├── .util
├── requirements.txt
├── setup.sh
├── setup.ps1
├── start.py
├── common.ps1
└── common.sh
├── smf_explorer
└── .gitkeep
├── .pre-commit-search-and-replace.yaml
├── Notebooks
├── Tutorial
│ ├── Tutorial 3 Screenshot 1.png
│ ├── README.ipynb
│ ├── Skeleton Notebook.ipynb
│ ├── Tutorial 5 - Interactive Notebooks.ipynb
│ ├── Tutorial 4 - Visualizing.ipynb
│ └── Tutorial 1 - Basics.ipynb
└── Reports
│ └── LPAR Topology Report.ipynb
├── setup.bat
├── start.bat
├── .github
└── ISSUE_TEMPLATE
│ └── bug_report.md
├── .pre-commit-config.yaml
├── README.md
├── start
├── setup
├── setup.ps1
├── start.ps1
├── .gitignore
└── LICENSE
/.util/requirements.txt:
--------------------------------------------------------------------------------
1 | smfexplorer[jupyter,jupyter-lab]>=1.0.0
2 |
--------------------------------------------------------------------------------
/smf_explorer/.gitkeep:
--------------------------------------------------------------------------------
1 | Directory for downloaded SMF Explorer wheels (.whl files).
2 |
--------------------------------------------------------------------------------
/.pre-commit-search-and-replace.yaml:
--------------------------------------------------------------------------------
1 | - search: '/DATASET\s*=\s*\\".*\\"/'
2 | replacement: 'DATASET = \"YOUR.SMF.DATA\"'
3 | extended: true
4 |
--------------------------------------------------------------------------------
/Notebooks/Tutorial/Tutorial 3 Screenshot 1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IBM/IBM-SMF-Explorer/HEAD/Notebooks/Tutorial/Tutorial 3 Screenshot 1.png
--------------------------------------------------------------------------------
/setup.bat:
--------------------------------------------------------------------------------
1 | ::
2 | :: Copyright 2022 IBM Corporation
3 | ::
4 | :: Licensed under the Apache License, Version 2.0 (the "License");
5 | :: you may not use this file except in compliance with the License.
6 | :: You may obtain a copy of the License at
7 | ::
8 | :: http://www.apache.org/licenses/LICENSE-2.0
9 | ::
10 | :: Unless required by applicable law or agreed to in writing, software
11 | :: distributed under the License is distributed on an "AS IS" BASIS,
12 | :: WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | :: See the License for the specific language governing permissions and
14 | :: limitations under the License.
15 | ::
16 |
17 | @ECHO OFF
18 | PowerShell -NoProfile -ExecutionPolicy Bypass -Command "& './setup.ps1' %*"
19 |
--------------------------------------------------------------------------------
/start.bat:
--------------------------------------------------------------------------------
1 | ::
2 | :: Copyright 2022 IBM Corporation
3 | ::
4 | :: Licensed under the Apache License, Version 2.0 (the "License");
5 | :: you may not use this file except in compliance with the License.
6 | :: You may obtain a copy of the License at
7 | ::
8 | :: http://www.apache.org/licenses/LICENSE-2.0
9 | ::
10 | :: Unless required by applicable law or agreed to in writing, software
11 | :: distributed under the License is distributed on an "AS IS" BASIS,
12 | :: WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | :: See the License for the specific language governing permissions and
14 | :: limitations under the License.
15 | ::
16 |
17 | @ECHO OFF
18 | PowerShell -NoProfile -ExecutionPolicy Bypass -Command "& './start.ps1' %*"
19 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: bug
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Desktop (please complete the following information):**
27 | - OS and Version: [e.g. Windows 10]
28 | - Python Version: [e.g. 3.8]
29 |
30 | **SMF Explorer Info**
31 | ```
32 | # Output of print(smfexplorer.info())
33 | ```
34 |
35 | **Additional context**
36 | Add any other context about the problem here.
37 |
--------------------------------------------------------------------------------
/.pre-commit-config.yaml:
--------------------------------------------------------------------------------
1 | repos:
2 | - repo: https://github.com/pre-commit/pre-commit-hooks
3 | rev: v4.3.0
4 | hooks:
5 | - id: check-yaml
6 | - id: end-of-file-fixer
7 | - id: trailing-whitespace
8 | - id: check-executables-have-shebangs
9 | - id: end-of-file-fixer
10 | - id: requirements-txt-fixer
11 | - id: no-commit-to-branch
12 | args: [--branch, main]
13 | - id: check-case-conflict
14 | - id: check-merge-conflict
15 | - repo: https://github.com/psf/black
16 | rev: 22.8.0
17 | hooks:
18 | - id: black-jupyter
19 | - repo: https://github.com/datarootsio/databooks
20 | rev: 1.0.5
21 | hooks:
22 | - id: databooks-meta
23 | args:
24 | [
25 | --overwrite,
26 | --rm-outs,
27 | --nb-meta-keep,
28 | kernelspec,
29 | --cell-meta-keep,
30 | autorun,
31 | --cell-meta-keep,
32 | jupyter,
33 | ]
34 | - repo: https://github.com/mattlqx/pre-commit-search-and-replace
35 | rev: v1.0.5
36 | hooks:
37 | - id: search-and-replace
38 | types: [jupyter]
39 |
--------------------------------------------------------------------------------
/.util/setup.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | #
4 | # Copyright 2022 IBM Corporation
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 | #
18 |
19 | set -eou pipefail
20 |
21 | pip_default_opts="--no-cache-dir --no-input --disable-pip-version-check --find-links ./smf_explorer/"
22 |
23 | # Upgrade pip because of issues in MacOS BigSur
24 | # python -m pip install $pip_default_opts --upgrade pip setuptools wheel
25 |
26 | # Base install
27 | pip install $pip_default_opts --upgrade -r $REQUIREMENTS_FILE --upgrade-strategy eager
28 |
29 | if test -f requirements.txt;then
30 | pip install $pip_default_opts --upgrade -r requirements.txt --upgrade-strategy eager
31 | fi
32 |
--------------------------------------------------------------------------------
/.util/setup.ps1:
--------------------------------------------------------------------------------
1 |
2 | #
3 | # Copyright 2022 IBM Corporation
4 | #
5 | # Licensed under the Apache License, Version 2.0 (the "License");
6 | # you may not use this file except in compliance with the License.
7 | # You may obtain a copy of the License at
8 | #
9 | # http://www.apache.org/licenses/LICENSE-2.0
10 | #
11 | # Unless required by applicable law or agreed to in writing, software
12 | # distributed under the License is distributed on an "AS IS" BASIS,
13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 | # See the License for the specific language governing permissions and
15 | # limitations under the License.
16 | #
17 |
18 | $ErrorActionPreference = "Stop"
19 |
20 | $pip_default_opts = @("--no-cache-dir", "--disable-pip-version-check", "--no-input", "--find-links", "./smf_explorer/")
21 |
22 | # Upgrade pip because of issues in MacOS BigSur
23 | python -m pip install $pip_default_opts --upgrade pip setuptools wheel
24 |
25 | # Base install
26 | pip install $pip_default_opts --upgrade -r $REQUIREMENTS_FILE --upgrade-strategy "eager"
27 |
28 | if (Test-Path -Path "requirements.txt") {
29 | pip install $pip_default_opts --upgrade -r requirements.txt --upgrade-strategy "eager"
30 | }
31 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # IBM SMF Explorer
2 |
3 | IBM® SMF Explorer is a Python framework to fetch SMF data into [Pandas](https://pandas.pydata.org/) DataFrames.
4 | It uses the z/OS® Data Gatherer Rest API Services to access data directly from your SMF data sets.
5 |
6 | ## Getting Started
7 |
8 | ### Requirements
9 |
10 | - z/OS Data Gatherer Rest API Services
11 | - Python 3.8 or later installed on your workstation
12 |
13 | To get started with IBM SMF Explorer follow the official [documentation](https://ibm.github.io/IBM-SMF-Explorer/)
14 | When you have done the installation, take a look at the Tutorial notebooks in the `Tutorial` directory.
15 |
16 |
17 | ## Reporting issues and asking questions
18 |
19 | If you want to report a bug, feel free to open an [issue](https://github.com/IBM/IBM-SMF-Explorer/issues).
20 | If you have questions, ideas, or want to share what you did, you can use the GitHub [Discussions](https://github.com/IBM/IBM-SMF-Explorer/discussions) feature.
21 |
22 | ## Contributing
23 |
24 | We want to encourage you to contribute Notebooks or ideas.
25 | We will create a complete Contribution Guide in the future to get you started.
26 | If you want to contribute code in the meantime, be aware that you are required to sign of your contributions to declare you accept the [DCO](https://developercertificate.org/).
27 |
--------------------------------------------------------------------------------
/start:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | #
4 | # Copyright 2022 IBM Corporation
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 | #
18 |
19 | set -eou pipefail
20 |
21 | # Ensure script runs in correct directory
22 | cd $(dirname $0)
23 |
24 | # Load common setup
25 | source ./.util/common.sh
26 |
27 | parse_args $*
28 |
29 | # Switch to windows script
30 | if [[ "$MACHINE" = "Windows" ]]; then
31 | exec ./start.bat $($ARG_RESET && echo -Reset)
32 | fi
33 |
34 | # Pre flight checks
35 | if test ! -f ".util/.setup.sha1"; then
36 | echo -e "${RED}It looks like there is no valid setup. Run './setup' to install an environment${NC}"
37 | exit 1
38 | fi
39 | if ! check_checksums; then
40 | echo -e "${ORANGE}There are updates to some configuration files. Run './setup' again to reinstall the environment${NC}"
41 | if ! prompt_user_yes_or_no "Do you want to continue without updating" "N"; then
42 | exit
43 | fi
44 | fi
45 |
46 | if test ! -d .setup_venv;then
47 | echo -e "${RED}No environment found. Run './setup' to install the environment${NC}"
48 | exit 1
49 | fi
50 |
51 | activate_environment
52 |
53 | python .util/start.py $*
54 |
--------------------------------------------------------------------------------
/setup:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | #
4 | # Copyright 2022 IBM Corporation
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 | #
18 |
19 | set -eou pipefail
20 |
21 | # Ensure script runs in correct directory
22 | cd $(dirname $0)
23 |
24 | # Load common setup
25 | source ./.util/common.sh
26 |
27 | parse_args $*
28 |
29 | # Switch to windows script
30 | if [[ "$MACHINE" = "Windows" ]]; then
31 | exec ./setup.bat $($ARG_RESET && echo -Reset)
32 | fi
33 |
34 | find_python_version
35 |
36 | # Run setup
37 |
38 | if $ARG_RESET; then
39 | echo -e "${BLUE}Recreating virtual environment${NC}..."
40 | $PY -m venv --copies --clear --upgrade-deps $ENVIRONMENT_PATH
41 | elif [[ -d "$ENVIRONMENT_PATH" ]];then
42 | echo -e "${BLUE}Updating virtual environment${NC}..."
43 | $PY -m venv --copies --upgrade --upgrade-deps $ENVIRONMENT_PATH
44 | else
45 | echo -e "${BLUE}Creating virtual environment${NC}..."
46 | $PY -m venv --copies --upgrade-deps $ENVIRONMENT_PATH
47 | fi
48 |
49 | activate_environment
50 |
51 | echo -e "${BLUE}Running basic installation${NC}..."
52 | .util/setup.sh
53 |
54 | # Store Checksums for update warning
55 | write_checksums
56 |
57 | echo -e "${BLUE}Done${NC}"
58 |
--------------------------------------------------------------------------------
/setup.ps1:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env pwsh
2 | param(
3 | [Switch]$Reset
4 | )
5 |
6 | #
7 | # Copyright 2022 IBM Corporation
8 | #
9 | # Licensed under the Apache License, Version 2.0 (the "License");
10 | # you may not use this file except in compliance with the License.
11 | # You may obtain a copy of the License at
12 | #
13 | # http://www.apache.org/licenses/LICENSE-2.0
14 | #
15 | # Unless required by applicable law or agreed to in writing, software
16 | # distributed under the License is distributed on an "AS IS" BASIS,
17 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 | # See the License for the specific language governing permissions and
19 | # limitations under the License.
20 | #
21 |
22 | # Setup Environment
23 | $ErrorActionPreference = "Stop"
24 |
25 | # Changing into working directory
26 | Set-Location -Path $PSScriptRoot
27 |
28 | # Load Common Functions
29 | . ./.util/common.ps1
30 |
31 | FindPythonVersion
32 |
33 | # Run setup
34 | if ($ARG_RESET) {
35 | Write-Host "Recreating virtual environment..." -ForegroundColor Blue
36 | if (-Not(Invoke-Expression $PY" -m venv --copies --clear --upgrade-deps "$ENVIRONMENT_PATH';$?')) {
37 | exit 1
38 | }
39 | }
40 | elseif (Test-Path -Path $ENVIRONMENT_PATH -PathType Container) {
41 | Write-Host "Updating virtual environment..." -ForegroundColor Blue
42 | if (-Not(Invoke-Expression $PY" -m venv --copies --upgrade --upgrade-deps "$ENVIRONMENT_PATH';$?')) {
43 | exit 1
44 | }
45 | }
46 | else {
47 | Write-Host "Creating virtual environment..." -ForegroundColor Blue
48 | if (-Not(Invoke-Expression $PY" -m venv --copies --upgrade-deps "$ENVIRONMENT_PATH';$?')) {
49 | exit 1
50 | }
51 | }
52 |
53 | ActivateEnvironment
54 |
55 | try {
56 | Write-Host "Running basic installation..." -ForegroundColor Blue
57 | .\.util\setup.ps1
58 | }
59 | finally {
60 | deactivate
61 | }
62 |
63 | WriteChecksums
64 |
--------------------------------------------------------------------------------
/start.ps1:
--------------------------------------------------------------------------------
1 | param(
2 | [Switch]$Reset
3 | )
4 |
5 | #
6 | # Copyright 2022 IBM Corporation
7 | #
8 | # Licensed under the Apache License, Version 2.0 (the "License");
9 | # you may not use this file except in compliance with the License.
10 | # You may obtain a copy of the License at
11 | #
12 | # http://www.apache.org/licenses/LICENSE-2.0
13 | #
14 | # Unless required by applicable law or agreed to in writing, software
15 | # distributed under the License is distributed on an "AS IS" BASIS,
16 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 | # See the License for the specific language governing permissions and
18 | # limitations under the License.
19 | #
20 |
21 | # Setup Environment
22 | $ErrorActionPreference = "Stop"
23 |
24 | #Changing into working directory
25 | Set-Location -Path $PSScriptRoot
26 |
27 | # Load Common Functions
28 | . ./.util/common.ps1
29 |
30 | # Pre flight checks
31 | if (!(Test-Path -Path ".\.util\.setup_sha.xml")) {
32 | Write-Host "It looks like there is no valid setup. Run './setup.bat' to install an environment" -ForegroundColor Red
33 | exit 1
34 | }
35 | if (!(CheckChecksums)) {
36 | Write-Host "There are updates to some configuration files. Run './setup.bat' again to reinstall the environment" -ForegroundColor Yellow
37 | if (!(PrompUserYesOrNo -Prompt "Do you want to continue without updating" -Default "N")) {
38 | exit
39 | }
40 | }
41 |
42 |
43 | if ( -Not (TestCommand python)) {
44 | Write-Host "Python not found! Make sure that Python is installed and your PATH is set up correctly" -ForegroundColor Red
45 | exit 1
46 | }
47 |
48 | if (!(Test-Path -Path $ENVIRONMENT_PATH -PathType Container)) {
49 | Write-Host "No environment found. Run './setup.bat' to install environment" -ForegroundColor Red
50 | exit 1
51 | }
52 |
53 | ActivateEnvironment
54 |
55 | try {
56 | $arguments = $args
57 | python .\.util\start.py $arguments
58 | }
59 | finally {
60 | deactivate
61 | }
62 |
--------------------------------------------------------------------------------
/Notebooks/Tutorial/README.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 5,
4 | "metadata": {
5 | "kernelspec": {
6 | "display_name": "Python 3 (ipykernel)",
7 | "language": "python",
8 | "name": "python3"
9 | }
10 | },
11 | "cells": [
12 | {
13 | "metadata": {},
14 | "source": [
15 | "# Welcome to the *IBM SMF Explorer* Tutorials!\n",
16 | "\n",
17 | "The Tutorials are split into different sections each with its own notebook.\n",
18 | "\n",
19 | "- **Tutorial 1 - Basics:** SMF data fetching and core package functionality. \n",
20 | "- **Tutorial 2 - Filtering and Sorting:** data reduction, filtering, and sorting using the build-in expression language.\n",
21 | "- **Tutorial 3 - Working with the data:** data processing with *IBM SMF Explorer* and Pandas.\n",
22 | "- **Tutorial 4 - Visualization:** data visualization using plotly.\n",
23 | "- **Tutorial 5 - Interactive Notebooks (Advanced):** creating interactive Notebooks.\n",
24 | "\n",
25 | "All tutorials have cells containing code in them.\n",
26 | "When you come across such a code cell you should execute it by selecting it and pressing `Ctrl`+`Enter`.\n",
27 | "If you ever face issues you can reset the current Notebook with the _'Reset the kernel'_ button in the task bar above.\n",
28 | "\n",
29 | "### What SMF data to use?\n",
30 | "\n",
31 | "In the tutorials you will often find the code line `DATASET = \"YOUR.SMF.DATA\"`.\n",
32 | "You should replace `YOUR.SMF.DATA` with a data set you have access to. The tutorials make use of SMF types 70 and 72.\n",
33 | "Note that, escpecially for **Tutorial 2**, you will find operations that are dependent on the data you use.\n",
34 | "Feel free to change the code, but keep in mind that other parts of the tutorial might be affected.\n",
35 | "\n",
36 | "If you have never worked with Jupyter Notebooks or Python, before exploring the Tutorials, have a look into the following resources:\n",
37 | "- [The Jupyter Notebook Introduction](https://jupyter-notebook.readthedocs.io/en/stable/notebook.html)\n",
38 | "- [JupyterLab Documentation](https://jupyterlab.readthedocs.io/en/stable/)\n",
39 | "- [Python](https://www.learnpython.org)\n",
40 | "\n",
41 | "### Resources for data analysis\n",
42 | "- [pandas documentation](https://pandas.pydata.org/docs/)\n",
43 | "- [Pandas Tutorial: DataFrames in Python](https://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python)\n",
44 | "- [numpy documentation](https://numpy.org/doc/stable/)\n",
45 | "\n"
46 | ],
47 | "cell_type": "markdown"
48 | }
49 | ]
50 | }
51 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 |
2 | # Excluding all notebooks. Shared notebooks need to be force added.
