├── .github
└── workflows
│ └── static.yml
├── .gitignore
├── .nojekyll
├── LICENSE
├── README.md
├── db_info
├── bird_db_id2db_info.json
├── bird_db_id2sampled_db_values.json
├── spiderdev_db_id2db_info.json
├── spiderdev_db_id2sampled_db_values.json
├── spidertest_db_id2db_info.json
└── spidertest_db_id2sampled_db_values.json
├── docker
├── Dockerfile.ngc.vllm
└── Dockerfile.vemlp.vllm.te
├── example_data
├── sampled_Complex.jsonl
├── test.parquet
└── train.parquet
├── images
├── overview.png
└── table1.png
├── index.html
├── patches
└── megatron_v4.patch
├── pyproject.toml
├── requirements.txt
├── sh
├── eval_bird.sh
├── eval_spider.sh
├── inference.sh
└── train.sh
├── src
├── data_preprocess
│ ├── nl2sql_synsql_nonvalue.py
│ └── nl2sql_synsql_value.py
├── evaluation_bird_post.py
├── evaluation_spider.py
├── evaluation_spider_post.py
├── evaluations
│ ├── bird_evaluations
│ │ ├── bird_exec_evaluation.py
│ │ └── bird_ves_evaluation.py
│ ├── preprocess_bird_result.py
│ └── spider1_evaluations
│ │ ├── __init__.py
│ │ ├── evaluation_utils.py
│ │ └── src
│ │ ├── __init__.py
│ │ ├── bridge_content_encoder.py
│ │ ├── dataset.py
│ │ ├── exec_eval.py
│ │ ├── files_to_convert_natsql2sql
│ │ └── natsql2sql
│ │ │ ├── natsql2sql.py
│ │ │ ├── natsql_parser.py
│ │ │ ├── preprocess
│ │ │ ├── Schema_Token.py
│ │ │ ├── TokenString.py
│ │ │ ├── col_match.py
│ │ │ ├── db_match.py
│ │ │ ├── match.py
│ │ │ ├── others_pattern.py
│ │ │ ├── pattern_analyze.py
│ │ │ ├── pattern_question_type.py
│ │ │ ├── question_repair.py
│ │ │ ├── sentence_analyse.py
│ │ │ ├── sq.py
│ │ │ ├── sql_back.py
│ │ │ ├── stemmer.py
│ │ │ ├── table_match.py
│ │ │ └── utils.py
│ │ │ ├── process_sql.py
│ │ │ └── utils.py
│ │ ├── get_tables.py
│ │ ├── nltk_downloader.py
│ │ ├── parse.py
│ │ ├── process_sql.py
│ │ └── token_preprocessing.py
├── inference.py
└── utils
│ └── prepare_input_seq.py
├── static
├── css
│ ├── bulma-carousel.min.css
│ ├── bulma-slider.min.css
│ ├── bulma.css.map.txt
│ ├── bulma.min.css
│ ├── fontawesome.all.min.css
│ └── index.css
├── images
│ ├── carousel1.jpg
│ ├── carousel2.jpg
│ ├── carousel3.jpg
│ ├── carousel4.jpg
│ └── favicon.ico
├── js
│ ├── bulma-carousel.js
│ ├── bulma-carousel.min.js
│ ├── bulma-slider.js
│ ├── bulma-slider.min.js
│ ├── fontawesome.all.min.js
│ └── index.js
├── pdfs
│ └── sample.pdf
└── videos
│ ├── banner_video.mp4
│ ├── carousel1.mp4
│ ├── carousel2.mp4
│ └── carousel3.mp4
└── verl
├── __init__.py
├── models
├── README.md
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-39.pyc
│ └── registry.cpython-39.pyc
├── llama
│ ├── __init__.py
│ └── megatron
│ │ ├── __init__.py
│ │ ├── checkpoint_utils
│ │ ├── __init__.py
│ │ ├── llama_loader.py
│ │ └── llama_saver.py
│ │ ├── layers
│ │ ├── __init__.py
│ │ ├── parallel_attention.py
│ │ ├── parallel_decoder.py
│ │ ├── parallel_linear.py
│ │ ├── parallel_mlp.py
│ │ └── parallel_rmsnorm.py
│ │ └── modeling_llama_megatron.py
├── registry.py
├── transformers
│ ├── __init__.py
│ ├── llama.py
│ ├── monkey_patch.py
│ └── qwen2.py
└── weight_loader_registry.py
├── protocol.py
├── single_controller
├── __init__.py
├── base
│ ├── __init__.py
│ ├── decorator.py
│ ├── megatron
│ │ ├── __init__.py
│ │ ├── worker.py
│ │ └── worker_group.py
│ ├── register_center
│ │ ├── __init__.py
│ │ └── ray.py
│ ├── worker.py
│ └── worker_group.py
├── ray
│ ├── __init__.py
│ ├── base.py
│ └── megatron.py
└── version
│ └── version
├── third_party
├── __init__.py
└── vllm
│ ├── __init__.py
│ ├── vllm_v_0_3_1
│ ├── __init__.py
│ ├── arg_utils.py
│ ├── config.py
│ ├── llm.py
│ ├── llm_engine_sp.py
│ ├── model_loader.py
│ ├── model_runner.py
│ ├── parallel_state.py
│ ├── tokenizer.py
│ ├── weight_loaders.py
│ └── worker.py
│ ├── vllm_v_0_4_2
│ ├── __init__.py
│ ├── arg_utils.py
│ ├── config.py
│ ├── dtensor_weight_loaders.py
│ ├── hf_weight_loader.py
│ ├── llm.py
│ ├── llm_engine_sp.py
│ ├── megatron_weight_loaders.py
│ ├── model_loader.py
│ ├── model_runner.py
│ ├── parallel_state.py
│ ├── spmd_gpu_executor.py
│ ├── tokenizer.py
│ └── worker.py
│ ├── vllm_v_0_5_4
│ ├── __init__.py
│ ├── arg_utils.py
│ ├── config.py
│ ├── dtensor_weight_loaders.py
│ ├── hf_weight_loader.py
│ ├── llm.py
│ ├── llm_engine_sp.py
│ ├── megatron_weight_loaders.py
│ ├── model_loader.py
│ ├── model_runner.py
│ ├── parallel_state.py
│ ├── spmd_gpu_executor.py
│ ├── tokenizer.py
│ └── worker.py
│ └── vllm_v_0_6_3
│ ├── __init__.py
│ ├── arg_utils.py
│ ├── config.py
│ ├── dtensor_weight_loaders.py
│ ├── hf_weight_loader.py
│ ├── llm.py
│ ├── llm_engine_sp.py
│ ├── megatron_weight_loaders.py
│ ├── model_loader.py
│ ├── model_runner.py
│ ├── parallel_state.py
│ ├── spmd_gpu_executor.py
│ ├── tokenizer.py
│ └── worker.py
├── trainer
├── __init__.py
├── config
│ ├── evaluation.yaml
│ ├── generation.yaml
│ ├── model
│ │ └── lora_enabled.yaml
│ ├── ppo_megatron_trainer.yaml
│ ├── ppo_trainer.yaml
│ └── sft_trainer.yaml
├── fsdp_sft_trainer.py
├── main_eval.py
├── main_generation.py
├── main_ppo.py
├── ppo
│ ├── __init__.py
│ ├── core_algos.py
│ └── ray_trainer.py
└── runtime_env.yaml
├── utils
├── __init__.py
├── config.py
├── dataset
│ ├── README.md
│ ├── __init__.py
│ ├── rl_dataset.py
│ ├── rm_dataset.py
│ └── sft_dataset.py
├── debug
│ ├── __init__.py
│ ├── performance.py
│ └── trajectory_tracker.py
├── distributed.py
├── flops_counter.py
├── fs.py
├── fsdp_utils.py
├── hdfs_io.py
├── import_utils.py
├── logger
│ ├── __init__.py
│ └── aggregate_logger.py
├── logging_utils.py
├── megatron
│ ├── __init__.py
│ ├── memory.py
│ ├── optimizer.py
│ ├── optimizer_config.py
│ ├── pipeline_parallel.py
│ ├── sequence_parallel.py
│ └── tensor_parallel.py
├── megatron_utils.py
├── memory_buffer.py
├── model.py
├── py_functional.py
├── ray_utils.py
├── rendezvous
│ ├── __init__.py
│ └── ray_backend.py
├── reward_score
│ ├── __init__.py
│ ├── countdown.py
│ ├── exec_eval.py
│ ├── gsm8k.py
│ ├── parse.py
│ ├── patterns
│ │ ├── nl_patterns.yml
│ │ └── output_templates.yml
│ └── synsql.py
├── seqlen_balancing.py
├── tokenizer.py
├── torch_dtypes.py
├── torch_functional.py
├── tracking.py
└── ulysses.py
├── version
└── version
└── workers
├── __init__.py
├── actor
├── __init__.py
├── base.py
├── dp_actor.py
└── megatron_actor.py
├── critic
├── __init__.py
├── base.py
├── dp_critic.py
└── megatron_critic.py
├── fsdp_workers.py
├── megatron_workers.py
├── reward_model
├── __init__.py
├── base.py
└── megatron
│ ├── __init__.py
│ └── reward_model.py
├── rollout
├── __init__.py
├── base.py
├── hf_rollout.py
├── naive
│ ├── __init__.py
│ └── naive_rollout.py
├── tokenizer.py
└── vllm_rollout
│ ├── __init__.py
│ └── vllm_rollout.py
└── sharding_manager
├── __init__.py
├── base.py
├── fsdp_ulysses.py
├── fsdp_vllm.py
└── megatron_vllm.py
/.github/workflows/static.yml:
--------------------------------------------------------------------------------
1 | # Simple workflow for deploying static content to GitHub Pages
2 | name: Deploy static content to Pages
3 |
4 | on:
5 | # Runs on pushes targeting the default branch
6 | push:
7 | branches: ["main"]
8 |
9 | # Allows you to run this workflow manually from the Actions tab
10 | workflow_dispatch:
11 |
12 | # Sets permissions of the GITHUB_TOKEN to allow deployment to GitHub Pages
13 | permissions:
14 | contents: read
15 | pages: write
16 | id-token: write
17 |
18 | # Allow only one concurrent deployment, skipping runs queued between the run in-progress and latest queued.
19 | # However, do NOT cancel in-progress runs as we want to allow these production deployments to complete.
20 | concurrency:
21 | group: "pages"
22 | cancel-in-progress: false
23 |
24 | jobs:
25 | # Single deploy job since we're just deploying
26 | deploy:
27 | environment:
28 | name: github-pages
29 | url: ${{ steps.deployment.outputs.page_url }}
30 | runs-on: ubuntu-latest
31 | steps:
32 | - name: Checkout
33 | uses: actions/checkout@v4
34 | - name: Setup Pages
35 | uses: actions/configure-pages@v5
36 | - name: Upload artifact
37 | uses: actions/upload-pages-artifact@v3
38 | with:
39 | # Upload entire repository
40 | path: '.'
41 | - name: Deploy to GitHub Pages
42 | id: deployment
43 | uses: actions/deploy-pages@v4
44 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Folders
2 | data/
3 | models/
4 | logs/
5 | outputs/
6 | results/
7 | wandb/
8 | # sh/
9 | *verl/models/
10 | openr1_ckpts/
11 | *.wandb
12 | *.out
13 |
14 | core
15 | test_all.ipynb
16 |
17 |
18 | # Python
19 | __pycache__/
20 | *.py[cod]
21 | *$py.class
22 | *.so
23 | .Python
24 | build/
25 | develop-eggs/
26 | dist/
27 | downloads/
28 | eggs/
29 | .eggs/
30 | lib/
31 | lib64/
32 | parts/
33 | sdist/
34 | var/
35 | wheels/
36 | *.egg-info/
37 | .installed.cfg
38 | *.egg
39 |
40 | # IDE
41 | .idea/
42 | .vscode/
43 | *.swp
44 | *.swo
45 |
46 | # 环境和依赖
47 | venv/
48 | env/
49 | .env
50 | .venv
51 | ENV/
52 | env.bak/
53 | venv.bak/
54 | .python-version
55 |
56 | # 日志和缓存
57 | *.log
58 | logs/
59 | .cache
60 | .pytest_cache/
61 | .coverage
62 | htmlcov/
63 |
64 | # 数据和模型文件
65 | data/
66 | *.pkl
67 | *.h5
68 | *.pt
69 | *.pth
70 | *.bin
71 | *.ckpt
72 | *.model
73 | results/
74 |
75 | # 系统文件
76 | .DS_Store
77 | Thumbs.db
78 |
79 | # 配置文件
80 | config.ini
81 | secrets.json
82 | credentials.json
83 | *.config
84 |
85 | # 临时文件
86 | tmp/
87 | temp/
88 | .temp/
89 | *.tmp
90 |
--------------------------------------------------------------------------------
/.nojekyll:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/docker/Dockerfile.ngc.vllm:
--------------------------------------------------------------------------------
1 | FROM nvcr.io/nvidia/pytorch:24.05-py3
2 |
3 | # uninstall nv-pytorch fork
4 | RUN pip3 uninstall pytorch-quantization \
5 | pytorch-triton \
6 | torch \
7 | torch-tensorrt \
8 | torchvision \
9 | xgboost transformer_engine flash_attn \
10 | apex megatron-core -y
11 |
12 | RUN pip3 install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu124
13 |
14 | # make sure torch version is kept
15 | RUN pip3 install --no-cache-dir \
16 | "torch==2.4.0" \
17 | accelerate \
18 | codetiming \
19 | datasets \
20 | dill \
21 | hydra-core \
22 | numpy \
23 | pybind11 \
24 | tensordict \
25 | "transformers<=4.46.0"
26 |
27 | # ray is installed via vllm
28 | RUN pip3 install --no-cache-dir vllm==0.6.3
29 |
30 | # we choose flash-attn v2.7.0 or v2.7.2 which contain pre-built wheels
31 | RUN pip3 install --no-cache-dir --no-build-isolation flash-attn==2.7.0.post2
32 |
33 | # install apex, set MAX_JOBS to avoid OOMs
34 | RUN MAX_JOBS=4 pip3 install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
35 | --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" \
36 | git+https://github.com/NVIDIA/apex
37 |
38 | # install Transformer Engine, which requires FA 2.5.8
39 | RUN MAX_JOBS=4 NINJA_FLAGS="-j4" pip3 install flash-attn==2.5.8 --no-cache-dir --no-build-isolation
40 | RUN MAX_JOBS=4 NINJA_FLAGS="-j4" pip3 install git+https://github.com/NVIDIA/TransformerEngine.git@v1.7
41 |
42 | # Pin wandb to v0.18 since v0.19.1 is released with ImportError
43 | RUN pip3 install wandb==0.18.7 py-spy
44 |
--------------------------------------------------------------------------------
/docker/Dockerfile.vemlp.vllm.te:
--------------------------------------------------------------------------------
1 | # docker buildx build --platform linux/x86_64 -t "verlai/verl:$TAG" -f docker/$FILE .
2 |
3 | # the one in docker.io is an alias for the one veturbo
4 | # FROM vemlp-cn-beijing.cr.volces.com/veturbo/pytorch:2.4-cu124
5 | FROM docker.io/haibinlin/verl:v0.0.5-th2.4.0-cu124-base
6 |
7 | # only config pip index with https://pypi.tuna.tsinghua.edu.cn/simple if needed
8 | # unset for now
9 | RUN pip3 config unset global.index-url
10 |
11 | # transformers 4.47.0 contains the following bug:
12 | # AttributeError: 'Gemma2Attention' object has no attribute '_flash_attn_uses_top_left_mask'
13 | RUN pip3 install --no-cache-dir \
14 | torch==2.4.0 \
15 | accelerate \
16 | codetiming \
17 | dill \
18 | hydra-core \
19 | numpy \
20 | pybind11 \
21 | tensordict \
22 | "transformers <= 4.46.0"
23 |
24 | RUN pip3 install --no-cache-dir flash-attn==2.7.0.post2 --no-build-isolation
25 |
26 | # vllm depends on ray, and veRL does not support ray > 2.37
27 | RUN pip3 install --no-cache-dir vllm==0.6.3 ray==2.10
28 |
29 | # install apex
30 | RUN MAX_JOBS=4 pip3 install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
31 | --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" \
32 | git+https://github.com/NVIDIA/apex
33 |
34 | # install Transformer Engine
35 | # - flash-attn pinned to 2.5.3 by TransformerEngine, switch to eric-haibin-lin/TransformerEngine.git@v1.7.0 to relax version req
36 | # - install with: MAX_JOBS=1 NINJA_FLAGS="-j1" TE_BUILD_WITH_NINJA=0 to avoid OOM
37 | # - cudnn is required by TransformerEngine
38 | # RUN CUDNN_PATH=/opt/conda/lib/python3.11/site-packages/nvidia/cudnn \
39 | # pip3 install git+https://github.com/eric-haibin-lin/TransformerEngine.git@v1.7.0
40 | RUN MAX_JOBS=1 NINJA_FLAGS="-j1" pip3 install flash-attn==2.5.3 --no-cache-dir --no-build-isolation
41 | RUN MAX_JOBS=1 NINJA_FLAGS="-j1" pip3 install git+https://github.com/NVIDIA/TransformerEngine.git@v1.7
42 |
--------------------------------------------------------------------------------
/example_data/test.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/example_data/test.parquet
--------------------------------------------------------------------------------
/example_data/train.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/example_data/train.parquet
--------------------------------------------------------------------------------
/images/overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/images/overview.png
--------------------------------------------------------------------------------
/images/table1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/images/table1.png
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | # -------------------------------
2 | # build-system
3 | # -------------------------------
4 | [build-system]
5 | requires = [
6 | "setuptools>=61.0",
7 | "wheel"
8 | ]
9 | build-backend = "setuptools.build_meta"
10 |
11 | # -------------------------------
12 | # project (PEP 621 metadata)
13 | # -------------------------------
14 | [project]
15 | name = "verl"
16 | # We'll mark the version as "dynamic" because it's read from the file "verl/version/version"
17 | # (PEP 621 calls this "dynamic version").
18 | # The actual version is specified in the [tool.setuptools.dynamic] section below.
19 | dynamic = ["version"]
20 |
21 | description = "veRL: Volcano Engine Reinforcement Learning for LLM"
22 | license = {file = "LICENSE"} # or "Apache-2.0", if you prefer an SPDX identifier
23 | readme = {file = "README.md", content-type = "text/markdown"}
24 | requires-python = ">=3.8"
25 |
26 | authors = [
27 | { name = "Bytedance - Seed - MLSys", email = "zhangchi.usc1992@bytedance.com" },
28 | { name = "Bytedance - Seed - MLSys", email = "gmsheng@connect.hku.hk" },
29 | ]
30 |
31 | # Dependencies corresponding to install_requires in setup.py
32 | dependencies = [
33 | "accelerate",
34 | "codetiming",
35 | "datasets",
36 | "dill",
37 | "hydra-core",
38 | "numpy",
39 | "pybind11",
40 | "ray",
41 | "tensordict",
42 | "transformers<4.48",
43 | "vllm<=0.6.3",
44 | ]
45 |
46 | # Optional dependencies (extras_require in setup.py)
47 | [project.optional-dependencies]
48 | test = [
49 | "pytest", "yapf"
50 | ]
51 |
52 | # URLs
53 | [project.urls]
54 | Homepage = "https://github.com/volcengine/verl"
55 |
56 | # -------------------------------
57 | # tool.setuptools - Additional config
58 | # -------------------------------
59 | [tool.setuptools]
60 | # True means `setuptools` will attempt to include all relevant files in package_data automatically.
61 | # This corresponds to `include_package_data=True` in setup.py.
62 | include-package-data = true
63 |
64 | # We read the version from a file in 'verl/version/version'
65 | [tool.setuptools.dynamic]
66 | version = {file = "verl/version/version"}
67 |
68 | # If you need to mimic `package_dir={'': '.'}`:
69 | [tool.setuptools.package-dir]
70 | "" = "."
71 |
72 | # If you need to include specific non-Python data (like YAML files or version file):
73 | # This is the rough equivalent of package_data={'': ['version/*'], 'verl': ['trainer/config/*.yaml']}
74 | [tool.setuptools.package-data]
75 | verl = [
76 | "version/*",
77 | "trainer/config/*.yaml"
78 | ]
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate
2 | codetiming
3 | datasets
4 | dill
5 | flash-attn
6 | hydra-core
7 | numpy
8 | pandas
9 | pybind11
10 | ray
11 | tensordict<0.6
12 | transformers<4.48
13 | vllm==0.6.3
14 | wandb
15 | func_timeout
16 | sqlparse
17 |
--------------------------------------------------------------------------------
/sh/eval_bird.sh:
--------------------------------------------------------------------------------
1 | echo "Evaluating Bird dataset..."
2 |
3 | POST_PROCESS_MODE=Maj # [Maj]
4 |
5 | PRED_SQL_PATH=
6 |
7 | if [ "$POST_PROCESS_MODE" = "None" ]; then
8 | PRED_SQL_JSON_PATH=${PRED_SQL_PATH%.*}.json
9 | else
10 | echo "Current post-processing mode is $POST_PROCESS_MODE"
11 | fi
12 |
13 | GROUND_TRUTH_SQL_PATH=data/BIRD/dev.sql
14 | GROUND_TRUTH_JSON_PATH=data/BIRD/dev.json
15 | DB_ROOT_PATH=data/BIRD/dev_databases/
16 | NUM_CPUS=64
17 | META_TIME_OUT=30.0
18 | MODE_GT=gt
19 | MODE_PREDICT=gpt
20 | ITERATE_NUM=100
21 | DIFF_JSON_PATH=data/BIRD/dev.json
22 | SAVE_DIR=results/eval/bird
23 | EVAL_MODE=acc
24 |
25 |
26 | if [ "$POST_PROCESS_MODE" = "Gre" ]; then
27 | python src/evaluation_bird_post.py \
28 | --pred $PRED_SQL_PATH \
29 | --gold $GROUND_TRUTH_JSON_PATH \
30 | --db_path $DB_ROOT_PATH \
31 | --mode greedy_search
32 |
33 | elif [ "$POST_PROCESS_MODE" = "Maj" ]; then
34 | python src/evaluation_bird_post.py \
35 | --pred $PRED_SQL_PATH \
36 | --gold $GROUND_TRUTH_JSON_PATH \
37 | --db_path $DB_ROOT_PATH \
38 | --mode major_voting
39 | else
40 | echo 'Please set the post-processing mode'
41 | fi
--------------------------------------------------------------------------------
/sh/eval_spider.sh:
--------------------------------------------------------------------------------
1 | echo "Evaluating Spider dataset..."
