├── README.md ├── hello.ipynb ├── .gitignore ├── prediction.ipynb └── Main.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # Weather-Analysis-Jupyter 2 | Weather-Analysis-Jupyter 3 | 4 | Run ```jupyter notebook``` 5 | -------------------------------------------------------------------------------- /hello.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "metadata": {}, 7 | "outputs": [ 8 | { 9 | "name": "stdout", 10 | "output_type": "stream", 11 | "text": [ 12 | "hello\n" 13 | ] 14 | } 15 | ], 16 | "source": [ 17 | "print(\"hello\")" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 2, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "a =10" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "execution_count": 3, 32 | "metadata": {}, 33 | "outputs": [], 34 | "source": [ 35 | "b=20\n" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "execution_count": 4, 41 | "metadata": {}, 42 | "outputs": [], 43 | "source": [ 44 | "c =a+b" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": 5, 50 | "metadata": {}, 51 | "outputs": [ 52 | { 53 | "name": "stdout", 54 | "output_type": "stream", 55 | "text": [ 56 | "30\n" 57 | ] 58 | } 59 | ], 60 | "source": [ 61 | "print(c)" 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": null, 67 | "metadata": {}, 68 | "outputs": [], 69 | "source": [] 70 | } 71 | ], 72 | "metadata": { 73 | "kernelspec": { 74 | "display_name": "Python 3.10.1 64-bit", 75 | "language": "python", 76 | "name": "python3" 77 | }, 78 | "language_info": { 79 | "codemirror_mode": { 80 | "name": "ipython", 81 | "version": 3 82 | }, 83 | "file_extension": ".py", 84 | "mimetype": "text/x-python", 85 | "name": "python", 86 | "nbconvert_exporter": "python", 87 | "pygments_lexer": "ipython3", 88 | "version": "3.10.1" 89 | }, 90 | "vscode": { 91 | "interpreter": { 92 | "hash": "369f2c481f4da34e4445cda3fffd2e751bd1c4d706f27375911949ba6bb62e1c" 93 | } 94 | } 95 | }, 96 | "nbformat": 4, 97 | "nbformat_minor": 4 98 | } 99 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /prediction.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import pandas as pd" 10 | ] 11 | }, 12 | { 13 | "cell_type": "code", 14 | "execution_count": 2, 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "df = pd.read_csv(\"data/data2001To2020.csv\",skiprows = 13)" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 3, 24 | "metadata": {}, 25 | "outputs": [ 26 | { 27 | "data": { 28 | "text/plain": [ 29 | "(175310, 9)" 30 | ] 31 | }, 32 | "execution_count": 3, 33 | "metadata": {}, 34 | "output_type": "execute_result" 35 | } 36 | ], 37 | "source": [ 38 | "df.shape" 39 | ] 40 | }, 41 | { 42 | "cell_type": "code", 43 | "execution_count": 4, 44 | "metadata": {}, 45 | "outputs": [ 46 | { 47 | "data": { 48 | "text/html": [ 49 | "
\n", 50 | "\n", 63 | "\n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
0200111511.638.2495.751.43152.31
1200111611.238.3099.621.88165.79
2200111712.868.7393.942.62175.21
3200111813.878.9790.442.34179.04
4200111915.678.8579.692.11176.38
..............................
175305202012311912.763.7240.442.99285.92
175306202012312012.053.6041.123.01292.30
175307202012312111.433.4841.443.03298.68
175308202012312210.843.3641.443.04305.57
175309202012312310.313.2341.253.01311.95
\n", 213 | "

175310 rows × 9 columns

\n", 214 | "
" 215 | ], 216 | "text/plain": [ 217 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 218 | "0 2001 1 1 5 11.63 8.24 95.75 1.43 152.31\n", 219 | "1 2001 1 1 6 11.23 8.30 99.62 1.88 165.79\n", 220 | "2 2001 1 1 7 12.86 8.73 93.94 2.62 175.21\n", 221 | "3 2001 1 1 8 13.87 8.97 90.44 2.34 179.04\n", 222 | "4 2001 1 1 9 15.67 8.85 79.69 2.11 176.38\n", 223 | "... ... .. .. .. ... ... ... ... ...\n", 224 | "175305 2020 12 31 19 12.76 3.72 40.44 2.99 285.92\n", 225 | "175306 2020 12 31 20 12.05 3.60 41.12 3.01 292.30\n", 226 | "175307 2020 12 31 21 11.43 3.48 41.44 3.03 298.68\n", 227 | "175308 2020 12 31 22 10.84 3.36 41.44 3.04 305.57\n", 228 | "175309 2020 12 31 23 10.31 3.23 41.25 3.01 311.95\n", 229 | "\n", 230 | "[175310 rows x 9 columns]" 231 | ] 232 | }, 233 | "execution_count": 4, 234 | "metadata": {}, 235 | "output_type": "execute_result" 236 | } 237 | ], 238 | "source": [ 239 | "df.dropna()" 240 | ] 241 | }, 242 | { 243 | "cell_type": "code", 244 | "execution_count": 5, 245 | "metadata": {}, 246 | "outputs": [ 247 | { 248 | "data": { 249 | "text/html": [ 250 | "
\n", 251 | "\n", 264 | "\n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
count175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000
mean2010.5012836.52324515.73047711.50054226.27311910.71662949.6998912.907421207.538628
std5.7662983.4485598.7996656.9220248.6667336.48727526.5194161.581211103.475862