3 | /Notebooks/
4 |
5 | # Exclude SMF Explorer .whl files
6 | /smf_explorer/
7 |
8 | # Exclude setup checksums
9 | .util/.setup_sha.xml
10 | .util/.setup.sha1
11 |
12 | # Exclude Setup virt env
13 | /.setup_venv
14 |
15 | # Created by https://www.toptal.com/developers/gitignore/api/visualstudiocode,jupyternotebooks,windows,linux,macos
16 | # Edit at https://www.toptal.com/developers/gitignore?templates=visualstudiocode,jupyternotebooks,windows,linux,macos
17 |
18 | ### JupyterNotebooks ###
19 | # gitignore template for Jupyter Notebooks
20 | # website: http://jupyter.org/
21 |
22 | .ipynb_checkpoints
23 | */.ipynb_checkpoints/*
24 |
25 | # IPython
26 | profile_default/
27 | ipython_config.py
28 |
29 | # Remove previous ipynb_checkpoints
30 | # git rm -r .ipynb_checkpoints/
31 |
32 | ### Linux ###
33 | *~
34 |
35 | # temporary files which can be created if a process still has a handle open of a deleted file
36 | .fuse_hidden*
37 |
38 | # KDE directory preferences
39 | .directory
40 |
41 | # Linux trash folder which might appear on any partition or disk
42 | .Trash-*
43 |
44 | # .nfs files are created when an open file is removed but is still being accessed
45 | .nfs*
46 |
47 | ### macOS ###
48 | # General
49 | .DS_Store
50 | .AppleDouble
51 | .LSOverride
52 |
53 | # Icon must end with two \r
54 | Icon
55 |
56 |
57 | # Thumbnails
58 | ._*
59 |
60 | # Files that might appear in the root of a volume
61 | .DocumentRevisions-V100
62 | .fseventsd
63 | .Spotlight-V100
64 | .TemporaryItems
65 | .Trashes
66 | .VolumeIcon.icns
67 | .com.apple.timemachine.donotpresent
68 |
69 | # Directories potentially created on remote AFP share
70 | .AppleDB
71 | .AppleDesktop
72 | Network Trash Folder
73 | Temporary Items
74 | .apdisk
75 |
76 | ### macOS Patch ###
77 | # iCloud generated files
78 | *.icloud
79 |
80 | ### VisualStudioCode ###
81 | .vscode/*
82 | !.vscode/settings.json
83 | !.vscode/tasks.json
84 | !.vscode/launch.json
85 | !.vscode/extensions.json
86 | !.vscode/*.code-snippets
87 |
88 | # Local History for Visual Studio Code
89 | .history/
90 |
91 | # Built Visual Studio Code Extensions
92 | *.vsix
93 |
94 | ### VisualStudioCode Patch ###
95 | # Ignore all local history of files
96 | .history
97 | .ionide
98 |
99 | # Support for Project snippet scope
100 | .vscode/*.code-snippets
101 |
102 | # Ignore code-workspaces
103 | *.code-workspace
104 |
105 | ### Windows ###
106 | # Windows thumbnail cache files
107 | Thumbs.db
108 | Thumbs.db:encryptable
109 | ehthumbs.db
110 | ehthumbs_vista.db
111 |
112 | # Dump file
113 | *.stackdump
114 |
115 | # Folder config file
116 | [Dd]esktop.ini
117 |
118 | # Recycle Bin used on file shares
119 | $RECYCLE.BIN/
120 |
121 | # Windows Installer files
122 | *.cab
123 | *.msi
124 | *.msix
125 | *.msm
126 | *.msp
127 |
128 | # Windows shortcuts
129 | *.lnk
130 |
131 | # End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,jupyternotebooks,windows,linux,macos
132 |
--------------------------------------------------------------------------------
/.util/start.py:
--------------------------------------------------------------------------------
1 | #
2 | # Copyright 2022 IBM Corporation
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | #
16 |
17 | import subprocess
18 | import os
19 | import signal
20 | import re
21 | import argparse
22 | import getpass
23 |
24 | os_var_connection_string = "SMFEXPLORER_CONNECTION_STRING"
25 | os_var_user_name = "SMFEXPLORER_USERNAME"
26 | os_var_user_password = "SMFEXPLORER_PASSWORD"
27 |
28 |
29 | def select_server(no_verify_tls: bool = False):
30 | if os_var_connection_string in os.environ:
31 | print("Connection string found in system environment")
32 | connection_string = os.environ[os_var_connection_string]
33 | else:
34 | connection_string = input(f"What is your connection string?: ")
35 | connection_string = connection_string.strip()
36 |
37 | if os_var_user_name in os.environ:
38 | print("User name found in system environment")
39 | user_name = os.environ[os_var_user_name]
40 | else:
41 | user_name = input("Enter your username: ")
42 | user_name = user_name.strip()
43 |
44 | if os_var_user_password in os.environ:
45 | print("User password found in system environment")
46 | user_password = os.environ[os_var_user_password]
47 | else:
48 | user_password = getpass.getpass("Enter your password: ")
49 |
50 | match = re.match(
51 | r"^http[s]?:\/\/(?:[a-zA-Z0-9-]|[.])+(?::[0-9]+)?(?:[a-zA-Z0-9]+)(?:/.*)*$",
52 | connection_string,
53 | )
54 | if match:
55 |
56 | return f"mode=dgapi;url={connection_string};verify_ssl={'false' if no_verify_tls else 'true'};username={user_name};password={user_password}"
57 |
58 | print("Invalid connection string")
59 | exit(1)
60 |
61 |
62 | def start_jupyter(connection_string, log: bool = False):
63 | sig_stopper = signal.signal(signal.SIGINT, signal.SIG_IGN)
64 |
65 | env = os.environ.copy()
66 | env["SMFPY_CONNECTION_STRING"] = connection_string
67 |
68 | run_list = (
69 | [
70 | "jupyter",
71 | "lab",
72 | "--notebook-dir=Notebooks",
73 | "--LabApp.use_redirect_file=False",
74 | ]
75 | if os.name == "nt"
76 | else [f"jupyter lab --notebook-dir=Notebooks --LabApp.use_redirect_file=False"]
77 | )
78 |
79 | print("Starting Jupyter Lab...")
80 |
81 | subprocess.run(
82 | run_list, shell=True, env=env, stderr=None if log else subprocess.DEVNULL
83 | )
84 |
85 | signal.signal(signal.SIGINT, sig_stopper)
86 |
87 |
88 | parser = argparse.ArgumentParser()
89 |
90 | parser.add_argument("--log-output", action="store_true")
91 | parser.add_argument("--no-verify-tls", default=False)
92 | parser.add_argument("---cacert", help='Path to the TLS CA certificate file for the specified host')
93 |
94 | def main():
95 | try:
96 | ns = parser.parse_args()
97 | custom_ca_path = ns.cacert
98 | if custom_ca_path:
99 | os.environ['REQUESTS_CA_BUNDLE'] = custom_ca_path
100 |
101 | # Select Server to use
102 | connection_string = select_server(ns.no_verify_tls)
103 |
104 | start_jupyter(connection_string, log=ns.log_output)
105 | except KeyboardInterrupt:
106 | print("")
107 | pass
108 |
109 |
110 | if __name__ == "__main__":
111 | main()
112 |
--------------------------------------------------------------------------------
/.util/common.ps1:
--------------------------------------------------------------------------------
1 |
2 | #
3 | # Copyright 2022 IBM Corporation
4 | #
5 | # Licensed under the Apache License, Version 2.0 (the "License");
6 | # you may not use this file except in compliance with the License.
7 | # You may obtain a copy of the License at
8 | #
9 | # http://www.apache.org/licenses/LICENSE-2.0
10 | #
11 | # Unless required by applicable law or agreed to in writing, software
12 | # distributed under the License is distributed on an "AS IS" BASIS,
13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 | # See the License for the specific language governing permissions and
15 | # limitations under the License.
16 | #
17 |
18 | # Settings
19 | $INSTALL_FILES = @(".util/common.ps1", ".util/setup.sh", ".util/setup.ps1", ".util/requirements.txt", "setup")
20 | $ENVIRONMENT_PATH = ".setup_venv"
21 | $REQUIREMENTS_FILE = ".util/requirements.txt"
22 |
23 | # Arguments
24 | $ARG_RESET = $Reset
25 |
26 | $Env:ENVIRONMENT_PATH = $ENVIRONMENT_PATH
27 | $Env:REQUIREMENTS_FILE = $REQUIREMENTS_FILE
28 |
29 | # Load dotenv file
30 | if ((Test-Path -Path "./.env.ps1" -PathType Leaf)) {
31 | . ./.env.ps1
32 | }
33 |
34 | # Util Functions
35 | function TestCommand ($command) {
36 | try {
37 | Get-Command $command
38 | return $True
39 | }
40 | catch {
41 | return $False
42 | }
43 | }
44 |
45 | function PrompUserYesOrNo($Prompt, $Default) {
46 | $prompt_helper = "(y/n)"
47 | if ($Default -eq "Y") { $prompt_helper = "(Y/n)" }
48 | elseif ($Default -eq "N") { $prompt_helper = "(y/N)" }
49 | while ($True) {
50 | $answer = Read-Host "$Prompt ${prompt_helper}? "
51 | switch -regex ($answer) {
52 | "[Yy].*" { return $True }
53 | "[Nn].*" { return $False }
54 | Default {
55 | if ( $Default -eq "Y" ) { return $True }
56 | elseif ($Default -eq "N") { return $False }
57 | else {
58 | Write-Host "Please select yes or no."
59 | }
60 | }
61 | }
62 | }
63 |
64 | }
65 |
66 | $PY = $null
67 | # Find suitable python version
68 | function FindPythonVersion() {
69 | $python_candidates = @("python", "python3", "python", "py", "python3.9", "python3.8")
70 | $PYTHON_VERSION_CHECK_CMD = "import platform;major, minor, _ = platform.python_version_tuple();exit(1) if int(major) < 3 or int(minor) < 8 else ();exit(2) if '64' not in platform.architecture()[0] else ();"
71 | foreach ($candidate in $python_candidates) {
72 | if (TestCommand $candidate) {
73 | try {
74 | if (Invoke-Expression ($candidate + " -c `"${PYTHON_VERSION_CHECK_CMD}`" 2>&1 | out-null " + ';$?')) {
75 | $script:PY = $candidate
76 | break
77 | }
78 | }
79 | catch {}
80 | }
81 | }
82 |
83 | if ($null -eq $PY) {
84 | Write-Host "No appropriate Python found! Make sure that Python 3.8 64bit or newer is installed and your PATH is setup correctly" -ForegroundColor Red
85 | exit 1
86 | }
87 | }
88 |
89 | function WriteChecksums() {
90 | Get-FileHash -Path $INSTALL_FILES | Export-Clixml .util/.setup_sha.xml
91 | }
92 |
93 | function CheckChecksums() {
94 | $checksums = (Import-Clixml .\.util\.setup_sha.xml)
95 |
96 | foreach ($checksum in $checksums) {
97 | if ((Get-FileHash -Path $checksum.Path).Hash -ne $checksum.Hash) {
98 | return $False
99 | }
100 | }
101 |
102 | return $True
103 | }
104 |
105 | function ActivateEnvironment() {
106 | Write-Host "Activating environment..." -ForegroundColor Blue
107 | . $ENVIRONMENT_PATH\*\Activate.ps1
108 | }
109 |
110 | if (!([Environment]::GetEnvironmentVariable('SMF_EXPLORER_PATH'))) {
111 | $Env:SMF_EXPLORER_PATH = "../IBM-SMF-Explorer"
112 | }
113 |
--------------------------------------------------------------------------------
/.util/common.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | #
4 | # Copyright 2022 IBM Corporation
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 | #
18 |
19 | # Colors
20 | RED="$(tput setaf 1)"
21 | BLUE="$(tput setaf 4)"
22 | ORANGE="$(tput setaf 3)"
23 | BOLD="$(tput bold)"
24 | NC="$(tput sgr0)"
25 |
26 | # Check OS Type
27 | #system="$(uname -s)"
28 | case "$(uname -s)" in
29 | CYGWIN*) MACHINE=Windows;;
30 | MINGW*) MACHINE=Windows;;
31 | MSYS*) MACHINE=Windows;;
32 | Darwin*) MACHINE=Darwin;;
33 | *) MACHINE=Unix;;
34 | esac
35 |
36 | # Settings
37 | INSTALL_FILES=(".util/common.sh" ".util/setup.sh" ".util/requirements.txt" "setup")
38 | ENVIRONMENT_PATH=".setup_venv"
39 | REQUIREMENTS_FILE=".util/requirements.txt"
40 |
41 | # Arguments
42 | ARG_RESET=false
43 |
44 | # Load dotenv file
45 | if [[ -f "./.env" ]];then
46 | set -a
47 | source ./.env
48 | set +a
49 | fi
50 |
51 | parse_args() {
52 | while [[ $# -gt 0 ]]; do
53 | case $1 in
54 | -r|--reset)
55 | ARG_RESET=true
56 | shift
57 | ;;
58 | *)
59 | shift
60 | ;;
61 | esac
62 | done
63 | }
64 |
65 | # Util Functions
66 |
67 | command_exists() {
68 | type "$1" &> /dev/null ;
69 | }
70 |
71 | prompt_user_yes_or_no() {
72 | if [[ ${2:-} = "Y" ]]; then prompt_help="(${BOLD}Y${NC}/n)"
73 | elif [[ ${2:-} = "N" ]]; then prompt_help="(y/${BOLD}N${NC})"
74 | else prompt_help="(y/n)"; fi
75 |
76 | while true; do
77 | read -p "$1 $prompt_help?: " yn
78 | case $yn in
79 | [Yy]* ) return 0;;
80 | [Nn]* ) return 1;;
81 | * )
82 | if [[ ${2:-} = "Y" ]];then return 0;
83 | elif [[ ${2:-} = "N" ]]; then return 1;
84 | else echo "Please select ${BOLD}yes${NC} or ${BOLD}no${NC}."; fi
85 | ;;
86 | esac
87 | done
88 | }
89 |
90 | # Find suitable python version
91 | find_python_version() {
92 | PY=""
93 | local CANDIDATES=("python" "python3" "python3.9" "python3.8")
94 | local PYTHON_VERSION_CHECK_CMD="import platform;major, minor, _ = platform.python_version_tuple();exit(1) if int(major) < 3 or int(minor) < 8 else ();exit(2) if '64' not in platform.architecture()[0] else ();"
95 | for candidate in "${CANDIDATES[@]}"; do
96 | if command_exists $candidate; then
97 | if $candidate -c "$PYTHON_VERSION_CHECK_CMD";then
98 | PY="$candidate"
99 | break
100 | fi
101 | fi
102 | done
103 | if [[ $PY = "" ]]; then
104 | echo -e "${RED}No appropriate Python found! Make sure that Python 3.8 64bit or newer is installed and your PATH is setup correctly${NC}"
105 | exit 1
106 | fi
107 | }
108 |
109 | # Write Checksums
110 | write_checksums() {
111 | if [[ "$MACHINE" = "Darwin" ]];then
112 | shasum ${INSTALL_FILES[*]} > .util/.setup.sha1
113 | else
114 | sha1sum ${INSTALL_FILES[*]} > .util/.setup.sha1
115 | fi
116 | }
117 |
118 | check_checksums() {
119 | if [[ "$MACHINE" = "Darwin" ]]; then
120 | shasum -c .util/.setup.sha1 &> /dev/null
121 | return $?
122 | else
123 | sha1sum -c .util/.setup.sha1 &> /dev/null
124 | return $?
125 | fi
126 | }
127 |
128 | activate_environment() {
129 | echo -e "${BLUE}Activating environment${NC}..."