2 |
3 | PRED_SQL=
4 | MODE=test # [dev, test]
5 | POST_PROCESS_MODE=Maj
6 |
7 |
8 | if [ "$MODE" = "dev" ]; then
9 | GOLD_SQL=data/NL2SQL/Spider/dev_gold.sql
10 | DB=data/NL2SQL/Spider/database
11 | TABLE=data/NL2SQL/Spider/tables.json
12 | elif [ "$MODE" = "test" ]; then
13 | GOLD_SQL=data/NL2SQL/Spider/test_gold.sql
14 | DB=data/NL2SQL/Spider/test_database
15 | TABLE=data/NL2SQL/Spider/test_tables.json
16 | else
17 | echo "Only support dev or test mode for Spider"
18 | exit 1
19 | fi
20 |
21 | ETYPE=all
22 | PLUG_VALUE=false
23 | KEEP_DISTINCT=false
24 | PROGRESS_BAR_FOR_EACH_DATAPOINT=false
25 | SAVE_DIR=results/eval/spider
26 |
27 |
28 | if [ "$POST_PROCESS_MODE" = "Maj" ]; then
29 | python src/evaluation_spider_post.py \
30 | --pred $PRED_SQL \
31 | --gold $GOLD_SQL \
32 | --db_path $DB/ \
33 | --table $TABLE \
34 | --mode major_voting \
35 | --save_pred_sqls False \
36 | --save_dir $SAVE_DIR
37 |
38 | PRED_SQL=${PRED_SQL%.*}_pred_major_voting_sqls.txt
39 | python src/evaluation_spider.py \
40 | --gold_sql $GOLD_SQL \
41 | --pred_sql $PRED_SQL \
42 | --db $DB \
43 | --table $TABLE \
44 | --etype $ETYPE \
45 | --plug_value $PLUG_VALUE \
46 | --keep_distinct $KEEP_DISTINCT \
47 | --progress_bar_for_each_datapoint $PROGRESS_BAR_FOR_EACH_DATAPOINT \
48 | --save_dir $SAVE_DIR
49 |
50 | elif [ "$POST_PROCESS_MODE" = "Gre" ]; then
51 | python src/evaluation_spider_post.py \
52 | --pred $PRED_SQL \
53 | --gold $GOLD_SQL \
54 | --db_path $DB/ \
55 | --table $TABLE \
56 | --mode greedy_search \
57 | --save_pred_sqls False \
58 | --save_dir $SAVE_DIR
59 |
60 | PRED_SQL=${PRED_SQL%.*}_pred_greedy_search_sqls.txt
61 | python src/evaluation_spider.py \
62 | --gold_sql $GOLD_SQL \
63 | --pred_sql $PRED_SQL \
64 | --db $DB \
65 | --table $TABLE \
66 |
67 | else
68 | echo 'Please set the post-processing mode'
69 | fi
--------------------------------------------------------------------------------
/sh/inference.sh:
--------------------------------------------------------------------------------
1 | export CUDA_VISIBLE_DEVICES=0,1,2,3
2 |
3 | OUTPUT_FORMAT=json
4 |
5 | MODEL_ENV= # TODO: add model path
6 | OUTPUT_FILE_NAME=generated_sql.$OUTPUT_FORMAT
7 | DATASET=bird # [bird, spider, spider-dk, spider-syn, spider-realistic, spider2-lite]
8 | MODE=dev # [dev, test], only spider has test mode
9 | NUM_GPUS=4
10 |
11 | TEMPERATURE=0.8
12 |
13 | N=8
14 |
15 | if [ "$DATASET" = "spider" ]; then
16 | if [ "$MODE" = "test" ]; then
17 | INPUT_FILE=data/NL2SQL/Spider/test.json
18 | DATABASE_PATH=data/NL2SQL/Spider/test_database
19 | OUTPUT_FILE=results/spidertest-$OUTPUT_FILE_NAME
20 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/Spider/spidertest_db_id2sampled_db_values.json
21 | TABLE_INFO_CACHE_PATH=data/NL2SQL/Spider/spidertest_db_id2db_info.json
22 | elif [ "$MODE" = "dev" ]; then
23 | INPUT_FILE=data/NL2SQL/Spider/dev.json
24 | DATABASE_PATH=data/NL2SQL/Spider/database
25 | OUTPUT_FILE=results/spiderdev-$OUTPUT_FILE_NAME
26 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2sampled_db_values.json
27 | TABLE_INFO_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2db_info.json
28 | fi
29 | elif [ "$DATASET" = "bird" ]; then
30 | if [ "$MODE" = "dev" ]; then
31 | INPUT_FILE=data/NL2SQL/BIRD/dev/dev.json
32 | DATABASE_PATH=data/NL2SQL/BIRD/dev/dev_databases
33 | OUTPUT_FILE=results/birddev-$OUTPUT_FILE_NAME
34 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/BIRD/dev/bird_db_id2sampled_db_values.json
35 | TABLE_INFO_CACHE_PATH=data/NL2SQL/BIRD/dev/bird_db_id2db_info.json
36 | else
37 | exit 1
38 | fi
39 | elif [ "$DATASET" = "spider-dk" ]; then
40 | if [ "$MODE" = "dev" ]; then
41 | INPUT_FILE=data/NL2SQL/Spider-DK/spiderdk_dev.json
42 | DATABASE_PATH=data/NL2SQL/Spider-DK/database
43 | OUTPUT_FILE=results/spiderdkdev-$OUTPUT_FILE_NAME
44 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/Spider-DK/spiderdkdev_db_id2sampled_db_values.json
45 | TABLE_INFO_CACHE_PATH=data/NL2SQL/Spider-DK/spiderdkdev_db_id2db_info.json
46 | else
47 | exit 1
48 | fi
49 | elif [ "$DATASET" = "spider-syn" ]; then
50 | if [ "$MODE" = "dev" ]; then
51 | INPUT_FILE=data/NL2SQL/Spider-Syn/spider_syn.json
52 | DATABASE_PATH=data/NL2SQL/Spider/database
53 | OUTPUT_FILE=results/spidersyn-$OUTPUT_FILE_NAME
54 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2sampled_db_values.json
55 | TABLE_INFO_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2db_info.json
56 | else
57 | exit 1
58 | fi
59 | elif [ "$DATASET" = "spider-realistic" ]; then
60 | if [ "$MODE" = "dev" ]; then
61 | INPUT_FILE=data/NL2SQL/Spider-Realistic/spider-realistic.json
62 | DATABASE_PATH=data/NL2SQL/Spider/database
63 | OUTPUT_FILE=results/spiderrealdev-$OUTPUT_FILE_NAME
64 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2sampled_db_values.json
65 | TABLE_INFO_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2db_info.json
66 | else
67 | exit 1
68 | fi
69 | elif [ "$DATASET" = "spider2-lite" ]; then
70 | if [ "$MODE" = "dev" ]; then
71 | INPUT_FILE=data/NL2SQL/Spider-Realistic/spider-realistic.json
72 | DATABASE_PATH=data/NL2SQL/Spider/database
73 | OUTPUT_FILE=results/spiderrealdev-$OUTPUT_FILE_NAME
74 | TABLE_VALUE_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2sampled_db_values.json
75 | TABLE_INFO_CACHE_PATH=data/NL2SQL/Spider/spiderdev_db_id2db_info.json
76 | else
77 | exit 1
78 | fi
79 | else
80 | echo "Only support spider, bird, spdier-dk"
81 | exit 1
82 | fi
83 |
84 |
85 | python src/inference.py \
86 | --nl2sql_ckpt_path $MODEL_ENV \
87 | --dataset_name $DATASET \
88 | --input_file $INPUT_FILE \
89 | --output_file $OUTPUT_FILE \
90 | --database_path $DATABASE_PATH \
91 | --tensor_parallel_size $NUM_GPUS \
92 | --n $N \
93 | --temperature $TEMPERATURE \
94 | --output_format $OUTPUT_FORMAT \
95 | --table_value_cache_path $TABLE_VALUE_CACHE_PATH \
96 | --table_info_cache_path $TABLE_INFO_CACHE_PATH
97 |
--------------------------------------------------------------------------------
/sh/train.sh:
--------------------------------------------------------------------------------
1 | export WANDB_API_KEY=your_wandb_api_key
2 | export VLLM_ATTENTION_BACKEND=XFORMERS
3 |
4 | DATA_DIR_PATH=data
5 |
6 | RUN_ID=7B
7 | GPU_ENV=8GPU
8 | MODEL_ENV=Qwen2.5-Coder-7B-Instruct
9 | PROJECT_NAME=SQL-R1
10 |
11 | LOG_PATH=logs/$PROJECT_NAME
12 | MODEL_PATH=models/$MODEL_ENV
13 | EXPERIMENT_NAME=$GPU_ENV-$MODEL_ENV-$RUN_ID
14 |
15 | mkdir -p $LOG_PATH
16 |
17 | set -x
18 |
19 | nvidia-smi
20 |
21 | python -m verl.trainer.main_ppo \
22 | algorithm.adv_estimator=grpo \
23 | data.train_files=$DATA_DIR_PATH/train.parquet \
24 | data.val_files=$DATA_DIR_PATH/test.parquet \
25 | data.train_batch_size=8 \
26 | data.val_batch_size=8 \
27 | data.max_prompt_length=4096 \
28 | data.max_response_length=2048 \
29 | actor_rollout_ref.model.path=$MODEL_PATH \
30 | actor_rollout_ref.actor.optim.lr=3e-7 \
31 | actor_rollout_ref.model.use_remove_padding=True \
32 | actor_rollout_ref.actor.ppo_mini_batch_size=8 \
33 | actor_rollout_ref.actor.ppo_micro_batch_size=8 \
34 | actor_rollout_ref.actor.use_kl_loss=True \
35 | actor_rollout_ref.actor.kl_loss_coef=0.001 \
36 | actor_rollout_ref.actor.kl_loss_type=low_var_kl \
37 | actor_rollout_ref.model.enable_gradient_checkpointing=True \
38 | actor_rollout_ref.actor.fsdp_config.param_offload=True \
39 | actor_rollout_ref.actor.fsdp_config.grad_offload=True \
40 | actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
41 | actor_rollout_ref.rollout.log_prob_micro_batch_size=80 \
42 | actor_rollout_ref.rollout.tensor_model_parallel_size=4 \
43 | actor_rollout_ref.rollout.name=vllm \
44 | actor_rollout_ref.rollout.gpu_memory_utilization=0.2 \
45 | actor_rollout_ref.rollout.n=8 \
46 | actor_rollout_ref.rollout.temperature=1.1 \
47 | actor_rollout_ref.ref.log_prob_micro_batch_size=80 \
48 | actor_rollout_ref.ref.fsdp_config.param_offload=True \
49 | algorithm.kl_ctrl.kl_coef=0.001 \
50 | trainer.critic_warmup=0 \
51 | trainer.logger=['wandb'] \
52 | trainer.project_name=$PROJECT_NAME \
53 | trainer.experiment_name=$EXPERIMENT_NAME \
54 | trainer.n_gpus_per_node=8 \
55 | trainer.nnodes=1 \
56 | trainer.default_local_dir=$LOG_PATH/$EXPERIMENT_NAME \
57 | trainer.default_hdfs_dir=null \
58 | trainer.save_freq=100 \
59 | trainer.test_freq=100 \
60 | trainer.total_epochs=10 $@ 2>&1 | tee $LOG_PATH/$MODEL_ENV/grpo.log
61 |
--------------------------------------------------------------------------------
/src/evaluation_spider_post.py:
--------------------------------------------------------------------------------
1 | import json
2 | import argparse
3 | import os
4 | import random
5 | import re
6 |
7 | from evaluation_bird_post import major_voting, mark_invalid_sqls
8 |
9 | random.seed(42)
10 |
11 | def format_sql(sql):
12 | sql = sql.strip()
13 | # remove multi-line comments /* ... */
14 | sql = re.sub(r'/\*.*?\*/', '', sql, flags=re.DOTALL)
15 |
16 | # remove single-line comments --
17 | sql = re.sub(r'--.*$', '', sql, flags=re.MULTILINE)
18 |
19 | sql = sql.replace("\n", " ").replace("\t", " ")
20 | sql = sql.strip()
21 |
22 | if sql == "":
23 | sql = "Error SQL"
24 |
25 | return sql
26 |
27 | def run_spider_eval(gold_file, pred_file, db_path, table, mode, save_pred_sqls, save_dir):
28 | # assert mode in ["greedy_search", "major_voting"]
29 | gold_sqls = [line.split("\t")[0].strip() for line in open(gold_file).readlines()]
30 | db_ids = [line.split("\t")[1].strip() for line in open(gold_file).readlines()]
31 | pred = json.load(open(pred_file))
32 | pred_sql_key = "pred_sqls"
33 | # pred_sql_key = "responses"
34 |
35 | pred_sqls = []
36 | if mode == "greedy_search":
37 | pred_sqls = [pred_data[pred_sql_key][0] for pred_data in pred]
38 | assert len(pred_sqls) == len(db_ids)
39 | db_files = [os.path.join(db_path, db_id, db_id + ".sqlite") for db_id in db_ids]
40 | pred_sqls = mark_invalid_sqls(db_files, pred_sqls)
41 | elif mode == "major_voting":
42 | # perform major voting using the BIRD's evaluation script
43 | sampling_num = len(pred[0][pred_sql_key])
44 | print("sampling_num:", sampling_num)
45 |
46 | all_db_files = []
47 | for db_id in db_ids:
48 | all_db_files.extend([os.path.join(db_path, db_id, db_id + ".sqlite")] * sampling_num)
49 |
50 | all_pred_sqls = []
51 | for pred_data in pred:
52 | all_pred_sqls.extend(pred_data[pred_sql_key])
53 | assert len(all_db_files) == len(all_pred_sqls)
54 |
55 | pred_sqls = major_voting(all_db_files, all_pred_sqls, sampling_num, False)
56 |
57 | pred_sqls = [format_sql(pred_sql) for pred_sql in pred_sqls]
58 | assert len(pred_sqls) == len(gold_sqls)
59 |
60 | if save_pred_sqls:
61 | with open(pred_file[:-5] + f"_pred_{mode}_sqls.json", "w", encoding="utf-8") as f:
62 | f.write(json.dumps(pred_sqls, indent=2 ,ensure_ascii=False))
63 |
64 | new_txt_file_name = pred_file.rsplit('.', 1)[0]
65 | with open(new_txt_file_name + f"_pred_{mode}_sqls.txt", 'w') as temp_file:
66 | for pred_sql in pred_sqls:
67 | temp_file.write(pred_sql + "\n")
68 | temp_file_name = temp_file.name
69 | print(temp_file_name)
70 |
71 | if __name__ == "__main__":
72 | parser = argparse.ArgumentParser()
73 | parser.add_argument('--pred', type = str, default = "predict_dev.json")
74 | parser.add_argument('--gold', type = str, default = "./data/spider/dev_gold.sql")
75 | parser.add_argument('--db_path', type = str, default = "./data/spider/database/")
76 | parser.add_argument('--table', type = str, default = "./data/spider/tables.json")
77 | parser.add_argument('--mode', type = str, default = "greedy_search")
78 | parser.add_argument('--save_pred_sqls', type = bool, default = False)
79 | parser.add_argument('--save_dir', type = str, default = "results/eval/spider")
80 | opt = parser.parse_args()
81 |
82 | run_spider_eval(opt.gold, opt.pred, opt.db_path, opt.table, opt.mode, opt.save_pred_sqls, opt.save_dir)
--------------------------------------------------------------------------------
/src/evaluations/preprocess_bird_result.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import argparse
4 | import re
5 |
6 | if __name__ == "__main__":
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--txt_result_path', type=str)
9 | parser.add_argument('--json_result_path', type=str)
10 | parser.add_argument('--json_save_path', type=str)
11 | args = parser.parse_args()
12 |
13 | txt_result_path = args.txt_result_path
14 | json_result_path = args.json_result_path
15 | json_save_path = args.json_save_path
16 |
17 | with open(txt_result_path, 'r') as f:
18 | result_sqls = f.readlines()
19 |
20 | with open(json_result_path, 'r') as f:
21 | json_result = json.load(f)
22 |
23 | final_output_dict = {}
24 |
25 | for sql, json_data in zip(result_sqls, json_result):
26 | sql = sql.split('/*')[0].strip()
27 | final_output_dict[str(json_data['question_id'])] = sql + "\t----- bird -----\t" + json_data['db_id']
28 |
29 | with open(json_save_path, 'w') as f:
30 | json.dump(final_output_dict, f, indent=4)
--------------------------------------------------------------------------------
/src/evaluations/spider1_evaluations/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/src/evaluations/spider1_evaluations/__init__.py
--------------------------------------------------------------------------------
/src/evaluations/spider1_evaluations/src/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/src/evaluations/spider1_evaluations/src/__init__.py
--------------------------------------------------------------------------------
/src/evaluations/spider1_evaluations/src/files_to_convert_natsql2sql/natsql2sql/preprocess/stemmer.py:
--------------------------------------------------------------------------------
1 | import nltk
2 | from .match import ALL_JJS
3 |
4 | DICT = {"weight":"weigh",
5 | "won":"win",
6 | "nation":"country",
7 |
8 | }
9 |
10 | class MyStemmer():
11 | def __init__(self):
12 | self.stemmer = nltk.stem.LancasterStemmer()
13 |
14 | def stem(self,w):
15 | result = w.lower()
16 | if result == "january":
17 | return "jan"
18 | elif result == "february":
19 | result = "feb"
20 | elif result == "march":
21 | return "mar"
22 | elif result == "april":
23 | return "apr"
24 | elif result == "may":
25 | return "may"
26 | elif result == "june":
27 | return "jun"
28 | elif result == "july":
29 | return "jul"
30 | elif result == "august":
31 | return "aug"
32 | elif result == "september":
33 | return "sep"
34 | elif result == "sept":
35 | return "sep"
36 | elif result == "october":
37 | return "oct"
38 | elif result == "november":
39 | return "nov"
40 | elif result == "december":
41 | return "dec"
42 | result = self.stemmer.stem(result)
43 | if result == "weight":
44 | result = "weigh"
45 | if result == "hight":
46 | result = "high"
47 | elif result == "won":
48 | result = "win"
49 | elif result in ALL_JJS:
50 | return ALL_JJS[result]
51 | elif result == "maxim":
52 | result = "max"
53 | elif result == "minim":
54 | result = "min"
55 | return result
--------------------------------------------------------------------------------
/src/evaluations/spider1_evaluations/src/nltk_downloader.py:
--------------------------------------------------------------------------------
1 | import nltk
2 | nltk.download('punkt')
--------------------------------------------------------------------------------
/static/css/bulma-carousel.min.css:
--------------------------------------------------------------------------------
1 | @-webkit-keyframes spinAround{from{-webkit-transform:rotate(0);transform:rotate(0)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes spinAround{from{-webkit-transform:rotate(0);transform:rotate(0)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.slider{position:relative;width:100%}.slider-container{display:flex;flex-wrap:nowrap;flex-direction:row;overflow:hidden;-webkit-transform:translate3d(0,0,0);transform:translate3d(0,0,0);min-height:100%}.slider-container.is-vertical{flex-direction:column}.slider-container .slider-item{flex:none}.slider-container .slider-item .image.is-covered img{-o-object-fit:cover;object-fit:cover;-o-object-position:center center;object-position:center center;height:100%;width:100%}.slider-container .slider-item .video-container{height:0;padding-bottom:0;padding-top:56.25%;margin:0;position:relative}.slider-container .slider-item .video-container.is-1by1,.slider-container .slider-item .video-container.is-square{padding-top:100%}.slider-container .slider-item .video-container.is-4by3{padding-top:75%}.slider-container .slider-item .video-container.is-21by9{padding-top:42.857143%}.slider-container .slider-item .video-container embed,.slider-container .slider-item .video-container iframe,.slider-container .slider-item .video-container object{position:absolute;top:0;left:0;width:100%!important;height:100%!important}.slider-navigation-next,.slider-navigation-previous{display:flex;justify-content:center;align-items:center;position:absolute;width:42px;height:42px;background:#fff center center no-repeat;background-size:20px 20px;border:1px solid #fff;border-radius:25091983px;box-shadow:0 2px 5px #3232321a;top:50%;margin-top:-20px;left:0;cursor:pointer;transition:opacity .3s,-webkit-transform .3s;transition:transform .3s,opacity .3s;transition:transform .3s,opacity .3s,-webkit-transform .3s}.slider-navigation-next:hover,.slider-navigation-previous:hover{-webkit-transform:scale(1.2);transform:scale(1.2)}.slider-navigation-next.is-hidden,.slider-navigation-previous.is-hidden{display:none;opacity:0}.slider-navigation-next svg,.slider-navigation-previous svg{width:25%}.slider-navigation-next{left:auto;right:0;background:#fff center center no-repeat;background-size:20px 20px}.slider-pagination{display:none;justify-content:center;align-items:center;position:absolute;bottom:0;left:0;right:0;padding:.5rem 1rem;text-align:center}.slider-pagination .slider-page{background:#fff;width:10px;height:10px;border-radius:25091983px;display:inline-block;margin:0 3px;box-shadow:0 2px 5px #3232321a;transition:-webkit-transform .3s;transition:transform .3s;transition:transform .3s,-webkit-transform .3s;cursor:pointer}.slider-pagination .slider-page.is-active,.slider-pagination .slider-page:hover{-webkit-transform:scale(1.4);transform:scale(1.4)}@media screen and (min-width:800px){.slider-pagination{display:flex}}.hero.has-carousel{position:relative}.hero.has-carousel+.hero-body,.hero.has-carousel+.hero-footer,.hero.has-carousel+.hero-head{z-index:10;overflow:hidden}.hero.has-carousel .hero-carousel{position:absolute;top:0;left:0;bottom:0;right:0;height:auto;border:none;margin:auto;padding:0;z-index:0}.hero.has-carousel .hero-carousel .slider{width:100%;max-width:100%;overflow:hidden;height:100%!important;max-height:100%;z-index:0}.hero.has-carousel .hero-carousel .slider .has-background{max-height:100%}.hero.has-carousel .hero-carousel .slider .has-background .is-background{-o-object-fit:cover;object-fit:cover;-o-object-position:center center;object-position:center center;height:100%;width:100%}.hero.has-carousel .hero-body{margin:0 3rem;z-index:10}
--------------------------------------------------------------------------------
/static/css/index.css:
--------------------------------------------------------------------------------
1 | body {
2 | font-family: 'Noto Sans', sans-serif;
3 | }
4 |
5 |
6 | .footer .icon-link {
7 | font-size: 25px;
8 | color: #000;
9 | }
10 |
11 | .link-block a {
12 | margin-top: 5px;
13 | margin-bottom: 5px;
14 | }
15 |
16 | .dnerf {
17 | font-variant: small-caps;
18 | }
19 |
20 |
21 | .teaser .hero-body {
22 | padding-top: 0;
23 | padding-bottom: 3rem;
24 | }
25 |
26 | .teaser {
27 | font-family: 'Google Sans', sans-serif;
28 | }
29 |
30 |
31 | .publication-title {
32 | }
33 |
34 | .publication-banner {
35 | max-height: parent;
36 |
37 | }
38 |
39 | .publication-banner video {
40 | position: relative;
41 | left: auto;
42 | top: auto;
43 | transform: none;
44 | object-fit: fit;
45 | }
46 |
47 | .publication-header .hero-body {
48 | }
49 |
50 | .publication-title {
51 | font-family: 'Google Sans', sans-serif;
52 | }
53 |
54 | .publication-authors {
55 | font-family: 'Google Sans', sans-serif;
56 | }
57 |
58 | .publication-venue {
59 | color: #555;
60 | width: fit-content;
61 | font-weight: bold;
62 | }
63 |
64 | .publication-awards {
65 | color: #ff3860;
66 | width: fit-content;
67 | font-weight: bolder;
68 | }
69 |
70 | .publication-authors {
71 | }
72 |
73 | .publication-authors a {
74 | color: hsl(204, 86%, 53%) !important;
75 | }
76 |
77 | .publication-authors a:hover {
78 | text-decoration: underline;
79 | }
80 |
81 | .author-block {
82 | display: inline-block;
83 | }
84 |
85 | .publication-banner img {
86 | }
87 |
88 | .publication-authors {
89 | /*color: #4286f4;*/
90 | }
91 |
92 | .publication-video {
93 | position: relative;
94 | width: 100%;
95 | height: 0;
96 | padding-bottom: 56.25%;
97 |
98 | overflow: hidden;
99 | border-radius: 10px !important;
100 | }
101 |
102 | .publication-video iframe {
103 | position: absolute;
104 | top: 0;
105 | left: 0;
106 | width: 100%;
107 | height: 100%;
108 | }
109 |
110 | .publication-body img {
111 | }
112 |
113 | .results-carousel {
114 | overflow: hidden;
115 | }
116 |
117 | .results-carousel .item {
118 | margin: 5px;
119 | overflow: hidden;
120 | padding: 20px;
121 | font-size: 0;
122 | }
123 |
124 | .results-carousel video {
125 | margin: 0;
126 | }
127 |
128 | .slider-pagination .slider-page {
129 | background: #000000;
130 | }
131 |
132 | .eql-cntrb {
133 | font-size: smaller;
134 | }
135 |
136 |
137 |
138 |
--------------------------------------------------------------------------------
/static/images/carousel1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/images/carousel1.jpg
--------------------------------------------------------------------------------
/static/images/carousel2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/images/carousel2.jpg
--------------------------------------------------------------------------------
/static/images/carousel3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/images/carousel3.jpg
--------------------------------------------------------------------------------
/static/images/carousel4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/images/carousel4.jpg
--------------------------------------------------------------------------------
/static/images/favicon.ico:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/images/favicon.ico
--------------------------------------------------------------------------------
/static/js/index.js:
--------------------------------------------------------------------------------
1 | window.HELP_IMPROVE_VIDEOJS = false;
2 |
3 |
4 | $(document).ready(function() {
5 | // Check for click events on the navbar burger icon
6 |
7 | var options = {
8 | slidesToScroll: 1,
9 | slidesToShow: 1,
10 | loop: true,
11 | infinite: true,
12 | autoplay: true,
13 | autoplaySpeed: 5000,
14 | }
15 |
16 | // Initialize all div with carousel class
17 | var carousels = bulmaCarousel.attach('.carousel', options);
18 |
19 | bulmaSlider.attach();
20 |
21 | })
22 |
--------------------------------------------------------------------------------
/static/pdfs/sample.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/pdfs/sample.pdf
--------------------------------------------------------------------------------
/static/videos/banner_video.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/videos/banner_video.mp4
--------------------------------------------------------------------------------
/static/videos/carousel1.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/videos/carousel1.mp4
--------------------------------------------------------------------------------
/static/videos/carousel2.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/videos/carousel2.mp4
--------------------------------------------------------------------------------
/static/videos/carousel3.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/static/videos/carousel3.mp4
--------------------------------------------------------------------------------
/verl/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import os
16 |
17 | version_folder = os.path.dirname(os.path.join(os.path.abspath(__file__)))
18 |
19 | with open(os.path.join(version_folder, 'version/version')) as f:
20 | __version__ = f.read().strip()
21 |
22 | from .protocol import DataProto
23 |
24 | from .utils.logging_utils import set_basic_config
25 | import logging
26 |
27 | set_basic_config(level=logging.WARNING)
28 |
--------------------------------------------------------------------------------
/verl/models/README.md:
--------------------------------------------------------------------------------
1 | # Models
2 | Common modelzoo such as huggingface/transformers stuggles when using Pytorch native model parallelism. Following the design principle of vLLM, we keep a simple, parallelizable, highly-optimized with packed inputs in verl.
