├── .clang-format ├── .flake8 ├── .git-blame-ignore-revs ├── .github ├── ISSUE_TEMPLATE │ ├── bug-report.md │ ├── documentation.md │ └── feature-request.md └── workflows │ ├── pytest.yml │ ├── python-package.yml │ ├── static-analysis.yml │ └── static-gh-pages.yml ├── .gitignore ├── .gitlab-ci.yml ├── .gitmodules ├── CONTRIBUTING.md ├── LICENSE ├── MANIFEST.in ├── Makefile ├── NEWS.md ├── Readme.md ├── assets ├── ID-compressAI-logo-750x140.png └── kodak-psnr.png ├── compressai ├── __init__.py ├── cpp_exts │ ├── ops │ │ └── ops.cpp │ └── rans │ │ ├── rans_interface.cpp │ │ └── rans_interface.hpp ├── datasets │ ├── __init__.py │ ├── cache.py │ ├── image.py │ ├── ndarray.py │ ├── pointcloud │ │ ├── __init__.py │ │ ├── modelnet.py │ │ ├── s3dis.py │ │ ├── semantic_kitti.py │ │ └── shapenet.py │ ├── pregenerated.py │ ├── rawvideo.py │ ├── stack.py │ ├── utils.py │ ├── video.py │ └── vimeo90k.py ├── entropy_models │ ├── __init__.py │ ├── entropy_models.py │ └── entropy_models_vbr.py ├── latent_codecs │ ├── __init__.py │ ├── base.py │ ├── channel_groups.py │ ├── checkerboard.py │ ├── entropy_bottleneck.py │ ├── gain │ │ ├── __init__.py │ │ ├── hyper.py │ │ └── hyperprior.py │ ├── gaussian_conditional.py │ ├── hyper.py │ ├── hyperprior.py │ └── rasterscan.py ├── layers │ ├── __init__.py │ ├── basic.py │ ├── gdn.py │ ├── layers.py │ └── pointcloud │ │ ├── __init__.py │ │ ├── hrtzxf2022.py │ │ ├── pointnet.py │ │ ├── pointnet2.py │ │ ├── pointnet2_sfu.py │ │ └── utils.py ├── losses │ ├── __init__.py │ ├── pointcloud │ │ ├── __init__.py │ │ ├── chamfer.py │ │ └── hrtzxf2022.py │ ├── rate_distortion.py │ └── utils.py ├── models │ ├── __init__.py │ ├── base.py │ ├── google.py │ ├── pointcloud │ │ ├── __init__.py │ │ ├── hrtzxf2022.py │ │ ├── sfu_pointnet.py │ │ └── sfu_pointnet2.py │ ├── priors.py │ ├── sensetime.py │ ├── utils.py │ ├── vbr.py │ ├── video │ │ ├── __init__.py │ │ └── google.py │ └── waseda.py ├── ops │ ├── __init__.py │ ├── bound_ops.py │ ├── ops.py │ └── parametrizers.py ├── optimizers │ ├── __init__.py │ ├── net.py │ └── net_aux.py ├── registry │ ├── __init__.py │ ├── torch.py │ ├── torchvision.py │ └── transforms.py ├── sadl_codec │ ├── CMakeLists.txt │ ├── build_codec.sh │ ├── check_kodak.sh │ ├── common.h │ ├── dataset2latent.py │ ├── decoder_float.cpp │ ├── decoder_float.h │ ├── decoder_generic.h │ ├── decoder_int16.cpp │ ├── decoder_int16.h │ ├── encoder_float.cpp │ ├── encoder_float.h │ ├── encoder_generic.h │ ├── encoder_int16.cpp │ ├── encoder_int16.h │ ├── extract_cdf.cpp │ ├── extract_codec.py │ ├── extract_quantizers.py │ ├── model_cdfs.h │ ├── range_coder.cpp │ ├── range_coder.h │ ├── rdoq.h │ └── readme.md ├── transforms │ ├── __init__.py │ ├── functional.py │ ├── point │ │ ├── __init__.py │ │ ├── generate_position_normals.py │ │ ├── normalize_scale_v2.py │ │ ├── random_permutation.py │ │ ├── random_rotate_full.py │ │ ├── random_sample.py │ │ ├── sample_points_v2.py │ │ └── to_dict.py │ └── transforms.py ├── typing │ ├── __init__.py │ └── torch.py ├── utils │ ├── __init__.py │ ├── bench │ │ ├── __init__.py │ │ ├── __main__.py │ │ └── codecs.py │ ├── eval_model │ │ ├── __init__.py │ │ └── __main__.py │ ├── find_close │ │ ├── __init__.py │ │ └── __main__.py │ ├── plot │ │ ├── __init__.py │ │ └── __main__.py │ ├── update_model │ │ ├── __init__.py │ │ └── __main__.py │ └── video │ │ ├── __init__.py │ │ ├── bench │ │ ├── __init__.py │ │ ├── __main__.py │ │ └── codecs.py │ │ ├── eval_model │ │ ├── __init__.py │ │ └── __main__.py │ │ └── plot │ │ ├── __init__.py │ │ └── __main__.py └── zoo │ ├── __init__.py │ ├── image.py │ ├── image_vbr.py │ ├── pretrained.py │ └── video.py ├── docker ├── Dockerfile └── Dockerfile.cpu ├── docs ├── .gitignore ├── .requirements ├── Makefile ├── Readme.md ├── make.bat ├── requirements.txt └── source │ ├── _static │ └── logo.svg │ ├── ans.rst │ ├── cli_usage.rst │ ├── compressai.rst │ ├── conf.py │ ├── datasets.rst │ ├── entropy_models.rst │ ├── generate_cli_help.py │ ├── index.rst │ ├── installation.rst │ ├── intro.rst │ ├── latent_codecs.rst │ ├── layers.rst │ ├── losses.rst │ ├── media │ └── images │ │ ├── bmshj2018-factorized-mse.png │ │ ├── bmshj2018-hyperprior-mse.png │ │ ├── compressai-clic2020-mobile.png │ │ ├── compressai-clic2020-pro.png │ │ ├── compressai.png │ │ ├── mbt2018-mean-mse.png │ │ └── mbt2018-mse.png │ ├── models.rst │ ├── ops.rst │ ├── transforms.rst │ ├── tutorials │ ├── tutorial_custom.rst │ └── tutorial_train.rst │ └── zoo.rst ├── examples ├── CompressAI Inference Demo.ipynb ├── CompressAI Models Comparison Demo.ipynb ├── Readme.md ├── assets │ └── stmalo_fracape.png ├── codec.py ├── run-benchmarks.sh ├── train.py ├── train_pointcloud.py └── train_video.py ├── mypy.ini ├── pyproject.toml ├── requirements.txt ├── results ├── Readme.md ├── image │ ├── 8bit-decoded │ │ ├── clic2020-mobile │ │ │ ├── compressai-bmshj2018-factorized_ms-ssim_ans_cuda.json │ │ │ ├── compressai-bmshj2018-factorized_mse_ans_cuda.json │ │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_ans_cuda.json │ │ │ ├── compressai-bmshj2018-hyperprior_mse_ans_cuda.json │ │ │ ├── compressai-cheng2020-anchor_mse_ans_cuda.json │ │ │ ├── compressai-cheng2020-attn_mse_ans_cuda.json │ │ │ ├── compressai-mbt2018-mean_ms-ssim_ans_cuda.json │ │ │ ├── compressai-mbt2018-mean_mse_ans_cuda.json │ │ │ ├── compressai-mbt2018_ms-ssim_ans_cuda.json │ │ │ └── compressai-mbt2018_mse_ans_cuda.json │ │ └── kodak │ │ │ ├── compressai-bmshj2018-factorized_ms-ssim_ans_cuda.json │ │ │ ├── compressai-bmshj2018-factorized_mse_ans_cuda.json │ │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_ans_cuda.json │ │ │ ├── compressai-bmshj2018-hyperprior_mse_ans_cuda.json │ │ │ ├── compressai-cheng2020-anchor_mse_ans_cuda.json │ │ │ ├── compressai-cheng2020-attn_mse_ans_cuda.json │ │ │ ├── compressai-mbt2018-mean_ms-ssim_ans_cuda.json │ │ │ ├── compressai-mbt2018-mean_mse_ans_cuda.json │ │ │ ├── compressai-mbt2018_ms-ssim_ans_cuda.json │ │ │ └── compressai-mbt2018_mse_ans_cuda.json │ ├── clic2020-mobile │ │ ├── av1.json │ │ ├── bpg_444_x265_ycbcr.json │ │ ├── compressai-bmshj2018-factorized_ms-ssim_cpu.json │ │ ├── compressai-bmshj2018-factorized_ms-ssim_cuda.json │ │ ├── compressai-bmshj2018-factorized_mse_cpu.json │ │ ├── compressai-bmshj2018-factorized_mse_cuda.json │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_cpu.json │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_cuda.json │ │ ├── compressai-bmshj2018-hyperprior_mse_cpu.json │ │ ├── compressai-bmshj2018-hyperprior_mse_cuda.json │ │ ├── compressai-cheng2020-anchor_ms-ssim_cpu.json │ │ ├── compressai-cheng2020-anchor_ms-ssim_cuda.json │ │ ├── compressai-cheng2020-anchor_mse_cpu.json │ │ ├── compressai-cheng2020-anchor_mse_cuda.json │ │ ├── compressai-cheng2020-attn_ms-ssim_cpu.json │ │ ├── compressai-cheng2020-attn_ms-ssim_cuda.json │ │ ├── compressai-cheng2020-attn_mse_cpu.json │ │ ├── compressai-cheng2020-attn_mse_cuda.json │ │ ├── compressai-mbt2018-mean_ms-ssim_cpu.json │ │ ├── compressai-mbt2018-mean_ms-ssim_cuda.json │ │ ├── compressai-mbt2018-mean_mse_cpu.json │ │ ├── compressai-mbt2018-mean_mse_cuda.json │ │ ├── compressai-mbt2018_ms-ssim_cpu.json │ │ ├── compressai-mbt2018_ms-ssim_cuda.json │ │ ├── compressai-mbt2018_mse_cpu.json │ │ ├── compressai-mbt2018_mse_cuda.json │ │ ├── hm.json │ │ ├── jpeg.json │ │ ├── jpeg2000.json │ │ ├── rd-curves-clic2020-mobile-ms-ssim.png │ │ ├── rd-curves-clic2020-mobile-psnr.png │ │ ├── vtm.json │ │ └── webp.json │ ├── clic2020-professional │ │ ├── av1.json │ │ ├── bpg_444_x265_ycbcr.json │ │ ├── compressai-bmshj2018-factorized_ms-ssim_cpu.json │ │ ├── compressai-bmshj2018-factorized_ms-ssim_cuda.json │ │ ├── compressai-bmshj2018-factorized_mse_cpu.json │ │ ├── compressai-bmshj2018-factorized_mse_cuda.json │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_cpu.json │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_cuda.json │ │ ├── compressai-bmshj2018-hyperprior_mse_cpu.json │ │ ├── compressai-bmshj2018-hyperprior_mse_cuda.json │ │ ├── compressai-cheng2020-anchor_ms-ssim_cpu.json │ │ ├── compressai-cheng2020-anchor_ms-ssim_cuda.json │ │ ├── compressai-cheng2020-anchor_mse_cpu.json │ │ ├── compressai-cheng2020-anchor_mse_cuda.json │ │ ├── compressai-cheng2020-attn_ms-ssim_cpu.json │ │ ├── compressai-cheng2020-attn_ms-ssim_cuda.json │ │ ├── compressai-cheng2020-attn_mse_cpu.json │ │ ├── compressai-cheng2020-attn_mse_cuda.json │ │ ├── compressai-mbt2018-mean_ms-ssim_cpu.json │ │ ├── compressai-mbt2018-mean_ms-ssim_cuda.json │ │ ├── compressai-mbt2018-mean_mse_cpu.json │ │ ├── compressai-mbt2018-mean_mse_cuda.json │ │ ├── compressai-mbt2018_ms-ssim_cpu.json │ │ ├── compressai-mbt2018_ms-ssim_cuda.json │ │ ├── compressai-mbt2018_mse_cpu.json │ │ ├── compressai-mbt2018_mse_cuda.json │ │ ├── hm.json │ │ ├── jpeg.json │ │ ├── jpeg2000.json │ │ ├── rd-curves-clic2020-professional-ms-ssim.png │ │ ├── rd-curves-clic2020-professional-psnr.png │ │ ├── vtm.json │ │ └── webp.json │ └── kodak │ │ ├── av1.json │ │ ├── bmshj2018-hyperprior-vbr-ans.json │ │ ├── bpg_444_x265_ycbcr.json │ │ ├── compressai-bmshj2018-factorized_ms-ssim_cpu.json │ │ ├── compressai-bmshj2018-factorized_ms-ssim_cuda.json │ │ ├── compressai-bmshj2018-factorized_mse_cpu.json │ │ ├── compressai-bmshj2018-factorized_mse_cuda.json │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_cpu.json │ │ ├── compressai-bmshj2018-hyperprior_ms-ssim_cuda.json │ │ ├── compressai-bmshj2018-hyperprior_mse_cpu.json │ │ ├── compressai-bmshj2018-hyperprior_mse_cuda.json │ │ ├── compressai-cheng2020-anchor_ms-ssim_cpu.json │ │ ├── compressai-cheng2020-anchor_ms-ssim_cuda.json │ │ ├── compressai-cheng2020-anchor_mse_cpu.json │ │ ├── compressai-cheng2020-anchor_mse_cuda.json │ │ ├── compressai-cheng2020-attn_ms-ssim_cpu.json │ │ ├── compressai-cheng2020-attn_ms-ssim_cuda.json │ │ ├── compressai-cheng2020-attn_mse_cpu.json │ │ ├── compressai-cheng2020-attn_mse_cuda.json │ │ ├── compressai-mbt2018-mean_ms-ssim_cpu.json │ │ ├── compressai-mbt2018-mean_ms-ssim_cuda.json │ │ ├── compressai-mbt2018-mean_mse_cpu.json │ │ ├── compressai-mbt2018-mean_mse_cuda.json │ │ ├── compressai-mbt2018_ms-ssim_cpu.json │ │ ├── compressai-mbt2018_ms-ssim_cuda.json │ │ ├── compressai-mbt2018_mse_cpu.json │ │ ├── compressai-mbt2018_mse_cuda.json │ │ ├── hm.json │ │ ├── jpeg.json │ │ ├── jpeg2000.json │ │ ├── mbt2018-mean-vbr-ans.json │ │ ├── mbt2018-vbr-ans.json │ │ ├── paper-bmshj2018-factorized.json │ │ ├── paper-bmshj2018-hyperprior.json │ │ ├── paper-cheng2020-checkerboard-1M_mse.json │ │ ├── paper-cheng2020-checkerboard-6M_ms-ssim.json │ │ ├── paper-cheng2020-checkerboard-6M_mse.json │ │ ├── paper-cheng2020-parallel_ms-ssim.json │ │ ├── paper-cheng2020-parallel_mse.json │ │ ├── paper-elic2022_ms-ssim.json │ │ ├── paper-elic2022_mse.json │ │ ├── paper-mbt2018-mean.json │ │ ├── paper-mbt2018.json │ │ ├── paper-minnen2018-checkerboard_ms-ssim.json │ │ ├── paper-minnen2018-checkerboard_mse.json │ │ ├── paper-minnen2018-parallel_ms-ssim.json │ │ ├── paper-minnen2018-parallel_mse.json │ │ ├── paper-minnen2020-cc10_mse.json │ │ ├── rd-curves-kodak-ms-ssim.png │ │ ├── rd-curves-kodak-psnr.png │ │ ├── vtm.json │ │ └── webp.json └── video │ └── UVG-1080p │ ├── VTM-v15.0-lowdelay.json │ ├── ssf2020-from-authors.json │ ├── ssf2020-mse-ans-vimeo.json │ ├── x264-medium-tune-zerolatency.json │ └── x265-medium-tune-zerolatency.json ├── setup.py ├── tests ├── assets │ ├── dataset │ │ ├── image │ │ │ └── stmalo_fracape.png │ │ └── video │ │ │ └── C_RaceHorses_2frames_832x480_30Hz_8bit_P420.yuv │ └── fakedata │ │ └── imagefolder │ │ ├── test │ │ └── logo.png │ │ └── train │ │ └── logo.png ├── expected │ ├── bench_jpeg.json │ ├── bench_webp.json │ ├── bench_x264.json │ ├── bench_x265.json │ ├── eval_0_bmshj2018-factorized_ms-ssim_1.json │ ├── eval_0_bmshj2018-factorized_ms-ssim_4.json │ ├── eval_0_bmshj2018-factorized_ms-ssim_8.json │ ├── eval_0_bmshj2018-factorized_mse_1.json │ ├── eval_0_bmshj2018-factorized_mse_4.json │ ├── eval_0_bmshj2018-factorized_mse_8.json │ ├── eval_0_ssf2020_mse_1.json │ ├── eval_0_ssf2020_mse_4.json │ ├── eval_0_ssf2020_mse_8.json │ ├── eval_1_bmshj2018-factorized_ms-ssim_1.json │ ├── eval_1_bmshj2018-factorized_ms-ssim_4.json │ ├── eval_1_bmshj2018-factorized_ms-ssim_8.json │ ├── eval_1_bmshj2018-factorized_mse_1.json │ ├── eval_1_bmshj2018-factorized_mse_4.json │ ├── eval_1_bmshj2018-factorized_mse_8.json │ ├── eval_1_ssf2020_mse_1.json │ ├── eval_1_ssf2020_mse_4.json │ ├── eval_1_ssf2020_mse_8.json │ ├── md5sum-bin-bmshj2018-factorized-stmalo_fracape.txt │ ├── md5sum-bin-ssf2020-RaceHorses-1fr.txt │ ├── md5sum-bin-ssf2020-RaceHorses-2fr.txt │ ├── md5sum-dec-model-bmshj2018-factorized-stmalo_fracape.txt │ ├── md5sum-dec-model-ssf2020-RaceHorses_1fr.txt │ ├── md5sum-dec-model-ssf2020-RaceHorses_2fr.txt │ └── train_log_42.txt ├── test_bench_codec.py ├── test_bench_codec_video.py ├── test_codec.py ├── test_coder.py ├── test_datasets.py ├── test_datasets_video.py ├── test_entropy_models.py ├── test_entropy_models_vbr.py ├── test_eval_model.py ├── test_eval_model_video.py ├── test_find_close.py ├── test_init.py ├── test_layers.py ├── test_models.py ├── test_ops.py ├── test_plot.py ├── test_scripting.py ├── test_train.py ├── test_transforms.py ├── test_update_model.py ├── test_waseda.py └── test_zoo.py └── third_party ├── range_coder ├── range_coder_impl.cpp └── range_coder_impl.h └── ryg_rans ├── LICENSE ├── README ├── rans64.h ├── rans_byte.h └── rans_word_sse41.h /.flake8: -------------------------------------------------------------------------------- 1 | [flake8] 2 | ignore = E203, E501, W503, F403 3 | # E203, black and flake8 disagree on whitespace before ':' 4 | # E501, line too long (> 79 characters) 5 | # W503, black and flake8 disagree on how to place operators 6 | # F403, 'from module import *' used; unable to detect undefined names 7 | 8 | per-file-ignores = 9 | # imported but unused 10 | __init__.py: F401 11 | 12 | max-line-length = 88 13 | 14 | # maximum McCabe complexity 15 | max-complexity = 12 16 | 17 | exclude = 18 | build 19 | -------------------------------------------------------------------------------- /.git-blame-ignore-revs: -------------------------------------------------------------------------------- 1 | # Migrate code style to Black 2 | 79f392a1ca2f835917869d181c4f92df247893a0 3 | -------------------------------------------------------------------------------- /.github/ISSUE_TEMPLATE/bug-report.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: "Bug Report" 3 | about: Create a report to help us improve CompressAI 4 | title: '' 5 | labels: '' 6 | assignees: '' 7 | 8 | --- 9 | 10 | ## Bug 11 | 12 | 13 | 14 | ## To Reproduce 15 | 16 | Steps to reproduce the behavior: 17 | 18 | 1. 19 | 1. 20 | 1. 21 | 22 | 23 | 24 | ## Expected behavior 25 | 26 | 27 | 28 | ## Environment 29 | 30 | Please copy and paste the output from `python3 -m torch.utils.collect_env` 31 | 32 | ``` 33 | - PyTorch / CompressAI Version (e.g., 1.0 / 0.4.0): 34 | - OS (e.g., Linux): 35 | - How you installed PyTorch / CompressAI (`pip`, source): 36 | - Build command you used (if compiling from source): 37 | - Python version: 38 | - CUDA/cuDNN version: 39 | - GPU models and configuration: 40 | - Any other relevant information: 41 | ``` 42 | 43 | ## Additional context 44 | 45 | 46 | -------------------------------------------------------------------------------- /.github/ISSUE_TEMPLATE/documentation.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: "Documentation" 3 | about: Report an issue to help improve CompressAI documentation 4 | title: '' 5 | labels: '' 6 | assignees: '' 7 | 8 | --- 9 | 10 | ## Documentation 11 | 12 | 13 | -------------------------------------------------------------------------------- /.github/ISSUE_TEMPLATE/feature-request.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: "Feature request" 3 | about: Suggest an idea for this project 4 | title: '' 5 | labels: '' 6 | assignees: '' 7 | 8 | --- 9 | 10 | ## Feature 11 | 12 | ## Motivation 13 | 14 | ## Additional context 15 | -------------------------------------------------------------------------------- /.github/workflows/pytest.yml: -------------------------------------------------------------------------------- 1 | name: Pytest 2 | 3 | on: [push, pull_request] 4 | 5 | jobs: 6 | tests: 7 | runs-on: "ubuntu-latest" 8 | strategy: 9 | matrix: 10 | python-version: 11 | - "3.8" 12 | - "3.9" 13 | - "3.10" 14 | 15 | steps: 16 | - uses: actions/checkout@v4 17 | - name: Set up Python ${{ matrix.python-version }} 18 | uses: actions/setup-python@v4 19 | with: 20 | python-version: ${{ matrix.python-version }} 21 | - name: Install Python dependencies 22 | run: | 23 | python -m pip install -U pip 24 | pip install -e .[test] 25 | - name: Run unit tests 26 | run: python -m pytest -m "not slow" --cov=compressai -s tests/ 27 | -------------------------------------------------------------------------------- /.github/workflows/static-analysis.yml: -------------------------------------------------------------------------------- 1 | name: Static Analysis 2 | 3 | on: [push, pull_request] 4 | 5 | jobs: 6 | static_analysis: 7 | runs-on: ${{ matrix.os }} 8 | strategy: 9 | matrix: 10 | python-version: 11 | - "3.8" 12 | - "3.10" 13 | include: 14 | - os: "ubuntu-latest" 15 | steps: 16 | - uses: actions/checkout@v4 17 | - name: Set up Python ${{ matrix.python-version }} 18 | uses: actions/setup-python@v4 19 | with: 20 | python-version: ${{ matrix.python-version }} 21 | - name: Install Python dependencies 22 | run: | 23 | python3 -m pip install -U pip 24 | python3 -m pip install .[dev] 25 | - name: Run static analysis checks 26 | run: make static-analysis 27 | -------------------------------------------------------------------------------- /.github/workflows/static-gh-pages.yml: -------------------------------------------------------------------------------- 1 | name: publish documentation 2 | 3 | on: 4 | push: 5 | branches: 6 | - master 7 | jobs: 8 | docs_to_gh-pages: 9 | runs-on: ubuntu-latest 10 | name: publish documentation 11 | steps: 12 | - uses: actions/checkout@v4 13 | - name: Setup Python 14 | uses: actions/setup-python@v4 15 | with: 16 | python-version: '3.10' 17 | 18 | - name: install dependencies pip 19 | run: | 20 | python3 -m pip install -U pip 21 | python3 -m pip install .[doc] 22 | 23 | - name: make docs 24 | run: | 25 | make -C docs clean 26 | make -C docs html 27 | 28 | - name: Init repo for generated files 29 | run: | 30 | cd docs/_build/html 31 | git init 32 | touch .nojekyll 33 | git add --all 34 | git config --local user.email "compressai@interdigital.com" 35 | git config --local user.name "CompressAI" 36 | git commit -m "deploy" 37 | 38 | - name: Deploy 39 | uses: peaceiris/actions-gh-pages@v3 40 | if: github.ref == 'refs/heads/master' 41 | with: 42 | github_token: ${{ secrets.GITHUB_TOKEN }} 43 | publish_dir: docs/_build/html 44 | -------------------------------------------------------------------------------- /.gitmodules: -------------------------------------------------------------------------------- 1 | [submodule "sadl"] 2 | path = sadl 3 | url = https://github.com/InterDigitalInc/SADL.git 4 | -------------------------------------------------------------------------------- /CONTRIBUTING.md: -------------------------------------------------------------------------------- 1 | # Contributing 2 | 3 | If you want to contribute bug-fixes please directly file a pull-request. If you 4 | plan to introduce new features or extend CompressAI, please first open an issue 5 | to start a public discussion or contact us directly. 6 | 7 | ## Coding style 8 | 9 | We try to follow PEP 8 recommendations. Automatic formatting is performed via 10 | [black](https://github.com/google/yapf://github.com/psf/black) and 11 | [isort](https://github.com/timothycrosley/isort/). 12 | 13 | ## Testing 14 | 15 | We use [pytest](https://docs.pytest.org/en/5.4.3/getting-started.html). To run 16 | all the tests: 17 | 18 | * `pip install pytest pytest-cov coverage` 19 | * `python -m pytest --cov=compressai -s` 20 | * You can run `coverage report` or `coverage html` to visualize the tests 21 | coverage analysis 22 | 23 | ## Documentation 24 | 25 | See `docs/Readme.md` for more information. 26 | 27 | ## Licence 28 | 29 | By contributing to CompressAI, you agree that your contributions will be 30 | licensed under the same license as described in the LICENSE file at the root of 31 | this repository. 32 | 33 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Copyright (c) 2021-2024, InterDigital Communications, Inc 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted (subject to the limitations in the disclaimer 6 | below) provided that the following conditions are met: 7 | 8 | * Redistributions of source code must retain the above copyright notice, 9 | this list of conditions and the following disclaimer. 10 | * Redistributions in binary form must reproduce the above copyright notice, 11 | this list of conditions and the following disclaimer in the documentation 12 | and/or other materials provided with the distribution. 13 | * Neither the name of InterDigital Communications, Inc nor the names of its 14 | contributors may be used to endorse or promote products derived from this 15 | software without specific prior written permission. 16 | 17 | NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY 18 | THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 19 | CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 20 | NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 21 | PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER 22 | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 23 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 24 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 25 | OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 26 | WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 27 | OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 28 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -------------------------------------------------------------------------------- /MANIFEST.in: -------------------------------------------------------------------------------- 1 | include LICENSE 2 | include requirements.txt 3 | recursive-include compressai *.cpp *.hpp 4 | recursive-include third_party *.h 5 | -------------------------------------------------------------------------------- /NEWS.md: -------------------------------------------------------------------------------- 1 | 2023-02-26: CompressAI now supports Point Cloud Compression using various models 2 | 3 | 2022-11-27: CompressAI now includes sadl_codec, which enables to run c++ inteference with full integer operations 4 | 5 | 2021-12-23: Compressai v1.2.0 now includes video bench pipeline and the Scale-Space-Flow model [Agustsson et al. 2020] 6 | The license has been changed BSD-3-Clause-Clear 7 | 8 | 2021-03-05: CompressAI is now available on PyPI! 9 | 10 | 2021-01-26: Experimental multi-GPU support 11 | * `aux_parameters` was dropped to support data parallel 12 | * see the updated example/train.py 13 | * use `load_pretrained` to convert `state_dict`s to the new format 14 | 15 | 2020-06-21: First release of CompressAI ! 16 | 17 | -------------------------------------------------------------------------------- /assets/ID-compressAI-logo-750x140.