130 | source $ENVIRONMENT_PATH/bin/activate
131 | }
132 |
133 | export ENVIRONMENT_PATH
134 | export REQUIREMENTS_FILE
135 |
136 | if [[ -z "${SMF_EXPLORER_PATH+x}" ]]; then
137 | SMF_EXPLORER_PATH="../IBM-SMF-Explorer"
138 | fi
139 |
140 | export SMF_EXPLORER_PATH
141 |
--------------------------------------------------------------------------------
/Notebooks/Tutorial/Skeleton Notebook.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 4,
4 | "metadata": {
5 | "kernelspec": {
6 | "display_name": "Python 3 (ipykernel)",
7 | "language": "python",
8 | "name": "python3"
9 | }
10 | },
11 | "cells": [
12 | {
13 | "metadata": {},
14 | "source": [
15 | "# Skeleton Notebook\n",
16 | "\n",
17 | "This Jupyter Notebook serves as a starting point for your future Notebooks. You can copy this Notebook to your directory, rename it, and extend it. "
18 | ],
19 | "cell_type": "markdown"
20 | },
21 | {
22 | "metadata": {},
23 | "source": [
24 | "# imports\n",
25 | "import smfexplorer\n",
26 | "from smfexplorer.fields import SMF70S1, SMF72S3 # change or add fields of interest here\n",
27 | "from smfexplorer import names\n",
28 | "\n",
29 | "from plotly import express as px # for visualization\n",
30 | "\n",
31 | "# for data processing\n",
32 | "import pandas as pd\n",
33 | "import numpy as np"
34 | ],
35 | "cell_type": "code",
36 | "outputs": [],
37 | "execution_count": null
38 | },
39 | {
40 | "metadata": {},
41 | "source": [
42 | "# define Context\n",
43 | "DATASET = \"YOUR.SMF.DATA\"\n",
44 | "ctx = smfexplorer.new_context(DATASET)"
45 | ],
46 | "cell_type": "code",
47 | "outputs": [],
48 | "execution_count": null
49 | },
50 | {
51 | "metadata": {},
52 | "source": [
53 | "# ------------------------------------------------#\n",
54 | "# Fetch the data (select one of 3 methods)\n",
55 | "# ------------------------------------------------#\n",
56 | "\n",
57 | "# 1. using request() method\n",
58 | "df = ctx.request([RECORD.FIELD1, RECORD.FIELD2]).run() # add fields\n",
59 | "# example: df = ctx.request([SMF70S1.timestamp, SMF70S1.sid]).run()\n",
60 | "\n",
61 | "# 2. using samples()\n",
62 | "df = ctx.samples.SAMPLENAME().run() # add sample name\n",
63 | "# example: df = ctx.samples.lpar_information().run()\n",
64 | "\n",
65 | "# 3. using samples() with display\n",
66 | "df = ctx.samples.SAMPLENAME().run(\n",
67 | " display=[RECORD.FIELD1]\n",
68 | ") # add sample name and field name in display\n",
69 | "# example: df = ctx.samples.lpar_information().run(display=[SMF70S1.capactiy_group_member])\n",
70 | "\n",
71 | "\n",
72 | "# if you want to reduce the data before fetching, you can use where():\n",
73 | "df = ctx.samples.SAMPLENAME().where((CONDITION1) & (CONDITION2)).run()\n",
74 | "# example: ctx.samples.lpar_information().where((SMF70S1.lpar_name == SMF70S1.system_name) & (SMF70S1.lpar_cpu_count > 5)).run()"
75 | ],
76 | "cell_type": "code",
77 | "outputs": [],
78 | "execution_count": null
79 | },
80 | {
81 | "metadata": {},
82 | "source": [
83 | "# display the data\n",
84 | "display(df)"
85 | ],
86 | "cell_type": "code",
87 | "outputs": [],
88 | "execution_count": null
89 | },
90 | {
91 | "metadata": {},
92 | "source": [
93 | "# -----------#\n",
94 | "# Filter\n",
95 | "# -----------#\n",
96 | "\n",
97 | "# filter out date-time range\n",
98 | "df = df.loc[\n",
99 | " (df[\"timestamp\"] > \"YYYY-MM-DD HH:MM:SS\")\n",
100 | " & (df[\"timestamp\"] < \"YYYY-MM-DD HH:MM:SS\")\n",
101 | "]\n",
102 | "\n",
103 | "# Get all Systems used in the dump\n",
104 | "systems = df[\n",
105 | " names(RECORD.sid)\n",
106 | "].unique() # insted of sid you can use another field, to get at overview (e.g., lpar_name, cpu_type, etc.)\n",
107 | "print(systems)\n",
108 | "\n",
109 | "# Select one system\n",
110 | "df = df[df[names(RECORD.sid)] == \"SYSTEM_NAME\"]\n",
111 | "\n",
112 | "# Calculate sum or average\n",
113 | "# get the average of FIELD1\n",
114 | "avg = df[names(RECORD.FIELD1)].mean()\n",
115 | "print(\"Average FIELD1 is \", avg)\n",
116 | "\n",
117 | "# get the sum of FIELD1\n",
118 | "sum_f = df[names(RECORD.FIELD1)].sum()\n",
119 | "print(\"Sum FIELD1 is \", sum_f)"
120 | ],
121 | "cell_type": "code",
122 | "outputs": [],
123 | "execution_count": null
124 | },
125 | {
126 | "metadata": {},
127 | "source": [
128 | "# -----------#\n",
129 | "# Plot\n",
130 | "# -----------#\n",
131 | "\n",
132 | "# plot your data\n",
133 | "# line plot\n",
134 | "plot = px.line(\n",
135 | " df,\n",
136 | " x=names(RECORD.timestamp), # usually x axis depics time\n",
137 | " y=names(RECORD.FIELD1),\n",
138 | " title=\"TITLE\",\n",
139 | " labels={\n",
140 | " \"initial_value\": \"Renamed value\",\n",
141 | " \"initial_value2\": \"Second renamed value\",\n",
142 | " names(RECORD.timestamp): \"Time\",\n",
143 | " },\n",
144 | ")\n",
145 | "display(plot)"
146 | ],
147 | "cell_type": "code",
148 | "outputs": [],
149 | "execution_count": null
150 | },
151 | {
152 | "metadata": {},
153 | "source": [
154 | "# create bar-chart\n",
155 | "bar = px.bar(\n",
156 | " df,\n",
157 | " x=\"timestamp\",\n",
158 | " y=[\"FIELD1\", \"FIELD2\"],\n",
159 | " title=\"Ratio of FIELD1 and FIELD2 over time\",\n",
160 | " labels={\n",
161 | " \"initial_value\": \"Renamed value\",\n",
162 | " \"initial_value2\": \"Second renamed value\",\n",
163 | " names(RECORD.timestamp): \"Time\",\n",
164 | " },\n",
165 | ")\n",
166 | "display(bar)"
167 | ],
168 | "cell_type": "code",
169 | "outputs": [],
170 | "execution_count": null
171 | }
172 | ]
173 | }
174 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/Notebooks/Tutorial/Tutorial 5 - Interactive Notebooks.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "2e1a244a",
6 | "metadata": {},
7 | "source": [
8 | "# Tutorial 5 - Interactive Notebooks (Advanced)\n",
9 | "\n",
10 | "Welcome to the _Interactive Notebooks Tutorial_.\n",
11 | "You will learn how to create clean Notebooks that allow users to interact with the data with the help of various widgets. \n",
12 | "In this tutorial, we provide examples on how to initialize multiple datasets, how the user can select the system or date from SMF data and get the Notebook updated automatically without rerunning it.\n",
13 | "\n",
14 | "To start, you may refer to [ipywidgets documentation](https://ipywidgets.readthedocs.io/en/latest/).\n",
15 | "\n",
16 | "## Dataset(s) Initialization\n",
17 | "\n",
18 | "For a graphical interface, you need to import the ``smfexplorer.util.jupyter`` module and create an instance of the ``ConfigWidget`` class, providing a **Context** as an argument.\n",
19 | "After the ConfigWidget was created, you can display it by calling the IPython ``display()`` function.\n",
20 | "> **Note**: You can specify a dataset as an argument in the ``new_context()`` function. This will make the text field of the ConfigWidget contain the predefined dataset name. "
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 1,
26 | "id": "1874669e",
27 | "metadata": {
28 | "tags": []
29 | },
30 | "outputs": [
31 | {
32 | "data": {
33 | "application/vnd.jupyter.widget-view+json": {
34 | "model_id": "87470da3391d4e25b7698f4fbe9127f3",
35 | "version_major": 2,
36 | "version_minor": 0
37 | },
38 | "text/plain": [
39 | "ConfigWidget(children=(Text(value='', layout=Layout(width='500px'), placeholder='Dataset Name(s)'), HTML(value…"
40 | ]
41 | },
42 | "metadata": {},
43 | "output_type": "display_data"
44 | }
45 | ],
46 | "source": [
47 | "import smfexplorer\n",
48 | "from smfexplorer.fields import SMF70S1\n",
49 | "from smfexplorer import names\n",
50 | "from smfexplorer.util import jupyter\n",
51 | "\n",
52 | "# text field with predefined dataset name\n",
53 | "# ctx = smfexplorer.new_context('YOUR.SMF.DATA')\n",
54 | "\n",
55 | "ctx = smfexplorer.new_context()\n",
56 | "config_widget = jupyter.ConfigWidget(ctx)\n",
57 | "display(config_widget)"
58 | ]
59 | },
60 | {
61 | "cell_type": "markdown",
62 | "id": "d63445e9",
63 | "metadata": {},
64 | "source": [
65 | "> **Hint:** In some cases you may want to work with multiple datasets. For example, in one Notebook you want to analyse LPAR utilization from \"*YOUR.SMF.SMF70*\" and Cache-Hits from \"*YOUR.SMF.HIS*\". To do so, you can assign both datasets to one context, separating them with a comma ‘,’ (e.g., ``YOUR.SMF.SMF70,YOUR.SMF.HIS``). When you create a request, *IBM SMF Explorer* fetches the data for all specified datasets and concatenates the results. "
66 | ]
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "id": "d2516d17",
71 | "metadata": {},
72 | "source": [
73 | "To make the user-provided dataset available to the next cell, you need to do the following:\n",
74 | " * Reference widget instance with ``@`` and call ``register_output()`` function that automatically reruns the cell when the dataset instance was changed\n",
75 | " * Create a function that takes as an argument dsn (this is our dataset instance)\n",
76 | " \n",
77 | "------\n",
78 | "Let's give it a try!\n",
79 | "\n",
80 | "Enter a dataset name into the textfield above and press the **Init** button.\n",
81 | "The `ConfigWidget` will automatically check the specified dataset for availability and call the `give_me_dsn()` function when a user presses `Init`.\n",
82 | " \n",
83 | "As you see, the output of the cell below is changed when the dataset name is changed. "
84 | ]
85 | },
86 | {
87 | "cell_type": "code",
88 | "execution_count": 2,
89 | "id": "fba2e32e",
90 | "metadata": {
91 | "tags": []
92 | },
93 | "outputs": [
94 | {
95 | "data": {
96 | "application/vnd.jupyter.widget-view+json": {
97 | "model_id": "21962753c1904f1e822f499478c24600",
98 | "version_major": 2,
99 | "version_minor": 0
100 | },
101 | "text/plain": [
102 | "Output()"
103 | ]
104 | },
105 | "metadata": {},
106 | "output_type": "display_data"
107 | }
108 | ],
109 | "source": [
110 | "@config_widget.register_output()\n",
111 | "def give_me_dsn(dsn, **kwds):\n",
112 | " print(dsn)"
113 | ]
114 | },
115 | {
116 | "cell_type": "markdown",
117 | "id": "99a99c98",
118 | "metadata": {},
119 | "source": [
120 | "You have seen how we can create a **Context** instance and let the user interactively define the datasets for that **Context**. \n",
121 | "However, we know that having dataset names is not enough.\n",
122 | "We want to create a request and fetch a DataFrame. \n",
123 | "Therefore, we define another function that executes a request and returns the fetched DataFrame. \n",
124 | "\n",
125 | "The `name` argument in ``@config_widget.register_output(name=\"df\")`` denotes that the function returns the DataFrame as the name **df**.\n",
126 | "We will see why this is useful in the next cell."
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": 3,
132 | "id": "827113b3",
133 | "metadata": {
134 | "tags": []
135 | },
136 | "outputs": [
137 | {
138 | "data": {
139 | "application/vnd.jupyter.widget-view+json": {
140 | "model_id": "b68aa408377a46208052fd7a0d14398a",
141 | "version_major": 2,
142 | "version_minor": 0
143 | },
144 | "text/plain": [
145 | "Output()"
146 | ]
147 | },
148 | "metadata": {},
149 | "output_type": "display_data"
150 | }
151 | ],
152 | "source": [
153 | "@config_widget.register_output(name=\"df\")\n",
154 | "def fetch_df(dsn, **kwds):\n",
155 | " df = ctx.samples.lpar_information().run()\n",
156 | " return df"
157 | ]
158 | },
159 | {
160 | "cell_type": "markdown",
161 | "id": "1a293029",
162 | "metadata": {},
163 | "source": [
164 | "To make use of our **df** DataFrame, we can register the next function not with `config_widget` but with `fetch_df` (the function defined above).\n",
165 | "\n",
166 | "Now, we can see what the `name` argument from `fetch_df` does.\n",
167 | "By default, *IBM SMF Explorer* uses the function `name` as the name for the parameter that we want to pass down the chain.\n",
168 | "The `name` argument makes *IBM SMF Explorer* change `fetch_df` to `df` in `working_with_df`.\n",
169 | "\n",
170 | "This kind of chaining can be repeated with `working_with_df` and any subsequent registered function.\n",
171 | "This allows you to define a flow of operations that should be triggered when the user presses **Init**."
172 | ]
173 | },
174 | {
175 | "cell_type": "code",
176 | "execution_count": 4,
177 | "id": "d856b1fc",
178 | "metadata": {
179 | "tags": []
180 | },
181 | "outputs": [
182 | {
183 | "data": {
184 | "application/vnd.jupyter.widget-view+json": {
185 | "model_id": "d6a94c5f0253458e98b24595b504e66b",
186 | "version_major": 2,
187 | "version_minor": 0
188 | },
189 | "text/plain": [
190 | "Output()"
191 | ]
192 | },
193 | "metadata": {},
194 | "output_type": "display_data"
195 | }
196 | ],
197 | "source": [
198 | "@fetch_df.register_output()\n",
199 | "def working_with_df(df, **kwds):\n",
200 | " display(df.head())"
201 | ]
202 | },
203 | {
204 | "cell_type": "markdown",
205 | "id": "86b4b8df",
206 | "metadata": {},
207 | "source": [
208 | "You can see that `working_with_df` was able to render the DataFrame by calling the `display()` function.\n",
209 | "This is the case, because `register_output` was used.\n",
210 | "If you have a function that you know will not display anything to the Notebook, you can use the `register` function instead.\n",
211 | "\n",
212 | "> **Note**: `register_output` creates an `Output` widget that can be dynamically updated.\n",
213 | "> Every time a function that is registered with `register_output` is called, the `Output` widget is cleared and repopulated with the input given to the `display()` function."
214 | ]
215 | },
216 | {
217 | "cell_type": "markdown",
218 | "id": "4831fedc",
219 | "metadata": {},
220 | "source": [
221 | "## Creating Widgets\n",
222 | "\n",
223 | "Just having the initial dataframe passed down the chain is a good start.\n",
224 | "To be fully interactive, we sometimes need to react to specifics in the fetched data and ask the user for additional input to provide a useful output.\n",
225 | "The following example shows how to use IPyWidgets together with *IBM SMF Explorer*'s interactive features.\n",
226 | "\n",
227 | "When we are working with SMF data, we often notice that one dataset can contain information from multiple systems/dates/LPARS.\n",
228 | "To minimize data and ease processing, it makes sense to provide filters or selectors that allow the user to select a subset of the data. \n",
229 | "\n",
230 | "Consider the following widgets:\n",
231 | "\n",
232 | " * FloatSlider\n",
233 | " * IntProgress\n",
234 | " * FloatText\n",
235 | " * ToggleButton\n",
236 | " * Checkbox\n",
237 | " * Dropdown\n",
238 | "\n",
239 | "See [here](https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html) for more information\n",
240 | " \n",
241 | "\n",
242 | "We start by importing ``ipywidgets``.\n",
243 | "The next step is to create the widget instance (in our case _ToggleButtons_).\n",
244 | "\n",
245 | "We can now add our widget to `register_output`.\n",
246 | "This will result in any function that registers against `select_name` to be called with the value of the widget whenever the DataFrame changes or the user changes the selection of the widget."
247 | ]
248 | },
249 | {
250 | "cell_type": "code",
251 | "execution_count": 5,
252 | "id": "5c51dfff",
253 | "metadata": {
254 | "tags": []
255 | },
256 | "outputs": [
257 | {
258 | "data": {
259 | "application/vnd.jupyter.widget-view+json": {
260 | "model_id": "ce9436597fd649b4bb128fa604ff0ca3",
261 | "version_major": 2,
262 | "version_minor": 0
263 | },
264 | "text/plain": [
265 | "Output()"
266 | ]
267 | },
268 | "metadata": {},
269 | "output_type": "display_data"
270 | }
271 | ],
272 | "source": [
273 | "import ipywidgets as widgets\n",
274 | "\n",
275 | "selection_widget = widgets.ToggleButtons()\n",
276 | "\n",
277 | "\n",
278 | "@fetch_df.register_output(name=\"df\", name_selected=selection_widget)\n",
279 | "def select_name(df, **kwds):\n",
280 | "\n",
281 | " lpar_system_name = df[names(SMF70S1.lpar_system_name)].unique().dropna()\n",
282 | " selection_widget.options = lpar_system_name\n",
283 | "\n",
284 | " display(selection_widget)\n",
285 | "\n",
286 | " selection_widget.value = lpar_system_name[0]\n",
287 | "\n",
288 | " return df"
289 | ]
290 | },
291 | {
292 | "cell_type": "code",
293 | "execution_count": 6,
294 | "id": "f6da8992",
295 | "metadata": {
296 | "tags": []
297 | },
298 | "outputs": [
299 | {
300 | "data": {
301 | "application/vnd.jupyter.widget-view+json": {
302 | "model_id": "2299442384094675a0cc6c32d157324d",
303 | "version_major": 2,
304 | "version_minor": 0
305 | },
306 | "text/plain": [
307 | "Output()"
308 | ]
309 | },
310 | "metadata": {},
311 | "output_type": "display_data"
312 | }
313 | ],
314 | "source": [
315 | "@select_name.register_output()\n",
316 | "def filter_df(df, name_selected, **kwds):\n",
317 | "\n",
318 | " # The best practice is to guard against calls, where df is None or to check the input for validity in general.\n",
319 | " # Returning early from the function will clear the output.\n",
320 | " if df is None:\n",
321 | " return\n",
322 | " print(\"Selected LPAR-system name is: \" + name_selected)\n",
323 | " df = df[df[names(SMF70S1.lpar_system_name)] == name_selected].reset_index(drop=True)\n",
324 | " display(df.head())"
325 | ]
326 | },
327 | {
328 | "cell_type": "markdown",
329 | "id": "beca7db5",
330 | "metadata": {},
331 | "source": [
332 | "If you select another LPAR-system name from the selection, you should see that the table above is redrawn.\n",
333 | "Or if you change the dataset name in the very beginning and press *Init* again the entire output will be redrawn.\n",
334 | "\n",
335 | "> **Note**: Getting interactive Notebooks right can be very challenging. We advise you to first implement a normal sequential Notebook without widgets that you can later convert into an interactive one. The logic for desired output in every situation can be very complex (e.g. Filtering for exception cases: what happens if the specified dataset does not contain the necessary data?)."
336 | ]
337 | }
338 | ],
339 | "metadata": {
340 | "kernelspec": {
341 | "display_name": "Python 3 (ipykernel)",
342 | "language": "python",
343 | "name": "python3"
344 | },
345 | "language_info": {
346 | "codemirror_mode": {
347 | "name": "ipython",
348 | "version": 3
349 | },
350 | "file_extension": ".py",
351 | "mimetype": "text/x-python",
352 | "name": "python",
353 | "nbconvert_exporter": "python",
354 | "pygments_lexer": "ipython3",
355 | "version": "3.9.10"
356 | }
357 | },
358 | "nbformat": 4,
359 | "nbformat_minor": 5
360 | }
361 |
--------------------------------------------------------------------------------
/Notebooks/Tutorial/Tutorial 4 - Visualizing.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Tutorial 4 - Visualization\n",
8 | "\n",
9 | "\n",
10 | "Welcome to the *IBM SMF Explorer* Visualization Tutorial.\n",
11 | "This Tutorial provides examples and inspirations on how to create helpful visualizations using SMF data.\n",
12 | "\n",
13 | "> Examples are based on the engine utilization data taken from SMF72 Subtype 3\n",
14 | "\n"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "## Getting started\n",
22 | "\n",
23 | "Initialize a Context for the dataset that you want to work with. Note, *plotly-express* package is imported for plotting the data."
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": null,
29 | "metadata": {
30 | "autorun": false
31 | },
32 | "outputs": [],
33 | "source": [
34 | "# imports\n",
35 | "import smfexplorer\n",
36 | "from smfexplorer.fields import SMF72S3\n",
37 | "from smfexplorer import names\n",
38 | "from plotly import express as px\n",
39 | "import pandas as pd\n",
40 | "\n",
41 | "DATASET = \"YOUR.SMF.DATA\"\n",
42 | "\n",
43 | "# data fetching\n",
44 | "ctx = smfexplorer.new_context(DATASET)\n",
45 | "df = ctx.samples.smf_72_03_sample().run()"
46 | ]
47 | },
48 | {
49 | "cell_type": "markdown",
50 | "metadata": {},
51 | "source": [
52 | " ## Prepare your data"
53 | ]
54 | },
55 | {
56 | "cell_type": "markdown",
57 | "metadata": {},
58 | "source": [
59 | "Before plotting, make sure that the data is meaningful and clean. If your analysis does not require Report Class data, make sure to sort it out: "
60 | ]
61 | },
62 | {
63 | "cell_type": "code",
64 | "execution_count": null,
65 | "metadata": {
66 | "autorun": false
67 | },
68 | "outputs": [],
69 | "source": [
70 | "df = df[~df[\"is_report_class\"]].drop(\"is_report_class\", axis=1)\n",
71 | "\n",
72 | "# create a df subset:\n",
73 | "df = df[\n",
74 | " [\n",
75 | " \"timestamp\",\n",
76 | " \"sid\",\n",
77 | " \"utilization_cp\",\n",
78 | " \"utilization_ziip\",\n",
79 | " \"utilization_zaap\",\n",
80 | " \"utilization_ziip_on_cp\",\n",
81 | " \"utilization_total\",\n",
82 | " ]\n",
83 | "]"
84 | ]
85 | },
86 | {
87 | "cell_type": "markdown",
88 | "metadata": {},
89 | "source": [
90 | "Consider data aggregation for meaningful visualization. In the following example, we group values by the *timestamp* and *sid* fields:"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": null,
96 | "metadata": {
97 | "autorun": false
98 | },
99 | "outputs": [],
100 | "source": [
101 | "df = df.groupby([\"timestamp\", \"sid\"], as_index=False).sum()"
102 | ]
103 | },
104 | {
105 | "cell_type": "markdown",
106 | "metadata": {},
107 | "source": [
108 | "Rounding long decimals makes your data more readable and easy to visualize"
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "execution_count": null,
114 | "metadata": {
115 | "autorun": false
116 | },
117 | "outputs": [],
118 | "source": [
119 | "df = df.round(1)"
120 | ]
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "Below we check whether workload was running on all processors. If some processor types were not engaged, they are excluded from the report."
