscid 200 | ----------- 201 | rho_c_ic 202 | 1.0 203 | u_c_ic 204 | 1.0 205 | v_c_ic 206 | 0.0 207 | w_c_ic 208 | 0.0 209 | p_c_ic 210 | 17.857142857142854098 211 | rho_bound 212 | 1. 213 | u_bound 214 | 1.0 215 | v_bound 216 | 0.0 217 | w_bound 218 | 0.0 219 | p_bound 220 | 17.857142857142854098 221 | -------------------------------------------------------------------------------- /navier-stokes/flatplate/input_flatplate_a: -------------------------------------------------------------------------------- 1 | ---------------------------- 2 | Solver parameters 3 | ---------------------------- 4 | equation // 0: Euler/Navier-Stokes, 1:Advection/Adv-Diffusion 5 | 0 6 | viscous 7 | 1 8 | riemann_solve_type // 0: Rusanov, 1: Lax-Friedrich, 2: Roe 9 | 0 10 | vis_riemann_solve_type 11 | 0 12 | ic_form // 0: Isentropic Vortex, 1: Uniform flow, 2: Sine Wave 13 | 1 14 | test_case // 0: Normal (doesn't have an analytical solution), 1:Isentropic Vortex, 2: Advection-Equation 15 | 0 16 | order // Order of basis polynomials 17 | 3 18 | dt_type // 0: User-supplied, 1: Global, 2: Local 19 | 0 20 | dt 21 | 0.000002 22 | CFL 23 | 0.001 24 | n_steps 25 | 500000000 26 | adv_type // 0: Forward Euler, 3: RK45 27 | 3 28 | tau 29 | 1.0 30 | pen_fact 31 | 0.5 32 | ----------------------- 33 | Restart options 34 | ----------------------- 35 | restart_flag 36 | 0 37 | restart_iter 38 | 60000 39 | n_restart_files 40 | 8 41 | ----------------------- 42 | Mesh options 43 | ----------------------- 44 | mesh_file 45 | flatplate_a2-125-2s.neu 46 | dx_cyclic 47 | 200000000.0 48 | dy_cyclic 49 | 200000000.0 50 | dz_cyclic 51 | 200000000.0 52 | ----------------------------------- 53 | Monitoring, plotting parameters 54 | ----------------------------------- 55 | p_res // Plotting resolution, number of nodes per direction 56 | 6 57 | write_type // 0: Paraview, 1: Tecplot 58 | 0 59 | n_diagnostic_fields 60 | 6 u v w energy pressure mach 61 | inters_cub_order // Order of cubature rule for integrating over element interfaces 62 | 12 63 | volume_cub_order // Order of cubature rule for integrating over element volumes 64 | 12 65 | plot_freq 66 | 100 67 | restart_dump_freq 68 | 5000 69 | monitor_integrals_freq 70 | 100000 71 | monitor_res_freq 72 | 10 73 | monitor_cp_freq 74 | 1000 75 | res_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 76 | 2 77 | error_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 78 | 2 79 | res_norm_field // Density 80 | 0 81 | --------------------------- 82 | Wave Equation parameters 83 | --------------------------- 84 | wave_speed_x 85 | 1. 86 | wave_speed_y 87 | 0. 88 | wave_speed_z 89 | 0. 90 | lambda // 1: upwind 91 | 1 92 | --------------------------- 93 | Element parameters 94 | --------------------------- 95 | upts_type_tri 96 | 0 97 | fpts_type_tri 98 | 0 99 | vcjh_scheme_tri 100 | 1 101 | c_tri 102 | 0.0 103 | sparse_tri 104 | 0 105 | upts_type_quad 106 | 0 107 | vcjh_scheme_quad 108 | 1 109 | eta_quad 110 | 0.0 111 | sparse_quad 112 | 0 113 | upts_type_hexa 114 | 0 115 | vcjh_scheme_hexa 116 | 0 117 | eta_hexa 118 | 0. 119 | sparse_hexa 120 | 0 121 | upts_type_tet 122 | 1 123 | fpts_type_tet 124 | 0 125 | vcjh_scheme_tet 126 | 0 127 | eta_tet 128 | 0.0 129 | sparse_tet 130 | 0 131 | upts_type_pri_tri 132 | 0 133 | upts_type_pri_1d 134 | 0 135 | vcjh_scheme_pri_1d 136 | 0 137 | eta_pri 138 | 0.0 139 | sparse_pri 140 | 0 141 | ------------------------------------ 142 | Fluid Parameters 143 | ------------------------------------ 144 | gamma 145 | 1.4 146 | prandtl 147 | 0.72 148 | S_gas 149 | 120. 150 | T_gas 151 | 291.15 152 | R_gas 153 | 286.9 154 | mu_gas 155 | 1.827E-05 156 | ----------------------------------- 157 | Boundary conditions 158 | ----------------------------------- 159 | --------- 160 | Viscous 161 | --------- 162 | fix_vis // 0: Sutherland's law, 1: Constant viscosity 163 | 1 164 | Mach_free_stream 165 | 0.5 166 | nx_free_stream 167 | 1. 168 | ny_free_stream 169 | 0. 170 | nz_free_stream 171 | 0. 172 | Re_free_stream 173 | 1000000. 174 | L_free_stream 175 | 1. 176 | T_free_stream 177 | 300 178 | Mach_wall 179 | 0.0 180 | nx_wall 181 | 1. 182 | ny_wall 183 | 0. 184 | nz_wall 185 | 0. 186 | T_wall 187 | 300 188 | Mach_c_ic 189 | 0.5 190 | nx_c_ic 191 | 1. 192 | ny_c_ic 193 | 0. 194 | nz_c_ic 195 | 0. 196 | Re_c_ic 197 | 1000000. 198 | T_c_ic 199 | 300 200 | ----------- 201 | Inviscid 202 | ----------- 203 | rho_c_ic 204 | 1.0 205 | u_c_ic 206 | 1.0 207 | v_c_ic 208 | 1.0 209 | w_c_ic 210 | 0.0 211 | p_c_ic 212 | 17.857142857142854098 213 | rho_bound 214 | 1. 215 | u_bound 216 | 1.0 217 | v_bound 218 | 1.0 219 | w_bound 220 | 0.0 221 | p_bound 222 | 17.857142857142854098 223 | -------------------------------------------------------------------------------- /navier-stokes/Taylor_Green_vortex/input_TGV_SD_hex: -------------------------------------------------------------------------------- 1 | ---------------------------- 2 | Solver parameters 3 | ---------------------------- 4 | equation // 0: Euler/Navier-Stokes, 1:Advection/Adv-Diffusion 5 | 0 6 | viscous 7 | 1 8 | riemann_solve_type // 0: Rusanov, 1: Lax-Friedrich, 2: Roe 9 | 0 10 | vis_riemann_solve_type 11 | 0 12 | ic_form // 0: Isentropic Vortex, 1: Uniform flow, 2: Sine Wave 13 | 7 14 | test_case // 0: Normal (doesn't have an analytical solution), 1:Isentropic Vortex, 2: Advection-Equation 15 | 0 16 | order // Order of basis polynomials 17 | 3 18 | dt 19 | 0.001 20 | n_steps 21 | 25 22 | adv_type // 0: Forward Euler, 3: RK45 23 | 3 24 | tau 25 | 1.0 26 | pen_fact 27 | 0.5 28 | ----------------------- 29 | Restart options 30 | ----------------------- 31 | restart_flag 32 | 0 33 | restart_iter 34 | 10000 35 | n_restart_files 36 | 1 37 | ----------------------- 38 | Mesh options 39 | ----------------------- 40 | mesh_file 41 | Taylor-Green-Vortex-hex.neu 42 | dx_cyclic 43 | 6.2831853071795862 44 | dy_cyclic 45 | 6.2831853071795862 46 | dz_cyclic 47 | 6.2831853071795862 48 | ----------------------------------- 49 | Monitoring, plotting parameters 50 | ----------------------------------- 51 | p_res // Plotting resolution, number of nodes per direction 52 | 3 53 | write_type // 0: Paraview, 1: Tecplot 54 | 0 55 | n_diagnostic_fields 56 | 2 vorticity q_criterion 57 | inters_cub_order // Order of cubature rule for integrating over element interfaces 58 | 4 59 | volume_cub_order // Order of cubature rule for integrating over element volumes 60 | 4 61 | plot_freq 62 | 10 63 | restart_dump_freq 64 | 10000 65 | monitor_res_freq 66 | 1 67 | monitor_cp_freq 68 | 100 69 | monitor_integrals_freq // Compute global integrals. 0=no diagnostics 70 | 100 71 | n_integral_quantities 72 | 1 kineticenergy 73 | res_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 74 | 1 75 | error_norm_type // 0:infinity norm, 1:L1 norm, 2:L2 norm 76 | 1 77 | res_norm_field // Density 78 | 0 79 | --------------------------- 80 | Wave Equation parameters 81 | --------------------------- 82 | wave_speed_x 83 | 0. 84 | wave_speed_y 85 | 0. 86 | wave_speed_z 87 | 0. 88 | lambda // 1: upwind 89 | 1 90 | --------------------------- 91 | Element parameters 92 | --------------------------- 93 | upts_type_tri 94 | 0 95 | fpts_type_tri 96 | 0 97 | vcjh_scheme_tri 98 | 0 // 0: custom, 1: DG, 2: SD, 3: HU, 4: C+ 99 | c_tri 100 | 0.0 101 | sparse_tri 102 | 0 103 | upts_type_quad 104 | 0 105 | vcjh_scheme_quad 106 | 0 // 0: custom, 1: DG, 2: SD, 3: HU, 4: C+ 107 | eta_quad 108 | 0.0 109 | sparse_quad 110 | 0 111 | upts_type_hexa 112 | 0 113 | vcjh_scheme_hexa 114 | 2 // 0: custom, 1: DG, 2: SD, 3: HU, 4: C+ 115 | eta_hexa 116 | 0.0 117 | sparse_hexa 118 | 0 119 | upts_type_tet 120 | 1 121 | fpts_type_tet 122 | 0 123 | vcjh_scheme_tet 124 | 0 // 0: custom, 1: DG, 2: SD, 3: HU, 4: C+ 125 | eta_tet 126 | 0.0 127 | sparse_tet 128 | 0 129 | upts_type_pri_tri 130 | 0 131 | upts_type_pri_1d 132 | 0 133 | vcjh_scheme_pri_1d 134 | 0 // 0: custom, 1: DG, 2: SD, 3: HU, 4: C+ 135 | eta_pri 136 | 0.0 137 | sparse_pri 138 | 0 139 | ------------------------------------ 140 | Fluid Parameters 141 | ------------------------------------ 142 | gamma 143 | 1.4 144 | prandtl 145 | 0.72 146 | S_gas 147 | 120. 148 | T_gas 149 | 291.15 150 | R_gas 151 | 286.9 152 | mu_gas 153 | 6.25E-04 154 | ----------------------------------- 155 | Boundary conditions 156 | ----------------------------------- 157 | --------- 158 | Viscous 159 | --------- 160 | fix_vis // 0: Sutherland's law, 1: Constant viscosity 161 | 1. 162 | Mach_free_stream 163 | 0.08 164 | nx_free_stream 165 | 0. 166 | ny_free_stream 167 | 0. 168 | nz_free_stream 169 | 0. 170 | Re_free_stream 171 | 1600 172 | L_free_stream 173 | 1. 174 | T_free_stream 175 | 300.0 176 | Mach_wall 177 | 0.0 178 | nx_wall 179 | 0. 180 | ny_wall 181 | 0. 182 | nz_wall 183 | 0. 184 | T_wall 185 | 300.0 186 | Mach_c_ic 187 | 0.08 188 | nx_c_ic 189 | 0. 190 | ny_c_ic 191 | 0. 192 | nz_c_ic 193 | 0. 194 | Re_c_ic 195 | 1600 196 | T_c_ic 197 | 300.0 198 | ----------- 199 | Inviscid 200 | ----------- 201 | rho_c_ic 202 | 1.0 203 | u_c_ic 204 | 0.0 205 | v_c_ic 206 | 0.0 207 | w_c_ic 208 | 0.0 209 | p_c_ic 210 | 17.857142857142854098 211 | rho_bound 212 | 1. 213 | u_bound 214 | 0.0 215 | v_bound 216 | 0.0 217 | w_bound 218 | 0.0 219 | p_bound 220 | 17.857142857142854098 221 | -------------------------------------------------------------------------------- /navier-stokes/Taylor_Green_vortex/plotstats.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | import sys 4 | import numpy 5 | import pylab 6 | from math import pi 7 | 8 | ################################################# 9 | 10 | ##### Read statfile 11 | 12 | def TGV_readstatfile(statfile): 13 | 14 | # Skip header 15 | statfile.readline() 16 | 17 | vol = 8.*pi**3 18 | nu = 6.25E-04 19 | index = 0 20 | data = [] 21 | 22 | for line in statfile: 23 | time = float(line.split(' ')[0]) 24 | tke = float(line.split(' ')[1]) # kinetic energy 25 | 26 | # Calculate dissrate as time derivative of tke 27 | 28 | # At time = 0, set values at 'previous' timestep 29 | if (index == 0): 30 | oldtke = tke 31 | oldtime = -0.01 32 | 33 | # First-order upwind approximation to time derivative 34 | dtkedt = -1.