├── Part 1
├── 01. Chap 5-1_Machine Learning Basics_Jinwook Kim.pdf
└── 02. Chap 5-2 Machine Learning Basics_Hyun-Lim Yang.pdf
├── Part 2
├── 03. Chap 6_Deep FeedForward Networks_Eunjeong Yi.pdf
├── 04. Chap 7-1 Regularization for Deep Learning-Keonwoo Noh.pdf
├── 05. Chap 7-2 Regularization for Deep Learning-Hyun-Lim Yang.pdf
├── 06. Chap 8_Optimization for Training Deep Models_Jinwook Kim.pdf
├── 07. Chap 9-1 Convolutional Neural Network_Keonwoo Noh.pdf
├── 08. Chap 9-2_Convolutional Neural Network_Heechul Lim.pdf
├── 09. Chap 10-1_Sequence Modeling Recurrent and Recursive nets_Eunjeong Yi.pdf
├── 10. Chap 10-2 Sequence Modeling Recurrent and Recursive Net-Hyun-Lim Yang.pdf
└── 11. Chap 11 12_Practical Methodology and Applications_Heechul Lim.pdf
├── Part 3
├── 12. Chap 13_Linear Factor Model_Eunjeong Yi.pdf
├── 13. Chap 14 Autoencoders_Keonwoo Noh.pdf
├── 14. Chap 15_Representation learning_Heechul Lim.pdf
├── 15. Chap 16 17_Structured Probabilistic Models and Monte Carlo Methods_Jinwook Kim.pdf
├── 16. Chap 18_Confronting the Partition Function_Eunjeong Yi.pdf
├── 17. Chap 19_Approximate Inference_Heechul Lim.pdf
└── 18. Chap 20 Deep Generative Models_Keonwoo Noh.pdf
└── README.md
/Part 1/01. Chap 5-1_Machine Learning Basics_Jinwook Kim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 1/01. Chap 5-1_Machine Learning Basics_Jinwook Kim.pdf
--------------------------------------------------------------------------------
/Part 1/02. Chap 5-2 Machine Learning Basics_Hyun-Lim Yang.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 1/02. Chap 5-2 Machine Learning Basics_Hyun-Lim Yang.pdf
--------------------------------------------------------------------------------
/Part 2/03. Chap 6_Deep FeedForward Networks_Eunjeong Yi.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/03. Chap 6_Deep FeedForward Networks_Eunjeong Yi.pdf
--------------------------------------------------------------------------------
/Part 2/04. Chap 7-1 Regularization for Deep Learning-Keonwoo Noh.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/04. Chap 7-1 Regularization for Deep Learning-Keonwoo Noh.pdf
--------------------------------------------------------------------------------
/Part 2/05. Chap 7-2 Regularization for Deep Learning-Hyun-Lim Yang.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/05. Chap 7-2 Regularization for Deep Learning-Hyun-Lim Yang.pdf
--------------------------------------------------------------------------------
/Part 2/06. Chap 8_Optimization for Training Deep Models_Jinwook Kim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/06. Chap 8_Optimization for Training Deep Models_Jinwook Kim.pdf
--------------------------------------------------------------------------------
/Part 2/07. Chap 9-1 Convolutional Neural Network_Keonwoo Noh.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/07. Chap 9-1 Convolutional Neural Network_Keonwoo Noh.pdf
--------------------------------------------------------------------------------
/Part 2/08. Chap 9-2_Convolutional Neural Network_Heechul Lim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/08. Chap 9-2_Convolutional Neural Network_Heechul Lim.pdf
--------------------------------------------------------------------------------
/Part 2/09. Chap 10-1_Sequence Modeling Recurrent and Recursive nets_Eunjeong Yi.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/09. Chap 10-1_Sequence Modeling Recurrent and Recursive nets_Eunjeong Yi.pdf
--------------------------------------------------------------------------------
/Part 2/10. Chap 10-2 Sequence Modeling Recurrent and Recursive Net-Hyun-Lim Yang.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/10. Chap 10-2 Sequence Modeling Recurrent and Recursive Net-Hyun-Lim Yang.pdf
--------------------------------------------------------------------------------
/Part 2/11. Chap 11 12_Practical Methodology and Applications_Heechul Lim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 2/11. Chap 11 12_Practical Methodology and Applications_Heechul Lim.pdf
