├── 0Estacion_C2.csv
├── ACCESS1-0-RCP45.csv
├── Donwscale_CMIP6.r
├── DownscalePT_Blocks_V1.0.r
├── DownscalePT_Full__V1.0.r
├── DownscalePT_full_CMI6_V1.0.r
├── DownscalePT_full_V1.1.r
├── LICENSE
├── Qmapping-Daily.R
├── Qmapping.png
└── README.md
/Donwscale_CMIP6.r:
--------------------------------------------------------------------------------
1 | ################################################################################
2 | # STATISTICAL DOWNSCALING OF DAILY CLIMATE DATA USING #
3 | # QUANTILE MAPPING TECHNIQUE FOR CMIP6 DATASETS #
4 | ################################################################################
5 |
6 | #Author: Julio Montenegro Gambini, M.Sc.,
7 | #PhD fellow - Technische Universiteit Delft (TU Delft), Netherlands.
8 |
9 | #Current version: 1.0
10 |
11 | #©Copyright 2013 2021 Julio Montenegro.
12 | #This script is strictly under license GPLv3
13 | #License details: https://www.gnu.org/licenses/gpl-3.0.en.html
14 |
15 | # Please, when using this script, cite as: "Montenegro, J. (2021). Statistical
16 | #downscaling of daily climate data using quantile mapping technique for CMIP6
17 | #datasets"
18 |
19 | # Installing or loading the required packages ==================================
20 | library(tidyverse)
21 | library(lubridate)
22 | library(qmap)
23 | library(zoo)
24 | library(latticeExtra)
25 | library(readxl)
26 | library(beepr)
27 |
28 | #Setting working directory =====================================================
29 | #IMPORTANT!: The main folder has to contain sub-folders of each model
30 | #where 6 files are located.
31 | #The file names are: TASMIN_OBS.xlsx, TASMIN.csv, TASMAX_OBS.xlsx, TASMAX.csv,
32 | #PR_OBS.xlsx, PR.csv
33 | #Historical observed data: TASMAX_OBS, TASMIN_OBS, PR_OBS
34 | #Future data: TASMIN, TASMAX, PR
35 | #Each file has to contain continous daily data!
36 | #Data cannot contain missing values!
37 |
38 | setwd(paste0('C:/Users/monte/Downloads/CMIP6_DOWNSCALING/',"SSP 585"))
39 | dir <- dir()
40 | length(dir)
41 |
42 | #Pre-procesing and downscaling (EDIT HERE!) ====================================
43 | #Creating a general loop for processing within each model (folder)
44 | for(ind in 1:1){
45 | # Name of the folder which contains csv and xlsx excel files
46 | dir_estation <- dir[ind]
47 |
48 | # CHANGE HERE THE FILE NAMES! ==================================================
49 | #Historical observed data: TASMAX_OBS, TASMIN_OBS, PR_OBS
50 | #Future data: TASMIN, TASMAX, PR
51 |
52 | # DAILY MINIMUM TEMPERATURE PARAMETERS
53 | file_tmin_obs <- 'TASMIN_OBS.xlsx'
54 | file_tmin_mod <- 'TASMIN.csv'
55 | fecha_in_his_min <- as.Date('1981-01-01')
56 | fecha_fin_his_min <- as.Date('2019-12-31')
57 | fecha_in_min <- as.Date('1950-01-01')
58 | fecha_fin_min <- as.Date('2099-12-31')
59 |
60 | # DAILY MAXIMUM TEMPERATURE PARAMETERS
61 | file_tmax_obs <- 'TASMAX_OBS.xlsx'
62 | file_tmax_mod <- 'TASMAX.csv'
63 | fecha_in_his_max <- as.Date('1981-01-01')
64 | fecha_fin_his_max <- as.Date('2019-12-31')
65 | fecha_in_max <- as.Date('1950-01-01')
66 | fecha_fin_max <- as.Date('2099-12-31')
67 |
68 | # DAILY PRECIPITATION PARAMETERS
69 | file_pr_obs <- 'PR_OBS.xlsx'
70 | file_pr_mod <- 'PR.csv'
71 | fecha_in_his_pr <- as.Date('1981-01-01')
72 | fecha_fin_his_pr <- as.Date('2019-12-31')
73 | fecha_in_pr <- as.Date('1950-01-01')
74 | fecha_fin_pr <- as.Date('2099-12-31')
75 |
76 | # GENERATING A QUANTILE MAPPING FUNCTION =======================================
77 |
78 | # Downscaling function for each variable
79 | qp_function <- function(time_ini_his, time_fin_his,
80 | time_ini, time_fin,
81 | file_his, file_mod,
82 | var){
83 |
84 | time_ini <- fecha_in_min
85 | time_fin <- fecha_fin_min
86 | time_ini_his <- fecha_in_his_min
87 | time_fin_his <- fecha_fin_his_min
88 | #file_his <- file_tmin_obs
89 | #file_mod <- file_tmin_mod
90 | #var = 'MIN'
91 | #j <- 2
92 |
93 | ## Reading historical baseline and GCM/RCM future time series
94 | data_historica <- read_excel(paste0(dir_estation,'/',file_his))
95 | data_modelada <- read.csv(paste0(dir_estation,'/',file_mod))
96 |
97 | names_stations <- names(data_historica)[2:length(data_historica)]
98 |
99 | df_reg <- c() # empty dataframe for filling with downscaled data
100 |
101 | ## Downscaling loop for different time series (station data)
102 | for (j in 2:ncol(data_historica)) {
103 |
104 | ## Historical baseline configuration
105 | data_his <- data_historica[,c(1,j)]
106 | colnames(data_his) <- c('FECHA','STATION')
107 | data_his <- data_his %>% mutate(FECHA= as.Date(FECHA))
108 |
109 | ## GCM/RCM data configuration
110 | if (var %in% c('MIN','MAX')) {
111 | correccion <- function(x, na.rm=FALSE) (x-273.15)
112 | }
113 | if (var %in% c('PR')) {
114 | correccion <- function(x, na.rm=FALSE) (x*86400)
115 | }
116 |
117 | data_mod <- data_modelada[,c(1,j)] %>%
118 | mutate_if(is.numeric, correccion, na.rm=FALSE)
119 | colnames(data_mod) <- c('FECHA','STATION')
120 |
121 | ####CONDICION IMPORTANTE ADICIONAL COMO CORRECCION
122 | if(data_modelada[1,1] == "1/1/1950"){
123 | data_model <- data_mod %>% mutate(FECHA= as.Date(FECHA, format = "%m/%d/%Y"))
124 | }else{data_model <- data_mod %>% mutate(FECHA= as.Date(FECHA))}
125 |
126 | ## Date filtering
127 |
128 | ### Historical
129 | var_hist_2 <- data_his %>%
130 | filter(FECHA >= time_ini_his & FECHA <= time_fin_his)
131 | colnames(var_hist_2) <- c('isodate','hist')
132 |
133 | var_hist_2 <- var_hist_2 %>%
134 | full_join(
135 | data.frame(isodate = seq(from=time_ini_his, to=time_fin_his, by ='day')),
136 | by = 'isodate')
137 |
138 | ### Setting the variable of GCM/RCM data
139 | var_model_2 <- data_model %>%
140 | filter(FECHA >= time_ini & FECHA <= time_fin)
141 | colnames(var_model_2) <- c('isodate','mode')
142 |
143 | var_model_2 <- var_model_2 %>%
144 | full_join(
145 | data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day')),
146 | by = 'isodate')
147 |
148 | ## Creating variables to be used
149 | OBS_hist <- var_hist_2 %>%
150 | rename(OBS_hist = hist)
151 |
152 | GCM_model <- var_model_2
153 |
154 | # Filling missing historical data
155 | if (var=='PR') {
156 | OBS_hist <- OBS_hist %>%
157 | mutate(OBS_hist = ifelse(is.na(OBS_hist),0.1,OBS_hist))
158 | }
159 | if (var=='MAX' | var=='MIN') {
160 | OBS_hist <- OBS_hist %>%
161 | mutate(OBS_hist = ifelse(is.na(OBS_hist),16,OBS_hist))
162 | }
163 |
164 | # Filling missing GCM/RCM future data
165 | if (var=='PR') {
166 | GCM_model <- GCM_model %>%
167 | mutate(mode = ifelse(is.na(mode),0.1,mode))
168 | }
169 | if (var=='MAX' | var=='MIN') {
170 | GCM_model <- GCM_model %>%
171 | mutate(mode = ifelse(is.na(mode),15,mode))
172 | }
173 |
174 | GCM_hist <- GCM_model
175 |
176 | ## Conversion of datasets to "ts" objects
177 |
178 | data_hist <- OBS_hist %>%
179 | read.zoo()
180 |
181 | data_mod <- GCM_model %>%
182 | read.zoo()
183 |
184 | data_wt <- GCM_model %>%
185 | read.zoo()
186 |
187 | # SETTING SEASONAL OR MONTHLY ANALYSIS =========================================
188 |
189 |
190 | seasons_by_year <- list(c("December"),c("January"),c("February"),
191 | c("March"),c("April"),c("May"),
192 | c("June"),c("July"),c("August"),
193 | c("September"),c("October"),c("November"))
194 | #According to system region, month names should be changed (e.g. spanish):
195 | #seasons_by_year <- list(c("Diciembre"), c("Enero"), c("Febrero"),
196 | #c("Marzo"), c("Abril"), c("Mayo"),
197 | #c("Junio"), c("Julio"), c("Agosto"),
198 | #c("Septiembre"), c("Octubre"), c("Noviembre"))
199 |
200 | for(i in 1:12) {
201 |
202 | obs_sl <- data_hist[months(time(data_hist)) %in% seasons_by_year[[i]]]
