├── .gitignore
├── .vscode
└── settings.json
├── 0_Tools_Install_and_Setup
├── 0_Google_Colab
│ ├── Google_Colab.md
│ ├── IMLAI_Google_Colab_Intro.png
│ └── linear_data.csv
├── 1_Python_Install_Setup_Test
│ ├── IMLAI_Python_Install_Setup_Test.png
│ └── Python_Install_and_Cmd_Line_Test.md
├── 2_Python_Virtual_Environments
│ └── Windows
│ │ ├── Python_Version.png
│ │ ├── Python_Versions.png
│ │ ├── Video_Intro.png
│ │ ├── Windows_Python_Script_Files_For_VirtualEnv.png
│ │ ├── Windows_Python_VENVs.png
│ │ ├── Windows_Virtual_Environments.md
│ │ ├── Windows_notes.txt
│ │ ├── mkvirtualenv_name.png
│ │ ├── workon_command_after.png
│ │ ├── workon_command_before.png
│ │ └── workon_venv_name_command.png
├── 3_Git_for_Windows
│ ├── Git_For_Windows_Install_and_Usage.md
│ └── IMLAI_Video_Intro.png
├── 4_VS_Code
│ ├── Notes.txt
│ └── VS_Code_Install_and_Usage.md
└── Tools_Install_and_Setup_Overview.md
├── 1_Fake_Data_Creation
├── .vscode
│ └── settings.json
├── 1_Fake_Single_Feature_Linear_Data.py
├── 2_Fake_Single_Feature_Nonlinear_Data.py
├── 3_Fake_Double_Feature_Linear_Data.py
├── 4_Fake_Double_Feature_Nonlinear_Data.py
├── 5_General_Numpy_Fake_Regression_Data.py
├── 6_General_Numpy_Fake_Classification_Data.py
├── AI_ML_DL_Akshay_Tondak.jpg
├── Fake_Multi_Feature_Regression_Data.py
├── Fake_Single_Feature_Linear_Data_with_Functional_Noise.py
├── dbl_feature_linear_data.csv
├── dbl_feature_non_linear_data.csv
├── fake_data_regression.csv
├── linear_data.csv
├── linear_data_var_noise.csv
└── non_linear_data.csv
├── 2_Intro_To_Regression_Modeling
├── 1_Simple_Regression.py
├── 2_Simple_Regression_Engineered_Feature.py
├── 3_Simple_Regression_Dbl_Feature.py
├── 4_Simple_Regression_Dbl_Engineered_Feature.py
├── DB_Tools.py
├── General_Tools.py
├── List_Comp_Fun.py
└── numpy_tester.py
├── 3_Missing_Data
└── Imputation_Concepts
│ ├── Missing_Data_1.png
│ ├── Missing_Data_10.png
│ ├── Missing_Data_11.png
│ ├── Missing_Data_12.png
│ ├── Missing_Data_13.png
│ ├── Missing_Data_14.png
│ ├── Missing_Data_2.png
│ ├── Missing_Data_3.png
│ ├── Missing_Data_4.png
│ ├── Missing_Data_5.png
│ ├── Missing_Data_6.png
│ ├── Missing_Data_7.png
│ ├── Missing_Data_8.png
│ └── Missing_Data_9.png
├── 99_Project_Data
├── data_description.txt
├── diamonds.csv
├── sample_submission.csv
├── test.csv
└── train.csv
├── LICENSE
├── README.md
├── fake_data_classification.json
└── fake_data_regression.csv
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/.vscode/settings.json:
--------------------------------------------------------------------------------
1 | {
2 | "python.pythonPath": "C:\\Users\\24601\\envs\\py39std\\Scripts\\python.exe"
3 | }
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/0_Google_Colab/Google_Colab.md:
--------------------------------------------------------------------------------
1 | # Google Colab Instructions for Machine Learning Pipeline Class
2 | The link to code that Thom and Ghaith will create for you can be found [HERE](http://bit.ly/2NQwH63)
3 |
4 | The link to Thom's introductory video for basic Google Colab operations is here [
](https://youtu.be/o0lRne13Ehw)
5 |
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/0_Google_Colab/IMLAI_Google_Colab_Intro.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/0_Google_Colab/IMLAI_Google_Colab_Intro.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/0_Google_Colab/linear_data.csv:
--------------------------------------------------------------------------------
1 | 0.0, -0.7401569931550833
2 | 0.1, 0.35295171214507653
3 | 0.2, -0.192544925343214
4 | 0.3, 0.8202523790594533
5 | 0.4, 0.05960775615340341
6 | 0.5, 1.1091150678670785
7 | 0.6, 1.2316967228840843
8 | 0.7, 2.017119597935298
9 | 0.8, 1.6772051075594705
10 | 0.9, 2.7018071081831536
11 | 1.0, 2.5967636063610047
12 | 1.1, 3.1702797207487907
13 | 1.2, 1.4247637290703228
14 | 1.3, 3.5225464380559
15 | 1.4, 3.308746076811982
16 | 1.5, 2.275341466990492
17 | 1.6, 3.570280711084182
18 | 1.7, 2.9070162287494297
19 | 1.8, 4.530632412357443
20 | 1.9, 2.8634602872086523
21 | 2.0, 4.398252187618997
22 | 2.1, 4.315823664562027
23 | 2.2, 3.5774984784703574
24 | 2.3, 4.9929301191265365
25 | 2.4, 3.979493138146572
26 | 2.5, 5.437534857749417
27 | 2.6, 5.784276360800623
28 | 2.7, 5.058582009069493
29 | 2.8, 5.698104445913876
30 | 2.9, 4.811559950126984
31 | 3.0, 6.293275536409537
32 | 3.1, 6.821679319585822
33 | 3.2, 6.6455218170198
34 | 3.3, 5.719923083017048
35 | 3.4, 7.640838816212169
36 | 3.5, 6.709795118266159
37 | 3.6, 6.794905345597912
38 | 3.7, 8.006269825321045
39 | 3.8, 7.707283672154704
40 | 3.9, 7.987502995078301
41 | 4.0, 8.000239387313515
42 | 4.1, 8.663644929513953
43 | 4.2, 8.709439384165089
44 | 4.3, 8.652430827030349
45 | 4.4, 8.660938160942736
46 | 4.5, 9.35738490406051
47 | 4.6, 9.909464946117469
48 | 4.7, 8.497636121856207
49 | 4.8, 9.102631435541507
50 | 4.9, 9.201793648958098
51 | 5.0, 10.85926277414066
52 | 5.1, 10.479097843499034
53 | 5.2, 9.662297423828424
54 | 5.3, 10.768125896211735
55 | 5.4, 11.261531749835788
56 | 5.5, 11.589601326162303
57 | 5.6, 11.563431843716055
58 | 5.7, 10.847178456086674
59 | 5.8, 11.811304380857305
60 | 5.9, 12.238981316247775
61 | 6.0, 12.467146774834113
62 | 6.1, 12.893833386911766
63 | 6.2, 11.740996074717597
64 | 6.3, 12.951702872231298
65 | 6.4, 12.99032343855073
66 | 6.5, 13.971102264878532
67 | 6.6, 13.311994143039644
68 | 6.7, 12.934911075967033
69 | 6.8, 12.878522781970588
70 | 6.9, 14.092257302273127
71 | 7.0, 13.722674026142027
72 | 7.1, 15.083427372959248
73 | 7.2, 14.389778676825603
74 | 7.3, 14.653385548402094
75 | 7.4, 13.991590234646761
76 | 7.5, 14.032374581998395
77 | 7.6, 15.950961499033006
78 | 7.7, 14.964760567854272
79 | 7.8, 14.784082803236657
80 | 7.9, 16.534356133431285
81 | 8.0, 15.40867798467725
82 | 8.1, 17.187323558448732
83 | 8.2, 15.54401006995718
84 | 8.3, 15.762854685556519
85 | 8.4, 17.239949772310997
86 | 8.5, 17.674755332505924
87 | 8.6, 17.403286327710255
88 | 8.7, 17.691194289576046
89 | 8.8, 17.883351147242372
90 | 8.9, 18.015796946064842
91 | 9.0, 17.619016545611437
92 | 9.1, 19.099254767762258
93 | 9.2, 17.542109497081253
94 | 9.3, 19.30218624400765
95 | 9.4, 18.233268456163202
96 | 9.5, 18.398658502184375
97 | 9.6, 19.967843948361537
98 | 9.7, 19.902372346901267
99 | 9.8, 19.210163111051756
100 | 9.9, 20.01379471025558
101 |
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/1_Python_Install_Setup_Test/IMLAI_Python_Install_Setup_Test.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/1_Python_Install_Setup_Test/IMLAI_Python_Install_Setup_Test.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/1_Python_Install_Setup_Test/Python_Install_and_Cmd_Line_Test.md:
--------------------------------------------------------------------------------
1 | # Installing Python And Testing Setup
2 | This is very basic for the most part, but it will also cover some important points on knowing where to find Windows path environment variables and how to change them and why you might want to change them.
3 |
4 | ## Installing Python
5 | You will want to install the latest stable version. As of this writing, that version is 3.9.
6 |
7 | The link to Thom's instructional video for a Python installation and checking environment variables and testing that the correct version of python is working properly is here [](https://youtu.be/UaSU4YLr7Fo "Python Installation Setup Test")
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Python_Version.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Python_Version.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Python_Versions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Python_Versions.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Video_Intro.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Video_Intro.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Windows_Python_Script_Files_For_VirtualEnv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Windows_Python_Script_Files_For_VirtualEnv.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Windows_Python_VENVs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Windows_Python_VENVs.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Windows_Virtual_Environments.md:
--------------------------------------------------------------------------------
1 | # Managing Virtual Environments in Windows
2 |
3 | ## Prerequisites
4 | IF you have not yet installed python, go to python.org and install the latest stable python version for your OS.
5 |
6 | The link to Thom's instructional video for setting up and installing Python virtual environment wrapper for Windows [](https://youtu.be/JJTWJmoo-Gs "Python Virtual Environments with VirtualEnvWrapper for Windows")
7 |
8 | _______________
9 | ## If You ONLY Have ONE Python Version Installed On Windows
10 | 1. You will find all your installed python versions in C:\Users\YourUserName\AppData\Local\Programs\Python
11 | 2. The way python versions appear on Thom's windows machine are show below ...
12 |
13 | 
14 |
15 | 3. If you only see a single Python version installed, follow instructions in this section. If you see more, I suggest going to the next section titled **If You Have Multiple Python Versions Installed On Windows**
16 | 4. When you install Python, the installation will ask you if you want to add the python executables to your path statement. If for some reason you did not do this, it's best to add `C:\Users\YourUserName\AppData\Local\Programs\Python\Python3x`
17 | to your path statement. You will also want to add
18 | C:\Users\YourUserName\AppData\Local\Programs\Python\Python3x\Scripts
19 | to your path statement. This will make everything below go much smoother.
20 | 5. pip can be defined multiple ways. My favorite definition is
21 | "preferred installer program".
22 | 6. `pip` is stored in
23 | `C:\Users\YourUserName\AppData\Local\Programs\Python\Python3x\Scripts`
24 | 7. If you look in that directory, you will find `pip3.exe` and `pip3.9.exe`
25 | 7. In each python x version scripts directory, you will find `pip3.x.exe`
26 | 8. From a terminal window (I recommend installing ConEmu for a great terminal program - it's the best that I have found so far), run
27 | `pip install virtualenvwrapper-win`
28 | 9. Once the pip install is done, you will see some new files in `C:\Users\YourUserName\AppData\Local\Programs\Python\Python39\Scripts`
29 | * rmvirtualenv.bat
30 | * virtualenv.exe
31 | * virtualenvwrapper.bat
32 | * vwenv.bat
33 | * whereis.bat
34 | * workon.bat
35 |
36 | ### Default Location Of Virtual Environments
37 | 1. If you have existing python virtual environments, they are likely here C:\Users\YourUserName\Envs
38 | 2. The image below shows the ones on my windows machine
39 |
40 | 
41 |
42 | ### Activating Existing Virtual Environments
43 | 1. Let's open a command terminal and run ```$ workon```
44 | 2. Notice below that it lists virtual environments in our holding directory
45 |
46 | 
47 |
48 | 3. What happens if we try to workon a virtual environment that does not yet exist?
49 |
50 | 
51 |
52 | 4. To create a new virtual environment using our new python39 install,
53 |
54 | 
55 |
56 | 5. Let's just run ```$ workon``` to see if it shows up in our list
57 |
58 | 
59 |
60 | 6. Now to actually workon that environment, we run ```$ workon py39std```
61 | 7. That python environment will be activated and will show up with our command prompt.
62 | 8. To stop using an environment, run ```$ deactivate```
63 |
64 | ### How To Install Virtual Environment Wrapper When You Have "ONE" Version Of Python On Your Machine
65 |
66 | ## If You Have "Multiple" Python Versions Installed On Windows
67 | 1. You will find all your installed python versions in C:\Users\YourUserName\AppData\Local\Programs\Python
68 | 2. The way python versions appear on Thom's windows machine are show below ...
69 |
70 | 
71 |
72 | 3. When you have multiple versions, your path can point to multiple Python directories, and you want to make sure that your system is using the pip for the version of Python that you are wanting to work with.
73 | _____________
74 | ### How To Install Virtual Environment Wrapper For A Specific Version Of Python WHEN You Have "MULTIPLE" Python Versions
75 |
76 | When you have multiple Python versions, your path can point to multiple Python directories, and you want to make sure that your system is using the version of Python pip that you NEED to use.
77 |
78 | 1. Each Python installation has it's own version of pip as explained previously.
79 | 2. They are stored in `C:\Users\YourUserName\AppData\Local\Programs\Python\Python3x\Scripts`
80 | 3. In each python x version scripts directory, you will find `pip3.x.exe`
81 | 4. From a terminal window (Again, I recommend installing ConEmu), AND TO BE EXTRA CAREFUL, run
82 | `C:\Users\YourUserName\AppData\Local\Programs\Python\Python3x\Scripts\pip3.x install virtualenvwrapper-win`
83 | 5. Once the pip install is done, you will see some new files in C:\Users\YourUserName\AppData\Local\Programs\Python\Python39\Scripts
84 | * rmvirtualenv.bat
85 | * virtualenv.exe
86 | * virtualenvwrapper.bat
87 | * vwenv.bat
88 | * whereis.bat
89 | * workon.bat
90 |
91 | ### Default Location Of Virtual Environments
92 | 1. Just like the above instructions, if you have existing python virtual environments, they are likely here
93 | `C:\Users\YourUserName\Envs`
94 | 2. The image below shows the ones on my windows machine
95 |
96 | 
97 |
98 | ### Activating Existing Virtual Environments
99 | 1. Let's open a command terminal and run ```$ workon```
100 | 2. Notice below that it lists virtual environments in our holding directory
101 |
102 | 
103 |
104 | 3. What happens if we try to workon a virtual environment that does not yet exist?
105 |
106 | 
107 |
108 | 4. To create a new virtual environment using our new python39 install,
109 |
110 | 
111 |
112 | 5. Let's just run ```$ workon``` to see if it shows up in our list
113 |
114 | 
115 |
116 | 6. Now to actually workon that environment, we run ```$ workon py39std```
117 | 7. That python environment will be activated and will show up with our command prompt.
118 | 8. To stop using an environment, run ```$ deactivate```
119 | _________
120 | ### Virtual Environments In Your IDE (VS CODE)
121 | In VS Code OR your chosen IDE, there will be a package that will allow you to switch between virtual environments AND to likely create virtual environments from within your IDE. Once you pick the package you prefer for this, read the documentation to know how to use those packages that help you choose your virtual environment. Those explanations are usually pretty clear, and you can web search for help if you need help. Many will have had the same issues as you.
122 |
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/Windows_notes.txt:
--------------------------------------------------------------------------------
1 | go to python.org and install a python version
2 |
3 | C:\Users\YourUserName\AppData\Local\Programs\Python
4 | See Python_Versions.png
5 |
6 | C:\Users\YourUserName\AppData\Local\Programs\Python\Python3x\Scripts
7 | pip3.x.exe
8 |
9 | pip3.x install virtualenvwrapper-win
10 |
11 | C:\Users\YourUserName\AppData\Local\Programs\Python\Python37\Scripts
12 | rmvirtualenv.bat
13 | virtualenv.exe
14 | virtualenvwrapper.bat
15 | vwenv.bat
16 | whereis.bat
17 | workon.bat
18 |
19 | C:\Users\YourUserName\Envs
20 | See Windows_Python_VENVs.png
21 |
22 | $ workon command
23 | See workon_command.png
24 |
25 | $ workon
26 |
27 | Pass a name to activate one of the following virtualenvs:
28 | ==============================================================================
29 | py37std
30 | py37web
31 | py38std
32 | sfb_env
33 |
34 |
35 | $ workon py39std
36 |
37 | virtualenv "py39std" does not exist.
38 | Create it with "mkvirtualenv "
39 |
40 | $ deactivate
41 |
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/mkvirtualenv_name.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/mkvirtualenv_name.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/workon_command_after.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/workon_command_after.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/workon_command_before.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/workon_command_before.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/workon_venv_name_command.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/2_Python_Virtual_Environments/Windows/workon_venv_name_command.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/3_Git_for_Windows/Git_For_Windows_Install_and_Usage.md:
--------------------------------------------------------------------------------
1 | # Installing And Using Git For Windows
2 | Git is a file versioning system. It keeps track of your file version history. It's VERY powerful and was created by Linus Torvalds the creator of Linux. Git can seem complicated. However, using it on your own is quite easy.
3 |
4 | The link to Thom's instructional video for using Git, GitHub, SSH, Git Bash Shell, and Git within VS Code [](https://youtu.be/7zPTzOv4Ico "Git Operations In Windows")
5 |
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/3_Git_for_Windows/IMLAI_Video_Intro.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/3_Git_for_Windows/IMLAI_Video_Intro.png
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/4_VS_Code/Notes.txt:
--------------------------------------------------------------------------------
1 | Video 2: creating Python project, Classifier as example:https://youtu.be/2dLjHUJ3lZE
2 | Video 3: Creating virtual environment: https://youtu.be/IZOVSFwIpGo
3 | Video 4: Integration with other projects: https://youtu.be/BM3e0p0Iv7w
4 | Video 1 it is only about the installation..
5 | i have some technical issues while publishing it ..
6 | anyway it is not hard to install this version of visual studio ...
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/4_VS_Code/VS_Code_Install_and_Usage.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/0_Tools_Install_and_Setup/4_VS_Code/VS_Code_Install_and_Usage.md
--------------------------------------------------------------------------------
/0_Tools_Install_and_Setup/Tools_Install_and_Setup_Overview.md:
--------------------------------------------------------------------------------
1 | # Overview of Tools and Why We Will Use These
2 |
3 | ## Google Colab
4 | 0. Watch our Google Colab Demo in the `0_Google_Colab` directory.
5 | 1. Google Colab is a notebook method of using Python from the cloud. When you use Google Colab, you are not using your system to run Python. You are using Google servers to run Python.
6 | 2. Would you want to use it if you already know how to use Python on your own operating system (OS) from your command line and within an integrated development environment (IDE)? Yes, because you can use GPU's and even TPU's on Google Colab if and when you need them.
7 | 3. Google Colab is also a great way to collaborate on coding and program development remotely.
8 | 4. We will use Python in Google Colab in class along with using Python on your own systems in an IDE.
9 | 5. There are many good tutorials for Google Colab.
10 | 6. It's also quite easy to find specific help for specific actions for Google Colab using a web search.
11 | 7. We will show you the basics in the video in the `0_Google_Colab` directory.
12 | 8. There are many good tutorials for Google Colab if you want to go deeper in your understanding.
13 |
14 | ## Python
15 | 0. Watch our Python Install and Setup video in `1_Python` to see a Python installation and initial setup of Python.
16 | 1. Install the latest stable Python version for your system. IF you are using Linux, GREAT! We recommend using the version of Python that is on your linux distribution - YES, it's already installed. If you have not yet chosen a Linux Distribution, Thom prefers Linux Mint. It's built on top of Ubuntu.
17 | 2. While installing on Windows, do make sure to have the Python installation actions add Python to your Path Environment Variables.
18 | 3. Once Python is installed, we will guide you through some simple actions to test the installation in the video and in the instructions. You can find both of these in the `1_Python` directory.
19 |
20 | ## Python Virtual Environments
21 | Think of Python Virtual Environments like a container for your Python work. You can create MANY Python virtual environments, and each environment can be specialized for different kinds of Python work with different versions of Python even.
22 |
23 | 0. Watch our Python Virtual Environment video and instructions in the `2_Python_Virtual_Environments` directory.
24 | 1. We suggest using virtualenvwrapper. virtualenvwrapper simplifies your Python work. It provides nice ways to manage your virtual environments. However, you can manage them the way that your prefer.
25 | 2. By keeping your different types of Python work separate in separate environments, when you need to share your Python work with the world, it will be easier and cleaner to do so.
26 | 3. We will explain more about this throughout the class and you will see the reality of why this is important in your own data science work as you grow.
27 |
28 | ## The Preferred Installer Program for Python - Pip - Very Easy
29 | 1. We will show how to use pip at the system level and in virtual environments. Thus, we will cover some pip installs in the Python installation instructions and in the virtual environments instructions too.
30 | 2. Using pip is usually as easy as `pip install ` .
31 | 3. Sometimes the modules are not named as you would expect.
32 | 4. Simply do a google search for "How to python pip install such_and_such".
33 |
34 | ## Git for Windows
35 | Git is a file versioning system. It keeps track of your file version history. It's VERY powerful and was created by Linus Torvalds the creator of Linux. Git can seem complicated. However, using it on your own is quite easy.
36 |
37 | 0. Please watch the video in the `3_Git_for_Windows` directory.
38 | 1. We will be using git's most basic features.
39 | 2. Git takes minutes to learn and a LONG time to master, BUT, in my experience, it is worth learning to master it "over" time.
40 | 3. You don't need to learn all its features right away.
41 | 4. Using git as part of a major development team can be quite challenging for those that are not yet familiar with it, but, even in such situations, a "learn new concepts as you need to" approach is OK.
42 |
43 | ## VS Code - A Popular and Good Integrated Development Environment (IDE)
44 | VS Code is made by Microsoft. It's not open source, but it's free, and it's very popular and nice to use IDE.
45 |
46 | 0. Watch our install and setup video in the `4_VS_Code` directory
47 | 1. Download https://code.visualstudio.com/docs/?dv=win
48 | 2. Play around with options in the Welcome Screen
49 | 3. Install additional support for Python using the "Welcome Screen"
50 | 4. There are good introductory videos in the "Welcome Screen"
51 | 5. Tutorial https://www.youtube.com/watch?v=VqCgcpAypFQ
52 | 6. Of course, use additional tutorials that you wish or like better
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/.vscode/settings.json:
--------------------------------------------------------------------------------
1 | {
2 | "python.pythonPath": "C:\\Users\\24601\\envs\\py38std\\Scripts\\python.exe"
3 | }
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/1_Fake_Single_Feature_Linear_Data.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import random
3 |
4 | num_pts = 100
5 | divider = num_pts / 10
6 | X = [x/divider for x in range(num_pts)]
7 | Y = [2.0 * x + (random.random() - 0.5) * 2 for x in X]
8 |
9 | print(X)
10 | print()
11 | print(Y)
12 |
13 | plt.scatter(X, Y)
14 | plt.title('This Is The Title')
15 | plt.xlabel('These Are The X Values')
16 | plt.ylabel('These Are The Y Values')
17 | plt.show()
18 |
19 | with open('./1_Fake_Data_Creation/linear_data.csv', 'w') as f:
20 | for i in range(len(X)):
21 | this_line = f'{X[i]}, {Y[i]}\n'
22 | f.write(this_line)
23 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/2_Fake_Single_Feature_Nonlinear_Data.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import random
3 |
4 | num_pts = 100
5 | divider = num_pts / 10
6 | X = [x/(divider) for x in range(num_pts)]
7 | Y = [0.2 * x ** 2 + (random.random() - 0.5) * 2 for x in X]
8 |
9 | plt.scatter(X, Y)
10 | plt.title('This Is The Title')
11 | plt.xlabel('These Are The X Values')
12 | plt.ylabel('These Are The Y Values')
13 | plt.show()
14 |
15 | with open('./1_Fake_Data_Creation/non_linear_data.csv', 'w') as f:
16 | for i in range(len(X)):
17 | this_line = f'{X[i]}, {Y[i]}\n'
18 | f.write(this_line)
19 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/3_Fake_Double_Feature_Linear_Data.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | from mpl_toolkits.mplot3d import Axes3D
3 | import random
4 |
5 | num_pts = 100
6 | div1 = num_pts / 10
7 | div2 = num_pts / 3
8 | X = [[x/div1 for x in range(num_pts)],
9 | [x/div2 for x in range(num_pts)]]
10 | Y = [0 for _ in range(num_pts)]
11 |
12 | for i in range(len(X[0])):
13 | Y[i] = (1.50 * X[0][i] + 0.50 * X[1][i] +
14 | (random.random() - 0.5) * 3.0)
15 |
16 | fig = plt.figure()
17 | ax = plt.axes(projection='3d')
18 |
19 | ax.scatter3D(X[0], X[1], Y)
20 | ax.set_xlabel('X1 Values')
21 | ax.set_ylabel('X2 Values')
22 | ax.set_zlabel('Y Values')
23 | ax.set_title('3D Plot Of Linear Fake Data')
24 |
25 | plt.show()
26 |
27 | with open('./1_Fake_Data_Creation/dbl_feature_linear_data.csv', 'w') as f:
28 | for i in range(len(X[0])):
29 | this_line = f'{X[0][i]}, {X[0][i] ** 3}, {X[1][i]}, {X[1][i] ** 2}, {Y[i]}\n'
30 | f.write(this_line)
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/4_Fake_Double_Feature_Nonlinear_Data.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | from mpl_toolkits.mplot3d import Axes3D
3 | import random
4 |
5 | num_pts = 1000
6 | div1 = num_pts / 10
7 | div2 = num_pts / 3
8 | X = [[x/div1 for x in range(num_pts)],
9 | [x/div2 for x in range(num_pts)]]
10 | Y = [0 for _ in range(num_pts)]
11 |
12 | for i in range(len(X[0])):
13 | # print(X[0][i], X[1][i])
14 | Y[i] = (
15 | 0.3600 * X[0][i] ** 2 +
16 | 0.0324 * X[1][i] ** 3 +
17 | (random.random() - 0.5) * 0)
18 |
19 | fig = plt.figure()
20 | ax = plt.axes(projection='3d')
21 |
22 | ax.scatter3D(X[0], X[1], Y)
23 | ax.set_xlabel('X1 Values')
24 | ax.set_ylabel('X2 Values')
25 | ax.set_zlabel('Y Values')
26 | ax.set_title('3D Plot Of Nonlinear Fake Data')
27 |
28 | plt.show()
29 |
30 | with open('./1_Fake_Data_Creation/dbl_feature_non_linear_data.csv', 'w') as f:
31 | for i in range(len(X[0])):
32 | this_line = f'{X[0][i]}, {X[1][i]}, {Y[i]}\n'
33 | f.write(this_line)
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/5_General_Numpy_Fake_Regression_Data.py:
--------------------------------------------------------------------------------
1 | """Data Acquisition And Fake Data Generation
2 | In this case, we will actually put models in functions
3 | to create fake regression data with noise, store it, and load it back.
4 |
5 | Our goals for creating good fake regression data are to:
6 | 1. create fake features;
7 | 2. create constant random noise OR create noise that varies as a
8 | function of features and/or labels as needed;
9 | 3. feed the fake features into a model that generates the labels
10 | 4. add the noise to the features
11 |
12 | The few ways that we will show will work for most cases.
