├── .gitignore
├── SampleDist.py
├── MakeBootstraps.py
├── io_methods.py
├── PseudoPvals.py
├── compositional_methods.py
├── analysis_methods.py
├── ReadMe.md
├── example
├── pvals
│ ├── pvals.one_sided.txt
│ ├── pvals.two_sided.txt
│ └── perm_cor_3.txt
├── true_basis_cor.txt
└── basis_corr
│ ├── cor_pearson.out
│ └── cor_spearman.out
├── Lineages.py
├── SparCC.py
└── core_methods.py
/.gitignore:
--------------------------------------------------------------------------------
1 | *.swp
2 | *.swo
3 | __pycache__/*
4 |
--------------------------------------------------------------------------------
/SampleDist.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | '''
4 | Created on Jun 20, 2011
5 |
6 | @author: jonathanfriedman
7 |
8 | Requires the scipy.cluster.hierarchy module!
9 | '''
10 |
11 |
12 | from lib.SurveyMatrix import Survey_matrix as SM
13 |
14 |
15 | def kwargs_callback(option, opt, value, parser,**kwargs):
16 | d = kwargs['d']
17 | d[option.dest] = value
18 | return d
19 |
20 |
21 | def Run(counts_file, metric = 'JSsqrt', **kwargs):
22 | '''
23 | Compute the pairwise distance matrix between all sites and write it out as txt file.
24 | '''
25 | ## read counts data
26 | temp = SM()
27 | counts = temp.from_file(counts_file)
28 | ## compute sample distances
29 | fracs = counts.to_fractions('normalize')
30 | D = fracs.dist_mat(metric = metric)
31 | ## write distance matrix
32 | out_file = kwargs.get('out_file', 'sample_dist_' + metric +'.out')
33 | D.writetxt(out_file)
34 | print('wrote ' + out_file)
35 | print('Done!')
36 |
37 |
38 | if __name__ == '__main__':
39 | ## parse input arguments
40 | from optparse import OptionParser
41 | kwargs = {}
42 | usage = ('Compute the distance matrix between samples.\n'
43 | 'By default uses the the square-root of the Jensen-Shannon divergence.\n'
44 | 'distance matrix is written out as txt files. \n'
45 | 'Requires the scipy.cluster.hierarchy module!\n'
46 | '\n'
47 | 'Usage: python SampleDist.py counts_file [options]\n'
48 | 'Example: python SampleDist.py example/fake_data.txt -m JSsqrt -o my_dist_mat.out')
49 | parser = OptionParser(usage)
50 | parser.add_option("-m", "--metric", dest="metric", default='JSsqrt',
51 | help="Distance metric to be utilized. JSsqrt (default) | any metric supported by scipy.cluster.hierarchy.")
52 | parser.add_option("-o", "--out_file", dest="out_file", type = 'str',
53 | action="callback", callback= kwargs_callback, callback_kwargs = {'d':kwargs},
54 | help="File to which distance matrix will be written.")
55 | (options, args) = parser.parse_args()
56 | counts_file = args[0]
57 | metric = options.metric
58 | ## write sample distance
59 | Run(counts_file, metric = metric, **kwargs)
60 |
61 |
62 |
--------------------------------------------------------------------------------
/MakeBootstraps.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | '''
4 | @author: jonathanfriedman
5 |
6 | Script for making simulated datasets used to get pseudo p-values.
7 | '''
8 | import os
9 | from analysis_methods import permute_w_replacement
10 | from io_methods import read_txt, write_txt
11 |
12 | def kwargs_callback(option, opt, value, parser,**kwargs):
13 | d = kwargs['d']
14 | d[option.dest] = value
15 | return d
16 |
17 | def make_bootstraps(counts, nperm, perm_template, outpath='./', iprint=0):
18 | '''
19 | Make n simulated datasets used to get pseudo p-values.
20 | Simulated datasets are generated by assigning each OTU in each sample
21 | an abundance that is randomly drawn (w. replacement) from the
22 | abundances of the OTU in all samples.
23 | Simulated datasets are either written out as txt files.
24 |
25 | Parameters
26 | ----------
27 | counts : DataFrame
28 | Inferred correlations whose p-values are to be computed.