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/assets/ID-compressAI-logo-750x140.png -------------------------------------------------------------------------------- /assets/kodak-psnr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/assets/kodak-psnr.png -------------------------------------------------------------------------------- /compressai/sadl_codec/decoder_float.h: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/compressai/sadl_codec/decoder_float.h -------------------------------------------------------------------------------- /compressai/sadl_codec/decoder_int16.h: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/compressai/sadl_codec/decoder_int16.h -------------------------------------------------------------------------------- /compressai/sadl_codec/encoder_float.h: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/compressai/sadl_codec/encoder_float.h -------------------------------------------------------------------------------- /compressai/sadl_codec/encoder_int16.h: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/compressai/sadl_codec/encoder_int16.h -------------------------------------------------------------------------------- /compressai/sadl_codec/model_cdfs.h: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/compressai/sadl_codec/model_cdfs.h -------------------------------------------------------------------------------- /compressai/utils/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) 2021-2024, InterDigital Communications, Inc 2 | # All rights reserved. 3 | 4 | # Redistribution and use in source and binary forms, with or without 5 | # modification, are permitted (subject to the limitations in the disclaimer 6 | # below) provided that the following conditions are met: 7 | 8 | # * Redistributions of source code must retain the above copyright notice, 9 | # this list of conditions and the following disclaimer. 10 | # * Redistributions in binary form must reproduce the above copyright notice, 11 | # this list of conditions and the following disclaimer in the documentation 12 | # and/or other materials provided with the distribution. 13 | # * Neither the name of InterDigital Communications, Inc nor the names of its 14 | # contributors may be used to endorse or promote products derived from this 15 | # software without specific prior written permission. 16 | 17 | # NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY 18 | # THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 19 | # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 20 | # NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 21 | # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 22 | # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 23 | # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 24 | # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 25 | # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 26 | # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 27 | # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 28 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 | -------------------------------------------------------------------------------- /compressai/utils/bench/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) 2021-2024, InterDigital Communications, Inc 2 | # All rights reserved. 3 | 4 | # Redistribution and use in source and binary forms, with or without 5 | # modification, are permitted (subject to the limitations in the disclaimer 6 | # below) provided that the following conditions are met: 7 | 8 | # * Redistributions of source code must retain the above copyright notice, 9 | # this list of conditions and the following disclaimer. 10 | # * Redistributions in binary form must reproduce the above copyright notice, 11 | # this list of conditions and the following disclaimer in the documentation 12 | # and/or other materials provided with the distribution. 13 | # * Neither the name of InterDigital Communications, Inc nor the names of its 14 | # contributors may be used to endorse or promote products derived from this 15 | # software without specific prior written permission. 16 | 17 | # NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY 18 | # THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 19 | # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 20 | # NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 21 | # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 22 | # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 23 | # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 24 | # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 25 | # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 26 | # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 27 | # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 28 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 | -------------------------------------------------------------------------------- /compressai/utils/find_close/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/compressai/utils/find_close/__init__.py -------------------------------------------------------------------------------- /docker/Dockerfile: -------------------------------------------------------------------------------- 1 | ARG PYTORCH_IMAGE 2 | FROM ${PYTORCH_IMAGE}-devel as builder 3 | 4 | WORKDIR /tmp/compressai 5 | COPY compressai.tar.gz . 6 | RUN pip install pybind11 7 | RUN tar xzf compressai.tar.gz && \ 8 | python3 setup.py bdist_wheel 9 | 10 | FROM ${PYTORCH_IMAGE}-runtime 11 | 12 | LABEL maintainer="compressai@interdigital.com" 13 | 14 | WORKDIR /tmp 15 | COPY --from=builder /tmp/compressai/dist/compressai-*.whl . 16 | RUN pip install compressai-*.whl && \ 17 | python3 -c 'import compressai' 18 | 19 | # Install jupyter? 20 | ARG WITH_JUPYTER=0 21 | RUN if [ "$WITH_JUPYTER" = "1" ]; then \ 22 | pip3 install jupyter ipywidgets && \ 23 | jupyter nbextension enable --py widgetsnbextension \ 24 | ; fi 25 | 26 | WORKDIR /workspace 27 | CMD ["bash"] 28 | -------------------------------------------------------------------------------- /docker/Dockerfile.cpu: -------------------------------------------------------------------------------- 1 | ARG BASE_IMAGE 2 | FROM ${BASE_IMAGE} as base 3 | 4 | RUN pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f https://download.pytorch.org/whl/torch_stable.html 5 | 6 | FROM base as builder 7 | WORKDIR /tmp/compressai 8 | COPY compressai.tar.gz . 9 | RUN tar xzf compressai.tar.gz && \ 10 | python3 setup.py sdist bdist_wheel 11 | 12 | FROM base 13 | 14 | LABEL maintainer="compressai@interdigital.com" 15 | 16 | WORKDIR /tmp 17 | COPY --from=builder /tmp/compressai/dist/compressai-*.whl . 18 | RUN pip install compressai-*.whl && \ 19 | python3 -c 'import compressai' 20 | 21 | # Install jupyter? 22 | ARG WITH_JUPYTER=0 23 | RUN if [ "$WITH_JUPYTER" = "1" ]; then \ 24 | pip3 install jupyter ipywidgets && \ 25 | jupyter nbextension enable --py widgetsnbextension \ 26 | ; fi 27 | 28 | WORKDIR /workspace 29 | CMD ["bash"] 30 | -------------------------------------------------------------------------------- /docs/.gitignore: -------------------------------------------------------------------------------- 1 | _build 2 | -------------------------------------------------------------------------------- /docs/.requirements: -------------------------------------------------------------------------------- 1 | sphinx==3.0.3 2 | sphinx_rtd_theme 3 | -------------------------------------------------------------------------------- /docs/Makefile: -------------------------------------------------------------------------------- 1 | # Minimal makefile for Sphinx documentation 2 | # 3 | 4 | # You can set these variables from the command line, and also 5 | # from the environment for the first two. 6 | SPHINXOPTS ?= 7 | SPHINXBUILD ?= sphinx-build 8 | SOURCEDIR = ./source/ 9 | BUILDDIR = _build 10 | 11 | # Put it first so that "make" without argument is like "make help". 12 | help: 13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 14 | 15 | .PHONY: help Makefile 16 | 17 | # Catch-all target: route all unknown targets to Sphinx using the new 18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). 19 | %: Makefile 20 | cd "${SOURCEDIR}"; python generate_cli_help.py 21 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 22 | -------------------------------------------------------------------------------- /docs/Readme.md: -------------------------------------------------------------------------------- 1 | # Building the documentation 2 | 3 | Install sphinx and dependencies: 4 | ``` 5 | pip install -r requirements.txt 6 | ``` 7 | 8 | Then build the html documentation: 9 | ``` 10 | make html 11 | ``` 12 | 13 | Run `make html` again whenever a change is made in the `source` folder. The 14 | output html is generated in the `_build/html` folder. Open 15 | `_build/html/index.html` in your browser to view the locally generated 16 | documentation. 17 | 18 | -------------------------------------------------------------------------------- /docs/make.bat: -------------------------------------------------------------------------------- 1 | @ECHO OFF 2 | 3 | pushd %~dp0 4 | 5 | REM Command file for Sphinx documentation 6 | 7 | if "%SPHINXBUILD%" == "" ( 8 | set SPHINXBUILD=sphinx-build 9 | ) 10 | set SOURCEDIR=. 11 | set BUILDDIR=_build 12 | 13 | if "%1" == "" goto help 14 | 15 | %SPHINXBUILD% >NUL 2>NUL 16 | if errorlevel 9009 ( 17 | echo. 18 | echo.The 'sphinx-build' command was not found. Make sure you have Sphinx 19 | echo.installed, then set the SPHINXBUILD environment variable to point 20 | echo.to the full path of the 'sphinx-build' executable. Alternatively you 21 | echo.may add the Sphinx directory to PATH. 22 | echo. 23 | echo.If you don't have Sphinx installed, grab it from 24 | echo.http://sphinx-doc.org/ 25 | exit /b 1 26 | ) 27 | 28 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% 29 | goto end 30 | 31 | :help 32 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% 33 | 34 | :end 35 | popd 36 | -------------------------------------------------------------------------------- /docs/requirements.txt: -------------------------------------------------------------------------------- 1 | Sphinx==4.3.0 2 | sphinx-book-theme==1.0.1 3 | sphinxcontrib-applehelp==1.0.2 4 | sphinxcontrib-devhelp==1.0.2 5 | sphinxcontrib-htmlhelp==2.0.0 6 | sphinxcontrib-jsmath==1.0.1 7 | sphinxcontrib-qthelp==1.0.3 8 | sphinxcontrib-serializinghtml==1.1.5 9 | Jinja2<3.1 10 | 11 | -------------------------------------------------------------------------------- /docs/source/ans.rst: -------------------------------------------------------------------------------- 1 | compressai.ans 2 | ============== 3 | 4 | Range Asymmetric Numeral System (rANS) bindings. rANS can be used as a 5 | replacement for a traditional range coder. 6 | 7 | Based on the original C++ implementation from Fabian "ryg" Giesen 8 | `(github link) `_. 9 | 10 | .. currentmodule:: compressai.ans 11 | 12 | 13 | RansEncoder 14 | ----------- 15 | .. autoclass:: RansEncoder 16 | 17 | RansDecoder 18 | ----------- 19 | .. autoclass:: RansDecoder 20 | -------------------------------------------------------------------------------- /docs/source/cli_usage.rst: -------------------------------------------------------------------------------- 1 | Command line usage 2 | ================== 3 | 4 | .. include:: cli_usage.inc 5 | -------------------------------------------------------------------------------- /docs/source/compressai.rst: -------------------------------------------------------------------------------- 1 | compressai 2 | ========== 3 | .. automodule:: compressai 4 | :members: 5 | -------------------------------------------------------------------------------- /docs/source/datasets.rst: -------------------------------------------------------------------------------- 1 | compressai.datasets 2 | =================== 3 | 4 | .. currentmodule:: compressai.datasets 5 | 6 | 7 | 8 | Image/video datasets 9 | ~~~~~~~~~~~~~~~~~~~~ 10 | 11 | 12 | ImageFolder 13 | ----------- 14 | .. autoclass:: ImageFolder 15 | :members: 16 | 17 | 18 | PreGeneratedMemmapDataset 19 | ------------------------- 20 | .. autoclass:: PreGeneratedMemmapDataset 21 | :members: 22 | 23 | 24 | VideoFolder 25 | ----------- 26 | .. autoclass:: VideoFolder 27 | :members: 28 | 29 | 30 | Vimeo90kDataset 31 | --------------- 32 | .. autoclass:: Vimeo90kDataset 33 | :members: 34 | 35 | 36 | 37 | Point cloud datasets 38 | ~~~~~~~~~~~~~~~~~~~~ 39 | 40 | 41 | ModelNetDataset 42 | --------------- 43 | .. autoclass:: ModelNetDataset 44 | :members: 45 | 46 | 47 | S3disDataset 48 | ------------ 49 | .. autoclass:: S3disDataset 50 | :members: 51 | 52 | 53 | SemanticKittiDataset 54 | -------------------- 55 | .. autoclass:: SemanticKittiDataset 56 | :members: 57 | 58 | 59 | ShapeNetCorePartDataset 60 | ----------------------- 61 | .. autoclass:: ShapeNetCorePartDataset 62 | :members: 63 | 64 | -------------------------------------------------------------------------------- /docs/source/entropy_models.rst: -------------------------------------------------------------------------------- 1 | compressai.entropy_models 2 | ========================= 3 | 4 | .. currentmodule:: compressai.entropy_models 5 | 6 | 7 | EntropyBottleneck 8 | ----------------- 9 | .. autoclass:: EntropyBottleneck 10 | 11 | 12 | GaussianConditional 13 | ------------------- 14 | .. autoclass:: GaussianConditional 15 | 16 | 17 | EntropyBottleneckVbr 18 | -------------------- 19 | .. autoclass:: EntropyBottleneckVbr -------------------------------------------------------------------------------- /docs/source/index.rst: -------------------------------------------------------------------------------- 1 | CompressAI 2 | ========== 3 | 4 | CompressAI (*compress-ay*) is a PyTorch library and evaluation platform for 5 | end-to-end compression research. 6 | 7 | .. image:: ../../assets/kodak-psnr.png 8 | 9 | .. toctree:: 10 | :maxdepth: 1 11 | 12 | intro 13 | installation 14 | 15 | .. toctree:: 16 | :maxdepth: 1 17 | :caption: Tutorials 18 | 19 | tutorials/tutorial_train 20 | Custom model 21 | 22 | .. toctree:: 23 | :maxdepth: 1 24 | :caption: Library API 25 | 26 | compressai 27 | ans 28 | datasets 29 | entropy_models 30 | latent_codecs 31 | layers 32 | losses 33 | models 34 | ops 35 | transforms 36 | 37 | .. toctree:: 38 | :maxdepth: 2 39 | :caption: Model Zoo 40 | 41 | zoo 42 | 43 | .. toctree:: 44 | :maxdepth: 2 45 | :caption: Utils 46 | 47 | cli_usage 48 | 49 | 50 | .. toctree:: 51 | :caption: Development 52 | 53 | Github repository 54 | -------------------------------------------------------------------------------- /docs/source/intro.rst: -------------------------------------------------------------------------------- 1 | Introduction 2 | ============ 3 | 4 | Concept 5 | ~~~~~~~ 6 | 7 | CompressAI is built on top of PyTorch and provides: 8 | 9 | * custom operations, layers and models for deep learning based data compression 10 | 11 | * a partial port of the official `TensorFlow compression 12 | `_ library 13 | 14 | * pre-trained end-to-end compression models for learned image compression 15 | 16 | * evaluation scripts to compare learned models against classical image/video 17 | compression codecs 18 | 19 | 20 | CompressAI aims to allow more researchers to contribute to the learned 21 | image and video compression domain, by providing resources to research, 22 | implement and evaluate machine learning based compression codecs. 23 | 24 | 25 | Model Zoo 26 | ~~~~~~~~~ 27 | 28 | CompressAI includes some pre-trained models for compression tasks. See the Model 29 | Zoo section for more documentation. 30 | 31 | The list of available models, trained at different bit-rate distortion points 32 | and with different metrics, is expected to grow in the future. 33 | -------------------------------------------------------------------------------- /docs/source/layers.rst: -------------------------------------------------------------------------------- 1 | compressai.layers 2 | ================= 3 | 4 | .. currentmodule:: compressai.layers 5 | 6 | 7 | MaskedConv2d 8 | ------------ 9 | .. autoclass:: MaskedConv2d 10 | 11 | 12 | GDN 13 | --- 14 | .. autoclass:: GDN 15 | 16 | 17 | GDN1 18 | ---- 19 | .. autoclass:: GDN1 20 | 21 | 22 | ResidualBlock 23 | ------------- 24 | .. autoclass:: ResidualBlock 25 | 26 | 27 | ResidualBlockWithStride 28 | ----------------------- 29 | .. autoclass:: ResidualBlockWithStride 30 | 31 | 32 | ResidualBlockUpsample 33 | --------------------- 34 | .. autoclass:: ResidualBlockUpsample 35 | 36 | 37 | AttentionBlock 38 | -------------- 39 | .. autoclass:: AttentionBlock 40 | 41 | 42 | QReLU 43 | -------------- 44 | .. autoclass:: QReLU -------------------------------------------------------------------------------- /docs/source/losses.rst: -------------------------------------------------------------------------------- 1 | compressai.losses 2 | ================= 3 | 4 | .. currentmodule:: compressai.losses 5 | 6 | 7 | 8 | Image/video losses 9 | ~~~~~~~~~~~~~~~~~~ 10 | 11 | 12 | RateDistortionLoss 13 | ------------------ 14 | .. autoclass:: RateDistortionLoss 15 | :members: 16 | 17 | 18 | 19 | Point cloud losses 20 | ~~~~~~~~~~~~~~~~~~ 21 | 22 | 23 | ChamferPccRateDistortionLoss 24 | ---------------------------- 25 | .. autoclass:: ChamferPccRateDistortionLoss 26 | :members: 27 | 28 | 29 | RateDistortionLoss_hrtzxf2022 30 | ----------------------------- 31 | .. autoclass:: RateDistortionLoss_hrtzxf2022 32 | :members: 33 | 34 | -------------------------------------------------------------------------------- /docs/source/media/images/bmshj2018-factorized-mse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/bmshj2018-factorized-mse.png -------------------------------------------------------------------------------- /docs/source/media/images/bmshj2018-hyperprior-mse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/bmshj2018-hyperprior-mse.png -------------------------------------------------------------------------------- /docs/source/media/images/compressai-clic2020-mobile.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/compressai-clic2020-mobile.png -------------------------------------------------------------------------------- /docs/source/media/images/compressai-clic2020-pro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/compressai-clic2020-pro.png -------------------------------------------------------------------------------- /docs/source/media/images/compressai.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/compressai.png -------------------------------------------------------------------------------- /docs/source/media/images/mbt2018-mean-mse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/mbt2018-mean-mse.png -------------------------------------------------------------------------------- /docs/source/media/images/mbt2018-mse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/docs/source/media/images/mbt2018-mse.png -------------------------------------------------------------------------------- /docs/source/ops.rst: -------------------------------------------------------------------------------- 1 | compressai.ops 2 | ============== 3 | 4 | .. currentmodule:: compressai.ops 5 | 6 | 7 | compute_padding 8 | --------------- 9 | .. autofunction:: compute_padding 10 | 11 | quantize_ste 12 | ------------ 13 | .. autofunction:: quantize_ste 14 | 15 | LowerBound 16 | ---------- 17 | .. autoclass:: LowerBound 18 | 19 | 20 | NonNegativeParametrizer 21 | ----------------------- 22 | .. autoclass:: NonNegativeParametrizer 23 | -------------------------------------------------------------------------------- /docs/source/transforms.rst: -------------------------------------------------------------------------------- 1 | compressai.transforms 2 | ===================== 3 | 4 | .. currentmodule:: compressai.transforms 5 | 6 | 7 | Transforms on Tensors 8 | --------------------- 9 | 10 | .. autoclass:: RGB2YCbCr 11 | 12 | .. autoclass:: YCbCr2RGB 13 | 14 | .. autoclass:: YUV420To444 15 | 16 | .. autoclass:: YUV444To420 17 | 18 | 19 | Functional Transforms 20 | --------------------- 21 | 22 | Functional transforms can be used to define custom transform classes. 23 | 24 | .. automodule:: compressai.transforms.functional 25 | :members: 26 | 27 | 28 | Point Cloud Transforms 29 | ---------------------- 30 | 31 | .. automodule:: compressai.transforms.point 32 | :members: 33 | -------------------------------------------------------------------------------- /examples/Readme.md: -------------------------------------------------------------------------------- 1 | # Examples 2 | 3 | ## Notebooks 4 | 5 | To run the jupyter notebooks: 6 | 7 | * `pip install -U ipython jupyter ipywidgets matplotlib` 8 | * `jupyter notebook` 9 | -------------------------------------------------------------------------------- /examples/assets/stmalo_fracape.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/examples/assets/stmalo_fracape.png -------------------------------------------------------------------------------- /mypy.ini: -------------------------------------------------------------------------------- 1 | [mypy] 2 | 3 | #ignore_missing_imports = True 4 | files = compressai 5 | pretty = True 6 | show_error_codes = True 7 | 8 | [mypy-compressai.datasets.*] 9 | ignore_errors = True 10 | 11 | [mypy-compressai._CXX.*] 12 | ignore_errors = True 13 | ignore_missing_imports = True 14 | 15 | [mypy-compressai.layers.*] 16 | ignore_errors = True 17 | 18 | [mypy-compressai.models.*] 19 | ignore_errors = True 20 | 21 | [mypy-compressai.utils.*] 22 | ignore_errors = True 23 | 24 | [mypy-PIL.*] 25 | ignore_missing_imports = True 26 | 27 | [mypy-range_coder] 28 | ignore_missing_imports = True 29 | 30 | [mypy-scipy.*] 31 | ignore_missing_imports = True 32 | 33 | [mypy-numpy.*] 34 | ignore_missing_imports = True 35 | -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [build-system] 2 | requires = ["setuptools>=42", "wheel", "pybind11>=2.12", "torch"] 3 | build-backend = "setuptools.build_meta" 4 | 5 | [tool.black] 6 | line-length = 88 7 | target-version = ['py37', 'py38', 'py39', 'py310'] 8 | include = '\.pyi?$' 9 | exclude = ''' 10 | /( 11 | \.eggs 12 | | \.git 13 | | \.mypy_cache 14 | | venv* 15 | | _build 16 | | build 17 | | dist 18 | )/ 19 | ''' 20 | 21 | [tool.isort] 22 | multi_line_output = 3 23 | lines_between_types = 1 24 | include_trailing_comma = true 25 | force_grid_wrap = 0 26 | use_parentheses = true 27 | ensure_newline_before_comments = true 28 | line_length = 88 29 | known_third_party = "PIL,pytorch_msssim,torchvision,torch" 30 | skip_gitignore = true 31 | 32 | [tool.pytest.ini_options] 33 | markers = [ 34 | "pretrained: download and check pretrained models (slow, deselect with '-m \"not pretrained\"')", 35 | "slow: all slow tests (pretrained models, train, etc...)", 36 | ] 37 | -------------------------------------------------------------------------------- /results/Readme.md: -------------------------------------------------------------------------------- 1 | # Results 2 | 3 | ## Evaluate and plot rate-distortion curves 4 | To evaluate and compare your model with existing methods: 5 | - use compressai.utils.eval_model to evaluate your model 6 | - check (and modify) the script examples/run-benchmarks.sh to run encode/decode with existing methods 7 | - use compressai.utils.plot to obtain the rate-distortion curves (matplootlib or plotly) 8 | 9 | ## Note on runtimes 10 | The provided results using Compressai implementation contain runtimes that correspond to the average encode/decode time for each image of the corresponding test set. They have been obtained on a server equipped with Nvidia Quadro RTX 8000 and 80 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz. 11 | 12 | Please note that runtimes are provided as an indication. Direct comparisons with traditional codecs and standard reference models that run on 1 CPU only may not be relevant. 13 | 14 | ## Note on reconstructed images for metrics computations 15 | The original PSNR and MS-SSIM results were computed on floating point reconstructed pictures (for images models only). 16 | To make the comparisons fairer with traditional codecs, a folder "8bit-decoded" has been added, where json files contain metrics computed on rescaled reconstructed images on 8bit, like the inputs. 17 | The current implementation of compressai.utils.eval_model now includes the computation of metrics on 8bit reconstructed images. 