13 | However, we PROMISE that you will run into something weird.
14 | Stay calm, py-thon, and search. Your growing coding and logic
15 | and concept skills will serve you well. Search multiple references
16 | for your issue, and you will get over your problem soon."""
17 |
18 | # pip install plotly-express
19 |
20 | import matplotlib.pyplot as plt
21 | import numpy as np
22 | import pandas as pd
23 | # import plotly.express as px
24 |
25 |
26 | def feature_column(start, stop, num_pts):
27 | step = (stop - start)/num_pts
28 | the_pts = np.arange(start, stop, step)
29 | return the_pts
30 |
31 | def noise_envelope(Dims, Amp):
32 | return Amp * (2 * np.random.random_sample(Dims) - 1)
33 |
34 | def model(X):
35 | return (1.50 * X[:, 0] +
36 | 0.05 * X[:, 0] ** 2 +
37 | 0.03 * np.multiply(X[:, 0], X[:, 1]) +
38 | 0.75 * X[:, 1] +
39 | 0.01 * X[:, 1] ** 2)
40 |
41 |
42 | num_pts = 300
43 | X = np.zeros((num_pts, 2)) # print(X.shape)
44 | X[:, 0] = feature_column(0, 30, num_pts)
45 | X[:, 1] = 10 * np.sin(feature_column(0, np.pi, num_pts))
46 |
47 | Y = model(X) + noise_envelope(num_pts, 7)
48 |
49 | fake_df = pd.DataFrame( data=np.hstack((X, Y.reshape(-1, 1))) )
50 | fake_df.columns = ['x1', 'x2', 'y']
51 | print(fake_df.head(7)) # show top 7 lines, default = 5
52 | print()
53 |
54 | print(fake_df.corr())
55 |
56 | # fig = px.scatter_3d(fake_df, x='x1', y='x2', z='y')
57 | # fig.show()
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/6_General_Numpy_Fake_Classification_Data.py:
--------------------------------------------------------------------------------
1 | """Data Acquisition And Fake Data Generation
2 | In this case, we will actually put models in functions to create
3 | fake classification data with noise, store it, and load it back.
4 |
5 | Our goals for creating good fake regression data are to:
6 | 1. create fake features;
7 | 2. create constant random noise OR create noise that varies as a
8 | function of features and/or labels as needed;
9 | 3. feed the fake features into a model that generates the labels
10 | 4. add the noise to the features
11 |
12 | The few ways that we will show will work for most cases.
13 | However, we PROMISE that you will run into something weird.
14 | Stay calm, py-thon, and search. Your growing coding and logic
15 | and concept skills will serve you well. Search multiple references
16 | for your issue, and you will get over your problem soon."""
17 |
18 | import matplotlib.pyplot as plt
19 | import numpy as np
20 | import pandas as pd
21 | import json
22 |
23 | def create_np_clusters(np_seeds, half_range, points_per_cluster):
24 | num_seeds = np_seeds.shape[0]
25 | num_dims = np_seeds.shape[1] - 1
26 |
27 | pts = np.empty((num_seeds * points_per_cluster, num_dims + 1))
28 | labels = np.unique(np_seeds[:, 0])
29 | for label in labels:
30 | centers = np_seeds[np_seeds[:, 0] == label, 1:]
31 | centers = np.tile(centers, (points_per_cluster, 1))
32 | num_noise_points = centers.shape[0]
33 | base_noise = np.random.random_sample((num_noise_points, num_dims))
34 | adjusted_noise = half_range * (2 * base_noise - 1) + centers
35 | cluster_array = np.zeros((num_noise_points, 1)) + label
36 | start = int(label * num_noise_points)
37 | stop = int((label + 1) * num_noise_points)
38 | pts[start:stop, :] = np.hstack((cluster_array, adjusted_noise))
39 |
40 | return pts
41 |
42 | def scatter_plot_points(np_pts):
43 | num_pts = np_pts.shape[0]
44 | dims = np_pts.shape[1] - 1
45 |
46 | if dims == 2:
47 | plt.scatter(np_pts[:, 1], np_pts[:, 2],
48 | c=np_pts[:, 0].astype('int'))
49 | plt.xlabel('X1 Vals')
50 | plt.ylabel('X2 Vals')
51 | plt.title('Fake Data Points')
52 | elif dims == 3:
53 | fig = plt.figure()
54 | ax = plt.axes(projection='3d')
55 |
56 | X = [pts[i][1] for i in range(num_pts)]
57 | Y = [pts[i][2] for i in range(num_pts)]
58 | Z = [pts[i][3] for i in range(num_pts)]
59 | L = [pts[i][0] for i in range(num_pts)]
60 |
61 | ax.scatter3D(X, Y, Z, c=L)
62 |
63 | ax.set_xlabel('X1 Values')
64 | ax.set_ylabel('X2 Values')
65 | ax.set_zlabel('X3 Values')
66 | ax.set_title('3D Plot Of Fake Classification Data')
67 |
68 | plt.show()
69 |
70 | # seeds = [[1, 3, 8, 3], [2, 8, 3, 3],
71 | # [3, 3, 3, 8], [4, 8, 8, 8]]
72 | py_seeds = [[0, 3, 3], [1, 8, 8], [2, 3, 8], [3, 8, 3]]
73 | np_pts = create_np_clusters(np.array(py_seeds), 2.2, 100)
74 | print(np_pts[::40]) # Only show every 40th pt
75 |
76 | scatter_plot_points(np_pts)
77 |
78 | py_pts = np_pts.tolist() # json no like numpy objects
79 | with open(f'fake_data_classification.json', 'w') as f:
80 | json.dump(py_pts, f, ensure_ascii=False, indent=4)
81 |
82 | with open('fake_data_classification.json') as f:
83 | clusters = np.array(json.load(f))
84 |
85 | print('Cluster Data')
86 | print(clusters[::20]) # only show every 20th point
87 |
88 | ### Another Model To Create Clusters
89 |
90 | num_seeds = 400
91 | num_groups = 2
92 | group_pts = int(num_seeds / num_groups)
93 |
94 | np_seeds = np.zeros((num_seeds, 3))
95 | radians = np.arange(0, 2 * np.pi, (2 * np.pi) / group_pts)
96 |
97 | for group_num, radius in ((0, 2), (1, 1)):
98 | start = group_num * group_pts
99 | stop = (group_num + 1) * group_pts
100 | np_seeds[start:stop, 0] = group_num
101 | np_seeds[start:stop, 1] = radius * np.cos(radians) + 5
102 | np_seeds[start:stop, 2] = radius * np.sin(radians) + 5
103 |
104 | np_pts = create_np_clusters(np_seeds, 0.25, 2)
105 | print(np_pts[::80])
106 |
107 | ## Plot The Model
108 |
109 | scatter_plot_points(np_pts)
110 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/AI_ML_DL_Akshay_Tondak.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/1_Fake_Data_Creation/AI_ML_DL_Akshay_Tondak.jpg
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/Fake_Multi_Feature_Regression_Data.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import random
3 |
4 | num_pts = 300
5 | div1 = num_pts / 10
6 | div2 = num_pts / 3
7 | X = [[x/div1 for x in range(num_pts)],
8 | [x/div2 for x in range(num_pts)]]
9 | Y = [0 for _ in range(num_pts)]
10 |
11 | for i in range(len(X[0])):
12 | Y[i] = (
13 | 3.00 * X[0][i] ** 0.33 + 2.00 * X[1][i] ** 0.50 +
14 | 1.50 * X[0][i] + 0.25 * X[0][i] ** 2 +
15 | 0.50 * X[0][i] * X[1][i] + 0.10 * X[1][i] ** 3 +
16 | (random.random() - 0.5) * 5.0)
17 |
18 | fig = plt.figure()
19 | ax = plt.axes(projection='3d')
20 |
21 | ax.scatter3D(X[0], X[1], Y)
22 | ax.set_xlabel('X1 Values')
23 | ax.set_ylabel('X2 Values')
24 | ax.set_zlabel('Y Values')
25 | ax.set_title('3D Plot Of Linear Fake Data')
26 |
27 | plt.show()
28 |
29 | with open('fake_data_regression.csv', 'w') as f:
30 | for i in range(len(X[0])):
31 | this_line = f'{X[0][i]}, {X[1][i]}, {Y[i]}\n'
32 | f.write(this_line)
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/Fake_Single_Feature_Linear_Data_with_Functional_Noise.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import random
3 | import math
4 |
5 |
6 | def my_f(x, max):
7 | # return 2
8 | return x * max
9 | # return math.sin(1.5 * x) * max
10 |
11 |
12 | num_pts = 1000
13 | divider = num_pts / 10
14 | X = [x/divider for x in range(num_pts)]
15 | Y = [2.0 * x + (random.random() - 0.5) * my_f(x, 0.5) for x in X]
16 |
17 | plt.scatter(X, Y)
18 | plt.title('This Is The Title')
19 | plt.xlabel('These Are The X Values')
20 | plt.ylabel('These Are The Y Values')
21 | plt.show()
22 |
23 | with open('./1_Fake_Data_Creation/linear_data_var_noise.csv', 'w') as f:
24 | for i in range(len(X)):
25 | this_line = f'{X[i]}, {Y[i]}\n'
26 | f.write(this_line)
27 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/dbl_feature_linear_data.csv:
--------------------------------------------------------------------------------
1 | 0.0, 0.0, 0.0, 0.0, 0.5563417894496487
2 | 0.1, 0.0010000000000000002, 0.03, 0.0009, -0.7011602325626584
3 | 0.2, 0.008000000000000002, 0.06, 0.0036, -0.09929194295098365
4 | 0.3, 0.026999999999999996, 0.09, 0.0081, 0.595364641159051
5 | 0.4, 0.06400000000000002, 0.12, 0.0144, -0.3514686030015972
6 | 0.5, 0.125, 0.15, 0.0225, 0.8970875264027969
7 | 0.6, 0.21599999999999997, 0.18, 0.0324, 1.3333245390346868
8 | 0.7, 0.3429999999999999, 0.21, 0.04409999999999999, 0.9362680000711898
9 | 0.8, 0.5120000000000001, 0.24, 0.0576, 0.18406545267604524
10 | 0.9, 0.7290000000000001, 0.26999999999999996, 0.07289999999999998, 0.6141993275698026
11 | 1.0, 1.0, 0.3, 0.09, 1.9427590956994472
12 | 1.1, 1.3310000000000004, 0.32999999999999996, 0.10889999999999997, 0.3686182429163989
13 | 1.2, 1.7279999999999998, 0.36, 0.1296, 2.834131314467287
14 | 1.3, 2.197, 0.38999999999999996, 0.15209999999999996, 1.4707713852660447
15 | 1.4, 2.7439999999999993, 0.42, 0.17639999999999997, 1.6168196186772994
16 | 1.5, 3.375, 0.44999999999999996, 0.20249999999999996, 1.3021052719506148
17 | 1.6, 4.096000000000001, 0.48, 0.2304, 2.364228354049726
18 | 1.7, 4.912999999999999, 0.51, 0.2601, 3.8155749631673217
19 | 1.8, 5.832000000000001, 0.5399999999999999, 0.2915999999999999, 2.753581865574404
20 | 1.9, 6.858999999999999, 0.57, 0.32489999999999997, 2.830138417714538
21 | 2.0, 8.0, 0.6, 0.36, 3.2380624556173934
22 | 2.1, 9.261000000000001, 0.63, 0.39690000000000003, 3.299194435881881
23 | 2.2, 10.648000000000003, 0.6599999999999999, 0.4355999999999999, 2.529904741548422
24 | 2.3, 12.166999999999998, 0.69, 0.4760999999999999, 3.265895220909649
25 | 2.4, 13.823999999999998, 0.72, 0.5184, 5.175362921432781
26 | 2.5, 15.625, 0.75, 0.5625, 4.588350315062067
27 | 2.6, 17.576, 0.7799999999999999, 0.6083999999999998, 5.122919993715315
28 | 2.7, 19.683000000000003, 0.8099999999999999, 0.6560999999999999, 4.769678413857165
29 | 2.8, 21.951999999999995, 0.84, 0.7055999999999999, 5.577986376819572
30 | 2.9, 24.389, 0.8699999999999999, 0.7568999999999998, 5.490745511180153
31 | 3.0, 27.0, 0.8999999999999999, 0.8099999999999998, 6.431946116024889
32 | 3.1, 29.791000000000004, 0.9299999999999999, 0.8648999999999999, 6.406560916347888
33 | 3.2, 32.76800000000001, 0.96, 0.9216, 5.570916116497767
34 | 3.3, 35.937, 0.9899999999999999, 0.9800999999999997, 5.098882982489622
35 | 3.4, 39.303999999999995, 1.02, 1.0404, 4.303506707092408
36 | 3.5, 42.875, 1.0499999999999998, 1.1024999999999996, 4.962767878208855
37 | 3.6, 46.656000000000006, 1.0799999999999998, 1.1663999999999997, 6.840951175449144
38 | 3.7, 50.653000000000006, 1.1099999999999999, 1.2320999999999998, 7.107307134919034
39 | 3.8, 54.87199999999999, 1.14, 1.2995999999999999, 5.2500205066701735
40 | 3.9, 59.318999999999996, 1.17, 1.3688999999999998, 7.697409540828966
41 | 4.0, 64.0, 1.2, 1.44, 7.889131474559608
42 | 4.1, 68.92099999999998, 1.23, 1.5129, 6.453051021307591
43 | 4.2, 74.08800000000001, 1.26, 1.5876000000000001, 7.498961560970795
44 | 4.3, 79.50699999999999, 1.2899999999999998, 1.6640999999999995, 8.194923140229921
45 | 4.4, 85.18400000000003, 1.3199999999999998, 1.7423999999999995, 8.697128646766846
46 | 4.5, 91.125, 1.3499999999999999, 1.8224999999999996, 8.130174390280814
47 | 4.6, 97.33599999999998, 1.38, 1.9043999999999996, 6.27396121582858
48 | 4.7, 103.82300000000001, 1.41, 1.9880999999999998, 7.153615499861147
49 | 4.8, 110.59199999999998, 1.44, 2.0736, 8.15101798874914
50 | 4.9, 117.64900000000003, 1.47, 2.1609, 8.721483021371622
51 | 5.0, 125.0, 1.5, 2.25, 9.368906264745009
52 | 5.1, 132.65099999999998, 1.5299999999999998, 2.3408999999999995, 8.118271099993576
53 | 5.2, 140.608, 1.5599999999999998, 2.4335999999999993, 7.479017183177485
54 | 5.3, 148.87699999999998, 1.5899999999999999, 2.5280999999999993, 7.439349573387915
55 | 5.4, 157.46400000000003, 1.6199999999999999, 2.6243999999999996, 8.40110875708516
56 | 5.5, 166.375, 1.65, 2.7224999999999997, 8.013582665110338
57 | 5.6, 175.61599999999996, 1.68, 2.8223999999999996, 10.395245165873016
58 | 5.7, 185.193, 1.71, 2.9240999999999997, 8.439937767397037
59 | 5.8, 195.112, 1.7399999999999998, 3.027599999999999, 9.331749538674199
60 | 5.9, 205.37900000000005, 1.7699999999999998, 3.1328999999999994, 9.944295672226861
61 | 6.0, 216.0, 1.7999999999999998, 3.2399999999999993, 9.784853118868675
62 | 6.1, 226.98099999999997, 1.8299999999999998, 3.3488999999999995, 8.723140021978335
63 | 6.2, 238.32800000000003, 1.8599999999999999, 3.4595999999999996, 11.592362857442959
64 | 6.3, 250.04699999999997, 1.89, 3.5721, 11.337646763924536
65 | 6.4, 262.14400000000006, 1.92, 3.6864, 9.824225016996602
66 | 6.5, 274.625, 1.95, 3.8024999999999998, 10.937180147302222
67 | 6.6, 287.496, 1.9799999999999998, 3.920399999999999, 11.958060090582403
68 | 6.7, 300.76300000000003, 2.01, 4.040099999999999, 11.42063715044396
69 | 6.8, 314.43199999999996, 2.04, 4.1616, 10.006396436948107
70 | 6.9, 328.50900000000007, 2.07, 4.2848999999999995, 11.394075512774311
71 | 7.0, 343.0, 2.0999999999999996, 4.409999999999998, 11.285640459222176
72 | 7.1, 357.91099999999994, 2.13, 4.536899999999999, 12.44974023942802
73 | 7.2, 373.24800000000005, 2.1599999999999997, 4.665599999999999, 12.297691849418392
74 | 7.3, 389.017, 2.19, 4.7961, 13.314702111050297
75 | 7.4, 405.22400000000005, 2.2199999999999998, 4.928399999999999, 11.988789255203608
76 | 7.5, 421.875, 2.25, 5.0625, 13.30260775347249
77 | 7.6, 438.97599999999994, 2.28, 5.1983999999999995, 13.489489837593865
78 | 7.7, 456.533, 2.31, 5.3361, 12.792079531343466
79 | 7.8, 474.55199999999996, 2.34, 5.475599999999999, 12.49966245379353
80 | 7.9, 493.03900000000004, 2.3699999999999997, 5.6168999999999984, 14.516257017500433
81 | 8.0, 512.0, 2.4, 5.76, 13.508846061954547
82 | 8.1, 531.4409999999999, 2.4299999999999997, 5.904899999999999, 13.974255348284546
83 | 8.2, 551.3679999999998, 2.46, 6.0516, 13.11078491548559
84 | 8.3, 571.7870000000001, 2.4899999999999998, 6.200099999999999, 13.48407583349082
85 | 8.4, 592.7040000000001, 2.52, 6.3504000000000005, 14.05435625983561
86 | 8.5, 614.125, 2.55, 6.5024999999999995, 12.71402801999883
87 | 8.6, 636.0559999999999, 2.5799999999999996, 6.656399999999998, 13.272002042333964
88 | 8.7, 658.5029999999998, 2.61, 6.812099999999999, 15.60828183612906
89 | 8.8, 681.4720000000002, 2.6399999999999997, 6.969599999999998, 13.878535059920347
90 | 8.9, 704.969, 2.67, 7.1289, 14.777553168102363
91 | 9.0, 729.0, 2.6999999999999997, 7.289999999999998, 13.909990049728933
92 | 9.1, 753.5709999999999, 2.73, 7.4529, 14.617269428852595
93 | 9.2, 778.6879999999999, 2.76, 7.617599999999999, 14.673276230273128
94 | 9.3, 804.3570000000002, 2.7899999999999996, 7.784099999999998, 14.881163041856183
95 | 9.4, 830.5840000000001, 2.82, 7.952399999999999, 16.96656935912007
96 | 9.5, 857.375, 2.8499999999999996, 8.122499999999999, 14.38677256690728
97 | 9.6, 884.7359999999999, 2.88, 8.2944, 14.724871800421504
98 | 9.7, 912.6729999999998, 2.9099999999999997, 8.468099999999998, 16.282759045998354
99 | 9.8, 941.1920000000002, 2.94, 8.6436, 15.778424405267765
100 | 9.9, 970.2990000000001, 2.9699999999999998, 8.820899999999998, 17.421270818908134
101 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/fake_data_regression.csv:
--------------------------------------------------------------------------------
1 | 0.0, 0.0, -1.580488760265314
2 | 0.03333333333333333, 0.01, 0.15870919454486
3 | 0.06666666666666667, 0.02, 1.390524406999726
4 | 0.1, 0.03, 1.8633943076252035
5 | 0.13333333333333333, 0.04, 2.4460698747766965
6 | 0.16666666666666666, 0.05, 2.6378721675514427
7 | 0.2, 0.06, 1.4800849634852267
8 | 0.23333333333333334, 0.07, 0.9261472665347554
9 | 0.26666666666666666, 0.08, 1.6883361426728658
10 | 0.3, 0.09, 2.357570200950412
11 | 0.3333333333333333, 0.1, 4.400914936033317
12 | 0.36666666666666664, 0.11, 4.017043970847609
13 | 0.4, 0.12, 5.093255592965416
14 | 0.43333333333333335, 0.13, 5.537043925471545
15 | 0.4666666666666667, 0.14, 1.425029313177173
16 | 0.5, 0.15, 6.239155369195019
17 | 0.5333333333333333, 0.16, 6.100178729749089
18 | 0.5666666666666667, 0.17, 5.749047274307251
19 | 0.6, 0.18, 4.3041410749742
20 | 0.6333333333333333, 0.19, 5.011830525692979
21 | 0.6666666666666666, 0.2, 3.523804109435873
22 | 0.7, 0.21, 6.307810113057586
23 | 0.7333333333333333, 0.22, 6.825867391892803
24 | 0.7666666666666667, 0.23, 3.9327995858146667
25 | 0.8, 0.24, 6.145763429007516
26 | 0.8333333333333334, 0.25, 6.6268524585001645
27 | 0.8666666666666667, 0.26, 6.979890753622454
28 | 0.9, 0.27, 4.3349439790353195
29 | 0.9333333333333333, 0.28, 5.139789770811704
30 | 0.9666666666666667, 0.29, 3.5235629119928613
31 | 1.0, 0.3, 7.035520662906548
32 | 1.0333333333333334, 0.31, 4.009892533696224
33 | 1.0666666666666667, 0.32, 8.37094121266765
34 | 1.1, 0.33, 7.870001602337592
35 | 1.1333333333333333, 0.34, 7.306949066340097
36 | 1.1666666666666667, 0.35, 4.5315712469436145
37 | 1.2, 0.36, 6.637792433643704
38 | 1.2333333333333334, 0.37, 9.072037200884932
39 | 1.2666666666666666, 0.38, 5.024050281013678
40 | 1.3, 0.39, 6.496432177055476
41 | 1.3333333333333333, 0.4, 8.240718750911105
42 | 1.3666666666666667, 0.41, 9.11650566079898
43 | 1.4, 0.42, 6.023588572319803
44 | 1.4333333333333333, 0.43, 8.58155854114622
45 | 1.4666666666666666, 0.44, 7.923499718075469
46 | 1.5, 0.45, 9.527838247570843
47 | 1.5333333333333334, 0.46, 5.565234128225382
48 | 1.5666666666666667, 0.47, 10.375488196557308
49 | 1.6, 0.48, 9.184961410144366
50 | 1.6333333333333333, 0.49, 6.663059895784866
51 | 1.6666666666666667, 0.5, 6.419966295739913
52 | 1.7, 0.51, 9.377788403099208
53 | 1.7333333333333334, 0.52, 7.242861469602998
54 | 1.7666666666666666, 0.53, 8.249056391835712
55 | 1.8, 0.54, 8.157194449405424
56 | 1.8333333333333333, 0.55, 9.175483782354608
57 | 1.8666666666666667, 0.56, 10.929781145057198
58 | 1.9, 0.57, 7.984680651550812
59 | 1.9333333333333333, 0.58, 9.378322299117455
60 | 1.9666666666666666, 0.59, 10.360651547714486
61 | 2.0, 0.6, 9.829821689680468
62 | 2.033333333333333, 0.61, 9.561993398944576
63 | 2.066666666666667, 0.62, 8.562277002351097
64 | 2.1, 0.63, 11.025614321410039
65 | 2.1333333333333333, 0.64, 11.472169430406346
66 | 2.1666666666666665, 0.65, 10.490051968467276
67 | 2.2, 0.66, 11.089718959482514
68 | 2.2333333333333334, 0.67, 12.051700280809825
69 | 2.2666666666666666, 0.68, 8.89376973958898
70 | 2.3, 0.69, 10.575141463911502
71 | 2.3333333333333335, 0.7, 10.891253138901773
72 | 2.3666666666666667, 0.71, 13.457570603057741
73 | 2.4, 0.72, 12.487569164246931
74 | 2.433333333333333, 0.73, 11.073043802104557
75 | 2.466666666666667, 0.74, 12.037322232669263
76 | 2.5, 0.75, 10.674390473603365
77 | 2.533333333333333, 0.76, 11.367960340192402
78 | 2.566666666666667, 0.77, 11.640836106388269
79 | 2.6, 0.78, 13.322861396762043
80 | 2.6333333333333333, 0.79, 13.424707286050474
81 | 2.6666666666666665, 0.8, 14.079070827829392
82 | 2.7, 0.81, 14.195694855051958
83 | 2.7333333333333334, 0.82, 12.9251440948061
84 | 2.7666666666666666, 0.83, 13.754384544638693
85 | 2.8, 0.84, 11.677311350398531
86 | 2.8333333333333335, 0.85, 11.690217301778913
87 | 2.8666666666666667, 0.86, 13.969511316517796
88 | 2.9, 0.87, 12.809765132495622
89 | 2.933333333333333, 0.88, 15.727829861773985
90 | 2.966666666666667, 0.89, 15.206308756156528
91 | 3.0, 0.9, 12.142188422745003
92 | 3.033333333333333, 0.91, 12.402373947307577
93 | 3.066666666666667, 0.92, 12.895341660265487
94 | 3.1, 0.93, 14.42379666505037
95 | 3.1333333333333333, 0.94, 16.640900610944502
96 | 3.1666666666666665, 0.95, 16.41670859371123
97 | 3.2, 0.96, 17.151133123574038
98 | 3.2333333333333334, 0.97, 14.733989342867995
99 | 3.2666666666666666, 0.98, 14.122679484314975
100 | 3.3, 0.99, 13.383039027685872
101 | 3.3333333333333335, 1.0, 17.8790987573351
102 | 3.3666666666666667, 1.01, 13.858816152700921
103 | 3.4, 1.02, 18.60302756211834
104 | 3.433333333333333, 1.03, 15.738565461649474
105 | 3.466666666666667, 1.04, 16.11041020576981
106 | 3.5, 1.05, 17.972524356436264
107 | 3.533333333333333, 1.06, 15.46336857475907
108 | 3.566666666666667, 1.07, 15.493482154377304
109 | 3.6, 1.08, 18.74587496330028
110 | 3.6333333333333333, 1.09, 16.900579791972955
111 | 3.6666666666666665, 1.1, 19.344442459081144
112 | 3.7, 1.11, 20.184104014749746
113 | 3.7333333333333334, 1.12, 16.096941018682134
114 | 3.7666666666666666, 1.13, 18.757898810709644
115 | 3.8, 1.14, 19.07883489409696
116 | 3.8333333333333335, 1.15, 20.478835744731395
117 | 3.8666666666666667, 1.16, 18.755987601985588
118 | 3.9, 1.17, 20.39023087144121
119 | 3.933333333333333, 1.18, 19.272228022629122
120 | 3.966666666666667, 1.19, 18.679747549732564
121 | 4.0, 1.2, 19.728156054538413
122 | 4.033333333333333, 1.21, 21.24267807017678
123 | 4.066666666666666, 1.22, 17.57321865021114
124 | 4.1, 1.23, 22.16581806443818
125 | 4.133333333333334, 1.24, 20.39687764409245
126 | 4.166666666666667, 1.25, 19.508571713720148
127 | 4.2, 1.26, 23.07375848647532
128 | 4.233333333333333, 1.27, 20.21623019704746
129 | 4.266666666666667, 1.28, 21.88848207830711
130 | 4.3, 1.29, 21.67975542145398
131 | 4.333333333333333, 1.3, 21.242665650030126
132 | 4.366666666666666, 1.31, 21.138011218679978
133 | 4.4, 1.32, 21.00480902981787
134 | 4.433333333333334, 1.33, 19.767451751819454
135 | 4.466666666666667, 1.34, 20.946910443161286
136 | 4.5, 1.35, 22.55209202051293
137 | 4.533333333333333, 1.36, 23.769039100034963
138 | 4.566666666666666, 1.37, 24.594275643145544
139 | 4.6, 1.38, 20.737627188180678
140 | 4.633333333333334, 1.39, 20.64333529825234