29 | nperm : int
30 | Number of permutations to produce.
31 | perm_template : str
32 | Template for the permuted data file names.
33 | Should not include the path, which is specified using the
34 | outpath parameter.
35 | The iteration number is indicated with a "#".
36 | For example: 'permuted/counts.permuted_#.txt'
37 | outpath : str (default './')
38 | The path to which permuted data will be written.
39 | If not provided files will be written to the cwd.
40 | iprint : int (default = 0)
41 | The interval at which iteration number is printed out.
42 | If iprint<=0 no printouts are made.
43 | '''
44 | if not os.path.exists(outpath): os.makedirs(outpath)
45 | for i in range(nperm):
46 | if iprint>0:
47 | if not i%iprint: print(i)
48 | counts_perm = permute_w_replacement(counts, axis=1)
49 | ## write out cors
50 | outfile = outpath + perm_template.replace('#', '%d'%i)
51 | write_txt(counts_perm, outfile)
52 |
53 | def main(counts_file, nperm, perm_template, outpath='./'):
54 | '''
55 | Make n simulated datasets used to get pseudo p-values.
56 | Simulated datasets are generated by assigning each OTU in each sample
57 | an abundance that is randomly drawn (w. replacement) from the
58 | abundances of the OTU in all samples.
59 | Simulated datasets are either written out as txt files.
60 | '''
61 | if perm_template is None:
62 | perm_template = counts_file + '.permuted_#.txt'
63 | ## read counts data
64 | counts = read_txt(counts_file)
65 | ## make permutated data
66 | make_bootstraps(counts, nperm, perm_template, outpath=outpath)
67 |
68 | if __name__ == '__main__':
69 | ## parse input arguments
70 | from optparse import OptionParser
71 | kwargs = {}
72 | usage = ('Make n simulated datasets used to get pseudo p-values.\n'
73 | 'Simulated datasets are generated by assigning each OTU in each sample an abundance that is randomly drawn (w. replacement) from the abundances of the OTU in all samples.\n'
74 | 'Simulated datasets are either written out as txt files. \n'
75 | '\n'
76 | 'Usage: python MakeBootstraps.py counts_file [options]\n'
77 | 'Example: python MakeBootstraps.py example/fake_data.txt -n 5 -t permutation_#.txt -p example/pvals/')
78 | parser = OptionParser(usage)
79 | parser.add_option("-n", dest="n", default=100, type = 'int',
80 | help="Number of simulated datasets to create (100 default).")
81 | parser.add_option("-t", "--template", dest="perm_template", default=None, type = 'str',
82 | help="The template for the permuted data file names.\n"
83 | "Should not include the path, which is specified using the -p option.\n"
84 | 'The iteration number is indicated with a "#".\n'
85 | "For example: 'permuted/counts.permuted_#.txt'"
86 | "If not provided a '.permuted_#.txt' suffix will be added to the counts file name.\n")
87 | parser.add_option("-p", "--path", dest="outpath", default='./', type = 'str',
88 | help="The path to which permuted data will be written.\n"
89 | "If not provided files will be written to the cwd.\n")
90 | (options, args) = parser.parse_args()
91 | counts_file = args[0]
92 | n = options.n
93 | outpath = options.outpath
94 | perm_template = options.perm_template
95 |
96 | main(counts_file, n, perm_template, outpath)
97 |
98 |
99 |
--------------------------------------------------------------------------------
/io_methods.py:
--------------------------------------------------------------------------------
1 | '''
2 | Created on Dec 6, 2012
3 |
4 | @author: jonathanfriedman
5 | '''
6 | import numpy as np
7 | from pandas.io.parsers import read_table
8 | from Lineages import Lineages
9 | #from pandas.util.decorators import Appender
10 |
11 |
12 |
13 | #@Appender(read_table.__doc__)
14 | def read_txt(file, T=True, lin=None, lin_label='lineage',
15 | format='QIIME', verbose=True, **kwargs):
16 | '''
17 | Read general delimited file into DataFrame.
18 |
19 | This a wrapper around pandas' read_table function which adds
20 | optional parsing of lineage information, and sets some default
21 | parameter values.
