├── LICENSE
├── README.md
├── activation
├── sinActivation.m
├── smoothRelU.m
└── tanhActivation.m
├── classification
├── classObjFun.m
├── examples
│ ├── EClass_Ellipses.m
│ ├── EClass_Peaks.m
│ ├── EClass_motivateEntropy.m
│ ├── EClass_unsupervised.m
│ ├── EELM_MNIST.m
│ └── EELM_Peaks.m
├── logRegression.m
└── softMax.m
├── conv
├── EConv_Conv1DFFT.m
├── conv1D.m
├── conv2D.m
├── convCoupled2D.m
├── convFFT.m
├── convMCN.m
└── examples
│ ├── EConv_BatchNorm.m
│ ├── EConv_CoarseToFine.m
│ ├── EConv_CoarseToFineGalerkin.m
│ ├── EConv_ConvFFT2D.m
│ ├── EConv_InstanceNorm.m
│ └── EConv_deriveConvFFT.m
├── data
├── loadMNISTImages.m
├── loadMNISTLabels.m
├── setupCIFAR10.m
├── setupEllipses.m
├── setupMNIST.m
└── setupPeaks.m
├── notes
└── E_polyfit.m
├── optimization
├── cgls.m
├── newtoncg.m
├── sgd.m
└── steepestDescent.m
├── regularization
├── genTikhonov.m
└── getLaplacian.m
├── resnet
├── ResNetForward.m
├── ResNetObjFun.m
├── ResNetVarProObjFun.m
├── dResNetMatVec.m
├── dResNetMatVecT.m
├── examples
│ ├── EResNet_Forward.m
│ ├── EResNet_PeaksNewtonCG.m
│ ├── EResNet_PeaksSGD.m
│ ├── EResNet_PeaksVarPro.m
│ ├── EResNet_Stability.m
│ ├── EResNet_TestDerivative.m
│ ├── EResNet_TestObjective.m
│ └── EReseNet_vs_NeuralNet.m
└── vec2cellResNet.m
├── singleLayer
├── examples
│ ├── ESingleLayer_PeaksNewtonCG.m
│ ├── ESingleLayer_PeaksSGD.m
│ ├── ESingleLayer_PeaksVarPro.m
│ └── ESingleLayer_PlotObjective.m
├── singleConvLayer.m
├── singleLayer.m
├── singleLayerAdvObjFun.m
├── singleLayerNNObjFun.m
└── singleLayerNNVarProObjFun.m
├── startupNumDLToolbox.m
├── test
├── Rosenbrock.m
├── quadObjFun.m
├── testGenTikhonov.m
├── testLogRegression.m
├── testSingleLayer.m
├── testSingleLayerNNObjFun.m
└── testSoftMax.m
├── utils
├── LinearOperator.m
├── cell2vec.m
├── opEye.m
├── opKron.m
├── opZero.m
├── vec.m
└── vec2cell.m
└── viewers
└── montageArray.m
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # NumDL-MATLAB
2 |
3 | These MATLAB codes can be used to reproduce and extend the examples in the [Numerical Methods for Deep Learning](https://github.com/IPAIopen/NumDL-CourseNotes) class.
4 |
5 | These materials was first developed by [Lars Ruthotto](http://www.mathcs.emory.edu/~lruthot/) at [Emory University](http://www.emory.edu) and [Eldad Haber](https://sites.google.com/site/ehaberubc/home) at [University of British Columbia](https://www.ubc.ca/) in the Spring and Summer of 2018.
6 |
7 | ## Scope
8 |
9 | The MATLAB files here aim at implementing of neural networks and numerical methods for their training in the simplest possible way. This is critical here, in order to involve students and researchers from a variety of backgrounds. It is more important to us than speed in this case. In fact, many functions here can be optimized for runtime but often at the cost of less readability.
10 |
11 | ## Acknowledgements
12 | Development of this material is in part supported by the National Science Foundation under Grant Numbers 1522599 and 1751636. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
--------------------------------------------------------------------------------
/activation/sinActivation.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [A,dA] = sinActivation(Y,varargin)
8 | %
9 | % activation function A = sin(Y)
10 | %
11 | % Input:
12 | %
13 | % Y - array of features
14 | %
15 | % Optional Input:
16 | %
17 | % doDerivative - flag for computing derivative, set via varargin
18 | % Ex: sinActivation(Y,'doDerivative',0);
19 | %
20 | % Output:
21 | %
22 | % A - activation
23 | % dA - derivatives
24 |
25 | function [A,dA] = sinActivation(Y,varargin)
26 |
27 |
28 | if nargin==0
29 | runMinimalExample;
30 | return
31 | end
32 |
33 | doDerivative = nargout==2;
34 | for k=1:2:length(varargin) % overwrites default parameter
35 | eval([varargin{k},'=varargin{',int2str(k+1),'};']);
36 | end;
37 |
38 |
39 | dA = [];
40 |
41 | A = sin(Y);
42 |
43 | if doDerivative
44 | dA = cos(Y);
45 | end
46 |
47 |
48 |
49 | function runMinimalExample
50 | Y = linspace(-3,3,101);
51 | [A,dA] = feval(mfilename,Y);
52 |
53 | fig = figure(100);clf;
54 | fig.Name = mfilename;
55 | plot(Y,A,'linewidth',3);
56 | hold on;
57 | plot(Y,dA,'linewidth',3);
58 | xlabel('y')
59 | legend('sin(y)','cos(y)')
--------------------------------------------------------------------------------
/activation/smoothRelU.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [A,dA] = smoothReluActivation(Y,varargin)
8 | %
9 | % smoothed relu activation function A = smoothReluActivation(Y). The idea
10 | % is to use a quadratic model close to the origin to ensure
11 | % differentiability:
12 | %
13 | % | y, if y>eta
14 | % sigma(y) = | 0, if y0;
67 | hvalid = Svalid>0;
68 |
69 | trainErr = 100*nnz(abs(CTrain-htrain))/2/nnz(CTrain);
70 | valErr = 100*nnz(abs(CValid-hvalid))/2/nnz(CValid);
71 | %%
72 | x = linspace(min(Y(1,:)),max(Y(1,:)),201);
73 | y = linspace(min(Y(2,:)),max(Y(2,:)),101);
74 | [Xg,Yg] = ndgrid(x,y);
75 | S = WOpt * padarray([vec(Xg)'; vec(Yg)'],[1,0],1,'post');
76 | posInd = (S>0);
77 | negInd = (S <= 0);
78 | P = 0*S;
79 | P(posInd) = 1./(1+exp(-S(posInd)));
80 | P(negInd) = exp(S(negInd))./(1+exp(S(negInd)));
81 | Cpred = P > 0.5;
82 | img = reshape(Cpred,size(Xg));
83 | %%
84 | figure(2);clf;
85 | ih = imagesc(x,y,img')
86 | ih.AlphaData = .5
87 | colormap([col2;col1]);
88 | colorbar
89 | hold on;
90 | p1 = plot(YTrain(1,CTrain==1),YTrain(2,CTrain==1),'.','MarkerSize',10);
91 | p1.Color=col1;
92 | % plot(YTrain(1,Cpred==1),YTrain(2,Cpred==1),'o','MarkerSize',10);
93 |
94 | p2 = plot(YTrain(1,CTrain==0),YTrain(2,CTrain==0),'.','MarkerSize',10);
95 | p2.Color=col2;
96 | axis equal tight
97 | title(sprintf('train error %1.2f%% val error %1.2f%%',trainErr,valErr));
98 | set(gca,'FontSize',20)
99 |
100 |
101 |
--------------------------------------------------------------------------------
/classification/examples/EClass_Peaks.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Multinomial regression for the peaks example. Here we see that a nonlinear
8 | % transformation of the feature space is required.
9 | %
10 | close all; clear all; clc;
11 |
12 | %% get peaks data
13 | np = 8000; % num of points sampled
14 | nc = 5; % num of classes
15 | ns = 256; % length of grid
16 |
17 | [Y, C] = setupPeaks(np, nc, ns);
18 |
19 | numTrain = size(Y, 2)*0.80;
20 | idx = randperm(numTrain);
21 | idxTrain = idx(1:numTrain);
22 | idxValid = idx(numTrain+1:end);
23 |
24 | YTrain = Y(:,idxTrain);
25 | CTrain = C(:,idxTrain);
26 |
27 | YValid = Y(:,idxValid);
28 | CValid = C(:,idxValid);
29 |
30 | [YTest, CTest] = setupPeaks(2000, nc, ns);
31 |
32 | nf = size(Y,1);
33 | nc = size(C,1);
34 | %% optimize
35 | % m = 640/20;
36 | W0 = randn(nc,3);
37 |
38 | paramRegW = struct('L',speye(numel(W0)),'lambda',1e-3);
39 | fctn = @(x,varargin) classObjFun(x,YTrain,CTrain,paramRegW);
40 | param = struct('maxIter',30,'maxStep',1,'tolCG',1e-3,'maxIterCG',100);
41 | WOpt = newtoncg(fctn,W0(:),param);
42 | %%
43 | WOpt = reshape(WOpt,nc,[]);
44 | Strain = WOpt*padarray(YTrain,[1,0],1,'post');
45 | S = WOpt*padarray(YTest,[1,0],1,'post');
46 | htrain = exp(Strain)./sum(exp(Strain),1);
47 | h = exp(S)./sum(exp(S),1);
48 |
49 | % Find the largesr entry at each row
50 | [~,ind] = max(h,[],1);
51 | Cv = zeros(size(CTest));
52 | Ind = sub2ind(size(Cv),ind,1:size(Cv,2));
53 | Cv(Ind) = 1;
54 | [~,ind] = max(htrain,[],1);
55 | Cpred = zeros(size(CTrain));
56 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
57 | Cpred(Ind) = 1;
58 | 5
59 | trainErr = 100*nnz(abs(CTrain-Cpred))/2/nnz(CTrain);
60 | valErr = 100*nnz(abs(Cv-CTest))/2/nnz(Cv);
61 | %%
62 | x = linspace(-3,3,201);
63 | [Xg,Yg] = ndgrid(x);
64 | Z = WOpt * padarray([vec(Xg)'; vec(Yg)'],[1,0],1,'post');
65 | h = exp(Z)./sum(exp(Z),1);
66 |
67 | [~,ind] = max(h,[],1);
68 | Cpred = zeros(5,numel(Xg));
69 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
70 | Cpred(Ind) = 1;
71 | img = reshape((1:5)*Cpred,size(Xg));
72 | %%
73 | figure(1);
74 | imagesc(x,x,img')
75 | title(sprintf('train %1.2f%% val %1.2f%%',trainErr,valErr));
76 |
77 |
78 |
79 |
--------------------------------------------------------------------------------
/classification/examples/EClass_motivateEntropy.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % This basic example illustrates the convexity of the entropy function
8 | %
9 | nex = 100;
10 | nf = 2;
11 |
12 | Y = randn(nex,nf);
13 | C1 = sum(Y,2)>0;
14 | C = [C1 1-C1];
15 |
16 | [W1,W2] = meshgrid(linspace(-7,7,201));
17 |
18 | F = zeros(101,101);
19 | F2 = F;
20 | for i=1:size(W1,1)
21 | for j=1:size(W1,1)
22 | Hp = 1./(1+exp(Y*[W1(i,j);W2(i,j)]));
23 | Hp= [Hp 1-Hp];
24 | Cp = Hp./(sum(Hp,2));
25 | F(i,j) = 0.5*norm(Cp-C)^2/nex;
26 |
27 | F2(i,j) = -sum(sum(C.*log(Cp)))/nex;
28 | end
29 | end
30 |
31 | fig = figure(1);clf;
32 | fig.Name = 'Frobenius'
33 | % subplot(1,2,1)
34 | contour(W1,W2,F,50,'linewidth',2)
35 | % hold on;
36 | % [mx,idx] = min(F(:));
37 | % plot(W1(idx),W2(idx),'.r','MarkerSize',60)
38 | title('Frobenius Norm')
39 | % colorbar
40 | axis equal tight
41 |
42 | fig = figure(2);clf;
43 | fig.Name = 'CrossEntropy'
44 | % subplot(1,2,2)
45 | contour(W1,W2,F2,50,'linewidth',2)
46 | % hold on;
47 | % [mx,idx] = min(F2(:));
48 | % plot(W1(idx),W2(idx),'.r','MarkerSize',60)
49 | title('cross entropy')
50 | axis equal tight
51 | % colorbar;
52 |
53 | figDir = '/Users/lruthot/Dropbox/Projects/NumDL-CourseNotes/images/'
54 |
55 | for k=1:2
56 | fig = figure(k)
57 | title([])
58 | axis equal tight off
59 | set(gca,'FontSize',20)
60 | printFigure(gcf,fullfile(figDir,['Class_' fig.Name '.png']))
61 | end
62 |
63 |
--------------------------------------------------------------------------------
/classification/examples/EClass_unsupervised.m:
--------------------------------------------------------------------------------
1 | close all; clear all;
2 |
3 | r = [0 2 4];
4 |
5 | fig1 = figure(1); clf;
6 | fig1.Name = 'data';
7 | hold on;
8 |
9 | fig3 = figure(3); clf;
10 | fig3.Name = 'semi';
11 | hold on;
12 |
13 | fig2 = figure(2); clf;
14 | fig2.Name = 'labeled'
15 | hold on;
16 | for k=1:numel(r)
17 | alpha = rand(1,300);
18 | rad = r(k)+rand(1,300);
19 | X = rad.*[cos(2*pi*alpha);sin(2*pi*alpha)];
20 | figure(1);
21 | plot(X(1,:),X(2,:),'.k','MarkerSize',10)
22 |
23 |
24 | figure(2)
25 | plot(X(1,:),X(2,:),'.','MarkerSize',10)
26 |
27 | figure(3);
28 | p=plot(X(1,:),X(2,:),'.k','MarkerSize',10)
29 | plot(X(1,1:3),X(2,1:3),'.','MarkerSize',50)
30 |
31 | end
32 |
33 | figDir = '/Users/lruthot/Dropbox/Projects/NumDL-CourseNotes/images/'
34 |
35 | for k=1:3
36 | fig = figure(k)
37 | axis equal tight off
38 | set(gca,'FontSize',20)
39 | printFigure(gcf,fullfile(figDir,['unsupervised_' fig.Name '.png']))
40 | end
41 |
--------------------------------------------------------------------------------
/classification/examples/EELM_MNIST.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Example: Extreme learning for MNIST
8 | %
9 | close all; clear all; clc;
10 |
11 | %%
12 | [Y,C,Yv,Cv] = setupMNIST(50000,10000);
13 | %% optimize
14 | m = 1530;
15 | nf = size(Y,1);
16 | nc = size(C,1);
17 |
18 | KOpt = randn(m,nf)/sqrt(nf*m);
19 | bOpt = randn();
20 | WOpt = randn(nc,m+1)/sqrt(nc*m);
21 |
22 | W0 = WOpt;
23 | Z = singleLayer(KOpt,bOpt,Y);
24 | paramReg = struct('L',speye(numel(W0)),'lambda',1e-8);
25 | fctn = @(x,varargin) classObjFun(x,Z,C,paramReg);
26 | param = struct('maxIter',20,'maxStep',1,'maxIterCG',30,'tolCG',1e-2);
27 | WOpt = newtoncg(fctn,WOpt(:),param);
28 | %%
29 | WOpt = reshape(WOpt,nc,m+1);
30 | Strain = WOpt*padarray(Z,[1,0],1,'post');
31 | S = WOpt*padarray(singleLayer(KOpt,bOpt,Yv),[1,0],1,'post');
32 | % the probability function
33 | htrain = exp(Strain)./sum(exp(Strain),1);
34 | h = exp(S)./sum(exp(S),1);
35 |
36 | % Find the largesr entry at each row
37 | [~,ind] = max(h,[],1);
38 | Cvpred = zeros(size(Cv));
39 | Ind = sub2ind(size(Cv),ind,1:size(Cv,2));
40 | Cvpred(Ind) = 1;
41 | [~,ind] = max(htrain,[],1);
42 | Cpred = zeros(size(C));
43 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
44 | Cpred(Ind) = 1;
45 |
46 | trainErr = 100*nnz(abs(C-Cpred))/2/nnz(C);
47 | valErr = 100*nnz(abs(Cv-Cvpred))/2/nnz(Cv);
48 | fprintf('Testing Error %3.2f%%\n',trainErr);
49 | fprintf('Validation Error %3.2f%%\n',valErr);
--------------------------------------------------------------------------------
/classification/examples/EELM_Peaks.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Example: Extreme learning for Peaks example
8 | %
9 | close all; clear all; clc;
10 | rng(42)
11 | %% get peaks data
12 | np = 8000; % num of points sampled
13 | nc = 5; % num of classes
14 | ns = 256; % length of grid
15 |
16 | [Y, C] = setupPeaks(np, nc, ns);
17 |
18 | numTrain = size(Y, 2)*0.80;
19 | idx = randperm(size(Y,2));
20 | idxTrain = idx(1:numTrain);
21 | idxValid = idx(numTrain+1:end);
22 |
23 | YTrain = Y(:,idxTrain);
24 | CTrain = C(:,idxTrain);
25 |
26 | YValid = Y(:,idxValid);
27 | CValid = C(:,idxValid);
28 |
29 | [YTest, CTest] = setupPeaks(2000, nc, ns);
30 |
31 | nf = size(Y,1);
32 | nc = size(C,1);
33 | %% optimize
34 | % m = 640/20;
35 | m = 200;
36 | KOpt = randn(m,nf);
37 | bOpt = randn(1);
38 | W0 = randn(nc,m+1);
39 |
40 | %% compare nonlinearities
41 | figure(1); clf;
42 | subplot(2,2,1);
43 | Z1 = sin(KOpt*Y+bOpt);
44 | Z2 = tanh(KOpt*Y+bOpt);
45 | Z3 = max(0,KOpt*Y+bOpt);
46 | semilogy(svd(Z1),'linewidth',3);
47 | hold on;
48 | semilogy(svd(Z2),'linewidth',3);
49 | semilogy(svd(Z3),'linewidth',3);
50 | legend('sin','tanh','relu');
51 | title('singular values')
52 | set(gca,'FontSize',20)
53 | %% optimize
54 | relu = @(x) max(x,0);
55 | acts = {@sin,@tanh,relu};
56 |
57 | for k=1:numel(acts)
58 | act = acts{k};
59 | Z = act(KOpt*Y+bOpt);
60 | paramRegW = struct('L',speye(numel(W0)),'lambda',1e-3);
61 | fctn = @(x,varargin) classObjFun(x,Z,C,paramRegW);
62 | param = struct('maxIter',30,'maxStep',1,'tolCG',1e-3,'maxIterCG',100);
63 | WOpt = newtoncg(fctn,W0(:),param);
64 | %%
65 | WOpt = reshape(WOpt,nc,m+1);
66 | Strain = WOpt*padarray(Z,[1,0],1,'post');
67 | S = WOpt*padarray(act(KOpt*YTest+bOpt),[1,0],1,'post');
68 | htrain = exp(Strain)./sum(exp(Strain),1);
69 | h = exp(S)./sum(exp(S),1);
70 |
71 | % Find the largesr entry at each row
72 | [~,ind] = max(h,[],1);
73 | Cv = zeros(size(CTest));
74 | Ind = sub2ind(size(Cv),ind,1:size(Cv,2));
75 | Cv(Ind) = 1;
76 | [~,ind] = max(htrain,[],1);
77 | Cpred = zeros(size(C));
78 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
79 | Cpred(Ind) = 1;
80 |
81 | trainErr = 100*nnz(abs(C-Cpred))/2/nnz(C);
82 | valErr = 100*nnz(abs(Cv-CTest))/2/nnz(Cv);
83 | %%
84 | x = linspace(-3,3,201);
85 | [Xg,Yg] = ndgrid(x);
86 | Z = WOpt * padarray(act(KOpt*[vec(Xg)'; vec(Yg)']+bOpt),[1,0],1,'post');
87 | h = exp(Z)./sum(exp(Z),1);
88 |
89 | [~,ind] = max(h,[],1);
90 | Cpred = zeros(5,numel(Xg));
91 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
92 | Cpred(Ind) = 1;
93 | img = reshape((1:5)*Cpred,size(Xg));
94 | %%
95 | figure(1);
96 | subplot(2,2,1+k)
97 | imagesc(x,x,img')
98 | title(sprintf('%s - train %1.2f%% val %1.2f%%',func2str(act),trainErr,valErr));
99 | end
100 | %%
101 | for k=1:4
102 | subplot(2,2,k)
103 | set(gca,'FontSize',20)
104 | end
105 |
106 |
107 |
--------------------------------------------------------------------------------
/classification/logRegression.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | %[E,dEW,d2EW,dEY,d2EY] = logRegression(W,Y,C)
8 | %
9 | % Evaluates cross-entropy loss function for logistic regression
10 | %
11 | % Inputs:
12 | %
13 | % W - current weights of classifier
14 | % Y - features
15 | % C - labels
16 | %
17 | % Outputs:
18 | %
19 | % E - cross-entropy
20 | % dEW - gradient w.r.t. W
21 | % d2W - function handle for matvec with Hessian w.r.t. W
22 | % dEY - gradient w.r.t. Y
23 | % d2Y - function handle for matvec with Hessian w.r.t. Y
24 |
25 | function[E,dEW,d2EW,dEY,d2EY] = logRegression(W,Y,C)
26 |
27 | if nargin == 0
28 | runMinExample;
29 | return
30 | end
31 | if size(C,1) ~= 1
32 | error('logRegression can only handle binary classification.')
33 | end
34 | W = reshape(W,1,[]); addBias = false;
35 | if size(W,2)==size(Y,1)+1
36 | addBias = true;
37 | Y = [Y; ones(1,size(Y,2))];
38 | end
39 | n = size(Y,2);
40 | nc = size(C,1);
41 |
42 | % the linear model
43 | S = W*Y;
44 |
45 |
46 |
47 | % The cross entropy
48 | posInd = (S>0);
49 | negInd = (S<=0);
50 | E = -sum(C(negInd).*S(negInd) - log(1+exp(S(negInd))) ) - ...