min2001.0000001.0000001.0000000.0000000.0100000.6700001.5600000.0100000.000000
25%2006.0000004.0000008.0000006.00000020.1000005.19000026.3800001.830000107.290000
50%2011.0000007.00000016.00000012.00000027.0100008.42000047.3800002.660000246.180000
75%2016.00000010.00000023.00000018.00000032.00000017.33000071.6900003.600000296.750000
max2020.00000012.00000031.00000023.00000049.47000025.450000100.00000014.330000359.920000
\n", 378 | "
" 379 | ], 380 | "text/plain": [ 381 | " YEAR MO DY HR \\\n", 382 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n", 383 | "mean 2010.501283 6.523245 15.730477 11.500542 \n", 384 | "std 5.766298 3.448559 8.799665 6.922024 \n", 385 | "min 2001.000000 1.000000 1.000000 0.000000 \n", 386 | "25% 2006.000000 4.000000 8.000000 6.000000 \n", 387 | "50% 2011.000000 7.000000 16.000000 12.000000 \n", 388 | "75% 2016.000000 10.000000 23.000000 18.000000 \n", 389 | "max 2020.000000 12.000000 31.000000 23.000000 \n", 390 | "\n", 391 | " T2M QV2M RH2M WS10M \\\n", 392 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n", 393 | "mean 26.273119 10.716629 49.699891 2.907421 \n", 394 | "std 8.666733 6.487275 26.519416 1.581211 \n", 395 | "min 0.010000 0.670000 1.560000 0.010000 \n", 396 | "25% 20.100000 5.190000 26.380000 1.830000 \n", 397 | "50% 27.010000 8.420000 47.380000 2.660000 \n", 398 | "75% 32.000000 17.330000 71.690000 3.600000 \n", 399 | "max 49.470000 25.450000 100.000000 14.330000 \n", 400 | "\n", 401 | " WD10M \n", 402 | "count 175310.000000 \n", 403 | "mean 207.538628 \n", 404 | "std 103.475862 \n", 405 | "min 0.000000 \n", 406 | "25% 107.290000 \n", 407 | "50% 246.180000 \n", 408 | "75% 296.750000 \n", 409 | "max 359.920000 " 410 | ] 411 | }, 412 | "execution_count": 5, 413 | "metadata": {}, 414 | "output_type": "execute_result" 415 | } 416 | ], 417 | "source": [ 418 | "df.describe()" 419 | ] 420 | }, 421 | { 422 | "cell_type": "code", 423 | "execution_count": 8, 424 | "metadata": {}, 425 | "outputs": [ 426 | { 427 | "ename": "NameError", 428 | "evalue": "name 'x' is not defined", 429 | "output_type": "error", 430 | "traceback": [ 431 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", 432 | "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", 433 | "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel_selection\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mx_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtest_size\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0.20\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", 434 | "\u001b[1;31mNameError\u001b[0m: name 'x' is not defined" 435 | ] 436 | } 437 | ], 438 | "source": [ 439 | "from sklearn.model_selection import train_test_split\n", 440 | "x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.20)" 441 | ] 442 | }, 443 | { 444 | "cell_type": "code", 445 | "execution_count": null, 446 | "metadata": {}, 447 | "outputs": [], 448 | "source": [ 449 | "print(X_train.shape, X_test.shape, y_train.shap, y_test.shape)" 450 | ] 451 | }, 452 | { 453 | "cell_type": "code", 454 | "execution_count": null, 455 | "metadata": {}, 456 | "outputs": [], 457 | "source": [] 458 | }, 459 | { 460 | "cell_type": "code", 461 | "execution_count": null, 462 | "metadata": {}, 463 | "outputs": [], 464 | "source": [] 465 | }, 466 | { 467 | "cell_type": "code", 468 | "execution_count": null, 469 | "metadata": {}, 470 | "outputs": [], 471 | "source": [] 472 | }, 473 | { 474 | "cell_type": "code", 475 | "execution_count": null, 476 | "metadata": {}, 477 | "outputs": [], 478 | "source": [] 479 | }, 480 | { 481 | "cell_type": "code", 482 | "execution_count": null, 483 | "metadata": {}, 484 | "outputs": [], 485 | "source": [] 486 | } 487 | ], 488 | "metadata": { 489 | "kernelspec": { 490 | "display_name": "Python 3", 491 | "language": "python", 492 | "name": "python3" 493 | }, 494 | "language_info": { 495 | "codemirror_mode": { 496 | "name": "ipython", 497 | "version": 3 498 | }, 499 | "file_extension": ".py", 500 | "mimetype": "text/x-python", 501 | "name": "python", 502 | "nbconvert_exporter": "python", 503 | "pygments_lexer": "ipython3", 504 | "version": "3.8.3" 505 | } 506 | }, 507 | "nbformat": 4, 508 | "nbformat_minor": 4 509 | } 510 | -------------------------------------------------------------------------------- /Main.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 29, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import pandas as pd" 10 | ] 11 | }, 12 | { 13 | "cell_type": "code", 14 | "execution_count": 30, 15 | "metadata": { 16 | "scrolled": true 17 | }, 18 | "outputs": [], 19 | "source": [ 20 | "df = pd.read_csv(\"data/data2001To2020.csv\",skiprows = 13)" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 80, 26 | "metadata": {}, 27 | "outputs": [ 28 | { 29 | "data": { 30 | "text/plain": [ 31 | "(175310, 9)" 32 | ] 33 | }, 34 | "execution_count": 80, 35 | "metadata": {}, 36 | "output_type": "execute_result" 37 | } 38 | ], 39 | "source": [ 40 | "df.shape" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": 31, 46 | "metadata": {}, 47 | "outputs": [ 48 | { 49 | "data": { 50 | "text/html": [ 51 | "