22 |
23 | Note:
24 | By default the data is transposed!
25 | To avoid this behavior set the parameter 'T' to False.
26 |
27 | Parameters
28 | ----------
29 | file : string
30 | Path to input file.
31 | T : bool (default True)
32 | Indicated whether the produced DataFrame will be transposed.
33 | lin : bool/None (default None)
34 | Indicated whether lineage information is given in the input file.
35 | If None, read_txt tries to infer the presence of
36 | lineage information automatically
37 | lin_label : string (default 'lineage')
38 | Label of the column containing the lineage information.
39 | format : string (default 'QIIME')
40 | Format of the lineage information.
41 | This argument is passed to the Lineage object constructor.
42 | verbose : bool (default True)
43 | Indicated whether to print to screen the parsed table stats.
44 |
45 | Returns
46 | -------
47 | table : DataFrame
48 | Parsed table.
49 | lins : Lineages (optional)
50 | Parsed Lineages object.
51 | Returned only if lineage information was parsed.
52 | '''
53 | kwargs.setdefault('index_col',0)
54 | temp = read_table(file, **kwargs)
55 | # try to decide whether lineages are given, if not specified by user
56 | if lin is None:
57 | lin = False
58 | lin_labels = ('lin','lins','lineage','lineages',
59 | 'taxon','taxa','rdp')
60 | for c in temp.columns:
61 | if hasattr(c, 'lower'):
62 | if c.lower() in lin_labels:
63 | lin = True
64 | lin_label = c
65 | if lin: # parse lins if needed
66 | lins = Lineages.from_dict(temp[lin_label], format=format)
67 | temp = temp.drop(lin_label,axis=1)
68 | if T:
69 | temp = temp.T
70 |
71 | s = ['Finished parsing table.',
72 | 'Table dimensions: (%d,%d)' %temp.shape]
73 | if T:
74 | s += ['**** Data has been transposed! ****']
75 | ncol = min(temp.shape[1],3)
76 | nrow = min(temp.shape[0],3)
77 | scol = tuple([ncol] + list(temp.columns[:ncol]))
78 | srow = tuple([nrow] + list(temp.index[:nrow]))
79 | s += [('First %d column labels are :'
80 | + ' ,'.join(['%s']*ncol)) %scol,
81 | ('First %d row labels are :'
82 | + ' ,'.join(['%s']*nrow)) %srow]
83 |
84 | table = temp
85 | if lin:
86 | if verbose: print('\n'.join(s), '\n')
87 | return table, lins
88 | else:
89 | if verbose: print('\n'.join(s), '\n')
90 | return table
91 |
92 | def write_txt(frame, file, T=True, lin=None, lin_label='lineage', **kwargs):
93 | '''
94 | Write frame to txt file.
95 |
96 | This a wrapper around pandas' to_csv function which adds
97 | optional writing of lineage information, and sets some default
98 | parameter values.
99 |
100 | Note:
101 | By default the data is transposed!
102 | To avoid this behavior set the parameter 'T' to False.
103 |
104 | Parameters
105 | ----------
106 | file : string
107 | Path to input file.
108 | T : bool (default True)
109 | Indicated whether the produced DataFrame will be transposed.
110 | lin : None/None (default None)
111 | Lineages object to be included in the output file.
112 | lin_label : string (default 'lineage')
113 | Label of the column containing the lineage information.