51 | sum(C(posInd).*S(posInd) - log(exp(-S(posInd))+1) - S(posInd));
52 | E = E/n;
53 |
54 | if nargout > 1
55 | dES = (C- 1./(1+exp(-S)));
56 | dEW = -dES*(Y'/n);
57 | dEW = dEW(:);
58 | end
59 |
60 | if nargout>2
61 | matW = @(v) reshape(v,nc,[]); % reshape vector into same size of W
62 | vec = @(V) V(:);
63 |
64 | d2E = @(U) U./(2*cosh(S/2)).^2;
65 | d2EW = @(v) vec(d2E(matW(v)*Y)*Y')/n + 1e-5*v;
66 | end
67 |
68 | if addBias
69 | W = W(:,1:end-1);
70 | end
71 | if nargout > 3
72 | dEY = -(W'*dES)/n;
73 | dEY = dEY(:);
74 | end
75 |
76 | if nargout>4
77 | matY = @(v) reshape(v,[],n);
78 |
79 | d2EY = @(v) vec(W'*d2E(W*matY(v)))/n + 1e-5*vec(v);
80 | end
81 |
82 | end
83 |
84 | function runMinExample
85 |
86 | vec = @(x) x(:);
87 | nex = 100;
88 | Y = randn(2,nex);
89 | C = Y(1,:) > 0;
90 | b = 0;
91 | W = [1;1];
92 | E = logRegression(W,Y,C);
93 | [E,dE,d2E] = logRegression(W,Y,C);
94 |
95 | h = 1;
96 | err = zeros(3,20);
97 | dW = randn(size(W));
98 | for i=1:size(err,2)
99 | E1 = logRegression(W+h*dW,Y,C);
100 | t = abs(E1-E);
101 | t1 = abs(E1-E-h*dE(:)'*dW(:));
102 | t2 = abs(E1-E-h*dE(:)'*dW(:) - h^2/2 * dW(:)'*vec(d2E(dW(:))));
103 |
104 | fprintf('%3.2e %3.2e %3.2e\n',t,t1,t2)
105 |
106 | err(i,1) = abs(E1-E);
107 | err(i,2) = abs(E1-E-h*dE(:)'*dW(:));
108 | err(i,3) = t2;
109 | h = h/2;
110 | end
111 | end
--------------------------------------------------------------------------------
/classification/softMax.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | %[E,dEW,d2EW,dEY,d2EY] = softMax(W,Y,C)
8 | %
9 | % Evaluates cross-entropy loss function for multinomial classification
10 | %
11 | % Inputs:
12 | %
13 | % W - current weights of classifier
14 | % Y - features
15 | % C - labels
16 | %
17 | % Outputs:
18 | %
19 | % E - cross-entropy
20 | % dEW - gradient w.r.t. W
21 | % d2W - function handle for matvec with Hessian w.r.t. W
22 | % dEY - gradient w.r.t. Y
23 | % d2Y - function handle for matvec with Hessian w.r.t. Y
24 |
25 | function[E,dEW,d2EW,dEY,d2EY] = softMax(W,Y,C)
26 |
27 |
28 | if nargin == 0
29 | runMinExample;
30 | return
31 | end
32 | W = reshape(W,size(C,1),[]); addBias = false;
33 | if size(W,2)==size(Y,1)+1
34 | addBias = true;
35 | Y = [Y; ones(1,size(Y,2))];
36 | end
37 | n = size(Y,2);
38 | nc = size(C,1);
39 |
40 | % the linear model
41 | S = W*Y;
42 |
43 | % make sure that the largest number in every row is 0
44 | s = max(S,[],1);
45 | S = S-s;
46 |
47 |
48 | % The cross entropy
49 | expS = exp(S);
50 | sS = sum(expS,1);
51 |
52 | E = -C(:)'*S(:) + sum(log(sS));
53 | E = E/n;
54 |
55 | if nargout > 1
56 | dES = -C + expS .* 1./sS;
57 | dEW = dES*(Y'/n);
58 | dEW = dEW(:);
59 | end
60 |
61 | if nargout>2
62 | matW = @(v) reshape(v,nc,[]); % reshape vector into same size of W
63 | vec = @(V) V(:);
64 |
65 | d2E = @(U) (U.*expS)./sS - expS.*(sum(expS.*U,1)./sS.^2);
66 | d2EW = @(v) vec(d2E(matW(v)*Y)*Y')/n + 1e-5*v;
67 | end
68 |
69 | if addBias
70 | W = W(:,1:end-1);
71 | end
72 | if nargout > 3
73 | dEY = (W'*dES)/n;
74 | dEY = dEY(:);
75 | end
76 |
77 | if nargout>4
78 | matY = @(v) reshape(v,[],n);
79 |
80 | d2EY = @(v) vec(W'*d2E(W*matY(v)))/n + 1e-5*vec(v);
81 | end
82 |
83 | end
84 |
85 | function runMinExample
86 |
87 | vec = @(x) x(:);
88 | nex = 100;
89 | Y = hilb(500)*255;
90 | Y = Y(:,1:nex);
91 | C = ones(3,nex);
92 | C = C./sum(C,1);
93 | b = 0;
94 | W = hilb(501);
95 | W = W(1:3,:);
96 | E = softMax(W,Y,C);
97 | [E,dE,d2E] = softMax(W,Y,C);
98 |
99 | h = 1;
100 | rho = zeros(3,20);
101 | dW = randn(size(W));
102 | for i=1:20
103 | E1 = softMax(W+h*dW,Y,C);
104 | t = abs(E1-E);
105 | t1 = abs(E1-E-h*dE(:)'*dW(:));
106 | t2 = abs(E1-E-h*dE(:)'*dW(:) - h^2/2 * dW(:)'*vec(d2E(dW(:))));
107 |
108 | fprintf('%3.2e %3.2e %3.2e\n',t,t1,t2)
109 |
110 | rho(i,1) = abs(E1-E);
111 | rho(i,2) = abs(E1-E-h*dE(:)'*dW(:));
112 | rho(i,3) = t2;
113 | h = h/2;
114 | end
115 | end
--------------------------------------------------------------------------------
/conv/EConv_Conv1DFFT.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Example for 1D convolution with FFTs
8 |
9 | close all; clear all; clc;
10 |
11 | % stencil
12 | n = 16;
13 | theta = rand(3,1);
14 | K = full(spdiags(ones(n,1)*flipud(theta)',-1:1,n,n));
15 | K(1,end) = theta(3);
16 | K(end,1) = theta(1)
17 |
18 | %% compute eigenvalues using FFT
19 | eigK = eig(K);
20 | eigKt = fft(K(:,1));
21 | figure(1); clf
22 | plot(real(eigK),imag(eigK),'or');
23 | hold on;
24 | plot(real(eigKt),imag(eigKt),'.b');
25 | xlabel('real')
26 | ylabel('imag');
27 | set(gca,'FontSize',20);
28 |
29 | %%
30 | x = linspace(0,1,n)';
31 | y = cos(2*pi*x);
32 |
33 | z1 = K*y;
34 | z2 = real(ifft(eigKt.*fft(y)));
35 |
36 | figure(2); clf;
37 | subplot(1,3,1)
38 | plot(x,y,'linewidth',2);
39 | subplot(1,3,2);
40 | plot(x,z1,'linewidth',2);
41 | hold on;
42 | plot(x,z2,'linewidth',2);
43 | legend('z=K*y','z=ifft(fft(y).*lam)')
44 | subplot(1,3,3);
45 | semilogy(x,abs(z1-z2),'linewidth',2);
46 | title('error')
47 | for k=1:3; subplot(1,3,k); set(gca,'FontSize',20); end;
48 |
49 | %%
50 | z1 = K'*y;
51 | z2 = real(fft(eigKt.*ifft(y)));
52 | norm(z1-z2)
53 |
54 | %% check derivatives
55 | y = randn(n,1);
56 | th0 = randn(3,1);
57 |
58 |
59 | %% code for generating first column
60 | sK = numel(theta); center = (sK-1)/2+1;
61 | Ku = zeros(16,1); Ku(1:center) = theta(center:end);
62 | Ku(end-(center-2):end) = theta(1:center-1);
63 | %% using circshift
64 | Kt = zeros(16,1); Kt(1:sK)=theta; circshift(Kt,1-center)
65 |
66 |
--------------------------------------------------------------------------------
/conv/conv1D.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [KYmv,KtYmv,Jmv,Jtmv] = conv1D(nnImgf,theta,Y)
8 | %
9 | % computes 1D convolutions using FFT
10 | %
11 | % Z = K(theta)* Y,
12 | %
13 | % where size(Y)=nImg x n and size(K)= nImg x nf.
14 | %
15 | % Input:
16 | % nImg - number of grid point (i.e., number of features)
17 | % theta - stencil (assumed to be odd number of elements)
18 | % Y - features (needed only for Jacobians)
19 | %
20 | % Output
21 | % KYmv - function handle for Y -> K(theta)*Y
22 | % KtYmv - function handle for Y -> K(theta)'*Y
23 | % Jmv - function handle for v -> J(K(theta)*Y) * v
24 | % Jtmv - function handle for w -> J(K(theta)*Y)'* w
25 |
26 | function [KYmv,KtYmv,Jmv,Jtmv] = conv1D(nImg,theta,Y)
27 |
28 | if nargin==0
29 | testThisMethod
30 | return;
31 | end
32 | lam = fft(getK1(theta,nImg));
33 | sdiag = @(v) spdiags(v(:),0,numel(v),numel(v));
34 | KYmv = @(Y) real(ifft(sdiag(lam)*fft(Y)));
35 | KtYmv = @(Y) real(fft(sdiag(lam)*ifft(Y)));
36 |
37 | % Jacobians
38 | if nargout>2
39 | iFy = fft(Y);
40 | q = getK1(1:numel(theta),nImg);
41 | I = find(q);
42 | J = q(I);
43 | Q = sparse(I,J,ones(numel(theta),1),nImg,numel(theta));
44 |
45 | Jmv = @(v) real(ifft(sdiag(fft(Q*v))*iFy));
46 | Jtmv = @(w) real(Q'*fft(sum(iFy.*ifft(w),2)));
47 | end
48 |
49 |
50 | % ---- helper functions ----
51 | function K1 = getK1(theta,m)
52 | % builds first column of convolution operator K(theta)
53 | center = (numel(theta)+1)/2;
54 | K1 = circshift([theta(:);zeros(m-numel(theta),1)],1-center);
55 |
56 | % ----- test function -----
57 | function testThisMethod
58 | nf = 16;
59 | n = 10;
60 | theta = randn(3,1);
61 | K = full(spdiags(ones(nf,1)*flipud(theta)',-1:1,nf,nf));
62 | K(1,end) = theta(3);
63 | K(end,1) = theta(1);
64 | Y = randn(nf,n);
65 |
66 | [KYmv,KYtmv,Jmv,Jtmv] = feval(mfilename,nf,theta,Y);
67 |
68 | T1 = K*Y;
69 | T2 = KYmv(Y);
70 | fprintf('error for K*Y: %1.2e\n',norm(T1-T2))
71 |
72 | T1 = K'*Y;
73 | T2 = KYtmv(Y);
74 | fprintf('error for K''*Y: %1.2e\n',norm(T1-T2))
75 |
76 | % derivative check
77 | dth = randn(size(theta));
78 | KYmv2 = feval(mfilename,nf,theta+dth,Y);
79 | T1 = KYmv2(Y);
80 | T2 = KYmv(Y) + Jmv(dth);
81 | fprintf('error for J*v: %1.2e\n',norm(T1-T2));
82 |
83 | % adjoint check
84 | dZ = randn(size(Y));
85 | T1 = sum(sum(dZ.*Jmv(dth)));
86 | T2 = sum(sum(dth.*Jtmv(dZ)));
87 | fprintf('adjoint error: %1.2e\n',norm(T1-T2));
88 |
89 |
--------------------------------------------------------------------------------
/conv/conv2D.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [KYmv,KYtmv,Jmv,Jtmv] = conv2D(nImg,sTheta,theta,Y)
8 | %
9 | % computes 2D convolutions using FFT
10 | %
11 | % Input:
12 | % nImg - dimension of image data
13 | % sTheta - stencil size
14 | % theta - stencil
15 | % Y - images
16 | %
17 | % Output:
18 | % KYmv - function handle for Y -> K(theta)*Y
19 | % KtYmv - function handle for Y -> K(theta)'*Y
20 | % Jmv - function handle for v -> J(K(theta)*Y) * v
21 | % Jtmv - function handle for w -> J(K(theta)*Y)'* w
22 | function [KYmv,KYtmv,Jmv,Jtmv] = conv2D(nImg,sTheta,theta,Y)
23 |
24 | if nargin==0
25 | runMinimalExample
26 | return
27 | end
28 |
29 | rshp3D = @(Y) reshape(Y',nImg(1),nImg(2),[]);
30 | rshp2D = @(Y) reshape(Y,prod(nImg),[]);
31 | vec = @(V) V(:);
32 |
33 | lam = fft2(getK1(theta,nImg,sTheta));
34 | KYmv = @(Y) rshp2D(real(ifft2(lam.*fft2(rshp3D(Y)))));
35 | KYtmv = @(Y) rshp2D(real(fft2(lam.*ifft2(rshp3D(Y)))));
36 |
37 | if nargout>2
38 | Fy = fft2(rshp3D(Y));
39 | q = getK1(1:numel(theta),nImg,sTheta);
40 | I = find(q);
41 | J = q(I);
42 | Q = sparse(I,J,ones(numel(theta),1),prod(nImg),numel(theta));
43 |
44 | Jmv = @(v) rshp2D(real(ifft2(fft2(getK1(v,nImg,sTheta)).*Fy)));
45 | Jtmv = @(w) real(Q'*vec(fft2(sum(Fy.*ifft2(rshp3D(w)),3))));
46 | end
47 |
48 | function K1 = getK1(theta,nImg,sTheta)
49 | theta = reshape(theta,sTheta);
50 | K1 = zeros(nImg,'like',theta);
51 | K1(1:sTheta(1), 1:sTheta(2)) = theta;
52 | center = (sTheta+1)/2;
53 | K1 = circshift(K1,1-center);
54 |
55 | function runMinimalExample
56 | nImg = [16 16];
57 | xa = linspace(0,1,nImg(1));
58 | ya = linspace(0,1,nImg(2));
59 | [X,Y] = ndgrid(xa,ya);
60 | theta = [-1 0 1; -1 0 1; -1 0 1];
61 | y = X(:)+Y(:);
62 |
63 | [KYmv,KYtmv,Jmv,Jtmv] = feval(mfilename,nImg,size(theta),theta,y);
64 |
65 | T2 = KYmv(y);
66 | figure(1); clf;
67 | subplot(1,3,1);
68 | imagesc(reshape(y,nImg));
69 | subplot(1,3,2);
70 | imagesc(reshape(T2,nImg));
71 |
72 |
73 | T2 = KYtmv(y);
74 | subplot(1,3,3);
75 | imagesc(reshape(T2,nImg));
76 |
77 | % derivative check
78 | dth = randn(size(theta));
79 | KYmv2 = feval(mfilename,nImg,size(theta),theta+dth,y);
80 | T1 = KYmv2(y);
81 | T2 = KYmv(y) + Jmv(dth);
82 | fprintf('error in Jacobian: %1.2e\n',norm(T1-T2))
83 |
84 | % adjoint check
85 | dZ = randn(size(y));
86 | dth = randn(size(dth));
87 | T1 = sum(sum(dZ.*Jmv(dth)));
88 | T2 = sum(sum(dth(:)'*Jtmv(dZ)));
89 | fprintf('adjoint error: %1.2e\n',norm(T1-T2))
90 |
91 |
--------------------------------------------------------------------------------
/conv/convCoupled2D.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [YKmv,YKtmv,Jmv,Jtmv] = convCoupled2D(nImg,sTheta,theta,Y)
8 | %
9 | % computes the coupled convolution of multi-channel images Y.
10 | %
11 | %
12 | % Input:
13 | % nImg - number of pixels, e.g., nImg = [16,16];
14 | % sTheta - size of kernel, e.g., sTheta = [3,3,4,6] for 3x3 convolutions
15 | % applied to 4 input channels giving 6 output channels
16 | % theta - weights
17 | % Y - feature matrix, only needed for derivative computation
18 | %
19 | % Output:
20 | % YKmv - function handle for computing Y -> K(theta)*Y
21 | % YKtmv - function handle for computing Y -> K(theta)'*Y
22 | % Jmv - function handle for computing v -> Jac*v
23 | % Jtmv - function handle for computing w -> Jac'*w
24 | function [KYmv,KYtmv,Jmv,Jtmv] = convCoupled2D(nImg,sTheta,theta,Y)
25 |
26 |
27 | if nargin==0
28 | testThisMethod;
29 | return
30 | end
31 |
32 | KYmv = @(Y) Amv(nImg,sTheta,theta,Y);
33 | KYtmv = @(Y) Atmv(nImg,sTheta,theta,Y);
34 | if nargout>2
35 | Jmv = @(v) Amv(nImg,sTheta,v,Y);
36 | Jtmv = @(Z) JthetaTmv(nImg,sTheta,Y,Z);
37 | end
38 |
39 |
40 | function Z = Amv(nImg,sTheta,theta,Y)
41 | % compute convolution
42 | nex = size(Y,4);
43 |
44 | Z = zeros([nImg sTheta(4) nex],'like',Y);
45 | S = reshape(fft2(getK1(theta,nImg,sTheta)),[nImg sTheta(3:4)]);
46 | Yh = fft2(Y);
47 | for k=1:sTheta(4)
48 | T = S(:,:,:,k) .* Yh;
49 | Z(:,:,k,:) = sum(T,3);
50 | end
51 | Z = real(ifft2(Z));
52 |
53 | function Y = Atmv(nImg,sTheta,theta,Z)
54 | % compute transpose of convolution
55 |
56 | nex = size(Z,4);
57 | Y = zeros([nImg sTheta(3) nex],'like',Z);
58 | S = reshape(fft2(getK1(theta,nImg,sTheta)),[nImg sTheta(3:4)]);
59 |
60 | Zh = ifft2(Z);
61 | for k=1:sTheta(3)
62 | Sk = squeeze(S(:,:,k,:));
63 | Y(:,:,k,:) = sum(Sk.*Zh,3);
64 | end
65 | Y = real(fft2(Y));
66 |
67 |
68 | function dtheta = JthetaTmv(nImg,sTheta,Y,Z)
69 | % compute Jac'*Z
70 |
71 | dth1 = zeros(prod(sTheta(1:3)),sTheta(4),'like',Y);
72 | Yh = permute(fft2(Y),[1 2 4 3]);
73 | Zh = ifft2(Z);
74 |
75 | % get q vector for a given row in the block matrix
76 | v = vec(1:prod(sTheta(1:3)));
77 | q = getK1(v,nImg,sTheta);
78 |
79 | I = find(q(:));
80 | for k=1:sTheta(4)
81 | Zk = squeeze(Zh(:,:,k,:));
82 | tt = squeeze(sum(Zk.*Yh,3));
83 | tt = real(fft2(tt));
84 | dth1(q(I),k) = tt(I);
85 | end
86 | dtheta = dth1(:);
87 |
88 | function K1 = getK1(theta,nImg,sTheta)
89 | % compute first row of convolution matrix
90 | theta = reshape(theta,sTheta(1),sTheta(2),[]);
91 | center = (sTheta(1:2)+1)/2;
92 |
93 | K1 = zeros([nImg size(theta,3)],'like',theta);
94 | K1(1:sTheta(1),1:sTheta(2),:) = theta;
95 | K1 = circshift(K1,1-center);
96 |
97 | function testThisMethod
98 |
99 | nImg = [16 16];
100 | sTheta = [3 3 4 6];
101 | n = 1;
102 | theta = ones(prod(sTheta),1);
103 | Y = randn([nImg sTheta(3) n]);
104 |
105 |
106 | [KYmv,KYtmv,Jmv,Jtmv] = feval(mfilename,nImg,sTheta,theta,Y);
107 | YK = KYmv(Y);
108 | Z = randn(size(YK),'like',YK);
109 | YKtZ = KYtmv(Z);
110 | t1 = sum(vec(YK.*Z));
111 | t2 = sum(vec(YKtZ.*Y));
112 | fprintf('adjoint error: %1.2e\n',norm(t1-t2))
113 |
114 |
115 | % derivative check
116 | dth = randn(size(theta),'like',theta);
117 | Kmv2 = feval(mfilename,nImg,sTheta,theta+dth,Y);
118 | T1 = Kmv2(Y);
119 | T2 = KYmv(Y) + Jmv(dth);
120 | fprintf('error in Jacobian: %1.2e\n',norm(vec(T1-T2)))
121 |
122 | % adjoint check
123 | dZ = randn(size(T2),'like',theta);
124 | dth = randn(size(dth),'like',theta);
125 | T1 = sum(vec(dZ.*Jmv(dth)));
126 | T2 = sum(vec(dth(:)'*Jtmv(dZ)));
127 | fprintf('adjoint Jacobian error: %1.2e\n',norm(T1-T2))
128 |
129 |
--------------------------------------------------------------------------------
/conv/convFFT.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % classdef convFFT
8 | %
9 | % 2D convolution using FFTs
10 | %
11 | % Transforms feature using affine linear mapping
12 | %
13 | % Y(theta,Y0) K(theta) * Y0
14 | %
15 | % where
16 | %
17 | % K - convolution matrix
18 |
19 | classdef convFFT
20 |
21 | properties
22 | nImg % image size
23 | sK % kernel size: [nxfilter,nyfilter,nInputChannels,nOutputChannels]
24 | Q % linear transformation applied to stencil elements, default Q = eye
25 | end
26 |
27 | methods
28 | function this = convFFT(nImg, sK,varargin)
29 |
30 | if nargout==0 && nargin==0
31 | this.runMinimalExample;
32 | return;
33 | end
34 | nImg = nImg(1:2);
35 | Q = opEye(prod(sK));
36 | for k=1:2:length(varargin) % overwrites default parameter
37 | eval([ varargin{k},'=varargin{',int2str(k+1),'};']);
38 | end
39 |
40 | this.nImg = nImg;
41 | this.sK = sK;
42 | this.Q = Q;
43 | end
44 |
45 | function A = getOp(this,K)
46 | % constructs operator for current weight, K
47 | n = nFeatIn(this);
48 | m = nFeatOut(this);
49 | Af = @(Y) this.Amv(K,Y);
50 | ATf = @(Y) this.ATmv(K,Y);
51 | A = LinearOperator(m,n,Af,ATf);
52 | end
53 |
54 |
55 | function runMinimalExample(~)
56 | nImg = [16 18];
57 | sK = [3 3,1,2];
58 | kernel = feval(mfilename,nImg,sK,'stride',2);
59 | theta = rand(sK);
60 | theta(:,1,:) = -1; theta(:,3,:) = 1;
61 |
62 | I = rand(nImgIn(kernel)); I(4:12,4:12,:) = 2;
63 | Ik = Amv(kernel,theta,I);
64 | Ik2 = ATmv(kernel,theta,Ik);
65 | figure(1); clf;
66 | subplot(1,2,1);
67 | imagesc(I);
68 | title('input');
69 |
70 | subplot(1,2,2);
71 | imagesc(Ik(:,:,1));
72 | title('output');
73 | end
74 |
75 | function [Z,tmp] = Amv(this,theta,Y)
76 | tmp = []; % no need to store any intermediates
77 | nex = size(Y,4);
78 |
79 | Z = zeros([this.nImg this.sK(4) nex],'like',Y);
80 | S = reshape(fft2(getK1(this,theta)),[this.nImg this.sK(3:4)]);
81 | Yh = fft2(Y);
82 | for k=1:this.sK(4)
83 | T = S(:,:,:,k) .* Yh;
84 | Z(:,:,k,:) = sum(T,3);
85 | end
86 | Z = real(ifft2(Z));
87 | end
88 |
89 | function dY = Jthetamv(this,dtheta,~,Y,~)
90 | dY = getOp(this,this.Q*dtheta(:))*Y;
91 | end
92 |
93 |
94 | function dtheta = JthetaTmv(this,Z,~,Y,~)
95 | % derivative of Z*(A(theta)*Y) w.r.t. theta
96 | nex = size(Y,4);
97 |
98 | dth1 = zeros(prod(this.sK(1:3)),this.sK(4),'like',Y);
99 | Yh = permute(fft2(Y),[1 2 4 3]);
100 | Zh = ifft2(reshape(Z,[this.nImg this.sK(4) nex]));
101 |
102 | % get q vector for a given row in the block matrix
103 | v = vec(1:prod(this.sK(1:3)));
104 | q = getK1(this,v);
105 |
106 | I = find(q(:));
107 | for k=1:this.sK(4)
108 | Zk = squeeze(Zh(:,:,k,:));
109 | tt = squeeze(sum(Zk.*Yh,3));
110 | tt = real(fft2(tt));
111 | dth1(q(I),k) = tt(I);
112 | end
113 | dtheta = dth1(:);
114 | end
115 |
116 | function Y = ATmv(this,theta,Z)
117 |
118 | nex = size(Z,4);
119 | Y = zeros([this.nImg this.sK(3) nex],'like',Z);
120 | S = reshape(fft2(getK1(this,theta)),[this.nImg this.sK(3:4)]);
121 |
122 | Zh = ifft2(Z);
123 | for k=1:this.sK(3)
124 | Sk = squeeze(S(:,:,k,:));
125 | Y(:,:,k,:) = sum(Sk.*Zh,3);
126 | end
127 | Y = real(fft2(Y));
128 | end
129 | function n = nFeatIn(this)
130 | n = prod(nImgIn(this));
131 | end
132 | function n = nFeatOut(this)
133 | n = prod(nImgOut(this));
134 | end
135 |
136 | function n = nImgIn(this)
137 | n = [this.nImg(1:2) this.sK(3)];
138 | end
139 |
140 | function K1 = getK1(this,theta)
141 | % compute first row of convolution matrix
142 | theta = reshape(theta,this.sK(1),this.sK(2),[]);
143 | center = (this.sK(1:2)+1)/2;
144 |
145 | K1 = zeros([this.nImg size(theta,3)],'like',theta);
146 | K1(1:this.sK(1),1:this.sK(2),:) = theta;
147 | K1 = circshift(K1,1-center);
148 | end
149 | function n = nImgOut(this)
150 | n = [this.nImg(1:2) this.sK(4)];
151 | end
152 |
153 | function theta = initTheta(this)
154 | sd= 0.1;
155 | theta = sd*randn(this.sK);
156 | id1 = find(theta>2*sd);
157 | theta(id1(:)) = randn(numel(id1),1);
158 |
159 | id2 = find(theta< -2*sd);
160 | theta(id2(:)) = randn(numel(id2),1);
161 |
162 | theta = max(min(2*sd, theta),-2*sd);
163 | theta = theta - mean(theta)
164 |
165 | end
166 |
167 | end
168 | end
169 |
170 |
--------------------------------------------------------------------------------
/conv/convMCN.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % classdef convMCN
8 | %
9 | % 2D convolution using MatConvNet
10 | %
11 | % Transforms feature using affine linear mapping
12 | %
13 | % Y(theta,Y0) K(theta) * Y0
14 | %
15 | % !! needs compiled binaries from MatConvNet; see http://www.vlfeat.org/matconvnet/ !!
