├── README.md
├── hello.ipynb
├── .gitignore
├── prediction.ipynb
└── Main.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Weather-Analysis-Jupyter
2 | Weather-Analysis-Jupyter
3 |
4 | Run ```jupyter notebook```
5 |
--------------------------------------------------------------------------------
/hello.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stdout",
10 | "output_type": "stream",
11 | "text": [
12 | "hello\n"
13 | ]
14 | }
15 | ],
16 | "source": [
17 | "print(\"hello\")"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 2,
23 | "metadata": {},
24 | "outputs": [],
25 | "source": [
26 | "a =10"
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": 3,
32 | "metadata": {},
33 | "outputs": [],
34 | "source": [
35 | "b=20\n"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": 4,
41 | "metadata": {},
42 | "outputs": [],
43 | "source": [
44 | "c =a+b"
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": 5,
50 | "metadata": {},
51 | "outputs": [
52 | {
53 | "name": "stdout",
54 | "output_type": "stream",
55 | "text": [
56 | "30\n"
57 | ]
58 | }
59 | ],
60 | "source": [
61 | "print(c)"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": null,
67 | "metadata": {},
68 | "outputs": [],
69 | "source": []
70 | }
71 | ],
72 | "metadata": {
73 | "kernelspec": {
74 | "display_name": "Python 3.10.1 64-bit",
75 | "language": "python",
76 | "name": "python3"
77 | },
78 | "language_info": {
79 | "codemirror_mode": {
80 | "name": "ipython",
81 | "version": 3
82 | },
83 | "file_extension": ".py",
84 | "mimetype": "text/x-python",
85 | "name": "python",
86 | "nbconvert_exporter": "python",
87 | "pygments_lexer": "ipython3",
88 | "version": "3.10.1"
89 | },
90 | "vscode": {
91 | "interpreter": {
92 | "hash": "369f2c481f4da34e4445cda3fffd2e751bd1c4d706f27375911949ba6bb62e1c"
93 | }
94 | }
95 | },
96 | "nbformat": 4,
97 | "nbformat_minor": 4
98 | }
99 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/prediction.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 2,
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "df = pd.read_csv(\"data/data2001To2020.csv\",skiprows = 13)"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 3,
24 | "metadata": {},
25 | "outputs": [
26 | {
27 | "data": {
28 | "text/plain": [
29 | "(175310, 9)"
30 | ]
31 | },
32 | "execution_count": 3,
33 | "metadata": {},
34 | "output_type": "execute_result"
35 | }
36 | ],
37 | "source": [
38 | "df.shape"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 4,
44 | "metadata": {},
45 | "outputs": [
46 | {
47 | "data": {
48 | "text/html": [
49 | "
\n",
50 | "\n",
63 | "
\n",
64 | " \n",
65 | " \n",
66 | " | \n",
67 | " YEAR | \n",
68 | " MO | \n",
69 | " DY | \n",
70 | " HR | \n",
71 | " T2M | \n",
72 | " QV2M | \n",
73 | " RH2M | \n",
74 | " WS10M | \n",
75 | " WD10M | \n",
76 | "
\n",
77 | " \n",
78 | " \n",
79 | " \n",
80 | " | 0 | \n",
81 | " 2001 | \n",
82 | " 1 | \n",
83 | " 1 | \n",
84 | " 5 | \n",
85 | " 11.63 | \n",
86 | " 8.24 | \n",
87 | " 95.75 | \n",
88 | " 1.43 | \n",
89 | " 152.31 | \n",
90 | "
\n",
91 | " \n",
92 | " | 1 | \n",
93 | " 2001 | \n",
94 | " 1 | \n",
95 | " 1 | \n",
96 | " 6 | \n",
97 | " 11.23 | \n",
98 | " 8.30 | \n",
99 | " 99.62 | \n",
100 | " 1.88 | \n",
101 | " 165.79 | \n",
102 | "
\n",
103 | " \n",
104 | " | 2 | \n",
105 | " 2001 | \n",
106 | " 1 | \n",
107 | " 1 | \n",
108 | " 7 | \n",
109 | " 12.86 | \n",
110 | " 8.73 | \n",
111 | " 93.94 | \n",
112 | " 2.62 | \n",
113 | " 175.21 | \n",
114 | "
\n",
115 | " \n",
116 | " | 3 | \n",
117 | " 2001 | \n",
118 | " 1 | \n",
119 | " 1 | \n",
120 | " 8 | \n",
121 | " 13.87 | \n",
122 | " 8.97 | \n",
123 | " 90.44 | \n",
124 | " 2.34 | \n",
125 | " 179.04 | \n",
126 | "
\n",
127 | " \n",
128 | " | 4 | \n",
129 | " 2001 | \n",
130 | " 1 | \n",
131 | " 1 | \n",
132 | " 9 | \n",
133 | " 15.67 | \n",
134 | " 8.85 | \n",
135 | " 79.69 | \n",
136 | " 2.11 | \n",
137 | " 176.38 | \n",
138 | "
\n",
139 | " \n",
140 | " | ... | \n",
141 | " ... | \n",
142 | " ... | \n",
143 | " ... | \n",
144 | " ... | \n",
145 | " ... | \n",
146 | " ... | \n",
147 | " ... | \n",
148 | " ... | \n",
149 | " ... | \n",
150 | "
\n",
151 | " \n",
152 | " | 175305 | \n",
153 | " 2020 | \n",
154 | " 12 | \n",
155 | " 31 | \n",
156 | " 19 | \n",
157 | " 12.76 | \n",
158 | " 3.72 | \n",
159 | " 40.44 | \n",
160 | " 2.99 | \n",
161 | " 285.92 | \n",
162 | "
\n",
163 | " \n",
164 | " | 175306 | \n",
165 | " 2020 | \n",
166 | " 12 | \n",
167 | " 31 | \n",
168 | " 20 | \n",
169 | " 12.05 | \n",
170 | " 3.60 | \n",
171 | " 41.12 | \n",
172 | " 3.01 | \n",
173 | " 292.30 | \n",
174 | "
\n",
175 | " \n",
176 | " | 175307 | \n",
177 | " 2020 | \n",
178 | " 12 | \n",
179 | " 31 | \n",
180 | " 21 | \n",
181 | " 11.43 | \n",
182 | " 3.48 | \n",
183 | " 41.44 | \n",
184 | " 3.03 | \n",
185 | " 298.68 | \n",
186 | "
\n",
187 | " \n",
188 | " | 175308 | \n",
189 | " 2020 | \n",
190 | " 12 | \n",
191 | " 31 | \n",
192 | " 22 | \n",
193 | " 10.84 | \n",
194 | " 3.36 | \n",
195 | " 41.44 | \n",
196 | " 3.04 | \n",
197 | " 305.57 | \n",
198 | "
\n",
199 | " \n",
200 | " | 175309 | \n",
201 | " 2020 | \n",
202 | " 12 | \n",
203 | " 31 | \n",
204 | " 23 | \n",
205 | " 10.31 | \n",
206 | " 3.23 | \n",
207 | " 41.25 | \n",
208 | " 3.01 | \n",
209 | " 311.95 | \n",
210 | "
\n",
211 | " \n",
212 | "
\n",
213 | "
175310 rows × 9 columns
\n",
214 | "
"
215 | ],
216 | "text/plain": [
217 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
218 | "0 2001 1 1 5 11.63 8.24 95.75 1.43 152.31\n",
219 | "1 2001 1 1 6 11.23 8.30 99.62 1.88 165.79\n",
220 | "2 2001 1 1 7 12.86 8.73 93.94 2.62 175.21\n",
221 | "3 2001 1 1 8 13.87 8.97 90.44 2.34 179.04\n",
222 | "4 2001 1 1 9 15.67 8.85 79.69 2.11 176.38\n",
223 | "... ... .. .. .. ... ... ... ... ...\n",
224 | "175305 2020 12 31 19 12.76 3.72 40.44 2.99 285.92\n",
225 | "175306 2020 12 31 20 12.05 3.60 41.12 3.01 292.30\n",
226 | "175307 2020 12 31 21 11.43 3.48 41.44 3.03 298.68\n",
227 | "175308 2020 12 31 22 10.84 3.36 41.44 3.04 305.57\n",
228 | "175309 2020 12 31 23 10.31 3.23 41.25 3.01 311.95\n",
229 | "\n",
230 | "[175310 rows x 9 columns]"
231 | ]
232 | },
233 | "execution_count": 4,
234 | "metadata": {},
235 | "output_type": "execute_result"
236 | }
237 | ],
238 | "source": [
239 | "df.dropna()"
240 | ]
241 | },