114 | '''
115 | from pandas import Series
116 | kwargs.setdefault('sep','\t')
117 | if T: data = frame.T
118 | else: data = frame
119 | if lin is not None:
120 | d = {}
121 | for i in data.index:
122 | if i in lin:
123 | d[i] = lin[i].lin_str
124 | else:
125 | d[i] = None
126 | t = Series(d, name=lin_label)
127 | data = data.join(t)
128 | data.to_csv(file,**kwargs)
129 |
130 |
131 | if __name__ == '__main__':
132 | file = 'demo/data/fake_data_lin.counts'
133 | t, lin = read_txt(file)
134 | # write_txt(t*1.1, 'temp.txt', lin=lin)
135 | # print t
136 | # print read_txt.__doc__
137 |
138 |
--------------------------------------------------------------------------------
/PseudoPvals.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | '''
3 | Created on Apr 8, 2013
4 |
5 | @author: jonathanfriedman
6 |
7 |
8 | '''
9 | import numpy as np
10 | from pandas import DataFrame as DF
11 | from io_methods import read_txt, write_txt
12 |
13 | def compare2sided(perm,real):
14 | return np.abs(perm) >= np.abs(real)
15 |
16 | def compare1sided(perm,real):
17 | inds_abs = compare2sided(perm,real)
18 | inds_sign = np.sign(perm) == np.sign(real)
19 | return inds_abs & inds_sign
20 |
21 | def get_pvalues(cor, perm_template, nperm, test_type='two_sided',
22 | iprint=0):
23 | '''
24 | Compute pseudo p-vals from a set correlations obtained from permuted data'
25 | Pseudo p-vals are the percentage of times a correlation at least
26 | as extreme as the "real" one was observed in simulated datasets.
27 |
28 | Files containing the permuted correlations should be named with a
29 | consistent template, and these file names cannot contain any "#" characters.
30 |
31 | Parameters
32 | ----------
33 | cor : DataFrame
34 | Inferred correlations whose p-values are to be computed.
35 | perm_template : str
36 | The template used for naming the correlation files of the
37 | permuted data. The iteration number is indicated with a "#".
38 | For example: 'permuted/cor.sparcc.permuted_#.txt'
39 | nperm : int
40 | Number of permutations available.
41 | test_type : 'two_sided' (default) | 'one_sided'
42 | two-sided = considering only the correlation magnitude.
43 | one-sided = accounting for the sign of correlations.
44 | iprint : int (default = 0)
45 | The interval at which iteration number is printed out.
46 | If iprint<=0 no printouts are made.
47 |
48 | Returns
49 | -------
50 | p_vals: frame
51 | Computed pseudo p-values.
52 | '''
53 | if test_type == 'two_sided':
54 | cmpfun = compare2sided
55 | elif test_type == 'one_sided':
56 | cmpfun = compare1sided
57 | else:
58 | raise ValueError('unsupported test type "%s"' %test_type)
59 | n_sig = DF(np.zeros(cor.shape),
60 | index=cor.index,
61 | columns=cor.columns)
62 | for i in range(nperm):
63 | if iprint>0:
64 | if not i%iprint: print(i)
65 | permfile = perm_template.replace('#', '%d'%i)
66 | cor_perm = read_txt(permfile).values
67 | n_sig[cmpfun(cor_perm, cor)] += 1
68 | p_vals = 1.*n_sig/nperm
69 | p_vals.values[np.diag_indices_from(p_vals.values)] = 1
70 | return p_vals
71 |
72 |
73 | def main(cor_file, perm_template, nperm, test_type='two_sided', outfile=None):
74 | '''
75 | Compute pseudo p-vals from a set correlations obtained from permuted data'
76 | Pseudo p-vals are the percentage of times a correlation at least
77 | as extreme as the "real" one was observed in simulated datasets.
78 |
79 | Files containing the permuted correlations should be named with a
80 | consistent template, and these file names cannot contain any "#" characters.
81 | '''
82 | cor = read_txt(cor_file)
83 | p_vals = get_pvalues(cor, perm_template, nperm, test_type)
84 | if outfile is None:
85 | outfile = cor_file +'.nperm_%d.pvals' %nperm
86 | write_txt(p_vals, outfile)
87 |
88 |
89 | if __name__ == '__main__':
90 | ## parse input arguments
91 | from optparse import OptionParser
92 | usage = ('Compute pseudo p-vals from a set correlations obtained from permuted data.\n'
93 | 'Pseudo p-vals are the percentage of times a correlation at least as extreme as the "real" one was observed in simulated datasets. \n'
94 | 'p-values can be either two-sided (considering only the correlation magnitude) or one-sided (accounting for the sign of correlations).\n'
95 | 'Files containing the permuted correlations should be named with a consistent template, where only the iteration number changes.\n'
96 | 'The permutation naming template is the second input argument with the iteration number replaced with a "#" character.\n'
97 | 'The template cannot contain additional "#" characters.\n'
98 | 'The total number of simulated sets is the third.\n'
99 | '\n'
100 | 'Usage: python PseudoPvals.py real_cor_file perm_template num_simulations [options]\n'
101 | 'Example: python PseudoPvals.py example/basis_corr/cor_sparcc.out example/pvals/perm_cor_#.txt 5 -o pvals.txt -t one_sided')
102 | parser = OptionParser(usage)
103 | parser.add_option("-t", "--type", dest="type", default='two_sided', type = 'str',
104 | help="Type of p-values to computed. oned-sided | two-sided (default).")