*derivative(tke,time,oldtke,oldtime,vol) 35 | # Append data to output array 36 | data.append((time, tke, dtkedt)) 37 | # Set 'old' values for next timestep 38 | oldtime = data[index][0] 39 | oldtke = data[index][1] 40 | index += 1 41 | 42 | # End of statfile 43 | 44 | # Convert data to a more usable format 45 | data = numpy.array(data) 46 | 47 | return data 48 | 49 | ################################################# 50 | 51 | ##### Calculate time derivative of TKE 52 | 53 | def derivative(tke,time,oldtke,oldtime,vol): 54 | 55 | dtkedt = (tke-oldtke)/(time-oldtime)/vol 56 | 57 | return dtkedt 58 | 59 | ################################################# 60 | 61 | ##### Read comparison data 62 | 63 | def TGV_readcompdata(): 64 | 65 | # Read in Debonis's TKE comparison data 66 | bb13 = [] 67 | deb = open('data/Debonis-TGV-tke-DNS-1600.dat', 'r') 68 | for line in deb: 69 | bb13.append((float(line.split(' ')[0]), float(line.split(' ')[-1]))) 70 | bb13 = numpy.array(bb13) 71 | 72 | # Read in Beck's dissipation rate comparison data 73 | dns = [] 74 | beck = open('data/Beck-TGV-dissrate-DNS2-1600.dat', 'r') 75 | for line in beck: 76 | dns.append((float(line.split(' ')[0]), float(line.split(' ')[-1]))) 77 | dns = numpy.array(dns) 78 | 79 | DG644 = [] 80 | beck = open('data/Beck-TGV-dissrate-DG-64x4-1600.dat', 'r') 81 | for line in beck: 82 | DG644.append((float(line.split(' ')[0]), float(line.split(' ')[-1]))) 83 | DG644 = numpy.array(DG644) 84 | 85 | return dns, bb13, DG644 86 | 87 | ################################################# 88 | 89 | ##### Plot time series of Turbulent kinetic energy 90 | 91 | def TGV_tkeplot(data,bb13): 92 | 93 | # Normalise by initial TKE 94 | tke_0 = data[0,1] 95 | bb13_0 = bb13[0,1] 96 | 97 | plot1 = pylab.figure() 98 | pylab.title('Time series of Turbulent kinetic energy') 99 | pylab.xlabel('Time (s)') 100 | pylab.ylabel('Turbulent kinetic energy/TKE_0') 101 | pylab.plot(data[:,0], data[:,1]/tke_0, linestyle='solid') 102 | pylab.plot(bb13[:,0], bb13[:,1]/bb13_0, marker = 'o', markerfacecolor='none', markersize=6, markeredgecolor='black', linestyle='none') 103 | pylab.axis([min(data[:,0]),max(data[:,0]),0.0,1.05]) 104 | pylab.axis([0,20,0,1.03]) 105 | pylab.legend(('SD-16x4','DNS'), loc='best') 106 | leg = pylab.gca().get_legend() 107 | ltext=leg.get_texts() 108 | pylab.setp(ltext,fontsize=14,color='black') 109 | leg.get_frame().set_edgecolor('white') 110 | leg.get_frame().set_alpha(0) 111 | pylab.savefig('tke.pdf') 112 | return 113 | 114 | ################################################# 115 | 116 | ##### Plot time series of Turbulent kinetic energy 117 | 118 | def TGV_dissrateplot(data,dns,DG644): 119 | 120 | plot1 = pylab.figure() 121 | pylab.title('Time series of TKE Dissipation Rate') 122 | pylab.xlabel('Time (s)') 123 | pylab.ylabel('Dissipation Rate') 124 | pylab.plot(data[:,0], data[:,2], linestyle='solid') 125 | pylab.plot(DG644[:,0], DG644[:,1], linestyle='dashed',color='black') 126 | pylab.plot(dns[:,0], dns[:,1], marker = 'o', markerfacecolor='none', markersize=6, markeredgecolor='black', linestyle='none') 127 | pylab.axis([0,20,0,0.015]) 128 | pylab.legend(('SD-16x4','Beck-DG-64x4','DNS'), loc='best') 129 | leg = pylab.gca().get_legend() 130 | ltext=leg.get_texts() 131 | pylab.setp(ltext,fontsize=14,color='black') 132 | leg.get_frame().set_edgecolor('white') 133 | leg.get_frame().set_alpha(0) 134 | pylab.savefig('dissrate.pdf') 135 | 136 | return 137 | 138 | ################################################# 139 | 140 | def main(): 141 | 142 | ##### Read in statfile 143 | statfile = open('statfile.dat', 'r') 144 | data = TGV_readstatfile(statfile) 145 | 146 | # Read comparison data 147 | dns, bb13, DG644 = TGV_readcompdata() 148 | 149 | # Plot TKE and dissipation rate 150 | TGV_tkeplot(data,bb13) 151 | TGV_dissrateplot(data,dns,DG644) 152 | 153 | if __name__ == '__main__': 154 | main() 155 | 156 | -------------------------------------------------------------------------------- /serial_regression.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | # \file parallel_regression.py 4 | # \brief Python script for automated regression testing of HiFiLES examples 5 | # \author - Original code: Aniket C. Aranake, Alejandro Campos, Thomas D. Economon. 6 | # - Current development: Aerospace Computing Laboratory (ACL) directed 7 | # by Prof. Jameson. (Aero/Astro Dept. Stanford University). 8 | # \version 1.0.0 9 | # 10 | # HiFiLES (High Fidelity Large Eddy Simulation). 11 | # Copyright (C) 2013 Aerospace Computing Laboratory. 12 | 13 | import sys,time, os, subprocess, datetime, signal, os.path 14 | 15 | class testcase: 16 | 17 | def __init__(self,tag_in): 18 | 19 | datestamp = time.strftime("%Y%m%d", time.gmtime()) 20 | self.tag = "%s_%s"%(tag_in,datestamp) # Input, string tag that identifies this run 21 | 22 | # Configuration file path/filename 23 | self.cfg_dir = "/home/fpalacios" 24 | self.cfg_file = "default.cfg" 25 | 26 | # The test condition. These must be set after initialization 27 | self.test_iter = 1 28 | self.test_vals = [] 29 | 30 | # These can be optionally varied 31 | self.HiFiLES_dir = "/home/fpalacios" 32 | self.HiFiLES_exec = "default" 33 | self.timeout = 300 34 | self.tol = 0.001 35 | self.outputdir = "/home/fpalacios" 36 | 37 | def run_test(self): 38 | 39 | passed = True 40 | exceed_tol = False 41 | timed_out = False 42 | iter_missing = True 43 | start_solver = True 44 | 45 | # Adjust the number of iterations in the config file 46 | self.do_adjust_iter() 47 | 48 | # Assemble the shell command to run HiFiLES 49 | self.HiFiLES_exec = os.path.join("$HIFILES_RUN", self.HiFiLES_exec) 50 | command_base = "%s %s > outputfile"%(self.HiFiLES_exec, self.cfg_file) 51 | command = "%s"%(command_base) 52 | 53 | # Run HiFiLES 54 | os.chdir(os.path.join('./',self.cfg_dir)) 55 | start = datetime.datetime.now() 56 | print("\nPath at terminal when executing this file") 57 | print(command) 58 | process = subprocess.Popen(command, shell=True) # This line launches HiFiLES 59 | 60 | while process.poll() is None: 61 | time.sleep(0.1) 62 | now = datetime.datetime.now() 63 | if (now - start).seconds> self.timeout: 64 | try: 65 | process.kill() 66 | os.system('killall %s' % self.HiFiLES_exec) # In case of parallel execution 67 | except AttributeError: # popen.kill apparently fails on some versions of subprocess... the killall command should take care of things! 68 | pass 69 | timed_out = True 70 | passed = False 71 | 72 | # Examine the output 73 | f = open('outputfile','r') 74 | output = f.readlines() 75 | delta_vals = [] 76 | sim_vals = [] 77 | if not timed_out: 78 | start_solver = False 79 | for line in output: 80 | if not start_solver: # Don't bother parsing anything before --Setting initial conditions--- 81 | if line.find('Setting initial conditions') > -1: 82 | start_solver=True 83 | else: # Found the --Setting initial conditions--- line; parse the input 84 | raw_data = line.split() 85 | try: 86 | iter_number = int(raw_data[0]) 87 | data = raw_data[1:] # Take the last 4 columns for comparison 88 | except ValueError: 89 | continue 90 | except IndexError: 91 | continue 92 | 93 | if iter_number == self.test_iter: # Found the iteration number we're checking for 94 | iter_missing = False 95 | if not len(self.test_vals)==len(data): # something went wrong... probably bad input 96 | print "Error in test_vals!" 97 | passed = False 98 | break 99 | for j in range(len(data)): 100 | sim_vals.append( float(data[j]) ) 101 | delta_vals.append( abs(float(data[j])-self.test_vals[j]) ) 102 | if delta_vals[j] > self.tol: 103 | exceed_tol = True 104 | passed = False 105 | break 106 | else: 107 | iter_missing = True 108 | 109 | if not start_solver: 110 | passed = False 111 | 112 | if iter_missing: 113 | passed = False 114 | 115 | print '=========================================================\n' 116 | 117 | if passed: 118 | print "%s: PASSED"%self.tag 119 | else: 120 | print "%s: FAILED"%self.tag 121 | 122 | print 'execution command: %s'%command 123 | 124 | if timed_out: 125 | print 'ERROR: Execution timed out. timeout=%d'%self.timeout 126 | 127 | if exceed_tol: 128 | print 'ERROR: Difference between computed input and test_vals exceeded tolerance. TOL=%f'%self.tol 129 | 130 | if not start_solver: 131 | print 'ERROR: The code was not able to get to the "Begin solver" section.' 132 | 133 | if iter_missing: 134 | print 'ERROR: The iteration number %d could not be found.'%self.test_iter 135 | 136 | print 'test_iter=%d, test_vals: '%self.test_iter, 137 | for j in self.test_vals: 138 | print '%f '%j, 139 | print '\n', 140 | 141 | print 'sim_vals: ', 142 | for j in sim_vals: 143 | print '%f '%j, 144 | print '\n', 145 | 146 | print 'delta_vals: ', 147 | for j in delta_vals: 148 | print '%f '%j, 149 | print '\n' 150 | 151 | os.chdir('../../../') 152 | return passed 153 | 154 | def do_adjust_iter(self): 155 | 156 | # Read the cfg file 157 | self.cfg_file = os.path.join(os.environ['HIFILES_HOME'], self.cfg_dir, self.cfg_file) 158 | file_in = open(self.cfg_file, 'r') 159 | lines = file_in.readlines() 160 | file_in.close() 161 | 162 | # Rewrite the file with a .autotest extension 163 | self.cfg_file = "%s.autotest"%self.cfg_file 164 | file_out = open(self.cfg_file,'w') 165 | for line in lines: 166 | if line.find("EXT_ITER")==-1: 167 | file_out.write(line) 168 | else: 169 | file_out.write("EXT_ITER=%d\n"%(self.test_iter+1)) 170 | file_out.close() 171 | 172 | if __name__=="__main__": 173 | '''This program runs HiFiLES and ensures that the output matches specified values. This will be used to do nightly checks to make sure nothing is broken. ''' 174 | 175 | # Build HiFiLES_CFD in serial using the right Makefile.in 176 | # Note that we are hard-coding this for enrico at the moment 177 | # This will eventually be a call to the autoconf stuff 178 | 179 | os.chdir(os.environ['HIFILES_HOME']) 180 | os.system('cp makefiles/makefile.enrico_serial.in ./makefile.in') 181 | os.system('make clean') 182 | os.system('make') 183 | 184 | os.chdir(os.environ['HIFILES_RUN']) 185 | if not os.path.exists("./HiFiLES"): 186 | print 'Could not build HiFiLES' 187 | sys.exit(1) 188 | 189 | os.chdir(os.environ['HIFILES_HOME']) 190 | 191 | ########################## 192 | ### Compressible N-S ### 193 | ########################## 194 | 195 | # Cylinder 196 | cylinder = testcase('cylinder') 197 | cylinder.cfg_dir = "testcases/navier-stokes/cylinder" 198 | cylinder.cfg_file = "input_cylinder_visc" 199 | cylinder.test_iter = 25 200 | cylinder.test_vals = [0.273009,1.178080,1.268071,15.483935,8.855743,9.092093] 201 | cylinder.HiFiLES_exec = "HiFiLES" 202 | cylinder.timeout = 1600 203 | cylinder.tol = 0.00001 204 | passed1 = cylinder.run_test() 205 | 206 | # Taylor-Green vortex 207 | tgv = testcase('tgv') 208 | tgv.cfg_dir = "testcases/navier-stokes/Taylor_Green_vortex" 209 | tgv.cfg_file = "input_TGV_SD_hex" 210 | tgv.test_iter = 25 211 | tgv.test_vals = [0.00013215,0.05076817,0.05076814,0.06456282,0.07476870,0.00000000,0.00000000,0.00000000] 212 | tgv.HiFiLES_exec = "HiFiLES" 213 | tgv.timeout = 1600 214 | tgv.tol = 0.00001 215 | passed2 = tgv.run_test() 216 | 217 | if (passed1 and passed2): 218 | sys.exit(0) 219 | else: 220 | sys.exit(1) 221 | 222 | -------------------------------------------------------------------------------- /parallel_regression.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | # \file parallel_regression.py 4 | # \brief Python script for automated regression testing of HiFiLES examples 5 | # \author - Original code: Aniket C. Aranake, Alejandro Campos, Thomas D. Economon. 6 | # - Current development: Aerospace Computing Laboratory (ACL) directed 7 | # by Prof. Jameson. (Aero/Astro Dept. Stanford University). 8 | # \version 1.0.0 9 | # 10 | # HiFiLES (High Fidelity Large Eddy Simulation). 11 | # Copyright (C) 2013 Aerospace Computing Laboratory. 12 | 13 | import sys,time, os, subprocess, datetime, signal, os.path 14 | 15 | class testcase: 16 | 17 | def __init__(self,tag_in): 18 | 19 | datestamp = time.strftime("%Y%m%d", time.gmtime()) 20 | self.tag = "%s_%s"%(tag_in,datestamp) # Input, string tag that identifies this run 21 | 22 | # Configuration file path/filename 23 | self.cfg_dir = "/home/fpalacios" 24 | self.cfg_file = "default.cfg" 25 | 26 | # The test condition. These must be set after initialization 27 | self.test_iter = 1 28 | self.test_vals = [] 29 | 30 | # These can be optionally varied 31 | self.HiFiLES_dir = "/home/fpalacios" 32 | self.HiFiLES_exec = "default" 33 | self.timeout = 300 34 | self.tol = 0.001 35 | self.outputdir = "/home/fpalacios" 36 | 37 | def run_test(self): 38 | 39 | passed = True 40 | exceed_tol = False 41 | timed_out = False 42 | iter_missing = True 43 | start_solver = True 44 | 45 | # Adjust the number of iterations in the config file 46 | self.do_adjust_iter() 47 | 48 | # Assemble the shell command to run HiFiLES 49 | self.HiFiLES_exec = os.path.join("$HIFILES_RUN", self.HiFiLES_exec) 50 | command_base = "%s %s %s > outputfile"%(self.mpi_cmd, self.HiFiLES_exec, self.cfg_file) 51 | command = "%s"%(command_base) 52 | 53 | # Run HiFiLES 54 | os.chdir(os.path.join('./',self.cfg_dir)) 55 | start = datetime.datetime.now() 56 | print("\nPath at terminal when executing this file") 57 | print(command) 58 | process = subprocess.Popen(command, shell=True) # This line launches HiFiLES 59 | 60 | while process.poll() is None: 61 | time.sleep(0.1) 62 | now = datetime.datetime.now() 63 | if (now - start).seconds> self.timeout: 64 | try: 65 | process.kill() 66 | os.system('killall %s' % self.HiFiLES_exec) # In case of parallel execution 67 | except AttributeError: # popen.kill apparently fails on some versions of subprocess... the killall command should take care of things! 