├── README.md └── eda-on-shark-tank-india-s1 (1).ipynb /README.md: -------------------------------------------------------------------------------- 1 | # EDA-on-Shark-Tank-India-S1 2 | The aim of this kernel is to provide the whole season 1 statistics in the form of data visualization to understand about the deals of equity and amount, and other features using Data Visulaization. 3 | -------------------------------------------------------------------------------- /eda-on-shark-tank-india-s1 (1).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "70d1cdb4", 6 | "metadata": { 7 | "papermill": { 8 | "duration": 0.027614, 9 | "end_time": "2022-03-26T06:50:57.697776", 10 | "exception": false, 11 | "start_time": "2022-03-26T06:50:57.670162", 12 | "status": "completed" 13 | }, 14 | "tags": [] 15 | }, 16 | "source": [ 17 | "# **Exploratory Data Analysis on the Shark Tank India Season 1:**\n", 18 | "The aim of this kernel is to provide the whole season 1 statistics in the form of data visualization to understand about the deals of equity and amount, and other features..." 19 | ] 20 | }, 21 | { 22 | "attachments": { 23 | "4e2133b3-854c-4bd8-a15b-ab4fb52f9471.webp": { 24 | "image/webp": "UklGRkCpAABXRUJQVlA4IDSpAABwcwSdASoABMACPm0ylUgkKyurpZMLKXANiWNuUAyv15sTBJSzASLVnifZCa8TZP9Z/3vLi5f/id3suddxPYF/YDlf58/n2fnP/I6LbOopv/P2SMY/Rf7X+t/dr3MOO/Jv7B5M/LXsIkb+E/8H7cflN/5//B7qfvQ/PT4aP8Z/if8n+x/xx/4D+AenB61v53/bf/P/fvbh/U74J/3b8R/878gX9F/sX/47MX0Cv3Q///rvfuR8Of7fft/7P//izuT0HfJP73/r9yn3aaA50X3xzRf8na/7sH+35Q4yOdo/5PPz9kEKgFY/crQhjNVpN3kpCI5S7qyAqKdelBHFOQibpcO7QM1yhC0uJAPb+YyBKszsaDrJ5C60nW2uz/QnaETw6O0FTHmuBEUAr3Hbp5h4R7MWDlJrnGN4V7q4jrpB0CI9PgVE0PabPiHpzAoUjO8mwpQEWnJgD77nAmw8hjl0WfsZXRZgO9mZIJaVaZ+4RJDOdTIjnIwQfx0jWgrHcFQlTQhPuoS6Te8oj483UIOfTS4+I10HCDVW62iD2Il0ZEYEVND9zIssL74Eafnvw1isxqRoudU10VUm7+Dn4pBBpHaJeu63CuktXdetzE5MljVTgavByGU4yYHUKtWcyouDXrOAPYxfnpCJ+PvPFgoy+WxLwKs70nzptziRVR3RFyLoJLJmOvMXbHDwdzZke2O88MN30VoTbHbnRhVdOiuhox9OJ5SC/6XcgPMO03BHwxH6rp56K/g15Rcs8Nhod+2wJByn+noUJioP6ZlZjkj0SSJMBXPQL3tl7Eu+hctoHh5d0yWFjUHvSc8jlyFX/yB0aJ74OXNZnbESSDobomPtPRjPXeC6DuA5NNyl7c/tlnhRWWk8DaG52ByUUVcZwDlZC7n75T94OoTIRyx1XMSrbFcyD4v59/x8AXbUXsu5QtZbdZtOh25TWOinezFbeoPhWGRyG2CdJzSdY9qsl5Fds6xMnLH2++qd4nlxkvmjq5KxFesZkvgoAcnpKznyxYZAx/fgYdKZFG4fgkCQxcpUDtWBED/50LFb3zs1LwHaOwsuEGM27d2ckulbKYEnc1K+678WzbfFSyigwQpPcP3ZHSpFfCsmMTifYjm9Ne6nwznT7LoVxn7+Yibgt+jAEocVHvDjLwgLQZMECmdjeryn0iNY91+p3zobM6A+1n6gBg1NXdcpAyNeCLmEIRFYZHFM3FpEmm3/Pn2OWa3PdpE9kUBiE5cyp7gMYS/1omeNVQgd8qxiEIuV0inPPnlbEbgxtlohPl6psPYwLXdnxmb05qkw+l8fCvYI4kDy6y+uOJq0UXSDsdC4MJNLkNP4VKOnrESlRX1sZBJMVyxz8NftZF7u6GWI4uQgwlV4fnetH1e71VuxVTVVN16eiTJ3p32LAVWdCFKDtYggeYQ6mLdef6KvfKZmfNxXI7eNA7AP9ZqjcBszJW14OURVpil6YOYgXAO42wzj5Pu/TGBvnAsZfUOELnjRpv9DqB831nmwCZkWt97LsKiPgL4widmY+M+gT53RNJUwkNPZW9Ui2+HAZm5f2Ra+qxm2myIol+UdVB2yLEbWd9wY2NPYV0Nh0TCgDBsRBdX9+PsT3yNHeQpe6ZzC65EsOAsPQmLeUHftu2CdOnjEjolwaPK6FsFaJwC39kABSaBCQCIJCLk0vf5/Wz2jkCVydRipUFLrOU9e6NQSFyT6fIN7SgTRzYDh1KweUYJCqNUtBmgIgfvbA9LJ983A0IrnAeuy8KdSaLmbUMFWsJH9cRYLIBqzNqzX6tnDDBN9ELxfEtCQEbs8tvCxk1JABR5iQePahqbFxYkzVZOCFFKQRp3a0RICTagsNh6291cU/sM7s5Vef72Jxdij+K0OTQZSfIWvyGjYXv6xAzwhXVNPJpgH+tAXGI2E0bP3Zindk24xgAbWceaMeApqUSvKCxKmg4MMkwTSBpNZ0AWPP840aa/PfpZdMqN/u8IwdHj1b1NBu9xk9VSUaz7Y7ZNkMiR2jdQ+RXpYjJzXMFPzQvtCxJgV8DtpEGuphSROkK+bMW0y0foYOOACVasr6vIjJg3AYEQdlZwlvpKvkjt5Nv+8cK/ZqrvPecGeIU1To9DxntZA9gyKlhj+xslHLyqGoHdBrx87xewvIlvxypsLCHSgRhgHmwjr0ysx/O3LabvvFX+WLpuEC6c0wqKNf6vGqshKe01brgClw6as3P8nD+X4oQp5b1fplLWiMd9rukX++A5Yd9PuH6/8Dzhr0xuIYGU3a+SnXn/QIjV9KEGWKYN1Xf4l4+Riuw4TXDK5HXr7i8PLi5jhk2hJbqVSioPCupqBKYSEoy0b9AWVx8QDrQyN6M5gFNOAm7FazVNi0IgrVn7IUIgJx3OmuO4RQCLfC73DctHwTnl27/hThIvwpCDi1XHBUh/xbEVGI2H/maF6fe0xlWiQGORZb5XXjcBaugib7RJ291cMeaR9GtEOtfVTbTStyUvUuPbJqyeu+0uLsZNdSS8RHtvJp2RKHSzCqTBbsQBe7iH/03z1WNxzMa/yxJJ5o0FpQT7lXOc7zExC+krMfqPCOOCE/7WfPgPtU/uuinSNdY5aKU7s60jBUo6CfAxkWXo5oyYN/SB/1PEGIlJuimPQ6kygunwcUYRYcEpDhEh19Y+z6GDGJcowfpwABDT/cTA86xYURTLFxagcQZGDY9s60xtyydJGY8Cf7nDz5sjsTzCgVdu08yLbnwZIrsZzshuwxfoDylyKJWKWlYUpDMvR/ZCkAmVLrMk7clrYKIe4Q0kMDcDhvO7yYFpaiPkNfECJ5YQtESY+u2BgN5E3yuwRd2QObJ5qBmc5V3GfNfMG3uKuPQhNKqBzAB8/bkM38oFZwgFmmsAxL0Wu/FKC47Zqs6GSUEywuCNStEre2N5LIoELP5Y/GZ/Ykbc9aVpruWEonlYV91deJjh99uBiAbZslIYohLtLpUR4RZx73X7Gjz6uTcaJevR3dE9xE0GA9285U4IlJul1gldvrZ9fnrOR9WViZuzBGslVhMYmmrh8x76I+Umjwev9bLOnLxFwFc/YcHdduuA/iZsptmWuQ25WCmV/rFXCXsdh9qzcobpPWh4yL4nsJg9RqYAg4v6vmvD8C1+8SQUjswtUcFSbRKvLFwLY8MrsAaVf/4vLXfmJ5RHTxIAlNbkOO3WL4nhelT0E3+mRJiIHNyWNXxDHFuf2hSDrgpQb/bVK7sGPjdClxWuYIM7QaHWIhTkpVjhhDqRi2ExTAHop6JKvQUOLM2Ao7l19o13rWK29MrSYGxintX2CucSiMK3coJuSMIMtjiYr4szS/YyKy1M5s4UeIbm2qaLSxyt+Owd1KJx5wLTL82w7b3Bh5vqxRHstQHIFCFig/P7FS0rM4UrTV85fFSStz9b3sotbEUm5OzKuZe4Tqi0c6Eu6ITsIfdpILTcpbjH318a2HQYYK7/cJ8cDHdaIZFtkwu6NGSraETSE1NX1VTg2o2ziSvuUrSP8uyBAx7QH2GIy9f4mpRAE65jSqm1Nsn7s/kFPEXrChLbgBHT6FbfrEEPBYY3jhVNMlawXEdr6EUpc1PdDhNQ3iZQWvnSOuGCABcH2PJ7BCh9kS0L1I6r9u0gkwWcGtnH5QvLC9AMsifKg9mTE/qQw9m7cOHCH29ElOudo6E+bh1VObVENKzDDiWGBznof5iBb2cpUEqoaIDyA08xvFVzZO+6qZe46OPkGaqoWbxfF6R628Txc3NXWRl3qYD4vbSDZLTxdA0GENMxWG3vEhcZKVVp+1ynbWB3SFtdCNsV/vf7LVuqOBIDzZYg976hvNNSrLzs9ngV+sS3Ti1cfBdRJPSlb0JeFFZLzbJoV7MHXm8cHpcyewGk3C+FEw7V7sKMTamDX6iBXd+KjZwLeguJtkW3MeIWwrysgcvvhERGartNSSlK/sLe87Vg6BjggV44BULT6d1TPCyngnGF4UNWIXr/zoVZ1sIHyEgFG8xwuiczSS9CywDEa3xk3GxYGULUQ5UdtumP5s7zd67fnl/10Yhsn5XKDM6mpSeVna+dt3GFT33fI/D8uDVyEnkQIxK8uGHIgIWXCDlqmRgg9g86FGiCu5O+Qo439XTZx7BftA57qGDaKxxW87ThNSIjjBxDQvCb1jMwr1ObYLV/lfR+u0xBX7cGDD1vL5SzoF0sgPYj7e7hmNpjKSaAULDYOHDPqXwdfJqFCZM95LcgopLmMdgXtBcVWfnu/pkPpepXzsOpJc+O8PyasGxf1XOhRurbuEmRDC/ntYcnSjWm6hed5WlxqgA1PBnI16xQTQhQIGuRmPoaZA9aWkdTkZNN9QYjpMHQbVXvdx2sBk4Kz1gQgSQw2IvnSD/har/nm6rAvkTV4mEtFwZ9Babx1GiouQUM8bRPx1pEKX4BbXQrcYUiOOWayEDcFD55nn8A63IUFRmo1oi9599eE+BpqVyFF74H93OPxfaMS5KsmSYhcmemOsyQSo7aguB9m1tnb7n6WFk0ZQJ/quBGqZZ19Fr+SV9kNYaP4K1qXFIzBYJ64Yq2h+ziogXM1sHM9AiV2vb3LnhmEij0/QQOJDDQmzYGm8dUD5M9nxdaUt0BZu8kRGywiLPxjYzUaY1g4n4eRXWADLQ04430X+s4thuXxOxT4P5Dg25/8nFJyPQ4z/YJ/3rVAQbX1AnTfmN6phbSH0xWaJM1h6ZhiNTZqBiOMntK1LWpw99S32YfbJSHLFCu7ufTvdiCYPuPclOjkSgPLhJp5juI3eme7EGnBbkBjAn52KPMAe5mo9U1JjYcvi7qsGcbK2mdwtNXAmSESlLHPXpxWlnW3MHhMqvmphwdqGC35KKL3a0LYEltXzYWen9y2es/QYtw/eu0RBqm/PWTrfvkSG0FAVugK3oLS4xdrVDYA3dPCclwoAkNsJRQKvzMqrsl61jrkn/Xd6dxnnnD8IwPHAUD4bnqE9d1cK+bqtZZNRGCqWhTsSKioeDvhfj222rYaquh7fc3xNGaKdSaZGg5iC2MchcIzptZUoW/na+KgwADL6ia9J11C9s2Lx42xbBjcvKhL3/KR/iuRUZZ2b/Qhmu2JInLl3n9fJexhmJ0af2g6OshVCZLgcnJH/zbzMuQSXceG0+sLOZTKrAK1vu6RoFhqVOdWEeEEBcgNqbo+craLSLDgV8/mKMDdpmISu6ktN8JHzXrTTSHogpDeuERPwAJREkuQvmqnEIOC/8rRl5rFTnkec+8JkH+weg0qX83MNtoSjgnFV/e214BmoMyZGa+1f8+MsQs9FtpVP01O4S++rOH1+85Z1yl+vfRNz8MChqtLO1wDR1CJ38Pg/TKHPGaLVWChXzB0Dc9BVpR8GE/Ljy7DcY24PHhe4d9vn0Hu+efl4TCvhM42z1AAWzek+nt2axkZpMTZLYQcyfDyqXYLLoERHn9bDVhvBoahl34HdtCR1VK/SVO490VQRsNbIUcfmzYKhQpKg96C8YJcqpT+c/QyrwPL/ONtGlVApyatPqT8Ml8QT1Il5Urk+ilp3olfqeh2Wp1FAMq6d73cdHVjNQM4nTByJBXprIDMY/E1nOQ1Xi8S/643w61q2KHOKxzvUN5zekXlURfSVDyJHZ2GJ619og7GxeCX+ynxDhs5Bn1GdhooIjIlLX9zypA1itjIGjXP50x05UfcnoyrtUi3U7uECfsgkuII+VqDjxEmJbjEEatJi0F4KoCsVt+aCU+rjMauH8jY956l5Qx0BYz6VLPoUPJ2auofkCWrQkcJ3WOlIvY/EHZZJLYHRxmqBujWm372DlmBQ+cJcksXiGPJK83qBrgS1V+suSN0YOBuuELsdsY/ZpJZpCMMkO4FNSaMyeGb57fCQF4zAjyrtUq+dgUVZd4iVB3s9Dt6WvzpVN6sVkftVnr3BnJoOM2UvxVdBb/ZWFz3HUq0ryljWi+w0W7A3tDeptD4yxJQwUxytEMXvX+BAZuKGJ/o4lxQt//4QphhNF9yhanT6rZgMYb9W6YhNpVT0+KhaIvwNPwdeoO31MqNnD7ErMdwc1f3D5aU3iOixN1mm+ix5AWLO4NH3h4r6qgYzKVekp+NQ4lMOEN5byB46//RGyavrtkUaby3USTFGJsYJYkznhjG69EKcMPIBdRgzR+He7IuGHj2YPmejRQm9W5guVxQU6NP1PrTWQYyeaDpMYn2BHrZ/vh+sJqJKxSQKMlNj1Wje8E6VONvnGlbDI/9AOHZU+SwoQIBo+BsgurIJBJesHKrHoiLfVxn0wIWqMwQLW8uVd1llfFH2rYjTEgZHLYW/FB9n5EAY6oozx/9iPuoZYAx3tqY6Celpc1sxALlIBJuYjGQkoZL0trr64yIldSLkbVWNef6s/7DxwbdsQKSaPVVw1XhkT1AIN0241+xdTJz1+GqQo3b+cedsYqC2ZcbHP1LIRP2vz1gaQfK/hgdnglv9/aFvxUTO40dgNP8MnAKmCMsrG9FdXqaQkSN/KCjsBv9Uoqpoy6kbGXH0IbXZrzQEBCSTixhEndVp6vSlLzXFtpN9cTBQdUNJqLBUDwlagMy4tgrX21D9cOSiB1KFKduqouZJHIrSYkmAUBRp331LLscKE+gdutDBN9UOJA1Q1d7HUHV/y+VTzKcw9sHldLs6++7g6UjdBmto+Esa865MVSh5wk31gc8Sv0+8LWbxefnUu4z7KlLphaVm6m3/Vv84wTrPZc7+gS3bRQlQQIgrp7tCOYfOu4kJ00IcFTD/99yTHtns4DzDXHW4NYWKRAFecOAEQKET5wfL6hizcx4IxYTQx/youxcIhQtFAEEp9h9HLtNNDphaGEEBmDM9vWDY3SoHZmOexqhdc86ZZVqZ8xwqkWnSEeCSewmpzQwdskZAuAeCfpOT9QzF6fEClg/jIGP50RjnxcjDaAzY/oBEFm6DDjjWmZomekxf53+lXCSQipqASgXCthjte3EapPwF7sUOeNEdrUI1wPCAI4m3/v6+RV/IhJjBT95qeUcOvl46j2VZvSFiOXSX/skJ5hjVRIXja0CeTARSDksi3sJ5FxZdWkXdPPWOvbvJo7wMpRspaBwyn+CvNr2YX7M5ZeYxUY7YHo2ru8IxCVxVxodLclVDhajy4zdnWNlDWyLemuCZLu2bR7oFEwMWQK7oI6HhQTLejnZRvZumeaXSHiQbARjRS0vNTLN9kE4NfhKrcVxc9MTnpEC9jgouk3FQ/RazN3aOHVP9H4DVVayWj+1ihSyWPCVbAyisL//4qlpZxdlyRjEv3Ydpto/TCVqX6wmYqIX7yj21bC282Cff+cdFvqQc5LE1gOAW6u1JdotluiGQcoHwriL49h3+n3/9LIAYZ6135rnmFwAocOf1wtdKtYvc1rDRdo6tR+k8z+olO/KaRfSAHTtOgJr9DS5rmp/X7b8GEJqymMUyNqL0rdV8iiKowkRDN+KWK3TW+4CujtNtvSptn3/E8tsU86EgLPelOoeSwtiieRurc/OJRLDNit96vNZ6aQ+Pgolnabwm6pGblsDdpVx0uQWg5RWEjPCGSQVQY97eqrfuSps9PRw3t30drWJyJVGZNATsQ3bNZxo2MDHUbZOtx/Up/14AVT5/MSUo/5c8effwQbKUyJNJp2VA3n5eVkI6tuBEzml5gWpXxM4cblhb1ORmqGb8tRZmeMokEU4073PrcRZT2ZmAEEEOuO9/OAxNzmKkXqzENKq2YW3/ODJGC+0XJKPF5Y1183cpSJcYZxtPHDMhO3vmZCpspY2LCt/63hHoKPfty5ioaEBODt63uxNRmWmXf3dmqdtRe3s+Gy4o+PqjZi66yXMl1SD+pWUid3j6mgzdGd0K84WW+WRIl7CRZd7qFgBakm078fa6SKrLlz5X+yOiuhOl4fYtO5l1W0kzDolT6QddHYC+RtguiHVlECPWhkNk15z9ljjdQYZmL/4rK5/0j1gfd+hpGh3Gon1hTX+YB5Psdpse3vbelsd9XjDOchuDrLOi4JKXeyiOn5K6ATtAveze55doioNcNR2yO7Zm/SJPlmZPf5kIh9jnaBctu0qotbtzgZZQLFUGLyUO6AcBGhSqRh5nGNDbQg6/JO4DKQylllzFDlLuE6QIHa+UcAoHRvSgYBhJSQanGH6zNpRRzWFNfcwapU48jp6O+NUGwbvjhZONn5rcgWrjoeHoTOmDcrjJAFqDll7ImW+QavzuurvF8wg18ZcKYfNHpl3JOGj5v+48lPumZqXzSd2IEs93iwOvuynqSbTJXAcDdMkPiz2NNHyuzmlf3Tq5Y6lC/2EgUetjOcZCyjC7zMEtKgzF54+8sj8a/Xj6JXNoZg3oFGtQn6Aq9Kq88bG446wlNleQjCkHYIpZQNlYV0o7DX0wJkjkkEXD+8EcGtRDZJiDdPo4SMmoLALcrU2Gs2JMNx4bSe7fsbCfeQkWWaCedaBKRhZxIZXa4lhbRGC4ccqD0ZkFddlQQalCProImHpCtc0MkVD8FaqlDPw4Mq5oXZyypo05zCNxLQ0y86ELQXhMlGKPFmc1OCbqyQsp28LEXKa/9UfUjgEkBp30Yak+LrrJJo+WLFKTURkMrr+0Y7vGwxl7eY587uc2gQkXUQ1vPGICtWTJclnacP/MgmCTtwJY50emnyQUNfKxILvb0GsuNqmWHI7KidYsFVAPCv9BVeWcFYf+5bBuAb6gapW7wC/pL6wCIBN/MW3GDSpZRMXImPlKVjLAeWCX2wfm4ofnvj6Wj2Gi7njJjUgsYKWPezw8G+YIaeew3FPaazYFcIfTn4o72V5doeYrFJuxhYhSSHTIoQc5iqW7proMfb+zX6/OPphXrJ0FrCGS/0/V48FEZmXE9p3R6KDSA+gvOQJDbT51DMiR/L6+py9BuOUv2g6s+sVPcy1MuP7DcvaWHjWHqjiDBGXJOxdLGRnIReKZzX9/IqWhKDgNTLeXxRQ4hnaGprOiZbP2GuEx8k9wlvpstMyTqOhZ4r3gyCtJH9PZ4TnEmKynY0nCpVhhUotVvNDvMv19HMfZ+ZiE6W0kXxIXbFXteeWtr+OBCZLjy0B91oTVH2m7F1A/2d/CYPTZ4zawKUckVQ/QGt8xPS3PH+OWe9BYRmfJje/P4DZDin6sX2LaTZdJxq2Nv58WtuFm+csIgzfDOCgsRlQoAMxEyJTxJhC15RaBNR5fgi/e1brlsX1veIs7YwK/O2T0q6o9RnNmdkf7/P+592zWSqvR3EeZZPiBO0SmzWhVeycQzJQmPhlFY8Xo+8sQuMcYTff98L+9RPIpnS+RFhih1EXX5hYrzO3VuS8f72vtXwESZuG19L+RUktNM92dStilPbu8X08Kg4ZBezBiia51cBwfZFSU/OKHl7aLCK9/dfnD1JNWuqbP2SXQKHD0ctlsUZWhLQaTxKEglYHpMwgy5Aq9PScX5ZGpdVzx2RlSwWGNc1E0CplkPHh60HLzFzQnBmgMB90NH7DcKXVFnSFfpBrKqUMvwttG79K0W5s33My0EC8gUM2YTuYkYZZH3LOGDaeq9LqWq27LrOplrjyzpQZlBH6KgLMs4+U4/2O+yIFNmYALIme6ZZNBAKyicRQpR+hu1OJCe+vsNkzxv2GRrwqRaOjhqf0pplpKzTEGnL5HCvG4c38h8XhE+5cCgpWS2aeI3FoNQc7j7rcC8hMULOED/FssiIEANawmdTiFdYNyT98NgNAqpwItdFNbxGFdgBm37SHh6RUn/aA8vELwPIh6FsGWI3PTIrQPENKVAybKLtFqYaywcMTHvye4r9KCHqocHlLDrJX6v7JZIvuqisr/YnI5pLG/QZQvObb9s8fgQXzXVPprBssUVgDf9nvyuUZQgTCq7MmQUNloAwIFwbeDe3XaUprDHMRfVBfovp344V8nqJ4o1/n8F02PsFrobRTokGgbDOVfmwO0qGIH9D05LDncLZb/Xo3IU7kx3BJ++BFbegOhdVZ8KhCJzr79Rhi6XZngY9EQPTjv4Y5qD0H0nLbaZUHpHPGfVlyqRwoyjJbS6hd4aXltmdZ/KKG1GJmFoFeiMsK6sgr/ujnkzX14uvjb/juvNVuLB3qLfGgEde3UfsnBTx2iYhTYIA/o1xIJtsHgJSVB8s0PC/L0lrik1E8AmZ2jPTICKBKOTlSvryweBKO9Aq5097G6WFnjc1KGTzxBNHwaPZHqvg+b078LsMCfLa2x7QMLGBqXMRUgiOedFqLRWmnqfTOIp5j4nS+NSRNmNMFnKgO1Xd1WE7e9jvoBPF32IrK0he97OAo89y+b2XZkG0507zyRAc6FY7YGDIYevFWI8YX39cWKKCf4bV7xp8kVhCDN87G5dVhqakQZCn4CHgHaEyOF36xer2TDyhrt9G969JLkOZy/08Hu3Myhy1PKguhW/TdfWPd2g0ekK08biUSU27VLvl/cr+gYkvX8lQ+1SGEL+RGd5BCkOWh5wvtKRO6uy97VKQlfRy40oY1tjSMWvysM0wzDNngmjbSWJbLNIef452UWxwamehzHVCIukwcBFolbioKmeN5aF548BtJeE6W19MkMItyntKZw018APWP+V+CdiVNS3ne4dfpmUnAH29yztnyvl49eLYq4tgykXz280uG/pxO1RIzPZY4R3vLojIhDiMNsL5JiuH7PIXcPoHgo65H00WHenKxvXROkF1n7yWixfp78YFzpCqSCYz3CM/m6eKfiKE0hEyhmS+BXaVyybaUbWdaHTqWyBqoS+Ooj/rZ+Rq4j9QGotS+VQmk1QxRnuAm7gjohuGkZepRbbptOmZs6MX7jaNH/dX9evuQrJmC9ZYpfzegM6OwtpOapYv9LfBkfckNu94oA3ML0FKluSeGd4m/C4nN4/6Cr+ykjiPHwH7OCcD46//ly8c6/H3de+IUeeFpNjumULrJqi5ijHlqlUWBaU7iDfh5CwiXIA01nCOGBi0mL/d6p7E/J3YUzNqq9keriHSkAbhYUPPRARBugjQdj5YOzWzpbNBsPLI+z3v+l2Jz8IbBpfGSZsXUqKJnI9OszlymblYqpDYufLLJU6tgra1LJMRVXzIfmkwJsSrq0jdSbTx+zO0nQMbKxwxjFb09BYjDblwbuWmoMgxwfhwSrG9mfsPaCurgPXXKFspOIZEt88WbJhjhudTLB7+cbyKL3HY0dvf1/WC6kVoem8ulAJsujS7ELKQy8Zksm1FdE5JJENIaTG7HHm88iSNSTBjfXqV3T9XPEa8GK9V+CXsn55j4nd5d7QCKPZExlHGgslWgTeGKoAGOoglb4j8ejXJDRUuJyX3XNSeVor/Qk4PMj2FflYwFWO4r48anU2CEcxKYe8WAObTfmOEVlQXRmIL3pgZsqkLcIlsu4m/m258El2/asTOsE9x4JuQrrq0GrddYQUT0XCzZdR2fuGXsISKY8jAna1HGKA+1b174lRB6CCxWR0VbBw5qQ9rxyfBkS09/axZUSXy//epPdiT99jJzl+I23aA2hXGqYIGJXqraEMLWu9QPfI/fDBbOo/bJWJ8K3FCnAZeUo7vr0t0I8nj9bLVIIWlxF4uq9O+kjIFZFZ9mffpLEOAI21iYgoyyBp/nsaP0UBfl29alH5cpp/tsMVDDVL8Rjk8JK8g++ztV6ONxDj5310cZGfUSNh0FLHXeimpsHzyOCzmPA1mRosbvZzv9rdkJ3yaEHdMLzdIHVFYJ8PFiklXeV4nqZxlxaC6FPR/2MvP3gOslpc+/9vbKaSpBTJakAN4a0wy65QitirJB3V2clzChYtnZsJkafpg94+9gMLP2uAST+3Rg66nfJmxBkhhOwWc5Ac0lfwWro5B5HUK5dktNjofvX+guEsRYMGI52uQdj9p7ytj1fIgcF91w7iyPGDc13WBzzU6s08ltTb0ukkefJmi7LMwSRAwTAjKj22Gi10MB+vJV4qyeMdDqtEbWR9508dxQ8mihaC7bJg7oy4vMUi/RAGEOPcOrgMi96a6hssHiD+8uFT0sGWRvedV6L6rIDotWuTj2zVZNyDg7GCydPqkRoA2db9VI0llddny7E+gdaNQ6fu2n0TafZXBUlLIaJp88IWhWR0ORqTYh5ENVWZFVkGQp0lEEfeuOS0vjABma9AbgFKaREXv2ncnA3IKsN/SKewsBEAJCaOkWAAMyDa/8myTOg46QvYQC5N/dGRtVMKVJU+66jQAAAP7+ZxpcFilTqB6U9vy8ZcVjLFx6nM/gdgY2V9xnR2MVckSGPMds3N9m/JTY2J6wTAR2/S159wKQ45E9J+Cvnw5iQfQ+xq/77eFqGTYbWmV5UL13krJyQ+cRpxdNguPg73J2IQZesRe67BiX5yLdWBADJEfwp4uSFV3RTtt7OkCqF6TpvI8/tQxmgofvYbE4kddRoNXTvvVR1Cd9vHOS7rrpGXn6nLCpbzGxMbkfvBa/xqFuog3+pads2J5M7kPoYhX44Wk+20VoOi/zQg9AC2t3g1xmac8gMV2uQuJAv3tuukXesXIgZ7aVZ7fttXMxZ9dCYVwu7dHjTDRVomBQsaPE5IflK0Y8s/rislK35Di8/0bd+WxU+uQRgn0j2spvnMPICCca7nCyQPyKK8tEfhG+mkszfBKDZ1gdvn5jNUSRR3rJH7Dm1+h3xaeHofPG//6lmY3pPZLLHE0CipEALcENkjanV15CCJU8WGcaiQgOMb2HpHqq80o8w8fPo3ECsLij8gSAEMOZY1mIp8+9Fc7P2jYu6hS1bPZU14GFR17hGdNjPm7r1raTXzpiidgffYS6Horc2nsqQBMJyvNFcjXMOSCblbeRfGwSjnlrACOe8JDQWfM4exQJ/N4/mS+YMyAvnA2Vq3HsW8nv5PeQImRpLukPKTw0RtrS5YqfvTiC9tgz7iGFRHeUXQrDnCX1eJDSOv9/76NvKs2aLUJMaSiAqRy/+aAmR9HIQh6ypYBVm727yx9ILFFo79UC17cNHO53yDviO8SxoId5AvVGnsD8t9erZ7WJyr9CCxbgaFjrCTNYNMBi5n6OGm/8mcEFXMVZXvRfHvahy9VBRmrZmBp/4gFkRKFVfQbHxVbWV2W2kgC4mE7W8DWxWDnJ8Vv4cPZnzcNgBWY8cLoC7V/Cm14cd/NHeS4kSZ0PHx0brtunAj8NlDP8kSZ20LgULX3UZVLYnjaWkBeIuJnjihmtbiD7lLZnWOF3fNV6faHexFoGz+TGaICWxStpN6Vy+E3Vww2/CkO6bbPz2QhHem7HZ200jVMwbOxaUA1SORKKMJsuDAQFxq0zfB1aKRZzyfifnKqAXu0AQ1SdwNzisg46oIz8ZZggCwLCJ8NbJ0o/MXRDB2GXsgyUHubw9hZq/Ej6jmA/QxK85zMyI53/IyIZdlWthjUveV8iNxEUpS2cfCgg75qWIMZfo0Lg+Gr45Uu/Slku6hItJR+vZYd3qeUWWRAMPdQjGeT9o6STSf6GCBfHmAp1agjVYRG9AEMeeLInvhoV09UnUYWNoy0kwihARy5ws8a0C8mCiHV+hUKHBt3JoJT8SeaN0yuwd3CLQbxVDWre4D69SvTz9ROrt5xR9BeEDAI03CHcHswQcoLAd8o1KY/kZRc4yBSfSjeP4SyPKbWDvB4sInwyOjVQTtTfReQ/Qgv5Fu1oGs0xHTLlkMI5J32J7S78xcJgpdgbKzp9ApiSq08G476c9UpXj1gG5S4hgG+Cr+YCkmN1KtaIrSb4QJYH/ii60ogpSfcF4yaGIfDiWYYJRUDgXryyVs/MiKR5PQTcHf50NryytcFtIelDFtOGBGEn6S2KqQ30kLNreBsNoVSbgAvqAAw7wmtpX7xK93gVKPeBUL4AQYywRZitFOCuynjgUeQt5YSBuMkauSz9H2CUsbjpA/F9s5DzEpgDvWbi8fRJeeDNwseZb32Lexe29M/JmSU1kA2OFEp/J9EZsYwhC5isew2WCotXjexvkuDu5XbcNCFxFp4j6nx/KQk0muH5UXMkrVmI4+thoZ+ZS6fT0qKEKR7KbOAEdnJK/RfbUVlhvToVyiA/CK3dGl78pcJunRdbrCmORCSSPmv9IVUMYKQJjoyFbdLmFr8n5JxqNekUViwlHEUE9UW92Wa00dEm/2kGYB1QUbLvB40B+Q4ye3oVwad3rdinp3VjikfHHixoXWUGVXzv1tp3oO6wKD4O00PvY0vR6obOrwd4kJVmBrkYDL+3P3lOFSlKHgdW5k/TMBgqXZvtIzIQBkEEzP9OJ1IubtQASu32CQsa7B9ozwComVo9Z7qD6/imQVDRXfUYtNLAMhnFycQhGlIpnK6xlk6C0qwXsIw+bsOYFfjcJnNJAf4k5ZKFKWkKS/Gxsnc1KBpmcK+6OsDItNi2xqAjW7AR0Q3IBPGJ8z1VeP4SxYXG0VthBHeh3s1k3IsbJqBUuh01TECGzFNrZJh2lrqH9RapYCRtgBcMadAY5YlFbPAExXHd6DPsklxXldAsinYVS25cz8Uz4CY+KiOBuL4O9pdoY9VIkcalFhb4Unj371dvAIThI+PYeuFLgH3XYsfmLYGDMfuUxzGvb+pU8OK1WZG265rOR05Xeq8Cqf0meno4wRuX5vV7h8kJ2tJ9aRG31uggj3nXXJ+6qUYsMZHoBfoFjj/fDn+NFu9Mg4PV4aUiFHHut3ysRHlkDXddZoHtC0d0sHXUrmgRW97B1/vNF3XL9P2+5CQcA9VnSvdaiA9PnDyCrqXAh/IqwYOPA4Kstt6SjDHpmf3fE49my8IdU8jMuUhwjXWVubzQShJPLhDgFmxruHnhdyfOqXT8crovlznFi0jO8e3gwEXVWdwibBDjgFbymm6sb67k9hfz+JLwZcjsSrOqtoCf2h8IV01Reer/iRAq7xnGdTLhwQK9BCe9uFbKkmgJCYKyUFsW6BpTKrfQ+Bi+vGYEMT6FSz9lYFtiY0iM4mCKv8rMzL5kaliZ5PyjCByHkeAEitd39HdwJsT+n8X5wgIbhkC7gW+SxW+2a6IFKsYURk62AVW5DWx6lDBl/qH7Ig2rxTrJkBsKHZXq0Vsf1FB9w473H60WPSkhybmQlH902hNNjnHKcGNJvS35hyGRyTCTO5liQQfkzkkTjgdlfj48sX7eChysOHrHl7HKajIu19C1H9g7GwzQnUxpmnYfIw+zAi7zvPFnrV3xdSzyrOfpWx1vgfatlUpS+dAmYIaUfPNveCtkPhKgy6fK/FVTu9PzfDrYz3E84jS5CXUXnNIZ3o3QojMHvtRGSdPiov3O3C2gmHybaYtvC3Zk/xWUwlIwrPh1fUsOWJ2PofzsGjTvtoXPPiOgYj9Q4GkKcZ6+DjRtkp1Ktjmt7FPpXjfAi+56EzughXm+m+RzkEkrMnp+ob0u+YZaeQMShPtc9PL+eX9OXZT2XTv1kYPSof52TkJvIHTXo+d3uh6AacTD0KenWqmCVdNMyu7NZz5nOp3R+A0FNfIVY6Emi+0G7zFy9WH3Pr5gjiinX4z0M0fWpPcEIm6vVCqes3QB799Ehl+dgRTj2Nm49+lFYLLXoj2G6cylIhlCdbBSdRaCQ5Q5D1DbOD60jFrEQ8wmN89JkQaZbd8VF4T7MAypmJg4gKN+YIUfYO3gfIzYuiKSexF7SJNvlf4Lgu+wVAAdBD+lGnLbfOZzEVPJ+C0NDvKd2qa1VRvd4pTOgfY+XuSc78lWp1ygcNqQVGZvF6DSfZ/vdkGsw3lW9/W4oe93TTAti9JGjYB7k/KOtz5tHZ3JJ7emKkmU2ZtdZFfLfLXo0l5brSXVaHQvSMPvzoN7AKrjuBZM29xp8wjcVfLC8qI7+QdoogX5OEwweW1aarwLcXP1CDndPjidanwXbALIiguUyNEAnfGa8quVP2zCvzXHCS9WrfrVc4Gzs44UMTCHlIlDCtleM26POubEekOT3N65qpSzXGzI2zENcfC5sCn5+ZFd4LodnmWm9r/WbmbAoRd8s2xZGap48QgVr64uvmu/5b5LBEI+TR/qVrfAp6qFgtZ00fpVFiiwT1oXgt3ZyEIZBD8MTF+cC+LSzLuWIrw8J/cwCeZa8SfiPx5zs2Skng+LaAlEe0P2fBR2Qlj61WISbfV+sOJWz+NMuyyyMwU6ikpME0NRQHbrKZvzVm78d1D3NY2PCp7YS0cCHoIQXmF8dYdtjOL68AWk9VAuru0uLXWsDlDaY6a+/v9Z4HUwREaGBEarU3Jy5DO7aeRC0tNFyvXc/UHcFR78XSQwb7OGwsz9IGz/GDDNZiOXna8xIO9QH0iRcGYyJfZvY3SDuT0Vcw4QcnlIa7JS6jIEEUgJkwnTgH+N0UR7qXlNy1HrwmOFFAI4DW/3rwjb10IBiXs8bs5gqHXPrmKe/gcFhI3mD2FuqLGuMHMvKHW3BeI5+RA9shF0nMehcKgDmungGXbYNID9hpMLY4DykSeIBTd6YGRyLPETDyOs4cCHgmciQLhHj84C5U5ARS+fX8ZXeUWxTWq5fa5ClRWnYdn9AYjqzNldIchRXvN3Lva+uCFuCYFmssF+RaytVgxyN2Z6iCAlSO+NgbyvN9mPm8trYmPX8hU9nxwN8FgQQniNgTBJ1R7cNKgxgD8K/s/1UDNoylj09hINE5MLuISy796+U1vELc260XFnwPN05VhYtCFYAppOxJiXEV3amjwoynnwygnIJCfRmB6ozIaW069ZNhbbAbGpm0Q+EccDmhoiXe/KknuUj8Di1eOv6kDJReo71Tx2XHth5PLWOwpCCgREqiTzgMcCYrDlaOOHpFqbnHeeg0yTHZfzeKj3KkJTbptf5GfIgFBD8arp6VnUVcsFnkKaMcmoTFrM48cMVN1PquYPfsSqfFAihmAInkk8KlQz5QBQVfudiovudQKFA38PHQ3B9gY9Ji1hwdqPJ4tvoNwrMx+iuVBrzDU6C1xBTCupU4T7zdnRCctkzQYTE2N2t7ndhsFjiHlzP6O46MOCYfSlLEHgeKFY2aSYfPOGXHLMpYRjUgCGFf5I6FZyHprvGisIVK5Gd4rE/FQNC0AGmVDE0ho4+n09NUiMvfcYZF7qMrkLUqY2CzveRu9TIrGWByuakBv1Byg6aS9md46bwYdnTbi5vSI+FbQGcRCI2vTA0sIERKpx8u/TmAyQ7iWri7WvzpCXnRrHAYjX5sZkOoF0tpqsnXGd0DHO9NyhE7pI49zLijJlDR+Vt9bWDXwgY2PMnOR6IzpuD+ST6L70CHhP2aUuQ17Axfm1splVdCOGbam6J9LjNsYlVAAASz2KHM2akarkoNheYHIp3mh6pFpz6QZ4wm6SnEnxMh664WeWaAkZIQEBSDlVTuLd4DiIhEogAXoNWDagEjwZxalKq3rOeYo6ifebg6wC9DffqE+4EFRvqPsE6lXnXgw3f5e+uiWJ4kg4oeAW/Jb+TB9GbhoC6KGy9+mvmbm8ul7Rxkd3m4P6qddZxfljm/fYs7z+SP400SLvrvUR10FrPSl7TyF90zQzR3edkDxYWcb72eCv7Ksg/QO21ffS1xyXfW/2ZYA6neDT86IHptO9+n6JcgNqVbCbYKHRCL5DhS0zi+YUoum7iQ5Yr8GcNRr4lDfcAefiQHCAB4Jw7J0A/TIZn4niB4lyRnfwLFxIh3oiZuHqLrk9zdsXE86G7a99HhQ1Zhg6Tvoqt7ZB87SeweFrbC7noU440hlYKLwmE7ltKYoGVJxNIBGC6kS2Is5kF1X9GtI5ssooydj0RxfICDLm2VOKqGtvQefF3xOt5YFy76/ILEUeOQ09YZIJVNJH/V2cVhggvGLp8/HHxnMUGULIBr3kC62LvgIINypg2bOJXn60NwDiYBr9jmfi1ojngcwAuT1cyOQjbWkKnMzWjIJkgQvnZzMH5hFILN23/ZK23pgELdSQEKPMcxUhLb9pog+OmpHPobXk7N3ddPo6MS1RjqPHOqbsdzZHbhCYGB8FCcolrTBhWMnYt5aShweoeRRNTkpYVIoABe8Ipzr9YL53VggSmJXHlEMAua6liHNUyGwcirTGR6hK0SlUMJfTzFO9OZME26qBc7w5iXkuB1aL3svn2eEsR7233yf9YwSteApOthG8EgK8QwDbuixbxb4XepHgTCLDmCjEc/I2ZDR8KbBNNq+9o5jeUNSBlu9O9T8I7eb7rHpK14If0LCyPqBR+5y4cCmTVggT/tHr4R7goguQ/GPl/oD+BapSvoyhStjoNrR7bWJEAmibA7YBQfLtKW+G13D2FnK7DVkqcH0aL2QPKsNtn+tadT3wUYg+CuOSVnr3kcEZpuQneGPy5UFsG2+bpg1rbAG1t3H4IsNMqv4dQx4z5InNwIf8gJylm9j2N2g5enzKIFvG9miSHV1o75IBM6SmYZka5WytSYFIiOA9n8HolHvXJZd++CHy6Zki9t2IPJjn186Sh8VCbX1Vkh4dcgarCd3Njzc5s4m27gMrse4acr6goF6dMGip2edrDW8tNLRpSLVZ99WpSPrvGAYudNEhGcIOqyNwTvDfAOG7DVcSzzIMrUFTPMMEEu6UcrIgUHnpdHLRXAaQvB8t9V0d/VtZ9x+U3kNP31gVLlArrt6aYmW8AYpospRuAXdxk1NvaKNuXbSnVm5zafvHrn7JmqXPp85F0UL7qJoYWdVP6DmDxkK7NGw6UUgBg+XjCeN1D8Wt2BgdJ2NtZEhOdZjc49iIX5QhF9tTIlNM8BFuD7VQVB9oUewd8xaQzKv/p98KnvgTYyuGmVkuGJ4PAyu8nB8QQ4mnPaR0AJqyG9Xng1y3FmcpnVR4smxqOmqisKqKG4rrBJ2SV+6AeOQKTpxFt1G+psftivPXJZjuupk57H72rbdMJXUoYy+TQ/DwaPH2Az3tqFpRpOGY4B8n2jrdLAFvo8ykATLL2X8eDkyHq3d3CQfNmbAdAUtwmVJUOHLMyIY98s3Mf0cHvr5A0Dxstktv2HqO2GL9b1REb6t/XaLcTsRoXDMbcRJHWJTOZXzc1/XFjN7IaUdlMSTrjiYSfZM1gha+xGYZyEjcM0GaqHFk+8qTCXZceJMY81niVWryUnWrECl5iG9RN/lNOX7CGz7d7LyVrtv660VG135qhExkxziABjBzOMgHsHAF7j9ZxpqmkPmJu+6uMqYTt3JJ0RDxW98WtjCGBizLb/3xM6tPVQNYT3ndtMpdJukw99Cj+j+c1I6dTATl7YvgA2LNRjKf9kFIrJZHAP3tl3IPl9RM0OgQy8Cck+DlkolX/Eg+9T+dLC+Z+y+xtonpmYfjjH2Co9oK3fqZY7nbzo7bT8vzOSgdGQcJBNyDH6CI93BWTrWpbjd8VSiEbshemrGEeaPwagpJ3ya7rozcqXMU/ig5iHIBUaJYKhBaDeycaxWAcIEfkZdWPX9eLiW9F6NE8ipldnjeiJ7ffT6B0ZZ8I5OZZChpFY5GLI+kHFPLFt2453hbdFSTHPid6rl1ant3WdCCj/WdxTzVSEyXAqI1+owy7AYDBfI2d+HAxM64zwKa+wXgosWkRuj+ENFjgUpje14SyUIBl7+SUiWpDQHtlxcY67DdojQDCDQ1wghhdn9FVHgdzlh7Mfkc4IZIPrd/ABU6YgzdqcDqLcOH0UWkfKx5D2b4NrJ2Lneex2KKcNwSWBvoD2FDd7u+ixYaQ6lvVgFk6awUHf5TjKxrXKIQtUtI1I8o3tA2tG7NK1sunwaoB63K6RTb59bdB75Cq/4UIM9+pwHSNZJnaKs09AEN8rGK+agSMgih1RQUMkgNIi3Kn11JE5SMK4rwAU9VoSCqiC2RAp+hT9FWO6kr+zcjUrp8y2tdrLOWf2sJwkhSLwWdCk4bOvZ8MX5nKpbkAcM/nf+xw9L4wnoASHNCGopoggMM3vXwOo7NwcICS84cwKdLfIShSOvbAVm+EjLYSjG726sihSgdwlI4/VXnpfJZbwudPyeiRlw1xFzb7xVee+q4ZNG0DtiOV0K/KhpedWbB0fR/AlbQlZjMgEvRsmxvzKbb8en0iSzSmoHiBdrwpbasM9mgqxO07HnxEROPqpUhlC7l1Hc2vNVj4lxMYhshGTo5BejmOGNoLb7iV2UdeQrgPIaFubwjqeYL4vKn6JDMaASzdXmgPo4g714TYYjEoY9fH2/eS1S6flwG7lj2PL02Gi/MuMo9OACvN32zt2o0NnJ3PGA0/wiE5mMcMlhtkfxBmbKNMukOyNw6ZAltV106EzCaA20K97JQQL3de5S53Ad9VutGj8LcQNtL0A33icm/Sk1vfyMCgNHPiWtmeARl1js1hMQAOLPXOJGbPbje8P9wPpUnObchLfcBlGLMX3MQdSEA3F4VYoba/Y0sYkNaB8ano5CZn8eT/Cyv5tKqdkPbJ06v3dtevl1zVCHQ3IRn7CVkU6nsXGLNE8nCdDfzHIjyf23cnj7PZgl3HY83TMDQ1Hpx64HZnN0AzPkBtLskn1yYgmwECwKXYfRx5m3xOcbjwg8b3ZHONNYCO33thvp4TqHm7trV49FVyAPmRMnpW4+fzRotbgw3XIxfJDtjZLHZiuzk7MZcbkDO8V/MhanttAuxKYvkc50GRNc4Ee8qvvmfQbDnwqx5IpzgHQZkPIS6GMWoaITL70/g3O5Dypeyd3z3q8rauHG63ryUEIKyA4prvO0QoMUiXJCSCrVHdKXZSAyEsftN3fgcz5ug2KWGlvOZKRggH5QjggyBao19aivCumjakSFwiV5LKHwOiIDLj8rj3gFpI94calPkHAAlJnWiyThjs+7nXXmSc2T62H1tD2BJTdfFy+PI2aP+8oyhVqzwTHoPQgbyNuGMgm3nQ8DP3jzgNWnuE0lkDSOZ6ACh3meCShliv/jNWAKxqBXcuQdXENhbYdBJEs2SFTn5B5ti7ZMjltbpIJbK2PNRkGtfrlCmGaxJdCdnT6ch4RYEhuthuIkfwERUAc1YEKGyfCgedrOcXVGiUjH9sA0kIsxIhY5Hye9z7jYpPJZP8dDa0dEbj7AXPHSzmvxoj9yOT6qHiL+Lyd45EssPZQEBQz56VJ7AVuyov8ICrZWjHgLA7Lhv8QWM2pMSEhpzF1aXlHsMDufU1BBIkUtiNPzQ2xnkCHU/XeBXaEQYk/EoXt57YizKR3JPnWB0jINxhlaYfLyxDx9DZ1SnnUtWU4U0cZZ7tPnYKOlaGf6da6qxAlc+a09zE62b0soNxXyyX6uykxUZqATnNGLXLJDZntzMtx7bKwsuMWNf76clTO9I/v1JXqLOaLM2FSKiMYljgsgeK2DfmUysw0PDEihAlbgnt+AU0ddFIzY2XtF6ZAI66TFeYRjudROWtxwT9uMnOLSa+GjuF/+8y3MIybEHjFXSr6uk2WB8vY6zBgGV4SnAVTDZGMxlaaskf+ocNvCSi0kwypk7vLFg8HEEyh6DJeHRuauGwedhAIyGfKyNKPJmquHVVrcwelwr1C+J837k3777QMd9Cre0PRn31hjCNB9iP9laj2837qnM0gWT/PiBYKvYw+QWuxoSeL+S3xmPSAE/Br5WC0U1n+CvAr2k/5FiVdcXxFwbMDxOILFMH7sednL+39EdV4/HQO9R/YT3ZUJlu1MgS2yEZ5yQA5O48sGRNoa7M6t4OP3537ZMe5/tw+R5+snulUJIABXsdlOEIQIZPjGLh1zPN1Az161y6/W/8X2NhY5kjHNz6DWcne3jlWQlsxiMERDKlhNO+K19XSIjqBXfQg3vtQl/3FM+IiVid8GlogYxBp0CTyRluQ4zxp/fpFqDscnDx5WJJIs1ig6sIAbi+uUHDto/k+GehjrG31x+7rrp0EMu3VLrakKPsl1oSKrf06sAgtvbnKGehoAQSWZW5kjzaDpYqozh2yQsmv/PbG3JJKBD8ZoFshkt4EUXb99pRpHR5nIOTWqVxQCg6Psut6e/nCg4AzDk40IqDruCa5oBHwiJHf2uK94lJ+z8wIYsdvrQ3v+Ji6zWFGhW4zjIzRD2u+fw6y1fKj70DlqzSOS0VJl5N+DxAEwPG7PPy6P8SkXItzVli6xcMYbgTtCXRpGFRQkW6WyJpB7w/VlJFEVFoQUCv8hMbsaCnkIlBMUJB1yj4rxO7WCC0GzPDJ5B6bBORN6lbfjlLLClxCc6ML9VCxgIATp65LGsucXIv5zCmP/CpB1OfZFqMMvbIshAKzHj1Yim6l+krz4lQqd+P+pqlKC135J3m3GH6Wg45geDJNQjrO9Sxl4WN6CXZLmlNiVKaokefNidYCUbAfcfCYF7IduYRAOCR28PXE0y5tre+W1mJ7ReGyA49wN0by0Xc3l8+SWmcLO6YDVFb2PmTSnPAa8wg/LViejByIQOZ48UKBQuQqxfP95A/wZgc3GjerUDelwXg5OQ6NvuOab9euf8sdBHm/YOYsm8usHZ6i0S2+tUzJGveVk65oBZd93YpH3+huc2j5K5ei2D8fwsmcmtbajl3CyA54zZIV/j8RSwCkBM94VWVtLkfhrxu3rmhR4rt/Id3mslPvz/1uTGVtR9OWIzo/bvP060jEUQ8I/O/Ma1o8w3z55c0C/BT3oAczPzRvnABn+1gNjbJBtOQy1VIUwnMspR78kxTh+CPIPSMGxp+XlcjBdjGaQvAXe5Py39eO7CorW+IPQEaJ/ptS+OTuaJWM/sebz03VwVCGLBECgpZhuk5macW2dt2i4+UDd4SFRT+gw2NZ+n5gzAoD2FGA+VZX3OUn5mFz478WQD0xfwOm2zIea36GAwj3SqjqQULc+goV1IqAZQeR1pDB1SbiVzy4JtSluafBo41oboevtbQDCiOLdYXawJU3dh76XR4LVFZHrzaRUmpUZNoqb3rSW9nDCCP2u/OPXSCSZaYcSjSljuery+xTgmVm//rChnCVBtLfYQQHQx2qNcXaR9yUwGi/RHyQSid3GLqwghhLnexfDK+lQz6RMGBkAJ0dL/RTPs8OSbuMw7GeZHqUeGfDtR8ailhml4UywybPf7Xnk5wiaJLfowobyKW73lC/IyAyB0apdVZjIJ/uKyURgu2qUwa0yZ+Yvuf1eOvE5IvWyLbeqJrD2d+lb488bgYf5K71y8wvb5cOjP4ksS+BZ050t0ft23fKbJXtIsH45PeZ06sahIiUe/qhmMj3Wc12DWb6lkwOfpKFf+qlJeDVt7klUn82MiMbg/HmKv34VDMxU3pCoXmO6/zJDs42FU7Nws4GTyeldASqgEWHvNbICi36/NPbeGSoKyO85sR5TXoGVcTAraaaT1P+N8O60JIE4Ww5x9cMCxjJxX25UGZstYGh2cWOEee1bKl6zsQYn9ROmvJ7HXPHissvR/80B1CoSZ+D/OxZfzSHht6rfAORdazG5LBNkMyfaGweZD7sP0k6wlT8dQgEUmsXFJcfXl5b1ELZLtR2gWS3OiRsopKxB8qF21ADn1uQEeRdDPeIiII0fxc6f1pExqhOmxxVo+AwUiywAsK9C1TRDsPlzlMuzGFtP4z3ftBfwyOK6JRc87p4g0gQPZCQenNWaJ+XrhP06Ux0F8jJ8hIeJVEo+5iD6XkYhS7ETWAEp3oxoRho3hh+e7ZCQ+z4+yl6Cx9Tm82RSZmi8vE37twTr5Nu4LX9sgr+Zjz1G2vGToKHhUg60vJDmxBUDNjNaqLT7JM/csPJiwhqevROl/OlScNpkwRVjcsEQuMTHM8ObRjLFMrL+LZkqHOewTy1Cvs++6Jc9V/g0/iA1bn2WaryOZpWASeHF8lzeBOi44ro79PAj5gHKS+c694RdpHu1/gyFqmno2FBqu4GK8XDrwsXfmfZ9wKBdchpR/wTUbpLnGf+Ghk9lXCB5Hw4MHBzilBycHbvqgSACb2+JQSNgwIcQ+1FSMAcERMmuPKtinQjYJuCk7RSuOY/wM3EIetf6ZbTQErIb+dVzjlZvFJO9lXwT5OCSZY52+XYQjf4YsvFClooJI/12CPkxHKSjxZ7ABkfVQcSKGP6xDuQRiT+riareMKl6Avr/6t0kY9zbWSRXeH9YkgD0h7iDDMCkzU9/OqhHSDWk4NNAxu4qJOIQSRkkTf9e5kluqfCZbMtbWUXgz3TgobAvCENjgqEANeqkn5sor8JnwUdn6M1kj/Z9qBfHVziOlW3fV6O+kn/Td7xYjEr2qdCIcGZwam9dVeB65AkVLUGrrMHQ0ytA7CQvO8i4j0aYbdY/x1nce6eTGjnHVwXrttDa6sxQS/j4BNjp/K/Nh7xF4WLUG98wLxD6Z2Mtjx87YInYJXdRp65MK2utItVGm0MahdrfWnyM3Hwiix9sa2MrVogK/KiQBMIOkFO7dI3B/L/5JmjRTqYlQXenfEI0JlxWpoQThEX5l+eHQUW2iA73kAS8EpDSC55cNLaqCl5+GLCwmJlCGEfDAiK6evFh2ZIPHMEySpDST1zhgcearScH2e0lpb44LPNAO2EL+H2KozGHKIr+8YJX/p4Mq6lGAfi0B/khfgzYDjG7dvjeBT18OTC8jfKaSA0IPUAv51NfcC7HkIXTImcj3hnxzcGqHn8tH0YWvdCAdFrv56eN6tLeXe7UHmLb9RzlTeJR2Pzs/QyP339FsyolqPK930xW9ZB0TZsmf8OzMmPm5E647kOXRXzeAw01/aieKCFyh7irq2pa2m9W7/6IWOnG1fu7TL8/0JHpkZ6JW4jfu7gn4s3ZIutXL8vhzkUWFCLloHr/g0dsHONR08Sd5Jt85Dq39+e8jWRGORSuNwTx0Qc64DC82Pc/DVEWAJ9T8awLVsU/MqPusHH+sgaCxpzEqlm/xPMyNVESMPAC/sGydjIsM00oa+xJVJq4P/WJgU9ZGz+KC3pagyay7KTwNl3nTxIOjsPdl0jB5LlwACeGCj12cOsN3nvFWLt8pS50zGEdTMUIQ04U5Dzzz05Ji1zeeV2rers+hmekoe+Gz+A8A/q1AHC9RPaL7p5dr2OAaQE3ZPzleHXoM7aCQ5Uh258AULxowNM0a9nhpAE2RJGL5amFbEZQEa3xCjqvJwbcyBlZop9qqvbM1Y79gvqVaEt1VoOgbaTTo0Hh5kcN7u9H8F/dZEA/4kobimJshG++d6CV/YhD0ImFT5B1T+o+lylFHWiiqAds9WavK8Zk/qQhdVdH7Pr5vwGrsMFcryVHcRvUv1RRnwVJ/3qcJdlMuxIHi/ctSIkfukVxGS8xANqCmtXLmFbYiUyxdYnbUXhbq6uQsNx7pVWoWj6HsC0fZKcjZNo88zVz6fP5BSCzugXU0pRHw78KASNVWCXnVwAZ55JCD6OhdnVRDnU3SuPa/MQo6Ut5u3v4HeIrW8DcyLcpXGPSoe0VWpa1iiMolVkvApbSdRSetFXR728673Jn/4tRN/LT1jhx+3WakPXat2WmQftiIiEKLJcCFdtDfww868IkcVzd2iYKZm86R4CeOrs/NEO/mAu+ez/jQq8tJt330ua5VZe2z4Mzpr/hGT/WkuVT8CsBdcMUeo351INk2tPjD2SCHrEuKPs/FWq+p6RHwQPcDkgZTQreGnK3QqSQHZM6eWQ8+CRgli/GueF1nCEwEYrxn+jcM4Juw+S4gs3Shjs0f+LNNhi3+UHfSeJ5KyijmMa5a4QjCBopJ+XeTc+Cdxjio1J/rkcC3xNq3BdYp4unrONJOIvtGFm30TQVID4Etkj2iw6uST5YP4XQEPvvwOZGJMrPoGpV7MbUr2CMXEqv3ErGxBF8vVYQSJJMpw6qbmN2OjSIRrMvuL7AVv374wTnOJUUFZmTuzRg3pi4QYALnFlzNUXosBUxE/MN/yCL5IsZqC4UkwsAy8MsOLfzMvHb9S26MDjvp+GVdqbJ7M7WgerZMOXi7IIRu5T/CzuE0pJ53vnptsNbz3ftfMlUeFHQY5BM+WJaqHu2vguWNzwKsbsNaNxAc3y4zp+QRPB/frYlyEq68vfiJkdE4rGrEnGKs6sauNi6VsivbyjsPYGrhrBfYy2uM4t6X4XMyANrmsWNIp9KFwLgiR8MswI7Vw+5UdX5sWt8fZ4UvVTTSIJfhsby8aUnyxvj1uBk/vadz9e/Nva4Kudq2VYr2ncrGeEwMPcmk/Mp6jtZ85ii0lejQo5mon7TKV23Fxcjy+e77mqYn/moTbUqM0PlthEKwMlkchRUUAFRZLzG4QtDQv0V9Zn05FNJbx0H08kZrrgB/+4Pz1AljXOragVFsXVWlOm7HCbtbLvpeckAwLsl8xHt9PMVUcuwy4riVSJRtF5FvIKlvP/jiG0Q29XzsaRLKm2dgnVfLrzxSnTtYX7KlBSJ8YalbFEd6Vjiy/euQIwLwee86zdkJMguhuSipesU/Xr7BfLgTATPV38nmeoXyVMugSPKexfAuU4rywdAcOXtZ7EXvqTQGiyz6EHyEQifxM/zPshTyr4I7tZ6xTKhe+dTF60b1siDCOBrKJnScJRYxUbLeUwjjn4DbnwczmEBiqOghS6pJiga3YFTeamrSltQrZXY42kJpLQC2DVCbXan0/g7TCRi2Vua8Pjqe1J5tJFNwvqz6nFLyIxzrECMqWLNr5OVoaE79htlCyrcm5QEWOsJcl1GxI2TbhouHRt/ZdZspJU8iheclR/osufpP1FKwc6wPMMBs0/3we/B3UOULaj8J9TPYbUzAja73YSoJRfK6/QGS34sr6TMmaQfYkeE4VlWOgq4cDEgNZUOkPISdUlGglR/uUgNDSPrefEuokdtvNN1/ZyjJlRfY+/urR0Y4StyLMrXgaS3homE7nwBjCoyctd/BJTdtca5qhMNjAIoAnVBq4Isv0zgvkw2FTHz9KDE78+rPhqDBnCbiOeroN3Yca7nWRwPEj5TaGHTUDBo+3YJN7atleTKfme80e3cfYNtL6q9QFoHVrcc0gzf5fuDyAjoJzV5cJSBwrzL7BWECoZTlP1WPWGr52md34Og2V05sflyrekxwvnOzGqTrE/JZlVN7vm42/bakiqZZBQdOspjik4IkML3YurvC4t/yKfvVs9ccQA+ZaS91lf0yo5aByA9/+FfKkSDU0cK3Ix+220hpLScK0flCmEU74Yw2BhZd4LYETXaj0JLtupvYY3p92o5IyNwqsnq2mHLtdYp8/5W6QkW2k74AjRwpldoH91N6FRfcEFBKsPVvnNen4cCjIN3R3Bn2msmpHY2xMxd5+OxC5XtnWLyz7U3OjznPsROTCRj/sTJ0JCkhDbg/43xfpFmcPcERJRTw1bMxo6jqmtv5cvHpT+W8nuL2MtwM3m4KT/pN7+R6T4UML8lh4IwpNE+0fEQScZFpYsaal2LgmCMP5C58lNBzs8xRQ1P7irWQyl5qSu+N1soz86qSNTh3LQyteXG6J6H10/NrtpI+YfDF5RtivskxewK2avJgXuF4MsIThQAP4YKT2XfH3EE7WhlFhYCdFGwL+cMen63jamyyJrFxpXxihcFa0iHpyLz0gC9AfVqHuCA6Z9GPCwi6WuosXDD/d3Z+EQw8OPR1tEDz6kptZebHHTGULaz70vgCR9h3Xs5eVnRtAmXZxRH7eoeNMZcq7wQgMw6xURaG4iH33AH6QwFpLYX9rvaCUbGfHXzajD8THMdZ6P6zbUJHe1qbYypqcIb9+V1R9gyakPgjZ4k0VB6minewhLHybZf09nahoHWGWuOOq/k5KOy7yxbJmihxqb045ramfyHi4zVbL9v/0WdoFRo1fkOgLc7AJVTei+zjAhnTwBc3dTkVKmmXn+NtWWSd8Y6EVJPIGrg8Chswn3wmhG1PJuTejLcSfPVUWVkTk0BhUrQUfMY6Yawm4PTJMrnax+MylTXWMWVs62nAJvzxCdsJgB7qT0nAciBIW4z2MbAsICfBk0woIkXk+4VtIQiMgJmiQh9KStl8+ycp/G0d1Er+C8A3NX9gBbzh4/Zi2EII9hbQNiX85cApMaiJqvsNhhIZqrh7Pl4x35K3zPAvwKaJZEtqpvHGV2JlRg7sCwCslrze9mrn4iBoNo66RqAmM5crnm7bxqhjlqndpfMcmQh4jEpJx2DBfG/soS84hk+1LQvI1Khdt0NhEhVmYB0FXaRIpvgTW+ecka6dLFhi7ADr6kxY6VbBLOOis4K9HKLcSG+2r0KPNhDDX9QEJTyVRKBv1dpEJ0woxLFbow0KlS1i57XdSlILZsKFCFoYmIJv9IQ/Ve/HGA/wClCBz87wqriQ/43ZTzprdtG70l12TEsfXRqUS3tYuUUp7wJ9+zQK5DRkz01xQi1JODQooOcvC69ULbjC05ywF47MhfyJSm5uDfWP9ve+RWdINN8PjcDTQxWKlYDjdFgNfqjc+AxoCjIuAuVX2+GfN6dhR/5adJp2Md84CbdlBiwuJTIqES15hYpwlzapNIRgNvCZ0LFh+E9ZF3oH6ogYDYwEbBdXK+7IQgWTT0/X16IBAXUaND90N60xNMyy9raiWZMVr0doijxuZLtD2ZBnSK+O/FdvcTV6BYd67n8stPDX9NLI9EA6dMhH5aEkKVBA5bD0YiaKrT+PgmUgYM0j1Z7kPNHzPhtg0YAUaMK3cUO1y1+jDvyDn+nlD0g/pP/a3TAiJWidz3gdOQwLEbWa4M3X6LVtKh6aOl5KxApoaGgum0AYeHPa/GWE7OXoA/OPuQmaveqAtv4ZtEhJsD5p/SdGj5whP+K0uHO0/gUKs7QT3D3jG5rLDOxXSo3i6o/i1tmG0WB0zON30qLAEIL4WAlRiNarvEebDxquWoR6dAwkU8dS7IC3YJJCWMAyt2RJuHpufvhIAy913DVzQIcHoed/Vy8d8eW4d/SFCpRk0MeA1RBK+dAOsd87jIcuQA90x6lmTY/pCxQm3IxjPskjxqtAo9t3aUV6FMM7yM8K9R9J5wUYn8Qsxuih13skfKNDO7H6