3 | ## Adding a New Huggingface Model
4 | ### Step 1: Copy the model file from HF to verl
5 | - Add a new file under verl/models/hf
6 | - Copy ONLY the model file from huggingface/transformers/models to verl/models/hf
7 |
8 | ### Step 2: Modify the model file to use packed inputs
9 | - Remove all the code related to inference (kv cache)
10 | - Modify the inputs to include only
11 | - input_ids (total_nnz,)
12 | - cu_seqlens (total_nnz + 1,)
13 | - max_seqlen_in_batch: int
14 | - Note that this requires using flash attention with causal mask.
15 |
16 | ### Step 2.5: Add tests
17 | - Add a test to compare this version and the huggingface version
18 | - Following the infrastructure and add tests to tests/models/hf
19 |
20 | ### Step 3: Add a function to apply tensor parallelism
21 | - Please follow
22 | - https://pytorch.org/docs/stable/distributed.tensor.parallel.html
23 | - https://pytorch.org/tutorials/intermediate/TP_tutorial.html
24 | - General comments
25 | - Tensor Parallelism in native Pytorch is NOT auto-parallelism. The way it works is to specify how model parameters and input/output reshards using configs. These configs are then registered as hooks to perform input/output resharding before/after model forward.
26 |
27 | ### Step 4: Add a function to apply data parallelism
28 | - Please use FSDP2 APIs
29 | - See demo here https://github.com/pytorch/torchtitan/blob/main/torchtitan/parallelisms/parallelize_llama.py#L413
30 |
31 | ### Step 5: Add a function to apply pipeline parallelism
32 | - Comes in Pytorch 2.4
33 | - Currently only in alpha in nightly version
34 | - Check torchtitan for more details
35 |
36 |
--------------------------------------------------------------------------------
/verl/models/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/models/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/verl/models/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/verl/models/__pycache__/registry.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IDEA-FinAI/SQL-R1/9d7f923fcd1c2ac41e9f8cc594d435824b0753f5/verl/models/__pycache__/registry.cpython-39.pyc
--------------------------------------------------------------------------------
/verl/models/llama/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/models/llama/megatron/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .modeling_llama_megatron import (
16 | # original model with megatron
17 | ParallelLlamaModel,
18 | ParallelLlamaForCausalLM,
19 | # rmpad with megatron
20 | ParallelLlamaForCausalLMRmPad,
21 | ParallelLlamaForValueRmPad,
22 | # rmpad with megatron and pipeline parallelism
23 | ParallelLlamaForCausalLMRmPadPP,
24 | ParallelLlamaForValueRmPadPP)
25 |
--------------------------------------------------------------------------------
/verl/models/llama/megatron/checkpoint_utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/models/llama/megatron/layers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .parallel_attention import ParallelLlamaAttention
16 | from .parallel_decoder import ParallelLlamaDecoderLayer, ParallelLlamaDecoderLayerRmPad
17 | from .parallel_mlp import ParallelLlamaMLP
18 | from .parallel_rmsnorm import ParallelLlamaRMSNorm
19 |
--------------------------------------------------------------------------------
/verl/models/llama/megatron/layers/parallel_linear.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/linear.py
15 |
16 | from typing import Optional, Tuple
17 |
18 | from megatron.core import tensor_parallel
19 |
20 |
21 | class QKVParallelLinear(tensor_parallel.ColumnParallelLinear):
22 |
23 | def __init__(self,
24 | input_size,
25 | num_heads,
26 | num_key_value_heads,
27 | head_dim,
28 | *,
29 | bias=True,
30 | gather_output=True,
31 | skip_bias_add=False,
32 | **kwargs):
33 | # Keep input parameters, and already restrict the head numbers
34 | self.input_size = input_size
35 | self.q_output_size = num_heads * head_dim
36 | self.kv_output_size = num_key_value_heads * head_dim
37 | self.head_dim = head_dim
38 | self.gather_output = gather_output
39 | self.skip_bias_add = skip_bias_add
40 |
41 | input_size = self.input_size
42 | output_size = (num_heads + 2 * num_key_value_heads) * self.head_dim
43 |
44 | super().__init__(input_size=input_size,
45 | output_size=output_size,
46 | bias=bias,
47 | gather_output=gather_output,
48 | skip_bias_add=skip_bias_add,
49 | **kwargs)
50 |
51 |
52 | class MergedColumnParallelLinear(tensor_parallel.ColumnParallelLinear):
53 |
54 | def __init__(self,
55 | input_size,
56 | gate_ouput_size,
57 | up_output_size,
58 | *,
59 | bias=True,
60 | gather_output=True,
61 | skip_bias_add=False,
62 | **kwargs):
63 | # Keep input parameters, and already restrict the head numbers
64 | self.input_size = input_size
65 | self.output_size = gate_ouput_size + up_output_size
66 | self.gather_output = gather_output
67 | self.skip_bias_add = skip_bias_add
68 |
69 | super().__init__(input_size=self.input_size,
70 | output_size=self.output_size,
71 | bias=bias,
72 | gather_output=gather_output,
73 | skip_bias_add=skip_bias_add,
74 | **kwargs)
75 |
--------------------------------------------------------------------------------
/verl/models/llama/megatron/layers/parallel_mlp.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3 | #
4 | # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5 | # and OPT implementations in this library. It has been modified from its
6 | # original forms to accommodate minor architectural differences compared
7 | # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8 | #
9 | # Licensed under the Apache License, Version 2.0 (the "License");
10 | # you may not use this file except in compliance with the License.
11 | # You may obtain a copy of the License at
12 | #
13 | # http://www.apache.org/licenses/LICENSE-2.0
14 | #
15 | # Unless required by applicable law or agreed to in writing, software
16 | # distributed under the License is distributed on an "AS IS" BASIS,
17 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 | # See the License for the specific language governing permissions and
19 | # limitations under the License.
20 |
21 | from megatron.core import parallel_state as mpu
22 | from megatron.core import tensor_parallel
23 | from megatron.core import ModelParallelConfig
24 | from torch import nn
25 | from transformers.activations import ACT2FN
26 | from verl.models.llama.megatron.layers.parallel_linear import MergedColumnParallelLinear
27 |
28 | from verl.utils.megatron import tensor_parallel as tp_utils
29 |
30 |
31 | class ParallelLlamaMLP(nn.Module):
32 |
33 | def __init__(self, config, megatron_config: ModelParallelConfig = None) -> None:
34 | super().__init__()
35 | self.config = config
36 | self.hidden_size = config.hidden_size
37 | self.intermediate_size = config.intermediate_size
38 | # The weight is only [hidden_size, intermediate_size // model_parallel_world_size]
39 |
40 | column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
41 | row_kwargs = tp_utils.get_default_kwargs_for_row_parallel_linear()
42 |
43 | if megatron_config is not None:
44 | assert column_kwargs.get('config', False), 'must have ModelParallelConfig'
45 | assert row_kwargs.get('config', False), 'must have ModelParallelConfig'
46 | tp_utils.update_kwargs_with_config(row_kwargs, megatron_config)
47 | tp_utils.update_kwargs_with_config(column_kwargs, megatron_config)
48 |
49 | tp_size = mpu.get_tensor_model_parallel_world_size()
50 |
51 | self.gate_up_proj = MergedColumnParallelLinear(
52 | input_size=self.hidden_size,
53 | gate_ouput_size=self.intermediate_size,
54 | up_output_size=self.intermediate_size,
55 | bias=False,
56 | gather_output=False,
57 | skip_bias_add=False,
58 | **column_kwargs,
59 | )
60 | self.gate_size = self.intermediate_size // tp_size
61 |
62 | self.down_proj = tensor_parallel.RowParallelLinear(input_size=self.intermediate_size,
63 | output_size=self.hidden_size,
64 | bias=False,
65 | input_is_parallel=True,
66 | skip_bias_add=False,
67 | **row_kwargs)
68 |
69 | self.act_fn = ACT2FN[config.hidden_act]
70 |
71 | def forward(self, x):
72 | gate_up = self.gate_up_proj(x)[0]
73 | gate, up = gate_up.split(self.gate_size, dim=-1)
74 | return self.down_proj(self.act_fn(gate) * up)[0]
75 |
--------------------------------------------------------------------------------
/verl/models/llama/megatron/layers/parallel_rmsnorm.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import numbers
16 | import torch
17 | from megatron.core import ModelParallelConfig
18 | from torch import nn
19 | from transformers import LlamaConfig
20 |
21 | from apex.normalization.fused_layer_norm import fused_rms_norm_affine
22 | from verl.utils.megatron import sequence_parallel as sp_utils
23 |
24 |
25 | class ParallelLlamaRMSNorm(nn.Module):
26 |
27 | def __init__(self, config: LlamaConfig, megatron_config: ModelParallelConfig):
28 | """
29 | LlamaRMSNorm is equivalent to T5LayerNorm
30 | """
31 | super().__init__()
32 | if isinstance(config.hidden_size, numbers.Integral):
33 | normalized_shape = (config.hidden_size,)
34 | self.normalized_shape = torch.Size(normalized_shape)
35 | self.weight = nn.Parameter(torch.ones(self.normalized_shape))
36 | self.variance_epsilon = config.rms_norm_eps
37 |
38 | if megatron_config.sequence_parallel:
39 | sp_utils.mark_parameter_as_sequence_parallel(self.weight)
40 |
41 | def forward(self, hidden_states):
42 | return fused_rms_norm_affine(input=hidden_states,
43 | weight=self.weight,
44 | normalized_shape=self.normalized_shape,
45 | eps=self.variance_epsilon,
46 | memory_efficient=True)
--------------------------------------------------------------------------------
/verl/models/registry.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import importlib
16 | from typing import List, Optional, Type
17 |
18 | import torch.nn as nn
19 |
20 | # Supported models using HF Rmpad
21 | # TODO(sgm): HF may supported more than listed here, we should add more after testing
22 | from transformers import LlamaConfig, MistralConfig, GemmaConfig, Qwen2Config
23 |
24 | _REOVEPAD_MODELS = {'llama': LlamaConfig, 'mistral': MistralConfig, 'gemma': GemmaConfig, 'qwen2': Qwen2Config}
25 |
26 |
27 | def check_model_support_rmpad(model_type: str):
28 | assert isinstance(model_type, str)
29 | if not model_type in _REOVEPAD_MODELS.keys():
30 | raise ValueError(f"Model architecture {model_type} is not supported for now. "
31 | f"RMPad supported architectures: {_REOVEPAD_MODELS.keys()}."
32 | f"Please set `use_remove_padding=False` in the model config.")
33 |
34 |
35 | # Supported models in Megatron-LM
36 | # Architecture -> (module, class).
37 | _MODELS = {
38 | "LlamaForCausalLM":
39 | ("llama", ("ParallelLlamaForCausalLMRmPadPP", "ParallelLlamaForValueRmPadPP", "ParallelLlamaForCausalLMRmPad")),
40 | "MistralForCausalLM": ("mistral", ("ParallelMistralForCausalLMRmPadPP", "ParallelMistralForValueRmPadPP",
41 | "ParallelMistralForCausalLMRmPad"))
42 | }
43 |
44 |
45 | # return model class
46 | class ModelRegistry:
47 |
48 | @staticmethod
49 | def load_model_cls(model_arch: str, value=False) -> Optional[Type[nn.Module]]:
50 | if model_arch not in _MODELS:
51 | return None
52 |
53 | megatron = "megatron"
54 |
55 | module_name, model_cls_name = _MODELS[model_arch]
56 | if not value: # actor/ref
57 | model_cls_name = model_cls_name[0]
58 | elif value: # critic/rm
59 | model_cls_name = model_cls_name[1]
60 |
61 | module = importlib.import_module(f"verl.models.{module_name}.{megatron}.modeling_{module_name}_megatron")
62 | return getattr(module, model_cls_name, None)
63 |
64 | @staticmethod
65 | def get_supported_archs() -> List[str]:
66 | return list(_MODELS.keys())
67 |
--------------------------------------------------------------------------------
/verl/models/transformers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/models/transformers/monkey_patch.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Apply monkey-patch function to models
16 | """
17 |
18 | #### Open Source Models
19 | #### transformers version < 4.48
20 |
21 |
22 | def apply_monkey_patch_to_llama():
23 | from transformers.models.llama.modeling_llama import LlamaFlashAttention2
24 | from verl.models.transformers.llama import llama_flash_attn_forward
25 | LlamaFlashAttention2.forward = llama_flash_attn_forward
26 |
27 |
28 | def apply_monkey_patch_to_qwen2():
29 | from transformers.models.qwen2.modeling_qwen2 import Qwen2FlashAttention2
30 | from verl.models.transformers.qwen2 import qwen2_flash_attn_forward
31 | Qwen2FlashAttention2.forward = qwen2_flash_attn_forward
32 |
33 |
34 | _PATCH_NAME_TO_FUNC = {
35 | 'llama': apply_monkey_patch_to_llama,
36 | 'qwen2': apply_monkey_patch_to_qwen2,
37 | }
38 |
39 | from transformers import PretrainedConfig
40 |
41 |
42 | def apply_monkey_patch(config: PretrainedConfig, verbose=True):
43 | if not is_transformers_version_in_range("4.45.0", "4.47.1"):
44 | raise AssertionError("The installed `transformers` version doesn't support ulysses patch. "
45 | "Please install a version between 4.45.0 and 4.47.1 to use this ulysses feature.")
46 | success_apply_monkey_patch = False
47 | if config.model_type in _PATCH_NAME_TO_FUNC:
48 | _PATCH_NAME_TO_FUNC[config.model_type]()
49 | success_apply_monkey_patch = True
50 |
51 | if success_apply_monkey_patch and verbose:
52 | print(f'Applying monkey patch to model {config.model_type}')
53 | elif not success_apply_monkey_patch:
54 | raise NotImplementedError(f'Ulysses for model {config.model_type} is not implemented, \
55 | please set `ulysses_sequence_parallel_size=1`')
56 |
57 | return success_apply_monkey_patch
58 |
59 |
60 | from functools import lru_cache
61 | from packaging import version
62 | import importlib.metadata
63 |
64 |
65 | @lru_cache()
66 | def is_transformers_version_in_range(min_version: str, max_version: str) -> bool:
67 | try:
68 | # Get the installed version of the transformers library
69 | transformers_version = importlib.metadata.version("transformers")
70 | except importlib.metadata.PackageNotFoundError:
71 | raise ModuleNotFoundError("The `transformers` package is not installed.")