18 | Note that we found there are negligible differences in PSNR and MS-SSIM on average for the considered datasets, but could be sensible for a particular image at higher bpp. -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-bmshj2018-factorized_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.757572645551704, 7 | 30.20928124631389, 8 | 31.655090342746693, 9 | 33.291450243317676, 10 | 34.85975865567668, 11 | 36.90955626026968, 12 | 38.767849043513955, 13 | 40.89969840746247 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9301808201864864, 17 | 0.9503051457780131, 18 | 0.9648295486910959, 19 | 0.9757413917712952, 20 | 0.9833261072635651, 21 | 0.9886736441194341, 22 | 0.9924942837672287, 23 | 0.9953091020664472 24 | ], 25 | "bpp": [ 26 | 0.11460563452931152, 27 | 0.17061773947087167, 28 | 0.2531158772035983, 29 | 0.37383241154677577, 30 | 0.5361005464517463, 31 | 0.7822436377715004, 32 | 1.0970717527786853, 33 | 1.513915269246969 34 | ], 35 | "encoding_time": [ 36 | 0.22590900137183373, 37 | 0.2246019130342462, 38 | 0.22509450992841398, 39 | 0.21752691536806942, 40 | 0.22846683491481823, 41 | 0.4261372504609354, 42 | 0.4307372784346677, 43 | 0.43242323666476135 44 | ], 45 | "decoding_time": [ 46 | 0.14065836520677202, 47 | 0.1411250883273864, 48 | 0.1449042223812489, 49 | 0.14141419094600036, 50 | 0.1541085752208581, 51 | 0.27597723784071676, 52 | 0.28299646431140685, 53 | 0.3059892949093594 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-bmshj2018-factorized_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.757572645551704, 7 | 30.20928124631389, 8 | 31.655090342746693, 9 | 33.291450243317676, 10 | 34.85975865567668, 11 | 36.90955626026968, 12 | 38.767849043513955, 13 | 40.89969840746247 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9301808201864864, 17 | 0.9503051457780131, 18 | 0.9648295486910959, 19 | 0.9757413917712952, 20 | 0.9833261072635651, 21 | 0.9886736441194341, 22 | 0.9924942837672287, 23 | 0.9953091020664472 24 | ], 25 | "bpp": [ 26 | 0.11460563452931152, 27 | 0.17061773947087167, 28 | 0.2531158772035983, 29 | 0.37383241154677577, 30 | 0.5361005464517463, 31 | 0.7822436377715004, 32 | 1.0970717527786853, 33 | 1.513915269246969 34 | ], 35 | "encoding_time": [ 36 | 0.22606830382614992, 37 | 0.21905895967162056, 38 | 0.22263345825538206, 39 | 0.22293407193730386, 40 | 0.21952164307069244, 41 | 0.4216115300574999, 42 | 0.41462191169181567, 43 | 0.43884933396671594 44 | ], 45 | "decoding_time": [ 46 | 0.1394741160146306, 47 | 0.13616650425985957, 48 | 0.14068586236975167, 49 | 0.14301773135581713, 50 | 0.1471806068098947, 51 | 0.2707422770810931, 52 | 0.2832326192534372, 53 | 0.3059709406970592 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-bmshj2018-hyperprior_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.383747818764675, 7 | 31.024903597456685, 8 | 32.76871705858895, 9 | 34.463975531331606, 10 | 35.943905101733264, 11 | 37.83794891700316, 12 | 39.560979800277885, 13 | 41.59919599468788 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9360608039947038, 17 | 0.9541257566280579, 18 | 0.9673114723703834, 19 | 0.977725832649831, 20 | 0.984666904371776, 21 | 0.9892027046573296, 22 | 0.9925432888309608, 23 | 0.9954512085807458 24 | ], 25 | "bpp": [ 26 | 0.1128588923862924, 27 | 0.17040150272857507, 28 | 0.24875330653497094, 29 | 0.35645292786407534, 30 | 0.48773663325532735, 31 | 0.6810620588226269, 32 | 0.9371421933337146, 33 | 1.2791012951228626 34 | ], 35 | "encoding_time": [ 36 | 0.28663919347055844, 37 | 0.28028766492779333, 38 | 0.2817894046226244, 39 | 0.27470116936758665, 40 | 0.2849846997957551, 41 | 0.4853471155916707, 42 | 0.4929549600301164, 43 | 0.4967045301801703 44 | ], 45 | "decoding_time": [ 46 | 0.17864053436879362, 47 | 0.18051484327637748, 48 | 0.18548573670762308, 49 | 0.18026062879669533, 50 | 0.19406974449586334, 51 | 0.30658082479841253, 52 | 0.31593149431635825, 53 | 0.3300958751292711 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-bmshj2018-hyperprior_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.383747818764675, 7 | 31.024903597456685, 8 | 32.76871705858895, 9 | 34.463975531331606, 10 | 35.943905101733264, 11 | 37.83794891700316, 12 | 39.560979800277885, 13 | 41.59919599468788 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9360608039947038, 17 | 0.9541257566280579, 18 | 0.9673114723703834, 19 | 0.977725832649831, 20 | 0.984666904371776, 21 | 0.9892027046573296, 22 | 0.9925432888309608, 23 | 0.9954512085807458 24 | ], 25 | "bpp": [ 26 | 0.1128588923862924, 27 | 0.17040150272857507, 28 | 0.24875330653497094, 29 | 0.35645292786407534, 30 | 0.48773663325532735, 31 | 0.6810620588226269, 32 | 0.9371421933337146, 33 | 1.2791012951228626 34 | ], 35 | "encoding_time": [ 36 | 0.2835330038927914, 37 | 0.2810122082742412, 38 | 0.2794750594021229, 39 | 0.2824000722906563, 40 | 0.2838747086149923, 41 | 0.4790474471081509, 42 | 0.478388079096762, 43 | 0.48437166749761346 44 | ], 45 | "decoding_time": [ 46 | 0.17152988642789005, 47 | 0.17188850547490495, 48 | 0.17662808734379457, 49 | 0.18118278096231183, 50 | 0.19228424115127393, 51 | 0.29783776235044673, 52 | 0.3088185787200928, 53 | 0.3201568407958813 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-cheng2020-anchor_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.44679771380478, 7 | 31.84241704190715, 8 | 33.126285381531446, 9 | 34.90971519170183, 10 | 36.36478101537469, 11 | 37.77093861612041 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9398024360115609, 15 | 0.9568390762538053, 16 | 0.9687264775961972, 17 | 0.9778139527594105, 18 | 0.9844149575474557, 19 | 0.9889260902163688 20 | ], 21 | "bpp": [ 22 | 0.09943932045943034, 23 | 0.14595487546883956, 24 | 0.20476417860395177, 25 | 0.30446307841817705, 26 | 0.4215437893307184, 27 | 0.572170795271508 28 | ], 29 | "encoding_time": [ 30 | 24.546320057986826, 31 | 24.619515464546975, 32 | 25.020919048384336, 33 | 24.979981642090873, 34 | 24.937083293882647, 35 | 24.99759016545971 36 | ], 37 | "decoding_time": [ 38 | 79.33712663141529, 39 | 79.19047781456722, 40 | 80.90217686369178, 41 | 79.6711050580057, 42 | 79.79840090703428, 43 | 79.83077027154772 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-cheng2020-attn_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.34167267231459, 7 | 31.71185748496752, 8 | 33.15965699613764, 9 | 34.919926043306845, 10 | 36.21910880656725, 11 | 37.71631175480532 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9407242318887389, 15 | 0.9565258119883162, 16 | 0.969494061523609, 17 | 0.9785602779200907, 18 | 0.9842678512750047, 19 | 0.9888615236523446 20 | ], 21 | "bpp": [ 22 | 0.0966444569148125, 23 | 0.13903395029458313, 24 | 0.20232233603218436, 25 | 0.31124437112371883, 26 | 0.42185931331485793, 27 | 0.57110438807825 28 | ], 29 | "encoding_time": [ 30 | 26.874483661705188, 31 | 27.36752835418401, 32 | 29.747962102461397, 33 | 27.259199388911217, 34 | 27.480368521776093, 35 | 26.986470179611377 36 | ], 37 | "decoding_time": [ 38 | 76.00084013215611, 39 | 77.47618841990996, 40 | 87.86199996310674, 41 | 76.98322720741957, 42 | 77.55916854906619, 43 | 77.1056643697653 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-mbt2018-mean_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.7058037211386, 7 | 31.331077104204155, 8 | 32.96968918703915, 9 | 34.58829472573955, 10 | 36.34904817516884, 11 | 38.03299417388573, 12 | 39.82743355397428, 13 | 41.64238329683797 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.936694798844584, 17 | 0.9552573176582208, 18 | 0.9683086088534152, 19 | 0.9780586050467545, 20 | 0.984590711553445, 21 | 0.9893434844659955, 22 | 0.9929402306508482, 23 | 0.9952730857924129 24 | ], 25 | "bpp": [ 26 | 0.10275695685548829, 27 | 0.15767746700726593, 28 | 0.23524146918385896, 29 | 0.33978597393928334, 30 | 0.4880394707572814, 31 | 0.6599119162112771, 32 | 0.9055214452673485, 33 | 1.2250692244516617 34 | ], 35 | "encoding_time": [ 36 | 0.25976625453220326, 37 | 0.2588966107100583, 38 | 0.25997620754027634, 39 | 0.2526728504159477, 40 | 0.439596304732762, 41 | 0.4386096482866266, 42 | 0.4291221398985788, 43 | 0.43392834368716465 44 | ], 45 | "decoding_time": [ 46 | 0.16026567207293563, 47 | 0.16020903024780617, 48 | 0.16828372237387668, 49 | 0.1650802781072895, 50 | 0.2729765042830049, 51 | 0.2819896521193258, 52 | 0.28074277384897295, 53 | 0.2916456018940786 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-mbt2018-mean_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean-mse", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.7058037211386, 7 | 31.331077104204155, 8 | 32.96968918703915, 9 | 34.58829472573955, 10 | 36.34904817516884, 11 | 38.03299417388573, 12 | 39.82743355397428, 13 | 41.64238329683797 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.936694798844584, 17 | 0.9552573176582208, 18 | 0.9683086088534152, 19 | 0.9780586050467545, 20 | 0.984590711553445, 21 | 0.9893434844659955, 22 | 0.9929402306508482, 23 | 0.9952730857924129 24 | ], 25 | "bpp": [ 26 | 0.10275695685548829, 27 | 0.15767746700726593, 28 | 0.23524146918385896, 29 | 0.33978597393928334, 30 | 0.4880394707572814, 31 | 0.6599119162112771, 32 | 0.9055214452673485, 33 | 1.2250692244516617 34 | ], 35 | "encoding_time": [ 36 | 0.2604580099663038, 37 | 0.25791504543818783, 38 | 0.25477862759922326, 39 | 0.26079577676365884, 40 | 0.43830555208613364, 41 | 0.43383918987231307, 42 | 0.42774768223923243, 43 | 0.441552478275942 44 | ], 45 | "decoding_time": [ 46 | 0.15894377365540924, 47 | 0.1631851651695337, 48 | 0.15988230303432163, 49 | 0.17408531971192093, 50 | 0.2726496190167545, 51 | 0.2783471466450209, 52 | 0.281508329209317, 53 | 0.29560868123943884 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-mbt2018_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.05114185676146, 7 | 31.610772015003676, 8 | 33.23873836002993, 9 | 34.74476367436098, 10 | 36.496540669644816, 11 | 38.13865012265323, 12 | 39.90605517183797, 13 | 41.674131864912056 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9386430067962475, 17 | 0.9553689534744519, 18 | 0.9695063611764586, 19 | 0.9782073008880187, 20 | 0.9847190065330333, 21 | 0.9892838610691971, 22 | 0.992712337984128, 23 | 0.995265784893143 24 | ], 25 | "bpp": [ 26 | 0.09060385732961962, 27 | 0.14612167186673655, 28 | 0.2168257045835883, 29 | 0.3169678752062178, 30 | 0.4575983423986555, 31 | 0.6325319099347951, 32 | 0.8718156547726938, 33 | 1.1996022820250654 34 | ], 35 | "encoding_time": [ 36 | 24.86227584688851, 37 | 24.868273402867693, 38 | 24.097223414463944, 39 | 25.012781129794174, 40 | 24.32089644469572, 41 | 24.332218278659862, 42 | 24.50190854876229, 43 | 25.3902352445581 44 | ], 45 | "decoding_time": [ 46 | 81.4133291780279, 47 | 81.23878866768955, 48 | 78.4658172452048, 49 | 81.41976320743561, 50 | 78.71289579654008, 51 | 78.62426021795595, 52 | 79.3140885896897, 53 | 82.29731314503745 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/clic2020-mobile/compressai-mbt2018_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.05114185676146, 7 | 31.610772015003676, 8 | 33.23873836002993, 9 | 34.74476367436098, 10 | 36.496540669644816, 11 | 38.13865012265323, 12 | 39.90605517183797, 13 | 41.674131864912056 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9386430067962475, 17 | 0.9553689534744519, 18 | 0.9695063611764586, 19 | 0.9782073008880187, 20 | 0.9847190065330333, 21 | 0.9892838610691971, 22 | 0.992712337984128, 23 | 0.995265784893143 24 | ], 25 | "bpp": [ 26 | 0.09060385732961962, 27 | 0.14612167186673655, 28 | 0.2168257045835883, 29 | 0.3169678752062178, 30 | 0.4575983423986555, 31 | 0.6325319099347951, 32 | 0.8718156547726938, 33 | 1.1996022820250654 34 | ], 35 | "encoding_time": [ 36 | 25.189168722442027, 37 | 24.940253099698698, 38 | 26.483008572224822, 39 | 26.857178568840027, 40 | 25.610271342684715, 41 | 25.949799130471906, 42 | 25.823905978309973, 43 | 25.828819686107423 44 | ], 45 | "decoding_time": [ 46 | 68.31117594509982, 47 | 68.58951556682587, 48 | 73.14696172783884, 49 | 73.13883634899439, 50 | 70.3418788682209, 51 | 70.1266477121396, 52 | 70.16712760523464, 53 | 70.28603149130103 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-bmshj2018-factorized_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.905718167622883, 7 | 28.213664293289185, 8 | 29.61102072397868, 9 | 31.26847990353902, 10 | 32.94364643096924, 11 | 35.35966149965922, 12 | 37.364713191986084, 13 | 39.568602879842125 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9099040652314822, 17 | 0.9359625205397606, 18 | 0.955385779341062, 19 | 0.9702705641587576, 20 | 0.9805546849966049, 21 | 0.987794059018294, 22 | 0.9921169728040695, 23 | 0.9950234840313593 24 | ], 25 | "bpp": [ 26 | 0.1226230197482639, 27 | 0.18852742513020834, 28 | 0.2878078884548611, 29 | 0.44037882486979174, 30 | 0.6481357150607638, 31 | 0.9669765896267358, 32 | 1.351165771484375, 33 | 1.8332655164930556 34 | ], 35 | "encoding_time": [ 36 | 0.03746472795804342, 37 | 0.02850453058878581, 38 | 0.02880517641703288, 39 | 0.03510697682698568, 40 | 0.030344337224960327, 41 | 0.05444436271985372, 42 | 0.055729428927103676, 43 | 0.06312055389086406 44 | ], 45 | "decoding_time": [ 46 | 0.01845097541809082, 47 | 0.01848524808883667, 48 | 0.019114116827646892, 49 | 0.02491876482963562, 50 | 0.021491259336471558, 51 | 0.03851206103960673, 52 | 0.04144302010536194, 53 | 0.04884075125058492 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-bmshj2018-factorized_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.905718167622883, 7 | 28.213664293289185, 8 | 29.61102072397868, 9 | 31.26847990353902, 10 | 32.94364643096924, 11 | 35.35966149965922, 12 | 37.364713191986084, 13 | 39.568602879842125 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9099040652314822, 17 | 0.9359625205397606, 18 | 0.955385779341062, 19 | 0.9702705641587576, 20 | 0.9805546849966049, 21 | 0.987794059018294, 22 | 0.9921169728040695, 23 | 0.9950234840313593 24 | ], 25 | "bpp": [ 26 | 0.1226230197482639, 27 | 0.18852742513020834, 28 | 0.2878078884548611, 29 | 0.44037882486979174, 30 | 0.6481357150607638, 31 | 0.9669765896267358, 32 | 1.351165771484375, 33 | 1.8332655164930556 34 | ], 35 | "encoding_time": [ 36 | 0.03851047158241272, 37 | 0.029166231552759807, 38 | 0.02911326289176941, 39 | 0.029408305883407593, 40 | 0.030339797337849934, 41 | 0.054171860218048096, 42 | 0.05775397022565206, 43 | 0.06198742985725403 44 | ], 45 | "decoding_time": [ 46 | 0.01807201902071635, 47 | 0.018871237834294636, 48 | 0.01935349901517232, 49 | 0.020379304885864258, 50 | 0.021634548902511597, 51 | 0.03842252492904663, 52 | 0.043530682722727455, 53 | 0.04864024122556051 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-bmshj2018-hyperprior_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.57799522082011, 7 | 29.191601514816284, 8 | 30.964398622512817, 9 | 32.82667779922485, 10 | 34.50927464167277, 11 | 36.71643273035685, 12 | 38.542534033457436, 13 | 40.49336210886637 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9172840416431427, 17 | 0.9419818868239721, 18 | 0.960970920821031, 19 | 0.9747916981577873, 20 | 0.9834806794921557, 21 | 0.9891728932658831, 22 | 0.9927823270360628, 23 | 0.9954107900460561 24 | ], 25 | "bpp": [ 26 | 0.13129340277777776, 27 | 0.20889282226562503, 28 | 0.3198581271701389, 29 | 0.47835625542534727, 30 | 0.6686876085069443, 31 | 0.9388258192274304, 32 | 1.2591722276475694, 33 | 1.6602240668402775 34 | ], 35 | "encoding_time": [ 36 | 0.04938984910647074, 37 | 0.04138263066609701, 38 | 0.04354716340700785, 39 | 0.042751977841059365, 40 | 0.043587187925974526, 41 | 0.06334282954533894, 42 | 0.06422065695126851, 43 | 0.0630590816338857 44 | ], 45 | "decoding_time": [ 46 | 0.028280069430669148, 47 | 0.02952250838279724, 48 | 0.031011422475179035, 49 | 0.03063880403836568, 50 | 0.032013773918151855, 51 | 0.04433367649714152, 52 | 0.04544354478518168, 53 | 0.04540571570396423 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-bmshj2018-hyperprior_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.57799522082011, 7 | 29.191601514816284, 8 | 30.964398622512817, 9 | 32.82667779922485, 10 | 34.50927464167277, 11 | 36.71643273035685, 12 | 38.542534033457436, 13 | 40.49336210886637 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9172840416431427, 17 | 0.9419818868239721, 18 | 0.960970920821031, 19 | 0.9747916981577873, 20 | 0.9834806794921557, 21 | 0.9891728932658831, 22 | 0.9927823270360628, 23 | 0.9954107900460561 24 | ], 25 | "bpp": [ 26 | 0.13129340277777776, 27 | 0.20889282226562503, 28 | 0.3198581271701389, 29 | 0.47835625542534727, 30 | 0.6686876085069443, 31 | 0.9388258192274304, 32 | 1.2591722276475694, 33 | 1.6602240668402775 34 | ], 35 | "encoding_time": [ 36 | 0.052560547987620033, 37 | 0.04288137952486674, 38 | 0.040335516134897866, 39 | 0.04144975543022156, 40 | 0.04176986217498779, 41 | 0.062156071265538536, 42 | 0.06271529197692871, 43 | 0.06343137224515279 44 | ], 45 | "decoding_time": [ 46 | 0.03013708194096883, 47 | 0.02972474694252014, 48 | 0.02792420983314514, 49 | 0.029609163602193195, 50 | 0.03045851985613505, 51 | 0.04235695799191793, 52 | 0.043526659409205117, 53 | 0.04490990440050761 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-cheng2020-anchor_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.57793688774109, 7 | 29.962979952494305, 8 | 31.334418376286823, 9 | 33.377349297205605, 10 | 35.100045601526894, 11 | 36.677058378855385 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9234831954042116, 15 | 0.9463977366685867, 16 | 0.9627606322367986, 17 | 0.9756745845079422, 18 | 0.9840238218506178, 19 | 0.9892096991340319 20 | ], 21 | "bpp": [ 22 | 0.11959499782986115, 23 | 0.18379720052083337, 24 | 0.2709520128038195, 25 | 0.4173753526475694, 26 | 0.5944688585069444, 27 | 0.805735270182292 28 | ], 29 | "encoding_time": [ 30 | 3.1562031308809915, 31 | 3.1467214822769165, 32 | 3.1709993879000344, 33 | 3.2250915666421256, 34 | 3.193092495203018, 35 | 3.194781869649887 36 | ], 37 | "decoding_time": [ 38 | 10.215498596429825, 39 | 10.126617829004923, 40 | 10.307510604461035, 41 | 10.252435833215714, 42 | 10.201669335365295, 43 | 10.171903838713964 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-cheng2020-attn_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn-mse", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.426701704661053, 7 | 29.760190566380818, 8 | 31.313220977783203, 9 | 33.35109464327494, 10 | 34.931366523106895, 11 | 36.59522501627604 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9238172595699629, 15 | 0.9452412277460098, 16 | 0.9633701766530672, 17 | 0.9761027917265892, 18 | 0.9836959168314934, 19 | 0.9890857314070066 20 | ], 21 | "bpp": [ 22 | 0.11557685004340279, 23 | 0.17447916666666666, 24 | 0.26903279622395837, 25 | 0.4269612630208333, 26 | 0.5952894422743056, 27 | 0.8058878580729166 28 | ], 29 | "encoding_time": [ 30 | 3.3675765494505563, 31 | 3.7646008829275766, 32 | 3.4823974668979645, 33 | 3.660950928926468, 34 | 3.6511050860087075, 35 | 3.697652220726013 36 | ], 37 | "decoding_time": [ 38 | 9.800588836272558, 39 | 10.246322135130564, 40 | 9.88647872209549, 41 | 10.045310487349829, 42 | 10.047090192635855, 43 | 10.13676635424296 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-mbt2018-mean_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.69583757718404, 7 | 29.353530724843342, 8 | 31.121095101038616, 9 | 32.93884746233622, 10 | 34.949936866760254, 11 | 36.88314358393351, 12 | 38.79441340764364, 13 | 40.56895097096761 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9177580053607622, 17 | 0.9429814790685972, 18 | 0.9614063774545988, 19 | 0.975120889643828, 20 | 0.9834911773602167, 21 | 0.989159015317758, 22 | 0.9929624150196711, 23 | 0.9952663431564966 24 | ], 25 | "bpp": [ 26 | 0.12392171223958336, 27 | 0.19798109266493058, 28 | 0.3072441948784722, 29 | 0.46061197916666674, 30 | 0.6616651746961806, 31 | 0.9144049750434027, 32 | 1.2342088487413194, 33 | 1.619089762369792 34 | ], 35 | "encoding_time": [ 36 | 0.05346434315045675, 37 | 0.040650387605031334, 38 | 0.04030017058054606, 39 | 0.04116487503051758, 40 | 0.0625561277071635, 41 | 0.062391459941864014, 42 | 0.06303970019022624, 43 | 0.06414860486984253 44 | ], 45 | "decoding_time": [ 46 | 0.0270388126373291, 47 | 0.02785627047220866, 48 | 0.02802153428395589, 49 | 0.029132227102915447, 50 | 0.041799803574879967, 51 | 0.04308434327443441, 52 | 0.04444248477617899, 53 | 0.0462381641070048 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-mbt2018-mean_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.69583757718404, 7 | 29.353530724843342, 8 | 31.121095101038616, 9 | 32.93884746233622, 10 | 34.949936866760254, 11 | 36.88314358393351, 12 | 38.79441340764364, 13 | 40.56895097096761 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9177580053607622, 17 | 0.9429814790685972, 18 | 0.9614063774545988, 19 | 0.975120889643828, 20 | 0.9834911773602167, 21 | 0.989159015317758, 22 | 0.9929624150196711, 23 | 0.9952663431564966 24 | ], 25 | "bpp": [ 26 | 0.12392171223958336, 27 | 0.19798109266493058, 28 | 0.3072441948784722, 29 | 0.46061197916666674, 30 | 0.6616651746961806, 31 | 0.9144049750434027, 32 | 1.2342088487413194, 33 | 1.619089762369792 34 | ], 35 | "encoding_time": [ 36 | 0.04928926626841227, 37 | 0.041878302892049156, 38 | 0.0446751614411672, 39 | 0.04464500149091085, 40 | 0.06540934244791667, 41 | 0.06302444140116374, 42 | 0.06293380260467529, 43 | 0.06455433368682861 44 | ], 45 | "decoding_time": [ 46 | 0.028423190116882324, 47 | 0.02925664186477661, 48 | 0.03175671895345052, 49 | 0.03221299250920614, 50 | 0.044634997844696045, 51 | 0.04368722438812256, 52 | 0.04426733652750651, 53 | 0.046239336331685386 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-mbt2018_ms-ssim_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.084468444188435, 7 | 29.63985006014506, 8 | 31.35390814145406, 9 | 33.07363899548849, 10 | 35.074715534845986, 11 | 36.960309982299805, 12 | 38.889467557271324, 13 | 40.574419816335045 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9206076512734095, 17 | 0.9431367143988609, 18 | 0.9626665835579237, 19 | 0.9751316954692205, 20 | 0.983469677468141, 21 | 0.9891495530803999, 22 | 0.9927773227294286, 23 | 0.9952310199538866 24 | ], 25 | "bpp": [ 26 | 0.1105312771267361, 27 | 0.18697102864583334, 28 | 0.28769599066840285, 29 | 0.4323391384548611, 30 | 0.6387668185763888, 31 | 0.8853047688802084, 32 | 1.2003648546006944, 33 | 1.5873446994357636 34 | ], 35 | "encoding_time": [ 36 | 3.361889590819677, 37 | 3.6441336572170258, 38 | 3.833623001972834, 39 | 3.56571759780248, 40 | 3.5578154921531677, 41 | 3.3987121184666953, 42 | 3.43895689646403, 43 | 3.3706227838993073 44 | ], 45 | "decoding_time": [ 46 | 9.740599324305853, 47 | 10.035305599371592, 48 | 10.265875279903412, 49 | 9.918616990248362, 50 | 9.985403249661127, 51 | 9.73777025938034, 52 | 9.800814708073935, 53 | 9.779021600882212 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/8bit-decoded/kodak/compressai-mbt2018_mse_ans_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mse-8bit", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.084468444188435, 7 | 29.63985006014506, 8 | 31.35390814145406, 9 | 33.07363899548849, 10 | 35.074715534845986, 11 | 36.960309982299805, 12 | 38.889467557271324, 13 | 40.574419816335045 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9206076512734095, 17 | 0.9431367143988609, 18 | 0.9626665835579237, 19 | 0.9751316954692205, 20 | 0.983469677468141, 21 | 0.9891495530803999, 22 | 0.9927773227294286, 23 | 0.9952310199538866 24 | ], 25 | "bpp": [ 26 | 0.1105312771267361, 27 | 0.18697102864583334, 28 | 0.28769599066840285, 29 | 0.4323391384548611, 30 | 0.6387668185763888, 31 | 0.8853047688802084, 32 | 1.2003648546006944, 33 | 1.5873446994357636 34 | ], 35 | "encoding_time": [ 36 | 3.3621772627035775, 37 | 3.142329533894857, 38 | 3.64172770579656, 39 | 3.4236645301183066, 40 | 3.5285086731115975, 41 | 3.1977481842041016, 42 | 3.7444534301757812, 43 | 3.283316800991694 44 | ], 45 | "decoding_time": [ 46 | 9.863956719636917, 47 | 9.52629804611206, 48 | 10.17328123251597, 49 | 9.849420557419458, 50 | 9.927906781435013, 51 | 9.711579352617264, 52 | 10.153538078069687, 53 | 9.880478372176489 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/bpg_444_x265_ycbcr.