--------------------------------------------------------------------------------
/Part 3/12. Chap 13_Linear Factor Model_Eunjeong Yi.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/12. Chap 13_Linear Factor Model_Eunjeong Yi.pdf
--------------------------------------------------------------------------------
/Part 3/13. Chap 14 Autoencoders_Keonwoo Noh.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/13. Chap 14 Autoencoders_Keonwoo Noh.pdf
--------------------------------------------------------------------------------
/Part 3/14. Chap 15_Representation learning_Heechul Lim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/14. Chap 15_Representation learning_Heechul Lim.pdf
--------------------------------------------------------------------------------
/Part 3/15. Chap 16 17_Structured Probabilistic Models and Monte Carlo Methods_Jinwook Kim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/15. Chap 16 17_Structured Probabilistic Models and Monte Carlo Methods_Jinwook Kim.pdf
--------------------------------------------------------------------------------
/Part 3/16. Chap 18_Confronting the Partition Function_Eunjeong Yi.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/16. Chap 18_Confronting the Partition Function_Eunjeong Yi.pdf
--------------------------------------------------------------------------------
/Part 3/17. Chap 19_Approximate Inference_Heechul Lim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/17. Chap 19_Approximate Inference_Heechul Lim.pdf
--------------------------------------------------------------------------------
/Part 3/18. Chap 20 Deep Generative Models_Keonwoo Noh.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/InfolabAI/DeepLearning/23b7fd95584e3d5393547d285f12b7a0d7dc81c5/Part 3/18. Chap 20 Deep Generative Models_Keonwoo Noh.pdf
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | Lecture Slides for Deeplearning book
2 | ===================================
3 | This repo contains lecture slides for [Deeplearning book](http://www.deeplearningbook.org/). This project is maintained by [_InfoLab_ @ DGIST](https://infolab.dgist.ac.kr/) (_Large-scale Deep Learning Team_), and have been made for _InfoSeminar_. It is freely available only if the source is marked.
4 |
5 | > The slides contain additional materials which have not detailed in [the book](http://www.deeplearningbook.org/).
6 | > Also, some materials in the book have been omitted.
7 |
8 |
9 |
10 |
11 | ## Maintained by
12 | **[_InfoLab_](https://infolab.dgist.ac.kr/)** @ DGIST(Daegu Gyeongbuk Institute of Science & Technology)
13 |
14 | ## Coverage
15 | This repo covers Chapter 5 to 20 in the book.
16 |
17 |
18 | ## Credits
19 | Name | Chapters
20 | ------------ | -------------
21 | [Jinwook Kim](https://infolab.dgist.ac.kr/~bm010515/) | 5-1, 8, 16, 17
22 | [Heechul Lim](https://infolab.dgist.ac.kr/~hclim/) | 9-2, 11, 12, 15, 19
23 | [Hyun-Lim Yang](https://infolab.dgist.ac.kr/~hlyang/) | 5-2, 7-2, 10-2
24 | [Keonwoo Noh](https://infolab.dgist.ac.kr/~kwnoh/) | 7-1, 9-1, 14, 20
25 | [Eunjeong Yi](https://infolab.dgist.ac.kr/~ejyi/) | 6, 10-1, 13, 18
26 |
27 | ## The contents of lecture slides
28 |
29 | ### Part 1. Applied Math and Machine Learning Basics
30 | > ### 5-1. Machine Learning Basics
31 | > - Learning algorithms
32 | > - Capacity, overfitting and underfitting
33 | > - Hyperparameters and validation sets
34 | > - Estimators, bias and variance
35 | > - Maximum likelihood estimation
36 |
37 | > ### 5-2. Machine Learning Basics
38 | > - Bayesian statistics
39 | > - Supervised learning algorithms
40 | > - Unsupervised learning algorithms
41 | > - Stochastic gradient descent
42 |
43 | ### Part 2. Deep Networks: Modern Practices
44 | > ### 6. Deep Feedforward Networks
45 | > - Example: Learning XOR
46 | > - Gradient-Based Learning
47 | > - Hidden Units
48 | > - Architecture Design
49 | > - Back-Propagation and Other Differentiation
50 |
51 | > ### 7-1 Regularization for Deep Learning
52 | > - Parameter Norm Penalties
53 | > - Norm Penalties as Constrained Optimization