68 | pass 69 | timed_out = True 70 | passed = False 71 | 72 | # Examine the output 73 | f = open('outputfile','r') 74 | output = f.readlines() 75 | delta_vals = [] 76 | sim_vals = [] 77 | if not timed_out: 78 | start_solver = False 79 | for line in output: 80 | if not start_solver: # Don't bother parsing anything before --Setting initial conditions--- 81 | if line.find('Setting initial conditions') > -1: 82 | start_solver=True 83 | else: # Found the --Setting initial conditions--- line; parse the input 84 | raw_data = line.split() 85 | try: 86 | iter_number = int(raw_data[0]) 87 | data = raw_data[1:] # Take the last 4 columns for comparison 88 | except ValueError: 89 | continue 90 | except IndexError: 91 | continue 92 | 93 | if iter_number == self.test_iter: # Found the iteration number we're checking for 94 | iter_missing = False 95 | if not len(self.test_vals)==len(data): # something went wrong... probably bad input 96 | print "Error in test_vals!" 97 | passed = False 98 | break 99 | for j in range(len(data)): 100 | sim_vals.append( float(data[j]) ) 101 | delta_vals.append( abs(float(data[j])-self.test_vals[j]) ) 102 | if delta_vals[j] > self.tol: 103 | exceed_tol = True 104 | passed = False 105 | break 106 | else: 107 | iter_missing = True 108 | 109 | if not start_solver: 110 | passed = False 111 | 112 | if iter_missing: 113 | passed = False 114 | 115 | print '=========================================================\n' 116 | 117 | if passed: 118 | print "%s: PASSED"%self.tag 119 | else: 120 | print "%s: FAILED"%self.tag 121 | 122 | print 'execution command: %s'%command 123 | 124 | if timed_out: 125 | print 'ERROR: Execution timed out. timeout=%d'%self.timeout 126 | 127 | if exceed_tol: 128 | print 'ERROR: Difference between computed input and test_vals exceeded tolerance. TOL=%f'%self.tol 129 | 130 | if not start_solver: 131 | print 'ERROR: The code was not able to get to the "Begin solver" section.' 132 | 133 | if iter_missing: 134 | print 'ERROR: The iteration number %d could not be found.'%self.test_iter 135 | 136 | print 'test_iter=%d, test_vals: '%self.test_iter, 137 | for j in self.test_vals: 138 | print '%f '%j, 139 | print '\n', 140 | 141 | print 'sim_vals: ', 142 | for j in sim_vals: 143 | print '%f '%j, 144 | print '\n', 145 | 146 | print 'delta_vals: ', 147 | for j in delta_vals: 148 | print '%f '%j, 149 | print '\n' 150 | 151 | os.chdir('../../../') 152 | return passed 153 | 154 | def do_adjust_iter(self): 155 | 156 | # Read the cfg file 157 | self.cfg_file = os.path.join(os.environ['HIFILES_HOME'], self.cfg_dir, self.cfg_file) 158 | file_in = open(self.cfg_file, 'r') 159 | lines = file_in.readlines() 160 | file_in.close() 161 | 162 | # Rewrite the file with a .autotest extension 163 | self.cfg_file = "%s.autotest"%self.cfg_file 164 | file_out = open(self.cfg_file,'w') 165 | for line in lines: 166 | if line.find("EXT_ITER")==-1: 167 | file_out.write(line) 168 | else: 169 | file_out.write("EXT_ITER=%d\n"%(self.test_iter+1)) 170 | file_out.close() 171 | 172 | if __name__=="__main__": 173 | '''This program runs HiFiLES and ensures that the output matches specified values. This will be used to do nightly checks to make sure nothing is broken. ''' 174 | 175 | # Build HiFiLES_CFD in serial using the right Makefile.in 176 | # Note that we are hard-coding this for enrico at the moment 177 | # This will eventually be a call to the autoconf stuff 178 | 179 | os.chdir(os.environ['HIFILES_HOME']) 180 | os.system('cp makefiles/makefile.enrico_MPI.in ./makefile.in') 181 | os.system('make clean') 182 | os.system('make') 183 | 184 | os.chdir(os.environ['HIFILES_RUN']) 185 | if not os.path.exists("./HiFiLES"): 186 | print 'Could not build HiFiLES' 187 | sys.exit(1) 188 | 189 | if not os.path.exists("./HiFiLES"): 190 | print 'Could not build HiFiLES' 191 | sys.exit(1) 192 | 193 | os.chdir(os.environ['HIFILES_HOME']) 194 | 195 | ########################## 196 | ### Compressible N-S ### 197 | ########################## 198 | 199 | # Cylinder 200 | cylinder = testcase('cylinder') 201 | cylinder.cfg_dir = "testcases/navier-stokes/cylinder/" 202 | cylinder.cfg_file = "input_cylinder_visc" 203 | cylinder.test_iter = 25 204 | cylinder.test_vals = [0.273009,1.178080,1.268071,15.483935,8.855743,9.092093] 205 | cylinder.mpi_cmd = "mpiexec -np 2" 206 | cylinder.HiFiLES_exec = "HiFiLES" 207 | cylinder.timeout = 1600 208 | cylinder.tol = 0.00001 209 | passed1 = cylinder.run_test() 210 | 211 | # 3D Square Cylinder 212 | sqcyl = testcase('sqcyl') 213 | sqcyl.cfg_dir = "testcases/navier-stokes/square_cylinder/" 214 | sqcyl.cfg_file = "input_sqcyl_wsm_tet" 215 | sqcyl.test_iter = 10 216 | sqcyl.test_vals = [0.644712,2.703915,0.243851,0.141119,16.798187,40.230415,-0.002312,0.000193] 217 | sqcyl.mpi_cmd = "mpiexec -np 4" 218 | sqcyl.HiFiLES_exec = "HiFiLES" 219 | sqcyl.timeout = 1600 220 | sqcyl.tol = 0.00001 221 | passed2 = sqcyl.run_test() 222 | 223 | 224 | if (passed1 and passed2): 225 | sys.exit(0) 226 | else: 227 | sys.exit(1) 228 | 229 | -------------------------------------------------------------------------------- /navier-stokes/flatplate/flatplate_a0-125-2s.neu: -------------------------------------------------------------------------------- 1 | CONTROL INFO 2.3.16 2 | ** GAMBIT NEUTRAL FILE 3 | flatplate_a0-125-2s 4 | PROGRAM: Gambit VERSION: 2.3.16 5 | 6 | NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 7 | 165 140 1 5 2 2 8 | ENDOFSECTION 9 | NODAL COORDINATES 2.3.16 10 | 1 -1.25000000000e+000 0.00000000000e+000 11 | 2 0.00000000000e+000 0.00000000000e+000 12 | 3 -2.04445724425e-001 0.00000000000e+000 13 | 4 -3.33357774164e-002 0.00000000000e+000 14 | 5 -5.33281798204e-003 0.00000000000e+000 15 | 6 -7.50000029076e-004 0.00000000000e+000 16 | 7 -1.25000000000e+000 2.00000000000e+000 17 | 8 0.00000000000e+000 2.00000000000e+000 18 | 9 -2.04445724425e-001 2.00000000000e+000 19 | 10 -3.33357774164e-002 2.00000000000e+000 20 | 11 -5.33281798204e-003 2.00000000000e+000 21 | 12 -7.50000029076e-004 2.00000000000e+000 22 | 13 1.00000000000e+000 0.00000000000e+000 23 | 14 7.50000247605e-004 0.00000000000e+000 24 | 15 2.46600250436e-003 0.00000000000e+000 25 | 16 6.39221953510e-003 0.00000000000e+000 26 | 17 1.53754129498e-002 0.00000000000e+000 27 | 18 3.59289797275e-002 0.00000000000e+000 28 | 19 8.29555868356e-002 0.00000000000e+000 29 | 20 1.90552569880e-001 0.00000000000e+000 30 | 21 4.36734709573e-001 0.00000000000e+000 31 | 22 1.00000000000e+000 2.00000000000e+000 32 | 23 7.50000247605e-004 2.00000000000e+000 33 | 24 2.46600250436e-003 2.00000000000e+000 34 | 25 6.39221953510e-003 2.00000000000e+000 35 | 26 1.53754129498e-002 2.00000000000e+000 36 | 27 3.59289797275e-002 2.00000000000e+000 37 | 28 8.29555868356e-002 2.00000000000e+000 38 | 29 1.90552569880e-001 2.00000000000e+000 39 | 30 4.36734709573e-001 2.00000000000e+000 40 | 31 -1.25000000000e+000 7.49999835375e-004 41 | 32 -1.25000000000e+000 2.43806051533e-003 42 | 33 -1.25000000000e+000 6.23745982827e-003 43 | 34 -1.25000000000e+000 1.47889504888e-002 44 | 35 -1.25000000000e+000 3.40362015658e-002 45 | 36 -1.25000000000e+000 7.73569147285e-002 46 | 37 -1.25000000000e+000 1.74860926154e-001 47 | 38 -1.25000000000e+000 3.94317891427e-001 48 | 39 -1.25000000000e+000 8.88260231873e-001 49 | 40 1.00000000000e+000 7.49999835375e-004 50 | 41 1.00000000000e+000 2.43806051533e-003 51 | 42 1.00000000000e+000 6.23745982827e-003 52 | 43 1.00000000000e+000 1.47889504888e-002 53 | 44 1.00000000000e+000 3.40362015658e-002 54 | 45 1.00000000000e+000 7.73569147285e-002 55 | 46 1.00000000000e+000 1.74860926154e-001 56 | 47 1.00000000000e+000 3.94317891427e-001 57 | 48 1.00000000000e+000 8.88260231873e-001 58 | 49 -2.04445724425e-001 8.88260231873e-001 59 | 50 -3.33357774164e-002 8.88260231873e-001 60 | 51 -5.33281798204e-003 8.88260231873e-001 61 | 52 -7.50000029076e-004 8.88260231873e-001 62 | 53 0.00000000000e+000 8.88260231873e-001 63 | 54 7.50000247605e-004 8.88260231873e-001 64 | 55 2.46600250436e-003 8.88260231873e-001 65 | 56 6.39221953510e-003 8.88260231873e-001 66 | 57 1.53754129498e-002 8.88260231873e-001 67 | 58 3.59289797275e-002 8.88260231873e-001 68 | 59 8.29555868356e-002 8.88260231873e-001 69 | 60 1.90552569880e-001 8.88260231873e-001 70 | 61 4.36734709573e-001 8.88260231873e-001 71 | 62 -2.04445724425e-001 3.94317891427e-001 72 | 63 -3.33357774164e-002 3.94317891427e-001 73 | 64 -5.33281798204e-003 3.94317891427e-001 74 | 65 -7.50000029076e-004 3.94317891427e-001 75 | 66 0.00000000000e+000 3.94317891427e-001 76 | 67 7.50000247605e-004 3.94317891427e-001 77 | 68 2.46600250436e-003 3.94317891427e-001 78 | 69 6.39221953510e-003 3.94317891427e-001 79 | 70 1.53754129498e-002 3.94317891427e-001 80 | 71 3.59289797275e-002 3.94317891427e-001 81 | 72 8.29555868356e-002 3.94317891427e-001 82 | 73 1.90552569880e-001 3.94317891427e-001 83 | 74 4.36734709573e-001 3.94317891427e-001 84 | 75 -2.04445724425e-001 1.74860926154e-001 85 | 76 -3.33357774164e-002 1.74860926154e-001 86 | 77 -5.33281798204e-003 1.74860926154e-001 87 | 78 -7.50000029076e-004 1.74860926154e-001 88 | 79 0.00000000000e+000 1.74860926154e-001 89 | 80 7.50000247605e-004 1.74860926154e-001 90 | 81 2.46600250436e-003 1.74860926154e-001 91 | 82 6.39221953510e-003 1.74860926154e-001 92 | 83 1.53754129498e-002 1.74860926154e-001 93 | 84 3.59289797275e-002 1.74860926154e-001 94 | 85 8.29555868356e-002 1.74860926154e-001 95 | 86 1.90552569880e-001 1.74860926154e-001 96 | 87 4.36734709573e-001 1.74860926154e-001 97 | 88 -2.04445724425e-001 7.73569147285e-002 98 | 89 -3.33357774164e-002 7.73569147285e-002 99 | 90 -5.33281798204e-003 7.73569147285e-002 100 | 91 -7.50000029076e-004 7.73569147285e-002 101 | 92 -1.11022302463e-016 7.73569147285e-002 102 | 93 7.50000247605e-004 7.73569147285e-002 103 | 94 2.46600250436e-003 7.73569147285e-002 104 | 95 6.39221953510e-003 7.73569147285e-002 105 | 96 1.53754129498e-002 7.73569147285e-002 106 | 97 3.59289797275e-002 7.73569147285e-002 107 | 98 8.29555868356e-002 7.73569147285e-002 108 | 99 1.90552569880e-001 7.73569147285e-002 109 | 100 4.36734709573e-001 7.73569147285e-002 110 | 101 -2.04445724425e-001 3.40362015658e-002 111 | 102 -3.33357774164e-002 3.40362015658e-002 112 | 103 -5.33281798204e-003 3.40362015658e-002 113 | 104 -7.50000029076e-004 3.40362015658e-002 114 | 105 0.00000000000e+000 3.40362015658e-002 115 | 106 7.50000247604e-004 3.40362015658e-002 116 | 107 2.46600250436e-003 3.40362015658e-002 117 | 108 6.39221953510e-003 3.40362015658e-002 118 | 109 1.53754129498e-002 3.40362015658e-002 119 | 110 3.59289797275e-002 3.40362015658e-002 120 | 111 8.29555868356e-002 3.40362015658e-002 121 | 112 1.90552569880e-001 3.40362015658e-002 122 | 113 4.36734709573e-001 3.40362015658e-002 123 | 114 -2.04445724425e-001 1.47889504888e-002 124 | 115 -3.33357774164e-002 1.47889504888e-002 125 | 116 -5.33281798204e-003 1.47889504888e-002 126 | 117 -7.50000029076e-004 1.47889504888e-002 127 | 118 -1.11022302463e-016 1.47889504888e-002 128 | 119 7.50000247605e-004 1.47889504888e-002 129 | 120 2.46600250436e-003 1.47889504888e-002 130 | 121 6.39221953510e-003 1.47889504888e-002 131 | 122 1.53754129498e-002 1.47889504888e-002 132 | 123 3.59289797275e-002 1.47889504888e-002 