16 | %
17 | % where
18 | %
19 | % K - convolution matrix
20 | classdef convMCN
21 |
22 |
23 | properties
24 | nImg % image size
25 | sK % kernel size: [nxfilter,nyfilter,nInputChannels,nOutputChannels]
26 | Q
27 | stride
28 | pad
29 | end
30 |
31 | methods
32 | function this = convMCN(nImg, sK,varargin)
33 |
34 | if nargout==0 && nargin==0
35 | this.runMinimalExample;
36 | return;
37 | end
38 | nImg = nImg(1:2);
39 | stride = 1;
40 | Q = opEye(prod(sK));
41 | for k=1:2:length(varargin) % overwrites default parameter
42 | eval([ varargin{k},'=varargin{',int2str(k+1),'};']);
43 | end
44 |
45 | this.nImg = nImg;
46 | this.sK = sK;
47 | this.stride = stride;
48 | this.Q = Q;
49 | this.pad = floor((this.sK(1)-1)/2);
50 | end
51 |
52 | function A = getOp(this,K)
53 | n = nFeatIn(this);
54 | m = nFeatOut(this);
55 | Af = @(Y) this.Amv(K,Y);
56 | ATf = @(Y) this.ATmv(K,Y);
57 | A = LinearOperator(m,n,Af,ATf);
58 | end
59 |
60 |
61 | function runMinimalExample(~)
62 | nImg = [16 18];
63 | sK = [3 3,1,2];
64 | kernel = feval(mfilename,nImg,sK,'stride',2);
65 | theta = rand(sK);
66 | theta(:,1,:) = -1; theta(:,3,:) = 1;
67 |
68 | I = rand(nImgIn(kernel)); I(4:12,4:12) = 2;
69 | Ik = Amv(kernel,theta,I);
70 | Ik2 = ATmv(kernel,theta,Ik);
71 | Ik = reshape(Ik,kernel.nImgOut());
72 | figure(1); clf;
73 | subplot(1,2,1);
74 | imagesc(I);
75 | title('input');
76 |
77 | subplot(1,2,2);
78 | imagesc(Ik(:,:,1));
79 | title('output');
80 | end
81 |
82 | function [Y,tmp] = Amv(this,theta,Y)
83 | tmp = []; % no need to store any intermediates
84 |
85 | K = reshape(this.Q*theta(:),this.sK);
86 | Y = vl_nnconv(Y,K,[],'pad',this.pad,'stride',this.stride);
87 | end
88 |
89 | function dY = Jthetamv(this,dtheta,~,Y,~)
90 | dY = getOp(this,this.Q*dtheta(:))*Y;
91 | end
92 |
93 |
94 | function dtheta = JthetaTmv(this,Z,~,Y,~)
95 | % derivative of Z*(A(theta)*Y) w.r.t. theta
96 | % get derivative w.r.t. convolution kernels
97 | [~,dtheta] = vl_nnconv(Y,zeros(this.sK,'like',Y), [],Z,'pad',this.pad,'stride',this.stride);
98 | dtheta = this.Q'*dtheta(:);
99 | end
100 |
101 | function dY = ATmv(this,theta,Z)
102 |
103 | theta = reshape(this.Q*theta(:),this.sK);
104 |
105 | crop = this.pad;
106 | if this.stride==2 && this.sK(1)==3
107 | crop=this.pad*[1,0,1,0];
108 | elseif this.stride==2 && this.sK(1)==2
109 | crop=0*crop;
110 | end
111 | dY = vl_nnconvt(Z,theta,[],'crop',crop,'upsample',this.stride);
112 | if this.stride==2 && this.sK(1)==1
113 | dY = padarray(dY,[1 1],0,'post');
114 | end
115 | end
116 | function n = nFeatIn(this)
117 | n = prod(nImgIn(this));
118 | end
119 | function n = nFeatOut(this)
120 | n = prod(nImgOut(this));
121 | end
122 |
123 | function n = nImgIn(this)
124 | n = [this.nImg(1:2) this.sK(3)];
125 | end
126 |
127 | function n = nImgOut(this)
128 | n = [this.nImg(1:2)./this.stride this.sK(4)];
129 | end
130 |
131 | function theta = initTheta(this)
132 | sd= 0.1;
133 | theta = sd*randn(this.sK);
134 | id1 = find(theta>2*sd);
135 | theta(id1(:)) = randn(numel(id1),1);
136 |
137 | id2 = find(theta< -2*sd);
138 | theta(id2(:)) = randn(numel(id2),1);
139 |
140 | theta = max(min(2*sd, theta),-2*sd);
141 | theta = theta - mean(theta);
142 |
143 | end
144 |
145 | end
146 | end
147 |
148 |
--------------------------------------------------------------------------------
/conv/examples/EConv_BatchNorm.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % demo for batchnorm
8 | %
9 | close all; clear all;
10 |
11 | nex = 8;
12 | [Y,C] = setupMNIST(nex,1);
13 | Y = reshape(Y,28,28,[]);
14 | %%
15 | param.dir = 3;
16 | param.epsilon = 1e-5;
17 | Yn = normLayer(Y,param);
18 |
19 | %%
20 | figure(1); clf;
21 | subplot(2,1,1)
22 | montageArray(Y,nex);
23 | axis equal tight
24 | colorbar
25 |
26 | subplot(2,1,2)
27 | montageArray(Yn,nex);
28 | axis equal tight
29 | colorbar
30 |
31 |
32 | %%
33 | figure(2); clf;
34 | subplot(1,2,1)
35 | montageArray(reshape(Y(:,:,1),28,28,[]));
36 | axis equal tight
37 | colorbar
38 | set(gca,'FontSize',20)
39 | title('original');
40 |
41 | subplot(1,2,2)
42 | montageArray(reshape(Yn(:,:,1),28,28,[]));
43 | axis equal tight
44 | title('after batch norm')
45 | set(gca,'FontSize',20)
46 | colorbar
47 | % caxis([-. .1])close all; clear all;
48 |
49 | %%
50 | [Y,C] = setupMNIST(16);
51 | Y = reshape(Y,28,28,[]);
52 |
53 | %%
54 | param.dir = 3;
55 | param.epsilon = 1e-5;
56 | Yn = normLayer(Y,param);
57 |
58 | %%
59 | figure(1); clf;
60 | subplot(2,1,1)
61 | montageArray(Y,16);
62 | axis equal tight
63 | colorbar
64 |
65 | subplot(2,1,2)
66 | montageArray(Yn,16);
67 | axis equal tight
68 | colorbar
69 |
70 |
71 | %%
72 | figure(2); clf;
73 | subplot(1,2,1)
74 | montageArray(Y(:,:,1))
75 | axis equal tight
76 | colorbar
77 | set(gca,'FontSize',20)
78 | title('original');
79 |
80 | subplot(1,2,2)
81 | montageArray(Yn(:,:,1))
82 | axis equal tight
83 | title('after batch norm')
84 | set(gca,'FontSize',20)
85 | colorbar
86 | % caxis([-. .1])
--------------------------------------------------------------------------------
/conv/examples/EConv_CoarseToFine.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % demo for prolongation of 1D convolution operators
8 | %
9 | clc; close all;
10 |
11 | % number of discretization points
12 | nc = 16;
13 | nf = 2*nc;
14 | hc = 1/nc;
15 | hf = 1/nf;
16 |
17 | % grids
18 | x = linspace(0,1,101);
19 | xc = linspace(0,1,nc);
20 | xf = linspace(0,1,nf);
21 |
22 | %% get A(hc) and A(hf)
23 | thc = [-67; 129; -59];
24 | fprintf('theta(coarse):\t[%1.3f,%1.3f,%1.3f]\n',thc);
25 | Ac = [1 -1 -1; 1 0 2; 1 1 -1] * diag([1/4;1/(2*hc);1/hc^2]);
26 | beta = Ac\thc;
27 | fprintf('beta: \t[%1.3f,%1.3f,%1.3f]\n',beta);
28 | Af = [1 -1 -1; 1 0 2; 1 1 -1] * diag([1/4;1/(2*hf);1/hf^2]);
29 | thf = Af*beta;
30 | fprintf('theta(fine): \t[%1.3f,%1.3f,%1.3f]\n',thf);
31 | %%
32 | f = @(x) (cos(2*pi*x.^4))+x-.8*(x-.5).^2;
33 | df = @(x) x - (4*(x - 1/2).^2)/5 - 8*x.^3.*pi.*sin(2*pi*x.^4);
34 | d2f = @(x) 9/5 - 24*x.^2.*pi.*sin(2*pi*x.^4) - 64*x.^6.*pi^2.*cos(2*pi*x.^4) - (8*x)/5;
35 |
36 | z = @(x) beta(1)*f(x)+beta(2)*df(x)+beta(3)*d2f(x);
37 |
38 | fig = figure(1); clf;
39 | fig.Name = 'E15CoarseToFineConv1D';
40 | subplot(2,2,1);
41 | plot(x,f(x),'-b','LineWidth',2);
42 | set(gca,'FontSize',20)
43 | title('function,f')
44 |
45 | subplot(2,2,2)
46 | fig.Name = 'z';
47 | plot(x,z(x),'-r','LineWidth',2);
48 | set(gca,'FontSize',20)
49 | hold on;
50 | plot(xc,conv(f(xc),-thc,'same'),'.-k','MarkerSize',30,'LineWidth',2);
51 | legend('\beta(1)f+\beta(2)f'' + \beta(3) f''''','conv(f(xc),thc)','location','SouthWest')
52 | title('coarse conv')
53 |
54 | %%
55 | subplot(2,2,3)
56 | fig.Name = 'z';
57 | plot(x,z(x),'-r','LineWidth',2);
58 | set(gca,'FontSize',20)
59 | hold on;
60 | plot(xf,conv(f(xf),-thc,'same'),'.-k','MarkerSize',30,'LineWidth',2);
61 | legend('\beta(1)f+\beta(2)f'' + \beta(3) f''''','conv(f(xf),thc)','location','SouthWest')
62 | title('fine conv (coarse stencil)')
63 | %%
64 | subplot(2,2,4)
65 | fig.Name = 'z';
66 | plot(x,z(x),'-r','LineWidth',2);
67 | set(gca,'FontSize',20)
68 | hold on;
69 | plot(xf,conv(f(xf),-thf,'same'),'.-k','MarkerSize',30,'LineWidth',2);
70 | legend('\beta(1)f+\beta(2)f'' + \beta(3) f''''','conv(f(xf),thf)','location','SouthWest')
71 | title('fine conv (prol. stencil)')
72 |
73 |
74 |
--------------------------------------------------------------------------------
/conv/examples/EConv_CoarseToFineGalerkin.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % demo for prolongation of 1D convolution operators
8 | %
9 | clc; close all;
10 |
11 | % number of discretization points
12 | nc = 16;
13 | nf = 2*nc;
14 | hc = 1/nc;
15 | hf = 1/nf;
16 |
17 | % grids
18 | x = linspace(0,1,101);
19 | xc = linspace(0,1,nc);
20 | xf = linspace(0,1,nf);
21 |
22 | % setup restriction
23 | R = spdiags(ones(nf,1)*[1 1]/2,0:1,nf,nf);
24 | R = R(1:2:end,:);
25 |
26 | % setup prolongation
27 | P = zeros(nf,nc);
28 | for i=2:nc-1
29 | P(2*i-2:2*i+1,i) = [1;3;3;1];
30 | end
31 | P(1:3,1) = [4;3;1];
32 | P(end-2:end,end) = [1;3;4];
33 | P = 1/4*sparse(P);
34 |
35 | % build basis of convolution operators
36 | getKH = @(th) spdiags(ones(nc,1)*th',-1:1,nc,nc);
37 | getKh = @(th) spdiags(ones(nf,1)*th',-1:1,nf,nf);
38 | A = zeros(3,3);
39 | for k=1:3
40 | t = zeros(3,1); t(k)=1;
41 | KH = R*getKh(t)*P;
42 | A(:,k) = KH(1:3,2);
43 | end
44 |
45 | %% get A(hc) and A(hf)
46 | thc = [-67; 129; -59];
47 | fprintf('theta(coarse):\t[%1.3f,%1.3f,%1.3f]\n',thc);
48 | Ac = [1 -1 -1; 1 0 2; 1 1 -1] * diag([1/4;1/(2*hc);1/hc^2]);
49 | beta = Ac\thc;
50 | fprintf('beta: \t[%1.3f,%1.3f,%1.3f]\n',beta);
51 | Af = [1 -1 -1; 1 0 2; 1 1 -1] * diag([1/4;1/(2*hf);1/hf^2]);
52 | thf = Af*beta;
53 | fprintf('theta(fine): \t[%1.3f,%1.3f,%1.3f]\n',thf);
54 | thf = A\thc;
55 | fprintf('theta(Galerkin): \t[%1.3f,%1.3f,%1.3f]\n',thf);
56 | %%
57 | f = @(x) (cos(2*pi*x.^4))+x-.8*(x-.5).^2;
58 | df = @(x) x - (4*(x - 1/2).^2)/5 - 8*x.^3.*pi.*sin(2*pi*x.^4);
59 | d2f = @(x) 9/5 - 24*x.^2.*pi.*sin(2*pi*x.^4) - 64*x.^6.*pi^2.*cos(2*pi*x.^4) - (8*x)/5;
60 |
61 | z = @(x) beta(1)*f(x)+beta(2)*df(x)+beta(3)*d2f(x);
62 |
63 | fig = figure(2); clf;
64 | fig.Name = 'E15CoarseToFineConv1D';
65 | subplot(2,2,1);
66 | plot(x,f(x),'-b','LineWidth',2);
67 | set(gca,'FontSize',20)
68 | title('function,f')
69 |
70 | subplot(2,2,2)
71 | fig.Name = 'z';
72 | plot(x,z(x),'-r','LineWidth',2);
73 | set(gca,'FontSize',20)
74 | hold on;
75 | plot(xc,conv(f(xc),-thc,'same'),'.-k','MarkerSize',30,'LineWidth',2);
76 | legend('\beta(1)f+\beta(2)f'' + \beta(3) f''''','conv(f(xc),thc)','location','SouthWest')
77 | title('coarse conv')
78 |
79 | %%
80 | subplot(2,2,3)
81 | fig.Name = 'z';
82 | plot(x,z(x),'-r','LineWidth',2);
83 | set(gca,'FontSize',20)
84 | hold on;
85 | plot(xf,conv(f(xf),-thc,'same'),'.-k','MarkerSize',30,'LineWidth',2);
86 | legend('\beta(1)f+\beta(2)f'' + \beta(3) f''''','conv(f(xf),thc)','location','SouthWest')
87 | title('fine conv (coarse stencil)')
88 | %%
89 | subplot(2,2,4)
90 | fig.Name = 'z';
91 | plot(x,z(x),'-r','LineWidth',2);
92 | set(gca,'FontSize',20)
93 | hold on;
94 | plot(xf,conv(f(xf),-thf,'same'),'.-k','MarkerSize',30,'LineWidth',2);
95 | legend('\beta(1)f+\beta(2)f'' + \beta(3) f''''','conv(f(xf),thf)','location','SouthWest')
96 | title('fine conv (prol. stencil)')
97 |
98 |
99 |
--------------------------------------------------------------------------------
/conv/examples/EConv_ConvFFT2D.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % demo for 2D convolution
8 | close all; clear all;
9 |
10 | [Y,C] = setupMNIST(1);
11 | Y = Y - mean(Y(:));
12 | nImg = [28 28]; % size of image
13 | sTheta = [5 5]; % size of convolution stencil
14 | theta = randn(sTheta);
15 | theta = theta - mean(theta(:));
16 |
17 | %%
18 | K = conv2D(nImg,sTheta,theta,Y);
19 | Z = K(Y);
20 |
21 | %%
22 | fig = figure(1); clf;
23 | fig.Name = sprintf('%s',mfilename);
24 | subplot(1,3,1);
25 | imagesc(reshape(Y,nImg));
26 | axis square off;
27 | colormap(flipud(colormap('gray')))
28 | title('input image');
29 |
30 |
31 | subplot(1,3,2);
32 | imagesc(theta);
33 | axis square off;
34 | colormap('gray')
35 | title('convolution kernel');
36 |
37 |
38 | subplot(1,3,3);
39 | imagesc(reshape(Z,nImg));
40 | axis square off;
41 | colormap(flipud(colormap('gray')))
42 | title('output image');
43 |
--------------------------------------------------------------------------------
/conv/examples/EConv_InstanceNorm.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % demo for instancenorm
8 | %
9 | close all; clear all;
10 |
11 | nex = 8;
12 | [Y,C] = setupMNIST(nex,1);
13 |
14 | %%
15 | param.dir = 1;
16 | param.epsilon = 1e-5;
17 | Yn = normLayer(Y,param);
18 |
19 | %%
20 | fig = figure; clf;
21 | fig.Name = [mfilename ': batch'];
22 | subplot(2,1,1)
23 | montageArray(reshape(Y,28,28,[]),nex);
24 | axis equal tight
25 | colorbar
26 |
27 | subplot(2,1,2)
28 | montageArray(reshape(Yn,28,28,[]),nex);
29 | axis equal tight
30 | colorbar
31 |
32 |
33 | %%
34 | fig = figure; clf;
35 | fig.Name = [mfilename ': first image'];
36 | subplot(1,2,1)
37 | montageArray(reshape(Y(:,1),28,28,[]));
38 | axis equal tight
39 | colorbar
40 | set(gca,'FontSize',20)
41 | title('original');
42 |
43 | subplot(1,2,2)
44 | montageArray(reshape(Yn(:,1),28,28,[]));
45 | axis equal tight
46 | title('after instance norm')
47 | set(gca,'FontSize',20)
48 | colorbar
--------------------------------------------------------------------------------
/conv/examples/EConv_deriveConvFFT.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Here, we derive a matrix-free implementation of a 1D convolution with
8 | % FFTs
9 | %
10 |
11 | clc; clear;
12 | m = 6; % number of cells in grid
13 | theta = [1 2 3]'; % stencil
14 |
15 | % build convolution operator
16 | K = spdiags(ones(m,1)*flipud(theta)',-1:1,m,m);
17 | % periodic boundary conditions
18 | K(1,end) = theta(3);
19 | K(end,1) = theta(1);
20 | K = full(K)
21 |
22 | %% verify that eigenvalues can be obtained by using fft (up to ordering)
23 | lam = fft(K(:,1));
24 | lamt = eig(K)
25 |
26 | [lam lamt]
27 |
28 | %% verify that convolution can be computed as F^{-1)(lam .* F(y))
29 | y = randn(m,1);
30 | errKy = norm(K*y - ifft(lam.*fft(y)))
31 | %% verify equation for transpose of convolution operator
32 | errKTy = norm(K'*y - ifft(conj(lam).*fft(y)))
33 |
34 | %% verify that first column of K can be computed using circshift
35 | theta = [1;2;3;];
36 | center = (numel(theta)+1)/2;
37 | Ku = circshift([theta;zeros(m-numel(theta),1)],1-center);
38 | errKu = norm(K(:,1)-Ku)
--------------------------------------------------------------------------------
/data/loadMNISTImages.m:
--------------------------------------------------------------------------------
1 | function images = loadMNISTImages(filename)
2 | %loadMNISTImages returns a 28x28x[number of MNIST images] matrix containing
3 | %the raw MNIST images
4 |
5 | fp = fopen(filename, 'rb');
6 | assert(fp ~= -1, ['Could not open ', filename, '']);
7 |
8 | magic = fread(fp, 1, 'int32', 0, 'ieee-be');
9 | assert(magic == 2051, ['Bad magic number in ', filename, '']);
10 |
11 | numImages = fread(fp, 1, 'int32', 0, 'ieee-be');
12 | numRows = fread(fp, 1, 'int32', 0, 'ieee-be');
13 | numCols = fread(fp, 1, 'int32', 0, 'ieee-be');
14 |
15 | images = fread(fp, inf, 'unsigned char');
16 | images = reshape(images, numCols, numRows, numImages);
17 | images = permute(images,[2 1 3]);
18 |
19 | fclose(fp);
20 |
21 | % Reshape to #pixels x #examples
22 | images = reshape(images, size(images, 1) * size(images, 2), size(images, 3));
23 | % Convert to double and rescale to [0,1]
24 | images = double(images) / 255;
25 |
26 | end
--------------------------------------------------------------------------------
/data/loadMNISTLabels.m:
--------------------------------------------------------------------------------
1 | function labels = loadMNISTLabels(filename)
2 | %loadMNISTLabels returns a [number of MNIST images]x1 matrix containing
3 | %the labels for the MNIST images
4 |
5 | fp = fopen(filename, 'rb');
6 | assert(fp ~= -1, ['Could not open ', filename, '']);
7 |
8 | magic = fread(fp, 1, 'int32', 0, 'ieee-be');
9 | assert(magic == 2049, ['Bad magic number in ', filename, '']);
10 |
11 | numLabels = fread(fp, 1, 'int32', 0, 'ieee-be');
12 |
13 | labels = fread(fp, inf, 'unsigned char');
14 |
15 | assert(size(labels,1) == numLabels, 'Mismatch in label count');
16 |
17 | fclose(fp);
18 |
19 | end
--------------------------------------------------------------------------------
/data/setupCIFAR10.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Ytrain,Ctrain,Yval,Cval] = setupCIFAR10(nTrain,nVal,option)
8 | %
9 | function[Ytrain,Ctrain,Yval,Cval] = setupCIFAR10(nTrain,nVal,option)
10 |
11 | if nargin==0
12 | runMinimalExample;
13 | return;
14 | end
15 |
16 | if not(exist('nTrain','var')) || isempty(nTrain)
17 | nTrain = 50000;
18 | end
19 |
20 | if not(exist('nVal','var')) || isempty(nVal)
21 | nVal = ceil(nTrain/5);
22 | end
23 |
24 | if not(exist('option','var')) || isempty(option)
25 | option = 1;
26 | end
27 |
28 | if not(exist('data_batch_1.mat','file')) || ...
29 | not(exist('data_batch_2.mat','file')) || ...
30 | not(exist('data_batch_3.mat','file')) || ...
31 | not(exist('data_batch_4.mat','file')) || ...