141 | 4.666666666666667, 1.4, 23.17844892697523
142 | 4.7, 1.41, 25.681412498431783
143 | 4.733333333333333, 1.42, 24.319972691864802
144 | 4.766666666666667, 1.43, 25.024072693381044
145 | 4.8, 1.44, 22.752859187683978
146 | 4.833333333333333, 1.45, 25.748922735815302
147 | 4.866666666666666, 1.46, 22.8770610789708
148 | 4.9, 1.47, 23.613526488035884
149 | 4.933333333333334, 1.48, 26.73833983232479
150 | 4.966666666666667, 1.49, 25.8765059726527
151 | 5.0, 1.5, 26.05939467561902
152 | 5.033333333333333, 1.51, 25.731112159384583
153 | 5.066666666666666, 1.52, 28.058073576059943
154 | 5.1, 1.53, 25.68684465016436
155 | 5.133333333333334, 1.54, 28.671166686498402
156 | 5.166666666666667, 1.55, 27.863711740595658
157 | 5.2, 1.56, 27.796653063151705
158 | 5.233333333333333, 1.57, 28.29200301691864
159 | 5.266666666666667, 1.58, 25.862810923931374
160 | 5.3, 1.59, 26.958108144884445
161 | 5.333333333333333, 1.6, 26.639689409066253
162 | 5.366666666666666, 1.61, 29.04756761147455
163 | 5.4, 1.62, 29.314045197335098
164 | 5.433333333333334, 1.63, 28.21632044747914
165 | 5.466666666666667, 1.64, 28.889228146400022
166 | 5.5, 1.65, 26.7735296335335
167 | 5.533333333333333, 1.66, 29.811273193283593
168 | 5.566666666666666, 1.67, 30.914556417630067
169 | 5.6, 1.68, 31.629205663872256
170 | 5.633333333333334, 1.69, 28.344192069066235
171 | 5.666666666666667, 1.7, 30.25072365689024
172 | 5.7, 1.71, 27.89352223701347
173 | 5.733333333333333, 1.72, 30.181505812589982
174 | 5.766666666666667, 1.73, 31.994000468360092
175 | 5.8, 1.74, 28.45576270535498
176 | 5.833333333333333, 1.75, 29.914029532367163
177 | 5.866666666666666, 1.76, 32.8497003838677
178 | 5.9, 1.77, 31.214931723350215
179 | 5.933333333333334, 1.78, 29.716043714937854
180 | 5.966666666666667, 1.79, 29.87475641626005
181 | 6.0, 1.8, 32.58566536109596
182 | 6.033333333333333, 1.81, 32.33725153943825
183 | 6.066666666666666, 1.82, 34.42845679687803
184 | 6.1, 1.83, 34.16035315443741
185 | 6.133333333333334, 1.84, 32.76851024672129
186 | 6.166666666666667, 1.85, 33.43721687476169
187 | 6.2, 1.86, 33.826722902285454
188 | 6.233333333333333, 1.87, 35.50915427716619
189 | 6.266666666666667, 1.88, 35.929282269308494
190 | 6.3, 1.89, 35.85768015651103
191 | 6.333333333333333, 1.9, 33.153977375110294
192 | 6.366666666666666, 1.91, 34.97139293420337
193 | 6.4, 1.92, 33.75221933402597
194 | 6.433333333333334, 1.93, 37.734575557274454
195 | 6.466666666666667, 1.94, 36.60058033079866
196 | 6.5, 1.95, 36.49988950197172
197 | 6.533333333333333, 1.96, 35.15923852975166
198 | 6.566666666666666, 1.97, 35.27021367213815
199 | 6.6, 1.98, 36.35674595241544
200 | 6.633333333333334, 1.99, 38.873765219057155
201 | 6.666666666666667, 2.0, 37.93323981985347
202 | 6.7, 2.01, 37.35873227456135
203 | 6.733333333333333, 2.02, 39.47980789957967
204 | 6.766666666666667, 2.03, 39.52591102335174
205 | 6.8, 2.04, 37.31331805752697
206 | 6.833333333333333, 2.05, 39.61296183086106
207 | 6.866666666666666, 2.06, 37.68712794174907
208 | 6.9, 2.07, 37.556192883692425
209 | 6.933333333333334, 2.08, 39.548153340137276
210 | 6.966666666666667, 2.09, 39.28873775134324
211 | 7.0, 2.1, 38.04925623614528
212 | 7.033333333333333, 2.11, 40.47287839632217
213 | 7.066666666666666, 2.12, 41.997528193387126
214 | 7.1, 2.13, 41.14496198790607
215 | 7.133333333333334, 2.14, 42.743455332817526
216 | 7.166666666666667, 2.15, 41.715040412512636
217 | 7.2, 2.16, 41.280305165496344
218 | 7.233333333333333, 2.17, 40.648879471291394
219 | 7.266666666666667, 2.18, 41.459180834279195
220 | 7.3, 2.19, 39.62473172275511
221 | 7.333333333333333, 2.2, 40.59454219724073
222 | 7.366666666666666, 2.21, 44.3232971758232
223 | 7.4, 2.22, 42.215538076790935
224 | 7.433333333333334, 2.23, 41.31793360546045
225 | 7.466666666666667, 2.24, 45.35073113642464
226 | 7.5, 2.25, 46.082280558481536
227 | 7.533333333333333, 2.26, 44.228422686917185
228 | 7.566666666666666, 2.27, 43.13667303790424
229 | 7.6, 2.28, 43.745832214108965
230 | 7.633333333333334, 2.29, 46.11869810334958
231 | 7.666666666666667, 2.3, 47.46720138119376
232 | 7.7, 2.31, 43.76871406131572
233 | 7.733333333333333, 2.32, 47.51820903249324
234 | 7.766666666666667, 2.33, 44.660806991373924
235 | 7.8, 2.34, 43.90923037824717
236 | 7.833333333333333, 2.35, 47.11790606548243
237 | 7.866666666666666, 2.36, 48.63957200512386
238 | 7.9, 2.37, 49.122382307720095
239 | 7.933333333333334, 2.38, 47.424664359362495
240 | 7.966666666666667, 2.39, 50.215590381623045
241 | 8.0, 2.4, 49.05388289517193
242 | 8.033333333333333, 2.41, 46.23723529628793
243 | 8.066666666666666, 2.42, 50.5995706786678
244 | 8.1, 2.43, 49.060686292750326
245 | 8.133333333333333, 2.44, 47.99242752483029
246 | 8.166666666666666, 2.45, 51.76287849192928
247 | 8.2, 2.46, 49.80003823944521
248 | 8.233333333333333, 2.47, 48.371020484829536
249 | 8.266666666666667, 2.48, 48.8100124118076
250 | 8.3, 2.49, 52.87025637822671
251 | 8.333333333333334, 2.5, 53.082512228986154
252 | 8.366666666666667, 2.51, 49.0415635692653
253 | 8.4, 2.52, 53.538109956573834
254 | 8.433333333333334, 2.53, 50.663956575688516
255 | 8.466666666666667, 2.54, 50.38980618242721
256 | 8.5, 2.55, 51.331518995277264
257 | 8.533333333333333, 2.56, 55.270311136807464
258 | 8.566666666666666, 2.57, 55.33531731281228
259 | 8.6, 2.58, 53.99174008162174
260 | 8.633333333333333, 2.59, 52.35927230935748
261 | 8.666666666666666, 2.6, 51.85443844234787
262 | 8.7, 2.61, 56.58358231994586
263 | 8.733333333333333, 2.62, 57.054563300673976
264 | 8.766666666666667, 2.63, 53.99193096536172
265 | 8.8, 2.64, 54.46436565600161
266 | 8.833333333333334, 2.65, 57.261118396428586
267 | 8.866666666666667, 2.66, 55.132630897385596
268 | 8.9, 2.67, 57.89758332460272
269 | 8.933333333333334, 2.68, 56.549530237257756
270 | 8.966666666666667, 2.69, 54.662013261700096
271 | 9.0, 2.7, 59.80059186023751
272 | 9.033333333333333, 2.71, 56.75895483728395
273 | 9.066666666666666, 2.72, 60.371610096718875
274 | 9.1, 2.73, 55.84077276492617
275 | 9.133333333333333, 2.74, 57.03033944479596
276 | 9.166666666666666, 2.75, 60.87368719223982
277 | 9.2, 2.76, 61.50460177666874
278 | 9.233333333333333, 2.77, 60.94586600472021
279 | 9.266666666666667, 2.78, 58.306589080403505
280 | 9.3, 2.79, 59.39570051228334
281 | 9.333333333333334, 2.8, 59.19335856785126
282 | 9.366666666666667, 2.81, 63.00897583885593
283 | 9.4, 2.82, 60.27156129723895
284 | 9.433333333333334, 2.83, 60.04416293175699
285 | 9.466666666666667, 2.84, 60.68829367378346
286 | 9.5, 2.85, 64.69362828881584
287 | 9.533333333333333, 2.86, 61.07714582755453
288 | 9.566666666666666, 2.87, 65.4857897703286
289 | 9.6, 2.88, 63.19553854577592
290 | 9.633333333333333, 2.89, 64.56307467785743
291 | 9.666666666666666, 2.9, 65.65317673005785
292 | 9.7, 2.91, 62.75536839952868
293 | 9.733333333333333, 2.92, 62.657900244163905
294 | 9.766666666666667, 2.93, 63.87058669939911
295 | 9.8, 2.94, 65.37788777502782
296 | 9.833333333333334, 2.95, 64.19996449138551
297 | 9.866666666666667, 2.96, 66.88190341624171
298 | 9.9, 2.97, 68.87082163770351
299 | 9.933333333333334, 2.98, 64.74498838424638
300 | 9.966666666666667, 2.99, 66.07524095585566
301 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/linear_data.csv:
--------------------------------------------------------------------------------
1 | 0.0, 0.41753076187865723
2 | 0.1, 0.9077225677620944
3 | 0.2, 0.8468966189842763
4 | 0.3, 0.5334038128382167
5 | 0.4, 0.41084807432827786
6 | 0.5, 0.587433842732809
7 | 0.6, 1.4079527038513764
8 | 0.7, 1.922210076486513
9 | 0.8, 1.807611308904869
10 | 0.9, 2.102063017294209
11 | 1.0, 2.654721787954851
12 | 1.1, 2.193400888840457
13 | 1.2, 1.477607667696503
14 | 1.3, 3.398160707450889
15 | 1.4, 3.4854501380910126
16 | 1.5, 3.967945970833322
17 | 1.6, 3.9671162598636913
18 | 1.7, 4.033727321212096
19 | 1.8, 4.3961157363678725
20 | 1.9, 4.276886011842381
21 | 2.0, 3.8583441233097218
22 | 2.1, 4.8003830856492575
23 | 2.2, 3.857294814917048
24 | 2.3, 3.859675030585834
25 | 2.4, 5.499639377401624
26 | 2.5, 4.522185803876381
27 | 2.6, 6.076050164860872
28 | 2.7, 4.579146053892252
29 | 2.8, 6.12803595342564
30 | 2.9, 5.530042455467705
31 | 3.0, 5.16051955732586
32 | 3.1, 5.729951526441141
33 | 3.2, 7.319310999672492
34 | 3.3, 6.521464509402525
35 | 3.4, 6.464633904688723
36 | 3.5, 6.350441957059813
37 | 3.6, 7.055149728663322
38 | 3.7, 8.195866443235658
39 | 3.8, 7.663433081512983
40 | 3.9, 7.711872691756923
41 | 4.0, 7.644728901721089
42 | 4.1, 7.587955346665087
43 | 4.2, 9.327236297335514
44 | 4.3, 8.572799078058503
45 | 4.4, 7.871156294015572
46 | 4.5, 9.893952587891047
47 | 4.6, 8.766058874318768
48 | 4.7, 9.950868624832747
49 | 4.8, 10.034222277157353
50 | 4.9, 10.027907354143963
51 | 5.0, 10.322781304139554
52 | 5.1, 10.685786665619894
53 | 5.2, 10.937790374068037
54 | 5.3, 9.698280380048338
55 | 5.4, 11.464195557010218
56 | 5.5, 11.559721241512914
57 | 5.6, 11.96810761336459
58 | 5.7, 11.97948152585798
59 | 5.8, 10.634552418226225
60 | 5.9, 10.906424750825709
61 | 6.0, 12.321553557299177
62 | 6.1, 13.15739127411026
63 | 6.2, 13.239813741871469
64 | 6.3, 12.424461059942725
65 | 6.4, 12.39117944488581
66 | 6.5, 12.856461149290208
67 | 6.6, 13.164632770670282
68 | 6.7, 12.695814360711797
69 | 6.8, 14.315818287702076
70 | 6.9, 12.856400702204645
71 | 7.0, 14.746982864219389
72 | 7.1, 14.839531339107385
73 | 7.2, 14.663260066701007
74 | 7.3, 13.67066373212541
75 | 7.4, 15.056457094733924
76 | 7.5, 15.939629903447779
77 | 7.6, 15.879354871541516
78 | 7.7, 15.678436482244145
79 | 7.8, 14.987013859219156
80 | 7.9, 16.546549538925287
81 | 8.0, 16.243599472679886
82 | 8.1, 16.926627753929466
83 | 8.2, 16.851602195636367
84 | 8.3, 16.879001232102286
85 | 8.4, 16.79771142363802
86 | 8.5, 17.85189036166805
87 | 8.6, 17.156606742240644
88 | 8.7, 18.223849894393915
89 | 8.8, 17.340384167149928
90 | 8.9, 18.15182850040441
91 | 9.0, 18.433070205324395
92 | 9.1, 17.384627387840272
93 | 9.2, 18.396045523883576
94 | 9.3, 18.233361737180356
95 | 9.4, 19.55772853546567
96 | 9.5, 19.108985903374172
97 | 9.6, 19.82546772296371
98 | 9.7, 20.111890988435064
99 | 9.8, 19.42755943783563
100 | 9.9, 20.06366214027849
101 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/linear_data_var_noise.csv:
--------------------------------------------------------------------------------
1 | 0.0, 0.0
2 | 0.01, 0.02192318696811463
3 | 0.02, 0.035479333848638044
4 | 0.03, 0.054985281474734624
5 | 0.04, 0.08688051036930838
6 | 0.05, 0.10793310232503613
7 | 0.06, 0.13497343018570804
8 | 0.07, 0.14254175358448967
9 | 0.08, 0.17865807605861256
10 | 0.09, 0.19225114351529163
11 | 0.1, 0.19485211572742628
12 | 0.11, 0.23306409214429497
13 | 0.12, 0.2670675676978903
14 | 0.13, 0.27860174427808004
15 | 0.14, 0.2902860984788497
16 | 0.15, 0.32724189097031675
17 | 0.16, 0.30693307771201506
18 | 0.17, 0.356575422561102
19 | 0.18, 0.34423201570259804
20 | 0.19, 0.37085558811071856
21 | 0.2, 0.36518432269873935
22 | 0.21, 0.42936216245170683
23 | 0.22, 0.4630571291173308
24 | 0.23, 0.5010397291139302
25 | 0.24, 0.49255416680098346
26 | 0.25, 0.4873756880510144
27 | 0.26, 0.5038122166991419
28 | 0.27, 0.4924311823948243
29 | 0.28, 0.5357588216429143
30 | 0.29, 0.5813258767768466
31 | 0.3, 0.528032915902703
32 | 0.31, 0.5995540769838018
33 | 0.32, 0.6069706631608376
34 | 0.33, 0.608466678383247
35 | 0.34, 0.7472768171001443
36 | 0.35, 0.7084696026513104
37 | 0.36, 0.704202332182282
38 | 0.37, 0.6830785655571112
39 | 0.38, 0.7547152217912997
40 | 0.39, 0.7300425169870346
41 | 0.4, 0.8950990803305975
42 | 0.41, 0.7496319376845547
43 | 0.42, 0.915363020953615
44 | 0.43, 0.9021001549588819
45 | 0.44, 0.9778734398135429
46 | 0.45, 0.9443885540270059
47 | 0.46, 1.0147156102804347
48 | 0.47, 0.9800688099227128
49 | 0.48, 0.9429636542146561
50 | 0.49, 0.941941337504483
51 | 0.5, 0.894816002715128
52 | 0.51, 1.0627456044731696
53 | 0.52, 1.0709889577658502
54 | 0.53, 1.1399495418799455
55 | 0.54, 1.0604030416218546
56 | 0.55, 1.0850699957136702
57 | 0.56, 1.2197314437975504
58 | 0.57, 1.2666181029259054
59 | 0.58, 1.1534614493593898
60 | 0.59, 1.283247146188583
61 | 0.6, 1.319630143934133
62 | 0.61, 1.1347407734490635
63 | 0.62, 1.1398082713970723
64 | 0.63, 1.247458510111075
65 | 0.64, 1.3751541489601729
66 | 0.65, 1.4205231749990088
67 | 0.66, 1.439459265287601
68 | 0.67, 1.4658953731475064
69 | 0.68, 1.3844227783185306
70 | 0.69, 1.3733205550504743
71 | 0.7, 1.240599522263568
72 | 0.71, 1.494469501049988
73 | 0.72, 1.484636546355435
74 | 0.73, 1.3663982768646168
75 | 0.74, 1.3945004601734723
76 | 0.75, 1.3700119826558317
77 | 0.76, 1.6587099162923526
78 | 0.77, 1.6483413333294785
79 | 0.78, 1.7278939047117812
80 | 0.79, 1.6027166993134183
81 | 0.8, 1.7836409927325532
82 | 0.81, 1.5472363228461958
83 | 0.82, 1.7554443107963547
84 | 0.83, 1.7673425586733649
85 | 0.84, 1.771222010018725
86 | 0.85, 1.5423471999573313
87 | 0.86, 1.9069939418352357
88 | 0.87, 1.7122394871432876
89 | 0.88, 1.910357008475501
90 | 0.89, 1.8350784249990704
91 | 0.9, 1.9697350328801817
92 | 0.91, 1.6791170690848043
93 | 0.92, 1.922728548064806
94 | 0.93, 1.6452586477530786
95 | 0.94, 1.9907428788507886
96 | 0.95, 1.9691160099785725
97 | 0.96, 2.0531348437744956
98 | 0.97, 2.118114427048792
99 | 0.98, 2.0708054303005885
100 | 0.99, 2.187511320074811
101 | 1.0, 2.0311728659834523
102 | 1.01, 2.0403132830810797
103 | 1.02, 2.26950736534001
104 | 1.03, 2.0453545820155465
105 | 1.04, 2.229653368540723
106 | 1.05, 2.2887128394077347
107 | 1.06, 2.121529013730869
108 | 1.07, 1.9373063979122351
109 | 1.08, 1.9336777080531393
110 | 1.09, 2.2607566152554073
111 | 1.1, 2.3753201466088876
112 | 1.11, 2.4879477983271596
113 | 1.12, 2.3481554034979637
114 | 1.13, 2.047251934569811
115 | 1.14, 2.529741999794414
116 | 1.15, 2.124754897162344
117 | 1.16, 2.5014043048464574
118 | 1.17, 2.46505539626501
119 | 1.18, 2.1911637922607423
120 | 1.19, 2.42832518038627
121 | 1.2, 2.489868157551495
122 | 1.21, 2.2268504000203175
123 | 1.22, 2.725746414458787
124 | 1.23, 2.395407560162011
125 | 1.24, 2.2574117519249373
126 | 1.25, 2.5566380104342143
127 | 1.26, 2.470898342023963
128 | 1.27, 2.6544948402795883
129 | 1.28, 2.393331344561589
130 | 1.29, 2.430462967853831
131 | 1.3, 2.839220181950493
132 | 1.31, 2.585455305465433
133 | 1.32, 2.615233990082378
134 | 1.33, 2.6463825718048373
135 | 1.34, 2.437074862230047
136 | 1.35, 2.630712526281376
137 | 1.36, 2.4052281059912852
138 | 1.37, 2.6583102809407615
139 | 1.38, 2.4366499215745625
140 | 1.39, 2.4821426706651692
141 | 1.4, 2.589221515483691
142 | 1.41, 3.019681909359415
143 | 1.42, 2.507439379728274
144 | 1.43, 2.919624325180011
145 | 1.44, 3.149651435078934
146 | 1.45, 2.810186030519531
147 | 1.46, 2.728656820572677
148 | 1.47, 2.8007955018211104
149 | 1.48, 3.155055654444507
150 | 1.49, 2.8678620055483934
151 | 1.5, 3.357142645882861
152 | 1.51, 2.6807673857778944
153 | 1.52, 2.687226709458052
154 | 1.53, 2.9540400476454627
155 | 1.54, 2.719044606990239
156 | 1.55, 3.160871175578014
157 | 1.56, 2.9906576010648847
158 | 1.57, 3.388144261940457
159 | 1.58, 2.9161129576581986
160 | 1.59, 3.3351975092985047
161 | 1.6, 3.5301335343851585
162 | 1.61, 3.384145373804962
163 | 1.62, 3.1323125301249837
164 | 1.63, 3.002848431911081
165 | 1.64, 3.48886802088163
166 | 1.65, 3.1240993238455617
167 | 1.66, 3.0999909891966797
168 | 1.67, 3.6348990879065872
169 | 1.68, 3.2311479237173364
170 | 1.69, 3.104006880570415
171 | 1.7, 3.682125520492705
172 | 1.71, 3.3239847057548046
173 | 1.72, 3.7851872450246105
174 | 1.73, 3.1622980898270514
175 | 1.74, 3.8096687011741293
176 | 1.75, 3.1215458989468643
177 | 1.76, 3.8104239244911255
178 | 1.77, 3.294644730225359
179 | 1.78, 3.6688209143885873
180 | 1.79, 3.4603939855049215
181 | 1.8, 3.588310404481486
182 | 1.81, 3.6829232394119518
183 | 1.82, 3.8118423359150735
184 | 1.83, 3.8242695888163665
185 | 1.84, 3.7900408112446424
186 | 1.85, 4.075131828851016
187 | 1.86, 3.718055150992372
188 | 1.87, 3.9202268649044245
189 | 1.88, 4.186917240779756
190 | 1.89, 4.248190273302004
191 | 1.9, 4.125625050872175
192 | 1.91, 4.09594499647234
193 | 1.92, 3.672336462141929
194 | 1.93, 4.272686590772933
195 | 1.94, 3.4089381296386967
196 | 1.95, 4.108763309444158
197 | 1.96, 4.26750436370101
198 | 1.97, 3.578335311800403
199 | 1.98, 3.911909073153412
200 | 1.99, 3.6805879494327423
201 | 2.0, 3.880826080992412
202 | 2.01, 3.817484222742544
203 | 2.02, 3.6054419830561564
204 | 2.03, 4.34554720050808
205 | 2.04, 4.541566532531497
206 | 2.05, 3.741580490936994
207 | 2.06, 4.503600537809207
208 | 2.07, 4.381681065777905
209 | 2.08, 4.072404117138978
210 | 2.09, 4.422291345370566
211 | 2.1, 4.214282479407771
212 | 2.11, 3.8802193432329903
213 | 2.12, 4.252198161239969
214 | 2.13, 4.450467491533952
215 | 2.14, 4.701439693156635
216 | 2.15, 4.24501666991607
217 | 2.16, 4.323480336957321
218 | 2.17, 4.681303365921943
219 | 2.18, 3.927254426251727
220 | 2.19, 4.314328850157683
221 | 2.2, 4.1486130437499735
222 | 2.21, 4.849269977314748
223 | 2.22, 4.9202699251439
224 | 2.23, 3.995700212556833
225 | 2.24, 3.9863518163948957
226 | 2.25, 4.5310836651007795
227 | 2.26, 4.954763744143532
228 | 2.27, 4.046228812121081
229 | 2.28, 4.349137803288481
230 | 2.29, 4.162797717894159
231 | 2.3, 4.698416225870204
232 | 2.31, 5.026143227414447
233 | 2.32, 4.123078157480859
234 | 2.33, 4.512865630712732
235 | 2.34, 5.139903497913534
236 | 2.35, 5.006074528553321
237 | 2.36, 5.112931598272229
238 | 2.37, 4.227495425691284
239 | 2.38, 4.897705237780226
240 | 2.39, 5.005565609553805
241 | 2.4, 4.757058349014173
242 | 2.41, 4.7045376649531665
243 | 2.42, 5.1626748864439955
244 | 2.43, 5.191230089757346
245 | 2.44, 4.725110204796763
246 | 2.45, 4.893377377979799
247 | 2.46, 5.331537197170874
248 | 2.47, 4.626912890923149
249 | 2.48, 5.2436141378064205
250 | 2.49, 5.600718975227763
251 | 2.5, 5.588659936879155
252 | 2.51, 5.531856396132368
253 | 2.52, 4.951319405447227
254 | 2.53, 5.538783524840767
255 | 2.54, 5.309430667291307
256 | 2.55, 5.408653365320263
257 | 2.56, 5.728458830179032
258 | 2.57, 4.551249640266805
259 | 2.58, 4.601879405316558
260 | 2.59, 4.877187584196161
261 | 2.6, 4.578429103803589
262 | 2.61, 5.379316391816312
263 | 2.62, 4.808277720762436
264 | 2.63, 4.818853249999633
265 | 2.64, 5.650017450896103
266 | 2.65, 4.843446814443071
267 | 2.66, 5.380586301488187
268 | 2.67, 5.4833741348323395
269 | 2.68, 5.253161368636397
270 | 2.69, 5.303508513945109
271 | 2.7, 5.822579278538317
272 | 2.71, 4.974942002755603
273 | 2.72, 5.806257481871011
274 | 2.73, 5.700158548270906
275 | 2.74, 6.078952291271159
276 | 2.75, 5.551976015398456
277 | 2.76, 5.341633475396449
278 | 2.77, 5.12905179387928
279 | 2.78, 5.777177917533898
280 | 2.79, 6.2685060495696865
281 | 2.8, 5.243010908739061
282 | 2.81, 5.709339704618272
283 | 2.82, 5.539233152825956
284 | 2.83, 6.0126296958728185
285 | 2.84, 6.232798706195464
286 | 2.85, 5.607270848968778
287 | 2.86, 5.60896203500146
288 | 2.87, 5.9614519251784
289 | 2.88, 5.743208404089154
290 | 2.89, 5.852677684125999
291 | 2.9, 6.2197472794918065
292 | 2.91, 6.509047094354098
293 | 2.92, 5.691911858323547
294 | 2.93, 6.4238883943195955
295 | 2.94, 5.329042260748099
296 | 2.95, 5.819774656928159
297 | 2.96, 5.608187326586885
298 | 2.97, 5.2590282922226566
299 | 2.98, 5.797630053183798
300 | 2.99, 6.002777034099573
301 | 3.0, 6.53377096520752
302 | 3.01, 6.013761540722384
303 | 3.02, 5.714713135645985
304 | 3.03, 5.488656956430223
305 | 3.04, 6.088949497151946
306 | 3.05, 6.61024980467603
307 | 3.06, 6.2923278277448045
308 | 3.07, 5.677293971033715
309 | 3.08, 5.577165406899358
310 | 3.09, 6.798922854208493
311 | 3.1, 6.516544380331629
312 | 3.11, 6.926165362889413
313 | 3.12, 6.936643371759281
314 | 3.13, 5.9555360637310955
315 | 3.14, 6.778436905821295
316 | 3.15, 6.233178892764203
317 | 3.16, 5.577113506315155
318 | 3.17, 5.678373244670519
319 | 3.18, 6.373370954419257
320 | 3.19, 6.281439302345312
321 | 3.2, 6.655113574087012
322 | 3.21, 6.709131974934904
323 | 3.22, 6.277063159067207
324 | 3.23, 6.491010961134066
325 | 3.24, 5.875041156440849
326 | 3.25, 5.781025672794639
327 | 3.26, 6.594766029047357
328 | 3.27, 6.791208861484396
329 | 3.28, 6.055220526862031
330 | 3.29, 6.405524030029934
331 | 3.3, 6.658832853846162
332 | 3.31, 5.969320347691887
333 | 3.32, 7.08591383707037
334 | 3.33, 7.13883324929357
335 | 3.34, 6.438015840702218
336 | 3.35, 7.522953041616074
337 | 3.36, 7.287890033656074
338 | 3.37, 7.560407627565605
339 | 3.38, 7.395078388423764
340 | 3.39, 6.959169211181108
341 | 3.4, 6.689593364940857
342 | 3.41, 7.3680511508188005
343 | 3.42, 6.323811300907359
344 | 3.43, 6.845436292400307
345 | 3.44, 7.679847640933788
346 | 3.45, 7.69119723094446
347 | 3.46, 6.7146981410427315
348 | 3.47, 6.125951078371757
349 | 3.48, 6.273122581490397
350 | 3.49, 6.170816228861711
351 | 3.5, 6.196100561755552
352 | 3.51, 7.358555102719218
353 | 3.52, 6.956283771966174
354 | 3.53, 7.47925708621357
355 | 3.54, 6.788512345655756
356 | 3.55, 6.375365888972844
357 | 3.56, 6.856954889523175
358 | 3.57, 6.714554729836719
359 | 3.58, 7.070991602859334
360 | 3.59, 6.319246481761971
361 | 3.6, 7.377701867451451
362 | 3.61, 6.353380346846199
363 | 3.62, 6.418315664891047