72 |
73 | # Check if the version is within the specified range
74 | return version.parse(min_version) <= version.parse(transformers_version) <= version.parse(max_version)
75 |
--------------------------------------------------------------------------------
/verl/models/weight_loader_registry.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 |
16 | def get_weight_loader(arch: str):
17 | from verl.models.llama.megatron.checkpoint_utils.llama_loader import load_state_dict_to_megatron_llama
18 | _MODEL_WEIGHT_MEGATRON_LOADER_REGISTRY = {'LlamaForCausalLM': load_state_dict_to_megatron_llama}
19 |
20 | if arch in _MODEL_WEIGHT_MEGATRON_LOADER_REGISTRY:
21 | return _MODEL_WEIGHT_MEGATRON_LOADER_REGISTRY[arch]
22 | raise ValueError(f"Model architectures {arch} are not supported for now. "
23 | f"Supported architectures: {_MODEL_WEIGHT_MEGATRON_LOADER_REGISTRY.keys()}")
24 |
--------------------------------------------------------------------------------
/verl/single_controller/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import os
16 |
17 | version_folder = os.path.dirname(os.path.join(os.path.abspath(__file__)))
18 |
19 | with open(os.path.join(version_folder, 'version/version')) as f:
20 | __version__ = f.read().strip()
21 |
--------------------------------------------------------------------------------
/verl/single_controller/base/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .worker import Worker
16 | from .worker_group import WorkerGroup, ClassWithInitArgs, ResourcePool
17 |
--------------------------------------------------------------------------------
/verl/single_controller/base/megatron/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/single_controller/base/megatron/worker.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import os
16 | from dataclasses import dataclass
17 | from verl.single_controller.base.worker import Worker, DistRankInfo, DistGlobalInfo
18 |
19 |
20 | class MegatronWorker(Worker):
21 |
22 | def __init__(self, cuda_visible_devices=None) -> None:
23 | super().__init__(cuda_visible_devices)
24 |
25 | def get_megatron_global_info(self):
26 | from megatron.core import parallel_state as mpu
27 | tp_size = mpu.get_tensor_model_parallel_world_size()
28 | dp_size = mpu.get_data_parallel_world_size()
29 | pp_size = mpu.get_pipeline_model_parallel_world_size()
30 | info = DistGlobalInfo(tp_size=tp_size, dp_size=dp_size, pp_size=pp_size)
31 | return info
32 |
33 | def get_megatron_rank_info(self):
34 | from megatron.core import parallel_state as mpu
35 | tp_rank = mpu.get_tensor_model_parallel_rank()
36 | dp_rank = mpu.get_data_parallel_rank()
37 | pp_rank = mpu.get_pipeline_model_parallel_rank()
38 | info = DistRankInfo(tp_rank=tp_rank, dp_rank=dp_rank, pp_rank=pp_rank)
39 | return info
--------------------------------------------------------------------------------
/verl/single_controller/base/megatron/worker_group.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from typing import Dict
16 |
17 | from .worker import DistRankInfo, DistGlobalInfo
18 | from verl.single_controller.base import ResourcePool, WorkerGroup
19 |
20 |
21 | class MegatronWorkerGroup(WorkerGroup):
22 |
23 | def __init__(self, resource_pool: ResourcePool, **kwargs):
24 | super().__init__(resource_pool=resource_pool, **kwargs)
25 | self._megatron_rank_info = None
26 | self._megatron_global_info: DistGlobalInfo = None
27 |
28 | def init_megatron(self, default_megatron_kwargs: Dict = None):
29 | raise NotImplementedError(f"MegatronWorkerGroup.init_megatron should be overwritten")
30 |
31 | def get_megatron_rank_info(self, rank: int) -> DistRankInfo:
32 | assert 0 <= rank < self.world_size, f'rank must be from [0, world_size), Got {rank}'
33 | return self._megatron_rank_info[rank]
34 |
35 | @property
36 | def tp_size(self):
37 | assert self._megatron_global_info is not None, "MegatronWorkerGroup._megatron_global_info must be initialized"
38 | return self._megatron_global_info.tp_size
39 |
40 | @property
41 | def dp_size(self):
42 | assert self._megatron_global_info is not None, "MegatronWorkerGroup._megatron_global_info must be initialized"
43 | return self._megatron_global_info.dp_size
44 |
45 | @property
46 | def pp_size(self):
47 | assert self._megatron_global_info is not None, "MegatronWorkerGroup._megatron_global_info must be initialized"
48 | return self._megatron_global_info.pp_size
49 |
50 | def get_megatron_global_info(self):
51 | return self._megatron_global_info
52 |
--------------------------------------------------------------------------------
/verl/single_controller/base/register_center/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/single_controller/base/register_center/ray.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import ray
16 |
17 |
18 | @ray.remote
19 | class WorkerGroupRegisterCenter:
20 |
21 | def __init__(self, rank_zero_info):
22 | self.rank_zero_info = rank_zero_info
23 |
24 | def get_rank_zero_info(self):
25 | return self.rank_zero_info
26 |
27 |
28 | def create_worker_group_register_center(name, info):
29 | return WorkerGroupRegisterCenter.options(name=name).remote(info)
30 |
--------------------------------------------------------------------------------
/verl/single_controller/ray/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .base import RayResourcePool, RayClassWithInitArgs, RayWorkerGroup, create_colocated_worker_cls
16 | from .megatron import (MegatronRayWorkerGroup, DistRankInfo, DistGlobalInfo)
--------------------------------------------------------------------------------
/verl/single_controller/ray/megatron.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from typing import Dict, Optional
16 |
17 | import ray
18 |
19 | from .base import RayWorkerGroup, RayResourcePool, RayClassWithInitArgs
20 | from verl.single_controller.base.megatron.worker import DistRankInfo, DistGlobalInfo
21 | from verl.single_controller.base.megatron.worker_group import MegatronWorkerGroup
22 |
23 |
24 | # NOTE(sgm): for opensource megatron-core
25 | class NVMegatronRayWorkerGroup(RayWorkerGroup, MegatronWorkerGroup):
26 | """
27 | MegatronWorkerGroup will query each worker of its megatron rank info and store it inside the WorkerGroup
28 | so that the dispatcher can use it to dispatch data.
29 | """
30 |
31 | def __init__(self, resource_pool: RayResourcePool, ray_cls_with_init: RayClassWithInitArgs, **kwargs):
32 | super().__init__(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init, **kwargs)
33 | self._megatron_rank_info: DistRankInfo = self.execute_all_sync(method_name='get_megatron_rank_info')
34 | self._megatron_global_info: DistGlobalInfo = ray.get(
35 | self.execute_rank_zero_async(method_name='get_megatron_global_info'))
36 |
37 |
38 | class MegatronRayWorkerGroup(RayWorkerGroup, MegatronWorkerGroup):
39 | """
40 | MegatronWorkerGroup will query each worker of its megatron rank info and store it inside the WorkerGroup
41 | so that the dispatcher can use it to dispatch data.
42 | """
43 |
44 | def __init__(self,
45 | resource_pool: RayResourcePool,
46 | ray_cls_with_init: RayClassWithInitArgs,
47 | default_megatron_kwargs: Dict = None,
48 | **kwargs):
49 | super().__init__(resource_pool=resource_pool,
50 | ray_cls_with_init=ray_cls_with_init,
51 | default_megatron_kwargs=default_megatron_kwargs,
52 | **kwargs)
53 | self.init_megatron(default_megatron_kwargs=default_megatron_kwargs)
54 | self._megatron_rank_info: DistRankInfo = self.execute_all_sync(method_name='get_megatron_rank_info')
55 | self._megatron_global_info: DistGlobalInfo = ray.get(
56 | self.execute_rank_zero_async(method_name='get_megatron_global_info'))
57 |
58 | def init_megatron(self, default_megatron_kwargs: Optional[Dict] = None):
59 | # after super, we will call init of each worker
60 | if not self._is_init_with_detached_workers:
61 | # only init_megatron if the WorkerGroup is created from scratch
62 | self.execute_all_sync(method_name='init_megatron', default_megatron_kwargs=default_megatron_kwargs)
63 |
--------------------------------------------------------------------------------
/verl/single_controller/version/version:
--------------------------------------------------------------------------------
1 | 0.0.2
--------------------------------------------------------------------------------
/verl/third_party/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from importlib.metadata import version, PackageNotFoundError
16 |
17 |
18 | def get_version(pkg):
19 | try:
20 | return version(pkg)
21 | except PackageNotFoundError:
22 | return None
23 |
24 |
25 | package_name = 'vllm'
26 | package_version = get_version(package_name)
27 |
28 | if package_version == '0.3.1':
29 | vllm_version = '0.3.1'
30 | from .vllm_v_0_3_1.llm import LLM
31 | from .vllm_v_0_3_1.llm import LLMEngine
32 | from .vllm_v_0_3_1 import parallel_state
33 | elif package_version == '0.4.2':
34 | vllm_version = '0.4.2'
35 | from .vllm_v_0_4_2.llm import LLM
36 | from .vllm_v_0_4_2.llm import LLMEngine
37 | from .vllm_v_0_4_2 import parallel_state
38 | elif package_version == '0.5.4':
39 | vllm_version = '0.5.4'
40 | from .vllm_v_0_5_4.llm import LLM
41 | from .vllm_v_0_5_4.llm import LLMEngine
42 | from .vllm_v_0_5_4 import parallel_state
43 | elif package_version == '0.6.3':
44 | vllm_version = '0.6.3'
45 | from .vllm_v_0_6_3.llm import LLM
46 | from .vllm_v_0_6_3.llm import LLMEngine
47 | from .vllm_v_0_6_3 import parallel_state
48 | else:
49 | raise ValueError(
50 | f'vllm version {package_version} not supported. Currently supported versions are 0.3.1, 0.4.2, 0.5.4 and 0.6.3.'
51 | )
52 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_3_1/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_3_1/tokenizer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/tokenizer_group/tokenizer_group.py
15 |
16 | from typing import List, Optional, Tuple, Union
17 |
18 | from transformers import (AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast)
19 |
20 | from vllm.lora.request import LoRARequest
21 | from vllm.utils import make_async, LRUCache
22 | from vllm.transformers_utils.tokenizers import *
23 |
24 |
25 | class TokenizerGroup:
26 | """A group of tokenizers that can be used for LoRA adapters."""
27 |
28 | def __init__(self, tokenizer: PreTrainedTokenizer, enable_lora: bool, max_num_seqs: int,
29 | max_input_length: Optional[int]):
30 | self.enable_lora = enable_lora
31 | self.max_input_length = max_input_length
32 | self.tokenizer = tokenizer
33 | if enable_lora:
34 | self.lora_tokenizers = LRUCache(capacity=max_num_seqs)
35 | else:
36 | self.lora_tokenizers = None
37 |
38 | def encode(self,
39 | prompt: str,
40 | request_id: Optional[str] = None,
41 | lora_request: Optional[LoRARequest] = None) -> List[int]:
42 | tokenizer = self.get_lora_tokenizer(lora_request)
43 | return tokenizer.encode(prompt)
44 |
45 | async def encode_async(self,
46 | prompt: str,
47 | request_id: Optional[str] = None,
48 | lora_request: Optional[LoRARequest] = None) -> List[int]:
49 | tokenizer = await self.get_lora_tokenizer_async(lora_request)
50 | return tokenizer.encode(prompt)
51 |
52 | def get_lora_tokenizer(self, lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
53 | if not lora_request or not self.enable_lora:
54 | return self.tokenizer
55 | if lora_request.lora_int_id not in self.lora_tokenizers:
56 | # TODO(sgm): the lora tokenizer is also passed, but may be different
57 | tokenizer = self.tokenizer
58 | # tokenizer = (get_lora_tokenizer(
59 | # lora_request, **self.tokenizer_config) or self.tokenizer)
60 | self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
61 | return tokenizer
62 | else:
63 | return self.lora_tokenizers.get(lora_request.lora_int_id)
64 |
65 | # FIXME(sgm): for simplicity, we assign the special token here
66 | @property
67 | def pad_token_id(self):
68 | return self.tokenizer.pad_token_id
69 |
70 | @property
71 | def eos_token_id(self):
72 | return self.tokenizer.eos_token_id
73 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_3_1/weight_loaders.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models
15 |
16 | from typing import Dict
17 | import torch
18 | import torch.nn as nn
19 |
20 |
21 | # NOTE(shengguangming): replace the origin weight loader function in the class
22 | def parallel_weight_loader(self, param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
23 | """Parallel Linear weight loader."""
24 | assert param.size() == loaded_weight.size(
25 | ), 'the parameter size is not align with the loaded weight size, param size: {}, loaded_weight size: {}'.format(
26 | param.size(), loaded_weight.size())
27 | assert param.data.dtype == loaded_weight.data.dtype, "if we want to shared weights, the data type should also be the same"
28 |
29 | param.data = loaded_weight.data
30 |
31 |
32 | def default_weight_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
33 | """Default weight loader."""
34 | assert param.size() == loaded_weight.size()
35 | assert param.data.dtype == loaded_weight.data.dtype, "if we want to shared weights, the data type should also be the same"
36 |
37 | param.data = loaded_weight.data
38 |
39 |
40 | def gpt2_weight_loader(actor_weights: Dict, vllm_model: nn.Module) -> nn.Module:
41 | params_dict = dict(vllm_model.named_parameters(remove_duplicate=False))
42 | for name, loaded_weight in actor_weights.items():
43 | if "lm_head.weight" in name:
44 | # GPT-2 ties the weights of the embedding layer and the final
45 | # linear layer.
46 | continue
47 | if ".attn.bias" in name or ".attn.masked_bias" in name:
48 | # Skip attention mask.
49 | # NOTE: "c_attn.bias" should not be skipped.
50 | continue
51 | if not name.startswith("transformer."):
52 | name = "transformer." + name
53 | param = params_dict[name]
54 | # The HF's GPT-2 implementation uses Conv1D instead of Linear.
55 | # Because of this, we need to transpose the weights.
56 | # Note(zhuohan): the logic below might break quantized models.
57 | for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
58 | if conv1d_weight_name not in name:
59 | continue
60 | if not name.endswith(".weight"):
61 | continue
62 | # TODO: check megatron
63 | loaded_weight = loaded_weight.t()
64 | weight_loader = getattr(param, "weight_loader", default_weight_loader)
65 | weight_loader(param, loaded_weight)
66 |
67 |
68 | def llama_weight_loader(actor_weights: Dict, vllm_model: nn.Module) -> nn.Module:
69 | # NOTE(shengguangming): the megatron llama may have this prefix
70 | prefix = '0.module.module.'
71 | params_dict = dict(vllm_model.named_parameters())
72 | for name, loaded_weight in actor_weights.items():
73 | if name[:len(prefix)] == prefix:
74 | name = name[len(prefix):]
75 | if "rotary_emb.inv_freq" in name:
76 | continue
77 | else:
78 | param = params_dict[name]
79 | weight_loader = getattr(param, "weight_loader", default_weight_loader)
80 | weight_loader(param, loaded_weight)
81 |
82 |
83 | def mistral_weight_loader(actor_weights: Dict, vllm_model: nn.Module) -> nn.Module:
84 | # TODO: need to implement a general way to deal with prefix
85 | prefix = '0.module.module.'
86 | params_dict = dict(vllm_model.named_parameters())
87 | for name, loaded_weight in actor_weights.items():
88 | if name[:len(prefix)] == prefix:
89 | name = name[len(prefix):]
90 | if "rotary_emb.inv_freq" in name:
91 | continue
92 | else:
93 | param = params_dict[name]
94 | weight_loader = getattr(param, "weight_loader", default_weight_loader)
95 | weight_loader(param, loaded_weight)
96 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_4_2/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_4_2/hf_weight_loader.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models
15 |
16 | from typing import Dict, Union, Optional, Iterable, Tuple
17 |
18 | import torch
19 | import torch.nn as nn
20 |
21 | from vllm.model_executor.model_loader.utils import set_default_torch_dtype
22 | from vllm.model_executor.model_loader.weight_utils import default_weight_loader
23 |
24 |
25 | def update_hf_weight_loader():
26 | from vllm.model_executor.models.gemma import GemmaForCausalLM
27 | GemmaForCausalLM.load_weights = gemma_load_weights
28 |
29 |
30 | def gemma_load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
31 | stacked_params_mapping = [
32 | # (param_name, shard_name, shard_id)
33 | ("qkv_proj", "q_proj", "q"),
34 | ("qkv_proj", "k_proj", "k"),
35 | ("qkv_proj", "v_proj", "v"),
36 | ("gate_up_proj", "gate_proj", 0),
37 | ("gate_up_proj", "up_proj", 1),
38 | ]
39 | params_dict = dict(self.named_parameters())
40 | loaded_params = set()
41 | for name, loaded_weight in weights:
42 | for (param_name, shard_name, shard_id) in stacked_params_mapping:
43 | if shard_name not in name:
44 | continue
45 | name = name.replace(shard_name, param_name)
46 | # Skip loading extra bias for GPTQ models.
47 | if name.endswith(".bias") and name not in params_dict:
48 | continue
49 | param = params_dict[name]
50 | weight_loader = param.weight_loader
51 | weight_loader(param, loaded_weight, shard_id)
52 | break
53 | else:
54 | # lm_head is not used in vllm as it is tied with embed_token.
55 | # To prevent errors, skip loading lm_head.weight.
56 | if "lm_head.weight" in name:
57 | continue
58 | # Skip loading extra bias for GPTQ models.
59 | if name.endswith(".bias") and name not in params_dict:
60 | continue
61 | # GemmaRMSNorm is different from Llama's in that it multiplies
62 | # (1 + weight) to the output, instead of just weight.
63 | if "norm.weight" in name:
64 | norm_weight = loaded_weight + 1.0 # prevent inplace modify actor weights
65 | param = params_dict[name]
66 | weight_loader = getattr(param, "weight_loader", default_weight_loader)
67 | weight_loader(param, norm_weight)
68 | else:
69 | param = params_dict[name]
70 | weight_loader = getattr(param, "weight_loader", default_weight_loader)
71 | weight_loader(param, loaded_weight)
72 | loaded_params.add(name)
73 | unloaded_params = params_dict.keys() - loaded_params
74 | if unloaded_params:
75 | raise RuntimeError("Some weights are not initialized from checkpoints: "
76 | f"{unloaded_params}")
77 |
78 |
79 | def load_hf_weights(actor_weights: Dict, vllm_model: nn.Module):
80 | assert isinstance(actor_weights, Dict)
81 | with set_default_torch_dtype(next(vllm_model.parameters()).dtype): # TODO
82 | vllm_model.load_weights(actor_weights.items())
83 | for _, module in vllm_model.named_modules():
84 | quant_method = getattr(module, "quant_method", None)
85 | if quant_method is not None:
86 | quant_method.process_weights_after_loading(module)
87 | # FIXME: Remove this after Mixtral is updated
88 | # to use quant_method.
89 | if hasattr(module, "process_weights_after_loading"):
90 | module.process_weights_after_loading()
91 | vllm_model = vllm_model.cuda()
92 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_4_2/tokenizer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/tokenizer_group/tokenizer_group.py
15 |
16 | from typing import List, Optional, Tuple, Union
17 |
18 | from transformers import (AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast)
19 |
20 | from vllm.lora.request import LoRARequest
21 | from vllm.utils import make_async, LRUCache
22 | from vllm.transformers_utils.tokenizers import *
23 |
24 |
25 | class TokenizerGroup:
26 | """A group of tokenizers that can be used for LoRA adapters."""
27 |
28 | def __init__(self, tokenizer: PreTrainedTokenizer, enable_lora: bool, max_num_seqs: int,
29 | max_input_length: Optional[int]):
30 | self.enable_lora = enable_lora
31 | self.max_input_length = max_input_length
32 | self.tokenizer = tokenizer
33 | self.lora_tokenizers = LRUCache[PreTrainedTokenizer](capacity=max_num_seqs) if enable_lora else None
34 |
35 | def ping(self) -> bool:
36 | """Check if the tokenizer group is alive."""
37 | return True
38 |
39 | def get_max_input_len(self, lora_request: Optional[LoRARequest] = None) -> Optional[int]:
40 | """Get the maximum input length for the LoRA request."""
41 | return self.max_input_length
42 |
43 | def encode(self,
44 | prompt: str,
45 | request_id: Optional[str] = None,
46 | lora_request: Optional[LoRARequest] = None) -> List[int]:
47 | tokenizer = self.get_lora_tokenizer(lora_request)
48 | return tokenizer.encode(prompt)
49 |
50 | async def encode_async(self,
51 | prompt: str,
52 | request_id: Optional[str] = None,
53 | lora_request: Optional[LoRARequest] = None) -> List[int]:
54 | tokenizer = await self.get_lora_tokenizer_async(lora_request)
55 | return tokenizer.encode(prompt)
56 |
57 | def get_lora_tokenizer(self, lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
58 | if not lora_request or not self.enable_lora:
59 | return self.tokenizer
60 | if lora_request.lora_int_id not in self.lora_tokenizers:
61 | # TODO(sgm): the lora tokenizer is also passed, but may be different
62 | tokenizer = self.tokenizer
63 | # tokenizer = (get_lora_tokenizer(
64 | # lora_request, **self.tokenizer_config) or self.tokenizer)
65 | self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
66 | return tokenizer
67 | else:
68 | return self.lora_tokenizers.get(lora_request.lora_int_id)
69 |
70 | # FIXME(sgm): for simplicity, we assign the special token here
71 | @property
72 | def pad_token_id(self):
73 | return self.tokenizer.pad_token_id
74 |
75 | @property
76 | def eos_token_id(self):
77 | return self.tokenizer.eos_token_id
78 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_5_4/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_5_4/hf_weight_loader.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models
15 |
16 | from typing import Dict, Union, Optional, Iterable, Tuple
17 |
18 | import torch
19 | import torch.nn as nn
20 |
21 | from vllm.model_executor.model_loader.utils import set_default_torch_dtype
22 | from vllm.model_executor.model_loader.weight_utils import default_weight_loader
23 |
24 |
25 | def update_hf_weight_loader():
26 | print('no hf weight loader need to be updated')
27 | return
28 |
29 |
30 | def load_hf_weights(actor_weights: Dict, vllm_model: nn.Module):
31 | assert isinstance(actor_weights, Dict)
32 | with set_default_torch_dtype(next(vllm_model.parameters()).dtype): # TODO
33 | if vllm_model.config.tie_word_embeddings and "lm_head.weight" in actor_weights.keys():
34 | del actor_weights["lm_head.weight"]
35 | vllm_model.load_weights(actor_weights.items())
36 | for _, module in vllm_model.named_modules():
37 | quant_method = getattr(module, "quant_method", None)
38 | if quant_method is not None:
39 | quant_method.process_weights_after_loading(module)
40 | # FIXME: Remove this after Mixtral is updated
41 | # to use quant_method.