EnUk5otPNOuMyv9hqbsEFtfj3HvHtD4EOHRx7C2nfvcnFL4//VMkFikvqTaXjByVUyzKI6OWva29oslQISwQx0D9eHCbfR1wZ/SKLSRKyC9hrB080FHVEZsyx0df6YKQQyovWORwboKA31SAiMCt+kc1GdoMYFD88Zmn/Jqpmsn5af56XeuaxqeCGESUcj60105BxALv73uv24+QYx71/Q50W0p5sp2FCwWIqhaFnWzAVQQDAJ65MQ9WOkM11QiG4Z+/KRcC8UetpJ/651NC97QbIxxMq43ItsplE4rs8cvU8JaQGCdojdiIs9wl3ev1Jq237Jg5BictR/FeqmlUzHnfjGAfI2tixkxgoi4QVBj20MeJwVQ2dMorpe7kNyGLbJvG0U4RxB+nb6x1oFbnYGFaj3Qg+zT6ilVql18BSxGwsJT5sgW4lZM+8UpHFbTESKki/v07dinwZQDhdjsHVfHxqpa7z2+5tEjXwdJm7TNESwqh3iYAMnXjMvqx64MjijOiOWZFK5fwnMI5sgDessEkI/KZT2NCVNcv8AvK1GLHkCSArSfWsHDHwHO8bNsORXCLx5A9V8oBm1MWoANANPnfm+MSJ3qUEQ+bZ7LzbzCzs3GLSepQACC5keuR4oWCtf3NRYl2K/sgmBVQIpkMK/qhqxfRV2ySmow04Vfr2RHWZ02CPkzR5it355jjnhuaOoanElK9bRRFACVaYQ1MMWUw9LbaJ4vMf4cUBTdaAU3iGPUeWjTPndFpQ3FilP5yx3TRtjHZcfRxoSIem0/s1ljkoHC/Kw/or3Pxqua6FHrhKDVGbcuBUB1kJiXmTxaVVpBGx+v2gF6VWvPVEHA5ziG5WP9nDgEThnpUmPwPoMb8Zz0KvCQwxil525O6q+usk2RrQ2IvvlTJo1TSzJwaj8oLT556gO8Z0uwN/o71AZYyjxa6C7nyyzomv75jqm9RftZXVMPvEq+TXeI/L0CR9jW7he+gTzrJOuxUmEHs3pqKowtCm2F5ajhc/w4L8l5uBIaC1436Dn8Sy4jDBDbt/VAKzfac3ZNRc+zifYYMIdOJ7MargioGlh0q3rR9Qr8Pkg8sgMo97ad0ryoTQZu0947D7OkK5dQvkLkczPFy5Z/xQmbUHSIKcXEEjWDL8qYG/SUBW93Umi6X62aHvrQIDhqq9LflfmoSQyLq0bAOzaY1YwDVXzAyekng6QRXmY3qu8lLDb/VOQZqlV0RC7UW+Lu92qdACLx6C050FSCeVN47kmyYGXh6tVSthevBTEAvDEa9tEAtqExT3R3ya25+qx+oaujNXiZo5YbXinhzojYVtYTKBrJmsj5aV9zPgIdXO3XXiJ7GQl2EfaW5X9HsmBeSDTc7Qkjvf/I2eEGjK387lCDm3qrUAHNhJ3tOJwvk5wHcfIBBJnyHG7fqa8mQxcLp8ztNxrK69eyMW30HeWy+rajo0dTolPZTfD6GNJR0J/fHebBctSc7kwGV8bXZjdnv0yhcn0wYmqDMwtXa+9srdI7SePtRKIdcSevncLnAgJ3mFmEwUbmYsaM0dcUI7KO5Wrlivz6G01Who2OndOVXCDfZpv5HEsWUYMIjTmkV1iEdDfK9YMKCzxnQoelNEWVuVabQGDPFqOwajdTQc+wuIVno4BeUrLEmSMsYHDo7zkSn6TbCpwLLnG+Cp98FP8gw1yVtINLCeUxR4M1V1MELGN3PVheg8vGM9P8blWJZhGRnZ7SE0IIoi+ohS0NlBSuVeX1oL5liMRdGVHHKDj1sCVw6qsuLkrkyzDhI4rWghHSL3EbczOcsI2s6FtsWEkOGW7gqMFGdnfe7pLUR+/ypPQFZWsWPKsLuabwb75by3tYYsxttIgubfH1b3CmWYxXv2mvoArrXX87Ds5O4I6pcMTl1L9n2sPdSu0R+ZSKeVzqXJAOkmKvqMuP7yuaA9cS/Ep1xyeOh/tzTBqmlxkZV+b3FvAXYBDY/I1cvWjd9yKivpXmgWMGnaHzIB0DBa048ap0zGE5i7usGL/5qt/2WkSsxu5X8ASMjda/BDbZPucZgY1uqjUqsfOOSIY3Q2z6JUh4ACYET1VbYtTUgWnTFc0hsD+ZKFb8tK9EPmbJwR16lJizV49qqyOHh/hQwEVwDyv1DKSnG6eCoOPyoPL2ajb2JGcSH/XMKUbn6fdafvjQ1Lj/muAHPydHD7AYj1CfzlzFEI7edr02pik6qVuUQLJ9N8OdRfF3aYwQqONADUjnhJsQgc1LIiMS7vS3AWCk4KgvTRL3lZ5UVDfn8s4CJWIndL1z5rNzmSRlv7dA9nU1fFduN1XWHg+YkTnRZNUI6pD7gYS22KhnhHktvtypp10B7LInc4HSL2CYaBsewYRb6w44MwzCgkxkMNzPbL2od7u37mymSSV0vBubNWA6bW2EBN1wT9GK12IS/c4fmFC4GwT9+mU++zyfAjqQPgeCI+i6U45lbzA/yAgNplR/Zl21hl9zDgl/Htb1SUpCPFTYoPB+j8CZq5i+Vg1VHpfKtQMZz279qM6Bid9OIg07xiMQ+059cQE6BAgfopENAZ+9lbK1L3Ya2Oqdlub287Sm6HAUx857K/bOmtXSajt7G2XfZN0O9WicphWrYjIuj0O1y4BovAEWC9K20/+IEZBZHnA3dt/sLIGZFo9XJzcZgoEcksaY1Cs+rfO6znak8pJXqt/s1aOQzZIX2UEjHTm+GNahEXxIh2R0+KL35HpcOrHQ+qomZJS+W+JJ0aadtWI90Ej+TDzua17VUe3eX6UAcBwxHInBqeNjOlKBVxKBJoQWbq7WZCpvbPrd1FE1yrjwj5c+metUCmYZEaOIKu8miXk+KAE5BR5mCLJ4W/VD9R1SLQofJ/iMpIBJC8YPhkfZUlReETc9oXA8fdN8FR9YO8migqwQq8WVrF48EgzYdh1wtrmrrU+kRE4SCES4Xt02Pjz6dqnYczGMsc2HleGnKFKFNMdgRPo1Oc0WQN7H5KWTb46Woii70aKwmLUtPdv/B3Rz3wJAGkNBPH8lyfz1evpuGY25wPPsgPPqtemftCL3nOQ3l3yorbnNeJLuCsxc8B4ihNlaV8pV9aJ0jM0kMEiC2W1pZn3pNz8/7ndu4nJz80ZaXK7F3fspd2xaHzxVaY4pUVfp+ZZG5s1hapTsKq51WGPgPfLAp3DBtc5otTLTfEbJV9gTzPb5aidKaLt4iY4REUz7MqegClv1gOOaLyqAGtCsYzqsXYjieOUPS6SYHgGVn/OADt+R74mCcy8NuIw6qeXwQ3uDmG0xODgIDH2I0P2n/rVIDvs0XQ8sLEbXXRNIQZyJvlUICc5UmshGueqH4YFd+mRaA87foluRJ34VtBMyyvVNKHwOsLLJM1gXPk5HM6AxHdkTJjeKWDT58bjV3xkZ9OzP+wwiV5I95aILqtXFcEVr/Wbp9bcGROKtz9KK5aBoqWNLonQpitPHxLkbcvWhSz7GFPtZsXG0OtRReraJNsUwRSYroHi0WxjFJ60rCiBQawqD9t7KTGlrYNOLifYr35NMiw7q1qvSsLTvOEVHMqhnFozCAjJwRVE5eF11hDVma8molV1CSM7EuNKBdxc7yGYnD4OcKR78NQb/bgTm7A2ZpT1p5CQnTLmpXRvuJQCNYKjyyXpQTsLQX9Eqhe3RDImb0750O3gOxlwLZlnxOBJwC1F7uXog8hNqfvHqZG0FAwyeI2Ll79R/x0EqE0AGS16C2BBhAqis0xX2ZwNUGMe84txKFaUOWWOAoOcMXTdgdoY71Xv+vixAz5qHhByhFrFfT27nZ3+qYpqwG5uS1awyabnxXDbm/Z1dSnfQld4n8uaXM7CKjg12pbvGVbT8HoKM/gZvWqMYpnj23ubh77qbvy+QpPZ2WgJUN9qnHQ5m++vgBA9SzRYHAhwSHGhrIVQ6UoeKCfqQbnGhkKN7mPaklTMno9Q7N2idxdJHWF8k28C+qvV+FWVHH0I2Iqa7p09hSXnkb486il7nPSHEg74PyRk9MflVBD2Y+X0MearpsYJojoyQgqAz5/kbTa791Sk0b6kNex+ObqJ9RQuFYGNTAeAa3FRL42L2WvQCc9spyc63QLONoTXUm/vYcYYypnbdPSWjmsY5bA22hOg5OQasgPBQecirWLbb3HnkmUJoXug/lc0HfT8TB33t/iwgYfXpDaTINjQPJf34/HqqSJNDTx5M4YLsFAgTzBeIqBpBLeJaHLRqXYWcMRf16oOr+185R91A0ecNDjjf+JLvuL/WpkL+JbzNOwoXL4OhFvsyu8jpeemeal+rwjreesuR5bolsDJwgnOBi6NNa3kM/Zm56CFh7N7Mlx8X7EXrUNuHGnn0HUAvqsMJR9gpkur0SLs1uYHaaYxBfJU61zT7l8HqL2qY86UZJO6rXIPL4K5Ay6+7Y8Aq33lRSdovRRuvv99BhYRNKd1K3lfFsh3pK/C+nPNFkQXC2+jQ64Ne4fT9rBr7kpX3vANb/hXLRxSaplBuDICmxyO7IWkdw+9JlsqvkEwyu98iqTbPoFMxMefB1pgW3usToeFDu/eESKz+cD5edUjF9MPe1svdNF/8RCWxSIV7IadYNKPQ53IQUWScG4H+M3iGbVLaOLEDzWVzzSLjG3unno1U4ZC2w0FgYq0fVmbrqPgzKPKTmGIY4ocRaX5d2vcqlF2xJG7nfDNT2wekO58foha0xu8Gqjp87tWZeF1COi1dMNBSXpR+/Id5JMGOl7DvKV0fqqa3MpoIPOrndxcVjnFFeANBuoYo4ACnDOyDNuspo0o5/pdFFkZ3fn8SqS9XvXqBq/i0sXUitUlg7exHZg/DLAS/aLplJhj5QP5ElLCyQQOo9CtBuuoj2Z9TJberudr38cQGVC/PmjJ+goL0gdxqSqto48y2s9iQsCUtDHYETOtr+g9/ynHdti7kL1g0UETuy/ifDhDK6ecRhr/XjC/tEwogiyXhl/8RtANPHed5GkkgY+V0b0bOQhuHDxIAgnG5vyEqQ7yZiMpbrguQIrdamSvbfWbfn5hfAeasd0E1uL6Yjybza8QyBbSpBoSrFTKwoFPSuS28pymsJJ3Wuycud6P6AA49fPJXU/4jW2pEZjOUcbhFJ5oRLpn5PPDQcSKr0gR5zruRyhf/lRN/4FV7VNISFk2PYEVOSat6bim3J851RCz6xJz65HrTq9V3qhMxCUV+EE0F8xUs3sugUF4dpGxMr/DI9cZHpLHmPa5Km/JrLf016jU54szDW3k605PzpsXasYG1dXMMpG23M/R8EST8daNtHQjWqM1YNKG+IiGRW0OioiMHXvkKzEpl+QII7EynsjiuAH2xXsJS+hbmBljySzgqMZxVc/7QVXpCMhozYV/Xth03okmz/osza1Q1bBQuIWdmxFIZT5mrAGCPcMFdF8OKmHx695oY5+B/JuVs8Vfh7oCnhnBSDVO4YV3hVmEJOLpJC/Cgi1JJ7+9mBJ44rCJ9gxFhHSlXtHfytRTi9gQGrPP+CiqeSkVETqrriFA0/jSPB1QZrLDZV29rGunOjDEmnQEDCgb5Mx47JZKhGNA+nULu8uK+AA9H6j3hGRFXEeioDmLKp5/q94dSj1XqulqzMCXv797OOoDNVwfIBta91zzd1H1bmOiMsulgTAmkk+h0JBn/0A3OlLz1Xwx4S+moo/x6PmVUwwskwEIA4lxCu/jzQrRKma/VMmsWWnz6PJzuX54FYhiaSa/eoN8RKEIY+Qhnv2cnELdWjTShcdzw4kdNGkxeguPh+R48SB7QYUlEVsc21WN1S6yLxXcZZrOpbQlIZYj2jn2RbNpmXzxiv4INDXmnd1uUpBhwGdjQZgv35KNF6bzmoBjNxdtQSo14Def91eDOnuRcS+G0qyAgaSaii1SyTvU03oS7el9oqAcI1yLOo+tC7HR2DteRFCKA3AJWS6HpjiAep0nC9366NtyR/+L6bUEwa4POfdf4RCtfZ/C+7dnFIA0/I6YZNKu5ltmpW4WQ56VQ1daqT83aoinOFK4Ezg0/c0B54kXOfSarpkMlOeOCfzpFk2AtKw83nG/cZQ2CaiKycUU+UbVI0JmQwXFGbDpkOhrkE1XH1NDkWz5APXd8BQjx7QbU76x3gP+mZcNPn2SQGc1Z8IdtddOZ5wuUVnDThIC8K0DEv4Fiel7K6jO0vANSalf04C3yAO19RMQOWGaAsjLOx+Zko1vf9qtKGB1sSd7lmUpfmDS0aBtkUiC2hDPDFuhbFoEyFrjNiGXZKEsN8TbqeyOtyAoqMXR0Cj5Qgt8x2UsdJIWfFitKzQ4OiNaga0X3fxwdIw/UCHcdaraC7QbsLaSInO+6X3LBbBjVFGYxRXS1Rqi+4N04DsG+28ZFNGGBmTMDb+qD0bpYuoFp3oRCuez7ExuGaDlqqmfuPNIPBJiFzNwUf6eYs0MEvpwAwGfd/1HQrOtZXV5hxBRfC6Br5RTk9e26goLbFbuOqlBLNejKp5F7rFEmZ6z9L+5br6HzdQyr1HRuq4pBtGE05vbizyiE2nGxVdh0aiAb4cs7yB9tWJ9luGuE2laKnn7pGvs55hJtfckJKNpe8vdJeI3CNukUtuNfKr2btd7KU/S7mhxXq3UW+C6xKnmuDh0JSYQwfEoRQ+Mo9Or5OzV9TgJ6wEmo7ZNFaIVKFNA9nejxfui1hg/7tPe5sXktktg/QkjdhYVFyrwnQUl5WCus/4HecqzCbT9rG7YuPeS327MUeelTe87I4ZVp+Ys+Lia6wMNh4kASv0QjgfwHNqFzYuEbSzgHHvxPsy0W0dA5Aa57FOpNu+8S/DwT7+Hrn2crmEx1XBNqL2GLhfNpG5V/NJxIMbX7Nyu2qWa5XnS0CIdYdFXxhOl0Fp+PV70uC50n52f3UZ2EfvAmRdpQskfoERdE7sD9jZeSAFMYb/mKNwnbQFRfRMlR7cr9uuZNykHo8JIPy4/ojNSz9JsVJvoEka2HCp8t1RHLRDvRDl1kyczj+Vj1dAZ6v+Gw/JJK87Hwn+Q+y+YQjNC8vKS+BMVUVEcwRdI5+9FrVNCNESTI4gy9fLkcu3gZUBxceRaJWQU9489wlkiBGvm4dPzZEmltcfv6yefNheObE7NcQD1o6Um1MYsHV0iemaXKbtAYJk5TK9/ZkF8k9z5fOHE0qXWWnUmWT4jFYuJ/so3+v+62HWefDNFtU1UqHBc33IsG4USmAxnL5dQ/d3uG0dSYQWNMlYV8b93Twx29cZUOWDdF3zG5NmyqKm+XaN0Xpk6Kiy7byOjBQHIzJ3zi7m3kaofhDt9i09HB1b8BKQC1R7lZ3/brU8u4Afv645ZhTUXtG2YWAX0lda92escL46KFFhnfOzq/G1dGMQIq+ul7G3tNRUMTrsQDgIe1O3Wo7KjW0L/NxEojXthx5hxzB87AHdKBKf1qBy1DywmWjnYMGR932QlaRV1aw3ohWJVOIboKiDnd90AAAEEQgAAsoZ1oC9JxrHWDD4HsIKathZ+BN7fB4skcQJyhQnb+BSroDZ4WLkjxpCe/8+PNaX/p4hsWw4JhWmDhJLFKqYkbthu6i03+w9L6V5uUFyI+NrvmpSTyHFINAV+GZHRZhEUpkApjY4h9ftHJMkHonk0AJjXC3WEg8pFUoHFAQSI2/oXL5QptdlmHhx80a4tRPu35ruNrL7qLTPJ6pMYuarI965CS+Nzskyq/sbYy7E0osX2TkUJRXXsiUoVP7p/XFIFJQVVakE7Qzhqt2Rk71oLWdD6D0JaLSZDPFUuixLFwiRXtXzjLLrtWxcU1LoGXU3HqH5SJLEzjxR5nGvgt0mYVBUrYMKFhuOcWSITfVR1OuDTKRSSWmqLCsWAync4AUUM2x2g97NcethGFK0zmXUpHlutqVzjPgicZ/JkXMtQD7rPbBKwUapNbKwn0Lbb6SZm1cAo1+M9mXXBWJHMtHT0/PtMnbxR0XiY9A2IeEoeFEVrMOMH4KgLO8WDohJAY5ISK19Z3jy4U+46TNnAqJwMlbjK1bRDMbgTA0+x6ZqrxxpP0F9H5YRIhH3zJCn1IXU5LHxKQLErdyZPmfTDKXHANpgSzIxhzoW/k1fX8P3Jdf4wcVHX3UspK2nN1nvG47be8uhh7/EFDw0PMcY3LIj7xSCVBRwfdMHZAou0DD18MRVgtBFR/Bu6ouXgObIcGhLqEkGQnYdRXgekmRoXhpYOqcgdEi3ToLvmf/diQjFkp+UprDUDqnZdm57/efddlcb6/w7PtHC2fYdvGH5iiap44DJC6vDlTdod5jOFViVG1puN+qL9aXqRepbXTFw3nmIyoqaR+PjRuX1nEERLhijUFmNr6Fc8mTVS+z/+wXeyh+clhKdHYYG218KkGiwsZLUe9/DmUQN9RyuwbDOQVVuMwmQDOToLw4vjjgv47vvs+wegYVzo3/tjyZsz0BmzPCcjFi52RKhfjjOoelbcMx4kDykdrE0Ul+qB7QM8OUzuH8pLzCGEZBGXWF1fg/Y1F3L26IuuGiBNPd7w7oKwhD9AQa5DESUunlIeBWwUiOAQZuTXCW+05zavSEwGTdbF6cbyydnZdDDI5+usCnmpoqVtOc7/RhDTFonD55QBi/NrWfFCKgzEPj/FY7o8s5v47OcH2dXzWpNcpRY5iWnjbSKeFaScbJSbKXxVbXs9AG7DQLJ+/g8oZMB1yMJbsNP2dKjBHFzuoceCPLHzV7ptIK3N/ybL40leVAVtdzklx6D0HjIWE4pSzxil37qDZWoV2o24K682jeEKsd/5VoXLj2SBfYaQCAYr8icsc+ErW6FvudlnN2Izo98rMWkINwIk1B4HOQcHmHP+uTCy7TjN4gHNwPITfJaBrd+fVEqudEINzlXDFFVMH/DZPxB0cnmQ2FufQwKzSuHEl54Ly35OgJkSeU/4PSzyM8LZqIwlE4H+9Ie4L361kehPxrkuUacLXaYj/1gLzFGlvbRmTJKCXlAogahSgFYX1QtRhDk516ZuNJneXHB/qpMHlM0E8UtE1i+jrS7ipTgBHTN0mNXSGtH0XoKjrS3k9qlmUvrr220Eag6Zmwr/p2sbeKkR2NqIHY4Cr4kEIUTCSu3cRuu8haN8gTEie4jyNa0h3BhEEewGq4wpBDulObtC3zdD/DoHUEyjhPm9/3S4Z9zcJn2ET6UidTbXttxwkPbb5ok3AAc7DR8WrLiqP4HHG9ITSNAD282SMV+r5PK9cVIPCbPxN6lMkR4rjbd9m4288EiTIZLcN75UBvSq12wRBL+3WKI2QvIDp++3QpWaqzI3so3w57jzT5yY/Gyy3pWBbDiaKOCE3M3JqFCZCFJgPIGhJxPn7ravPjToy1ncImNLnVcGBGg7U07mLUIjl0MWIoXHoWVJu1rzsa/KihsIOZnc9CNYS9KCQ/EVo4RJVdgL47DHjoJkTg28c1aT2G7828FnxIXnV2NM8zOIy6vyrytbD6y9KKv50dFYpCJ2bOL8L9zcCJUURAo3P60ufqOz6PkOla/0SZ/06tUKs/ctDiP7dRFgCcg2qPPf9UyWp9iaoEcdq2jYW0B4E4KGs+SPVU2Cl54D0jLFKCBaf1DyHpUeX3OOP1h0FJnBIXx0ZiVotd/+H6vwFb6/7s6zH9uUpYm+CV64nbbuHSUh2O3tGH92Uwmtp86h283gyeCe0VouNeyUfnwAREW5C+ss7EoYL6YiiA8m0YIQE8/1W7B+f1AuolkvviWazOpOtsPD1+0UihCsp/qClCIuOMF8wenDHi0+AxBwoJYnuHYCHB001kC/e0O5sHhMBUBi+UDXS+TvHcA0loIH1H3A0lWerirAf6Gf2MqdHbA8J2QOvcjLeRtvj6L4tZlIDXY9ceK8z+SJ4xRDQmR5dvJxLna5+7LX+qqy9Uehw76yFbYdd1Q+nhR93TcAVi8Z7l0HJ1h3C3F0j/mfYG3o4X7uMDHuOJGf+aHtThLO3M61J7GavoNJrzpc3Jq7KY4mk9wL4XbZ9ysKpTpv0y+1QWgGblblIslea4viCnQv2RUM3X++58TCUgpXnyT84smbLAcqUNvgM27I5O5bIKdLGXAX7hjYYuRYIzlMp05LOiLPn0sEpPvfKz82D5WZb7amPdRNAbiF3+Q8v7jtOZ3zmrEoz2tAXY6XSQgOtzse9ZTkBSrkU8XFFf+J2O1FdUlIYhK6BJld7SXjasO0ULpaHSXs4JaTmWHRlDI6gjVPg9Uadhafj5qlFOjrNik+Ht+yKp+hvITz4LVKUyRuH/iUeXuHj82ZIZsNuE8iuAlQ1nVdNm1p9htX4yH4cc5AHw9JP8sNGWn2mxKK4Nx2JVYTUv+pol29cMAKVMAKyhzOu02SRdKfEuChpcAxACsxS72Rc4w+KOLGylUrsL+n83wJ3NIw2ru0y1n42BHPk0078p7DVSHUZ3XhccmftKUOvuDoQ+cgf0hB67rStw5Hy+UVk3HgK/n7XHid1RbNCR2O2T+jBe2McWoQ2rsizqzG88lsBsOfqsKyIjMb3lTs/yNNiPkvtOFZaMNeQoklD6lS0ddVmpjzV7JEDUAots27tqS2vJGRK+UEzNz1c40pfTHDdvgexbM06gDOPQUX4muv0BWacllkqfkPthAEHqIhLYzv0z0yPTffkZH52yWiRjsMx6l1/SuzNqieGy0sxb9BXz4+6wphjla62kPjyb/JTnQoqrrJe5WA7SV7WIqBlnQ/lWnQyvFRT2MiJLupGBE1XGiddc+ALtw99tbMz2VkmAB1JAiys+NeTnmJuahwbVzPwWr/H0R1J2fsZmqWSApS3kY9HVZzFmvhcKB8vbU7pMKXnHGrj0gWM1//rNC9tpnJHK314rHCgxQn3Cxg9d+o3GmM/kk2u0iwrGC+jSKuzyjBtTblMlkjdqKADi5L3r24JadBHcEjIsEJiIyXpq76/+74yaPkSfmkLj4gXuxQ5o8ZY3xa85d+3XRNkLAve/Ix6gLgdeT/cfvJZ3nkvWVK9v8wozPzIieD2pisI4ESvL3kT6Ich9iDdV4ehBtba+uEQeXiD9RIgmKk1b80iO2YJVpOsqv3UZ2ChLKY2AN5fDDIGFApNZ+5i3//B5R/iUjbIr5yX8ywuFU/CKIRc4Kvr4X772yq4/7GKcg6H+vzx7eNDKf78Ip6rjV/7Q+OB3V/vxIP6ttmcwChwIZ3RKYga7AJX+GzhJwZTDAqSOvbOXdldm2rBMG3Y675EhEbytUcM/bLBrIMXWn7dLMBxG2yJAeuQMDtJrKhXc/fPjX1wQ8Bp0Z6sag/N0rOBf+y5wuP7cOMGLiyFK5NpZJpj0+1jnFCb+4yD4534fHSUk0pc9tuRxQUfzqje+JSwWM2/TKZV+ML2R3OlJq6SwszsDwRljf667u7YqmM17VSXrqzJhuCW2EzRNIWiO/uBDxOnBBlF/SAjCEOPgNOjnxfcW0+DgRj2+SfhIjy9BZzKSK/aPOxN4awDakvd6usa05irF8NaSpgBS38Y9V0fbKV3AoiQIEYCq33L1ZzRRSk8B4QM1fBf7fnGaXmQnymzm3i2gxiK8RLnXdD1E6R0Muu9fjdBI7uF20xeiHoH87+gX2lyOPGvjZKTuJ7a/fNTj6lu7lmsvpj8/bGzp9ir+9XXKBW6/TS41UgyNhMyp3h/aUCnJE0hydCuKbZOVfkHl9DokpmPmJA4pik2IMGKu/KrRYFESJJ34OJcPSmygL4AAJlFNcdyDa7ibOu6ksW/gOKeDw9KbPVT7iPUxa3imIhkwgFJPp5p13lF4p6jz5X7FzKUmUe1vfxHnwMtSlGbA+x9Q5lJdp9OsvXnSZWct8mP/bGSMC2kbDJO/E93pB8aflHm5bxdZhuFagHJIE7e3ffl5sIQ/24221W07d8emUs/BIldFhX7hZBKgugEv/Nplux/y3TkZYYoKjXCwPrSOOxjFVN1Lh0mJ15Bawoy16PGkMQcKaezo2yoDdomEwjD3QC6CnE5tG67xC7uNmOPu72sviY5Ape7eHqVJpelTFlHgyUeeN1PsjaoJVazZ5CoPNZINTHMyXQFkw1weziIreoltTORZ3DUG9CQpGWsNffUcRMu7mV9rGx/ZkrkXFxP/JrmLDf7UEXfad7Z5zDpXUQcIunYXXUJtXL0IjlJmYWkbi7lzvOpLTUVVP5lDkI0HL16KL71fBF8huRrySaWX7+Fu2Q6Csf9FU/pqcxvTYMT0nNGKv+XMrZyi7l0L+mTuquNubvfCeITLatrk0jabB4rShxhVvkwz4vdA3AE6tHG7ZtDtCEerAuZi/JpjkFIbXCC9Ip5Yxk5VP4u8i8r81zfjqQncjD1CFI6NmGY4ruvoAAI4DsafRpGKL7nGdw+1dZPQgbYovTrsi9qjuptJNXeaQdrdNqMlHoPM90XyWQ1OzZ2HvjC2hQf1RDh8J/zjUAASkGlmHla5fs7KHZbWM7T2yqYm2lXyRCplf/mk01p+tEaDBZmUmKBUbClvznAs5uZ4AO+2otcoY51Zdl9PJnRYLJ0qJmRHFATKM9oCPa9rH7BJ+3xIK4eZJdr9lKQc5JL3JlQmtIdR9XGhYBPxuXcZ2A7sBJSpcAjffRg/J+NhCOvADpG28M+L3nAXoCZgt9RUWKkt3fuDzLM368+JJe2yFFBSPsZ0TPCR/sOFrA21wXU6ilwhoRBNOsAhH5GLr7oX0giY17PDOfb63+rC0AhAte6MXbx5Zo1bFxpFYKSpjCGXLRTFhQRXpE5/NFil4lonocwprJv8l29csG254hAXiYQ2/qlxZdsaHxZ/1dUMzuuAXQ4+am2v3bXhQflz7Kq19a2pIdqPK+Oaso/mjFHFFNmAm/fxLdt/qdEgeUB6C4+uxw69NehYqTbTft9mx9ijNHKpLtuR873piiq/XSQ4nNY3QCh/iPKW6U0gbOmlI5V4CMO0HkHLd7qz4I+wqaSMqpARwa+wOiT0pn6RDFyw6zsDVQa5bRQ2eQnFxzhIk4YAwL7+LlP0BwPGKLjQLoXRVVBQeXbhnrJWdxhFzwvlLhy2dip4MNYgGdx0YR0kEEnIA7mSHg5R5IEV26Tjf++xprkB9BT9KkE2A8QF7Mt41spjjDBR/N1LDPWwtKYjNsDj/1QSArr6EtN6fccNTEHbhLkI8H+GJMlYaTJkkGUBS14YYXQSAAWWq7MgNYG2fI+VF2jq4If6R0/ANlNSC2QSV9EMAVoNQqXjbqtzG29dUiQj4MIbi2fagU6ncxa06vxF855KO+1Qcc7UfEOvwHi189xKHVZ10t1TJCEK9OD6vCjiC+colXSBzs7C8Qc1CchJxvWsciZCXbeDt4l8KlqgfdJR0vLSd9F7Y51ZT5PXSklmVnAqE0TdSD1CBBVpQUPoj5E88TQATRTLzgdfgKDNUC0QVMJZUyq8gdRUF1/3RTeuMeFW1HHlFQM0aNWFKFsDpMYfK2WhGJYzAHdWupPJwa+EMmJdPcJrRZAphF6IQ1dV2i1ASKCIiAD38uTuTL93zqxNTaLOdvmMZISgIfq02dhJKzSgLChQOQ0xv13BTeKJbwikVUwkwswxGu7ButcRLrEe+92X00FDoZCrvWXOGY4X0i78c0tjkm0ZSj9oKTuZUFCR/yvia6/HJ8KLrtjEqUfdNsIeom1AazvwSjY5olR4YDG/0Cr0RBhEdPqylmKpqIzBqWh5VxJFS5YYZtTX41SYdKee6gnkN1ucmiRny2rLSYyhMtwLybWjr7WMXB06BjtmDRZUrT4kedFWxSC5zmOOPpdy5+C8CeUu7g6WZHBXdfk4m8IMPgsuYNdPEJU8ClAD4lf2hJtHPtoy6OzcQTQn6qccAs+Uc/FOD7/fMvKxk0jaCs2CCK3O1zSPbdWxdHF/KMIU2uwQ8zdZviwTpXPKvzH5cNRPldcRuwLfcQ+bV3p6ak+c9MEuVDGHWYLXWtMY2c1HEemS6S5vw8v424WgraPrNCW8rRJhWiWHa4VJ/Ja/pFWGDORBLUap66SfuX6UlaLu76ddkThQzHvLgpFuYo7doN6sD/BVuHmVLOImhBlonOBwCXG8cYNcn6J+ThS5l2cTizmDyqfeCEOAXad2oZsmPWDaxevb8zVHfO2TdSs2qUKe5Q6j3hSLJqzUlRAHz4fBIdnn3hTrP+vDR68muqOwonOjw7gkC6CsZyPzNom/IfdkMv9OxlauhjvU35pmreew92Xy0xphg2KsWi3B5lncEkKXt9/dmJzpjTDTF42U8IPVCXRpLXvBSPCehT11WOY8Hh7Qhs4glzSfMNXAII4xCjzlmho8Ryu1dla/dPagu4TJ4SdciEmATQZMRCkzhC6R1y3jVZJYRe4UVHlqXJTGLtL3fAYbbAyKWhrcgdK3te326197Kniplltwkk3i397ncHSNjAWX26yy3hNDdOsxnMc3e6muE8AzZBl2bbsN2OkOrJ9IvT/Lm4a+gpdi1Xg+nbQO2yFDr69nV1g9lzXPfLXwnPszaHzpZZ3CLNASwhz/ygIpPe9NSJVvfNBuFfoDdA4vw3+prShS5bHZ+Ka9Ev9sdhGxUQGWB8Lcg4HkT3JHFzcIKrCNXhBQy/Z0Uwz1xKbopEHgzUitVhm7BfGLN7y8p9/mnJhpQH33z++9+0rTj8oF/VJIw5/w8fkW6fWFKRkXWRtFnD1k557FQy25c+1jtAv//bwjsyakJNjlXDfHIPkhYpkxGOSqW37p5kUS6MWu/+V/fW8v0u3DOuwXD0kvsqQpxMZ4oy/b0pt2PbP6lxdm2ioQoWGdvbtk8Af8PgutMF/Hi5CsqEhYSzkf+gfe+I9ihxaJ/DFj5OeWxoeuZRsN5AdPxc9nTxWibBEkLWbqzY/119a81Unt1HGdNvL8zGmSWG4Nz2v7BKZ1DX1yTx4ppsAS7cdVk3cqCoeqa4yDplpAFVEugA2YsEErD6uOu6E9NmX9b0oXBeYdJ4yGfILyK4lNoissk/fbxIg8SiPl/huczqcyo82FK0K2lHBTg+EN2oat+4kI/6Jien+2NDy4VRVitY++YjUoN+Ty1mZXbA7aHbBKCWiBMxBeRsu77+shR63EKKe0j5OM6dNPElgaupKKVoUHk7Rn2ECYmC0AnWkWW7oqYIn8z0pPQeWBK9DKofYTY/r4MgftMlQrtI31uZnlkYeAu8lN8j0aHEu+4rqvU+ZwxyGYgxXg/jGdMwtnUlOBXpYbq5Os5vvltuUVKmOwbAfVFhYrxyrBKxl02rVCJq3OW249bu9FbqpPiAl3FGkyXIi69z7LPjj2HdFznBag0Lgn5WdR4K1afGrTLLAIIe0qt9OpilDJz45ygGRfzxjkQp5IZTijwRdnjcZ0u5SZh84OP2Ksk7JJo3Nzx/+7vB3Oorp6QFQzPD6CTBPaYBbXif1mrFbrgd1zypq7BmqxswbcYf9ULO/nlvPwXpxkQx1sTh9znhWdGkast5DQqiEAvGyJa7IgQESU19g1j/nImenj8sbGEHhJPMPgqMDPiOTDwYiJisGTbMMMxKSZW9RSm3ZB7oP0ku5VwYJuRdX/jzYPHjnmfMOEDpIU7IINqGqjOknKMvcftQ5KWG+p60r4EOwE89euOjkqoLSNE7Gm0TnsBg/NeHxQ6CamAfoxJl3UVFmgEDK7OlppxuTtlY7Pn5r8EZmSbunDjPwXDCw9fQBi4cII1Ky09NWhWqD4camHFPNPqlnqSh19hFYGv56x+lt47a+6iMqQbylr6V4u50LRZvjlrK8mlZMbqpUySDDK2/MUoOitJ10iiKMuQ34TXi2wYDYcdJwL3jSdc3zt9zPjxXCTv8aGSq3xLtR/8NrYihvYXeBnevLhIcmc27S9JsPqj4zOtIwD0SuYjWowc85cpc+5aGTprdVWxy2KCyp9tYfqW1IQUMSA54SRuNH6BGiny5DWLj+8+gcSWQd5c3RkYvJzuo+c3lnFNcgECPfFHgL9cNvQiyAunK7kYWA5xds3qfpNtwzOjFAdqEAS0qyQBPo3dJ8UQ8Di1t42KpCvz2+uRC5JYy8XujZPgEoYoykVfK2TqdJUk93lbOz+C13nZZgCHDTJV7oLGm8+sEpzhZm9aVC/tUpbWYZbiLol6nY4Uq2hARu24Iq/wsSQ4uswXMDw6xL2P5OP6o2f/1ZYpIyDKsr5KFLes0RVNZ2FJSeP0c6G6mDJGfaKXrlC2Cm3JkBq3G+TwbWhdRB3v3+xiYGwxxitfcO/JLSGqSEDx2wetgCZj5EtCPPcRcaJRcezjO+a02KmFFi56Oqp4sM/RsV6LDOFnpw1pRjswZlSRd/AW7aF/7br3H3V72Csj6tPyU7bGKw9+FrPPYyH7YkF6h5Wkzkl7SUsoYWangeLH3a1f/JuX3fRL9sYp6E6+7a46yiTc1eJ2kFDRPVDRsXD/bKad60QLwE9bxQvs6r4b1EOzfk7W8nV+JpOV0ZSuIuYT0m7nhNGGnDj8OQXubYvTZ0QV4Kt84bHLDOU97DDYuf+no6pZqoKZNcB9WUX2CheyZJqHoWchwiQRHl4QV+jubfFCOMD70w65JjXdavne2CfwiMrWpaqUWGlKbS0ZdQdQ71li+lqXhPV4ZtNN22McMCH7A7FCdO7iTiu2u61ujtjFGD6f/AIm4JbXhi9KHRWh9K+sTc16p6hV9Ya/WoAi1vd0VnU4CLHnzLGYNJrPGg8aHyvF60Aq9aRjh6Tcyr2Jwt3DFtNTxrXhewhPyl9G1G2QKvTgjo8OqM2Z1d7oS66bS0BqMjOeIbUNzdejHpNPJpw3NNGZokaPVFhkjBpgGqK2a1SyYARBBpC2iwVvleEGoNdYxa/elXuM16AZZueyAEC1PpSkjX+AHXAw+ZsSjwnMXv+DWU1ocTtWx3Qwf2Cheyp32Q5P5r6rd9dyo7yvS6pQrwL7YXH3skAvWf8qLtJYd/MSINoqsq4EV+STKcR3VMCEjGtFSe7DT3JJ3/CLsb7M527DPQ/bpRBFsoZ3p7DuIWga0TqaNDZu4lXK9JIIqg8kY5C1eYF6tw/xJNDMSXDaUWmYcxKSCVzGHzbVfsjJluLUzEO24po/Sxmx6DoGPBHR6yIWjnsE8cgD0jhvz/NfEQH0gaav7dzthrakHRlUdO7G2ZB+rPQYlfj8WdiY9s99jzJG+9cF7SlGsraqybyiy4cZqkh2BHTHy8PXklqsIcranlu4/MyTDp9l+WV5qiBDmnewbSacBbYlVGwQOUFyNAMF5gJmPtmOankju2JI3QD3w4qcxkP/i++W0uBeDIhqbzfQY1BfeWg96gPkO6Tl4zQYNAcH4Mko1IgvFR+3XUxOReCOWSWh4B4kfnlCMYBO4Hz03xrRXARqrwrZhBIBiMMWndB4ATJnsD1ZyRbVnG8canePQdIJ+Ami8jPJlXZNcoSB19V0kyA6qFvsDiaSp9ueWhvR5EGpum/62n8LAn/dvLBjMX5SQUk/vY/3ae8zBCkplNAgALvpsTGF+/u/vce7GXz7eU1mnps/8LbPSKk2SBmSMIX+L+H3RhYEVfD53FT/VaRaNctVXu3deH5B0U6BpJkVA328NUchPuZKSMSS1ioZo9KI0+Rk+03Ma6O0ILKYtde+X4lNuefc+aW4D3ft9vqh8MPNZ80tJbj5Sl9O405JV/vY8bZUps1pPOCXfzMmsUW027KiMwVf2Lzy/W5DUCay9AEGN/81f2l74mK6khgtE4y/GbsgXcbotif/KDMt6Lb7beR0+JVv8d+xRibcPBrb2tOIAKJbE8RF2oYhxA+XN8OI0uR/E2aNlUZXz6cfzCfT250MuRSQ7Opeoo1pzs77G/vz/lV/+e1ojUoJKfvtgccUvP7JfgClV0NFUinFeJzUy3jW2natI7kDaeQvqtspGhK+uA46T7g11rmW0vJHYEUPp6PnSdN6z9qU1ulXXQ/C7+au021MNLFb7y7WUz6K00CDhcvV6WlPhOd8WQJOB6z+eitOt4LpcH2sQl6NwWtLJP0Q7lizCO0cb8j3h/YbNsEjv/mreyEwPK//NBLfW/HAiUbSSv65FxldAuz3lLKok2TdO2z5VVaHZP/IffLQ9B4ztK+nM35A+pDmh1A5gCO3OufNiI/9KNL9ICRG9gj/3S3Ck5185c+15kkSex4RWzOQwXLcwH75URKWEz15ioBVRQT/mMYfGLkdInwqnmTovU/nP5V+sl5qfDr6bSUMWSsHOfUtwh2c3Hu8Eykf0ZA4KRD4S6vAyUBrYwJuwITW2jDXx+1vnFqV84gPlvBuSc8g3E6YeuN6ugeHIqrjBH+Sq37uis04hlPL7F6ToSBpp5Hb7syKz0/o0Hv1R/jw603weFifD5U3fe28ek0WaXqQ8mMsEZP+6kkX0hOAS5L47ZAS91Tl6vccb/RCkkQwv+qoTSvaKoJv0aveEGNi7DsfuZP/0LUO/MT/O1SjapnfBS+19Djdh2g2ilSkYB8s4prA9N4E7jaCpaJFBcyvJKlT9vjnuc04aUNOn8S3w8+UWLirF8ju1S0TJvgVG98CHPo0Il+6OddQOMl8cTvf9lKG+lAQyUFn+bmQTTZRveHEzVggeSo5my6NK7r4bIRUYTa/Yflhdpbe7jlKAatT8NPlZ4XZor4/4ulJxfdab+nPCesfDDjUYL6sv+M2XUj2WUvZ3MyrfgzUUfkTrMVV8gimU9DGyqjpp/8x6KfkMbESVPH5OEVde4NgOaX+06Li53HwPs/hyvv4FafMPVMeZZ2yiU01fRzrAoOIGCW5YRHEO4AQBa6dK1Tqe8574KmX9xE18x5+MlWqQnknrRG3aRhZophq6uncuHB4jMNmtI9MCY/HRIGRvGTo8ATOOuhWW67jRQ5DVpKqd4DpGN13UCkxaR7eaqqWmMmIjOjz5ANX0m2iOQ+4C4eZOyUtMwLxw4iQbCm5BHjr7UaLZGIbF8MKbGi2tngoMsWC73tXkezw8IlWDHrksl1djfSV5GaMT2T5m/MwaAKu5ChY3M/yLSZr4eQE3vYqt38hDxtA2cloUOo20UJqo81y7w/Sw4uxsvkbXBa+ki9Aj9Zf8hmOD0dXY3gIsw7stzoz4oXWBEiBtp5Qf76Uzw7OUD1dSuF9ssVZHrnMfJfG2dHKYnVo5h4QSjK6MTMjChqhLhR/+1XIqOnrRgXbcKcmRvabwFAPocLePdrKz2YjvKscEjs+05irhgw+x/eAb/SaM4w1K/hCGRgIInWhzk7T6NEp+Bd9lHTRWUBwvafmTfDmhzN2sNjADe41u+T3OZDbP1F+EQycTp5RloYNECuFH6op+UPP7jgtzoF6DshEUUfmLb0v7IczRtUPe/YVOvj9bxL0cbj7WRyx5YC0tUwg/wjkyYiSqtPCRKon1LyEoDV56lGJMEgCFHO4sI8gJZ/P6qmOFsnAER8zBLLQtIn6lWu1oZIC1XjNn9oQgVN10D7qsireufwlmAYx680KZV324Js63guddg/KQcoJt7zV68Oen0TIfPAB0NQeeKCN1e+TS44uawUZXUhVzJJtxrNciotssmEuoy4xMOD8Kfj6yntUtv1J8KchuNL46mpRuKMUr1tIggmZ+/49Omcw48h/4H+JUdG00+1k4buNZkfOjlR3lLI71f4s69eU6sohE8LB6+mWSfH5BzekMbftlZnNKm3PM+Ck9G8ced/Um/B1PvN4x7BULhhExrQCPHz8W9CeWyuBfdVkUj3YEioaCV24FCPe8eOlaXS5SIgCDBHVD7eIQhKXcvK/fbJ8pYV0ztJyFiRogibF0w2NKoY9VtWJNIf+ExulidGkH7lfmZFPCGpLtZRD49fF3hrOeHM8+Fr60ATOgOut1jT5lfTbIYuDs2xg2sjnwESs+E5Sf3afTZYrbPXdy6qKwCe+aCSQtMWVleDCLz+5gMUQP9/nSTOvo4V6JeMz+17RQ822ccNK00VpXuKXRTXR2lMzzYJ9Fs72tw9aO3ghX8G+gEu+JNffma4lwVeHMBzqZc4LT4MYMgrfCUZXdI2VQO9WV/RDxyg93szoKINBhwmFdx0mzvx41dfll/kTvrPt0KQGZXBEX2StDKhEJzgxEHqW7nwy3rAdztaWhiCPpgTfyO06i3DhHXS0CG/IB17g3c9eGD/THGRJcwAyrau+XGnTliYjyVaw+aJzS3qVtgCw9HVqb7HoJCRaWwu+JgWBG+/OfdlaPJvW/F/8I5MeZdNgZmJdZ8DvufMZ3tbaz/S5CrwZuO+wsuxfZUM2MjyRyKVDrAtCncjEXtThY0zypIQ0jLf9+o8OkmiAI4SaNs+uCz8K2kYYTxfM3KBAoz/GqdkNsRjPri+MyksS5edlZHorV+v0K8BNkXV2Nvt8Sgsmm/cog7yFy0xpgsZV7gIqpZ/WerW5+SPQx4XvWtpHbmHM4351db7xgnwhui2eJS3qNsD60Ot4/Rvc0GrPR2uObuYrXUFnz1o4HuxkxIXy0XhiTG08X/gGZjGIhmOf3BP2cCSqrM7RFNLXRoocfXVFBF3fQkHCUpKi++SWbDoOVYli9xtBbcNOFKWr7gfA9tX1t1lGw0/ijaznE+imKB5Z9dRQV8BdQIal1tPo+SW3GETOL3FOvRrEZO14a/uq21NwHhFNWV+beRENA94GbAWI15PHuHAFckZnt9A64JnLldCY0t2Ef+0NKRGWBiKkZa0Rp3dNwvR1/lqy5ERKElJ9x1PYoYEo1pZv4M+IypXWzSLrFcYvE4r1lr+jed/ycujcBfUTlu8ULayxcyT5w53UW8Ywhk78zO60EyFJJpFxBKWH5s2Nk5dL0HmaupV9icteNecyTAsgvBmNtLkfXsAxS5J8arekjLKkqaMg+IXWPyILuAa7xktLvRrbMOijea6HCcUoUKXxAuK+LRSOdH6sET1nt/2oFubkGj1Wtw+bDnxHwuhX2fyxXm+JKtDXsUSfYhOMXBdp+HN9S/m5vgRH9iuK9dfdAXIEfj2psL5fDvrrAPDL1UfD6pw/mosB72ms+efhu6ityFwrOBmaJ4kx5jNwfxTL5+Nse3lpGFlzkTocBq3lHb4mp//tD2Jqo6CLuyYYJgyu7DendGrg/4iyPEDK6Jeurp5Ke0GXRS5dx8mS0BSBZyT8bpydxf2O0RfpvBr4RHHKc8iwQmznKbsqJc60RL7SoOBh7sk2gYoMZKACcabD5XX4a1b/0GMnrxPJiF176/Pk3exbK5YJypWSOu1ILc3IKUgryXx4unMU44r6Yz/8FDOTFjmyeq83Nd1PlhMa8WNZK4cceSlWRLZb/ZD5Q8hs+Pb5fUDy+ISZ5FvcTMXf1msu+kpsl4PComBWwqg//5kJ1OO25f/m4kxr5vtnrK5B/PL9S2M2u9ZMImPdDOb1O39x2IeytaZq0UayNROorJbInXs8yZtJ4D0zHhZ8z7VWYLw5VC9rVVGLpHKrxNOKKP70FLCry4L554NGAR0GpIVHbGqKVuN66Dqx8N6KSxQznWK5DBEX0qPqUuYW7MfAHO2EC68gWjUliRSaB8mEYtcpbEY0EZ4wTz9hAsIDOxxYWpd9p0VzOO2s8JydbPMgWuPRLCNmTdf0Oxm73HtgxE/Iz0JovDuka6sOE3UOWwffnVaEE41przAlEYOAn6ZU+hokvYToM0l8+mIOVsaKlVefYt+4fEgOicGa2YZ/YQZxrLvWwTB0QxFEb7WZ1TvmQ5qmuGP4nMML+TIH2Zo1rgv/g4RjsVlvwrojDV91LKRkCUzxM9cAP99kI/r1/tgWyF3X4MEk7Zuf49I91HvcnlWu04vtipjH5bAyV7fIb/+JFrkmxOdSFt/U1BYjCtnGsitTu+Qg3U2q7eKbvAY24Htuhzzri3c8bgftcbz5VnTw2yDcYyLryUeMmhqIDRNX+McFqOB0txarYtAPkww/hhAn5Qi7fDe4kg6ytL6Zor2mACb5Y5GspGz1BsLCFIW/M8DHG9kN681uAjnbR1JqWiTlRnDNuF+fdIHG05Bv47wvJfwDGr+fGZIQoBHtzZbHLEscalrhIrfCKNnk5JhD6jA4PNjo/IeYOUb1orjqbCjtBE/4OTl8yes5aFfhevxl8XRUVryObEKjIwjYectRLA7/F7zjTDjMDydHLJR69uH5TmsB94ac2wUwvOzHyR24X2Nm5rcVBRCNN2f8I3cQt9spnYQBtWQRMFW0lowTmkqswhgR8jeUzfcnEIeP+tUC7qB6Ht1EHtQptb+5ZGbuHnQTiuv6XOuvFR8v01xqeJi08iNlxqKMEmdaKq4h9F31UlGQtIco1G8891FmFZmzOLrIPA/fdlTPDE1oZUUD+gPSBhx2YGhT/te7UypK5pc8jI5p5/g3edjgpAVE6C62sKMs3wTRHtxNIAw4v2234VgAewlLeeFb8pkla7ad1ELnVb3qK+vE4rf4QawElsGOKxZ3EDKaQyJgwZZiFtWJb4TyRX6A3swOwzUdqxVVyz0ChGnMf6UswAkO2FpLeuaqs7i2PrajAbg6XqKGmCBKXZDQnRKoAkKDVpFMH139jTbh+GcIGD+g0pjMd512w/wdeG5rIL7h/p/6bJQUa+OiOypvY0dt6LcdvNfz/3fFzkN3nL5Ny/7m327C4JRKgsmETA4xCbtV53ZNl73jz37TgetTkEj4D+Gxykl9B6Z+70ACf36bMRebHHKnBKjTabXVWHp2e0HOwROeQzHozj5inBwZQnIIocUWj38DFVgqaCOTA/7ndwSuPJI4Qgs8SUaEBr+lrEMJCFX46ctmPPssmIvcbA27B5MallYhPnkxd5bkgfvvzOyU4P82Qj4bKT9s3gcCvzRvRPt7DJ0aV/dNs36gfkMFKb9I7jcq3C44OXiJdC+5DF9MQjNQcaq9SvrbjwFC+C3ve7jY4HfKApc3NAla3RCssdFEn9vP77Wve9LqqOnG5Qm5FF8u553Qpm3deYvd9d5fhzOdfiSpQOXygrdEEZLP3fJjN6sjrw0vlwGedhn8tzB9htqK6v8pKho0RYYPcRvFvsXOlMe8Jg2+Pzaj5ecNzm6P8S8GUgH9ZxeGrd3bALmsYI7DKBHu5JWfBup/82jsNtiBNLnspC/h5Sb35/Aru/5aPVZ24Yqjq3UIZQmzqsDc6SYMGhrTCt6rOILmEb05Rap1+rVuUE6/Dg0DmLJttFylJwpxFkquHyZPdwS2Kbr0RUeF+wbH40PlNjpq6WpJu+16JfDe2p2+3lrQRNEDXPuTgFxBY/DhUO26OK2ccwjIEas4BByntya/kDlX12HmccltnM45r3yzIw0sZdv1r1d68UH9pa0aqyX2YPbs2vsdrKJtqwpKeeeMuph29hixstXlBWbyig4qr61Ds163Q4/c+xTc8jYsd+tFPmK3SCJagO7lFo/ozh4FBbsZT/hXHBhxEmUmxpeSsK7qsAkQ3EKqdfEh2Dx6ZfzR8a/B/ZWjj0VOYH/2gg/lxOQg+6oFDFKfC7y44UjANQ/7bTQCYNV79PCluCEsaoFbMPPUvN6lsYh4UEO6bWj7JQyiB+UdYOue88TrFehFxvCqAMFG1pVMxFWgBNjPBhjktYdzvRHwk+5Yv2+mHgWwiJQnU/YjWL/lSPrkrDKlpvS407VjvxknQTFezpnLdrhCkFjm8EOky/5E1XcNdVrnqHAzXz/Qwiw77Dc/ljWR/khmslRiHc2UknQMyczLHYLq6qezpgSTVb69LxPswmtXEAwglRxo9ciwSRq/Q8PeW3e00iUdgttu2Y5Z/NBRRIs6uGOUICHX48zc+kXg313yrCjdI834V1LwR1MKQ2Krep4wnI6YhN4d7ToZe/JyJCjmk48WsDj1qnyy5aWURSbRSw55qv3zBQr4LOQGTxjtMq0XLNMVEs5d8hiLdmjYm7AgoHs2HXMXsdnyQSEBsYvmi+hjCwc0vF5ykKySfY+GhifwAyo2kvtEVIUlrwl5EOUe3EBfHLcL03/Awy5ggbWs55FX7Ad/iOzFQsvMQHyEpF2GKDiaPQfhLMhQhPhIDcpEXoNL8a4rc8xTzrHA5oMMLCk5yqw6MaAIVoKjob212+EnawpG8ZfxVuSmGU/9k0p7l9iShd9lC2uf1Touw0BHwWG/bAQUcpDEHTyTRziOToez3Zmqcb8McYy/dBJp7n4yo3qyrJN23Wvu9MXXgmIro6shIGUDJvKW+tfjrr2VTpP2z4MiZUlkD7sakN9qPX7pn6M6cNcnymeseRdOP8HRfKp1+XNd/n2ySPHLkEmvGKIbFZpCcS+O2yJzztPCZf4IsX+Tz/3KYDYgQZUDx3p83+US8zBwW0/wRcSUNdgy+1t+L6TF1jxITqN2h8Lfndg5ZX074dd++9Mj3UQX6JVEvmlzzGrz07npCB/4dQDpxjlNXXVmp33PO4NgdbYZmiGURWeBs53CM9v/6E99tkh7fQkDto36BtHY4IQHvM7F1x5UaNfa2MNa+sr+KuUwx8zl98vFCFy5lTqNXL/++tEytFHALJjdol+rIw0PiE5gOCQl28cH/3w/si+E84vb3YclrvgJzXYfV45cASfBCtT0nnhu8LCT7iO2HY82ZhZAbIFOyHG7mJ98HWukHk7xg4LfYWr2r+BQ0w/CAjF2WFipJvdh4RSG7bE72n3CN2tVyhXR+i1lpT85JMZSdHe/3V7PpdbXckOF3TxaUfdCjHdLhzPm5Hu+aoC4WOeBSSbYwz0EXV9bvGsNYc+5WeGWS8ONu6r5SVv74KIABmD30844XHeToTjIUcaQvZAx+EQ6U2vjyOfdFa4mPHOqJaVDkf6TXzsbd68DO5mWf29pBfzviYjbZOE18GvsdqLKJIXb5WsAcBBD2HpW+eJS//ulM/+IXYv8nocuBuOVeduuyr5f1ygZp2E9cjl5y1qM5u2I0fJQYWB5GH8OxP6AGZVFLgbX+8/+r/8IvHUqrVmOidrbJxqsTLad6XWbEvCF1KQEyVi2cWMHl8vpAGmk9SEcqGX/h73dru719/XyjWnZYb6nC8lXcFsZ3BmsRR/qfW0G5WSkrmuxitnuuD+8cao9RUx+9EYkU8Z1yRe2wSRuzQduk/WmR+Ejrs0fh6eFk3cbOj2uqh/fEUbpNeFHYTOU0EJIwFfNzMf3g+AVbg0Z+oVUDN/cSqqUp2Uarw1jZ9duYt3Yj9t5L/GfT+QKPKwbEMBZZtBoKP+L/nq5QY5Ox6wsfJqPIu6OPzDeD4l6uXLxHYodQ7IS4h7cFKTAPHY7GU1BfDjkyzAJt13GCM0W9jpYzILYo6Nwqoee3ZsZZHOvDIf/5XjE3HEIUvB6yqzgO2I5oIlsJE13u3syRzwTYQzQdrtjfAT8yN9K8I8JZ2Qpn10ifUCRsmzY9qb5BKZuEKoex/S1cgQGaRm9NqWQhTFzuDdmqu7qQdYeiAcONs+1RnGX2m/7d7LjYSRgnRxKDyylcJzK5jNMXtnotrATAEN1L39oKcmdlRoE/hwmVT4FR9+AQKMzxOqmy15LxFTyjnVB4jz0ExdkteKdd0FZOS+hGlvKhbRoevJDsI1bf1UUYBbuZcL7iBWYUwASUzo2En59MTAEfthd61HRlxvDFs5vDY2ZRz5YmpxME5mQShp3dxMFGxOZ/U4VYCyg5ZwjYECeuIVLqyb669VytIrFUvcTGzgBRRUl26eL7yePI+1V9px3yJPmDCqNOocqIyHf59mHyGzkgofYzYLqQq4yt2hFcKkXTrogH++5S/7CGldw3XNXr1jan2ivzKj3V3/DhAOynM4X+sJ3m5ndKHbzLkqKGt30S0u+pZUCIi2GwItg1LgkKA4zya8LFKKBWSPGYzcjWexr/ZCEJ0FMYHn3ilRQTVAT3t44jmxEhGCzOa4p3QZ3OkTFSgOggpYHYhPjl07nCgsM1lNqXv5mXi1CpVfnIdkBQ3ENHUOtjvXB8cd+EH0lDxS/6JA8IhdkiSb1RoP4adznGAMnamHWwdqDs6zM3HzKWAcZozcy6tAG2RAYVCKy/uhTXaWDLuoYeF1iklyTzZJP8KwfVbGWIQM3aQE++Z5/EuD9FXauk1yWwpauY+KAtUd6pw8vmhSAFijn8CmrJui8/k3Z+NrDo1WDEFRI9F1QCU5K2G0hcWgwTS4gAu7//PdRB94M/RgoiQpBbM9BRkGXgru7HEM1ClETZgiF7dnrlw5Q0wh2uLWf6uf+3Bvj7C+LyQTBhLm/ZsoLJkFzGhMVCb98GoYaWURv9VZa6AvhORR20PTpsyi8T5pJMhZlmZhm/6beyOgd1VRyjlYrfA7TBgV4J9y5iQECzwEsNEQU+bXo/Fh5Z5GPfqG0MFT72PAufgA9ndTlj733aRsFZU98Qd06TJSGGpPIf+Q0XGl/QYYooDJ2TgxwRkP1Mgy6SeFDDwjG7Kdl90mSVRCllMc5Ie2mUtdPJz8y+ZMKXnIRzgXYaCo5fo0ypfWPRcjZzhmUZa16aSTzXsF5AAqQF5TQ3Q0DefDO36T8/bmOjYhT/AD3BO5ep5ypEV/s9xnG81I7mytHiMdV/6+9dYUeh9nQhi+31rmrwHhtcD/A9JBvJV1BHNSUqJbfG2LxPyRH/SxNd8e/eJQ+mFHddoJKYWQpnoxxYyDJnQa2plJbZVNhcn5kgUr7BCJJwsmtPQsfaejaRXYrJQ6Y3BgD5OENsN+wcIe5e9fleVk9zMhfiu0l3GY5v05OYKV1M7Qq+hM1tefH15ACuRBkfXLiMuhh/4ElDmQ6gl+6tyZXvIpqTCB7jVLNKGVV/wIT1H6WnrrlocMW+BqjWQFMLvjKn2FzBVNkuZWjK2PhpApSBtiXMIlB8Grj6JSzgIKF//eJ+jlt6ZebF+/nhCBGiR1r0Ilo2vdtDSL3r2Ep28i+kNCVumMNvbCbbG0bxdW2V5tZjAcKbEKXAIWow1BZ1rTr+R0QcOYkA1goTrpD+iXELRwauGq7KZxT+fc+l0jH7A21sbrkO2/qFfkD33z8dP5UOSuxdFTruJAcQyxYNf/CqIcGL+LDj1vZNT76LvHUedXLt7mSLd71QzBGbY+aLjyaerxmqk9/uV8vi/Liei8zggcoTIcK6UITxwdPL8ldUahfZeZ03aT9wcTgDNYsZayJ8GsQ3w07S4KDF4S39+4tmVsY0hE207QMGWpdhV6mQ0kA6iEYOHZ6Yv9nExWbgufTmB+qDJYdzr+Oa+aPRva0jUNER4UeYCYKZAEwxwcCx//ifSfrCF2J0ytdweBYQLUZxTB6p8CwLZNDrzAwJZsTKQvuCqJ9zQOaENeKrNhHPPfZ44XW8UCwHyaCS0mPOr9D6vRmYPhWoiiuHNIltGQE5GMS8e8OGMGktXZQ44ROnwlOic81ca4N0dyGJy8NHv6kDpVbndxGclmwYHCV6W8mZUuCUop7MJZJVLquk27EA1DvmveXrmJ9p0ph5i0yleMe1bdS2GDj5ZC0fbq+GpOUdl2PSpDmBab1AS/WURQMaHvUWwNSWryi44iOfR+gWTK3DIqjYw9+ChrtFd+97hNC1ZEKYF/MI3Jo6rdN/QO3OWsGhqPRQW7zXq/kvTxCvNNBZvkP4imXexhOiVMZbU+QKGpLjnYyLLLhzJPszwU5nsKK+2OnB0KEI85ZvWLprpanjAd3M1z3xBUu6C5jQ0cUGIi1xPFN7JcglmUO1sj3tWZXBShE1Ib8W1zVnLt5OmPFmJpDBvHobqquYdHYv2WgFhl0AoEaEmjp8/hrcT1DRp4BL8Xlvfi8W/z04+1oycRYy5cdlzocztcfEWYOive3Q4/EzPVfovz85xgGBgI/hc8WKhN3M//wo4iCQ13HnsGhb7dGUwDhPRMMrrbOS22XwMrqGx/DQm6L+i5ojoeZ9905+2/rrP8bDj7SCuAyy8GKPGMMy36FPFwT2Sf0ZuPRALuuBhNVZ9x5TyIeyIzeiDEssWsvnIDXZuutg00z8LXC+19DvNqvMfyHBWupqH1aJHPvS8UQ03copL4/XZNL4zm/HwGMbzqSafjKyykds9itPYY85CkBmSOwY3pZ9KaCbDdpWZUfNeTMKcpxjqG93H0AYi1+dTMs1WHU4DHvTHljUWB9SaR/xzXJPFtf7JehIztablntAbD2h/Kgcv7G04Dyu0J2nf1kFJUlIdR25ZYxHePDx1MFSIg2cXhqesQxHbjm2GJSv6XhhEEK3YaqI9N7s6yqXiuF28hmsP8f5pOR9ARx6MUZfKCrLeT8h5TTi+nBRx0diYS6x9AZQbJXWXn28GqplR70wwYDRHSVRvO/1WSy+Cnm2rAQNpCsw2nJAMPCixbl+BPbuD2L6MkhuMcPcogT2BuIAQVPeaYCS6cMgLG+QjDK3HI4t6/BfRFMdTtKYMUbVDuQExfO/97+lq0oc/GsjBrR502l7PNnFLRj0MB7sQwgHtSh+z3fUnoa53wEjxPOT6g55a84D6goX4Gy4T+XSa0+0Sx9p3f9q4bTHY3TIBaTPmMQDgwmiSJuPOjhdoVtg9U8Yg0u4VhCA3nCg2L5bWTJ61X/Y9Qnbi+JwKNJuxSuAEopPs2ozl59FaiLZCvggxTH30U0kTezV5UA20i9LlK2mOE6gIZNfnf5zmiliwFx9481V+fRMF/odNwbbLMWubOMHTg4sMDTG239dlv1iUbC31QSUe8LoAF9NCUxQtae+mdXovhvY3xa3ufT56/Skobp0lbTSs2jgXSNNojZwTgQLpqguoDY7KvFkBsI+fhdGUlwzzgjAqX93g63qTpTItXgkeWJnyh3wjc+ig+OHC1GBMYcpX7QfmY1Wd8Ufiu3jQAhCk90CMMqUkAnckmTMiHBQlPc7qXO/WYQ3lf6hkHo8NM28BgoVGtzzp3vokL4ly0fwF5E8rRVH2ZmfrqQIcIE43J7LfqLrCJmahaVRbOMuIJIoZ40remKAIobJ/FdGMqsQXoWsbSu1UcRvfLIVT+g1yiKSI+VzAFt0fV3xwfgkOXdmC9z/4iKpUjdrxCrQRrCrThdrM/1YdgXW5LkaIbnFn7D0XWWRN8r1m6L5PeruJYLDgt6WgMYQs0e3inc2QwOKo43kxl/X1BPeQwF9POS/v2IiM1oh1/s5z2FuyldYPraR0spkVTymyEmgHBupw5QT1QjoCKUXJw5sDTDjZiUe4UiFAAAA==" 25 | } 26 | }, 27 | "cell_type": "markdown", 28 | "id": "c0ed7a1e", 29 | "metadata": { 30 | "papermill": { 31 | "duration": 0.025707, 32 | "end_time": "2022-03-26T06:50:57.749564", 33 | "exception": false, 34 | "start_time": "2022-03-26T06:50:57.723857", 35 | "status": "completed" 36 | }, 37 | "tags": [] 38 | }, 39 | "source": [ 40 | "![1.webp](attachment:4e2133b3-854c-4bd8-a15b-ab4fb52f9471.webp)" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": 1, 46 | "id": "c6f046fe", 47 | "metadata": { 48 | "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", 49 | "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", 50 | "execution": { 51 | "iopub.execute_input": "2022-03-26T06:50:57.807009Z", 52 | "iopub.status.busy": "2022-03-26T06:50:57.805158Z", 53 | "iopub.status.idle": "2022-03-26T06:50:59.371187Z", 54 | "shell.execute_reply": "2022-03-26T06:50:59.371747Z", 55 | "shell.execute_reply.started": "2022-03-26T06:30:57.944652Z" 56 | }, 57 | "papermill": { 58 | "duration": 1.596809, 59 | "end_time": "2022-03-26T06:50:59.372048", 60 | "exception": false, 61 | "start_time": "2022-03-26T06:50:57.775239", 62 | "status": "completed" 63 | }, 64 | "tags": [] 65 | }, 66 | "outputs": [ 67 | { 68 | "name": "stdout", 69 | "output_type": "stream", 70 | "text": [ 71 | "/kaggle/input/shark-tank-india-dataset/Shark Tank India Dataset.csv\n" 72 | ] 73 | } 74 | ], 75 | "source": [ 76 | "import numpy as np \n", 77 | "import pandas as pd \n", 78 | "import matplotlib.pyplot as plt\n", 79 | "import plotly.express as px\n", 80 | "\n", 81 | "\n", 82 | "import os\n", 83 | "for dirname, _, filenames in os.walk('/kaggle/input'):\n", 84 | " for filename in filenames:\n", 85 | " print(os.path.join(dirname, filename))\n" 86 | ] 87 | }, 88 | { 89 | "cell_type": "code", 90 | "execution_count": 2, 91 | "id": "daad32eb", 92 | "metadata": { 93 | "execution": { 94 | "iopub.execute_input": "2022-03-26T06:50:59.428272Z", 95 | "iopub.status.busy": "2022-03-26T06:50:59.427278Z", 96 | "iopub.status.idle": "2022-03-26T06:50:59.477125Z", 97 | "shell.execute_reply": "2022-03-26T06:50:59.476529Z", 98 | "shell.execute_reply.started": "2022-03-26T06:30:59.479819Z" 99 | }, 100 | "papermill": { 101 | "duration": 0.079025, 102 | "end_time": "2022-03-26T06:50:59.477272", 103 | "exception": false, 104 | "start_time": "2022-03-26T06:50:59.398247", 105 | "status": "completed" 106 | }, 107 | "tags": [] 108 | }, 109 | "outputs": [ 110 | { 111 | "data": { 112 | "text/html": [ 113 | "