\n", 52 | "\n", 65 | "\n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
0200111511.638.2495.751.43152.31
1200111611.238.3099.621.88165.79
2200111712.868.7393.942.62175.21
3200111813.878.9790.442.34179.04
4200111915.678.8579.692.11176.38
\n", 143 | "
" 144 | ], 145 | "text/plain": [ 146 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 147 | "0 2001 1 1 5 11.63 8.24 95.75 1.43 152.31\n", 148 | "1 2001 1 1 6 11.23 8.30 99.62 1.88 165.79\n", 149 | "2 2001 1 1 7 12.86 8.73 93.94 2.62 175.21\n", 150 | "3 2001 1 1 8 13.87 8.97 90.44 2.34 179.04\n", 151 | "4 2001 1 1 9 15.67 8.85 79.69 2.11 176.38" 152 | ] 153 | }, 154 | "execution_count": 31, 155 | "metadata": {}, 156 | "output_type": "execute_result" 157 | } 158 | ], 159 | "source": [ 160 | "df.head()" 161 | ] 162 | }, 163 | { 164 | "cell_type": "code", 165 | "execution_count": 32, 166 | "metadata": {}, 167 | "outputs": [ 168 | { 169 | "data": { 170 | "text/html": [ 171 | "
\n", 172 | "\n", 185 | "\n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
175305202012311912.763.7240.442.99285.92
175306202012312012.053.6041.123.01292.30
175307202012312111.433.4841.443.03298.68
175308202012312210.843.3641.443.04305.57
175309202012312310.313.2341.253.01311.95
\n", 263 | "
" 264 | ], 265 | "text/plain": [ 266 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 267 | "175305 2020 12 31 19 12.76 3.72 40.44 2.99 285.92\n", 268 | "175306 2020 12 31 20 12.05 3.60 41.12 3.01 292.30\n", 269 | "175307 2020 12 31 21 11.43 3.48 41.44 3.03 298.68\n", 270 | "175308 2020 12 31 22 10.84 3.36 41.44 3.04 305.57\n", 271 | "175309 2020 12 31 23 10.31 3.23 41.25 3.01 311.95" 272 | ] 273 | }, 274 | "execution_count": 32, 275 | "metadata": {}, 276 | "output_type": "execute_result" 277 | } 278 | ], 279 | "source": [ 280 | "df.tail()" 281 | ] 282 | }, 283 | { 284 | "cell_type": "code", 285 | "execution_count": 39, 286 | "metadata": {}, 287 | "outputs": [ 288 | { 289 | "data": { 290 | "text/html": [ 291 | "
\n", 292 | "\n", 305 | "\n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
count175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000175310.000000
mean2010.5012836.52324515.73047711.50054226.27311910.71662949.6998912.907421207.538628
std5.7662983.4485598.7996656.9220248.6667336.48727526.5194161.581211103.475862
min2001.0000001.0000001.0000000.0000000.0100000.6700001.5600000.0100000.000000
25%2006.0000004.0000008.0000006.00000020.1000005.19000026.3800001.830000107.290000
50%2011.0000007.00000016.00000012.00000027.0100008.42000047.3800002.660000246.180000
75%2016.00000010.00000023.00000018.00000032.00000017.33000071.6900003.600000296.750000
max2020.00000012.00000031.00000023.00000049.47000025.450000100.00000014.330000359.920000
\n", 419 | "
" 420 | ], 421 | "text/plain": [ 422 | " YEAR MO DY HR \\\n", 423 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n", 424 | "mean 2010.501283 6.523245 15.730477 11.500542 \n", 425 | "std 5.766298 3.448559 8.799665 6.922024 \n", 426 | "min 2001.000000 1.000000 1.000000 0.000000 \n", 427 | "25% 2006.000000 4.000000 8.000000 6.000000 \n", 428 | "50% 2011.000000 7.000000 16.000000 12.000000 \n", 429 | "75% 2016.000000 10.000000 23.000000 18.000000 \n", 430 | "max 2020.000000 12.000000 31.000000 23.000000 \n", 431 | "\n", 432 | " T2M QV2M RH2M WS10M \\\n", 433 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n", 434 | "mean 26.273119 10.716629 49.699891 2.907421 \n", 435 | "std 8.666733 6.487275 26.519416 1.581211 \n", 436 | "min 0.010000 0.670000 1.560000 0.010000 \n", 437 | "25% 20.100000 5.190000 26.380000 1.830000 \n", 438 | "50% 27.010000 8.420000 47.380000 2.660000 \n", 439 | "75% 32.000000 17.330000 71.690000 3.600000 \n", 440 | "max 49.470000 25.450000 100.000000 14.330000 \n", 441 | "\n", 442 | " WD10M \n", 443 | "count 175310.000000 \n", 444 | "mean 207.538628 \n", 445 | "std 103.475862 \n", 446 | "min 0.000000 \n", 447 | "25% 107.290000 \n", 448 | "50% 246.180000 \n", 449 | "75% 296.750000 \n", 450 | "max 359.920000 " 451 | ] 452 | }, 453 | "execution_count": 39, 454 | "metadata": {}, 455 | "output_type": "execute_result" 456 | } 457 | ], 458 | "source": [ 459 | "df.describe()\n" 460 | ] 461 | }, 462 | { 463 | "cell_type": "code", 464 | "execution_count": 81, 465 | "metadata": {}, 466 | "outputs": [ 467 | { 468 | "name": "stdout", 469 | "output_type": "stream", 470 | "text": [ 471 | "\n", 472 | "RangeIndex: 175310 entries, 0 to 175309\n", 473 | "Data columns (total 9 columns):\n", 474 | " # Column Non-Null Count Dtype \n", 475 | "--- ------ -------------- ----- \n", 476 | " 0 YEAR 175310 non-null int64 \n", 477 | " 1 MO 175310 non-null int64 \n", 478 | " 2 DY 175310 non-null int64 \n", 479 | " 3 HR 175310 non-null int64 \n", 480 | " 4 T2M 175310 non-null float64\n", 481 | " 5 QV2M 175310 non-null float64\n", 482 | " 6 RH2M 175310 non-null float64\n", 483 | " 7 WS10M 175310 non-null float64\n", 484 | " 8 WD10M 175310 non-null float64\n", 485 | "dtypes: float64(5), int64(4)\n", 486 | "memory usage: 12.0 MB\n" 487 | ] 488 | } 489 | ], 490 | "source": [ 491 | "df.info()" 492 | ] 493 | }, 494 | { 495 | "cell_type": "code", 496 | "execution_count": 82, 497 | "metadata": {}, 498 | "outputs": [ 499 | { 500 | "data": { 501 | "text/plain": [ 502 | "YEAR 0\n", 503 | "MO 0\n", 504 | "DY 0\n", 505 | "HR 0\n", 506 | "T2M 0\n", 507 | "QV2M 0\n", 508 | "RH2M 0\n", 509 | "WS10M 0\n", 510 | "WD10M 0\n", 511 | "dtype: int64" 512 | ] 513 | }, 514 | "execution_count": 82, 515 | "metadata": {}, 516 | "output_type": "execute_result" 517 | } 518 | ], 519 | "source": [ 520 | "df.isnull().sum()" 521 | ] 522 | }, 523 | { 524 | "cell_type": "code", 525 | "execution_count": 40, 526 | "metadata": {}, 527 | "outputs": [ 528 | { 529 | "data": { 530 | "text/html": [ 531 | "
\n", 532 | "\n", 545 | "\n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
1177232014671349.476.298.197.07326.31
1177472014681349.265.927.756.49316.71
1177222014671249.236.238.256.72330.63
1177242014671449.186.238.257.22322.65
1177462014681249.116.108.125.95319.37
..............................
1665052019123131.054.39100.002.1597.31
1664832019123050.944.76100.002.68174.81
1665062019123140.404.39100.002.22102.81
1665082019123160.364.33100.002.01118.56
1665072019123150.014.39100.002.22110.41
\n", 695 | "

175310 rows × 9 columns

\n", 696 | "
" 697 | ], 698 | "text/plain": [ 699 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 700 | "117723 2014 6 7 13 49.47 6.29 8.19 7.07 326.31\n", 701 | "117747 2014 6 8 13 49.26 5.92 7.75 6.49 316.71\n", 702 | "117722 2014 6 7 12 49.23 6.23 8.25 6.72 330.63\n", 703 | "117724 2014 6 7 14 49.18 6.23 8.25 7.22 322.65\n", 704 | "117746 2014 6 8 12 49.11 6.10 8.12 5.95 319.37\n", 705 | "... ... .. .. .. ... ... ... ... ...\n", 706 | "166505 2019 12 31 3 1.05 4.39 100.00 2.15 97.31\n", 707 | "166483 2019 12 30 5 0.94 4.76 100.00 2.68 174.81\n", 708 | "166506 2019 12 31 4 0.40 4.39 100.00 2.22 102.81\n", 709 | "166508 2019 12 31 6 0.36 4.33 100.00 2.01 118.56\n", 710 | "166507 2019 12 31 5 0.01 4.39 100.00 2.22 110.41\n", 711 | "\n", 712 | "[175310 rows x 9 columns]" 713 | ] 714 | }, 715 | "execution_count": 40, 716 | "metadata": {}, 717 | "output_type": "execute_result" 718 | } 719 | ], 720 | "source": [ 721 | "df.sort_values('T2M',ascending=False)" 722 | ] 723 | }, 724 | { 725 | "cell_type": "code", 726 | "execution_count": 51, 727 | "metadata": {}, 728 | "outputs": [ 729 | { 730 | "data": { 731 | "text/html": [ 732 | "
\n", 733 | "\n", 746 | "\n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
1177222014671249.236.238.256.72330.63
1177232014671349.476.298.197.07326.31
1177242014671449.186.238.257.22322.65
1177462014681249.116.108.125.95319.37
1177472014681349.265.927.756.49316.71
11779520146101349.074.095.445.97307.93
\n", 836 | "
" 837 | ], 838 | "text/plain": [ 839 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 840 | "117722 2014 6 7 12 49.23 6.23 8.25 6.72 330.63\n", 841 | "117723 2014 6 7 13 49.47 6.29 8.19 7.07 326.31\n", 842 | "117724 2014 6 7 14 49.18 6.23 8.25 7.22 322.65\n", 843 | "117746 2014 6 8 12 49.11 6.10 8.12 5.95 319.37\n", 844 | "117747 2014 6 8 13 49.26 5.92 7.75 6.49 316.71\n", 845 | "117795 2014 6 10 13 49.07 4.09 5.44 5.97 307.93" 846 | ] 847 | }, 848 | "execution_count": 51, 849 | "metadata": {}, 850 | "output_type": "execute_result" 851 | } 852 | ], 853 | "source": [ 854 | "df[df['T2M'] > 49 ]" 855 | ] 856 | }, 857 | { 858 | "cell_type": "code", 859 | "execution_count": 68, 860 | "metadata": {}, 861 | "outputs": [ 862 | { 863 | "data": { 864 | "text/html": [ 865 | "
\n", 866 | "\n", 879 | "\n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | " \n", 1020 | " \n", 1021 | " \n", 1022 | " \n", 1023 | " \n", 1024 | " \n", 1025 | " \n", 1026 | " \n", 1027 | " \n", 1028 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
157766201911010.403.6646.621.87277.21
15776720191119.123.6650.812.24273.00
15776820191127.633.6656.622.63274.61
15776920191136.583.6660.882.82277.79
15777020191145.903.6663.562.88278.75
..............................