42 | if hasattr(module, "process_weights_after_loading"):
43 | module.process_weights_after_loading()
44 | vllm_model = vllm_model.cuda()
45 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_5_4/tokenizer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/tokenizer_group/tokenizer_group.py
15 |
16 | from typing import List, Optional, Tuple, Union
17 |
18 | from transformers import (AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast)
19 |
20 | from vllm.lora.request import LoRARequest
21 | from vllm.utils import make_async, LRUCache
22 | from vllm.transformers_utils.tokenizers import *
23 |
24 |
25 | class TokenizerGroup:
26 | """A group of tokenizers that can be used for LoRA adapters."""
27 |
28 | def __init__(self, tokenizer: PreTrainedTokenizer, enable_lora: bool, max_num_seqs: int,
29 | max_input_length: Optional[int]):
30 | self.enable_lora = enable_lora
31 | self.max_input_length = max_input_length
32 | self.tokenizer = tokenizer
33 | self.lora_tokenizers = LRUCache[PreTrainedTokenizer](capacity=max_num_seqs) if enable_lora else None
34 |
35 | def ping(self) -> bool:
36 | """Check if the tokenizer group is alive."""
37 | return True
38 |
39 | def get_max_input_len(self, lora_request: Optional[LoRARequest] = None) -> Optional[int]:
40 | """Get the maximum input length for the LoRA request."""
41 | return self.max_input_length
42 |
43 | def encode(self,
44 | prompt: str,
45 | request_id: Optional[str] = None,
46 | lora_request: Optional[LoRARequest] = None) -> List[int]:
47 | tokenizer = self.get_lora_tokenizer(lora_request)
48 | return tokenizer.encode(prompt)
49 |
50 | async def encode_async(self,
51 | prompt: str,
52 | request_id: Optional[str] = None,
53 | lora_request: Optional[LoRARequest] = None) -> List[int]:
54 | tokenizer = await self.get_lora_tokenizer_async(lora_request)
55 | return tokenizer.encode(prompt)
56 |
57 | def get_lora_tokenizer(self, lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
58 | if not lora_request or not self.enable_lora:
59 | return self.tokenizer
60 | if lora_request.lora_int_id not in self.lora_tokenizers:
61 | # TODO(sgm): the lora tokenizer is also passed, but may be different
62 | tokenizer = self.tokenizer
63 | # tokenizer = (get_lora_tokenizer(
64 | # lora_request, **self.tokenizer_config) or self.tokenizer)
65 | self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
66 | return tokenizer
67 | else:
68 | return self.lora_tokenizers.get(lora_request.lora_int_id)
69 |
70 | # FIXME(sgm): for simplicity, we assign the special token here
71 | @property
72 | def pad_token_id(self):
73 | return self.tokenizer.pad_token_id
74 |
75 | @property
76 | def eos_token_id(self):
77 | return self.tokenizer.eos_token_id
78 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_6_3/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_6_3/arg_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/engine/arg_utils.py
15 |
16 | import os
17 | from dataclasses import dataclass
18 |
19 | from transformers import PretrainedConfig
20 | from vllm.config import EngineConfig
21 | from vllm.engine.arg_utils import EngineArgs
22 |
23 | from .config import LoadConfig, ModelConfig
24 |
25 |
26 | @dataclass
27 | class EngineArgs(EngineArgs):
28 | model_hf_config: PretrainedConfig = None # for verl
29 |
30 | def __post_init__(self):
31 | pass
32 |
33 | def create_model_config(self) -> ModelConfig:
34 | return ModelConfig(
35 | hf_config=self.model_hf_config,
36 | tokenizer_mode=self.tokenizer_mode,
37 | trust_remote_code=self.trust_remote_code,
38 | dtype=self.dtype,
39 | seed=self.seed,
40 | revision=self.revision,
41 | code_revision=self.code_revision,
42 | rope_scaling=self.rope_scaling,
43 | rope_theta=self.rope_theta,
44 | tokenizer_revision=self.tokenizer_revision,
45 | max_model_len=self.max_model_len,
46 | quantization=self.quantization,
47 | quantization_param_path=self.quantization_param_path,
48 | enforce_eager=self.enforce_eager,
49 | max_context_len_to_capture=self.max_context_len_to_capture,
50 | max_seq_len_to_capture=self.max_seq_len_to_capture,
51 | max_logprobs=self.max_logprobs,
52 | disable_sliding_window=self.disable_sliding_window,
53 | skip_tokenizer_init=self.skip_tokenizer_init,
54 | served_model_name=self.served_model_name,
55 | limit_mm_per_prompt=self.limit_mm_per_prompt,
56 | use_async_output_proc=not self.disable_async_output_proc,
57 | override_neuron_config=self.override_neuron_config,
58 | config_format=self.config_format,
59 | mm_processor_kwargs=self.mm_processor_kwargs,
60 | )
61 |
62 | def create_load_config(self) -> LoadConfig:
63 | return LoadConfig(
64 | load_format=self.load_format,
65 | download_dir=self.download_dir,
66 | model_loader_extra_config=self.model_loader_extra_config,
67 | ignore_patterns=self.ignore_patterns,
68 | )
69 |
70 | def create_engine_config(self) -> EngineConfig:
71 | engine_config = super().create_engine_config()
72 |
73 | # NOTE[VERL]: Use the world_size set by torchrun
74 | world_size = int(os.getenv("WORLD_SIZE", "-1"))
75 | assert world_size != -1, "The world_size is set to -1, not initialized by TORCHRUN"
76 | engine_config.parallel_config.world_size = world_size
77 |
78 | return engine_config
79 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_6_3/config.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/config.py
15 |
16 | import enum
17 | import json
18 | from dataclasses import dataclass, field
19 | from typing import TYPE_CHECKING, List, Optional, Union
20 |
21 | from transformers import PretrainedConfig
22 |
23 | # Add for verl
24 | from vllm.config import ModelConfig
25 | from vllm.logger import init_logger
26 | from vllm.utils import is_hip
27 |
28 | if TYPE_CHECKING:
29 | from vllm.model_executor.model_loader.loader import BaseModelLoader
30 |
31 | logger = init_logger(__name__)
32 |
33 |
34 | class LoadFormat(str, enum.Enum):
35 | AUTO = "auto"
36 | MEGATRON = "megatron"
37 | HF = "hf"
38 | DTENSOR = "dtensor"
39 | DUMMY_HF = "dummy_hf"
40 | DUMMY_MEGATRON = "dummy_megatron"
41 | DUMMY_DTENSOR = "dummy_dtensor"
42 |
43 |
44 | class ModelConfig(ModelConfig):
45 |
46 | def __init__(self, hf_config: PretrainedConfig, *args, **kwargs) -> None:
47 | super().__init__(model=hf_config._name_or_path, tokenizer=hf_config._name_or_path, *args, **kwargs)
48 | self.hf_config = hf_config
49 |
50 |
51 | @dataclass
52 | class LoadConfig:
53 | """
54 | download_dir: Directory to download and load the weights, default to the
55 | default cache directory of huggingface.
56 | load_format: The format of the model weights to load:
57 | "auto" will try to load the weights in the safetensors format and
58 | fall back to the pytorch bin format if safetensors format is
59 | not available.
60 | "pt" will load the weights in the pytorch bin format.
61 | "safetensors" will load the weights in the safetensors format.
62 | "npcache" will load the weights in pytorch format and store
63 | a numpy cache to speed up the loading.
64 | "dummy" will initialize the weights with random values, which is
65 | mainly for profiling.
66 | "tensorizer" will use CoreWeave's tensorizer library for
67 | fast weight loading.
68 | "bitsandbytes" will load nf4 type weights.
69 | ignore_patterns: The list of patterns to ignore when loading the model.
70 | Default to "original/**/*" to avoid repeated loading of llama's
71 | checkpoints.
72 |
73 | """
74 |
75 | load_format: Union[str, LoadFormat, "BaseModelLoader"] = LoadFormat.AUTO
76 | download_dir: Optional[str] = None
77 | model_loader_extra_config: Optional[Union[str, dict]] = field(default_factory=dict)
78 | ignore_patterns: Optional[Union[List[str], str]] = None
79 |
80 | def __post_init__(self):
81 | model_loader_extra_config = self.model_loader_extra_config or {}
82 | if isinstance(model_loader_extra_config, str):
83 | self.model_loader_extra_config = json.loads(model_loader_extra_config)
84 | self._verify_load_format()
85 |
86 | if self.ignore_patterns is not None and len(self.ignore_patterns) > 0:
87 | logger.info("Ignoring the following patterns when downloading weights: %s", self.ignore_patterns)
88 | else:
89 | self.ignore_patterns = ["original/**/*"]
90 |
91 | def _verify_load_format(self) -> None:
92 | if not isinstance(self.load_format, str):
93 | return
94 |
95 | load_format = self.load_format.lower()
96 | self.load_format = LoadFormat(load_format)
97 |
98 | rocm_not_supported_load_format: List[str] = []
99 | if is_hip() and load_format in rocm_not_supported_load_format:
100 | rocm_supported_load_format = [
101 | f for f in LoadFormat.__members__ if (f not in rocm_not_supported_load_format)
102 | ]
103 | raise ValueError(f"load format '{load_format}' is not supported in ROCm. "
104 | f"Supported load formats are "
105 | f"{rocm_supported_load_format}")
106 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_6_3/hf_weight_loader.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/model_loader
15 |
16 | from typing import Dict
17 |
18 | import torch.nn as nn
19 | from vllm.model_executor.model_loader.utils import set_default_torch_dtype
20 |
21 |
22 | def update_hf_weight_loader():
23 | print("no hf weight loader need to be updated")
24 | return
25 |
26 |
27 | def load_hf_weights(actor_weights: Dict, vllm_model: nn.Module):
28 | assert isinstance(actor_weights, Dict)
29 | with set_default_torch_dtype(next(vllm_model.parameters()).dtype): # TODO
30 | if vllm_model.config.tie_word_embeddings and "lm_head.weight" in actor_weights.keys():
31 | del actor_weights["lm_head.weight"]
32 | vllm_model.load_weights(actor_weights.items())
33 | for _, module in vllm_model.named_modules():
34 | quant_method = getattr(module, "quant_method", None)
35 | if quant_method is not None:
36 | quant_method.process_weights_after_loading(module)
37 | # FIXME: Remove this after Mixtral is updated
38 | # to use quant_method.
39 | if hasattr(module, "process_weights_after_loading"):
40 | module.process_weights_after_loading()
41 | vllm_model = vllm_model.cuda()
42 |
--------------------------------------------------------------------------------
/verl/third_party/vllm/vllm_v_0_6_3/tokenizer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright 2023 The vLLM team.
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/tokenizer_group/tokenizer_group.py
15 |
16 | from typing import Optional
17 |
18 | from transformers import PreTrainedTokenizer
19 | from vllm.transformers_utils.tokenizer_group import TokenizerGroup
20 | from vllm.utils import LRUCache
21 |
22 |
23 | class TokenizerGroup(TokenizerGroup):
24 | """A group of tokenizers that can be used for LoRA adapters."""
25 |
26 | def __init__(self, tokenizer: PreTrainedTokenizer, enable_lora: bool, max_num_seqs: int,
27 | max_input_length: Optional[int]):
28 | self.enable_lora = enable_lora
29 | self.max_input_length = max_input_length
30 | self.tokenizer = tokenizer
31 | self.lora_tokenizers = LRUCache[PreTrainedTokenizer](capacity=max_num_seqs) if enable_lora else None
32 |
33 | # FIXME(sgm): for simplicity, we assign the special token here
34 | @property
35 | def pad_token_id(self):
36 | return self.tokenizer.pad_token_id
37 |
38 | @property
39 | def eos_token_id(self):
40 | return self.tokenizer.eos_token_id
41 |
--------------------------------------------------------------------------------
/verl/trainer/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/trainer/config/evaluation.yaml:
--------------------------------------------------------------------------------
1 | data:
2 | path: /tmp/math_Qwen2-7B-Instruct.parquet
3 | prompt_key: prompt
4 | response_key: responses
5 | data_source_key: data_source
6 | reward_model_key: reward_model
--------------------------------------------------------------------------------
/verl/trainer/config/generation.yaml:
--------------------------------------------------------------------------------
1 | trainer:
2 | nnodes: 1
3 | n_gpus_per_node: 8
4 |
5 | data:
6 | path: ~/data/rlhf/math/test.parquet
7 | prompt_key: prompt
8 | n_samples: 5
9 | output_path: /opt/tiger/math_Qwen2-7B-Instruct.parquet
10 | batch_size: 128
11 |
12 | model:
13 | path: ~/models/Qwen2-7B-Instruct
14 | external_lib: null
15 | rollout:
16 | name: vllm
17 | temperature: 1.0
18 | top_k: 50 # 0 for hf rollout, -1 for vllm rollout
19 | top_p: 0.7
20 | prompt_length: 1536
21 | response_length: 512
22 | # for vllm rollout
23 | dtype: bfloat16 # should align with FSDP
24 | gpu_memory_utilization: 0.5
25 | ignore_eos: False
26 | micro_batch_size: 256
27 | enforce_eager: True
28 | free_cache_engine: True
29 | load_format: dummy_dtensor
30 | tensor_model_parallel_size: 1
31 | max_num_batched_tokens: 8192
32 | max_num_seqs: 1024
33 | log_prob_micro_batch_size: 8
34 | # for hf rollout
35 | do_sample: True
--------------------------------------------------------------------------------
/verl/trainer/config/model/lora_enabled.yaml:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/verl/trainer/config/ppo_megatron_trainer.yaml:
--------------------------------------------------------------------------------
1 | data:
2 | tokenizer: null
3 | train_files: ~/data/rlhf/gsm8k/train.parquet
4 | val_files: ~/data/rlhf/gsm8k/test.parquet
5 | prompt_key: prompt
6 | max_prompt_length: 512
7 | max_response_length: 512
8 | train_batch_size: 1024
9 | val_batch_size: 1312
10 | return_raw_input_ids: False # This should be set to true when the tokenizer between policy and rm differs
11 | return_raw_chat: False
12 |
13 | actor_rollout_ref:
14 | hybrid_engine: True
15 | model:
16 | path: ~/models/deepseek-llm-7b-chat
17 | external_lib: null
18 | override_config: {}
19 | enable_gradient_checkpointing: False
20 | actor:
21 | strategy: megatron # This is for backward-compatibility
22 | ppo_mini_batch_size: 256
23 | ppo_micro_batch_size: 64
24 | clip_ratio: 0.2
25 | entropy_coeff: 0.001
26 | ppo_epochs: 1
27 | shuffle: True
28 | optim:
29 | lr: 1e-6
30 | clip_grad: 1.0
31 | lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
32 | min_lr_ratio: null # only useful for warmup with cosine
33 | warmup_style: constant # select from constant/cosine
34 | total_training_steps: -1 # must be override by program
35 | megatron:
36 | tensor_model_parallel_size: 4
37 | pipeline_model_parallel_size: 1
38 | num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
39 | sequence_parallel: True
40 | seed: 1
41 | load_weight: True
42 | ref:
43 | megatron:
44 | tensor_model_parallel_size: 4
45 | pipeline_model_parallel_size: 1
46 | num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
47 | sequence_parallel: True
48 | seed: 1
49 | load_weight: True
50 | param_offload: False
51 | log_prob_micro_batch_size: 32
52 | rollout:
53 | name: vllm
54 | temperature: 1.0
55 | top_k: -1 # 0 for hf rollout, -1 for vllm rollout
56 | top_p: 1
57 | prompt_length: ${data.max_prompt_length} # for xperf_gpt
58 | response_length: ${data.max_response_length}
59 | # for vllm rollout
60 | dtype: bfloat16 # should align with FSDP
61 | gpu_memory_utilization: 0.5
62 | ignore_eos: False
63 | enforce_eager: True
64 | free_cache_engine: True
65 | load_format: dummy_megatron
66 | tensor_model_parallel_size: 2
67 | max_num_batched_tokens: 8192
68 | max_num_seqs: 1024
69 | log_prob_micro_batch_size: 2
70 | # for hf rollout
71 | do_sample: True
72 | layer_name_map:
73 | qkv_layer_name: qkv
74 | gate_proj_layer_name: gate_up
75 | # number of responses (i.e. num sample times)
76 | n: 1
77 |
78 | critic:
79 | strategy: megatron
80 | optim:
81 | lr: 1e-5
82 | clip_grad: 1.0
83 | lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
84 | min_lr_ratio: null # only useful for warmup with cosine
85 | warmup_style: constant # select from constant/cosine
86 | total_training_steps: -1 # must be override by program
87 | model:
88 | path: ~/models/deepseek-llm-7b-chat
89 | tokenizer_path: ${actor_rollout_ref.model.path}
90 | override_config: {}
91 | external_lib: ${actor_rollout_ref.model.external_lib}
92 | enable_gradient_checkpointing: False
93 | megatron:
94 | tensor_model_parallel_size: 4
95 | pipeline_model_parallel_size: 1
96 | num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
97 | sequence_parallel: True
98 | seed: 1
99 | load_weight: True
100 | ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
101 | ppo_micro_batch_size: 2
102 | ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
103 | shuffle: ${actor_rollout_ref.actor.shuffle}
104 | cliprange_value: 0.5
105 | kl_ctrl:
106 | type: fixed
107 | kl_coef: 0.001
108 |
109 | reward_model:
110 | enable: False
111 | strategy: megatron
112 | megatron:
113 | tensor_model_parallel_size: 4
114 | pipeline_model_parallel_size: 1
115 | num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
116 | sequence_parallel: True
117 | seed: 1
118 | model:
119 | input_tokenizer: ${actor_rollout_ref.model.path} # set this to null if the chat template is identical
120 | path: ~/models/FsfairX-LLaMA3-RM-v0.1
121 | external_lib: ${actor_rollout_ref.model.external_lib}
122 | load_weight: True
123 | param_offload: False
124 | micro_batch_size: 64
125 | max_length: null
126 |
127 | algorithm:
128 | gamma: 1.0
129 | lam: 1.0
130 | adv_estimator: gae
131 | kl_penalty: kl # how to estimate kl divergence
132 | kl_ctrl:
133 | type: fixed
134 | kl_coef: 0.001
135 |
136 | trainer:
137 | total_epochs: 30
138 | total_training_steps: null
139 | project_name: verl_examples
140 | experiment_name: gsm8k
141 | logger: ['console', 'wandb']
142 | nnodes: 1
143 | n_gpus_per_node: 8
144 | save_freq: -1
145 | test_freq: 2
146 | critic_warmup: 0
147 | default_hdfs_dir: ~/experiments/gsm8k/ppo/${trainer.experiment_name}
148 | default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
149 |
--------------------------------------------------------------------------------
/verl/trainer/config/sft_trainer.yaml:
--------------------------------------------------------------------------------
1 | data:
2 | train_batch_size: 256
3 | micro_batch_size: 16 # this is also val batch size
4 | train_files: ~/data/gsm8k/train.parquet
5 | val_files: ~/data/gsm8k/test.parquet
6 | prompt_key: question
7 | response_key: answer
8 | max_length: 1024
9 | truncation: error
10 | balance_dp_token: False
11 | chat_template: null
12 | model:
13 | partial_pretrain: ~/models/gemma-1.1-7b-it
14 | fsdp_config:
15 | wrap_policy:
16 | min_num_params: 0
17 | cpu_offload: False
18 | offload_params: False
19 | external_lib: null
20 | enable_gradient_checkpointing: False
21 | trust_remote_code: False
22 | optim:
23 | lr: 1e-5
24 | betas: [0.9, 0.95]
25 | weight_decay: 0.01
26 | warmup_steps_ratio: 0.1
27 | clip_grad: 1.0
28 |
29 | trainer:
30 | default_local_dir: /tmp/sft_model
31 | default_hdfs_dir: hdfs://tmp/experiments/gsm8k/gemma-1.1-7b-it/ # change the hdfs path here
32 | resume_path: null
33 | project_name: gsm8k-sft
34 | experiment_name: test
35 | total_epochs: 4
36 | logger: ['console']
37 | seed: 1
38 |
39 |
--------------------------------------------------------------------------------
/verl/trainer/main_eval.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Offline evaluate the performance of a generated file using reward model and ground truth verifier.
16 | The input is a parquet file that contains N generated sequences and (optional) the ground truth.
17 |
18 | """
19 |
20 | import hydra
21 | from verl.utils.fs import copy_local_path_from_hdfs
22 | from verl.utils.reward_score import math, gsm8k, kk
23 | import pandas as pd
24 | import numpy as np
25 |
26 |
27 | def select_reward_fn(data_source):
28 | if data_source == 'lighteval/MATH':
29 | return math.compute_score
30 | if 'kk' in data_source:
31 | return kk.compute_score
32 | else:
33 | raise NotImplementedError
34 |
35 |
36 | @hydra.main(config_path='config', config_name='evaluation', version_base=None)
37 | def main(config):
38 | local_path = copy_local_path_from_hdfs(config.data.path)
39 | dataset = pd.read_parquet(local_path)
40 | prompts = dataset[config.data.prompt_key]
41 | responses = dataset[config.data.response_key]
42 | data_sources = dataset[config.data.data_source_key]
43 | reward_model_data = dataset[config.data.reward_model_key]
44 |
45 | passes = 0
46 |
47 | total = len(dataset)
48 |
49 | for i in range(total):
50 | response_lst = responses[i]
51 | data_source = data_sources[i]
52 | # select reward score based on data_source
53 | prompt = prompts[i]
54 | reward_data = reward_model_data[i]
55 | reward_fn = select_reward_fn(data_source)
56 | ground_truth = reward_data['ground_truth']
57 | score_lst = []
58 | for r in response_lst:
59 | score = reward_fn(r, ground_truth)
60 | score_lst.append(score)
61 |
62 | max_score = np.max(score_lst)
63 |
64 | if max_score == 3:
65 | passes += 1
66 |
67 | print(f'pass@5: {passes / total}')
68 |
69 |
70 | if __name__ == '__main__':
71 | main()
72 |
--------------------------------------------------------------------------------
/verl/trainer/ppo/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/trainer/runtime_env.yaml:
--------------------------------------------------------------------------------
1 | working_dir: ./
2 | excludes: ["/.git/"]
3 | env_vars:
4 | TORCH_NCCL_AVOID_RECORD_STREAMS: "1"
5 | VLLM_ATTENTION_BACKEND: "XFORMERS"
--------------------------------------------------------------------------------
/verl/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from . import tokenizer
16 | from .tokenizer import *
17 |
18 | __all__ = tokenizer.__all__
--------------------------------------------------------------------------------
/verl/utils/config.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from typing import Dict
16 |
17 | from omegaconf import DictConfig
18 |
19 |
20 | def update_dict_with_config(dictionary: Dict, config: DictConfig):
21 | for key in dictionary:
22 | if hasattr(config, key):
23 | dictionary[key] = getattr(config, key)
24 |
--------------------------------------------------------------------------------
/verl/utils/dataset/README.md:
--------------------------------------------------------------------------------
1 | # Dataset Format
2 | ## RLHF dataset
3 | We combine all the data sources into a single parquet files. We directly organize the prompt into the chat format so that multi-turn chats can be easily incorporated. In the prompt, we may add instruction following texts to guide the model output the answers in a particular format so that we can extract the answers.