133 | 124 8.29555868356e-002 1.47889504888e-002 134 | 125 1.90552569880e-001 1.47889504888e-002 135 | 126 4.36734709573e-001 1.47889504888e-002 136 | 127 -2.04445724425e-001 6.23745982827e-003 137 | 128 -3.33357774164e-002 6.23745982827e-003 138 | 129 -5.33281798204e-003 6.23745982827e-003 139 | 130 -7.50000029076e-004 6.23745982827e-003 140 | 131 -1.11022302463e-016 6.23745982827e-003 141 | 132 7.50000247605e-004 6.23745982827e-003 142 | 133 2.46600250436e-003 6.23745982827e-003 143 | 134 6.39221953510e-003 6.23745982827e-003 144 | 135 1.53754129498e-002 6.23745982827e-003 145 | 136 3.59289797275e-002 6.23745982827e-003 146 | 137 8.29555868356e-002 6.23745982827e-003 147 | 138 1.90552569880e-001 6.23745982827e-003 148 | 139 4.36734709573e-001 6.23745982827e-003 149 | 140 -2.04445724425e-001 2.43806051533e-003 150 | 141 -3.33357774164e-002 2.43806051533e-003 151 | 142 -5.33281798204e-003 2.43806051533e-003 152 | 143 -7.50000029076e-004 2.43806051533e-003 153 | 144 0.00000000000e+000 2.43806051533e-003 154 | 145 7.50000247605e-004 2.43806051533e-003 155 | 146 2.46600250436e-003 2.43806051533e-003 156 | 147 6.39221953510e-003 2.43806051533e-003 157 | 148 1.53754129498e-002 2.43806051533e-003 158 | 149 3.59289797275e-002 2.43806051533e-003 159 | 150 8.29555868356e-002 2.43806051533e-003 160 | 151 1.90552569880e-001 2.43806051533e-003 161 | 152 4.36734709573e-001 2.43806051533e-003 162 | 153 -2.04445724425e-001 7.49999835375e-004 163 | 154 -3.33357774164e-002 7.49999835375e-004 164 | 155 -5.33281798204e-003 7.49999835375e-004 165 | 156 -7.50000029076e-004 7.49999835375e-004 166 | 157 -1.11022302463e-016 7.49999835375e-004 167 | 158 7.50000247605e-004 7.49999835375e-004 168 | 159 2.46600250436e-003 7.49999835375e-004 169 | 160 6.39221953510e-003 7.49999835375e-004 170 | 161 1.53754129498e-002 7.49999835375e-004 171 | 162 3.59289797275e-002 7.49999835375e-004 172 | 163 8.29555868356e-002 7.49999835375e-004 173 | 164 1.90552569880e-001 7.49999835375e-004 174 | 165 4.36734709573e-001 7.49999835375e-004 175 | ENDOFSECTION 176 | ELEMENTS/CELLS 2.3.16 177 | 1 2 4 7 39 49 9 178 | 2 2 4 39 38 62 49 179 | 3 2 4 38 37 75 62 180 | 4 2 4 37 36 88 75 181 | 5 2 4 36 35 101 88 182 | 6 2 4 35 34 114 101 183 | 7 2 4 34 33 127 114 184 | 8 2 4 33 32 140 127 185 | 9 2 4 32 31 153 140 186 | 10 2 4 31 1 3 153 187 | 11 2 4 9 49 50 10 188 | 12 2 4 49 62 63 50 189 | 13 2 4 62 75 76 63 190 | 14 2 4 75 88 89 76 191 | 15 2 4 88 101 102 89 192 | 16 2 4 101 114 115 102 193 | 17 2 4 114 127 128 115 194 | 18 2 4 127 140 141 128 195 | 19 2 4 140 153 154 141 196 | 20 2 4 153 3 4 154 197 | 21 2 4 10 50 51 11 198 | 22 2 4 50 63 64 51 199 | 23 2 4 63 76 77 64 200 | 24 2 4 76 89 90 77 201 | 25 2 4 89 102 103 90 202 | 26 2 4 102 115 116 103 203 | 27 2 4 115 128 129 116 204 | 28 2 4 128 141 142 129 205 | 29 2 4 141 154 155 142 206 | 30 2 4 154 4 5 155 207 | 31 2 4 11 51 52 12 208 | 32 2 4 51 64 65 52 209 | 33 2 4 64 77 78 65 210 | 34 2 4 77 90 91 78 211 | 35 2 4 90 103 104 91 212 | 36 2 4 103 116 117 104 213 | 37 2 4 116 129 130 117 214 | 38 2 4 129 142 143 130 215 | 39 2 4 142 155 156 143 216 | 40 2 4 155 5 6 156 217 | 41 2 4 12 52 53 8 218 | 42 2 4 52 65 66 53 219 | 43 2 4 65 78 79 66 220 | 44 2 4 78 91 92 79 221 | 45 2 4 91 104 105 92 222 | 46 2 4 104 117 118 105 223 | 47 2 4 117 130 131 118 224 | 48 2 4 130 143 144 131 225 | 49 2 4 143 156 157 144 226 | 50 2 4 156 6 2 157 227 | 51 2 4 8 53 54 23 228 | 52 2 4 53 66 67 54 229 | 53 2 4 66 79 80 67 230 | 54 2 4 79 92 93 80 231 | 55 2 4 92 105 106 93 232 | 56 2 4 105 118 119 106 233 | 57 2 4 118 131 132 119 234 | 58 2 4 131 144 145 132 235 | 59 2 4 144 157 158 145 236 | 60 2 4 157 2 14 158 237 | 61 2 4 23 54 55 24 238 | 62 2 4 54 67 68 55 239 | 63 2 4 67 80 81 68 240 | 64 2 4 80 93 94 81 241 | 65 2 4 93 106 107 94 242 | 66 2 4 106 119 120 107 243 | 67 2 4 119 132 133 120 244 | 68 2 4 132 145 146 133 245 | 69 2 4 145 158 159 146 246 | 70 2 4 158 14 15 159 247 | 71 2 4 24 55 56 25 248 | 72 2 4 55 68 69 56 249 | 73 2 4 68 81 82 69 250 | 74 2 4 81 94 95 82 251 | 75 2 4 94 107 108 95 252 | 76 2 4 107 120 121 108 253 | 77 2 4 120 133 134 121 254 | 78 2 4 133 146 147 134 255 | 79 2 4 146 159 160 147 256 | 80 2 4 159 15 16 160 257 | 81 2 4 25 56 57 26 258 | 82 2 4 56 69 70 57 259 | 83 2 4 69 82 83 70 260 | 84 2 4 82 95 96 83 261 | 85 2 4 95 108 109 96 262 | 86 2 4 108 121 122 109 263 | 87 2 4 121 134 135 122 264 | 88 2 4 134 147 148 135 265 | 89 2 4 147 160 161 148 266 | 90 2 4 160 16 17 161 267 | 91 2 4 26 57 58 27 268 | 92 2 4 57 70 71 58 269 | 93 2 4 70 83 84 71 270 | 94 2 4 83 96 97 84 271 | 95 2 4 96 109 110 97 272 | 96 2 4 109 122 123 110 273 | 97 2 4 122 135 136 123 274 | 98 2 4 135 148 149 136 275 | 99 2 4 148 161 162 149 276 | 100 2 4 161 17 18 162 277 | 101 2 4 27 58 59 28 278 | 102 2 4 58 71 72 59 279 | 103 2 4 71 84 85 72 280 | 104 2 4 84 97 98 85 281 | 105 2 4 97 110 111 98 282 | 106 2 4 110 123 124 111 283 | 107 2 4 123 136 137 124 284 | 108 2 4 136 149 150 137 285 | 109 2 4 149 162 163 150 286 | 110 2 4 162 18 19 163 287 | 111 2 4 28 59 60 29 288 | 112 2 4 59 72 73 60 289 | 113 2 4 72 85 86 73 290 | 114 2 4 85 98 99 86 291 | 115 2 4 98 111 112 99 292 | 116 2 4 111 124 125 112 293 | 117 2 4 124 137 138 125 294 | 118 2 4 137 150 151 138 295 | 119 2 4 150 163 164 151 296 | 120 2 4 163 19 20 164 297 | 121 2 4 29 60 61 30 298 | 122 2 4 60 73 74 61 299 | 123 2 4 73 86 87 74 300 | 124 2 4 86 99 100 87 301 | 125 2 4 99 112 113 100 302 | 126 2 4 112 125 126 113 303 | 127 2 4 125 138 139 126 304 | 128 2 4 138 151 152 139 305 | 129 2 4 151 164 165 152 306 | 130 2 4 164 20 21 165 307 | 131 2 4 30 61 48 22 308 | 132 2 4 61 74 47 48 309 | 133 2 4 74 87 46 47 310 | 134 2 4 87 100 45 46 311 | 135 2 4 100 113 44 45 312 | 136 2 4 113 126 43 44 313 | 137 2 4 126 139 42 43 314 | 138 2 4 139 152 41 42 315 | 139 2 4 152 165 40 41 316 | 140 2 4 165 21 13 40 317 | ENDOFSECTION 318 | ELEMENT GROUP 2.3.16 319 | GROUP: 1 ELEMENTS: 140 MATERIAL: 2 NFLAGS: 1 320 | fluid 321 | 0 322 | 1 2 3 4 5 6 7 8 9 10 323 | 11 12 13 14 15 16 17 18 19 20 324 | 21 22 23 24 25 26 27 28 29 30 325 | 31 32 33 34 35 36 37 38 39 40 326 | 41 42 43 44 45 46 47 48 49 50 327 | 51 52 53 54 55 56 57 58 59 60 328 | 61 62 63 64 65 66 67 68 69 70 329 | 71 72 73 74 75 76 77 78 79 80 330 | 81 82 83 84 85 86 87 88 89 90 331 | 91 92 93 94 95 96 97 98 99 100 332 | 101 102 103 104 105 106 107 108 109 110 333 | 111 112 113 114 115 116 117 118 119 120 334 | 121 122 123 124 125 126 127 128 129 130 335 | 131 132 133 134 135 136 137 138 139 140 336 | ENDOFSECTION 337 | BOUNDARY CONDITIONS 2.3.16 338 | Slip_Wall 1 5 0 6 339 | 10 2 2 340 | 20 2 2 341 | 30 2 2 342 | 40 2 2 343 | 50 2 2 344 | ENDOFSECTION 345 | BOUNDARY CONDITIONS 2.3.16 346 | Isotherm_Fix 1 9 0 6 347 | 60 2 2 348 | 70 2 2 349 | 80 2 2 350 | 90 2 2 351 | 100 2 2 352 | 110 2 2 353 | 120 2 2 354 | 130 2 2 355 | 140 2 2 356 | ENDOFSECTION 357 | BOUNDARY CONDITIONS 2.3.16 358 | Char 1 10 0 6 359 | 10 2 1 360 | 9 2 1 361 | 8 2 1 362 | 7 2 1 363 | 6 2 1 364 | 5 2 1 365 | 4 2 1 366 | 3 2 1 367 | 2 2 1 368 | 1 2 1 369 | ENDOFSECTION 370 | BOUNDARY CONDITIONS 2.3.16 371 | Sub_Out_Simp 1 10 0 6 372 | 140 2 3 373 | 139 2 3 374 | 138 2 3 375 | 137 2 3 376 | 136 2 3 377 | 135 2 3 378 | 134 2 3 379 | 133 2 3 380 | 132 2 3 381 | 131 2 3 382 | ENDOFSECTION 383 | BOUNDARY CONDITIONS 2.3.16 384 | Sub_Out_Simp 1 14 0 6 385 | 51 2 4 386 | 61 2 4 387 | 71 2 4 388 | 81 2 4 389 | 91 2 4 390 | 101 2 4 391 | 111 2 4 392 | 121 2 4 393 | 131 2 4 394 | 1 2 4 395 | 11 2 4 396 | 21 2 4 397 | 31 2 4 398 | 41 2 4 399 | ENDOFSECTION 400 | -------------------------------------------------------------------------------- /navier-stokes/flatplate/flatplate_a1-125-2s.neu: -------------------------------------------------------------------------------- 1 | CONTROL INFO 2.3.16 2 | ** GAMBIT NEUTRAL FILE 3 | flatplate_a0-125-2s 4 | PROGRAM: Gambit VERSION: 2.3.16 5 | 6 | NUMNP NELEM NGRPS NBSETS NDFCD NDFVL 7 | 609 560 1 5 2 2 8 | ENDOFSECTION 9 | NODAL COORDINATES 2.3.16 10 | 1 -1.25000000000e+000 0.00000000000e+000 11 | 2 0.00000000000e+000 0.00000000000e+000 12 | 3 -1.25000000000e+000 2.00000000000e+000 13 | 4 0.00000000000e+000 2.00000000000e+000 14 | 5 1.00000000000e+000 0.00000000000e+000 15 | 6 1.00000000000e+000 2.00000000000e+000 16 | 7 -1.25000000000e+000 3.75000553734e-004 17 | 8 -1.25000000000e+000 9.30241209567e-004 18 | 9 -1.25000000000e+000 1.75235249132e-003 19 | 10 -1.25000000000e+000 2.96960297990e-003 20 | 11 -1.25000000000e+000 4.77191221080e-003 21 | 12 -1.25000000000e+000 7.44048256201e-003 22 | 13 -1.25000000000e+000 1.13916733994e-002 23 | 14 -1.25000000000e+000 1.72419628724e-002 24 | 15 -1.25000000000e+000 2.59041329185e-002 25 | 16 -1.25000000000e+000 3.87296845861e-002 26 | 17 -1.25000000000e+000 5.77197037965e-002 27 | 18 -1.25000000000e+000 8.58370775328e-002 28 | 19 -1.25000000000e+000 1.27468773481e-001 29 | 20 -1.25000000000e+000 1.89110309559e-001 30 | 21 -1.25000000000e+000 2.80379206570e-001 31 | 22 -1.25000000000e+000 4.15515546314e-001 32 | 23 -1.25000000000e+000 6.15603757276e-001 33 | 24 -1.25000000000e+000 9.11862278424e-001 34 | 25 -1.25000000000e+000 1.35051436557e+000 35 | 26 1.00000000000e+000 3.75000553734e-004 36 | 27 1.00000000000e+000 9.30241209567e-004 37 | 28 1.00000000000e+000 1.75235249132e-003 38 | 29 1.00000000000e+000 2.96960297990e-003 39 | 30 1.00000000000e+000 4.77191221080e-003 40 | 31 1.00000000000e+000 7.44048256201e-003 41 | 32 1.00000000000e+000 1.13916733994e-002 42 | 33 1.00000000000e+000 1.72419628724e-002 43 | 34 1.00000000000e+000 2.59041329185e-002 44 | 35 1.00000000000e+000 3.87296845861e-002 45 | 36 1.00000000000e+000 5.77197037965e-002 46 | 37 1.00000000000e+000 8.58370775328e-002 47 | 38 1.00000000000e+000 1.27468773481e-001 48 | 39 1.00000000000e+000 1.89110309559e-001 49 | 40 1.00000000000e+000 2.80379206570e-001 50 | 41 1.00000000000e+000 4.15515546314e-001 51 | 42 1.00000000000e+000 6.15603757276e-001 52 | 43 1.00000000000e+000 9.11862278424e-001 53 | 44 1.00000000000e+000 1.35051436557e+000 54 | 45 -5.40339070378e-001 0.00000000000e+000 55 | 46 -2.33480991438e-001 0.00000000000e+000 56 | 47 -1.00795258462e-001 0.00000000000e+000 57 | 48 -4.34218179587e-002 0.00000000000e+000 58 | 49 -1.86134862608e-002 0.00000000000e+000 59 | 50 -7.88633940968e-003 0.00000000000e+000 60 | 51 -3.24791063640e-003 0.00000000000e+000 61 | 52 -1.24224950549e-003 0.00000000000e+000 62 | 53 -3.74999673994e-004 0.00000000000e+000 63 | 54 -5.40339070378e-001 2.00000000000e+000 64 | 55 -2.33480991438e-001 2.00000000000e+000 65 | 56 -1.00795258462e-001 2.00000000000e+000 66 | 57 -4.34218179587e-002 2.00000000000e+000 67 | 58 -1.86134862608e-002 2.00000000000e+000 68 | 59 -7.88633940968e-003 2.00000000000e+000 69 | 60 -3.24791063640e-003 2.00000000000e+000 70 | 61 -1.24224950549e-003 2.00000000000e+000 71 | 62 -3.74999673994e-004 2.00000000000e+000 72 | 63 3.74999846766e-004 0.00000000000e+000 73 | 64 9.33676046539e-004 0.00000000000e+000 74 | 65 1.76599397649e-003 0.00000000000e+000 75 | 66 3.00598439814e-003 0.00000000000e+000 76 | 67 4.85332685041e-003 0.00000000000e+000 77 | 68 7.60550467077e-003 0.00000000000e+000 78 | 69 1.17057096683e-002 0.00000000000e+000 79 | 70 1.78142106879e-002 0.00000000000e+000 80 | 71 2.69146787691e-002 0.00000000000e+000 81 | 72 4.04725907725e-002 0.00000000000e+000 82 | 73 6.06712197060e-002 0.00000000000e+000 83 | 74 9.07632140108e-002 0.00000000000e+000 84 | 75 1.35594381721e-001 0.00000000000e+000 85 | 76 2.02384026101e-001 0.00000000000e+000 86 | 77 3.01887492644e-001 0.00000000000e+000 87 | 78 4.50128136026e-001 0.00000000000e+000 88 | 79 6.70977611061e-001 0.00000000000e+000 89 | 80 3.74999846766e-004 2.00000000000e+000 