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "BPG 8b 444 x265 ycbcr", 3 | "description": "BPG. BPG version b'0.9.8'", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.053181129563516, 7 | 30.65916084741073, 8 | 33.46769749768497, 9 | 36.34140064435355, 10 | 39.37799336718431, 11 | 42.7502761793161, 12 | 46.63876044221414, 13 | 50.25052971419315 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.8982818561993288, 17 | 0.9416193335913541, 18 | 0.9681991760650378, 19 | 0.9825655282213447, 20 | 0.9906918222314856, 21 | 0.9954830712816688, 22 | 0.9981897248980705, 23 | 0.9993020480268457 24 | ], 25 | "bpp": [ 26 | 0.0552148762847387, 27 | 0.12838267860093602, 28 | 0.26338124763410714, 29 | 0.4868405566539702, 30 | 0.8525617050735714, 31 | 1.4550231946528185, 32 | 2.365528916679981, 33 | 3.49993315589986 34 | ], 35 | "encoding_time": [ 36 | 8.086145651474428, 37 | 9.33187320527066, 38 | 10.892584881086028, 39 | 12.724915453557218, 40 | 15.513091100735611, 41 | 18.035373121165158, 42 | 21.38859047246783, 43 | 24.085296456733445 44 | ], 45 | "decoding_time": [ 46 | 1.0986532615811637, 47 | 1.3140340507700201, 48 | 1.4086352479591797, 49 | 1.5494308096639227, 50 | 1.6228232731979884, 51 | 1.8258194735880648, 52 | 1.949736293782009, 53 | 2.1057162633102933 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-factorized_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.905657093627703, 7 | 29.216473892253703, 8 | 30.40236405798065, 9 | 31.594424173732392, 10 | 32.707543370781075, 11 | 33.75788520991734, 12 | 34.86687910009465, 13 | 36.23826900571986 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9467087953947904, 17 | 0.962484055020836, 18 | 0.9734846976365936, 19 | 0.9821984369433328, 20 | 0.9879144473692004, 21 | 0.9917550569169977, 22 | 0.9943468952446841, 23 | 0.9961557575825895 24 | ], 25 | "bpp": [ 26 | 0.11038148259865661, 27 | 0.15938258893601584, 28 | 0.22775443583387156, 29 | 0.31921642554268836, 30 | 0.4428792275199503, 31 | 0.5962166680601066, 32 | 0.7902529238395054, 33 | 1.0435709938917022 34 | ], 35 | "encoding_time": [ 36 | 5.363387062308494, 37 | 5.298301169041837, 38 | 5.262638955973507, 39 | 5.372475156623326, 40 | 5.337538336100203, 41 | 10.775785116667159, 42 | 10.722639919666761, 43 | 10.677715072471104 44 | ], 45 | "decoding_time": [ 46 | 7.013154545526826, 47 | 6.9566118797559415, 48 | 6.936794702926378, 49 | 7.081339258826181, 50 | 7.020648727256261, 51 | 12.902902663423774, 52 | 12.80949378549383, 53 | 12.791970234238699 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-factorized_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.90564379347825, 7 | 29.216474797237787, 8 | 30.402358630033756, 9 | 31.59442730402518, 10 | 32.7075467259595, 11 | 33.757874188009616, 12 | 34.866877562951714, 13 | 36.23827008590993 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.946708781330773, 17 | 0.9624839354766889, 18 | 0.9734846383668063, 19 | 0.9821983890587025, 20 | 0.9879144128788723, 21 | 0.991755034816399, 22 | 0.9943468818503819, 23 | 0.9961557559083017 24 | ], 25 | "bpp": [ 26 | 0.11038163423248479, 27 | 0.15938252399937175, 28 | 0.22775437685619532, 29 | 0.31921660247571704, 30 | 0.4428791271451508, 31 | 0.5962169411879478, 32 | 0.7902532524063621, 33 | 1.0435707579809972 34 | ], 35 | "encoding_time": [ 36 | 0.18254804879092099, 37 | 0.18794309423210914, 38 | 0.18732061412897003, 39 | 0.18818899888670845, 40 | 0.1841598655400651, 41 | 0.3480087947309687, 42 | 0.352328110276983, 43 | 0.3503119530302755 44 | ], 45 | "decoding_time": [ 46 | 0.10616894384448448, 47 | 0.10910003506735469, 48 | 0.11009193538280015, 49 | 0.11417585812257917, 50 | 0.11454179313745391, 51 | 0.21716678142547607, 52 | 0.224288034974859, 53 | 0.23343132720904403 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-factorized_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.763053478822165, 7 | 30.217074461067362, 8 | 31.665935518544163, 9 | 33.30681086744759, 10 | 34.88118629644523, 11 | 36.94142120686089, 12 | 38.81483276525612, 13 | 40.97418933743832 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9302879642234759, 17 | 0.9504164443926865, 18 | 0.9649530773082476, 19 | 0.9758628908168064, 20 | 0.9834524855185091, 21 | 0.9887966969040003, 22 | 0.9926132891285285, 23 | 0.9954192470968439 24 | ], 25 | "bpp": [ 26 | 0.11460581146234032, 27 | 0.17061773947087153, 28 | 0.2531160228784585, 29 | 0.3738325295021284, 30 | 0.536100546451746, 31 | 0.7822432909284421, 32 | 1.097071870734038, 33 | 1.5139153903182772 34 | ], 35 | "encoding_time": [ 36 | 5.3061160184024425, 37 | 5.303104814518703, 38 | 5.147063211108861, 39 | 5.24702817938301, 40 | 5.31632314103373, 41 | 9.939067127999294, 42 | 10.15886500712191, 43 | 10.18749157766278 44 | ], 45 | "decoding_time": [ 46 | 7.00531164447913, 47 | 6.9903646091396885, 48 | 6.816859548011522, 49 | 6.936833245030949, 50 | 6.984022546350286, 51 | 12.025362044237973, 52 | 12.278760564461184, 53 | 12.265302119630107 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-factorized_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.763051151594247, 7 | 30.21707503787061, 8 | 31.665936267214125, 9 | 33.30680586099771, 10 | 34.881184777333274, 11 | 36.94141732750939, 12 | 38.81483083363199, 13 | 40.974191568870445 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9302877666575186, 17 | 0.9504163924897655, 18 | 0.9649530187081755, 19 | 0.9758628171481444, 20 | 0.9834524393081665, 21 | 0.9887966871931312, 22 | 0.992613273725081, 23 | 0.9954192393951202 24 | ], 25 | "bpp": [ 26 | 0.11460563452931156, 27 | 0.17061773947087153, 28 | 0.2531158772035982, 29 | 0.37383241154677593, 30 | 0.536100546451746, 31 | 0.7822436377715, 32 | 1.0970717527786853, 33 | 1.5139152692469693 34 | ], 35 | "encoding_time": [ 36 | 0.185629208436173, 37 | 0.18901638234599252, 38 | 0.19036318612902353, 39 | 0.18848472096946803, 40 | 0.18640512161040573, 41 | 0.3548829086710898, 42 | 0.3589306761709492, 43 | 0.36714882797069764 44 | ], 45 | "decoding_time": [ 46 | 0.10523727234829677, 47 | 0.11416910069712093, 48 | 0.11485272043206718, 49 | 0.1163551298420081, 50 | 0.116841770289989, 51 | 0.2290425662244304, 52 | 0.23786721068821595, 53 | 0.2565495887499177 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-hyperprior_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.451218754365037, 7 | 29.09822330530529, 8 | 30.500718617774243, 9 | 31.805283079934313, 10 | 32.964996395039805, 11 | 34.14036568524634, 12 | 35.46849478749432, 13 | 37.067127284715724 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9502514379747798, 17 | 0.9655047845974397, 18 | 0.9767957728230552, 19 | 0.9841638163904126, 20 | 0.9890766230861793, 21 | 0.9924197796355473, 22 | 0.9948828294036094, 23 | 0.9965462071842022 24 | ], 25 | "bpp": [ 26 | 0.09790887509792529, 27 | 0.14386980791798154, 28 | 0.2071196846326148, 29 | 0.2903955570236784, 30 | 0.4010311376286741, 31 | 0.5438852646392587, 32 | 0.7230252995374535, 33 | 0.9675737054473921 34 | ], 35 | "encoding_time": [ 36 | 5.889112377434634, 37 | 5.913004548362132, 38 | 5.894310529312391, 39 | 5.933676398202275, 40 | 5.939788843808549, 41 | 11.515155861886699, 42 | 11.77054098482882, 43 | 11.694125198246388 44 | ], 45 | "decoding_time": [ 46 | 7.429603681135713, 47 | 7.4946118566427335, 48 | 7.471239487776596, 49 | 7.505028072367893, 50 | 7.470703921960981, 51 | 13.348297626784678, 52 | 13.576467915867152, 53 | 13.480402752254786 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-hyperprior_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.451220435568736, 7 | 29.098225070663453, 8 | 30.5007148517627, 9 | 31.805287809421994, 10 | 32.9649971352872, 11 | 34.1403711192084, 12 | 35.4684937554008, 13 | 37.06712481945974 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9502513388569436, 17 | 0.9655047293459431, 18 | 0.9767957179064162, 19 | 0.9841637728589304, 20 | 0.9890765862518482, 21 | 0.9924197561955184, 22 | 0.9948828210321705, 23 | 0.9965462055099145 24 | ], 25 | "bpp": [ 26 | 0.09790881612024904, 27 | 0.14386981494098117, 28 | 0.2071196846326148, 29 | 0.2903956749790309, 30 | 0.40103130808538673, 31 | 0.54388508770623, 32 | 0.7230252995374535, 33 | 0.9675736777278843 34 | ], 35 | "encoding_time": [ 36 | 0.2105658215083433, 37 | 0.210053075565381, 38 | 0.21049864908282676, 39 | 0.21148697713787637, 40 | 0.21339456151040753, 41 | 0.3614629105235753, 42 | 0.37241654315691314, 43 | 0.3677072337504183 44 | ], 45 | "decoding_time": [ 46 | 0.12196386664101247, 47 | 0.12296620647559005, 48 | 0.12425607375884323, 49 | 0.1278256137719315, 50 | 0.1311182707882999, 51 | 0.2105572960349951, 52 | 0.22064602375030518, 53 | 0.22503304883335415 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-hyperprior_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.389600321074095, 7 | 31.033407063404564, 8 | 32.781202130654485, 9 | 34.4818627026431, 10 | 35.968717856058106, 11 | 37.87453403971439, 12 | 39.61460897464039, 13 | 41.68400118086727 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9361641879162091, 17 | 0.9542259396461958, 18 | 0.967419097932537, 19 | 0.977837424264865, 20 | 0.9847697243931588, 21 | 0.9893062513196067, 22 | 0.9926483313019356, 23 | 0.9955709312069282 24 | ], 25 | "bpp": [ 26 | 0.11285901034164489, 27 | 0.17040167966160377, 28 | 0.24875324212703567, 29 | 0.35645294065569616, 30 | 0.4877361872618268, 31 | 0.6810624776253285, 32 | 0.9371423129813923, 33 | 1.2791010214776735 34 | ], 35 | "encoding_time": [ 36 | 5.786023113165009, 37 | 5.815804989150401, 38 | 5.846021432555124, 39 | 5.882062824924341, 40 | 5.882301677478833, 41 | 11.760336117798023, 42 | 11.658456247844054, 43 | 11.757902136009731 44 | ], 45 | "decoding_time": [ 46 | 7.331563756707009, 47 | 7.345128489344307, 48 | 7.36813662159309, 49 | 7.4111859142110585, 50 | 7.44550475645601, 51 | 13.608881015456125, 52 | 13.526019562496229, 53 | 13.583179299751025 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-bmshj2018-hyperprior_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.38960315499459, 7 | 31.033407834178465, 8 | 32.78120036722819, 9 | 34.48186480439494, 10 | 35.96872055856627, 11 | 37.87453434305114, 12 | 39.61460989986005, 13 | 41.68399756487129 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9361641199401255, 17 | 0.9542259195547426, 18 | 0.9674190420113252, 19 | 0.977837394127685, 20 | 0.984769682870822, 21 | 0.9893062329024411, 22 | 0.9926483095361945, 23 | 0.9955709121200476 24 | ], 25 | "bpp": [ 26 | 0.1128588923862924, 27 | 0.17040150272857507, 28 | 0.2487533065349707, 29 | 0.35645292786407545, 30 | 0.4877366332553271, 31 | 0.6810620588226269, 32 | 0.9371421933337146, 33 | 1.279101295122863 34 | ], 35 | "encoding_time": [ 36 | 0.21101577898089804, 37 | 0.20916058106368848, 38 | 0.2158296135034454, 39 | 0.2149990488973896, 40 | 0.21869310368312878, 41 | 0.3628098616439305, 42 | 0.3695188988460584, 43 | 0.37166641803269973 44 | ], 45 | "decoding_time": [ 46 | 0.12355718585882294, 47 | 0.12520390414120106, 48 | 0.12954580248071906, 49 | 0.1332534256945835, 50 | 0.1549341758985198, 51 | 0.21844007593862128, 52 | 0.22584450378846588, 53 | 0.23859829715128694 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-anchor_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.708618006075156, 7 | 29.91150608811786, 8 | 31.270796982663505, 9 | 32.38020285451184, 10 | 33.47496904249049, 11 | 34.57794244969574 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9555005139849159, 15 | 0.9691491585769011, 16 | 0.9791686531533016, 17 | 0.9853082443221232, 18 | 0.98986825581347, 19 | 0.9931716654407844 20 | ], 21 | "bpp": [ 22 | 0.08283851518483262, 23 | 0.1227150204051243, 24 | 0.18188307215604385, 25 | 0.25715515034393444, 26 | 0.37264194346450263, 27 | 0.4964179304250598 28 | ], 29 | "encoding_time": [ 30 | 35.95227405998144, 31 | 36.318611001700496, 32 | 36.45999405223332, 33 | 36.00640594423487, 34 | 72.41600173109033, 35 | 74.45698301176007 36 | ], 37 | "decoding_time": [ 38 | 72.67681151293637, 39 | 74.35540253258823, 40 | 73.36471772059966, 41 | 74.1769349494677, 42 | 120.20243118586166, 43 | 121.32899726374765 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-anchor_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.70826667619099, 7 | 29.91183531011757, 8 | 31.271287973365858, 9 | 32.37984420492259, 10 | 33.47579659006573, 11 | 34.57833195451561 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9555022987756836, 15 | 0.9691497378804711, 16 | 0.9791675437702222, 17 | 0.9853078069981565, 18 | 0.9898682132865606, 19 | 0.9931715703412388 20 | ], 21 | "bpp": [ 22 | 0.0828368109147148, 23 | 0.12271545253729749, 24 | 0.18188030517814624, 25 | 0.25715294385857435, 26 | 0.37263648798711396, 27 | 0.4964217659384976 28 | ], 29 | "encoding_time": [ 30 | 20.838470634449735, 31 | 21.56698178307394, 32 | 21.039474251564968, 33 | 20.33667393882623, 34 | 20.928977713156282, 35 | 20.47983157366849 36 | ], 37 | "decoding_time": [ 38 | 45.4617314070798, 39 | 45.76345993427748, 40 | 45.1919268075, 41 | 44.887948863961725, 42 | 44.89184356405494, 43 | 44.35627113701253 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-anchor_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.454407987777977, 7 | 31.852583908585252, 8 | 33.1398124159188, 9 | 34.92821763029574, 10 | 36.39203283646604, 11 | 37.80932246326897 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9399647508444411, 15 | 0.9569993561573242, 16 | 0.9688901519507505, 17 | 0.9779711037539365, 18 | 0.9845725395036548, 19 | 0.9890842501367076 20 | ], 21 | "bpp": [ 22 | 0.0994345311816803, 23 | 0.14595078513425744, 24 | 0.20475542396855584, 25 | 0.30446223998605504, 26 | 0.4215529750018138, 27 | 0.57217531414336 28 | ], 29 | "encoding_time": [ 30 | 37.025694142566635, 31 | 36.37055679251639, 32 | 36.41808389947656, 33 | 71.79031320636192, 34 | 74.52031061756477, 35 | 71.15804877843749 36 | ], 37 | "decoding_time": [ 38 | 75.6050319323379, 39 | 72.60602579625805, 40 | 75.82387166210775, 41 | 117.44231428189224, 42 | 122.20397643292888, 43 | 118.70678142483315 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-anchor_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.454426178921125, 7 | 31.852803172495467, 8 | 33.14001766712759, 9 | 34.929319937062154, 10 | 36.391760417755435, 11 | 37.8078525982745 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9399666153313069, 15 | 0.9570018508461084, 16 | 0.9688877999112847, 17 | 0.9779742028606072, 18 | 0.9845725629436836, 19 | 0.9890833691264806 20 | ], 21 | "bpp": [ 22 | 0.0994393204594304, 23 | 0.14595487546883967, 24 | 0.20476417860395177, 25 | 0.30446307841817694, 26 | 0.42154378933071834, 27 | 0.572170795271508 28 | ], 29 | "encoding_time": [ 30 | 21.67775350072411, 31 | 20.755849053350726, 32 | 20.944994114757925, 33 | 20.93049443437812, 34 | 21.844601529367853, 35 | 21.409190885136635 36 | ], 37 | "decoding_time": [ 38 | 47.51219867588429, 39 | 44.824592929207874, 40 | 45.68215500638726, 41 | 44.763300436266356, 42 | 47.11188396978914, 43 | 45.64524196506886 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-attn_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.440543059548197, 7 | 29.82162757416078, 8 | 31.085738090580012, 9 | 32.4932579536197, 10 | 33.419783697991406, 11 | 34.6652558962545 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9523985513140646, 15 | 0.9677623540497897, 16 | 0.977908786093251, 17 | 0.9854442038562861, 18 | 0.9897580401281293, 19 | 0.9928396384367782 20 | ], 21 | "bpp": [ 22 | 0.0782047663616972, 23 | 0.11952966658787359, 24 | 0.1741735171131791, 25 | 0.2592665550045195, 26 | 0.3571720714303773, 27 | 0.49848435680295544 28 | ], 29 | "encoding_time": [ 30 | 37.580891619907334, 31 | 36.63041127129887, 32 | 35.763248919101244, 33 | 67.863636606195, 34 | 69.04985836114776, 35 | 70.2910880265611 36 | ], 37 | "decoding_time": [ 38 | 72.10602216640216, 39 | 69.76828601119223, 40 | 69.57399198982154, 41 | 113.52970636560676, 42 | 115.73266867171513, 43 | 113.48031982545102 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-attn_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.44093661685159, 7 | 29.821333053351236, 8 | 31.08565779892616, 9 | 32.49324111877502, 10 | 33.41984159277793, 11 | 34.66544457598787 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9523976549003901, 15 | 0.9677648159225335, 16 | 0.9779092026560494, 17 | 0.9854434795593947, 18 | 0.9897570399086127, 19 | 0.9928398031866952 20 | ], 21 | "bpp": [ 22 | 0.0782014972903033, 23 | 0.11953121511532225, 24 | 0.17417064819848907, 25 | 0.25926819010508373, 26 | 0.35717258349536884, 27 | 0.49848666674071984 28 | ], 29 | "encoding_time": [ 30 | 21.033955529834447, 31 | 20.73843936571914, 32 | 21.465685646185715, 33 | 21.01171758603514, 34 | 21.008728662233676, 35 | 21.162686586380005 36 | ], 37 | "decoding_time": [ 38 | 44.55892874685566, 39 | 44.47411164674866, 40 | 44.83495294511988, 41 | 44.317686567145785, 42 | 44.51365258720484, 43 | 44.35951142364674 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-attn_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.3491432580959, 7 | 31.72192108800596, 8 | 33.17381490488953, 9 | 34.93900733676345, 10 | 36.24514408493813, 11 | 37.752417599618056 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.940864698605591, 15 | 0.9566884871279255, 16 | 0.969656893376554, 17 | 0.978699327854628, 18 | 0.9844133529100525, 19 | 0.9890035819471552 20 | ], 21 | "bpp": [ 22 | 0.09664317252574835, 23 | 0.13903643046883385, 24 | 0.2023182985397278, 25 | 0.3112404572834705, 26 | 0.421871532008065, 27 | 0.5711090094525553 28 | ], 29 | "encoding_time": [ 30 | 36.523798602350645, 31 | 36.78136791539996, 32 | 35.0226909257053, 33 | 66.67895653810393, 34 | 68.31249032797439, 35 | 69.4660731714763 36 | ], 37 | "decoding_time": [ 38 | 69.64301336079501, 39 | 70.24122405052185, 40 | 68.89540642432952, 41 | 110.45311212807559, 42 | 112.81695065471564, 43 | 112.1482340351919 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-cheng2020-attn_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.349101071420897, 7 | 31.721968680493344, 8 | 33.17354347477352, 9 | 34.939597751628746, 10 | 36.2449962913945, 11 | 37.75249930400424 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9408700757482079, 15 | 0.9566890711195013, 16 | 0.9696584859590852, 17 | 0.9786994457244873, 18 | 0.984414074862941, 19 | 0.9890040751923336 20 | ], 21 | "bpp": [ 22 | 0.09664445691481245, 23 | 0.1390339502945832, 24 | 0.20232233603218444, 25 | 0.3112443711237187, 26 | 0.421859313314858, 27 | 0.5711043880782499 28 | ], 29 | "encoding_time": [ 30 | 20.60734188824557, 31 | 21.235134766342934, 32 | 21.05295852462897, 33 | 21.561091335971703, 34 | 21.32670369308986, 35 | 20.842973774738525 36 | ], 37 | "decoding_time": [ 38 | 44.16744955470053, 39 | 45.848912602060295, 40 | 45.40753122394005, 41 | 45.588243449671886, 42 | 44.73140726732404, 43 | 45.151795625686646 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018-mean_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.41421274299847, 7 | 29.806419297879888, 8 | 31.032901681450326, 9 | 32.02330497237133, 10 | 33.107554472872394, 11 | 34.39043426340132, 12 | 35.75438088818467, 13 | 37.2437873107359 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.950098967284299, 17 | 0.9672223513715723, 18 | 0.9778444284803411, 19 | 0.9844747935788015, 20 | 0.9891836455698764, 21 | 0.992805195993252, 22 | 0.9951589331867989, 23 | 0.9967427906695376 24 | ], 25 | "bpp": [ 26 | 0.08828076224328535, 27 | 0.13543452034156336, 28 | 0.19896384216854113, 29 | 0.28213081648476085, 30 | 0.39290476684907866, 31 | 0.5764081018692214, 32 | 0.7410916927741992, 33 | 0.9878951763822466 34 | ], 35 | "encoding_time": [ 36 | 6.1666671372531505, 37 | 6.179963794986853, 38 | 6.1742717496464765, 39 | 6.279021481449685, 40 | 12.478259583537499, 41 | 12.296107778388462, 42 | 12.535195193933637, 43 | 12.597132647975107 44 | ], 45 | "decoding_time": [ 46 | 7.702342417802703, 47 | 7.697542986173309, 48 | 7.714491303047438, 49 | 7.840251693564855, 50 | 14.263450938664125, 51 | 14.075462735101079, 52 | 14.295300608270624, 53 | 14.385978236627043 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018-mean_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.414240456954396, 7 | 29.806419866370387, 8 | 31.03290292291578, 9 | 32.02330392218911, 10 | 33.10755165934941, 11 | 34.3904338363413, 12 | 35.75438073387074, 13 | 37.24378044299663 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.950098866492175, 17 | 0.9672222261348468, 18 | 0.9778443507933885, 19 | 0.9844747466987438, 20 | 0.9891836194509871, 21 | 0.9928051929795341, 22 | 0.9951589251502176, 23 | 0.9967427786146656 24 | ], 25 | "bpp": [ 26 | 0.0882807032656091, 27 | 0.13543457931923963, 28 | 0.19896348127948404, 29 | 0.2821308164847608, 30 | 0.39290516211225934, 31 | 0.5764085736906313, 32 | 0.7410913725866175, 33 | 0.9878956169454882 34 | ], 35 | "encoding_time": [ 36 | 0.2131314491957761, 37 | 0.21396217721231867, 38 | 0.21533088871602263, 39 | 0.2179047137163998, 40 | 0.37064393584647876, 41 | 0.3581883840346604, 42 | 0.37460289510448325, 43 | 0.38091519843326527 44 | ], 45 | "decoding_time": [ 46 | 0.1239174845513333, 47 | 0.12530734163991522, 48 | 0.12742272655615647, 49 | 0.13199721427446, 50 | 0.21413983253950483, 51 | 0.2117924623275071, 52 | 0.22386827897489742, 53 | 0.2330594692337379 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018-mean_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.71247776145773, 7 | 31.340405163090914, 8 | 32.982859046762016, 9 | 34.60678426186303, 10 | 36.37548229504277, 11 | 38.07095872961708, 12 | 39.88396803870713, 13 | 41.72700730998063 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9368013987380467, 17 | 0.9553547695781408, 18 | 0.9684069156646729, 19 | 0.9781751441821623, 20 | 0.9847076695956541, 21 | 0.9894818362225307, 22 | 0.9930695774180166, 23 | 0.9953925020239326 24 | ], 25 | "bpp": [ 26 | 0.10275713378851696, 27 | 0.1576771591662524, 28 | 0.2352417050945639, 29 | 0.3397858282644231, 30 | 0.48803938052143686, 31 | 0.6599125024493793, 32 | 0.9055206785575571, 33 | 1.2250694084076905 34 | ], 35 | "encoding_time": [ 36 | 6.160796168145169, 37 | 6.192603276017007, 38 | 6.217759260970555, 39 | 6.203770208894537, 40 | 12.607806213786093, 41 | 12.61883081479019, 42 | 12.475756763072496, 43 | 12.740934157639407 44 | ], 45 | "decoding_time": [ 46 | 7.697736870037036, 47 | 7.7353704029254695, 48 | 7.733737776788433, 49 | 7.7449213132429655, 50 | 14.45271616705348, 51 | 14.407725233710215, 52 | 14.327682157580773, 53 | 14.504019517577097 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018-mean_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.712478304191094, 7 | 31.340390495160147, 8 | 32.982854944138644, 9 | 34.606790720156376, 10 | 36.3754897273516, 11 | 38.07096518445851, 12 | 39.883973914043374, 13 | 41.72700691930529 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9368013749631603, 17 | 0.9553548070821869, 18 | 0.9684068627571791, 19 | 0.9781751073478313, 20 | 0.984707653857349, 21 | 0.9894818007276299, 22 | 0.9930695355608222, 23 | 0.995392479253619 24 | ], 25 | "bpp": [ 26 | 0.10275695685548823, 27 | 0.15767746700726587, 28 | 0.2352414691838589, 29 | 0.3397859739392834, 30 | 0.48803947075728144, 31 | 0.6599119162112774, 32 | 0.9055214452673483, 33 | 1.225069224451662 34 | ], 35 | "encoding_time": [ 36 | 0.2072813269797336, 37 | 0.21091003498334562, 38 | 0.21496184890189868, 39 | 0.21662350451008658, 40 | 0.369220519333743, 41 | 0.37440432591384715, 42 | 0.37453014663096224, 43 | 0.37875794828607795 44 | ], 45 | "decoding_time": [ 46 | 0.122104738535506, 47 | 0.1247531564048167, 48 | 0.1290321885869744, 49 | 0.13367978374609787, 50 | 0.21754984909229064, 51 | 0.22503784801183122, 52 | 0.23004110609547476, 53 | 0.24131273285726482 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.622055518734328, 7 | 30.02179377589827, 8 | 31.256086345322725, 9 | 32.28685960520879, 10 | 33.23034221134438, 11 | 34.4323748219338, 12 | 35.70342650625882, 13 | 37.097496142357585 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9523031483875232, 