16580120191211918.0410.0777.882.11290.58
16580220191212017.209.8980.692.32298.81
16580320191212116.519.7082.752.47305.20
16580420191212215.949.4683.622.50310.56
16580520191212315.429.2284.192.46315.51
\n", 1029 | "

288 rows × 9 columns

\n", 1030 | "
" 1031 | ], 1032 | "text/plain": [ 1033 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 1034 | "157766 2019 1 1 0 10.40 3.66 46.62 1.87 277.21\n", 1035 | "157767 2019 1 1 1 9.12 3.66 50.81 2.24 273.00\n", 1036 | "157768 2019 1 1 2 7.63 3.66 56.62 2.63 274.61\n", 1037 | "157769 2019 1 1 3 6.58 3.66 60.88 2.82 277.79\n", 1038 | "157770 2019 1 1 4 5.90 3.66 63.56 2.88 278.75\n", 1039 | "... ... .. .. .. ... ... ... ... ...\n", 1040 | "165801 2019 12 1 19 18.04 10.07 77.88 2.11 290.58\n", 1041 | "165802 2019 12 1 20 17.20 9.89 80.69 2.32 298.81\n", 1042 | "165803 2019 12 1 21 16.51 9.70 82.75 2.47 305.20\n", 1043 | "165804 2019 12 1 22 15.94 9.46 83.62 2.50 310.56\n", 1044 | "165805 2019 12 1 23 15.42 9.22 84.19 2.46 315.51\n", 1045 | "\n", 1046 | "[288 rows x 9 columns]" 1047 | ] 1048 | }, 1049 | "execution_count": 68, 1050 | "metadata": {}, 1051 | "output_type": "execute_result" 1052 | } 1053 | ], 1054 | "source": [ 1055 | "df[(df['YEAR'] == 2019) & (df['DY'] == 1) ]\n", 1056 | "# 2019 only 1st day of the month " 1057 | ] 1058 | }, 1059 | { 1060 | "cell_type": "code", 1061 | "execution_count": 76, 1062 | "metadata": {}, 1063 | "outputs": [], 1064 | "source": [ 1065 | "tempdf = df[(df['YEAR'] == 2019) & (df['MO'] == 12) & (df['HR'] == 23)]" 1066 | ] 1067 | }, 1068 | { 1069 | "cell_type": "code", 1070 | "execution_count": 77, 1071 | "metadata": {}, 1072 | "outputs": [ 1073 | { 1074 | "data": { 1075 | "text/html": [ 1076 | "
\n", 1077 | "\n", 1090 | "\n", 1091 | " \n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | " \n", 1100 | " \n", 1101 | " \n", 1102 | " \n", 1103 | " \n", 1104 | " \n", 1105 | " \n", 1106 | " \n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | " \n", 1175 | " \n", 1176 | " \n", 1177 | " \n", 1178 | " \n", 1179 | " \n", 1180 | " \n", 1181 | " \n", 1182 | " \n", 1183 | " \n", 1184 | " \n", 1185 | " \n", 1186 | " \n", 1187 | " \n", 1188 | " \n", 1189 | " \n", 1190 | " \n", 1191 | " \n", 1192 | " \n", 1193 | " \n", 1194 | " \n", 1195 | " \n", 1196 | " \n", 1197 | " \n", 1198 | " \n", 1199 | " \n", 1200 | " \n", 1201 | " \n", 1202 | " \n", 1203 | " \n", 1204 | " \n", 1205 | " \n", 1206 | " \n", 1207 | " \n", 1208 | " \n", 1209 | " \n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | " \n", 1270 | " \n", 1271 | " \n", 1272 | " \n", 1273 | " \n", 1274 | " \n", 1275 | " \n", 1276 | " \n", 1277 | " \n", 1278 | " \n", 1279 | " \n", 1280 | " \n", 1281 | " \n", 1282 | " \n", 1283 | " \n", 1284 | " \n", 1285 | " \n", 1286 | " \n", 1287 | " \n", 1288 | " \n", 1289 | " \n", 1290 | " \n", 1291 | " \n", 1292 | " \n", 1293 | " \n", 1294 | " \n", 1295 | " \n", 1296 | " \n", 1297 | " \n", 1298 | " \n", 1299 | " \n", 1300 | " \n", 1301 | " \n", 1302 | " \n", 1303 | " \n", 1304 | " \n", 1305 | " \n", 1306 | " \n", 1307 | " \n", 1308 | " \n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | " \n", 1315 | " \n", 1316 | " \n", 1317 | " \n", 1318 | " \n", 1319 | " \n", 1320 | " \n", 1321 | " \n", 1322 | " \n", 1323 | " \n", 1324 | " \n", 1325 | " \n", 1326 | " \n", 1327 | " \n", 1328 | " \n", 1329 | " \n", 1330 | " \n", 1331 | " \n", 1332 | " \n", 1333 | " \n", 1334 | " \n", 1335 | " \n", 1336 | " \n", 1337 | " \n", 1338 | " \n", 1339 | " \n", 1340 | " \n", 1341 | " \n", 1342 | " \n", 1343 | " \n", 1344 | " \n", 1345 | " \n", 1346 | " \n", 1347 | " \n", 1348 | " \n", 1349 | " \n", 1350 | " \n", 1351 | " \n", 1352 | " \n", 1353 | " \n", 1354 | " \n", 1355 | " \n", 1356 | " \n", 1357 | " \n", 1358 | " \n", 