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": null,
132 | "metadata": {
133 | "autorun": false
134 | },
135 | "outputs": [],
136 | "source": [
137 | "utilization_fields = [\n",
138 | " SMF72S3.utilization_cp,\n",
139 | " SMF72S3.utilization_ziip,\n",
140 | " SMF72S3.utilization_zaap,\n",
141 | " SMF72S3.utilization_ziip_on_cp,\n",
142 | " SMF72S3.utilization_total,\n",
143 | "]\n",
144 | "display_fields = []\n",
145 | "for field in utilization_fields:\n",
146 | " if df[names(field)].sum() > 0:\n",
147 | " display_fields.append(field)"
148 | ]
149 | },
150 | {
151 | "cell_type": "markdown",
152 | "metadata": {},
153 | "source": [
154 | "## Plot\n",
155 | "\n",
156 | "> we recommend to start small and then extend your plots."
157 | ]
158 | },
159 | {
160 | "cell_type": "markdown",
161 | "metadata": {},
162 | "source": [
163 | "For this analysis, we create a line plot that shows the system utilization percentage for each processor type over time. To create visualization, we use plotly-express package, the documentation can be found [here](https://plotly.com/python/plotly-express/).\n",
164 | " "
165 | ]
166 | },
167 | {
168 | "cell_type": "code",
169 | "execution_count": null,
170 | "metadata": {
171 | "autorun": false
172 | },
173 | "outputs": [],
174 | "source": [
175 | "plot = px.line(\n",
176 | " df, x=names(SMF72S3.timestamp), y=names(display_fields), title=\"System Utilisation\"\n",
177 | ")\n",
178 | "\n",
179 | "display(plot)"
180 | ]
181 | },
182 | {
183 | "cell_type": "markdown",
184 | "metadata": {},
185 | "source": [
186 | "### Tooltip and Labels\n",
187 | "\n",
188 | "*Data Plot Tooltip* appears when you hover on a data plot. The information shown in a tooltip can be adjusted. Consider using ```hover_name``` and ```hover_data``` attributes. For more inspiration visit [hover-text-and-formatting documentatoin](https://plotly.com/python/hover-text-and-formatting/#hovermode-x-or-y). \n",
189 | "\n",
190 | "\n",
191 | "If you use Plotly Express, axes and legend are automatically labelled, however, as in example above, labelling does not always provide meaningful information. We recommend overriding it using the ```labels``` keyword argument. \n"
192 | ]
193 | },
194 | {
195 | "cell_type": "code",
196 | "execution_count": null,
197 | "metadata": {
198 | "autorun": false
199 | },
200 | "outputs": [],
201 | "source": [
202 | "# adjust your tooltip\n",
203 | "plot_hover = px.line(\n",
204 | " df,\n",
205 | " x=names(SMF72S3.timestamp),\n",
206 | " y=names(display_fields),\n",
207 | " title=\"System Utilisation\",\n",
208 | " hover_name=names(SMF72S3.sid),\n",
209 | " hover_data={\n",
210 | " names(SMF72S3.timestamp): False, # remove timestamp from hover data\n",
211 | " \"value\": \":.0f\", # format utilization value\n",
212 | " },\n",
213 | " labels={ # labels for axes\n",
214 | " \"value\": \"Utilization %\",\n",
215 | " \"variable\": \"Type\",\n",
216 | " names(SMF72S3.timestamp): \"Time\",\n",
217 | " },\n",
218 | ")\n",
219 | "\n",
220 | "display(plot_hover)"
221 | ]
222 | },
223 | {
224 | "cell_type": "markdown",
225 | "metadata": {},
226 | "source": [
227 | "### Color schemes and Legend \n",
228 | "\n",
229 | "Working with big amounts of data you may consider using diverse colouring schemes. Plotly provides you with a verity of default [color sequences](https://plotly.com/python/discrete-color/). You can choose built-in qualitative color sequences from ```px.colors.qualitative``` module or define your own."
230 | ]
231 | },
232 | {
233 | "cell_type": "code",
234 | "execution_count": null,
235 | "metadata": {
236 | "autorun": false
237 | },
238 | "outputs": [],
239 | "source": [
240 | "plot = px.line(\n",
241 | " df,\n",
242 | " x=names(SMF72S3.timestamp),\n",
243 | " y=names(display_fields),\n",
244 | " color_discrete_sequence=px.colors.qualitative.Prism, # 10 colors\n",
245 | " title=\"System Utilisation\",\n",
246 | " labels={\n",
247 | " \"value\": \"Utilization %\",\n",
248 | " \"variable\": \"Type\",\n",
249 | " names(SMF72S3.timestamp): \"Time\",\n",
250 | " },\n",
251 | ")\n",
252 | "\n",
253 | "display(plot)"
254 | ]
255 | },
256 | {
257 | "cell_type": "markdown",
258 | "metadata": {},
259 | "source": [
260 | "You can define your colors as well, see example below:"
261 | ]
262 | },
263 | {
264 | "cell_type": "code",
265 | "execution_count": null,
266 | "metadata": {
267 | "autorun": false
268 | },
269 | "outputs": [],
270 | "source": [
271 | "MY_COLORS = [\n",
272 | " \"#520408\",\n",
273 | " \"#878d96\",\n",
274 | " \"#31135e\",\n",
275 | " \"#fa4d56\",\n",
276 | " \"#ee5396\",\n",
277 | " \"#a56eff\",\n",
278 | " \"#0f62fe\",\n",
279 | " \"#0072c3\",\n",
280 | " \"#007d79\",\n",
281 | " \"#044317\",\n",
282 | "]\n",
283 | "plot = px.line(\n",
284 | " df,\n",
285 | " x=names(SMF72S3.timestamp),\n",
286 | " y=names(display_fields),\n",
287 | " color_discrete_sequence=MY_COLORS,\n",
288 | " title=\"System Utilisation\",\n",
289 | " labels={\n",
290 | " \"value\": \"Utilization %\",\n",
291 | " \"variable\": \"Type\",\n",
292 | " names(SMF72S3.timestamp): \"Time\",\n",
293 | " },\n",
294 | ")\n",
295 | "\n",
296 | "display(plot)"
297 | ]
298 | },
299 | {
300 | "cell_type": "markdown",
301 | "metadata": {},
302 | "source": [
303 | "You can hide and show legend. Sometimes, when two plots share the same legend, you may want to hide one using ```layout.showlegend``` attribute. Moreover, you can position legend within or outside plot area. "
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": null,
309 | "metadata": {
310 | "autorun": false
311 | },
312 | "outputs": [],
313 | "source": [
314 | "plot = px.line(\n",
315 | " df,\n",
316 | " x=names(SMF72S3.timestamp),\n",
317 | " y=names(SMF72S3.utilization_cp),\n",
318 | " title=\"CP Utilisation\",\n",
319 | " labels={\n",
320 | " \"utilization_cp\": \"Utilization %\",\n",
321 | " \"variable\": \"Type\",\n",
322 | " names(SMF72S3.timestamp): \"Time\",\n",
323 | " },\n",
324 | ")\n",
325 | "plot.update_layout(showlegend=False) # hide legend\n",
326 | "\n",
327 | "display(plot)\n",
328 | "\n",
329 | "plot_2 = px.line(\n",
330 | " df,\n",
331 | " x=names(SMF72S3.timestamp),\n",
332 | " y=names(display_fields),\n",
333 | " title=\"System Utilisation\",\n",
334 | " labels={\n",
335 | " \"value\": \"Utilization %\",\n",
336 | " \"variable\": \"Type\",\n",
337 | " names(SMF72S3.timestamp): \"Time\",\n",
338 | " },\n",
339 | ")\n",
340 | "plot_2.update_layout(\n",
341 | " legend=dict(\n",
342 | " orientation=\"h\", # horizontal positioning\n",
343 | " yanchor=\"bottom\",\n",
344 | " y=-0.8, # add some spaces\n",
345 | " x=0.3,\n",
346 | " )\n",
347 | ")\n",
348 | "display(plot_2)"
349 | ]
350 | },
351 | {
352 | "cell_type": "markdown",
353 | "metadata": {},
354 | "source": [
355 | "#### Interacting with Legend and Axes\n",
356 | "\n",
357 | "- Click on a legend item to hide or show its trace\n",
358 | "- Double-click on legend to reset the selection\n",
359 | "- Drag the mouse diagonally to zoom to the resulting box\n",
360 | "- Drag the mouse vertically to zoom to this part of the y axis\n",
361 | "- Drag the mouse horizontally to zoom to this part of the x axis\n",
362 | "- Double-click within chart to reset the zoom\n",
363 | "\n",
364 | "\n",
365 | "See [documentation](https://plotly.com/python/legend/) for more examples."
366 | ]
367 | },
368 | {
369 | "cell_type": "markdown",
370 | "metadata": {},
371 | "source": [
372 | "### Create Bar Chart\n",
373 | "\n",
374 | "to get an overview of your data or to analyze the ratio, you may consider using bar- or histogram- plots. "
375 | ]
376 | },
377 | {
378 | "cell_type": "code",
379 | "execution_count": null,
380 | "metadata": {
381 | "autorun": false
382 | },
383 | "outputs": [],
384 | "source": [
385 | "hist = px.histogram(\n",
386 | " df,\n",
387 | " x=\"timestamp\",\n",
388 | " y=[\"utilization_cp\", \"utilization_ziip\"],\n",
389 | " title=\"Ratio of CP to zIIP Utilization over time\",\n",
390 | " barmode=\"group\",\n",
391 | " labels={\n",
392 | " \"value\": \"Utilization %\",\n",
393 | " \"variable\": \"Type\",\n",
394 | " names(SMF72S3.timestamp): \"Time\",\n",
395 | " },\n",
396 | ")\n",
397 | "display(hist)\n",
398 | "\n",
399 | "# to get an overview, aggregate your data\n",
400 | "\n",
401 | "df_aggr = df.agg(\"mean\", numeric_only=True) # aggregation\n",
402 | "df_aggr = pd.DataFrame(df_aggr).T.round(1) # transpose your df\n",
403 | "\n",
404 | "hist_aggr = px.bar(\n",
405 | " df_aggr,\n",
406 | " x=\"utilization_total\",\n",
407 | " y=[\"utilization_cp\", \"utilization_ziip\"],\n",
408 | " title=\"Ratio of CP to zIIP Utilization\",\n",
409 | " labels={\n",
410 | " \"value\": \"Utilization %\",\n",
411 | " \"variable\": \"Type\",\n",
412 | " },\n",
413 | ")\n",
414 | "hist_aggr.update_layout(xaxis={\"visible\": False}) # hide x-axis\n",
415 | "display(hist_aggr)"
416 | ]
417 | }
418 | ],
419 | "metadata": {
420 | "kernelspec": {
421 | "display_name": "Python 3 (ipykernel)",
422 | "language": "python",
423 | "name": "python3"
424 | },
425 | "language_info": {
426 | "codemirror_mode": {
427 | "name": "ipython",
428 | "version": 3
429 | },
430 | "file_extension": ".py",
431 | "mimetype": "text/x-python",
432 | "name": "python",
433 | "nbconvert_exporter": "python",
434 | "pygments_lexer": "ipython3",
435 | "version": "3.9.10"
436 | }
437 | },
438 | "nbformat": 4,
439 | "nbformat_minor": 4
440 | }
441 |
--------------------------------------------------------------------------------
/Notebooks/Reports/LPAR Topology Report.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# LPAR Topology Report\n",
8 | "\n",
9 | " Select a **_Dataset_** to request data from \n",
10 | "**_(If the text field to select a Dataframe does not show up after a few seconds or you want to reset the notebook, restart the Kernel using the `>>`(Restart and run all) button above)_**"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 22,
16 | "metadata": {
17 | "autorun": true
18 | },
19 | "outputs": [
20 | {
21 | "data": {
22 | "application/vnd.jupyter.widget-view+json": {
23 | "model_id": "c298c66123074755941ec851566d12e2",
24 | "version_major": 2,
25 | "version_minor": 0
26 | },
27 | "text/plain": [
28 | "ConfigWidget(children=(Text(value='', layout=Layout(width='500px'), placeholder='Dataset Name(s)'), HTML(value…"
29 | ]
30 | },
31 | "metadata": {},
32 | "output_type": "display_data"
33 | },
34 | {
35 | "data": {
36 | "application/vnd.jupyter.widget-view+json": {
37 | "model_id": "e4001d50c73d47359c8cb7b50f9409ff",
38 | "version_major": 2,
39 | "version_minor": 0
40 | },
41 | "text/plain": [
42 | "Output()"
43 | ]
44 | },
45 | "metadata": {},
46 | "output_type": "display_data"
47 | },
48 | {
49 | "data": {
50 | "application/vnd.jupyter.widget-view+json": {
51 | "model_id": "35fd62c36f1e4e19b8e67142b116e728",
52 | "version_major": 2,
53 | "version_minor": 0
54 | },
55 | "text/plain": [
56 | "Output()"
57 | ]
58 | },
59 | "metadata": {},
60 | "output_type": "display_data"
61 | },
62 | {
63 | "data": {
64 | "application/vnd.jupyter.widget-view+json": {
65 | "model_id": "13dd68b4621a48bc89e6cdad9ddd6c01",
66 | "version_major": 2,
67 | "version_minor": 0
68 | },
69 | "text/plain": [
70 | "Output()"
71 | ]
72 | },
73 | "metadata": {},
74 | "output_type": "display_data"
75 | },
76 | {
77 | "data": {
78 | "application/vnd.jupyter.widget-view+json": {
79 | "model_id": "cff53fb587e34063877c92676d1d82e0",
80 | "version_major": 2,
81 | "version_minor": 0
82 | },
83 | "text/plain": [
84 | "Output()"
85 | ]
86 | },
87 | "metadata": {},
88 | "output_type": "display_data"
89 | },
90 | {
91 | "data": {
92 | "application/vnd.jupyter.widget-view+json": {
93 | "model_id": "6cd9693b79ba45bc97219ad5e91c8116",
94 | "version_major": 2,
95 | "version_minor": 0
96 | },
97 | "text/plain": [
98 | "Output()"
99 | ]
100 | },
101 | "metadata": {},
102 | "output_type": "display_data"
103 | }
104 | ],
105 | "source": [
106 | "import smfexplorer\n",
107 | "import pandas as pd\n",
108 | "import ipywidgets as widgets\n",
109 | "import plotly as pl\n",
110 | "import numpy as np\n",
111 | "\n",
112 | "from smfexplorer.fields import SMF99S12 as F12\n",
113 | "from smfexplorer.fields import SMF99S14\n",
114 | "from smfexplorer.core.expressions import ASC\n",
115 | "from smfexplorer.util import jupyter\n",
116 | "import plotly.graph_objs as go\n",
117 | "from plotly.subplots import make_subplots\n",
118 | "from IPython.display import Markdown, display, Javascript, HTML\n",
119 | "from ipywidgets import VBox, interact, Button, Output\n",
120 | "import plotly.express as px\n",
121 | "from smfexplorer.error import EmptyDataSetError\n",
122 | "\n",
123 | "import warnings\n",
124 | "\n",
125 | "warnings.simplefilter(action=\"ignore\", category=FutureWarning)\n",
126 | "\n",
127 | "ctx = smfexplorer.new_context()\n",
128 | "config_widget = jupyter.ConfigWidget(ctx)\n",
129 | "display(config_widget)\n",
130 | "\n",
131 | "selection_widget_topo = widgets.ToggleButtons()\n",
132 | "selection_widget_date = widgets.ToggleButtons()\n",
133 | "selection_widget_color = widgets.ToggleButtons()\n",
134 | "selection_widget_time = widgets.ToggleButtons()\n",
135 | "\n",
136 | "@config_widget.register_output(name=\"df_topo\", system_topo=selection_widget_topo)\n",
137 | "def fetch_topo_df(dsn, **kwds):\n",
138 | " if dsn is None:\n",
139 | " return\n",
140 | " try:\n",
141 | " display(Markdown(f\"# Topology \"))\n",
142 | " fields = list(ctx.samples.topology().fields)\n",
143 | " fields.append(SMF99S14.cp_polar)\n",
144 | " df_topo = ctx.samples.topology().run()\n",
145 | " \n",
146 | " df_topo = df_topo.rename(\n",
147 | " columns={\n",
148 | " \"timestamp\": \"Timestamp\",\n",
149 | " \"sid\": \"System\",\n",
150 | " \"hd_topochg_cpu_index\": \"Topology Index\",\n",
151 | " \"processor\": \"Processor Type\",\n",
152 | " \"cp_cputype\": \"CPU Type\",\n",
153 | " \"vcm_lparphysprocshr\": \"LPAR Share\",\n",
154 | " \"speed_change\": \"speed\",\n",
155 | " \"honor_priority_change\": \"honor priority\",\n",
156 | " \"topology_change\": \"topology\",\n",
157 | " \"affinity_nodes_rebuild\": \"affinity nodes\",\n",
158 | " \"mpwq_affinity_node\": \"Affinity Node\",\n",
159 | " }\n",
160 | " )\n",
161 | " \n",
162 | " unique_system = np.sort(df_topo[\"System\"].unique())\n",
163 | "\n",
164 | " selection_widget_topo.options = unique_system\n",
165 | "\n",
166 | " if unique_system.size > 1:\n",
167 | " display(Markdown(\"# Select system for analysis\"))\n",
168 | " display(selection_widget_topo)\n",
169 | "\n",
170 | " else:\n",
171 | " display(Markdown(f\"## Using data of system {unique_system[0]}\"))\n",
172 | "\n",
173 | " selection_widget_topo.value = unique_system[0]\n",
174 | " \n",
175 | " if len(unique_system) > 1:\n",
176 | " display(selection_widget_topo)\n",
177 | "\n",
178 | " return df_topo\n",
179 | "\n",
180 | " except EmptyDataSetError:\n",
181 | " display(Markdown(\"### Data set does not contain SMF99 Subtype 14 data\"))\n",
182 | "\n",
183 | "\n",