105 | parser.add_option("-o", "--outfile", dest="outfile", default=None, type = 'str',
106 | help="Name of file to which p-values will be written.")
107 | (options, args) = parser.parse_args()
108 | real_cor_file = args[0]
109 | perm_template = args[1]
110 | n = int(args[2])
111 | test_type = options.type
112 | outfile = options.outfile
113 |
114 | main(real_cor_file, perm_template, n, test_type, outfile)
115 |
116 |
--------------------------------------------------------------------------------
/compositional_methods.py:
--------------------------------------------------------------------------------
1 | '''
2 | Created on Jun 24, 2012
3 |
4 | @author: jonathanfriedman
5 | '''
6 |
7 | import numpy as np
8 | from pandas import DataFrame as DF
9 | from numpy import array, asarray, zeros, log, var, matrix, tile
10 | from core_methods import _get_axis
11 |
12 | def alr(frame, ref=None, axis=0):
13 | '''
14 | Compute the additive log-ratio (alr) transformation
15 | with respect to the component given in ref.
16 |
17 | Parameters
18 | ----------
19 | frame : DataFrame
20 | Frame to be transformed
21 | ref : valid label | None
22 | Label of component to be used as the normalization reference.
23 | i.e. values of other component will be divided by values of
24 | this reference component.
25 | IF None is passed (default), the last col/row is used as ref.
26 | axis : {0, 1}
27 | 0 : transform each row (default)
28 | 1 : transform each colum
29 | '''
30 | if not isinstance(frame, DF):
31 | return alr_for_array(frame, ref, axis)
32 | axis = _get_axis(axis)
33 | if ref is None:
34 | label = frame._get_axis(1-axis)[-1]
35 | else:
36 | label = ref
37 | if axis==0:
38 | norm = 1.*frame[label]
39 | elif axis==1:
40 | norm = 1.*frame.xs(label)
41 | temp = frame.apply(lambda x: log(x/norm), axis=axis)
42 | return temp.drop(label,1-axis)
43 |
44 | def alr_for_array(frame, ref=None, axis=0):
45 | axis = _get_axis(axis)
46 | if ref is None:
47 | label = -1
48 | else:
49 | label = ref
50 | if axis==0:
51 | norm = 1.*frame[:,label]
52 | elif axis==1:
53 | norm = 1.*frame[label,:]
54 | temp = np.apply_along_axis(lambda x: log(x/norm), axis, frame)
55 | return np.delete(temp, label, 1-axis)
56 |
57 | def clr(frame, centrality='mean', axis=0):
58 | '''
59 | Do the central log-ratio (clr) transformation of frame.
60 | 'centraility' is the metric of central tendency to divide by
61 | after taking the logarithm.
62 |
63 | Parameters
64 | ----------
65 | centrality : 'mean' (default) | 'median'
66 | axis : {0, 1}
67 | 0 : transform each row (default)
68 | 1 : transform each colum
69 | '''
70 | temp = log(frame)
71 | if centrality == 'mean': f = lambda x: x - x.mean()
72 | elif centrality == 'median': f = lambda x: x - x.median()
73 | if isinstance(frame, DF):
74 | z = temp.apply(f, axis=1-axis)
75 | else:
76 | z = np.apply_along_axis(f, 1-axis, temp)
77 | return z
78 |
79 | def variation_mat(frame):
80 | '''
81 | Return the variation matrix of frame.
82 | Element i,j is the variance of the log ratio of components i and j.