4 |
5 | Math problems
6 | ```json
7 | {
8 | "data_source": "openai/gsm8k",
9 | "prompt": [{"role": "user", "content": "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May? Let's think step by step and output the final answer after \"####\""}],
10 | "ability": "math",
11 | "reward_model": {
12 | "style": "rule",
13 | "ground_truth": ["72"]
14 | },
15 | }
16 | ```
17 |
--------------------------------------------------------------------------------
/verl/utils/dataset/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .rl_dataset import RLHFDataset
16 | from .rm_dataset import RMDataset
17 | from .sft_dataset import SFTDataset
18 |
--------------------------------------------------------------------------------
/verl/utils/debug/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .performance import log_gpu_memory_usage
--------------------------------------------------------------------------------
/verl/utils/debug/performance.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import torch
16 | import torch.distributed as dist
17 | import logging
18 |
19 |
20 | def log_gpu_memory_usage(head: str, logger: logging.Logger = None, level=logging.DEBUG, rank: int = 0):
21 | if (not dist.is_initialized()) or (rank is None) or (dist.get_rank() == rank):
22 | memory_allocated = torch.cuda.memory_allocated() / 1024**3
23 | memory_reserved = torch.cuda.memory_reserved() / 1024**3
24 |
25 | message = f'{head}, memory allocated (GB): {memory_allocated}, memory reserved (GB): {memory_reserved}'
26 |
27 | if logger is None:
28 | print(message)
29 | else:
30 | logger.log(msg=message, level=level)
31 |
--------------------------------------------------------------------------------
/verl/utils/debug/trajectory_tracker.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Trajectory tracker can be inserted into code to save the intermediate results.
16 | The results will be dump to hdfs for offline comparison.
17 | Each process will have a client that first move all the tensors to CPU
18 | """
19 |
20 | from verl.utils.hdfs_io import makedirs, copy
21 | import torch
22 | import os
23 | import ray
24 | import io
25 | import tempfile
26 |
27 | from collections import deque
28 |
29 | remote_copy = ray.remote(copy)
30 |
31 |
32 | @ray.remote
33 | def save_to_hdfs(data: io.BytesIO, name, hdfs_dir, verbose):
34 | filename = name + '.pth'
35 | with tempfile.TemporaryDirectory() as tmpdirname:
36 | local_filepath = os.path.join(tmpdirname, filename)
37 | with open(local_filepath, 'wb') as f:
38 | f.write(data.getbuffer())
39 | # upload to hdfs
40 |
41 | if verbose:
42 | print(f'Saving {local_filepath} to {hdfs_dir}')
43 | try:
44 | copy(local_filepath, hdfs_dir)
45 | except Exception as e:
46 | print(e)
47 |
48 |
49 | @ray.remote
50 | class TrajectoryTracker():
51 |
52 | def __init__(self, hdfs_dir, verbose) -> None:
53 | self.hdfs_dir = hdfs_dir
54 | makedirs(hdfs_dir)
55 | self.verbose = verbose
56 |
57 | self.handle = deque()
58 |
59 | def dump(self, data: io.BytesIO, name):
60 | # get a temp file and write to it
61 | self.handle.append(save_to_hdfs.remote(data, name, self.hdfs_dir, self.verbose))
62 |
63 | def wait_for_hdfs(self):
64 | while len(self.handle) != 0:
65 | future = self.handle.popleft()
66 | ray.get(future)
67 |
68 |
69 | def dump_data(data, name):
70 | enable = os.getenv('VERL_ENABLE_TRACKER', '0') == '1'
71 | if not enable:
72 | return
73 | buffer = io.BytesIO()
74 | torch.save(data, buffer)
75 | tracker = get_trajectory_tracker()
76 | ray.get(tracker.dump.remote(buffer, name))
77 |
78 |
79 | def get_trajectory_tracker():
80 | hdfs_dir = os.getenv('VERL_TRACKER_HDFS_DIR', default=None)
81 | verbose = os.getenv('VERL_TRACKER_VERBOSE', default='0') == '1'
82 | assert hdfs_dir is not None
83 | tracker = TrajectoryTracker.options(name="global_tracker", get_if_exists=True,
84 | lifetime="detached").remote(hdfs_dir, verbose)
85 | return tracker
86 |
87 |
88 | if __name__ == '__main__':
89 | # testing
90 | os.environ['VERL_ENABLE_TRACKER'] = '1'
91 | os.environ['VERL_TRACKER_HDFS_DIR'] = '~/debug/test'
92 |
93 | @ray.remote
94 | def process(iter):
95 | data = {'obs': torch.randn(10, 20)}
96 | dump_data(data, f'process_{iter}_obs')
97 |
98 | ray.init()
99 |
100 | output_lst = []
101 |
102 | for i in range(10):
103 | output_lst.append(process.remote(i))
104 |
105 | out = ray.get(output_lst)
106 |
107 | tracker = get_trajectory_tracker()
108 | ray.get(tracker.wait_for_hdfs.remote())
109 |
--------------------------------------------------------------------------------
/verl/utils/distributed.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """Utilities for distributed training."""
15 | import os
16 |
17 |
18 | def initialize_global_process_group(timeout_second=36000):
19 | import torch.distributed
20 | from datetime import timedelta
21 | torch.distributed.init_process_group('nccl', timeout=timedelta(seconds=timeout_second))
22 | local_rank = int(os.environ["LOCAL_RANK"])
23 | rank = int(os.environ["RANK"])
24 | world_size = int(os.environ["WORLD_SIZE"])
25 |
26 | if torch.distributed.is_initialized():
27 | torch.cuda.set_device(local_rank)
28 | return local_rank, rank, world_size
29 |
--------------------------------------------------------------------------------
/verl/utils/flops_counter.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import torch
16 | from transformers import PretrainedConfig, Qwen2Config, LlamaConfig
17 |
18 | VALID_CONFIG_TYPE = (Qwen2Config, LlamaConfig)
19 |
20 |
21 | def get_device_flops(unit="T"):
22 |
23 | def unit_convert(number, level):
24 | units = ["B", "K", "M", "G", "T", "P"]
25 | if number <= 0:
26 | return number
27 | ptr = 0
28 | while ptr < len(units) and units[ptr] != level:
29 | number /= 1000
30 | ptr += 1
31 | return number
32 |
33 | device_name = torch.cuda.get_device_name()
34 | flops = float("inf") # INF flops for unkown gpu type
35 | if "H100" in device_name or "H800" in device_name:
36 | flops = 989e12
37 | elif "A100" in device_name or "A800" in device_name:
38 | flops = 312e12
39 | elif "L40" in device_name:
40 | flops = 181.05e12
41 | elif "L20" in device_name:
42 | flops = 119.5e12
43 | elif "H20" in device_name:
44 | flops = 148e12
45 | elif "910B" in device_name:
46 | flops = 354e12
47 | flops_unit = unit_convert(flops, unit)
48 | return flops_unit
49 |
50 |
51 | class FlopsCounter:
52 | """
53 | Used to count mfu during training loop
54 |
55 | Example:
56 | flops_counter = FlopsCounter(config)
57 | flops_achieved, flops_promised = flops_counter.estimate_flops(tokens_list, delta_time)
58 |
59 | """
60 |
61 | def __init__(self, config: PretrainedConfig):
62 | if not isinstance(config, VALID_CONFIG_TYPE):
63 | print(f"Only support config type of {VALID_CONFIG_TYPE}, but got {type(config)}. "
64 | f"MFU will always be zero.")
65 |
66 | self.estimate_func = {"qwen2": self._estimate_qwen2_flops, 'llama': self._estimate_qwen2_flops}
67 | self.config = config
68 |
69 | def _estimate_unknown_flops(self, tokens_sum, batch_seqlens, delta_time):
70 | return 0
71 |
72 | def _estimate_qwen2_flops(self, tokens_sum, batch_seqlens, delta_time):
73 | assert isinstance(self.config, (Qwen2Config, LlamaConfig))
74 | hidden_size = self.config.hidden_size
75 | vocab_size = self.config.vocab_size
76 | num_hidden_layers = self.config.num_hidden_layers
77 | num_key_value_heads = self.config.num_key_value_heads
78 | num_attention_heads = self.config.num_attention_heads
79 | intermediate_size = self.config.intermediate_size
80 |
81 | head_dim = hidden_size // num_attention_heads
82 | q_size = num_attention_heads * head_dim
83 | k_size = num_key_value_heads * head_dim
84 | v_size = num_key_value_heads * head_dim
85 |
86 | # non-attn per layer parm
87 | # Qwen2/LLama use SwiGelu, gate, having up and down linear layer in mlp
88 | mlp_N = hidden_size * intermediate_size * 3
89 | attn_linear_N = hidden_size * (q_size + k_size + v_size + num_attention_heads * head_dim)
90 | emd_and_lm_head_N = vocab_size * hidden_size * 2
91 | # non-attn all_layer parm
92 | dense_N = (mlp_N + attn_linear_N) * num_hidden_layers + emd_and_lm_head_N
93 | # non-attn all_layer & all_token fwd & bwd flops
94 | dense_N_flops = 6 * dense_N * tokens_sum
95 |
96 | # attn all_layer & all_token fwd & bwd flops
97 | seqlen_square_sum = 0
98 | for seqlen in batch_seqlens:
99 | seqlen_square_sum += seqlen * seqlen
100 | attn_qkv_flops = 12 * seqlen_square_sum * head_dim * num_attention_heads * num_hidden_layers
101 |
102 | # all_layer & all_token fwd & bwd flops
103 | flops_all_token = dense_N_flops + attn_qkv_flops
104 | flops_achieved = flops_all_token * (1.0 / delta_time) / 1e12
105 | return flops_achieved
106 |
107 | def estimate_flops(self, batch_seqlens, delta_time):
108 | """
109 | Estimate the FLOPS based on the number of valid tokens in the current batch and the time taken.
110 |
111 | Args:
112 | batch_seqlens (List[int]): A list where each element represents the number of valid tokens in the current batch.
113 | delta_time (float): The time taken to process the batch, in seconds.
114 |
115 | Returns:
116 | estimated_flops (float): The estimated FLOPS based on the input tokens and time.
117 | promised_flops (float): The expected FLOPS of the current device.
118 | """
119 | tokens_sum = sum(batch_seqlens)
120 | func = self.estimate_func.get(self.config.model_type, self._estimate_unknown_flops)
121 | estimated_flops = func(tokens_sum, batch_seqlens, delta_time)
122 | promised_flops = get_device_flops()
123 | return estimated_flops, promised_flops
124 |
--------------------------------------------------------------------------------
/verl/utils/fs.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | # -*- coding: utf-8 -*-
17 | """File-system agnostic IO APIs"""
18 | import os
19 | import tempfile
20 | import hashlib
21 |
22 | from .hdfs_io import copy, makedirs, exists
23 |
24 | __all__ = ["copy", "exists", "makedirs"]
25 |
26 | _HDFS_PREFIX = "hdfs://"
27 |
28 |
29 | def _is_non_local(path):
30 | return path.startswith(_HDFS_PREFIX)
31 |
32 |
33 | def md5_encode(path: str) -> str:
34 | return hashlib.md5(path.encode()).hexdigest()
35 |
36 |
37 | def get_local_temp_path(hdfs_path: str, cache_dir: str) -> str:
38 | """Return a local temp path that joins cache_dir and basename of hdfs_path
39 |
40 | Args:
41 | hdfs_path:
42 | cache_dir:
43 |
44 | Returns:
45 |
46 | """
47 | # make a base64 encoding of hdfs_path to avoid directory conflict
48 | encoded_hdfs_path = md5_encode(hdfs_path)
49 | temp_dir = os.path.join(cache_dir, encoded_hdfs_path)
50 | os.makedirs(temp_dir, exist_ok=True)
51 | dst = os.path.join(temp_dir, os.path.basename(hdfs_path))
52 | return dst
53 |
54 |
55 | def copy_local_path_from_hdfs(src: str, cache_dir=None, filelock='.file.lock', verbose=False) -> str:
56 | """Copy src from hdfs to local if src is on hdfs or directly return src.
57 | If cache_dir is None, we will use the default cache dir of the system. Note that this may cause conflicts if
58 | the src name is the same between calls
59 |
60 | Args:
61 | src (str): a HDFS path of a local path
62 |
63 | Returns:
64 | a local path of the copied file
65 | """
66 | from filelock import FileLock
67 |
68 | assert src[-1] != '/', f'Make sure the last char in src is not / because it will cause error. Got {src}'
69 |
70 | if _is_non_local(src):
71 | # download from hdfs to local
72 | if cache_dir is None:
73 | # get a temp folder
74 | cache_dir = tempfile.gettempdir()
75 | os.makedirs(cache_dir, exist_ok=True)
76 | assert os.path.exists(cache_dir)
77 | local_path = get_local_temp_path(src, cache_dir)
78 | # get a specific lock
79 | filelock = md5_encode(src) + '.lock'
80 | lock_file = os.path.join(cache_dir, filelock)
81 | with FileLock(lock_file=lock_file):
82 | if not os.path.exists(local_path):
83 | if verbose:
84 | print(f'Copy from {src} to {local_path}')
85 | copy(src, local_path)
86 | return local_path
87 | else:
88 | return src
89 |
--------------------------------------------------------------------------------
/verl/utils/hdfs_io.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import os
16 | import shutil
17 | import logging
18 |
19 | logger = logging.getLogger(__file__)
20 | logger.setLevel(os.getenv('VERL_SFT_LOGGING_LEVEL', 'WARN'))
21 |
22 | _HDFS_PREFIX = "hdfs://"
23 |
24 | _HDFS_BIN_PATH = shutil.which('hdfs')
25 |
26 |
27 | def exists(path: str, **kwargs) -> bool:
28 | r"""Works like os.path.exists() but supports hdfs.
29 |
30 | Test whether a path exists. Returns False for broken symbolic links.
31 |
32 | Args:
33 | path (str): path to test
34 |
35 | Returns:
36 | bool: True if the path exists, False otherwise
37 | """
38 | if _is_non_local(path):
39 | return _exists(path, **kwargs)
40 | return os.path.exists(path)
41 |
42 |
43 | def _exists(file_path: str):
44 | """ hdfs capable to check whether a file_path is exists """
45 | if file_path.startswith("hdfs"):
46 | return _run_cmd(_hdfs_cmd(f"-test -e {file_path}")) == 0
47 | return os.path.exists(file_path)
48 |
49 |
50 | def makedirs(name, mode=0o777, exist_ok=False, **kwargs) -> None:
51 | r"""Works like os.makedirs() but supports hdfs.
52 |
53 | Super-mkdir; create a leaf directory and all intermediate ones. Works like
54 | mkdir, except that any intermediate path segment (not just the rightmost)
55 | will be created if it does not exist. If the target directory already
56 | exists, raise an OSError if exist_ok is False. Otherwise no exception is
57 | raised. This is recursive.
58 |
59 | Args:
60 | name (str): directory to create
61 | mode (int): file mode bits
62 | exist_ok (bool): if True, do not raise an exception if the directory already exists
63 | kwargs: keyword arguments for hdfs
64 |
65 | """
66 | if _is_non_local(name):
67 | # TODO(haibin.lin):
68 | # - handle OSError for hdfs(?)
69 | # - support exist_ok for hdfs(?)
70 | _mkdir(name, **kwargs)
71 | else:
72 | os.makedirs(name, mode=mode, exist_ok=exist_ok)
73 |
74 |
75 | def _mkdir(file_path: str) -> bool:
76 | """hdfs mkdir"""
77 | if file_path.startswith("hdfs"):
78 | _run_cmd(_hdfs_cmd(f"-mkdir -p {file_path}"))
79 | else:
80 | os.makedirs(file_path, exist_ok=True)
81 | return True
82 |
83 |
84 | def copy(src: str, dst: str, **kwargs) -> bool:
85 | r"""Works like shutil.copy() for file, and shutil.copytree for dir, and supports hdfs.
86 |
87 | Copy data and mode bits ("cp src dst"). Return the file's destination.
88 | The destination may be a directory.
89 | If source and destination are the same file, a SameFileError will be
90 | raised.
91 |
92 | Arg:
93 | src (str): source file path
94 | dst (str): destination file path
95 | kwargs: keyword arguments for hdfs copy
96 |
97 | Returns:
98 | str: destination file path
99 |
100 | """
101 | if _is_non_local(src) or _is_non_local(dst):
102 | # TODO(haibin.lin):
103 | # - handle SameFileError for hdfs files(?)
104 | # - return file destination for hdfs files
105 | return _copy(src, dst)
106 | else:
107 | if os.path.isdir(src):
108 | return shutil.copytree(src, dst, **kwargs)
109 | else:
110 | return shutil.copy(src, dst, **kwargs)
111 |
112 |
113 | def _copy(from_path: str, to_path: str, timeout: int = None) -> bool:
114 | if to_path.startswith("hdfs"):
115 | if from_path.startswith("hdfs"):
116 | returncode = _run_cmd(_hdfs_cmd(f"-cp -f {from_path} {to_path}"), timeout=timeout)
117 | else:
118 | returncode = _run_cmd(_hdfs_cmd(f"-put -f {from_path} {to_path}"), timeout=timeout)
119 | else:
120 | if from_path.startswith("hdfs"):
121 | returncode = _run_cmd(_hdfs_cmd(f"-get \
122 | {from_path} {to_path}"), timeout=timeout)
123 | else:
124 | try:
125 | shutil.copy(from_path, to_path)
126 | returncode = 0
127 | except shutil.SameFileError:
128 | returncode = 0
129 | except Exception as e:
130 | logger.warning(f"copy {from_path} {to_path} failed: {e}")
131 | returncode = -1
132 | return returncode == 0
133 |
134 |
135 | def _run_cmd(cmd: str, timeout=None):
136 | return os.system(cmd)
137 |
138 |
139 | def _hdfs_cmd(cmd: str) -> str:
140 | return f"{_HDFS_BIN_PATH} dfs {cmd}"
141 |
142 |
143 | def _is_non_local(path: str):
144 | return path.startswith(_HDFS_PREFIX)
145 |
--------------------------------------------------------------------------------
/verl/utils/import_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Utilities to check if packages are available.
16 | We assume package availability won't change during runtime.
17 | """
18 |
19 | from functools import cache
20 | from typing import List
21 |
22 |
23 | @cache
24 | def is_megatron_core_available():
25 | try:
26 | from megatron.core import parallel_state as mpu
27 | return True
28 | except ImportError:
29 | return False
30 |
31 |
32 | @cache
33 | def is_vllm_available():
34 | try:
35 | import vllm
36 | return True
37 | except ImportError:
38 | return False
39 |
40 |
41 | def import_external_libs(external_libs=None):
42 | if external_libs is None:
43 | return
44 | if not isinstance(external_libs, List):
45 | external_libs = [external_libs]
46 | import importlib
47 | for external_lib in external_libs:
48 | importlib.import_module(external_lib)
49 |
--------------------------------------------------------------------------------
/verl/utils/logger/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/utils/logger/aggregate_logger.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | A Ray logger will receive logging info from different processes.
16 | """
17 | import numbers
18 | from typing import Dict
19 |
20 |
21 | def concat_dict_to_str(dict: Dict, step):
22 | output = [f'step:{step}']
23 | for k, v in dict.items():
24 | if isinstance(v, numbers.Number):
25 | output.append(f'{k}:{v:.3f}')
26 | output_str = ' - '.join(output)
27 | return output_str
28 |
29 |
30 | class LocalLogger:
31 |
32 | def __init__(self, remote_logger=None, enable_wandb=False, print_to_console=False):
33 | self.print_to_console = print_to_console
34 | if print_to_console:
35 | print('Using LocalLogger is deprecated. The constructor API will change ')
36 |
37 | def flush(self):
38 | pass
39 |
40 | def log(self, data, step):
41 | if self.print_to_console:
42 | print(concat_dict_to_str(data, step=step), flush=True)
--------------------------------------------------------------------------------
/verl/utils/logging_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import logging
16 |
17 |
18 | def set_basic_config(level):
19 | """
20 | This function sets the global logging format and level. It will be called when import verl
21 | """
22 | logging.basicConfig(format='%(levelname)s:%(asctime)s:%(message)s', level=level)
23 |
--------------------------------------------------------------------------------
/verl/utils/megatron/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/utils/megatron/memory.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import torch
16 |
17 |
18 | class MemoryBuffer:
19 |
20 | def __init__(self, numel, numel_padded, dtype):
21 | self.numel = numel
22 | self.numel_padded = numel_padded
23 | self.dtype = dtype
24 | self.data = torch.zeros(self.numel_padded,
25 | dtype=self.dtype,
26 | device=torch.cuda.current_device(),
27 | requires_grad=False)
28 |
29 | def zero(self):
30 | """Reset the buffer to zero."""