54 | > - Regularization and Under-Constrained Problems
55 | > - Dataset Augmentation
56 | > - Noise Robustness
57 | > - Semi-Supervised Learning
58 | > - Multitask Learning
59 | > - Early stopping
60 |
61 | > ### 7-2 Regularization for Deep Learning
62 | > - Parameter Tying and Parameter Sharing
63 | > - Bagging and Other Ensemble Methods
64 | > - Dropout
65 | > - Adversarial Training
66 |
67 | > ### 8 Optimization for Training Deep Models
68 | > - How Learning Differs from Pure Optimization
69 | > - Challenges in Neural Networks
70 | > - Basic Algorithms
71 | > - Algorithms with Adaptive Learning Rates
72 | > - Parameter Initialization Strategies
73 | > - Approximate Second-order Methods
74 | > - Optimization Strategies and Meta-algorithms
75 |
76 | > ### 9-1 Convolutional Networks
77 | > - The Convolution Operation
78 | > - Motivation
79 | > - Pooling
80 | > - Convolution and Pooling as an Infinitely Strong Prior
81 | > - Variants of the Basic Convolution Function
82 |
83 | > ### 9-2 Convolutional Networks
84 | > - Structured Outputs
85 | > - Data Types
86 | > - Efficient Convolution Algorithms
87 | > - Random or Unsupervised Features
88 | > - The Neuroscientific Basis for Convolutional Networks
89 |
90 | > ### 10-1 Sequence modeling: Recurrent and Recursive Nets
91 | > - Unfolding Computational Graphs
92 | > - Recurrent Neural Networks
93 | > - Bidirectional RNNs
94 | > - Encoder-Decoder Sequence-to-Sequence Architectures
95 | > - Deep Recurrent Networks
96 | > - Recursive Neural Networks
97 |
98 | > ### 10-2 Sequence modeling: Recurrent and Recursive Nets
99 | > - The challenge of Long-term
100 | > - Echo State Networks
101 | > - Leaky Units and Other strategies for Multiple Time Scales
102 | > - The Long Short-Term Memory and Other Gated RNNs
103 | > - Optimization for Long-Term Dependencies
104 | > - Explicit Memory
105 |
106 | > ### 11, 12 Practical Methodology and Applications
107 | > - Performance Metrics
108 | > - Default Baseline Models
109 | > - Determining Whether to Gather More Data
110 | > - Selecting Hyperparameters
111 | > - Debugging Strategies
112 | > - Computer Vision
113 |
114 | ### Part 3. Deep Learning Research
115 | > ### 13 Linear Factor Models
116 | > - Probabilistic PCA and Factor Analysis
117 | > - Independent Component Analysis
118 | > - Sparse Coding
119 |
120 | > ### 14 Autoencoders
121 | > - Introduction
122 | > - Stochastic Encoders and Decoders
123 | > - Regularized autoencoders
124 | > - Representational Power, Layer Size and Depth
125 | >
126 | > ### 15 Representation Learning
127 | > - Unsupervised pre-training
128 | > - Introduction of supervised(SL) and unsupervised learning(UL)
129 | > - Representation
130 | > - Clustering
131 | > - K-means
132 | > - Gaussian Mixture Model
133 | > - EM algorithm
134 | > - Practical example
135 | >
136 | > ### 16, 17 Structured Probabilistic Models for Deep Learning and Monte Carlo Methods
137 | > - The Challenge of Unstructured Modeling
138 | > - Using Graphs to Describe Model Structure
139 | > - Sampling from Graphical Models
140 | > - The Deep Learning Approach to Structured Probabilistic Models
141 | > - Sampling and Monte Carlo Methods
142 | > - Markov Chain Monte Carlo Methods
143 | > - Gibbs Sampling
144 | >
145 | > ### 18 Confronting the Partition Function
146 | > - The Log-Likelihood Gradient
147 | > - Stochastic Maximum Likelihood and Contrastive Divergence
148 | > - Estimating the Partition Function
149 | >
150 | > ### 19 Approximate Inference
151 | > - Approximation
152 | > - Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
153 | > - Inference
154 | > - Taxonomy of deep generative models
155 | > - KL-Divergence
156 | > - Variational Inference
157 | >
158 | > ### 20 Deep Generative Models
159 | > - Generative models
160 | > - Boltzmann Machines
161 | > - Restricted Boltzmann Machines
162 | > - Deep Belief Networks
163 |
164 |
165 | ***
166 | License: [CC-BY](https://creativecommons.org/licenses/by/3.0/)
167 |
--------------------------------------------------------------------------------