242 | {
243 | "cell_type": "code",
244 | "execution_count": 5,
245 | "metadata": {},
246 | "outputs": [
247 | {
248 | "data": {
249 | "text/html": [
250 | "\n",
251 | "\n",
264 | "
\n",
265 | " \n",
266 | " \n",
267 | " | \n",
268 | " YEAR | \n",
269 | " MO | \n",
270 | " DY | \n",
271 | " HR | \n",
272 | " T2M | \n",
273 | " QV2M | \n",
274 | " RH2M | \n",
275 | " WS10M | \n",
276 | " WD10M | \n",
277 | "
\n",
278 | " \n",
279 | " \n",
280 | " \n",
281 | " | count | \n",
282 | " 175310.000000 | \n",
283 | " 175310.000000 | \n",
284 | " 175310.000000 | \n",
285 | " 175310.000000 | \n",
286 | " 175310.000000 | \n",
287 | " 175310.000000 | \n",
288 | " 175310.000000 | \n",
289 | " 175310.000000 | \n",
290 | " 175310.000000 | \n",
291 | "
\n",
292 | " \n",
293 | " | mean | \n",
294 | " 2010.501283 | \n",
295 | " 6.523245 | \n",
296 | " 15.730477 | \n",
297 | " 11.500542 | \n",
298 | " 26.273119 | \n",
299 | " 10.716629 | \n",
300 | " 49.699891 | \n",
301 | " 2.907421 | \n",
302 | " 207.538628 | \n",
303 | "
\n",
304 | " \n",
305 | " | std | \n",
306 | " 5.766298 | \n",
307 | " 3.448559 | \n",
308 | " 8.799665 | \n",
309 | " 6.922024 | \n",
310 | " 8.666733 | \n",
311 | " 6.487275 | \n",
312 | " 26.519416 | \n",
313 | " 1.581211 | \n",
314 | " 103.475862 | \n",
315 | "
\n",
316 | " \n",
317 | " | min | \n",
318 | " 2001.000000 | \n",
319 | " 1.000000 | \n",
320 | " 1.000000 | \n",
321 | " 0.000000 | \n",
322 | " 0.010000 | \n",
323 | " 0.670000 | \n",
324 | " 1.560000 | \n",
325 | " 0.010000 | \n",
326 | " 0.000000 | \n",
327 | "
\n",
328 | " \n",
329 | " | 25% | \n",
330 | " 2006.000000 | \n",
331 | " 4.000000 | \n",
332 | " 8.000000 | \n",
333 | " 6.000000 | \n",
334 | " 20.100000 | \n",
335 | " 5.190000 | \n",
336 | " 26.380000 | \n",
337 | " 1.830000 | \n",
338 | " 107.290000 | \n",
339 | "
\n",
340 | " \n",
341 | " | 50% | \n",
342 | " 2011.000000 | \n",
343 | " 7.000000 | \n",
344 | " 16.000000 | \n",
345 | " 12.000000 | \n",
346 | " 27.010000 | \n",
347 | " 8.420000 | \n",
348 | " 47.380000 | \n",
349 | " 2.660000 | \n",
350 | " 246.180000 | \n",
351 | "
\n",
352 | " \n",
353 | " | 75% | \n",
354 | " 2016.000000 | \n",
355 | " 10.000000 | \n",
356 | " 23.000000 | \n",
357 | " 18.000000 | \n",
358 | " 32.000000 | \n",
359 | " 17.330000 | \n",
360 | " 71.690000 | \n",
361 | " 3.600000 | \n",
362 | " 296.750000 | \n",
363 | "
\n",
364 | " \n",
365 | " | max | \n",
366 | " 2020.000000 | \n",
367 | " 12.000000 | \n",
368 | " 31.000000 | \n",
369 | " 23.000000 | \n",
370 | " 49.470000 | \n",
371 | " 25.450000 | \n",
372 | " 100.000000 | \n",
373 | " 14.330000 | \n",
374 | " 359.920000 | \n",
375 | "
\n",
376 | " \n",
377 | "
\n",
378 | "
"
379 | ],
380 | "text/plain": [
381 | " YEAR MO DY HR \\\n",
382 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n",
383 | "mean 2010.501283 6.523245 15.730477 11.500542 \n",
384 | "std 5.766298 3.448559 8.799665 6.922024 \n",
385 | "min 2001.000000 1.000000 1.000000 0.000000 \n",
386 | "25% 2006.000000 4.000000 8.000000 6.000000 \n",
387 | "50% 2011.000000 7.000000 16.000000 12.000000 \n",
388 | "75% 2016.000000 10.000000 23.000000 18.000000 \n",
389 | "max 2020.000000 12.000000 31.000000 23.000000 \n",
390 | "\n",
391 | " T2M QV2M RH2M WS10M \\\n",
392 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n",
393 | "mean 26.273119 10.716629 49.699891 2.907421 \n",
394 | "std 8.666733 6.487275 26.519416 1.581211 \n",
395 | "min 0.010000 0.670000 1.560000 0.010000 \n",
396 | "25% 20.100000 5.190000 26.380000 1.830000 \n",
397 | "50% 27.010000 8.420000 47.380000 2.660000 \n",
398 | "75% 32.000000 17.330000 71.690000 3.600000 \n",
399 | "max 49.470000 25.450000 100.000000 14.330000 \n",
400 | "\n",
401 | " WD10M \n",
402 | "count 175310.000000 \n",
403 | "mean 207.538628 \n",
404 | "std 103.475862 \n",
405 | "min 0.000000 \n",
406 | "25% 107.290000 \n",
407 | "50% 246.180000 \n",
408 | "75% 296.750000 \n",
409 | "max 359.920000 "
410 | ]
411 | },
412 | "execution_count": 5,
413 | "metadata": {},
414 | "output_type": "execute_result"
415 | }
416 | ],
417 | "source": [
418 | "df.describe()"
419 | ]
420 | },
421 | {
422 | "cell_type": "code",
423 | "execution_count": 8,
424 | "metadata": {},
425 | "outputs": [
426 | {
427 | "ename": "NameError",
428 | "evalue": "name 'x' is not defined",
429 | "output_type": "error",
430 | "traceback": [
431 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
432 | "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
433 | "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel_selection\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mx_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtest_size\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0.20\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
434 | "\u001b[1;31mNameError\u001b[0m: name 'x' is not defined"
435 | ]
436 | }
437 | ],
438 | "source": [
439 | "from sklearn.model_selection import train_test_split\n",
440 | "x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.20)"
441 | ]
442 | },
443 | {
444 | "cell_type": "code",
445 | "execution_count": null,
446 | "metadata": {},
447 | "outputs": [],
448 | "source": [
449 | "print(X_train.shape, X_test.shape, y_train.shap, y_test.shape)"
450 | ]
451 | },
452 | {
453 | "cell_type": "code",
454 | "execution_count": null,
455 | "metadata": {},
456 | "outputs": [],
457 | "source": []
458 | },
459 | {
460 | "cell_type": "code",
461 | "execution_count": null,
462 | "metadata": {},
463 | "outputs": [],
464 | "source": []
465 | },
466 | {
467 | "cell_type": "code",
468 | "execution_count": null,
469 | "metadata": {},
470 | "outputs": [],
471 | "source": []
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": null,
476 | "metadata": {},
477 | "outputs": [],
478 | "source": []
479 | },
480 | {
481 | "cell_type": "code",
482 | "execution_count": null,
483 | "metadata": {},
484 | "outputs": [],
485 | "source": []
486 | }
487 | ],
488 | "metadata": {
489 | "kernelspec": {
490 | "display_name": "Python 3",
491 | "language": "python",
492 | "name": "python3"
493 | },
494 | "language_info": {
495 | "codemirror_mode": {
496 | "name": "ipython",
497 | "version": 3
498 | },
499 | "file_extension": ".py",
500 | "mimetype": "text/x-python",
501 | "name": "python",
502 | "nbconvert_exporter": "python",