83 | '''
84 | x = 1.*asarray(frame)
85 | n,m = x.shape
86 | if m > 1000:
87 | return variation_mat_slow(frame)
88 | else:
89 | xx = tile(x.reshape((n,m,1)) ,(1,1,m))
90 | xx_t = xx.transpose(0,2,1)
91 | try:
92 | l = log(1.*xx/xx_t)
93 | V = l.var(axis=0, ddof=1)
94 | return V
95 | except MemoryError:
96 | return variation_mat_slow(frame)
97 |
98 | def variation_mat_slow(frame, shrink=False):
99 | '''
100 | Return the variation matrix of frame.
101 | Element i,j is the variance of the log ratio of components i and j.
102 | Slower version to be used in case the fast version runs out of memeory.
103 | '''
104 | print('in slow')
105 | frame_a = 1.*asarray(frame)
106 | k = frame_a.shape[1]
107 | V = zeros((k,k))
108 | for i in range(k-1):
109 | for j in range(i+1,k):
110 | y = array(log(frame_a[:,i]/frame_a[:,j]))
111 | v = var(y, ddof=1) # set ddof to divide by (n-1), rather than n, thus getting an unbiased estimator (rather than the ML one).
112 | V[i,j] = v
113 | V[j,i] = v
114 | return V
115 |
116 | def replace_zeros(frame, type='multiplicative', e=0.5):
117 | '''
118 | Replace the zeros by a small value by imputation.
119 | Return new object.
120 |
121 | Inputs:
122 | e = [float] fraction of minimal value to use as imputed value delta.
123 | '''
124 | new = 1.*frame.copy()
125 | for i, row in new.iterrows():
126 | inds_z = (row ==0).nonzero()[0] # indices of zeros
127 | inds = (row > 0).nonzero()[0] # indices of no zeros
128 | delta = e * np.min(row[inds]) # imputed value for current sample
129 | row[inds_z] = delta # replace zeros by imputed values
130 | if type == 'simple':
131 | row /= row.sum()
132 | elif type == 'multiplicative':
133 | row[inds] *= (1-delta*len(inds_z))
134 | new.ix[i] = row
135 | return new
136 |
137 | if __name__ == '__main__':
138 | rows = ['r1', 'r0', 'r2', 'r3']
139 | cols = ['c0', 'c1', 'c2']
140 | metac = DF([[np.nan,'big'],
141 | ['Entero','small'],
142 | ['Blautia','tiny']],
143 | columns=['name', 'Size'],
144 | index=cols)
145 | mat = np.array([[2., np.NAN,1],
146 | [1, 3, 2],
147 | [10, 15,3],
148 | [0,0,1]])
149 | df = DF(mat, index=rows, columns=cols)
150 | # print df,'\n'
151 | # print filter_by_vals(df,[('sum','<=',3),('presence','>',1)],axis='rows'),'\n'
152 |
153 |
154 |
155 |
--------------------------------------------------------------------------------
/analysis_methods.py:
--------------------------------------------------------------------------------
1 | '''
2 | Created on Jun 24, 2012
3 |
4 | @author: jonathanfriedman
5 | '''
6 |
7 | from pandas import DataFrame as DF
8 | from core_methods import _get_axis
9 | import numpy as np
10 |
11 | def basis_corr(frame, algo='SparCC', **kwargs):
12 | '''
13 | Compute correlations between all columns of a counts frame.
14 | This is a wrapper around pysurvey.analysis.basis_correlations.main
15 |
16 | Parameters
17 | ----------
18 | counts : array_like
19 | 2D array of counts. Columns are components, rows are samples.
20 | method : str {SparCC (default)| clr| pearson| spearman| kendall}
21 | The algorithm to use for computing correlation.
22 |
23 | Returns
24 | -------
25 | cor_med: frame
26 | Estimated correlation matrix.
27 | Labels are column labels of input frame.
28 | cov_med: frame/None
29 | If method in {SparCC, clr} : Estimated covariance matrix.
30 | Labels are column labels of input frame.
31 | Otherwise: None.
32 |
33 | ======= ============ ======= ================================================
34 | kwarg Accepts Default Desctiption
35 | ======= ============ ======= ================================================
36 | iter int 20 number of estimation iteration to average over.
37 | oprint bool True print iteration progress?