1359 | " \n", 1360 | " \n", 1361 | " \n", 1362 | " \n", 1363 | " \n", 1364 | " \n", 1365 | " \n", 1366 | " \n", 1367 | " \n", 1368 | " \n", 1369 | " \n", 1370 | " \n", 1371 | " \n", 1372 | " \n", 1373 | " \n", 1374 | " \n", 1375 | " \n", 1376 | " \n", 1377 | " \n", 1378 | " \n", 1379 | " \n", 1380 | " \n", 1381 | " \n", 1382 | " \n", 1383 | " \n", 1384 | " \n", 1385 | " \n", 1386 | " \n", 1387 | " \n", 1388 | " \n", 1389 | " \n", 1390 | " \n", 1391 | " \n", 1392 | " \n", 1393 | " \n", 1394 | " \n", 1395 | " \n", 1396 | " \n", 1397 | " \n", 1398 | " \n", 1399 | " \n", 1400 | " \n", 1401 | " \n", 1402 | " \n", 1403 | " \n", 1404 | " \n", 1405 | " \n", 1406 | " \n", 1407 | " \n", 1408 | " \n", 1409 | " \n", 1410 | " \n", 1411 | " \n", 1412 | " \n", 1413 | " \n", 1414 | " \n", 1415 | " \n", 1416 | " \n", 1417 | " \n", 1418 | " \n", 1419 | " \n", 1420 | " \n", 1421 | " \n", 1422 | " \n", 1423 | " \n", 1424 | " \n", 1425 | " \n", 1426 | " \n", 1427 | " \n", 1428 | " \n", 1429 | " \n", 1430 | " \n", 1431 | " \n", 1432 | " \n", 1433 | " \n", 1434 | " \n", 1435 | " \n", 1436 | " \n", 1437 | " \n", 1438 | " \n", 1439 | " \n", 1440 | " \n", 1441 | " \n", 1442 | " \n", 1443 | " \n", 1444 | " \n", 1445 | " \n", 1446 | " \n", 1447 | " \n", 1448 | " \n", 1449 | " \n", 1450 | " \n", 1451 | " \n", 1452 | " \n", 1453 | " \n", 1454 | " \n", 1455 | " \n", 1456 | " \n", 1457 | " \n", 1458 | " \n", 1459 | " \n", 1460 | " \n", 1461 | " \n", 1462 | " \n", 1463 | " \n", 1464 | " \n", 1465 | " \n", 1466 | " \n", 1467 | " \n", 1468 | " \n", 1469 | " \n", 1470 | " \n", 1471 | " \n", 1472 | " \n", 1473 | " \n", 1474 | " \n", 1475 | " \n", 1476 | " \n", 1477 | " \n", 1478 | " \n", 1479 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
16580520191212315.429.2284.192.46315.51
16582920191222312.747.1477.562.69285.01
16585320191232310.996.2376.123.06246.51
16587720191242313.186.5369.191.71187.35
16590120191252313.867.3974.880.99166.84
16592520191262313.958.0681.441.25170.66
16594920191272314.618.4882.191.24243.92
16597320191282314.399.0989.381.57220.17
16599720191292314.198.0079.441.50201.64
166021201912102313.127.6380.752.03220.31
166045201912112314.938.0075.381.24139.87
166069201912122315.8310.5693.386.88128.04
166093201912132315.1611.17100.002.51138.41
166117201912142315.069.5890.121.9669.18
166141201912152312.558.4293.312.11279.60
16616520191216239.406.3586.503.08291.24
16618920191217238.576.1688.943.03292.46
16621320191218239.615.6876.621.34227.84
16623720191219238.795.4978.252.25236.92
166261201912202310.945.6269.191.42265.58
166285201912212313.177.7581.752.94310.37
16630920191222239.635.9879.883.22312.74
166333201912232310.875.3165.881.95140.37
16635720191224239.285.8680.622.39315.27
166381201912252310.564.6458.441.72266.10
16640520191226237.344.1565.442.20295.84
16642920191227236.794.2769.621.84252.41
16645320191228236.524.7678.751.22146.51
16647720191229236.234.7680.621.14223.33
16650120191230234.054.5288.811.60111.80
16652520191231236.634.7077.692.1050.44
\n", 1480 | "
" 1481 | ], 1482 | "text/plain": [ 1483 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n", 1484 | "165805 2019 12 1 23 15.42 9.22 84.19 2.46 315.51\n", 1485 | "165829 2019 12 2 23 12.74 7.14 77.56 2.69 285.01\n", 1486 | "165853 2019 12 3 23 10.99 6.23 76.12 3.06 246.51\n", 1487 | "165877 2019 12 4 23 13.18 6.53 69.19 1.71 187.35\n", 1488 | "165901 2019 12 5 23 13.86 7.39 74.88 0.99 166.84\n", 1489 | "165925 2019 12 6 23 13.95 8.06 81.44 1.25 170.66\n", 1490 | "165949 2019 12 7 23 14.61 8.48 82.19 1.24 243.92\n", 1491 | "165973 2019 12 8 23 14.39 9.09 89.38 1.57 220.17\n", 1492 | "165997 2019 12 9 23 14.19 8.00 79.44 1.50 201.64\n", 1493 | "166021 2019 12 10 23 13.12 7.63 80.75 2.03 220.31\n", 1494 | "166045 