503 | "pygments_lexer": "ipython3",
504 | "version": "3.8.3"
505 | }
506 | },
507 | "nbformat": 4,
508 | "nbformat_minor": 4
509 | }
510 |
--------------------------------------------------------------------------------
/Main.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 29,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 30,
15 | "metadata": {
16 | "scrolled": true
17 | },
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv(\"data/data2001To2020.csv\",skiprows = 13)"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 80,
26 | "metadata": {},
27 | "outputs": [
28 | {
29 | "data": {
30 | "text/plain": [
31 | "(175310, 9)"
32 | ]
33 | },
34 | "execution_count": 80,
35 | "metadata": {},
36 | "output_type": "execute_result"
37 | }
38 | ],
39 | "source": [
40 | "df.shape"
41 | ]
42 | },
43 | {
44 | "cell_type": "code",
45 | "execution_count": 31,
46 | "metadata": {},
47 | "outputs": [
48 | {
49 | "data": {
50 | "text/html": [
51 | "\n",
52 | "\n",
65 | "
\n",
66 | " \n",
67 | " \n",
68 | " | \n",
69 | " YEAR | \n",
70 | " MO | \n",
71 | " DY | \n",
72 | " HR | \n",
73 | " T2M | \n",
74 | " QV2M | \n",
75 | " RH2M | \n",
76 | " WS10M | \n",
77 | " WD10M | \n",
78 | "
\n",
79 | " \n",
80 | " \n",
81 | " \n",
82 | " | 0 | \n",
83 | " 2001 | \n",
84 | " 1 | \n",
85 | " 1 | \n",
86 | " 5 | \n",
87 | " 11.63 | \n",
88 | " 8.24 | \n",
89 | " 95.75 | \n",
90 | " 1.43 | \n",
91 | " 152.31 | \n",
92 | "
\n",
93 | " \n",
94 | " | 1 | \n",
95 | " 2001 | \n",
96 | " 1 | \n",
97 | " 1 | \n",
98 | " 6 | \n",
99 | " 11.23 | \n",
100 | " 8.30 | \n",
101 | " 99.62 | \n",
102 | " 1.88 | \n",
103 | " 165.79 | \n",
104 | "
\n",
105 | " \n",
106 | " | 2 | \n",
107 | " 2001 | \n",
108 | " 1 | \n",
109 | " 1 | \n",
110 | " 7 | \n",
111 | " 12.86 | \n",
112 | " 8.73 | \n",
113 | " 93.94 | \n",
114 | " 2.62 | \n",
115 | " 175.21 | \n",
116 | "
\n",
117 | " \n",
118 | " | 3 | \n",
119 | " 2001 | \n",
120 | " 1 | \n",
121 | " 1 | \n",
122 | " 8 | \n",
123 | " 13.87 | \n",
124 | " 8.97 | \n",
125 | " 90.44 | \n",
126 | " 2.34 | \n",
127 | " 179.04 | \n",
128 | "
\n",
129 | " \n",
130 | " | 4 | \n",
131 | " 2001 | \n",
132 | " 1 | \n",
133 | " 1 | \n",
134 | " 9 | \n",
135 | " 15.67 | \n",
136 | " 8.85 | \n",
137 | " 79.69 | \n",
138 | " 2.11 | \n",
139 | " 176.38 | \n",
140 | "
\n",
141 | " \n",
142 | "
\n",
143 | "
"
144 | ],
145 | "text/plain": [
146 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
147 | "0 2001 1 1 5 11.63 8.24 95.75 1.43 152.31\n",
148 | "1 2001 1 1 6 11.23 8.30 99.62 1.88 165.79\n",
149 | "2 2001 1 1 7 12.86 8.73 93.94 2.62 175.21\n",
150 | "3 2001 1 1 8 13.87 8.97 90.44 2.34 179.04\n",
151 | "4 2001 1 1 9 15.67 8.85 79.69 2.11 176.38"
152 | ]
153 | },
154 | "execution_count": 31,
155 | "metadata": {},
156 | "output_type": "execute_result"
157 | }
158 | ],
159 | "source": [
160 | "df.head()"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": 32,
166 | "metadata": {},
167 | "outputs": [
168 | {
169 | "data": {
170 | "text/html": [
171 | "\n",
172 | "\n",
185 | "
\n",
186 | " \n",
187 | " \n",
188 | " | \n",
189 | " YEAR | \n",
190 | " MO | \n",
191 | " DY | \n",
192 | " HR | \n",
193 | " T2M | \n",
194 | " QV2M | \n",
195 | " RH2M | \n",
196 | " WS10M | \n",
197 | " WD10M | \n",
198 | "
\n",
199 | " \n",
200 | " \n",
201 | " \n",
202 | " | 175305 | \n",
203 | " 2020 | \n",
204 | " 12 | \n",
205 | " 31 | \n",
206 | " 19 | \n",
207 | " 12.76 | \n",
208 | " 3.72 | \n",
209 | " 40.44 | \n",
210 | " 2.99 | \n",
211 | " 285.92 | \n",
212 | "
\n",
213 | " \n",
214 | " | 175306 | \n",
215 | " 2020 | \n",
216 | " 12 | \n",
217 | " 31 | \n",
218 | " 20 | \n",
219 | " 12.05 | \n",
220 | " 3.60 | \n",
221 | " 41.12 | \n",
222 | " 3.01 | \n",
223 | " 292.30 | \n",
224 | "
\n",
225 | " \n",
226 | " | 175307 | \n",
227 | " 2020 | \n",
228 | " 12 | \n",
229 | " 31 | \n",
230 | " 21 | \n",
231 | " 11.43 | \n",
232 | " 3.48 | \n",
233 | " 41.44 | \n",
234 | " 3.03 | \n",
235 | " 298.68 | \n",
236 | "
\n",
237 | " \n",
238 | " | 175308 | \n",
239 | " 2020 | \n",
240 | " 12 | \n",
241 | " 31 | \n",
242 | " 22 | \n",
243 | " 10.84 | \n",
244 | " 3.36 | \n",
245 | " 41.44 | \n",
246 | " 3.04 | \n",
247 | " 305.57 | \n",
248 | "
\n",
249 | " \n",
250 | " | 175309 | \n",
251 | " 2020 | \n",
252 | " 12 | \n",
253 | " 31 | \n",
254 | " 23 | \n",
255 | " 10.31 | \n",
256 | " 3.23 | \n",
257 | " 41.25 | \n",
258 | " 3.01 | \n",
259 | " 311.95 | \n",
260 | "
\n",
261 | " \n",
262 | "
\n",
263 | "
"
264 | ],
265 | "text/plain": [
266 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
267 | "175305 2020 12 31 19 12.76 3.72 40.44 2.99 285.92\n",
268 | "175306 2020 12 31 20 12.05 3.60 41.12 3.01 292.30\n",
269 | "175307 2020 12 31 21 11.43 3.48 41.44 3.03 298.68\n",
270 | "175308 2020 12 31 22 10.84 3.36 41.44 3.04 305.57\n",
271 | "175309 2020 12 31 23 10.31 3.23 41.25 3.01 311.95"
272 | ]
273 | },
274 | "execution_count": 32,
275 | "metadata": {},
276 | "output_type": "execute_result"
277 | }
278 | ],
279 | "source": [
280 | "df.tail()"
281 | ]
282 | },
283 | {
284 | "cell_type": "code",
285 | "execution_count": 39,
286 | "metadata": {},
287 | "outputs": [
288 | {
289 | "data": {
290 | "text/html": [
291 | "\n",
292 | "\n",
305 | "
\n",
306 | " \n",
307 | " \n",
308 | " | \n",
309 | " YEAR | \n",
310 | " MO | \n",
311 | " DY | \n",
312 | " HR | \n",
313 | " T2M | \n",
314 | " QV2M | \n",
315 | " RH2M | \n",
316 | " WS10M | \n",
317 | " WD10M | \n",
318 | "
\n",
319 | " \n",
320 | " \n",
321 | " \n",
322 | " | count | \n",
323 | " 175310.000000 | \n",
324 | " 175310.000000 | \n",
325 | " 175310.000000 | \n",
326 | " 175310.000000 | \n",
327 | " 175310.000000 | \n",
328 | " 175310.000000 | \n",
329 | " 175310.000000 | \n",
330 | " 175310.000000 | \n",
331 | " 175310.000000 | \n",
332 | "
\n",
333 | " \n",
334 | " | mean | \n",
335 | " 2010.501283 | \n",
336 | " 6.523245 | \n",
337 | " 15.730477 | \n",
338 | " 11.500542 | \n",
339 | " 26.273119 | \n",
340 | " 10.716629 | \n",
341 | " 49.699891 | \n",
342 | " 2.907421 | \n",
343 | " 207.538628 | \n",
344 | "
\n",
345 | " \n",
346 | " | std | \n",
347 | " 5.766298 | \n",
348 | " 3.448559 | \n",
349 | " 8.799665 | \n",
350 | " 6.922024 | \n",
351 | " 8.666733 | \n",
352 | " 6.487275 | \n",
353 | " 26.519416 | \n",