31 | self.data.zero_()
32 |
33 | def get(self, shape, start_index):
34 | """Return a tensor with the input `shape` as a view into the
35 | 1-D data starting at `start_index`."""
36 | end_index = start_index + shape.numel()
37 | assert end_index <= self.numel, \
38 | 'requested tensor is out of the buffer range.'
39 | buffer_tensor = self.data[start_index:end_index]
40 | buffer_tensor = buffer_tensor.view(shape)
41 | return buffer_tensor
42 |
--------------------------------------------------------------------------------
/verl/utils/megatron/optimizer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | from apex.optimizers import FusedAdam as Adam
17 | from apex.optimizers import FusedSGD as SGD
18 | from megatron.optimizer.distrib_optimizer import DistributedOptimizer
19 | from megatron.optimizer.grad_scaler import ConstantGradScaler, DynamicGradScaler
20 | from megatron.optimizer import Float16OptimizerWithFloat16Params, FP32Optimizer
21 | from megatron.optimizer import get_param_groups
22 |
23 | from verl.utils.megatron.optimizer_config import OptimizerConfig
24 |
25 |
26 | def get_megatron_optimizer(
27 | model,
28 | config: OptimizerConfig,
29 | no_weight_decay_cond=None,
30 | scale_lr_cond=None,
31 | lr_mult=1.0,
32 | check_for_nan_in_loss_and_grad=False,
33 | overlap_param_gather=False # add for verl
34 | ):
35 | # Base optimizer.
36 | param_groups = get_param_groups(model, no_weight_decay_cond, scale_lr_cond, lr_mult)
37 |
38 | if config.optimizer == 'adam':
39 | optimizer = Adam(param_groups,
40 | lr=config.lr,
41 | weight_decay=config.weight_decay,
42 | betas=(config.adam_beta1, config.adam_beta2),
43 | eps=config.adam_eps)
44 | elif config.optimizer == 'sgd':
45 | optimizer = SGD(param_groups, lr=config.lr, weight_decay=config.weight_decay, momentum=config.sgd_momentum)
46 | else:
47 | raise Exception('{} optimizer is not supported.'.format(config.optimizer))
48 |
49 | # Determine whether the params have main-grad field.
50 | params_have_main_grad = True
51 |
52 | # Mixed precision optimizer.
53 | # - Note: both the Float16Optimizer and the DistributedOptimizer inherit
54 | # from the MixedPrecisionOptimizer, which manages any optimizer where
55 | # the model params and main params are distinct.
56 | if config.fp16 or config.bf16 or config.use_distributed_optimizer:
57 |
58 | # Grad scaler:
59 | # if loss-scale is provided, instantiate the constant scaler.
60 | # if we are using fp16 and loss-scale is not present, use a
61 | # dynamic scaler.
62 | # otherwise we are running in bf16 with no loss-scale so
63 | # leave it as None.
64 | grad_scaler = None
65 |
66 | # Constant loss scale.
67 | if config.loss_scale:
68 | grad_scaler = ConstantGradScaler(config.loss_scale)
69 |
70 | # Dynamic loss scale.
71 | else:
72 | if config.fp16:
73 | grad_scaler = DynamicGradScaler(initial_scale=config.initial_loss_scale,
74 | min_scale=config.min_loss_scale,
75 | growth_factor=2.0,
76 | backoff_factor=0.5,
77 | growth_interval=config.loss_scale_window,
78 | hysteresis=config.hysteresis)
79 |
80 | # Megatron optimizer.
81 | if config.use_distributed_optimizer:
82 | return DistributedOptimizer(optimizer, config.clip_grad, config.log_num_zeros_in_grad,
83 | check_for_nan_in_loss_and_grad, params_have_main_grad, config.fp16, config.bf16,
84 | config.params_dtype, grad_scaler, model, overlap_param_gather)
85 | else:
86 | return Float16OptimizerWithFloat16Params(optimizer, config.clip_grad, config.log_num_zeros_in_grad,
87 | check_for_nan_in_loss_and_grad, params_have_main_grad, config.fp16,
88 | config.bf16, config.params_dtype, grad_scaler, model)
89 |
90 | # FP32.
91 | return FP32Optimizer(optimizer, config.clip_grad, config.log_num_zeros_in_grad, check_for_nan_in_loss_and_grad,
92 | params_have_main_grad, model)
93 |
--------------------------------------------------------------------------------
/verl/utils/megatron/optimizer_config.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | from dataclasses import dataclass
17 | from typing import Callable, Optional
18 |
19 | import torch
20 |
21 |
22 | @dataclass
23 | class OptimizerConfig:
24 | """Configuration for optimizer."""
25 |
26 | ##############
27 | # General
28 | ##############
29 | optimizer: str = 'adam'
30 | """Optimizer to use (one of Adam or SGD)."""
31 |
32 | lr: Optional[float] = None
33 | """Initial learning rate. Depending on decay style and initial warmup, the learning rate at each
34 | iteration would be different.
35 | """
36 |
37 | min_lr: Optional[float] = None
38 | """Minumum value for learning rate. The scheduler clip values below this threshold."""
39 |
40 | decoupled_lr: Optional[float] = None
41 | """Separate learning rate for the input and output layer."""
42 |
43 | decoupled_min_lr: Optional[float] = None
44 | """Minimum value for learning rate for the input and output layer. The scheduler clip values
45 | below this threshold.
46 | """
47 |
48 | weight_decay: float = 0.01
49 | """Weight decay coefficient for L2 regularization."""
50 |
51 | ##############
52 | # Precision
53 | ##############
54 | fp16: bool = False
55 | """If true, train with fp16 mixed precision training. Defaults to False."""
56 |
57 | bf16: bool = False
58 | """If true, train with bf16 mixed precision training. Defaults to False."""
59 |
60 | params_dtype: torch.dtype = torch.float32
61 | """dtype used when intializing the weights. Defaults to torch.float32."""
62 |
63 | ###############
64 | # Loss scaling
65 | ###############
66 | loss_scale: Optional[float] = None
67 | """Static loss scaling, positive power of 2 values can improve fp16 convergence. If None,
68 | dynamic loss scaling is used.
69 | """
70 |
71 | initial_loss_scale: float = 2**32
72 | """Initial loss-scale for dynamic loss scaling."""
73 |
74 | min_loss_scale: float = 1.0
75 | """Minimum loss scale for dynamic loss scaling."""
76 |
77 | loss_scale_window: float = 1000
78 | """Window over which to raise/lower dynamic scale."""
79 |
80 | hysteresis: int = 2
81 | """Hysteresis for dynamic loss scaling."""
82 |
83 | ##############
84 | # Optimizer
85 | ##############
86 | # Adam
87 | adam_beta1: float = 0.9
88 | """First coefficient for computing running averages of gradient and its square in Adam
89 | optimizer.
90 | """
91 |
92 | adam_beta2: float = 0.999
93 | """Second coefficient for computing running averages of gradient and its square in Adam
94 | optimizer.
95 | """
96 |
97 | adam_eps: float = 1e-08
98 | """Term added to the denominator to improve numerical stability in Adam optimizer."""
99 |
100 | # SGD.
101 | sgd_momentum: float = 0.9
102 | """Momentum factor for SGD optimizer."""
103 |
104 | #######################
105 | # Distributed optimizer
106 | #######################
107 | use_distributed_optimizer: bool = False
108 | """Distribute optimizer state over data-parallel replicas."""
109 |
110 | overlap_grad_reduce: bool = False
111 | """If true, overlap grad reduce-scatter with backward compute in distributed optimizer."""
112 |
113 | overlap_param_gather: bool = False
114 | """If true, overlap param all-gather with forward compute in distributed optimizer."""
115 |
116 | ################
117 | # Miscellaneous
118 | ################
119 | clip_grad: float = 1.0
120 | """Gradient clipping based on global L2 norm."""
121 |
122 | log_num_zeros_in_grad: bool = False
123 | """If true, calculate and log the number of zeros in gradient."""
124 |
125 | barrier_with_L1_time: bool = False
126 | """If true, use barrier with level 1 time measurements."""
127 |
128 | timers: Callable = None
129 | """Function to get timers."""
130 |
--------------------------------------------------------------------------------
/verl/utils/megatron/pipeline_parallel.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | import torch
17 | from megatron.core import parallel_state as mpu
18 |
19 | from .sequence_parallel import pad_to_sequence_parallel
20 |
21 |
22 | def compute_transformers_input_shapes(batches, meta_info):
23 | from flash_attn.bert_padding import unpad_input # flash 2 is a must for Megatron
24 | # pre-compute input shapes for each micro-batch at each pp stage
25 | input_shapes = []
26 | for model_inputs in batches:
27 | input_ids = model_inputs['input_ids']
28 | attention_mask = model_inputs['attention_mask']
29 | input_ids_rmpad = unpad_input(input_ids.unsqueeze(dim=-1), attention_mask)[0] # (total_nnz, 1)
30 | if meta_info['sequence_parallel']:
31 | input_ids_rmpad = pad_to_sequence_parallel(input_ids_rmpad)
32 | # compute shapes for model_inputs
33 | input_shapes.append(
34 | torch.Size([
35 | input_ids_rmpad.shape[0] // mpu.get_tensor_model_parallel_world_size(), 1, meta_info['hidden_size']
36 | ]))
37 | else:
38 | # compute shapes for model_inputs
39 | input_shapes.append(torch.Size([input_ids_rmpad.shape[0], 1, meta_info['hidden_size']]))
40 | return input_shapes
41 |
42 |
43 | def make_batch_generator(batches, vpp_size):
44 | if vpp_size > 1:
45 | # has vpp
46 | batch_generator = [batches] * vpp_size # number of vpp chunks
47 | batch_generator = [iter(b) for b in batch_generator]
48 | else:
49 | # no vpp
50 | batch_generator = iter(batches)
51 | return batch_generator
52 |
--------------------------------------------------------------------------------
/verl/utils/megatron/sequence_parallel.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | import torch
17 | import torch.nn.functional as F
18 | from megatron.core import parallel_state as mpu
19 |
20 |
21 | def mark_parameter_as_sequence_parallel(parameter):
22 | setattr(parameter, 'sequence_parallel', True)
23 |
24 |
25 | def is_sequence_parallel_param(param):
26 | return hasattr(param, 'sequence_parallel') and param.sequence_parallel
27 |
28 |
29 | def pad_to_sequence_parallel(unpad_tokens: torch.Tensor):
30 | """pad the tokens such that the total length is a multiple of sp world size
31 |
32 | Args:
33 | unpad_tokens: (total_nnz, ...). Tokens after removing padding
34 |
35 | Returns:
36 |
37 | """
38 | total_nnz = unpad_tokens.shape[0]
39 | sp_world_size = mpu.get_tensor_model_parallel_world_size()
40 |
41 | if total_nnz % sp_world_size == 0:
42 | pad_size = 0
43 | else:
44 | pad_size = sp_world_size - total_nnz % sp_world_size
45 |
46 | if pad_size > 0:
47 | if unpad_tokens.ndim == 1:
48 | unpad_tokens = F.pad(unpad_tokens, (0, pad_size))
49 | elif unpad_tokens.ndim == 2:
50 | unpad_tokens = F.pad(unpad_tokens, (0, 0, 0, pad_size))
51 | else:
52 | raise NotImplementedError(f'Padding dim {unpad_tokens.ndim()} is not supported')
53 |
54 | return unpad_tokens
55 |
--------------------------------------------------------------------------------
/verl/utils/py_functional.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Contain small python utility functions
16 | """
17 |
18 | from typing import Dict
19 | from types import SimpleNamespace
20 |
21 |
22 | def union_two_dict(dict1: Dict, dict2: Dict):
23 | """Union two dict. Will throw an error if there is an item not the same object with the same key.
24 |
25 | Args:
26 | dict1:
27 | dict2:
28 |
29 | Returns:
30 |
31 | """
32 | for key, val in dict2.items():
33 | if key in dict1:
34 | assert dict2[key] == dict1[key], \
35 | f'{key} in meta_dict1 and meta_dict2 are not the same object'
36 | dict1[key] = val
37 |
38 | return dict1
39 |
40 |
41 | def append_to_dict(data: Dict, new_data: Dict):
42 | for key, val in new_data.items():
43 | if key not in data:
44 | data[key] = []
45 | data[key].append(val)
46 |
47 |
48 | class NestedNamespace(SimpleNamespace):
49 |
50 | def __init__(self, dictionary, **kwargs):
51 | super().__init__(**kwargs)
52 | for key, value in dictionary.items():
53 | if isinstance(value, dict):
54 | self.__setattr__(key, NestedNamespace(value))
55 | else:
56 | self.__setattr__(key, value)
57 |
--------------------------------------------------------------------------------
/verl/utils/ray_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Contains commonly used utilities for ray
16 | """
17 |
18 | import ray
19 |
20 | import concurrent.futures
21 |
22 |
23 | def parallel_put(data_list, max_workers=None):
24 |
25 | def put_data(index, data):
26 | return index, ray.put(data)
27 |
28 | if max_workers is None:
29 | max_workers = min(len(data_list), 16)
30 |
31 | with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
32 | data_list_f = [executor.submit(put_data, i, data) for i, data in enumerate(data_list)]
33 | res_lst = []
34 | for future in concurrent.futures.as_completed(data_list_f):
35 | res_lst.append(future.result())
36 |
37 | # reorder based on index
38 | output = [None for _ in range(len(data_list))]
39 | for res in res_lst:
40 | index, data_ref = res
41 | output[index] = data_ref
42 |
43 | return output
44 |
--------------------------------------------------------------------------------
/verl/utils/rendezvous/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/utils/rendezvous/ray_backend.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import logging
16 | import time
17 |
18 | from cupy.cuda.nccl import NcclCommunicator, get_unique_id
19 |
20 | import ray
21 | from ray.util import list_named_actors
22 |
23 |
24 | @ray.remote
25 | class NCCLIDStore:
26 |
27 | def __init__(self, nccl_id):
28 | self._nccl_id = nccl_id
29 |
30 | def get(self):
31 | return self._nccl_id
32 |
33 |
34 | def get_nccl_id_store_by_name(name):
35 | all_actors = list_named_actors(all_namespaces=True)
36 | matched_actors = [actor for actor in all_actors if actor.get("name", None) == name]
37 | if len(matched_actors) == 1:
38 | actor = matched_actors[0]
39 | return ray.get_actor(**actor)
40 | elif len(matched_actors) > 1:
41 | logging.warning(f"multiple actors with same name found: {matched_actors}")
42 | elif len(matched_actors) == 0:
43 | logging.info(f"failed to get any actor named {name}")
44 | return None
45 |
46 |
47 | def create_nccl_communicator_in_ray(rank: int,
48 | world_size: int,
49 | group_name: str,
50 | max_retries: int = 100,
51 | interval_s: int = 5):
52 | if rank == 0:
53 | nccl_id = get_unique_id()
54 | nccl_id_store = NCCLIDStore.options(name=group_name).remote(nccl_id)
55 |
56 | assert ray.get(nccl_id_store.get.remote()) == nccl_id
57 | communicator = NcclCommunicator(
58 | ndev=world_size,
59 | commId=nccl_id,
60 | rank=0,
61 | )
62 | return communicator
63 | else:
64 | for i in range(max_retries):
65 | nccl_id_store = get_nccl_id_store_by_name(group_name)
66 | if nccl_id_store is not None:
67 | logging.info(f"nccl_id_store {group_name} got")
68 | nccl_id = ray.get(nccl_id_store.get.remote())
69 | logging.info(f"nccl id for {group_name} got: {nccl_id}")
70 | communicator = NcclCommunicator(
71 | ndev=world_size,
72 | commId=nccl_id,
73 | rank=rank,
74 | )
75 | return communicator
76 | logging.info(f"failed to get nccl_id for {i+1} time, sleep for {interval_s} seconds")
77 | time.sleep(interval_s)
78 |
--------------------------------------------------------------------------------
/verl/utils/reward_score/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/utils/reward_score/countdown.py:
--------------------------------------------------------------------------------
1 | import re
2 | import random
3 | import ast
4 | import operator
5 |
6 |
7 | def extract_solution(solution_str):
8 | """Extract the equation from the solution string."""
9 | # Remove everything before the first "Assistant:"
10 | if "Assistant:" in solution_str:
11 | solution_str = solution_str.split("Assistant:", 1)[1]
12 | elif "<|im_start|>assistant" in solution_str:
13 | solution_str = solution_str.split("<|im_start|>assistant", 1)[1]
14 | else:
15 | return None
16 | solution_str = solution_str.split('\n')[-1]
17 |
18 | answer_pattern = r'(.*?)'
19 | match = re.finditer(answer_pattern, solution_str)
20 | matches = list(match)
21 | if matches:
22 | final_answer = matches[-1].group(1).strip()
23 | else:
24 | final_answer = None
25 | return final_answer
26 |
27 |
28 | def validate_equation(equation_str, available_numbers):
29 | """Validate that equation only uses available numbers and each number once."""
30 | try:
31 | # Extract all numbers from the equation
32 | numbers_in_eq = [int(n) for n in re.findall(r'\d+', equation_str)]
33 |
34 | # Check if all numbers in equation are available
35 | available_numbers = sorted(available_numbers)
36 | numbers_in_eq = sorted(numbers_in_eq)
37 |
38 | # Each number should be used exactly once
39 | return numbers_in_eq == available_numbers
40 | except:
41 | return False
42 |
43 |
44 | def evaluate_equation(equation_str):
45 | """Safely evaluate the arithmetic equation using eval() with precautions."""
46 | try:
47 | # Define a regex pattern that only allows numbers, operators, parentheses, and whitespace
48 | allowed_pattern = r'^[\d+\-*/().\s]+$'
49 | if not re.match(allowed_pattern, equation_str):
50 | raise ValueError("Invalid characters in equation.")
51 |
52 | # Evaluate the equation with restricted globals and locals
53 | result = eval(equation_str, {"__builtins__": None}, {})
54 | return result
55 | except Exception as e:
56 | return None
57 |
58 |
59 | def compute_score(solution_str, ground_truth, method='strict', format_score=0.1, score=1.):
60 | """The scoring function for countdown task.
61 |
62 | Args:
63 | solution_str: the solution text
64 | ground_truth: dictionary containing target number and available numbers
65 | method: the method to extract the solution
66 | format_score: the score for correct format but wrong answer
67 | score: the score for the correct answer
68 | """
69 | target = ground_truth['target']
70 | numbers = ground_truth['numbers']
71 |
72 | equation = extract_solution(solution_str=solution_str)
73 | do_print = random.randint(1, 64) == 1
74 |
75 | if do_print:
76 | print(f"--------------------------------")
77 | print(f"Target: {target} | Numbers: {numbers}")
78 | print(f"Extracted equation: {equation}")
79 | print(f"Solution string: {solution_str}")
80 |
81 | if equation is None:
82 | if do_print:
83 | print(f"No equation found")
84 | return 0
85 |
86 | # Validate equation uses correct numbers
87 | if not validate_equation(equation, numbers):
88 | if do_print:
89 | print(f"Invalid equation")
90 | return format_score
91 |
92 | # Evaluate equation
93 | try:
94 | result = evaluate_equation(equation)
95 | if result is None:
96 | if do_print:
97 | print(f"Could not evaluate equation")
98 | return format_score
99 |
100 | if abs(result - target) < 1e-5: # Account for floating point precision
101 | if do_print:
102 | print(f"Correct equation: {equation} = {result}")
103 | return score
104 | else:
105 | if do_print:
106 | print(f"Wrong result: equation = {result}, target = {target}")
107 | return format_score
108 | except:
109 | if do_print:
110 | print(f"Error evaluating equation")
111 | return format_score
--------------------------------------------------------------------------------
/verl/utils/reward_score/gsm8k.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import re
16 |
17 |
18 | def extract_solution(solution_str, method='strict'):
19 | assert method in ['strict', 'flexible']
20 |
21 | if method == 'strict':
22 | # this also tests the formatting of the model
23 | solution = re.search("#### (\\-?[0-9\\.\\,]+)", solution_str)
24 | if solution is None:
25 | final_answer = None
26 | else:
27 | final_answer = solution.group(0)
28 | final_answer = final_answer.split('#### ')[1].replace(',', '').replace('$', '')
29 | elif method == 'flexible':
30 | answer = re.findall("(\\-?[0-9\\.\\,]+)", solution_str)
31 | final_answer = None
32 | if len(answer) == 0:
33 | # no reward is there is no answer
34 | pass
35 | else:
36 | invalid_str = ['', '.']
37 | # find the last number that is not '.'
38 | for final_answer in reversed(answer):
39 | if final_answer not in invalid_str:
40 | break
41 | return final_answer
42 |
43 |
44 | def compute_score(solution_str, ground_truth, method='strict', format_score=0., score=1.):
45 | """The scoring function for GSM8k.
46 |
47 | Reference: Trung, Luong, et al. "Reft: Reasoning with reinforced fine-tuning." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024.
48 |
49 | Args:
50 | solution_str: the solution text
51 | ground_truth: the ground truth
52 | method: the method to extract the solution, choices are 'strict' and 'flexible'
53 | format_score: the score for the format
54 | score: the score for the correct answer
55 | """
56 | answer = extract_solution(solution_str=solution_str, method=method)
57 | if answer is None:
58 | return 0
59 | else:
60 | if answer == ground_truth:
61 | return score
62 | else:
63 | return format_score
--------------------------------------------------------------------------------
/verl/utils/tokenizer.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """Utils for tokenization."""
15 | import warnings
16 |
17 | __all__ = ['hf_tokenizer']
18 |
19 |
20 | def set_pad_token_id(tokenizer):
21 | """Set pad_token_id to eos_token_id if it is None.
22 |
23 | Args:
24 | tokenizer (transformers.PreTrainedTokenizer): The tokenizer to be set.