364 | 3.63, 7.897542689791657
365 | 3.64, 7.862362199942532
366 | 3.65, 7.603858416240606
367 | 3.66, 7.09649198799448
368 | 3.67, 6.994199546764692
369 | 3.68, 7.593933818240412
370 | 3.69, 6.6085043371338
371 | 3.7, 6.997454296266182
372 | 3.71, 7.162128244766961
373 | 3.72, 6.889864893693968
374 | 3.73, 7.369525049858894
375 | 3.74, 8.30645341351401
376 | 3.75, 6.765810868867635
377 | 3.76, 8.436129898446639
378 | 3.77, 6.662348780792561
379 | 3.78, 7.858196835784823
380 | 3.79, 6.980016099730612
381 | 3.8, 8.340663320620795
382 | 3.81, 7.1329586819617035
383 | 3.82, 7.828308000482366
384 | 3.83, 6.733282926403577
385 | 3.84, 6.826648904369029
386 | 3.85, 7.6615347994558025
387 | 3.86, 7.440551682593089
388 | 3.87, 7.124514599517325
389 | 3.88, 8.53233976203488
390 | 3.89, 7.821914011886057
391 | 3.9, 8.707792461625717
392 | 3.91, 6.96803892117891
393 | 3.92, 7.461143956852918
394 | 3.93, 8.648500790096891
395 | 3.94, 8.140706616285614
396 | 3.95, 8.111265682416477
397 | 3.96, 8.306606858632893
398 | 3.97, 8.478136258073642
399 | 3.98, 8.808169718078261
400 | 3.99, 7.426616609310719
401 | 4.0, 8.467617944135949
402 | 4.01, 7.328881030692218
403 | 4.02, 7.628552775628096
404 | 4.03, 7.846475648965381
405 | 4.04, 8.302110907331056
406 | 4.05, 7.270884504613983
407 | 4.06, 8.721473691851864
408 | 4.07, 7.185768584857177
409 | 4.08, 8.881988690789974
410 | 4.09, 8.072394985194206
411 | 4.1, 8.373689687768035
412 | 4.11, 8.040910081808443
413 | 4.12, 7.248783383179684
414 | 4.13, 8.44454184947416
415 | 4.14, 9.262286070736844
416 | 4.15, 7.909858610844858
417 | 4.16, 8.319716121676839
418 | 4.17, 8.447581597107511
419 | 4.18, 9.186930787616905
420 | 4.19, 9.419556761218498
421 | 4.2, 8.98293092377197
422 | 4.21, 7.69577276180479
423 | 4.22, 8.246986207888838
424 | 4.23, 8.84858127543111
425 | 4.24, 7.711789954316476
426 | 4.25, 9.47550320851359
427 | 4.26, 8.614193763054196
428 | 4.27, 9.262590220214882
429 | 4.28, 8.465991113554692
430 | 4.29, 8.100811755301308
431 | 4.3, 8.377364357442998
432 | 4.31, 9.69283334506096
433 | 4.32, 9.71305743118669
434 | 4.33, 7.938138578109407
435 | 4.34, 9.678324545386882
436 | 4.35, 8.949981701055199
437 | 4.36, 7.820682436809182
438 | 4.37, 8.181378843432723
439 | 4.38, 8.362282825831025
440 | 4.39, 9.785943670966985
441 | 4.4, 9.19300072590693
442 | 4.41, 9.293225537522211
443 | 4.42, 8.603034837715276
444 | 4.43, 8.097238275787117
445 | 4.44, 8.03170590703586
446 | 4.45, 9.300137393294394
447 | 4.46, 8.60723554075879
448 | 4.47, 9.269644429574129
449 | 4.48, 8.04119458603749
450 | 4.49, 8.763408575162797
451 | 4.5, 8.780799476965466
452 | 4.51, 9.727093268323493
453 | 4.52, 9.759495049934554
454 | 4.53, 9.058964053023802
455 | 4.54, 9.014209636107289
456 | 4.55, 9.508442240167849
457 | 4.56, 10.115600659168251
458 | 4.57, 8.160188358218134
459 | 4.58, 8.546089195797965
460 | 4.59, 8.926159146605256
461 | 4.6, 9.549355004498514
462 | 4.61, 8.670858070097967
463 | 4.62, 8.778057233040611
464 | 4.63, 8.896575840780114
465 | 4.64, 9.732262587250295
466 | 4.65, 9.626872466244647
467 | 4.66, 8.310258742351184
468 | 4.67, 9.838628457108262
469 | 4.68, 8.958746387055285
470 | 4.69, 8.321299526755817
471 | 4.7, 9.828337936472321
472 | 4.71, 9.418068857260694
473 | 4.72, 9.718585273600604
474 | 4.73, 9.665560019968066
475 | 4.74, 10.0819743771889
476 | 4.75, 9.577152166956155
477 | 4.76, 8.910714856063773
478 | 4.77, 9.415695858363417
479 | 4.78, 8.557817386685375
480 | 4.79, 9.602950011295428
481 | 4.8, 10.657686384519533
482 | 4.81, 9.001521311806798
483 | 4.82, 9.000104295122592
484 | 4.83, 8.758429504318892
485 | 4.84, 9.0265029228873
486 | 4.85, 8.865509848354925
487 | 4.86, 9.893714324248151
488 | 4.87, 8.853826626643858
489 | 4.88, 10.712417434959201
490 | 4.89, 9.011787380228487
491 | 4.9, 10.969716347730156
492 | 4.91, 8.928729408034553
493 | 4.92, 10.421457217177714
494 | 4.93, 9.345037130743513
495 | 4.94, 10.742994285405898
496 | 4.95, 9.078521856300247
497 | 4.96, 10.005977399867058
498 | 4.97, 9.928370076945361
499 | 4.98, 9.085809216551283
500 | 4.99, 9.32575053665274
501 | 5.0, 10.912342273015405
502 | 5.01, 8.944518771898792
503 | 5.02, 9.078422397024095
504 | 5.03, 10.882302677941183
505 | 5.04, 9.584927730098546
506 | 5.05, 8.841113246504904
507 | 5.06, 10.075446189887973
508 | 5.07, 9.63630593102994
509 | 5.08, 9.438567658197956
510 | 5.09, 10.104116503391973
511 | 5.1, 9.429902172859158
512 | 5.11, 10.104261723846399
513 | 5.12, 9.642240833008195
514 | 5.13, 11.335744994403909
515 | 5.14, 11.151835585181335
516 | 5.15, 9.683849393517667
517 | 5.16, 10.031980506344507
518 | 5.17, 10.7009567782612
519 | 5.18, 9.435054778897372
520 | 5.19, 10.611848429122407
521 | 5.2, 9.504722124620839
522 | 5.21, 11.099661944077226
523 | 5.22, 9.317459661092634
524 | 5.23, 10.010190117763239
525 | 5.24, 11.405608107250847
526 | 5.25, 9.460860187813836
527 | 5.26, 10.072987554727874
528 | 5.27, 9.94688882879598
529 | 5.28, 9.440729376597126
530 | 5.29, 10.23835657519804
531 | 5.3, 10.322512448151912
532 | 5.31, 10.750347225689357
533 | 5.32, 9.793464662308178
534 | 5.33, 9.632581732988976
535 | 5.34, 11.807595845605912
536 | 5.35, 9.75826242661148
537 | 5.36, 10.300015603999489
538 | 5.37, 9.863167034704796
539 | 5.38, 10.114708066089026
540 | 5.39, 10.681775656216072
541 | 5.4, 10.620734222098351
542 | 5.41, 10.212712593299191
543 | 5.42, 12.169166131605394
544 | 5.43, 9.980301330143941
545 | 5.44, 12.06843661411931
546 | 5.45, 11.531910238227448
547 | 5.46, 11.740283299069132
548 | 5.47, 9.800966686714002
549 | 5.48, 10.0601522635933
550 | 5.49, 11.538652933366105
551 | 5.5, 11.008091083158519
552 | 5.51, 12.346309950232701
553 | 5.52, 10.901798968947196
554 | 5.53, 10.23646185416845
555 | 5.54, 10.81875861555951
556 | 5.55, 10.258969356405142
557 | 5.56, 9.732468409004417
558 | 5.57, 11.50334515084551
559 | 5.58, 10.654873797043493
560 | 5.59, 10.29161832335414
561 | 5.6, 10.861712817974592
562 | 5.61, 12.114971069548359
563 | 5.62, 9.924705624074022
564 | 5.63, 11.132663242709143
565 | 5.64, 10.375454714568113
566 | 5.65, 11.049161976732401
567 | 5.66, 11.000799786407818
568 | 5.67, 11.42869352561444
569 | 5.68, 10.604645983594525
570 | 5.69, 11.435658232711983
571 | 5.7, 10.53910779891623
572 | 5.71, 12.752413612585993
573 | 5.72, 12.315714546394869
574 | 5.73, 11.68059705501236
575 | 5.74, 10.392611549356522
576 | 5.75, 11.73294960421592
577 | 5.76, 11.804919683700172
578 | 5.77, 11.628666901606957
579 | 5.78, 12.829493214445392
580 | 5.79, 11.007467627129115
581 | 5.8, 11.73258664548447
582 | 5.81, 12.538617462718625
583 | 5.82, 12.126563557459177
584 | 5.83, 10.875558006380752
585 | 5.84, 13.023181786483892
586 | 5.85, 11.247276348672766
587 | 5.86, 13.157119719180008
588 | 5.87, 12.170423011169127
589 | 5.88, 12.615519728052965
590 | 5.89, 12.84674690311697
591 | 5.9, 11.110304621151062
592 | 5.91, 12.323090264444374
593 | 5.92, 13.236007631555466
594 | 5.93, 11.363709955751943
595 | 5.94, 10.758948058815907
596 | 5.95, 10.517345515892691
597 | 5.96, 12.941846741377068
598 | 5.97, 13.150510764266167
599 | 5.98, 10.659288451233293
600 | 5.99, 10.746120507302447
601 | 6.0, 11.83979220583895
602 | 6.01, 11.358643810188008
603 | 6.02, 11.248923586995666
604 | 6.03, 12.33989831227951
605 | 6.04, 11.837986040939034
606 | 6.05, 13.172693758883893
607 | 6.06, 12.529929882019585
608 | 6.07, 11.172557615159446
609 | 6.08, 13.26546873220342
610 | 6.09, 12.137894187807175
611 | 6.1, 12.712560165105138
612 | 6.11, 11.920588118366318
613 | 6.12, 12.300177375846868
614 | 6.13, 11.46095114771402
615 | 6.14, 11.313775024432939
616 | 6.15, 11.8686598602231
617 | 6.16, 12.367838616694545
618 | 6.17, 10.923995697950122
619 | 6.18, 13.351169740883062
620 | 6.19, 11.829106961938434
621 | 6.2, 12.21705823295433
622 | 6.21, 13.477692084950318
623 | 6.22, 12.081537051647205
624 | 6.23, 12.555491785879582
625 | 6.24, 12.176271924730639
626 | 6.25, 11.700380980192215
627 | 6.26, 12.012467679842537
628 | 6.27, 12.018398686048217
629 | 6.28, 13.819339364029656
630 | 6.29, 13.187374769883542
631 | 6.3, 14.045175616335442
632 | 6.31, 13.981563709460502
633 | 6.32, 13.963615808456863
634 | 6.33, 12.132471835585006
635 | 6.34, 11.62723107077122
636 | 6.35, 11.133793691740843
637 | 6.36, 11.552856942163759
638 | 6.37, 14.021730768940161
639 | 6.38, 12.659239725443614
640 | 6.39, 13.55431734952962
641 | 6.4, 13.250830910608224
642 | 6.41, 11.455499589493108
643 | 6.42, 14.318896789428901
644 | 6.43, 12.42882928511054
645 | 6.44, 14.277734280965191
646 | 6.45, 12.834164757015357
647 | 6.46, 11.373620443807567
648 | 6.47, 13.643532414806549
649 | 6.48, 12.15313212157192
650 | 6.49, 13.892590228272626
651 | 6.5, 12.783730992860338
652 | 6.51, 13.67141829536991
653 | 6.52, 12.742037686308894
654 | 6.53, 12.962259170629338
655 | 6.54, 11.718372332495633
656 | 6.55, 12.705394758231273
657 | 6.56, 12.013622969275001
658 | 6.57, 14.065254385017656
659 | 6.58, 12.684017431733054
660 | 6.59, 14.500004228473232
661 | 6.6, 13.106159259031585
662 | 6.61, 14.624360239280293
663 | 6.62, 12.403681867689968
664 | 6.63, 14.280407647575293
665 | 6.64, 12.235354978671433
666 | 6.65, 14.473797714679515
667 | 6.66, 14.711354957992812
668 | 6.67, 14.524259387350641
669 | 6.68, 13.393402025889081
670 | 6.69, 14.251830544747026
671 | 6.7, 14.324811058505356
672 | 6.71, 12.861789577501602
673 | 6.72, 13.285167871288872
674 | 6.73, 13.049437794594432
675 | 6.74, 13.352592146121115
676 | 6.75, 13.009681046082454
677 | 6.76, 13.426914959725966
678 | 6.77, 13.732461662847207
679 | 6.78, 14.882129508637904
680 | 6.79, 14.207764012858673
681 | 6.8, 12.426979311769049
682 | 6.81, 15.244626460986977
683 | 6.82, 15.170909833519932
684 | 6.83, 14.66636552621281
685 | 6.84, 12.734746603657003
686 | 6.85, 13.616804832486661
687 | 6.86, 12.882073705242059
688 | 6.87, 15.164957495274328
689 | 6.88, 13.890582603674952
690 | 6.89, 14.298062960286272
691 | 6.9, 14.812789517584003
692 | 6.91, 14.775341827031648
693 | 6.92, 14.73087895483617
694 | 6.93, 12.503010051407841
695 | 6.94, 13.448904098868189
696 | 6.95, 15.403869136823873
697 | 6.96, 12.390264818899107
698 | 6.97, 12.974165407358967
699 | 6.98, 12.575931255472005
700 | 6.99, 12.953438632468073
701 | 7.0, 14.080330316192196
702 | 7.01, 13.600171911024885
703 | 7.02, 14.02053364424361
704 | 7.03, 14.711198364969436
705 | 7.04, 15.41264093836945
706 | 7.05, 14.50619178077744
707 | 7.06, 12.82532860391388
708 | 7.07, 15.236028492384929
709 | 7.08, 15.363871216278193
710 | 7.09, 13.839042026898811
711 | 7.1, 14.13803901151461
712 | 7.11, 13.161184036734866
713 | 7.12, 14.369617312261523
714 | 7.13, 14.874947274170262
715 | 7.14, 13.039484364802387
716 | 7.15, 14.652884139962401
717 | 7.16, 13.680291012860561
718 | 7.17, 13.370701348915286
719 | 7.18, 13.99516547510714
720 | 7.19, 15.573240220914837
721 | 7.2, 13.17514834800259
722 | 7.21, 13.296855016163127
723 | 7.22, 15.223142782532024
724 | 7.23, 15.80905676755086
725 | 7.24, 13.17892822703695
726 | 7.25, 14.881959789268226
727 | 7.26, 13.325929319940563
728 | 7.27, 12.857465166156029
729 | 7.28, 14.039967489936554
730 | 7.29, 13.294115783609644
731 | 7.3, 15.15943438997553
732 | 7.31, 13.481690278203052
733 | 7.32, 14.953205619944455
734 | 7.33, 13.738160308554972
735 | 7.34, 12.973589900136279
736 | 7.35, 15.438682359672718
737 | 7.36, 14.924811120772759
738 | 7.37, 14.888477502647138
739 | 7.38, 13.509693184525156
740 | 7.39, 13.799127215447626
741 | 7.4, 15.239401580813071
742 | 7.41, 14.185513185409059
743 | 7.42, 15.555055796061602
744 | 7.43, 15.99976892741095
745 | 7.44, 14.116491909644115
746 | 7.45, 14.54072961696089
747 | 7.46, 14.857768947198478
748 | 7.47, 13.194367899904751
749 | 7.48, 16.314158049984094
750 | 7.49, 13.503262824249216
751 | 7.5, 15.37828842883809
752 | 7.51, 13.52753829168695
753 | 7.52, 13.4057958237164
754 | 7.53, 15.637163391333267
755 | 7.54, 15.76677149961548
756 | 7.55, 14.156108242033314
757 | 7.56, 16.291355573814634
758 | 7.57, 16.12371735178295
759 | 7.58, 16.47459888970349
760 | 7.59, 15.791833949571018
761 | 7.6, 15.114243623823183
762 | 7.61, 15.418112103788243
763 | 7.62, 15.219579194432194
764 | 7.63, 14.187062817920893
765 | 7.64, 13.609685697144117
766 | 7.65, 15.7865437293973
767 | 7.66, 14.31387312456556
768 | 7.67, 14.312513893487424
769 | 7.68, 16.931483141326712
770 | 7.69, 15.951272470733189
771 | 7.7, 14.047703659147912
772 | 7.71, 14.93830746964164
773 | 7.72, 13.54035045442637
774 | 7.73, 15.56406037146454
775 | 7.74, 16.121791556853164
776 | 7.75, 13.698912560655511
777 | 7.76, 15.879773325401489
778 | 7.77, 14.18459815795303
779 | 7.78, 13.90630503895816
780 | 7.79, 15.311796216980273
781 | 7.8, 14.470758144639158
782 | 7.81, 14.001913989530497
783 | 7.82, 15.355969488473681
784 | 7.83, 16.613373270637656
785 | 7.84, 17.024656274983727
786 | 7.85, 17.06442506841246
787 | 7.86, 16.50492803902042
788 | 7.87, 17.398898644218793
789 | 7.88, 14.864370922267716
790 | 7.89, 16.76840474458873
791 | 7.9, 15.986873735076829
792 | 7.91, 16.22051322896614
793 | 7.92, 16.412457611223484
794 | 7.93, 15.934533516211504
795 | 7.94, 17.531007939051502
796 | 7.95, 16.553237751526325
797 | 7.96, 14.79229442614657
798 | 7.97, 17.646764353457456
799 | 7.98, 15.059615898316126
800 | 7.99, 14.0017891845253
801 | 8.0, 17.401405967320102
802 | 8.01, 17.20182591649983
803 | 8.02, 17.115939199591296
804 | 8.03, 14.343831526042898
805 | 8.04, 16.786999888262688
806 | 8.05, 16.30606087128781
807 | 8.06, 17.862257955617853
808 | 8.07, 14.388681763344007
809 | 8.08, 16.49160180731734
810 | 8.09, 16.165925226203235
811 | 8.1, 17.56181579799322
812 | 8.11, 14.25521394829313
813 | 8.12, 14.564998442667637
814 | 8.13, 15.18354343221166
815 | 8.14, 16.6944100750431
816 | 8.15, 16.018847789018952
817 | 8.16, 15.97413643540525
818 | 8.17, 17.459626412367847
819 | 8.18, 17.9926248797597
820 | 8.19, 14.454486136107276
821 | 8.2, 17.2525493655051
822 | 8.21, 16.309860340071815
823 | 8.22, 16.867176823824735
824 | 8.23, 15.961362286334662
825 | 8.24, 15.210427212785417
826 | 8.25, 18.33494005482013
827 | 8.26, 17.34495038449323
828 | 8.27, 15.609309163373206
829 | 8.28, 16.793442541127167
830 | 8.29, 16.544773893272755
831 | 8.3, 17.115147822184042
832 | 8.31, 15.673972215376399
833 | 8.32, 16.176976000755676
834 | 8.33, 14.622611848669393
835 | 8.34, 16.293124596670257
836 | 8.35, 16.14919795232616
837 | 8.36, 17.634397871733597
838 | 8.37, 15.231959252735049
839 | 8.38, 17.915784323009774
840 | 8.39, 15.983099472053194
841 | 8.4, 14.742293980597923
842 | 8.41, 17.647041904607985
843 | 8.42, 16.478712673591914
844 | 8.43, 15.861432854034863
845 | 8.44, 16.06406543726116
846 | 8.45, 18.010658471905465
847 | 8.46, 16.976049084712464
848 | 8.47, 15.592996644294995
849 | 8.48, 18.75981314641868
850 | 8.49, 17.290959036667047
851 | 8.5, 18.979203272962966
852 | 8.51, 16.2594197239842
853 | 8.52, 16.94091793966334
854 | 8.53, 17.476996544892877
855 | 8.54, 16.18878285201009
856 | 8.55, 17.900823402945086
857 | 8.56, 15.895135253264877
858 | 8.57, 15.272092489557407
859 | 8.58, 18.7797206404664
860 | 8.59, 17.13356612843789
861 | 8.6, 16.160255877062323
862 | 8.61, 19.02055056379122
863 | 8.62, 16.349593657159517
864 | 8.63, 15.791498598432089
865 | 8.64, 15.957063814275374
866 | 8.65, 16.033146278822223
867 | 8.66, 18.81060865743338
868 | 8.67, 18.28373130370808
869 | 8.68, 18.981869737477602
870 | 8.69, 19.41653612371787
871 | 8.7, 18.32262514912354
872 | 8.71, 18.696163107144326
873 | 8.72, 16.96162564057852
874 | 8.73, 17.344716036458244
875 | 8.74, 15.42030110989484
876 | 8.75, 17.27803334298179
877 | 8.76, 16.68088985703207
878 | 8.77, 19.178102791741484
879 | 8.78, 16.254822098548654
880 | 8.79, 17.531616376944452
881 | 8.8, 17.673076589323603
882 | 8.81, 16.01795897382565
883 | 8.82, 16.737114069435894
884 | 8.83, 19.32121488602987
885 | 8.84, 16.27454650541157
886 | 8.85, 16.794714205351045
887 | 8.86, 17.684120216164217
888 | 8.87, 18.246303980377817
889 | 8.88, 19.75912390969669
890 | 8.89, 18.179543663949886
891 | 8.9, 15.714273157537116
892 | 8.91, 16.994548987991273
893 | 8.92, 16.55230726235475
894 | 8.93, 18.994614832864045
895 | 8.94, 18.248988558621967
896 | 8.95, 19.919468213425432
897 | 8.96, 16.60582029843388
898 | 8.97, 17.50550720263993
899 | 8.98, 18.183066568377917
900 | 8.99, 16.34184540308632
901 | 9.0, 18.494880666860844
902 | 9.01, 17.139547926543305
903 | 9.02, 20.26615100020311
904 | 9.03, 19.85002085564153
905 | 9.04, 16.4334244698127
906 | 9.05, 19.135592744220723
907 | 9.06, 16.633750649645993
908 | 9.07, 19.994377836428548
909 | 9.08, 17.04126300848308
910 | 9.09, 20.256563292282255
911 | 9.1, 20.03032571166123
912 | 9.11, 20.480281975285877
913 | 9.12, 18.953421188927898
914 | 9.13, 18.48149720008971
915 | 9.14, 17.407810422891863
916 | 9.15, 17.395371766513616
917 | 9.16, 18.98647567985942
918 | 9.17, 20.062189697319166
919 | 9.18, 19.899176915207445
920 | 9.19, 17.857432803939638
921 | 9.2, 20.158721097645987
922 | 9.21, 16.43962994190558
923 | 9.22, 17.115389311509436
924 | 9.23, 16.502422157859495
925 | 9.24, 16.63645725382407
926 | 9.25, 18.60258058196557
927 | 9.26, 16.704587001820972
928 | 9.27, 18.84121763689461
929 | 9.28, 20.682827260978815
930 | 9.29, 17.891770068685528
931 | 9.3, 18.95886233631796
932 | 9.31, 19.083377746743846
933 | 9.32, 19.89536948623752
934 | 9.33, 17.521812911189123
935 | 9.34, 20.480532518957496
936 | 9.35, 18.11963324764736
937 | 9.36, 19.719496747871208
938 | 9.37, 20.912345524858235
939 | 9.38, 18.496591565948673
940 | 9.39, 19.374290278757027
941 | 9.4, 19.199061759420996
942 | 9.41, 20.783219031488606
943 | 9.42, 19.341205470064917
944 | 9.43, 19.931032521874645
945 | 9.44, 20.52213581532736
946 | 9.45, 18.859721858582144
947 | 9.46, 19.921810126060166
948 | 9.47, 17.36724623659853
949 | 9.48, 19.30849883036426
950 | 9.49, 17.6092510034936
951 | 9.5, 17.829444719909297
952 | 9.51, 19.368378213794053
953 | 9.52, 18.905372884563935
954 | 9.53, 19.401098835084973
955 | 9.54, 20.526485944839752
956 | 9.55, 19.37520327608647
957 | 9.56, 18.034362286331003
958 | 9.57, 20.579950900415557
959 | 9.58, 21.132361177735376
960 | 9.59, 19.27901624199999
961 | 9.6, 21.485560859208313
962 | 9.61, 17.0669761685166
963 | 9.62, 21.082523521936903
964 | 9.63, 17.685293266787443
965 | 9.64, 17.776600999918493
966 | 9.65, 17.10139013305907
967 | 9.66, 16.985983829806756
968 | 9.67, 18.73483064172688
969 | 9.68, 21.307227417587622
970 | 9.69, 20.68462429057452
971 | 9.7, 17.62836595838001
972 | 9.71, 20.004742204173535
973 | 9.72, 20.436768552699384
974 | 9.73, 19.679888706780662
975 | 9.74, 17.28554859379228
976 | 9.75, 18.841781505028422
977 | 9.76, 20.067489420739822
978 | 9.77, 19.44374602311021
979 | 9.78, 21.971679316598497
980 | 9.79, 19.24862189440969
981 | 9.8, 19.77778058021572
982 | 9.81, 20.229945079774588
983 | 9.82, 18.951901062946092
984 | 9.83, 20.237365378969642
985 | 9.84, 19.23925489880861
986 | 9.85, 20.19369324992712
987 | 9.86, 21.720205146961813
988 | 9.87, 22.12556925090116
989 | 9.88, 20.97827374600632
990 | 9.89, 20.262473207774832
991 | 9.9, 21.57722964489031
992 | 9.91, 18.68572743246992
993 | 9.92, 17.98957267008309
994 | 9.93, 18.574357805778007
995 | 9.94, 18.47237984525359
996 | 9.95, 18.24467712256057
997 | 9.96, 19.396632386184283
998 | 9.97, 21.943612999957132
999 | 9.98, 21.74273351664563
1000 | 9.99, 17.644628773454272
1001 |
--------------------------------------------------------------------------------
/1_Fake_Data_Creation/non_linear_data.csv:
--------------------------------------------------------------------------------
1 | 0.0, -0.626461850894608
2 | 0.1, 0.7089081186222375
3 | 0.2, 0.3895428324579264
4 | 0.3, -0.7137207768327105
5 | 0.4, 0.2970666752471913
6 | 0.5, -0.900695244663988
7 | 0.6, 0.4094648983288191
8 | 0.7, 0.5509214663312941
9 | 0.8, 0.9346040973790725
10 | 0.9, 0.9963415025208654
11 | 1.0, 0.8195344047927364
12 | 1.1, 0.8850310774180756
13 | 1.2, 0.3032645296221205
14 | 1.3, -0.33881719716441916
15 | 1.4, 0.9522853089754717
16 | 1.5, 0.5775153621732572
17 | 1.6, -0.46103390517941756
18 | 1.7, 1.083470536834532
19 | 1.8, 0.3893812437603348
20 | 1.9, 0.42483453599092025
21 | 2.0, 0.6025582660962057
22 | 2.1, 0.20572117298345383
23 | 2.2, 1.7788040178738256
24 | 2.3, 0.4484138743353965
25 | 2.4, 1.2159355696817316
26 | 2.5, 1.3506691738311238
27 | 2.6, 0.8012104046044377
28 | 2.7, 1.8953772239243738
29 | 2.8, 1.0774235997946022
30 | 2.9, 1.2875733191705279
31 | 3.0, 1.2858802278918724
32 | 3.1, 2.788109271116883
33 | 3.2, 2.6113274341264283
34 | 3.3, 2.0832223984876697
35 | 3.4, 1.4952462820403085
36 | 3.5, 2.810864221958867
37 | 3.6, 2.5696843802825624
38 | 3.7, 2.6605239752048706
39 | 3.8, 2.5387552170178624
40 | 3.9, 3.9613774414321092
41 | 4.0, 3.7444589235119
42 | 4.1, 4.0411313730322425
43 | 4.2, 4.135984169540479
44 | 4.3, 4.0142309059624335
45 | 4.4, 4.44150805470087
46 | 4.5, 3.41020605113913
47 | 4.6, 3.35042778526761
48 | 4.7, 4.393607493153923
49 | 4.8, 4.143183581298954
50 | 4.9, 4.043065471661971
51 | 5.0, 4.132386982139012
52 | 5.1, 4.252534479335153
53 | 5.2, 5.174781179104407
54 | 5.3, 6.455561020088048
55 | 5.4, 6.001984618808758
56 | 5.5, 6.292322641106403
57 | 5.6, 5.830318253402246
58 | 5.7, 6.163710752242671