90 | 81 9.33676046539e-004 2.00000000000e+000 91 | 82 1.76599397649e-003 2.00000000000e+000 92 | 83 3.00598439814e-003 2.00000000000e+000 93 | 84 4.85332685041e-003 2.00000000000e+000 94 | 85 7.60550467077e-003 2.00000000000e+000 95 | 86 1.17057096683e-002 2.00000000000e+000 96 | 87 1.78142106879e-002 2.00000000000e+000 97 | 88 2.69146787691e-002 2.00000000000e+000 98 | 89 4.04725907725e-002 2.00000000000e+000 99 | 90 6.06712197060e-002 2.00000000000e+000 100 | 91 9.07632140108e-002 2.00000000000e+000 101 | 92 1.35594381721e-001 2.00000000000e+000 102 | 93 2.02384026101e-001 2.00000000000e+000 103 | 94 3.01887492644e-001 2.00000000000e+000 104 | 95 4.50128136026e-001 2.00000000000e+000 105 | 96 6.70977611061e-001 2.00000000000e+000 106 | 97 -5.40339070378e-001 1.35051436557e+000 107 | 98 -2.33480991438e-001 1.35051436557e+000 108 | 99 -1.00795258462e-001 1.35051436557e+000 109 | 100 -4.34218179587e-002 1.35051436557e+000 110 | 101 -1.86134862608e-002 1.35051436557e+000 111 | 102 -7.88633940968e-003 1.35051436557e+000 112 | 103 -3.24791063640e-003 1.35051436557e+000 113 | 104 -1.24224950549e-003 1.35051436557e+000 114 | 105 -3.74999673994e-004 1.35051436557e+000 115 | 106 -1.66533453694e-016 1.35051436557e+000 116 | 107 3.74999846766e-004 1.35051436557e+000 117 | 108 9.33676046539e-004 1.35051436557e+000 118 | 109 1.76599397649e-003 1.35051436557e+000 119 | 110 3.00598439814e-003 1.35051436557e+000 120 | 111 4.85332685041e-003 1.35051436557e+000 121 | 112 7.60550467077e-003 1.35051436557e+000 122 | 113 1.17057096683e-002 1.35051436557e+000 123 | 114 1.78142106879e-002 1.35051436557e+000 124 | 115 2.69146787691e-002 1.35051436557e+000 125 | 116 4.04725907725e-002 1.35051436557e+000 126 | 117 6.06712197060e-002 1.35051436557e+000 127 | 118 9.07632140108e-002 1.35051436557e+000 128 | 119 1.35594381721e-001 1.35051436557e+000 129 | 120 2.02384026101e-001 1.35051436557e+000 130 | 121 3.01887492644e-001 1.35051436557e+000 131 | 122 4.50128136026e-001 1.35051436557e+000 132 | 123 6.70977611061e-001 1.35051436557e+000 133 | 124 -5.40339070378e-001 9.11862278424e-001 134 | 125 -2.33480991438e-001 9.11862278424e-001 135 | 126 -1.00795258462e-001 9.11862278424e-001 136 | 127 -4.34218179587e-002 9.11862278424e-001 137 | 128 -1.86134862608e-002 9.11862278424e-001 138 | 129 -7.88633940968e-003 9.11862278424e-001 139 | 130 -3.24791063640e-003 9.11862278424e-001 140 | 131 -1.24224950549e-003 9.11862278424e-001 141 | 132 -3.74999673994e-004 9.11862278424e-001 142 | 133 -5.55111512313e-017 9.11862278424e-001 143 | 134 3.74999846766e-004 9.11862278424e-001 144 | 135 9.33676046539e-004 9.11862278424e-001 145 | 136 1.76599397649e-003 9.11862278424e-001 146 | 137 3.00598439814e-003 9.11862278424e-001 147 | 138 4.85332685041e-003 9.11862278424e-001 148 | 139 7.60550467077e-003 9.11862278424e-001 149 | 140 1.17057096683e-002 9.11862278424e-001 150 | 141 1.78142106879e-002 9.11862278424e-001 151 | 142 2.69146787691e-002 9.11862278424e-001 152 | 143 4.04725907725e-002 9.11862278424e-001 153 | 144 6.06712197060e-002 9.11862278424e-001 154 | 145 9.07632140108e-002 9.11862278424e-001 155 | 146 1.35594381721e-001 9.11862278424e-001 156 | 147 2.02384026101e-001 9.11862278424e-001 157 | 148 3.01887492644e-001 9.11862278424e-001 158 | 149 4.50128136026e-001 9.11862278424e-001 159 | 150 6.70977611061e-001 9.11862278424e-001 160 | 151 -5.40339070378e-001 6.15603757276e-001 161 | 152 -2.33480991438e-001 6.15603757276e-001 162 | 153 -1.00795258462e-001 6.15603757276e-001 163 | 154 -4.34218179587e-002 6.15603757276e-001 164 | 155 -1.86134862608e-002 6.15603757276e-001 165 | 156 -7.88633940968e-003 6.15603757276e-001 166 | 157 -3.24791063640e-003 6.15603757276e-001 167 | 158 -1.24224950549e-003 6.15603757276e-001 168 | 159 -3.74999673994e-004 6.15603757276e-001 169 | 160 -5.55111512313e-017 6.15603757276e-001 170 | 161 3.74999846766e-004 6.15603757276e-001 171 | 162 9.33676046539e-004 6.15603757276e-001 172 | 163 1.76599397649e-003 6.15603757276e-001 173 | 164 3.00598439814e-003 6.15603757276e-001 174 | 165 4.85332685041e-003 6.15603757276e-001 175 | 166 7.60550467077e-003 6.15603757276e-001 176 | 167 1.17057096683e-002 6.15603757276e-001 177 | 168 1.78142106879e-002 6.15603757276e-001 178 | 169 2.69146787691e-002 6.15603757276e-001 179 | 170 4.04725907725e-002 6.15603757276e-001 180 | 171 6.06712197060e-002 6.15603757276e-001 181 | 172 9.07632140108e-002 6.15603757276e-001 182 | 173 1.35594381721e-001 6.15603757276e-001 183 | 174 2.02384026101e-001 6.15603757276e-001 184 | 175 3.01887492644e-001 6.15603757276e-001 185 | 176 4.50128136026e-001 6.15603757276e-001 186 | 177 6.70977611061e-001 6.15603757276e-001 187 | 178 -5.40339070378e-001 4.15515546314e-001 188 | 179 -2.33480991438e-001 4.15515546314e-001 189 | 180 -1.00795258462e-001 4.15515546314e-001 190 | 181 -4.34218179587e-002 4.15515546314e-001 191 | 182 -1.86134862608e-002 4.15515546314e-001 192 | 183 -7.88633940968e-003 4.15515546314e-001 193 | 184 -3.24791063640e-003 4.15515546314e-001 194 | 185 -1.24224950549e-003 4.15515546314e-001 195 | 186 -3.74999673994e-004 4.15515546314e-001 196 | 187 -5.55111512313e-017 4.15515546314e-001 197 | 188 3.74999846766e-004 4.15515546314e-001 198 | 189 9.33676046539e-004 4.15515546314e-001 199 | 190 1.76599397649e-003 4.15515546314e-001 200 | 191 3.00598439814e-003 4.15515546314e-001 201 | 192 4.85332685041e-003 4.15515546314e-001 202 | 193 7.60550467077e-003 4.15515546314e-001 203 | 194 1.17057096683e-002 4.15515546314e-001 204 | 195 1.78142106879e-002 4.15515546314e-001 205 | 196 2.69146787691e-002 4.15515546314e-001 206 | 197 4.04725907725e-002 4.15515546314e-001 207 | 198 6.06712197060e-002 4.15515546314e-001 208 | 199 9.07632140108e-002 4.15515546314e-001 209 | 200 1.35594381721e-001 4.15515546314e-001 210 | 201 2.02384026101e-001 4.15515546314e-001 211 | 202 3.01887492644e-001 4.15515546314e-001 212 | 203 4.50128136026e-001 4.15515546314e-001 213 | 204 6.70977611061e-001 4.15515546314e-001 214 | 205 -5.40339070378e-001 2.80379206570e-001 215 | 206 -2.33480991438e-001 2.80379206570e-001 216 | 207 -1.00795258462e-001 2.80379206570e-001 217 | 208 -4.34218179587e-002 2.80379206570e-001 218 | 209 -1.86134862608e-002 2.80379206570e-001 219 | 210 -7.88633940968e-003 2.80379206570e-001 220 | 211 -3.24791063640e-003 2.80379206570e-001 221 | 212 -1.24224950549e-003 2.80379206570e-001 222 | 213 -3.74999673994e-004 2.80379206570e-001 223 | 214 0.00000000000e+000 2.80379206570e-001 224 | 215 3.74999846766e-004 2.80379206570e-001 225 | 216 9.33676046539e-004 2.80379206570e-001 226 | 217 1.76599397649e-003 2.80379206570e-001 227 | 218 3.00598439814e-003 2.80379206570e-001 228 | 219 4.85332685041e-003 2.80379206570e-001 229 | 220 7.60550467077e-003 2.80379206570e-001 230 | 221 1.17057096683e-002 2.80379206570e-001 231 | 222 1.78142106879e-002 2.80379206570e-001 232 | 223 2.69146787691e-002 2.80379206570e-001 233 | 224 4.04725907725e-002 2.80379206570e-001 234 | 225 6.06712197060e-002 2.80379206570e-001 235 | 226 9.07632140108e-002 2.80379206570e-001 236 | 227 1.35594381721e-001 2.80379206570e-001 237 | 228 2.02384026101e-001 2.80379206570e-001 238 | 229 3.01887492644e-001 2.80379206570e-001 239 | 230 4.50128136026e-001 2.80379206570e-001 240 | 231 6.70977611061e-001 2.80379206570e-001 241 | 232 -5.40339070378e-001 1.89110309559e-001 242 | 233 -2.33480991438e-001 1.89110309559e-001 243 | 234 -1.00795258462e-001 1.89110309559e-001 244 | 235 -4.34218179587e-002 1.89110309559e-001 245 | 236 -1.86134862608e-002 1.89110309559e-001 246 | 237 -7.88633940968e-003 1.89110309559e-001 247 | 238 -3.24791063640e-003 1.89110309559e-001 248 | 239 -1.24224950549e-003 1.89110309559e-001 249 | 240 -3.74999673994e-004 1.89110309559e-001 250 | 241 0.00000000000e+000 1.89110309559e-001 251 | 242 3.74999846766e-004 1.89110309559e-001 252 | 243 9.33676046539e-004 1.89110309559e-001 253 | 244 1.76599397649e-003 1.89110309559e-001 254 | 245 3.00598439814e-003 1.89110309559e-001 255 | 246 4.85332685041e-003 1.89110309559e-001 256 | 247 7.60550467077e-003 1.89110309559e-001 257 | 248 1.17057096683e-002 1.89110309559e-001 258 | 249 1.78142106879e-002 1.89110309559e-001 259 | 250 2.69146787691e-002 1.89110309559e-001 260 | 251 4.04725907725e-002 1.89110309559e-001 261 | 252 6.06712197060e-002 1.89110309559e-001 262 | 253 9.07632140108e-002 1.89110309559e-001 263 | 254 1.35594381721e-001 1.89110309559e-001 264 | 255 2.02384026101e-001 1.89110309559e-001 265 | 256 3.01887492644e-001 1.89110309559e-001 266 | 257 4.50128136026e-001 1.89110309559e-001 267 | 258 6.70977611061e-001 1.89110309559e-001 268 | 259 -5.40339070378e-001 1.27468773481e-001 269 | 260 -2.33480991438e-001 1.27468773481e-001 270 | 261 -1.00795258462e-001 1.27468773481e-001 271 | 262 -4.34218179587e-002 1.27468773481e-001 272 | 263 -1.86134862608e-002 1.27468773481e-001 273 | 264 -7.88633940968e-003 1.27468773481e-001 274 | 265 -3.24791063640e-003 1.27468773481e-001 275 | 266 -1.24224950549e-003 1.27468773481e-001 276 | 267 -3.74999673994e-004 1.27468773481e-001 277 | 268 -1.11022302463e-016 1.27468773481e-001 278 | 269 3.74999846766e-004 1.27468773481e-001 279 | 270 9.33676046539e-004 1.27468773481e-001 280 | 271 1.76599397649e-003 1.27468773481e-001 281 | 272 3.00598439814e-003 1.27468773481e-001 282 | 273 4.85332685041e-003 1.27468773481e-001 283 | 274 7.60550467077e-003 1.27468773481e-001 284 | 275 1.17057096683e-002 1.27468773481e-001 285 | 276 1.78142106879e-002 1.27468773481e-001 286 | 277 2.69146787691e-002 1.27468773481e-001 287 | 278 4.04725907725e-002 1.27468773481e-001 288 | 279 6.06712197060e-002 1.27468773481e-001 289 | 280 9.07632140108e-002 1.27468773481e-001 290 | 281 1.35594381721e-001 1.27468773481e-001 291 | 282 2.02384026101e-001 1.27468773481e-001 292 | 283 3.01887492644e-001 1.27468773481e-001 293 | 284 4.50128136026e-001 1.27468773481e-001 294 | 285 6.70977611061e-001 1.27468773481e-001 295 | 286 -5.40339070378e-001 8.58370775328e-002 296 | 287 -2.33480991438e-001 8.58370775328e-002 297 | 288 -1.00795258462e-001 8.58370775328e-002 298 | 289 -4.34218179587e-002 8.58370775328e-002 299 | 290 -1.86134862608e-002 8.58370775328e-002 300 | 291 -7.88633940968e-003 8.58370775328e-002 301 | 292 -3.24791063640e-003 8.58370775328e-002 302 | 293 -1.24224950549e-003 8.58370775328e-002 303 | 294 -3.74999673994e-004 8.58370775328e-002 304 | 295 -1.11022302463e-016 8.58370775328e-002 305 | 296 3.74999846766e-004 8.58370775328e-002 306 | 297 9.33676046539e-004 8.58370775328e-002 307 | 298 1.76599397649e-003 8.58370775328e-002 308 | 299 3.00598439814e-003 8.58370775328e-002 309 | 300 4.85332685041e-003 8.58370775328e-002 310 | 301 7.60550467077e-003 8.58370775328e-002 311 | 302 1.17057096683e-002 8.58370775328e-002 312 | 303 1.78142106879e-002 8.58370775328e-002 313 | 304 2.69146787691e-002 8.58370775328e-002 314 | 305 4.04725907725e-002 8.58370775328e-002 315 | 306 6.06712197060e-002 8.58370775328e-002 316 | 307 9.07632140108e-002 8.58370775328e-002 317 | 308 1.35594381721e-001 8.58370775328e-002 318 | 309 2.02384026101e-001 8.58370775328e-002 319 | 310 3.01887492644e-001 8.58370775328e-002 320 | 311 4.50128136026e-001 8.58370775328e-002 321 | 312 6.70977611061e-001 8.58370775328e-002 322 | 313 -5.40339070378e-001 5.77197037965e-002 323 | 314 -2.33480991438e-001 5.77197037965e-002 324 | 315 -1.00795258462e-001 5.77197037965e-002 325 | 316 -4.34218179587e-002 5.77197037965e-002 326 | 317 -1.86134862608e-002 5.77197037965e-002 327 | 318 -7.88633940968e-003 5.77197037965e-002 328 | 319 -3.24791063640e-003 5.77197037965e-002 329 | 320 -1.24224950549e-003 5.77197037965e-002 330 | 321 -3.74999673994e-004 5.77197037965e-002 331 | 322 0.00000000000e+000 5.77197037965e-002 332 | 323 3.74999846766e-004 