17 | 0.9680926953808645, 18 | 0.9781756732570991, 19 | 0.9844939906275674, 20 | 0.9895731930652362, 21 | 0.9929685890674591, 22 | 0.9951526020350081, 23 | 0.9967086281669274 24 | ], 25 | "bpp": [ 26 | 0.08152146829544486, 27 | 0.1273820313572868, 28 | 0.18753139831711388, 29 | 0.2618178032034334, 30 | 0.38010262019050695, 31 | 0.5173880071889717, 32 | 0.7089207574418677, 33 | 0.9577831530858022 34 | ], 35 | "encoding_time": [ 36 | 43.19881289460686, 37 | 46.13211790497383, 38 | 45.171702474690555, 39 | 47.33437287003807, 40 | 105.91943309012424, 41 | 104.85775945159827, 42 | 111.85062911939085, 43 | 104.7284960251176 44 | ], 45 | "decoding_time": [ 46 | 81.58325496416414, 47 | 132.4512952298261, 48 | 82.93862036908611, 49 | 84.13291927134053, 50 | 142.03714348894826, 51 | 138.44616522547904, 52 | 147.39979217695387, 53 | 140.066036506985 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.62213611127559, 7 | 30.021095866812587, 8 | 31.256832500743503, 9 | 32.28694624333576, 10 | 33.22983673675322, 11 | 34.43226091620871, 12 | 35.70360445519832, 13 | 37.09732412407019 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9523044389285399, 17 | 0.9680914373210306, 18 | 0.9781772323538748, 19 | 0.9844923360963885, 20 | 0.989573363172874, 21 | 0.9929684069049493, 22 | 0.9951525153069014, 23 | 0.9967085856400179 24 | ], 25 | "bpp": [ 26 | 0.08152252116936622, 27 | 0.12738164337493774, 28 | 0.18753938799785977, 29 | 0.26181157030781993, 30 | 0.38010689060358693, 31 | 0.517381658249014, 32 | 0.7089252452067957, 33 | 0.9577935386753181 34 | ], 35 | "encoding_time": [ 36 | 21.640117520696663, 37 | 21.809429545081063, 38 | 22.005865316712455, 39 | 20.97534325015679, 40 | 21.732961084065813, 41 | 21.76928125338608, 42 | 21.592338673184425, 43 | 21.509880956639066 44 | ], 45 | "decoding_time": [ 46 | 46.696709636891825, 47 | 46.74374741382813, 48 | 47.2304992354318, 49 | 45.085320468698995, 50 | 45.44159805640746, 51 | 46.2727361663004, 52 | 45.22310109754627, 53 | 45.69932294963451 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.05846684063303, 7 | 31.6207160527104, 8 | 33.25274167383877, 9 | 34.76386591693072, 10 | 36.523723313297786, 11 | 38.177748750278255, 12 | 39.963238821362644, 13 | 41.759818462626455 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9387574336501989, 17 | 0.9554913556307889, 18 | 0.9696400858713, 19 | 0.9783503105131428, 20 | 0.9848557784316245, 21 | 0.9894265100527345, 22 | 0.9928427305114403, 23 | 0.9953854315066606 24 | ], 25 | "bpp": [ 26 | 0.09060801406076716, 27 | 0.1461246457858907, 28 | 0.21682593889520443, 29 | 0.31696155474842025, 30 | 0.457604362113674, 31 | 0.6325432463589704, 32 | 0.8718075151034667, 33 | 1.1995950974937606 34 | ], 35 | "encoding_time": [ 36 | 46.36540773209561, 37 | 48.83872322286113, 38 | 44.98101077588756, 39 | 46.24399045076263, 40 | 108.606379022759, 41 | 113.46037889732403, 42 | 107.56907527366381, 43 | 107.26204607727823 44 | ], 45 | "decoding_time": [ 46 | 83.45154896211088, 47 | 86.0075859822584, 48 | 78.80935067541144, 49 | 83.63289629609397, 50 | 144.72887117273353, 51 | 150.81956492515093, 52 | 146.276632816604, 53 | 143.59334369723717 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/compressai-mbt2018_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.058305463443432, 7 | 31.62070355743856, 8 | 33.252761550114805, 9 | 34.76390847466408, 10 | 36.52392042320616, 11 | 38.177610114295206, 12 | 39.96350394677078, 13 | 41.75978516652963 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9387609807962782, 17 | 0.955492420812671, 18 | 0.9696391275089778, 19 | 0.9783493106284838, 20 | 0.9848550702078959, 21 | 0.9894269604361459, 22 | 0.9928430553232686, 23 | 0.9953855038358924 24 | ], 25 | "bpp": [ 26 | 0.09060385732961959, 27 | 0.14612167186673652, 28 | 0.2168257045835884, 29 | 0.31696787520621783, 30 | 0.4575983423986555, 31 | 0.6325319099347952, 32 | 0.8718156547726935, 33 | 1.1996022820250656 34 | ], 35 | "encoding_time": [ 36 | 21.654679339923216, 37 | 21.019363987311888, 38 | 21.679216067442734, 39 | 21.11347038692303, 40 | 21.519116415066666, 41 | 21.686717377619797, 42 | 21.786506910002633, 43 | 21.743508099170214 44 | ], 45 | "decoding_time": [ 46 | 47.12724811709329, 47 | 44.811056700985084, 48 | 47.21878630391667, 49 | 44.86667270071051, 50 | 45.4335377122579, 51 | 46.084820646918224, 52 | 45.832846309361834, 53 | 46.56565590788809 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/hm.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "HM", 3 | "description": "HM", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.214234499854346, 7 | 29.69129326614136, 8 | 32.36768554361993, 9 | 35.134236524408706, 10 | 38.00250998517948, 11 | 41.102820458482036, 12 | 44.49279647300799, 13 | 48.03045215292623 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.8794695758417751, 17 | 0.928638435816497, 18 | 0.9599560566162795, 19 | 0.9777734581004368, 20 | 0.9876466956031457, 21 | 0.9935103996416156, 22 | 0.9969816790537888, 23 | 0.9987807916791251 24 | ], 25 | "bpp": [ 26 | 0.03987841282151601, 27 | 0.09543167484922649, 28 | 0.20144510596076257, 29 | 0.37904033751712557, 30 | 0.6694125629390341, 31 | 1.1489351001950459, 32 | 1.9061772888238284, 33 | 2.911621844721377 34 | ], 35 | "encoding_time": [ 36 | 17.56139685330766, 37 | 18.600728590836685, 38 | 20.011446394277424, 39 | 21.87910070044271, 40 | 24.399956024094912, 41 | 27.54343942310033, 42 | 31.62106076251255, 43 | 35.40146634417973 44 | ], 45 | "decoding_time": [ 46 | 0.2856315320797181, 47 | 0.3161498937713966, 48 | 0.37147290787000337, 49 | 0.42974473251385636, 50 | 0.4748155360811212, 51 | 0.5353805081228192, 52 | 0.6149288121234165, 53 | 0.6739041430226872 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-mobile/rd-curves-clic2020-mobile-ms-ssim.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/results/image/clic2020-mobile/rd-curves-clic2020-mobile-ms-ssim.png -------------------------------------------------------------------------------- /results/image/clic2020-mobile/rd-curves-clic2020-mobile-psnr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/results/image/clic2020-mobile/rd-curves-clic2020-mobile-psnr.png -------------------------------------------------------------------------------- /results/image/clic2020-mobile/vtm.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "VTM", 3 | "description": "VTM", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.955868976094447, 7 | 30.47001401667953, 8 | 33.07835552282398, 9 | 35.73934020851539, 10 | 38.46536506492524, 11 | 41.479935701186186, 12 | 44.93434595586896, 13 | 48.51245543239272 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.8922410456652052, 17 | 0.9365411059240277, 18 | 0.9642750088418468, 19 | 0.9799350014563357, 20 | 0.9886786515793103, 21 | 0.9940394323863341, 22 | 0.9973498080553633, 23 | 0.9990168096644155 24 | ], 25 | "bpp": [ 26 | 0.03736660756543293, 27 | 0.08785763054390122, 28 | 0.18290791142017315, 29 | 0.34560848451432774, 30 | 0.6142115539305054, 31 | 1.0704162043141165, 32 | 1.813963165884298, 33 | 2.773202352709049 34 | ], 35 | "encoding_time": [ 36 | 106.8591263870175, 37 | 226.71608158577695, 38 | 356.03235563401427, 39 | 515.7250458484285, 40 | 713.1705554442459, 41 | 995.0412809848785, 42 | 1248.2659243104163, 43 | 1349.6400597885754 44 | ], 45 | "decoding_time": [ 46 | 0.3861926994966657, 47 | 0.46153861083341446, 48 | 0.5439772632684601, 49 | 0.6872972129436021, 50 | 0.7981681462084309, 51 | 0.9290553759992792, 52 | 1.1065376621953558, 53 | 1.3130989945336673 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/bpg_444_x265_ycbcr.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "BPG 8b 444 x265 ycbcr", 3 | "description": "BPG. BPG version b'0.9.8'", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.37640736886428, 7 | 31.811018357633, 8 | 34.379726718624376, 9 | 36.98099518734661, 10 | 39.7636387276628, 11 | 42.83476699000967, 12 | 46.256944396349404, 13 | 49.58745237650082 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9150212876796723, 17 | 0.9478094213008881, 18 | 0.9690727515220642, 19 | 0.9819547076225281, 20 | 0.9902061364650726, 21 | 0.9951038887500763, 22 | 0.997774785041809, 23 | 0.9990565629005432 24 | ], 25 | "bpp": [ 26 | 0.04406167053227703, 27 | 0.09972637745804101, 28 | 0.20738907593370406, 29 | 0.4015927155190137, 30 | 0.7536925393109983, 31 | 1.3543555845018738, 32 | 2.2736894938936816, 33 | 3.546711768307213 34 | ], 35 | "encoding_time": [ 36 | 11.896193460464477, 37 | 13.381728968620301, 38 | 15.548328848838807, 39 | 18.671698398590088, 40 | 23.120408018112183, 41 | 28.40780778217316, 42 | 34.7076559047699, 43 | 40.199478400230404 44 | ], 45 | "decoding_time": [ 46 | 1.3690671396255494, 47 | 1.5666652040481568, 48 | 1.7902325477600098, 49 | 1.925509080886841, 50 | 2.1469563121795656, 51 | 2.310136142730713, 52 | 2.5301388788223265, 53 | 2.8000461978912354 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-factorized_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.37720565918045, 7 | 30.705735239255613, 8 | 31.858466634192666, 9 | 33.0302213578034, 10 | 34.06874639901866, 11 | 35.08719422252929, 12 | 36.15699075673419, 13 | 37.414763819825936 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9551979711055756, 17 | 0.9669064548015595, 18 | 0.9751633753776551, 19 | 0.9822698900699616, 20 | 0.9871967151165009, 21 | 0.9907307703495025, 22 | 0.9931913087368012, 23 | 0.9951079289913177 24 | ], 25 | "bpp": [ 26 | 0.09724716689582236, 27 | 0.13906775620559222, 28 | 0.19775225679930972, 29 | 0.2782816273496679, 30 | 0.39025273815852674, 31 | 0.5321110977586841, 32 | 0.7168024815884209, 33 | 0.9679307117975499 34 | ], 35 | "encoding_time": [ 36 | 4.715242914199829, 37 | 4.65610523891449, 38 | 4.681715512275696, 39 | 4.678062271118164, 40 | 4.7382344741821285, 41 | 9.234178450584412, 42 | 9.4450219039917, 43 | 9.2938358335495 44 | ], 45 | "decoding_time": [ 46 | 6.266647191047668, 47 | 6.15578157043457, 48 | 6.205092204093933, 49 | 6.220200489997864, 50 | 6.30401843547821, 51 | 11.152594404220581, 52 | 11.364387936592102, 53 | 11.20413826084137 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-factorized_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.377207939348885, 7 | 30.705735136236225, 8 | 31.85846606417925, 9 | 33.03022681079785, 10 | 34.068745600174104, 11 | 35.08719290750637, 12 | 36.156990380973085, 13 | 37.41475497533456 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9551979510784149, 17 | 0.966906423330307, 18 | 0.9751633024215698, 19 | 0.982269819021225, 20 | 0.9871966791152954, 21 | 0.9907307367324829, 22 | 0.9931912789344788, 23 | 0.9951079070568085 24 | ], 25 | "bpp": [ 26 | 0.09724716689582236, 27 | 0.13906776248618477, 28 | 0.19775231701323664, 29 | 0.2782816973378159, 30 | 0.39025296285341843, 31 | 0.5321108440304455, 32 | 0.716802846263484, 33 | 0.967931000264841 34 | ], 35 | "encoding_time": [ 36 | 0.16006684684753417, 37 | 0.16135348320007326, 38 | 0.16114239120483398, 39 | 0.1603734712600708, 40 | 0.16072121906280518, 41 | 0.3109722900390625, 42 | 0.31572458934783937, 43 | 0.3134937171936035 44 | ], 45 | "decoding_time": [ 46 | 0.09420452690124512, 47 | 0.09469930744171143, 48 | 0.09553509330749511, 49 | 0.09641528701782226, 50 | 0.10004484748840332, 51 | 0.18984694385528564, 52 | 0.19570245265960692, 53 | 0.2059890832901001 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-factorized_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.346130791471722, 7 | 31.757419257951046, 8 | 33.1079610455742, 9 | 34.580155985539555, 10 | 35.97573701418801, 11 | 37.73943435229086, 12 | 39.345451856091934, 13 | 41.19799011121601 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9436275279521942, 17 | 0.9578829710483551, 18 | 0.9687069411277771, 19 | 0.9772215988636017, 20 | 0.9836585171222687, 21 | 0.9885533835887909, 22 | 0.992249536037445, 23 | 0.994909294128418 24 | ], 25 | "bpp": [ 26 | 0.10134687480020133, 27 | 0.14778930109627345, 28 | 0.21534583740411353, 29 | 0.3149649005661885, 30 | 0.45399784636093227, 31 | 0.6732614191019545, 32 | 0.9712545656696584, 33 | 1.3761335822796938 34 | ], 35 | "encoding_time": [ 36 | 4.696150950431823, 37 | 4.7170832109451295, 38 | 4.575215920448303, 39 | 4.709885010719299, 40 | 4.707372143745422, 41 | 9.05923637008667, 42 | 9.130434467315673, 43 | 8.56956122493744 44 | ], 45 | "decoding_time": [ 46 | 6.242096820831299, 47 | 6.286550065040588, 48 | 6.128396215438843, 49 | 6.221546727180481, 50 | 6.268763331413269, 51 | 10.970276280403137, 52 | 11.0655739402771, 53 | 10.502538758277893 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-factorized_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.34612732957751, 7 | 31.757422030218077, 8 | 33.10796264940447, 9 | 34.580158604548544, 10 | 35.975737597091175, 11 | 37.73943618700234, 12 | 39.34544963587271, 13 | 41.1979911661421 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9436274325847626, 17 | 0.9578829364776611, 18 | 0.9687069239616394, 19 | 0.9772215921878815, 20 | 0.9836584692001342, 21 | 0.9885533416271209, 22 | 0.9922495129108428, 23 | 0.994909282207489 24 | ], 25 | "bpp": [ 26 | 0.10134691659286418, 27 | 0.14778938757392343, 28 | 0.21534579767753173, 29 | 0.3149649358683788, 30 | 0.45399784442681945, 31 | 0.6732613512868258, 32 | 0.9712548443624406, 33 | 1.376133884178427 34 | ], 35 | "encoding_time": [ 36 | 0.15581978034973146, 37 | 0.16273884677886963, 38 | 0.1623200054168701, 39 | 0.1597346019744873, 40 | 0.16496611213684081, 41 | 0.31889875984191896, 42 | 0.30524715423583987, 43 | 0.30950244140625 44 | ], 45 | "decoding_time": [ 46 | 0.09168703651428223, 47 | 0.09604816436767578, 48 | 0.0969489974975586, 49 | 0.09841288566589355, 50 | 0.10508813858032226, 51 | 0.1997974328994751, 52 | 0.20198518085479736, 53 | 0.21962269973754883 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-hyperprior_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.79155757328765, 7 | 30.424734931173642, 8 | 31.814326224270967, 9 | 33.10965229371338, 10 | 34.213803590286446, 11 | 35.38786625241995, 12 | 36.63433029175344, 13 | 38.0802025645205 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9568198449611663, 17 | 0.9686752886772155, 18 | 0.9777487518787384, 19 | 0.9840791184902191, 20 | 0.9883821797370911, 21 | 0.9914066061973572, 22 | 0.9938441956043244, 23 | 0.9957345809936523 24 | ], 25 | "bpp": [ 26 | 0.08092933036992203, 27 | 0.11719293436246991, 28 | 0.16922861536065614, 29 | 0.2401411650188684, 30 | 0.33479661137580913, 31 | 0.46115105539001017, 32 | 0.6275016829171495, 33 | 0.8688163719201917 34 | ], 35 | "encoding_time": [ 36 | 5.084850775718689, 37 | 5.065844680786133, 38 | 5.15870382976532, 39 | 5.12696116733551, 40 | 5.145981848716736, 41 | 10.187999968528748, 42 | 10.315923328399657, 43 | 10.289897315979005 44 | ], 45 | "decoding_time": [ 46 | 6.513426986694336, 47 | 6.479937768936157, 48 | 6.589867651939392, 49 | 6.549404779434204, 50 | 6.608122572898865, 51 | 11.840547139167786, 52 | 12.018028802871704, 53 | 11.980111731529236 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-hyperprior_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.791553203167204, 7 | 30.424738844867367, 8 | 31.814333818476523, 9 | 33.10965541773745, 10 | 34.21380190828478, 11 | 35.387867656997905, 12 | 36.634328927248625, 13 | 38.08020300056315 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9568197586536408, 17 | 0.9686752099990845, 18 | 0.9777486758232117, 19 | 0.9840790460109711, 20 | 0.9883821442127227, 21 | 0.9914065678119659, 22 | 0.993844173669815, 23 | 0.9957345662117004 24 | ], 25 | "bpp": [ 26 | 0.08092933036992203, 27 | 0.11719288857492413, 28 | 0.16922861512582288, 29 | 0.24014111028736262, 30 | 0.33479660138370365, 31 | 0.4611507383672031, 32 | 0.6275014035934595, 33 | 0.8688162699906985 34 | ], 35 | "encoding_time": [ 36 | 0.18633910846710205, 37 | 0.1815865774154663, 38 | 0.181325496673584, 39 | 0.18697413444519043, 40 | 0.18760418224334716, 41 | 0.32172364044189455, 42 | 0.3174314212799072, 43 | 0.3272850103378296 44 | ], 45 | "decoding_time": [ 46 | 0.11098940563201905, 47 | 0.10712017631530761, 48 | 0.10786315345764161, 49 | 0.11304314136505127, 50 | 0.11696522045135498, 51 | 0.1871419916152954, 52 | 0.18794270801544188, 53 | 0.20054757404327392 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-hyperprior_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.679916553742625, 7 | 32.245118076014194, 8 | 33.81038856199879, 9 | 35.41322576159897, 10 | 36.78892349227221, 11 | 38.51263846020962, 12 | 39.87708008932597, 13 | 41.86502780983303 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9457966415882111, 17 | 0.9593352782726288, 18 | 0.9694880673885345, 19 | 0.9785676605701447, 20 | 0.9849301326274872, 21 | 0.9892770283222199, 22 | 0.9920597321987152, 23 | 0.9952311718463898 24 | ], 25 | "bpp": [ 26 | 0.09026553068292785, 27 | 0.1327181071703361, 28 | 0.19194443376450698, 29 | 0.27753713383604917, 30 | 0.38992651881564827, 31 | 0.5672997329025702, 32 | 0.8073582171506168, 33 | 1.1203672176200261 34 | ], 35 | "encoding_time": [ 36 | 5.040963344573974, 37 | 5.129545254707336, 38 | 5.173923272132874, 39 | 5.201372498512268, 40 | 5.186466663360596, 41 | 10.169246288299561, 42 | 9.9902719745636, 43 | 10.142168719291687 44 | ], 45 | "decoding_time": [ 46 | 6.463549154281616, 47 | 6.594456752777099, 48 | 6.6636737518310545, 49 | 6.64303101348877, 50 | 6.654654666900635, 51 | 11.798530023574829, 52 | 11.660910503387452, 53 | 11.824888606071472 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-bmshj2018-hyperprior_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.67993563377237, 7 | 32.245115909489755, 8 | 33.81038887240564, 9 | 35.41322480932127, 10 | 36.7889260212892, 11 | 38.5126387628514, 12 | 39.87707720981309, 13 | 41.86502661404093 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9457966380119324, 17 | 0.9593352100849152, 18 | 0.9694879961013794, 19 | 0.9785676057338715, 20 | 0.9849300920963288, 21 | 0.9892769949436188, 22 | 0.9920596964359284, 23 | 0.9952311413288116 24 | ], 25 | "bpp": [ 26 | 0.09026561628645181, 27 | 0.1327177955290379, 28 | 0.19194423461942947, 29 | 0.2775370517225885, 30 | 0.38992651076152834, 31 | 0.5672997728209578, 32 | 0.8073583243607276, 33 | 1.1203669847518216 34 | ], 35 | "encoding_time": [ 36 | 0.1840849199295044, 37 | 0.18492424869537352, 38 | 0.18592239570617675, 39 | 0.18734084224700928, 40 | 0.18928132438659667, 41 | 0.3294787845611572, 42 | 0.3300145063400269, 43 | 0.33687953758239747 44 | ], 45 | "decoding_time": [ 46 | 0.1090132474899292, 47 | 0.1100076904296875, 48 | 0.11126929378509522, 49 | 0.11631192779541015, 50 | 0.12202827453613281, 51 | 0.19523798561096192, 52 | 0.2001537675857544, 53 | 0.2123116340637207 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-anchor_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.117225380440434, 7 | 31.310221480501284, 8 | 32.71887506158092, 9 | 33.797187102124525, 10 | 34.81094036846173, 11 | 35.860786023370906 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9608892550468445, 15 | 0.9714514172077179, 16 | 0.9798711173534393, 17 | 0.9850246813297272, 18 | 0.9892314963340759, 19 | 0.9922459559440613 20 | ], 21 | "bpp": [ 22 | 0.06463306521948228, 23 | 0.09514181255858342, 24 | 0.143567269341118, 25 | 0.20665190512643083, 26 | 0.30653803436464583, 27 | 0.4116013516172279 28 | ], 29 | "encoding_time": [ 30 | 33.50721900463104, 31 | 32.78651761436463, 32 | 33.29038467884064, 33 | 32.86169846820831, 34 | 65.46953435707093, 35 | 66.08224327182769 36 | ], 37 | "decoding_time": [ 38 | 67.99860014820099, 39 | 65.475608294487, 40 | 67.15335019111633, 41 | 65.77962083148957, 42 | 107.27640009021759, 43 | 109.06956245422363 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-anchor_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.115468575964154, 7 | 31.310089472419136, 8 | 32.719069372591534, 9 | 33.797734906189625, 10 | 34.81078848375526, 11 | 35.86062654982749 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9608907601833343, 15 | 0.9714500329494477, 16 | 0.9798701136112213, 17 | 0.9850246093273163, 18 | 0.9892313890457153, 19 | 0.9922460126876831 20 | ], 21 | "bpp": [ 22 | 0.06463295474803975, 23 | 0.0951385634460673, 24 | 0.1435680703575596, 25 | 0.20665262012609972, 26 | 0.30653385052256, 27 | 0.41160454814309017 28 | ], 29 | "encoding_time": [ 30 | 19.5307623462677, 31 | 19.530738796234132, 32 | 19.708475044250488, 33 | 19.809517119407655, 34 | 20.264168701171876, 35 | 20.462080245018004 36 | ], 37 | "decoding_time": [ 38 | 42.291125671386716, 39 | 42.1945699300766, 40 | 42.80821565723419, 41 | 42.272916316986084, 42 | 43.25086663913727, 43 | 43.93937536334992 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-anchor_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.843827399181436, 7 | 33.14032662996679, 8 | 34.32458490132898, 9 | 35.92713450924765, 10 | 37.246928479279376, 11 | 38.49494239127623 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9500500860214234, 15 | 0.9624458041191101, 16 | 0.9713518114089966, 17 | 0.9789334256649017, 18 | 0.9848298490047455, 19 | 0.9890071408748626 20 | ], 21 | "bpp": [ 22 | 0.0743186563306567, 23 | 0.10779012586228245, 24 | 0.15061497181472405, 25 | 0.22823250857131736, 26 | 0.3244907991718232, 27 | 0.45283589496472393 28 | ], 29 | "encoding_time": [ 30 | 33.56612348651886, 31 | 33.383335356712344, 32 | 33.02797842502594, 33 | 65.35019309806823, 34 | 63.65691239833832, 35 | 66.10806051254272 36 | ], 37 | "decoding_time": [ 38 | 66.51825876045227, 39 | 67.9676844739914, 40 | 67.71553570842742, 41 | 108.68706864833831, 42 | 106.6962045841217, 43 | 109.22196040916442 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-anchor_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.84379478841088, 7 | 33.14044297151223, 8 | 34.32466798850967, 9 | 35.9272899375526, 10 | 37.24646282594581, 11 | 38.49489215586405 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.950047952413559, 15 | 0.9624494326114654, 16 | 0.9713520367145538, 17 | 0.9789321212768555, 18 | 0.9848296251296997, 19 | 0.9890084612369537 20 | ], 21 | "bpp": [ 22 | 0.07432132603899022, 23 | 0.10778920840118025, 24 | 0.15061691280552444, 25 | 0.22823298073740303, 26 | 0.32450169688230657, 27 | 0.452830966720425 28 | ], 29 | "encoding_time": [ 30 | 19.773889904022216, 31 | 19.989353987693786, 32 | 19.821947996139528, 33 | 19.73764079475403, 34 | 19.83476554298401, 35 | 19.880442628860475 36 | ], 37 | "decoding_time": [ 38 | 42.79860572528839, 39 | 43.26393440055847, 40 | 43.18392315864563, 41 | 43.09895878791809, 42 | 41.87997152137756, 43 | 42.32710852909088 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-attn_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.924011126946528, 7 | 31.2100365813348, 8 | 32.495157635199, 9 | 33.853579540400226, 10 | 34.7722597453082, 11 | 35.89712849011551 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9579562351703644, 15 | 0.9695617718696594, 16 | 0.9783014628887177, 17 | 0.9853459594249725, 18 | 0.9891296970844269, 19 | 0.9918720946311951 20 | ], 21 | "bpp": [ 22 | 0.06088097063208588, 23 | 0.09211727328660398, 24 | 0.13635719266806398, 25 | 0.20936320643333892, 26 | 0.2921761713360613, 27 | 0.4129265768989896 28 | ], 29 | "encoding_time": [ 30 | 36.93135933685303, 31 | 36.27178126716614, 32 | 36.2345823431015, 33 | 71.97606046390534, 34 | 73.22822881793977, 35 | 71.10108557605743 36 | ], 37 | "decoding_time": [ 38 | 72.83156623744965, 39 | 70.60613708877564, 40 | 70.22581655502319, 41 | 114.59798412513733, 42 | 116.53324477672577, 43 | 114.77915329551696 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-attn_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.924276043187785, 7 | 31.20963985359798, 8 | 32.49483580821654, 9 | 33.8532248828621, 10 | 34.77230477573768, 11 | 35.89714051457505 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9579550745487213, 15 | 0.9695629532337189, 16 | 0.9783008012771607, 17 | 0.9853476421833038, 18 | 0.9891304953098297, 19 | 0.9918721761703492 20 | ], 21 | "bpp": [ 22 | 