59 | 5.8, 7.395859414209846
60 | 5.9, 6.44700409422723
61 | 6.0, 6.92502290738191
62 | 6.1, 7.839340985002335
63 | 6.2, 7.9829019517518685
64 | 6.3, 7.270803934637834
65 | 6.4, 8.573793882156615
66 | 6.5, 8.321024825688529
67 | 6.6, 8.180317865607183
68 | 6.7, 8.136458243741787
69 | 6.8, 10.136853733007777
70 | 6.9, 10.407198032300062
71 | 7.0, 10.657125913085457
72 | 7.1, 9.765397793033756
73 | 7.2, 9.550157748815364
74 | 7.3, 10.492743750530185
75 | 7.4, 11.748612683365053
76 | 7.5, 11.108641933892123
77 | 7.6, 12.087386398132965
78 | 7.7, 11.649833782479769
79 | 7.8, 12.879560803414632
80 | 7.9, 12.14890388318889
81 | 8.0, 12.928165815210248
82 | 8.1, 12.175218510444513
83 | 8.2, 12.78778633844598
84 | 8.3, 14.173375015718793
85 | 8.4, 14.107248354268025
86 | 8.5, 13.504319805771805
87 | 8.6, 14.13756796384686
88 | 8.7, 15.219453514693425
89 | 8.8, 15.241975268415956
90 | 8.9, 15.205943614892742
91 | 9.0, 16.149226874973074
92 | 9.1, 15.950293300564647
93 | 9.2, 16.413507329134834
94 | 9.3, 18.081651621092885
95 | 9.4, 17.781758281123214
96 | 9.5, 18.602300984475246
97 | 9.6, 18.7387926345817
98 | 9.7, 18.881590395528047
99 | 9.8, 19.18258026733236
100 | 9.9, 20.569905877007802
101 |
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/1_Simple_Regression.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import numpy.random as nr
4 | import sklearn.model_selection as ms
5 | import matplotlib.pyplot as plt
6 | import General_Tools as gt
7 | import sys
8 |
9 | from sklearn.linear_model import LinearRegression
10 |
11 | """ Load the Fake Data Into a Pandas DataFrame """
12 | df_XY = pd.read_csv(
13 | "./1_Fake_Data_Creation/linear_data.csv", header=None)
14 | df_XY.columns = ['X', 'Y']
15 | print("The Data Frame with X and Y:")
16 | print(df_XY)
17 | print()
18 |
19 | """ Convert the DataFrame to a Values Array """
20 | XY_Values = df_XY.values
21 | print("Just The X and Y Values")
22 | print(XY_Values)
23 | print()
24 |
25 | """ Split the X and Y from the XY_Values """
26 | X = XY_Values[:, 0:1]
27 | Y = XY_Values[:, -1]
28 | print("The X and Y Values Separately:")
29 | print("The X Values")
30 | print(X)
31 | print()
32 | print("The Y Values")
33 | print(Y)
34 | print()
35 |
36 | """ Randomize 100 Indices and Split into Train and Test """
37 | nr.seed(9988)
38 | total_pt_cnt = X.shape[0]
39 | num_test_pts = int(total_pt_cnt / 4)
40 | indx = range(total_pt_cnt)
41 | indx = ms.train_test_split(indx, test_size = num_test_pts)
42 | print("Inspecting the Indices Used for Train and Test Sets")
43 | print(f'Train Set Size: {len(indx[0])}, Test Set Size: {len(indx[1])}')
44 | print()
45 | print("Train Set Indices")
46 | print(indx[0])
47 | print()
48 | print("Test Set Indices")
49 | print(indx[1])
50 | print()
51 |
52 | """ Format the 1D Data Arrays Back to 2D Arrays """
53 | x_train = X[indx[0]].reshape(-1, 1)
54 | y_train = Y[indx[0]].reshape(-1, 1)
55 | x_test = X[indx[1]].reshape(-1, 1)
56 | y_test = Y[indx[1]].reshape(-1, 1)
57 |
58 | """ Visualize What We Have for Train and Test """
59 | plt.scatter(x_train, y_train, color='b')
60 | plt.scatter(x_test, y_test, color='r')
61 | plt.title('Train Data (Blue) and Test Data (Red)')
62 | plt.xlabel('X Values')
63 | plt.ylabel('Y Values')
64 | plt.show()
65 |
66 | """ Load the Linear Regression Model
67 | and Fit using Training Data """
68 | mod = LinearRegression(fit_intercept = True)
69 | mod.fit(x_train, y_train)
70 | print("The Model Coefficients:")
71 | print(f'The Y Intercept: {mod.intercept_}')
72 | print(f'The Slope / Model Weight: {mod.coef_}')
73 | print()
74 |
75 | y_pred = mod.predict(x_test)
76 | print("Model Performance Metrics:")
77 | gt.print_metrics(y_test, y_pred, 1)
78 |
79 | plt.scatter(x_test, y_test, color='b')
80 | plt.plot(x_test, y_pred, color='r')
81 | plt.title('Predictions vs. Test Data')
82 | plt.xlabel('X Values')
83 | plt.ylabel('Y Values')
84 | plt.show()
85 |
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/2_Simple_Regression_Engineered_Feature.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import numpy.random as nr
4 | import sklearn.model_selection as ms
5 | import matplotlib.pyplot as plt
6 | import General_Tools as gt
7 |
8 | from sklearn.linear_model import LinearRegression
9 |
10 | """ Load the Fake Data Into a Pandas DataFrame """
11 | df_XY = pd.read_csv(
12 | "./1_Fake_Data_Creation/non_linear_data.csv", header=None)
13 | df_XY.columns = ['X', 'Y']
14 | print("The Data Frame with X and Y:")
15 | print(df_XY)
16 | print()
17 |
18 | """ Convert the DataFrame to a Values Array """
19 | XY_Values = df_XY.values
20 | print("Just The X and Y Values:")
21 | print(XY_Values)
22 | print()
23 |
24 | """ Split the X and Y from the XY_Values """
25 | X0 = XY_Values[:, 0]
26 | XSq = X0 ** 2
27 | X = np.vstack((X0, XSq))
28 | X = np.transpose(X)
29 | Y = XY_Values[:, -1]
30 | print("The X and Y Values Separately")
31 | print("The X Values")
32 | print(X)
33 | print()
34 | print("The Y Values")
35 | print(Y)
36 | print()
37 |
38 | """ Randomize 100 Indices and Split into Train and Test """
39 | nr.seed(9988)
40 | total_pt_cnt = X.shape[0]
41 | num_test_pts = int(total_pt_cnt / 4)
42 | indx = range(X.shape[0])
43 | indx = ms.train_test_split(indx, test_size = num_test_pts)
44 | print("Inspecting the Indices Used for Train and Test Sets")
45 | print(f'Train Set Size: {len(indx[0])}, Test Set Size: {len(indx[1])}')
46 | print()
47 | print("Train Set Indices")
48 | indx[0] # .sort()
49 | print(indx[0])
50 | print()
51 | print("Test Set Indices")
52 | indx[1].sort()
53 | print(indx[1])
54 | print()
55 |
56 | """ Format the 1D Data Arrays Back to 2D Arrays """
57 | x_train = X[indx[0], :] # .reshape(-1, 1)
58 | y_train = Y[indx[0]].reshape(-1, 1)
59 | x_test = X[indx[1], :] # .reshape(-1, 1)
60 | y_test = Y[indx[1]].reshape(-1, 1)
61 |
62 | """ Visualize What We Have for Train and Test """
63 | plt.scatter(x_train[:, 0], y_train, color='b')
64 | plt.scatter(x_test[:, 0], y_test, color='r')
65 | plt.title('Train Data (Blue) and Test Data (Red)')
66 | plt.xlabel('X Values')
67 | plt.ylabel('Y Values')
68 | plt.show()
69 |
70 | """ Load the Linear Regression Model
71 | and Fit with Training Data """
72 | mod = LinearRegression(fit_intercept = True)
73 | mod.fit(x_train, y_train)
74 | print("The Model Coefficients:")
75 | print(f'The Y Intercept: {mod.intercept_}')
76 | print(f'The Slope / Model Weight: {mod.coef_}')
77 | print()
78 |
79 | y_pred = mod.predict(x_test)
80 | print("The Model Performance Metrics:")
81 | gt.print_metrics(y_test, y_pred, 1)
82 |
83 | plt.scatter(x_test[:, 0], y_test, color='b')
84 | plt.plot(x_test[:, 0], y_pred, color='r')
85 | plt.title('Predictions vs. Test Data')
86 | plt.xlabel('X Values')
87 | plt.ylabel('Y Values')
88 | plt.show()
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/3_Simple_Regression_Dbl_Feature.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import numpy.random as nr
4 | import sklearn.model_selection as ms
5 | import matplotlib.pyplot as plt
6 | from mpl_toolkits.mplot3d import Axes3D
7 | import General_Tools as gt
8 |
9 | from sklearn.linear_model import LinearRegression
10 |
11 | """ Load the Fake Data Into a Pandas DataFrame """
12 | df_XY = pd.read_csv(
13 | "./1_Fake_Data_Creation/dbl_feature_linear_data.csv", header=None)
14 | df_XY.columns = ['X1', 'X1-3', 'X2', 'X2-2', 'Y']
15 | print("The Data Frame with X and Y:")
16 | print(df_XY)
17 | print()
18 |
19 | """ Convert the DataFrame to a Values Array """
20 | XY_Values = df_XY.values
21 | print("Just The X and Y Values:")
22 | print(XY_Values)
23 | print()
24 |
25 | """ Split the X and Y from the XY_Values """
26 | X = XY_Values[:, [0, 2, 3]]
27 | Y = XY_Values[:, -1]
28 | print("The X and Y Values Separately")
29 | print("The X Values")
30 | print(X)
31 | print()
32 | print("The Y Values")
33 | print(Y)
34 | print()
35 |
36 | """ Randomize 100 Indices and Split into Train and Test """
37 | nr.seed(9988)
38 | total_pt_cnt = X.shape[0]
39 | num_test_pts = int(total_pt_cnt / 4)
40 | indx = range(X.shape[0])
41 | indx = ms.train_test_split(indx, test_size = num_test_pts)
42 | print("Inspecting the Indices Used for Train and Test Sets")
43 | print(f'Train Set Size: {len(indx[0])}, Test Set Size: {len(indx[1])}')
44 | print()
45 | print("Train Set Indices")
46 | indx[0].sort()
47 | print(indx[0])
48 | print()
49 | print("Test Set Indices")
50 | indx[1].sort()
51 | print(indx[1])
52 | print()
53 |
54 | """ Format the 1D Data Arrays Back to 2D Arrays """
55 | x_train = X[indx[0], :] # .reshape(-1, 1)
56 | y_train = Y[indx[0]] # .reshape(-1, 1)
57 | x_test = X[indx[1], :] # .reshape(-1, 1)
58 | y_test = Y[indx[1]] # .reshape(-1, 1)
59 |
60 | """ Visualize What We Have for Train and Test """
61 | fig = plt.figure()
62 | ax = plt.axes(projection='3d')
63 |
64 | ax.scatter3D(x_train[:, 0], x_train[:, 1], y_train, color='b')
65 | ax.scatter3D(x_test[:, 0], x_test[:, 1], y_test, color='r')
66 | ax.set_xlabel('X1 Values')
67 | ax.set_ylabel('X2 Values')
68 | ax.set_zlabel('Y Values')
69 | ax.set_title('3D Plot Of Linear Fake Data')
70 |
71 | plt.show()
72 |
73 | """ Load the Linear Regression Model
74 | and Fit with Training Data """
75 | mod = LinearRegression(
76 | fit_intercept=False,
77 | normalize=False,
78 | positive=False)
79 | mod.fit(x_train, y_train)
80 | print("The Model Coefficients:")
81 | print(f'The Y Intercept: {mod.intercept_}')
82 | print(f'The Slope / Model Weight: {mod.coef_}')
83 | print()
84 |
85 | y_pred = mod.predict(x_test)
86 | print("The Model Performance Metrics:")
87 | gt.print_metrics(y_test, y_pred, 1)
88 |
89 | fig = plt.figure()
90 | ax = plt.axes(projection='3d')
91 |
92 | ax.scatter3D(x_test[:, 0], x_test[:, 1], y_test, 'blue')
93 | ax.plot3D(x_test[:, 0], x_test[:, 1], y_pred, 'red')
94 | ax.set_xlabel('X1 Values')
95 | ax.set_ylabel('X2 Values')
96 | ax.set_zlabel('Y Values')
97 | ax.set_title('3D Plot Of Linear Fake Data')
98 | plt.show()
99 |
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/4_Simple_Regression_Dbl_Engineered_Feature.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import numpy.random as nr
4 | import sklearn.model_selection as ms
5 | import matplotlib.pyplot as plt
6 | from mpl_toolkits.mplot3d import Axes3D
7 | import General_Tools as gt
8 | import sys
9 |
10 | from sklearn.linear_model import LinearRegression
11 |
12 | """ Load the Fake Data Into a Pandas DataFrame """
13 | df_XY = pd.read_csv(
14 | "./1_Fake_Data_Creation/dbl_feature_non_linear_data.csv", header=None)
15 | df_XY.columns = ['X1', 'X2', 'Y']
16 | print("The Data Frame with X and Y:")
17 | print(df_XY)
18 | print()
19 |
20 | """ Convert the DataFrame to a Values Array """
21 | XY_Values = df_XY.values
22 | print("Just The X and Y Values:")
23 | print(XY_Values)
24 | print()
25 |
26 | """ Split the X and Y from the XY_Values """
27 | X = XY_Values[:, 0:2]
28 | X = np.vstack((X[:,0], X[:,0]**2, X[:,1], X[:,1]**3))
29 | X = np.transpose(X)
30 | Y = XY_Values[:, -1].reshape(-1, 1)
31 | print("The X and Y Values Separately")
32 | print("The Dimensions of the X Values")
33 | print(X.shape)
34 | print()
35 | print("The Dimensions of the Y Values")
36 | print(Y.shape)
37 | print()
38 |
39 | """ Randomize 100 Indices and Split into Train and Test """
40 | nr.seed(9988)
41 | total_pt_cnt = X.shape[0]
42 | num_test_pts = int(total_pt_cnt / 4)
43 | indx = range(X.shape[0])
44 | indx = ms.train_test_split(indx, test_size = num_test_pts)
45 | print("Inspecting the Indices Used for Train and Test Sets")
46 | print(f'Train Set Size: {len(indx[0])}, Test Set Size: {len(indx[1])}')
47 | print()
48 | print("Train Set Indices")
49 | indx[0].sort()
50 | print(indx[0])
51 | print()
52 | print("Test Set Indices")
53 | indx[1].sort()
54 | print(indx[1])
55 | print()
56 |
57 | """ Format the 1D Data Arrays Back to 2D Arrays """
58 | x_train = X[indx[0], :] # .reshape(-1, 1)
59 | y_train = Y[indx[0]] # .reshape(-1, 1)
60 | x_test = X[indx[1], :] # .reshape(-1, 1)
61 | y_test = Y[indx[1]] # .reshape(-1, 1)
62 |
63 | """ Visualize What We Have for Train and Test """
64 | fig = plt.figure()
65 | ax = plt.axes(projection='3d')
66 |
67 | ax.scatter3D(x_train[:, 0], x_train[:, 1], y_train, color='b')
68 | ax.scatter3D(x_test[:, 0], x_test[:, 1], y_test, color='r')
69 | ax.set_xlabel('X1 Values')
70 | ax.set_ylabel('X2 Values')
71 | ax.set_zlabel('Y Values')
72 | ax.set_title('3D Plot Of Linear Fake Data')
73 | plt.show()
74 |
75 | """ Load the Linear Regression Model
76 | and Fit with Training Data """
77 | mod = LinearRegression(
78 | fit_intercept=False,normalize=False)
79 | mod.fit(x_train, y_train)
80 | print("The Model Coefficients:")
81 | print(f'The Y Intercept: {mod.intercept_}')
82 | print(f'The Slope / Model Weight: {mod.coef_}')
83 | print()
84 |
85 | y_pred = mod.predict(x_test).reshape(-1)
86 | print("The Model Performance Metrics:")
87 | gt.print_metrics(y_test, y_pred, 1)
88 |
89 | fig = plt.figure()
90 | ax = plt.axes(projection='3d')
91 |
92 | ax.scatter3D(x_test[:, 0], x_test[:, 1], y_test, 'blue')
93 | ax.plot3D(x_test[:, 0], x_test[:, 1], y_pred, 'red')
94 | ax.set_xlabel('X1 Values')
95 | ax.set_ylabel('X2 Values')
96 | ax.set_zlabel('Y Values')
97 | ax.set_title('3D Plot Of Linear Fake Data')
98 | plt.show()
99 |
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/DB_Tools.py:
--------------------------------------------------------------------------------
1 | import pyodbc
2 | import platform
3 |
4 |
5 | class DB:
6 | """ A small class to connect to and provide the cursor to a database """
7 | def __init__(self, database='my_database_name'):
8 | self.database = database
9 | computer_name = platform.node()
10 | if computer_name == 'computer_name_1':
11 | self.conn = pyodbc.connect(
12 | driver='{SQL Server Native Client 11.0}', server='server_1',
13 | database=self.database,
14 | user='db_admin_username', password='db_admin_password')
15 | elif computer_name == 'computer_name_2':
16 | self.conn = pyodbc.connect(
17 | driver='{SQL Server Native Client 11.0}', server='server_2',
18 | database=self.database,
19 | trusted_connection='yes')
20 |
21 | self.cursor = self.conn.cursor()
22 |
23 |
24 | db = DB()
25 | # now you can use db.cursor and pass it around inside your app
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/General_Tools.py:
--------------------------------------------------------------------------------
1 | import sklearn.metrics as sklm
2 | import math
3 |
4 | def print_metrics(y_test, y_pred, n_params):
5 | ## First compute R^2 and the adjusted R^2
6 | ## Print the usual metrics and the R^2 values
7 | MSE = sklm.mean_squared_error(y_test, y_pred)
8 | RMSE = math.sqrt(sklm.mean_squared_error(y_test, y_pred))
9 | MAE = sklm.mean_absolute_error(y_test, y_pred)
10 | MedAE = sklm.median_absolute_error(y_test, y_pred)
11 | r2 = sklm.r2_score(y_test, y_pred)
12 | r2_adj = (r2 - (n_params - 1) /
13 | (y_test.shape[0] - n_params) * (1 - r2))
14 |
15 | print('Mean Square Error = ' + str(MSE))
16 | print('Root Mean Square Error = ' + str(RMSE))
17 | print('Mean Absolute Error = ' + str(MAE))
18 | print('Median Absolute Error = ' + str(MedAE))
19 | print('R^2 = ' + str(r2))
20 | print('Adjusted R^2 = ' + str(r2_adj))
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/List_Comp_Fun.py:
--------------------------------------------------------------------------------
1 | # Accomplish something in 4 lines of Python Code
2 | my_list_1 = []
3 |
4 | for i in range(10):
5 | if i % 2 == 0:
6 | my_list_1.append(i)
7 |
8 | # Do same with 1 line using list comprehension
9 | my_list_2 = [i for i in range(10) if i % 2 == 0]
10 |
11 | # Store boolean state of the lists being equal
12 | status = my_list_1 == my_list_2
13 |
14 | # Assert equal lists with stored boolean
15 | assert status, 'lists do not equal'
16 |
17 | # Report boolean state of lists being equal
18 | print(f'T/F: The lists are equal: {status}')
19 |
--------------------------------------------------------------------------------
/2_Intro_To_Regression_Modeling/numpy_tester.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
4 | print()
5 | print(type(X))
6 | print(X.shape)
7 | print()
8 | X0 = X[:, 1].reshape(-1, 1)
9 | print(X0.shape)
10 | print(X0)
11 |
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_1.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_10.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_11.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_12.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_13.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_14.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_2.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_3.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_4.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_5.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_6.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_7.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_8.png
--------------------------------------------------------------------------------
/3_Missing_Data/Imputation_Concepts/Missing_Data_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/IntegratedMLAI/Machine_Learning_Pipeline/3effcf0839c26f0c1494b9ddbfbb9d27ecf3fd00/3_Missing_Data/Imputation_Concepts/Missing_Data_9.png
--------------------------------------------------------------------------------
/99_Project_Data/data_description.txt:
--------------------------------------------------------------------------------
1 | MSSubClass: Identifies the type of dwelling involved in the sale.
2 |
3 | 20 1-STORY 1946 & NEWER ALL STYLES
4 | 30 1-STORY 1945 & OLDER
5 | 40 1-STORY W/FINISHED ATTIC ALL AGES
6 | 45 1-1/2 STORY - UNFINISHED ALL AGES
7 | 50 1-1/2 STORY FINISHED ALL AGES
8 | 60 2-STORY 1946 & NEWER
9 | 70 2-STORY 1945 & OLDER
10 | 75 2-1/2 STORY ALL AGES
11 | 80 SPLIT OR MULTI-LEVEL
12 | 85 SPLIT FOYER
13 | 90 DUPLEX - ALL STYLES AND AGES
14 | 120 1-STORY PUD (Planned Unit Development) - 1946 & NEWER
15 | 150 1-1/2 STORY PUD - ALL AGES
16 | 160 2-STORY PUD - 1946 & NEWER
17 | 180 PUD - MULTILEVEL - INCL SPLIT LEV/FOYER
18 | 190 2 FAMILY CONVERSION - ALL STYLES AND AGES
19 |
20 | MSZoning: Identifies the general zoning classification of the sale.
21 |
22 | A Agriculture
23 | C Commercial
24 | FV Floating Village Residential
25 | I Industrial
26 | RH Residential High Density
27 | RL Residential Low Density
28 | RP Residential Low Density Park
29 | RM Residential Medium Density
30 |
31 | LotFrontage: Linear feet of street connected to property
32 |
33 | LotArea: Lot size in square feet
34 |
35 | Street: Type of road access to property
36 |
37 | Grvl Gravel
38 | Pave Paved
39 |
40 | Alley: Type of alley access to property
41 |
42 | Grvl Gravel
43 | Pave Paved
44 | NA No alley access
45 |
46 | LotShape: General shape of property
47 |
48 | Reg Regular
49 | IR1 Slightly irregular
50 | IR2 Moderately Irregular
51 | IR3 Irregular
52 |
53 | LandContour: Flatness of the property
54 |
55 | Lvl Near Flat/Level
56 | Bnk Banked - Quick and significant rise from street grade to building
57 | HLS Hillside - Significant slope from side to side
58 | Low Depression
59 |
60 | Utilities: Type of utilities available
61 |
62 | AllPub All public Utilities (E,G,W,& S)
63 | NoSewr Electricity, Gas, and Water (Septic Tank)
64 | NoSeWa Electricity and Gas Only
65 | ELO Electricity only
66 |
67 | LotConfig: Lot configuration
68 |
69 | Inside Inside lot
70 | Corner Corner lot
71 | CulDSac Cul-de-sac
72 | FR2 Frontage on 2 sides of property
73 | FR3 Frontage on 3 sides of property
74 |
75 | LandSlope: Slope of property
76 |
77 | Gtl Gentle slope
78 | Mod Moderate Slope
79 | Sev Severe Slope
80 |
81 | Neighborhood: Physical locations within Ames city limits
82 |
83 | Blmngtn Bloomington Heights
84 | Blueste Bluestem
85 | BrDale Briardale
86 | BrkSide Brookside
87 | ClearCr Clear Creek
88 | CollgCr College Creek
89 | Crawfor Crawford
90 | Edwards Edwards
91 | Gilbert Gilbert
92 | IDOTRR Iowa DOT and Rail Road
93 | MeadowV Meadow Village
94 | Mitchel Mitchell
95 | Names North Ames
96 | NoRidge Northridge
97 | NPkVill Northpark Villa
98 | NridgHt Northridge Heights
99 | NWAmes Northwest Ames
100 | OldTown Old Town
101 | SWISU South & West of Iowa State University
102 | Sawyer Sawyer
103 | SawyerW Sawyer West
104 | Somerst Somerset
105 | StoneBr Stone Brook
106 | Timber Timberland
107 | Veenker Veenker
108 |
109 | Condition1: Proximity to various conditions
110 |
111 | Artery Adjacent to arterial street
112 | Feedr Adjacent to feeder street
113 | Norm Normal
114 | RRNn Within 200' of North-South Railroad
115 | RRAn Adjacent to North-South Railroad
116 | PosN Near positive off-site feature--park, greenbelt, etc.
117 | PosA Adjacent to postive off-site feature
118 | RRNe Within 200' of East-West Railroad
119 | RRAe Adjacent to East-West Railroad
120 |
121 | Condition2: Proximity to various conditions (if more than one is present)
122 |
123 | Artery Adjacent to arterial street
124 | Feedr Adjacent to feeder street
125 | Norm Normal
126 | RRNn Within 200' of North-South Railroad
127 | RRAn Adjacent to North-South Railroad
128 | PosN Near positive off-site feature--park, greenbelt, etc.