203 | mod_sl <- data_mod[months(time(data_mod)) %in% seasons_by_year[[i]]]
204 | #GCM/RCM data, read!: L. Gudmundsson et al. (2012)
205 |
206 | if (sum(mod_sl, na.rm = T)==0) {
207 | mod_sl[1]<- 0.001
208 | }
209 |
210 | qm_fit <- fitQmapQUANT(obs = coredata(obs_sl),
211 | mod = coredata(mod_sl),
212 | qstep = 0.001,
213 | nboot = 1,
214 | wet.day = 0, # To be changed for temperatures
215 | type = "linear")
216 |
217 | mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), qm_fit, type = "linear")
218 |
219 | data_wt[ months(time(data_wt)) %in% seasons_by_year[[i]]] <- mod_sl_qmapped
220 |
221 | }
222 |
223 | t <- as.data.frame(data_wt)
224 |
225 | if (j == 2) {
226 | df_reg <- t
227 | } else{
228 | df_reg <- cbind(df_reg, t)
229 | }
230 |
231 | }
232 |
233 | # Adding column names
234 | colnames(df_reg) <- names_stations
235 |
236 | # Assign the date column (daily)
237 | df_empty<- data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day'))
238 |
239 | df_out <- df_empty %>%
240 | cbind(df_reg)
241 |
242 | return(df_out)
243 | }
244 |
245 | # APPLYING DOWNSCALING =========================================================
246 |
247 | # Dowscaling for minimum temperature
248 | tmin_reg <- qp_function(fecha_in_min, fecha_fin_min,
249 | fecha_in_his_min, fecha_fin_his_min,
250 | file_tmin_obs, file_tmin_mod, 'MIN')
251 |
252 | # Dowscaling for maximum temperature
253 | tmax_reg <- qp_function(fecha_in_max, fecha_fin_max,
254 | fecha_in_his_max, fecha_fin_his_max,
255 | file_tmax_obs, file_tmax_mod, 'MAX')
256 |
257 | # Dowscaling for precipitation
258 | pr_reg <- qp_function(fecha_in_pr, fecha_fin_pr,
259 | fecha_in_his_pr, fecha_fin_his_pr,
260 | file_pr_obs, file_pr_mod, 'PR')
261 |
262 |
263 | # EXPORTING DOWNSCALED DATA IN 3 FILES =========================================
264 | tmin_reg %>% write.csv(file = paste0(dir_estation,'/tmin_reg.csv'),row.names = F)
265 | tmax_reg %>% write.csv(file = paste0(dir_estation,'/tmax_reg.csv'),row.names = F)
266 | pr_reg %>% write.csv(file = paste0(dir_estation,'/pr_reg.csv'),row.names = F)
267 | #Hear the sound when finally the three files were generated
268 | beep(15)
269 | }
270 | #In case of an error, another sound is played
271 | beep(5)
272 |
--------------------------------------------------------------------------------
/DownscalePT_Blocks_V1.0.r:
--------------------------------------------------------------------------------
1 | # Packages to be used
2 | library(dplyr)
3 | library(lubridate)
4 | library(qmap)
5 | library(zoo)
6 | library(latticeExtra)
7 | library(xlsx)
8 | library(readxl)
9 |
10 | # Indicar la carpeta que contiene a las estaciones
11 | setwd('D:/downscaling/')
12 |
13 | # llamamos a los archivos historicos
14 | data_pr_his <- read_excel("Histórico_Est.xlsx")
15 | data_tmax_his <- read_excel("Tmáx_esta.xlsx")
16 | data_tmin_his <- read_excel("Tmín_esta.xlsx")
17 |
18 | #============================================================================
19 | # Configurar segun la data
20 |
21 | ## Numero de variables
22 | n_var <- 3
23 |
24 | ## Nombre del archivo de la data modelada que sigue despues del texto 'RCP4585'
25 | vec_var_2 <- c('TASMAX','TASMIN','PR')
26 | ## Nombre resumen de la variable (recomiendo dejar como esta)
27 | vec_var_3 <- c('MAX','MIN','PR')
28 |
29 | ## Fijar las fechas historicas
30 | fecha_in_his <- as.Date('1980-01-01')
31 | fecha_fin_his <- as.Date('2009-12-31')
32 |
33 | ## Fijar las fechas de los bloques
34 | fecha_in_1 <- as.Date('2010-01-01')
35 | fecha_fin_1 <- as.Date('2039-12-31')
36 |
37 | fecha_in_2 <- as.Date('2040-01-01')
38 | fecha_fin_2 <- as.Date('2069-12-31')
39 |
40 | fecha_in_3 <- as.Date('2070-01-01')
41 | fecha_fin_3 <- as.Date('2099-12-31')
42 |
43 | ## Agrupar en vector (dejar como esta)
44 | fecha_in <- c(fecha_in_1, fecha_in_2, fecha_in_3)
45 | fecha_fin <- c(fecha_fin_1, fecha_fin_2, fecha_fin_3)
46 | #============================================================================
47 |
48 | # Funci?n para generar la regionalizacion, para cada variable y para un solo bloque de tiempo
49 |
50 | ds <- function(time_ini_his, time_fin_his, time_ini, time_fin, data_his, data_model, var){
51 |
52 | #time_ini <- as.Date('2010-01-01')
53 | #time_fin <- as.Date('2039-12-31')
54 | # time_ini <- as.Date('2040-01-01')
55 | # time_fin <- as.Date('2069-12-31')
56 | # time_ini <- as.Date('2070-01-01')
57 | # time_fin <- as.Date('2099-12-31')
58 | # time_ini_his <- as.Date('1980-01-01')
59 | # time_fin_his <- as.Date('2009-12-31')
60 | # data_his <- var_hist
61 | # data_model <- var_model
62 | # var = 'PR'
63 |
64 | # Creamos vectores con la informacion de los modelos
65 | #name_his <- sort(names(data_his)[which(substring(names(data_his),1,3)=='his')] )
66 | name_mod <- sort(names(data_model)[which(substring(names(data_model),1,3)=='rcp')] )
67 | n_model <- length(name_mod)
68 | # Creamos df vacios quienes van a contener a los resultados
69 | df_mod <- c()
70 | # Generamos la regionalizaci?n por tipo de proyeccion
71 | for (j in 1:n_model) {
72 |
73 | # configurar la variable historica
74 | var_hist_2 <- data_his %>%
75 | filter(FECHA >= time_ini_his & FECHA <= time_fin_his)
76 | colnames(var_hist_2) <- c('isodate','hist')
77 |
78 | var_hist_2 <- var_hist_2 %>%
79 | full_join(
80 | data.frame(isodate = seq(from=time_ini_his, to=time_fin_his, by ='day')),
81 | by = 'isodate')
82 |
83 | # configurar la variable del modelo
84 | var_model_2 <- data_model[, c(which(names(data_model) == 'isodate'),
85 | which(names(data_model) == name_mod[j]))] %>%
86 | filter(isodate >= time_ini & isodate <= time_fin)
87 | colnames(var_model_2) <- c('isodate','mode')
88 |
89 | var_model_2 <- var_model_2 %>%
90 | filter(isodate <= time_fin & isodate >= time_ini) %>%
91 | full_join(
92 | data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day')),
93 | by = 'isodate')
94 |
95 | # aqui completo valores faltantes con 0.1
96 | if (var=='PR') {
97 | OBS_hist <- OBS_hist %>%
98 | mutate(OBS_hist = ifelse(is.na(OBS_hist),0.1,OBS_hist))
99 | }
100 | if (var=='MAX' | var=='MIN') {
101 | OBS_hist <- OBS_hist %>%
102 | mutate(OBS_hist = ifelse(is.na(OBS_hist),15,OBS_hist))
103 | }
104 |
105 | # forzamos a que coincida el numero de dias para ambas series
106 | if (nrow(var_hist_2) > nrow(var_model_2)) {
107 | var_model_2 <- rbind(var_model_2, data.frame(isodate=Sys.Date(),mode=var_model_2[nrow(var_model_2),2]))
108 | }
109 | if (nrow(var_model_2) > nrow(var_hist_2)) {
110 | var_model_2 <- var_model_2 %>%
111 | slice(1:nrow(var_hist_2))
112 | }
113 |
114 | # creamos las variables a usar (solo para seguir el script de origen)
115 | OBS_hist <- var_hist_2 %>%
116 | rename(OBS_hist = hist)
117 |
118 | GCM_model <- var_model_2
119 |
120 | # aqui completo valores faltantes con 0.1
121 | if (var=='PR') {
122 | GCM_model <- GCM_model %>%
123 | mutate(mode = ifelse(is.na(mode),0.1,mode))
124 | }
125 | if (var=='MAX' | var=='MIN') {
126 | GCM_model <- GCM_model %>%
127 | mutate(mode = ifelse(is.na(mode),15,mode))
128 | }
129 |
130 | GCM_hist <- GCM_model
131 |
132 | data_at <- cbind(OBS_hist, GCM_model = GCM_model[,2]) %>%
133 | read.zoo()
134 | data_wt <- cbind(OBS_hist, GCM_hist = GCM_hist[,2]) %>%
135 | read.zoo()
136 |
137 | #============================================================================
138 | # APLICACIÓN DE LA TÉCNICA DE QUANTILE MAPPING (MÉTODO EMPÍRICO)
139 |
140 | data_wt$gcm_downscaled <- data_wt$GCM_hist
141 |
142 | seasons_by_year <- list(c("Diciembre","Enero","Febrero"),
143 | c("Marzo","Abril","Mayo"),
144 | c("Junio","Julio","Agosto"),
145 | c("Setiembre","Octubre","Noviembre"))