0.06088170989241543, 23 | 0.09212171387000959, 24 | 0.1363608527798497, 25 | 0.20936264523743153, 26 | 0.29217409097980135, 27 | 0.4129331959967591 28 | ], 29 | "encoding_time": [ 30 | 19.4013210811615, 31 | 19.08847033214569, 32 | 19.48016240501404, 33 | 19.712770031929015, 34 | 19.5769230260849, 35 | 19.736862726211548 36 | ], 37 | "decoding_time": [ 38 | 41.8164294424057, 39 | 41.291855116844175, 40 | 41.72591713619232, 41 | 41.49684806728363, 42 | 41.473833650588986, 43 | 41.51133936500549 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-attn_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.67421714123046, 7 | 32.985766430653285, 8 | 34.32362720696729, 9 | 35.89972874748058, 10 | 37.07873956971493, 11 | 38.41629550141968 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9496363892555236, 15 | 0.9617062633037567, 16 | 0.9715990149974822, 17 | 0.9795654518604279, 18 | 0.9846867060661316, 19 | 0.9889668886661529 20 | ], 21 | "bpp": [ 22 | 0.07229912355906846, 23 | 0.10265783619421497, 24 | 0.1487791192232378, 25 | 0.23533101329209927, 26 | 0.32540494715301527, 27 | 0.4516008409788888 28 | ], 29 | "encoding_time": [ 30 | 37.06726272773743, 31 | 34.63862268733978, 32 | 37.03673133277893, 33 | 72.9737970457077, 34 | 65.56668290424346, 35 | 72.17672461605072 36 | ], 37 | "decoding_time": [ 38 | 72.62233439064026, 39 | 67.16189890480041, 40 | 72.1403607711792, 41 | 116.24347220516205, 42 | 106.39335160064697, 43 | 114.52794191169738 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-cheng2020-attn_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.674553544517774, 7 | 32.985358548438306, 8 | 34.32373710191925, 9 | 35.89992355422573, 10 | 37.07874945489335, 11 | 38.41627456459652 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9496356174945831, 15 | 0.9617076442241669, 16 | 0.971600210428238, 17 | 0.9795682637691497, 18 | 0.9846859116554261, 19 | 0.9889668908119201 20 | ], 21 | "bpp": [ 22 | 0.0722987723738274, 23 | 0.10265771422933527, 24 | 0.14877883207525808, 25 | 0.23532755878944886, 26 | 0.3254020293828645, 27 | 0.45159476842236346 28 | ], 29 | "encoding_time": [ 30 | 19.961713183403017, 31 | 19.96014051437378, 32 | 19.798332752227783, 33 | 19.83047178173065, 34 | 19.707442085266113, 35 | 20.353778814315795 36 | ], 37 | "decoding_time": [ 38 | 43.698941926956174, 39 | 43.9536048746109, 40 | 43.481017369270326, 41 | 41.786149035453796, 42 | 41.60706428813934, 43 | 43.90533739566803 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018-mean_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.92530820319984, 7 | 31.25066253066475, 8 | 32.420173554680574, 9 | 33.3404021394402, 10 | 34.38864515309151, 11 | 35.61472233069297, 12 | 36.866798488365745, 13 | 38.270262033807875 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9572885465621949, 17 | 0.9699230880737305, 18 | 0.9785008792877197, 19 | 0.9841850192546845, 20 | 0.9882585077285767, 21 | 0.9917345521450043, 22 | 0.9941613767147064, 23 | 0.9959018251895905 24 | ], 25 | "bpp": [ 26 | 0.0713521988747331, 27 | 0.10730951871700153, 28 | 0.15897267283052038, 29 | 0.23015047236771044, 30 | 0.3220809974489397, 31 | 0.4530111194042671, 32 | 0.6223619608443832, 33 | 0.8608965155674895 34 | ], 35 | "encoding_time": [ 36 | 5.278424322128296, 37 | 5.593557298660278, 38 | 5.419617993354797, 39 | 5.288329142570496, 40 | 11.109554169654846, 41 | 11.17778923034668, 42 | 11.011397731781006, 43 | 11.102327938079833 44 | ], 45 | "decoding_time": [ 46 | 6.6804255685806275, 47 | 7.054538195610046, 48 | 6.839932277679443, 49 | 6.679304417610169, 50 | 12.755096069335938, 51 | 12.819798644065857, 52 | 12.677287819862366, 53 | 12.831065936088562 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018-mean_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.92531248655425, 7 | 31.250653801193664, 8 | 32.4201879852215, 9 | 33.34039287304005, 10 | 34.38864064723922, 11 | 35.61471908547137, 12 | 36.866801387192446, 13 | 38.270260730245084 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9572884616851807, 17 | 0.9699230508804322, 18 | 0.9785008096694946, 19 | 0.9841849911212921, 20 | 0.9882584645748138, 21 | 0.9917345290184021, 22 | 0.9941613411903382, 23 | 0.9959017944335937 24 | ], 25 | "bpp": [ 26 | 0.07135206283493681, 27 | 0.10730961202309416, 28 | 0.15897272888995106, 29 | 0.23015069361028162, 30 | 0.3220808338536349, 31 | 0.45301126261117936, 32 | 0.6223620224395132, 33 | 0.8608969025796734 34 | ], 35 | "encoding_time": [ 36 | 0.1901091556549072, 37 | 0.19491000747680665, 38 | 0.1905695514678955, 39 | 0.19601697731018067, 40 | 0.3299550065994263, 41 | 0.3346501731872559, 42 | 0.33081445217132566, 43 | 0.3282274150848389 44 | ], 45 | "decoding_time": [ 46 | 0.1100010871887207, 47 | 0.11339306926727295, 48 | 0.11199229145050049, 49 | 0.11849800395965576, 50 | 0.1894378614425659, 51 | 0.19439896202087403, 52 | 0.19462895774841307, 53 | 0.19908062362670897 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018-mean_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.13365676069095, 7 | 32.60408445331112, 8 | 34.09203682275116, 9 | 35.5398371506447, 10 | 37.099059443416465, 11 | 38.649987622312736, 12 | 40.31133741179138, 13 | 41.852082038714684 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9465266456604003, 17 | 0.9604464054107666, 18 | 0.9705660827159882, 19 | 0.9788219683170318, 20 | 0.9847542731761932, 21 | 0.9893023769855499, 22 | 0.9928457067012787, 23 | 0.9950825223922729 24 | ], 25 | "bpp": [ 26 | 0.07868890336065411, 27 | 0.11787703922039068, 28 | 0.175864853705568, 29 | 0.25821269673697167, 30 | 0.38376770325523996, 31 | 0.5403889535148002, 32 | 0.7696996178369119, 33 | 1.0600862390499814 34 | ], 35 | "encoding_time": [ 36 | 5.4030131311416625, 37 | 5.388297965049744, 38 | 5.462877559661865, 39 | 5.386192185401916, 40 | 11.138862842559815, 41 | 11.11558778476715, 42 | 10.950054145812988, 43 | 10.897930769920348 44 | ], 45 | "decoding_time": [ 46 | 6.815616070747375, 47 | 6.786164739608765, 48 | 6.894083045005798, 49 | 6.839028820991516, 50 | 12.811504277229309, 51 | 12.784036735534668, 52 | 12.570844922065735, 53 | 12.57929737663269 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018-mean_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.133667685696377, 7 | 32.60407449267532, 8 | 34.09202529588382, 9 | 35.53984836158189, 10 | 37.099054371791354, 11 | 38.64998344407832, 12 | 40.31133182160538, 13 | 41.852076868094464 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9465265464782715, 17 | 0.960446337223053, 18 | 0.9705660085678101, 19 | 0.9788219513893127, 20 | 0.9847541983127595, 21 | 0.989302357673645, 22 | 0.9928456993103028, 23 | 0.9950824885368347 24 | ], 25 | "bpp": [ 26 | 0.07868883751353674, 27 | 0.11787667326587334, 28 | 0.17586488671559614, 29 | 0.25821313207075824, 30 | 0.3837674810340524, 31 | 0.5403881111345659, 32 | 0.7696999065334729, 33 | 1.0600860694340741 34 | ], 35 | "encoding_time": [ 36 | 0.18966764640808106, 37 | 0.18756428813934325, 38 | 0.19497398376464845, 39 | 0.19169462776184082, 40 | 0.3308635129928589, 41 | 0.3284514627456665, 42 | 0.3320132360458374, 43 | 0.337246488571167 44 | ], 45 | "decoding_time": [ 46 | 0.1102318754196167, 47 | 0.11010270404815674, 48 | 0.11622990798950196, 49 | 0.11722123050689698, 50 | 0.19432675743103028, 51 | 0.19739388942718505, 52 | 0.20270129585266114, 53 | 0.2148886079788208 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.089763771525888, 7 | 31.441781684350815, 8 | 32.595305025152165, 9 | 33.643100988375785, 10 | 34.50041414472013, 11 | 35.69848246117491, 12 | 36.821387530332366, 13 | 38.09881235693699 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9582914431095123, 17 | 0.9704137189388276, 18 | 0.9786961970329284, 19 | 0.9842012486457825, 20 | 0.9885687184333801, 21 | 0.9918789026737214, 22 | 0.9940587618350982, 23 | 0.9957508447170258 24 | ], 25 | "bpp": [ 26 | 0.06369992530011916, 27 | 0.09881969720380744, 28 | 0.14738483832914356, 29 | 0.2096223906397385, 30 | 0.31142941837940497, 31 | 0.42943383794929574, 32 | 0.6077366475167731, 33 | 0.8449507690403303 34 | ], 35 | "encoding_time": [ 36 | 41.05025362873077, 37 | 40.72882026386261, 38 | 42.27298498916626, 39 | 39.67553610515594, 40 | 112.71220200443268, 41 | 99.93638154315948, 42 | 102.742688996315, 43 | 101.85650184249877 44 | ], 45 | "decoding_time": [ 46 | 74.24359247207641, 47 | 72.90445133113862, 48 | 75.81867037582397, 49 | 72.45472752952575, 50 | 144.99977128028868, 51 | 134.6939069700241, 52 | 136.0571144580841, 53 | 131.98147765350342 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 30.08953630411511, 7 | 31.441017229402327, 8 | 32.59536551700339, 9 | 33.643293535628885, 10 | 34.500863631822945, 11 | 35.697822995386154, 12 | 36.82120311272528, 13 | 38.098471285298515 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.958289205789566, 17 | 0.9704131810665131, 18 | 0.9786962654590606, 19 | 0.9842016680240631, 20 | 0.9885676267147064, 21 | 0.9918783731460571, 22 | 0.9940588221549987, 23 | 0.9957507531642914 24 | ], 25 | "bpp": [ 26 | 0.06369865562314869, 27 | 0.09881507256209432, 28 | 0.14738809319187232, 29 | 0.20962622986499896, 30 | 0.3114313450660414, 31 | 0.4294345762867106, 32 | 0.6077358957874488, 33 | 0.8449505528763278 34 | ], 35 | "encoding_time": [ 36 | 19.76728486442566, 37 | 19.82371105957031, 38 | 19.533343611717225, 39 | 19.743364351272582, 40 | 19.663876621246338, 41 | 20.445412947654724, 42 | 20.142902862548826, 43 | 19.8632942905426 44 | ], 45 | "decoding_time": [ 46 | 42.994077966690064, 47 | 42.277690934181216, 48 | 41.70642344665527, 49 | 42.38826359844208, 50 | 41.495261212348936, 51 | 44.14228500747681, 52 | 43.446339701652526, 53 | 42.607969847679136 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.475861246590785, 7 | 32.88787435425501, 8 | 34.36505638076645, 9 | 35.6953188424661, 10 | 37.28209480368451, 11 | 38.785761793471536, 12 | 40.38610968496738, 13 | 41.823003629227216 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9483125965595245, 17 | 0.9608126728534698, 18 | 0.9718058190345764, 19 | 0.9790762553215027, 20 | 0.9848940873146057, 21 | 0.9893252892494202, 22 | 0.9926484313011169, 23 | 0.9950541083812714 24 | ], 25 | "bpp": [ 26 | 0.06789916325901722, 27 | 0.10734513261981268, 28 | 0.15949200825253415, 29 | 0.23796007744082848, 30 | 0.3610577654270238, 31 | 0.5130502654182126, 32 | 0.7360683946635966, 33 | 1.0325965313266379 34 | ], 35 | "encoding_time": [ 36 | 41.63050112819672, 37 | 40.244981513023376, 38 | 41.484727494239806, 39 | 39.860374099731445, 40 | 97.25187293815613, 41 | 103.65984560585022, 42 | 106.50534079170227, 43 | 106.83384815979004 44 | ], 45 | "decoding_time": [ 46 | 74.05372174739837, 47 | 73.155773645401, 48 | 75.21035338592529, 49 | 71.79450761127472, 50 | 129.21810612869263, 51 | 137.42171112442017, 52 | 141.66111877536773, 53 | 137.5323140697479 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/compressai-mbt2018_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.47538137332437, 7 | 32.88769397330813, 8 | 34.36485642683121, 9 | 35.69592806471942, 10 | 37.28246668307126, 11 | 38.78580806380115, 12 | 40.38587417677448, 13 | 41.82309432171725 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.948310510635376, 17 | 0.9608135604858399, 18 | 0.9718048422336578, 19 | 0.9790777430534363, 20 | 0.984894653081894, 21 | 0.9893254811763763, 22 | 0.9926479604244233, 23 | 0.9950538251399994 24 | ], 25 | "bpp": [ 26 | 0.06789899862556092, 27 | 0.107344950773535, 28 | 0.1594904241884356, 29 | 0.2379634276962983, 30 | 0.3610587450886909, 31 | 0.5130541716504387, 32 | 0.7360558908570922, 33 | 1.0326126657256185 34 | ], 35 | "encoding_time": [ 36 | 19.476495405197145, 37 | 19.255923053741455, 38 | 20.23581275177002, 39 | 19.96885586452484, 40 | 19.7983794965744, 41 | 20.080082891464233, 42 | 19.91841247653961, 43 | 20.571931730270386 44 | ], 45 | "decoding_time": [ 46 | 41.30927014350891, 47 | 41.10723702526092, 48 | 42.8118179063797, 49 | 43.617622084617615, 50 | 41.86544591712952, 51 | 42.8290933675766, 52 | 42.74742619991302, 53 | 44.02041680526733 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/hm.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "HM", 3 | "description": "HM", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.565531449251537, 7 | 30.94615072020993, 8 | 33.423680065796, 9 | 35.94369698723567, 10 | 38.55619563489557, 11 | 41.33489193366605, 12 | 44.3514328828545, 13 | 47.50754052624546 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9008037474155426, 17 | 0.9386859741210938, 18 | 0.9631297907829285, 19 | 0.9780437324047089, 20 | 0.9874668362140655, 21 | 0.9932563118934631, 22 | 0.9965913994312287, 23 | 0.9984017112255097 24 | ], 25 | "bpp": [ 26 | 0.0319517409788559, 27 | 0.07299078693204922, 28 | 0.15380594154566135, 29 | 0.2969474141156679, 30 | 0.5552511147248343, 31 | 1.010482408584539, 32 | 1.7533707298146624, 33 | 2.8352031985737476 34 | ], 35 | "encoding_time": [ 36 | 35.34404016017914, 37 | 36.7876715965271, 38 | 38.997712717056274, 39 | 41.97602100467682, 40 | 46.430137534141544, 41 | 52.36666816806793, 42 | 59.721745708465576, 43 | 71.24125467967987 44 | ], 45 | "decoding_time": [ 46 | 0.3919059753417969, 47 | 0.45282184982299806, 48 | 0.5237360277175903, 49 | 0.5987681083679199, 50 | 0.6659879360198975, 51 | 0.7631268863677978, 52 | 0.8723315830230713, 53 | 1.0598873262405395 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/clic2020-professional/rd-curves-clic2020-professional-ms-ssim.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/results/image/clic2020-professional/rd-curves-clic2020-professional-ms-ssim.png -------------------------------------------------------------------------------- /results/image/clic2020-professional/rd-curves-clic2020-professional-psnr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/results/image/clic2020-professional/rd-curves-clic2020-professional-psnr.png -------------------------------------------------------------------------------- /results/image/clic2020-professional/vtm.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "VTM", 3 | "description": "VTM", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.337472706619277, 7 | 31.730940995684293, 8 | 34.15457345004876, 9 | 36.611257690121995, 10 | 39.09194904463525, 11 | 41.77990424184208, 12 | 44.811886182588836, 13 | 48.00565619064648 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9121655125617981, 17 | 0.9458665356636048, 18 | 0.9672529218196869, 19 | 0.9803580207824707, 20 | 0.988706910610199, 21 | 0.9939270412921906, 22 | 0.9970077097415924, 23 | 0.9986655340194702 24 | ], 25 | "bpp": [ 26 | 0.02940673181575781, 27 | 0.06639487566729217, 28 | 0.1376173280632231, 29 | 0.26650466002352563, 30 | 0.5029939315691506, 31 | 0.931083121760432, 32 | 1.656877480234137, 33 | 2.699026697929575 34 | ], 35 | "encoding_time": [ 36 | 222.15714904880522, 37 | 458.10675458431245, 38 | 801.6766791963578, 39 | 1305.5080655708314, 40 | 1883.2228838996887, 41 | 2762.7069400548935, 42 | 3748.229560251236, 43 | 4583.659822196007 44 | ], 45 | "decoding_time": [ 46 | 0.6111153059005737, 47 | 0.7137566432952881, 48 | 0.8562572135925293, 49 | 1.0722242555618287, 50 | 1.28183429145813, 51 | 1.5463278017044066, 52 | 1.8832393951416015, 53 | 2.3260428352355955 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/bpg_444_x265_ycbcr.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "BPG 8b 444 x265 ycbcr", 3 | "description": "BPG. BPG version b'0.9.8'", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.19512806390954, 7 | 28.68154930675666, 8 | 31.5946565907943, 9 | 34.857473813062924, 10 | 38.259886899666974, 11 | 41.47887283561703, 12 | 44.70311031066196, 13 | 47.63251604714922 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.8685900047421455, 17 | 0.9242047940691313, 18 | 0.9611444820960363, 19 | 0.9807986840605736, 20 | 0.9904666990041733, 21 | 0.9949331854780515, 22 | 0.9975460593899091, 23 | 0.9988023291031519 24 | ], 25 | "bpp": [ 26 | 0.06776767306857638, 27 | 0.1610234578450521, 28 | 0.35155402289496523, 29 | 0.6846966213650174, 30 | 1.1996654934353295, 31 | 1.9297120836046002, 32 | 3.0578757392035594, 33 | 4.703142801920573 34 | ], 35 | "encoding_time": [ 36 | 0.36445443828900653, 37 | 0.4197501341501872, 38 | 0.49722588062286377, 39 | 0.662082294623057, 40 | 0.7998103499412537, 41 | 0.9553667108217875, 42 | 1.1576407154401143, 43 | 1.2964888513088226 44 | ], 45 | "decoding_time": [ 46 | 0.11952014764149983, 47 | 0.13156630595525107, 48 | 0.15986177325248718, 49 | 0.16952948768933615, 50 | 0.1806861162185669, 51 | 0.194917360941569, 52 | 0.21694589654604593, 53 | 0.24737966060638428 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-factorized_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.29911283151186, 7 | 26.301309240670616, 8 | 27.2154189914184, 9 | 28.16555934039276, 10 | 29.053934043306196, 11 | 30.330470740702694, 12 | 31.433762338411224, 13 | 32.776907296275986 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9296295791864395, 17 | 0.9503234351674715, 18 | 0.9650793274243673, 19 | 0.9769630009929339, 20 | 0.9845390965541204, 21 | 0.9894740730524063, 22 | 0.9927667006850243, 23 | 0.9951493044694265 24 | ], 25 | "bpp": [ 26 | 0.11629231770833333, 27 | 0.17276679144965276, 28 | 0.25218709309895837, 29 | 0.3593105740017361, 30 | 0.4981180826822917, 31 | 0.6686842176649307, 32 | 0.8867797851562499, 33 | 1.1780870225694444 34 | ], 35 | "encoding_time": [ 36 | 0.6894752184549967, 37 | 0.7023201286792755, 38 | 0.681562195221583, 39 | 0.6861303945382436, 40 | 0.6890242199103037, 41 | 1.3662180999914806, 42 | 1.351937472820282, 43 | 1.3734674950440724 44 | ], 45 | "decoding_time": [ 46 | 0.9253701468308767, 47 | 0.9252707461516062, 48 | 0.9039340317249298, 49 | 0.8984045088291168, 50 | 0.9234653015931448, 51 | 1.6627739667892456, 52 | 1.6253822048505147, 53 | 1.6440746188163757 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-factorized_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.299112723558128, 7 | 26.30131491913002, 8 | 27.215390749560953, 9 | 28.165559300512367, 10 | 29.053932990539064, 11 | 30.330468893395544, 12 | 31.433762637582475, 13 | 32.776907197933824 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9296295071641604, 17 | 0.9503234972556432, 18 | 0.9650793597102165, 19 | 0.9769629711906115, 20 | 0.9845390195647875, 21 | 0.9894741351405779, 22 | 0.9927666584650675, 23 | 0.9951493019858996 24 | ], 25 | "bpp": [ 26 | 0.11629231770833333, 27 | 0.17276679144965276, 28 | 0.25218709309895837, 29 | 0.3593105740017361, 30 | 0.4981180826822917, 31 | 0.6686842176649307, 32 | 0.8867797851562499, 33 | 1.1780836317274306 34 | ], 35 | "encoding_time": [ 36 | 0.029149731000264485, 37 | 0.02765969435373942, 38 | 0.02434494098027547, 39 | 0.02473852038383484, 40 | 0.0458715558052063, 41 | 0.0458300511042277, 42 | 0.04764453570048014, 43 | 0.05313250422477722 44 | ], 45 | "decoding_time": [ 46 | 0.015422165393829346, 47 | 0.016197621822357178, 48 | 0.01578076680501302, 49 | 0.01636160413424174, 50 | 0.020580202341079712, 51 | 0.029399007558822632, 52 | 0.03410882751146952, 53 | 0.03545096516609192 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-factorized_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.908786993747455, 7 | 28.21792701366044, 8 | 29.616911857390793, 9 | 31.27709821764402, 10 | 32.956133703490536, 11 | 35.380950472875384, 12 | 37.39693508205453, 13 | 39.62130544452709 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9099890987078348, 17 | 0.9360476260383924, 18 | 0.9554707904656728, 19 | 0.9703577409187952, 20 | 0.9806416556239128, 21 | 0.9878812531630198, 22 | 0.9921989192565283, 23 | 0.9951046581069628 24 | ], 25 | "bpp": [ 26 | 0.1226230197482639, 27 | 0.18852742513020834, 28 | 0.2878078884548611, 29 | 0.44037882486979174, 30 | 0.64813232421875, 31 | 0.9669765896267358, 32 | 1.351162380642361, 33 | 1.8332722981770837 34 | ], 35 | "encoding_time": [ 36 | 0.6995555559794108, 37 | 0.6308462023735046, 38 | 0.6220521430174509, 39 | 0.6620098352432251, 40 | 0.6920309861501058, 41 | 1.3334342737992604, 42 | 1.3282968898614247, 43 | 1.2074389259020488 44 | ], 45 | "decoding_time": [ 46 | 0.8956152002016703, 47 | 0.8715583980083466, 48 | 0.830779105424881, 49 | 0.9073310097058614, 50 | 0.8896505137284597, 51 | 1.5697821080684662, 52 | 1.5901192526022594, 53 | 1.4703049560387929 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-factorized_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.908817394289304, 7 | 28.217925699960002, 8 | 29.616915231568353, 9 | 31.27708728897609, 10 | 32.956122820153084, 11 | 35.380922291056244, 12 | 37.39693190227357, 13 | 39.621314292092684 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.909988597035408, 17 | 0.9360475639502207, 18 | 0.9554706936081251, 19 | 0.9703576192259789, 20 | 0.9806416779756546, 21 | 0.9878811265031496, 22 | 0.9921989490588506, 23 | 0.9951046854257584 24 | ], 25 | "bpp": [ 26 | 0.1226230197482639, 27 | 0.18852742513020834, 28 | 0.2878078884548611, 29 | 0.44037882486979174, 30 | 0.6481357150607638, 31 | 0.9669765896267358, 32 | 1.351165771484375, 33 | 1.8332655164930556 34 | ], 35 | "encoding_time": [ 36 | 0.029442240794499714, 37 | 0.022808889547983806, 38 | 0.044924656550089516, 39 | 0.0453314483165741, 40 | 0.04554635286331177, 41 | 0.049007266759872437, 42 | 0.060063183307647705, 43 | 0.05449021855990092 44 | ], 45 | "decoding_time": [ 46 | 0.015836328268051147, 47 | 0.014355729023615519, 48 | 0.018537739912668865, 49 | 0.019978453715642292, 50 | 0.021332144737243652, 51 | 0.031190176804860432, 52 | 0.07524640361467998, 53 | 0.0394707719484965 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-hyperprior_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 24.868270255597213, 7 | 25.985603042635802, 8 | 27.0719440363254, 9 | 28.11380246832508, 10 | 28.992422814360392, 11 | 30.22032996048189, 12 | 31.59835226407328, 13 | 33.17476960776951 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9347377841671308, 17 | 0.9550812219580015, 18 | 0.9706826061010361, 19 | 0.9806285152832667, 20 | 0.9866020356615385, 21 | 0.9906589537858963, 22 | 0.9937887390454611, 23 | 0.9959184676408768 24 | ], 25 | "bpp": [ 26 | 0.1094326443142361, 27 | 0.1669514973958333, 28 | 0.24811808268229166, 29 | 0.3495449490017361, 30 | 0.47353786892361094, 31 | 0.6379258897569445, 32 | 0.858771430121528, 33 | 1.1598442925347223 34 | ], 35 | "encoding_time": [ 36 | 0.6972717742125193, 37 | 0.7196497917175293, 38 | 0.7154930233955383, 39 | 0.7136771082878113, 40 | 0.7216710050900778, 41 | 1.3659538825352986, 42 | 1.3912087579568226, 43 | 1.4020930031935375 44 | ], 45 | "decoding_time": [ 46 | 0.8910353779792786, 47 | 0.9129211703936259, 48 | 0.8984180092811584, 49 | 0.8999178111553192, 50 | 0.9123487969239553, 51 | 1.6231540143489838, 52 | 1.6214011708895366, 53 | 1.6219739317893982 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-hyperprior_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 24.868248601194242, 7 | 25.985596858661143, 8 | 27.071938995758597, 9 | 28.11380245534565, 10 | 28.992421114011616, 11 | 30.220334455291507, 12 | 31.598353906153378, 13 | 33.174764650954394 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9347378313541412, 17 | 0.9550811325510343, 18 | 0.9706825787822405, 19 | 0.9806284680962563, 20 | 0.9866019537051519, 21 | 0.9906589587529501, 22 | 0.9937887464960417, 23 | 0.9959184750914574 24 | ], 25 | "bpp": [ 26 | 0.1094326443142361, 27 | 0.1669514973958333, 28 | 0.24811808268229166, 29 | 0.3495449490017361, 30 | 0.47353786892361094, 31 | 0.6379292805989585, 32 | 0.858771430121528, 33 | 1.1598409016927083 34 | ], 35 | "encoding_time": [ 36 | 0.043423990408579506, 37 | 0.03932111461957296, 38 | 0.040019333362579346, 39 | 0.03543307383855184, 40 | 0.03301700949668884, 41 | 0.056319753328959145, 42 | 0.050064285596211754, 43 | 0.056355019410451256 44 | ], 45 | "decoding_time": [ 46 | 0.02310401201248169, 47 | 0.02277340491612752, 48 | 0.023206402858098347, 49 | 0.031077216068903606, 50 | 0.023077478011449177, 51 | 0.0326556662718455, 52 | 0.03287675976753235, 53 | 