32 | not(exist('data_batch_5.mat','file'))
33 |
34 | warning('CIFAR10 data cannot be found in MATLAB path')
35 |
36 | dataDir = [fileparts(which('startupNumDLToolbox.m')) filesep 'data'];
37 | cifarDir = [dataDir filesep 'CIFAR'];
38 | doDownload = input(sprintf('Do you want to download https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz (around 175 MB) to %s? Y/N [Y]: ',dataDir),'s');
39 | if isempty(doDownload) || strcmp(doDownload,'Y')
40 | if not(exist(dataDir,'dir'))
41 | mkdir(dataDir);
42 | end
43 | imtz = fullfile(dataDir,'cifar-10-matlab.tar.gz');
44 | if not(exist(imtz,'file'))
45 | websave(fullfile(dataDir,'cifar-10-matlab.tar.gz'),'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz');
46 | end
47 | im = untar(imtz,dataDir);
48 | movefile([dataDir filesep 'cifar-10-batches-mat'],cifarDir);
49 | delete(imtz)
50 | addpath(cifarDir);
51 | else
52 | error('CIFAR10 data not available. Please make sure it is in the current path');
53 | end
54 | end
55 |
56 | % Reading in the data
57 |
58 | load data_batch_1.mat
59 | data1 = double(data);
60 | labels1 = labels;
61 |
62 | load data_batch_2.mat
63 | data2 = double(data);
64 | labels2 = labels;
65 |
66 | load data_batch_3.mat
67 | data3 = double(data);
68 | labels3 = labels;
69 |
70 | load data_batch_4.mat
71 | data4 = double(data);
72 | labels4 = labels;
73 |
74 | load data_batch_5.mat
75 | data5 = double(data);
76 | labels5 = labels;
77 |
78 | data = [data1; data2; data3; data4; data5];
79 | labels = [labels1; labels2; labels3; labels4; labels5];
80 | nex = size(data,1);
81 |
82 |
83 |
84 | if nTrain2
94 | load test_batch.mat
95 | dataTest = double(data);
96 | labelsTest = labels;
97 | nex = size(dataTest,1);
98 | if nVal2
72 | Yval = I(:,idVal);
73 | Cval = C(:,idVal);
74 | Yval = Yval/max(abs(Yval(:))) - 0.5;
75 | [~,k] = sort((1:10)*Cval);
76 | Yval = Yval(:,k);
77 | Cval = Cval(:,k);
78 | end
79 |
80 | function runMinimalExample
81 | [Yt,Ct,Yv,Cv] = feval(mfilename,50,10);
82 | figure(1);clf;
83 | subplot(2,1,1);
84 | montageArray(reshape(Yt,28,28,[]),10);
85 | axis equal tight
86 | colormap(flipud(colormap('gray')))
87 | title('training images');
88 |
89 |
90 | subplot(2,1,2);
91 | montageArray(reshape(Yv,28,28,[]),10);
92 | axis equal tight
93 | colormap(flipud(colormap('gray')))
94 | title('validation images');
95 |
96 |
97 |
98 |
99 |
100 |
--------------------------------------------------------------------------------
/data/setupPeaks.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Y,C] = setupPeaks(np, nc, ns)
8 | %
9 | % setup data for peaks example
10 | %
11 | function[Y,C] = setupPeaks(np, nc, ns)
12 | % generates PEAKs example
13 | if not(exist('np','var')) || isempty(np)
14 | np = 8000;
15 | end
16 |
17 | if not(exist('nc','var')) || isempty(nc)
18 | nc = 5;
19 | end
20 |
21 | if not(exist('ns','var')) || isempty(ns)
22 | ns = 256;
23 | end
24 |
25 |
26 | [xx,yy,cc] = peaks(ns);
27 | t1 = linspace(min(xx(:)),max(xx(:)),ns);
28 | t2 = linspace(min(yy(:)),max(yy(:)),ns);
29 |
30 | % Binarize it
31 | mxcc = max(cc(:)); mncc = min(cc(:));
32 | hc = (mxcc - mncc)/(nc);
33 | ccb = zeros(size(cc));
34 | for i=1:nc
35 | ii = find( (mncc + (i-1)*hc)< cc & cc <= (mncc+i*hc));
36 | ccb(ii) = i-1;
37 | end
38 |
39 | figure(1); clf;
40 | imagesc(t1,t2,reshape(ccb,ns,ns))
41 | % rng('default');
42 | % rng(2)
43 |
44 | % draw same number of points per class
45 | Y = [];
46 | npc = ceil(np/nc);
47 | for k=0:nc-1
48 | xk = [xx(ccb==k) yy(ccb==k)];
49 | inds = randi(size(xk,1),npc,1);
50 |
51 | Y = [Y; xk(inds,:)];
52 | end
53 |
54 | C = kron(eye(nc),ones(npc,1));
55 | Y = Y';
56 | C = C';
57 |
--------------------------------------------------------------------------------
/notes/E_polyfit.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % This driver generates example connecting generalization to overfitting in
8 | % polynomial interpolation.
9 | %
10 | close all; clear all;
11 |
12 |
13 | xf = linspace(0,1,101);
14 | xt = linspace(0,1,10);
15 | ft = sin(pi*xt.^2)+5e-2*randn(1,10);
16 |
17 | xv = 0.97;
18 | fv = sin(pi*xv.^2);
19 |
20 | fig1 = figure(1); clf;
21 | fig1.Name ='data'
22 | p1 = plot(xt,ft,'.','MarkerSize',30)
23 | hold on;
24 | plot(xv,fv,'.','MarkerSize',30)
25 | l = legend('training data','validation data');
26 | l.Location = 'NorthWest';
27 |
28 | fig2 = figure(2); clf;
29 | fig2.Name ='overfit'
30 | p = polyfit(xt,ft,numel(xt)+1);
31 | pf = polyval(p,xf);
32 | plot(xt,ft,'.','MarkerSize',40)
33 | hold on;
34 | plot(xv,fv,'.','MarkerSize',40)
35 | plot(xf,pf,'-','LineWidth',2,'Color',p1.Color)
36 | l = legend('training data','validation data','model');
37 | l.Location = 'NorthWest';
38 |
39 | fig3 = figure(3); clf;
40 | fig3.Name ='underfit'
41 | p = polyfit(xt,ft,2);
42 | pf = polyval(p,xf);
43 | plot(xt,ft,'.','MarkerSize',40)
44 | hold on;
45 | plot(xv,fv,'.','MarkerSize',40)
46 | plot(xf,pf,'-','LineWidth',2,'Color',p1.Color)
47 |
48 | l = legend('training data','validation data','model');
49 | l.Location = 'NorthWest';
50 |
51 | return;
52 | figDir = '/Users/lruthot/Dropbox/Projects/NumDL-CourseNotes/images/'
53 |
54 | for k=1:3
55 | fig = figure(k)
56 | axis([0 1 -.3 1.4])
57 | axis square
58 | set(gca,'FontSize',30)
59 | printFigure(gcf,fullfile(figDir,['generalize_' fig.Name '.png']))
60 | end
61 |
62 |
--------------------------------------------------------------------------------
/optimization/cgls.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | %[w,rho,eta,W] = cgls(Y,c,tol,maxIter,w,out)
8 | %
9 | % conjugate gradient method for solving the least-squares problem
10 | %
11 | % min_w 0.5 |Y*w - c|^2
12 | %
13 | % Input:
14 | % Y - matrix, e.g., features
15 | % c - right hand side, e.g., labels
16 | % tol - tolerance, (default: 1e-2)
17 | % maxIter - maximum number of iterations, (default: min(size(Y,2),10))
18 | % w - starting guess (default: zeros(size(Y,2)))
19 | % out - flag for controling output (default: 1--> print iter)
20 | %
21 | % Output:
22 | % w - last iterate
23 | % rho - vector of relative residuals
24 | % eta - vector of norms of current iterates
25 | % W - history of all iterates
26 | function [w,rho,eta,W] = cgls(Y,c,tol,maxIter,w,out)
27 |
28 |
29 | if nargin==0
30 | runMinimalExample
31 | return
32 | end
33 |
34 | n = size(Y,2);
35 |
36 | % set optional parameter
37 | if not(exist('tol','var')) || isempty(tol); tol = 1e-2; end
38 | if not(exist('maxIter','var')) || isempty(maxIter); maxIter = min(size(Y,2),10); end
39 | if not(exist('w','var')) || isempty(w); w = zeros(n,1); end
40 | if not(exist('out','var')) || isempty(out); out=1; end
41 |
42 | if nargout>3, W = w; end
43 | r = c-Y*w;
44 | d = Y'*r;
45 | normr2 = d'*d;
46 | rho = zeros(maxIter,1); eta = zeros(maxIter,1);
47 |
48 | if out
49 | fprintf('=== %s (tol: %1.1e, maxIter: %d) ===\n',mfilename,tol,maxIter);
50 | fprintf('iter\trelres\tnorm(w)\n');
51 | end
52 |
53 | for j=1:maxIter
54 | Ad = Y*d;
55 | alpha = normr2/(Ad'*Ad);
56 | w = w + alpha*d;
57 | r = r - alpha*Ad;
58 | s = Y'*r;
59 | normr2New = s'*s;
60 | if normr2New3, W = [W w]; end
69 | if out, fprintf('%3d\t%3.1e\t%3.1e\n',j,norm(r)/norm(c),norm(w)); end
70 | end
71 |
72 | function runMinimalExample
73 | Y = randn(10,2);
74 | wtrue = [1;1];
75 | c = Y*wtrue;
76 |
77 | [w,rho,eta,W] = feval(mfilename,Y,c);
78 | fprintf('true w = [%1.2f,%1.2f]\n',wtrue);
79 | fprintf('est. w = [%1.2f,%1.2f]\n',w);
80 |
81 |
82 |
--------------------------------------------------------------------------------
/optimization/newtoncg.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [x,his,xAll] = newtoncg(fun,x0,param)
8 | %
9 | % Newton-CG method with Armijo linesearch
10 | %
11 | % Inputs:
12 | % fun - objective function, e.g., fun = @(x,varargin) Rosenbrock(x)
13 | % x0 - starting guess
14 | % param - parameters for algorithm. Supported fields
15 | % maxIter - maximum number of iterations
16 | % tolCG - tolerance for PCG solver (default: 1e-2)
17 | % maxIterCG - maximum number of CG iterations (default: 10)
18 | % out - flag controlling output (default: 1)
19 | %
20 | % Outputs:
21 | % x - last iterate
22 | % his - iteration history
23 | % xAll - all iterates
24 |
25 | function [x,his,xAll] = newtoncg(fun,x0,param)
26 |
27 | if nargin==0
28 | E = @(x,varargin) Rosenbrock(x);
29 | W = [4;2];
30 | param = struct('maxIter',30,'maxStep',10);
31 | [W,his,xAll] = feval(mfilename,E,W,param);
32 | fprintf('numerical solution: W = [%1.4f, %1.4f]\n',W);
33 | return
34 | end
35 |
36 | x = x0; xAll = [];
37 | [obj,dobj,H] = fun(x);
38 |
39 | % get paramters
40 | if isfield(param,'tolCG');
41 | tolCG = param.tolCG;
42 | else
43 | tolCG = 1e-2;
44 | end
45 | if isfield(param,'maxIterCG')
46 | maxIterCG = param.maxIterCG;
47 | else
48 | maxIterCG = 10;
49 | end
50 |
51 | if isfield(param,'out')
52 | out=param.out;
53 | else
54 | out=1;
55 | end
56 |
57 | mu = 1;
58 | his = zeros(param.maxIter,2);
59 | if out==1
60 | fprintf('=== %s (maxIter: %d) ===\n',mfilename,param.maxIter);
61 | fprintf('iter\t obj func\tnorm(grad)\n');
62 | end
63 |
64 | for j=1:param.maxIter
65 |
66 | his(j,:) = [obj,norm(dobj)];
67 |
68 | if nargout>2; xAll = [xAll x]; end;
69 |
70 | if out==1; fprintf('%3d.0\t%3.2e\t%3.2e\n',j,his(j,:)); end
71 | [s,FLAG,RELRES,ITER,RESVEC] = pcg(H,-dobj,tolCG,maxIterCG);
72 |
73 | % resort to steepest descent if pcg fails
74 | if norm(s)==0
75 | s = -dobj/norm(dobj);
76 | end
77 |
78 | % test if s is a descent direction
79 | if s(:)'*dobj(:) > 0
80 | s = -dobj;
81 | end
82 | % Armijo line search
83 | cnt = 1;
84 | while 1
85 | xtry = x + mu*s;
86 | [objtry,dobj,H] = fun(xtry,param);
87 | if out==1; fprintf('%3d.%d\t%3.2e\t%3.2e\n',j,cnt,objtry,norm(dobj)); end
88 |
89 | if objtry< obj
90 | break
91 | end
92 | mu = mu/2;
93 | cnt = cnt+1;
94 | if cnt > 20
95 | warning('Line search break');
96 | return;
97 | end
98 | end
99 | if cnt == 1
100 | mu = min(mu*1.5,1);
101 | end
102 | x = xtry;
103 | obj = objtry;
104 | end
--------------------------------------------------------------------------------
/optimization/sgd.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | %[xc,his,xAll] = sgd(fctn,xc,param)
8 | %
9 | % Simple implementation of a Stochastic Gradient Descent method with
10 | % momentum.
11 | %
12 | % Inputs:
13 | % fctn - objective function (accepts two arguments: the current iterate
14 | % and indices of data points to use in current step)
15 | % xc - starting guess
16 | % param - struct, algorithmic paramter. Supported parameters are
17 | % lr - vector, learning rate for each epoch
18 | % n - number of data points overall
19 | % batchSize - number of examples per batch
20 | % momentum - momentum parameter
21 | % out - flag controlling output (default: out=1)
22 | %
23 | % Outputs:
24 | % xc - last iterate
25 | % his - iteration history
26 | % xAll - iterates after each epoch
27 | function [xc,his,xAll] = sgd(fctn,xc,param)
28 |
29 |
30 | if nargin==0
31 | A = hilb(10); A = A(:,1:2);
32 | x = ones(2,1);
33 | b = A*x;
34 |
35 | fctn = @(xc,S) quadObjFun(A,b,xc,S);
36 | param.lr = 1e-1*ones(100,1);
37 | param.n = numel(b);
38 | param.batchSize = 1;
39 | param.momentum=0.9;
40 | xc = 0*x;
41 | [xOpt,xAll,his] = feval(mfilename,fctn,xc,param);
42 | xOpt
43 |
44 | return
45 | end
46 |
47 | xAll = [];
48 | % read parameters
49 | lr = param.lr;
50 | n = param.n;
51 | batchSize = param.batchSize;
52 | momentum = param.momentum;
53 | if isfield(param,'out')
54 | out = param.out;
55 | else
56 | out = 1;
57 | end
58 |
59 | nb = n/batchSize; % number of batches
60 |
61 | dF = 0*xc;
62 | his = zeros(numel(lr),2);
63 |
64 | if out
65 | fprintf('=== %s (epochs: %d, batchSize: %d, momentum: %1.2e) ===\n',...
66 | mfilename, numel(lr),batchSize,momentum);
67 | fprintf('epoch\tobj fun\t\tnorm step\n');
68 | end
69 |
70 |
71 | for epoch=1:numel(lr)
72 | % re-shuffle
73 | xOld = xc;
74 | S = reshape(randperm(n),[],nb);
75 | for batch=1:nb
76 | Sk = S(:,batch);
77 | [Fk,dFk] = fctn(xc,Sk);
78 | dF = momentum*dF + lr(epoch)*dFk;
79 | xc = xc - dF;
80 | end
81 | %evaluate full objective
82 | [Fc] = fctn(xc,1:min(n,5000));
83 | his(epoch,:) = [Fc norm(xc-xOld)];
84 | fprintf('%3d\t%1.2e\t%1.2e\n',epoch,his(epoch,:))
85 |
86 | if nargout>2; xAll = [xAll xc]; end;
87 |
88 | end
--------------------------------------------------------------------------------
/optimization/steepestDescent.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | %[x,his,xAll] = steepestDescent(fun,x0,param)
8 | %
9 | % Steepest Descent method with Armijo linesearch
10 | %
11 | % Inputs:
12 | % fun - objective function, e.g., fun = @(x,varargin) Rosenbrock(x)
13 | % x0 - starting guess
14 | % param - parameters for algorithm. Supported fields
15 | % maxIter - maximum number of iterations
16 | % maxStep - maximum step size
17 | % P - projection onto feasible set (default: @(x) x)
18 | % out - flag controlling output (default: 1)
19 | %
20 | % Outputs:
21 | % x - last iterate
22 | % his - iteration history
23 | % xAll - all iterates
24 | function [x,his,xAll] = steepestDescent(fun,x,param)
25 |
26 | if nargin==0
27 | fun = @Rosenbrock;
28 | x = [4;2];
29 | param = struct('maxIter',10000,'maxStep',1);
30 | x = feval(mfilename,fun,x,param);
31 | fprintf('numerical solution: W = [%1.4f, %1.4f]\n',x);
32 | return
33 | end
34 | xAll = [];
35 | mu = param.maxStep; % max step size
36 | maxIter = param.maxIter; % max number of iterations
37 | if isfield(param,'P')
38 | P = param.P;
39 | else
40 | P = @(x) x;
41 | end
42 | if isfield(param,'out')
43 | out=param.out;
44 | else
45 | out=1;
46 | end
47 | muLS = 1.0;
48 |
49 | if out==1
50 | fprintf('=== %s (maxIter: %d) ===\n',mfilename,maxIter);
51 | fprintf('iter\t obj func\t\tnorm(grad)\n');
52 | end
53 | his = zeros(maxIter,2);
54 |
55 | x = P(x);
56 | for i=1:maxIter
57 | [Ec,dE] = fun(x);
58 | his(i,:) = [Ec,norm(dE)];
59 | if out==1; fprintf('%3d.0\t%3.2e\t%3.2e\n',i,his(i,:)); end
60 | if norm(dE)>mu, dE = mu*dE/norm(dE); end;
61 |
62 | for LSiter=1:10
63 | xt = P(x-muLS*dE);
64 | Et = fun(xt);
65 | if out==1; fprintf('%3d.%d\t%3.2e\n',i,LSiter,Et); end
66 | if Et= Ec
75 | warning('LSB')
76 | return
77 | end
78 | x = xt;
79 | if nargout>2; xAll = [xAll x]; end
80 | end
81 |
82 |
83 |
84 |
--------------------------------------------------------------------------------
/regularization/genTikhonov.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | %[R,dR,d2R] = genTikhonov(W,param)
8 | %
9 | % R(W) = 0.5*lambda*|L*W|^2
10 | %
11 | % where size(W)=size(L,2)*nc.
12 | %
13 | % Input:
14 | % W - weights, will be reshaped internally
15 | % param - struct with additional parameters. Required fields:
16 | % L - regularization operator
17 | % lambda - regularization parameter
18 | %
19 | % Output:
20 | % Rc - value of regularizer
21 | % dR - gradient
22 | % d2R - Hessian, as function handle
23 |
24 | function[R,dR,d2R] = genTikhonov(W,param)
25 |
26 | if nargin==0
27 | help(mfilename);
28 | return
29 | end
30 | if not(isfield(param,'lambda')); param.lambda = 1; end
31 |
32 | L = param.L;
33 | lambda = param.lambda;
34 | W = reshape(W,size(L,2),[]);
35 |
36 | LW = L*W;
37 | R = 0.5* lambda * (LW(:)'*LW(:));
38 | dR = lambda * L'*LW;
39 | dR = dR(:);
40 |
41 | mat = @(X) reshape(X,size(W));
42 | vec = @(X) X(:);
43 | d2Rmat = lambda*(L'*L);
44 | d2R = @(X) vec(d2Rmat*mat(X));
--------------------------------------------------------------------------------
/regularization/getLaplacian.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [L] = getLaplacian(nImg,h)
8 | %
9 | % generates a discrete Laplacian
10 | %
11 | % Inputs:
12 | % nImg - number of pixels in each dimension
13 | % h - pixel size
14 | %
15 | % Output:
16 | % L - discrete Laplacian, sparse matrix
17 |
18 | function[L] = getLaplacian(nImg,h)
19 |
20 |
21 | if nargin==0
22 | runMinimalExample;
23 | return
24 | end
25 |
26 | dim = ndims(nImg);
27 |
28 | d2dx = @(n,h) 1/h^2*spdiags(ones(n,1)*[1 -2 1],-1:1,n,n);
29 |
30 | switch dim
31 | case 1
32 | d2dx = d2dx(nImg,h);
33 | case 2
34 | d2dx1 = d2dx(nImg(1),h(1));
35 | d2dx2 = d2dx(nImg(2),h(2));
36 |
37 | L = kron(speye(nImg(2)),d2dx1) + kron(d2dx2,speye(nImg(1)));
38 | case 3
39 | d2dx1 = d2dx(nImg(1),h(1));
40 | d2dx2 = d2dx(nImg(2),h(2));
41 | d2dx3 = d2dx(nImg(3),h(3));
42 |
43 | L = kron(speye(nImg(3)),kron(speye(nImg(2)),d2dx1)) +...
44 | kron(speye(nImg(3)),kron(d2dx2,speye(nImg(1)))) +...