184 | "@fetch_topo_df.register_output(name=\"topo\", date=selection_widget_date)\n",
185 | "def dataframe_data(df_topo, system_topo, **kwds):\n",
186 | " global topo\n",
187 | "\n",
188 | " if df_topo is None:\n",
189 | " return\n",
190 | " topo = df_topo[df_topo[\"System\"] == system_topo]\n",
191 | " topo.reset_index(inplace=True, drop=True)\n",
192 | "\n",
193 | " timestamps_aval = topo[\"Timestamp\"].unique()\n",
194 | " rows = []\n",
195 | " for time_point in timestamps_aval:\n",
196 | " iterator = 0\n",
197 | " df_tmp = topo[topo[\"Timestamp\"] == time_point]\n",
198 | " buckets = len(df_tmp[\"Topology Index\"].unique())\n",
199 | " if df_tmp.shape[0] % buckets == 0:\n",
200 | " p = int(df_tmp.shape[0] / buckets)\n",
201 | " dpoints = df_tmp.values.reshape(p, -1, df_tmp.shape[1])\n",
202 | " for point in dpoints:\n",
203 | " if iterator < buckets:\n",
204 | " rows.append(point[iterator])\n",
205 | " iterator = iterator + 1\n",
206 | " tmp = pd.DataFrame(rows, columns=topo.columns)\n",
207 | " topo = tmp\n",
208 | " date_aval = [\n",
209 | " date.strftime(\"%m-%d-%y \") for date in topo[\"Timestamp\"].dt.date.unique()\n",
210 | " ]\n",
211 | " selection_widget_date.options = date_aval\n",
212 | " if np.size(date_aval) == 1:\n",
213 | " display(Markdown(f\"**Available date:** {date_aval[0]}\"))\n",
214 | "\n",
215 | " else:\n",
216 | " display(Markdown(\"# Select date for analysis\"))\n",
217 | " display(selection_widget_date)\n",
218 | "\n",
219 | " selection_widget_date.value = date_aval[0]\n",
220 | "\n",
221 | " return topo\n",
222 | "\n",
223 | "\n",
224 | "@dataframe_data.register_output(name=\"topo\", time=selection_widget_time)\n",
225 | "def dataframe_time(topo, date, **kwds):\n",
226 | " if topo is None:\n",
227 | " return\n",
228 | "\n",
229 | " time_placeholder = pd.to_datetime(topo[\"Timestamp\"][0]).strftime(\"%H:%M:%S\")\n",
230 | " selection_widget_time.placeholder = time_placeholder\n",
231 | " topo[\"date\"] = topo[\"Timestamp\"].dt.strftime(\"%m-%d-%y \")\n",
232 | " topo[\"time\"] = topo[\"Timestamp\"].dt.strftime(\"%H:%M:%S\")\n",
233 | " topo = topo[topo[\"date\"] == date]\n",
234 | " topo.reset_index(inplace=True, drop=True)\n",
235 | " if (len(topo.index) != 0) and len(topo.index) % len(topo[\"Topology Index\"].unique()) == 0:\n",
236 | " entry_time = topo[\"Timestamp\"][0]\n",
237 | " topo_comp = topo.drop(columns=[\"Timestamp\", \"date\", \"time\"])\n",
238 | " topo_comp = topo_comp.drop_duplicates()\n",
239 | " if len(topo_comp.index) == len(topo[\"Topology Index\"].unique()):\n",
240 | " topo = topo_comp\n",
241 | "\n",
242 | " else:\n",
243 | " display(Markdown(\"# Select time for analysis\"))\n",
244 | " display(selection_widget_time)\n",
245 | " else:\n",
246 | " display(Markdown(\"# Select time for analysis\"))\n",
247 | " display(selection_widget_time)\n",
248 | "\n",
249 | " selection_widget_time.options = topo[\"time\"].unique()\n",
250 | " selection_widget_time.value = time_placeholder\n",
251 | "\n",
252 | " return topo\n",
253 | "\n",
254 | "\n",
255 | "@dataframe_time.register_output(\n",
256 | " name=\"df_filtered\", time=selection_widget_time, coloring=selection_widget_color\n",
257 | ")\n",
258 | "def dataframe_topo(topo, time, **kwds):\n",
259 | " global df_filtered\n",
260 | "\n",
261 | " if topo is None:\n",
262 | " return\n",
263 | "\n",
264 | " time_selection = topo[topo[\"time\"] >= time].reset_index()\n",
265 | "\n",
266 | " if time_selection.empty:\n",
267 | " time_selection = topo[topo[\"time\"] <= time].reset_index()[\"Timestamp\"].iloc[-1]\n",
268 | " else:\n",
269 | " time_selection = time_selection[\"Timestamp\"][0]\n",
270 | " display(\n",
271 | " Markdown(\n",
272 | " f\"Selected timestamp for analysis is: {time_selection.strftime('%m-%d-%y %H:%M:%S')}\"\n",
273 | " )\n",
274 | " )\n",
275 | " df_filtered = topo[topo[\"Timestamp\"] == time_selection].copy(deep=True)\n",
276 | " colorings = [\"CPU Type\", \"Affinity Node\", \"Processor Type\"]\n",
277 | " selection_widget_color.options = colorings\n",
278 | " display(Markdown(\"## Select color diferentiation\"))\n",
279 | " display(selection_widget_color)\n",
280 | " selection_widget_color.value = colorings[0]\n",
281 | "\n",
282 | " return df_filtered\n",
283 | "\n",
284 | "\n",
285 | "@dataframe_topo.register_output()\n",
286 | "def topology_viz(df_filtered, coloring, **kwds):\n",
287 | " if df_filtered is None:\n",
288 | " return\n",
289 | " colors = [\n",
290 | " \"#dee2ff\",\n",
291 | " \"#edf2fb\",\n",
292 | " \"#efd3d7\",\n",
293 | " \"#F8ECEE\",\n",
294 | " \"#EAE6ED\",\n",
295 | " \"#E4F2C2\",\n",
296 | " \"#F0F7E0\",\n",
297 | " \"#FFF5CC\",\n",
298 | " \"#FFFAE6\",\n",
299 | " ]\n",
300 | " changes = [\"speed\", \"honor priority\", \"topology\", \"affinity nodes\"]\n",
301 | " STISI = topo[\"cp_ci_nlinuse\"].unique()[0]\n",
302 | "\n",
303 | " def label(row):\n",
304 | " set_label = (\n",
305 | " \"System: \"\n",
306 | " + row[\"System\"]\n",
307 | " + \"
Affinity Node: \"\n",
308 | " + str(row[\"Affinity Node\"])\n",
309 | " + \"
CPU: \"\n",
310 | " + row[\"CPU Type\"]\n",
311 | " + \"
Processor: \"\n",
312 | " + row[\"Processor Type\"]\n",
313 | " + \"
Index: \"\n",
314 | " + str(row[\"Topology Index\"])\n",
315 | " )\n",
316 | " return set_label\n",
317 | "\n",
318 | " def change(change_type):\n",
319 | " if not topo[change_type].any():\n",
320 | " display(Markdown(f\"No changes in {change_type}\"))\n",
321 | " else:\n",
322 | " display(Markdown(f\"**Changes in {change_type}:**\"))\n",
323 | " topo_output = topo.loc[topo[change_type] == True]\n",
324 | " topo_output = topo_output[\"Timestamp\"].unique()\n",
325 | " timestamps = []\n",
326 | "\n",
327 | " for time in topo_output:\n",
328 | " timestamps.append(pd.to_datetime(time).strftime(\"%m-%d-%y %H:%M:%S\"))\n",
329 | " if len(timestamps) < 10:\n",
330 | " display(Markdown(f\"{', '.join(timestamps)}\"))\n",
331 | " else:\n",
332 | " display(Markdown(f\"{len(timestamps)} changes observed\"))\n",
333 | "\n",
334 | " def init_layout(data_fig):\n",
335 | " global df_processed\n",
336 | " data_fig[\"Affinity Node\"] = data_fig[\"Affinity Node\"].astype(str)\n",
337 | " if STISI == \"STISI_15_1_3\":\n",
338 | " data_fig = data_fig.rename(\n",
339 | " columns={\"cp_ci_nl1\": \"Chip ID\", \"cp_ci_nl2\": \"Book ID\"}\n",
340 | " ).drop(columns=[\"cp_ci_nl3\"])\n",
341 | " data_fig[\"Chip ID\"] = \"Chip: \" + data_fig[\"Chip ID\"].astype(str)\n",
342 | " data_fig[\"Book ID\"] = \"Book: \" + data_fig[\"Book ID\"].astype(str)\n",
343 | " fig = px.treemap(\n",
344 | " data_fig,\n",
345 | " path=[\"Book ID\", \"Chip ID\", \"Label\"],\n",
346 | " color=coloring,\n",
347 | " values=None,\n",
348 | " color_discrete_sequence=colors,\n",
349 | " )\n",
350 | " elif STISI == \"STISI_15_1_4\":\n",
351 | " data_fig = data_fig.rename(\n",
352 | " columns={\n",
353 | " \"cp_ci_nl1\": \"Chip ID\",\n",
354 | " \"cp_ci_nl2\": \"Node ID\",\n",
355 | " \"cp_ci_nl3\": \"Drawer\",\n",
356 | " }\n",
357 | " )\n",
358 | " data_fig[\"Chip ID\"] = \"Chip: \" + data_fig[\"Chip ID\"].astype(str)\n",
359 | " data_fig[\"Node ID\"] = \"Node: \" + data_fig[\"Node ID\"].astype(str)\n",
360 | " data_fig[\"Drawer\"] = \"Drawer: \" + data_fig[\"Drawer\"].astype(str)\n",
361 | " fig = px.treemap(\n",
362 | " data_fig,\n",
363 | " path=[\"Drawer\", \"Node ID\", \"Chip ID\", \"Label\".replace(\"_\", \"\\n\")],\n",
364 | " values=None,\n",
365 | " color=coloring,\n",
366 | " color_discrete_sequence=colors,\n",
367 | " )\n",
368 | " elif STISI == \"STISI_15_1_2\" or STISI == \"STISI_15_1_20\":\n",
369 | " data_fig = data_fig.rename(\n",
370 | " columns={\"cp_ci_nl2\": \"Chip ID\", \"cp_ci_nl1\": \"Book ID\"}\n",
371 | " ).drop(columns=[\"cp_ci_nl3\"])\n",
372 | " data_fig[\"Chip ID\"] = \"Chip: \" + data_fig[\"Chip ID\"].astype(str)\n",
373 | " data_fig[\"Book ID\"] = \"Book: \" + data_fig[\"Book ID\"].astype(str)\n",
374 | " fig = px.treemap(\n",
375 | " data_fig,\n",
376 | " path=[\"Book ID\", \"Chip ID\", \"Label\"],\n",
377 | " color=coloring,\n",
378 | " color_discrete_sequence=colors,\n",
379 | " )\n",
380 | " else:\n",
381 | " data_fig = data_fig.rename(\n",
382 | " columns={\n",
383 | " \"cp_ci_nl1\": \"Chip ID\",\n",
384 | " \"cp_ci_nl2\": \"Cluster ID\",\n",
385 | " \"cp_ci_nl3\": \"Drawer\",\n",
386 | " }\n",
387 | " )\n",
388 | " data_fig[\"Chip ID\"] = \"Chip: \" + data_fig[\"Chip ID\"].astype(str)\n",
389 | " data_fig[\"Cluster ID\"] = \"Cluster: \" + data_fig[\"Cluster ID\"].astype(str)\n",
390 | " data_fig[\"Drawer\"] = \"Drawer: \" + data_fig[\"Drawer\"].astype(str)\n",
391 | " fig = px.treemap(\n",
392 | " data_fig,\n",
393 | " path=[\"Drawer\", \"Cluster ID\", \"Chip ID\", \"Label\"],\n",
394 | " color=coloring,\n",
395 | " color_discrete_sequence=colors,\n",
396 | " )\n",
397 | " df_processed = data_fig\n",
398 | " df_processed = df_processed.drop(\n",
399 | " columns=[\n",
400 | " \"cp_ci_nlinuse\",\n",
401 | " \"cp_ci_nl4\",\n",
402 | " \"cp_ci_nl5\",\n",
403 | " \"speed\",\n",
404 | " \"wuq_error\",\n",
405 | " \"honor priority\",\n",
406 | " \"affinity nodes\",\n",
407 | " \"topology\",\n",
408 | " ]\n",
409 | " )\n",
410 | " fig.data[0].hovertemplate = \"%{parent}\"\n",
411 | " fig.show()\n",
412 | "\n",
413 | " if (\n",
414 | " (not topo[\"speed\"].any())\n",
415 | " and (not topo[\"topology\"].any())\n",
416 | " and (not topo[\"honor priority\"].any())\n",
417 | " and (not topo[\"affinity nodes\"].any())\n",
418 | " ):\n",
419 | " display(\n",
420 | " Markdown(\n",
421 | " f\"No changes in speed and honor priority. Affinity nodes were not rebuilt\"\n",
422 | " )\n",
423 | " )\n",
424 | " else:\n",
425 | " for change_type in changes:\n",
426 | " change(change_type)\n",
427 | "\n",
428 | " df_filtered[\"Label\"] = df_filtered.apply(lambda row: label(row), axis=1)\n",
429 | "\n",
430 | " init_layout(df_filtered)"
431 | ]
432 | }
433 | ],
434 | "metadata": {
435 | "kernelspec": {
436 | "display_name": "Python 3 (ipykernel)",
437 | "language": "python",
438 | "name": "python3"
439 | },
440 | "language_info": {
441 | "codemirror_mode": {
442 | "name": "ipython",
443 | "version": 3
444 | },
445 | "file_extension": ".py",
446 | "mimetype": "text/x-python",
447 | "name": "python",
448 | "nbconvert_exporter": "python",
449 | "pygments_lexer": "ipython3",
450 | "version": "3.11.9"
451 | }
452 | },
453 | "nbformat": 4,
454 | "nbformat_minor": 4
455 | }
456 |
--------------------------------------------------------------------------------
/Notebooks/Tutorial/Tutorial 1 - Basics.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Tutorial 1 - Basics\n",
8 | "\n",
9 | "Welcome to the *IBM SMF Explorer* Basics Tutorial.\n",
10 | "You will learn how to get started with the *IBM SMF Explorer* framework and access SMF data.\n",
11 | "\n",
12 | "The tutorial has cells containing code. When you come across such a code cell you should execute it by selecting it and pressing ``Ctrl``+``Enter``.\n",
13 | "Feel free to change the code, but keep in mind that other parts of the tutorial might be affected. \n"
14 | ]
15 | },
16 | {
17 | "cell_type": "markdown",
18 | "metadata": {},
19 | "source": [
20 | "## Getting started\n",
21 | "\n",
22 | "To start working with the *IBM SMF Explorer*, you need to import the ``smfexplorer`` package:"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 1,
28 | "metadata": {
29 | "tags": []
30 | },
31 | "outputs": [],
32 | "source": [
33 | "import smfexplorer"
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "metadata": {},
39 | "source": [
40 | "This tutorial was created for *SMF Explorer* version **1.0.2**.\n",
41 | "To check the version, execute the following command: ``smfexplorer.__version__``."
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 2,
47 | "metadata": {
48 | "tags": []
49 | },
50 | "outputs": [
51 | {
52 | "data": {
53 | "text/plain": [
54 | "'1.0.4'"
55 | ]
56 | },
57 | "execution_count": 2,
58 | "metadata": {},
59 | "output_type": "execute_result"
60 | }
61 | ],
62 | "source": [
63 | "smfexplorer.__version__"
64 | ]
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "All requests in the *SMF Explorer* are managed by an object called a **Context**.\n",
71 | "A Context represents a connection to one or multiple SMF dumps/datasets and manages the state of all requests dispatched against it.\n",
72 | "Creating separate contexts allows you to run the same requests against different SMF dumps in an easy manner.\n",
73 | "\n",
74 | "The Context can be created by calling the ``new_context()`` function of the ``smfexplorer`` module.\n",
75 | "If multiple datasets are defined (i.e., provided as arguments to the ``new_context()``), the *SMF Explorer* will execute requests against all of them and concatenate the data in the order the names were specified.\n",
76 | "\n",
77 | "To separately fetch the data from different datasets, you can create as many Context objects as you like. \n",
78 | "\n",
79 | "> **Note**: if you are working with two or more datasets that were created as a result of the dump-dataset switch (i.e., one dataset is a continuation of another), we recommend assigning these datasets to one Context. \n",
80 | "If you want to work with datasets that contain different SMF records, we advise creation of multiple Contexts for better performance. "
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": 3,
86 | "metadata": {
87 | "tags": []
88 | },
89 | "outputs": [],
90 | "source": [
91 | "DATASET = \"YOUR.SMF.DATA\"\n",
92 | "ctx = smfexplorer.new_context(DATASET)\n",
93 | "\n",
94 | "# Multiple datasets assigned to one Context instance:\n",
95 | "# ctx2 = smfexplorer.new_context('YOUR.SMF.DATA1','YOUR.SMF.DATA2')"
96 | ]
97 | },
98 | {
99 | "cell_type": "markdown",
100 | "metadata": {},
101 | "source": [
102 | "*IBM SMF Explorer* provides utility functions that can help you to understand your input dataset. \n",
103 | "\n",
104 | "You can check if a dataset is available:"
105 | ]
106 | },
107 | {
108 | "cell_type": "code",
109 | "execution_count": 4,
110 | "metadata": {
111 | "tags": []
112 | },
113 | "outputs": [
114 | {
115 | "name": "stdout",
116 | "output_type": "stream",
117 | "text": [
118 | "True\n",
119 | "False\n"
120 | ]
121 | }
122 | ],
123 | "source": [
124 | "print(smfexplorer.check_dataset(DATASET))\n",
125 | "print(smfexplorer.check_dataset(\"WRONG.SMF.DATA\"))"
126 | ]
127 | },
128 | {
129 | "cell_type": "markdown",
130 | "metadata": {},
131 | "source": [
132 | "## Get meta data of the dataset"
133 | ]
134 | },
135 | {
136 | "cell_type": "markdown",
137 | "metadata": {},
138 | "source": [
139 | "### Get available records"
140 | ]
141 | },
142 | {
143 | "cell_type": "markdown",
144 | "metadata": {},
145 | "source": [
146 | "You can fetch a list of SMF types/subtypes available in your SMF dataset using ```get_available_records()```function. \n",
147 | "\n",
148 | "To get the list of types you can run ```get_available_types()``` function and for subtypes - ```get_available_subtypes()```."