129 | PosA Adjacent to postive off-site feature
130 | RRNe Within 200' of East-West Railroad
131 | RRAe Adjacent to East-West Railroad
132 |
133 | BldgType: Type of dwelling
134 |
135 | 1Fam Single-family Detached
136 | 2FmCon Two-family Conversion; originally built as one-family dwelling
137 | Duplx Duplex
138 | TwnhsE Townhouse End Unit
139 | TwnhsI Townhouse Inside Unit
140 |
141 | HouseStyle: Style of dwelling
142 |
143 | 1Story One story
144 | 1.5Fin One and one-half story: 2nd level finished
145 | 1.5Unf One and one-half story: 2nd level unfinished
146 | 2Story Two story
147 | 2.5Fin Two and one-half story: 2nd level finished
148 | 2.5Unf Two and one-half story: 2nd level unfinished
149 | SFoyer Split Foyer
150 | SLvl Split Level
151 |
152 | OverallQual: Rates the overall material and finish of the house
153 |
154 | 10 Very Excellent
155 | 9 Excellent
156 | 8 Very Good
157 | 7 Good
158 | 6 Above Average
159 | 5 Average
160 | 4 Below Average
161 | 3 Fair
162 | 2 Poor
163 | 1 Very Poor
164 |
165 | OverallCond: Rates the overall condition of the house
166 |
167 | 10 Very Excellent
168 | 9 Excellent
169 | 8 Very Good
170 | 7 Good
171 | 6 Above Average
172 | 5 Average
173 | 4 Below Average
174 | 3 Fair
175 | 2 Poor
176 | 1 Very Poor
177 |
178 | YearBuilt: Original construction date
179 |
180 | YearRemodAdd: Remodel date (same as construction date if no remodeling or additions)
181 |
182 | RoofStyle: Type of roof
183 |
184 | Flat Flat
185 | Gable Gable
186 | Gambrel Gabrel (Barn)
187 | Hip Hip
188 | Mansard Mansard
189 | Shed Shed
190 |
191 | RoofMatl: Roof material
192 |
193 | ClyTile Clay or Tile
194 | CompShg Standard (Composite) Shingle
195 | Membran Membrane
196 | Metal Metal
197 | Roll Roll
198 | Tar&Grv Gravel & Tar
199 | WdShake Wood Shakes
200 | WdShngl Wood Shingles
201 |
202 | Exterior1st: Exterior covering on house
203 |
204 | AsbShng Asbestos Shingles
205 | AsphShn Asphalt Shingles
206 | BrkComm Brick Common
207 | BrkFace Brick Face
208 | CBlock Cinder Block
209 | CemntBd Cement Board
210 | HdBoard Hard Board
211 | ImStucc Imitation Stucco
212 | MetalSd Metal Siding
213 | Other Other
214 | Plywood Plywood
215 | PreCast PreCast
216 | Stone Stone
217 | Stucco Stucco
218 | VinylSd Vinyl Siding
219 | Wd Sdng Wood Siding
220 | WdShing Wood Shingles
221 |
222 | Exterior2nd: Exterior covering on house (if more than one material)
223 |
224 | AsbShng Asbestos Shingles
225 | AsphShn Asphalt Shingles
226 | BrkComm Brick Common
227 | BrkFace Brick Face
228 | CBlock Cinder Block
229 | CemntBd Cement Board
230 | HdBoard Hard Board
231 | ImStucc Imitation Stucco
232 | MetalSd Metal Siding
233 | Other Other
234 | Plywood Plywood
235 | PreCast PreCast
236 | Stone Stone
237 | Stucco Stucco
238 | VinylSd Vinyl Siding
239 | Wd Sdng Wood Siding
240 | WdShing Wood Shingles
241 |
242 | MasVnrType: Masonry veneer type
243 |
244 | BrkCmn Brick Common
245 | BrkFace Brick Face
246 | CBlock Cinder Block
247 | None None
248 | Stone Stone
249 |
250 | MasVnrArea: Masonry veneer area in square feet
251 |
252 | ExterQual: Evaluates the quality of the material on the exterior
253 |
254 | Ex Excellent
255 | Gd Good
256 | TA Average/Typical
257 | Fa Fair
258 | Po Poor
259 |
260 | ExterCond: Evaluates the present condition of the material on the exterior
261 |
262 | Ex Excellent
263 | Gd Good
264 | TA Average/Typical
265 | Fa Fair
266 | Po Poor
267 |
268 | Foundation: Type of foundation
269 |
270 | BrkTil Brick & Tile
271 | CBlock Cinder Block
272 | PConc Poured Contrete
273 | Slab Slab
274 | Stone Stone
275 | Wood Wood
276 |
277 | BsmtQual: Evaluates the height of the basement
278 |
279 | Ex Excellent (100+ inches)
280 | Gd Good (90-99 inches)
281 | TA Typical (80-89 inches)
282 | Fa Fair (70-79 inches)
283 | Po Poor (<70 inches
284 | NA No Basement
285 |
286 | BsmtCond: Evaluates the general condition of the basement
287 |
288 | Ex Excellent
289 | Gd Good
290 | TA Typical - slight dampness allowed
291 | Fa Fair - dampness or some cracking or settling
292 | Po Poor - Severe cracking, settling, or wetness
293 | NA No Basement
294 |
295 | BsmtExposure: Refers to walkout or garden level walls
296 |
297 | Gd Good Exposure
298 | Av Average Exposure (split levels or foyers typically score average or above)
299 | Mn Mimimum Exposure
300 | No No Exposure
301 | NA No Basement
302 |
303 | BsmtFinType1: Rating of basement finished area
304 |
305 | GLQ Good Living Quarters
306 | ALQ Average Living Quarters
307 | BLQ Below Average Living Quarters
308 | Rec Average Rec Room
309 | LwQ Low Quality
310 | Unf Unfinshed
311 | NA No Basement
312 |
313 | BsmtFinSF1: Type 1 finished square feet
314 |
315 | BsmtFinType2: Rating of basement finished area (if multiple types)
316 |
317 | GLQ Good Living Quarters
318 | ALQ Average Living Quarters
319 | BLQ Below Average Living Quarters
320 | Rec Average Rec Room
321 | LwQ Low Quality
322 | Unf Unfinshed
323 | NA No Basement
324 |
325 | BsmtFinSF2: Type 2 finished square feet
326 |
327 | BsmtUnfSF: Unfinished square feet of basement area
328 |
329 | TotalBsmtSF: Total square feet of basement area
330 |
331 | Heating: Type of heating
332 |
333 | Floor Floor Furnace
334 | GasA Gas forced warm air furnace
335 | GasW Gas hot water or steam heat
336 | Grav Gravity furnace
337 | OthW Hot water or steam heat other than gas
338 | Wall Wall furnace
339 |
340 | HeatingQC: Heating quality and condition
341 |
342 | Ex Excellent
343 | Gd Good
344 | TA Average/Typical
345 | Fa Fair
346 | Po Poor
347 |
348 | CentralAir: Central air conditioning
349 |
350 | N No
351 | Y Yes
352 |
353 | Electrical: Electrical system
354 |
355 | SBrkr Standard Circuit Breakers & Romex
356 | FuseA Fuse Box over 60 AMP and all Romex wiring (Average)
357 | FuseF 60 AMP Fuse Box and mostly Romex wiring (Fair)
358 | FuseP 60 AMP Fuse Box and mostly knob & tube wiring (poor)
359 | Mix Mixed
360 |
361 | 1stFlrSF: First Floor square feet
362 |
363 | 2ndFlrSF: Second floor square feet
364 |
365 | LowQualFinSF: Low quality finished square feet (all floors)
366 |
367 | GrLivArea: Above grade (ground) living area square feet
368 |
369 | BsmtFullBath: Basement full bathrooms
370 |
371 | BsmtHalfBath: Basement half bathrooms
372 |
373 | FullBath: Full bathrooms above grade
374 |
375 | HalfBath: Half baths above grade
376 |
377 | Bedroom: Bedrooms above grade (does NOT include basement bedrooms)
378 |
379 | Kitchen: Kitchens above grade
380 |
381 | KitchenQual: Kitchen quality
382 |
383 | Ex Excellent
384 | Gd Good
385 | TA Typical/Average
386 | Fa Fair
387 | Po Poor
388 |
389 | TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)
390 |
391 | Functional: Home functionality (Assume typical unless deductions are warranted)
392 |
393 | Typ Typical Functionality
394 | Min1 Minor Deductions 1
395 | Min2 Minor Deductions 2
396 | Mod Moderate Deductions
397 | Maj1 Major Deductions 1
398 | Maj2 Major Deductions 2
399 | Sev Severely Damaged
400 | Sal Salvage only
401 |
402 | Fireplaces: Number of fireplaces
403 |
404 | FireplaceQu: Fireplace quality
405 |
406 | Ex Excellent - Exceptional Masonry Fireplace
407 | Gd Good - Masonry Fireplace in main level
408 | TA Average - Prefabricated Fireplace in main living area or Masonry Fireplace in basement
409 | Fa Fair - Prefabricated Fireplace in basement
410 | Po Poor - Ben Franklin Stove
411 | NA No Fireplace
412 |
413 | GarageType: Garage location
414 |
415 | 2Types More than one type of garage
416 | Attchd Attached to home
417 | Basment Basement Garage
418 | BuiltIn Built-In (Garage part of house - typically has room above garage)
419 | CarPort Car Port
420 | Detchd Detached from home
421 | NA No Garage
422 |
423 | GarageYrBlt: Year garage was built
424 |
425 | GarageFinish: Interior finish of the garage
426 |
427 | Fin Finished
428 | RFn Rough Finished
429 | Unf Unfinished
430 | NA No Garage
431 |
432 | GarageCars: Size of garage in car capacity
433 |
434 | GarageArea: Size of garage in square feet
435 |
436 | GarageQual: Garage quality
437 |
438 | Ex Excellent
439 | Gd Good
440 | TA Typical/Average
441 | Fa Fair
442 | Po Poor
443 | NA No Garage
444 |
445 | GarageCond: Garage condition
446 |
447 | Ex Excellent
448 | Gd Good
449 | TA Typical/Average
450 | Fa Fair
451 | Po Poor
452 | NA No Garage
453 |
454 | PavedDrive: Paved driveway
455 |
456 | Y Paved
457 | P Partial Pavement
458 | N Dirt/Gravel
459 |
460 | WoodDeckSF: Wood deck area in square feet
461 |
462 | OpenPorchSF: Open porch area in square feet
463 |
464 | EnclosedPorch: Enclosed porch area in square feet
465 |
466 | 3SsnPorch: Three season porch area in square feet
467 |
468 | ScreenPorch: Screen porch area in square feet
469 |
470 | PoolArea: Pool area in square feet
471 |
472 | PoolQC: Pool quality
473 |
474 | Ex Excellent
475 | Gd Good
476 | TA Average/Typical
477 | Fa Fair
478 | NA No Pool
479 |
480 | Fence: Fence quality
481 |
482 | GdPrv Good Privacy
483 | MnPrv Minimum Privacy
484 | GdWo Good Wood
485 | MnWw Minimum Wood/Wire
486 | NA No Fence
487 |
488 | MiscFeature: Miscellaneous feature not covered in other categories
489 |
490 | Elev Elevator
491 | Gar2 2nd Garage (if not described in garage section)
492 | Othr Other
493 | Shed Shed (over 100 SF)
494 | TenC Tennis Court
495 | NA None
496 |
497 | MiscVal: $Value of miscellaneous feature
498 |
499 | MoSold: Month Sold (MM)
500 |
501 | YrSold: Year Sold (YYYY)
502 |
503 | SaleType: Type of sale
504 |
505 | WD Warranty Deed - Conventional
506 | CWD Warranty Deed - Cash
507 | VWD Warranty Deed - VA Loan
508 | New Home just constructed and sold
509 | COD Court Officer Deed/Estate
510 | Con Contract 15% Down payment regular terms
511 | ConLw Contract Low Down payment and low interest
512 | ConLI Contract Low Interest
513 | ConLD Contract Low Down
514 | Oth Other
515 |
516 | SaleCondition: Condition of sale
517 |
518 | Normal Normal Sale
519 | Abnorml Abnormal Sale - trade, foreclosure, short sale
520 | AdjLand Adjoining Land Purchase
521 | Alloca Allocation - two linked properties with separate deeds, typically condo with a garage unit
522 | Family Sale between family members
523 | Partial Home was not completed when last assessed (associated with New Homes)
524 |
--------------------------------------------------------------------------------
/99_Project_Data/sample_submission.csv:
--------------------------------------------------------------------------------
1 | Id,SalePrice
2 | 1461,169277.0524984
3 | 1462,187758.393988768
4 | 1463,183583.683569555
5 | 1464,179317.47751083
6 | 1465,150730.079976501
7 | 1466,177150.989247307
8 | 1467,172070.659229164
9 | 1468,175110.956519547
10 | 1469,162011.698831665
11 | 1470,160726.247831419
12 | 1471,157933.279456005
13 | 1472,145291.245020389
14 | 1473,159672.017631819
15 | 1474,164167.518301885
16 | 1475,150891.638244053
17 | 1476,179460.96518734
18 | 1477,185034.62891405
19 | 1478,182352.192644656
20 | 1479,183053.458213802
21 | 1480,187823.339254278
22 | 1481,186544.114327568
23 | 1482,158230.77520516
24 | 1483,190552.829321091
25 | 1484,147183.67487199
26 | 1485,185855.300905493
27 | 1486,174350.470676986
28 | 1487,201740.620690863
29 | 1488,162986.378895754
30 | 1489,162330.199085679
31 | 1490,165845.938616539
32 | 1491,180929.622876974
33 | 1492,163481.501519718
34 | 1493,187798.076714233
35 | 1494,198822.198942566
36 | 1495,194868.409899858
37 | 1496,152605.298564403
38 | 1497,147797.702836811
39 | 1498,150521.96899297
40 | 1499,146991.630153739
41 | 1500,150306.307814534
42 | 1501,151164.372534604
43 | 1502,151133.706960953
44 | 1503,156214.042540726
45 | 1504,171992.760735142
46 | 1505,173214.912549738
47 | 1506,192429.187345783
48 | 1507,190878.69508543
49 | 1508,194542.544135519
50 | 1509,191849.439072822
51 | 1510,176363.773907793
52 | 1511,176954.185412429
53 | 1512,176521.216975696
54 | 1513,179436.704810176
55 | 1514,220079.756777048
56 | 1515,175502.918109444
57 | 1516,188321.073833569
58 | 1517,163276.324450004
59 | 1518,185911.366293097
60 | 1519,171392.830997252
61 | 1520,174418.207020775
62 | 1521,179682.709603774
63 | 1522,179423.751581665
64 | 1523,171756.918091777
65 | 1524,166849.638174419
66 | 1525,181122.168676666
67 | 1526,170934.462746566
68 | 1527,159738.292580329
69 | 1528,174445.759557658
70 | 1529,174706.363659627
71 | 1530,164507.672539365
72 | 1531,163602.512172832
73 | 1532,154126.270249525
74 | 1533,171104.853481351
75 | 1534,167735.39270528
76 | 1535,183003.613338104
77 | 1536,172580.381161499
78 | 1537,165407.889104689
79 | 1538,176363.773907793
80 | 1539,175182.950898522
81 | 1540,190757.177789246
82 | 1541,167186.995771991
83 | 1542,167839.376779276
84 | 1543,173912.421165137
85 | 1544,154034.917445551
86 | 1545,156002.955794336
87 | 1546,168173.94329857
88 | 1547,168882.437104132
89 | 1548,168173.94329857
90 | 1549,157580.177551642
91 | 1550,181922.15256011
92 | 1551,155134.227842592
93 | 1552,188885.573319552
94 | 1553,183963.193012381
95 | 1554,161298.762306335
96 | 1555,188613.66763056
97 | 1556,175080.111822945
98 | 1557,174744.400305232
99 | 1558,168175.911336919
100 | 1559,182333.472575006
101 | 1560,158307.206742274
102 | 1561,193053.055502348
103 | 1562,175031.089987177
104 | 1563,160713.294602908
105 | 1564,173186.215014436
106 | 1565,191736.7598055
107 | 1566,170401.630997116
108 | 1567,164626.577880222
109 | 1568,205469.409444832
110 | 1569,209561.784211885
111 | 1570,182271.503072356
112 | 1571,178081.549427793
113 | 1572,178425.956138831
114 | 1573,162015.318511503
115 | 1574,181722.420373045
116 | 1575,156705.730169433
117 | 1576,182902.420342386
118 | 1577,157574.595395085
119 | 1578,184380.739100813
120 | 1579,169364.469225677
121 | 1580,175846.179822063
122 | 1581,189673.295302136
123 | 1582,174401.317715566
124 | 1583,179021.448718583
125 | 1584,189196.845337149
126 | 1585,139647.095720655
127 | 1586,161468.198288911
128 | 1587,171557.32317862
129 | 1588,179447.36804185
130 | 1589,169611.619017694
131 | 1590,172088.872655744
132 | 1591,171190.624128768
133 | 1592,154850.508361878
134 | 1593,158617.655719941
135 | 1594,209258.33693701
136 | 1595,177939.027626751
137 | 1596,194631.100299584
138 | 1597,213618.871562568
139 | 1598,198342.504228533
140 | 1599,138607.971472497
141 | 1600,150778.958976731
142 | 1601,146966.230339786
143 | 1602,162182.59620952
144 | 1603,176825.940961269
145 | 1604,152799.812402444
146 | 1605,180322.322067129
147 | 1606,177508.027228367
148 | 1607,208029.642652019
149 | 1608,181987.282510201
150 | 1609,160172.72797397
151 | 1610,176761.317654248
152 | 1611,176515.497545231
153 | 1612,176270.453065471
154 | 1613,183050.846258475
155 | 1614,150011.102062216
156 | 1615,159270.537808667
157 | 1616,163419.663729346
158 | 1617,163399.983345859
159 | 1618,173364.161505756
160 | 1619,169556.835902417
161 | 1620,183690.595995738
162 | 1621,176980.914909382
163 | 1622,204773.36222471
164 | 1623,174728.655998442
165 | 1624,181873.458244461
166 | 1625,177322.000823979
167 | 1626,193927.939041863
168 | 1627,181715.622732304
169 | 1628,199270.841200324
170 | 1629,177109.589956218
171 | 1630,153909.578271486
172 | 1631,162931.203336223
173 | 1632,166386.7567182
174 | 1633,173719.30379824
175 | 1634,179757.925656704
176 | 1635,179007.601964376
177 | 1636,180370.808623106
178 | 1637,185102.616730563
179 | 1638,198825.563452058
180 | 1639,184294.576009142
181 | 1640,200443.7920562
182 | 1641,181294.784484153
183 | 1642,174354.336267919
184 | 1643,172023.677781517
185 | 1644,181666.922855025
186 | 1645,179024.491269586
187 | 1646,178324.191575907
188 | 1647,184534.676687694
189 | 1648,159397.250378784
190 | 1649,178430.966728182
191 | 1650,177743.799385967
192 | 1651,179395.305519087
193 | 1652,151713.38474815
194 | 1653,151713.38474815
195 | 1654,168434.977996215
196 | 1655,153999.100311019
197 | 1656,164096.097354123
198 | 1657,166335.403036551
199 | 1658,163020.725375757
200 | 1659,155862.510668829
201 | 1660,182760.651095509
202 | 1661,201912.270622883
203 | 1662,185988.233987516
204 | 1663,183778.44888032
205 | 1664,170935.85921771
206 | 1665,184468.908382254
207 | 1666,191569.089663229
208 | 1667,232991.025583822
209 | 1668,180980.721388278
210 | 1669,164279.13048219
211 | 1670,183859.460411109
212 | 1671,185922.465682076
213 | 1672,191742.778119363
214 | 1673,199954.072465842
215 | 1674,180690.274752587
216 | 1675,163099.3096358
217 | 1676,140791.922472443
218 | 1677,166481.86647592
219 | 1678,172080.434496773
220 | 1679,191719.161659178
221 | 1680,160741.098612515
222 | 1681,157829.546854733
223 | 1682,196896.748596341
224 | 1683,159675.423990355
225 | 1684,182084.790901946
226 | 1685,179233.926374487
227 | 1686,155774.270901623
228 | 1687,181354.326716058
229 | 1688,179605.563663918
230 | 1689,181609.34866147
231 | 1690,178221.531623281
232 | 1691,175559.920735795
233 | 1692,200328.822792041
234 | 1693,178630.060559899
235 | 1694,177174.535221728
236 | 1695,172515.687368714
237 | 1696,204032.992922943
238 | 1697,176023.232787689
239 | 1698,202202.073341595
240 | 1699,181734.480075862
241 | 1700,183982.158993126
242 | 1701,188007.94241481
243 | 1702,185922.966763517
244 | 1703,183978.544874918
245 | 1704,177199.618638821
246 | 1705,181878.647956764
247 | 1706,173622.088728263
248 | 1707,180728.168562655
249 | 1708,176477.026606328
250 | 1709,184282.266697609
251 | 1710,162062.47538448
252 | 1711,182550.070992189
253 | 1712,180987.949624695
254 | 1713,178173.79762147
255 | 1714,179980.635948606
256 | 1715,173257.637826205
257 | 1716,177271.291059307
258 | 1717,175338.355442312
259 | 1718,177548.140549508
260 | 1719,175969.91662932
261 | 1720,175011.481953462
262 | 1721,185199.372568143
263 | 1722,188514.050228937
264 | 1723,185080.145268797
265 | 1724,157304.402574096
266 | 1725,194260.859481297
267 | 1726,181262.329995106
268 | 1727,157003.292706732
269 | 1728,182924.499359899
270 | 1729,181902.586375439
271 | 1730,188985.371708134
272 | 1731,185290.904495068
273 | 1732,177304.425752748
274 | 1733,166274.900490809
275 | 1734,177807.420530107
276 | 1735,180330.624816201
277 | 1736,179069.112234629
278 | 1737,175943.371816948
279 | 1738,185199.050609653
280 | 1739,167350.910824524
281 | 1740,149315.311876449
282 | 1741,139010.847766793
283 | 1742,155412.151845447
284 | 1743,171308.313985441
285 | 1744,176220.543265638
286 | 1745,177643.434991809
287 | 1746,187222.653264601
288 | 1747,185635.132083154
289 | 1748,206492.534215854
290 | 1749,181681.021081956
291 | 1750,180500.198072685
292 | 1751,206486.17086841
293 | 1752,161334.301195429
294 | 1753,176156.558313965
295 | 1754,191642.223478994
296 | 1755,191945.808027777
297 | 1756,164146.306037354
298 | 1757,179883.057071096
299 | 1758,178071.137668844
300 | 1759,188241.637896875
301 | 1760,174559.656173171
302 | 1761,182347.363042264
303 | 1762,191507.251872857
304 | 1763,199751.865597358
305 | 1764,162106.416145131
306 | 1765,164575.982314367
307 | 1766,179176.352180931
308 | 1767,177327.403857584
309 | 1768,177818.083761781
310 | 1769,186965.204048443
311 | 1770,178762.742169197
312 | 1771,183322.866146283
313 | 1772,178903.295931891
314 | 1773,186570.129421778
315 | 1774,199144.242829024
316 | 1775,172154.713310956
317 | 1776,177444.019201603
318 | 1777,166200.938073485
319 | 1778,158995.770555632
320 | 1779,168273.282454755
321 | 1780,189680.453052788
322 | 1781,181681.021081956
323 | 1782,160277.142643643
324 | 1783,197318.54715833
325 | 1784,162228.935604196
326 | 1785,187340.455456083
327 | 1786,181065.347037275
328 | 1787,190233.609102705
329 | 1788,157929.594852031
330 | 1789,168557.001935469
331 | 1790,160805.584645628
332 | 1791,221648.391978216
333 | 1792,180539.88079815
334 | 1793,182105.616283853
335 | 1794,166380.852603154
336 | 1795,178942.155617426
337 | 1796,162804.747800461
338 | 1797,183077.684392615
339 | 1798,171728.4720292
340 | 1799,164786.741540638
341 | 1800,177427.267170302
342 | 1801,197318.54715833
343 | 1802,178658.114178223
344 | 1803,185437.320523764
345 | 1804,169759.652489529
346 | 1805,173986.635055186
347 | 1806,168607.664289468
348 | 1807,194138.519145183
349 | 1808,192502.440921994
350 | 1809,176746.969818601
351 | 1810,177604.891703134
352 | 1811,193283.746584832
353 | 1812,181627.061006609
354 | 1813,169071.62025834
355 | 1814,167398.006470987
356 | 1815,150106.505141704
357 | 1816,159650.304285848
358 | 1817,179471.23597476
359 | 1818,177109.589956218
360 | 1819,166558.113328453
361 | 1820,153796.714319583
362 | 1821,174520.152570658
363 | 1822,196297.95829524
364 | 1823,169100.681601175
365 | 1824,176911.319164431
366 | 1825,169234.6454828
367 | 1826,172386.297919134
368 | 1827,156031.904802362
369 | 1828,168202.892306596
370 | 1829,166505.984017547
371 | 1830,176507.37022149
372 | 1831,180116.752553161
373 | 1832,183072.740591406
374 | 1833,189595.964677698
375 | 1834,167523.919076265
376 | 1835,210817.775863413
377 | 1836,172942.930813351
378 | 1837,145286.278144089
379 | 1838,176468.653371492
380 | 1839,159040.069562187
381 | 1840,178518.204332507
382 | 1841,169163.980786825
383 | 1842,189786.685274579
384 | 1843,181246.728523853
385 | 1844,176349.927153587
386 | 1845,205266.631009142
387 | 1846,187397.993362224
388 | 1847,208943.427726113
389 | 1848,165014.532907657
390 | 1849,182492.037566236
391 | 1850,161718.71259042
392 | 1851,180084.118941162
393 | 1852,178534.950802179
394 | 1853,151217.259961305
395 | 1854,156342.717587562
396 | 1855,188511.443835239
397 | 1856,183570.337896789
398 | 1857,225810.160292177
399 | 1858,214217.401131694
400 | 1859,187665.64101603
401 | 1860,161157.177744039
402 | 1861,187643.992594193
403 | 1862,228156.372839158
404 | 1863,220449.534665317
405 | 1864,220522.352084222
406 | 1865,156647.763531624
407 | 1866,187388.833374873
408 | 1867,178640.723791573
409 | 1868,180847.216739049
410 | 1869,159505.170529478
411 | 1870,164305.538020654
412 | 1871,180181.19673723
413 | 1872,184602.734989972
414 | 1873,193440.372174434
415 | 1874,184199.788209911
416 | 1875,196241.892907637
417 | 1876,175588.618271096
418 | 1877,179503.046546829
419 | 1878,183658.076582555
420 | 1879,193700.976276404
421 | 1880,165399.62450704
422 | 1881,186847.944787446
423 | 1882,198127.73287817
424 | 1883,183320.898107934
425 | 1884,181613.606696657
426 | 1885,178298.791761954
427 | 1886,185733.534000593
428 | 1887,180008.188485489
429 | 1888,175127.59621604
430 | 1889,183467.176862723
431 | 1890,182705.546021743
432 | 1891,152324.943593181
433 | 1892,169878.515981342
434 | 1893,183735.975076576
435 | 1894,224118.280105941
436 | 1895,169355.202465146
437 | 1896,180054.276407441
438 | 1897,174081.601977368
439 | 1898,168494.985022146
440 | 1899,181871.598843299
441 | 1900,173554.489658383
442 | 1901,169805.382165577
443 | 1902,176192.990728755
444 | 1903,204264.39284654
445 | 1904,169630.906956928
446 | 1905,185724.838807268
447 | 1906,195699.036281861
448 | 1907,189494.276162169
449 | 1908,149607.905673439
450 | 1909,154650.199045978
451 | 1910,151579.558140433
452 | 1911,185147.380531144
453 | 1912,196314.53120359
454 | 1913,210802.395364155
455 | 1914,166271.2863726
456 | 1915,154865.359142973
457 | 1916,173575.5052865
458 | 1917,179399.563554274
459 | 1918,164280.776562049
460 | 1919,171247.48948121
461 | 1920,166878.587182445
462 | 1921,188129.459710994
463 | 1922,183517.34369691
464 | 1923,175522.026925727
465 | 1924,190060.105331152
466 | 1925,174179.824771856
467 | 1926,171059.523675194
468 | 1927,183004.186769318
469 | 1928,183601.647387418
470 | 1929,163539.327185998
471 | 1930,164677.676391525
472 | 1931,162395.073865424
473 | 1932,182207.6323195
474 | 1933,192223.939790304
475 | 1934,176391.829390125
476 | 1935,181913.179121348
477 | 1936,179136.097888261
478 | 1937,196595.568243212
479 | 1938,194822.365690957
480 | 1939,148356.669440918
481 | 1940,160387.604263899
482 | 1941,181276.500571809
483 | 1942,192474.817899346
484 | 1943,157699.907796437
485 | 1944,215785.540813051
486 | 1945,181824.300998793
487 | 1946,221813.00948166
488 | 1947,165281.292597397
489 | 1948,255629.49047034
490 | 1949,173154.590990955
491 | 1950,183884.65246539
492 | 1951,200210.353608489
493 | 1952,186599.221265342
494 | 1953,192718.532696106
495 | 1954,178628.665952764
496 | 1955,180650.342418406
497 | 1956,206003.107947263
498 | 1957,166457.67844853
499 | 1958,202916.221653487
500 | 1959,192463.969983091
501 | 1960,171775.497189898
502 | 1961,175249.222149411
503 | 1962,147086.59893993
504 | 1963,149709.672100371
505 | 1964,171411.404533743
506 | 1965,178188.964799425
507 | 1966,156491.711373235
508 | 1967,180953.241201168
509 | 1968,203909.759061135
510 | 1969,175470.149087545
511 | 1970,205578.333622415
512 | 1971,199428.857699441
513 | 1972,187599.163869476
514 | 1973,192265.198109864
515 | 1974,196666.554897677
516 | 1975,155537.862252682
517 | 1976,169543.240620935
518 | 1977,202487.010170501
519 | 1978,208232.716273485
520 | 1979,173621.195202569
521 | 1980,172414.608571812
522 | 1981,164400.75641556
523 | 1982,160480.424024781
524 | 1983,156060.853810389
525 | 1984,157437.192820581
526 | 1985,158163.720929772
527 | 1986,154849.043268978
528 | 1987,152186.609341561
529 | 1988,180340.215399228
530 | 1989,178344.62451356
531 | 1990,190170.382266827
532 | 1991,168092.975480832
533 | 1992,178757.912566805
534 | 1993,174518.256882082
535 | 1994,198168.490116289
536 | 1995,176882.693978902
537 | 1996,183801.672896251
538 | 1997,196400.046680661
539 | 1998,172281.605004025
540 | 1999,196380.366297173
541 | 2000,198228.354306682
542 | 2001,195556.581268962
543 | 2002,186453.264469043
544 | 2003,181869.381196234
545 | 2004,175610.840124147
546 | 2005,183438.730800145
547 | 2006,179584.488673295
548 | 2007,182386.152242034
549 | 2008,160750.367237054
550 | 2009,182477.505046008
551 | 2010,187720.359207171
552 | 2011,187201.942081511
553 | 2012,176385.102235149
554 | 2013,175901.787841278
555 | 2014,182584.280198283
556 | 2015,195664.686104237
557 | 2016,181420.346494222
558 | 2017,176676.04995228
559 | 2018,181594.678867334