146 |
147 | seasonal_qm_fit_model <- list()
148 |
149 | ## funcion de quantil maping 0.1 es a correcion, es linea
150 | for(i in 1:4) {
151 | obs_sl <- data_wt[months(time(data_wt)) %in% seasons_by_year[[i]]]$OBS_hist
152 | mod_sl <- data_wt[months(time(data_wt)) %in% seasons_by_year[[i]]]$GCM_hist
153 | #MODEL, read!: L. Gudmundsson et al. (2012)
154 |
155 | if (sum(mod_sl, na.rm = T)==0) {
156 | mod_sl[1]<- 0.001
157 | }
158 |
159 | qm_fit <- fitQmapQUANT(obs = coredata(obs_sl),
160 | coredata(mod_sl),
161 | qstep = 0.01,
162 | nboot = 1,
163 | wet.day = 0, # Adaptado para temperatuas negativas
164 | type = "linear")
165 |
166 | mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), qm_fit, type = "linear")
167 | data_wt$gcm_downscaled[ months(time(data_wt)) %in%
168 | seasons_by_year[[i]]] <- mod_sl_qmapped
169 |
170 | seasonal_qm_fit_model[[i]] <- qm_fit
171 | }
172 |
173 | #============================================================================
174 | #INTERPOLANDO LA INFORMACION EN CASO DE DATOS MENSUALES
175 |
176 | data_at$GCM_downscaled <- data_wt$gcm_downscaled
177 |
178 | t <- as.data.frame(data_at[,3])
179 |
180 | if (j == 1) {
181 | df_mod <- t
182 | } else{
183 | df_mod <- cbind(df_mod, t)
184 | }
185 |
186 | }
187 | # agregamos losnombres correctas de las columnas
188 | colnames(df_mod) <- name_mod
189 | # asignamos la columna de tiempo
190 | df_empty<- data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day'))
191 | if (nrow(df_mod)> nrow(df_empty)) {
192 | df_mod <- df_mod %>%
193 | slice(1:nrow(df_empty))
194 | }
195 |
196 | df_out <- df_empty %>%
197 | cbind(df_mod)
198 |
199 | return(df_out)
200 | }
201 |
202 | #============================================================================
203 | files_eliminar <- c("down.R","down2.R","down3.R", "Histórico_Est.xlsx", "Tmáx_esta.xlsx", "Tmín_esta.xlsx")
204 | estaciones <- setdiff(dir(),files_eliminar)
205 |
206 | # Bucle para cada estacion
207 | n_estacion <- length(estaciones)
208 |
209 | for (estacion in 1:n_estacion) {
210 | # Bucle para que ejecute la regionalizaci?n para cada bloque y los exporte en excel por cada variable
211 | for (z in 1:3) {
212 |
213 | if (vec_var_3[z]=='PR') {
214 | # Seleccionamos el archivo de una variable
215 | var_hist <- data_pr_his[,c('FECHA',estaciones[estacion])] %>%
216 | mutate(FECHA= as.Date(FECHA))
217 |
218 | mult.86400 <- function(x, na.rm=FALSE) (x*86400)
219 |
220 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585',vec_var_2[z],'.csv')) %>%
221 | mutate_if(is.numeric, mult.86400, na.rm=FALSE) %>%
222 | mutate(isodate = as.Date(isodate))
223 | }
224 |
225 | if (vec_var_3[z]=='MAX') {
226 | # Seleccionamos el archivo de una variable
227 | var_hist <- data_tmax_his[,c('FECHA',estaciones[estacion])] %>%
228 | mutate(FECHA= as.Date(FECHA))
229 |
230 | dif.273 <- function(x, na.rm=FALSE) (x-273.15)
231 |
232 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585',vec_var_2[z],'.csv')) %>%
233 | mutate_if(is.numeric, dif.273, na.rm=FALSE) %>%
234 | mutate(isodate = as.Date(isodate))
235 | }
236 |
237 | if (vec_var_3[z]=='MIN') {
238 | # Seleccionamos el archivo de una variable
239 | var_hist <- data_tmax_his[,c('FECHA',estaciones[estacion])] %>%
240 | mutate(FECHA= as.Date(FECHA))
241 |
242 | dif.273 <- function(x, na.rm=FALSE) (x-273.15)
243 |
244 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585',vec_var_2[z],'.csv')) %>%
245 | mutate_if(is.numeric, dif.273, na.rm=FALSE) %>%
246 | mutate(isodate = as.Date(isodate))
247 | }
248 |
249 | # Hacemos un bucle para generar la tabla en cada bloque de tiempo
250 | list_time <- list()
251 | for (i in 1:3) {
252 | list_time[[i]] <- ds(fecha_in_his, fecha_fin_his, fecha_in[i], fecha_fin[i], var_hist, var_model, var = vec_var_3[z])
253 | }
254 |
255 | # Exportamos
256 | name_file_out <- paste0(estaciones[estacion],'/',estaciones[estacion],'_',vec_var_3[z],'.xls')
257 |
258 | write.xlsx(list_time[[1]], file = name_file_out,row.names = F,
259 | sheetName = paste0(fecha_in_1,'-',fecha_fin_1), append = FALSE)
260 |
261 | write.xlsx(list_time[[2]], file = name_file_out, row.names = F,
262 | sheetName= paste0(fecha_in_2,'-',fecha_fin_2), append=TRUE)
263 |
264 | write.xlsx(list_time[[3]], file = name_file_out,row.names = F,
265 | sheetName= paste0(fecha_in_3,'-',fecha_fin_3), append=TRUE)
266 |
267 | rm(list_time)
268 |
269 | }
270 |
271 | }
272 |
--------------------------------------------------------------------------------
/DownscalePT_Full__V1.0.r:
--------------------------------------------------------------------------------
1 | # Librerias
2 | library(dplyr)
3 | library(lubridate)
4 | library(qmap)
5 | library(zoo)
6 | library(latticeExtra)
7 | library(readxl)
8 |
9 | # Indicar la carpeta que contiene a las estaciones
10 | setwd('D:/charles/regionalizacion/')
11 |
12 | # llamamos a los archivos historicos
13 | data_pr_his <- read_excel("Histórico_Est.xlsx")
14 | data_tmax_his <- read_excel("Tmáx_esta.xlsx")
15 | data_tmin_his <- read_excel("Tmín_esta.xlsx")
16 |
17 | #============================================================================
18 | # Configurar segun la data
19 |
20 | ## Numero de variables
21 | n_var <- 3
22 |
23 | ## Nombre del archivo de la data modelada que sigue despues del texto 'RCP4585'
24 | vec_var_2 <- c('TASMAX','TASMIN','PR')
25 | ## Nombre resumen de la variable (recomiendo dejar como esta)
26 | vec_var_3 <- c('MAX','MIN','PR')
27 |
28 | ## Fijar las fechas historicas para cada variable
29 | fecha_in_his_min <- as.Date('1950-01-01')
30 | fecha_fin_his_min <- as.Date('2019-12-31')
31 |
32 | fecha_in_his_max <- as.Date('1950-01-01')
33 | fecha_fin_his_max <- as.Date('2019-12-31')
34 |
35 | fecha_in_his_pr <- as.Date('1950-01-01')
36 | fecha_fin_his_pr <- as.Date('2016-12-31')
37 |
38 | ## Fijar las fechas de inicio y fin de la data modelada
39 | fecha_in_min <- as.Date('1950-01-01')
40 | fecha_fin_min <- as.Date('2099-12-31')
41 |
42 | fecha_in_max <- as.Date('1950-01-01')
43 | fecha_fin_max <- as.Date('2099-12-31')
44 |
45 | fecha_in_pr <- as.Date('1950-01-01')
46 | fecha_fin_pr <- as.Date('2099-12-31')
47 |
48 | #============================================================================
49 |
50 | # Funci?n para generar la regionalizacion, para cada variable y para un solo bloque de tiempo
51 |
52 | ds <- function(time_ini_his, time_fin_his, time_ini, time_fin, data_his, data_model, data_model_his, var){
53 |
54 | # time_ini <- as.Date('1980-01-01')
55 | # time_fin <- as.Date('2099-12-31')
56 | # #time_ini <- as.Date('2040-01-01')
57 | # #time_fin <- as.Date('2069-12-31')
58 | # #time_ini <- as.Date('2070-01-01')
59 | # #time_fin <- as.Date('2099-12-31')
60 | # time_ini_his <- as.Date('1980-01-01')
61 | # time_fin_his <- as.Date('2019-12-31')
62 | # # data_his <- var_hist
63 | # # data_model <- var_model
64 | # # var = 'MIN'
65 | # #data_model_his = var_model_hist
66 |
67 | data_model <-data_model %>%
68 | dplyr::select(isodate, starts_with('rcp'))
69 |
70 | data_model_his <- data_model_his %>%
71 | left_join(data_model_his, by = 'isodate')
72 | colnames(data_model_his) <- names(data_model)
73 |
74 | data_model <- rbind(data_model_his, data_model)
75 |
76 | # Creamos vectores con la informacion de los modelos
77 | name_mod <- sort(names(data_model)[which(substring(names(data_model),1,3)=='rcp')] )
78 | n_model <- length(name_mod)
79 | # Creamos df vacios quienes van a contener a los resultados
80 | df_mod <- c()
81 |
82 | # Generamos la regionalizaci?n por tipo de proyeccion
83 | for (j in 1:n_model) {
84 |
85 | # configurar la variable historica