45 | kron(d2dx3 ,kron(speye(nImg(2)),speye(nImg(1))));
46 |
47 | end
48 |
49 | function runMinimalExample
50 | n = [32 32];
51 | h = [1 1]./n;
52 | x = h/2:h:1;
53 | [X,Y] = ndgrid(x);
54 |
55 | u = cos(pi*X(:).*Y(:));
56 | Lapu = -pi^2*(X(:).^2+Y(:).^2).*u;
57 |
58 | Lap = feval(mfilename,n,h);
59 | Laput = Lap*u;
60 |
61 | figure(1); clf;
62 | subplot(1,3,1);
63 | imagesc(reshape(Lapu,n));
64 | cax = caxis;
65 | axis equal tight
66 | title('Lap*u, true')
67 |
68 | subplot(1,3,2);
69 | imagesc(reshape(Laput,n));
70 | caxis(cax);
71 | axis equal tight
72 | title('Lap*u, approx')
73 |
74 | subplot(1,3,3);
75 | imagesc(reshape(Laput-Lapu,n));
76 | axis equal tight
77 | title('error')
78 |
79 | for k=1:3; subplot(1,3,k); set(gca,'FontSize',20); end;
--------------------------------------------------------------------------------
/resnet/ResNetForward.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Y,Yall,dA] = ResNetForward(Kb,Y,param)
8 | %
9 | % Forward propagation through ResNet
10 | %
11 | % Y{j+1} = P{j}*Y{j} + h*act(K{j}'*Y{j} + b{j})
12 | %
13 | % where P{j} are given and K,b are the weights to be learned
14 | %
15 | % Inputs:
16 | %
17 | % Kb - vector of weights, parsed by vec2cellResNet
18 | % Y - input features
19 | % param - struct describing the networks. Required fields
20 | % h - time step size
21 | % P - cell, P = opEye for ReseNet, P = opZeros for NeuralNet
22 | % n - 2xnt matrix, dimensions of K for each layer
23 | %
24 | % Outputs:
25 | %
26 | % Y - output features
27 | % Yall - features at hidden layers
28 | % dA - cell, derivatives of activations at hidden layers
29 | % (needed for derivative computation)
30 | function [Y,Yall,dA] = ResNetForward(Kb,Y,param)
31 |
32 | [K,b] = vec2cellResNet(Kb,param.n);
33 |
34 | h = param.h;
35 | P = param.P;
36 | N = numel(param.P);
37 | act = param.act;
38 |
39 | % store intermediates
40 | [Yall,dA] = deal(cell(N+1,1));
41 | if nargout>1
42 | Yall{1} = Y;
43 | end
44 |
45 | % do the forward propagation
46 | for j=1:N
47 | [Aj,dAj] = act(K{j}*Y + b{j});
48 | Y = P{j}*Y + h*Aj;
49 |
50 | if nargout>1; Yall{j+1} = Y; end
51 | if nargout>2; dA{j}= dAj; end
52 | end
--------------------------------------------------------------------------------
/resnet/ResNetObjFun.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Ec,dE,H] = ResNetObjFun(x,Y,C,m)
8 | %
9 | % evaluates resnet and computes cross entropy, gradient and approx. Hessian
10 | %
11 | % Let x = [K(:);b(:);W(:)], we compute
12 | %
13 | % E(x) = E(W*Z,C), where Z = ResNetForward(Kb,Y0)
14 | %
15 | % Inputs:
16 | %
17 | % x - current iterate, x=[K(:);b(:);W(:)]
18 | % Y - input features
19 | % C - class probabilities
20 | % nKb - number of network parameters
21 | % paramResnet- param type for ResNet
22 | % paramReg - struct, parameter describing regularizer
23 | %
24 | % Output:
25 | %
26 | % Ec - current value of loss function
27 | % dE - gradient w.r.t. K,b,W, vector
28 | % H - approximate Hessian, H=J'*d2ES*J, function_handle
29 | function [Ec,dE,H] = ResNetObjFun(x,Y,C,nKb,paramResnet,paramReg)
30 |
31 |
32 | if nargin==0
33 | exResNet_Peaks
34 | return;
35 | end
36 |
37 | [nf,nex] = size(Y);
38 | nc = size(C,1);
39 |
40 | % split x into K,b,W
41 | x = x(:);
42 | Kb = x(1:nKb);
43 | W = reshape(x(nKb+1:end),[],nc);
44 |
45 | % evaluate layer
46 | [Z,Yall,dA] = ResNetForward(Kb,Y,paramResnet);
47 |
48 | % call cross entropy
49 | [Ec,dEW,d2EW,dEZ,d2EZ] = softMax(W,Z,C);
50 |
51 | % add regularizer
52 | if not(exist('paramReg','var')) || not(isstruct(paramReg))
53 | dS = 0; d2S = @(x) 0;
54 | else
55 | [Sc,dS,d2S] = genTikhonov(x,paramReg);
56 | Ec = Ec + Sc;
57 | end
58 |
59 | if nargout>1
60 | [dEK,dEb] = dResNetMatVecT(reshape(dEZ,[],nex),Kb,Yall,dA,paramResnet);
61 | dE = [cell2vec(dEK); cell2vec(dEb(:)); dEW(:)] + dS;
62 | end
63 |
64 | H = [];
65 | if nargout>2
66 | H = @(x) HessMat(x,nKb,Yall,dA,Y,d2EW,d2EZ,Kb,d2S,paramResnet);
67 | end
68 |
69 | function Hx = HessMat(x,nKb,Yall,dA,Y,d2EW,d2EZ,Kb,d2S,param)
70 | x = x(:);
71 | dKb = x(1:nKb);
72 | dW = x(nKb+1:end);
73 |
74 |
75 | % compute Jac*x
76 | JKbx = dResNetMatVec(dKb,0*Y,Kb,Yall,dA,param);
77 | tt = d2EZ(JKbx);
78 | [J1,J2] = dResNetMatVecT(reshape(tt,size(JKbx)),Kb,Yall,dA,param);
79 | Hx1 = [cell2vec(J1);cell2vec(J2)];
80 |
81 | Hx2 = d2EW(dW);
82 |
83 | % stack result
84 | Hx = [Hx1(:); Hx2(:)] + d2S(x);
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
--------------------------------------------------------------------------------
/resnet/ResNetVarProObjFun.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Ec,dE,H] = ResNetVarProObjFun(x,Y,C,m)
8 | %
9 | % evaluates resnet, solves classification problem, and computes cross entropy,
10 | % gradient and approx. Hessian
11 | %
12 | % Let x = [K(:);b(:)], we compute
13 | %
14 | % E(x) = E(W(x)*Z,C), where Z = ResNetForward(Y0,Kb)
15 | %
16 | % Inputs:
17 | %
18 | % x - current iterate, x=[K(:);b(:);W(:)]
19 | % Y - input features
20 | % C - class probabilities
21 | % nKb - number of network parameters
22 | % paramCl - struct, paramters for newtoncg used to classify
23 | % paramResnet - struct, parameter describing resnet
24 | % paramRegKb - struct, parameter describing regularizer for K and b
25 | % paramRegW - struct, parameter describing regularizer for W
26 | %
27 | % Output:
28 | %
29 | % Ec - current value of loss function
30 | % dE - gradient w.r.t. K,b,W, vector
31 | % H - approximate Hessian, H=J'*d2ES*J, function_handle
32 | function [Ec,dE,H] = ResNetVarProObjFun(x,Y,C,nKb,paramCl,paramResnet,paramRegKb,paramRegW)
33 | if nargin==0
34 | exResNet_PeaksVarPro
35 | return;
36 | end
37 |
38 | [nf,nex] = size(Y);
39 | nc = size(C,1);
40 |
41 | % split x into K,b,W
42 | x = x(:);
43 | Kb = x(1:nKb);
44 |
45 | % evaluate Resnet
46 | [Z,Yall,dA] = ResNetForward(Kb,Y,paramResnet);
47 |
48 | % solve classification problem
49 | if exist('paramRegW','var')
50 | fctn = @(W,varargin) classObjFun(W,Z,C,paramRegW);
51 | else
52 | fctn = @(W,varargin) softMax(W,Z,C);
53 | end
54 | WOpt = newtoncg(fctn,zeros(nc*(size(Z,1)+1),1),paramCl);
55 |
56 |
57 | % call cross entropy
58 | [Ec,dEW,d2EW,dEZ,d2EZ] = softMax(WOpt,Z,C);
59 |
60 | % add regularizer
61 | if not(exist('paramRegKb','var')) || not(isstruct(paramRegKb))
62 | dS = 0; d2S = @(x) 0;
63 | else
64 | [Sc,dS,d2S] = genTikhonov(x,paramRegKb);
65 | Ec = Ec + Sc;
66 | end
67 | if nargout>1
68 | [dEK,dEb] = dResNetMatVecT(reshape(dEZ,[],nex),Kb,Yall,dA,paramResnet);
69 | dE = [cell2vec(dEK); cell2vec(dEb(:))] + dS;
70 | end
71 |
72 | H = [];
73 | if nargout>2
74 | H = @(x) HessMat(x,nKb,Yall,dA,Y,d2EZ,Kb,d2S,paramResnet);
75 | end
76 |
77 | function Hx = HessMat(x,nKb,Yall,dA,Y,d2EZ,Kb,d2S,param)
78 | x = x(:);
79 | dKb = x(1:nKb);
80 |
81 |
82 | % compute Jac*x
83 | JKbx = dResNetMatVec(dKb,0*Y,Kb,Yall,dA,param);
84 | tt = d2EZ(JKbx);
85 | [J1,J2] = dResNetMatVecT(reshape(tt,size(JKbx)),Kb,Yall,dA,param);
86 | Hx1 = [cell2vec(J1);cell2vec(J2)];
87 |
88 |
89 | % stack result
90 | Hx = Hx1(:) + d2S(x);
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
--------------------------------------------------------------------------------
/resnet/dResNetMatVec.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % dY = dResNetMatVec(dKb,dY,Kb,Yall,dA,param)
8 | %
9 | % computes matrix vector product with Jacobian of ResNet
10 | %
11 | % Inputs:
12 | %
13 | % dKb - vector, perturbation of weights
14 | % dY - matrix, perturbation of input features
15 | % Kb - vector, current weights
16 | % Yall - cell, hidden features
17 | % dA - cell, derivative of activations at all layers
18 | % param - struct, description of ResNet
19 | %
20 | % Outputs:
21 | %
22 | % dY - JKb*dKb + JY*dY
23 | %
24 | % for forward propagation, see ResNetForward.m
25 |
26 | function dY = dResNetMatVec(dKb,dY,Kb,Yall,dA,param)
27 |
28 |
29 |
30 | [K,~] = vec2cellResNet(Kb,param.n);
31 | [dK,db] = vec2cellResNet(dKb,param.n);
32 |
33 | h = param.h;
34 | P = param.P;
35 | N = numel(param.P);
36 |
37 | for j=1:N
38 | dY = P{j}*dY + h*dA{j}.*(dK{j}*Yall{j} + K{j}*dY +db{j});
39 | end
--------------------------------------------------------------------------------
/resnet/dResNetMatVecT.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % dY = dResNetMatVec(dKb,dY,Kb,Yall,dA,param)
8 | %
9 | % computes matrix vector product with Jacobian of ResNet
10 | %
11 | % Inputs:
12 | %
13 | % dY - perturbation of output features
14 | % Kb - current weights
15 | % Yall - hidden features
16 | % dA - derivative of activations at all layers
17 | % param - struct, description of ResNet
18 | %
19 | % Outputs:
20 | %
21 | % dK - cell, derivatives w.r.t. K
22 | % db - cell, derivatives w.r.t. b
23 | % dY - matrix, derivatives w.r.t. input features
24 | %
25 | % for forward propagation, see ResNetForward.m
26 |
27 | function[dK,db,dY] = dResNetMatVecT(dY,Kb,Yall,dA,param)
28 |
29 |
30 |
31 | [K,~] = vec2cellResNet(Kb,param.n);
32 | h = param.h;
33 | P = param.P;
34 | N = numel(param.P);
35 | [dK,db] = deal(cell(N,1));
36 |
37 | for j=N:-1:1
38 | % get derivatives w.r.t. Kj and bj
39 | dK{j} = h*(dA{j}.*dY) * Yall{j}';
40 | db{j} = sum(h*(dA{j}.*dY),2);
41 |
42 | % integrate backwards in time
43 | dY = P{j}'*dY + h*K{j}'*(dA{j}.*dY);
44 | end
45 |
46 |
47 |
48 |
--------------------------------------------------------------------------------
/resnet/examples/EResNet_Forward.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Example for forward propagation through a ResNet
8 | %
9 |
10 | clear
11 | param.act = @tanhActivation;
12 |
13 | % Width of each block (including initial conditions)
14 | n = [2;2]*ones(1,1000);
15 |
16 | a = -.001;
17 | for i=1:size(n,2)
18 | if n(1,i) ~= n(2,i)
19 | P{i} = opZero(n(2,i),n(1,i));
20 | else
21 | P{i} = opEye(n(1,i));
22 | end
23 | K{i} = [a -.2; .2 a];
24 | b{i} = zeros(n(2,i),1);
25 | end
26 | N = length(P);
27 | param.P = P;
28 | Y0 = [1;1];
29 | param.h = 1e-1;
30 | param.n = n;
31 |
32 | Kb = [cell2vec(K); cell2vec(b)];
33 |
34 | %% Run the NN forward
35 | [Y,Yall] = ResNetForward(Kb,Y0,param);
36 | [Y2,Yall2] = ResNetForward(Kb,-Y0,param);
37 | %%
38 | ya = reshape(cell2vec(Yall),2,[]);
39 | ya2 = reshape(cell2vec(Yall2),2,[]);
40 | figure(1);clf
41 | plot(ya(1,1),ya(2,1),'-or','MarkerSize',20)
42 | hold on
43 |
44 | plot(ya(1,:),ya(2,:),'-r','LineWidth',3)
45 | set(gca,'FontSize',20)
46 |
47 | plot(ya2(1,1),ya2(2,1),'-ob','MarkerSize',20)
48 | hold on
49 |
50 | plot(ya2(1,:),ya2(2,:),'-b','LineWidth',3)
51 | set(gca,'FontSize',20)
--------------------------------------------------------------------------------
/resnet/examples/EResNet_PeaksNewtonCG.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Training a ResNet for solving the Peaks example
8 | %
9 |
10 | clear all;
11 | rng(2)
12 | [Y,C] = setupPeaks(1000);
13 | fig = figure(1);
14 | fig.Name = 'exResNet_Peaks: True function';
15 |
16 | %% choose an activation function
17 | paramResnet.act = @sinActivation;
18 | % param.act = @tanhActivation;
19 | % param.act = @reluActivation;
20 |
21 | %% parameters for the ResNet
22 | nc = 8; % width of the ResNet
23 | T = 4; % final time of the ResNet
24 | nt = 16; % number of layers
25 |
26 | %% set this flag to true to initialize the ResNet with an
27 | % anti-symmetric weight matrix for which forward Euler is uncoditionally
28 | % unstable.
29 | startUnstable = false;
30 |
31 | %% build the description of the ResNet (i.e., specify P for each layer) and
32 | % initialize the weights (i.e., K and b)
33 | n = nc*ones(2,nt);
34 | n(1)=2;
35 | for i=1:size(n,2)
36 | if i<3
37 | Ki = randn(n(2,i),n(1,i))/sqrt(prod(n(:,i)));
38 | end
39 | if i>1 && startUnstable
40 | Ki = Ki-Ki';
41 | end
42 | K{i} = Ki;
43 | if n(1,i) ~= n(2,i)
44 | P{i} = opZero(n(2,i),n(1,i));
45 | else
46 | P{i} = opEye(n(1,i));
47 | end
48 | b{i} = zeros(n(2,i),1);
49 | end
50 | N = length(P);
51 | paramResnet.P = P;
52 | paramResnet.h= T/nt;
53 | paramResnet.n = n;
54 |
55 | %% train the network
56 | Kb = [cell2vec(K); cell2vec(b)];
57 | W = randn((n(end,end)+1)*size(C,1),1);
58 | x0 = [Kb;W];
59 |
60 | %% specify regularizer
61 | LKb = speye(numel(Kb));
62 | LW = speye(numel(W));
63 | paramReg.L = blkdiag(LKb,LW);
64 | paramReg.lambda = 1e-5;
65 |
66 | fctn = @(x,varargin) ResNetObjFun(x,Y,C,numel(Kb),paramResnet,paramReg);
67 |
68 | paramOpt = struct('maxIter',50,'maxStep',.1);
69 | xsol = newtoncg(fctn,x0,paramOpt);
70 |
71 | %% show results
72 | x = linspace(-3,3,201);
73 | [Xg,Yg] = ndgrid(x);
74 |
75 | KbOpt = xsol(1:numel(Kb));
76 | WOpt = reshape(xsol(numel(Kb)+1:end),size(C,1),[]);
77 | [Yo,~,Yall] = ResNetForward(KbOpt,[Xg(:)';Yg(:)'],paramResnet);
78 | Z = WOpt*padarray(Yo,[1 0],1,'post');
79 | h = exp(Z)./sum(exp(Z),1);
80 |
81 | [~,ind] = max(h,[],1);
82 | Cpred = zeros(5,numel(Xg));
83 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
84 | Cpred(Ind) = 1;
85 | img = reshape((1:5)*Cpred,size(Xg));
86 |
87 | fig= figure(2); clf
88 | fig.Name = 'exResNet_Peaks: Results';
89 | imagesc(x,x,img')
90 |
91 |
--------------------------------------------------------------------------------
/resnet/examples/EResNet_PeaksSGD.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Training a ResNet for solving the Peaks example
8 | %
9 |
10 | clear all;
11 | rng(2)
12 | [Y,C] = setupPeaks(1000);
13 | fig = figure(1);
14 | fig.Name = 'exResNet_Peaks: True function';
15 |
16 | %% choose an activation function
17 | paramResnet.act = @sinActivation;
18 | % param.act = @tanhActivation;
19 | % param.act = @reluActivation;
20 |
21 | %% parameters for the ResNet
22 | nc = 8; % width of the ResNet
23 | T = 4; % final time of the ResNet
24 | nt = 16; % number of layers
25 |
26 | %% set this flag to true to initialize the ResNet with an
27 | % anti-symmetric weight matrix for which forward Euler is uncoditionally
28 | % unstable.
29 | startUnstable = false;
30 |
31 | %% build the description of the ResNet (i.e., specify P for each layer) and
32 | % initialize the weights (i.e., K and b)
33 | n = nc*ones(2,nt);
34 | n(1)=2;
35 | for i=1:size(n,2)
36 | if i<3
37 | Ki = randn(n(2,i),n(1,i))/sqrt(prod(n(:,i)));
38 | end
39 | if i>1 && startUnstable
40 | Ki = Ki-Ki';
41 | end
42 | K{i} = Ki;
43 | if n(1,i) ~= n(2,i)
44 | P{i} = opZero(n(2,i),n(1,i));
45 | else
46 | P{i} = opEye(n(1,i));
47 | end
48 | b{i} = zeros(n(2,i),1);
49 | end
50 | N = length(P);
51 | paramResnet.P = P;
52 | paramResnet.h= T/nt;
53 | paramResnet.n = n;
54 |
55 | %% train the network
56 | Kb = [cell2vec(K); cell2vec(b)];
57 | W = randn((n(end,end)+1)*size(C,1),1);
58 | x0 = [Kb;W];
59 |
60 | %% specify regularizer
61 | LKb = speye(numel(Kb));
62 | LW = speye(numel(W));
63 | paramReg.L = blkdiag(LKb,LW);
64 | paramReg.lambda = 1e-5;
65 |
66 | fctn = @(x,varargin) ResNetObjFun(x,Y,C,numel(Kb),paramResnet,paramReg);
67 |
68 |
69 | param.lr = 1e-1*ones(50,1);
70 | param.n = size(Y,2);
71 | param.batchSize = 40;
72 | param.momentum=0.0;
73 |
74 | xsol = sgd(fctn,x0,param);
75 | %% show results
76 | x = linspace(-3,3,201);
77 | [Xg,Yg] = ndgrid(x);
78 |
79 | KbOpt = xsol(1:numel(Kb));
80 | WOpt = reshape(xsol(numel(Kb)+1:end),size(C,1),[]);
81 | [Yo,~,Yall] = ResNetForward(KbOpt,[Xg(:)';Yg(:)'],paramResnet);
82 | Z = WOpt*padarray(Yo,[1 0],1,'post');
83 | h = exp(Z)./sum(exp(Z),1);
84 |
85 | [~,ind] = max(h,[],1);
86 | Cpred = zeros(5,numel(Xg));
87 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
88 | Cpred(Ind) = 1;
89 | img = reshape((1:5)*Cpred,size(Xg));
90 |
91 | fig= figure(2); clf
92 | fig.Name = 'exResNet_Peaks: Results';
93 | imagesc(x,x,img')
94 |
95 |
--------------------------------------------------------------------------------
/resnet/examples/EResNet_PeaksVarPro.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Training a ResNet for solving the Peaks example
8 | %
9 |
10 | clear all;
11 | rng(2)
12 | [Y,C] = setupPeaks(1000);
13 | fig = figure(1);
14 | fig.Name = 'exResNet_Peaks: True function';
15 |
16 | %% choose an activation function
17 | paramResnet.act = @sinActivation;
18 | % param.act = @tanhActivation;
19 | % param.act = @reluActivation;
20 |
21 | %% parameters for the ResNet
22 | nc = 8; % width of the ResNet
23 | T = 4; % final time of the ResNet
24 | nt = 16; % number of layers
25 |
26 | %% set this flag to true to initialize the ResNet with an
27 | % anti-symmetric weight matrix for which forward Euler is uncoditionally
28 | % unstable.
29 | startUnstable = false;
30 |
31 | %% build the description of the ResNet (i.e., specify P for each layer) and
32 | % initialize the weights (i.e., K and b)
33 | n = nc*ones(2,nt);
34 | n(1)=2;
35 | for i=1:size(n,2)
36 | if i<3
37 | Ki = randn(n(2,i),n(1,i))/sqrt(prod(n(:,i)));
38 | end
39 | if i>1 && startUnstable
40 | Ki = Ki-Ki';
41 | end
42 | K{i} = Ki;
43 | if n(1,i) ~= n(2,i)
44 | P{i} = opZero(n(2,i),n(1,i));
45 | else
46 | P{i} = opEye(n(1,i));
47 | end
48 | b{i} = zeros(n(2,i),1);
49 | end
50 | N = length(P);
51 | paramResnet.P = P;
52 | paramResnet.h= T/nt;
53 | paramResnet.n = n;
54 |
55 | %% train the network
56 | Kb = [cell2vec(K); cell2vec(b)];
57 | W = randn((n(end,end)+1)*size(C,1),1);
58 | x0 = Kb;
59 |
60 | %% specify regularizer
61 | LKb = speye(numel(Kb));
62 | LW = speye(numel(W));
63 | paramRegKb = struct('L',LKb,'lambda',1e-5);
64 | paramRegW = struct('L',LW,'lambda',1e-3);
65 | paramCl = struct('maxIter',5,'maxStep',.1,'out',0);
66 |
67 | fctn = @(x,varargin) ResNetVarProObjFun(x,Y,C,numel(Kb),paramCl,paramResnet,paramRegKb,paramRegW);
68 |
69 | paramOpt = struct('maxIter',50,'maxStep',.1);
70 | KbOpt = newtoncg(fctn,x0,paramOpt);
71 | %%
72 | YN = ResNetForward(KbOpt,Y,paramResnet);
73 | fctn = @(W,varargin) classObjFun(W,YN,C,paramRegW);
74 | WOpt = newtoncg(fctn,0*W,paramCl);
75 |
76 | %% show results
77 | x = linspace(-3,3,201);
78 | [Xg,Yg] = ndgrid(x);
79 |
80 |
81 | WOpt = reshape(WOpt,size(C,1),[]);
82 | [Yo,~,Yall] = ResNetForward(KbOpt,[Xg(:)';Yg(:)'],paramResnet);
83 | Z = WOpt*padarray(Yo,[1 0],1,'post');
84 | h = exp(Z)./sum(exp(Z),1);
85 |
86 | [~,ind] = max(h,[],1);
87 | Cpred = zeros(5,numel(Xg));
88 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
89 | Cpred(Ind) = 1;
90 | img = reshape((1:5)*Cpred,size(Xg));
91 |
92 | fig= figure(2); clf
93 | fig.Name = 'exResNet_Peaks: Results';
94 | imagesc(x,x,img')
95 |
96 |
--------------------------------------------------------------------------------
/resnet/examples/EResNet_Stability.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % demonstrating the importance of stability for a simple ResNet
8 | %
9 |
10 | close all; clear all; clc;
11 |
12 | model = 'M-matrix';
13 | % activation = @(x) max(x,0);
14 | activation = @(x) tanh(x);
15 |
16 | switch model
17 | case 'M-matrix'
18 | getK = @(th) -eye(3)*sum(th)-[0 -th(1) -th(2); -th(2) 0 -th(1); -th(1) -th(2) 0];
19 | end
20 |
21 | N = [5 100 200]; % number of time steps for coarse, fine, and true
22 | T = 10;
23 | h = T./N;
24 | nex = 20;
25 | Y0 = .1*randn(3,nex); % training
26 | Y0t = .1*randn(3,nex); % test
27 | nth = 101; % number of cells for objective functions
28 | %% get true labels
29 | K = getK([1;1]);
30 | C = Y0; Ct = Y0t;
31 | for j=1:N(3)
32 | C = C + h(3)*activation(K*C);
33 | Ct = Ct + h(3)*activation(K*Ct);
34 | end
35 |
36 | %% compute misfit with few time steps
37 | th = linspace(0.2,2,nth);
38 | Phic = zeros(nth,nth);
39 | Phict = zeros(nth,nth);
40 | for k1=1:nth
41 | for k2=1:nth
42 | Cpred = Y0;
43 | Cpredt = Y0t;
44 | K = getK([th(k1);th(k2)]);
45 | for j=1:N(1)
46 | Cpred = Cpred + h(1)*activation(K*Cpred);
47 | Cpredt = Cpredt + h(1)*activation(K*Cpredt);
48 | end
49 | Phic(k1,k2) = 0.5*norm(Cpred-C,'fro')^2;
50 | Phict(k1,k2) = 0.5*norm(Cpredt-Ct,'fro')^2;
51 | end
52 | end
53 | %%
54 | figure(1); clf;
55 | subplot(2,3,1);
56 | contour(th,th,Phic,100);
57 | hold on;
58 | plot(1,1,'.r','MarkerSize',20);
59 | title(sprintf('objective, h=%1.2f',h(1)));
60 | ylabel('few time steps')
61 | subplot(2,3,2);
62 | contour(th,th,Phict,100);
63 | hold on;
64 | plot(1,1,'.r','MarkerSize',20);
65 | title(sprintf('objective (test), h=%1.2f',h(1)));
66 | subplot(2,3,3);
67 | imagesc(th,th,flipud(abs(Phic-Phict)'));
68 | title(sprintf('abs. diff, h=%1.2f',h(1)));
69 | colorbar
70 |
71 | %% compute misfit with many time steps
72 | Phif = zeros(nth,nth);
73 | Phift = zeros(nth,nth);
74 | for k1=1:nth
75 | for k2=1:nth
76 | Cpred = Y0;
77 | Cpredt = Y0t;
78 | K = getK([th(k1);th(k2)]);
79 | for j=1:N(2)
80 | Cpred = Cpred + h(2)*activation(K*Cpred);
81 | Cpredt = Cpredt + h(2)*activation(K*Cpredt);
82 | end
83 | Phif(k1,k2) = 0.5*norm(Cpred-C,'fro')^2;
84 | Phift(k1,k2) = 0.5*norm(Cpredt-Ct,'fro')^2;
85 | end
86 | end
87 | %%
88 | subplot(2,3,4);
89 | contour(th,th,Phif,100);
90 | hold on;
91 | plot(1,1,'.r','MarkerSize',20);
92 | title(sprintf('objective, h=%1.2f',h(2)));
93 | ylabel('many time steps')
94 |
95 | subplot(2,3,5);
96 | contour(th,th,Phift,100);
97 | hold on;
98 | plot(1,1,'.r','MarkerSize',20);
99 | title(sprintf('objective (test), h=%1.2f',h(2)));
100 | subplot(2,3,6);
101 | imagesc(th,th,flipud(abs(Phif-Phift)'));
102 | title(sprintf('abs. diff, h=%1.2f',h(2)));
103 | colorbar
104 |
105 | return
106 | %% for printing figures;
107 | fig = figure(10); clf;
108 | fig.Name = 'Phic';
109 | contour(th,flipud(th),Phic,100,'LineWidth',2);
110 | hold on;
111 | plot(1,1,'.r','MarkerSize',40);
112 |
113 | fig = figure(11); clf;
114 | fig.Name = 'Phict';
115 | contour(th,flipud(th),Phict,100,'LineWidth',2);
116 | hold on;
117 | plot(1,1,'.r','MarkerSize',40);
118 |
119 | fig = figure(12); clf;
120 | fig.Name = 'Phic-Phict';
121 | diffc = abs(Phic-Phict);
122 | imagesc(th,th,(diffc'));
123 | axis xy
124 | cb = colorbar
125 | cb.Ticks = [min(diffc(:)) max(diffc(:))];
126 | axis square
127 | cb.Position =[0.8405 0.1095 0.02 0.7155]
128 |
129 | fig = figure(13); clf;
130 | fig.Name = 'Phif';
131 | contour(th,flipud(th),Phif,100,'LineWidth',2);
132 | hold on;
133 | plot(1,1,'.r','MarkerSize',40);
134 |
135 | fig = figure(14); clf;
136 | fig.Name = 'Phift';
137 | contour(th,flipud(th),Phift,100,'LineWidth',2);
138 | hold on;
139 | plot(1,1,'.r','MarkerSize',40);
140 |
141 | fig = figure(15); clf;
142 | fig.Name = 'Phif-Phift';
143 | difff = abs(Phif-Phift);
144 | imagesc(th,th,difff');
145 | axis xy
146 | cb = colorbar
147 | cb.Ticks = [min(difff(:)) max(difff(:))];
148 | axis square
149 | cb.Position =[0.8405 0.1095 0.02 0.7155]
150 | %%
151 | for k=10:15
152 | fig = figure(k);
153 | set(gca,'FontSize',30);
154 | axis square
155 | set(gca,'XTick',[min(th) max(th)],'YTick',[ min(th) max(th)])
156 | printFigure(gcf,[fig.Name '.png'],'printOpts','-dpng','printFormat','.png');
157 | end
158 |
159 |
--------------------------------------------------------------------------------
/resnet/examples/EResNet_TestDerivative.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % test derivative of ResNet forward propagation using Peaks example
8 | %
9 |
10 | clear
11 | param.act = @smoothRelU;
12 |
13 | % Width of each block (including initial conditions)
14 | n = [2 5 5 5 5 10; ...