560 | 2019,178521.747964951
561 | 2020,175895.883726231
562 | 2021,168468.005916477
563 | 2022,200973.129447888
564 | 2023,197030.641992202
565 | 2024,192867.417844592
566 | 2025,196449.247639381
567 | 2026,141684.196398607
568 | 2027,153353.334123901
569 | 2028,151143.549016705
570 | 2029,163753.087114229
571 | 2030,158682.460013921
572 | 2031,144959.835250915
573 | 2032,160144.390548579
574 | 2033,156286.534303521
575 | 2034,165726.707619571
576 | 2035,182427.481047359
577 | 2036,173310.56154032
578 | 2037,173310.56154032
579 | 2038,151556.01403002
580 | 2039,158908.146068683
581 | 2040,209834.383092536
582 | 2041,192410.516550815
583 | 2042,174026.247294886
584 | 2043,195499.830115336
585 | 2044,200918.018812493
586 | 2045,207243.616023976
587 | 2046,196149.783851876
588 | 2047,192097.914850217
589 | 2048,178570.948923671
590 | 2049,228617.968325428
591 | 2050,199929.884438451
592 | 2051,160206.365612859
593 | 2052,179854.431885567
594 | 2053,185987.340461822
595 | 2054,161122.505607926
596 | 2055,175949.342720138
597 | 2056,183683.590595324
598 | 2057,176401.34762338
599 | 2058,205832.532527897
600 | 2059,177799.799849436
601 | 2060,167565.362080406
602 | 2061,186348.958436557
603 | 2062,179782.759465081
604 | 2063,169837.623333323
605 | 2064,178817.275675758
606 | 2065,174444.479149339
607 | 2066,192834.968917174
608 | 2067,196564.717984981
609 | 2068,206977.567039357
610 | 2069,157054.253944128
611 | 2070,175142.948078577
612 | 2071,159932.1643654
613 | 2072,182801.408333628
614 | 2073,181510.375176825
615 | 2074,181613.035129451
616 | 2075,186920.512597635
617 | 2076,157950.170625222
618 | 2077,176115.159022876
619 | 2078,182744.514344465
620 | 2079,180660.683691591
621 | 2080,160775.629777099
622 | 2081,186711.715848082
623 | 2082,223581.758190888
624 | 2083,172330.943236652
625 | 2084,163474.633393212
626 | 2085,175308.263299874
627 | 2086,187462.725306432
628 | 2087,180655.101535034
629 | 2088,152121.98603454
630 | 2089,159856.233909727
631 | 2090,186559.854936737
632 | 2091,183962.550959411
633 | 2092,162107.168699296
634 | 2093,162582.288981283
635 | 2094,154407.701597409
636 | 2095,181625.666399474
637 | 2096,164810.609473548
638 | 2097,176429.401241704
639 | 2098,179188.089925259
640 | 2099,145997.635377703
641 | 2100,218676.768270367
642 | 2101,188323.861214226
643 | 2102,168690.0722914
644 | 2103,165088.746797705
645 | 2104,191435.007885166
646 | 2105,168864.404664512
647 | 2106,176041.882371574
648 | 2107,215911.674390325
649 | 2108,167388.238629016
650 | 2109,163854.786753017
651 | 2110,163299.477980171
652 | 2111,178298.214633119
653 | 2112,176376.586164775
654 | 2113,170211.043976522
655 | 2114,170818.344786366
656 | 2115,174388.867432503
657 | 2116,161112.987374671
658 | 2117,172179.082325307
659 | 2118,157798.309713876
660 | 2119,169106.151422924
661 | 2120,170129.531364292
662 | 2121,157680.227412949
663 | 2122,162690.209131977
664 | 2123,146968.379365095
665 | 2124,181507.721372455
666 | 2125,191215.589752983
667 | 2126,189432.689844522
668 | 2127,207271.484957719
669 | 2128,170030.807488363
670 | 2129,148409.806476335
671 | 2130,193850.613979055
672 | 2131,193808.319298263
673 | 2132,166300.235380627
674 | 2133,163474.633393212
675 | 2134,177473.606564978
676 | 2135,157443.925537187
677 | 2136,180681.007992057
678 | 2137,183463.17030026
679 | 2138,182481.763081195
680 | 2139,193717.15117887
681 | 2140,182782.55099007
682 | 2141,175530.651633287
683 | 2142,177804.057884623
684 | 2143,159448.670848577
685 | 2144,181338.976717529
686 | 2145,178553.558537021
687 | 2146,162820.928264556
688 | 2147,188832.479997186
689 | 2148,164682.185899437
690 | 2149,181549.735943801
691 | 2150,199158.097008868
692 | 2151,152889.520990566
693 | 2152,181150.551679116
694 | 2153,181416.732376013
695 | 2154,164391.238182305
696 | 2155,185421.046498812
697 | 2156,193981.327550004
698 | 2157,178824.324789223
699 | 2158,209270.051606246
700 | 2159,177801.266806344
701 | 2160,179053.762236101
702 | 2161,178762.170601992
703 | 2162,184655.300458183
704 | 2163,191284.655779772
705 | 2164,179598.085818785
706 | 2165,167517.628078595
707 | 2166,182873.903794044
708 | 2167,177484.91371363
709 | 2168,188444.597319524
710 | 2169,179184.153848562
711 | 2170,184365.175780982
712 | 2171,184479.322005212
713 | 2172,182927.863869391
714 | 2173,178611.639373646
715 | 2174,181943.343613558
716 | 2175,175080.614768394
717 | 2176,190720.794649138
718 | 2177,198422.868144723
719 | 2178,184482.11308349
720 | 2179,139214.952187861
721 | 2180,169233.113601757
722 | 2181,180664.118686848
723 | 2182,178818.742632666
724 | 2183,180422.049969947
725 | 2184,178601.93645581
726 | 2185,183083.159775993
727 | 2186,173163.101499699
728 | 2187,185968.161159774
729 | 2188,171226.050683054
730 | 2189,281643.976116786
731 | 2190,160031.711281258
732 | 2191,162775.979779394
733 | 2192,160735.445970193
734 | 2193,166646.109048572
735 | 2194,188384.548444549
736 | 2195,165830.697255197
737 | 2196,182138.358533039
738 | 2197,171595.397975647
739 | 2198,160337.079183809
740 | 2199,191215.088671543
741 | 2200,166956.093232213
742 | 2201,186581.830878692
743 | 2202,176450.548582099
744 | 2203,193743.194909801
745 | 2204,198882.566078408
746 | 2205,176385.102235149
747 | 2206,162447.639333636
748 | 2207,193782.555676777
749 | 2208,183653.890897141
750 | 2209,210578.623546866
751 | 2210,158527.164107319
752 | 2211,163081.025723456
753 | 2212,174388.867432503
754 | 2213,191905.870131966
755 | 2214,174388.867432503
756 | 2215,161642.711648983
757 | 2216,186939.507215101
758 | 2217,172482.165792649
759 | 2218,159695.999763546
760 | 2219,157230.369671007
761 | 2220,179188.089925259
762 | 2221,157972.82120994
763 | 2222,156804.951429181
764 | 2223,211491.972463654
765 | 2224,186537.246201062
766 | 2225,200468.161070551
767 | 2226,182241.340444154
768 | 2227,157342.225898399
769 | 2228,182022.387105998
770 | 2229,181244.510876788
771 | 2230,178556.671573788
772 | 2231,189547.199876284
773 | 2232,187948.65165563
774 | 2233,194107.287565956
775 | 2234,183521.710369283
776 | 2235,183682.123638416
777 | 2236,178483.353073443
778 | 2237,184003.879764736
779 | 2238,171318.59033449
780 | 2239,162039.754313997
781 | 2240,154846.252190699
782 | 2241,194822.365690957
783 | 2242,169788.738771463
784 | 2243,178891.554489941
785 | 2244,152084.772428865
786 | 2245,139169.86642879
787 | 2246,192439.536044606
788 | 2247,161067.859766557
789 | 2248,158762.648504781
790 | 2249,175569.690441774
791 | 2250,183659.795012187
792 | 2251,280618.132617258
793 | 2252,180051.809151659
794 | 2253,176519.18031559
795 | 2254,179028.429210291
796 | 2255,177161.583857224
797 | 2256,180081.508849842
798 | 2257,205895.254584712
799 | 2258,183389.78131415
800 | 2259,178543.647859512
801 | 2260,194798.320499104
802 | 2261,162845.613675766
803 | 2262,148103.867006579
804 | 2263,201016.171121215
805 | 2264,277936.12694354
806 | 2265,249768.279823405
807 | 2266,161596.052159825
808 | 2267,158011.114889899
809 | 2268,194089.683858004
810 | 2269,181733.336941451
811 | 2270,182852.32772198
812 | 2271,189893.003058465
813 | 2272,194650.210979875
814 | 2273,187904.461286262
815 | 2274,171774.925622692
816 | 2275,177998.685921479
817 | 2276,175648.484325498
818 | 2277,196918.071362067
819 | 2278,184299.838071218
820 | 2279,182379.855682734
821 | 2280,184050.725802482
822 | 2281,158296.975970284
823 | 2282,175053.355553278
824 | 2283,162293.376090644
825 | 2284,186328.880047186
826 | 2285,151422.116936538
827 | 2286,181969.358707768
828 | 2287,189122.67702416
829 | 2288,185645.475220346
830 | 2289,182829.898109257
831 | 2290,195848.788183328
832 | 2291,198785.059550672
833 | 2292,181676.126555428
834 | 2293,194131.012663328
835 | 2294,201416.004864508
836 | 2295,185096.577205616
837 | 2296,195158.972598372
838 | 2297,184795.783735112
839 | 2298,189168.263864671
840 | 2299,216855.260149095
841 | 2300,184946.642483576
842 | 2301,189317.51282069
843 | 2302,180803.277842406
844 | 2303,175061.18585763
845 | 2304,179074.839090732
846 | 2305,145708.764336107
847 | 2306,142398.022752011
848 | 2307,161474.534863641
849 | 2308,157025.945155458
850 | 2309,163424.037827357
851 | 2310,164692.778645345
852 | 2311,152163.2443541
853 | 2312,192383.215486656
854 | 2313,182520.230322476
855 | 2314,187254.507549722
856 | 2315,176489.659740359
857 | 2316,181520.466841293
858 | 2317,186414.978214721
859 | 2318,185197.764639705
860 | 2319,178657.794083741
861 | 2320,179731.198023759
862 | 2321,161748.271317074
863 | 2322,158608.749069322
864 | 2323,178807.370559878
865 | 2324,184187.158803897
866 | 2325,181686.10402108
867 | 2326,190311.050228337
868 | 2327,192252.496354076
869 | 2328,193954.849525775
870 | 2329,181044.201560887
871 | 2330,180258.131219792
872 | 2331,199641.657313834
873 | 2332,197530.775205517
874 | 2333,191777.196949138
875 | 2334,195779.543033588
876 | 2335,202112.046522999
877 | 2336,192343.34807661
878 | 2337,185191.359443218
879 | 2338,186760.207965688
880 | 2339,177733.78193528
881 | 2340,164430.391189608
882 | 2341,185299.601552401
883 | 2342,186414.012339254
884 | 2343,176401.921054593
885 | 2344,182381.322639642
886 | 2345,176334.184710805
887 | 2346,184901.735847457
888 | 2347,180085.766885029
889 | 2348,184901.735847457
890 | 2349,183967.561548763
891 | 2350,193046.301574659
892 | 2351,168538.969495849
893 | 2352,170157.842016969
894 | 2353,196559.709259637
895 | 2354,177133.709361852
896 | 2355,181553.279576244
897 | 2356,185770.606634739
898 | 2357,177017.595099274
899 | 2358,184123.358536806
900 | 2359,165970.357492196
901 | 2360,158151.985049452
902 | 2361,177086.476441481
903 | 2362,196373.896176551
904 | 2363,172465.707083115
905 | 2364,168590.782409896
906 | 2365,158820.474171061
907 | 2366,151611.37057651
908 | 2367,152125.028585543
909 | 2368,158404.073081048
910 | 2369,160692.078640755
911 | 2370,170175.22684199
912 | 2371,169854.436591138
913 | 2372,183410.785819008
914 | 2373,180347.194026928
915 | 2374,178930.528374292
916 | 2375,153346.220086301
917 | 2376,182675.204270589
918 | 2377,180770.649792036
919 | 2378,188714.148087543
920 | 2379,191393.608594076
921 | 2380,174016.157494425
922 | 2381,183189.685319552
923 | 2382,183621.508757866
924 | 2383,168991.29635758
925 | 2384,185306.650665866
926 | 2385,189030.680303208
927 | 2386,179208.665698449
928 | 2387,174901.452792889
929 | 2388,168337.406544343
930 | 2389,158234.96461859
931 | 2390,179562.453368834
932 | 2391,174176.391640607
933 | 2392,173931.531845427
934 | 2393,184111.729429665
935 | 2394,179374.482001188
936 | 2395,207348.811884535
937 | 2396,186983.419339031
938 | 2397,206779.094049527
939 | 2398,177472.074683935
940 | 2399,156727.948324862
941 | 2400,157090.568462479
942 | 2401,160387.032696693
943 | 2402,172410.28005086
944 | 2403,191603.365657467
945 | 2404,182152.207151253
946 | 2405,180161.697340702
947 | 2406,169652.235284283
948 | 2407,182503.520140218
949 | 2408,179714.630677039
950 | 2409,180282.570719908
951 | 2410,192600.338060371
952 | 2411,166115.491248565
953 | 2412,186379.553524443
954 | 2413,184361.992258449
955 | 2414,186220.965458121
956 | 2415,198176.47090687
957 | 2416,168437.776500131
958 | 2417,178003.582312015
959 | 2418,179180.469244588
960 | 2419,191930.561104806
961 | 2420,175590.266214964
962 | 2421,176713.19307219
963 | 2422,180159.090947005
964 | 2423,188090.100808026
965 | 2424,186184.717727913
966 | 2425,223055.588672278
967 | 2426,158270.753116401
968 | 2427,184733.12846644
969 | 2428,199926.378957429
970 | 2429,175075.785166001
971 | 2430,180917.925148076
972 | 2431,182067.760625207
973 | 2432,178238.60191545
974 | 2433,173454.944606532
975 | 2434,176821.936262814
976 | 2435,183642.191304235
977 | 2436,177254.582741058
978 | 2437,168715.950111702
979 | 2438,180096.931198144
980 | 2439,160620.728178758
981 | 2440,175286.544392273
982 | 2441,153494.783276297
983 | 2442,156407.65915545
984 | 2443,162162.525245786
985 | 2444,166809.886827197
986 | 2445,172929.156408918
987 | 2446,193514.330894137
988 | 2447,181612.141603756
989 | 2448,191745.386377068
990 | 2449,171369.325038261
991 | 2450,184425.470567051
992 | 2451,170563.252355189
993 | 2452,184522.369240168
994 | 2453,164968.947931153
995 | 2454,157939.621592364
996 | 2455,151520.381580069
997 | 2456,176129.508722531
998 | 2457,171112.978971478
999 | 2458,169762.081624282
1000 | 2459,162246.828936295
1001 | 2460,171339.303381589
1002 | 2461,189034.753653813
1003 | 2462,175758.873595981
1004 | 2463,163351.721489893
1005 | 2464,189806.546645026
1006 | 2465,175370.990918319
1007 | 2466,196895.599900301
1008 | 2467,176905.917994834
1009 | 2468,176866.557227858
1010 | 2469,163590.677170026
1011 | 2470,212693.502958393
1012 | 2471,192686.931747717
1013 | 2472,181578.684951827
1014 | 2473,166475.457581812
1015 | 2474,185998.255166219
1016 | 2475,185527.714877908
1017 | 2476,159027.118197683
1018 | 2477,181169.654933769
1019 | 2478,176732.915304722
1020 | 2479,191619.294648838
1021 | 2480,189114.303789324
1022 | 2481,180934.635330334
1023 | 2482,164573.372223048
1024 | 2483,173902.011270196
1025 | 2484,165625.127741229
1026 | 2485,179555.219570787
1027 | 2486,196899.720661579
1028 | 2487,207566.12470446
1029 | 2488,163899.981149274
1030 | 2489,189179.428177786
1031 | 2490,193892.880023125
1032 | 2491,178980.874331431
1033 | 2492,179749.876244365
1034 | 2493,197999.674975598
1035 | 2494,203717.470295797
1036 | 2495,185249.261156892
1037 | 2496,201691.208274848
1038 | 2497,181956.548314794
1039 | 2498,171895.936275806
1040 | 2499,187245.168439419
1041 | 2500,157816.77461318
1042 | 2501,191702.912573325
1043 | 2502,198599.420028908
1044 | 2503,187193.313676329
1045 | 2504,220514.993999535
1046 | 2505,181814.527595192
1047 | 2506,183750.755371907
1048 | 2507,183000.431679579
1049 | 2508,185830.971906573
1050 | 2509,185497.872344187
1051 | 2510,179613.437681321
1052 | 2511,164454.967963631
1053 | 2512,185127.237217638
1054 | 2513,178750.613844623
1055 | 2514,160927.61044889
1056 | 2515,192562.808057836
1057 | 2516,180990.24148554
1058 | 2517,180064.941503122
1059 | 2518,196070.997393789
1060 | 2519,180352.919019023
1061 | 2520,183367.953769362
1062 | 2521,176734.841494027
1063 | 2522,180848.220765939
1064 | 2523,187806.059368823
1065 | 2524,180521.52640004
1066 | 2525,181502.754496154
1067 | 2526,174525.87942676
1068 | 2527,188927.984063168
1069 | 2528,184728.870431253
1070 | 2529,179857.975518011
1071 | 2530,180962.868071609
1072 | 2531,179194.066390078
1073 | 2532,179591.789259484
1074 | 2533,180638.463702549
1075 | 2534,185846.215131922
1076 | 2535,195174.031139141
1077 | 2536,192474.56829063
1078 | 2537,164200.595496827
1079 | 2538,178403.094096818
1080 | 2539,170774.84018302
1081 | 2540,179879.945898337
1082 | 2541,177668.192752792
1083 | 2542,180174.328610725
1084 | 2543,170643.303572141
1085 | 2544,165448.004289838
1086 | 2545,195531.754886222
1087 | 2546,165314.177682121
1088 | 2547,172532.757660882
1089 | 2548,203310.218069877
1090 | 2549,175090.062515883
1091 | 2550,230841.338626282
1092 | 2551,155225.19006632
1093 | 2552,168322.342441945
1094 | 2553,165956.259265265
1095 | 2554,193956.817564124
1096 | 2555,171070.367893827
1097 | 2556,166285.243628001
1098 | 2557,182875.801346628
1099 | 2558,218108.536769738
1100 | 2559,174378.777632042
1101 | 2560,164731.316372391
1102 | 2561,156969.695083273
1103 | 2562,173388.854342604
1104 | 2563,177559.628685119
1105 | 2564,194297.789279905
1106 | 2565,174894.588364005
1107 | 2566,196544.144075798
1108 | 2567,179036.158528149
1109 | 2568,211423.986511149
1110 | 2569,208156.398935188
1111 | 2570,159233.941347257
1112 | 2571,210820.115134931
1113 | 2572,140196.10979821
1114 | 2573,198678.469082978
1115 | 2574,186818.610760803
1116 | 2575,175044.797633861
1117 | 2576,180031.162892704
1118 | 2577,176889.171525162
1119 | 2578,159638.856165666
1120 | 2579,154287.264375509
1121 | 2580,191885.618181273
1122 | 2581,177503.378612934
1123 | 2582,166548.31684976
1124 | 2583,164475.14942856
1125 | 2584,167484.744857879
1126 | 2585,188683.160555403
1127 | 2586,162243.399502668
1128 | 2587,180807.213919103
1129 | 2588,176279.079637039
1130 | 2589,163438.959094218
1131 | 2590,161495.5393685
1132 | 2591,216032.303722443
1133 | 2592,176632.181541401
1134 | 2593,168743.001567144
1135 | 2594,183810.11848086
1136 | 2595,156794.36054728
1137 | 2596,169136.43011395
1138 | 2597,183203.318752456
1139 | 2598,213252.926930889
1140 | 2599,190550.327866959
1141 | 2600,234707.209860273
1142 | 2601,135751.318892816
1143 | 2602,164228.45886894
1144 | 2603,153219.437030419
1145 | 2604,164210.746523801
1146 | 2605,163883.229117973
1147 | 2606,154892.776269956
1148 | 2607,197092.08733832
1149 | 2608,228148.376399122
1150 | 2609,178680.587503997
1151 | 2610,165643.341167808
1152 | 2611,222406.642660249
1153 | 2612,184021.843582599
1154 | 2613,170871.094939159
1155 | 2614,189562.873697309
1156 | 2615,170591.884966356
1157 | 2616,172934.351682851
1158 | 2617,186425.069879189
1159 | 2618,218648.131133006
1160 | 2619,183035.606761141
1161 | 2620,178378.906069427
1162 | 2621,184516.716597846
1163 | 2622,181419.5253183
1164 | 2623,196858.923438425
1165 | 2624,189228.701486278
1166 | 2625,208973.380761028
1167 | 2626,180269.86896412
1168 | 2627,159488.713683953
1169 | 2628,191490.299507521
1170 | 2629,228684.245137946
1171 | 2630,201842.998700429
1172 | 2631,209242.82289186
1173 | 2632,202357.62258493
1174 | 2633,168238.61218265
1175 | 2634,202524.12465369
1176 | 2635,170588.771929588
1177 | 2636,198375.31512987
1178 | 2637,170636.827889889
1179 | 2638,181991.079479377
1180 | 2639,183994.54251844
1181 | 2640,182951.482193584
1182 | 2641,174126.297156192
1183 | 2642,170575.496742588
1184 | 2643,175332.239869971
1185 | 2644,167522.061539111
1186 | 2645,168095.583738538
1187 | 2646,154406.415627461
1188 | 2647,170996.973346087
1189 | 2648,159056.890245639
1190 | 2649,181373.6165193
1191 | 2650,152272.560975937
1192 | 2651,168664.346821336
1193 | 2652,211007.008292301
1194 | 2653,182909.515032911
1195 | 2654,203926.829353303
1196 | 2655,179082.825442944
1197 | 2656,206260.099795032
1198 | 2657,181732.443415757
1199 | 2658,189698.740693148
1200 | 2659,203074.34678979
1201 | 2660,201670.634365666
1202 | 2661,173756.812589691
1203 | 2662,181387.076390881
1204 | 2663,184859.155270535
1205 | 2664,158313.615666777
1206 | 2665,151951.955409666
1207 | 2666,162537.52704471
1208 | 2667,178998.337067854
1209 | 2668,186732.584943041
1210 | 2669,187323.318406165
1211 | 2670,199437.232798284
1212 | 2671,185546.680858653
1213 | 2672,161595.015798593
1214 | 2673,154672.422763036
1215 | 2674,159355.710116165
1216 | 2675,155919.014077746
1217 | 2676,182424.87095604
1218 | 2677,178100.589622319
1219 | 2678,202577.900044456
1220 | 2679,177862.778940605
1221 | 2680,182056.024744887
1222 | 2681,191403.199177104
1223 | 2682,196264.754980043
1224 | 2683,209375.003419718
1225 | 2684,196691.81930173
1226 | 2685,192458.431539585
1227 | 2686,182242.80926507
1228 | 2687,183259.503900506
1229 | 2688,188108.243748841
1230 | 2689,171418.640195797
1231 | 2690,194698.882220432
1232 | 2691,174841.84007522
1233 | 2692,172965.476488899
1234 | 2693,189386.323677132
1235 | 2694,185682.618340257
1236 | 2695,176412.012719061
1237 | 2696,174976.489722867
1238 | 2697,180718.581707643
1239 | 2698,186131.188248242
1240 | 2699,165220.786354033
1241 | 2700,164115.893800435
1242 | 2701,182125.729127024
1243 | 2702,182285.140233276
1244 | 2703,196325.442210366
1245 | 2704,164865.215329881
1246 | 2705,182694.492209823
1247 | 2706,185425.485520958
1248 | 2707,171414.7041191
1249 | 2708,183433.472466085
1250 | 2709,176844.981155794
1251 | 2710,180568.187753206
1252 | 2711,185948.625475832
1253 | 2712,189388.291715481
1254 | 2713,142754.489165865
1255 | 2714,156106.800760811
1256 | 2715,155895.397617561
1257 | 2716,159851.977738548
1258 | 2717,185157.832305524
1259 | 2718,180716.291710805
1260 | 2719,176901.093954071
1261 | 2720,181017.222455218
1262 | 2721,183269.159407668
1263 | 2722,193550.830097069
1264 | 2723,170625.842699726
1265 | 2724,182012.405942725
1266 | 2725,179162.507290733
1267 | 2726,183269.159407668
1268 | 2727,180589.836175042
1269 | 2728,181465.935198741
1270 | 2729,196053.029878304
1271 | 2730,183421.020319014
1272 | 2731,167926.839083612
1273 | 2732,168027.530997889
1274 | 2733,182164.26685407
1275 | 2734,172469.071592608
1276 | 2735,181059.374300472
1277 | 2736,182997.570115536
1278 | 2737,166140.504179894
1279 | 2738,198515.546934075
1280 | 2739,193789.648503294
1281 | 2740,173550.025727531
1282 | 2741,176487.943174734
1283 | 2742,188813.302559147
1284 | 2743,178531.911979192
1285 | 2744,182145.731469001
1286 | 2745,179196.465024103
1287 | 2746,169618.349900686
1288 | 2747,170010.168655046
1289 | 2748,181739.671652174
1290 | 2749,172846.934955574
1291 | 2750,195560.8830172
1292 | 2751,180358.114292956
1293 | 2752,211817.702818093
1294 | 2753,176170.128686742
1295 | 2754,234492.248263699
1296 | 2755,182450.956536015
1297 | 2756,174902.068073146
1298 | 2757,173684.174293738
1299 | 2758,147196.673677562
1300 | 2759,175231.189709791
1301 | 2760,193417.64740633
1302 | 2761,183313.601249761
1303 | 2762,180882.250849082
1304 | 2763,186735.697979808
1305 | 2764,172922.865411247
1306 | 2765,202551.677190573
1307 | 2766,190485.634074173
1308 | 2767,173439.49362151
1309 | 2768,196613.598849219
1310 | 2769,178152.259700828
1311 | 2770,174519.904825949
1312 | 2771,172627.796932837
1313 | 2772,173732.689486435
1314 | 2773,209219.844787023
1315 | 2774,181059.374300472
1316 | 2775,188515.443002459
1317 | 2776,182164.26685407
1318 | 2777,188137.901597981
1319 | 2778,158893.54306269
1320 | 2779,189579.65066771
1321 | 2780,165229.803505847
1322 | 2781,162186.071220207
1323 | 2782,166374.879866351
1324 | 2783,161665.184974757
1325 | 2784,175079.328798445
1326 | 2785,203840.874021305
1327 | 2786,152129.078861057
1328 | 2787,181012.141380101
1329 | 2788,161305.53503837
1330 | 2789,203326.392972343
1331 | 2790,168385.571141831
1332 | 2791,183564.365159986
1333 | 2792,163784.619440861
1334 | 2793,171989.192193993
1335 | 2794,180839.95616829
1336 | 2795,170895.923185907
1337 | 2796,174071.054808518
1338 | 2797,259423.859147546
1339 | 2798,188000.824679588
1340 | 2799,179171.703565498
1341 | 2800,171022.241447762
1342 | 2801,174126.297156192
1343 | 2802,187625.573271948
1344 | 2803,199567.946369234
1345 | 2804,205328.078219268
1346 | 2805,166231.535025379
1347 | 2806,154743.91606057
1348 | 2807,159714.537012622
1349 | 2808,185563.069082422
1350 | 2809,171500.796725006
1351 | 2810,180983.443844799
1352 | 2811,183141.236914997
1353 | 2812,178498.634450214
1354 | 2813,224323.710512388
1355 | 2814,218200.642127877
1356 | 2815,182283.177756557
1357 | 2816,190054.639237419
1358 | 2817,160192.453934518
1359 | 2818,171289.393581756
1360 | 2819,151131.098733642
1361 | 2820,181721.458225594
1362 | 2821,172725.053851858
1363 | 2822,222438.699143414
1364 | 2823,235419.373448928
1365 | 2824,185150.926027596
1366 | 2825,184772.239624699
1367 | 2826,180658.216435809
1368 | 2827,209673.316647174
1369 | 2828,205939.810625621
1370 | 2829,165633.573325837
1371 | 2830,186030.317211014
1372 | 2831,160312.319589212
1373 | 2832,190702.440251029
1374 | 2833,175122.810326699
1375 | 2834,183783.13937519
1376 | 2835,178290.666302221
1377 | 2836,181605.343963015
1378 | 2837,187992.451444752
1379 | 2838,188885.11781517
1380 | 2839,189959.344795118
1381 | 2840,179258.619211334
1382 | 2841,181518.750275669
1383 | 2842,193008.659237315
1384 | 2843,186313.89385619
1385 | 2844,181499.39185067
1386 | 2845,174126.297156192
1387 | 2846,183918.612062767
1388 | 2847,184114.270899227
1389 | 2848,158540.947801398
1390 | 2849,197034.759055859
1391 | 2850,185170.284452595
1392 | 2851,221134.533635148
1393 | 2852,184306.637575967
1394 | 2853,199792.302740996
1395 | 2854,143237.803559736
1396 | 2855,177294.838897736
1397 | 2856,182368.620883855
1398 | 2857,176487.943174734
1399 | 2858,183849.408762071
1400 | 2859,184964.141507413
1401 | 2860,196395.969632434
1402 | 2861,188374.936650438
1403 | 2862,176261.296806135
1404 | 2863,163628.142248426
1405 | 2864,180618.032628904
1406 | 2865,161647.329794081
1407 | 2866,167129.598867773
1408 | 2867,174750.988352687
1409 | 2868,177560.202116333
1410 | 2869,192577.796112839
1411 | 2870,199202.898960871
1412 | 2871,182818.156667308
1413 | 2872,148217.262540651
1414 | 2873,188997.797082492
1415 | 2874,185807.928877601
1416 | 2875,177030.477842021
1417 | 2876,175942.474593632
1418 | 2877,172912.518576433
1419 | 2878,198359.248864591
1420 | 2879,184379.133036383
1421 | 2880,194255.566948886
1422 | 2881,209449.651603064
1423 | 2882,169979.323958443
1424 | 2883,188206.281858748
1425 | 2884,186412.438609167
1426 | 2885,196761.386409959
1427 | 2886,208353.269558209
1428 | 2887,166548.067241044
1429 | 2888,175942.474593632
1430 | 2889,166790.457916434
1431 | 2890,160515.850579067
1432 | 2891,192167.621096362
1433 | 2892,178751.551083369
1434 | 2893,198678.894117024
1435 | 2894,164553.120272354
1436 | 2895,156887.932862327
1437 | 2896,164185.777305524
1438 | 2897,212992.120630876
1439 | 2898,197468.550532521
1440 | 2899,180106.84373966
1441 | 2900,183972.071056674
1442 | 2901,245283.198337927
1443 | 2902,170351.963410756
1444 | 2903,195596.307707478
1445 | 2904,189369.756330412
1446 | 2905,223667.404551664
1447 | 2906,169335.310624364
1448 | 2907,167411.02835165
1449 | 2908,187709.555003968
1450 | 2909,196526.002998991
1451 | 2910,137402.569855589
1452 | 2911,165086.775061735
1453 | 2912,188506.431412274
1454 | 2913,172917.456816012
1455 | 2914,166274.325225982
1456 | 2915,167081.220948984
1457 | 2916,164788.778231138
1458 | 2917,219222.423400059
1459 | 2918,184924.279658997
1460 | 2919,187741.866657478
1461 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # The Machine Learning Pipeline
2 | ## Thom Ives and Ghaith Sankari
3 |
4 | Hi Family Students. This repo holds the files to support our class work.