\n", 114 | "\n", 127 | "\n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | "
episode_numberpitch_numberbrand_nameideadealpitcher_ask_amountask_equityask_valuationdeal_amountdeal_equity...ashneer_dealanupam_dealaman_dealnamita_dealvineeta_dealpeyush_dealghazal_dealtotal_sharks_investedamount_per_sharkequity_per_shark
011BluePine IndustriesFrozen Momos150.05.01000.0075.016.00...1010100325.05.333333
112Booz scootersRenting e-bike for mobility in private spaces140.015.0266.6740.050.00...1000100220.025.000000
213Heart up my SleevesDetachable Sleeves125.010.0250.0025.030.00...0100100212.515.000000
324Tagz FoodsHealthy Potato Chips170.01.07000.0070.02.75...1000000170.02.750000
425Head and HeartBrain Development Course050.05.01000.000.00.00...000000000.00.000000
\n", 277 | "

5 rows × 28 columns

\n", 278 | "
" 279 | ], 280 | "text/plain": [ 281 | " episode_number pitch_number brand_name \\\n", 282 | "0 1 1 BluePine Industries \n", 283 | "1 1 2 Booz scooters \n", 284 | "2 1 3 Heart up my Sleeves \n", 285 | "3 2 4 Tagz Foods \n", 286 | "4 2 5 Head and Heart \n", 287 | "\n", 288 | " idea deal pitcher_ask_amount \\\n", 289 | "0 Frozen Momos 1 50.0 \n", 290 | "1 Renting e-bike for mobility in private spaces 1 40.0 \n", 291 | "2 Detachable Sleeves 1 25.0 \n", 292 | "3 Healthy Potato Chips 1 70.0 \n", 293 | "4 Brain Development Course 0 50.0 \n", 294 | "\n", 295 | " ask_equity ask_valuation deal_amount deal_equity ... ashneer_deal \\\n", 296 | "0 5.0 1000.00 75.0 16.00 ... 1 \n", 297 | "1 15.0 266.67 40.0 50.00 ... 1 \n", 298 | "2 10.0 250.00 25.0 30.00 ... 0 \n", 299 | "3 1.0 7000.00 70.0 2.75 ... 1 \n", 300 | "4 5.0 1000.00 0.0 0.00 ... 0 \n", 301 | "\n", 302 | " anupam_deal aman_deal namita_deal vineeta_deal peyush_deal \\\n", 303 | "0 0 1 0 1 0 \n", 304 | "1 0 0 0 1 0 \n", 305 | "2 1 0 0 1 0 \n", 306 | "3 0 0 0 0 0 \n", 307 | "4 0 0 0 0 0 \n", 308 | "\n", 309 | " ghazal_deal total_sharks_invested amount_per_shark equity_per_shark \n", 310 | "0 0 3 25.0 5.333333 \n", 311 | "1 0 2 20.0 25.000000 \n", 312 | "2 0 2 12.5 15.000000 \n", 313 | "3 0 1 70.0 2.750000 \n", 314 | "4 0 0 0.0 0.000000 \n", 315 | "\n", 316 | "[5 rows x 28 columns]" 317 | ] 318 | }, 319 | "execution_count": 2, 320 | "metadata": {}, 321 | "output_type": "execute_result" 322 | } 323 | ], 324 | "source": [ 325 | "df=pd.read_csv('../input/shark-tank-india-dataset/Shark Tank India Dataset.csv')\n", 326 | "df.head()" 327 | ] 328 | }, 329 | { 330 | "cell_type": "code", 331 | "execution_count": 3, 332 | "id": "76cd8fef", 333 | "metadata": { 334 | "execution": { 335 | "iopub.execute_input": "2022-03-26T06:50:59.537207Z", 336 | "iopub.status.busy": "2022-03-26T06:50:59.536527Z", 337 | "iopub.status.idle": "2022-03-26T06:50:59.539137Z", 338 | "shell.execute_reply": "2022-03-26T06:50:59.539628Z", 339 | "shell.execute_reply.started": "2022-03-26T06:30:59.533367Z" 340 | }, 341 | "papermill": { 342 | "duration": 0.035518, 343 | "end_time": "2022-03-26T06:50:59.539807", 344 | "exception": false, 345 | "start_time": "2022-03-26T06:50:59.504289", 346 | "status": "completed" 347 | }, 348 | "tags": [] 349 | }, 350 | "outputs": [ 351 | { 352 | "data": { 353 | "text/plain": [ 354 | "(117, 28)" 355 | ] 356 | }, 357 | "execution_count": 3, 358 | "metadata": {}, 359 | "output_type": "execute_result" 360 | } 361 | ], 362 | "source": [ 363 | "df.shape" 364 | ] 365 | }, 366 | { 367 | "cell_type": "code", 368 | "execution_count": 4, 369 | "id": "ec2b7cad", 370 | "metadata": { 371 | "execution": { 372 | "iopub.execute_input": "2022-03-26T06:50:59.597450Z", 373 | "iopub.status.busy": "2022-03-26T06:50:59.596717Z", 374 | "iopub.status.idle": "2022-03-26T06:50:59.619456Z", 375 | "shell.execute_reply": "2022-03-26T06:50:59.620003Z", 376 | "shell.execute_reply.started": "2022-03-26T06:30:59.541730Z" 377 | }, 378 | "papermill": { 379 | "duration": 0.053413, 380 | "end_time": "2022-03-26T06:50:59.620185", 381 | "exception": false, 382 | "start_time": "2022-03-26T06:50:59.566772", 383 | "status": "completed" 384 | }, 385 | "tags": [] 386 | }, 387 | "outputs": [ 388 | { 389 | "data": { 390 | "text/html": [ 391 | "
\n", 392 | "\n", 405 | "\n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | "
episode_numberpitch_numberbrand_nameideadealpitcher_ask_amountask_equityask_valuationdeal_amountdeal_equity...ashneer_dealanupam_dealaman_dealnamita_dealvineeta_dealpeyush_dealghazal_dealtotal_sharks_investedamount_per_sharkequity_per_shark
11234113Green ProteinPlant-Based Protein060.02.03000.00.00.0...000000000.00.0
11334114On2CookFastest Cooking Device0100.01.010000.00.00.0...000000000.00.0
11435115Jain ShikanjiLemonade140.08.0500.040.030.0...1110100410.07.5
11535116WolooWashroom Finder050.04.01250.00.00.0...000000000.00.0
11635117Elcare IndiaCarenting for Elders0100.02.54000.00.00.0...000000000.00.0
\n", 555 | "

5 rows × 28 columns

\n", 556 | "
" 557 | ], 558 | "text/plain": [ 559 | " episode_number pitch_number brand_name idea \\\n", 560 | "112 34 113 Green Protein Plant-Based Protein \n", 561 | "113 34 114 On2Cook Fastest Cooking Device \n", 562 | "114 35 115 Jain Shikanji Lemonade \n", 563 | "115 35 116 Woloo Washroom Finder \n", 564 | "116 35 117 Elcare India Carenting for Elders \n", 565 | "\n", 566 | " deal pitcher_ask_amount ask_equity ask_valuation deal_amount \\\n", 567 | "112 0 60.0 2.0 3000.0 0.0 \n", 568 | "113 0 100.0 1.0 10000.0 0.0 \n", 569 | "114 1 40.0 8.0 500.0 40.0 \n", 570 | "115 0 50.0 4.0 1250.0 0.0 \n", 571 | "116 0 100.0 2.5 4000.0 0.0 \n", 572 | "\n", 573 | " deal_equity ... ashneer_deal anupam_deal aman_deal namita_deal \\\n", 574 | "112 0.0 ... 0 0 0 0 \n", 575 | "113 0.0 ... 0 0 0 0 \n", 576 | "114 30.0 ... 1 1 1 0 \n", 577 | "115 0.0 ... 0 0 0 0 \n", 578 | "116 0.0 ... 0 0 0 0 \n", 579 | "\n", 580 | " vineeta_deal peyush_deal ghazal_deal total_sharks_invested \\\n", 581 | "112 0 0 0 0 \n", 582 | "113 0 0 0 0 \n", 583 | "114 1 0 0 4 \n", 584 | "115 0 0 0 0 \n", 585 | "116 0 0 0 0 \n", 586 | "\n", 587 | " amount_per_shark equity_per_shark \n", 588 | "112 0.0 0.0 \n", 589 | "113 0.0 0.0 \n", 590 | "114 10.0 7.5 \n", 591 | "115 0.0 0.0 \n", 592 | "116 0.0 0.0 \n", 593 | "\n", 594 | "[5 rows x 28 columns]" 595 | ] 596 | }, 597 | "execution_count": 4, 598 | "metadata": {}, 599 | "output_type": "execute_result" 600 | } 601 | ], 602 | "source": [ 603 | "df.tail()" 604 | ] 605 | }, 606 | { 607 | "cell_type": "code", 608 | "execution_count": 5, 609 | "id": "8f726d13", 610 | "metadata": { 611 | "execution": { 612 | "iopub.execute_input": "2022-03-26T06:50:59.683400Z", 613 | "iopub.status.busy": "2022-03-26T06:50:59.682685Z", 614 | "iopub.status.idle": "2022-03-26T06:50:59.705152Z", 615 | "shell.execute_reply": "2022-03-26T06:50:59.705856Z", 616 | "shell.execute_reply.started": "2022-03-26T06:30:59.581324Z" 617 | }, 618 | "papermill": { 619 | "duration": 0.057784, 620 | "end_time": "2022-03-26T06:50:59.706036", 621 | "exception": false, 622 | "start_time": "2022-03-26T06:50:59.648252", 623 | "status": "completed" 624 | }, 625 | "tags": [] 626 | }, 627 | "outputs": [ 628 | { 629 | "name": "stdout", 630 | "output_type": "stream", 631 | "text": [ 632 | "\n", 633 | "RangeIndex: 117 entries, 0 to 116\n", 634 | "Data columns (total 28 columns):\n", 635 | " # Column Non-Null Count Dtype \n", 636 | "--- ------ -------------- ----- \n", 637 | " 0 episode_number 117 non-null int64 \n", 638 | " 1 pitch_number 117 non-null int64 \n", 639 | " 2 brand_name 117 non-null object \n", 640 | " 3 idea 117 non-null object \n", 641 | " 4 deal 117 non-null int64 \n", 642 | " 5 pitcher_ask_amount 117 non-null float64\n", 643 | " 6 ask_equity 117 non-null float64\n", 644 | " 7 ask_valuation 117 non-null float64\n", 645 | " 8 deal_amount 117 non-null float64\n", 646 | " 9 deal_equity 117 non-null float64\n", 647 | " 10 deal_valuation 117 non-null float64\n", 648 | " 11 ashneer_present 117 non-null int64 \n", 649 | " 12 anupam_present 117 non-null int64 \n", 650 | " 13 aman_present 117 non-null int64 \n", 651 | " 14 namita_present 117 non-null int64 \n", 652 | " 15 vineeta_present 117 non-null int64 \n", 653 | " 16 peyush_present 117 non-null int64 \n", 654 | " 17 ghazal_present 117 non-null int64 \n", 655 | " 18 ashneer_deal 117 non-null int64 \n", 656 | " 19 anupam_deal 117 non-null int64 \n", 657 | " 20 aman_deal 117 non-null int64 \n", 658 | " 21 namita_deal 117 non-null int64 \n", 659 | " 22 vineeta_deal 117 non-null int64 \n", 660 | " 23 peyush_deal 117 non-null int64 \n", 661 | " 24 ghazal_deal 117 non-null int64 \n", 662 | " 25 total_sharks_invested 117 non-null int64 \n", 663 | " 26 amount_per_shark 117 non-null float64\n", 664 | " 27 equity_per_shark 117 non-null float64\n", 665 | "dtypes: float64(8), int64(18), object(2)\n", 666 | "memory usage: 25.7+ KB\n" 667 | ] 668 | } 669 | ], 670 | "source": [ 671 | "df.info()" 672 | ] 673 | }, 674 | { 675 | "cell_type": "code", 676 | "execution_count": 6, 677 | "id": "6d21d274", 678 | "metadata": { 679 | "execution": { 680 | "iopub.execute_input": "2022-03-26T06:50:59.767288Z", 681 | "iopub.status.busy": "2022-03-26T06:50:59.766595Z", 682 | "iopub.status.idle": "2022-03-26T06:50:59.848654Z", 683 | "shell.execute_reply": "2022-03-26T06:50:59.849291Z", 684 | "shell.execute_reply.started": "2022-03-26T06:30:59.608103Z" 685 | }, 686 | "papermill": { 687 | "duration": 0.1145, 688 | "end_time": "2022-03-26T06:50:59.849492", 689 | "exception": false, 690 | "start_time": "2022-03-26T06:50:59.734992", 691 | "status": "completed" 692 | }, 693 | "tags": [] 694 | }, 695 | "outputs": [ 696 | { 697 | "data": { 698 | "text/html": [ 699 | "
\n", 700 | "\n", 713 | "\n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | "
episode_numberpitch_numberdealpitcher_ask_amountask_equityask_valuationdeal_amountdeal_equitydeal_valuationashneer_present...ashneer_dealanupam_dealaman_dealnamita_dealvineeta_dealpeyush_dealghazal_dealtotal_sharks_investedamount_per_sharkequity_per_shark
count117.000000117.000000117.000000117.000000117.000000117.000000117.000000117.000000117.000000117.000000...117.000000117.000000117.000000117.000000117.000000117.000000117.000000117.000000117.000000117.000000
mean18.73504359.0000000.555556319.8547095.1880343852.46247931.9829158.963504467.1048720.837607...0.1794870.2051280.2393160.1880340.1282050.2307690.0598291.23076918.1324815.583590
std10.07077833.9190210.4990412767.8427773.89212111931.60195736.68739113.106769919.9888640.370397...0.3854100.4055320.4285010.3924200.3357560.4231370.2381901.41045723.58868210.803799
min1.0000001.0000000.0000000.0010100.2500000.0100000.0000000.0000000.0000000.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%10.00000030.0000000.00000045.0000002.500000666.6700000.0000000.0000000.0000001.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
50%19.00000059.0000001.00000050.0000005.0000001250.00000025.0000003.000000100.0000001.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.0000001.00000010.0000001.250000
75%27.00000088.0000001.00000080.0000007.5000002857.14000050.00000015.000000500.0000001.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.0000002.00000025.0000006.000000
max35.000000117.0000001.00000030000.00000025.000000120000.000000150.00000075.0000006666.6700001.000000...1.0000001.0000001.0000001.0000001.0000001.0000001.0000005.000000100.00000075.000000
\n", 935 | "

8 rows × 26 columns

\n", 936 | "