354 | " 1.581211 | \n",
355 | " 103.475862 | \n",
356 | "
\n",
357 | " \n",
358 | " | min | \n",
359 | " 2001.000000 | \n",
360 | " 1.000000 | \n",
361 | " 1.000000 | \n",
362 | " 0.000000 | \n",
363 | " 0.010000 | \n",
364 | " 0.670000 | \n",
365 | " 1.560000 | \n",
366 | " 0.010000 | \n",
367 | " 0.000000 | \n",
368 | "
\n",
369 | " \n",
370 | " | 25% | \n",
371 | " 2006.000000 | \n",
372 | " 4.000000 | \n",
373 | " 8.000000 | \n",
374 | " 6.000000 | \n",
375 | " 20.100000 | \n",
376 | " 5.190000 | \n",
377 | " 26.380000 | \n",
378 | " 1.830000 | \n",
379 | " 107.290000 | \n",
380 | "
\n",
381 | " \n",
382 | " | 50% | \n",
383 | " 2011.000000 | \n",
384 | " 7.000000 | \n",
385 | " 16.000000 | \n",
386 | " 12.000000 | \n",
387 | " 27.010000 | \n",
388 | " 8.420000 | \n",
389 | " 47.380000 | \n",
390 | " 2.660000 | \n",
391 | " 246.180000 | \n",
392 | "
\n",
393 | " \n",
394 | " | 75% | \n",
395 | " 2016.000000 | \n",
396 | " 10.000000 | \n",
397 | " 23.000000 | \n",
398 | " 18.000000 | \n",
399 | " 32.000000 | \n",
400 | " 17.330000 | \n",
401 | " 71.690000 | \n",
402 | " 3.600000 | \n",
403 | " 296.750000 | \n",
404 | "
\n",
405 | " \n",
406 | " | max | \n",
407 | " 2020.000000 | \n",
408 | " 12.000000 | \n",
409 | " 31.000000 | \n",
410 | " 23.000000 | \n",
411 | " 49.470000 | \n",
412 | " 25.450000 | \n",
413 | " 100.000000 | \n",
414 | " 14.330000 | \n",
415 | " 359.920000 | \n",
416 | "
\n",
417 | " \n",
418 | "
\n",
419 | "
"
420 | ],
421 | "text/plain": [
422 | " YEAR MO DY HR \\\n",
423 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n",
424 | "mean 2010.501283 6.523245 15.730477 11.500542 \n",
425 | "std 5.766298 3.448559 8.799665 6.922024 \n",
426 | "min 2001.000000 1.000000 1.000000 0.000000 \n",
427 | "25% 2006.000000 4.000000 8.000000 6.000000 \n",
428 | "50% 2011.000000 7.000000 16.000000 12.000000 \n",
429 | "75% 2016.000000 10.000000 23.000000 18.000000 \n",
430 | "max 2020.000000 12.000000 31.000000 23.000000 \n",
431 | "\n",
432 | " T2M QV2M RH2M WS10M \\\n",
433 | "count 175310.000000 175310.000000 175310.000000 175310.000000 \n",
434 | "mean 26.273119 10.716629 49.699891 2.907421 \n",
435 | "std 8.666733 6.487275 26.519416 1.581211 \n",
436 | "min 0.010000 0.670000 1.560000 0.010000 \n",
437 | "25% 20.100000 5.190000 26.380000 1.830000 \n",
438 | "50% 27.010000 8.420000 47.380000 2.660000 \n",
439 | "75% 32.000000 17.330000 71.690000 3.600000 \n",
440 | "max 49.470000 25.450000 100.000000 14.330000 \n",
441 | "\n",
442 | " WD10M \n",
443 | "count 175310.000000 \n",
444 | "mean 207.538628 \n",
445 | "std 103.475862 \n",
446 | "min 0.000000 \n",
447 | "25% 107.290000 \n",
448 | "50% 246.180000 \n",
449 | "75% 296.750000 \n",
450 | "max 359.920000 "
451 | ]
452 | },
453 | "execution_count": 39,
454 | "metadata": {},
455 | "output_type": "execute_result"
456 | }
457 | ],
458 | "source": [
459 | "df.describe()\n"
460 | ]
461 | },
462 | {
463 | "cell_type": "code",
464 | "execution_count": 81,
465 | "metadata": {},
466 | "outputs": [
467 | {
468 | "name": "stdout",
469 | "output_type": "stream",
470 | "text": [
471 | "\n",
472 | "RangeIndex: 175310 entries, 0 to 175309\n",
473 | "Data columns (total 9 columns):\n",
474 | " # Column Non-Null Count Dtype \n",
475 | "--- ------ -------------- ----- \n",
476 | " 0 YEAR 175310 non-null int64 \n",
477 | " 1 MO 175310 non-null int64 \n",
478 | " 2 DY 175310 non-null int64 \n",
479 | " 3 HR 175310 non-null int64 \n",
480 | " 4 T2M 175310 non-null float64\n",
481 | " 5 QV2M 175310 non-null float64\n",
482 | " 6 RH2M 175310 non-null float64\n",
483 | " 7 WS10M 175310 non-null float64\n",
484 | " 8 WD10M 175310 non-null float64\n",
485 | "dtypes: float64(5), int64(4)\n",
486 | "memory usage: 12.0 MB\n"
487 | ]
488 | }
489 | ],
490 | "source": [
491 | "df.info()"
492 | ]
493 | },
494 | {
495 | "cell_type": "code",
496 | "execution_count": 82,
497 | "metadata": {},
498 | "outputs": [
499 | {
500 | "data": {
501 | "text/plain": [
502 | "YEAR 0\n",
503 | "MO 0\n",
504 | "DY 0\n",
505 | "HR 0\n",
506 | "T2M 0\n",
507 | "QV2M 0\n",
508 | "RH2M 0\n",
509 | "WS10M 0\n",
510 | "WD10M 0\n",
511 | "dtype: int64"
512 | ]
513 | },
514 | "execution_count": 82,
515 | "metadata": {},
516 | "output_type": "execute_result"
517 | }
518 | ],
519 | "source": [
520 | "df.isnull().sum()"
521 | ]
522 | },
523 | {
524 | "cell_type": "code",
525 | "execution_count": 40,
526 | "metadata": {},
527 | "outputs": [
528 | {
529 | "data": {
530 | "text/html": [
531 | "\n",
532 | "\n",
545 | "
\n",
546 | " \n",
547 | " \n",
548 | " | \n",
549 | " YEAR | \n",
550 | " MO | \n",
551 | " DY | \n",
552 | " HR | \n",
553 | " T2M | \n",
554 | " QV2M | \n",
555 | " RH2M | \n",
556 | " WS10M | \n",
557 | " WD10M | \n",
558 | "
\n",
559 | " \n",
560 | " \n",
561 | " \n",
562 | " | 117723 | \n",
563 | " 2014 | \n",
564 | " 6 | \n",
565 | " 7 | \n",
566 | " 13 | \n",
567 | " 49.47 | \n",
568 | " 6.29 | \n",
569 | " 8.19 | \n",
570 | " 7.07 | \n",
571 | " 326.31 | \n",
572 | "
\n",
573 | " \n",
574 | " | 117747 | \n",
575 | " 2014 | \n",
576 | " 6 | \n",
577 | " 8 | \n",
578 | " 13 | \n",
579 | " 49.26 | \n",
580 | " 5.92 | \n",
581 | " 7.75 | \n",
582 | " 6.49 | \n",
583 | " 316.71 | \n",
584 | "
\n",
585 | " \n",
586 | " | 117722 | \n",
587 | " 2014 | \n",
588 | " 6 | \n",
589 | " 7 | \n",
590 | " 12 | \n",
591 | " 49.23 | \n",
592 | " 6.23 | \n",
593 | " 8.25 | \n",
594 | " 6.72 | \n",
595 | " 330.63 | \n",
596 | "
\n",
597 | " \n",
598 | " | 117724 | \n",
599 | " 2014 | \n",
600 | " 6 | \n",
601 | " 7 | \n",
602 | " 14 | \n",
603 | " 49.18 | \n",
604 | " 6.23 | \n",
605 | " 8.25 | \n",
606 | " 7.22 | \n",
607 | " 322.65 | \n",
608 | "
\n",
609 | " \n",
610 | " | 117746 | \n",
611 | " 2014 | \n",
612 | " 6 | \n",
613 | " 8 | \n",
614 | " 12 | \n",
615 | " 49.11 | \n",
616 | " 6.10 | \n",
617 | " 8.12 | \n",
618 | " 5.95 | \n",
619 | " 319.37 | \n",
620 | "
\n",
621 | " \n",
622 | " | ... | \n",
623 | " ... | \n",
624 | " ... | \n",
625 | " ... | \n",
626 | " ... | \n",
627 | " ... | \n",
628 | " ... | \n",
629 | " ... | \n",
630 | " ... | \n",
631 | " ... | \n",
632 | "
\n",
633 | " \n",
634 | " | 166505 | \n",
635 | " 2019 | \n",
636 | " 12 | \n",
637 | " 31 | \n",
638 | " 3 | \n",
639 | " 1.05 | \n",
640 | " 4.39 | \n",
641 | " 100.00 | \n",
642 | " 2.15 | \n",