5.77197037965e-002 333 | 324 9.33676046539e-004 5.77197037965e-002 334 | 325 1.76599397649e-003 5.77197037965e-002 335 | 326 3.00598439814e-003 5.77197037965e-002 336 | 327 4.85332685041e-003 5.77197037965e-002 337 | 328 7.60550467077e-003 5.77197037965e-002 338 | 329 1.17057096683e-002 5.77197037965e-002 339 | 330 1.78142106879e-002 5.77197037965e-002 340 | 331 2.69146787691e-002 5.77197037965e-002 341 | 332 4.04725907725e-002 5.77197037965e-002 342 | 333 6.06712197060e-002 5.77197037965e-002 343 | 334 9.07632140108e-002 5.77197037965e-002 344 | 335 1.35594381721e-001 5.77197037965e-002 345 | 336 2.02384026101e-001 5.77197037965e-002 346 | 337 3.01887492644e-001 5.77197037965e-002 347 | 338 4.50128136026e-001 5.77197037965e-002 348 | 339 6.70977611061e-001 5.77197037965e-002 349 | 340 -5.40339070378e-001 3.87296845861e-002 350 | 341 -2.33480991438e-001 3.87296845861e-002 351 | 342 -1.00795258462e-001 3.87296845861e-002 352 | 343 -4.34218179587e-002 3.87296845861e-002 353 | 344 -1.86134862608e-002 3.87296845861e-002 354 | 345 -7.88633940968e-003 3.87296845861e-002 355 | 346 -3.24791063640e-003 3.87296845861e-002 356 | 347 -1.24224950549e-003 3.87296845861e-002 357 | 348 -3.74999673994e-004 3.87296845861e-002 358 | 349 0.00000000000e+000 3.87296845861e-002 359 | 350 3.74999846766e-004 3.87296845861e-002 360 | 351 9.33676046539e-004 3.87296845861e-002 361 | 352 1.76599397649e-003 3.87296845861e-002 362 | 353 3.00598439814e-003 3.87296845861e-002 363 | 354 4.85332685041e-003 3.87296845861e-002 364 | 355 7.60550467077e-003 3.87296845861e-002 365 | 356 1.17057096683e-002 3.87296845861e-002 366 | 357 1.78142106879e-002 3.87296845861e-002 367 | 358 2.69146787691e-002 3.87296845861e-002 368 | 359 4.04725907725e-002 3.87296845861e-002 369 | 360 6.06712197060e-002 3.87296845861e-002 370 | 361 9.07632140108e-002 3.87296845861e-002 371 | 362 1.35594381721e-001 3.87296845861e-002 372 | 363 2.02384026101e-001 3.87296845861e-002 373 | 364 3.01887492644e-001 3.87296845861e-002 374 | 365 4.50128136026e-001 3.87296845861e-002 375 | 366 6.70977611061e-001 3.87296845861e-002 376 | 367 -5.40339070378e-001 2.59041329185e-002 377 | 368 -2.33480991438e-001 2.59041329185e-002 378 | 369 -1.00795258462e-001 2.59041329185e-002 379 | 370 -4.34218179587e-002 2.59041329185e-002 380 | 371 -1.86134862608e-002 2.59041329185e-002 381 | 372 -7.88633940968e-003 2.59041329185e-002 382 | 373 -3.24791063640e-003 2.59041329185e-002 383 | 374 -1.24224950549e-003 2.59041329185e-002 384 | 375 -3.74999673994e-004 2.59041329185e-002 385 | 376 0.00000000000e+000 2.59041329185e-002 386 | 377 3.74999846766e-004 2.59041329185e-002 387 | 378 9.33676046539e-004 2.59041329185e-002 388 | 379 1.76599397649e-003 2.59041329185e-002 389 | 380 3.00598439814e-003 2.59041329185e-002 390 | 381 4.85332685041e-003 2.59041329185e-002 391 | 382 7.60550467077e-003 2.59041329185e-002 392 | 383 1.17057096683e-002 2.59041329185e-002 393 | 384 1.78142106879e-002 2.59041329185e-002 394 | 385 2.69146787691e-002 2.59041329185e-002 395 | 386 4.04725907725e-002 2.59041329185e-002 396 | 387 6.06712197060e-002 2.59041329185e-002 397 | 388 9.07632140108e-002 2.59041329185e-002 398 | 389 1.35594381721e-001 2.59041329185e-002 399 | 390 2.02384026101e-001 2.59041329185e-002 400 | 391 3.01887492644e-001 2.59041329185e-002 401 | 392 4.50128136026e-001 2.59041329185e-002 402 | 393 6.70977611061e-001 2.59041329185e-002 403 | 394 -5.40339070378e-001 1.72419628724e-002 404 | 395 -2.33480991438e-001 1.72419628724e-002 405 | 396 -1.00795258462e-001 1.72419628724e-002 406 | 397 -4.34218179587e-002 1.72419628724e-002 407 | 398 -1.86134862608e-002 1.72419628724e-002 408 | 399 -7.88633940968e-003 1.72419628724e-002 409 | 400 -3.24791063640e-003 1.72419628724e-002 410 | 401 -1.24224950549e-003 1.72419628724e-002 411 | 402 -3.74999673994e-004 1.72419628724e-002 412 | 403 0.00000000000e+000 1.72419628724e-002 413 | 404 3.74999846766e-004 1.72419628724e-002 414 | 405 9.33676046539e-004 1.72419628724e-002 415 | 406 1.76599397649e-003 1.72419628724e-002 416 | 407 3.00598439814e-003 1.72419628724e-002 417 | 408 4.85332685041e-003 1.72419628724e-002 418 | 409 7.60550467077e-003 1.72419628724e-002 419 | 410 1.17057096683e-002 1.72419628724e-002 420 | 411 1.78142106879e-002 1.72419628724e-002 421 | 412 2.69146787691e-002 1.72419628724e-002 422 | 413 4.04725907725e-002 1.72419628724e-002 423 | 414 6.06712197060e-002 1.72419628724e-002 424 | 415 9.07632140108e-002 1.72419628724e-002 425 | 416 1.35594381721e-001 1.72419628724e-002 426 | 417 2.02384026101e-001 1.72419628724e-002 427 | 418 3.01887492644e-001 1.72419628724e-002 428 | 419 4.50128136026e-001 1.72419628724e-002 429 | 420 6.70977611061e-001 1.72419628724e-002 430 | 421 -5.40339070378e-001 1.13916733994e-002 431 | 422 -2.33480991438e-001 1.13916733994e-002 432 | 423 -1.00795258462e-001 1.13916733994e-002 433 | 424 -4.34218179587e-002 1.13916733994e-002 434 | 425 -1.86134862608e-002 1.13916733994e-002 435 | 426 -7.88633940968e-003 1.13916733994e-002 436 | 427 -3.24791063640e-003 1.13916733994e-002 437 | 428 -1.24224950549e-003 1.13916733994e-002 438 | 429 -3.74999673994e-004 1.13916733994e-002 439 | 430 0.00000000000e+000 1.13916733994e-002 440 | 431 3.74999846766e-004 1.13916733994e-002 441 | 432 9.33676046539e-004 1.13916733994e-002 442 | 433 1.76599397649e-003 1.13916733994e-002 443 | 434 3.00598439814e-003 1.13916733994e-002 444 | 435 4.85332685041e-003 1.13916733994e-002 445 | 436 7.60550467077e-003 1.13916733994e-002 446 | 437 1.17057096683e-002 1.13916733994e-002 447 | 438 1.78142106879e-002 1.13916733994e-002 448 | 439 2.69146787691e-002 1.13916733994e-002 449 | 440 4.04725907725e-002 1.13916733994e-002 450 | 441 6.06712197060e-002 1.13916733994e-002 451 | 442 9.07632140108e-002 1.13916733994e-002 452 | 443 1.35594381721e-001 1.13916733994e-002 453 | 444 2.02384026101e-001 1.13916733994e-002 454 | 445 3.01887492644e-001 1.13916733994e-002 455 | 446 4.50128136026e-001 1.13916733994e-002 456 | 447 6.70977611061e-001 1.13916733994e-002 457 | 448 -5.40339070378e-001 7.44048256201e-003 458 | 449 -2.33480991438e-001 7.44048256201e-003 459 | 450 -1.00795258462e-001 7.44048256201e-003 460 | 451 -4.34218179587e-002 7.44048256201e-003 461 | 452 -1.86134862608e-002 7.44048256201e-003 462 | 453 -7.88633940968e-003 7.44048256201e-003 463 | 454 -3.24791063640e-003 7.44048256201e-003 464 | 455 -1.24224950549e-003 7.44048256201e-003 465 | 456 -3.74999673994e-004 7.44048256201e-003 466 | 457 0.00000000000e+000 7.44048256201e-003 467 | 458 3.74999846766e-004 7.44048256201e-003 468 | 459 9.33676046539e-004 7.44048256201e-003 469 | 460 1.76599397649e-003 7.44048256201e-003 470 | 461 3.00598439814e-003 7.44048256201e-003 471 | 462 4.85332685041e-003 7.44048256201e-003 472 | 463 7.60550467077e-003 7.44048256201e-003 473 | 464 1.17057096683e-002 7.44048256201e-003 474 | 465 1.78142106879e-002 7.44048256201e-003 475 | 466 2.69146787691e-002 7.44048256201e-003 476 | 467 4.04725907725e-002 7.44048256201e-003 477 | 468 6.06712197060e-002 7.44048256201e-003 478 | 469 9.07632140108e-002 7.44048256201e-003 479 | 470 1.35594381721e-001 7.44048256201e-003 480 | 471 2.02384026101e-001 7.44048256201e-003 481 | 472 3.01887492644e-001 7.44048256201e-003 482 | 473 4.50128136026e-001 7.44048256201e-003 483 | 474 6.70977611061e-001 7.44048256201e-003 484 | 475 -5.40339070378e-001 4.77191221080e-003 485 | 476 -2.33480991438e-001 4.77191221080e-003 486 | 477 -1.00795258462e-001 4.77191221080e-003 487 | 478 -4.34218179587e-002 4.77191221080e-003 488 | 479 -1.86134862608e-002 4.77191221080e-003 489 | 480 -7.88633940968e-003 4.77191221080e-003 490 | 481 -3.24791063640e-003 4.77191221080e-003 491 | 482 -1.24224950549e-003 4.77191221080e-003 492 | 483 -3.74999673994e-004 4.77191221080e-003 493 | 484 0.00000000000e+000 4.77191221080e-003 494 | 485 3.74999846766e-004 4.77191221080e-003 495 | 486 9.33676046539e-004 4.77191221080e-003 496 | 487 1.76599397649e-003 4.77191221080e-003 497 | 488 3.00598439814e-003 4.77191221080e-003 498 | 489 4.85332685041e-003 4.77191221080e-003 499 | 490 7.60550467077e-003 4.77191221080e-003 500 | 491 1.17057096683e-002 4.77191221080e-003 501 | 492 1.78142106879e-002 4.77191221080e-003 502 | 493 2.69146787691e-002 4.77191221080e-003 503 | 494 4.04725907725e-002 4.77191221080e-003 504 | 495 6.06712197060e-002 4.77191221080e-003 505 | 496 9.07632140108e-002 4.77191221080e-003 506 | 497 1.35594381721e-001 4.77191221080e-003 507 | 498 2.02384026101e-001 4.77191221080e-003 508 | 499 3.01887492644e-001 4.77191221080e-003 509 | 500 4.50128136026e-001 4.77191221080e-003 510 | 501 6.70977611061e-001 4.77191221080e-003 511 | 502 -5.40339070378e-001 2.96960297990e-003 512 | 503 -2.33480991438e-001 2.96960297990e-003 513 | 504 -1.00795258462e-001 2.96960297990e-003 514 | 505 -4.34218179587e-002 2.96960297990e-003 515 | 506 -1.86134862608e-002 2.96960297990e-003 516 | 507 -7.88633940968e-003 2.96960297990e-003 517 | 508 -3.24791063640e-003 2.96960297990e-003 518 | 509 -1.24224950549e-003 2.96960297990e-003 519 | 510 -3.74999673994e-004 2.96960297990e-003 520 | 511 -1.11022302463e-016 2.96960297990e-003 521 | 512 3.74999846766e-004 2.96960297990e-003 522 | 513 9.33676046539e-004 2.96960297990e-003 523 | 514 1.76599397649e-003 2.96960297990e-003 524 | 515 3.00598439814e-003 2.96960297990e-003 525 | 516 4.85332685041e-003 2.96960297990e-003 526 | 517 7.60550467077e-003 2.96960297990e-003 527 | 518 1.17057096683e-002 2.96960297990e-003 528 | 519 1.78142106879e-002 2.96960297990e-003 529 | 520 2.69146787691e-002 2.96960297990e-003 530 | 521 4.04725907725e-002 2.96960297990e-003 531 | 522 6.06712197060e-002 2.96960297990e-003 532 | 523 9.07632140108e-002 2.96960297990e-003 533 | 524 1.35594381721e-001 2.96960297990e-003 534 | 525 2.02384026101e-001 2.96960297990e-003 535 | 526 3.01887492644e-001 2.96960297990e-003 536 | 527 4.50128136026e-001 2.96960297990e-003 537 | 528 6.70977611061e-001 2.96960297990e-003 538 | 529 -5.40339070378e-001 1.75235249132e-003 539 | 530 -2.33480991438e-001 1.75235249132e-003 540 | 531 -1.00795258462e-001 1.75235249132e-003 541 | 532 -4.34218179587e-002 1.75235249132e-003 542 | 533 -1.86134862608e-002 1.75235249132e-003 543 | 534 -7.88633940968e-003 1.75235249132e-003 544 | 535 -3.24791063640e-003 1.75235249132e-003 545 | 536 -1.24224950549e-003 1.75235249132e-003 546 | 537 -3.74999673994e-004 1.75235249132e-003 547 | 538 -1.11022302463e-016 1.75235249132e-003 548 | 539 3.74999846766e-004 1.75235249132e-003 549 | 540 9.33676046539e-004 1.75235249132e-003 550 | 541 1.76599397649e-003 1.75235249132e-003 551 | 542 3.00598439814e-003 1.75235249132e-003 552 | 543 4.85332685041e-003 1.75235249132e-003 553 | 544 7.60550467077e-003 1.75235249132e-003 554 | 545 1.17057096683e-002 1.75235249132e-003 555 | 546 1.78142106879e-002 1.75235249132e-003 556 | 547 2.69146787691e-002 1.75235249132e-003 557 | 548 4.04725907725e-002 1.75235249132e-003 558 | 549 6.06712197060e-002 1.75235249132e-003 559 | 550 9.07632140108e-002 1.75235249132e-003 560 | 551 1.35594381721e-001 1.75235249132e-003 561 | 552 2.02384026101e-001 1.75235249132e-003 562 | 553 3.01887492644e-001 1.75235249132e-003 563 | 554 4.50128136026e-001 1.75235249132e-003 564 | 555 6.70977611061e-001 1.75235249132e-003 565 | 556 -5.40339070378e-001 9.30241209567e-004 566 | 557 -2.33480991438e-001 9.30241209567e-004 567 | 558 -1.00795258462e-001 9.30241209567e-004 568 | 559 -4.34218179587e-002 9.30241209567e-004 569 | 560 -1.86134862608e-002 9.30241209567e-004 570 | 561 -7.88633940968e-003 9.30241209567e-004 571 | 562 -3.24791063640e-003 9.30241209567e-004 572 | 563 -1.24224950549e-003 9.30241209567e-004 573 | 564 -3.74999673994e-004 9.30241209567e-004 574 | 565 -1.11022302463e-016 