149 | ]
150 | },
151 | {
152 | "cell_type": "code",
153 | "execution_count": 4,
154 | "metadata": {
155 | "tags": []
156 | },
157 | "outputs": [
158 | {
159 | "data": {
160 | "text/html": [
161 | "
\n",
162 | "\n",
175 | "
\n",
176 | " \n",
177 | " \n",
178 | " | \n",
179 | " type | \n",
180 | " count | \n",
181 | "
\n",
182 | " \n",
183 | " \n",
184 | " \n",
185 | " | 0 | \n",
186 | " 2 | \n",
187 | " 1 | \n",
188 | "
\n",
189 | " \n",
190 | " | 1 | \n",
191 | " 3 | \n",
192 | " 1 | \n",
193 | "
\n",
194 | " \n",
195 | " | 2 | \n",
196 | " 14 | \n",
197 | " 50480 | \n",
198 | "
\n",
199 | " \n",
200 | " | 3 | \n",
201 | " 15 | \n",
202 | " 7753 | \n",
203 | "
\n",
204 | " \n",
205 | " | 4 | \n",
206 | " 62 | \n",
207 | " 30265 | \n",
208 | "
\n",
209 | " \n",
210 | " | 5 | \n",
211 | " 70 | \n",
212 | " 36 | \n",
213 | "
\n",
214 | " \n",
215 | " | 6 | \n",
216 | " 80 | \n",
217 | " 75008 | \n",
218 | "
\n",
219 | " \n",
220 | " | 7 | \n",
221 | " 82 | \n",
222 | " 12065 | \n",
223 | "
\n",
224 | " \n",
225 | " | 8 | \n",
226 | " 113 | \n",
227 | " 2664 | \n",
228 | "
\n",
229 | " \n",
230 | "
\n",
231 | "
"
232 | ],
233 | "text/plain": [
234 | " type count\n",
235 | "0 2 1\n",
236 | "1 3 1\n",
237 | "2 14 50480\n",
238 | "3 15 7753\n",
239 | "4 62 30265\n",
240 | "5 70 36\n",
241 | "6 80 75008\n",
242 | "7 82 12065\n",
243 | "8 113 2664"
244 | ]
245 | },
246 | "execution_count": 4,
247 | "metadata": {},
248 | "output_type": "execute_result"
249 | }
250 | ],
251 | "source": [
252 | "# get available types\n",
253 | "ctx.get_available_types()"
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": 6,
259 | "metadata": {
260 | "tags": []
261 | },
262 | "outputs": [
263 | {
264 | "data": {
265 | "text/html": [
266 | "\n",
267 | "\n",
280 | "
\n",
281 | " \n",
282 | " \n",
283 | " | \n",
284 | " subtype | \n",
285 | " count | \n",
286 | "
\n",
287 | " \n",
288 | " \n",
289 | " \n",
290 | " | 0 | \n",
291 | " 1 | \n",
292 | " 27 | \n",
293 | "
\n",
294 | " \n",
295 | " | 1 | \n",
296 | " 2 | \n",
297 | " 9 | \n",
298 | "
\n",
299 | " \n",
300 | "
\n",
301 | "
"
302 | ],
303 | "text/plain": [
304 | " subtype count\n",
305 | "0 1 27\n",
306 | "1 2 9"
307 | ]
308 | },
309 | "execution_count": 6,
310 | "metadata": {},
311 | "output_type": "execute_result"
312 | }
313 | ],
314 | "source": [
315 | "# get available subtypes for the SMF type 70\n",
316 | "ctx.get_available_subtypes(70)"
317 | ]
318 | },
319 | {
320 | "cell_type": "code",
321 | "execution_count": 7,
322 | "metadata": {
323 | "tags": []
324 | },
325 | "outputs": [
326 | {
327 | "data": {
328 | "text/html": [
329 | "\n",
330 | "\n",
343 | "
\n",
344 | " \n",
345 | " \n",
346 | " | \n",
347 | " type | \n",
348 | " subtype | \n",
349 | " count | \n",
350 | "
\n",
351 | " \n",
352 | " \n",
353 | " \n",
354 | " | 0 | \n",
355 | " 2 | \n",
356 | " 0 | \n",
357 | " 1 | \n",
358 | "
\n",
359 | " \n",
360 | " | 1 | \n",
361 | " 3 | \n",
362 | " 0 | \n",
363 | " 1 | \n",
364 | "
\n",
365 | " \n",
366 | " | 2 | \n",
367 | " 14 | \n",
368 | " 0 | \n",
369 | " 50480 | \n",
370 | "
\n",
371 | " \n",
372 | " | 3 | \n",
373 | " 15 | \n",
374 | " 0 | \n",
375 | " 7753 | \n",
376 | "
\n",
377 | " \n",
378 | " | 4 | \n",
379 | " 62 | \n",
380 | " 0 | \n",
381 | " 30265 | \n",
382 | "
\n",
383 | " \n",
384 | " | 5 | \n",
385 | " 70 | \n",
386 | " 1 | \n",
387 | " 27 | \n",
388 | "
\n",
389 | " \n",
390 | " | 6 | \n",
391 | " 70 | \n",
392 | " 2 | \n",
393 | " 9 | \n",
394 | "
\n",
395 | " \n",
396 | " | 7 | \n",
397 | " 80 | \n",
398 | " 0 | \n",
399 | " 75008 | \n",
400 | "
\n",
401 | " \n",
402 | " | 8 | \n",
403 | " 82 | \n",
404 | " 1 | \n",
405 | " 1 | \n",
406 | "
\n",
407 | " \n",
408 | " | 9 | \n",
409 | " 82 | \n",
410 | " 18 | \n",
411 | " 2 | \n",
412 | "
\n",
413 | " \n",
414 | " | 10 | \n",
415 | " 82 | \n",
416 | " 20 | \n",
417 | " 11430 | \n",
418 | "
\n",
419 | " \n",
420 | " | 11 | \n",
421 | " 82 | \n",
422 | " 21 | \n",
423 | " 6 | \n",
424 | "
\n",
425 | " \n",
426 | " | 12 | \n",
427 | " 82 | \n",
428 | " 24 | \n",
429 | " 284 | \n",
430 | "
\n",
431 | " \n",
432 | " | 13 | \n",
433 | " 82 | \n",
434 | " 28 | \n",
435 | " 9 | \n",
436 | "
\n",
437 | " \n",
438 | " | 14 | \n",
439 | " 82 | \n",
440 | " 31 | \n",
441 | " 333 | \n",
442 | "
\n",
443 | " \n",
444 | " | 15 | \n",
445 | " 113 | \n",
446 | " 1 | \n",
447 | " 1296 | \n",
448 | "
\n",
449 | " \n",
450 | " | 16 | \n",
451 | " 113 | \n",
452 | " 2 | \n",
453 | " 1368 | \n",
454 | "
\n",
455 | " \n",
456 | "
\n",
457 | "
"
458 | ],
459 | "text/plain": [
460 | " type subtype count\n",
461 | "0 2 0 1\n",
462 | "1 3 0 1\n",
463 | "2 14 0 50480\n",
464 | "3 15 0 7753\n",
465 | "4 62 0 30265\n",
466 | "5 70 1 27\n",
467 | "6 70 2 9\n",
468 | "7 80 0 75008\n",
469 | "8 82 1 1\n",
470 | "9 82 18 2\n",
471 | "10 82 20 11430\n",
472 | "11 82 21 6\n",
473 | "12 82 24 284\n",
474 | "13 82 28 9\n",
475 | "14 82 31 333\n",
476 | "15 113 1 1296\n",
477 | "16 113 2 1368"
478 | ]
479 | },
480 | "execution_count": 7,
481 | "metadata": {},
482 | "output_type": "execute_result"
483 | }
484 | ],
485 | "source": [
486 | "# get a complete SMF record overview\n",
487 | "ctx.get_available_records()"
488 | ]
489 | },
490 | {
491 | "cell_type": "markdown",
492 | "metadata": {},
493 | "source": [
494 | "### Get description of the dataset\n",
495 | "\n",
496 | "You can request the meta information of your SMF dataset using ```get_dataset_description()```function. "
497 | ]
498 | },
499 | {
500 | "cell_type": "code",
501 | "execution_count": 5,
502 | "metadata": {
503 | "tags": []
504 | },
505 | "outputs": [],
506 | "source": [
507 | "desc = ctx.get_dataset_description()"
508 | ]
509 | },
510 | {
511 | "cell_type": "markdown",
512 | "metadata": {},
513 | "source": [
514 | "The result of the method is a dictionary ```dict```. The keys of the dictionary are the dataset names used to create the context, and the values are the descripton of the corresponding dataset. You can use the name of the dataset to extract the description of a specific dataset from the retrieved description as follows:"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 7,
520 | "metadata": {
521 | "tags": []
522 | },
523 | "outputs": [],
524 | "source": [
525 | "dataset_desc = desc[DATASET]"
526 | ]
527 | },
528 | {
529 | "cell_type": "markdown",
530 | "metadata": {},
531 | "source": [
532 | "The description of each dataset is saved in a ```dict``` object. Use function ```keys()``` of a ```dict```to see what kinds of information are available:"
533 | ]
534 | },
535 | {
536 | "cell_type": "code",
537 | "execution_count": 9,
538 | "metadata": {
539 | "tags": []
540 | },
541 | "outputs": [
542 | {
543 | "data": {
544 | "text/plain": [
545 | "dict_keys(['creation_date', 'count', 'system_ids', 'estimated_size_in_bytes', 'first_time_in_buffer', 'last_time_in_buffer', 'earliest_start', 'lastest_start', 'earliest_end', 'lastest_end', 'type_info'])"
546 | ]
547 | },
548 | "execution_count": 9,
549 | "metadata": {},
550 | "output_type": "execute_result"
551 | }
552 | ],
553 | "source": [
554 | "dataset_desc.keys()"
555 | ]
556 | },
557 | {
558 | "cell_type": "markdown",
559 | "metadata": {},
560 | "source": [
561 | "You can use the key to retrieve information from the description. For example, you can get all the system IDs inside the dataset by calling:"
562 | ]
563 | },
564 | {
565 | "cell_type": "code",
566 | "execution_count": 10,
567 | "metadata": {
568 | "tags": []
569 | },
570 | "outputs": [
571 | {
572 | "data": {
573 | "text/plain": [
574 | "['J80 ']"
575 | ]
576 | },
577 | "execution_count": 10,
578 | "metadata": {},
579 | "output_type": "execute_result"
580 | }
581 | ],
582 | "source": [
583 | "dataset_desc['system_ids']"
584 | ]
585 | },
586 | {
587 | "cell_type": "markdown",
588 | "metadata": {},
589 | "source": [
590 | "Or you can get detailed information of records of each subtype by calling:"
591 | ]
592 | },
593 | {
594 | "cell_type": "code",
595 | "execution_count": 13,
596 | "metadata": {
597 | "tags": []
598 | },
599 | "outputs": [
600 | {
601 | "data": {
602 | "text/html": [
603 | "\n",
604 | "\n",
617 | "
\n",
618 | " \n",
619 | " \n",
620 | " | \n",
621 | " type | \n",
622 | " subtype | \n",
623 | " count | \n",
624 | " system_ids | \n",
625 | " estimated_size_in_bytes | \n",
626 | " first_time_in_buffer | \n",
627 | " last_time_in_buffer | \n",
628 | " earliest_start | \n",
629 | " lastest_start | \n",
630 | " earliest_end | \n",
631 | " lastest_end | \n",
632 | "
\n",
633 | " \n",
634 | " \n",
635 | " \n",
636 | " | 0 | \n",
637 | " 113 | \n",
638 | " 1 | \n",
639 | " 1296 | \n",
640 | " [J80 ] | \n",
641 | " 1973376 | \n",
642 | " 2019-07-25 00:00:20.550 | \n",
643 | " 2019-07-25 05:46:04.660 | \n",
644 | " NaT | \n",
645 | " NaT | \n",
646 | " NaT | \n",
647 | " NaT | \n",
648 | "
\n",
649 | " \n",
650 | " | 1 | \n",
651 | " 113 | \n",
652 | " 2 | \n",
653 | " 1368 | \n",
654 | " [J80 ] | \n",
655 | " 2008224 | \n",
656 | " 2019-07-25 00:00:20.550 | \n",
657 | " 2019-07-25 05:46:04.660 | \n",
658 | " NaT | \n",
659 | " NaT | \n",
660 | " NaT | \n",
661 | " NaT | \n",
662 | "
\n",
663 | " \n",
664 | " | 2 | \n",
665 | " 14 | \n",
666 | " 0 | \n",
667 | " 50480 | \n",
668 | " [J80 ] | \n",
669 | " 22811003 | \n",
670 | " 2019-07-25 00:00:00.000 | \n",
671 | " 2019-07-25 05:59:57.750 | \n",
672 | " NaT | \n",
673 | " NaT | \n",
674 | " NaT | \n",
675 | " NaT | \n",
676 | "
\n",
677 | " \n",
678 | " | 3 | \n",
679 | " 15 | \n",
680 | " 0 | \n",
681 | " 7753 | \n",
682 | " [J80 ] | \n",
683 | " 3731270 | \n",
684 | " 2019-07-25 00:00:01.990 | \n",
685 | " 2019-07-25 05:59:55.880 | \n",
686 | " NaT | \n",
687 | " NaT | \n",
688 | " NaT | \n",
689 | " NaT | \n",
690 | "
\n",
691 | " \n",
692 | " | 4 | \n",
693 | " 2 | \n",
694 | " 0 | \n",
695 | " 1 | \n",
696 | " [J80 ] | \n",
697 | " 18 | \n",
698 | " 2019-07-25 08:15:10.430 | \n",
699 | " 2019-07-25 08:15:10.430 | \n",
700 | " NaT | \n",
701 | " NaT | \n",
702 | " NaT | \n",
703 | " NaT | \n",
704 | "
\n",
705 | " \n",
706 | " | 5 | \n",
707 | " 3 | \n",
708 | " 0 | \n",
709 | " 1 | \n",
710 | " [J80 ] | \n",
711 | " 18 | \n",
712 | " 2019-07-25 08:15:16.510 | \n",
713 | " 2019-07-25 08:15:16.510 | \n",
714 | " NaT | \n",
715 | " NaT | \n",
716 | " NaT | \n",
717 | " NaT | \n",
718 | "
\n",
719 | " \n",
720 | " | 6 | \n",
721 | " 62 | \n",
722 | " 0 | \n",
723 | " 30265 | \n",
724 | " [J80 ] | \n",
725 | " 7735330 | \n",
726 | " 2019-07-25 00:00:00.510 | \n",
727 | " 2019-07-25 05:59:39.070 | \n",
728 | " NaT | \n",
729 | " NaT | \n",
730 | " NaT | \n",
731 | " NaT | \n",
732 | "
\n",
733 | " \n",
734 | " | 7 | \n",
735 | " 70 | \n",
736 | " 1 | \n",
737 | " 27 | \n",
738 | " [J80 ] | \n",
739 | " 694224 | \n",
740 | " 2019-07-25 00:29:35.070 | \n",
741 | " 2019-07-25 05:59:35.080 | \n",
742 | " 2019-07-24 23:59:35 | \n",
743 | " 2019-07-25 05:29:35 | \n",
744 | " 2019-07-25 00:29:34.919 | \n",
745 | " 2019-07-25 05:59:34.926 | \n",
746 | "
\n",
747 | " \n",
748 | " | 8 | \n",
749 | " 70 | \n",
750 | " 2 | \n",
751 | " 9 | \n",
752 | " [J80 ] | \n",
753 | " 37152 | \n",
754 | " 2019-07-25 00:29:35.140 | \n",
755 | " 2019-07-25 05:59:35.200 | \n",
756 | " 2019-07-24 23:59:35 | \n",
757 | " 2019-07-25 05:29:35 | \n",
758 | " 2019-07-25 00:29:34.919 | \n",
759 | " 2019-07-25 05:59:34.926 | \n",
760 | "
\n",
761 | " \n",
762 | " | 9 | \n",
763 | " 80 | \n",
764 | " 0 | \n",
765 | " 75008 | \n",
766 | " [J80 ] | \n",
767 | " 22438707 | \n",
768 | " 2019-07-25 00:00:00.000 | \n",
769 | " 2019-07-25 05:59:59.220 | \n",
770 | " NaT | \n",
771 | " NaT | \n",
772 | " NaT | \n",
773 | " NaT | \n",
774 | "
\n",
775 | " \n",
776 | " | 10 | \n",
777 | " 82 | \n",
778 | " 1 | \n",
779 | " 1 | \n",
780 | " [J80 ] | \n",
781 | " 268 | \n",
782 | " 2019-07-25 02:59:50.040 | \n",
783 | " 2019-07-25 02:59:50.040 | \n",
784 | " NaT | \n",
785 | " NaT | \n",
786 | " NaT | \n",
787 | " NaT | \n",
788 | "
\n",
789 | " \n",
790 | " | 11 | \n",
791 | " 82 | \n",
792 | " 18 | \n",
793 | " 2 | \n",
794 | " [J80 ] | \n",
795 | " 92 | \n",
796 | " 2019-07-25 02:59:48.820 | \n",
797 | " 2019-07-25 02:59:48.830 | \n",
798 | " NaT | \n",
799 | " NaT | \n",
800 | " NaT | \n",
801 | " NaT | \n",
802 | "
\n",
803 | " \n",
804 | " | 12 | \n",
805 | " 82 | \n",
806 | " 20 | \n",
807 | " 11430 | \n",
808 | " [J80 ] | \n",
809 | " 1371600 | \n",
810 | " 2019-07-25 00:00:00.290 | \n",
811 | " 2019-07-25 05:59:58.280 | \n",
812 | " NaT | \n",
813 | " NaT | \n",
814 | " NaT | \n",
815 | " NaT | \n",
816 | "
\n",
817 | " \n",
818 | " | 13 | \n",
819 | " 82 | \n",
820 | " 21 | \n",
821 | " 6 | \n",
822 | " [J80 ] | \n",
823 | " 672 | \n",
824 | " 2019-07-25 02:34:42.940 | \n",
825 | " 2019-07-25 02:59:48.640 | \n",
826 | " NaT | \n",
827 | " NaT | \n",
828 | " NaT | \n",
829 | " NaT | \n",
830 | "
\n",
831 | " \n",
832 | " | 14 | \n",
833 | " 82 | \n",
834 | " 24 | \n",
835 | " 284 | \n",
836 | " [J80 ] | \n",
837 | " 125952 | \n",
838 | " 2019-07-25 02:59:48.270 | \n",
839 | " 2019-07-25 02:59:48.610 | \n",
840 | " NaT | \n",
841 | " NaT | \n",
842 | " NaT | \n",
843 | " NaT | \n",
844 | "
\n",
845 | " \n",
846 | " | 15 | \n",
847 | " 82 | \n",
848 | " 28 | \n",
849 | " 9 | \n",
850 | " [J80 ] | \n",
851 | " 2448 | \n",
852 | " 2019-07-25 02:59:52.340 | \n",
853 | " 2019-07-25 03:04:36.920 | \n",
854 | " NaT | \n",
855 | " NaT | \n",
856 | " NaT | \n",
857 | " NaT | \n",
858 | "
\n",
859 | " \n",
860 | " | 16 | \n",
861 | " 82 | \n",
862 | " 31 | \n",
863 | " 333 | \n",
864 | " [J80 ] | \n",
865 | " 72072 | \n",
866 | " 2019-07-25 00:00:05.030 | \n",
867 | " 2019-07-25 05:30:05.000 | \n",
868 | " NaT | \n",
869 | " NaT | \n",
870 | " NaT | \n",
871 | " NaT | \n",
872 | "
\n",
873 | " \n",
874 | "
\n",
875 | "
"
876 | ],
877 | "text/plain": [
878 | " type subtype count system_ids estimated_size_in_bytes \\\n",
879 | "0 113 1 1296 [J80 ] 1973376 \n",
880 | "1 113 2 1368 [J80 ] 2008224 \n",
881 | "2 14 0 50480 [J80 ] 22811003 \n",
882 | "3 15 0 7753 [J80 ] 3731270 \n",
883 | "4 2 0 1 [J80 ] 18 \n",
884 | "5 3 0 1 [J80 ] 18 \n",
885 | "6 62 0 30265 [J80 ] 7735330 \n",
886 | "7 70 1 27 [J80 ] 694224 \n",
887 | "8 70 2 9 [J80 ] 37152 \n",
888 | "9 80 0 75008 [J80 ] 22438707 \n",
889 | "10 82 1 1 [J80 ] 268 \n",
890 | "11 82 18 2 [J80 ] 92 \n",
891 | "12 82 20 11430 [J80 ] 1371600 \n",
892 | "13 82 21 6 [J80 ] 672 \n",
893 | "14 82 24 284 [J80 ] 125952 \n",
894 | "15 82 28 9 [J80 ] 2448 \n",
895 | "16 82 31 333 [J80 ] 72072 \n",
896 | "\n",
897 | " first_time_in_buffer last_time_in_buffer earliest_start \\\n",
898 | "0 2019-07-25 00:00:20.550 2019-07-25 05:46:04.660 NaT \n",
899 | "1 2019-07-25 00:00:20.550 2019-07-25 05:46:04.660 NaT \n",
900 | "2 2019-07-25 00:00:00.000 2019-07-25 05:59:57.750 NaT \n",
901 | "3 2019-07-25 00:00:01.990 2019-07-25 05:59:55.880 NaT \n",
902 | "4 2019-07-25 08:15:10.430 2019-07-25 08:15:10.430 NaT \n",
903 | "5 2019-07-25 08:15:16.510 2019-07-25 08:15:16.510 NaT \n",
904 | "6 2019-07-25 00:00:00.510 2019-07-25 05:59:39.070 NaT \n",
905 | "7 2019-07-25 00:29:35.070 2019-07-25 05:59:35.080 2019-07-24 23:59:35 \n",
906 | "8 2019-07-25 00:29:35.140 2019-07-25 05:59:35.200 2019-07-24 23:59:35 \n",
907 | "9 2019-07-25 00:00:00.000 2019-07-25 05:59:59.220 NaT \n",
908 | "10 2019-07-25 02:59:50.040 2019-07-25 02:59:50.040 NaT \n",
909 | "11 2019-07-25 02:59:48.820 2019-07-25 02:59:48.830 NaT \n",
910 | "12 2019-07-25 00:00:00.290 2019-07-25 05:59:58.280 NaT \n",
911 | "13 2019-07-25 02:34:42.940 2019-07-25 02:59:48.640 NaT \n",
912 | "14 2019-07-25 02:59:48.270 2019-07-25 02:59:48.610 NaT \n",
913 | "15 2019-07-25 02:59:52.340 2019-07-25 03:04:36.920 NaT \n",
914 | "16 2019-07-25 00:00:05.030 2019-07-25 05:30:05.000 NaT \n",
915 | "\n",
916 | " lastest_start earliest_end lastest_end \n",
917 | "0 NaT NaT NaT \n",
918 | "1 NaT NaT NaT \n",
919 | "2 NaT NaT NaT \n",
920 | "3 NaT NaT NaT \n",
921 | "4 NaT NaT NaT \n",
922 | "5 NaT NaT NaT \n",
923 | "6 NaT NaT NaT \n",
924 | "7 2019-07-25 05:29:35 2019-07-25 00:29:34.919 2019-07-25 05:59:34.926 \n",
925 | "8 2019-07-25 05:29:35 2019-07-25 00:29:34.919 2019-07-25 05:59:34.926 \n",
926 | "9 NaT NaT NaT \n",
927 | "10 NaT NaT NaT \n",
928 | "11 NaT NaT NaT \n",
929 | "12 NaT NaT NaT \n",
930 | "13 NaT NaT NaT \n",
931 | "14 NaT NaT NaT \n",
932 | "15 NaT NaT NaT \n",
933 | "16 NaT NaT NaT "
934 | ]
935 | },
936 | "execution_count": 13,
937 | "metadata": {},
938 | "output_type": "execute_result"
939 | }
940 | ],
941 | "source": [
942 | "dataset_desc['type_info']"
943 | ]
944 | },
945 | {
946 | "cell_type": "markdown",
947 | "metadata": {},
948 | "source": [
949 | "## Fetching Data\n",
950 | "\n",
951 | "The standard way to fetch the data using the *IBM SMF Explorer* is by defining the list of SMF fields you want to request.\n",
952 | "Therefore, the Framework provides you with predefined definitions for many SMF fields.\n",
953 | "To access those definitions you need to import them from the ``smfexplorer.fields`` module.\n",
954 | "Fields are defined in classes that correspond to the SMF type and subtype.\n",
955 | "\n",
956 | "\n",
957 | "In the following example, we import all fields for the SMF type 70 subtype 1 record.\n",
958 | "\n",
959 | "> **Note**: the following naming scheme: SMF**XX**S**Y**, where *XX* represents record type and *Y* its subtype "
960 | ]
961 | },
962 | {
963 | "cell_type": "code",
964 | "execution_count": 8,
965 | "metadata": {
966 | "tags": []
967 | },
968 | "outputs": [],
969 | "source": [
970 | "from smfexplorer.fields import SMF70S1"
971 | ]
972 | },
973 | {
974 | "cell_type": "markdown",
975 | "metadata": {},
976 | "source": [
977 | "After importing from the fields module, you can access SMF field documentation by pressing ``shift``+``tab``.\n",
978 | "To test this out for the field ``lpar_name``, just place the cursor behind the ``SMF70S1.lpar_name`` line below and press the key combination.\n",
979 | "Alternatively, you can use the ipython **?** syntax to get help."