643 | " 97.31 | \n",
644 | "
\n",
645 | " \n",
646 | " | 166483 | \n",
647 | " 2019 | \n",
648 | " 12 | \n",
649 | " 30 | \n",
650 | " 5 | \n",
651 | " 0.94 | \n",
652 | " 4.76 | \n",
653 | " 100.00 | \n",
654 | " 2.68 | \n",
655 | " 174.81 | \n",
656 | "
\n",
657 | " \n",
658 | " | 166506 | \n",
659 | " 2019 | \n",
660 | " 12 | \n",
661 | " 31 | \n",
662 | " 4 | \n",
663 | " 0.40 | \n",
664 | " 4.39 | \n",
665 | " 100.00 | \n",
666 | " 2.22 | \n",
667 | " 102.81 | \n",
668 | "
\n",
669 | " \n",
670 | " | 166508 | \n",
671 | " 2019 | \n",
672 | " 12 | \n",
673 | " 31 | \n",
674 | " 6 | \n",
675 | " 0.36 | \n",
676 | " 4.33 | \n",
677 | " 100.00 | \n",
678 | " 2.01 | \n",
679 | " 118.56 | \n",
680 | "
\n",
681 | " \n",
682 | " | 166507 | \n",
683 | " 2019 | \n",
684 | " 12 | \n",
685 | " 31 | \n",
686 | " 5 | \n",
687 | " 0.01 | \n",
688 | " 4.39 | \n",
689 | " 100.00 | \n",
690 | " 2.22 | \n",
691 | " 110.41 | \n",
692 | "
\n",
693 | " \n",
694 | "
\n",
695 | "
175310 rows × 9 columns
\n",
696 | "
"
697 | ],
698 | "text/plain": [
699 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
700 | "117723 2014 6 7 13 49.47 6.29 8.19 7.07 326.31\n",
701 | "117747 2014 6 8 13 49.26 5.92 7.75 6.49 316.71\n",
702 | "117722 2014 6 7 12 49.23 6.23 8.25 6.72 330.63\n",
703 | "117724 2014 6 7 14 49.18 6.23 8.25 7.22 322.65\n",
704 | "117746 2014 6 8 12 49.11 6.10 8.12 5.95 319.37\n",
705 | "... ... .. .. .. ... ... ... ... ...\n",
706 | "166505 2019 12 31 3 1.05 4.39 100.00 2.15 97.31\n",
707 | "166483 2019 12 30 5 0.94 4.76 100.00 2.68 174.81\n",
708 | "166506 2019 12 31 4 0.40 4.39 100.00 2.22 102.81\n",
709 | "166508 2019 12 31 6 0.36 4.33 100.00 2.01 118.56\n",
710 | "166507 2019 12 31 5 0.01 4.39 100.00 2.22 110.41\n",
711 | "\n",
712 | "[175310 rows x 9 columns]"
713 | ]
714 | },
715 | "execution_count": 40,
716 | "metadata": {},
717 | "output_type": "execute_result"
718 | }
719 | ],
720 | "source": [
721 | "df.sort_values('T2M',ascending=False)"
722 | ]
723 | },
724 | {
725 | "cell_type": "code",
726 | "execution_count": 51,
727 | "metadata": {},
728 | "outputs": [
729 | {
730 | "data": {
731 | "text/html": [
732 | "\n",
733 | "\n",
746 | "
\n",
747 | " \n",
748 | " \n",
749 | " | \n",
750 | " YEAR | \n",
751 | " MO | \n",
752 | " DY | \n",
753 | " HR | \n",
754 | " T2M | \n",
755 | " QV2M | \n",
756 | " RH2M | \n",
757 | " WS10M | \n",
758 | " WD10M | \n",
759 | "
\n",
760 | " \n",
761 | " \n",
762 | " \n",
763 | " | 117722 | \n",
764 | " 2014 | \n",
765 | " 6 | \n",
766 | " 7 | \n",
767 | " 12 | \n",
768 | " 49.23 | \n",
769 | " 6.23 | \n",
770 | " 8.25 | \n",
771 | " 6.72 | \n",
772 | " 330.63 | \n",
773 | "
\n",
774 | " \n",
775 | " | 117723 | \n",
776 | " 2014 | \n",
777 | " 6 | \n",
778 | " 7 | \n",
779 | " 13 | \n",
780 | " 49.47 | \n",
781 | " 6.29 | \n",
782 | " 8.19 | \n",
783 | " 7.07 | \n",
784 | " 326.31 | \n",
785 | "
\n",
786 | " \n",
787 | " | 117724 | \n",
788 | " 2014 | \n",
789 | " 6 | \n",
790 | " 7 | \n",
791 | " 14 | \n",
792 | " 49.18 | \n",
793 | " 6.23 | \n",
794 | " 8.25 | \n",
795 | " 7.22 | \n",
796 | " 322.65 | \n",
797 | "
\n",
798 | " \n",
799 | " | 117746 | \n",
800 | " 2014 | \n",
801 | " 6 | \n",
802 | " 8 | \n",
803 | " 12 | \n",
804 | " 49.11 | \n",
805 | " 6.10 | \n",
806 | " 8.12 | \n",
807 | " 5.95 | \n",
808 | " 319.37 | \n",
809 | "
\n",
810 | " \n",
811 | " | 117747 | \n",
812 | " 2014 | \n",
813 | " 6 | \n",
814 | " 8 | \n",
815 | " 13 | \n",
816 | " 49.26 | \n",
817 | " 5.92 | \n",
818 | " 7.75 | \n",
819 | " 6.49 | \n",
820 | " 316.71 | \n",
821 | "
\n",
822 | " \n",
823 | " | 117795 | \n",
824 | " 2014 | \n",
825 | " 6 | \n",
826 | " 10 | \n",
827 | " 13 | \n",
828 | " 49.07 | \n",
829 | " 4.09 | \n",
830 | " 5.44 | \n",
831 | " 5.97 | \n",
832 | " 307.93 | \n",
833 | "
\n",
834 | " \n",
835 | "
\n",
836 | "
"
837 | ],
838 | "text/plain": [
839 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
840 | "117722 2014 6 7 12 49.23 6.23 8.25 6.72 330.63\n",
841 | "117723 2014 6 7 13 49.47 6.29 8.19 7.07 326.31\n",
842 | "117724 2014 6 7 14 49.18 6.23 8.25 7.22 322.65\n",
843 | "117746 2014 6 8 12 49.11 6.10 8.12 5.95 319.37\n",
844 | "117747 2014 6 8 13 49.26 5.92 7.75 6.49 316.71\n",
845 | "117795 2014 6 10 13 49.07 4.09 5.44 5.97 307.93"
846 | ]
847 | },
848 | "execution_count": 51,
849 | "metadata": {},
850 | "output_type": "execute_result"
851 | }
852 | ],
853 | "source": [
854 | "df[df['T2M'] > 49 ]"
855 | ]
856 | },
857 | {
858 | "cell_type": "code",
859 | "execution_count": 68,
860 | "metadata": {},
861 | "outputs": [
862 | {
863 | "data": {
864 | "text/html": [
865 | "\n",
866 | "\n",
879 | "
\n",
880 | " \n",
881 | " \n",
882 | " | \n",
883 | " YEAR | \n",
884 | " MO | \n",
885 | " DY | \n",
886 | " HR | \n",
887 | " T2M | \n",
888 | " QV2M | \n",
889 | " RH2M | \n",
890 | " WS10M | \n",
891 | " WD10M | \n",
892 | "
\n",
893 | " \n",
894 | " \n",
895 | " \n",
896 | " | 157766 | \n",
897 | " 2019 | \n",
898 | " 1 | \n",
899 | " 1 | \n",
900 | " 0 | \n",
901 | " 10.40 | \n",
902 | " 3.66 | \n",
903 | " 46.62 | \n",
904 | " 1.87 | \n",
905 | " 277.21 | \n",
906 | "
\n",
907 | " \n",
908 | " | 157767 | \n",
909 | " 2019 | \n",
910 | " 1 | \n",
911 | " 1 | \n",
912 | " 1 | \n",
913 | " 9.12 | \n",
914 | " 3.66 | \n",
915 | " 50.81 | \n",
916 | " 2.24 | \n",
917 | " 273.00 | \n",
918 | "
\n",
919 | " \n",
920 | " | 157768 | \n",
921 | " 2019 | \n",
922 | " 1 | \n",
923 | " 1 | \n",
924 | " 2 | \n",
925 | " 7.63 | \n",
926 | " 3.66 | \n",
927 | " 56.62 | \n",
928 | " 2.63 | \n",
929 | " 274.61 | \n",
930 | "
\n",
931 | " \n",
932 | " | 157769 | \n",
933 | " 2019 | \n",
934 | " 1 | \n",
935 | " 1 | \n",
936 | " 3 | \n",
937 | " 6.58 | \n",
938 | " 3.66 | \n",
939 | " 60.88 | \n",
940 | " 2.82 | \n",
941 | " 277.79 | \n",
942 | "
\n",
943 | " \n",
944 | " | 157770 | \n",
945 | " 2019 | \n",
946 | " 1 | \n",
947 | " 1 | \n",
948 | " 4 | \n",
949 | " 5.90 | \n",
950 | " 3.66 | \n",
951 | " 63.56 | \n",
952 | " 2.88 | \n",
953 | " 278.75 | \n",
954 | "
\n",
955 | " \n",
956 | " | ... | \n",
957 | " ... | \n",
958 | " ... | \n",
959 | " ... | \n",
960 | " ... | \n",
961 | " ... | \n",
962 | " ... | \n",
963 | " ... | \n",
964 | " ... | \n",
965 | " ... | \n",
966 | "
\n",
967 | " \n",
968 | " | 165801 | \n",
969 | " 2019 | \n",