15 | 5 5 5 5 10 3];
16 |
17 | for i=1:size(n,2)
18 | if n(1,i) ~= n(2,i)
19 | P{i} = opZero(n(2,i),n(1,i));
20 | else
21 | P{i} = opEye(n(1,i));
22 | end
23 | K{i} = randn(n(2,i),n(1,i));
24 | b{i} = randn(n(2,i),1);
25 | end
26 | N = length(P);
27 | param.P = P;
28 | param.h=1;
29 | param.n = n;
30 | Y0 = randn(2,100);
31 | Kb = [cell2vec(K); cell2vec(b)];
32 | %% Run the NN forward
33 | [Y,Yall,dA] = ResNetForward(Kb,Y0,param);
34 | dY0 = randn(size(Y0));
35 | dKb = randn(size(Kb));
36 | dY = dResNetMatVec(dKb,dY0,Kb,Yall,dA,param);
37 |
38 | fprintf('=== Derivative test ========================\n')
39 | for k=1:10
40 | h = 10^(-k);
41 |
42 | Y1 = ResNetForward(Kb+h*dKb,Y0+h*dY0,param);
43 |
44 |
45 | fprintf('%3.2e %3.2e %3.2e\n',h,norm(Y1(:)-Y(:)), norm(Y1(:)-Y(:)-h*dY(:)))
46 | end
47 | %%
48 |
49 | fprintf('=== Adjoint test ========================\n')
50 | dZ = dResNetMatVec(dKb,dY0,Kb,Yall,dA,param);
51 |
52 | dW = randn(size(dZ));
53 | t1 = dZ(:)'*dW(:);
54 |
55 | [dK1,db1,dY1] = dResNetMatVecT(dW,Kb,Yall,dA,param);
56 |
57 | tt = [cell2vec(dK1); cell2vec(db1)];
58 |
59 | t2 = tt'*dKb + dot(dY1(:),dY0(:)) ;
60 | fprintf('%3.2e %3.2e\n',t1,t2)
61 |
--------------------------------------------------------------------------------
/resnet/examples/EResNet_TestObjective.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % test derivative of ResNet objective function using Peaks example
8 | %
9 |
10 | clear all;
11 | [Y,C] = setupPeaks();
12 |
13 | %%
14 | param.act = @smoothRelU;
15 | % Width of each block (including initial conditions)
16 | n = [2 5 5 5 5 10; ...
17 | 5 5 5 5 10 3];
18 |
19 | for i=1:size(n,2)
20 | if n(1,i) ~= n(2,i)
21 | P{i} = opZero(n(2,i),n(1,i));
22 | else
23 | P{i} = opEye(n(1,i));
24 | end
25 | K{i} = randn(n(2,i),n(1,i));
26 | b{i} = randn(n(2,i),1);
27 | end
28 | N = length(P);
29 | param.P = P;
30 | param.h=1;
31 | param.n = n;
32 | Y0 = randn(2,100);
33 | %% Run the NN forward
34 | Kb = [cell2vec(K); cell2vec(b)];
35 | W = randn((n(end,end)+1)*size(C,1),1);
36 | x0 = [Kb;W];
37 | [Ec,dE,H] = ResNetObjFun(x0,Y,C,numel(Kb),param);
38 |
39 | dx = randn(size(x0));
40 | dEdx = dot(dE,dx);
41 | for k=1:10
42 | h = 10^(-k);
43 | Et = ResNetObjFun(x0+h*dx,Y,C,numel(Kb),param);
44 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\n',h,abs(Ec-Et),abs(Et-Ec-h*dEdx));
45 | end
46 |
--------------------------------------------------------------------------------
/resnet/examples/EReseNet_vs_NeuralNet.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Compare objective function and gradient for ResNet and Neural Net
8 | %
9 | clear
10 | rng(12)
11 | param.act = @tanhActivation;
12 |
13 | % Width of each block (including initial conditions)
14 | n = [5 5 5 5 5 5; ...
15 | 5 5 5 5 5 5];
16 | n=n/5*4
17 | n(end)=1
18 |
19 | for i=1:size(n,2)
20 | P{i} = opZero(n(2,i),n(1,i));
21 | K{i} = .2*randn(n(2,i),n(1,i));
22 | Kt{i} = .2*randn(n(2,i),n(1,i));
23 | if n(1,i) == n(2,i)
24 | % K{i} = K{i}-K{i}';
25 | % Kt{i} = Kt{i}-Kt{i}';
26 | end
27 | b{i} = 0*randn(n(2,i),1);
28 | end
29 | N = length(P);
30 | param.P = P;
31 | param.h=1;
32 | param.n = n;
33 | Y0 = randn(n(1),100);
34 | Kb = [cell2vec(K); cell2vec(b)];
35 | Kbt = [cell2vec(Kt); cell2vec(b)];
36 | %% Run the NN forward
37 | [Y,Yall,dA] = ResNetForward(Kb,Y0,param);
38 |
39 |
40 | C = ResNetForward(Kbt,Y0,param);
41 |
42 | res = Y-C;
43 | Jc = norm(Y-C,'fro')/norm(C,'fro');
44 | [dJdK,dJdb,dJdY] = dResNetMatVecT(res,Kb,Yall,dA,param);
45 |
46 | dJ = [cell2vec(dJdK); ];
47 | fig = figure(1);clf
48 | fig.Name = 'dJ-NN'
49 | % subplot(1,2,1)
50 | histogram(dJ/norm(C,'fro'),100)
51 |
52 | %%
53 | fig = figure(2);clf
54 | fig.Name = 'obj-NN'
55 | h = linspace(-.1,1,500);
56 | f1 = 0*h;
57 | for k=1:numel(h)
58 | [Yt,Yall,dA] = ResNetForward(h(k)*Kb+(1-h(k))*Kbt,Y0,param);
59 | rest = Yt-C;
60 | f1(k) = norm(rest,'fro')/norm(C,'fro');
61 | end
62 | plot(h,f1,'linewidth',3)
63 | xlabel('t')
64 |
65 | %%
66 | for i=1:size(n,2)
67 | if n(1,i) ~= n(2,i)
68 | P{i} = opZero(n(2,i),n(1,i));
69 | else
70 | P{i} = opEye(n(1,i));
71 | end
72 | end
73 | param.P = P;
74 |
75 | [Y2,Yall2,dA2] = ResNetForward(Kb,Y0,param);
76 |
77 | C = ResNetForward(Kbt,Y0,param);
78 |
79 | res2 = Y2-C;
80 | Jc2 = norm(res2,'fro')/norm(C,'fro');
81 | [dJdK,dJdb,dJdY] = dResNetMatVecT(res2,Kb,Yall2,dA2,param);
82 |
83 | fig = figure(3);clf
84 | fig.Name = 'dJ-Res'
85 | dJ2 = [cell2vec(dJdK);];
86 | histogram(dJ2/norm(C,'fro'),100)
87 | %%
88 | fig = figure(4);clf
89 | fig.Name = 'obj-Res'
90 | h = linspace(-.1,1,500);
91 | f2 = 0*h;
92 | for k=1:numel(h)
93 | [Yt,Yall,dA] = ResNetForward(h(k)*Kb+(1-h(k))*Kbt,Y0,param);
94 | rest = Yt-C;
95 | f2(k) = norm(rest,'fro')/norm(C,'fro');
96 | end
97 | plot(h,f2,'linewidth',3)
98 | xlabel('t')
99 |
100 | %%
101 | figDir = '/Users/lruthot/Dropbox/Projects/NumDL-CourseNotes/images/'
102 | for k=1:4
103 | fig=figure(k);
104 | set(gca,'FontSize',30)
105 | axis square
106 | xlabel([])
107 | printFigure(gcf,fullfile(figDir,['NNvsResNN_' fig.Name '.png']))
108 |
109 | end
110 |
111 |
--------------------------------------------------------------------------------
/resnet/vec2cellResNet.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [K,b] = vec2cellResNet(v,n)
8 | %
9 | % splits vector v into cell arrays associated with K{j} and b{j} in
10 | % ResNetForward.
11 | %
12 | % Inputs:
13 | %
14 | % v - weight vector
15 | % n - descriptions of kernel size in each layer
16 | %
17 | % Outputs:
18 | %
19 | % K,b - cell arrays of weights.
20 |
21 | function [K,b] = vec2cellResNet(v,n)
22 |
23 | nt = size(n,2);
24 | cnt = 0;
25 |
26 | K = cell(nt,1);
27 | b = cell(nt,1);
28 |
29 | % first get the Ks
30 | for k=1:nt
31 | nk = prod(n(:,k));
32 | K{k} = reshape( v(cnt+(1:nk)), n(2,k),n(1,k));
33 | cnt = cnt + nk;
34 | end
35 |
36 | % now get the bs
37 | for k=1:nt
38 | nb = n(end,k);
39 | b{k} = v(cnt+(1:nb));
40 | cnt = cnt + nb;
41 | end
42 |
43 |
44 |
45 |
--------------------------------------------------------------------------------
/singleLayer/examples/ESingleLayer_PeaksNewtonCG.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Training a single layer neural network for Peaks example
8 | %
9 | % Here we optimize the coupled objective function first with steepest
10 | % descent and then with newtoncg. Compare this example with
11 | % ESingleLayer_PeaksVarPro
12 | %
13 | clear;
14 | rng(2)
15 |
16 | %% get peaks data
17 | np = 1000; % num of points sampled
18 | nc = 5; % num of classes
19 | ns = 256; % length of grid
20 |
21 | [Y, C] = setupPeaks(np, nc, ns);
22 | [Yv, Cv] = setupPeaks(2000, nc, ns);
23 |
24 | nf = size(Y,1);
25 | nc = size(C,1);
26 | %% optimize
27 | m = 40;
28 | K0 = randn(m,nf);
29 | b0 = randn(1);
30 | W0 = randn(nc,m+1);
31 |
32 |
33 | %% optimize
34 | paramReg = struct('L',1,'lambda',1e-4,'nc',1);
35 | paramSL = struct('act',@sinActivation);
36 | fctn = @(x,varargin) singleLayerNNObjFun(x,Y,C,m,paramSL,paramReg);
37 | x0 = [K0(:); b0(:); W0(:)];
38 |
39 | param = struct('maxIter',500,'maxStep',1);
40 | x0 = steepestDescent(fctn,x0,param);
41 | %%
42 | param = struct('maxIter',50,'maxStep',1,'tolCG',1e-6,'maxIterCG',200);
43 | xOpt = newtoncg(fctn,x0(:),param);
44 | %%
45 |
46 | KOpt = reshape(xOpt(1:m*nf),m,nf);
47 | bOpt = xOpt(m*nf+1);
48 | WOpt = reshape(xOpt(m*nf+2:end),nc,[]);
49 | %%
50 |
51 | St = WOpt*padarray(singleLayer(KOpt,bOpt,Y,paramSL),[1 0],1,'post');
52 | Sv = WOpt*padarray(singleLayer(KOpt,bOpt,Yv,paramSL),[1 0],1,'post');
53 | htrain = exp(St)./sum(exp(St),1);
54 | h = exp(Sv)./sum(exp(Sv),1);
55 |
56 | % Find the largesr entry at each row
57 | [~,ind] = max(h,[],1);
58 | Cvpred = zeros(size(Cv));
59 | Ind = sub2ind(size(Cvpred),ind,1:size(Cvpred,2));
60 | Cvpred(Ind) = 1;
61 | [~,ind] = max(htrain,[],1);
62 | Cpred = zeros(size(C));
63 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
64 | Cpred(Ind) = 1;
65 |
66 | trainErr = 100*nnz(abs(C-Cpred))/2/nnz(C);
67 | valErr = 100*nnz(abs(Cv-Cvpred))/2/nnz(Cv);
68 |
69 | %%
70 | x = linspace(-3,3,201);
71 | [Xg,Yg] = ndgrid(x);
72 | Z = WOpt*[singleLayer(KOpt,bOpt,[Xg(:)';Yg(:)'],paramSL); ones(1,numel(Xg))];
73 | h = exp(Z)./sum(exp(Z),1);
74 |
75 | [~,ind] = max(h,[],1);
76 | Cpred = zeros(5,numel(Xg));
77 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
78 | Cpred(Ind) = 1;
79 | img = reshape((1:5)*Cpred,size(Xg));
80 | %%
81 | figure(2);clf
82 | imagesc(x,x,img')
83 | title(sprintf('training error %1.2f%% validation error %1.2f%%',trainErr,valErr));
84 |
85 |
86 |
--------------------------------------------------------------------------------
/singleLayer/examples/ESingleLayer_PeaksSGD.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % Training a single layer neural network for Peaks example
8 | %
9 | % Here we optimize the coupled objective function first with steepest
10 | % descent and then with newtoncg. Compare this example with
11 | % ESingleLayer_PeaksVarPro
12 | %
13 | clear;
14 | rng(2)
15 | %% get peaks data
16 | np = 1000; % num of points sampled
17 | nc = 5; % num of classes
18 | ns = 256; % length of grid
19 |
20 | [Y, C] = setupPeaks(np, nc, ns);
21 | [Yv, Cv] = setupPeaks(2000, nc, ns);
22 |
23 | nf = size(Y,1);
24 | nc = size(C,1);
25 | %% optimize
26 | m = 40;
27 | K0 = randn(m,nf);
28 | b0 = randn(1);
29 | W0 = randn(nc,m+1);
30 |
31 |
32 | %% optimize
33 | paramReg = struct('L',1,'lambda',1e-4,'nc',1);
34 | paramSL = struct('act',@sinActivation);
35 | fctn = @(x,varargin) singleLayerNNObjFun(x,Y,C,m,paramSL,paramReg);
36 | x0 = [K0(:); b0(:); W0(:)];
37 |
38 | param.lr = 1e0*ones(50,1);
39 | param.n = size(Y,2);
40 | param.batchSize = 2;
41 | param.momentum=0.0;
42 |
43 | xOpt = sgd(fctn,x0,param);
44 | %%
45 | %%
46 |
47 | KOpt = reshape(xOpt(1:m*nf),m,nf);
48 | bOpt = xOpt(m*nf+1);
49 | WOpt = reshape(xOpt(m*nf+2:end),nc,[]);
50 | %%
51 |
52 | St = WOpt*padarray(singleLayer(KOpt,bOpt,Y,paramSL),[1 0],1,'post');
53 | Sv = WOpt*padarray(singleLayer(KOpt,bOpt,Yv,paramSL),[1 0],1,'post');
54 | htrain = exp(St)./sum(exp(St),1);
55 | h = exp(Sv)./sum(exp(Sv),1);
56 |
57 | % Find the largesr entry at each row
58 | [~,ind] = max(h,[],1);
59 | Cvpred = zeros(size(Cv));
60 | Ind = sub2ind(size(Cvpred),ind,1:size(Cvpred,2));
61 | Cvpred(Ind) = 1;
62 | [~,ind] = max(htrain,[],1);
63 | Cpred = zeros(size(C));
64 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
65 | Cpred(Ind) = 1;
66 |
67 | trainErr = 100*nnz(abs(C-Cpred))/2/nnz(C);
68 | valErr = 100*nnz(abs(Cv-Cvpred))/2/nnz(Cv);
69 |
70 | %%
71 | x = linspace(-3,3,201);
72 | [Xg,Yg] = ndgrid(x);
73 | Z = WOpt*[singleLayer(KOpt,bOpt,[Xg(:)';Yg(:)'],paramSL); ones(1,numel(Xg))];
74 | h = exp(Z)./sum(exp(Z),1);
75 |
76 | [~,ind] = max(h,[],1);
77 | Cpred = zeros(5,numel(Xg));
78 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
79 | Cpred(Ind) = 1;
80 | img = reshape((1:5)*Cpred,size(Xg));
81 | %%
82 | figure(2);clf
83 | imagesc(x,x,img')
84 | title(sprintf('training error %1.2f%% validation error %1.2f%%',trainErr,valErr));
85 |
86 |
87 |
--------------------------------------------------------------------------------
/singleLayer/examples/ESingleLayer_PeaksVarPro.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % classification example for peaks data using single layer neural network.