9.30241209567e-004 575 | 566 3.74999846766e-004 9.30241209567e-004 576 | 567 9.33676046539e-004 9.30241209567e-004 577 | 568 1.76599397649e-003 9.30241209567e-004 578 | 569 3.00598439814e-003 9.30241209567e-004 579 | 570 4.85332685041e-003 9.30241209567e-004 580 | 571 7.60550467077e-003 9.30241209567e-004 581 | 572 1.17057096683e-002 9.30241209567e-004 582 | 573 1.78142106879e-002 9.30241209567e-004 583 | 574 2.69146787691e-002 9.30241209567e-004 584 | 575 4.04725907725e-002 9.30241209567e-004 585 | 576 6.06712197060e-002 9.30241209567e-004 586 | 577 9.07632140108e-002 9.30241209567e-004 587 | 578 1.35594381721e-001 9.30241209567e-004 588 | 579 2.02384026101e-001 9.30241209567e-004 589 | 580 3.01887492644e-001 9.30241209567e-004 590 | 581 4.50128136026e-001 9.30241209567e-004 591 | 582 6.70977611061e-001 9.30241209567e-004 592 | 583 -5.40339070378e-001 3.75000553734e-004 593 | 584 -2.33480991438e-001 3.75000553734e-004 594 | 585 -1.00795258462e-001 3.75000553734e-004 595 | 586 -4.34218179587e-002 3.75000553734e-004 596 | 587 -1.86134862608e-002 3.75000553734e-004 597 | 588 -7.88633940968e-003 3.75000553734e-004 598 | 589 -3.24791063640e-003 3.75000553734e-004 599 | 590 -1.24224950549e-003 3.75000553734e-004 600 | 591 -3.74999673994e-004 3.75000553734e-004 601 | 592 0.00000000000e+000 3.75000553734e-004 602 | 593 3.74999846766e-004 3.75000553734e-004 603 | 594 9.33676046539e-004 3.75000553734e-004 604 | 595 1.76599397649e-003 3.75000553734e-004 605 | 596 3.00598439814e-003 3.75000553734e-004 606 | 597 4.85332685041e-003 3.75000553734e-004 607 | 598 7.60550467077e-003 3.75000553734e-004 608 | 599 1.17057096683e-002 3.75000553734e-004 609 | 600 1.78142106879e-002 3.75000553734e-004 610 | 601 2.69146787691e-002 3.75000553734e-004 611 | 602 4.04725907725e-002 3.75000553734e-004 612 | 603 6.06712197060e-002 3.75000553734e-004 613 | 604 9.07632140108e-002 3.75000553734e-004 614 | 605 1.35594381721e-001 3.75000553734e-004 615 | 606 2.02384026101e-001 3.75000553734e-004 616 | 607 3.01887492644e-001 3.75000553734e-004 617 | 608 4.50128136026e-001 3.75000553734e-004 618 | 609 6.70977611061e-001 3.75000553734e-004 619 | ENDOFSECTION 620 | ELEMENTS/CELLS 2.3.16 621 | 1 2 4 3 25 97 54 622 | 2 2 4 25 24 124 97 623 | 3 2 4 24 23 151 124 624 | 4 2 4 23 22 178 151 625 | 5 2 4 22 21 205 178 626 | 6 2 4 21 20 232 205 627 | 7 2 4 20 19 259 232 628 | 8 2 4 19 18 286 259 629 | 9 2 4 18 17 313 286 630 | 10 2 4 17 16 340 313 631 | 11 2 4 16 15 367 340 632 | 12 2 4 15 14 394 367 633 | 13 2 4 14 13 421 394 634 | 14 2 4 13 12 448 421 635 | 15 2 4 12 11 475 448 636 | 16 2 4 11 10 502 475 637 | 17 2 4 10 9 529 502 638 | 18 2 4 9 8 556 529 639 | 19 2 4 8 7 583 556 640 | 20 2 4 7 1 45 583 641 | 21 2 4 54 97 98 55 642 | 22 2 4 97 124 125 98 643 | 23 2 4 124 151 152 125 644 | 24 2 4 151 178 179 152 645 | 25 2 4 178 205 206 179 646 | 26 2 4 205 232 233 206 647 | 27 2 4 232 259 260 233 648 | 28 2 4 259 286 287 260 649 | 29 2 4 286 313 314 287 650 | 30 2 4 313 340 341 314 651 | 31 2 4 340 367 368 341 652 | 32 2 4 367 394 395 368 653 | 33 2 4 394 421 422 395 654 | 34 2 4 421 448 449 422 655 | 35 2 4 448 475 476 449 656 | 36 2 4 475 502 503 476 657 | 37 2 4 502 529 530 503 658 | 38 2 4 529 556 557 530 659 | 39 2 4 556 583 584 557 660 | 40 2 4 583 45 46 584 661 | 41 2 4 55 98 99 56 662 | 42 2 4 98 125 126 99 663 | 43 2 4 125 152 153 126 664 | 44 2 4 152 179 180 153 665 | 45 2 4 179 206 207 180 666 | 46 2 4 206 233 234 207 667 | 47 2 4 233 260 261 234 668 | 48 2 4 260 287 288 261 669 | 49 2 4 287 314 315 288 670 | 50 2 4 314 341 342 315 671 | 51 2 4 341 368 369 342 672 | 52 2 4 368 395 396 369 673 | 53 2 4 395 422 423 396 674 | 54 2 4 422 449 450 423 675 | 55 2 4 449 476 477 450 676 | 56 2 4 476 503 504 477 677 | 57 2 4 503 530 531 504 678 | 58 2 4 530 557 558 531 679 | 59 2 4 557 584 585 558 680 | 60 2 4 584 46 47 585 681 | 61 2 4 56 99 100 57 682 | 62 2 4 99 126 127 100 683 | 63 2 4 126 153 154 127 684 | 64 2 4 153 180 181 154 685 | 65 2 4 180 207 208 181 686 | 66 2 4 207 234 235 208 687 | 67 2 4 234 261 262 235 688 | 68 2 4 261 288 289 262 689 | 69 2 4 288 315 316 289 690 | 70 2 4 315 342 343 316 691 | 71 2 4 342 369 370 343 692 | 72 2 4 369 396 397 370 693 | 73 2 4 396 423 424 397 694 | 74 2 4 423 450 451 424 695 | 75 2 4 450 477 478 451 696 | 76 2 4 477 504 505 478 697 | 77 2 4 504 531 532 505 698 | 78 2 4 531 558 559 532 699 | 79 2 4 558 585 586 559 700 | 80 2 4 585 47 48 586 701 | 81 2 4 57 100 101 58 702 | 82 2 4 100 127 128 101 703 | 83 2 4 127 154 155 128 704 | 84 2 4 154 181 182 155 705 | 85 2 4 181 208 209 182 706 | 86 2 4 208 235 236 209 707 | 87 2 4 235 262 263 236 708 | 88 2 4 262 289 290 263 709 | 89 2 4 289 316 317 290 710 | 90 2 4 316 343 344 317 711 | 91 2 4 343 370 371 344 712 | 92 2 4 370 397 398 371 713 | 93 2 4 397 424 425 398 714 | 94 2 4 424 451 452 425 715 | 95 2 4 451 478 479 452 716 | 96 2 4 478 505 506 479 717 | 97 2 4 505 532 533 506 718 | 98 2 4 532 559 560 533 719 | 99 2 4 559 586 587 560 720 | 100 2 4 586 48 49 587 721 | 101 2 4 58 101 102 59 722 | 102 2 4 101 128 129 102 723 | 103 2 4 128 155 156 129 724 | 104 2 4 155 182 183 156 725 | 105 2 4 182 209 210 183 726 | 106 2 4 209 236 237 210 727 | 107 2 4 236 263 264 237 728 | 108 2 4 263 290 291 264 729 | 109 2 4 290 317 318 291 730 | 110 2 4 317 344 345 318 731 | 111 2 4 344 371 372 345 732 | 112 2 4 371 398 399 372 733 | 113 2 4 398 425 426 399 734 | 114 2 4 425 452 453 426 735 | 115 2 4 452 479 480 453 736 | 116 2 4 479 506 507 480 737 | 117 2 4 506 533 534 507 738 | 118 2 4 533 560 561 534 739 | 119 2 4 560 587 588 561 740 | 120 2 4 587 49 50 588 741 | 121 2 4 59 102 103 60 742 | 122 2 4 102 129 130 103 743 | 123 2 4 129 156 157 130 744 | 124 2 4 156 183 184 157 745 | 125 2 4 183 210 211 184 746 | 126 2 4 210 237 238 211 747 | 127 2 4 237 264 265 238 748 | 128 2 4 264 291 292 265 749 | 129 2 4 291 318 319 292 750 | 130 2 4 318 345 346 319 751 | 131 2 4 345 372 373 346 752 | 132 2 4 372 399 400 373 753 | 133 2 4 399 426 427 400 754 | 134 2 4 426 453 454 427 755 | 135 2 4 453 480 481 454 756 | 136 2 4 480 507 508 481 757 | 137 2 4 507 534 535 508 758 | 138 2 4 534 561 562 535 759 | 139 2 4 561 588 589 562 760 | 140 2 4 588 50 51 589 761 | 141 2 4 60 103 104 61 762 | 142 2 4 103 130 131 104 763 | 143 2 4 130 157 158 131 764 | 144 2 4 157 184 185 158 765 | 145 2 4 184 211 212 185 766 | 146 2 4 211 238 239 212 767 | 147 2 4 238 265 266 239 768 | 148 2 4 265 292 293 266 769 | 149 2 4 292 319 320 293 770 | 150 2 4 319 346 347 320 771 | 151 2 4 346 373 374 347 772 | 152 2 4 373 400 401 374 773 | 153 2 4 400 427 428 401 774 | 154 2 4 427 454 455 428 775 | 155 2 4 454 481 482 455 776 | 156 2 4 481 508 509 482 777 | 157 2 4 508 535 536 509 778 | 158 2 4 535 562 563 536 779 | 159 2 4 562 589 590 563 780 | 160 2 4 589 51 52 590 781 | 161 2 4 61 104 105 62 782 | 162 2 4 104 131 132 105 783 | 163 2 4 131 158 159 132 784 | 164 2 4 158 185 186 159 785 | 165 2 4 185 212 213 186 786 | 166 2 4 212 239 240 213 787 | 167 2 4 239 266 267 240 788 | 168 2 4 266 293 294 267 789 | 169 2 4 293 320 321 294 790 | 170 2 4 320 347 348 321 791 | 171 2 4 347 374 375 348 792 | 172 2 4 374 401 402 375 793 | 173 2 4 401 428 429 402 794 | 174 2 4 428 455 456 429 795 | 175 2 4 455 482 483 456 796 | 176 2 4 482 509 510 483 797 | 177 2 4 509 536 537 510 798 | 178 2 4 536 563 564 537 799 | 179 2 4 563 590 591 564 800 | 180 2 4 590 52 53 591 801 | 181 2 4 62 105 106 4 802 | 182 2 4 105 132 133 106 803 | 183 2 4 132 159 160 133 804 | 184 2 4 159 186 187 160 805 | 185 2 4 186 213 214 187 806 | 186 2 4 213 240 241 214 807 | 187 2 4 240 267 268 241 808 | 188 2 4 267 294 295 268 809 | 189 2 4 294 321 322 295 810 | 190 2 4 321 348 349 322 811 | 191 2 4 348 375 376 349 812 | 192 2 4 375 402 403 376 813 | 193 2 4 402 429 430 403 814 | 194 2 4 429 456 457 430 815 | 195 2 4 456 483 484 457 816 | 196 2 4 483 510 511 484 817 | 197 2 4 510 537 538 511 818 | 198 2 4 537 564 565 538 819 | 199 2 4 564 591 592 565 820 | 200 2 4 591 53 2 592 821 | 201 2 4 4 106 107 80 822 | 202 2 4 106 133 134 107 823 | 203 2 4 133 160 161 134 824 | 204 2 4 160 187 188 161 825 | 205 2 4 187 214 215 188 826 | 206 2 4 214 241 242 215 827 | 207 2 4 241 268 269 242 828 | 208 2 4 268 295 296 269 829 | 209 2 4 295 322 323 296 830 | 210 2 4 322 349 350 323 831 | 211 2 4 349 376 377 350 832 | 212 2 4 376 403 404 377 833 | 213 2 4 403 430 431 404 834 | 214 2 4 430 457 458 431 835 | 215 2 4 457 484 485 458 836 | 216 2 4 484 511 512 485 837 | 217 2 4 511 538 539 512 838 | 218 2 4 538 565 566 539 839 | 219 2 4 565 592 593 566 840 | 220 2 4 592 2 63 593 841 | 221 2 4 80 107 108 81 842 | 222 2 4 107 134 135 108 843 | 223 2 4 134 161 162 135 844 | 224 2 4 161 188 189 162 845 | 225 2 4 188 215 216 189 846 | 226 2 4 215 242 243 216 847 | 227 2 4 242 269 270 243 848 | 228 2 4 269 296 297 270 849 | 229 2 4 296 323 324 297 850 | 230 2 4 323 350 351 324 851 | 231 2 4 350 377 378 351 852 | 232 2 4 377 404 405 378 853 | 233 2 4 404 431 432 405 854 | 234 2 4 431 458 459 432 855 | 235 2 4 458 485 486 459 856 | 236 2 4 485 512 513 486 857 | 237 2 4 512 539 540 513 858 | 238 2 4 539 566 567 540 859 | 239 2 4 566 593 594 567 860 | 240 2 4 593 63 64 594 861 | 241 2 4 81 108 109 82 862 | 242 2 4 108 135 136 109 863 | 243 2 4 135 162 163 136 864 | 244 2 4 162 189 190 163 865 | 245 2 4 189 216 217 190 866 | 246 2 4 216 243 244 217 867 | 247 2 4 243 270 271 244 868 | 248 2 4 270 297 298 271 869 | 249 2 4 297 324 325 298 870 | 250 2 4 324 351 352 325 871 | 251 2 4 351 378 379 352 872 | 252 2 4 378 405 406 379 873 | 253 2 4 405 432 433 406 874 | 254 2 4 432 459 460 433 875 | 255 2 4 459 486 487 460 876 | 256 2 4 486 513 514 487 877 | 257 2 4 513 540 541 514 878 | 258 2 4 540 567 568 541 879 | 259 2 4 567 594 595 568 880 | 260 2 4 594 64 65 595 881 | 261 2 4 82 109 110 83 882 | 262 2 4 109 136 137 110 883 | 263 2 4 136 163 164 137 884 | 264 2 4 163 190 191 164 885 | 265 2 4 190 217 218 191 886 | 266 2 4 217 244 245 218 887 | 267 2 4 244 271 272 245 888 | 268 2 4 271 298 299 272 889 | 269 2 4 298 325 326 299 890 | 270 2 4 325 352 353 326 891 | 271 2 4 352 379 380 353 892 | 272 2 4 379 406 407 380 893 | 273 2 4 406 433 434 407 894 | 274 2 4 433 460 461 434 895 | 275 2 4 460 487 488 461 896 | 276 2 4 487 514 515 488 897 | 277 2 4 514 541 542 515 898 | 278 2 4 541 568 569 542 899 | 279 2 4 568 595 596 569 900 | 280 2 4 595 65 66 596 901 | 281 2 4 83 110 111 84 902 | 282 2 4 110 137 138 111 903 | 283 2 4 137 164 165 138 904 | 284 2 4 164 191 192 165 905 | 285 2 4 191 218 219 192 906 | 286 2 4 218 245 246 219 907 | 287 2 4 245 272 273 246 908 | 288 2 4 272 299 300 273 909 | 289 2 4 299 326 327 300 910 | 290 2 4 326 353 354 327 911 | 291 2 4 353 380 381 354 912 | 292 2 4 380 407 408 381 913 | 293 2 4 407 434 435 408 914 | 294 2 4 434 461 462 435 915 | 295 2 4 461 488 489 462 916 | 296 2 4 488 515 516 489 917 | 297 2 4 515 542 543 516 918 | 298 2 4 542 569 570 543 919 | 299 2 4 569 596 597 570 920 | 300 2 4 596 66 67 597 921 | 301 2 4 84 111 112 85 922 | 302 2 4 111 138 139 112 923 | 303 2 4 138 165 166 139 924 | 304 2 4 165 192 193 166 925 | 305 2 4 192 219 220 193 926 | 306 2 4 219 246 247 220 927 | 307 2 4 246 273 274 247 928 | 308 2 4 273 300 301 274 929 | 309 2 4 300 327 328 301 930 | 310 2 4 327 354 355 328 931 | 311 2 4 354 381 382 355 932 | 312 2 4 381 408 409 382 933 | 313 2 4 408 435 436 409 934 | 314 2 4 435 462 463 436 935 | 315 2 4 462 489 490 463 936 | 316 2 4 489 516 517 490 937 | 317 2 4 516 543 544 517 938 | 318 2 4 543 570 571 544 939 | 319 2 4 570 597 598 571 940 | 320 2 4 597 67 68 598 941 | 321 2 4 85 112 113 86 942 | 322 2 4 112 139 140 113 943 | 323 2 4 139 166 167 140 944 | 324 2 4 166 193 194 167 945 | 325 2 4 193 220 221 194 