86 | var_hist_2 <- data_his %>%
87 | filter(FECHA >= time_ini_his & FECHA <= time_fin_his)
88 | colnames(var_hist_2) <- c('isodate','hist')
89 |
90 | var_hist_2 <- var_hist_2 %>%
91 | full_join(
92 | data.frame(isodate = seq(from=time_ini_his, to=time_fin_his, by ='day')),
93 | by = 'isodate')
94 |
95 | # configurar la variable del modelo
96 | var_model_2 <- data_model[, c(which(names(data_model) == 'isodate'),
97 | which(names(data_model) == name_mod[j]))] %>%
98 | filter(isodate >= time_ini & isodate <= time_fin)
99 | colnames(var_model_2) <- c('isodate','mode')
100 |
101 | var_model_2 <- var_model_2 %>%
102 | full_join(
103 | data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day')),
104 | by = 'isodate')
105 |
106 | # creamos las variables a usar (solo para seguir el script de origen)
107 | OBS_hist <- var_hist_2 %>%
108 | rename(OBS_hist = hist)
109 |
110 | GCM_model <- var_model_2
111 |
112 | # aqui completo valores faltantes
113 | if (var=='PR') {
114 | OBS_hist <- OBS_hist %>%
115 | mutate(OBS_hist = ifelse(is.na(OBS_hist),0.1,OBS_hist))
116 | }
117 | if (var=='MAX' | var=='MIN') {
118 | OBS_hist <- OBS_hist %>%
119 | mutate(OBS_hist = ifelse(is.na(OBS_hist),15,OBS_hist))
120 | }
121 |
122 | # aqui completo valores faltantes
123 | if (var=='PR') {
124 | GCM_model <- GCM_model %>%
125 | mutate(mode = ifelse(is.na(mode),0.1,mode))
126 | }
127 | if (var=='MAX' | var=='MIN') {
128 | GCM_model <- GCM_model %>%
129 | mutate(mode = ifelse(is.na(mode),15,mode))
130 | }
131 |
132 | GCM_hist <- GCM_model
133 |
134 | data_hist <- OBS_hist %>%
135 | read.zoo()
136 |
137 | data_mod <- GCM_model %>%
138 | read.zoo()
139 |
140 | data_wt <- GCM_model %>%
141 | read.zoo()
142 |
143 | #============================================================================
144 | # APLICACIÓN DE LA TÉCNICA DE QUANTILE MAPPING (MÉTODO EMPÍRICO)
145 |
146 | seasons_by_year <- list(c("Diciembre"), c("Enero"), c("Febrero"),
147 | c("Marzo"), c("Abril"), c("Mayo"),
148 | c("Junio"), c("Julio"), c("Agosto"),
149 | c("Setiembre"), c("Octubre"), c("Noviembre"))
150 |
151 | for(i in 1:12) {
152 |
153 | obs_sl <- data_hist[months(time(data_hist)) %in% seasons_by_year[[i]]]
154 | mod_sl <- data_mod[months(time(data_mod)) %in% seasons_by_year[[i]]]
155 | #MODEL, read!: L. Gudmundsson et al. (2012)
156 |
157 | if (sum(mod_sl, na.rm = T)==0) {
158 | mod_sl[1]<- 0.001
159 | }
160 |
161 | qm_fit <- fitQmapQUANT(obs = coredata(obs_sl),
162 | mod = coredata(mod_sl),
163 | qstep = 0.001,
164 | nboot = 1,
165 | wet.day = 0, # Adaptado para temperatuas negativas
166 | type = "linear")
167 |
168 | mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), qm_fit, type = "linear")
169 |
170 | data_wt[ months(time(data_wt)) %in% seasons_by_year[[i]]] <- mod_sl_qmapped
171 |
172 | }
173 |
174 | t <- as.data.frame(data_wt)
175 |
176 | if (j == 1) {
177 | df_mod <- t
178 | } else{
179 | df_mod <- cbind(df_mod, t)
180 | }
181 |
182 | }
183 |
184 | # agregamos losnombres correctas de las columnas
185 | colnames(df_mod) <- name_mod
186 |
187 | # asignamos la columna de tiempo
188 | df_empty<- data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day'))
189 |
190 | df_out <- df_empty %>%
191 | cbind(df_mod)
192 |
193 | return(df_out)
194 | }
195 |
196 | #============================================================================
197 | files_eliminar <- c("down.R","down2.R","down3.R", "Histórico_Est.xlsx", "Tmáx_esta.xlsx", "Tmín_esta.xlsx")
198 | estaciones <- setdiff(dir(),files_eliminar)
199 |
200 | # Bucle para cada estacion
201 | n_estacion <- length(estaciones)
202 |
203 | for (estacion in 1:n_estacion) {
204 | # Bucle para que ejecute la regionalizaci?n para cada bloque y los exporte en excel por cada variable
205 | for (z in 1:3) {
206 |
207 | if (vec_var_3[z]=='MAX') {
208 |
209 | # Seleccionamos el archivo de una variable
210 | var_hist <- data_tmax_his[,c('FECHA',estaciones[estacion])] %>%
211 | mutate(FECHA= as.Date(FECHA))
212 |
213 | dif.273 <- function(x, na.rm=FALSE) (x-273.15)
214 |
215 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585TASMAX.csv')) %>%
216 | mutate_if(is.numeric, dif.273, na.rm=FALSE) %>%
217 | mutate(isodate = as.Date(isodate))
218 |
219 | var_model_hist <- read.csv(paste0(estaciones[estacion],'/HISTASMAX.csv')) %>%
220 | dplyr::select(isodate, starts_with('hist')) %>%
221 | mutate(isodate = as.Date(isodate)) %>%
222 | mutate_if(is.numeric, dif.273, na.rm=FALSE)
223 |
224 | list_time <- ds(time_ini_his = fecha_in_his_max,
225 | time_fin_his = fecha_fin_his_max,
226 | time_ini = fecha_in_max,
227 | time_fin = fecha_fin_max,
228 | data_his = var_hist,
229 | data_model = var_model,
230 | data_model_his = var_model_hist,
231 | var = 'MAX')
232 | }
233 |
234 | if (vec_var_3[z]=='MIN') {
235 | # Seleccionamos el archivo de una variable
236 | var_hist <- data_tmin_his[,c('FECHA',estaciones[estacion])] %>%
237 | mutate(FECHA= as.Date(FECHA))
238 |
239 | dif.273 <- function(x, na.rm=FALSE) (x-273.15)
240 |
241 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585TASMIN.csv')) %>%
242 | mutate_if(is.numeric, dif.273, na.rm=FALSE) %>%
243 | mutate(isodate = as.Date(isodate))
244 |
245 | var_model_hist <- read.csv(paste0(estaciones[estacion],'/HISTASMIN.csv')) %>%
246 | dplyr::select(isodate, starts_with('hist')) %>%
247 | mutate(isodate = as.Date(isodate)) %>%
248 | mutate_if(is.numeric, dif.273, na.rm=FALSE)
249 |
250 | list_time <- ds(time_ini_his = fecha_in_his_min,
251 | time_fin_his = fecha_fin_his_min,
252 | time_ini = fecha_in_min,
253 | time_fin = fecha_fin_min,
254 | data_his = var_hist,
255 | data_model = var_model,
256 | data_model_his = var_model_hist,
257 | var = 'MIN')
258 |
259 | }
260 |
261 | if (vec_var_3[z]=='PR') {
262 | # Seleccionamos el archivo de una variable
263 |
264 | var_hist <- data_pr_his[,c('FECHA',estaciones[estacion])] %>%
265 | mutate(FECHA= as.Date(FECHA))
266 |
267 | mult.86400 <- function(x, na.rm=FALSE) (x*86400)
268 |
269 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585PR.csv')) %>%
270 | mutate_if(is.numeric, mult.86400, na.rm=FALSE) %>%
271 | mutate(isodate = as.Date(isodate))
272 |
273 | var_model_hist <- read.csv(paste0(estaciones[estacion],'/HISTPR.csv')) %>%
274 | dplyr::select(isodate, starts_with('hist')) %>%
275 | mutate(isodate = as.Date(isodate)) %>%
276 | mutate_if(is.numeric, mult.86400, na.rm=FALSE)
277 |
278 | list_time <- ds(time_ini_his = fecha_in_his_pr,
279 | time_fin_his = fecha_fin_his_pr,
280 | time_ini = fecha_in_pr,
281 | time_fin = fecha_fin_pr,
282 | data_his = var_hist,
283 | data_model = var_model,
284 | data_model_his = var_model_hist,
285 | var = 'PR')
286 | }
287 |
288 | # Exportamos
289 | name_file_out <- paste0(estaciones[estacion],'/',estaciones[estacion],'_',vec_var_3[z],'.csv')
290 |
291 | write.csv2(list_time, file = name_file_out,row.names = F)
292 |
293 | rm(list_time)
294 |
295 | }
296 |
297 | }
298 |
299 |
--------------------------------------------------------------------------------
/DownscalePT_full_CMI6_V1.0.r:
--------------------------------------------------------------------------------
1 | ################################################################################
2 | # STATISTICAL DOWNSCALING OF DAILY CLIMATE DATA USING #
3 | # QUANTILE MAPPING TECHNIQUE FOR CMIP6 DATASETS #
4 | ################################################################################
5 |
6 | #Author: Julio Montenegro Gambini, P.E. ASCE, M.Sc.,
7 | #PhD fellow - Technische Universiteit Delft (TU Delft), Netherlands.
8 |
9 | #Current version: 1.0
10 |
11 | #©Copyright 2013 2021 Julio Montenegro.