5 |
6 | 0. Be sure to do weekly pulls on [Jonathan Papworth's Class Repository](https://github.com/jonathan-pap/ML_Pipeline) that gives overviews of each class meeting and provides links to the recorded class meeting videos. Thanks Jonathan!
7 | 1. The code and notes to support work for each phase of the class are in directories with a number at the front of the directory name to indicate the suggested order.
8 | 2. You will learn some basic git.
9 | 3. If you are on Windows, you will want to install Git for Windows.
10 | * [Git For Windows](https://git-scm.com/download/win)
11 | 4. After git is installed, you will want to use the ```git bash``` terminal for our work.
12 | * Once you see how simple and elegant git usage from the git bash shell is, feel free to play around with tools that help you use git from within VS Code.
13 | * I suggest installing an SSH key. [You can use this guide](https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent)
14 | 5. To clone our course repo from git bash using SSH:
15 | * At your git bash prompt ```git clone git@github.com:ThomIves/Machine_Learning_Pipeline.git```
16 | * Change your directory in your git bash terminal to ```Machine_Learning_Pipeline``` and you will see the course directories for our work.
17 | * Each time you come back to the clone of our course directory on your local machine, open git bash in the directory and run ```git pull origin main```. This will update the course directory with the latest updates.
18 | 4. Check this main README.md file for updates and notices too. If there are any changes in this file, you will see them after running ```git pull origin main```.
19 |
--------------------------------------------------------------------------------
/fake_data_regression.csv:
--------------------------------------------------------------------------------
1 | 0.0, 0.0, 2.468858576563204
2 | 0.03333333333333333, 0.01, 0.4800871919597739
3 | 0.06666666666666667, 0.02, 0.08325031169436925
4 | 0.1, 0.03, 1.262496794253305
5 | 0.13333333333333333, 0.04, 2.98172253925706
6 | 0.16666666666666666, 0.05, -0.027616969113925638
7 | 0.2, 0.06, 3.609117866382124
8 | 0.23333333333333334, 0.07, 4.186836972957566
9 | 0.26666666666666666, 0.08, 1.5160452454000009
10 | 0.3, 0.09, 2.4092711156949744
11 | 0.3333333333333333, 0.1, 1.9633795820408917
12 | 0.36666666666666664, 0.11, 4.97140686339408
13 | 0.4, 0.12, 3.934807275207195
14 | 0.43333333333333335, 0.13, 1.6135655242710012
15 | 0.4666666666666667, 0.14, 4.065760964524048
16 | 0.5, 0.15, 3.3524195579706624
17 | 0.5333333333333333, 0.16, 3.40232755165227
18 | 0.5666666666666667, 0.17, 4.034528652175615
19 | 0.6, 0.18, 2.344321367505024
20 | 0.6333333333333333, 0.19, 3.39579556081208
21 | 0.6666666666666666, 0.2, 5.084580298261906
22 | 0.7, 0.21, 2.7007413749038562
23 | 0.7333333333333333, 0.22, 3.0421708549627384
24 | 0.7666666666666667, 0.23, 5.3311751782302474
25 | 0.8, 0.24, 4.9540969144526805
26 | 0.8333333333333334, 0.25, 3.7648935459557658
27 | 0.8666666666666667, 0.26, 4.324480599844799
28 | 0.9, 0.27, 3.2791036500695547
29 | 0.9333333333333333, 0.28, 7.24335218112109
30 | 0.9666666666666667, 0.29, 5.955360011199314
31 | 1.0, 0.3, 4.573683966535964
32 | 1.0333333333333334, 0.31, 6.914800320306284
33 | 1.0666666666666667, 0.32, 7.554377787843999
34 | 1.1, 0.33, 4.0222188719962535
35 | 1.1333333333333333, 0.34, 5.913718160824625
36 | 1.1666666666666667, 0.35, 7.964220940906597
37 | 1.2, 0.36, 7.2137969984255506
38 | 1.2333333333333334, 0.37, 4.984102097161264
39 | 1.2666666666666666, 0.38, 6.568139201810167
40 | 1.3, 0.39, 5.734927782491625
41 | 1.3333333333333333, 0.4, 8.474897554399835
42 | 1.3666666666666667, 0.41, 8.90728459916165
43 | 1.4, 0.42, 9.50201615471068
44 | 1.4333333333333333, 0.43, 6.054656820356171
45 | 1.4666666666666666, 0.44, 8.387015958628066
46 | 1.5, 0.45, 9.420557361923088
47 | 1.5333333333333334, 0.46, 8.031961886320492
48 | 1.5666666666666667, 0.47, 7.4078986298529585
49 | 1.6, 0.48, 9.70096170949884
50 | 1.6333333333333333, 0.49, 9.83820841708447
51 | 1.6666666666666667, 0.5, 8.226003187628828
52 | 1.7, 0.51, 7.27555439825638
53 | 1.7333333333333334, 0.52, 10.122801780577095
54 | 1.7666666666666666, 0.53, 7.699740736226889
55 | 1.8, 0.54, 10.515252586008373
56 | 1.8333333333333333, 0.55, 9.281985936173298
57 | 1.8666666666666667, 0.56, 10.954720042360364
58 | 1.9, 0.57, 11.220329737298771
59 | 1.9333333333333333, 0.58, 11.391371188899118
60 | 1.9666666666666666, 0.59, 7.46942354915234
61 | 2.0, 0.6, 7.992779509063281
62 | 2.033333333333333, 0.61, 11.855171076693193
63 | 2.066666666666667, 0.62, 9.526892570594194
64 | 2.1, 0.63, 12.75242076951211
65 | 2.1333333333333333, 0.64, 8.425419374429985
66 | 2.1666666666666665, 0.65, 12.022138170221563
67 | 2.2, 0.66, 8.4505948535573
68 | 2.2333333333333334, 0.67, 11.717324963633052
69 | 2.2666666666666666, 0.68, 11.137212283209212
70 | 2.3, 0.69, 12.328407922796508
71 | 2.3333333333333335, 0.7, 12.541377447589865
72 | 2.3666666666666667, 0.71, 12.913801375743748
73 | 2.4, 0.72, 11.16645412350682
74 | 2.433333333333333, 0.73, 13.614361872001005
75 | 2.466666666666667, 0.74, 11.81435512025726
76 | 2.5, 0.75, 13.631968258653458
77 | 2.533333333333333, 0.76, 9.796805279800612
78 | 2.566666666666667, 0.77, 14.258226327823454
79 | 2.6, 0.78, 14.127487609073293
80 | 2.6333333333333333, 0.79, 10.704722086100881
81 | 2.6666666666666665, 0.8, 11.099605269716616
82 | 2.7, 0.81, 13.960214133325467
83 | 2.7333333333333334, 0.82, 15.391044699449589
84 | 2.7666666666666666, 0.83, 14.812093663490607
85 | 2.8, 0.84, 12.215610686194076
86 | 2.8333333333333335, 0.85, 14.525966235885749
87 | 2.8666666666666667, 0.86, 12.625097195822388
88 | 2.9, 0.87, 12.222018133085648
89 | 2.933333333333333, 0.88, 15.426991911490349
90 | 2.966666666666667, 0.89, 16.596665076152547
91 | 3.0, 0.9, 13.794824019050866
92 | 3.033333333333333, 0.91, 14.245448487599504
93 | 3.066666666666667, 0.92, 13.926858394198362
94 | 3.1, 0.93, 14.8483556402877
95 | 3.1333333333333333, 0.94, 12.955854199451341
96 | 3.1666666666666665, 0.95, 15.783392266205478
97 | 3.2, 0.96, 16.60027824698411
98 | 3.2333333333333334, 0.97, 13.626478182756653
99 | 3.2666666666666666, 0.98, 16.376799437538285
100 | 3.3, 0.99, 17.48900323675798
101 | 3.3333333333333335, 1.0, 16.004860916294593
102 | 3.3666666666666667, 1.01, 15.537408816658429
103 | 3.4, 1.02, 16.639500012602536
104 | 3.433333333333333, 1.03, 18.15075229961191
105 | 3.466666666666667, 1.04, 15.28139489352665
106 | 3.5, 1.05, 14.573191982146586
107 | 3.533333333333333, 1.06, 14.57964154702006
108 | 3.566666666666667, 1.07, 18.91656466625683
109 | 3.6, 1.08, 16.471286951493465
110 | 3.6333333333333333, 1.09, 15.4931938850218
111 | 3.6666666666666665, 1.1, 19.481009477029932
112 | 3.7, 1.11, 17.802570134745352
113 | 3.7333333333333334, 1.12, 17.96040972348619
114 | 3.7666666666666666, 1.13, 19.07813188454791
115 | 3.8, 1.14, 20.521597714183233
116 | 3.8333333333333335, 1.15, 16.212409800690267
117 | 3.8666666666666667, 1.16, 19.821492946691244
118 | 3.9, 1.17, 20.626757224581038
119 | 3.933333333333333, 1.18, 19.732882207052985
120 | 3.966666666666667, 1.19, 21.107647110324557
121 | 4.0, 1.2, 18.119770937155252
122 | 4.033333333333333, 1.21, 20.521431265825854
123 | 4.066666666666666, 1.22, 21.809594906928975
124 | 4.1, 1.23, 19.71587567810945
125 | 4.133333333333334, 1.24, 20.528153463902257
126 | 4.166666666666667, 1.25, 22.797021184329186
127 | 4.2, 1.26, 19.270703588951562
128 | 4.233333333333333, 1.27, 21.022355164484726
129 | 4.266666666666667, 1.28, 19.651571103688564
130 | 4.3, 1.29, 22.101033638927134
131 | 4.333333333333333, 1.3, 22.03882217264935
132 | 4.366666666666666, 1.31, 20.84143799443292
133 | 4.4, 1.32, 19.726830941915086
134 | 4.433333333333334, 1.33, 23.718880615292413
135 | 4.466666666666667, 1.34, 20.387099968062042
136 | 4.5, 1.35, 22.43411678648336
137 | 4.533333333333333, 1.36, 24.3055522611618
138 | 4.566666666666666, 1.37, 20.47509520429452
139 | 4.6, 1.38, 22.938329497380092
140 | 4.633333333333334, 1.39, 21.35256682926028
141 | 4.666666666666667, 1.4, 23.228934832837528
142 | 4.7, 1.41, 24.116938341942603
143 | 4.733333333333333, 1.42, 24.19198973270069
144 | 4.766666666666667, 1.43, 22.491617750206775
145 | 4.8, 1.44, 25.528289741364876
146 | 4.833333333333333, 1.45, 26.163115792084596
147 | 4.866666666666666, 1.46, 25.479034957754802
148 | 4.9, 1.47, 24.32238442769911
149 | 4.933333333333334, 1.48, 26.293688516626087
150 | 4.966666666666667, 1.49, 22.694886803160855
151 | 5.0, 1.5, 23.17581310749623
152 | 5.033333333333333, 1.51, 23.475091054794667
153 | 5.066666666666666, 1.52, 25.34047250197681
154 | 5.1, 1.53, 28.130951000064925
155 | 5.133333333333334, 1.54, 27.767091204236145
156 | 5.166666666666667, 1.55, 24.255000686612476
157 | 5.2, 1.56, 29.067304190282265
158 | 5.233333333333333, 1.57, 26.657192361668283
159 | 5.266666666666667, 1.58, 29.255375936510383
160 | 5.3, 1.59, 26.18764943247052
161 | 5.333333333333333, 1.6, 27.355174790050114
162 | 5.366666666666666, 1.61, 27.63277878555842
163 | 5.4, 1.62, 27.620146081113738
164 | 5.433333333333334, 1.63, 30.644982747884356
165 | 5.466666666666667, 1.64, 26.101517578219354
166 | 5.5, 1.65, 28.167556636866486
167 | 5.533333333333333, 1.66, 31.21379573573291
168 | 5.566666666666666, 1.67, 30.561506403045122
169 | 5.6, 1.68, 28.121228888987687
170 | 5.633333333333334, 1.69, 31.48649210796544
171 | 5.666666666666667, 1.7, 31.474749387580438
172 | 5.7, 1.71, 31.19559289645484
173 | 5.733333333333333, 1.72, 32.60399278901901
174 | 5.766666666666667, 1.73, 28.149867910259474
175 | 5.8, 1.74, 28.499910186963753
176 | 5.833333333333333, 1.75, 30.78739975802399
177 | 5.866666666666666, 1.76, 32.29527372552886
178 | 5.9, 1.77, 30.506440974128097
179 | 5.933333333333334, 1.78, 32.862108195164694
180 | 5.966666666666667, 1.79, 34.32012549347884
181 | 6.0, 1.8, 30.412811040767888
182 | 6.033333333333333, 1.81, 30.855344969103804
183 | 6.066666666666666, 1.82, 31.155018300338877
184 | 6.1, 1.83, 34.57332294757524
185 | 6.133333333333334, 1.84, 35.48236044960549
186 | 6.166666666666667, 1.85, 31.292379637016978
187 | 6.2, 1.86, 33.22291644957002
188 | 6.233333333333333, 1.87, 33.559727069271844
189 | 6.266666666666667, 1.88, 35.744042559724704
190 | 6.3, 1.89, 36.31849009775553
191 | 6.333333333333333, 1.9, 32.247609993965476
192 | 6.366666666666666, 1.91, 36.69645979756852
193 | 6.4, 1.92, 35.58869991569407
194 | 6.433333333333334, 1.93, 36.872203339723754
195 | 6.466666666666667, 1.94, 34.17538284347557
196 | 6.5, 1.95, 33.88226366107863
197 | 6.533333333333333, 1.96, 38.075803446050585
198 | 6.566666666666666, 1.97, 35.74493718420581
199 | 6.6, 1.98, 35.30283837847277
200 | 6.633333333333334, 1.99, 34.730652076053104
201 | 6.666666666666667, 2.0, 39.19576948510403
202 | 6.7, 2.01, 34.93157708420626
203 | 6.733333333333333, 2.02, 36.001365395533846
204 | 6.766666666666667, 2.03, 40.10305518614833
205 | 6.8, 2.04, 37.604780782099766
206 | 6.833333333333333, 2.05, 35.86334171162984
207 | 6.866666666666666, 2.06, 36.516331160024606
208 | 6.9, 2.07, 37.43103764006763
209 | 6.933333333333334, 2.08, 40.617287594364015
210 | 6.966666666666667, 2.09, 40.28891519227408
211 | 7.0, 2.1, 39.97514321106326
212 | 7.033333333333333, 2.11, 42.29144926430656
213 | 7.066666666666666, 2.12, 40.79047538944818
214 | 7.1, 2.13, 40.53504536473122
215 | 7.133333333333334, 2.14, 42.66357630373584
216 | 7.166666666666667, 2.15, 42.06579971796315
217 | 7.2, 2.16, 39.18652939287295
218 | 7.233333333333333, 2.17, 40.57358687591279
219 | 7.266666666666667, 2.18, 40.9813429070086
220 | 7.3, 2.19, 42.40459171117899
221 | 7.333333333333333, 2.2, 43.14198812834512
222 | 7.366666666666666, 2.21, 40.87088747147506
223 | 7.4, 2.22, 42.67962233493865
224 | 7.433333333333334, 2.23, 41.84987898302671
225 | 7.466666666666667, 2.24, 41.17051224822186
226 | 7.5, 2.25, 41.6598633333984
227 | 7.533333333333333, 2.26, 46.24865198954437
228 | 7.566666666666666, 2.27, 41.797447482331584
229 | 7.6, 2.28, 46.7324768651631
230 | 7.633333333333334, 2.29, 44.867777814692616
231 | 7.666666666666667, 2.3, 45.228542001052354
232 | 7.7, 2.31, 47.60684040080516
233 | 7.733333333333333, 2.32, 46.15015410351057
234 | 7.766666666666667, 2.33, 47.51697394423297
235 | 7.8, 2.34, 44.82390249547546
236 | 7.833333333333333, 2.35, 47.011850493598885
237 | 7.866666666666666, 2.36, 46.704387562172876
238 | 7.9, 2.37, 45.0539708396837
239 | 7.933333333333334, 2.38, 48.67994238137635
240 | 7.966666666666667, 2.39, 46.2845411626218
241 | 8.0, 2.4, 49.91375700712098
242 | 8.033333333333333, 2.41, 46.999053709576756
243 | 8.066666666666666, 2.42, 48.638545604849824
244 | 8.1, 2.43, 46.892799700678765
245 | 8.133333333333333, 2.44, 49.56056269052969
246 | 8.166666666666666, 2.45, 50.97581063078197
247 | 8.2, 2.46, 49.952055064194354
248 | 8.233333333333333, 2.47, 52.137973300657016
249 | 8.266666666666667, 2.48, 49.36736527544093
250 | 8.3, 2.49, 50.69549427554965
251 | 8.333333333333334, 2.5, 50.02714182304067
252 | 8.366666666666667, 2.51, 48.88299439269868
253 | 8.4, 2.52, 50.6756795253646
254 | 8.433333333333334, 2.53, 52.48130101342313
255 | 8.466666666666667, 2.54, 49.87963226719046
256 | 8.5, 2.55, 52.04050217439621
257 | 8.533333333333333, 2.56, 52.3469298242771
258 | 8.566666666666666, 2.57, 51.32253035250384
259 | 8.6, 2.58, 55.094711783601994
260 | 8.633333333333333, 2.59, 52.38311941783407
261 | 8.666666666666666, 2.6, 55.89367573550204
262 | 8.7, 2.61, 54.979113463902685
263 | 8.733333333333333, 2.62, 55.01214211920699
264 | 8.766666666666667, 2.63, 54.443887482271286
265 | 8.8, 2.64, 57.39417644869978
266 | 8.833333333333334, 2.65, 57.853156125263084
267 | 8.866666666666667, 2.66, 58.01238528456882
268 | 8.9, 2.67, 57.12187019004233
269 | 8.933333333333334, 2.68, 56.97586753122167
270 | 8.966666666666667, 2.69, 55.09330956191109
271 | 9.0, 2.7, 57.22031240747459
272 | 9.033333333333333, 2.71, 55.68235152888044
273 | 9.066666666666666, 2.72, 58.60953628460087
274 | 9.1, 2.73, 56.511881253442326
275 | 9.133333333333333, 2.74, 59.589289948038925
276 | 9.166666666666666, 2.75, 58.78997538367469
277 | 9.2, 2.76, 57.19972946462454
278 | 9.233333333333333, 2.77, 60.325974255459116
279 | 9.266666666666667, 2.78, 61.78957488358926
280 | 9.3, 2.79, 59.74128020225102
281 | 9.333333333333334, 2.8, 59.35339429843822
282 | 9.366666666666667, 2.81, 60.51364588816104
283 | 9.4, 2.82, 59.757142450740886
284 | 9.433333333333334, 2.83, 62.18012834298008
285 | 9.466666666666667, 2.84, 60.02233794867743
286 | 9.5, 2.85, 62.01619919811168
287 | 9.533333333333333, 2.86, 63.17175710151897
288 | 9.566666666666666, 2.87, 62.9380346224076
289 | 9.6, 2.88, 64.39845345210813
290 | 9.633333333333333, 2.89, 65.7975770400738
291 | 9.666666666666666, 2.9, 65.65171347423397
292 | 9.7, 2.91, 63.54252363990485
293 | 9.733333333333333, 2.92, 66.71535141461017
294 | 9.766666666666667, 2.93, 64.76981067325383
295 | 9.8, 2.94, 64.52984942455741
296 | 9.833333333333334, 2.95, 63.57419044196734
297 | 9.866666666666667, 2.96, 65.6775932936505
298 | 9.9, 2.97, 67.99332064411716
299 | 9.933333333333334, 2.98, 68.31946075912666
300 | 9.966666666666667, 2.99, 65.27781445848083
301 |
--------------------------------------------------------------------------------