2019 12 11 23 14.93 8.00 75.38 1.24 139.87\n", 1495 | "166069 2019 12 12 23 15.83 10.56 93.38 6.88 128.04\n", 1496 | "166093 2019 12 13 23 15.16 11.17 100.00 2.51 138.41\n", 1497 | "166117 2019 12 14 23 15.06 9.58 90.12 1.96 69.18\n", 1498 | "166141 2019 12 15 23 12.55 8.42 93.31 2.11 279.60\n", 1499 | "166165 2019 12 16 23 9.40 6.35 86.50 3.08 291.24\n", 1500 | "166189 2019 12 17 23 8.57 6.16 88.94 3.03 292.46\n", 1501 | "166213 2019 12 18 23 9.61 5.68 76.62 1.34 227.84\n", 1502 | "166237 2019 12 19 23 8.79 5.49 78.25 2.25 236.92\n", 1503 | "166261 2019 12 20 23 10.94 5.62 69.19 1.42 265.58\n", 1504 | "166285 2019 12 21 23 13.17 7.75 81.75 2.94 310.37\n", 1505 | "166309 2019 12 22 23 9.63 5.98 79.88 3.22 312.74\n", 1506 | "166333 2019 12 23 23 10.87 5.31 65.88 1.95 140.37\n", 1507 | "166357 2019 12 24 23 9.28 5.86 80.62 2.39 315.27\n", 1508 | "166381 2019 12 25 23 10.56 4.64 58.44 1.72 266.10\n", 1509 | "166405 2019 12 26 23 7.34 4.15 65.44 2.20 295.84\n", 1510 | "166429 2019 12 27 23 6.79 4.27 69.62 1.84 252.41\n", 1511 | "166453 2019 12 28 23 6.52 4.76 78.75 1.22 146.51\n", 1512 | "166477 2019 12 29 23 6.23 4.76 80.62 1.14 223.33\n", 1513 | "166501 2019 12 30 23 4.05 4.52 88.81 1.60 111.80\n", 1514 | "166525 2019 12 31 23 6.63 4.70 77.69 2.10 50.44" 1515 | ] 1516 | }, 1517 | "execution_count": 77, 1518 | "metadata": {}, 1519 | "output_type": "execute_result" 1520 | } 1521 | ], 1522 | "source": [ 1523 | "tempdf\n" 1524 | ] 1525 | }, 1526 | { 1527 | "cell_type": "code", 1528 | "execution_count": 78, 1529 | "metadata": {}, 1530 | "outputs": [ 1531 | { 1532 | "data": { 1533 | "text/plain": [ 1534 | "count 31.000000\n", 1535 | "mean 11.237419\n", 1536 | "std 3.281225\n", 1537 | "min 4.050000\n", 1538 | "25% 9.035000\n", 1539 | "50% 10.990000\n", 1540 | "75% 14.070000\n", 1541 | "max 15.830000\n", 1542 | "Name: T2M, dtype: float64" 1543 | ] 1544 | }, 1545 | "execution_count": 78, 1546 | "metadata": {}, 1547 | "output_type": "execute_result" 1548 | } 1549 | ], 1550 | "source": [ 1551 | "tempdf['T2M'].describe()" 1552 | ] 1553 | }, 1554 | { 1555 | "cell_type": "code", 1556 | "execution_count": 79, 1557 | "metadata": {}, 1558 | "outputs": [ 1559 | { 1560 | "data": { 1561 | "text/html": [ 1562 | "
\n", 1563 | "\n", 1576 | "\n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | " \n", 1581 | " \n", 1582 | " \n", 1583 | " \n", 1584 | " \n", 1585 | " \n", 1586 | " \n", 1587 | " \n", 1588 | " \n", 1589 | " \n", 1590 | " \n", 1591 | " \n", 1592 | " \n", 1593 | " \n", 1594 | " \n", 1595 | " \n", 1596 | " \n", 1597 | " \n", 1598 | " \n", 1599 | " \n", 1600 | " \n", 1601 | " \n", 1602 | " \n", 1603 | " \n", 1604 | " \n", 1605 | " \n", 1606 | " \n", 1607 | " \n", 1608 | " \n", 1609 | " \n", 1610 | " \n", 1611 | " \n", 1612 | " \n", 1613 | " \n", 1614 | " \n", 1615 | " \n", 1616 | " \n", 1617 | " \n", 1618 | " \n", 1619 | " \n", 1620 | " \n", 1621 | " \n", 1622 | " \n", 1623 | " \n", 1624 | " \n", 1625 | " \n", 1626 | " \n", 1627 | " \n", 1628 | " \n", 1629 | " \n", 1630 | " \n", 1631 | " \n", 1632 | " \n", 1633 | " \n", 1634 | " \n", 1635 | " \n", 1636 | " \n", 1637 | " \n", 1638 | " \n", 1639 | " \n", 1640 | " \n", 1641 | " \n", 1642 | " \n", 1643 | " \n", 1644 | " \n", 1645 | " \n", 1646 | " \n", 1647 | " \n", 1648 | " \n", 1649 | " \n", 1650 | " \n", 1651 | " \n", 1652 | " \n", 1653 | " \n", 1654 | " \n", 1655 | " \n", 1656 | " \n", 1657 | " \n", 1658 | " \n", 1659 | " \n", 1660 | " \n", 1661 | " \n", 1662 | " \n", 1663 | " \n", 1664 | " \n", 1665 | " \n", 1666 | " \n", 1667 | " \n", 1668 | " \n", 1669 | " \n", 1670 | " \n", 1671 | " \n", 1672 | " \n", 1673 | " \n", 1674 | " \n", 1675 | " \n", 1676 | " \n", 1677 | " \n", 1678 | " \n", 1679 | " \n", 1680 | " \n", 1681 | " \n", 1682 | " \n", 1683 | " \n", 1684 | " \n", 1685 | " \n", 1686 | " \n", 1687 | " \n", 1688 | " \n", 1689 | "