12 | #This script is strictly under license GPLv3
13 | #License details: https://www.gnu.org/licenses/gpl-3.0.en.html
14 |
15 | # Please, when using this script, cite as: "Montenegro, J. (2021). Statistical
16 | #downscaling of daily climate data using quantile mapping technique for CMIP6
17 | #datasets"
18 |
19 | # Installing or loading the required packages ==================================
20 | library(tidyverse)
21 | library(lubridate)
22 | library(qmap)
23 | library(zoo)
24 | library(latticeExtra)
25 | library(readxl)
26 |
27 | #Directories and folders =======================================================
28 |
29 | # Setting working directory
30 | setwd('C:/Users/Julio/Downloads/QMAP_CMIP6/qmap2/')
31 |
32 | # Name of the folder which contains csv and xlsx excel files
33 | dir_estation <- '585 M3'
34 |
35 | # Parameter configuration ======================================================
36 |
37 | # DAILY MINIMUM TEMPERATURE PARAMETERS
38 | file_tmin_obs <- 'TASMIN_OBS.xlsx'
39 | file_tmin_mod <- 'TASMIN.csv'
40 | fecha_in_his_min <- as.Date('1981-01-01')
41 | fecha_fin_his_min <- as.Date('2019-12-31')
42 | fecha_in_min <- as.Date('2015-01-01')
43 | fecha_fin_min <- as.Date('2099-12-31')
44 |
45 | # DAILY MAXIMUM TEMPERATURE PARAMETERS
46 | file_tmax_obs <- 'TASMAX_OBS.xlsx'
47 | file_tmax_mod <- 'TASMAX.csv'
48 | fecha_in_his_max <- as.Date('1981-01-01')
49 | fecha_fin_his_max <- as.Date('2019-12-31')
50 | fecha_in_max <- as.Date('2015-01-01')
51 | fecha_fin_max <- as.Date('2099-12-31')
52 |
53 | # DAILY PRECIPITATION PARAMETERS
54 | file_pr_obs <- 'PR_OBS.xlsx'
55 | file_pr_mod <- 'PR.csv'
56 | fecha_in_his_pr <- as.Date('1981-01-01')
57 | fecha_fin_his_pr <- as.Date('2016-12-31')
58 | fecha_in_pr <- as.Date('2015-01-01')
59 | fecha_fin_pr <- as.Date('2099-12-31')
60 |
61 | #Quantile mapping function =====================================================
62 |
63 | # Downscaling function for each variable
64 | qp_function <- function(time_ini_his, time_fin_his,
65 | time_ini, time_fin,
66 | file_his, file_mod,
67 | var){
68 |
69 | time_ini <- fecha_in_min
70 | time_fin <- fecha_fin_min
71 | time_ini_his <- fecha_in_his_min
72 | time_fin_his <- fecha_fin_his_min
73 | file_his <- file_tmin_obs
74 | file_mod <- file_tmin_mod
75 | var = 'MIN'
76 | j <- 2
77 |
78 | ## Reading historical baseline and GCM/RCM future time series
79 | data_historica <- read_excel(paste0(dir_estation,'/',file_his))
80 | data_modelada <- read.csv(paste0(dir_estation,'/',file_mod))
81 |
82 | names_stations <- names(data_historica)[2:length(data_historica)]
83 |
84 | df_reg <- c() # empty dataframe for filling with downscaled data
85 |
86 | ## Downscaling loop for different time series (station data)
87 | for (j in 2:ncol(data_historica)) {
88 |
89 | ## Historical baseline configuration
90 | data_his <- data_historica[,c(1,j)]
91 | colnames(data_his) <- c('FECHA','STATION')
92 | data_his <- data_his %>% mutate(FECHA= as.Date(FECHA))
93 |
94 | ## GCM/RCM data configuration
95 | if (var %in% c('MIN','MAX')) {
96 | correccion <- function(x, na.rm=FALSE) (x-273.15)
97 | }
98 | if (var %in% c('PR')) {
99 | correccion <- function(x, na.rm=FALSE) (x*86400)
100 | }
101 |
102 | data_mod <- data_modelada[,c(1,j)] %>%
103 | mutate_if(is.numeric, correccion, na.rm=FALSE)
104 | colnames(data_mod) <- c('FECHA','STATION')
105 | data_model <- data_mod %>% mutate(FECHA= as.Date(FECHA))
106 |
107 | ## Date filtering
108 |
109 | ### Historical
110 | var_hist_2 <- data_his %>%
111 | filter(FECHA >= time_ini_his & FECHA <= time_fin_his)
112 | colnames(var_hist_2) <- c('isodate','hist')
113 |
114 | var_hist_2 <- var_hist_2 %>%
115 | full_join(
116 | data.frame(isodate = seq(from=time_ini_his, to=time_fin_his, by ='day')),
117 | by = 'isodate')
118 |
119 | ### Setting the variable of GCM/RCM data
120 | var_model_2 <- data_model %>%
121 | filter(FECHA >= time_ini & FECHA <= time_fin)
122 | colnames(var_model_2) <- c('isodate','mode')
123 |
124 | var_model_2 <- var_model_2 %>%
125 | full_join(
126 | data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day')),
127 | by = 'isodate')
128 |
129 | ## Creating variables to be used
130 | OBS_hist <- var_hist_2 %>%
131 | rename(OBS_hist = hist)
132 |
133 | GCM_model <- var_model_2
134 |
135 | # Filling missing historical data
136 | if (var=='PR') {
137 | OBS_hist <- OBS_hist %>%
138 | mutate(OBS_hist = ifelse(is.na(OBS_hist),0.1,OBS_hist))
139 | }
140 | if (var=='MAX' | var=='MIN') {
141 | OBS_hist <- OBS_hist %>%
142 | mutate(OBS_hist = ifelse(is.na(OBS_hist),16,OBS_hist))
143 | }
144 |
145 | # Filling missing GCM/RCM future data
146 | if (var=='PR') {
147 | GCM_model <- GCM_model %>%
148 | mutate(mode = ifelse(is.na(mode),0.1,mode))
149 | }
150 | if (var=='MAX' | var=='MIN') {
151 | GCM_model <- GCM_model %>%
152 | mutate(mode = ifelse(is.na(mode),15,mode))
153 | }
154 |
155 | GCM_hist <- GCM_model
156 |
157 | ## Conversion of datasets to "ts" objects
158 |
159 | data_hist <- OBS_hist %>%
160 | read.zoo()
161 |
162 | data_mod <- GCM_model %>%
163 | read.zoo()
164 |
165 | data_wt <- GCM_model %>%
166 | read.zoo()
167 |
168 | #============================================================================
169 | # QUANTILE MAPPING APPLICATION (EMPIRICAL AS DEFAULT)
170 |
171 | seasons_by_year <- list(c("December"), c("January"), c("February"),
172 | c("March"), c("April"), c("May"),
173 | c("June"), c("July"), c("August"),
174 | c("September"), c("October"), c("November"))
175 | #According to system region, month names should be changed (e.g. spanish):
176 | #seasons_by_year <- list(c("Diciembre"), c("Enero"), c("Febrero"),
177 | #c("Marzo"), c("Abril"), c("Mayo"),
178 | #c("Junio"), c("Julio"), c("Agosto"),
179 | #c("Septiembre"), c("Octubre"), c("Noviembre"))
180 |
181 | for(i in 1:12) {
182 |
183 | obs_sl <- data_hist[months(time(data_hist)) %in% seasons_by_year[[i]]]
184 | mod_sl <- data_mod[months(time(data_mod)) %in% seasons_by_year[[i]]]
185 | #GCM/RCM data, read!: L. Gudmundsson et al. (2012)
186 |
187 | if (sum(mod_sl, na.rm = T)==0) {
188 | mod_sl[1]<- 0.001
189 | }
190 |
191 | qm_fit <- fitQmapQUANT(obs = coredata(obs_sl),
192 | mod = coredata(mod_sl),
193 | qstep = 0.001,
194 | nboot = 1,
195 | wet.day = 0, # To be changed for temperatures
196 | type = "linear")
197 |
198 | mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), qm_fit, type = "linear")
199 |
200 | data_wt[ months(time(data_wt)) %in% seasons_by_year[[i]]] <- mod_sl_qmapped
201 |
202 | }
203 |
204 | t <- as.data.frame(data_wt)
205 |
206 | if (j == 2) {
207 | df_reg <- t
208 | } else{
209 | df_reg <- cbind(df_reg, t)
210 | }
211 |
212 | }
213 |
214 | # Adding column names
215 | colnames(df_reg) <- names_stations
216 |
217 | # Assign the date column (daily)
218 | df_empty<- data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day'))
219 |
220 | df_out <- df_empty %>%
221 | cbind(df_reg)
222 |
223 | return(df_out)
224 | }
225 |
226 | #Applying downscaling function and exporting results ===========================
227 |
228 | # Dowscaling for minimum temperature
229 | tmin_reg <- qp_function(fecha_in_min, fecha_fin_min,
230 | fecha_in_his_min, fecha_fin_his_min,
231 | file_tmin_obs, file_tmin_mod, 'MIN')
232 |
233 | # Dowscaling for maximum temperature
234 | tmax_reg <- qp_function(fecha_in_max, fecha_fin_max,
235 | fecha_in_his_max, fecha_fin_his_max,
236 | file_tmax_obs, file_tmax_mod, 'MAX')
237 |
238 | # Dowscaling for precipitation
239 | pr_reg <- qp_function(fecha_in_pr, fecha_fin_pr,
240 | fecha_in_his_pr, fecha_fin_his_pr,
241 | file_pr_obs, file_pr_mod, 'PR')
242 |
243 |
244 | # Exporting downscaled data in 3 csv files =====================================
245 | tmin_reg %>% write.csv(file = paste0(dir_estation,'/tmin_reg.csv'),row.names = F)
246 | tmax_reg %>% write.csv(file = paste0(dir_estation,'/tmax_reg.csv'),row.names = F)
247 | tmin_reg %>% write.csv(file = paste0(dir_estation,'/pr_reg.csv'),row.names = F)
248 |
--------------------------------------------------------------------------------
/DownscalePT_full_V1.1.r:
--------------------------------------------------------------------------------
1 | ################################################################################
2 | # STATISTICAL DOWNSCALING OF DAILY CLIMATE DATA USING #
3 | # QUANTILE MAPPING (QPM)TECHNIQUE #
4 | ################################################################################
5 |
6 | #Author: Julio Montenegro Gambini, P.E. ASCE, M.Sc.,
7 | #PhD fellow - Technische Universiteit Delft (TU Delft), Netherlands.