970 | " 12 | \n",
971 | " 1 | \n",
972 | " 19 | \n",
973 | " 18.04 | \n",
974 | " 10.07 | \n",
975 | " 77.88 | \n",
976 | " 2.11 | \n",
977 | " 290.58 | \n",
978 | "
\n",
979 | " \n",
980 | " | 165802 | \n",
981 | " 2019 | \n",
982 | " 12 | \n",
983 | " 1 | \n",
984 | " 20 | \n",
985 | " 17.20 | \n",
986 | " 9.89 | \n",
987 | " 80.69 | \n",
988 | " 2.32 | \n",
989 | " 298.81 | \n",
990 | "
\n",
991 | " \n",
992 | " | 165803 | \n",
993 | " 2019 | \n",
994 | " 12 | \n",
995 | " 1 | \n",
996 | " 21 | \n",
997 | " 16.51 | \n",
998 | " 9.70 | \n",
999 | " 82.75 | \n",
1000 | " 2.47 | \n",
1001 | " 305.20 | \n",
1002 | "
\n",
1003 | " \n",
1004 | " | 165804 | \n",
1005 | " 2019 | \n",
1006 | " 12 | \n",
1007 | " 1 | \n",
1008 | " 22 | \n",
1009 | " 15.94 | \n",
1010 | " 9.46 | \n",
1011 | " 83.62 | \n",
1012 | " 2.50 | \n",
1013 | " 310.56 | \n",
1014 | "
\n",
1015 | " \n",
1016 | " | 165805 | \n",
1017 | " 2019 | \n",
1018 | " 12 | \n",
1019 | " 1 | \n",
1020 | " 23 | \n",
1021 | " 15.42 | \n",
1022 | " 9.22 | \n",
1023 | " 84.19 | \n",
1024 | " 2.46 | \n",
1025 | " 315.51 | \n",
1026 | "
\n",
1027 | " \n",
1028 | "
\n",
1029 | "
288 rows × 9 columns
\n",
1030 | "
"
1031 | ],
1032 | "text/plain": [
1033 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
1034 | "157766 2019 1 1 0 10.40 3.66 46.62 1.87 277.21\n",
1035 | "157767 2019 1 1 1 9.12 3.66 50.81 2.24 273.00\n",
1036 | "157768 2019 1 1 2 7.63 3.66 56.62 2.63 274.61\n",
1037 | "157769 2019 1 1 3 6.58 3.66 60.88 2.82 277.79\n",
1038 | "157770 2019 1 1 4 5.90 3.66 63.56 2.88 278.75\n",
1039 | "... ... .. .. .. ... ... ... ... ...\n",
1040 | "165801 2019 12 1 19 18.04 10.07 77.88 2.11 290.58\n",
1041 | "165802 2019 12 1 20 17.20 9.89 80.69 2.32 298.81\n",
1042 | "165803 2019 12 1 21 16.51 9.70 82.75 2.47 305.20\n",
1043 | "165804 2019 12 1 22 15.94 9.46 83.62 2.50 310.56\n",
1044 | "165805 2019 12 1 23 15.42 9.22 84.19 2.46 315.51\n",
1045 | "\n",
1046 | "[288 rows x 9 columns]"
1047 | ]
1048 | },
1049 | "execution_count": 68,
1050 | "metadata": {},
1051 | "output_type": "execute_result"
1052 | }
1053 | ],
1054 | "source": [
1055 | "df[(df['YEAR'] == 2019) & (df['DY'] == 1) ]\n",
1056 | "# 2019 only 1st day of the month "
1057 | ]
1058 | },
1059 | {
1060 | "cell_type": "code",
1061 | "execution_count": 76,
1062 | "metadata": {},
1063 | "outputs": [],
1064 | "source": [
1065 | "tempdf = df[(df['YEAR'] == 2019) & (df['MO'] == 12) & (df['HR'] == 23)]"
1066 | ]
1067 | },
1068 | {
1069 | "cell_type": "code",
1070 | "execution_count": 77,
1071 | "metadata": {},
1072 | "outputs": [
1073 | {
1074 | "data": {
1075 | "text/html": [
1076 | "\n",
1077 | "\n",
1090 | "
\n",
1091 | " \n",
1092 | " \n",
1093 | " | \n",
1094 | " YEAR | \n",
1095 | " MO | \n",
1096 | " DY | \n",
1097 | " HR | \n",
1098 | " T2M | \n",
1099 | " QV2M | \n",
1100 | " RH2M | \n",
1101 | " WS10M | \n",
1102 | " WD10M | \n",
1103 | "
\n",
1104 | " \n",
1105 | " \n",
1106 | " \n",
1107 | " | 165805 | \n",
1108 | " 2019 | \n",
1109 | " 12 | \n",
1110 | " 1 | \n",
1111 | " 23 | \n",
1112 | " 15.42 | \n",
1113 | " 9.22 | \n",
1114 | " 84.19 | \n",
1115 | " 2.46 | \n",
1116 | " 315.51 | \n",
1117 | "
\n",
1118 | " \n",
1119 | " | 165829 | \n",
1120 | " 2019 | \n",
1121 | " 12 | \n",
1122 | " 2 | \n",
1123 | " 23 | \n",
1124 | " 12.74 | \n",
1125 | " 7.14 | \n",
1126 | " 77.56 | \n",
1127 | " 2.69 | \n",
1128 | " 285.01 | \n",
1129 | "
\n",
1130 | " \n",
1131 | " | 165853 | \n",
1132 | " 2019 | \n",
1133 | " 12 | \n",
1134 | " 3 | \n",
1135 | " 23 | \n",
1136 | " 10.99 | \n",
1137 | " 6.23 | \n",
1138 | " 76.12 | \n",
1139 | " 3.06 | \n",
1140 | " 246.51 | \n",
1141 | "
\n",
1142 | " \n",
1143 | " | 165877 | \n",
1144 | " 2019 | \n",
1145 | " 12 | \n",
1146 | " 4 | \n",
1147 | " 23 | \n",
1148 | " 13.18 | \n",
1149 | " 6.53 | \n",
1150 | " 69.19 | \n",
1151 | " 1.71 | \n",
1152 | " 187.35 | \n",
1153 | "
\n",
1154 | " \n",
1155 | " | 165901 | \n",
1156 | " 2019 | \n",
1157 | " 12 | \n",
1158 | " 5 | \n",
1159 | " 23 | \n",
1160 | " 13.86 | \n",
1161 | " 7.39 | \n",
1162 | " 74.88 | \n",
1163 | " 0.99 | \n",
1164 | " 166.84 | \n",
1165 | "
\n",
1166 | " \n",
1167 | " | 165925 | \n",
1168 | " 2019 | \n",
1169 | " 12 | \n",
1170 | " 6 | \n",
1171 | " 23 | \n",
1172 | " 13.95 | \n",
1173 | " 8.06 | \n",
1174 | " 81.44 | \n",
1175 | " 1.25 | \n",
1176 | " 170.66 | \n",
1177 | "
\n",
1178 | " \n",
1179 | " | 165949 | \n",
1180 | " 2019 | \n",
1181 | " 12 | \n",
1182 | " 7 | \n",
1183 | " 23 | \n",
1184 | " 14.61 | \n",
1185 | " 8.48 | \n",
1186 | " 82.19 | \n",
1187 | " 1.24 | \n",
1188 | " 243.92 | \n",
1189 | "
\n",
1190 | " \n",
1191 | " | 165973 | \n",
1192 | " 2019 | \n",
1193 | " 12 | \n",
1194 | " 8 | \n",
1195 | " 23 | \n",
1196 | " 14.39 | \n",
1197 | " 9.09 | \n",
1198 | " 89.38 | \n",
1199 | " 1.57 | \n",
1200 | " 220.17 | \n",
1201 | "
\n",
1202 | " \n",
1203 | " | 165997 | \n",
1204 | " 2019 | \n",
1205 | " 12 | \n",
1206 | " 9 | \n",
1207 | " 23 | \n",
1208 | " 14.19 | \n",
1209 | " 8.00 | \n",
1210 | " 79.44 | \n",
1211 | " 1.50 | \n",
1212 | " 201.64 | \n",
1213 | "
\n",
1214 | " \n",
1215 | " | 166021 | \n",
1216 | " 2019 | \n",
1217 | " 12 | \n",
1218 | " 10 | \n",
1219 | " 23 | \n",
1220 | " 13.12 | \n",
1221 | " 7.63 | \n",
1222 | " 80.75 | \n",
1223 | " 2.03 | \n",
1224 | " 220.31 | \n",
1225 | "
\n",
1226 | " \n",
1227 | " | 166045 | \n",
1228 | " 2019 | \n",
1229 | " 12 | \n",
1230 | " 11 | \n",
1231 | " 23 | \n",
1232 | " 14.93 | \n",
1233 | " 8.00 | \n",
1234 | " 75.38 | \n",
1235 | " 1.24 | \n",
1236 | " 139.87 | \n",
1237 | "
\n",
1238 | " \n",
1239 | " | 166069 | \n",
1240 | " 2019 | \n",
1241 | " 12 | \n",
1242 | " 12 | \n",
1243 | " 23 | \n",
1244 | " 15.83 | \n",
1245 | " 10.56 | \n",
1246 | " 93.38 | \n",
1247 | " 6.88 | \n",
1248 | " 128.04 | \n",
1249 | "
\n",
1250 | " \n",
1251 | " | 166093 | \n",
1252 | " 2019 | \n",
1253 | " 12 | \n",
1254 | " 13 | \n",
1255 | " 23 | \n",
1256 | " 15.16 | \n",
1257 | " 11.17 | \n",
1258 | " 100.00 | \n",
1259 | " 2.51 | \n",
1260 | " 138.41 | \n",
1261 | "
\n",
1262 | " \n",
1263 | " | 166117 | \n",
1264 | " 2019 | \n",
1265 | " 12 | \n",
1266 | " 14 | \n",
1267 | " 23 | \n",
1268 | " 15.06 | \n",
1269 | " 9.58 | \n",
1270 | " 90.12 | \n",
1271 | " 1.96 | \n",
1272 | " 69.18 | \n",
1273 | "