0.03449103236198425 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-hyperprior_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.58153679333392, 7 | 29.19669412138477, 8 | 30.972168705499175, 9 | 32.838191117040694, 10 | 34.5262427611008, 11 | 36.74336461762285, 12 | 38.58385584443213, 13 | 40.55687370015212 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9173671156167984, 17 | 0.9420618464549383, 18 | 0.9610564212004343, 19 | 0.9748740047216415, 20 | 0.9835608204205831, 21 | 0.9892508039871851, 22 | 0.9928662578264872, 23 | 0.9954901412129402 24 | ], 25 | "bpp": [ 26 | 0.13129340277777776, 27 | 0.20889282226562503, 28 | 0.3198581271701389, 29 | 0.47835625542534727, 30 | 0.6686842176649304, 31 | 0.9388258192274304, 32 | 1.2591722276475694, 33 | 1.6602240668402775 34 | ], 35 | "encoding_time": [ 36 | 0.6970945994059244, 37 | 0.6808836857477824, 38 | 0.6931926111380259, 39 | 0.7216778596242269, 40 | 0.7093222041924795, 41 | 1.37651530901591, 42 | 1.4065087238947551, 43 | 1.3525268534819286 44 | ], 45 | "decoding_time": [ 46 | 0.9112057387828827, 47 | 0.8845294018586477, 48 | 0.8950103521347046, 49 | 0.9058766464392344, 50 | 0.9204111993312836, 51 | 1.6285920242468517, 52 | 1.6773906449476879, 53 | 1.617292155822118 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-bmshj2018-hyperprior_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-hyperprior", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.581536752297392, 7 | 29.196703405493214, 8 | 30.972162072759534, 9 | 32.83818257445048, 10 | 34.52626403063645, 11 | 36.74334835426406, 12 | 38.58384824012354, 13 | 40.556865931529494 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9173670336604118, 17 | 0.9420619979500771, 18 | 0.9610559890667597, 19 | 0.9748738879958788, 20 | 0.9835607434312502, 21 | 0.9892507369319598, 22 | 0.9928662379582723, 23 | 0.9954901238282522 24 | ], 25 | "bpp": [ 26 | 0.13129340277777776, 27 | 0.20889282226562503, 28 | 0.3198581271701389, 29 | 0.47835625542534727, 30 | 0.6686876085069443, 31 | 0.9388258192274304, 32 | 1.2591722276475694, 33 | 1.6602240668402775 34 | ], 35 | "encoding_time": [ 36 | 0.034027030070622764, 37 | 0.03349201877911886, 38 | 0.04104950030644735, 39 | 0.03514625628789266, 40 | 0.042724778254826866, 41 | 0.05182003974914551, 42 | 0.05990575750668844, 43 | 0.05564545591672262 44 | ], 45 | "decoding_time": [ 46 | 0.022706329822540283, 47 | 0.021944125493367512, 48 | 0.024182766675949097, 49 | 0.0249578853448232, 50 | 0.027037203311920166, 51 | 0.035245428482691445, 52 | 0.03719417254130045, 53 | 0.040687511364618935 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-anchor_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.790042568533327, 7 | 26.65236983787339, 8 | 27.85142119124686, 9 | 28.808821490789153, 10 | 30.09936808994991, 11 | 30.931630045413005 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9414613718787829, 15 | 0.9601856122414271, 16 | 0.9739844327171644, 17 | 0.9821571484208107, 18 | 0.9878659198681513, 19 | 0.9916983445485433 20 | ], 21 | "bpp": [ 22 | 0.09806993272569443, 23 | 0.14954291449652776, 24 | 0.22618272569444445, 25 | 0.3173489040798611, 26 | 0.4488728841145834, 27 | 0.5891757541232641 28 | ], 29 | "encoding_time": [ 30 | 4.644511193037033, 31 | 4.712995370229085, 32 | 4.555189510186513, 33 | 4.3069873948891955, 34 | 8.59041636188825, 35 | 8.725391775369644 36 | ], 37 | "decoding_time": [ 38 | 9.182881583770117, 39 | 9.282513588666916, 40 | 8.952396343151728, 41 | 9.043608456850052, 42 | 14.762847701708475, 43 | 14.23514986038208 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-anchor_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.790027400394337, 7 | 26.652088645482166, 8 | 27.852512638182077, 9 | 28.808875855181114, 10 | 30.099083167746326, 11 | 30.93391586729822 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9414552773038546, 15 | 0.9601853465040525, 16 | 0.9739863326152166, 17 | 0.9821589067578316, 18 | 0.987865482767423, 19 | 0.9916993925968806 20 | ], 21 | "bpp": [ 22 | 0.0980563693576389, 23 | 0.14954630533854166, 24 | 0.22620307074652782, 25 | 0.31734551323784727, 26 | 0.44884914822048616, 27 | 0.5891859266493057 28 | ], 29 | "encoding_time": [ 30 | 2.5709563195705414, 31 | 2.5902612010637918, 32 | 2.7160435716311135, 33 | 2.6918994883696237, 34 | 2.6651874283949533, 35 | 2.8133738736311593 36 | ], 37 | "decoding_time": [ 38 | 5.716515749692917, 39 | 5.674631814161937, 40 | 5.8928042948246, 41 | 5.862759629885356, 42 | 5.723533024390538, 43 | 5.865190883477529 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-anchor_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.582315346297136, 7 | 29.968463144388622, 8 | 31.34260119519143, 9 | 33.389663451039304, 10 | 35.11808807406383, 11 | 36.70447371846136 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9235850100715955, 15 | 0.9465037633975347, 16 | 0.9628585601846377, 17 | 0.9757698476314545, 18 | 0.9841155285636584, 19 | 0.9893002236882845 20 | ], 21 | "bpp": [ 22 | 0.11959838867187501, 23 | 0.18380398220486116, 24 | 0.2709520128038195, 25 | 0.4173855251736111, 26 | 0.594455295138889, 27 | 0.8057284884982642 28 | ], 29 | "encoding_time": [ 30 | 4.396212100982666, 31 | 4.1811725695927935, 32 | 4.2672209938367205, 33 | 8.527882953484854, 34 | 8.543199946482977, 35 | 8.321631709734598 36 | ], 37 | "decoding_time": [ 38 | 8.8139428794384, 39 | 8.349522024393082, 40 | 8.89856713016828, 41 | 14.461705962816874, 42 | 14.208920538425446, 43 | 14.229354918003082 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-anchor_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-anchor", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.58235164600031, 7 | 29.969272906591517, 8 | 31.342783743928436, 9 | 33.390308674052186, 10 | 35.11886905407247, 11 | 36.7040956894179 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.923588735361894, 15 | 0.9465066492557526, 16 | 0.9628601123889288, 17 | 0.9757731581727663, 18 | 0.9841162537535032, 19 | 0.9893005341291428 20 | ], 21 | "bpp": [ 22 | 0.11959499782986115, 23 | 0.18379720052083337, 24 | 0.2709520128038195, 25 | 0.4173753526475694, 26 | 0.5944688585069444, 27 | 0.805735270182292 28 | ], 29 | "encoding_time": [ 30 | 2.7524550457795462, 31 | 2.7260450422763824, 32 | 2.7194062372048697, 33 | 2.764770030975342, 34 | 2.783641199270884, 35 | 2.724186817804972 36 | ], 37 | "decoding_time": [ 38 | 5.895147244135539, 39 | 5.910272777080536, 40 | 5.879772961139679, 41 | 6.0627621114254, 42 | 5.835122694571813, 43 | 6.033452441294988 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-attn_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.585799200058947, 7 | 26.691363528991413, 8 | 27.709164034525795, 9 | 29.007393969586243, 10 | 29.98620963356321, 11 | 31.456061255231536 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9367941791812578, 15 | 0.9579841693242391, 16 | 0.9719453429182371, 17 | 0.9824173226952553, 18 | 0.9876325875520706, 19 | 0.9913572495182356 20 | ], 21 | "bpp": [ 22 | 0.09189520941840278, 23 | 0.14525010850694442, 24 | 0.214996337890625, 25 | 0.31959025065104163, 26 | 0.4298197428385418, 27 | 0.595828586154514 28 | ], 29 | "encoding_time": [ 30 | 4.547664999961853, 31 | 4.869953205188115, 32 | 4.487927744785945, 33 | 8.809956749280294, 34 | 9.509408394495646, 35 | 9.117711613575617 36 | ], 37 | "decoding_time": [ 38 | 8.922262191772461, 39 | 9.28780777255694, 40 | 8.779220124085745, 41 | 14.565877914428711, 42 | 15.112390597661337, 43 | 14.730161945025126 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-attn_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.585799325999456, 7 | 26.69123714415805, 8 | 27.71092586526387, 9 | 29.00747166524582, 10 | 29.980842679237426, 11 | 31.454137164467337 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9367941319942474, 15 | 0.957982562482357, 16 | 0.9719457998871803, 17 | 0.982416865726312, 18 | 0.9876334990064303, 19 | 0.9913568223516146 20 | ], 21 | "bpp": [ 22 | 0.09189520941840278, 23 | 0.14524332682291663, 24 | 0.2149895562065972, 25 | 0.31959025065104163, 26 | 0.42984008789062517, 27 | 0.5958116319444445 28 | ], 29 | "encoding_time": [ 30 | 2.7523942788441977, 31 | 2.7420588235060372, 32 | 2.734489510456721, 33 | 2.786958932876587, 34 | 2.782528887192408, 35 | 2.7422209978103638 36 | ], 37 | "decoding_time": [ 38 | 6.126144508520762, 39 | 6.062427898248036, 40 | 5.96844744682312, 41 | 6.069255491097768, 42 | 6.081664393345515, 43 | 5.960655132929484 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-attn_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.431022562941322, 7 | 29.767465960266268, 8 | 31.3214427460843, 9 | 33.36297212123834, 10 | 34.94929830812205, 11 | 36.622347537934694 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9239219352602959, 15 | 0.9453630372881889, 16 | 0.9634726072351137, 17 | 0.9761905695001284, 18 | 0.9837852045893669, 19 | 0.9891775747140249 20 | ], 21 | "bpp": [ 22 | 0.11557685004340279, 23 | 0.17449273003472224, 24 | 0.26903618706597227, 25 | 0.4269510904947915, 26 | 0.5952657063802083, 27 | 0.8059149848090277 28 | ], 29 | "encoding_time": [ 30 | 4.493829747041066, 31 | 4.511521399021149, 32 | 4.64531613389651, 33 | 8.896737108627955, 34 | 8.90351069966952, 35 | 8.659341305494308 36 | ], 37 | "decoding_time": [ 38 | 8.824091404676437, 39 | 9.088679949442545, 40 | 9.170566141605377, 41 | 14.08977954586347, 42 | 15.114649713039398, 43 | 13.909542053937912 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-cheng2020-attn_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-attn", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.43102333976717, 7 | 29.765925971604506, 8 | 31.321335416187427, 9 | 33.36386083004006, 10 | 34.9494309886167, 11 | 36.621812638892735 12 | ], 13 | "ms-ssim-rgb": [ 14 | 0.9239218980073929, 15 | 0.9453463479876518, 16 | 0.9634692048033079, 17 | 0.9761922930677732, 18 | 0.9837846383452415, 19 | 0.9891740903258324 20 | ], 21 | "bpp": [ 22 | 0.11557685004340279, 23 | 0.17447916666666666, 24 | 0.26903279622395837, 25 | 0.4269612630208333, 26 | 0.5952894422743056, 27 | 0.8058878580729166 28 | ], 29 | "encoding_time": [ 30 | 2.8245400885740914, 31 | 2.763528029123942, 32 | 2.6748584608236947, 33 | 2.6514107982317605, 34 | 2.677800238132477, 35 | 2.714909702539444 36 | ], 37 | "decoding_time": [ 38 | 6.062165290117264, 39 | 6.042279680569966, 40 | 5.923064758380254, 41 | 5.802277038494746, 42 | 5.792471031347911, 43 | 5.94041433930397 44 | ] 45 | } 46 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018-mean_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.4407043570551, 7 | 26.567940993536805, 8 | 27.56603195283898, 9 | 28.502712245673873, 10 | 29.518152120503643, 11 | 30.85245290752465, 12 | 32.24247245122134, 13 | 33.82830279701065 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9338122010231018, 17 | 0.957023541132609, 18 | 0.9717467377583185, 19 | 0.9807667558391889, 20 | 0.9866284057497978, 21 | 0.9911599184075991, 22 | 0.9941219339768091, 23 | 0.9961015358567238 24 | ], 25 | "bpp": [ 26 | 0.10171508789062501, 27 | 0.16160074869791669, 28 | 0.24189588758680555, 29 | 0.3423021104600695, 30 | 0.46380954318576384, 31 | 0.6381361219618055, 32 | 0.8619452582465278, 33 | 1.1587117513020833 34 | ], 35 | "encoding_time": [ 36 | 0.7117984990278879, 37 | 0.7101448575655619, 38 | 0.7213848133881887, 39 | 0.7246899803479513, 40 | 1.4626905123392742, 41 | 1.486382285753886, 42 | 1.4421841601530712, 43 | 1.4581729273001354 44 | ], 45 | "decoding_time": [ 46 | 0.9191186527411143, 47 | 0.9332682887713114, 48 | 0.9198786516984304, 49 | 0.937957098086675, 50 | 1.7107570469379425, 51 | 1.69522691766421, 52 | 1.6890355944633484, 53 | 1.70411683122317 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018-mean_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.44070431094674, 7 | 26.56793771857012, 8 | 27.566043065908513, 9 | 28.502706000491198, 10 | 29.518198027523084, 11 | 30.85245516372217, 12 | 32.24249568076115, 13 | 33.828304494068725 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.933812141418457, 17 | 0.9570232306917509, 18 | 0.9717467998464903, 19 | 0.9807666117946306, 20 | 0.9866285448273023, 21 | 0.9911599010229111, 22 | 0.9941219364603361, 23 | 0.9961015482743582 24 | ], 25 | "bpp": [ 26 | 0.10171508789062501, 27 | 0.16160074869791669, 28 | 0.24189588758680555, 29 | 0.3423021104600695, 30 | 0.46380954318576384, 31 | 0.6381361219618055, 32 | 0.8619384765625, 33 | 1.158715142144097 34 | ], 35 | "encoding_time": [ 36 | 0.03853882352511088, 37 | 0.038157492876052856, 38 | 0.04063193996747335, 39 | 0.039080133040746055, 40 | 0.057505945364634194, 41 | 0.05771646896998087, 42 | 0.05706872542699178, 43 | 0.05661280949910482 44 | ], 45 | "decoding_time": [ 46 | 0.022425283988316853, 47 | 0.02205949028333028, 48 | 0.023950050274531048, 49 | 0.023491670687993366, 50 | 0.03365143140157064, 51 | 0.03336724638938904, 52 | 0.03444220622380575, 53 | 0.03476068377494812 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018-mean_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.699472968534337, 7 | 29.358805876639696, 8 | 31.128916719551516, 9 | 32.95067527714903, 10 | 34.96831704422008, 11 | 36.91109403854906, 12 | 38.83750942961362, 13 | 40.63331397919807 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9178414369622866, 17 | 0.9430568714936575, 18 | 0.9614850729703903, 19 | 0.9752046962579092, 20 | 0.983576275408268, 21 | 0.9892503147323927, 22 | 0.993048628171285, 23 | 0.9953488285342852 24 | ], 25 | "bpp": [ 26 | 0.12392171223958336, 27 | 0.19798109266493058, 28 | 0.3072441948784722, 29 | 0.46061197916666674, 30 | 0.6616651746961806, 31 | 0.9144049750434027, 32 | 1.2342088487413194, 33 | 1.619089762369792 34 | ], 35 | "encoding_time": [ 36 | 0.7350994845231374, 37 | 0.7473582625389099, 38 | 0.7072189052899679, 39 | 0.7510887682437897, 40 | 1.5587640702724457, 41 | 1.5280674397945404, 42 | 1.4513452152411144, 43 | 1.5716263055801392 44 | ], 45 | "decoding_time": [ 46 | 0.9632014830907186, 47 | 0.9380105833212534, 48 | 0.9072946906089783, 49 | 0.9441055953502655, 50 | 1.8073165615399678, 51 | 1.745316316684087, 52 | 1.731308897336324, 53 | 1.7923627694447835 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018-mean_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018-mean", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.699473000769824, 7 | 29.35881842156732, 8 | 31.128916249986656, 9 | 32.95067519149061, 10 | 34.968296546935704, 11 | 36.911094917040515, 12 | 38.83751427361349, 13 | 40.633312667109166 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.917841374874115, 17 | 0.943056824306647, 18 | 0.9614849934975306, 19 | 0.9752046515544256, 20 | 0.9835761388142904, 21 | 0.9892503246665001, 22 | 0.9930485412478447, 23 | 0.9953488161166509 24 | ], 25 | "bpp": [ 26 | 0.12392171223958336, 27 | 0.19798109266493058, 28 | 0.3072441948784722, 29 | 0.46061197916666674, 30 | 0.6616651746961806, 31 | 0.9144049750434027, 32 | 1.2342088487413194, 33 | 1.619089762369792 34 | ], 35 | "encoding_time": [ 36 | 0.03205262621243795, 37 | 0.03806860248247782, 38 | 0.038576255242029824, 39 | 0.032868037621180214, 40 | 0.05029068390528361, 41 | 0.05120685696601868, 42 | 0.05708427230517069, 43 | 0.05733216802279154 44 | ], 45 | "decoding_time": [ 46 | 0.021537482738494873, 47 | 0.022288918495178223, 48 | 0.02288302779197693, 49 | 0.023157427708307903, 50 | 0.03319695591926575, 51 | 0.039762924114863075, 52 | 0.03540671865145365, 53 | 0.036434948444366455 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018_ms-ssim_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.54115688575216, 7 | 26.723198006721756, 8 | 27.910445998975437, 9 | 28.95883785049651, 10 | 29.571470927642448, 11 | 30.495787004152266, 12 | 32.025144458548205, 13 | 33.50292032560569 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9371894573171934, 17 | 0.9584837208191553, 18 | 0.9724988813201586, 19 | 0.9810254996021589, 20 | 0.9871434941887856, 21 | 0.9913019786278406, 22 | 0.9940708155433337, 23 | 0.9959906190633774 24 | ], 25 | "bpp": [ 26 | 0.09754435221354167, 27 | 0.15629408094618055, 28 | 0.23414781358506945, 29 | 0.3261277940538194, 30 | 0.4566819932725695, 31 | 0.615353054470486, 32 | 0.8500840928819446, 33 | 1.1412285698784723 34 | ], 35 | "encoding_time": [ 36 | 5.774565865596135, 37 | 5.604905406634013, 38 | 5.518194178740184, 39 | 6.098001221815745, 40 | 13.405061562856039, 41 | 12.221109499533972, 42 | 15.579168091217676, 43 | 13.866299033164978 44 | ], 45 | "decoding_time": [ 46 | 10.547266215085983, 47 | 10.003232429424921, 48 | 9.86841211716334, 49 | 11.225019305944443, 50 | 18.246913651625317, 51 | 17.817041367292404, 52 | 21.18045762181282, 53 | 18.455184598763783 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018_ms-ssim_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.54117584514974, 7 | 26.722515829227618, 8 | 27.91070358688161, 9 | 28.959078675173643, 10 | 29.572091312755678, 11 | 30.494374376914877, 12 | 32.02239958927723, 13 | 33.498171304794134 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9371825183431307, 17 | 0.9584858268499374, 18 | 0.9725003316998482, 19 | 0.9810259987910589, 20 | 0.9871431241432825, 21 | 0.9913033867875735, 22 | 0.9940702170133591, 23 | 0.9959912275274595 24 | ], 25 | "bpp": [ 26 | 0.09754774305555557, 27 | 0.15631103515625, 28 | 0.23415459526909724, 29 | 0.32611762152777773, 30 | 0.4566243489583333, 31 | 0.6153496636284722, 32 | 0.8500501844618057, 33 | 1.1412997775607638 34 | ], 35 | "encoding_time": [ 36 | 2.6144112745920816, 37 | 2.693097005287806, 38 | 2.649235248565674, 39 | 2.8889172772566476, 40 | 2.659164071083069, 41 | 2.7242110669612885, 42 | 2.9584551652272544, 43 | 2.63034854332606 44 | ], 45 | "decoding_time": [ 46 | 5.712201217810313, 47 | 5.841790477434794, 48 | 5.743082404136658, 49 | 6.006754477818807, 50 | 5.74888829390208, 51 | 5.811936964591344, 52 | 6.094523032506307, 53 | 5.743261257807414 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018_mse_cpu.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.088869926632654, 7 | 29.645305305751226, 8 | 31.36235582178716, 9 | 33.085616005166436, 10 | 35.09360247348057, 11 | 36.98857497402823, 12 | 38.9332181272494, 13 | 40.64035727274914 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.92072265346845, 17 | 0.9432242438197136, 18 | 0.9627579599618912, 19 | 0.9752304603656133, 20 | 0.9835531041026115, 21 | 0.9892363622784615, 22 | 0.9928615341583887, 23 | 0.9953123057881991 24 | ], 25 | "bpp": [ 26 | 0.1105380588107639, 27 | 0.18696763780381942, 28 | 0.28770277235243064, 29 | 0.4323221842447917, 30 | 0.6388041178385414, 31 | 0.8853352864583334, 32 | 1.2004021538628473, 33 | 1.587419297960069 34 | ], 35 | "encoding_time": [ 36 | 5.482255885998408, 37 | 5.498153527577718, 38 | 5.685418317715327, 39 | 5.371256868044536, 40 | 13.071211298306784, 41 | 14.191613535086313, 42 | 13.149019519488016, 43 | 13.454446027676264 44 | ], 45 | "decoding_time": [ 46 | 10.076720118522644, 47 | 9.965136736631393, 48 | 10.155670622984568, 49 | 9.689576754967371, 50 | 17.736660331487656, 51 | 18.352848649024963, 52 | 18.153708418210346, 53 | 18.86345315972964 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/compressai-mbt2018_mse_cuda.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "mbt2018", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 28.08847023321361, 7 | 29.64549843593544, 8 | 31.362275162681673, 9 | 33.0859466233318, 10 | 35.093758380265, 11 | 36.98882029536827, 12 | 38.93350092275383, 13 | 40.63906745832768 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.9206957692901293, 17 | 0.9432235956192017, 18 | 0.9627573788166046, 19 | 0.9752262383699417, 20 | 0.9835617442925771, 21 | 0.989238736530145, 22 | 0.9928618768850962, 23 | 0.9953108578920364 24 | ], 25 | "bpp": [ 26 | 0.1105312771267361, 27 | 0.18697102864583334, 28 | 0.28769599066840285, 29 | 0.4323391384548611, 30 | 0.6387668185763888, 31 | 0.8853047688802084, 32 | 1.2003648546006944, 33 | 1.5873446994357636 34 | ], 35 | "encoding_time": [ 36 | 2.846319009860357, 37 | 2.7352775931358337, 38 | 2.812482347091039, 39 | 2.949703802665075, 40 | 2.67194335659345, 41 | 2.7962279617786407, 42 | 2.7625263929367065, 43 | 2.7332643965880075 44 | ], 45 | "decoding_time": [ 46 | 6.023811429738998, 47 | 6.0256339112917585, 48 | 5.987678349018097, 49 | 6.256093452374141, 50 | 5.851658989985784, 51 | 5.942328025897344, 52 | 5.966525544722875, 53 | 5.939527253309886 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/hm.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "HM", 3 | "description": "HM", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.411122094660797, 7 | 27.746434851685517, 8 | 30.44660864866164, 9 | 33.50494929661857, 10 | 36.78249502818958, 11 | 39.99489760772304, 12 | 43.087959940262515, 13 | 46.143205310575034 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.8456166634956995, 17 | 0.9075450152158737, 18 | 0.9499017596244812, 19 | 0.974719392756621, 20 | 0.9873057852188746, 21 | 0.9933605243762335, 22 | 0.9965909744302431, 23 | 0.9984240631262461 24 | ], 25 | "bpp": [ 26 | 0.05143822564019098, 27 | 0.12086995442708336, 28 | 0.26666259765625006, 29 | 0.5295282999674479, 30 | 0.9503741794162326, 31 | 1.559600830078125, 32 | 2.4760615030924478, 33 | 3.8455649481879335 34 | ], 35 | "encoding_time": [ 36 | 2.4433341026306152, 37 | 2.637869566679001, 38 | 2.897966335217158, 39 | 3.2788084745407104, 40 | 3.6908989946047464, 41 | 4.169580012559891, 42 | 4.862935334444046, 43 | 5.536683430274327 44 | ], 45 | "decoding_time": [ 46 | 0.04154825210571289, 47 | 0.04686275124549866, 48 | 0.05234054724375407, 49 | 0.05770604809125265, 50 | 0.06572911143302917, 51 | 0.07755399743715923, 52 | 0.08950933814048767, 53 | 0.1025676429271698 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/image/kodak/paper-bmshj2018-factorized.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "official bmshj2018-factorized", 3 | "description": "official results (mse)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.775134, 7 | 28.348719, 8 | 30.020793, 9 | 31.729556, 10 | 33.685797, 11 | 35.815864, 12 | 38.019954, 13 | 40.133996 14 | ], 15 | "bpp": [ 16 | 0.119752, 17 | 0.194591, 18 | 0.316000, 19 | 0.481060, 20 | 0.721303, 21 | 1.060841, 22 | 1.458681, 23 | 1.957564 24 | ] 25 | } 26 | } -------------------------------------------------------------------------------- /results/image/kodak/paper-bmshj2018-hyperprior.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "official bmshj2018-hyperprior", 3 | "description": "official results (mse)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.106351, 7 | 28.679134, 8 | 30.616753, 9 | 32.554935, 10 | 34.580960, 11 | 36.720366, 12 | 38.807960, 13 | 40.794920 14 | ], 15 | "bpp": [ 16 | 0.115239, 17 | 0.185698, 18 | 0.301804, 19 | 0.468972, 20 | 0.686378, 21 | 0.966864, 22 | 1.307441, 23 | 1.727503 24 | ] 25 | } 26 | } -------------------------------------------------------------------------------- /results/image/kodak/paper-cheng2020-checkerboard-1M_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-checkerboard-1M", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2103.15306", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1018, 16 | 0.1705, 17 | 0.2980, 18 | 0.4523, 19 | 0.6648, 20 | 0.8077 21 | ], 22 | "psnr-rgb": [ 23 | 27.924, 24 | 29.532, 25 | 31.571, 26 | 33.581, 27 | 35.405, 28 | 36.502 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-cheng2020-checkerboard-6M_ms-ssim.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-checkerboard-6M", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2103.15306", 7 | "type": "image", 8 | "opt_metric": "ms-ssim-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.0260, 16 | 0.0659, 17 | 0.1834, 18 | 0.3528, 19 | 0.6057, 20 | 1.0317 21 | ], 22 | "ms-ssim-db-rgb": [ 23 | 7.059, 24 | 10.675, 25 | 14.818, 26 | 17.617, 27 | 20.572, 28 | 23.797 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-cheng2020-checkerboard-6M_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-checkerboard-6M", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2103.15306", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.0982, 16 | 0.1636, 17 | 0.2984, 18 | 0.4386, 19 | 0.6500, 20 | 0.7944 21 | ], 22 | "psnr-rgb": [ 23 | 27.829, 24 | 29.525, 25 | 31.770, 26 | 33.654, 27 | 35.643, 28 | 36.732 29 | ], 30 | "ms-ssim-db-rgb": [ 31 | 10.492, 32 | 12.292, 33 | 14.684, 34 | 16.429, 35 | 18.440, 36 | 19.502 37 | ] 38 | } 39 | } 40 | -------------------------------------------------------------------------------- /results/image/kodak/paper-cheng2020-parallel_ms-ssim.