8 |
9 | #Current version: 1.1
10 |
11 | # © Copyright 2021 Julio Montenegro.
12 | # This script is strictly under license GPLv3
13 | # License details: https://www.gnu.org/licenses/gpl-3.0.en.html
14 |
15 | # Please, when using this script, cite as: "Montenegro, J. (2021). Statistical
16 | # downscaling of daily climate data using quantile mapping technique with
17 | # NASA-NEX GDDP source "
18 |
19 | #For this script you need:
20 | #' - 3 files of the observed data in the working folder.
21 | #1 folder with name of the station and inside it, 3 files with historical modelled data (matching the observed data)
22 | #3 files with the historical modelled data (matching with the observed data)
23 | #and 3 files with the future modelled data
24 |
25 | # Required packages:
26 | library(tidyverse)
27 | library(lubridate)
28 | library(qmap)
29 | library(zoo)
30 | library(latticeExtra)
31 | library(readxl)
32 |
33 | # Setting working directory:
34 | setwd('C:/Users/Julio/Downloads/qmap/qmap')
35 |
36 | # llamamos a los archivos historicos
37 | data_pr_his <- read_excel("Histórico_Est.xlsx")
38 | data_tmax_his <- read_excel("Tmáx_esta.xlsx")
39 | data_tmin_his <- read_excel("Tmín_esta.xlsx")
40 |
41 | #============================================================================
42 | # Settings according to data structure
43 |
44 | ## Numero de variables
45 | n_var <- 3
46 |
47 | ## File name of the modelled data file following the text 'RCP4585'.
48 | vec_var_2 <- c('TASMAX','TASMIN','PR')
49 | ## Short name of variables
50 | vec_var_3 <- c('MAX','MIN','PR')
51 |
52 | ## Setting historical time intervals
53 | fecha_in_his_min <- as.Date('1980-01-01')
54 | fecha_fin_his_min <- as.Date('2019-12-31')
55 |
56 | fecha_in_his_max <- as.Date('1980-01-01')
57 | fecha_fin_his_max <- as.Date('2019-12-31')
58 |
59 | fecha_in_his_pr <- as.Date('1980-01-01')
60 | fecha_fin_his_pr <- as.Date('2016-12-31')
61 |
62 | ## Setting model time intervals
63 | fecha_in_min <- as.Date('1950-01-01')
64 | fecha_fin_min <- as.Date('2099-12-31')
65 |
66 | fecha_in_max <- as.Date('1950-01-01')
67 | fecha_fin_max <- as.Date('2099-12-31')
68 |
69 | fecha_in_pr <- as.Date('1950-01-01')
70 | fecha_fin_pr <- as.Date('2099-12-31')
71 |
72 | #============================================================================
73 |
74 | # Downscaling function for each variable and for a single time block.
75 |
76 | ds <- function(time_ini_his, time_fin_his, time_ini, time_fin, data_his, data_model, data_model_his, var){
77 |
78 | # time_ini <- as.Date('1980-01-01')
79 | # time_fin <- as.Date('2099-12-31')
80 | # # time_ini <- as.Date('2040-01-01')
81 | # # time_fin <- as.Date('2069-12-31')
82 | # # time_ini <- as.Date('2070-01-01')
83 | # # time_fin <- as.Date('2099-12-31')
84 | # time_ini_his <- as.Date('1980-01-01')
85 | # time_fin_his <- as.Date('2019-12-31')
86 | # data_his <- var_hist
87 | # data_model <- var_model
88 | # var = 'MAX'
89 | # data_model_his = var_model_hist
90 |
91 |
92 | data_model <-data_model %>%
93 | dplyr::select(isodate, starts_with('rcp'))
94 |
95 | data_model_his <- data_model_his %>%
96 | left_join(data_model_his, by = 'isodate')
97 | colnames(data_model_his) <- names(data_model)
98 |
99 | data_model <- rbind(data_model_his, data_model)
100 |
101 | # Creating vectors with model datasets
102 | name_mod <- sort(names(data_model)[which(substring(names(data_model),1,3)=='rcp')] )
103 | n_model <- length(name_mod)
104 | # Generating empty dataframes
105 | df_mod <- c()
106 |
107 | # Downscaling for each pathway (4.5 and 8.5)
108 | for (j in 1:n_model) {
109 |
110 | # configurar la variable historica
111 | var_hist_2 <- data_his %>%
112 | filter(FECHA >= time_ini_his & FECHA <= time_fin_his)
113 | colnames(var_hist_2) <- c('isodate','hist')
114 |
115 | var_hist_2 <- var_hist_2 %>%
116 | full_join(
117 | data.frame(isodate = seq(from=time_ini_his, to=time_fin_his, by ='day')),
118 | by = 'isodate')
119 |
120 | # Setting the model variables
121 | var_model_2 <- data_model[, c(which(names(data_model) == 'isodate'),
122 | which(names(data_model) == name_mod[j]))] %>%
123 | filter(isodate >= time_ini & isodate <= time_fin)
124 | colnames(var_model_2) <- c('isodate','mode')
125 |
126 | var_model_2 <- var_model_2 %>%
127 | full_join(
128 | data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day')),
129 | by = 'isodate')
130 |
131 | # Creating the variables to be used
132 | OBS_hist <- var_hist_2 %>%
133 | rename(OBS_hist = hist)
134 |
135 | GCM_model <- var_model_2
136 |
137 | # Filling missing data
138 | if (var=='PR') {
139 | OBS_hist <- OBS_hist %>%
140 | mutate(OBS_hist = ifelse(is.na(OBS_hist),0.1,OBS_hist))
141 | }
142 | if (var=='MAX' | var=='MIN') {
143 | OBS_hist <- OBS_hist %>%
144 | mutate(OBS_hist = ifelse(is.na(OBS_hist),16,OBS_hist))
145 | }
146 |
147 | # Again, filling missing data
148 | if (var=='PR') {
149 | GCM_model <- GCM_model %>%
150 | mutate(mode = ifelse(is.na(mode),0.1,mode))
151 | }
152 | if (var=='MAX' | var=='MIN') {
153 | GCM_model <- GCM_model %>%
154 | mutate(mode = ifelse(is.na(mode),15,mode))
155 | }
156 |
157 | GCM_hist <- GCM_model
158 |
159 | data_hist <- OBS_hist %>%
160 | read.zoo()
161 |
162 | data_mod <- GCM_model %>%
163 | read.zoo()
164 |
165 | data_wt <- GCM_model %>%
166 | read.zoo()
167 |
168 | #============================================================================
169 | # APPLICATION OF QUANTILE MAPPING (EMPIRICAL METHOD)
170 |
171 | seasons_by_year <- list(c("December"), c("January"), c("February"),
172 | c("March"), c("April"), c("May"),
173 | c("June"), c("July"), c("August"),
174 | c("September"), c("October"), c("November"))
175 |
176 | for(i in 1:12) {
177 |
178 | obs_sl <- data_hist[months(time(data_hist)) %in% seasons_by_year[[i]]]
179 | mod_sl <- data_mod[months(time(data_mod)) %in% seasons_by_year[[i]]]
180 | #MODEL, read!: L. Gudmundsson et al. (2012)
181 |
182 | if (sum(mod_sl, na.rm = T)==0) {
183 | mod_sl[1]<- 0.001
184 | }
185 |
186 | qm_fit <- fitQmapQUANT(obs = coredata(obs_sl),
187 | mod = coredata(mod_sl),
188 | qstep = 0.001,
189 | nboot = 1,
190 | wet.day = 0, # May be changed in case of temperatures
191 | type = "linear")
192 |
193 | mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), qm_fit, type = "linear")
194 |
195 | data_wt[ months(time(data_wt)) %in% seasons_by_year[[i]]] <- mod_sl_qmapped
196 |
197 | }
198 |
199 | t <- as.data.frame(data_wt)
200 |
201 | if (j == 1) {
202 | df_mod <- t
203 | } else{
204 | df_mod <- cbind(df_mod, t)
205 | }
206 |
207 | }
208 |
209 | # Add column names
210 | colnames(df_mod) <- name_mod
211 |
212 | # Add time column
213 | df_empty<- data.frame(isodate = seq(from=time_ini, to=time_fin, by ='day'))
214 |
215 | df_out <- df_empty %>%
216 | cbind(df_mod)
217 |
218 | return(df_out)
219 | }
220 |
221 | #============================================================================
222 | files_eliminar <- c("down.R","down2.R","down3.R", "Histórico_Est.xlsx", "Tmáx_esta.xlsx", "Tmín_esta.xlsx")
223 | estaciones <- setdiff(dir(),files_eliminar)
224 |
225 | # Bucle para cada estacion
226 | n_estacion <- length(estaciones)
227 |
228 | for (estacion in 1:n_estacion) {
229 | # Downscaling loop for each block and export to excel for each variable.