\n",
1274 | " \n",
1275 | " | 166141 | \n",
1276 | " 2019 | \n",
1277 | " 12 | \n",
1278 | " 15 | \n",
1279 | " 23 | \n",
1280 | " 12.55 | \n",
1281 | " 8.42 | \n",
1282 | " 93.31 | \n",
1283 | " 2.11 | \n",
1284 | " 279.60 | \n",
1285 | "
\n",
1286 | " \n",
1287 | " | 166165 | \n",
1288 | " 2019 | \n",
1289 | " 12 | \n",
1290 | " 16 | \n",
1291 | " 23 | \n",
1292 | " 9.40 | \n",
1293 | " 6.35 | \n",
1294 | " 86.50 | \n",
1295 | " 3.08 | \n",
1296 | " 291.24 | \n",
1297 | "
\n",
1298 | " \n",
1299 | " | 166189 | \n",
1300 | " 2019 | \n",
1301 | " 12 | \n",
1302 | " 17 | \n",
1303 | " 23 | \n",
1304 | " 8.57 | \n",
1305 | " 6.16 | \n",
1306 | " 88.94 | \n",
1307 | " 3.03 | \n",
1308 | " 292.46 | \n",
1309 | "
\n",
1310 | " \n",
1311 | " | 166213 | \n",
1312 | " 2019 | \n",
1313 | " 12 | \n",
1314 | " 18 | \n",
1315 | " 23 | \n",
1316 | " 9.61 | \n",
1317 | " 5.68 | \n",
1318 | " 76.62 | \n",
1319 | " 1.34 | \n",
1320 | " 227.84 | \n",
1321 | "
\n",
1322 | " \n",
1323 | " | 166237 | \n",
1324 | " 2019 | \n",
1325 | " 12 | \n",
1326 | " 19 | \n",
1327 | " 23 | \n",
1328 | " 8.79 | \n",
1329 | " 5.49 | \n",
1330 | " 78.25 | \n",
1331 | " 2.25 | \n",
1332 | " 236.92 | \n",
1333 | "
\n",
1334 | " \n",
1335 | " | 166261 | \n",
1336 | " 2019 | \n",
1337 | " 12 | \n",
1338 | " 20 | \n",
1339 | " 23 | \n",
1340 | " 10.94 | \n",
1341 | " 5.62 | \n",
1342 | " 69.19 | \n",
1343 | " 1.42 | \n",
1344 | " 265.58 | \n",
1345 | "
\n",
1346 | " \n",
1347 | " | 166285 | \n",
1348 | " 2019 | \n",
1349 | " 12 | \n",
1350 | " 21 | \n",
1351 | " 23 | \n",
1352 | " 13.17 | \n",
1353 | " 7.75 | \n",
1354 | " 81.75 | \n",
1355 | " 2.94 | \n",
1356 | " 310.37 | \n",
1357 | "
\n",
1358 | " \n",
1359 | " | 166309 | \n",
1360 | " 2019 | \n",
1361 | " 12 | \n",
1362 | " 22 | \n",
1363 | " 23 | \n",
1364 | " 9.63 | \n",
1365 | " 5.98 | \n",
1366 | " 79.88 | \n",
1367 | " 3.22 | \n",
1368 | " 312.74 | \n",
1369 | "
\n",
1370 | " \n",
1371 | " | 166333 | \n",
1372 | " 2019 | \n",
1373 | " 12 | \n",
1374 | " 23 | \n",
1375 | " 23 | \n",
1376 | " 10.87 | \n",
1377 | " 5.31 | \n",
1378 | " 65.88 | \n",
1379 | " 1.95 | \n",
1380 | " 140.37 | \n",
1381 | "
\n",
1382 | " \n",
1383 | " | 166357 | \n",
1384 | " 2019 | \n",
1385 | " 12 | \n",
1386 | " 24 | \n",
1387 | " 23 | \n",
1388 | " 9.28 | \n",
1389 | " 5.86 | \n",
1390 | " 80.62 | \n",
1391 | " 2.39 | \n",
1392 | " 315.27 | \n",
1393 | "
\n",
1394 | " \n",
1395 | " | 166381 | \n",
1396 | " 2019 | \n",
1397 | " 12 | \n",
1398 | " 25 | \n",
1399 | " 23 | \n",
1400 | " 10.56 | \n",
1401 | " 4.64 | \n",
1402 | " 58.44 | \n",
1403 | " 1.72 | \n",
1404 | " 266.10 | \n",
1405 | "
\n",
1406 | " \n",
1407 | " | 166405 | \n",
1408 | " 2019 | \n",
1409 | " 12 | \n",
1410 | " 26 | \n",
1411 | " 23 | \n",
1412 | " 7.34 | \n",
1413 | " 4.15 | \n",
1414 | " 65.44 | \n",
1415 | " 2.20 | \n",
1416 | " 295.84 | \n",
1417 | "
\n",
1418 | " \n",
1419 | " | 166429 | \n",
1420 | " 2019 | \n",
1421 | " 12 | \n",
1422 | " 27 | \n",
1423 | " 23 | \n",
1424 | " 6.79 | \n",
1425 | " 4.27 | \n",
1426 | " 69.62 | \n",
1427 | " 1.84 | \n",
1428 | " 252.41 | \n",
1429 | "
\n",
1430 | " \n",
1431 | " | 166453 | \n",
1432 | " 2019 | \n",
1433 | " 12 | \n",
1434 | " 28 | \n",
1435 | " 23 | \n",
1436 | " 6.52 | \n",
1437 | " 4.76 | \n",
1438 | " 78.75 | \n",
1439 | " 1.22 | \n",
1440 | " 146.51 | \n",
1441 | "
\n",
1442 | " \n",
1443 | " | 166477 | \n",
1444 | " 2019 | \n",
1445 | " 12 | \n",
1446 | " 29 | \n",
1447 | " 23 | \n",
1448 | " 6.23 | \n",
1449 | " 4.76 | \n",
1450 | " 80.62 | \n",
1451 | " 1.14 | \n",
1452 | " 223.33 | \n",
1453 | "
\n",
1454 | " \n",
1455 | " | 166501 | \n",
1456 | " 2019 | \n",
1457 | " 12 | \n",
1458 | " 30 | \n",
1459 | " 23 | \n",
1460 | " 4.05 | \n",
1461 | " 4.52 | \n",
1462 | " 88.81 | \n",
1463 | " 1.60 | \n",
1464 | " 111.80 | \n",
1465 | "
\n",
1466 | " \n",
1467 | " | 166525 | \n",
1468 | " 2019 | \n",
1469 | " 12 | \n",
1470 | " 31 | \n",
1471 | " 23 | \n",
1472 | " 6.63 | \n",
1473 | " 4.70 | \n",
1474 | " 77.69 | \n",
1475 | " 2.10 | \n",
1476 | " 50.44 | \n",
1477 | "
\n",
1478 | " \n",
1479 | "
\n",
1480 | "
"
1481 | ],
1482 | "text/plain": [
1483 | " YEAR MO DY HR T2M QV2M RH2M WS10M WD10M\n",
1484 | "165805 2019 12 1 23 15.42 9.22 84.19 2.46 315.51\n",
1485 | "165829 2019 12 2 23 12.74 7.14 77.56 2.69 285.01\n",
1486 | "165853 2019 12 3 23 10.99 6.23 76.12 3.06 246.51\n",
1487 | "165877 2019 12 4 23 13.18 6.53 69.19 1.71 187.35\n",
1488 | "165901 2019 12 5 23 13.86 7.39 74.88 0.99 166.84\n",
1489 | "165925 2019 12 6 23 13.95 8.06 81.44 1.25 170.66\n",
1490 | "165949 2019 12 7 23 14.61 8.48 82.19 1.24 243.92\n",
1491 | "165973 2019 12 8 23 14.39 9.09 89.38 1.57 220.17\n",
1492 | "165997 2019 12 9 23 14.19 8.00 79.44 1.50 201.64\n",
1493 | "166021 2019 12 10 23 13.12 7.63 80.75 2.03 220.31\n",
1494 | "166045 2019 12 11 23 14.93 8.00 75.38 1.24 139.87\n",
1495 | "166069 2019 12 12 23 15.83 10.56 93.38 6.88 128.04\n",
1496 | "166093 2019 12 13 23 15.16 11.17 100.00 2.51 138.41\n",
1497 | "166117 2019 12 14 23 15.06 9.58 90.12 1.96 69.18\n",
1498 | "166141 2019 12 15 23 12.55 8.42 93.31 2.11 279.60\n",
1499 | "166165 2019 12 16 23 9.40 6.35 86.50 3.08 291.24\n",
1500 | "166189 2019 12 17 23 8.57 6.16 88.94 3.03 292.46\n",
1501 | "166213 2019 12 18 23 9.61 5.68 76.62 1.34 227.84\n",
1502 | "166237 2019 12 19 23 8.79 5.49 78.25 2.25 236.92\n",
1503 | "166261 2019 12 20 23 10.94 5.62 69.19 1.42 265.58\n",
1504 | "166285 2019 12 21 23 13.17 7.75 81.75 2.94 310.37\n",
1505 | "166309 2019 12 22 23 9.63 5.98 79.88 3.22 312.74\n",
1506 | "166333 2019 12 23 23 10.87 5.31 65.88 1.95 140.37\n",
1507 | "166357 2019 12 24 23 9.28 5.86 80.62 2.39 315.27\n",
1508 | "166381 2019 12 25 23 10.56 4.64 58.44 1.72 266.10\n",
1509 | "166405 2019 12 26 23 7.34 4.15 65.44 2.20 295.84\n",
1510 | "166429 2019 12 27 23 6.79 4.27 69.62 1.84 252.41\n",
1511 | "166453 2019 12 28 23 6.52 4.76 78.75 1.22 146.51\n",
1512 | "166477 2019 12 29 23 6.23 4.76 80.62 1.14 223.33\n",
1513 | "166501 2019 12 30 23 4.05 4.52 88.81 1.60 111.80\n",
1514 | "166525 2019 12 31 23 6.63 4.70 77.69 2.10 50.44"
1515 | ]
1516 | },
1517 | "execution_count": 77,
1518 | "metadata": {},
1519 | "output_type": "execute_result"
1520 | }
1521 | ],
1522 | "source": [
1523 | "tempdf\n"
1524 | ]
1525 | },