" 937 | ], 938 | "text/plain": [ 939 | " episode_number pitch_number deal pitcher_ask_amount \\\n", 940 | "count 117.000000 117.000000 117.000000 117.000000 \n", 941 | "mean 18.735043 59.000000 0.555556 319.854709 \n", 942 | "std 10.070778 33.919021 0.499041 2767.842777 \n", 943 | "min 1.000000 1.000000 0.000000 0.001010 \n", 944 | "25% 10.000000 30.000000 0.000000 45.000000 \n", 945 | "50% 19.000000 59.000000 1.000000 50.000000 \n", 946 | "75% 27.000000 88.000000 1.000000 80.000000 \n", 947 | "max 35.000000 117.000000 1.000000 30000.000000 \n", 948 | "\n", 949 | " ask_equity ask_valuation deal_amount deal_equity deal_valuation \\\n", 950 | "count 117.000000 117.000000 117.000000 117.000000 117.000000 \n", 951 | "mean 5.188034 3852.462479 31.982915 8.963504 467.104872 \n", 952 | "std 3.892121 11931.601957 36.687391 13.106769 919.988864 \n", 953 | "min 0.250000 0.010000 0.000000 0.000000 0.000000 \n", 954 | "25% 2.500000 666.670000 0.000000 0.000000 0.000000 \n", 955 | "50% 5.000000 1250.000000 25.000000 3.000000 100.000000 \n", 956 | "75% 7.500000 2857.140000 50.000000 15.000000 500.000000 \n", 957 | "max 25.000000 120000.000000 150.000000 75.000000 6666.670000 \n", 958 | "\n", 959 | " ashneer_present ... ashneer_deal anupam_deal aman_deal \\\n", 960 | "count 117.000000 ... 117.000000 117.000000 117.000000 \n", 961 | "mean 0.837607 ... 0.179487 0.205128 0.239316 \n", 962 | "std 0.370397 ... 0.385410 0.405532 0.428501 \n", 963 | "min 0.000000 ... 0.000000 0.000000 0.000000 \n", 964 | "25% 1.000000 ... 0.000000 0.000000 0.000000 \n", 965 | "50% 1.000000 ... 0.000000 0.000000 0.000000 \n", 966 | "75% 1.000000 ... 0.000000 0.000000 0.000000 \n", 967 | "max 1.000000 ... 1.000000 1.000000 1.000000 \n", 968 | "\n", 969 | " namita_deal vineeta_deal peyush_deal ghazal_deal \\\n", 970 | "count 117.000000 117.000000 117.000000 117.000000 \n", 971 | "mean 0.188034 0.128205 0.230769 0.059829 \n", 972 | "std 0.392420 0.335756 0.423137 0.238190 \n", 973 | "min 0.000000 0.000000 0.000000 0.000000 \n", 974 | "25% 0.000000 0.000000 0.000000 0.000000 \n", 975 | "50% 0.000000 0.000000 0.000000 0.000000 \n", 976 | "75% 0.000000 0.000000 0.000000 0.000000 \n", 977 | "max 1.000000 1.000000 1.000000 1.000000 \n", 978 | "\n", 979 | " total_sharks_invested amount_per_shark equity_per_shark \n", 980 | "count 117.000000 117.000000 117.000000 \n", 981 | "mean 1.230769 18.132481 5.583590 \n", 982 | "std 1.410457 23.588682 10.803799 \n", 983 | "min 0.000000 0.000000 0.000000 \n", 984 | "25% 0.000000 0.000000 0.000000 \n", 985 | "50% 1.000000 10.000000 1.250000 \n", 986 | "75% 2.000000 25.000000 6.000000 \n", 987 | "max 5.000000 100.000000 75.000000 \n", 988 | "\n", 989 | "[8 rows x 26 columns]" 990 | ] 991 | }, 992 | "execution_count": 6, 993 | "metadata": {}, 994 | "output_type": "execute_result" 995 | } 996 | ], 997 | "source": [ 998 | "df.describe()" 999 | ] 1000 | }, 1001 | { 1002 | "cell_type": "code", 1003 | "execution_count": 7, 1004 | "id": "0c02f398", 1005 | "metadata": { 1006 | "execution": { 1007 | "iopub.execute_input": "2022-03-26T06:50:59.915625Z", 1008 | "iopub.status.busy": "2022-03-26T06:50:59.914787Z", 1009 | "iopub.status.idle": "2022-03-26T06:50:59.922308Z", 1010 | "shell.execute_reply": "2022-03-26T06:50:59.922848Z", 1011 | "shell.execute_reply.started": "2022-03-26T06:30:59.687138Z" 1012 | }, 1013 | "papermill": { 1014 | "duration": 0.041231, 1015 | "end_time": "2022-03-26T06:50:59.923022", 1016 | "exception": false, 1017 | "start_time": "2022-03-26T06:50:59.881791", 1018 | "status": "completed" 1019 | }, 1020 | "tags": [] 1021 | }, 1022 | "outputs": [ 1023 | { 1024 | "data": { 1025 | "text/plain": [ 1026 | "episode_number 0\n", 1027 | "pitch_number 0\n", 1028 | "brand_name 0\n", 1029 | "idea 0\n", 1030 | "deal 0\n", 1031 | "pitcher_ask_amount 0\n", 1032 | "ask_equity 0\n", 1033 | "ask_valuation 0\n", 1034 | "deal_amount 0\n", 1035 | "deal_equity 0\n", 1036 | "deal_valuation 0\n", 1037 | "ashneer_present 0\n", 1038 | "anupam_present 0\n", 1039 | "aman_present 0\n", 1040 | "namita_present 0\n", 1041 | "vineeta_present 0\n", 1042 | "peyush_present 0\n", 1043 | "ghazal_present 0\n", 1044 | "ashneer_deal 0\n", 1045 | "anupam_deal 0\n", 1046 | "aman_deal 0\n", 1047 | "namita_deal 0\n", 1048 | "vineeta_deal 0\n", 1049 | "peyush_deal 0\n", 1050 | "ghazal_deal 0\n", 1051 | "total_sharks_invested 0\n", 1052 | "amount_per_shark 0\n", 1053 | "equity_per_shark 0\n", 1054 | "dtype: int64" 1055 | ] 1056 | }, 1057 | "execution_count": 7, 1058 | "metadata": {}, 1059 | "output_type": "execute_result" 1060 | } 1061 | ], 1062 | "source": [ 1063 | "df.isnull().sum()" 1064 | ] 1065 | }, 1066 | { 1067 | "cell_type": "markdown", 1068 | "id": "11be0bbd", 1069 | "metadata": { 1070 | "papermill": { 1071 | "duration": 0.029855, 1072 | "end_time": "2022-03-26T06:50:59.982956", 1073 | "exception": false, 1074 | "start_time": "2022-03-26T06:50:59.953101", 1075 | "status": "completed" 1076 | }, 1077 | "tags": [] 1078 | }, 1079 | "source": [ 1080 | "# **Percentage of comapnies got investment or not?**" 1081 | ] 1082 | }, 1083 | { 1084 | "cell_type": "code", 1085 | "execution_count": 8, 1086 | "id": "adc39189", 1087 | "metadata": { 1088 | "execution": { 1089 | "iopub.execute_input": "2022-03-26T06:51:00.046097Z", 1090 | "iopub.status.busy": "2022-03-26T06:51:00.045410Z", 1091 | "iopub.status.idle": "2022-03-26T06:51:00.203347Z", 1092 | "shell.execute_reply": "2022-03-26T06:51:00.204425Z", 1093 | "shell.execute_reply.started": "2022-03-26T06:49:57.425857Z" 1094 | }, 1095 | "papermill": { 1096 | "duration": 0.191691, 1097 | "end_time": "2022-03-26T06:51:00.204727", 1098 | "exception": false, 1099 | "start_time": "2022-03-26T06:51:00.013036", 1100 | "status": "completed" 1101 | }, 1102 | "tags": [] 1103 | }, 1104 | "outputs": [ 1105 | { 1106 | "name": "stdout", 1107 | "output_type": "stream", 1108 | "text": [ 1109 | "The number of companies who got the investment: 65\n", 1110 | "The number of companies who didn't got the investment: 52\n", 1111 | "\n", 1112 | "---------\n", 1113 | "\n" 1114 | ] 1115 | }, 1116 | { 1117 | "data": { 1118 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAD3CAYAAACKAUaXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnWElEQVR4nO3dd5xU1f3/8ddnZnZpCwuIiKAyAvaOLbESu641X/2hxobRrxoTC5ZMEhMnxuhqNJYYS0yiUWODb2KAiRpUQLAhitKCDVZBmrSBBdl6fn+cs3JZt83s7J4pn+fjsY+9M3PLZ+7cec+5987cI8YYlFJKWSHfBSilVDbRUFRKqQANRaWUCtBQVEqpAA1FpZQK0FBUSqmArAtFEXlcRG71tGwRkcdEZI2ITPdRQ0cSkR1EpFJEwh6WPUJEFrfw+MMi8ss2zGeyiFyS2erSIyIvisiFvutQmdVqKIpIhYisEJEegfsuEZHJHVqZH4cBxwLbGWMO8l1MphljvjDGlBhj6nzX0pgx5nJjzG9819FARC4SkWktjWOMOdEY87fOqqkx9948xtOyW10/PrXnw7OtLcUwcHU6C/ApjRbRYKDCGLOhI+pRSjVNRCK+a/iGMabFP6ACiAGrgd7uvkuAyW44ChggEphmMnCJG74IeAO4B1gLLAAOcfcvAlYAFwamfRx4GJgIrAemAIMDj+/qHlsNfAT8v0bTPgT8G9gAHNPE8xkIjHPTfwpc6u7/IbAJqAMqgV83sz4uBf7rapsHDHf37+ae91pgLnBqo7oeBF50834DGADcC6wB5gP7BcaPAZ8FlnFG4LGG9fkAkHTTHt1o3f/GjbMe+A/Qr6nXCigF/gIsBb4EbgXC7rFhbt0ngZXAc82sj78B17nhQW7+V7rbQ916DgEjgMXAde41XwqMarSObg3cPg34AFjn1sUJrT2/Zuq70S1rCXa7NcCwwPN/AvgK+By4ydW6W6NtYW0z857Mltv5NOAu95ouBE50j40EZjSa9lpgnBvu4qb7AliO3f67ucf6AROw29VqYKqr8UmgHvja1Xhj4PUdhX1vrQEuBw4EZrl5PNCojoux2/Ma4GW2fK8ZN/0nbto/ApLC+mnyveYeiwNjgafca3xJE9M/7paZcK/1O8DQwOOHAO9it9F3gUPc/b91tW1y9T3QVH3NbjNtDMVjgH/gNlpSD8Va90KFsW+8L9yT7QIc555wSWBFrAeOcI/fB0xzj/VwL/YoIALsh33D7h6YNgkc6jacrk08n9exAdUV2Bf7hjgquGG3sC7OwobHgW7jGIZtXRa5F/3nQDFwlHsOuwTqWgns75b7GvZNc0FgnUxqtJyB7jmMxAb8to3W57VuuSPdc+4bWPefATsD3dzt8mZC8Z/AI2699gemA5e5x54BftGwHoHDmlknFwPj3fC5btnPBR77lxse4eq+xdV9ErAR6NM4FIGD3HM61i1/ELBra8+vidpOAJYBewDdsW/AYCg+AfwL6OnWzcfAD9uyLTSznddgPzTDwBXYIBa37PXAToFp3wXOdsP3YMOjr6tlPHC7e+x2bEgWub/DAQm+NwPzbHh9H3av2XHYYHjBvb6DsB9IRwY+eD7FhlwE+6HwZqNQnAD0BnbAvldOSGH9tPRei7v1dbp7jbs1E4qr3PYQAf4OPOse64sN8vPdY+e421s1fm0C85sAxDIZintiN9StST0UPwk8tpcbf5vAfauAfQMr4tnAYyXY1N8eGwBTG9X3CHBzYNonWngu27t59QzcdzvweBtD8WXg6ibuPxz75gsF7nsGiAfqejTw2E+A/zZaJ01+2rrHPwBOC9S4BPfGcPdNB84PrPubAo/9CHip8WsFbANUBTdGt2FNCgTGn7DHV1vaPoa6jTGEfTNeBix2j/0NGG02h+LXjbaTFcB3AuuoIRQfAe5pIYiafH5NjPtXXLi428Pc8x+GDa5q3Aeqe/wyNm/XLW4LzWznnwYe6+6WNcDdfgr4lRveCRuS3bGhuYEtW0DfBRa64VuwwT2sufdm4HbD6zuo0XtrZOD2/wHXuOEXcR8C7nYI+0E12N02BD4MgedxodLa+qH191oceL2V9fs48OfA7ZOA+W74fGB6o/HfAi5q/Nqk+tfms8/GmDm4pG3rNAHLA8Nfu/k1vq8kcHtRYLmV2Ob3QGyr7GARWdvwB/wAuyv6rWmbMBBYbYxZH7jvc+wnaFtsj22lNDXfRcaY+hbm2/j5Nvv8ReQCEfkg8Bz3xO5GNfjSuFc+sKyBgdvLAsMb2XLdNmho4S4NLOcRbIsC7O6YANNFZK6IXNzEPDDGfIZ9U++L/XCYACwRkV2AI7G74A1WGWNq21Bbc+s5lecH7nUJ3A4O98M+/88D96WyLbRYlzFmoxtsqO1p7IcO2Bb1C26crbHh+F7gdXjJ3Q/wO2xr7j8iskBE2vL+a+u2Nhi4L7Dc1djXPLgO2rquG2vLe62l92pryx/Ilq9dU/NPS6pfybkZu3sQXHDDSYnugfuCIZWO7RsGRKQE21Regl2JU4wxvQN/JcaYKwLTGpq3BOgrIj0D9+2A3SVui0XYllFT891eRILrM5X5fkNEBgOPAj/G7gr0BuZgN9YGg0QkeHsHV0MqFmFbiv0C67KXMWYPAGPMMmPMpcaYgdgW1IMiMqyZeU0BzgSKjTFfutsXAn2wrdxUNbeeU7UU2C5we/vA8Ers7tvgwH3B16yl7SgdE4GtRWRfbDg+Hajja2CPwOtQaowpATDGrDfGXGeMGQKcCowWkaMzVOMi7OGS4PupmzHmzTZM29qy2/Jea0/9S9jytWs8/7TnnVIoGmM+BZ4Drgrc95Ur5DwRCbsWRXs36JNE5DARKcYeVH/bGLMI2wrZWUTOF5Ei93egiOzWxvoXAW8Ct4tIVxHZG3uC5ak21vVn4HoR2d99p3GYC7F3sJ9iN7qaRgCnAM+m8Jwb9MC+oF8BiMgobEsxqD9wlVvWWdhjQv9OZSHGmKXYkxR3i0gvEQmJyFAROdIt9ywRaQiUNa6m+mZmNwUb4q+725Pd7Wkmva///AUYJSJHu7oGiciuaczneTef3USkO/DN9yBdXc8DvxWRnu51HM3mbWE5sJ3bBtvNGFMDjMG2/PpiQxK3d/EocI+I9Adwz/d4N3yy284Ee/iqjs2vw3JgSDvKehj4mYjs4ZZV6rantmhx/WTgvdaaf2Oz4FwRiYjISGB3bEY01JfWuknny9u3YN+4QZcCN2CPX+yBXRnt8TS2Vboae3LiPLCfmtiDx2djPymWAXdgT8i01TnYYy9LsCcabjbGvNKWCY0xY7Bntp7GHhN6AXuCoxobgidiP/kfBC4wxsxPoa6GZcwD7sYeH1mOPd74RqPR3sEel1rp6jnTGLMq1WVhT/QUY89wr8GeDdzWPXYg8I6IVGJPAlxtjFnQzHymYE8QNITiNOyew+vNjN8iY8x07Mm0e7BBMIVvtwraMp8XgfuBSdhd0LfdQ1Xu/0+wezoLXM1PY49Dgj0ZNhdYJiIr03keTXgae3x+TKPDCD9tqE9E1gGvALu4x3Zytyux28SDxphJ7rHbgZvc7u/1qRZjjPkn9v3zrFvuHOw23BZtWT9pv9da47b3k7HfZliFPdxzsjGmoZb7gDPdDzHuh2++bP/z1ubdcBZL5QgRuQh7APkw37XkGrdHMQfo0iiUlPpG1v3MT6lMEpEzRKSLiPTBtorGayCqlmgoqnx3GfarP59hj8dd0fLoqtDp7rNSSgVoS1EppQI0FJVSKkBDUSmlAjQUlVIqQENRKaUCNBSVUipAQ1EppQI0FJVSKkBDUSmlAjQUlVIqQENRKaUCNBSVUipAQ7EZIrKNiDzt+sV4T0TeEpEzWplmXxE5qZnHRojIhKYeyzQRucZdaTovlqNUZ9JQbIK79PsL2N7Ghhhj9sde7Xu7Fie0nTc1GYqd7Bq27DMn15ejVKfRUGzaUUC1MebhhjuMMZ8bY/4A4PqceExEZovITBH5nuur4hZgpOuJb2RzMxeRuIj8VUQmu5boVe7+chG5stF417vhG0TkXRGZJSK/dvf1EJGEiHwoInNEZKSb10BgkohMcuNVisjvxPbK94qIHBRY9qlunLAbp2EZl7n7R7hxx4rIfBH5u+uf5lvLUSovpNMvar7/YTvmuqeFx68D/uqGdwW+wHb4fRHwQDPTjAAmmM193r6J7VumH7aPiSJgP2xvhQ3TzMP2QHcctg9mwX6QTQCOAP6HLfuTLnX/K7C99DXcb4AT3fA/sR1WFQH7AB+4+/8X15+yq2sGsKOrO4ltJYew/YQc1tRy9E//8uFPW4ptICJ/dK2xd91dh+F6JTO2c6rPgZ1TnG3CGFNlbEc7K4BtjDEzgf4iMlBE9gHWGNsr2nHubybwPjaIdwJmA8eKyB0icrgxJtnMsqqxfQnjpplibO9ys7EdC+Hmf4GIfIDtGGsrtwywnY4vNrbnuQ8C0yiVdyK+C8hSc7GtMACMMVeKSD9s6ylTqgLDdWx+LcZg+1AegO1OFmwL8XZjzCONZyIiw7HHMW8VkVeNMbc0sawaY0zDJdbrG5ZtjKkXkYblCvATY8zLjeY/ooValco72lJs2mtAVxEJ9ucRPKEwFfgBgIjsjO2E+yNst6fBzr/T8Rz2pM6Z2IAEeBm4WERK3DIHiUh/ERkIbDTGPIXtT3i4Gz+dOl4GrhCRIreMnUWkcVe2jWXi+SqVVTQUm+BaVacDR4rIQhGZDvwN2z8v2H6dQyIyGxtiFxljqrD9C+/e2omWVpY9Fxs0XxrbYT3GmP9g+wx+yy1zrBtnL2C62+W9GbjVzeZPwEspngD5M/YY5vsiMgd4hNZbhOksR6msph1XKaVUgLYUlVIqQENRKaUC9Cyi6hDRWKIE+9WhKNAX6OP+ejcxXArUAhsCf5VN3P4Ke0LrI+DTivKymk56OqqA6DFF1S7RWCIC7I49872vG94NGIT9mk9HqQUWYgNyPpvDcl5FedmqDlyuynMaiiol0ViiGPtrmpOwX2LfC/trnmwyH5gMTAEmV5SXLfNbjsolGoqqVdFYYiA2BMuAY4ASvxWlbB7wIvBvYKrudquWaCiqb4nGEiHgYGwIlmF3i/PFemAi9mea4yvKy2o916OyjIai+kY0lhgAXIq9OERrl0nLB8uBJ4A/V5SXfey7GJUdNBQV0VjiSOBHwBnYq+cUoqnAX4AxFeVlG30Xo/zRUCxQ0ViiJ3ABcAWwh+dyssk64BngkYryspm+i1GdT0OxwERjiR2B64Hz0Ys5tOZfwC8rystm+y5EdR4NxQIRjSX6AjcBVwLFnsvJJfXYi378qqK87FPfxaiOp6GY56KxRFfslcR/hv0FiUpPLfA4cEtFedkiz7WoDqShmKeisYQA52EvJ7aD53LySRXwMHBbRXnZCt/FqMzTUMxD0VjiaOxFZ/fzXUse2wD8Erivorys3ncxKnM0FPNINJbYBtuKOd1zKYVkGnBxRXnZJ74LUZmhoZgnorHEOcAfsB1Oqc71NfBz4H5tNeY+DcUcF40ltgYeItDRlvJmGjBKz1LnNg3FHBaNJY4BnsT2/Keyw0Y2txr1zZWDNBRzkLuG4a3AjXTsNQtV+qYCZ1eUly3xXYhKjYZijonGEttjuz492HctqlXLgO9XlJe95bsQ1XbaR0sOicYS+wLvoIGYKwYAk6OxxCW+C1Ftpy3FHBGNJY7HthD198q56QHgmorysjrfhaiWaSjmgGgscTFt65xeZbcJ2OOMG3wXopqnu89ZLhpL3IK9zp8GYu47GZjiLuarspS2FLNUNJYoAv6Mveahyi+fA8fp1b6zk4ZiFnIXgP0HtpMolZ8WA4dXlJdV+C5EbUlDMcu4S329jO1GVOW3BcARFeVlX/ouRG2mxxSzSDSWCGMvaKqBWBiGAK9EY4n+vgtRm2koZpdHgVN9F6E61a7AxGgs0cd3IcrSUMwS0VjiTmCU7zqUF3sDL7ljycozDcUsEI0lbgBu8F2H8uogIBGNJbr7LqTQ6YkWz6KxxEXAY77rUFnjJaBMr8voj7YUPYrGEqdgv4uoVIMTgLjvIgqZthQ9icYSw4D3ybHfMi9+6GJCxd0gFEJCYba98F7WTvs7lR++TKh7KQB9jriAbkMP/Na09ZsqWfXi/VSv/AKAfiddTZdBu7Fm8mN8veA9ivvvSL+TrwOgcu4k6jeuo9eBp3Xek8seBjiporzsJd+FFCL96ZgH0ViiGHiWHAvEBtuccxthF4ANeh5wOqUHf7/F6Va/+ie6Dtmfrc/4OaauBlNTRX3VBqqXfcbAix+wgflVBZHe27Jh9kT6n3VLRz6NbCbAU9FYYnhFedkXvospNLr77Ec5sL/vIjpTfdUGNi2aS8nexwEg4SJCXUsAwdTXYoyhvqYKCYVZN/0f9Bx+ChIu6M/srYAx7gNUdaKC3up8iMYSZcA1vutImwgrnv8VACX7nkjPfU8AYP37E9gw9zWKBwyjz1GXEO5assVktWuXE+7ei1X/vpfqFQvpMmAYfY7+X0JdutNt6AEsffwqug7eB+nSg+qlH9P70HM6/alloYOA3wM/9l1IIdFjip0oGksMBD4E+vmuJV2161cS6dmPug1rWf7cTfQ99nKK+g4i1K0XiLB26lPUVa6m30nXbDFd1dJPWPbkdQw473d0GbgLq195hFBxd3ofcf4W46168X5K9juJ6uWfsWnhTIr6R+l9yNmd+Ayz0rkV5WXP+C6iUOjucyeJxhIh4O/kcCACRHra8sM9etN95+9SteRjwj36IKEwIiF67nM81Uu/ffGXSM9+hHv2o8vAXQDovsuhVC//bItxqpd/hjGGor7bsXH+NLY+PUbtmmXUrC74nwY/Go0ldvNdRKHQUOw8vwBG+C6iPeqrN1FftfGb4U0LZ1K89WBqK1d/M87Gj9+iqN/gb00bLulDpFc/alYtBmDT5x9S1G+HLcZZO/Upeh9+HtTXgnFf0xPB1FZ10DPKGT2Ax6KxhHZS1gn0mGIniMYS3wFu9l1He9VtXMtX/7jV3qivp8fuR9JtyP6snHA31csXgAiR0v70Pd4eAqtdv4pVL93PNmf9GoC+x1zOygl3YepqifQewFaBXeyNH79F8YBhRHpuBUBx/yEs+cuVFPWPUtx/SKc+zyx1MHAp8CffheQ7PabYwdyVb2YA+3ouReW+1cAuFeVlK30Xks9097nj/QgNRJUZfbFf51IdSFuKHSgaS2wDfASUtjauUm1kgEO1L+mOoy3FjnUHGogqswR4yB2WUR1AQ7GDRGOJ4WinU6pj7IN+obvDaCh2nLuwn+pKdYRborHEtr6LyEcaih0gGkucDHzPdx0qr/UiD77mlY30REuGuV+uzAZ2912LynvVwNCK8rLFvgvJJ9pSzLzT0EBUnaMYuNF3EflGQzHzrvVdgCool0ZjiQG+i8gnGooZ5M44H+67DlVQugKjfReRTzQUM0tbicqHS6OxREnro6m20FDMEPf1iJG+61AFqTdwse8i8oWGYuZcCRT5LkIVrKvdNx9UO+lKzIBoLNENuNx3HaqgDQFO8V1EPtBQzIzzsR0NKeXT+a2PolqjoZgZV/ouQCngJD3h0n4aiu0UjSV2Avb2XYdSQDfgVN9F5DoNxfY7w3cBSgXoNyDaSUOx/U73XYBSAcdHYwm9hmc7aCi2g/tu4nd816FUQBfs7+9VmjQU2+c09JqJKvvoLnQ7aCi2jx5PVNno2Ggs0dd3EblKQzFN7riNXkhWZaMidBc6bRqK6StDf9ansteRvgvIVRqK6TvZdwFKteC7vgvIVRqK6TvYdwFKtWDnaCyhPz1Ng4ZiGqKxRB/sD/CVymb6dbE0aCimZ7jvApRqAw3FNGgopmd/3wUo1QZ6XDENGorp0VBUueAgvfBs6nSFpUdDUeWCnsCevovINRqKKXJf2taTLCpX6C50ijQUUzcc/b2zyh27+C4g12gopk7PPKtcsr3vAnKNhmLqhvouQKkUbOe7gFyjoZi6Qb4LUCoFGoop0lBMnYaiyiUDorFE2HcRuURDMXUaiiqXRIABvovIJRqKKXCfuP1916FUinQXOgUaiqnpg64zlXs0FFOgb/DU6CXeVS7SUEyBhmJq+vguQKk0bOO7gFyioZgabSmqXFTsu4BcoqGYmh6+C1AqDRHfBeQSDcXU1PguQKk0aAdrKdBQTI2GospFGoop0GZ1aqp9F5BvdpLFFddFxlQcFZo5OEJdqe968lEVRVXwle8ycoaGYmq0pZgBfVi3+srIuDkjw5O26ilf7wFEfdeUz7pRre/zFOjKSo22FNNUTE3VyPCkmZdFJsggVg4X4QjfNRWQWt8F5BINxdRoKKZoROiDWddE/i+5t3y2V0i0dzlP6nwXkEs0FFOju89tMFS+/Py6yJiFx4beG1IkdXv7rkeR9F1ALtFQTI22FJvRm/VrfhQZN/vs8Gt9e8nXewKDfdekvrHcdwG5REMxNVW+C8gmRdRWjwxPev+y8HjZTlbup8cJs9YK3wXkEg3F1CwFDAXecdURoQ9nXRsZu3Yf+WxvPU6YE7SlmAIxxviuIadEY4klwLa+6+hsQ2TJ59dFxiw8LjRjxyKp013j3LIr8eRHvovIFdpSTN0CCiQUe7N+zRWR8XPOCb/Wu5ds3As9TpirtKWYAg3F1C0ADvVdREcporb6rPDk9y8Pj2d7+Wq4CIf7rkm1SzXx5FrfReQSDcXULfBdQEc4PDRrzrWRsav3lU/1+4T5ZanvAnKNhmLq8iYUd5QlX1wXGbPguNCMHYulbk/f9agOMdd3AblGQzF1C30X0B6lVK69IjJu1jnh1/qU2uOEO/iuSXWo2b4LyDUaiqnLuZZiEbXVZ4anzLwiPN5sLyv0d8eFRUMxRRqKqVsCbAK6+i6kNYeFZs+5NjJ29X7yyV4h4WDf9SgvZvkuINfo9xTTEI0l3gUO8F1HU3aUJV+MjoxdcHxoRrRYaqO+61Fe1QA9iCf1N/sp0JZieqaSRaFYSuXayyPjZ50bfrV3qWzcGz1OqKz5Goip01BMzxTgWp8FRKitOTP8+vtXhMeZHWSF/u5YNUWPJ6ZBQzE9U/H0G+hDQnPmjo6MXTVcPtkzJEaPE6qWvOm7gFykxxTTFI0lZgF7dcqyZOmi0ZGxn50QendwsdTu2BnLVHlhF+LJj30XkWu0pZi+1+nAUOxFZfKySGLWD8KvlJayYS8Rtu+oZam89IUGYno0FNM3BbgykzOMUFvz/fDUmT8Kj6sbLMv1d8eqPV7xXUCu0lBM3+uZmtF3Q3Pnjo6MWbW/fLJHSMxBmZqvKmgTfReQq/SYYjtEY4n5wC7pTDtYli0eHRn76Ymh6XqcUGWaAbYhntTOntOgLcX2mUgKodiTDcnLIhNmnRd+pVcpG/YWYbsOrE0Vrg80ENOnodg+zwM/bmmECLU1Z4SnzfxR+F91UVm+nx4nVJ0g4buAXKah2D7TgMXw7RbfwTJv3nVFY1YeIB/rcULV2Z70XUAu02OK7RSNJe4GRgPsIMsXXxsZ++lJoXcGd9HjhMqP6cST+qX+dtCWYjv1ZOPTl0QSB14QntirN5V6nFD5pq3EdtKWYibES+cBu/kuQxW8GmAg8eRK34XkspDvAvLEY74LUAp4SQOx/TQUM+NJoNZ3Earg6a5zBmgoZkI8uQwY77sMVdC+QrfBjNBQzJw7fRegCtofiCc3+S4iH2goZko8+TYZ/D20UimoBP7ou4h8oaGYWeW+C1AF6VHiydW+i8gXGoqZFE++iPaepjpXDfB730XkEw3FzLvDdwGqoDxNPLnYdxH5REMx854DFvouQhUEg57gyzgNxUyLJ+uA23yXoQrCGOLJeb6LyDcaih3jr8AHvotQee1r4EbfReQjDcWOEE/WA1f7LkPltbuIJz/3XUQ+0lDsKPHk68AY32WovLQY/fpXh9FQ7Fg3YHdzlMqkGPHkRt9F5CsNxY5kd2/u8l2GyitvAU/7LiKfaSh2vHJgke8iVF6oB64hntSLoHYgDcWOZndzLsF+p0w5dfWG/R6p5OSnt9wLvOrFTZTctq7Fab9I1lNy2zruerMKgK821HPYXzew54OVvDC/5pvxTnt2I0vW12e+eH/uJp6c7ruIfKeh2Bniyf8AD/guI5vc9041u/XbcvObsaSONZta/+wY/fImTtxpc08az8yp4fIDiph+aQ/ufbsagPEf1bDfgBADe+bNJv4hcJPvIgpB3mwxOeCngH7RFli8rp7EJ7VcMrz4m/vq6g03TNzEncd0aXHaF+bXsGPvEHtsvXnTLQoJG2ugqhbCIaitN9z7TjU3HtryvHJIFXAe8WS170IKgYZiZ4knvwbOw/6Av6Bd89Im7jymKyHZfN8D06s5decI27bQsqusNtzxRjU3j9gy7M7dq4h/fVTLsU9u4OeHdeHBd6s5f+8iuhdJM3PKOT8jnpzju4hCoaHYmeLJmcCvfJfh04SPa+jfQ9h/YPib+5asr2fMvFp+cnBxC1NCfHIV136nmJLiLcOutKuQOLc7M/63hOHbhhn/cS1n7l7EpeO+5sznN/LWopzuKeJV4F7fRRQS7c2vs8VLQ8Ak4Ajfpfjws1c28eSsGiIh2FQL66oMXSLQJSx0dYcJv0gahvQRPr2q5xbTHv7YBhYl7YmTtZsMIYFbvteVHx+0OUxHv7yJU3eJ8MmqeorDcObuRXz/+Y28fF6PTnuOGbQG2FuvgtO5tN/nzhZP1hMvPReYDgz0XU5nu/2Yrtx+TFcAJlfUcteb1Uw4t/sW45Tctu5bgQgwddTmYItP3kRJsWwRiJ+sqmPxunpGRCN8uKyKrhFBBL7OzQMW9cAFGoidT3effYgnvwROQ3/t0qpxH9Xwq0lt63rkF69V8duj7PHGc/Yq4qEZNRz46AaubmW3PEv9knhygu8iCpHuPvsULz0Le/3FvDkjoDLiOeLJs30XUai0pehTPDkGuNl3GSqrvAOM8l1EIdOWYjaIl/4dONd3Gcq7hcB3iCdX+C6kkGlLMTv8EPtDf1W41gAnaSD6p6GYDWwn5mXAe75LUV6sBY4jnpzvuxCloZg94sk1wLFoMBaatcCxxJMzfBeiLA3FbKLBWGjWooGYdTQUs40GY6FYiwZiVtJQzEYajPluLRqIWUtDMVvZYDwGeM13KSqjvgSO0kDMXhqK2SyeXAscD/zJcyUqM2YAB7mrJakspV/ezhXx0muAu9EPslw1BrjQXVdTZTF9g+WKePJe4BRgvedKVOp+A4zUQMwN2lLMNfHSPYHxQNRzJap1m4CLiSef8V2IajttKeYae1n6A4B/+i5Ftei/wCEaiLlHW4q5LF46CrgP+PYVWZUvBttz4091dzk3aSjmunjpEOBJ4BDfpSiWAKNcl7YqR+nuc66LJxdg+3v5JZDTPTTluLHAXhqIuU9bivkkXnoA9juN+/kupYAsB64nnnzKdyEqM7SlmE/sryQOBH6MvT6f6jjVwO+AnTUQ84u2FPNVvHRr4FbsBWzDrYytUjMeGE08+anvQlTmaSjmu3jpHsBdwAm+S8kD84Br9bhhftNQLBTx0qOAXwBH+S4lB32M3VV+nHhST2blOQ3FQmNPxvwU+D56TLk1M4By4J/Ek/W+i1GdQ0OxUMVLdwKuBy4EuniuJttMBO4gnnzVdyGq82koFrp46QDgSuB8YLDnanxah72SzYPEk+/7Lkb5o6GorHipYL8Efj5wJlDqt6BOUQv8B3gCGKc/y1OgoaiaEi/tir1M2fnYs9ZFfgvKuPexQfiM9rOsGtNQVC2Ll/bFnrE+Fts9whC/BaVlNbZbh4nAROLJhZ7rUVlMQ1Glxl6A4hhsSB4F9PVbUJOqgTewIfgK8J6ePVZtpaGo0mePQw4F9mr0N4zO+xXNGuy1Cz8EZrq/OcSTmzpp+SrPaCiqzIuXdgN2B3YBtnF//d1fcLhrC3OpA74CVri/5YHhFcBC4L/Ek8s65kmoQqWhqJRSAfqLBqWUCtBQVEqpAA1FlVdExIjI3YHb14tIvJVpTheR3Zt5LC4iX4rIByIyT0TOSbOuy0XkgnSmTWEZlanc3wHLb3Y95tJyNBRVvqkCvi8i/VKY5nTsiaHm3GOM2Rc4DXhERFL+Mrsx5mFjzBOpTpdjTqfl9ZgTy9FQVPmmFtslw7WNHxCRqIi8JiKzRORVEdlBRA4BTgV+51qDQ5ubsTHmE2Aj0MfN7wYRedfN79eB5Vzg7vtQRJ5098VF5Ho3PFREXhKR90RkqojsKiKlIvK5iITcOD1EZJGIFDU1vhtnRxF5S0Rmi8itra0YERkhIpNFZKyIzBeRv4t1goiMaTTeBDd8nFvG+yIyRkRK3P3lruU8S0Tuamo9umXdIyIzROS/InKgiPxDRD4J1isi54nIdDfdIyISdvdXishv3Xp8W0S2SeX1SpsxRv/0L2/+gEqgF1CB/f329UDcPTYeuNANXwy84IYfB85sZn5x4Ho3PByY6oaPw4avYBsXE7C/Hd8De/3Ffm68vk3M51VgJzd8MPCaG/4X8D03PBL4cyvjjwMucMNXApXNrRP3fwSQBLZzNb8FHAZEgC+AHm68h4DzgH7A64H7fwr8CtgK+IjN317p3dR6BCYDd7jhq7G9HW6LvSrTYjef3dzrUuTGezDwnAxwihu+E7iptdcrE38RlMozxph1IvIEcBUQvMjDd7HXkQTbLeydbZzltSIyCtgZ+5twsKF4HPbL4gAlwE7APsAYY8xKV8vq4IxcS+sQYIyINNzdcOm257BhOAk4G3iwlfEPBf4n8HzuaMNzmW6MWexq+QCIGmOmichLwCkiMhYoA24EjsTupr7hll2MDdIksAn4i2tRTmhheePc/9nAXGPMUrfsBcD22FDeH3jXLaMb9nuoYH+Z1DDv97C/oupwGooqX92LvfDDYxmY1z3GmLtE5FRsEAzFthBvN8Y8EhxRRH7SyrxCwFpjj1E2Ng64TUT6YoPiNaBHC+ODbU2loiowXMfmDHgW2+HZamCGMWa92JSaaIz51sklETkIOBp7RaUf0/wV3RuWV99o2fVu2QL8zRjzsyamrTGuadio1g6lxxRVXnIttOexHXc1eBPbAgP4ATDVDa8HerZhnuOwV+O+EHgZuDhwjG2QiPTHBtlZIrKVu79vo3msAxaKyFnucRGRfdxjlcC7wH3ABGNMXUvjY3/fHXw+7TEFe3jgUmxAArwNHCoiw9yye4jIzu45lxpj/o09dttQT5vWYyOvAme6dYeI9BWR1q7rmc5y2kxDUeWzu7HHxRr8BBglIrOwl0W72t3/LHCDiMxsw4H7W4DR2AtNPA28JSKzgbFAT2PMXOC3wBQR+RD4fRPz+AHwQ/f4XOxZ7QbPYY/nPdeG8a8GrnTLH9RK3S0yxtRhd1VPdP8xxnwFXAQ849bZW8Cu2ECa4O6bhl0fkNp6bFjuPOAm4D9ufhOxxx1bkvJyUqE/81NKqQBtKSqlVICGolJKBWgoKqVUgIaiUkoFaCgqpVSAhqJSSgVoKCqlVICGolJKBWgoKqVUgIaiUkoFaCgqpVSAhqJSSgVoKCqlVICGolJKBWgoKqVUgIaiUkoFaCgqpVTA/wdp1plu1bpRSwAAAABJRU5ErkJggg==\n", 1119 | "text/plain": [ 1120 | "
" 1121 | ] 1122 | }, 1123 | "metadata": {}, 1124 | "output_type": "display_data" 1125 | } 1126 | ], 1127 | "source": [ 1128 | "got_in=df[df['deal_amount']>0.0].shape\n", 1129 | "not_in=df[df['deal_amount']==0.0].shape\n", 1130 | "\n", 1131 | "print(\"The number of companies who got the investment: \", got_in[0])\n", 1132 | "print(\"The number of companies who didn't got the investment: \", not_in[0])\n", 1133 | "print(\"\\n---------\\n\")\n", 1134 | "list1=[\"Got Investment\", \"Not Recieved Investment\"]\n", 1135 | "plt.pie([got_in[0],not_in[0]], labels=list1, autopct='%.1f%%')\n", 1136 | "plt.title('Number of comapnies which got investment or not:')\n", 1137 | "plt.show()" 1138 | ] 1139 | }, 1140 | { 1141 | "cell_type": "markdown", 1142 | "id": "0a5f68c0", 1143 | "metadata": { 1144 | "papermill": { 1145 | "duration": 0.030733, 1146 | "end_time": "2022-03-26T06:51:00.292931", 1147 | "exception": false, 1148 | "start_time": "2022-03-26T06:51:00.262198", 1149 | "status": "completed" 1150 | }, 1151 | "tags": [] 1152 | }, 1153 | "source": [ 1154 | "# **Five Shark Deal:**" 1155 | ] 1156 | }, 1157 | { 1158 | "cell_type": "code", 1159 | "execution_count": 9, 1160 | "id": "a1099cb4", 1161 | "metadata": { 1162 | "execution": { 1163 | "iopub.execute_input": "2022-03-26T06:51:00.362181Z", 1164 | "iopub.status.busy": "2022-03-26T06:51:00.361473Z", 1165 | "iopub.status.idle": "2022-03-26T06:51:01.571743Z", 1166 | "shell.execute_reply": "2022-03-26T06:51:01.572286Z", 1167 | "shell.execute_reply.started": "2022-03-26T06:30:59.698349Z" 1168 | }, 1169 | "papermill": { 1170 | "duration": 1.247858, 1171 | "end_time": "2022-03-26T06:51:01.572497", 1172 | "exception": false, 1173 | "start_time": "2022-03-26T06:51:00.324639", 1174 | "status": "completed" 1175 | }, 1176 | "tags": [] 1177 | }, 1178 | "outputs": [ 1179 | { 1180 | "data": { 1181 | "text/html": [ 1182 | " \n", 1197 | " " 1198 | ] 1199 | }, 1200 | "metadata": {}, 1201 | "output_type": "display_data" 1202 | }, 1203 | { 1204 | "data": { 1205 | "text/html": [ 1206 | "
" 1231 | ] 1232 | }, 1233 | "metadata": {}, 1234 | "output_type": "display_data" 1235 | } 1236 | ], 1237 | "source": [ 1238 | "#Total Shark Deal:\n", 1239 | "total_shark=df[df[\"total_sharks_invested\"]==5]\n", 1240 | "figure=px.bar(total_shark, x='brand_name', y='deal_amount',title=\"Five Shark Deal Brands and the total investment:\",text_auto=True, color='pitcher_ask_amount',\n", 1241 | " template=\"plotly_dark\")\n", 1242 | "figure.show()" 1243 | ] 1244 | }, 1245 | { 1246 | "cell_type": "markdown", 1247 | "id": "e5295ef5", 1248 | "metadata": { 1249 | "papermill": { 1250 | "duration": 0.032208, 1251 | "end_time": "2022-03-26T06:51:01.637007", 1252 | "exception": false, 1253 | "start_time": "2022-03-26T06:51:01.604799", 1254 | "status": "completed" 1255 | }, 1256 | "tags": [] 1257 | }, 1258 | "source": [ 1259 | "From above plot, we get to know that there are all total 4 five shark deal brands and also with the pitcher deal amount and the deal amount of the brand." 1260 | ] 1261 | }, 1262 | { 1263 | "cell_type": "markdown", 1264 | "id": "fa7957df", 1265 | "metadata": { 1266 | "papermill": { 1267 | "duration": 0.032334, 1268 | "end_time": "2022-03-26T06:51:01.701859", 1269 | "exception": false, 1270 | "start_time": "2022-03-26T06:51:01.669525", 1271 | "status": "completed" 1272 | }, 1273 | "tags": [] 1274 | }, 1275 | "source": [ 1276 | "# **Highest Pitch Ask Amount:**" 1277 | ] 1278 | }, 1279 | { 1280 | "cell_type": "code", 1281 | "execution_count": 10, 1282 | "id": "92f6138f", 1283 | "metadata": { 1284 | "execution": { 1285 | "iopub.execute_input": "2022-03-26T06:51:01.771072Z", 1286 | "iopub.status.busy": "2022-03-26T06:51:01.770340Z", 1287 | "iopub.status.idle": "2022-03-26T06:51:01.837908Z", 1288 | "shell.execute_reply": "2022-03-26T06:51:01.837201Z", 1289 | "shell.execute_reply.started": "2022-03-26T06:31:00.674948Z" 1290 | }, 1291 | "papermill": { 1292 | "duration": 0.103375, 1293 | "end_time": "2022-03-26T06:51:01.838065", 1294 | "exception": false, 1295 | "start_time": "2022-03-26T06:51:01.734690", 1296 | "status": "completed" 1297 | }, 1298 | "tags": [] 1299 | }, 1300 | "outputs": [ 1301 | { 1302 | "data": { 1303 | "text/html": [ 1304 | "
" 1329 | ] 1330 | }, 1331 | "metadata": {}, 1332 | "output_type": "display_data" 1333 | } 1334 | ], 1335 | "source": [ 1336 | "#Highest Pitch Ask Amount \n", 1337 | "high=df[df[\"pitcher_ask_amount\"]>100]\n", 1338 | "figure=px.bar(high, x='brand_name', y='pitcher_ask_amount',title=\"Highest Pitch Ask Amount:\",text_auto=True, color='deal_amount',\n", 1339 | " template=\"plotly_dark\")\n", 1340 | "figure.show()" 1341 | ] 1342 | }, 1343 | { 1344 | "cell_type": "markdown", 1345 | "id": "94c01295", 1346 | "metadata": { 1347 | "papermill": { 1348 | "duration": 0.033068, 1349 | "end_time": "2022-03-26T06:51:01.904749", 1350 | "exception": false, 1351 | "start_time": "2022-03-26T06:51:01.871681", 1352 | "status": "completed" 1353 | }, 1354 | "tags": [] 1355 | }, 1356 | "source": [ 1357 | "# **Ask Equity and Deal Equity:**" 1358 | ] 1359 | }, 1360 | { 1361 | "cell_type": "code", 1362 | "execution_count": 11, 1363 | "id": "30b49ee6", 1364 | "metadata": { 1365 | "execution": { 1366 | "iopub.execute_input": "2022-03-26T06:51:01.982522Z", 1367 | "iopub.status.busy": "2022-03-26T06:51:01.981747Z", 1368 | "iopub.status.idle": "2022-03-26T06:51:02.043825Z", 1369 | "shell.execute_reply": "2022-03-26T06:51:02.043251Z", 1370 | "shell.execute_reply.started": "2022-03-26T06:31:00.744911Z" 1371 | }, 1372 | "papermill": { 1373 | "duration": 0.104255, 1374 | "end_time": "2022-03-26T06:51:02.043969", 1375 | "exception": false, 1376 | "start_time": "2022-03-26T06:51:01.939714", 1377 | "status": "completed" 1378 | }, 1379 | "tags": [] 1380 | }, 1381 | "outputs": [ 1382 | { 1383 | "data": { 1384 | "text/html": [ 1385 | "
" 1410 | ] 1411 | }, 1412 | "metadata": {}, 1413 | "output_type": "display_data" 1414 | } 1415 | ], 1416 | "source": [ 1417 | "#Ask Equity and Deal Equity of Highest Pitch Ask AMount Brand\n", 1418 | "figure=px.bar(high, x='brand_name', y='ask_equity',title=\"Ask Equity & Deal Equity of Highest Pitch Ask Amount Brand:\",text_auto=True, color='deal_equity',\n", 1419 | " template=\"plotly_dark\")\n", 1420 | "figure.show()" 1421 | ] 1422 | }, 1423 | { 1424 | "cell_type": "markdown", 1425 | "id": "5b4556dc", 1426 | "metadata": { 1427 | "papermill": { 1428 | "duration": 0.033611, 1429 | "end_time": "2022-03-26T06:51:02.111833", 1430 | "exception": false, 1431 | "start_time": "2022-03-26T06:51:02.078222", 1432 | "status": "completed" 1433 | }, 1434 | "tags": [] 1435 | }, 1436 | "source": [ 1437 | "Most of the brand asking for the high amount had not received the investment from the shark, we clearly got to know by the blue color plot which shows that no deal happened except \"Aas Vidyalaya\"." 1438 | ] 1439 | }, 1440 | { 1441 | "cell_type": "markdown", 1442 | "id": "babc6b96", 1443 | "metadata": { 1444 | "papermill": { 1445 | "duration": 0.034217, 1446 | "end_time": "2022-03-26T06:51:02.180104", 1447 | "exception": false, 1448 | "start_time": "2022-03-26T06:51:02.145887", 1449 | "status": "completed" 1450 | }, 1451 | "tags": [] 1452 | }, 1453 | "source": [ 1454 | "# **Least Pitch Amount Asked:**" 1455 | ] 1456 | }, 1457 | { 1458 | "cell_type": "code", 1459 | "execution_count": 12, 1460 | "id": "4703b298", 1461 | "metadata": { 1462 | "execution": { 1463 | "iopub.execute_input": "2022-03-26T06:51:02.317632Z", 1464 | "iopub.status.busy": "2022-03-26T06:51:02.276449Z", 1465 | "iopub.status.idle": "2022-03-26T06:51:02.326354Z", 1466 | "shell.execute_reply": "2022-03-26T06:51:02.325786Z", 1467 | "shell.execute_reply.started": "2022-03-26T06:31:00.815830Z" 1468 | }, 1469 | "papermill": { 1470 | "duration": 0.112236, 1471 | "end_time": "2022-03-26T06:51:02.326517", 1472 | "exception": false, 1473 | "start_time": "2022-03-26T06:51:02.214281", 1474 | "status": "completed" 1475 | }, 1476 | "tags": [] 1477 | }, 1478 | "outputs": [ 1479 | { 1480 | "data": { 1481 | "text/html": [ 1482 | "
" 1507 | ] 1508 | }, 1509 | "metadata": {}, 1510 | "output_type": "display_data" 1511 | } 1512 | ], 1513 | "source": [ 1514 | "#Least Pitch Amount Asked \n", 1515 | "low=df[df[\"pitcher_ask_amount\"]<20]\n", 1516 | "figure=px.bar(low, x='brand_name', y='pitcher_ask_amount',title=\"Lowest Pitch Ask Amount:\",text_auto=True, color='deal_amount',\n", 1517 | " template=\"plotly_dark\")\n", 1518 | "figure.show()" 1519 | ] 1520 | }, 1521 | { 1522 | "cell_type": "markdown", 1523 | "id": "7dce56d7", 1524 | "metadata": { 1525 | "papermill": { 1526 | "duration": 0.034864, 1527 | "end_time": "2022-03-26T06:51:02.396359", 1528 | "exception": false, 1529 | "start_time": "2022-03-26T06:51:02.361495", 1530 | "status": "completed" 1531 | }, 1532 | "tags": [] 1533 | }, 1534 | "source": [ 1535 | "Among the lowest pitch amout made by the brands, only \"Cocofit\" and \"Watt Technovations\" got the investment." 1536 | ] 1537 | }, 1538 | { 1539 | "cell_type": "markdown", 1540 | "id": "b22922a5", 1541 | "metadata": { 1542 | "papermill": { 1543 | "duration": 0.034471, 1544 | "end_time": "2022-03-26T06:51:02.466919", 1545 | "exception": false, 1546 | "start_time": "2022-03-26T06:51:02.432448", 1547 | "status": "completed" 1548 | }, 1549 | "tags": [] 1550 | }, 1551 | "source": [ 1552 | "The lowest amount pitch which sharks had made deal was Cocofit and Watt Technovations." 1553 | ] 1554 | }, 1555 | { 1556 | "cell_type": "markdown", 1557 | "id": "79403d41", 1558 | "metadata": { 1559 | "papermill": { 1560 | "duration": 0.034891, 1561 | "end_time": "2022-03-26T06:51:02.537052", 1562 | "exception": false, 1563 | "start_time": "2022-03-26T06:51:02.502161", 1564 | "status": "completed" 1565 | }, 1566 | "tags": [] 1567 | }, 1568 | "source": [ 1569 | "# **No. of brands the sharks have invested:**" 1570 | ] 1571 | }, 1572 | { 1573 | "cell_type": "code", 1574 | "execution_count": 13, 1575 | "id": "bc849fb6", 1576 | "metadata": { 1577 | "execution": { 1578 | "iopub.execute_input": "2022-03-26T06:51:02.610759Z", 1579 | "iopub.status.busy": "2022-03-26T06:51:02.610011Z", 1580 | "iopub.status.idle": "2022-03-26T06:51:02.711892Z", 1581 | "shell.execute_reply": "2022-03-26T06:51:02.711212Z", 1582 | "shell.execute_reply.started": "2022-03-26T06:31:10.334212Z" 1583 | }, 1584 | "papermill": { 1585 | "duration": 0.139792, 1586 | "end_time": "2022-03-26T06:51:02.712038", 1587 | "exception": false, 1588 | "start_time": "2022-03-26T06:51:02.572246", 1589 | "status": "completed" 1590 | }, 1591 | "tags": [] 1592 | }, 1593 | "outputs": [ 1594 | { 1595 | "data": { 1596 | "text/html": [ 1597 | "
" 1622 | ] 1623 | }, 1624 | "metadata": {}, 1625 | "output_type": "display_data" 1626 | } 1627 | ], 1628 | "source": [ 1629 | "#No. of brands the sharks have invested:\n", 1630 | "num_deal_shark=[df.ashneer_deal.sum(), df.anupam_deal.sum(), df.aman_deal.sum(), df.namita_deal.sum(), df.vineeta_deal.sum(), df.peyush_deal.sum(), df.ghazal_deal.sum()]\n", 1631 | "all_sharks=[\"Ashneer\", \"Anupam\", \"Aman\", \"Namita\", \"Vineeta\", \"Peyush\", \"Ghazal\"]\n", 1632 | "figure=px.bar(total_shark, x=all_sharks, y=num_deal_shark,title=\"Number of deals done by individual shark:\",color=all_sharks,text_auto=True,\n", 1633 | " template=\"plotly_dark\")\n", 1634 | "figure.show()" 1635 | ] 1636 | }, 1637 | { 1638 | "cell_type": "markdown", 1639 | "id": "97ebb13a", 1640 | "metadata": { 1641 | "papermill": { 1642 | "duration": 0.035325, 1643 | "end_time": "2022-03-26T06:51:02.783497", 1644 | "exception": false, 1645 | "start_time": "2022-03-26T06:51:02.748172", 1646 | "status": "completed" 1647 | }, 1648 | "tags": [] 1649 | }, 1650 | "source": [ 1651 | "# **Above 50% Equity taken by the shark in which brand:**" 1652 | ] 1653 | }, 1654 | { 1655 | "cell_type": "code", 1656 | "execution_count": 14, 1657 | "id": "fada87e2", 1658 | "metadata": { 1659 | "execution": { 1660 | "iopub.execute_input": "2022-03-26T06:51:02.865255Z", 1661 | "iopub.status.busy": "2022-03-26T06:51:02.864564Z", 1662 | "iopub.status.idle": "2022-03-26T06:51:02.933306Z", 1663 | "shell.execute_reply": "2022-03-26T06:51:02.932705Z", 1664 | "shell.execute_reply.started": "2022-03-26T06:36:50.105759Z" 1665 | }, 1666 | "papermill": { 1667 | "duration": 0.11439, 1668 | "end_time": "2022-03-26T06:51:02.933466", 1669 | "exception": false, 1670 | "start_time": "2022-03-26T06:51:02.819076", 1671 | "status": "completed" 1672 | }, 1673 | "tags": [] 1674 | }, 1675 | "outputs": [ 1676 | { 1677 | "data": { 1678 | "text/html": [ 1679 | "