230 | for (z in 1:3) {
231 |
232 | if (vec_var_3[z]=='MAX') {
233 |
234 | # Select the file of a variable
235 | var_hist <- data_tmax_his[,c('FECHA',estaciones[estacion])] %>%
236 | mutate(FECHA= as.Date(FECHA))
237 |
238 | dif.273 <- function(x, na.rm=FALSE) (x-273.15)
239 |
240 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585TASMAX.csv')) %>%
241 | mutate_if(is.numeric, dif.273, na.rm=FALSE) %>%
242 | mutate(isodate = as.Date(isodate))
243 |
244 | var_model_hist <- read.csv(paste0(estaciones[estacion],'/HISTASMAX.csv')) %>%
245 | dplyr::select(isodate, starts_with('hist')) %>%
246 | mutate(isodate = as.Date(isodate)) %>%
247 | mutate_if(is.numeric, dif.273, na.rm=FALSE)
248 |
249 | list_time <- ds(time_ini_his = fecha_in_his_max,
250 | time_fin_his = fecha_fin_his_max,
251 | time_ini = fecha_in_max,
252 | time_fin = fecha_fin_max,
253 | data_his = var_hist,
254 | data_model = var_model,
255 | data_model_his = var_model_hist,
256 | var = 'MAX')
257 | }
258 |
259 | if (vec_var_3[z]=='MIN') {
260 | # Select the file of a variable
261 | var_hist <- data_tmin_his[,c('FECHA',estaciones[estacion])] %>%
262 | mutate(FECHA= as.Date(FECHA))
263 |
264 | dif.273 <- function(x, na.rm=FALSE) (x-273.15)
265 |
266 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585TASMIN.csv')) %>%
267 | mutate_if(is.numeric, dif.273, na.rm=FALSE) %>%
268 | mutate(isodate = as.Date(isodate))
269 |
270 | var_model_hist <- read.csv(paste0(estaciones[estacion],'/HISTASMIN.csv')) %>%
271 | dplyr::select(isodate, starts_with('hist')) %>%
272 | mutate(isodate = as.Date(isodate)) %>%
273 | mutate_if(is.numeric, dif.273, na.rm=FALSE)
274 |
275 | list_time <- ds(time_ini_his = fecha_in_his_min,
276 | time_fin_his = fecha_fin_his_min,
277 | time_ini = fecha_in_min,
278 | time_fin = fecha_fin_min,
279 | data_his = var_hist,
280 | data_model = var_model,
281 | data_model_his = var_model_hist,
282 | var = 'MIN')
283 |
284 | }
285 |
286 | if (vec_var_3[z]=='PR') {
287 | # Select the file of a variable
288 |
289 | var_hist <- data_pr_his[,c('FECHA',estaciones[estacion])] %>%
290 | mutate(FECHA= as.Date(FECHA))
291 |
292 | mult.86400 <- function(x, na.rm=FALSE) (x*86400)
293 |
294 | var_model <- read.csv(paste0(estaciones[estacion],'/RCP4585PR.csv')) %>%
295 | mutate_if(is.numeric, mult.86400, na.rm=FALSE) %>%
296 | mutate(isodate = as.Date(isodate))
297 |
298 | var_model_hist <- read.csv(paste0(estaciones[estacion],'/HISTPR.csv')) %>%
299 | dplyr::select(isodate, starts_with('hist')) %>%
300 | mutate(isodate = as.Date(isodate)) %>%
301 | mutate_if(is.numeric, mult.86400, na.rm=FALSE)
302 |
303 | list_time <- ds(time_ini_his = fecha_in_his_pr,
304 | time_fin_his = fecha_fin_his_pr,
305 | time_ini = fecha_in_pr,
306 | time_fin = fecha_fin_pr,
307 | data_his = var_hist,
308 | data_model = var_model,
309 | data_model_his = var_model_hist,
310 | var = 'PR')
311 | }
312 |
313 | # Exporting data
314 | name_file_out <- paste0(estaciones[estacion],'/',estaciones[estacion],'_',vec_var_3[z],'.csv')
315 |
316 | write.csv(list_time, file = name_file_out,row.names = F)
317 |
318 | rm(list_time)
319 |
320 | }
321 |
322 | }
323 |
324 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/Qmapping-Daily.R:
--------------------------------------------------------------------------------
1 | ###############################################################################
2 | #DOWNSCALLING ESTADÍSTICO DE DATOS CLIMÁTICOS USANDO MAPEO DE QUANTILES (QMAP)#
3 | ###############################################################################
4 | #Referencias:
5 | #Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods
6 | #https://www.hydrol-earth-syst-sci.net/16/3383/2012/
7 | #Qmap package information - CRAN:
8 | #https://cran.r-project.org/web/packages/qmap/qmap.pdf
9 | #==============================================================================
10 | # INSTALAR Y CARGAR LOS PAQUETES NECESARIOS
11 | setwd("C:/Users/Julio/Documents/INVESTIGACION/R SCRIPTS/Downscaling/Diario")
12 | getwd()
13 | ls()
14 | rm(list=ls())
15 | #por ejemplo:
16 | #install.packages(c("qmap", "zoo","latticeExtra"))
17 |
18 | # CARGAR LAS LIBRERIAS
19 | library(qmap)
20 | library(zoo)
21 | library(latticeExtra)
22 |
23 | #=============================================================================
24 | #CARGANDO LOS ARCHIVOS NECESARIOS
25 |
26 | # Observacion historica PISCO
27 | OBS_hist <- read.zoo("0Estacion_C2.csv", header = TRUE, sep = ",",
28 | format = "%Y-%m-%d")
29 | # Observacion del modelo GCM
30 | GCM_model <- read.zoo("ACCESS1-0-RCP45.csv", header = TRUE, sep = ",",
31 | format = "%Y-%m-%d")
32 |
33 | # Ajustando la serie hasta el final de la data hist?rica
34 | GCM_hist <- window(GCM_model, end = "2039-12-31")
35 |
36 | data_at <- cbind(OBS_hist, GCM_model)
37 | data_wt <- cbind(OBS_hist, GCM_hist)
38 |
39 | #============================================================================
40 | #GRAFICANDO LAS SERIES DE TIEMPO
41 | plot(data_at, plot.type = "single", col = c(1, 2), lwd = 0.01
42 | , ylab = "pp (mm/day)", xlab = "years")
43 | title(expression(bold("OBSERVED DAILY HISTORICAL DATA vs"*phantom("GCM DAILY HISTORICAL DATA"))), col.main = "black")
44 | title(expression(bold(phantom("OBSERVED DAILY HISTORICAL DATA vs ")*"GCM DAILY HISTORICAL DATA")), col.main = "red")
45 |
46 | plot(data_wt, plot.type = "single", col = c(1, 2), lwd = 0.01
47 | , ylab = "pp (mm/day)", xlab = "years")
48 | title(expression(bold("OBSERVED DAILY DATA vs"*phantom("GCM DAILY DATA"))), col.main = "black")
49 | title(expression(bold(phantom("OBSERVED DAILY DATA vs ")*"GCM DAILY DATA")), col.main = "red")
50 |
51 |
52 | # months(time(data_wt)) correr y luego cambiar de acuerdo al nombre de los meses
53 | plot(data_wt[months(time(data_wt)) %in% c("December","January","February","March")],
54 | plot.type = "single", col = c(1, 2), lwd = 1, type='p'
55 | , ylab = "pp (mm/day)", xlab = "years")
56 | title(expression(bold("OBSERVED DAILY DATA VS "*phantom("GCM DAILY DATA")*"DURING RAINY SEASON (DEC-JAN-FEB-MAR)")), col.main = "black", cex.main=1)
57 | title(expression(bold(phantom("OBSERVED DAILY DATA vs ")*"GCM DAILY DATA"*phantom("DURING RAINY SEASON (DEC-JAN-FEB-MAR)"))), col.main = "red", cex.main=1)
58 |
59 |
60 | # GRAFICANDO SCATTERPLOT
61 | plot(GCM_hist~OBS_hist, coredata(data_wt), col = c(1,2), ylab = "PP GCM (mm)", xlab = "PP OBSERVED (mm)")
62 | title(expression(bold("SCATTER PLOT OF OBSERVED DAILY DATA VS "*phantom("GCM DAILY DATA"))), col.main = "black", cex.main=1)
63 | title(expression(bold(phantom("SCATTER PLOT OF OBSERVED DAILY DATA vs ")*"GCM DAILY DATA")), col.main = "red", cex.main=1)
64 |
65 | plot(GCM_hist~OBS_hist,
66 | coredata(data_wt[months(time(data_wt)) %in%
67 | c("December","January","February","March")]), col = c(1,2),ylab = "PP GCM (mm)", xlab = "PP OBSERVED (mm)")
68 | title(expression(bold("SCATTER PLOT OF OBSERVED DAILY DATA VS"*phantom(" GCM DAILY DATA ")* "DURING RAINY SEASON (DEC-JAN-FEB-MAR)")), col.main = "black", cex.main=0.8)
69 | title(expression(bold(phantom("SCATTER PLOT OF OBSERVED DAILY DATA vs ")*" GCM DAILY DATA "* phantom("DURING RAINY SEASON (DEC-JAN-FEB-MAR)"))), col.main = "red", cex.main=0.8)
70 |
71 | # GRAFICANDO ECDF
72 | ecdfplot(~ OBS_hist + GCM_hist, data = data.frame(data_wt), lwd = 2, col = c(1, 2),main="CDF PLOT OF OBSERVED DAILY DATA VS GCM DAILY DATA",ylab = "Empirical CDF", xlab = "Daily GCM (red) and Observed (black) data")
73 |
74 | ecdfplot(~ OBS_hist + GCM_hist,
75 | data = data.frame(data_wt[months(time(data_wt)) %in%