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-parallel", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2203.10886", 7 | "type": "image", 8 | "opt_metric": "ms-ssim-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1004, 16 | 0.1632, 17 | 0.2985, 18 | 0.4397, 19 | 0.6502, 20 | 0.7945 21 | ], 22 | "ms-ssim-db-rgb": [ 23 | 10.575, 24 | 12.282, 25 | 14.668, 26 | 16.438, 27 | 18.437, 28 | 19.503 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-cheng2020-parallel_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "cheng2020-parallel", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2203.10886", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1000, 16 | 0.1617, 17 | 0.2974, 18 | 0.4392, 19 | 0.6499, 20 | 0.7940 21 | ], 22 | "psnr-rgb": [ 23 | 27.879, 24 | 29.481, 25 | 31.742, 26 | 33.649, 27 | 35.636, 28 | 36.731 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-elic2022_ms-ssim.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "elic2022", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2203.10886", 7 | "type": "image", 8 | "opt_metric": "ms-ssim-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1242, 16 | 0.1970, 17 | 0.3342, 18 | 0.4916, 19 | 0.7045, 20 | 0.8574 21 | ], 22 | "ms-ssim-db-rgb": [ 23 | 11.593, 24 | 13.258, 25 | 15.456, 26 | 17.272, 27 | 19.059, 28 | 20.116 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-elic2022_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "elic2022", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2203.10886", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1235, 16 | 0.1965, 17 | 0.3337, 18 | 0.4908, 19 | 0.7041, 20 | 0.8573 21 | ], 22 | "psnr-rgb": [ 23 | 29.113, 24 | 30.698, 25 | 32.784, 26 | 34.577, 27 | 36.488, 28 | 37.624 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-mbt2018-mean.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "official mbt2018-mean", 3 | "description": "official results (mse)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.869507, 7 | 28.844869, 8 | 31.025364, 9 | 33.049656, 10 | 34.991868, 11 | 36.993942, 12 | 39.038383, 13 | 40.948441, 14 | 42.859464, 15 | 44.557811 16 | ], 17 | "bpp": [ 18 | 0.116419, 19 | 0.172233, 20 | 0.289868, 21 | 0.455688, 22 | 0.664587, 23 | 0.934780, 24 | 1.272558, 25 | 1.692898, 26 | 2.222060, 27 | 2.861839 28 | ] 29 | } 30 | } -------------------------------------------------------------------------------- /results/image/kodak/paper-mbt2018.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "official mbt2018", 3 | "description": "official results (mse)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.804116, 7 | 28.880747, 8 | 30.927089, 9 | 33.028649, 10 | 34.998064, 11 | 37.053312, 12 | 39.120817, 13 | 42.165220, 14 | 45.074915 15 | ], 16 | "bpp": [ 17 | 0.071997, 18 | 0.153354, 19 | 0.264381, 20 | 0.428511, 21 | 0.635404, 22 | 0.904279, 23 | 1.258828, 24 | 1.982050, 25 | 2.992778 26 | ] 27 | } 28 | } -------------------------------------------------------------------------------- /results/image/kodak/paper-minnen2018-checkerboard_ms-ssim.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "minnen2018-checkerboard", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2103.15306", 7 | "type": "image", 8 | "opt_metric": "ms-ssim-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.0181, 16 | 0.0538, 17 | 0.1829, 18 | 0.3418, 19 | 0.6088, 20 | 1.0773 21 | ], 22 | "ms-ssim-db-rgb": [ 23 | 6.468, 24 | 9.211, 25 | 14.255, 26 | 17.055, 27 | 20.171, 28 | 23.561 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-minnen2018-checkerboard_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "minnen2018-checkerboard", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2103.15306", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.109, 16 | 0.184, 17 | 0.326, 18 | 0.489, 19 | 0.712, 20 | 0.877 21 | ], 22 | "psnr-rgb": [ 23 | 27.632, 24 | 29.395, 25 | 31.553, 26 | 33.570, 27 | 35.525, 28 | 36.811 29 | ], 30 | "ms-ssim-db-rgb": [ 31 | 10.590, 32 | 12.349, 33 | 14.505, 34 | 16.429, 35 | 18.257, 36 | 19.488 37 | ] 38 | } 39 | } 40 | -------------------------------------------------------------------------------- /results/image/kodak/paper-minnen2018-parallel_ms-ssim.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "minnen2018-parallel", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2203.10886", 7 | "type": "image", 8 | "opt_metric": "ms-ssim-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1078, 16 | 0.1815, 17 | 0.3262, 18 | 0.4895, 19 | 0.7180, 20 | 0.8826 21 | ], 22 | "ms-ssim-db-rgb": [ 23 | 10.665, 24 | 12.289, 25 | 14.494, 26 | 16.359, 27 | 18.301, 28 | 19.429 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-minnen2018-parallel_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "minnen2018-parallel", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2203.10886", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1067, 16 | 0.1812, 17 | 0.3250, 18 | 0.4894, 19 | 0.7158, 20 | 0.8822 21 | ], 22 | "psnr-rgb": [ 23 | 27.582, 24 | 29.304, 25 | 31.476, 26 | 33.448, 27 | 35.588, 28 | 36.819 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/paper-minnen2020-cc10_mse.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "minnen2020-cc10", 3 | "description": "official results", 4 | "meta": { 5 | "source": "paper", 6 | "url": "https://arxiv.org/abs/2103.15306", 7 | "type": "image", 8 | "opt_metric": "mse-rgb", 9 | "dataset": "kodak", 10 | "train_dataset": "imagenet_val", 11 | "device": null 12 | }, 13 | "results": { 14 | "bpp": [ 15 | 0.1129, 16 | 0.1895, 17 | 0.2999, 18 | 0.4612, 19 | 0.6687, 20 | 0.8987 21 | ], 22 | "psnr-rgb": [ 23 | 28.615, 24 | 30.257, 25 | 31.963, 26 | 33.825, 27 | 35.763, 28 | 37.413 29 | ] 30 | } 31 | } 32 | -------------------------------------------------------------------------------- /results/image/kodak/rd-curves-kodak-ms-ssim.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/results/image/kodak/rd-curves-kodak-ms-ssim.png -------------------------------------------------------------------------------- /results/image/kodak/rd-curves-kodak-psnr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/results/image/kodak/rd-curves-kodak-psnr.png -------------------------------------------------------------------------------- /results/image/kodak/vtm.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "VTM", 3 | "description": "VTM", 4 | "results": { 5 | "psnr-rgb": [ 6 | 26.14484539430146, 7 | 28.493021754424603, 8 | 31.199873720014093, 9 | 34.26153257289846, 10 | 37.419793158067485, 11 | 40.42444421698711, 12 | 43.505766973634486, 13 | 46.59176008512777 14 | ], 15 | "ms-ssim-rgb": [ 16 | 0.8606081604957581, 17 | 0.9176909327507019, 18 | 0.9561077281832695, 19 | 0.9780782933036486, 20 | 0.988776795566082, 21 | 0.9938599988818169, 22 | 0.9969479044278463, 23 | 0.9986564020315806 24 | ], 25 | "bpp": [ 26 | 0.04824490017361111, 27 | 0.11249542236328125, 28 | 0.24581654866536465, 29 | 0.4905454847547744, 30 | 0.8748101128472224, 31 | 1.43084971110026, 32 | 2.3246070014105906, 33 | 3.6326090494791665 34 | ], 35 | "encoding_time": [ 36 | 18.935188223918278, 37 | 39.77537341912588, 38 | 71.23524104555447, 39 | 102.52636993924777, 40 | 129.21147452791533, 41 | 170.65901721517244, 42 | 218.33077744642893, 43 | 256.2848743200302 44 | ], 45 | "decoding_time": [ 46 | 0.06871533393859863, 47 | 0.08402446905771892, 48 | 0.09837910532951355, 49 | 0.12345783909161885, 50 | 0.14074289798736572, 51 | 0.1444702943166097, 52 | 0.1755984922250112, 53 | 0.22406441966692606 54 | ] 55 | } 56 | } -------------------------------------------------------------------------------- /results/video/UVG-1080p/ssf2020-from-authors.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "ssf2020-from-authors", 3 | "description": "Numbers reported in [Agustsson2020]", 4 | "results": { 5 | "q": [ 6 | 1, 7 | 2, 8 | 3, 9 | 4, 10 | 5, 11 | 6, 12 | 7 13 | ], 14 | "psnr-rgb": [ 15 | 31.8495, 16 | 33.0860, 17 | 34.4086, 18 | 35.8495, 19 | 36.9355, 20 | 38.3871, 21 | 39.3656 22 | ], 23 | "bitrate": [ 24 | 5011.502627, 25 | 7495.464799, 26 | 11809.71489, 27 | 16908.37408, 28 | 28413.04098, 29 | 55344.42032, 30 | 92473.11804 31 | ] 32 | } 33 | } -------------------------------------------------------------------------------- /tests/assets/dataset/image/stmalo_fracape.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/tests/assets/dataset/image/stmalo_fracape.png -------------------------------------------------------------------------------- /tests/assets/dataset/video/C_RaceHorses_2frames_832x480_30Hz_8bit_P420.yuv: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/tests/assets/dataset/video/C_RaceHorses_2frames_832x480_30Hz_8bit_P420.yuv -------------------------------------------------------------------------------- /tests/assets/fakedata/imagefolder/test/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/tests/assets/fakedata/imagefolder/test/logo.png -------------------------------------------------------------------------------- /tests/assets/fakedata/imagefolder/train/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/InterDigitalInc/CompressAI/d997a401244c110d5faeeef01fdf4ad813185f3f/tests/assets/fakedata/imagefolder/train/logo.png -------------------------------------------------------------------------------- /tests/expected/bench_jpeg.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "JPEG", 3 | "description": "JPEG. Pillow version 9.0.0", 4 | "results": { 5 | "bpp": [ 6 | 1.3898722330729167 7 | ], 8 | "encoding_time": [ 9 | 0.0073757171630859375 10 | ], 11 | "decoding_time": [ 12 | 0.004766941070556641 13 | ], 14 | "psnr-rgb": [ 15 | 32.25230537622758 16 | ], 17 | "ms-ssim-rgb": [ 18 | 0.9821832180023193 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/bench_webp.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "WebP", 3 | "description": "WebP. Pillow version 8.1.2", 4 | "results": { 5 | "bpp": [ 6 | 1.3546956380208333 7 | ], 8 | "encoding_time": [ 9 | 0.7515659332275391 10 | ], 11 | "decoding_time": [ 12 | 0.01021265983581543 13 | ], 14 | "psnr-rgb": [ 15 | 33.38907973813301 16 | ], 17 | "ms-ssim-rgb": [ 18 | 0.9805199503898621 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/bench_x264.json: -------------------------------------------------------------------------------- 1 | {"name": "x264-medium-tune-psnr", "description": "x264 medium, tuned for psnr, ffmpeg version 5.0", "results": {"qp": [32], "ms-ssim-rgb": [0.940115749835968], "bitrate": [363.24], "psnr-rgb": [29.12749459721975], "psnr-y": [31.039798760198877], "psnr-u": [36.007960343145655], "psnr-v": [37.084036373876856], "psnr-yuv": [32.87519862630301]}} -------------------------------------------------------------------------------- /tests/expected/bench_x265.json: -------------------------------------------------------------------------------- 1 | {"name": "x265-medium-tune-psnr", "description": "x265 medium, tuned for psnr, ffmpeg version 5.0", "results": {"qp": [32], "ms-ssim-rgb": [0.9411741495132446], "bitrate": [343.53], "psnr-rgb": [29.210145973943995], "psnr-y": [31.166024708532618], "psnr-u": [36.0165994403594], "psnr-v": [36.95904543378286], "psnr-yuv": [32.93995728471213]}} -------------------------------------------------------------------------------- /tests/expected/eval_0_bmshj2018-factorized_ms-ssim_1.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-ms-ssim", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 24.673641204833984 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.938518762588501 10 | ], 11 | "bpp": [ 12 | 0.13313802083333334 13 | ], 14 | "encoding_time": [ 15 | 0.4573390483856201 16 | ], 17 | "decoding_time": [ 18 | 0.5872910022735596 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_0_bmshj2018-factorized_ms-ssim_4.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-ms-ssim", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.708053588867188 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.97897869348526 10 | ], 11 | "bpp": [ 12 | 0.344970703125 13 | ], 14 | "encoding_time": [ 15 | 0.45358777046203613 16 | ], 17 | "decoding_time": [ 18 | 0.5925049781799316 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_0_bmshj2018-factorized_ms-ssim_8.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-ms-ssim", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.70499038696289 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9949069023132324 10 | ], 11 | "bpp": [ 12 | 1.1427408854166667 13 | ], 14 | "encoding_time": [ 15 | 0.9158220291137695 16 | ], 17 | "decoding_time": [ 18 | 1.15079665184021 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_0_bmshj2018-factorized_mse_1.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.92412567138672 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9256637096405029 10 | ], 11 | "bpp": [ 12 | 0.14737955729166666 13 | ], 14 | "encoding_time": [ 15 | 0.4515058994293213 16 | ], 17 | "decoding_time": [ 18 | 0.6168711185455322 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_0_bmshj2018-factorized_mse_4.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.846078872680664 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9760127663612366 10 | ], 11 | "bpp": [ 12 | 0.46142578125 13 | ], 14 | "encoding_time": [ 15 | 0.43796825408935547 16 | ], 17 | "decoding_time": [ 18 | 0.5917160511016846 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_0_bmshj2018-factorized_mse_8.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse", 3 | "description": "Inference (ans)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 37.26597595214844 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9952630400657654 10 | ], 11 | "bpp": [ 12 | 1.967529296875 13 | ], 14 | "encoding_time": [ 15 | 0.9942131042480469 16 | ], 17 | "decoding_time": [ 18 | 1.3458828926086426 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_0_ssf2020_mse_1.json: -------------------------------------------------------------------------------- 1 | {"name": "ssf2020-mse", "description": "Inference (ans)", "results": {"q": ["ssf2020-mse-1-ans"], "psnr-y": [27.48426055908203], "psnr-u": [34.267677307128906], "psnr-v": [35.03958511352539], "psnr-yuv": [29.87405014038086], "ms-ssim-rgb": [0.9083335995674133], "mse-rgb": [139.9774627685547], "psnr-rgb": [26.674245834350586], "bitrate": [1945.56]}} -------------------------------------------------------------------------------- /tests/expected/eval_0_ssf2020_mse_4.json: -------------------------------------------------------------------------------- 1 | {"name": "ssf2020-mse", "description": "Inference (ans)", "results": {"q": ["ssf2020-mse-4-ans"], "psnr-y": [32.039939880371094], "psnr-u": [37.7548828125], "psnr-v": [38.757694244384766], "psnr-yuv": [34.112056732177734], "ms-ssim-rgb": [0.9698339700698853], "mse-rgb": [50.67747116088867], "psnr-rgb": [31.087793350219727], "bitrate": [6828.12]}} -------------------------------------------------------------------------------- /tests/expected/eval_0_ssf2020_mse_8.json: -------------------------------------------------------------------------------- 1 | {"name": "ssf2020-mse", "description": "Inference (ans)", "results": {"q": ["ssf2020-mse-8-ans"], "psnr-y": [38.320213317871094], "psnr-u": [42.999244689941406], "psnr-v": [43.85735321044922], "psnr-yuv": [40.022911071777344], "ms-ssim-rgb": [0.9934679269790649], "mse-rgb": [12.823404312133789], "psnr-rgb": [37.22743225097656], "bitrate": [22620.12]}} -------------------------------------------------------------------------------- /tests/expected/eval_1_bmshj2018-factorized_ms-ssim_1.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-ms-ssim", 3 | "description": "Inference (entropy estimation)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 24.673641204833984 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.938518762588501 10 | ], 11 | "bpp": [ 12 | 0.13289064168930054 13 | ], 14 | "encoding_time": [ 15 | 0.5656238794326782 16 | ], 17 | "decoding_time": [ 18 | 0.5656238794326782 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_1_bmshj2018-factorized_ms-ssim_4.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-ms-ssim", 3 | "description": "Inference (entropy estimation)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 27.708053588867188 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.97897869348526 10 | ], 11 | "bpp": [ 12 | 0.34460413455963135 13 | ], 14 | "encoding_time": [ 15 | 0.5353310108184814 16 | ], 17 | "decoding_time": [ 18 | 0.5353310108184814 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_1_bmshj2018-factorized_ms-ssim_8.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-ms-ssim", 3 | "description": "Inference (entropy estimation)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 31.70499038696289 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9949069023132324 10 | ], 11 | "bpp": [ 12 | 1.1392645835876465 13 | ], 14 | "encoding_time": [ 15 | 1.0612114667892456 16 | ], 17 | "decoding_time": [ 18 | 1.0612114667892456 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_1_bmshj2018-factorized_mse_1.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse", 3 | "description": "Inference (entropy estimation)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 25.92412567138672 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9256637096405029 10 | ], 11 | "bpp": [ 12 | 0.1471693515777588 13 | ], 14 | "encoding_time": [ 15 | 0.5702190399169922 16 | ], 17 | "decoding_time": [ 18 | 0.5702190399169922 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_1_bmshj2018-factorized_mse_4.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse", 3 | "description": "Inference (entropy estimation)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 29.846078872680664 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9760127663612366 10 | ], 11 | "bpp": [ 12 | 0.4605925977230072 13 | ], 14 | "encoding_time": [ 15 | 0.534975528717041 16 | ], 17 | "decoding_time": [ 18 | 0.534975528717041 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_1_bmshj2018-factorized_mse_8.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "bmshj2018-factorized-mse", 3 | "description": "Inference (entropy estimation)", 4 | "results": { 5 | "psnr-rgb": [ 6 | 37.26597595214844 7 | ], 8 | "ms-ssim-rgb": [ 9 | 0.9952630400657654 10 | ], 11 | "bpp": [ 12 | 1.9624894857406616 13 | ], 14 | "encoding_time": [ 15 | 1.0375230312347412 16 | ], 17 | "decoding_time": [ 18 | 1.0375230312347412 19 | ] 20 | } 21 | } -------------------------------------------------------------------------------- /tests/expected/eval_1_ssf2020_mse_1.json: -------------------------------------------------------------------------------- 1 | {"name": "ssf2020-mse", "description": "Inference (entropy-estimation)", "results": {"q": ["ssf2020-mse-1-entropy-estimation"], "psnr-y": [27.48426055908203], "psnr-u": [34.267677307128906], "psnr-v": [35.03958511352539], "psnr-yuv": [29.87405014038086], "ms-ssim-rgb": [0.9083335995674133], "mse-rgb": [139.9774627685547], "psnr-rgb": [26.674245834350586], "bitrate": [1960.9470703125]}} -------------------------------------------------------------------------------- /tests/expected/eval_1_ssf2020_mse_4.json: -------------------------------------------------------------------------------- 1 | {"name": "ssf2020-mse", "description": "Inference (entropy-estimation)", "results": {"q": ["ssf2020-mse-4-entropy-estimation"], "psnr-y": [32.039939880371094], "psnr-u": [37.7548828125], "psnr-v": [38.757694244384766], "psnr-yuv": [34.112056732177734], "ms-ssim-rgb": [0.9698339700698853], "mse-rgb": [50.67747116088867], "psnr-rgb": [31.087793350219727], "bitrate": [6861.30984375]}} -------------------------------------------------------------------------------- /tests/expected/eval_1_ssf2020_mse_8.json: -------------------------------------------------------------------------------- 1 | {"name": "ssf2020-mse", "description": "Inference (entropy-estimation)", "results": {"q": ["ssf2020-mse-8-entropy-estimation"], "psnr-y": [38.320213317871094], "psnr-u": [42.999244689941406], "psnr-v": [43.85735321044922], "psnr-yuv": [40.022911071777344], "ms-ssim-rgb": [0.9934679269790649], "mse-rgb": [12.823404312133789], "psnr-rgb": [37.22743225097656], "bitrate": [22726.55625]}} -------------------------------------------------------------------------------- /tests/expected/md5sum-bin-bmshj2018-factorized-stmalo_fracape.txt: -------------------------------------------------------------------------------- 1 | 2fdcdad683a1f1c2afd475aa04c06ea6 -------------------------------------------------------------------------------- /tests/expected/md5sum-bin-ssf2020-RaceHorses-1fr.txt: -------------------------------------------------------------------------------- 1 | 52a6bf6349a6fb5f66c63a0d7a1c494d -------------------------------------------------------------------------------- /tests/expected/md5sum-bin-ssf2020-RaceHorses-2fr.txt: -------------------------------------------------------------------------------- 1 | 3f01fe508ad897ee4c55a7cee103b7b6 -------------------------------------------------------------------------------- /tests/expected/md5sum-dec-model-bmshj2018-factorized-stmalo_fracape.txt: -------------------------------------------------------------------------------- 1 | d6fe786380a03a4a4366f53197f8ffdc -------------------------------------------------------------------------------- /tests/expected/md5sum-dec-model-ssf2020-RaceHorses_1fr.txt: -------------------------------------------------------------------------------- 1 | db51393a32e6305d1b49b23f5157d5f5 -------------------------------------------------------------------------------- /tests/expected/md5sum-dec-model-ssf2020-RaceHorses_2fr.txt: -------------------------------------------------------------------------------- 1 | 8dc0efaaba98801aca521c76f808719e -------------------------------------------------------------------------------- /third_party/range_coder/range_coder_impl.h: -------------------------------------------------------------------------------- 1 | #pragma once 2 | 3 | #include 4 | #include 5 | #include 6 | #include 7 | #include 8 | 9 | class RangeEncoderImpl { 10 | public: 11 | void encode(int32_t lower, int32_t upper, int precision, std::ostream &sink); 12 | void finalize(std::ostream &sink); 13 | void reset() { 14 | _base = 0; 15 | _size = std::numeric_limits::max(); 16 | _delay = 0; 17 | } 18 | 19 | private: 20 | uint32_t _base = 0; 21 | uint32_t _size = std::numeric_limits::max(); 22 | uint64_t _delay = 0; 23 | }; 24 | 25 | class RangeDecoderImpl { 26 | public: 27 | void reset() { 28 | _size = std::numeric_limits::max(); 29 | _base = 0; 30 | _value = 0; 31 | init_ = false; 32 | } 33 | int32_t decode(std::istream &source, const int32_t *const cdf_begin, const int32_t *const cdf_end, int precision); 34 | 35 | private: 36 | void read16bitvalue(std::istream &source); 37 | uint32_t _base = 0; 38 | uint32_t _size = std::numeric_limits::max(); 39 | uint32_t _value = 0; 40 | bool init_ = false; 41 | }; 42 | -------------------------------------------------------------------------------- /third_party/ryg_rans/LICENSE: -------------------------------------------------------------------------------- 1 | To the extent possible under law, Fabian Giesen has waived all 2 | copyright and related or neighboring rights to ryg_rans, as 3 | per the terms of the CC0 license: 4 | 5 | https://creativecommons.org/publicdomain/zero/1.0 6 | 7 | This work is published from the United States. 8 | --------------------------------------------------------------------------------