946 | 326 2 4 220 247 248 221 947 | 327 2 4 247 274 275 248 948 | 328 2 4 274 301 302 275 949 | 329 2 4 301 328 329 302 950 | 330 2 4 328 355 356 329 951 | 331 2 4 355 382 383 356 952 | 332 2 4 382 409 410 383 953 | 333 2 4 409 436 437 410 954 | 334 2 4 436 463 464 437 955 | 335 2 4 463 490 491 464 956 | 336 2 4 490 517 518 491 957 | 337 2 4 517 544 545 518 958 | 338 2 4 544 571 572 545 959 | 339 2 4 571 598 599 572 960 | 340 2 4 598 68 69 599 961 | 341 2 4 86 113 114 87 962 | 342 2 4 113 140 141 114 963 | 343 2 4 140 167 168 141 964 | 344 2 4 167 194 195 168 965 | 345 2 4 194 221 222 195 966 | 346 2 4 221 248 249 222 967 | 347 2 4 248 275 276 249 968 | 348 2 4 275 302 303 276 969 | 349 2 4 302 329 330 303 970 | 350 2 4 329 356 357 330 971 | 351 2 4 356 383 384 357 972 | 352 2 4 383 410 411 384 973 | 353 2 4 410 437 438 411 974 | 354 2 4 437 464 465 438 975 | 355 2 4 464 491 492 465 976 | 356 2 4 491 518 519 492 977 | 357 2 4 518 545 546 519 978 | 358 2 4 545 572 573 546 979 | 359 2 4 572 599 600 573 980 | 360 2 4 599 69 70 600 981 | 361 2 4 87 114 115 88 982 | 362 2 4 114 141 142 115 983 | 363 2 4 141 168 169 142 984 | 364 2 4 168 195 196 169 985 | 365 2 4 195 222 223 196 986 | 366 2 4 222 249 250 223 987 | 367 2 4 249 276 277 250 988 | 368 2 4 276 303 304 277 989 | 369 2 4 303 330 331 304 990 | 370 2 4 330 357 358 331 991 | 371 2 4 357 384 385 358 992 | 372 2 4 384 411 412 385 993 | 373 2 4 411 438 439 412 994 | 374 2 4 438 465 466 439 995 | 375 2 4 465 492 493 466 996 | 376 2 4 492 519 520 493 997 | 377 2 4 519 546 547 520 998 | 378 2 4 546 573 574 547 999 | 379 2 4 573 600 601 574 1000 | 380 2 4 600 70 71 601 1001 | 381 2 4 88 115 116 89 1002 | 382 2 4 115 142 143 116 1003 | 383 2 4 142 169 170 143 1004 | 384 2 4 169 196 197 170 1005 | 385 2 4 196 223 224 197 1006 | 386 2 4 223 250 251 224 1007 | 387 2 4 250 277 278 251 1008 | 388 2 4 277 304 305 278 1009 | 389 2 4 304 331 332 305 1010 | 390 2 4 331 358 359 332 1011 | 391 2 4 358 385 386 359 1012 | 392 2 4 385 412 413 386 1013 | 393 2 4 412 439 440 413 1014 | 394 2 4 439 466 467 440 1015 | 395 2 4 466 493 494 467 1016 | 396 2 4 493 520 521 494 1017 | 397 2 4 520 547 548 521 1018 | 398 2 4 547 574 575 548 1019 | 399 2 4 574 601 602 575 1020 | 400 2 4 601 71 72 602 1021 | 401 2 4 89 116 117 90 1022 | 402 2 4 116 143 144 117 1023 | 403 2 4 143 170 171 144 1024 | 404 2 4 170 197 198 171 1025 | 405 2 4 197 224 225 198 1026 | 406 2 4 224 251 252 225 1027 | 407 2 4 251 278 279 252 1028 | 408 2 4 278 305 306 279 1029 | 409 2 4 305 332 333 306 1030 | 410 2 4 332 359 360 333 1031 | 411 2 4 359 386 387 360 1032 | 412 2 4 386 413 414 387 1033 | 413 2 4 413 440 441 414 1034 | 414 2 4 440 467 468 441 1035 | 415 2 4 467 494 495 468 1036 | 416 2 4 494 521 522 495 1037 | 417 2 4 521 548 549 522 1038 | 418 2 4 548 575 576 549 1039 | 419 2 4 575 602 603 576 1040 | 420 2 4 602 72 73 603 1041 | 421 2 4 90 117 118 91 1042 | 422 2 4 117 144 145 118 1043 | 423 2 4 144 171 172 145 1044 | 424 2 4 171 198 199 172 1045 | 425 2 4 198 225 226 199 1046 | 426 2 4 225 252 253 226 1047 | 427 2 4 252 279 280 253 1048 | 428 2 4 279 306 307 280 1049 | 429 2 4 306 333 334 307 1050 | 430 2 4 333 360 361 334 1051 | 431 2 4 360 387 388 361 1052 | 432 2 4 387 414 415 388 1053 | 433 2 4 414 441 442 415 1054 | 434 2 4 441 468 469 442 1055 | 435 2 4 468 495 496 469 1056 | 436 2 4 495 522 523 496 1057 | 437 2 4 522 549 550 523 1058 | 438 2 4 549 576 577 550 1059 | 439 2 4 576 603 604 577 1060 | 440 2 4 603 73 74 604 1061 | 441 2 4 91 118 119 92 1062 | 442 2 4 118 145 146 119 1063 | 443 2 4 145 172 173 146 1064 | 444 2 4 172 199 200 173 1065 | 445 2 4 199 226 227 200 1066 | 446 2 4 226 253 254 227 1067 | 447 2 4 253 280 281 254 1068 | 448 2 4 280 307 308 281 1069 | 449 2 4 307 334 335 308 1070 | 450 2 4 334 361 362 335 1071 | 451 2 4 361 388 389 362 1072 | 452 2 4 388 415 416 389 1073 | 453 2 4 415 442 443 416 1074 | 454 2 4 442 469 470 443 1075 | 455 2 4 469 496 497 470 1076 | 456 2 4 496 523 524 497 1077 | 457 2 4 523 550 551 524 1078 | 458 2 4 550 577 578 551 1079 | 459 2 4 577 604 605 578 1080 | 460 2 4 604 74 75 605 1081 | 461 2 4 92 119 120 93 1082 | 462 2 4 119 146 147 120 1083 | 463 2 4 146 173 174 147 1084 | 464 2 4 173 200 201 174 1085 | 465 2 4 200 227 228 201 1086 | 466 2 4 227 254 255 228 1087 | 467 2 4 254 281 282 255 1088 | 468 2 4 281 308 309 282 1089 | 469 2 4 308 335 336 309 1090 | 470 2 4 335 362 363 336 1091 | 471 2 4 362 389 390 363 1092 | 472 2 4 389 416 417 390 1093 | 473 2 4 416 443 444 417 1094 | 474 2 4 443 470 471 444 1095 | 475 2 4 470 497 498 471 1096 | 476 2 4 497 524 525 498 1097 | 477 2 4 524 551 552 525 1098 | 478 2 4 551 578 579 552 1099 | 479 2 4 578 605 606 579 1100 | 480 2 4 605 75 76 606 1101 | 481 2 4 93 120 121 94 1102 | 482 2 4 120 147 148 121 1103 | 483 2 4 147 174 175 148 1104 | 484 2 4 174 201 202 175 1105 | 485 2 4 201 228 229 202 1106 | 486 2 4 228 255 256 229 1107 | 487 2 4 255 282 283 256 1108 | 488 2 4 282 309 310 283 1109 | 489 2 4 309 336 337 310 1110 | 490 2 4 336 363 364 337 1111 | 491 2 4 363 390 391 364 1112 | 492 2 4 390 417 418 391 1113 | 493 2 4 417 444 445 418 1114 | 494 2 4 444 471 472 445 1115 | 495 2 4 471 498 499 472 1116 | 496 2 4 498 525 526 499 1117 | 497 2 4 525 552 553 526 1118 | 498 2 4 552 579 580 553 1119 | 499 2 4 579 606 607 580 1120 | 500 2 4 606 76 77 607 1121 | 501 2 4 94 121 122 95 1122 | 502 2 4 121 148 149 122 1123 | 503 2 4 148 175 176 149 1124 | 504 2 4 175 202 203 176 1125 | 505 2 4 202 229 230 203 1126 | 506 2 4 229 256 257 230 1127 | 507 2 4 256 283 284 257 1128 | 508 2 4 283 310 311 284 1129 | 509 2 4 310 337 338 311 1130 | 510 2 4 337 364 365 338 1131 | 511 2 4 364 391 392 365 1132 | 512 2 4 391 418 419 392 1133 | 513 2 4 418 445 446 419 1134 | 514 2 4 445 472 473 446 1135 | 515 2 4 472 499 500 473 1136 | 516 2 4 499 526 527 500 1137 | 517 2 4 526 553 554 527 1138 | 518 2 4 553 580 581 554 1139 | 519 2 4 580 607 608 581 1140 | 520 2 4 607 77 78 608 1141 | 521 2 4 95 122 123 96 1142 | 522 2 4 122 149 150 123 1143 | 523 2 4 149 176 177 150 1144 | 524 2 4 176 203 204 177 1145 | 525 2 4 203 230 231 204 1146 | 526 2 4 230 257 258 231 1147 | 527 2 4 257 284 285 258 1148 | 528 2 4 284 311 312 285 1149 | 529 2 4 311 338 339 312 1150 | 530 2 4 338 365 366 339 1151 | 531 2 4 365 392 393 366 1152 | 532 2 4 392 419 420 393 1153 | 533 2 4 419 446 447 420 1154 | 534 2 4 446 473 474 447 1155 | 535 2 4 473 500 501 474 1156 | 536 2 4 500 527 528 501 1157 | 537 2 4 527 554 555 528 1158 | 538 2 4 554 581 582 555 1159 | 539 2 4 581 608 609 582 1160 | 540 2 4 608 78 79 609 1161 | 541 2 4 96 123 44 6 1162 | 542 2 4 123 150 43 44 1163 | 543 2 4 150 177 42 43 1164 | 544 2 4 177 204 41 42 1165 | 545 2 4 204 231 40 41 1166 | 546 2 4 231 258 39 40 1167 | 547 2 4 258 285 38 39 1168 | 548 2 4 285 312 37 38 1169 | 549 2 4 312 339 36 37 1170 | 550 2 4 339 366 35 36 1171 | 551 2 4 366 393 34 35 1172 | 552 2 4 393 420 33 34 1173 | 553 2 4 420 447 32 33 1174 | 554 2 4 447 474 31 32 1175 | 555 2 4 474 501 30 31 1176 | 556 2 4 501 528 29 30 1177 | 557 2 4 528 555 28 29 1178 | 558 2 4 555 582 27 28 1179 | 559 2 4 582 609 26 27 1180 | 560 2 4 609 79 5 26 1181 | ENDOFSECTION 1182 | ELEMENT GROUP 2.3.16 1183 | GROUP: 1 ELEMENTS: 560 MATERIAL: 2 NFLAGS: 1 1184 | fluid 1185 | 0 1186 | 1 2 3 4 5 6 7 8 9 10 1187 | 11 12 13 14 15 16 17 18 19 20 1188 | 21 22 23 24 25 26 27 28 29 30 1189 | 31 32 33 34 35 36 37 38 39 40 1190 | 41 42 43 44 45 46 47 48 49 50 1191 | 51 52 53 54 55 56 57 58 59 60 1192 | 61 62 63 64 65 66 67 68 69 70 1193 | 71 72 73 74 75 76 77 78 79 80 1194 | 81 82 83 84 85 86 87 88 89 90 1195 | 91 92 93 94 95 96 97 98 99 100 1196 | 101 102 103 104 105 106 107 108 109 110 1197 | 111 112 113 114 115 116 117 118 119 120 1198 | 121 122 123 124 125 126 127 128 129 130 1199 | 131 132 133 134 135 136 137 138 139 140 1200 | 141 142 143 144 145 146 147 148 149 150 1201 | 151 152 153 154 155 156 157 158 159 160 1202 | 161 162 163 164 165 166 167 168 169 170 1203 | 171 172 173 174 175 176 177 178 179 180 1204 | 181 182 183 184 185 186 187 188 189 190 1205 | 191 192 193 194 195 196 197 198 199 200 1206 | 201 202 203 204 205 206 207 208 209 210 1207 | 211 212 213 214 215 216 217 218 219 220 1208 | 221 222 223 224 225 226 227 228 229 230 1209 | 231 232 233 234 235 236 237 238 239 240 1210 | 241 242 243 244 245 246 247 248 249 250 1211 | 251 252 253 254 255 256 257 258 259 260 1212 | 261 262 263 264 265 266 267 268 269 270 1213 | 271 272 273 274 275 276 277 278 279 280 1214 | 281 282 283 284 285 286 287 288 289 290 1215 | 291 292 293 294 295 296 297 298 299 300 1216 | 301 302 303 304 305 306 307 308 309 310 1217 | 311 312 313 314 315 316 317 318 319 320 1218 | 321 322 323 324 325 326 327 328 329 330 1219 | 331 332 333 334 335 336 337 338 339 340 1220 | 341 342 343 344 345 346 347 348 349 350 1221 | 351 352 353 354 355 356 357 358 359 360 1222 | 361 362 363 364 365 366 367 368 369 370 1223 | 371 372 373 374 375 376 377 378 379 380 1224 | 381 382 383 384 385 386 387 388 389 390 1225 | 391 392 393 394 395 396 397 398 399 400 1226 | 401 402 403 404 405 406 407 408 409 410 1227 | 411 412 413 414 415 416 417 418 419 420 1228 | 421 422 423 424 425 426 427 428 429 430 1229 | 431 432 433 434 435 436 437 438 439 440 1230 | 441 442 443 444 445 446 447 448 449 450 1231 | 451 452 453 454 455 456 457 458 459 460 1232 | 461 462 463 464 465 466 467 468 469 470 1233 | 471 472 473 474 475 476 477 478 479 480 1234 | 481 482 483 484 485 486 487 488 489 490 1235 | 491 492 493 494 495 496 497 498 499 500 1236 | 501 502 503 504 505 506 507 508 509 510 1237 | 511 512 513 514 515 516 517 518 519 520 1238 | 521 522 523 524 525 526 527 528 529 530 1239 | 531 532 533 534 535 536 537 538 539 540 1240 | 541 542 543 544 545 546 547 548 549 550 1241 | 551 552 553 554 555 556 557 558 559 560 1242 | ENDOFSECTION 1243 | BOUNDARY CONDITIONS 2.3.16 1244 | Slip_Wall 1 10 0 6 1245 | 20 2 2 1246 | 40 2 2 1247 | 60 2 2 1248 | 80 2 2 1249 | 100 2 2 1250 | 120 2 2 1251 | 140 2 2 1252 | 160 2 2 1253 | 180 2 2 1254 | 200 2 2 1255 | ENDOFSECTION 1256 | BOUNDARY CONDITIONS 2.3.16 1257 | Adiabat_Fix 1 18 0 6 1258 | 220 2 2 1259 | 240 2 2 1260 | 260 2 2 1261 | 280 2 2 1262 | 300 2 2 1263 | 320 2 2 1264 | 340 2 2 1265 | 360 2 2 1266 | 380 2 2 1267 | 400 2 2 1268 | 420 2 2 1269 | 440 2 2 1270 | 460 2 2 1271 | 480 2 2 1272 | 500 2 2 1273 | 520 2 2 1274 | 540 2 2 1275 | 560 2 2 1276 | ENDOFSECTION 1277 | BOUNDARY CONDITIONS 2.3.16 1278 | Char 1 20 0 6 1279 | 20 2 1 1280 | 19 2 1 1281 | 18 2 1 1282 | 17 2 1 1283 | 16 2 1 1284 | 15 2 1 1285 | 14 2 1 1286 | 13 2 1 1287 | 12 2 1 1288 | 11 2 1 1289 | 10 2 1 1290 | 9 2 1 1291 | 8 2 1 1292 | 7 2 1 1293 | 6 2 1 1294 | 5 2 1 1295 | 4 2 1 1296 | 3 2 1 1297 | 2 2 1 1298 | 1 2 1 1299 | ENDOFSECTION 1300 | BOUNDARY CONDITIONS 2.3.16 1301 | Sub_Out_Simp 1 20 0 6 1302 | 560 2 3 1303 | 559 2 3 1304 | 558 2 3 1305 | 557 2 3 1306 | 556 2 3 1307 | 555 2 3 1308 | 554 2 3 1309 | 553 2 3 1310 | 552 2 3 1311 | 551 2 3 1312 | 550 2 3 1313 | 549 2 3 1314 | 548 2 3 1315 | 547 2 3 1316 | 546 2 3 1317 | 545 2 3 1318 | 544 2 3 1319 | 543 2 3 1320 | 542 2 3 1321 | 541 2 3 1322 | ENDOFSECTION 1323 | BOUNDARY CONDITIONS 2.3.16 1324 | Sub_Out_Simp 1 28 0 6 1325 | 201 2 4 1326 | 221 2 4 1327 | 241 2 4 1328 | 261 2 4 1329 | 281 2 4 1330 | 301 2 4 1331 | 321 2 4 1332 | 341 2 4 1333 | 361 2 4 1334 | 381 2 4 1335 | 401 2 4 1336 | 421 2 4 1337 | 441 2 4 1338 | 461 2 4 1339 | 481 2 4 1340 | 501 2 4 1341 | 521 2 4 1342 | 541 2 4 1343 | 1 2 4 1344 | 21 2 4 1345 | 41 2 4 1346 | 61 2 4 1347 | 81 2 4 1348 | 101 2 4 1349 | 121 2 4 1350 | 141 2 4 1351 | 161 2 4 1352 | 181 2 4 1353 | ENDOFSECTION 1354 | --------------------------------------------------------------------------------