76 | c("December","January","February")]),
77 | lwd = 2, col = c(1, 2),main="CDF PLOT OF DAILY OBS. VS GCM DATA DURING RAINFALL SEASON",ylab = "Empirical CDF", xlab = "Daily GCM (red) and Observed (black) data")
78 |
79 | #============================================================================
80 | # APLICACIÓN DE LA TÉCNICA DE QUANTILE MAPPING (MÉTODO EMPÍRICO)
81 |
82 | data_wt$gcm_downscaled <- data_wt$GCM_hist
83 |
84 | seasons_by_year <- list(c("December","January","February"),
85 | c("March","April","May"),
86 | c("June","July","August"),
87 | c("September","October","November"))
88 |
89 | seasonal_qm_fit_model <- list()
90 |
91 | ## funcion de quantil maping 0.1 es a correcion, es linea
92 | for(i in 1:4) {
93 | obs_sl <- data_wt[months(time(data_wt)) %in% seasons_by_year[[i]]]$OBS_hist
94 | mod_sl <- data_wt[months(time(data_wt)) %in% seasons_by_year[[i]]]$GCM_hist
95 | #MODEL, read!: L. Gudmundsson et al. (2012)
96 | qm_fit <- fitQmapQUANT(obs = coredata(obs_sl),
97 | coredata(mod_sl),
98 | qstep = 0.01,
99 | nboot = 1,
100 | wet.day = 0, # Adaptado para temperatuas negativas
101 | type = "linear")
102 |
103 | mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), qm_fit, type = "linear")
104 | data_wt$gcm_downscaled[ months(time(data_wt)) %in%
105 | seasons_by_year[[i]]] <- mod_sl_qmapped
106 |
107 | seasonal_qm_fit_model[[i]] <- qm_fit
108 | }
109 |
110 | #============================================================================
111 | # GR?FICOS DE SERIES TEMPORALES
112 | plot(data_wt, plot.type = "single", col = c(1, 2, 4), lwd = 1,xlab = "Years", ylab = "pp (mm/day)")
113 | title(expression(bold("OBSERVED DAILY HISTORICAL DATA vs" * phantom(" GCM DAILY DATA ") * phantom("vs DOWNSCALED GCM DAILY DATA"))), col.main = "black",cex.main=0.9)
114 | title(expression(bold(phantom("OBSERVED DAILY HISTORICAL DATA vs ") * " GCM DAILY DATA " * phantom("vs DOWNSCALED GCM DAILY DATA"))), col.main = "red",cex.main=0.9)
115 | title(expression(bold(phantom("OBSERVED DAILY HISTORICAL DATA vs ") * phantom(" GCM DAILY DATA ") *"vs DOWNSCALED GCM DAILY DATA")), col.main = "dodgerblue3",cex.main=0.9)
116 |
117 | plot(data_wt[months(time(data_wt)) %in% c("December","January","February")], plot.type = "single", col = c(1, 2, 4),
118 | lwd = 2, type = "p",xlab = "Years", ylab = "pp (mm/mes)")
119 | title(expression(bold("OBSERVED DAILY HISTORICAL DATA vs" * phantom(" GCM DAILY DATA ") * phantom(" vs DOWNSCALED GCM DAILY DATA ")*"DURING RAINY SEASON")), col.main = "black",cex.main=0.73)
120 | title(expression(bold(phantom("OBSERVED DAILY HISTORICAL DATA vs ") * " GCM DAILY DATA " * phantom(" vs DOWNSCALED GCM DAILY DATA ")*phantom("DURING RAINY SEASON"))), col.main = "red",cex.main=0.73)
121 | title(expression(bold(phantom("OBSERVED DAILY HISTORICAL DATA vs ") * phantom(" GCM DAILY DATA ")*" vs DOWNSCALED GCM DAILY DATA "*phantom("DURING RAINY SEASON"))), col.main = "dodgerblue3",cex.main=0.73)
122 |
123 | plot(gcm_downscaled~OBS_hist, coredata(data_wt), col = c(4,1))
124 | title(expression(bold("SCATTER PLOT OF OBSERVED DAILY DATA VS "*phantom("GCM DAILY DATA"))), col.main = "black", cex.main=1)
125 | title(expression(bold(phantom("SCATTER PLOT OF OBSERVED DAILY DATA vs ")*"GCM DAILY DATA")), col.main = "red", cex.main=1)
126 |
127 | plot(gcm_dowscaled~OBS_hist, coredata(data_wt[months(time(data_wt))%in%c("December","January","February")]), col = c(4,1),ylab = "PP GCM DOWNSCALED (mm)", xlab = "PP OBSERVED (mm)")
128 | title(expression(bold("SCATTER PLOT OF OBSERVED DAILY DATA VS "*phantom("GCM DOWNSCALED DAILY DATA")*"DURING RAINY SEASON")), col.main = "black", cex.main=0.8)
129 | title(expression(bold(phantom("SCATTER PLOT OF OBSERVED DAILY DATA vs ")*"GCM DOWNSCALED DAILY DATA"*phantom("DURING RAINY SEASON"))), col.main = "dodgerblue3", cex.main=0.8)
130 |
131 |
132 | ecdfplot(~ OBS_hist + GCM_hist + gcm_downscaled, data = data.frame(data_wt), lwd = 3, col = c(1, 2, 4),
133 | main="CDF PLOT OF OBS. DAILY DATA VS GCM AND GCM DOWNSCALED DAILY DATA",
134 | ylab = "Empirical CDF", xlab = "Daily GCM (red), GCM downscaled (blue) and Observed (black) data")
135 |
136 | ecdfplot(~ OBS_hist + GCM_hist + gcm_downscaled,data = data.frame(data_wt[months(time(data_wt))
137 | %in%c("December","January","February")]),
138 | lwd = 3, col = c(1, 2, 4), main="CDF PLOT OF OBS.vsGCMvsGCM DOWNSC. DAILY DATA - RAINY SEASON",
139 | ylab = "Empirical CDF", xlab = "Daily GCM (red), GCM downscaled (blue) and Observed (black) data")
140 |
141 | ecdfplot(~ OBS_hist + gcm_downscaled, data = data.frame(data_wt), lwd = 3, col = c(1, 2, 4),
142 | main="CDF PLOT OF OBS. DAILY DATA VS GCM DOWNSCALED DAILY DATA", ylab = "Empirical CDF",
143 | xlab = "Daily GCM downscaled (red) and Observed (black) data")
144 |
145 | #============================================================================
146 | #INTERPOLANDO LA INFORMACION EN CASO DE DATOS MENSUALES
147 |
148 | data_at$GCM_downscaled <- data_wt$gcm_downscaled
149 |
150 | #for(i in 1:4) {
151 | #mod_sl <- data_at[months(time(data_at)) %in% seasons_by_year[[i]]]$GCM_model
152 | #mod_sl_qmapped <- doQmapQUANT(coredata(mod_sl), seasonal_qm_fit_model[[i]], type = "linear")
153 | #data_at$GCM_downscaled[ months(time(data_at)) %in% seasons_by_year[[i]]] <- mod_sl_qmapped
154 | #}
155 | # verificar la nueva tabla y el grafico
156 | View(data_at)
157 | View(data_wt)
158 |
159 | plot(data_at, plot.type = "single", col = c(1, 2, 4), lwd = 1,
160 | main = c("OBS vs GCM VS GCM DOWNSCALED"),
161 | ylab = "pp (mm/mes)", xlab = "years")
162 |
163 | # ..............................................................................
164 | # GUARDAR DATOS ESCALADOS EN UN ARCHIVO .CSV
165 |
166 | write.zoo(data_at[,3],file = "OUT.csv", sep = ",")
167 | print("El proceso se ha completado satisfactoriamente!")
168 | plot(data_at, plot.type = "single", col = c(1, 2, 4), lwd = 1,
169 | main = c("OBS vs GCM VS GCM DOWNSCALED"),
170 | ylab = "pp (mm/mes)", xlab = "years")
171 |
172 | # ..............................................................................
173 | # GUARDAR DATOS ESCALADOS EN UN ARCHIVO .CSV
174 |
175 | write.zoo(data_at[,3],file = "Out2.csv", sep = ",")
176 | print("El proceso se ha completado satisfactoriamente!")
177 |
--------------------------------------------------------------------------------
/Qmapping.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Hydroenvironment/Statdownscaling/9920be63011760940cf19a7f5e7d5c6016ee17c7/Qmapping.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Statistical Downscaling of climate data
2 | [](https://github.com/Hydroenvironment/CMIP6-WORLDCLIM-HANDLING/actions)
3 | [](https://www.repostatus.org/#active)
6 | [](https://www.gnu.org/licenses/gpl-3.0.en.html)
7 | [](https://github.com/Hydroenvironment/CMIP6-WORLDCLIM-HANDLING/)
8 | [](https://github.com/dwyl/esta/issues)
9 | 
10 |
11 | 🌏 Statistical downscaling is a two-step process consisting of i) the development of statistical relationships between local climate variables (e.g., surface air temperature and precipitation) and large-scale predictors (e.g., pressure fields), and ii) the application of such relationships to the output of global climate model experiments to simulate local climate characteristics in the future.
12 |
13 | ✅Scripts for point-based time series and gridded datasets.
14 |
15 |
16 | Author: Julio Montenegro Gambini, MSc.
17 |
18 |
19 |
--------------------------------------------------------------------------------