8 | % Here we use VarPro to solve the coupled optimization problem. Compare
9 | % this with ESingleLayer_PeaksNewtonCG
10 |
11 | clear;
12 | rng(2)
13 |
14 | %% get peaks data
15 | np = 1000; % num of points sampled
16 | nc = 5; % num of classes
17 | ns = 256; % length of grid
18 |
19 | [Y, C] = setupPeaks(np, nc, ns);
20 | [Yv, Cv] = setupPeaks(2000, nc, ns);
21 | [Yv, Cv] = setupPeaks(2000, nc, ns);
22 |
23 |
24 | nf = size(Y,1);
25 | nc = size(C,1);
26 | %% optimize
27 | % m = 640/20;
28 | m = 40;
29 | K0 = randn(m,nf);
30 | b0 = randn(1);
31 | act = @tanhActivation;
32 |
33 |
34 | %% optimize
35 | paramCl = struct('maxIter',20,'tolCG',1e-5,'maxIterCG',30,'out',-1);
36 | paramSL = struct('act',act);
37 | paramRegW = struct('L',1,'lambda',1e-10);
38 | fctn = @(x,varargin) singleLayerNNVarProObjFun(x,Y,C,m,paramCl,paramSL,[],paramRegW);
39 | x0 = [K0(:); b0(:);];
40 |
41 | %% use steepest descent to get a starting guess
42 | param = struct('maxIter',10,'maxStep',1);
43 | x0 = steepestDescent(fctn,x0,param);
44 | %% switch to newtoncg
45 | param = struct('maxIter',20,'tolCG',1e-6,'maxIterCG',10);
46 | xOpt = newtoncg(fctn,x0(:),param);
47 |
48 | %%
49 | KOpt = reshape(xOpt(1:m*nf),m,nf);
50 | bOpt = xOpt(m*nf+1);
51 | Z = singleLayer(KOpt,bOpt,Y,paramSL);
52 | fcl = @(W,varargin) softMax(W,Z,C);
53 | WOpt = newtoncg(fcl,zeros(nc*(m+1),1),paramCl);
54 | WOpt = reshape(WOpt,nc,[]);
55 | %%
56 |
57 | St = WOpt*[Z; ones(1,np)];
58 | Sv = WOpt*[singleLayer(KOpt,bOpt,Yv,paramSL); ones(1,size(Yv,2))];
59 | htrain = exp(St)./sum(exp(St),1);
60 | h = exp(Sv)./sum(exp(Sv),1);
61 |
62 | % Find the largesr entry at each row
63 | [~,ind] = max(h,[],1);
64 | Cvpred = zeros(size(Cv));
65 | Ind = sub2ind(size(Cvpred),ind,1:size(Cvpred,2));
66 | Cvpred(Ind) = 1;
67 | [~,ind] = max(htrain,[],1);
68 | Cpred = zeros(size(C));
69 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
70 | Cpred(Ind) = 1;
71 |
72 | trainErr = 100*nnz(abs(C-Cpred))/2/nnz(C);
73 | valErr = 100*nnz(abs(Cv-Cvpred))/2/nnz(Cv);
74 |
75 | %%
76 | x = linspace(-3,3,201);
77 | [Xg,Yg] = ndgrid(x);
78 | Z = WOpt*[singleLayer(KOpt,bOpt,[Xg(:)';Yg(:)'],paramSL); ones(1,numel(Xg))];
79 | h = exp(Z)./sum(exp(Z),1);
80 |
81 | [~,ind] = max(h,[],1);
82 | Cpred = zeros(5,numel(Xg));
83 | Ind = sub2ind(size(Cpred),ind,1:size(Cpred,2));
84 | Cpred(Ind) = 1;
85 | img = reshape((1:5)*Cpred,size(Xg));
86 | %%
87 | figure(2);clf
88 | imagesc(x,x,img')
89 | title(sprintf('train %1.2f%% val %1.2f%%',trainErr,valErr));
90 |
91 |
92 |
--------------------------------------------------------------------------------
/singleLayer/examples/ESingleLayer_PlotObjective.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % plot the loss landscape for the softmax loss and a single layer neural
8 | % network
9 | close all; clear all; clc;
10 |
11 | rng(2)
12 | n = 50; nf = 50; nc = 3; m = 40;
13 | Wtrue = randn(nc,m+1);
14 | Ktrue = randn(m,nf);
15 | btrue = .1;
16 |
17 | Y = randn(nf,n);
18 | Cobs = exp(Wtrue* padarray(singleLayer(Ktrue,btrue,Y),[1 0],1,'post'));
19 | Cobs = Cobs./sum(Cobs,1);
20 |
21 | %%
22 | dW = randn(nc,m+1);
23 | dK = randn(m,nf);
24 |
25 | [tW,tK] = ndgrid(linspace(-1,1,41));
26 | E = 0*tW;
27 | for i=1:size(tW,1)
28 | for j=1:size(tW,2)
29 | Zt = singleLayer(Ktrue+tK(i,j)*dK,btrue,Y);
30 | E(i,j)=softMax(Wtrue+tW(i,j)*dW,Zt,Cobs);
31 |
32 | end
33 | end
34 |
35 | %%
36 | figure(1); clf;
37 | contour(tW,tK,E,'lineWidth',2)
38 | xlabel('W + tW*dW')
39 | ylabel('K + tK*dK')
40 | set(gca,'FontSize',20)
41 |
42 | %%
43 | figure(2); clf;
44 | surfc(tW,tK,E,'lineWidth',2)
45 | xlabel('W + tW*dW')
46 | ylabel('K + tK*dK')
47 | set(gca,'FontSize',20)
--------------------------------------------------------------------------------
/singleLayer/singleConvLayer.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Z,Jthtmv,Jbtmv,JYtmv,Jthmv,Jbmv,JYmv] = singleConvLayer(theta,b,Y,param)
8 | %
9 | % Computes the Z = sigma(K*Y+b) and functions for computing J'*W and J*V
10 | %
11 | % Inputs:
12 | % K - theta, weights for convolution matrix
13 | % b - bias, scalar
14 | % Y - input features, n x nf
15 | % param - struct, description of activation and conv operator
16 | %
17 | % Output:
18 | % Z - transformed features
19 | % Jthtmv - function handle for (J_th Z)'*W
20 | % Jbtmv - function handle for (J_b Z)'*b
21 | % JYtmv - function handle for (J_Y Z)'*Y
22 | % Jthmv - function handle for (J_th Z)*V_K
23 | % Jbmv - function handle for (J_b Z)*V_b
24 | % JYmv - function handle for (J_Y Z)*V_Y
25 | function[Z,Jthtmv,Jbtmv,JYtmv,Jthmv,Jbmv,JYmv] = singleConvLayer(theta,b,Y,param)
26 |
27 |
28 | if nargin==0
29 | runMinimalExample;
30 | return;
31 | end
32 |
33 | if isfield(param,'act')
34 | act = param.act;
35 | else
36 | act = @tanhActivation;
37 | end
38 | kernel = param.kernel;
39 | K = getOp(kernel,theta);
40 | b = reshape(b,1,1,[]);
41 |
42 |
43 | [Z,dA] = act( K*Y+b);
44 |
45 | if nargout>1
46 | szZ = size(Z);
47 | Jthtmv = @(W) JthetaTmv(kernel,reshape(W,szZ).*dA,[],Y);
48 | Jbtmv = @(W) sum(sum(sum(reshape(W,size(dA)).*dA,4),2),1);
49 | JYtmv = @(W) K'*(reshape(W,size(dA)).*dA);
50 |
51 | Jthmv = @(VK) dA .* (reshape(Jmv(VK),m,nf)*Y);
52 | Jbmv = @(Vb) dA .* reshape(Vb,1,1,[]);
53 | szY = size(Y);
54 | JYmv = @(VY) dA .* (K*reshape(VY,szY));
55 | end
56 |
57 |
58 | function runMinimalExample
59 |
60 | nImg = [18 16];
61 | sK = [3 3 2 4];
62 | n = 10;
63 | kernel = convFFT(nImg,sK);
64 |
65 | param = struct('kernel',kernel);
66 |
67 | theta = randn(sK);
68 | Y = randn([nImg sK(3) n]);
69 | b = randn(sK(4),1);
70 | Zt = feval(mfilename,theta,b,Y,param);
71 |
72 | dK = randn(sK);
73 |
74 | tt = linspace(-1,1,51);
75 | tb = linspace(-1,1,31);
76 | for k=1:numel(tt)
77 | for j=1:numel(tb)
78 | F(k,j) = norm(vec(Zt- feval(mfilename,theta+tt(k)*dK,b+tb(j),Y,param)));
79 | end
80 | end
81 | figure(1); clf;
82 | contour(F,'linewidth',2)
83 | xlabel('bias');
84 | ylabel('kernel');
85 | set(gca,'fontsize',20)
86 |
--------------------------------------------------------------------------------
/singleLayer/singleLayer.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Z,JKtmv,Jbtmv,JYtmv,JKmv,Jbmv,JYmv] = singleLayer(K,b,Y,param)
8 | %
9 | % Computes the Z = sigma(K*Y+b) and functions for computing J'*W and J*V
10 | %
11 | % Inputs:
12 | % K - transformation matrix nf x m
13 | % b - bias, scalar
14 | % Y - input features, n x nf
15 | %
16 | % Output:
17 | % Z - transformed features
18 | % JKtmv - function handle for (J_K Z)'*W
19 | % Jbtmv - function handle for (J_b Z)'*b
20 | % JYtmv - function handle for (J_Y Z)'*Y
21 | % JKmv - function handle for (J_K Z)*V_K
22 | % Jbmv - function handle for (J_b Z)*V_b
23 | % JYmv - function handle for (J_Y Z)*V_Y
24 |
25 | function[Z,JKtmv,Jbtmv,JYtmv,JKmv,Jbmv,JYmv] = singleLayer(K,b,Y,param)
26 |
27 | if nargin==0
28 | runMinimalExample;
29 | return;
30 | end
31 |
32 | [nf,n] = size(Y);
33 | m = size(K,1);
34 |
35 | if exist('param','var')
36 | if isfield(param,'act')
37 | act = param.act;
38 | else
39 | act = param;
40 | end
41 | else
42 | act = @tanhActivation;
43 | end
44 |
45 | [Z,dA] = act( K*Y+b);
46 |
47 | JKtmv = @(W) (reshape(W,m,n).*dA)*Y';
48 | Jbtmv = @(W) sum(sum(reshape(W,m,n).*dA));
49 | JYtmv = @(W) K'*(reshape(W,m,n).*dA);
50 |
51 | JKmv = @(VK) dA .* (reshape(VK,m,nf)*Y);
52 | Jbmv = @(Vb) dA .* Vb;
53 | JYmv = @(VY) dA .* (K*reshape(VY,nf,n));
54 |
55 | function runMinimalExample
56 |
57 | n = 10;
58 | nf = 7;
59 | m = 4;
60 |
61 | K = randn(m,nf);
62 | Y = randn(nf,n);
63 | b = randn();
64 | Zt = feval(mfilename,K,b,Y);
65 |
66 | dK = randn(m,nf);
67 |
68 | tt = linspace(-1,1,51);
69 | tb = linspace(-1,1,31);
70 | for k=1:numel(tt)
71 | for j=1:numel(tb)
72 | F(k,j) = norm(Zt- feval(mfilename,K+tt(k)*dK,b+tb(j),Y));
73 | end
74 | end
75 | figure(1); clf;
76 | contour(F,'linewidth',2)
77 | set(gca,'FontSize',20);
78 | xlabel('bias');
79 | ylabel('kernel');
80 |
--------------------------------------------------------------------------------
/singleLayer/singleLayerAdvObjFun.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Ec,dE,H] = singleLayerAdvObjFun(Y,K,b,W,C)
8 | %
9 | % objective function for adversarial training
10 | %
11 | % Inputs:
12 | %
13 | % Y - input features (to be optimized here)
14 | % K - parameters of transformation
15 | % b - weights of bias
16 | % W - weights of classifier
17 | % C - desired class
18 | % paramSL - struct, paramters for single layer
19 | % paramRegKb - struct, parameter describing regularizer for Kb
20 | %
21 | % Outputs:
22 | %
23 | % Ec - loss function
24 | % dE - gradient w.r.t. Y
25 | % H - approx Hessian
26 | function [Ec,dE,H] = singleLayerAdvObjFun(Y,K,b,W,C,paramSL,paramRegKb)
27 |
28 | if nargin==0
29 | runMinimalExample;
30 | return
31 | end
32 |
33 | if not(exist('paramSL','var')) || isempty(paramSL)
34 | paramSL = @tanhActivation;
35 | end
36 |
37 | n = size(C,2);
38 | nf = size(K,2);
39 | Y = reshape(Y,nf,n);
40 |
41 | % evaluate layer
42 | [Z,~,~,JYt,~,~,JY] = singleLayer(K,b,Y,paramSL);
43 |
44 | % compute cross entropy
45 | [Ec,~,~,dEZ,d2EY] = softMax(W,Z,C);
46 |
47 | % add regularizer
48 | if not(exist('paramRegKb','var')) || not(isstruct(paramRegKb))
49 | dS = 0; d2S = @(x) 0;
50 | else
51 | [Sc,dS,d2S] = genTikhonov(Y,paramRegKb);
52 | Ec = Ec + Sc;
53 | end
54 |
55 | if nargout>1
56 | dEY = JYt(dEZ);
57 | dE = dEY(:) + dS;
58 | end
59 |
60 | if nargout>2
61 | mat = @(Y) reshape(Y,n,nf);
62 | vec = @(Y) Y(:);
63 | H = @(Y) vec( JYt(d2EY(JY(mat(Y)))) + d2R(x));
64 | end
65 |
66 | function runMinimalExample
67 | n = 50; nf = 50; nc = 3; m = 40;
68 | Wtrue = randn(nc,m+1);
69 | Ktrue = randn(m,nf);
70 | btrue = .1;
71 | Ytrue = randn(nf,n);
72 | paramSL.act = @sinActivation;
73 | paramReg = struct('L', speye(numel(Ytrue)),'lambda',.1);
74 |
75 | Cobs = exp(Wtrue*padarray(singleLayer(Ktrue,btrue,Ytrue,paramSL),[1 0],1,'post'));
76 | Cobs = Cobs./sum(Cobs,1);
77 |
78 | Y0 = randn(nf*n,1);
79 | [E,dE] = feval(mfilename,Y0,Ktrue,btrue,Wtrue,Cobs,paramSL,paramReg);
80 | dY = randn(size(Y0));
81 | for k=1:20
82 | h = 2^(-k);
83 | Et = feval(mfilename,Y0+h*dY,Ktrue,btrue,Wtrue,Cobs,paramSL,paramReg);
84 |
85 | err1 = norm(E-Et);
86 | err2 = norm(E+h*dE'*dY-Et);
87 | fprintf('%1.2e\t%1.2e\t%1.2e\n',h,err1,err2);
88 | end
89 |
90 |
--------------------------------------------------------------------------------
/singleLayer/singleLayerNNObjFun.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Ec,dE,H] = singleLayerNNObjFun(x,Y,C,m)
8 | %
9 | % evaluates single layer and computes cross entropy, gradient and approx. Hessian
10 | %
11 | % Let x = [K(:);b(:);W(:)], we compute
12 | %
13 | % E(x) = E(Z*W,C), where Z = activation(Y*K+b)
14 | %
15 | % Inputs:
16 | %
17 | % x - current iterate, x=[K(:);b(:);W(:)]
18 | % Y - input features
19 | % C - class probabilities
20 | % m - size(K,2), used to split x correctly
21 | % paramSL - struct, description of single layer. Fields:
22 | % act - activation function (default: @tanhActivation)
23 | % paramReg- struct, description of regularizer. See genTikhonov.m
24 | %
25 | % Output:
26 | %
27 | % Ec - current value of loss function
28 | % dE - gradient w.r.t. K,b,W, vector
29 | % H - approximate Hessian, H=J'*d2ES*J, function_handle
30 | function [Ec,dE,H] = singleLayerNNObjFun(x,Y,C,m,paramSL,paramReg)
31 |
32 |
33 | if nargin==0
34 | runMinimalExample
35 | return;
36 | end
37 |
38 | if not(exist('paramSL','var')) || isempty(paramSL)
39 | paramSL = @tanhActivation;
40 | end
41 |
42 |
43 | [nf,~] = size(Y);
44 | nc = size(C,1);
45 |
46 | % split x into K,b,W
47 | x = x(:);
48 | K = reshape(x(1:nf*m),m,nf);
49 | b = x(nf*m+1);
50 | W = reshape(x(nf*m+2:end),nc,[]);
51 |
52 | % evaluate layer
53 | [Z,JKt,Jbt,~,JK,Jb,~] = singleLayer(K,b,Y,paramSL);
54 |
55 | % compute cross entropy
56 | [Ec,dEW,d2EW,dEZ,d2EZ] = softMax(W,Z,C);
57 |
58 | % add regularizer
59 | if not(exist('paramReg','var')) || not(isstruct(paramReg))
60 | dS = 0; d2S = @(x) 0;
61 | else
62 | [Sc,dS,d2S] = genTikhonov(x,paramReg);
63 | Ec = Ec + Sc;
64 | end
65 |
66 | if nargout>1
67 | dEK = JKt(dEZ);
68 | dEb = Jbt(dEZ);
69 |
70 | dE = [dEK(:); dEb(:); dEW(:)];
71 | dE = dE + dS;
72 | end
73 |
74 |
75 | if nargout>2
76 | szK = [size(K,1) size(K,2)];
77 | H = @(x) HessMat(x,szK,JK,Jb,JKt,Jbt,d2EW,d2EZ,d2S);
78 | end
79 |
80 | function Hx = HessMat(x,szK,JK,Jb,JKt,Jbt,d2EW,d2EY,d2S)
81 | nK = prod(szK);
82 |
83 | % split x
84 | xK = x(1:nK);
85 | xb = x(nK+1);
86 | xW = x(nK+2:end);
87 |
88 | % compute Jac*x
89 | JKbx = JK(reshape(xK,szK)) + Jb(xb);
90 | tt = d2EY(JKbx);
91 | Hx1 = [reshape(JKt(tt),[],1); Jbt(tt) ];
92 |
93 | Hx2 = d2EW(xW);
94 |
95 | % stack result
96 | Hx = [Hx1(:); Hx2(:)] + d2S(x);
97 |
98 |
99 | function runMinimalExample
100 | n = 50; nf = 50; nc = 3; m = 40;
101 | Wtrue = randn(nc,m+1);
102 | Ktrue = randn(m,nf);
103 | btrue = .1;
104 |
105 | Y = randn(nf,n);
106 | Cobs = exp(Wtrue*padarray(singleLayer(Ktrue,btrue,Y),[1,0],1,'post'));
107 | Cobs = Cobs./sum(Cobs,1);
108 |
109 | x0 = [Ktrue(:);btrue; Wtrue(:)];
110 | x0 = randn(size(x0));
111 | [E,dE] = feval(mfilename,x0,Y,Cobs,m);
112 | dK = randn(nf*m,1);
113 | db = randn();
114 | dW = randn((m+1)*nc,1);
115 | dx = [dK;db;dW];
116 | for k=1:20
117 | h = 2^(-k);
118 | Et = feval(mfilename,x0+h*dx,Y,Cobs,m);
119 |
120 | err1 = norm(E-Et);
121 | err2 = norm(E+h*dE'*dx-Et);
122 | fprintf('%1.2e\t%1.2e\t%1.2e\n',h,err1,err2);
123 | end
124 |
125 |
126 |
127 |
128 |
129 |
130 |
--------------------------------------------------------------------------------
/singleLayer/singleLayerNNVarProObjFun.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % [Ec,dE,H] = singleLayerNNVarProObjFun(x,Y,C,m,paramCl,paramSL,paramRegKb,paramRegW)
8 | %
9 | % evaluates single layer and computes cross entropy, gradient and approx. Hessian
10 | %
11 | % Let x = [K(:);b(:);W(:)], we compute
12 | %
13 | % E(x) = E(Z*W,C), where Z = activation(Y*K+b)
14 | %
15 | % Inputs
16 | %
17 | % x - current iterate, x=[K(:);b(:);W(:)]
18 | % Y - input features
19 | % C - class probabilities
20 | % m - size(K,2), used to split x correctly
21 | % paramCl - struct, paramters for newtoncg used to classify
22 | % paramSL - struct, paramters for single layer
23 | % paramRegKb - struct, parameter describing regularizer for K and b
24 | % paramRegW - struct, parameter describing regularizer for W
25 | %
26 | % Output:
27 | %
28 | % Ec - current value of loss function
29 | % dE - gradient w.r.t. K,b,W, vector
30 | % H - approximate Hessian, H=J'*d2ES*J, function_handle
31 | function [Ec,dE,H] = singleLayerNNVarProObjFun(x,Y,C,m,paramCl,paramSL,paramRegKb,paramRegW)
32 |
33 | if nargin==0
34 | runMinimalExample;
35 | return;
36 | end
37 |
38 | if not(exist('paramSL','var')) || isempty(paramSL)
39 | paramSL = @tanhActivation;
40 | end
41 |
42 | [nf,n] = size(Y);
43 | nc = size(C,1);
44 |
45 | % split x into K,b
46 | x = x(:);
47 | K = reshape(x(1:nf*m),m,nf);
48 | b = x(nf*m+1);
49 |
50 | % evaluate layer
51 | [Z,JKt,Jbt,~,JK,Jb,~] = singleLayer(K,b,Y,paramSL);
52 |
53 | % solve classification problem
54 | if exist('paramRegW','var')
55 | fctn = @(W,varargin) classObjFun(W,Z,C,paramRegW);
56 | else
57 | fctn = @(W,varargin) softMax(W,Z,C);
58 | end
59 | WOpt = newtoncg(fctn,zeros(nc*(m+1),1),paramCl);
60 |
61 | % call cross entropy
62 | [Ec,~,~,dEZ,d2EZ] = softMax(WOpt,Z,C);
63 |
64 | % regularizer
65 | if not(exist('paramRegKb','var')) || not(isstruct(paramRegKb))
66 | Sc = 0; dS = 0; d2S = @(x) 0;
67 | else
68 | [Sc,dS,d2S] = genTikhonov(x,paramRegKb);
69 | end
70 |
71 | Ec = Ec + Sc;
72 | if nargout>1
73 | dEK = JKt(dEZ);
74 | dEb = Jbt(dEZ);
75 |
76 | dE = [dEK(:); dEb(:);];
77 | dE = dE + dS;
78 | end
79 |
80 | if nargout>2
81 | szK = [size(K,1) size(K,2)];
82 | H = @(x) HessMat(x,szK,JK,Jb,JKt,Jbt,d2EZ,d2S);
83 | end
84 |
85 | function Hx = HessMat(x,szK,JK,Jb,JKt,Jbt,d2EY,d2S)
86 | nK = prod(szK);
87 |
88 | % split x
89 | xK = x(1:nK);
90 | xb = x(nK+1);
91 |
92 | % compute Jac*x
93 | JKbx = JK(reshape(xK,szK)) + Jb(xb);
94 | tt = d2EY(JKbx);
95 | Hx1 = [reshape(JKt(tt),[],1); Jbt(tt) ];
96 |
97 | % stack result
98 | Hx = Hx1(:) + d2S(x);
99 |
100 |
101 | function runMinimalExample
102 |
103 | n = 50; nf = 50; nc = 3; m = 40;
104 | Wtrue = randn(nc,m+1);
105 | Ktrue = randn(m,nf);
106 | btrue = .1;
107 |
108 | Y = randn(nf,n);
109 | Cobs = exp(Wtrue*padarray(singleLayer(Ktrue,btrue,Y),[1 0],1,'post'));
110 | Cobs = Cobs./sum(Cobs,1);
111 |
112 | x0 = [Ktrue(:);btrue;];
113 | x0 = randn(size(x0));
114 | paramCl = struct('maxIter',100,'maxIterCG',100,'tolCG',1e-4,'out',0);
115 | paramRegW = struct('L',speye(numel(Wtrue)),'lambda',1e-2);
116 | [E,dE] = feval(mfilename,x0,Y,Cobs,m,paramCl);
117 | dK = randn(nf*m,1);
118 | db = randn();
119 | dx = 100*[dK;db];
120 | for k=1:20
121 | h = 2^(-k);
122 | Et = feval(mfilename,x0+h*dx,Y,Cobs,m,paramCl);
123 |
124 | err1 = norm(E-Et);
125 | err2 = norm(E+h*dE'*dx-Et);
126 | fprintf('%1.2e\t%1.2e\t%1.2e\n',h,err1,err2);
127 | end
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
--------------------------------------------------------------------------------
/startupNumDLToolbox.m:
--------------------------------------------------------------------------------
1 |
2 | addpath(genpath(pwd))
3 |
4 | msg = fprintf('%s\n', '','Welcome to the MATLAB codes for the course Numerical Methods for Deep Learning',...
5 | '','For details see https://github.com/IPAIopen/NumDL-MATLAB','');
6 |
--------------------------------------------------------------------------------
/test/Rosenbrock.m:
--------------------------------------------------------------------------------
1 | function [f,df,d2f] = Rosenbrock(x)
2 | % [f,df,d2f] = Rosenbrock(x)
3 | %
4 | % Rosenbrock function. Useful to test optimization algorithms
5 |
6 | x = reshape(x,2,[]);
7 | f = (1-x(1,:)).^2 + 100*(x(2,:) - (x(1,:)).^2).^2;
8 |
9 | if nargout>1 && size(x,2)==1
10 | df = [2*(x(1)-1) - 400*x(1)*(x(2)-(x(1))^2); ...