YEARMODYHRT2MQV2MRH2MWS10MWD10M
count31.031.031.00000031.031.00000031.00000031.00000031.00000031.000000
mean2019.012.016.00000023.011.2374196.82258179.8170972.149677217.814194
std0.00.09.0921210.03.2812251.9077619.0959521.09107174.989962
min2019.012.01.00000023.04.0500004.15000058.4400000.99000050.440000
25%2019.012.08.50000023.09.0350005.40000075.7500001.460000156.675000
50%2019.012.016.00000023.010.9900006.35000079.8800001.960000227.840000
75%2019.012.023.50000023.014.0700008.03000085.3450002.485000282.305000
max2019.012.031.00000023.015.83000011.170000100.0000006.880000315.510000
\n", 1690 | "
" 1691 | ], 1692 | "text/plain": [ 1693 | " YEAR MO DY HR T2M QV2M RH2M \\\n", 1694 | "count 31.0 31.0 31.000000 31.0 31.000000 31.000000 31.000000 \n", 1695 | "mean 2019.0 12.0 16.000000 23.0 11.237419 6.822581 79.817097 \n", 1696 | "std 0.0 0.0 9.092121 0.0 3.281225 1.907761 9.095952 \n", 1697 | "min 2019.0 12.0 1.000000 23.0 4.050000 4.150000 58.440000 \n", 1698 | "25% 2019.0 12.0 8.500000 23.0 9.035000 5.400000 75.750000 \n", 1699 | "50% 2019.0 12.0 16.000000 23.0 10.990000 6.350000 79.880000 \n", 1700 | "75% 2019.0 12.0 23.500000 23.0 14.070000 8.030000 85.345000 \n", 1701 | "max 2019.0 12.0 31.000000 23.0 15.830000 11.170000 100.000000 \n", 1702 | "\n", 1703 | " WS10M WD10M \n", 1704 | "count 31.000000 31.000000 \n", 1705 | "mean 2.149677 217.814194 \n", 1706 | "std 1.091071 74.989962 \n", 1707 | "min 0.990000 50.440000 \n", 1708 | "25% 1.460000 156.675000 \n", 1709 | "50% 1.960000 227.840000 \n", 1710 | "75% 2.485000 282.305000 \n", 1711 | "max 6.880000 315.510000 " 1712 | ] 1713 | }, 1714 | "execution_count": 79, 1715 | "metadata": {}, 1716 | "output_type": "execute_result" 1717 | } 1718 | ], 1719 | "source": [ 1720 | "tempdf.describe()" 1721 | ] 1722 | }, 1723 | { 1724 | "cell_type": "code", 1725 | "execution_count": 84, 1726 | "metadata": {}, 1727 | "outputs": [], 1728 | "source": [ 1729 | "import matplotlib.pyplot as plt\n", 1730 | "import seaborn as sns\n", 1731 | "from sklearn.model_selection import train_test_split" 1732 | ] 1733 | }, 1734 | { 1735 | "cell_type": "code", 1736 | "execution_count": 86, 1737 | "metadata": {}, 1738 | "outputs": [ 1739 | { 1740 | "data": { 1741 | "text/plain": [ 1742 | "4452" 1743 | ] 1744 | }, 1745 | "execution_count": 86, 1746 | "metadata": {}, 1747 | "output_type": "execute_result" 1748 | } 1749 | ], 1750 | "source": [ 1751 | "df['T2M'].nunique()" 1752 | ] 1753 | }, 1754 | { 1755 | "cell_type": "code", 1756 | "execution_count": null, 1757 | "metadata": {}, 1758 | "outputs": [], 1759 | "source": [ 1760 | "plt.figure(figsize=(18,6))\n", 1761 | "sns.pairplot(df.drop('MO',axis=1),hue='T2M')\n", 1762 | "plt.show()" 1763 | ] 1764 | }, 1765 | { 1766 | "cell_type": "code", 1767 | "execution_count": null, 1768 | "metadata": {}, 1769 | "outputs": [], 1770 | "source": [] 1771 | } 1772 | ], 1773 | "metadata": { 1774 | "kernelspec": { 1775 | "display_name": "Python 3", 1776 | "language": "python", 1777 | "name": "python3" 1778 | }, 1779 | "language_info": { 1780 | "codemirror_mode": { 1781 | "name": "ipython", 1782 | "version": 3 1783 | }, 1784 | "file_extension": ".py", 1785 | "mimetype": "text/x-python", 1786 | "name": "python", 1787 | "nbconvert_exporter": "python", 1788 | "pygments_lexer": "ipython3", 1789 | "version": "3.8.3" 1790 | }, 1791 | "vscode": { 1792 | "interpreter": { 1793 | "hash": "369f2c481f4da34e4445cda3fffd2e751bd1c4d706f27375911949ba6bb62e1c" 1794 | } 1795 | } 1796 | }, 1797 | "nbformat": 4, 1798 | "nbformat_minor": 4 1799 | } 1800 | --------------------------------------------------------------------------------