980 | ]
981 | },
982 | {
983 | "cell_type": "code",
984 | "execution_count": 9,
985 | "metadata": {
986 | "tags": []
987 | },
988 | "outputs": [
989 | {
990 | "data": {
991 | "text/plain": [
992 | ">>"
993 | ]
994 | },
995 | "execution_count": 9,
996 | "metadata": {},
997 | "output_type": "execute_result"
998 | }
999 | ],
1000 | "source": [
1001 | "# select this cell and press shift+tab to see the documentation\n",
1002 | "SMF70S1.lpar_busy"
1003 | ]
1004 | },
1005 | {
1006 | "cell_type": "code",
1007 | "execution_count": null,
1008 | "metadata": {},
1009 | "outputs": [],
1010 | "source": [
1011 | "?SMF70S1.lpar_name"
1012 | ]
1013 | },
1014 | {
1015 | "cell_type": "markdown",
1016 | "metadata": {},
1017 | "source": [
1018 | "Such information is provided on each field.\n",
1019 | "Feel free to have a look into the properties available.\n",
1020 | "\n",
1021 | "To make working with SMF data easier, additional **virtual fields** are provided.\n",
1022 | "Virtual fields are derived from the SMF fields by the *IBM SMF Explorer*.\n",
1023 | "For example, the ``ziip_boost`` field shows whether zIIP Boost was active."
1024 | ]
1025 | },
1026 | {
1027 | "cell_type": "markdown",
1028 | "metadata": {},
1029 | "source": [
1030 | "The virtual field ``ziip_boost`` uses ``fla``(SMF70FLA) field to extract the information."
1031 | ]
1032 | },
1033 | {
1034 | "cell_type": "code",
1035 | "execution_count": null,
1036 | "metadata": {},
1037 | "outputs": [],
1038 | "source": [
1039 | "?SMF70S1.ziip_boost"
1040 | ]
1041 | },
1042 | {
1043 | "cell_type": "markdown",
1044 | "metadata": {},
1045 | "source": [
1046 | "### Request() Method"
1047 | ]
1048 | },
1049 | {
1050 | "cell_type": "markdown",
1051 | "metadata": {},
1052 | "source": [
1053 | "To use the field definitions for data fetching, you can use the ``request()`` method of a Context.\n",
1054 | "You need to provide an array of fields you would like to request.\n",
1055 | "To trigger the request call ``.run()``.\n",
1056 | "When the request succeeds, it returns a pandas DataFrame."
1057 | ]
1058 | },
1059 | {
1060 | "cell_type": "code",
1061 | "execution_count": 10,
1062 | "metadata": {
1063 | "tags": []
1064 | },
1065 | "outputs": [
1066 | {
1067 | "data": {
1068 | "text/html": [
1069 | "\n",
1070 | "\n",
1083 | "
\n",
1084 | " \n",
1085 | " \n",
1086 | " | \n",
1087 | " timestamp | \n",
1088 | " sid | \n",
1089 | " lpar_name | \n",
1090 | " system_name | \n",
1091 | " sysplex_name | \n",
1092 | " lpar_system_name | \n",
1093 | " lpar_number | \n",
1094 | " lpar_cpu_count | \n",
1095 | "
\n",
1096 | " \n",
1097 | " \n",
1098 | " \n",
1099 | " | 0 | \n",
1100 | " 2019-07-25 00:29:35.070 | \n",
1101 | " J80 | \n",
1102 | " J80 | \n",
1103 | " J80 | \n",
1104 | " UTCPLXJ8 | \n",
1105 | " J80-J80 | \n",
1106 | " 7 | \n",
1107 | " 88 | \n",
1108 | "
\n",
1109 | " \n",
1110 | " | 1 | \n",
1111 | " 2019-07-25 00:29:35.070 | \n",
1112 | " J80 | \n",
1113 | " CF22 | \n",
1114 | " | \n",
1115 | " <NA> | \n",
1116 | " CF22- | \n",
1117 | " 1 | \n",
1118 | " 1 | \n",
1119 | "
\n",
1120 | " \n",
1121 | " | 2 | \n",
1122 | " 2019-07-25 00:29:35.070 | \n",
1123 | " J80 | \n",
1124 | " CF3 | \n",
1125 | " | \n",
1126 | " <NA> | \n",
1127 | " CF3- | \n",
1128 | " 2 | \n",
1129 | " 6 | \n",
1130 | "
\n",
1131 | " \n",
1132 | " | 3 | \n",
1133 | " 2019-07-25 00:29:35.070 | \n",
1134 | " J80 | \n",
1135 | " CT2 | \n",
1136 | " CT2 | \n",
1137 | " CT2PLEX | \n",
1138 | " CT2-CT2 | \n",
1139 | " 3 | \n",
1140 | " 15 | \n",
1141 | "
\n",
1142 | " \n",
1143 | " | 4 | \n",
1144 | " 2019-07-25 00:29:35.070 | \n",
1145 | " J80 | \n",
1146 | " JA0 | \n",
1147 | " JA0 | \n",
1148 | " UTCPLXJ8 | \n",
1149 | " JA0-JA0 | \n",
1150 | " 4 | \n",
1151 | " 84 | \n",
1152 | "
\n",
1153 | " \n",
1154 | " | ... | \n",
1155 | " ... | \n",
1156 | " ... | \n",
1157 | " ... | \n",
1158 | " ... | \n",
1159 | " ... | \n",
1160 | " ... | \n",
1161 | " ... | \n",
1162 | " ... | \n",
1163 | "
\n",
1164 | " \n",
1165 | " | 247 | \n",
1166 | " 2019-07-25 05:59:35.080 | \n",
1167 | " J80 | \n",
1168 | " JJ0 | \n",
1169 | " <NA> | \n",
1170 | " <NA> | \n",
1171 | " <NA> | \n",
1172 | " 24 | \n",
1173 | " 0 | \n",
1174 | "
\n",
1175 | " \n",
1176 | " | 248 | \n",
1177 | " 2019-07-25 05:59:35.080 | \n",
1178 | " J80 | \n",
1179 | " Z2 | \n",
1180 | " Z2 | \n",
1181 | " ZPETPLX2 | \n",
1182 | " Z2-Z2 | \n",
1183 | " 25 | \n",
1184 | " 35 | \n",
1185 | "
\n",
1186 | " \n",
1187 | " | 249 | \n",
1188 | " 2019-07-25 05:59:35.080 | \n",
1189 | " J80 | \n",
1190 | " CT1 | \n",
1191 | " <NA> | \n",
1192 | " <NA> | \n",
1193 | " <NA> | \n",
1194 | " 26 | \n",
1195 | " 0 | \n",
1196 | "
\n",
1197 | " \n",
1198 | " | 250 | \n",
1199 | " 2019-07-25 05:59:35.080 | \n",
1200 | " J80 | \n",
1201 | " ISKLMLX1 | \n",
1202 | " | \n",
1203 | " <NA> | \n",
1204 | " ISKLMLX1- | \n",
1205 | " 27 | \n",
1206 | " 1 | \n",
1207 | "
\n",
1208 | " \n",
1209 | " | 251 | \n",
1210 | " 2019-07-25 05:59:35.080 | \n",
1211 | " J80 | \n",
1212 | " PHYSICAL | \n",
1213 | " <NA> | \n",
1214 | " <NA> | \n",
1215 | " <NA> | \n",
1216 | " 0 | \n",
1217 | " 167 | \n",
1218 | "
\n",
1219 | " \n",
1220 | "
\n",
1221 | "
252 rows × 8 columns
\n",
1222 | "
"
1223 | ],
1224 | "text/plain": [
1225 | " timestamp sid lpar_name system_name sysplex_name \\\n",
1226 | "0 2019-07-25 00:29:35.070 J80 J80 J80 UTCPLXJ8 \n",
1227 | "1 2019-07-25 00:29:35.070 J80 CF22 \n",
1228 | "2 2019-07-25 00:29:35.070 J80 CF3 \n",
1229 | "3 2019-07-25 00:29:35.070 J80 CT2 CT2 CT2PLEX \n",
1230 | "4 2019-07-25 00:29:35.070 J80 JA0 JA0 UTCPLXJ8 \n",
1231 | ".. ... ... ... ... ... \n",
1232 | "247 2019-07-25 05:59:35.080 J80 JJ0 \n",
1233 | "248 2019-07-25 05:59:35.080 J80 Z2 Z2 ZPETPLX2 \n",
1234 | "249 2019-07-25 05:59:35.080 J80 CT1 \n",
1235 | "250 2019-07-25 05:59:35.080 J80 ISKLMLX1 \n",
1236 | "251 2019-07-25 05:59:35.080 J80 PHYSICAL \n",
1237 | "\n",
1238 | " lpar_system_name lpar_number lpar_cpu_count \n",
1239 | "0 J80-J80 7 88 \n",
1240 | "1 CF22- 1 1 \n",
1241 | "2 CF3- 2 6 \n",
1242 | "3 CT2-CT2 3 15 \n",
1243 | "4 JA0-JA0 4 84 \n",
1244 | ".. ... ... ... \n",
1245 | "247 24 0 \n",
1246 | "248 Z2-Z2 25 35 \n",
1247 | "249 26 0 \n",
1248 | "250 ISKLMLX1- 27 1 \n",
1249 | "251 0 167 \n",
1250 | "\n",
1251 | "[252 rows x 8 columns]"
1252 | ]
1253 | },
1254 | "execution_count": 10,
1255 | "metadata": {},
1256 | "output_type": "execute_result"
1257 | }
1258 | ],
1259 | "source": [
1260 | "ctx.request(\n",
1261 | " [\n",
1262 | " SMF70S1.timestamp,\n",
1263 | " SMF70S1.sid,\n",
1264 | " SMF70S1.lpar_name,\n",
1265 | " SMF70S1.system_name,\n",
1266 | " SMF70S1.sysplex_name,\n",
1267 | " SMF70S1.lpar_system_name,\n",
1268 | " SMF70S1.lpar_number,\n",
1269 | " SMF70S1.lpar_cpu_count,\n",
1270 | " ]\n",
1271 | ").run()"
1272 | ]
1273 | },
1274 | {
1275 | "cell_type": "markdown",
1276 | "metadata": {},
1277 | "source": [
1278 | "The *IBM SMF Explorer* is a Fluent-API.\n",
1279 | "That means you chain methods together to configure a request.\n",
1280 | "You have seen the most basic form of such a chain: ``request().run()``. The ``request()`` method can start a chain and the ``run()`` method ends it.\n",
1281 | "You will learn about other methods that can be used in the chain later and in other tutorials.\n",
1282 | "\n",
1283 | "Note, that you cannot combine fields arbitrarily in a request.\n",
1284 | "Not all fields are compatible, because they may originate from different structures and cannot be displayed in a single table in a logical/useful way.\n",
1285 | "\n",
1286 | "The following request, for example, tries to combine SMF 70 Subtype 1 and SMF 72 Subtype 3 data into one table and **throws an exception**.\n",
1287 | "In general, you cannot combine fields of different record types.\n",
1288 | "\n",
1289 | "**WARNING**: the following code causes an error"
1290 | ]
1291 | },
1292 | {
1293 | "cell_type": "code",
1294 | "execution_count": null,
1295 | "metadata": {
1296 | "tags": []
1297 | },
1298 | "outputs": [],
1299 | "source": [
1300 | "from smfexplorer.fields import SMF72S3\n",
1301 | "\n",
1302 | "ctx.request([SMF70S1.timestamp, SMF70S1.sid, SMF72S3.utilization_total]).run()"
1303 | ]
1304 | },
1305 | {
1306 | "cell_type": "markdown",
1307 | "metadata": {},
1308 | "source": [
1309 | "#### Raw fields\n",
1310 | "\n",
1311 | "The *IBM SMF Explorer* applies different transformations to the raw SMF data before returning it to the user.\n",
1312 | "Sometimes you might want to disable the post-processing of some fields to get the original values.\n",
1313 | "\n",
1314 | "You can use the `raw` property of each field to see raw SMF values.\n",
1315 | "What `raw` returns depends on the type of the field.\n",
1316 | "For normal fields, post-processing is disabled.\n",
1317 | "For virtual fields, the raw value of the source field will be returned.\n",
1318 | "\n",
1319 | "In the example below, you can see how `raw` fetches the `cpu_type` value without the *IBM SMF Explorer* post-processing."
1320 | ]
1321 | },
1322 | {
1323 | "cell_type": "code",
1324 | "execution_count": 13,
1325 | "metadata": {
1326 | "tags": []
1327 | },
1328 | "outputs": [
1329 | {
1330 | "data": {
1331 | "text/html": [
1332 | "\n",
1333 | "\n",
1346 | "
\n",
1347 | " \n",
1348 | " \n",
1349 | " | \n",
1350 | " cpu_type | \n",
1351 | " cpu_type_raw | \n",
1352 | "
\n",
1353 | " \n",
1354 | " \n",
1355 | " \n",
1356 | " | 0 | \n",
1357 | " CP | \n",
1358 | " 0 | \n",
1359 | "
\n",
1360 | " \n",
1361 | " | 1 | \n",
1362 | " CP | \n",
1363 | " 0 | \n",
1364 | "
\n",
1365 | " \n",
1366 | " | 2 | \n",
1367 | " CP | \n",
1368 | " 0 | \n",
1369 | "
\n",
1370 | " \n",
1371 | " | 3 | \n",
1372 | " CP | \n",
1373 | " 0 | \n",
1374 | "
\n",
1375 | " \n",
1376 | " | 4 | \n",
1377 | " CP | \n",
1378 | " 0 | \n",
1379 | "
\n",
1380 | " \n",
1381 | " | ... | \n",
1382 | " ... | \n",
1383 | " ... | \n",
1384 | "
\n",
1385 | " \n",
1386 | " | 643 | \n",
1387 | " zIIP | \n",
1388 | " 2 | \n",
1389 | "
\n",
1390 | " \n",
1391 | " | 644 | \n",
1392 | " zIIP | \n",
1393 | " 2 | \n",
1394 | "
\n",
1395 | " \n",
1396 | " | 645 | \n",
1397 | " zIIP | \n",
1398 | " 2 | \n",
1399 | "
\n",
1400 | " \n",
1401 | " | 646 | \n",
1402 | " zIIP | \n",
1403 | " 2 | \n",
1404 | "
\n",
1405 | " \n",
1406 | " | 647 | \n",
1407 | " zIIP | \n",
1408 | " 2 | \n",
1409 | "
\n",
1410 | " \n",
1411 | "
\n",
1412 | "
648 rows × 2 columns
\n",
1413 | "
"
1414 | ],
1415 | "text/plain": [
1416 | " cpu_type cpu_type_raw\n",
1417 | "0 CP 0\n",
1418 | "1 CP 0\n",
1419 | "2 CP 0\n",
1420 | "3 CP 0\n",
1421 | "4 CP 0\n",
1422 | ".. ... ...\n",
1423 | "643 zIIP 2\n",
1424 | "644 zIIP 2\n",
1425 | "645 zIIP 2\n",
1426 | "646 zIIP 2\n",
1427 | "647 zIIP 2\n",
1428 | "\n",
1429 | "[648 rows x 2 columns]"
1430 | ]
1431 | },
1432 | "execution_count": 13,
1433 | "metadata": {},
1434 | "output_type": "execute_result"
1435 | }
1436 | ],
1437 | "source": [
1438 | "ctx.request(\n",
1439 | " [\n",
1440 | " SMF70S1.cpu_type,\n",
1441 | " SMF70S1.cpu_type.raw,\n",
1442 | " ]\n",
1443 | ").run()"
1444 | ]
1445 | },
1446 | {
1447 | "cell_type": "markdown",
1448 | "metadata": {},
1449 | "source": [
1450 | "### Using Sample Requests\n",
1451 | "To make common tasks easier, *IBM SMF Explorer* comes with a collection of predefined requests.\n",
1452 | "The data can be fetched from related fields without listing them individually.\n",
1453 | "These requests can be found in the ``samples`` property of any context.\n",
1454 | "In other tutorials, you will be shown how to create and register your own samples.\n",
1455 | "\n",
1456 | "To fetch the same information as above (i.e., in the first successful ``ctx.request()`` call), we can use the ``lpar_information()`` sample request."