" 1704 | ] 1705 | }, 1706 | "metadata": {}, 1707 | "output_type": "display_data" 1708 | } 1709 | ], 1710 | "source": [ 1711 | "#Above 50% Equity taken by the shark in which brand?:\n", 1712 | "df_equity=df[df['equity_per_shark']>=50]\n", 1713 | "figure=px.bar(df_equity, x='brand_name', y='equity_per_shark',title=\"Above 50% Equity taken by the shark in which brand:\",text_auto=True, color='deal_amount',\n", 1714 | " template=\"plotly_dark\")\n", 1715 | "figure.show()" 1716 | ] 1717 | }, 1718 | { 1719 | "cell_type": "code", 1720 | "execution_count": 15, 1721 | "id": "e180c83b", 1722 | "metadata": { 1723 | "execution": { 1724 | "iopub.execute_input": "2022-03-26T06:51:03.021144Z", 1725 | "iopub.status.busy": "2022-03-26T06:51:03.020361Z", 1726 | "iopub.status.idle": "2022-03-26T06:51:03.023248Z", 1727 | "shell.execute_reply": "2022-03-26T06:51:03.023812Z" 1728 | }, 1729 | "papermill": { 1730 | "duration": 0.050704, 1731 | "end_time": "2022-03-26T06:51:03.023981", 1732 | "exception": false, 1733 | "start_time": "2022-03-26T06:51:02.973277", 1734 | "status": "completed" 1735 | }, 1736 | "tags": [] 1737 | }, 1738 | "outputs": [], 1739 | "source": [ 1740 | "# Will do more analysis later on!!!" 1741 | ] 1742 | }, 1743 | { 1744 | "attachments": { 1745 | "605640ab-f43b-4c55-9264-3c41411c828c.jpg": { 1746 | "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhMVFRUXFxcWFRUWFxUVFRUVFxUWFxYVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGy0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAK4BIgMBIgACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAFAQIDBAYAB//EAEYQAAEDAgQCBwQHBQYFBQAAAAEAAhEDBAUSITFBUQYTImFxgZEyobHBFCMzQlLR8BVicqLhB1NzgrKzFiQlksI1Q2S08f/EABoBAAIDAQEAAAAAAAAAAAAAAAMEAQIFAAb/xAA0EQABBAAEAgkEAgEFAQAAAAABAAIDEQQSITFBURMiMmFxgZGh8AVCscEU0eEjM1Ki8RX/2gAMAwEAAhEDEQA/APIH3jzxULnk7kp6lZT7kyABspEYGyqgLc9FuhpMVbhuh1bTPxf+SI9B8JohnWPptNSZDnNDsvKAdB47ralpOobm79NP8qTnxOhDSm4oeLliOkvSmnRaaVu0BzdJAhjY4DmsBdXj6rs1Rxc7meHhyXsuJWjK4dQrs0IkOAyx3tniF5Lj+EOtazqTtRu134m8ChMeHNoCj6q0rHDjoohVeNnlPoYnVpmWuPqqAKdOi0QTSW1Wotem9Zu+vii9Dp412lRgPkvPSuCtZ4qwmeNivQK+M2tSTlAKE3PUky0rJlKHHmqOjYeA/COMZKOK0T7dp1BCpOgH2QhXXOHFK24cgnDjgUdv1CxTmoucQPIJgvydOaGm4Ki6xc3DtG6XknYTYRd1w+NIUrOsIBdlYDOp4xyCq2tUMbmMFx2kTlHODoSq1a7J4z47hWMUTNTr3JZ85OjBXf8A0ERqOa4x1YJGgqS4TvBiYHOIVnO1ggHMYkH8xxQnq6pbOV0c4KZTztBkGRzB1HJVJjces0d3zihDPwJ+eqLG8BkO0M+R/JHsWP1TD+tljqdbMImOPIyUTscUJYKDzJaew7mOSz8Thus17NgdU3BNoWuVm09lNudk6z9n1TqjZS108lN1baQ5+4Wk6MMmo4fuFBzRCtWN8+i7OzeI15KZHZtlVrSN0euLQngqpw13JVnY9V3keiQdIa34m+ioC5dSuNwdx4KRuCv/AAlVG9Ia394PckOP1f734LrfzVaCJNwJ/wCEq3Z4W5rhIhZ93SCrxrH1CidjbjvWPquIkP8A4poK3/aVTAuKW2tIfErGDj4ohil11jwcxdAiZnjsqB3KawrCxgB7/c2hSarbYefq2fwj4Kvjn2J8R8VYwz7Jn8IUOPj6l3iPihff5/tMHseSyyRKuT6QUdrYlwkzCtWOG5niQcs6lX33MtLWgATAju0CPYXanKGR2W6nvceaI55Asn5yUxjM6kdwFsCI3VqtitFtQ03S1+gmSNTsF1lcgM0B05ArF4g/NWe586k+gOnySLG5jZWhYaNVpsbuHCkXlxBpODwZM5QRMkd0hYHpresq1WvY8OGXgZjuVnpNiNRzMoJynQ844BZVmyO2ItaC7dAfKD1QnBLwSBKNloDZKFMSApU1XVVy4JClCi1yQpEpSBQoShvcl23Cs21SAmOZmf3chuhucQpOgUlKXwNIHALa9HsFpNAc4Bz+/WO4LJ2hAadI1mOWmk8ytVgrnAB9TstPsji7lASeIJrdGwtZtlrKNFpGwhLXw+k8Q5oPkoxesZTDqmhInKdxqREA76KuzG6RJgtgRmBcGu10GXXU6H0SeRxWh0jAhWL9D6Lmk0xkfuCJie8clhals5jnA6PZwP4mkEa8ok+C9a65rmgyRIkAh2oneQCI81hOmtiQ/rBxBDiNpHeOMH3I0L3XlKXxEbazNVbDn5mTzSYg4hhIMGVHhXseZPqZVqtSDhBSzqEh8VZtlnkgIrPzDtHcIniHsFd+zmzMnRT1KYcIOyI+RpIIVGsIBBQMA8ylNM8yihs2DmkFq1F6ZqH0TkN6vvU9nh76rstNpc6C4jkBuTPDb1RBlozkr2Fv6l4czSdD3hcJgpEJvVZk0Y0O6a9gWzxrCmgipAh2/ihotqfIKOm7lxgI0tZ+12PipOJVzEmAEZQAI4KmNyiMdmNqrhl0W0wo/VM/hCff2/WMLJieIUWEH6lngpMRrFlNzm7gaJR3aKc+1DP+HG/3jvclVL9s1/xD0CRM5JOaXzxclQF/Gg0WlwjpZRpsDTTqvP3i0NIJ83SgVs6OzAEaaAAmOZGpVoHmSivLAMtHTvKvDhD2g72taFvS+mAclGqO5zT8ZWcv8VOpynMdde9PIEIRiZ1b5/FXw5AfQCtisORHeYn0Va4ruduVEzZOhNYNEWfYJNgSgKSNE0BOGyMNgqKFIU5IVZVTSuSvSLlCQrglK4LrUp4Uts2ocxY1xGznBpIHiQNE2lsV61g2D02WtN5fGWkx4Mw1hJzPdA3J1SuJl6MDxRooelJFrzOgYIjUNMknYlbfDbVzsri4yRuNDHIHgPCFB0lpseKdUNyzHCMw7xwKJ4TctdEckjI/O26TMMfRuIJT7mlcNEUzLeTpcCRxgkaoE3A3veXVQP8AK3JPl/VbejXbkJchGI3BaM4LAdYa46N/CXAb+Co1x2RjG27VPGsOeGGox8BtOC0SYhzTOm+gI81mb++qPpNL3h0ENa5sRlgjKR6H1WntukThTcypTFR5GpojSDpMOiEIxrDw2mXN07TSZ07p96JG4jQ80KVgIzDkhtGmGgAaaSRyPGEy8qEMJG6Sk7fu0/qkuxLCgH/c8132ISbypp2uKNA6DyQN1NHGnTyRJwBVBDhJN2tBcYHbgOh1VzgAeAbMSgj7VoMgnIN59qeMK0L9zieIO8CNQNlWqu30jVLtDlcupFsAwalcOyuc5nZmRBJ8kUt+gjmvJqPAY09mNXPG85dmjxQnog1rrgl1QMDWOOp9o6DL8T5LYXVao9oFJw7UQXEweZJAJTDQANrUgEjdCMWsppZIzZdgNzCTAsJoksbUoN1OV0k5hIO4RLCrKo0/WhvJoaZ0/fPPuSY5aww1GF2ZknK07gbjxQpGXoVcixYWF6WWlOmKYYI7ddvk14AHks4NytB0gqvfb0C4ktzVcoMaZnSddz5rPzqUfDXlAO+qWk3Wvwb7Fnh81NiNIupOa3cjRRYJ9izw+au16gY0uOwEoLu0fFNN7Kyv7Kr/AIB/3Bcif/EVP8LvcuTGeXklskPP3Q69o5azxtrMdxaFMwq/0pDDXDmHdgDhyIJ+R9yGsUu1N86WlD2VI+OOgVLFKLSwOAgg/wApH5gK2xmYyfZHvUeKCQQNwJ8gZ+SvESHilbEtzROHcgLmpGFPJUVNHe4kURqsWM2VZZb6DVKyjrvor1vQcWAhpKs07JzmmGEkcQoGIAFFHdg38Pwq4w1pCqXOHluo1Wjw+iHNywZTLi0IdkAJPJFE7OaXGFn4BZE76pxZyKK3XR+sCewfRDWsyuhw2Oqs2RruyV0sMkdZ20p7XDHP7lMMDfOh9dFosJaI0ggozUo6ZSN/VY831KRrqR2QNItYB2HVGSC1egdB8WDqLaZIL6YDCwkA6SGug7iI8whVdrqZh0Fp2nh4oL0gtaIp9fQqdsPDXMGhaCD2geUiPNF/kCcBjhROxC5h6Ml3stR0wblaBrBMgHhvJQXD7vLBBjh8FSayoKRNUuJMQS4uMQfzKqULuND4K7G0KXSu69rd3FwatAtpmHuc0ep1KG0KDWACu2N9XsrVBx9pzQQBtqJ3XdFK4NQBxiBp467+q0mKmq1mahlLhu065h3d6p2TSO0hwzFZS7t6M56DmZmyQGVA9jgNSCJlvu8FYxa4bVoNI2dldHhqkqnrQalSg2m9oOo0J048/NUm1AWvj2abAxvLM7Qn0n1XPHHkpJGw4hDbfj4qSrso6H3vFPqbIDu0qDsqrUGmyttOnkq1TZTDbyV5OCpGiVS0e2JaWgAGPHiqL37rS46Gw2M09W2Y220WVeQhMKk6lMcVv+idzmt2mppllrfCYn5Lz8rV0eklFmjaRy5QBJ9hw496OFzKvVaqoHDtPOVvBsxpzckZeMeD1ZDg3cyI8AsHjeJvq6ZuyeAOnmj3RZhp0u48O9QGphqDdL6AbQpAAD62r7ySAsiN1tOnY+qZ/ifFjvyWKG6JBpYSku62OA/Yt8/irWJD6p/8JVPAPsW+fxV3EPsn/wAJ+CA/tFMt7KxcLly5aSylY64EkySeJ5q0zVRtwlzGue7SIEc5IT7c6JYyNfq3wWzg7yUeastEJ1FokmN9/NMCkB0XJ6rWcfSykg8FWZxWhvaOUguGhAIdzkBU3Pp7dn0RZZ82lFYFU4haTAMUY22yFoJI3UljjPVNcAAcyzbKMDsukJsmYlLsbeoK1G4slgRiyxXq6hfpvspKmM5qwq6Ty4LPdWCHEugjhzRTALWk5jn1ZdDg1oBIHAkkjXijNhzaAq/TPRnEul5DD2WyRCwNSpJJO51K3lzhtoRPV/z1D/5JtnaW7TIo054SM3+qU5G3Jo51kpTExyTHkAs5geImn7TXFvBwBIHnsjrcVGVxLgRGit49fVcvZdpxA008EFwzB3XRIbDY+0dGgnZ0Dc6FK4nBRyP03PuhiJ7GXdod9LfXqBjTEn0A1JPcACh9eox0tbmjaTGvLs/1Xov/AA5St2/V6z7b3avcOQgQB3LJYd0auPpDR1FTqsznB+U5HMYSdH7GYAjfVMnD9EaaEs5mVoLjujb7fNSgCSBosRdEhx4ar0Sk8DRUsawdlVuYDXmN/wCqzon5TqmZoi4aLGUMTc0yiVHpE8EQ4+qF32GOpmNwq3Uu5FNjKUlTwtHVx9xYWkzPqJ4IhZsItNREuJPfJ3+Xks3YWjgQ9wGmoadzHd3I5RxYZOqLBl/dJBHrKWnjLgAyt9flJyFjyC48qVaju7xUlTYqehZl8mlr+6SM/kOI8PRV60iWkEEbg6EeIKDJG5psjT2V6oUVA9Ts2Vd4Vm3C6RDjRS4vy8DY9kNJE6RwQmturr6Ja0RoIDjx81TeO9UZS5/cq4T8yaUxrkSrVVLUacsjgR8VveittUewFzzHcB79/gsNVa0sY3L2hLi4OcCZOgjbQdyYbZxH2lSP4pHpITGVtVaKxktWBfmtN/aERlaB917Z82v4eSws6onQw4T2nnLxga+IkkFDazYeQNgdPDgpawNOhtCkD93tpa7APsR4lXbz7N/8J+CH4C76rzKu3J7DvA/BJv3KZb2VjJSpVy1FmUtHcOqOY5ryJInXjl109EJoFW8SvKhgaEcRx71UpLLw4IbqtXDPFlquMKc4qNhSzzMDiUytAFWaNk+6DaNKC4HsgmNOOvIfNGbH+zIN7V3d06Y4spDrHf8Ae6AD/lKzVvWPWNqAljWEEEbzOhjxV7EiXCH1HvdJkhxAI4ECAAd9IPinsOYch6S9PdYuNwuJkl/0HAAjWxxWmOGYJbiHdbWI4urESf4aWUKlXx/C26U7Cm7vcC//AFkrNDD6cAtL44+y4g8ogesruqpN1jMNg4mQDycwBpb5yjfyIWjqsHnr/SR/+ViXHryO8jQ9lpLfpLTkdTYW7AdMxo0WjyJGqHYrUqueXVW5S8ggCA3LsA0N0AEILeW7XjrGsGYaOYHO0I4tkkZe7SFYsrk1GiQQW6QfDT4pefEmRtaV3AD56rSwH0+PDOJFlx4kk+l6BWSUrSuKQBJrXViiA8hryYnQjcIzZCiBJplrmkgljnNkjYmDrIg+az4U4vIdsNQJ8W6TPeCPRO4fEBo63wJWaKzotFWuaTty4n97VY25xavb3FR1vXfSkg5Wk5T2Ruwy13mEQddkrMYsZrPPh/pCN/IbIaSGOiIivv8A7R9nTAu+3oUqv7zC6g7+WWfyqalj9rw6+n3Oays3wzNLD/KscafekNLkUF0DDuFntnkbs4rV3T7ettcUR/GK1M++nHvVSnY0WmXV6Dh3VR8N/cs6WO5ppD+5U/jtRP5T+70V3Gr4F7eqPZZOoBAJO5E6xoieGU6VcAl3VnjABE+EiEA7X4VNbXJpuDo0+8IiR5cVfow0aBEgxJD+sdD7I++xc15DJc3g7aR8kRo4m72KjW1G8ntDo8J2Ulpds6sQBB2Vd7QTMaobnBmrD5LYY3N2hav1bK2qDSn1Z5sc7T/K4kIJXsXU3QdRsHc/HkUQpOhTPfmGU6/rb8uXrIZMsjdaBUOww+1RXTR1bNTOQbckDqmEVu7ggNbp7MT3A8e9C68SkmtIOqQdoVDPeuYwyBO5j1XJ1N3aEbyIRQqVasOc0u02Gg8FJSdrCqublIqDbZw+KnrtiHN2RVrtFClLW0a7wPwQGt7Z8UdqiWzzj0JCz86qW7pLG/atVgB+r80Sr0+y7wPwQzAPYPiizvZPgfglX7qrOyFiUi7MuWhaz6Vu4D3OyZTm5BJbtI0O40M+KN4Nch1V9NmUOM5Xnd0cihVeg5pLnbOc4A88sA/FJMdrlOmy0IYyx4J42nsKbWqO0DYnlvHiuYe8ea7rmt46oqfCVphzWbk9pxPuH67lac7ihdS5JPZEE7nip6RiFKlppW2GD3KG4eAc249l45hI+qYkR81C5068CIP681ylxUk5HBw1aYB9NCrdJomR4eiGW1QEZDuDp5FFmLlDTaklIulKuV1yZV28NfQynJlx7DvA/BcpKlhA8b+0A/dHvJ/JHG66oDi7pqnuAHun5o0HbSH1E1B4kKmlXJU4vPpsLiEq5SpTSCmEOUhXKKXBEsHvy5hpkw9o7JPEfMhE7O4ztmIOxG2xifNZOrIIc3cLS4Rd06rfwuHtAcPLklZWUtfBYhzjlcdh6/5Hr40iKQnVWnUG5Za4Ty5+Cq1RohPYWGitVr7UN60kCOGv693oh1RF+tykHskjg4SD4hV32zHtc/MKcbtgkEn8PEe9CLC42EliYSXWEIJV3DaQh7z93Rg5uPE9wHvIVN7CDGn64q1b0nhhe0/e0afvCO0R4dkaLmDVLRDrgFdSEEtI0Oo8eKdRGQ5D7J2+YS03h/cRuDuFNlkaqVqgKCozK144AEjwIKAjdaC79h3gs9xV2brPx56wWq6P+wfFFo7J8Cg/R49g+SMzolH7lRH2QsQuSVNz4lcmrSWVE+jVGg6qXVnOAbs1ky4+S9OsMOt6tHI+gBT3Af7XiCNQe9YfBLClaF1as9pj2BxnjpzWswfFHVWGoRAd7DTvHAled+pOdI7MwmhVG617tvM8E1G4jQ7oPi/QY5XVLZ/ZGvVvMHwa/j4H1WHrUi0lrgQRoQdwe8L1zEbiW5Wu23naYWQxvELGu36x2Wq0RmGhJHCeIRcDjJiKeC7vA1HK+fimWYmtHbLHirCY64KZcVg0nciYBEFQiu07H5LdDTSucRGTQdqrdK6g6qZ1cDYjVDXKIlSGqhmLUatWiS4c4HzRNiD4Y7sDxRhig7piM2AU9rk9QlqcDChFUkKOt7J8Cnym1dly4jRdauljT+6Pgs5dPmo8/vEehj5I/hrvqx3T8Z+azFJ8yeZJ9TKPh9ysv6m7qMHipJSpEoTaxkkpZSpIXLkkrpXELoXLk1wVWnVdTeHNMEfDke5WSqdxuqv2VmmjYW3wfE21GSAJ4ggGD+St15358uBWAsrp1N2ZvmOY5La4dfCoyW8dxxCVeKFHbgtzCYjpdD2vykeFQB7RzbA/oBFHhB7l0P8AT4ICePNEW15GVzA4D2WumGT94wQZiYbPFOv6oLKYaTDR2QfunMQQD3wD3+MFUmkx+v0SrBbpG+kRzV85qlTICbG6gaZOvZdwPA9xHH9eVmm+e4jccv6KvHZEkxtJ3aeB+ASgkkHZw7J5E8j3HcKqkEhS3VOabzyaD/O0fNZt262TWTa3B/dZ5dtp+XuWNduFEZtx+cFnY02/wWm6PeyfJFwUKwJsMHeiqA5czZYiv7TvE/FKn1x2neJ+K5GtLLXYcz6UabxkyHR4PDjC0tK4aZDfumJ4TyCyGF1MmcSOzU7WXg2BqPBFrmaAc1pzNzz39oCDPKZWHPFmdXoPniAmgNLUxxKkRVa55Bbt+9pwWBu7Mgy4QCSd9YlHqhaH7wTtylC7mcxzeadwjOiJy3rSWeeChxXD3Gm+o0DKHN24SGD5oLSs3OErdYeQ6wugB7IBjnEOn+ULI2dSGwtXCutuvA17BBxA1B5hUXsc1Rl55q1c1pKplHICDmdzRrBTLfP5BGwYWfwA9o+XzWihLPFOK3cE64gVIClDUxrU5qqm06E15XEqJlwxxgOaSOAIJ9FIUEgKtRqZadXuBd6tP5LO0KoiEcxR4Yx+sZhHjJHylBKdMEJiAaFYv1E9ZreQ/anXBQdWNgU4kjiPNMrMUoShNY+f6JylclhNKcEkKFKie5U6yvlUa7wdlV2ykKMBEsMuDRe133XQHDx4qjRHaRDLm7JjkIQHHgiscWuBBpampUGh4FB7l/bPl8E2zuSGhjuO3jw9fmrzW0t3HXjulXdVehbK14BsDxUNqCTJ4fFXGpWmn+MeoCdLPxt9W/mq50dobWhHqmuaCCDsd1AykeO4gHvHB3iFcDmf3jfUJHXNNus5u4fmozaKHFg3cPVXqGttciP/AG2n+Y/ksO/dbXCHmpSuzoMtIGB/nKxVTfzUQ9s+X7WRiXZjmC1WDD6tqIhD8F+zH64q+qEbojdgsfcjtu/iPxXKW5b23fxH4rlGZCWntcJbR01Lj7R7jp7ioa1R0PB2mB5QR81jqmLVidajlFUv6h3e71XDBSE25w91BnbVALVU6LqhAI7teHerN5hhJhrSQ0Rm01WKZdPn23epVj6bV/vH/wDcVZ2FkB0I91VsjCNQtfh9MijdUy2M1Mx4hrx8wsS13ZnvK0vQq4Lqz6b3E56ZAkzqDJGvdPogNxQy52fea4z4f/spmAFuZp5j8V+QqTi2tI21CP8A9n9iysb0PpNqFtnVcwOYHkP0ylgIMO5Rqoeg+BVDfUBXtnmnmOcVKTskZHRmzCN43Vv+zOqWm+c0lrhZVi0gwQ4QQQeBld0Cx+7qYhbsq3Vd7C85murVC09h24JgrJxLpxJiujqsouybHUOraFc9zuuYG0y+fdz4qtSwt5rYhUpCmKdu+o5zSS2GdY8AUwGkaZdtFZFvUNKpXAZ1VOoyk6XEPzPDSCG5YjtDiiXR5nW1cZt2EGrV6zqmkgZy2rUkAnSe0PVOdavpYbdMqQ1/0qgSzM1zm9mmBmykgHSYmVdmKcHCMkXcQrjlcG2e/UnXgmYnlraB4nlzOn4Valhtcmi1zran19KnVpGpWLQ4VPZZGSS/aYBAka6qWjgVw6s6gTb06wJApVK0PqQJzUg1hlpGoJjjpoVF0kE/s/usLT/Ui18R+3pnT6RR/wDqtSzMVO6EPzCyx7thoWEexujy4ao4kfdX81/pZ8OkGQQQSCDu1zSQ4HvBBCLXloXWeHOD6NIBt0HPrP6tkuqtyiQCSeydAOB2Qy7P1tf/AB6/+/UV7E8LfcWeHMpDO8Nuj1YcxryDWbqA4gECNeOvinpnhwhfeWzd6ULjk50PXRdM51Ndxr9tUmB2dSjitrRrBuYOLgWnOx9N1KrD2OgS3Q8Bsgtx0arVXXNSlVt3Fjq1R1AVJrhjajpPVgR5TOoG+i01J7W4phdvma59vbspVS0ggVOpfLJ7o/mQzoMR+0bv/CvP91qRbipw12JBpwjY46aEdI4cdQHb79wKUkqRwa7XWvYIFb065w6o8dT9H+ktDpH1/WZGRldGjII48+af0Jj9oWv+K3/S5W7E/wDQ6g/+bT/2qSqdCf8A1C1/xW/6XLSD82GxYoaOlH/Xj380rVPj8G/lX8Q6MVqta6dSqUHPbUr1Dbip/wAxkFVxnIBEwRpM6jjohFlgtWrQ+kNdSbSFUUS57yzKSwPzOkQGwQN5nQArX9HsMqUcRq39Qtba033TzVzsLXBxqNDAAZzS7YjdvggVuf8AolXh/wA+0xy+pZolosZM0NjY8HWJt0OrmDrbyJbQPPUgojomkkkf8j41VHztUMawKrbCk5zqVRlYE0qlFxexxBALQSAZ1HD4FXGdEq7nGm2rbOrhmc27apNaInKOzkLo4Bys4gxjsMwtr3ZWGvXa92nYYa7g53kCT5LS4JhAtsUpinb0adtLhSrl5fUqzQdq15eZJMyA0AD39P8AUpo4bz9cdIdm07I4gbnjWrWa8QQFDIWF22nV56WL+E6Ly9zpErTdNqZNrhQaJcbeAAJJJ6sAADc6rOGk6XCCSHOBgTrmK22J1m0xgtVwltKlTqPA1Ia19IkgcSN47k99RcWzwlosgvoc+oaHnsqQNJY4eH5QM9BrgE0+ttjcBuc2oqzcDTNly5cpdGsBy6hg3W0DXo9WKdOo2kar6mQy5rXFzwWwGguA3ngAdjqL61uKd2+9t7W0e3M6tTuzVqdWQ6Zc8uuQ0GCR7McghlqA7CrmT7d9ScYGUjO2m4wDMRPfss6DHzvYDmBtzB9tjMTYoEkChpmpw1tFdh2k1XPnry+DRBcVwepaijVe+lVpVPYq0HmowmnAcCS0EH8jyKKXHRm4a6mxzrZtapky27q0VwHmAXNyxpuQCToYlWrxzW4bYnVwZdV35dCXBlSo6I5kCPNEMWwmo/FKV4wsfbVbi1qMrB7MsA0m5IJnNLYAA4jvismLlDRmcNOk1NdYsdQG9Aka99WOKNWlVy8rH621568FlqODV33L7VrWGpTL+sdmikxrIzvc8gQ0SOHHZLiGD1KVMVhUoVqWbIalCoajWP3DXy1pbPAxHqFpLC6Z9PxSg7JmuOtp0utLm03vDj9U5zSCM2bgRsUHxKjd21tUpVLS3tqdZ9MOh9R9R7mOztLA+u/QZYJA2d5jmYqV0rG2BYZoaF5gC4i3B2moAaDqKO6oRQPn/ju170GpFW6FIu0CpsKIYcRPHyT7lwCPYDQineab2zjoeQfqsHW9rz+a9Cs3tDa+WYda1InwP5rz2r7Xmuw5uQ+A/Ll0nZWmwV/Zj9bonKDYE7dF5XEUSjsOgWcuW9t38R+K5TVmdp3ifiuVaQ6WVlNJStC4jVaaQSyl6w802E+myVxUgE7KS2u303tqMMOaZBRu9xG3uDndmoVY1Ibnpu8hqECfTgJBT0Heq0DqFcFzbHBWLig3cOY7va6P5XgFVTS/W/wTzSUZaiWeKCaV6xthGYgGToCEUtWsH3WzwMDTwKH0RFNvr6lKKh4JdxJK1oA1rBpwRunb04IDWgHeANfHmlqW9NrTLWhu5ECJ8OaDNvHBWRe5tHCQqapnOCKAFq4y4ptYTGQNMEQBryAHNC8Ootr1Huc0AACANNzuSNzoVWxi6zPLQIa07c3cXHmVe6MaCoe9v/ki1laSEmJTLK2N1UO7cgfhXf2VS2ye8/mmvwikeY9D8QrdxWyxpJOg4DzXBpEZok7ADQeZ1Kp0juaedh4T9o9EPOCtnsuE94+YXOwVx3cz3/kiDTG2i5pjmSeJ1VumfzQjgYD9vuULGBunTJ46/krDej+sue0eAk+uiIGqUhqlWMzlUYCDkfUqp+xqTTMknyHw196c3D6Q2pt8wD8VOXJuZDMjjxRm4aJuzQnsAaIAAHIaAKJluwata0c4AHwT00qtoxaKUf0SnM5GzvMCZ5p/0ZpdOVs/igT6pXnRPzRPcuzFQI28k36K3Uta1rtYdlEzzPNWsNFvReys20e6syC0Org0esG1U/V9ZM9rLMSkppzOCHLGJBlcTXc4i/GiLVZIGvru+fOKDYlSc6q99QhzqjjUcYgEvJJgcBMiO5VqdBo2aAjeLU5aHctPIkfP5qPAsEqXTi2mWNjcuJHoADPuRYYXyHo4x5baLLxTWQEl2wVCmzVX7R+TUDX3FHbvo9RtvtqlV5G4ptptHq/MT7kJr4pQAAp0XdxfUcT6MLR8UaTAGOhI8C9tz+q91nQ/UoZieht3gK/JB9kTwutnNVp3FvV0HA6aFYOr80aqYhUa5zmw0kFpymJB3GoOiFXBBAgQeO0d0ad5QG4cxuu+X7/tN9KHhFcBfqR3I3Kz+A+35FHkJ41TMZ6qGVm9o+J+KVPqDU+JXISmgv/Z" 1747 | } 1748 | }, 1749 | "cell_type": "markdown", 1750 | "id": "aa0e2583", 1751 | "metadata": { 1752 | "papermill": { 1753 | "duration": 0.036344, 1754 | "end_time": "2022-03-26T06:51:03.096973", 1755 | "exception": false, 1756 | "start_time": "2022-03-26T06:51:03.060629", 1757 | "status": "completed" 1758 | }, 1759 | "tags": [] 1760 | }, 1761 | "source": [ 1762 | "![2.jpg](attachment:605640ab-f43b-4c55-9264-3c41411c828c.jpg)" 1763 | ] 1764 | } 1765 | ], 1766 | "metadata": { 1767 | "kernelspec": { 1768 | "display_name": "Python 3", 1769 | "language": "python", 1770 | "name": "python3" 1771 | }, 1772 | "language_info": { 1773 | "codemirror_mode": { 1774 | "name": "ipython", 1775 | "version": 3 1776 | }, 1777 | "file_extension": ".py", 1778 | "mimetype": "text/x-python", 1779 | "name": "python", 1780 | "nbconvert_exporter": "python", 1781 | "pygments_lexer": "ipython3", 1782 | "version": "3.7.12" 1783 | }, 1784 | "papermill": { 1785 | "default_parameters": {}, 1786 | "duration": 16.657092, 1787 | "end_time": "2022-03-26T06:51:03.944176", 1788 | "environment_variables": {}, 1789 | "exception": null, 1790 | "input_path": "__notebook__.ipynb", 1791 | "output_path": "__notebook__.ipynb", 1792 | "parameters": {}, 1793 | "start_time": "2022-03-26T06:50:47.287084", 1794 | "version": "2.3.3" 1795 | } 1796 | }, 1797 | "nbformat": 4, 1798 | "nbformat_minor": 5 1799 | } 1800 | --------------------------------------------------------------------------------