38 | th 0
3.7, tested with 3.7.3), numpy (tested with version 1.17.4), and pandas
46 | (tested with version 0.25.3).
47 |
48 |
49 | ### Usage example:
50 |
51 | * The following lists the commands required for analyzing the included 'fake'
52 | dataset using the SparCC package, and generating all the files present in the
53 | subfolders of the example folder.
54 |
55 | * The fake dataset contains simulated abundances of 50 otus in 200 samples,
56 | drawn at random from a multinomial log-normal distribution. The true basis
57 | correlations used to generate the data are listed in 'true_basis_cor.txt' in
58 | the example folder.
59 |
60 | * Note that otu 0 is very dominant, and thus, using Pearson or Spearman
61 | correlations, appears to be negatively correlated with most other OTUs, though
62 | it is in fact not negatively correlated with any OTU.
63 |
64 |
65 | ### Correlation Calculation:
66 |
67 | First, we'll quantify the correlation between all OTUs, using SparCC, Pearson,
68 | and Spearman correlations:
69 |
70 | ```
71 | python SparCC.py example/fake_data.txt -i 5 --cor_file=example/basis_corr/cor_sparcc.out
72 | python SparCC.py example/fake_data.txt -i 5 --cor_file=example/basis_corr/cor_pearson.out -a pearson
73 | python SparCC.py example/fake_data.txt -i 5 --cor_file=example/basis_corr/cor_spearman.out -a spearman
74 | ```
75 |
76 | ### Pseudo p-value Calculation:
77 |
78 | Calculating pseudo p-values is done via a bootstrap procedure.
79 | First make shuffled (w. replacement) datasets:
80 |
81 | ```
82 | python MakeBootstraps.py example/fake_data.txt -n 5 -t permutation_#.txt -p example/pvals/
83 | ```
84 |
85 | This will generate 5 shuffled datasets, which is clearly not enough to get
86 | meaningful p-values, and is used here for convenience. A more appropriate
87 | number of shuffles should be at least a 100, which is the default value.
88 |
89 | Next, you'll have to run SparCC on each of the shuffled data sets. Make sure to
90 | use the exact same parameters which you used when running SparCC on the real
91 | data, name all the output files consistently, numbered sequentially, and with a
92 | '.txt' extension.
93 |
94 | ```
95 | python SparCC.py example/pvals/permutation_0.txt -i 5 --cor_file=example/pvals/perm_cor_0.txt
96 | python SparCC.py example/pvals/permutation_1.txt -i 5 --cor_file=example/pvals/perm_cor_1.txt
97 | python SparCC.py example/pvals/permutation_2.txt -i 5 --cor_file=example/pvals/perm_cor_2.txt
98 | python SparCC.py example/pvals/permutation_3.txt -i 5 --cor_file=example/pvals/perm_cor_3.txt
99 | python SparCC.py example/pvals/permutation_4.txt -i 5 --cor_file=example/pvals/perm_cor_4.txt
100 | ```
101 |
102 | Above I'm simply called SparCC 5 separate times. However, it is much more
103 | efficient and convenient to write a small script that automates this, and
104 | submits these runs as separate jobs to a cluster (if one is available to you.
105 | Otherwise, this may take a while to run on a local machine...).
106 |
107 | Now that we have all the correlations computed from the shuffled datasets, we're
108 | ready to get the pseudo p-values. Remember to make sure all the correlation
109 | files are in the same folder, are numbered sequentially, and have a '.txt'
110 | extension. The following will compute both one and two sided p-values.
111 |
112 | ```
113 | python PseudoPvals.py example/basis_corr/cor_sparcc.out example/pvals/perm_cor_#.txt 5 -o example/pvals/pvals.one_sided.txt -t one_sided
114 | python PseudoPvals.py example/basis_corr/cor_sparcc.out example/pvals/perm_cor_#.txt 5 -o example/pvals/pvals.one_sided.txt -t two_sided
115 | ```
116 |
117 |
118 |
119 | LICENSE
120 | ===================
121 |
122 | The MIT License (MIT)
123 |
124 | Copyright (c) 2018-2020 Jonathan Friedman and Eric Alm
125 |
126 | Permission is hereby granted, free of charge, to any person obtaining a copy of
127 | this software and associated documentation files (the "Software"), to deal in
128 | the Software without restriction, including without limitation the rights to
129 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
130 | the Software, and to permit persons to whom the Software is furnished to do so,
131 | subject to the following conditions:
132 |
133 | The above copyright notice and this permission notice shall be included in all
134 | copies or substantial portions of the Software.