1457 | ]
1458 | },
1459 | {
1460 | "cell_type": "code",
1461 | "execution_count": 12,
1462 | "metadata": {
1463 | "tags": []
1464 | },
1465 | "outputs": [
1466 | {
1467 | "data": {
1468 | "text/html": [
1469 | "\n",
1470 | "\n",
1483 | "
\n",
1484 | " \n",
1485 | " \n",
1486 | " | \n",
1487 | " timestamp | \n",
1488 | " sid | \n",
1489 | " lpar_name | \n",
1490 | " system_name | \n",
1491 | " sysplex_name | \n",
1492 | " lpar_system_name | \n",
1493 | " lpar_number | \n",
1494 | " lpar_cpu_count | \n",
1495 | "
\n",
1496 | " \n",
1497 | " \n",
1498 | " \n",
1499 | " | 0 | \n",
1500 | " 2019-07-25 00:29:35.070 | \n",
1501 | " J80 | \n",
1502 | " J80 | \n",
1503 | " J80 | \n",
1504 | " UTCPLXJ8 | \n",
1505 | " J80-J80 | \n",
1506 | " 7 | \n",
1507 | " 88 | \n",
1508 | "
\n",
1509 | " \n",
1510 | " | 1 | \n",
1511 | " 2019-07-25 00:29:35.070 | \n",
1512 | " J80 | \n",
1513 | " CF22 | \n",
1514 | " | \n",
1515 | " <NA> | \n",
1516 | " CF22- | \n",
1517 | " 1 | \n",
1518 | " 1 | \n",
1519 | "
\n",
1520 | " \n",
1521 | " | 2 | \n",
1522 | " 2019-07-25 00:29:35.070 | \n",
1523 | " J80 | \n",
1524 | " CF3 | \n",
1525 | " | \n",
1526 | " <NA> | \n",
1527 | " CF3- | \n",
1528 | " 2 | \n",
1529 | " 6 | \n",
1530 | "
\n",
1531 | " \n",
1532 | " | 3 | \n",
1533 | " 2019-07-25 00:29:35.070 | \n",
1534 | " J80 | \n",
1535 | " CT2 | \n",
1536 | " CT2 | \n",
1537 | " CT2PLEX | \n",
1538 | " CT2-CT2 | \n",
1539 | " 3 | \n",
1540 | " 15 | \n",
1541 | "
\n",
1542 | " \n",
1543 | " | 4 | \n",
1544 | " 2019-07-25 00:29:35.070 | \n",
1545 | " J80 | \n",
1546 | " JA0 | \n",
1547 | " JA0 | \n",
1548 | " UTCPLXJ8 | \n",
1549 | " JA0-JA0 | \n",
1550 | " 4 | \n",
1551 | " 84 | \n",
1552 | "
\n",
1553 | " \n",
1554 | " | ... | \n",
1555 | " ... | \n",
1556 | " ... | \n",
1557 | " ... | \n",
1558 | " ... | \n",
1559 | " ... | \n",
1560 | " ... | \n",
1561 | " ... | \n",
1562 | " ... | \n",
1563 | "
\n",
1564 | " \n",
1565 | " | 247 | \n",
1566 | " 2019-07-25 05:59:35.080 | \n",
1567 | " J80 | \n",
1568 | " JJ0 | \n",
1569 | " <NA> | \n",
1570 | " <NA> | \n",
1571 | " <NA> | \n",
1572 | " 24 | \n",
1573 | " 0 | \n",
1574 | "
\n",
1575 | " \n",
1576 | " | 248 | \n",
1577 | " 2019-07-25 05:59:35.080 | \n",
1578 | " J80 | \n",
1579 | " Z2 | \n",
1580 | " Z2 | \n",
1581 | " ZPETPLX2 | \n",
1582 | " Z2-Z2 | \n",
1583 | " 25 | \n",
1584 | " 35 | \n",
1585 | "
\n",
1586 | " \n",
1587 | " | 249 | \n",
1588 | " 2019-07-25 05:59:35.080 | \n",
1589 | " J80 | \n",
1590 | " CT1 | \n",
1591 | " <NA> | \n",
1592 | " <NA> | \n",
1593 | " <NA> | \n",
1594 | " 26 | \n",
1595 | " 0 | \n",
1596 | "
\n",
1597 | " \n",
1598 | " | 250 | \n",
1599 | " 2019-07-25 05:59:35.080 | \n",
1600 | " J80 | \n",
1601 | " ISKLMLX1 | \n",
1602 | " | \n",
1603 | " <NA> | \n",
1604 | " ISKLMLX1- | \n",
1605 | " 27 | \n",
1606 | " 1 | \n",
1607 | "
\n",
1608 | " \n",
1609 | " | 251 | \n",
1610 | " 2019-07-25 05:59:35.080 | \n",
1611 | " J80 | \n",
1612 | " PHYSICAL | \n",
1613 | " <NA> | \n",
1614 | " <NA> | \n",
1615 | " <NA> | \n",
1616 | " 0 | \n",
1617 | " 167 | \n",
1618 | "
\n",
1619 | " \n",
1620 | "
\n",
1621 | "
252 rows × 8 columns
\n",
1622 | "
"
1623 | ],
1624 | "text/plain": [
1625 | " timestamp sid lpar_name system_name sysplex_name \\\n",
1626 | "0 2019-07-25 00:29:35.070 J80 J80 J80 UTCPLXJ8 \n",
1627 | "1 2019-07-25 00:29:35.070 J80 CF22 \n",
1628 | "2 2019-07-25 00:29:35.070 J80 CF3 \n",
1629 | "3 2019-07-25 00:29:35.070 J80 CT2 CT2 CT2PLEX \n",
1630 | "4 2019-07-25 00:29:35.070 J80 JA0 JA0 UTCPLXJ8 \n",
1631 | ".. ... ... ... ... ... \n",
1632 | "247 2019-07-25 05:59:35.080 J80 JJ0 \n",
1633 | "248 2019-07-25 05:59:35.080 J80 Z2 Z2 ZPETPLX2 \n",
1634 | "249 2019-07-25 05:59:35.080 J80 CT1 \n",
1635 | "250 2019-07-25 05:59:35.080 J80 ISKLMLX1 \n",
1636 | "251 2019-07-25 05:59:35.080 J80 PHYSICAL \n",
1637 | "\n",
1638 | " lpar_system_name lpar_number lpar_cpu_count \n",
1639 | "0 J80-J80 7 88 \n",
1640 | "1 CF22- 1 1 \n",
1641 | "2 CF3- 2 6 \n",
1642 | "3 CT2-CT2 3 15 \n",
1643 | "4 JA0-JA0 4 84 \n",
1644 | ".. ... ... ... \n",
1645 | "247 24 0 \n",
1646 | "248 Z2-Z2 25 35 \n",
1647 | "249 26 0 \n",
1648 | "250 ISKLMLX1- 27 1 \n",
1649 | "251 0 167 \n",
1650 | "\n",
1651 | "[252 rows x 8 columns]"
1652 | ]
1653 | },
1654 | "execution_count": 12,
1655 | "metadata": {},
1656 | "output_type": "execute_result"
1657 | }
1658 | ],
1659 | "source": [
1660 | "ctx.samples.lpar_information().run()"
1661 | ]
1662 | },
1663 | {
1664 | "cell_type": "markdown",
1665 | "metadata": {},
1666 | "source": [
1667 | "To fetch additional fields together with a sample, the ``run()`` method has a named parameter called ``display``.\n",
1668 | "You can provide an array of fields to this parameter just like in the ``request()`` method."
1669 | ]
1670 | },
1671 | {
1672 | "cell_type": "code",
1673 | "execution_count": 11,
1674 | "metadata": {
1675 | "tags": []
1676 | },
1677 | "outputs": [
1678 | {
1679 | "data": {
1680 | "text/html": [
1681 | "\n",
1682 | "\n",
1695 | "
\n",
1696 | " \n",
1697 | " \n",
1698 | " | \n",
1699 | " timestamp | \n",
1700 | " sid | \n",
1701 | " lpar_name | \n",
1702 | " system_name | \n",
1703 | " sysplex_name | \n",
1704 | " lpar_system_name | \n",
1705 | " lpar_number | \n",
1706 | " lpar_cpu_count | \n",
1707 | " capactiy_group_name | \n",
1708 | "
\n",
1709 | " \n",
1710 | " \n",
1711 | " \n",
1712 | " | 0 | \n",
1713 | " 2019-07-25 00:29:35.070 | \n",
1714 | " J80 | \n",
1715 | " J80 | \n",
1716 | " J80 | \n",
1717 | " UTCPLXJ8 | \n",
1718 | " J80-J80 | \n",
1719 | " 7 | \n",
1720 | " 88 | \n",
1721 | " <NA> | \n",
1722 | "
\n",
1723 | " \n",
1724 | " | 1 | \n",
1725 | " 2019-07-25 00:29:35.070 | \n",
1726 | " J80 | \n",
1727 | " CF22 | \n",
1728 | " | \n",
1729 | " <NA> | \n",
1730 | " CF22- | \n",
1731 | " 1 | \n",
1732 | " 1 | \n",
1733 | " <NA> | \n",
1734 | "
\n",
1735 | " \n",
1736 | " | 2 | \n",
1737 | " 2019-07-25 00:29:35.070 | \n",
1738 | " J80 | \n",
1739 | " CF3 | \n",
1740 | " | \n",
1741 | " <NA> | \n",
1742 | " CF3- | \n",
1743 | " 2 | \n",
1744 | " 6 | \n",
1745 | " <NA> | \n",
1746 | "
\n",
1747 | " \n",
1748 | " | 3 | \n",
1749 | " 2019-07-25 00:29:35.070 | \n",
1750 | " J80 | \n",
1751 | " CT2 | \n",
1752 | " CT2 | \n",
1753 | " CT2PLEX | \n",
1754 | " CT2-CT2 | \n",
1755 | " 3 | \n",
1756 | " 15 | \n",
1757 | " <NA> | \n",
1758 | "
\n",
1759 | " \n",
1760 | " | 4 | \n",
1761 | " 2019-07-25 00:29:35.070 | \n",
1762 | " J80 | \n",
1763 | " JA0 | \n",
1764 | " JA0 | \n",
1765 | " UTCPLXJ8 | \n",
1766 | " JA0-JA0 | \n",
1767 | " 4 | \n",
1768 | " 84 | \n",
1769 | " <NA> | \n",
1770 | "
\n",
1771 | " \n",
1772 | " | ... | \n",
1773 | " ... | \n",
1774 | " ... | \n",
1775 | " ... | \n",
1776 | " ... | \n",
1777 | " ... | \n",
1778 | " ... | \n",
1779 | " ... | \n",
1780 | " ... | \n",
1781 | " ... | \n",
1782 | "
\n",
1783 | " \n",
1784 | " | 247 | \n",
1785 | " 2019-07-25 05:59:35.080 | \n",
1786 | " J80 | \n",
1787 | " JJ0 | \n",
1788 | " <NA> | \n",
1789 | " <NA> | \n",
1790 | " <NA> | \n",
1791 | " 24 | \n",
1792 | " 0 | \n",
1793 | " <NA> | \n",
1794 | "
\n",
1795 | " \n",
1796 | " | 248 | \n",
1797 | " 2019-07-25 05:59:35.080 | \n",
1798 | " J80 | \n",
1799 | " Z2 | \n",
1800 | " Z2 | \n",
1801 | " ZPETPLX2 | \n",
1802 | " Z2-Z2 | \n",
1803 | " 25 | \n",
1804 | " 35 | \n",
1805 | " <NA> | \n",
1806 | "
\n",
1807 | " \n",
1808 | " | 249 | \n",
1809 | " 2019-07-25 05:59:35.080 | \n",
1810 | " J80 | \n",
1811 | " CT1 | \n",
1812 | " <NA> | \n",
1813 | " <NA> | \n",
1814 | " <NA> | \n",
1815 | " 26 | \n",
1816 | " 0 | \n",
1817 | " <NA> | \n",
1818 | "
\n",
1819 | " \n",
1820 | " | 250 | \n",
1821 | " 2019-07-25 05:59:35.080 | \n",
1822 | " J80 | \n",
1823 | " ISKLMLX1 | \n",
1824 | " | \n",
1825 | " <NA> | \n",
1826 | " ISKLMLX1- | \n",
1827 | " 27 | \n",
1828 | " 1 | \n",
1829 | " <NA> | \n",
1830 | "
\n",
1831 | " \n",
1832 | " | 251 | \n",
1833 | " 2019-07-25 05:59:35.080 | \n",
1834 | " J80 | \n",
1835 | " PHYSICAL | \n",
1836 | " <NA> | \n",
1837 | " <NA> | \n",
1838 | " <NA> | \n",
1839 | " 0 | \n",
1840 | " 167 | \n",
1841 | " <NA> | \n",
1842 | "
\n",
1843 | " \n",
1844 | "
\n",
1845 | "
252 rows × 9 columns
\n",
1846 | "
"
1847 | ],
1848 | "text/plain": [
1849 | " timestamp sid lpar_name system_name sysplex_name \\\n",
1850 | "0 2019-07-25 00:29:35.070 J80 J80 J80 UTCPLXJ8 \n",
1851 | "1 2019-07-25 00:29:35.070 J80 CF22 \n",
1852 | "2 2019-07-25 00:29:35.070 J80 CF3 \n",
1853 | "3 2019-07-25 00:29:35.070 J80 CT2 CT2 CT2PLEX \n",
1854 | "4 2019-07-25 00:29:35.070 J80 JA0 JA0 UTCPLXJ8 \n",
1855 | ".. ... ... ... ... ... \n",
1856 | "247 2019-07-25 05:59:35.080 J80 JJ0 \n",
1857 | "248 2019-07-25 05:59:35.080 J80 Z2 Z2 ZPETPLX2 \n",
1858 | "249 2019-07-25 05:59:35.080 J80 CT1 \n",
1859 | "250 2019-07-25 05:59:35.080 J80 ISKLMLX1 \n",
1860 | "251 2019-07-25 05:59:35.080 J80 PHYSICAL \n",
1861 | "\n",
1862 | " lpar_system_name lpar_number lpar_cpu_count capactiy_group_name \n",
1863 | "0 J80-J80 7 88 \n",
1864 | "1 CF22- 1 1 \n",
1865 | "2 CF3- 2 6 \n",
1866 | "3 CT2-CT2 3 15 \n",
1867 | "4 JA0-JA0 4 84 \n",
1868 | ".. ... ... ... ... \n",
1869 | "247 24 0 \n",
1870 | "248 Z2-Z2 25 35 \n",
1871 | "249 26 0 \n",
1872 | "250 ISKLMLX1- 27 1 \n",
1873 | "251 0 167 \n",
1874 | "\n",
1875 | "[252 rows x 9 columns]"
1876 | ]
1877 | },
1878 | "execution_count": 11,
1879 | "metadata": {},
1880 | "output_type": "execute_result"
1881 | }
1882 | ],
1883 | "source": [
1884 | "ctx.samples.lpar_information().run(display=[SMF70S1.capactiy_group_name])"
1885 | ]
1886 | },
1887 | {
1888 | "cell_type": "markdown",
1889 | "metadata": {},
1890 | "source": [
1891 | "# Some available Samples\n",
1892 | "\n",
1893 | "## Samples for SMF70S1:\n",
1894 | "\n",
1895 | "``lpar_information()`` -- fields from SMF70S1 on LPARs\n",
1896 | "\n",
1897 | "``processor_information()`` -- fields from SMF70S1 on processors\n",
1898 | "\n",
1899 | "## Samples for SMF72S3:\n",
1900 | "\n",
1901 | "``smf_72_03_sample()`` -- fields for SMF72 subtype 3 analysis\n",
1902 | "\n",
1903 | "\n",
1904 | "## Samples for SMF99S1:\n",
1905 | " \n",
1906 | "``p_utilization()`` -- CP, zIIP, zAAP and total utilization\n",
1907 | " \n",
1908 | "``rg_capping()`` -- Resource Group and Tenant Resource Group capping information\n",
1909 | " \n",
1910 | "``smf_99_01_sample()`` -- commonly used SMF 99 subtype 1 data\n",
1911 | "\n",
1912 | "\n",
1913 | "## Samples for SMF99S2:\n",
1914 | " \n",
1915 | "\n",
1916 | "``srv_service()`` -- service Class service consumption for CP, zIIP and zAAP\n",
1917 | "\n",
1918 | "``smf_99_02_sample()`` -- commonly used SMF 99 Subtype 2 data\n",
1919 | "\n",
1920 | "## Samples for SMF99S12:\n",
1921 | "\n",
1922 | "``hiper_dispatch()`` -- hiper dispatch information per processor type\n",
1923 | "\n",
1924 | "## Samples for SMF99S14:\n",
1925 | "\n",
1926 | "``topology()`` -- topology information per processor\n"
1927 | ]
1928 | }
1929 | ],
1930 | "metadata": {
1931 | "kernelspec": {
1932 | "display_name": "Python 3 (ipykernel)",
1933 | "language": "python",
1934 | "name": "python3"
1935 | },
1936 | "language_info": {
1937 | "codemirror_mode": {
1938 | "name": "ipython",
1939 | "version": 3
1940 | },
1941 | "file_extension": ".py",
1942 | "mimetype": "text/x-python",
1943 | "name": "python",
1944 | "nbconvert_exporter": "python",
1945 | "pygments_lexer": "ipython3",
1946 | "version": "3.9.10"
1947 | }
1948 | },
1949 | "nbformat": 4,
1950 | "nbformat_minor": 4
1951 | }
1952 |
--------------------------------------------------------------------------------