1526 | {
1527 | "cell_type": "code",
1528 | "execution_count": 78,
1529 | "metadata": {},
1530 | "outputs": [
1531 | {
1532 | "data": {
1533 | "text/plain": [
1534 | "count 31.000000\n",
1535 | "mean 11.237419\n",
1536 | "std 3.281225\n",
1537 | "min 4.050000\n",
1538 | "25% 9.035000\n",
1539 | "50% 10.990000\n",
1540 | "75% 14.070000\n",
1541 | "max 15.830000\n",
1542 | "Name: T2M, dtype: float64"
1543 | ]
1544 | },
1545 | "execution_count": 78,
1546 | "metadata": {},
1547 | "output_type": "execute_result"
1548 | }
1549 | ],
1550 | "source": [
1551 | "tempdf['T2M'].describe()"
1552 | ]
1553 | },
1554 | {
1555 | "cell_type": "code",
1556 | "execution_count": 79,
1557 | "metadata": {},
1558 | "outputs": [
1559 | {
1560 | "data": {
1561 | "text/html": [
1562 | "\n",
1563 | "\n",
1576 | "
\n",
1577 | " \n",
1578 | " \n",
1579 | " | \n",
1580 | " YEAR | \n",
1581 | " MO | \n",
1582 | " DY | \n",
1583 | " HR | \n",
1584 | " T2M | \n",
1585 | " QV2M | \n",
1586 | " RH2M | \n",
1587 | " WS10M | \n",
1588 | " WD10M | \n",
1589 | "
\n",
1590 | " \n",
1591 | " \n",
1592 | " \n",
1593 | " | count | \n",
1594 | " 31.0 | \n",
1595 | " 31.0 | \n",
1596 | " 31.000000 | \n",
1597 | " 31.0 | \n",
1598 | " 31.000000 | \n",
1599 | " 31.000000 | \n",
1600 | " 31.000000 | \n",
1601 | " 31.000000 | \n",
1602 | " 31.000000 | \n",
1603 | "
\n",
1604 | " \n",
1605 | " | mean | \n",
1606 | " 2019.0 | \n",
1607 | " 12.0 | \n",
1608 | " 16.000000 | \n",
1609 | " 23.0 | \n",
1610 | " 11.237419 | \n",
1611 | " 6.822581 | \n",
1612 | " 79.817097 | \n",
1613 | " 2.149677 | \n",
1614 | " 217.814194 | \n",
1615 | "
\n",
1616 | " \n",
1617 | " | std | \n",
1618 | " 0.0 | \n",
1619 | " 0.0 | \n",
1620 | " 9.092121 | \n",
1621 | " 0.0 | \n",
1622 | " 3.281225 | \n",
1623 | " 1.907761 | \n",
1624 | " 9.095952 | \n",
1625 | " 1.091071 | \n",
1626 | " 74.989962 | \n",
1627 | "
\n",
1628 | " \n",
1629 | " | min | \n",
1630 | " 2019.0 | \n",
1631 | " 12.0 | \n",
1632 | " 1.000000 | \n",
1633 | " 23.0 | \n",
1634 | " 4.050000 | \n",
1635 | " 4.150000 | \n",
1636 | " 58.440000 | \n",
1637 | " 0.990000 | \n",
1638 | " 50.440000 | \n",
1639 | "
\n",
1640 | " \n",
1641 | " | 25% | \n",
1642 | " 2019.0 | \n",
1643 | " 12.0 | \n",
1644 | " 8.500000 | \n",
1645 | " 23.0 | \n",
1646 | " 9.035000 | \n",
1647 | " 5.400000 | \n",
1648 | " 75.750000 | \n",
1649 | " 1.460000 | \n",
1650 | " 156.675000 | \n",
1651 | "
\n",
1652 | " \n",
1653 | " | 50% | \n",
1654 | " 2019.0 | \n",
1655 | " 12.0 | \n",
1656 | " 16.000000 | \n",
1657 | " 23.0 | \n",
1658 | " 10.990000 | \n",
1659 | " 6.350000 | \n",
1660 | " 79.880000 | \n",
1661 | " 1.960000 | \n",
1662 | " 227.840000 | \n",
1663 | "
\n",
1664 | " \n",
1665 | " | 75% | \n",
1666 | " 2019.0 | \n",
1667 | " 12.0 | \n",
1668 | " 23.500000 | \n",
1669 | " 23.0 | \n",
1670 | " 14.070000 | \n",
1671 | " 8.030000 | \n",
1672 | " 85.345000 | \n",
1673 | " 2.485000 | \n",
1674 | " 282.305000 | \n",
1675 | "
\n",
1676 | " \n",
1677 | " | max | \n",
1678 | " 2019.0 | \n",
1679 | " 12.0 | \n",
1680 | " 31.000000 | \n",
1681 | " 23.0 | \n",
1682 | " 15.830000 | \n",
1683 | " 11.170000 | \n",
1684 | " 100.000000 | \n",
1685 | " 6.880000 | \n",
1686 | " 315.510000 | \n",
1687 | "
\n",
1688 | " \n",
1689 | "
\n",
1690 | "
"
1691 | ],
1692 | "text/plain": [
1693 | " YEAR MO DY HR T2M QV2M RH2M \\\n",
1694 | "count 31.0 31.0 31.000000 31.0 31.000000 31.000000 31.000000 \n",
1695 | "mean 2019.0 12.0 16.000000 23.0 11.237419 6.822581 79.817097 \n",
1696 | "std 0.0 0.0 9.092121 0.0 3.281225 1.907761 9.095952 \n",
1697 | "min 2019.0 12.0 1.000000 23.0 4.050000 4.150000 58.440000 \n",
1698 | "25% 2019.0 12.0 8.500000 23.0 9.035000 5.400000 75.750000 \n",
1699 | "50% 2019.0 12.0 16.000000 23.0 10.990000 6.350000 79.880000 \n",
1700 | "75% 2019.0 12.0 23.500000 23.0 14.070000 8.030000 85.345000 \n",
1701 | "max 2019.0 12.0 31.000000 23.0 15.830000 11.170000 100.000000 \n",
1702 | "\n",
1703 | " WS10M WD10M \n",
1704 | "count 31.000000 31.000000 \n",
1705 | "mean 2.149677 217.814194 \n",
1706 | "std 1.091071 74.989962 \n",
1707 | "min 0.990000 50.440000 \n",
1708 | "25% 1.460000 156.675000 \n",
1709 | "50% 1.960000 227.840000 \n",
1710 | "75% 2.485000 282.305000 \n",
1711 | "max 6.880000 315.510000 "
1712 | ]
1713 | },
1714 | "execution_count": 79,
1715 | "metadata": {},
1716 | "output_type": "execute_result"
1717 | }
1718 | ],
1719 | "source": [
1720 | "tempdf.describe()"
1721 | ]
1722 | },
1723 | {
1724 | "cell_type": "code",
1725 | "execution_count": 84,
1726 | "metadata": {},
1727 | "outputs": [],
1728 | "source": [
1729 | "import matplotlib.pyplot as plt\n",
1730 | "import seaborn as sns\n",
1731 | "from sklearn.model_selection import train_test_split"
1732 | ]
1733 | },
1734 | {
1735 | "cell_type": "code",
1736 | "execution_count": 86,
1737 | "metadata": {},
1738 | "outputs": [
1739 | {
1740 | "data": {
1741 | "text/plain": [
1742 | "4452"
1743 | ]
1744 | },
1745 | "execution_count": 86,
1746 | "metadata": {},
1747 | "output_type": "execute_result"
1748 | }
1749 | ],
1750 | "source": [
1751 | "df['T2M'].nunique()"
1752 | ]
1753 | },
1754 | {
1755 | "cell_type": "code",
1756 | "execution_count": null,
1757 | "metadata": {},
1758 | "outputs": [],
1759 | "source": [
1760 | "plt.figure(figsize=(18,6))\n",
1761 | "sns.pairplot(df.drop('MO',axis=1),hue='T2M')\n",
1762 | "plt.show()"
1763 | ]
1764 | },
1765 | {
1766 | "cell_type": "code",
1767 | "execution_count": null,
1768 | "metadata": {},
1769 | "outputs": [],
1770 | "source": []
1771 | }
1772 | ],
1773 | "metadata": {
1774 | "kernelspec": {
1775 | "display_name": "Python 3",
1776 | "language": "python",
1777 | "name": "python3"
1778 | },
1779 | "language_info": {
1780 | "codemirror_mode": {
1781 | "name": "ipython",
1782 | "version": 3
1783 | },
1784 | "file_extension": ".py",
1785 | "mimetype": "text/x-python",
1786 | "name": "python",
1787 | "nbconvert_exporter": "python",
1788 | "pygments_lexer": "ipython3",
1789 | "version": "3.8.3"
1790 | },
1791 | "vscode": {
1792 | "interpreter": {
1793 | "hash": "369f2c481f4da34e4445cda3fffd2e751bd1c4d706f27375911949ba6bb62e1c"
1794 | }
1795 | }
1796 | },
1797 | "nbformat": 4,
1798 | "nbformat_minor": 4
1799 | }
1800 |
--------------------------------------------------------------------------------