11 | 200*(x(2) - (x(1))^2)];
12 | end
13 |
14 | if nargout>2 && size(x,2)==1
15 | n= 2;
16 | d2f=zeros(n);
17 | d2f(1,1)=400*(3*x(1)^2-x(2))+2; d2f(1,2)=-400*x(1);
18 | for j=2:n-1
19 | d2f(j,j-1)=-400*x(j-1);
20 | d2f(j,j)=200+400*(3*x(j)^2-x(j+1))+2;
21 | d2f(j,j+1)=-400*x(j);
22 | end
23 | d2f(n,n-1)=-400*x(n-1); d2f(n,n)=200;
24 | end
--------------------------------------------------------------------------------
/test/quadObjFun.m:
--------------------------------------------------------------------------------
1 | function [Fc,dF,d2F] = quadObjFun(A,b,xc,S)
2 |
3 | res = A(S,:)*xc - b(S);
4 |
5 | Fc = 0.5*res'*res;
6 | dF = A(S,:)'*res;
7 | d2F = A(S,:)'*A(S,:);
8 |
9 |
--------------------------------------------------------------------------------
/test/testGenTikhonov.m:
--------------------------------------------------------------------------------
1 | nf = 10;
2 | nc = 1;
3 | L = randn(20,nf);
4 | param = struct('L',L,'nc',nc,'h',1);
5 | W = randn(nf*nc,1);
6 | %% check calls of genTikhonov
7 | [Rc,dR,d2R] = genTikhonov(W,param);
8 | assert(numel(Rc)==1,'first output argument of softMax must be a scalar');
9 | assert(all(size(dR)==size(W)),'size of gradient and W must match');
10 |
11 | if isnumeric(d2R)
12 | assert(all(size(d2R)==[numel(W),numel(W)]),'size of Hessian incorrect');
13 | elseif isa(d2R,'function_handle')
14 | assert(all(size(d2R(W))==size(W)),'matrix free Hessian must preserve size');
15 | else
16 | error('d2R must be either matrix or function');
17 | end
18 |
19 | % check calls of genTikhonov
20 | param.lambda = 2;
21 | [R2] =genTikhonov(W,param);
22 | assert(norm(2*Rc-R2)<1e-10,'scaling incorrect!');
23 |
24 |
25 | %% check derivatives and Hessian
26 | W0 = randn(size(W));
27 | dW = randn(size(W));
28 | param.h = rand();
29 |
30 | [F,dF,d2F] = genTikhonov(W0,param);
31 | dFdW = dF'*dW;
32 | if isnumeric(d2F)
33 | d2FdW = dW'*d2F*dW;
34 | else
35 | d2FdW = dW'*d2F(dW);
36 | end
37 | err = zeros(10,4);
38 | for k=1:size(err,1)
39 | h = 2^(-k);
40 | Ft = genTikhonov(W0+h*dW,param);
41 |
42 | err(k,:) = [h, norm(F-Ft), norm(F+h*dFdW-Ft), norm(F+h*dFdW+h^2/2*d2FdW-Ft)];
43 |
44 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\tE1=%1.2e\n',err(k,:))
45 | end
46 |
47 | figure; clf;
48 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
49 | hold on;
50 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
51 | hold on;
52 | loglog(err(:,1), err(:,4),'-k','linewidth',3);
53 | legend('E0','E1','E2');
--------------------------------------------------------------------------------
/test/testLogRegression.m:
--------------------------------------------------------------------------------
1 | a = 3;
2 | b = 2;
3 |
4 | Y = randn(2,500);
5 | W = randn(3,1);
6 |
7 | C = (W(1:2)'*Y + W(3))>0;
8 |
9 |
10 | %% check calls of softmax
11 | [F1,dF1] = logRegression(W,Y,C);
12 |
13 | assert(numel(F1)==1,'first output argument of softMax must be a scalar')
14 | assert(all(size(dF1)==size(W)), 'size of gradient and W must match');
15 |
16 | [F2,dF2] = logRegression(1e4*W,Y,C);
17 | assert( not(isinf(F2)) && not(isnan(F2)), 'Likely an overflow in softMax ');
18 | assert(abs(F2)<1e-9,'loss should be around zero');
19 |
20 |
21 | %% check derivatives and Hessian
22 | W0 = randn(size(W));
23 | dW = randn(size(W));
24 |
25 | [F,dF,d2F] = logRegression(W0,Y,C);
26 | dFdW = dF'*dW;
27 | d2FdW = dW'*d2F(dW);
28 | % dF = dF + 1e-2*randn(size(dF));
29 | err = zeros(30,4);
30 | for k=1:size(err,1)
31 | h = 2^(-k);
32 | Ft = logRegression(W0+h*dW,Y,C);
33 |
34 | err(k,:) = [h, norm(F-Ft), norm(F+h*dFdW-Ft), norm(F+h*dFdW+h^2/2*d2FdW-Ft)];
35 |
36 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\tE1=%1.2e\n',err(k,:))
37 | end
38 |
39 | figure; clf;
40 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
41 | hold on;
42 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
43 | hold on;
44 | loglog(err(:,1), err(:,4),'-k','linewidth',3);
45 | legend('E0','E1','E2');
46 |
47 | %% check derivatives and Hessian
48 | Y0 = randn(size(Y));
49 | dY = randn(size(Y));
50 |
51 | [F,dF,d2F,dFY,d2FY] = logRegression(W,Y0,C);
52 | dFdY = dFY'*dY(:);
53 | d2FdY = dY(:)'*d2FY(dY);
54 | % dF = dF + 1e-2*randn(size(dF));
55 | err = zeros(30,4);
56 | for k=1:size(err,1)
57 | h = 2^(-k);
58 | Ft = logRegression(W,Y0+h*dY,C);
59 |
60 | err(k,:) = [h, norm(F-Ft), norm(F+h*dFdY-Ft), norm(F+h*dFdY+h^2/2*d2FdY-Ft)];
61 |
62 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\tE1=%1.2e\n',err(k,:))
63 | end
64 |
65 | figure; clf;
66 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
67 | hold on;
68 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
69 | hold on;
70 | loglog(err(:,1), err(:,4),'-k','linewidth',3);
71 | legend('E0','E1','E2');
--------------------------------------------------------------------------------
/test/testSingleLayer.m:
--------------------------------------------------------------------------------
1 | close all; clear all; clc;
2 |
3 | n = 10;
4 | nf = 7;
5 | m = 4;
6 |
7 | K = randn(m,nf);
8 | Y = randn(nf,n);
9 | b = randn();
10 |
11 |
12 | %% test single layer
13 | Z = singleLayer(K,b,Y);
14 |
15 | assert(all(size(Z)==[m,n]),'output sizes must be m x n');
16 |
17 | %% derivative check for K
18 | dK = randn(m,nf);
19 | b = 0;
20 | [Z,JKt,~,~,JK] = singleLayer(K,b,Y);
21 | dZ = JK(dK);
22 |
23 | err = zeros(30,3);
24 | for k=1:size(err,1)
25 | h = 2^(-k);
26 | Zt = singleLayer(K+h*dK,b,Y);
27 |
28 | err(k,:) = [h, norm(Z-Zt,'fro'), norm(Z+h*dZ-Zt,'fro')];
29 |
30 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\n',err(k,:))
31 | end
32 |
33 | % test adjoint
34 | V = randn(m,nf);
35 | W = randn(m,n);
36 | t1 = sum(sum(W.*JK(V)));
37 | t2 = sum(sum(V.*JKt(W)));
38 |
39 |
40 | fig = figure; clf;
41 | fig.Name = 'checkDerivative for K';
42 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
43 | hold on;
44 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
45 | legend('E0','E1');
46 | adjErr = norm(t1-t2)/norm(t1);
47 | title(sprintf('adjoint error: %1.2e',adjErr))
48 |
49 | if adjErr>1e-12
50 | error('check adjoint for K')
51 | end
52 |
53 | %% derivative check for b
54 | b = randn();
55 | db = randn();
56 | [Z,~,Jbt,~,~,Jb] = singleLayer(K,b,Y);
57 | dZ = Jb(db);
58 |
59 | err = zeros(30,3);
60 | for k=1:size(err,1)
61 | h = 2^(-k);
62 | Zt = singleLayer(K,b+h*db,Y);
63 |
64 | err(k,:) = [h, norm(Z-Zt,'fro'), norm(Z+h*dZ-Zt,'fro')];
65 |
66 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\n',err(k,:))
67 | end
68 |
69 | % test adjoint
70 | V = randn();
71 | W = randn(m,n);
72 | t1 = sum(sum(W.*Jb(V)));
73 | t2 = sum(sum(V.*Jbt(W)));
74 |
75 |
76 | fig = figure; clf;
77 | fig.Name = 'checkDerivative for b';
78 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
79 | hold on;
80 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
81 | legend('E0','E1');
82 | adjErr = norm(t1-t2)/norm(t1);
83 | title(sprintf('adjoint error: %1.2e',adjErr))
84 |
85 | if adjErr>1e-12
86 | error('check adjoint for b')
87 | end
88 |
89 | %% derivative check for Y
90 | Y = randn(nf,n);
91 | dY = randn(nf,n);
92 | [Z,~,~,JYt,~,~,JY] = singleLayer(K,b,Y);
93 | dZ = JY(dY);
94 |
95 | err = zeros(30,3);
96 | for k=1:size(err,1)
97 | h = 2^(-k);
98 | Zt = singleLayer(K,b,Y+h*dY);
99 |
100 | err(k,:) = [h, norm(Z-Zt,'fro'), norm(Z+h*dZ-Zt,'fro')];
101 |
102 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\n',err(k,:))
103 | end
104 |
105 | % test adjoint
106 | V = randn(nf,n);
107 | W = randn(m,n);
108 | t1 = sum(sum(W.*JY(V)));
109 | t2 = sum(sum(V.*JYt(W)));
110 |
111 |
112 | fig = figure; clf;
113 | fig.Name = 'checkDerivative for Y';
114 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
115 | hold on;
116 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
117 | legend('E0','E1');
118 |
119 | adjErr = norm(t1-t2)/norm(t1);
120 | title(sprintf('adjoint error: %1.2e',adjErr))
121 |
122 | if adjErr>1e-12
123 | error('check adjoint for Y')
124 | end
125 |
--------------------------------------------------------------------------------
/test/testSingleLayerNNObjFun.m:
--------------------------------------------------------------------------------
1 | close all; clear all; clc;
2 |
3 | rng(20)
4 | n = 500; nf = 50; nc = 10; m = 40;
5 | Wtrue = randn(nc,m);
6 | Ktrue = randn(m,nf);
7 | btrue = .1;
8 |
9 | Y = randn(nf,n);
10 | Cobs = exp(Wtrue*singleLayer(Ktrue,btrue,Y));
11 | Cobs = Cobs./sum(Cobs,1);
12 |
13 | %% test single layer NN objective
14 | x0 = randn(numel(Ktrue)+numel(btrue)+numel(Wtrue),1);
15 |
16 | [Ec,dE] = singleLayerNNObjFun(x0,Y,Cobs,m);
17 |
18 | assert(isscalar(Ec),'objective function should return scalar');
19 | assert(all(size(dE)==size(x0)),'gradient should be a column vector');
20 |
21 | % check derivative
22 | dx = randn(size(x0));
23 |
24 | [Ec,dE] = singleLayerNNObjFun(x0,Y,Cobs,m);
25 | dEdx = dE'*dx;
26 |
27 | % dF = dF + 1e-2*randn(size(dF));
28 | err = zeros(30,3);
29 | for k=1:size(err,1)
30 | h = 2^(-k);
31 | Et = singleLayerNNObjFun(x0+h*dx,Y,Cobs,m);
32 |
33 | err(k,:) = [h, norm(Ec-Et), norm(Ec+h*dEdx-Et)];
34 |
35 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\n',err(k,:))
36 | end
37 |
38 | figure; clf;
39 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
40 | hold on;
41 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
42 | legend('E0','E1');
43 |
44 | % run steepest descent
45 | F = @(x) singleLayerNNObjFun(x,Y,Cobs,m);
46 | param = struct('maxIter',2000,'maxStep',1);
47 | xSol = steepestDescent(F,x0,param);
48 |
49 | Ksol = reshape(xSol(1:nf*m),m,nf);
50 | bsol = xSol(nf*m+1);
51 | Wsol = reshape(xSol(nf*m+2:end),nc,m);
52 | %
53 | norm(Ktrue-Ksol)/norm(Ktrue)
54 | norm(bsol-btrue)/norm(btrue)
55 | norm(Wtrue-Wsol)/norm(Wtrue)
56 | %
57 |
58 | Cpred = exp(Wsol*singleLayer(Ksol,bsol,Y));
59 | Cpred = Cpred./sum(Cpred,1);
60 | assert(norm(Cobs-Cpred)/norm(Cobs) < 0.01,'training accuracy too low');
--------------------------------------------------------------------------------
/test/testSoftMax.m:
--------------------------------------------------------------------------------
1 | a = 3;
2 | b = 2;
3 |
4 | Y = randn(2,500);
5 | C = a*Y(1,:) + b*Y(2,:) +2;
6 | C(C>0) = 1; C(C<0) = 0;
7 | C = [C; 1-C];
8 |
9 | W = [eye(2) ones(2,1)];
10 | W = W(:);
11 |
12 | %% check calls of softmax
13 | [F1,dF1] = softMax(W,C,C);
14 |
15 | assert(numel(F1)==1,'first output argument of softMax must be a scalar')
16 | assert(all(size(dF1)==size(W)), 'size of gradient and W must match');
17 |
18 | [F2,dF2] = softMax(1e4*W,C,C);
19 | assert( not(isinf(F2)) && not(isnan(F2)), 'Likely an overflow in softMax ');
20 | assert(abs(F2)<1e-9,'loss should be around zero');
21 |
22 | [F3,dF3] = softMax(W,[1e4*C [1; 0]],[C [1;0]]);
23 | assert(not(isinf(F3)) && not(isnan(F3)),'Likely an underflow in softMax ')
24 |
25 | %% check derivatives and Hessian
26 | W0 = randn(size(W));
27 | dW = randn(size(W));
28 |
29 | [F,dF,d2F] = softMax(W0,Y,C);
30 | dFdW = dF'*dW;
31 | d2FdW = dW'*d2F(dW);
32 | % dF = dF + 1e-2*randn(size(dF));
33 | err = zeros(30,4);
34 | for k=1:size(err,1)
35 | h = 2^(-k);
36 | Ft = softMax(W0+h*dW,Y,C);
37 |
38 | err(k,:) = [h, norm(F-Ft), norm(F+h*dFdW-Ft), norm(F+h*dFdW+h^2/2*d2FdW-Ft)];
39 |
40 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\tE1=%1.2e\n',err(k,:))
41 | end
42 |
43 | figure; clf;
44 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
45 | hold on;
46 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
47 | hold on;
48 | loglog(err(:,1), err(:,4),'-k','linewidth',3);
49 | legend('E0','E1','E2');
50 |
51 | %% check derivatives and Hessian
52 | Y0 = randn(size(Y));
53 | dY = randn(size(Y));
54 |
55 | [F,dF,d2F,dFY,d2FY] = softMax(W,Y0,C);
56 | dFdY = dFY'*dY(:);
57 | d2FdY = dY(:)'*d2FY(dY);
58 | % dF = dF + 1e-2*randn(size(dF));
59 | err = zeros(30,4);
60 | for k=1:size(err,1)
61 | h = 2^(-k);
62 | Ft = softMax(W,Y0+h*dY,C);
63 |
64 | err(k,:) = [h, norm(F-Ft), norm(F+h*dFdY-Ft), norm(F+h*dFdY+h^2/2*d2FdY-Ft)];
65 |
66 | fprintf('h=%1.2e\tE0=%1.2e\tE1=%1.2e\tE1=%1.2e\n',err(k,:))
67 | end
68 |
69 | figure; clf;
70 | loglog(err(:,1),err(:,2),'-b','linewidth',3);
71 | hold on;
72 | loglog(err(:,1), err(:,3),'-r','linewidth',3);
73 | hold on;
74 | loglog(err(:,1), err(:,4),'-k','linewidth',3);
75 | legend('E0','E1','E2');
--------------------------------------------------------------------------------
/utils/LinearOperator.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % classdef LinearOperator
8 | %
9 | % Allows one to define a matrix by its size and acting on a vector. This is
10 | % a basic implementation that overloads *, transpose, +, blkdiag, hcat, ..
11 | classdef LinearOperator
12 |
13 | properties
14 | m % number of columns
15 | n % number of rows
16 | Amv % mat-vec, function handle
17 | ATmv % transpose mat-vec, function handle
18 | end
19 |
20 | methods
21 | function this = LinearOperator(varargin)
22 | % constructor, LinearOperator(varargin)
23 | %
24 | % As input, either provide a matric or define m,n,Amv,ATmv
25 | if nargin==0
26 | this.runMinimalExample;
27 | return;
28 | end
29 |
30 | if nargin==1 && isnumeric(varargin{1})
31 | A = varargin{1};
32 | [this.m,this.n] = size(A);
33 | this.Amv = @(x) A*x;
34 | this.ATmv = @(x) A'*x;
35 | elseif nargin>=4
36 | this.m = varargin{1};
37 | this.n = varargin{2};
38 | this.Amv = varargin{3};
39 | this.ATmv = varargin{4};
40 | else
41 | error('%s - invalid number of inputs',mfilename);
42 | end
43 | end
44 |
45 | function szA = size(this,dim)
46 | if nargin==1
47 | szA = [this.m, this.n];
48 | elseif nargin==2 && dim==1
49 | szA = this.m;
50 | elseif nargin==2 && dim==2
51 | szA = this.n;
52 | end
53 | end
54 |
55 | function nn = numel(this)
56 | nn = prod(size(this));
57 | end
58 |
59 | function Ax = mtimes(this,B)
60 | if isscalar(B)
61 | Ax = LinearOperator(this.m,this.n,@(x) B*this.Amv(x), @(x) B*this.ATmv(x));
62 | elseif isscalar(this)
63 | Ax = LinearOperator(B.m,B.n,@(x) this*B.Amv(x), @(x) this*B.ATmv(x));
64 | elseif isa(B,'LinearOperator')
65 | if size(this,2)==size(B,1) || isinf(size(B,1))
66 | if isinf(size(B,2))
67 | n = size(this,2);
68 | else
69 | n = size(B,2);
70 | end
71 | Ax = LinearOperator(this.m,n, @(x) this*(B*x), @(x) B'*(this'*x));
72 | else
73 | error('Inner dimensions must agree');
74 | end
75 | else
76 | Ax = this.Amv(B);
77 | end
78 | end
79 |
80 | function AB = plus(this,B)
81 | if isnumeric(this)
82 | this = LinearOperator(this);
83 | end
84 | if isnumeric(B)
85 | B = LinearOperator(B);
86 | end
87 | if isempty(this)
88 | AB = B;
89 | return;
90 | end
91 |
92 | if any(isinf(size(this)))
93 | szAB = size(B);
94 | elseif any(isinf(size(B)))
95 | szAB = size(this);
96 | elseif any(size(this)~=size(B))
97 | error('A and B must have same size');
98 | else
99 | szAB = size(B);
100 | end
101 | ABf = @(x) this.Amv(x) + B.Amv(x);
102 | ABTf = @(x) this.ATmv(x) + B.ATmv(x);
103 | AB = LinearOperator(szAB(1),szAB(2), ABf, ABTf);
104 | end
105 |
106 | function AB = minus(this,B)
107 | if isnumeric(B)
108 | B = LinearOperator(B);
109 | end
110 | if any(size(this)~=size(B))
111 | error('A and B must have same size');
112 | end
113 | ABf = @(x) this.Amv(x) - B.Amv(x);
114 | ABTf = @(x) this.ATmv(x) - B.ATmv(x);
115 | AB = LinearOperator(this.m,this.n, ABf, ABTf);
116 | end
117 |
118 | function AB = blkdiag(this,varargin)
119 | ops = {this,varargin{:}};
120 | AB = opBlkdiag(ops{:});
121 | end
122 |
123 |
124 | function AB = hcat(this,B)
125 | if isnumeric(B)
126 | B = LinearOperator(B);
127 | end
128 | if this.m ~=B.m
129 | error('hcat - first dimension must agree');
130 | end
131 |
132 | mAB = this.m;
133 | nAB = this.n + B.n;
134 | ABf = @(x) this.Amv(x(1:this.n,:)) + B.Amv(x(this.n+1:end,:));
135 | ABTf = @(x) [vec(this.ATmv(x)); vec(B.ATmv(x))];
136 | AB = LinearOperator(mAB,nAB,ABf,ABTf);
137 | end
138 |
139 |
140 | function AT = transpose(this)
141 | AT = LinearOperator(this.n, this.m, this.ATmv, this.Amv);
142 | end
143 |
144 | function AT = ctranspose(this)
145 | AT = LinearOperator(this.n, this.m, this.ATmv, this.Amv);
146 | end
147 |
148 | function runMinimalExample(~)
149 | A = randn(4,6);
150 | Aop = LinearOperator(A);
151 | end
152 | end
153 | end
154 |
155 |
--------------------------------------------------------------------------------
/utils/cell2vec.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % a = cell2vec(A)
8 | %
9 | % vectorizes a cell array
10 | function a = cell2vec(A)
11 |
12 | a = [];
13 | for i=1:length(A)
14 | a = [a ; A{i}(:)];
15 | end
--------------------------------------------------------------------------------
/utils/opEye.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % classdef opEye
8 | %
9 | % Matrix-free implementation of identity matrix
10 | %
11 | classdef opEye
12 | properties
13 | n % number of columns/rows
14 | Amv % mat-vec, Amv(x) = x
15 | ATmv % transpose mat-vec, ATmv(x)=x
16 | end
17 | properties (Dependent)
18 | m % number of rows, equal to this.n
19 | end
20 |
21 | methods
22 | function this = opEye(n)
23 | % constructor, opEye(n)
24 | this.n = n;
25 | this.Amv = @(x) x;
26 | this.ATmv = @(x) x;
27 | end
28 |
29 | function z = mtimes(this,x)
30 | z = this.Amv(x);
31 | end
32 |
33 | function this = convertGPUorPrecision(this,useGPU,precision)
34 | % do nothing
35 | end
36 |
37 | function m = get.m(this)
38 | m = this.n;
39 | end
40 | end
41 | end
42 |
43 |
--------------------------------------------------------------------------------
/utils/opKron.m:
--------------------------------------------------------------------------------
1 | classdef opKron < LinearOperator
2 | %==============================================================================
3 | % This code is part of the course materials for
4 | % Numerical Methods for Deep Learning
5 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
6 | %==============================================================================
7 | %
8 | % linear operator for computing kronecker products
9 | %
10 | % kron(I,B)*vec(x) = vec(B*mat(x)*I)
11 |
12 | properties
13 | end
14 |
15 | methods
16 | function this = opKron(nI,B)
17 | this.m = nI*size(B,1);
18 | vec = @(x) x(:);
19 | this.n = nI*size(B,2);
20 | this.Amv = @(x) vec(B*reshape(x,size(B,2),[]));
21 | this.ATmv = @(x)vec(B'*reshape(x,size(B,1),[]));
22 | end
23 |
24 | function getPCop(this,~)
25 | error('nyi');
26 | end
27 |
28 | function PCmv(A,x,alpha,gamma)
29 | error('nyi');
30 | end
31 | function this = convertGPUorPrecision(this,useGPU,precision)
32 | % do nothing
33 | end
34 |
35 | end
36 | end
37 |
38 |
--------------------------------------------------------------------------------
/utils/opZero.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % classdef opZero
8 | %
9 | % Matrix-free implementation of zeros(m,n)
10 | %
11 | classdef opZero
12 | properties
13 | m % number of rows
14 | n % number of columns
15 | Amv % mat-vec, Amv(x) = 0;
16 | ATmv % transpose mat-vec, ATmv(x) = 0;
17 | end
18 |
19 | methods
20 | function this = opZero(m,n)
21 | % constructor, opZero(m,n)
22 | this.m = m;
23 | this.n = n;
24 | this.Amv = @(x) 0;
25 | this.ATmv = @(x) 0;
26 | end
27 | function z = mtimes(this,x)
28 | z = this.Amv(x);
29 | end
30 | function this = ctranspose(this)
31 | temp = this.m;
32 | this.m = this.n;
33 | this.n = temp;
34 | temp = this.Amv;
35 | this.Amv = this.ATmv;
36 | this.ATmv = temp;
37 | end
38 |
39 | function this = convertGPUorPrecision(this,useGPU,precision)
40 | % do nothing
41 | end
42 |
43 | end
44 | end
45 |
46 |
--------------------------------------------------------------------------------
/utils/vec.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % vec(x) = x(:)
8 | function x=vec(x)
9 | x=x(:);
10 |
11 |
--------------------------------------------------------------------------------
/utils/vec2cell.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | function [K,b] = vec2cell(v,n)
7 |
8 | nt = size(n,2);
9 | cnt = 0;
10 |
11 | K = cell(nt,1);
12 | b = cell(nt,1);
13 |
14 | % first get the Ks
15 | for k=1:nt
16 | nk = prod(n(:,k));
17 | K{k} = reshape( v(cnt+(1:nk)), n(:,k)');
18 | cnt = cnt + nk;
19 | end
20 |
21 | % now get the bs
22 | for k=1:nt
23 | nb = n(end,k);
24 | b{k} = v(cnt+(1:nb));
25 | cnt = cnt + nb;
26 | end
27 |
28 |
29 |
30 |
--------------------------------------------------------------------------------
/viewers/montageArray.m:
--------------------------------------------------------------------------------
1 | %==============================================================================
2 | % This code is part of the course materials for
3 | % Numerical Methods for Deep Learning
4 | % For details and license info see https://github.com/IPAIopen/NumDL-MATLAB
5 | %==============================================================================
6 | %
7 | % C = montageArray(A,ncol)
8 | %
9 | % Inputs:
10 | %
11 | % A - 3D/4D array
12 | % ncol - specify number of columns in montage. default=[]
13 | %
14 | % Outputs:
15 | %
16 | % C - montage
17 | function C = montageArray(A,ncol)
18 |
19 |
20 |
21 | [m1,m2,m3] = size(A);
22 | if not(exist('ncol','var')) || isempty(ncol)
23 | ncol = ceil(sqrt(m3));
24 | end
25 | nrow = ceil(m3/ncol);
26 |
27 | C = zeros(m1*nrow, m2*ncol);
28 | M = zeros(m1*nrow, m2*ncol);
29 |
30 | k=0;
31 |
32 | for p=1:m1:(nrow*m1)
33 | for q=1:m2:(ncol*m2)
34 | k=k+1;
35 | if k>m3,
36 | break
37 | end
38 | C(p:(p+m1-1),q:(q+m2-1)) = A(:,:,k);
39 | M(p:(p+m1-1),q:(q+m2-1)) = 1;
40 | end
41 | end
42 |
43 | if nargout == 0
44 | h = imagesc(C);
45 | set(h, 'AlphaData', M);
46 |
47 | washold = ishold;
48 | hold on;
49 |
50 | [P,Q]= ndgrid(1:m1:((nrow+1)*m1),1:m2:((ncol+1)*m2));
51 | P = P -0.5;
52 | Q = Q -0.5;
53 | plot(Q,P,'color',get(gcf,'color'),'linewidth',3);
54 | plot(Q',P','color',get(gcf,'color'),'linewidth',3);
55 | plot(Q,P,'k','linewidth',1);
56 | plot(Q',P','k','linewidth',1);
57 |
58 | if ~washold,
59 | hold off;
60 | end;
61 |
62 | end
63 |
64 |
65 |
66 |
67 |
68 |
--------------------------------------------------------------------------------