25 |
26 | """
27 | if tokenizer.pad_token_id is None:
28 | tokenizer.pad_token_id = tokenizer.eos_token_id
29 | warnings.warn(f'tokenizer.pad_token_id is None. Now set to {tokenizer.eos_token_id}')
30 | if tokenizer.pad_token is None:
31 | tokenizer.pad_token = tokenizer.eos_token
32 | warnings.warn(f'tokenizer.pad_token is None. Now set to {tokenizer.eos_token}')
33 |
34 |
35 | def hf_tokenizer(name_or_path, correct_pad_token=True, correct_gemma2=True, **kwargs):
36 | """Create a huggingface pretrained tokenizer.
37 |
38 | Args:
39 | name (str): The name of the tokenizer.
40 | correct_pad_token (bool): Whether to correct the pad token id.
41 | correct_gemma2 (bool): Whether to correct the gemma2 tokenizer.
42 | **kwargs: The keyword arguments for the tokenizer.
43 |
44 | Returns:
45 | transformers.PreTrainedTokenizer: The pretrained tokenizer.
46 |
47 | """
48 | from transformers import AutoTokenizer
49 | if correct_gemma2 and isinstance(name_or_path, str) and 'gemma-2-2b-it' in name_or_path:
50 | # the EOS token in gemma2 is ambiguious, which may worsen RL performance.
51 | # https://huggingface.co/google/gemma-2-2b-it/commit/17a01657f5c87135bcdd0ec7abb4b2dece04408a
52 | warnings.warn('Found gemma-2-2b-it tokenizer. Set eos_token and eos_token_id to and 107.')
53 | kwargs['eos_token'] = ''
54 | kwargs['eos_token_id'] = 107
55 | tokenizer = AutoTokenizer.from_pretrained(name_or_path, **kwargs)
56 | if correct_pad_token:
57 | set_pad_token_id(tokenizer)
58 | return tokenizer
--------------------------------------------------------------------------------
/verl/utils/torch_dtypes.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Adapted from Cruise.
16 | """
17 |
18 | import torch
19 |
20 | from typing import Union
21 |
22 | HALF_LIST = [16, "16", "fp16", "float16"]
23 | FLOAT_LIST = [32, "32", "fp32", "float32"]
24 | BFLOAT_LIST = ["bf16", "bfloat16"]
25 |
26 |
27 | class PrecisionType(object):
28 | """Type of precision used.
29 |
30 | >>> PrecisionType.HALF == 16
31 | True
32 | >>> PrecisionType.HALF in (16, "16")
33 | True
34 | """
35 |
36 | HALF = "16"
37 | FLOAT = "32"
38 | FULL = "64"
39 | BFLOAT = "bf16"
40 | MIXED = "mixed"
41 |
42 | @staticmethod
43 | def supported_type(precision: Union[str, int]) -> bool:
44 | return any(x == precision for x in PrecisionType)
45 |
46 | @staticmethod
47 | def supported_types() -> list[str]:
48 | return [x.value for x in PrecisionType]
49 |
50 | @staticmethod
51 | def is_fp16(precision):
52 | return precision in HALF_LIST
53 |
54 | @staticmethod
55 | def is_fp32(precision):
56 | return precision in FLOAT_LIST
57 |
58 | @staticmethod
59 | def is_bf16(precision):
60 | return precision in BFLOAT_LIST
61 |
62 | @staticmethod
63 | def to_dtype(precision):
64 | if precision in HALF_LIST:
65 | return torch.float16
66 | elif precision in FLOAT_LIST:
67 | return torch.float32
68 | elif precision in BFLOAT_LIST:
69 | return torch.bfloat16
70 | else:
71 | raise RuntimeError(f"unexpected precision: {precision}")
72 |
73 | @staticmethod
74 | def to_str(precision):
75 | if precision == torch.float16:
76 | return 'fp16'
77 | elif precision == torch.float32:
78 | return 'fp32'
79 | elif precision == torch.bfloat16:
80 | return 'bf16'
81 | else:
82 | raise RuntimeError(f"unexpected precision: {precision}")
83 |
--------------------------------------------------------------------------------
/verl/utils/tracking.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | A unified tracking interface that supports logging data to different backend
16 | """
17 | import dataclasses
18 | from enum import Enum
19 | from functools import partial
20 | from pathlib import Path
21 | from typing import List, Union, Dict, Any
22 |
23 |
24 | class Tracking(object):
25 | supported_backend = ['wandb', 'mlflow', 'console']
26 |
27 | def __init__(self, project_name, experiment_name, default_backend: Union[str, List[str]] = 'console', config=None):
28 | if isinstance(default_backend, str):
29 | default_backend = [default_backend]
30 | for backend in default_backend:
31 | if backend == 'tracking':
32 | import warnings
33 | warnings.warn("`tracking` logger is deprecated. use `wandb` instead.", DeprecationWarning)
34 | else:
35 | assert backend in self.supported_backend, f'{backend} is not supported'
36 |
37 | self.logger = {}
38 |
39 | if 'tracking' in default_backend or 'wandb' in default_backend:
40 | import wandb
41 | import os
42 | WANDB_API_KEY = os.environ.get("WANDB_API_KEY", None)
43 | if WANDB_API_KEY:
44 | wandb.login(key=WANDB_API_KEY)
45 | wandb.init(project=project_name, name=experiment_name, config=config)
46 | self.logger['wandb'] = wandb
47 |
48 | if 'mlflow' in default_backend:
49 | import mlflow
50 | mlflow.start_run(run_name=experiment_name)
51 | mlflow.log_params(_compute_mlflow_params_from_objects(config))
52 | self.logger['mlflow'] = _MlflowLoggingAdapter()
53 |
54 | if 'console' in default_backend:
55 | from verl.utils.logger.aggregate_logger import LocalLogger
56 | self.console_logger = LocalLogger(print_to_console=True)
57 | self.logger['console'] = self.console_logger
58 |
59 | def log(self, data, step, backend=None):
60 | for default_backend, logger_instance in self.logger.items():
61 | if backend is None or default_backend in backend:
62 | logger_instance.log(data=data, step=step)
63 |
64 |
65 | class _MlflowLoggingAdapter:
66 |
67 | def log(self, data, step):
68 | import mlflow
69 | mlflow.log_metrics(metrics=data, step=step)
70 |
71 |
72 | def _compute_mlflow_params_from_objects(params) -> Dict[str, Any]:
73 | if params is None:
74 | return {}
75 |
76 | return _flatten_dict(_transform_params_to_json_serializable(params, convert_list_to_dict=True), sep='/')
77 |
78 |
79 | def _transform_params_to_json_serializable(x, convert_list_to_dict: bool):
80 | _transform = partial(_transform_params_to_json_serializable, convert_list_to_dict=convert_list_to_dict)
81 |
82 | if dataclasses.is_dataclass(x):
83 | return _transform(dataclasses.asdict(x))
84 | if isinstance(x, dict):
85 | return {k: _transform(v) for k, v in x.items()}
86 | if isinstance(x, list):
87 | if convert_list_to_dict:
88 | return {'list_len': len(x)} | {f'{i}': _transform(v) for i, v in enumerate(x)}
89 | else:
90 | return [_transform(v) for v in x]
91 | if isinstance(x, Path):
92 | return str(x)
93 | if isinstance(x, Enum):
94 | return x.value
95 |
96 | return x
97 |
98 |
99 | def _flatten_dict(raw: Dict[str, Any], *, sep: str) -> Dict[str, Any]:
100 | import pandas as pd
101 | ans = pd.json_normalize(raw, sep=sep).to_dict(orient='records')[0]
102 | assert isinstance(ans, dict)
103 | return ans
104 |
--------------------------------------------------------------------------------
/verl/version/version:
--------------------------------------------------------------------------------
1 | 0.1
--------------------------------------------------------------------------------
/verl/workers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
--------------------------------------------------------------------------------
/verl/workers/actor/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .base import BasePPOActor
16 | from .dp_actor import DataParallelPPOActor
17 |
18 | __all__ = ["BasePPOActor", "DataParallelPPOActor"]
19 |
--------------------------------------------------------------------------------
/verl/workers/actor/base.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | The base class for Actor
16 | """
17 | from abc import ABC, abstractmethod
18 | from typing import Iterable, Dict
19 |
20 | from verl import DataProto
21 | import torch
22 |
23 | __all__ = ['BasePPOActor']
24 |
25 |
26 | class BasePPOActor(ABC):
27 |
28 | def __init__(self, config):
29 | """The base class for PPO actor
30 |
31 | Args:
32 | config (DictConfig): a config passed to the PPOActor. We expect the type to be
33 | DictConfig (https://omegaconf.readthedocs.io/), but it can be any namedtuple in general.
34 | """
35 | super().__init__()
36 | self.config = config
37 |
38 | @abstractmethod
39 | def compute_log_prob(self, data: DataProto) -> torch.Tensor:
40 | """Compute logits given a batch of data.
41 |
42 | Args:
43 | data (DataProto): a batch of data represented by DataProto. It must contain key ```input_ids```,
44 | ```attention_mask``` and ```position_ids```.
45 |
46 | Returns:
47 | DataProto: a DataProto containing the key ```log_probs```
48 |
49 |
50 | """
51 | pass
52 |
53 | @abstractmethod
54 | def update_policy(self, data: DataProto) -> Dict:
55 | """Update the policy with an iterator of DataProto
56 |
57 | Args:
58 | data (DataProto): an iterator over the DataProto that returns by
59 | ```make_minibatch_iterator```
60 |
61 | Returns:
62 | Dict: a dictionary contains anything. Typically, it contains the statistics during updating the model
63 | such as ```loss```, ```grad_norm```, etc,.
64 |
65 | """
66 | pass
67 |
--------------------------------------------------------------------------------
/verl/workers/critic/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .base import BasePPOCritic
16 | from .dp_critic import DataParallelPPOCritic
17 |
18 | __all__ = ["BasePPOCritic", "DataParallelPPOCritic"]
19 |
--------------------------------------------------------------------------------
/verl/workers/critic/base.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Base class for a critic
16 | """
17 | from abc import ABC, abstractmethod
18 |
19 | import torch
20 |
21 | from verl import DataProto
22 |
23 | __all__ = ['BasePPOCritic']
24 |
25 |
26 | class BasePPOCritic(ABC):
27 |
28 | def __init__(self, config):
29 | super().__init__()
30 | self.config = config
31 |
32 | @abstractmethod
33 | def compute_values(self, data: DataProto) -> torch.Tensor:
34 | """Compute values"""
35 | pass
36 |
37 | @abstractmethod
38 | def update_critic(self, data: DataProto):
39 | """Update the critic"""
40 | pass
41 |
--------------------------------------------------------------------------------
/verl/workers/reward_model/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .base import BasePPORewardModel
16 |
--------------------------------------------------------------------------------
/verl/workers/reward_model/base.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | The base class for reward model
16 | """
17 |
18 | from abc import ABC, abstractmethod
19 |
20 | from verl import DataProto
21 |
22 |
23 | class BasePPORewardModel(ABC):
24 |
25 | def __init__(self, config):
26 | self.config = config
27 |
28 | @abstractmethod
29 | def compute_reward(self, data: DataProto) -> DataProto:
30 | """Computing reward given input_ids. The transformers should output a tensor with shape
31 | [batch_size, sequence_length], and the value at [EOS] mask should be gathered.
32 |
33 | Args:
34 | data: must contain keys "input_ids", "attention_mask" and "position_ids".
35 | - input_ids: [batch_size, sequence_length]
36 | - attention_mask: [batch_size, sequence_length]
37 | - position_ids: [batch_size, sequence_length]
38 |
39 | Returns: a data pass protocol containing "reward". Only the [EOS] position contains the reward.
40 | Other position should have zero reward. Note that this may change in the future if we use
41 | dense reward. So, we leave the interface for general case.
42 | - reward: [batch_size, sequence_length].
43 |
44 | """
45 | pass
46 |
--------------------------------------------------------------------------------
/verl/workers/reward_model/megatron/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .reward_model import MegatronRewardModel
16 |
--------------------------------------------------------------------------------
/verl/workers/rollout/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .base import BaseRollout
16 | from .naive import NaiveRollout
17 | from .hf_rollout import HFRollout
18 |
19 | __all__ = ["BaseRollout", "NaiveRollout", "HFRollout"]
20 |
--------------------------------------------------------------------------------
/verl/workers/rollout/base.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from abc import ABC, abstractmethod
16 | from typing import Iterable, Union
17 |
18 | from verl import DataProto
19 |
20 | __all__ = ['BaseRollout']
21 |
22 |
23 | class BaseRollout(ABC):
24 |
25 | def __init__(self):
26 | """
27 |
28 | Args:
29 | dataloader: an Iterable of TensorDict that consistently generates prompts. Note that the dataloader
30 | should handle when the training stops.
31 | """
32 | super().__init__()
33 |
34 | @abstractmethod
35 | def generate_sequences(self, prompts: DataProto) -> DataProto:
36 | """Generate sequences"""
37 | pass
38 |
--------------------------------------------------------------------------------
/verl/workers/rollout/naive/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .naive_rollout import NaiveRollout
16 |
--------------------------------------------------------------------------------
/verl/workers/rollout/naive/naive_rollout.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | In single GPU rollout, the sequences are generated directly by sampling from the model.
16 | The output will contain
17 | 1. output_ids
18 | 2. attention_masks (left padding)
19 | 3. eos_masks
20 | 4. log_probs
21 | """
22 | from typing import Iterable, Union
23 |
24 | import torch
25 | import torch.nn.functional as F
26 | from tensordict import TensorDict
27 | from torch import nn
28 |
29 | from verl import DataProto
30 | from verl.utils.torch_functional import logprobs_from_logits
31 | from ..base import BaseRollout
32 |
33 | __all__ = ['NativeRollout']
34 |
35 |
36 | class NaiveRollout(BaseRollout):
37 |
38 | def __init__(self, module: nn.Module, config):
39 | """A naive rollout. It requires the module to be compatible with huggingface APIs. That is:
40 | The module should define __call__ to receive input_ids, attention_mask and position_ids.
41 | It outputs a structure that contains logits field.
42 |
43 | Args:
44 | module: module here follows huggingface APIs
45 | config: DictConfig
46 | """
47 | super().__init__()
48 | self.config = config
49 | self.module = module
50 |
51 | @torch.no_grad()
52 | def generate_sequences(self, prompts: DataProto) -> DataProto:
53 | """Generate sequences"""
54 | idx = prompts.batch['input_ids'] # (bs, prompt_length)
55 | attention_mask = prompts.batch['attention_mask'] # left-padded attention_mask
56 | position_ids = prompts.batch['position_ids']
57 |
58 | # used to construct attention_mask
59 | eos_token_id = prompts.meta_info['eos_token_id']
60 |
61 | batch_size = idx.size(0)
62 | prompt_length = idx.size(1)
63 |
64 | self.module.eval()
65 |
66 | prev_attention_mask = torch.ones(size=(batch_size, 1), dtype=attention_mask.dtype, device=attention_mask.device)
67 |
68 | logits_lst = []
69 | for _ in range(self.config.response_length):
70 | # if the sequence context is growing too long we must crop it at block_size
71 | # idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
72 | idx_cond = idx
73 | # forward the model to get the logits for the index in the sequence
74 | # we use huggingface APIs here
75 | output = self.module(input_ids=idx_cond, attention_mask=attention_mask, position_ids=position_ids)
76 | logits = output.logits
77 | # pluck the logits at the final step and scale by desired temperature
78 | logits = logits[:, -1, :] / self.config.temperature # (bs, vocab_size)
79 | # optionally crop the logits to only the top k options
80 | if self.config.top_k is not None:
81 | v, _ = torch.topk(logits, min(self.config.top_k, logits.size(-1)))
82 | logits[logits < v[:, [-1]]] = -float('Inf')
83 | # apply softmax to convert logits to (normalized) probabilities
84 | probs = F.softmax(logits, dim=-1)
85 | # sample from the distribution
86 | if self.config.do_sample:
87 | idx_next = torch.multinomial(probs, num_samples=1)
88 | else:
89 | idx_next = torch.argmax(probs, dim=-1, keepdim=True)
90 |
91 | attention_mask = torch.cat((attention_mask, prev_attention_mask), dim=-1)
92 |
93 | prev_attention_mask = torch.logical_and(idx_next != eos_token_id, prev_attention_mask.bool())
94 | prev_attention_mask.to(attention_mask.dtype)
95 |
96 | position_ids = torch.cat((position_ids, position_ids[:, -1:] + 1), dim=-1)
97 |
98 | # append sampled index to the running sequence and continue
99 | idx = torch.cat((idx, idx_next), dim=1)
100 | logits_lst.append(logits)
101 |
102 | logits = torch.stack(logits_lst, dim=1) # (bs, response_length, vocab_size)
103 | prompts = idx[:, :prompt_length] # (bs, prompt_length)
104 | response = idx[:, prompt_length:] # (bs, response_length)
105 | log_probs = logprobs_from_logits(logits=logits, labels=response)
106 | batch = TensorDict(
107 | {
108 | 'input_ids': prompts,
109 | 'responses': response,
110 | 'sequences': idx,
111 | 'old_log_probs': log_probs,
112 | 'attention_mask': attention_mask,
113 | 'position_ids': position_ids,
114 | },
115 | batch_size=batch_size)
116 |
117 | self.module.train()
118 |
119 | return DataProto(batch=batch)
120 |
--------------------------------------------------------------------------------
/verl/workers/rollout/vllm_rollout/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from .vllm_rollout import vLLMRollout
--------------------------------------------------------------------------------
/verl/workers/sharding_manager/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from verl.utils.import_utils import is_vllm_available, is_megatron_core_available
16 |
17 | from .base import BaseShardingManager
18 | from .fsdp_ulysses import FSDPUlyssesShardingManager
19 |
20 | AllGatherPPModel = None
21 |
22 | if is_megatron_core_available() and is_vllm_available():
23 | from .megatron_vllm import AllGatherPPModel, MegatronVLLMShardingManager
24 | elif AllGatherPPModel is not None:
25 | pass
26 | else:
27 | AllGatherPPModel = None
28 | MegatronVLLMShardingManager = None
29 |
30 | if is_vllm_available():
31 | from .fsdp_vllm import FSDPVLLMShardingManager
32 | else:
33 | FSDPVLLMShardingManager = None
34 |
--------------------------------------------------------------------------------
/verl/workers/sharding_manager/base.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Sharding manager to implement HybridEngine
16 | """
17 |
18 | from verl import DataProto
19 |
20 |
21 | class BaseShardingManager:
22 |
23 | def __enter__(self):
24 | pass
25 |
26 | def __exit__(self, exc_type, exc_value, traceback):
27 | pass
28 |
29 | def preprocess_data(self, data: DataProto) -> DataProto:
30 | return data
31 |
32 | def postprocess_data(self, data: DataProto) -> DataProto:
33 | return data
34 |
--------------------------------------------------------------------------------
/verl/workers/sharding_manager/fsdp_ulysses.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Contains a resharding manager that binds weights from FSDP zero3 to XPerfGPT
16 | """
17 | from typing import Optional
18 | from .base import BaseShardingManager
19 |
20 | import random
21 | from torch.distributed.device_mesh import DeviceMesh
22 |
23 | from verl.utils.torch_functional import allgather_dict_tensors
24 | from verl.utils.ulysses import set_ulysses_sequence_parallel_group, get_ulysses_sequence_parallel_group
25 | import numpy as np
26 |
27 | import torch
28 | import torch.distributed
29 |
30 | from verl import DataProto
31 |
32 |
33 | class FSDPUlyssesShardingManager(BaseShardingManager):
34 | """
35 | Sharding manager to support data resharding when using FSDP + Ulysses
36 | """
37 |
38 | def __init__(self, device_mesh: DeviceMesh):
39 | super().__init__()
40 | self.device_mesh = device_mesh
41 | self.seed_offset = 12345
42 |
43 | def __enter__(self):
44 | if self.device_mesh is not None:
45 | # We have a global SP group
46 | # so we have to change to use model-specific sp group
47 | self.prev_sp_group = get_ulysses_sequence_parallel_group()
48 | set_ulysses_sequence_parallel_group(self.device_mesh['sp'].get_group())
49 | # TODO: check how to set seed for each model
50 |
51 | def __exit__(self, exc_type, exc_value, traceback):
52 | # restore random states
53 | if self.device_mesh is not None:
54 | # revert to previous sp group
55 | set_ulysses_sequence_parallel_group(self.prev_sp_group)
56 | # TODO: check how to set seed for each model
57 |
58 | def preprocess_data(self, data: DataProto) -> DataProto:
59 | """
60 | AllGather data from sp region
61 | This is because the data is first sharded along the FSDP dimension as we utilize the DP_COMPUTE
62 | In Ulysses, we need to make sure the same data is used across a SP group
63 | """
64 | if self.device_mesh is not None:
65 | sp_size = self.device_mesh['sp'].size()
66 | group = self.device_mesh['sp'].get_group()
67 |
68 | prev_device = data.batch.device
69 | data.batch = data.batch.cuda(device=torch.cuda.current_device())
70 | data.batch = allgather_dict_tensors(data.batch.contiguous(), size=sp_size, group=group, dim=0)
71 | data.batch = data.batch.to(prev_device)
72 | # all gather non_tensor_batch
73 | all_non_tensor_batch = [None for _ in range(sp_size)]
74 | torch.distributed.all_gather_object(all_non_tensor_batch, data.non_tensor_batch, group=group)
75 | data.non_tensor_batch = {
76 | k: np.concatenate([d[k] for d in all_non_tensor_batch]) for k in data.non_tensor_batch
77 | }
78 | return data
79 |
80 | def postprocess_data(self, data: DataProto) -> DataProto:
81 | """
82 | Split the data to follow FSDP partition
83 | """
84 | if self.device_mesh is not None:
85 | sp_size = self.device_mesh['sp'].size()
86 | sp_rank = self.device_mesh['sp'].get_local_rank()
87 | data = data.chunk(chunks=sp_size)[sp_rank]
88 | return data
--------------------------------------------------------------------------------