135 |
136 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
137 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
138 | FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
139 | COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
140 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
141 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
142 |
143 |
144 |
145 |
--------------------------------------------------------------------------------
/example/pvals/pvals.one_sided.txt:
--------------------------------------------------------------------------------
1 | OTU_id 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 6 7 8 9
2 | 0 1.0 0.0 0.4 0.6 0.2 0.2 0.6 0.6 0.2 0.6 0.8 0.4 1.0 0.2 0.8 0.2 0.8 0.0 0.2 0.2 0.2 0.6 1.0 0.0 0.4 0.0 0.8 0.2 0.0 0.2 1.0 0.6 0.0 0.6 0.0 0.2 0.4 1.0 0.8 1.0 0.8 0.4 1.0 0.8 0.2 1.0 0.4 0.0 0.0 0.4
3 | 1 0.0 1.0 0.6 1.0 0.8 0.2 0.8 0.0 1.0 0.2 0.6 0.0 0.6 0.6 0.2 0.6 0.2 0.8 0.0 1.0 0.4 0.6 0.8 0.4 0.2 0.4 0.2 0.6 0.0 0.8 1.0 0.2 0.0 0.4 1.0 1.0 0.0 0.4 0.6 0.6 1.0 0.4 0.8 1.0 0.6 0.4 0.6 0.0 0.2 0.2
4 | 10 0.4 0.6 1.0 0.0 0.0 0.2 0.8 0.6 0.6 0.2 1.0 0.2 1.0 0.4 0.4 1.0 1.0 0.4 0.4 0.8 0.0 1.0 0.4 0.2 0.0 0.6 1.0 1.0 0.2 0.6 1.0 1.0 0.8 0.0 1.0 0.6 0.6 0.4 0.4 0.8 0.8 0.8 0.4 0.6 1.0 0.0 0.8 1.0 0.4 0.2
5 | 11 0.6 1.0 0.0 1.0 0.0 0.0 0.6 0.4 0.6 0.2 0.6 0.4 1.0 0.2 0.2 1.0 0.6 0.4 0.8 0.2 0.0 0.2 1.0 0.2 0.6 0.2 0.6 0.6 1.0 0.4 0.8 0.4 0.8 1.0 0.6 0.2 0.4 0.8 0.8 0.0 0.6 0.8 0.2 0.8 0.6 0.0 0.2 0.4 0.8 0.4
6 | 12 0.2 0.8 0.0 0.0 1.0 0.0 1.0 0.2 1.0 0.2 0.8 0.4 0.4 0.2 0.6 0.0 0.6 0.8 0.4 0.2 0.2 0.2 0.8 0.0 0.4 1.0 0.0 0.2 1.0 0.4 1.0 0.6 0.6 0.8 0.2 0.6 0.0 0.2 0.2 0.6 0.0 0.8 0.4 0.4 0.6 0.8 0.8 0.8 0.6 1.0
7 | 13 0.2 0.2 0.2 0.0 0.0 1.0 0.2 0.0 0.0 0.2 0.4 0.8 0.8 1.0 0.2 0.4 0.8 0.6 0.8 1.0 0.2 0.2 0.8 0.4 0.6 0.2 0.2 0.8 0.0 0.2 0.6 0.4 0.6 0.0 1.0 1.0 0.4 0.2 0.0 1.0 0.4 0.2 0.0 0.8 0.2 0.2 0.6 0.8 0.6 0.6
8 | 14 0.6 0.8 0.8 0.6 1.0 0.2 1.0 0.0 0.2 0.8 0.6 0.6 0.4 0.8 0.0 0.6 0.0 1.0 0.2 0.8 0.0 0.8 0.4 0.2 0.8 0.8 0.4 1.0 1.0 0.0 0.2 1.0 0.0 0.8 0.4 1.0 0.8 0.8 0.6 0.0 0.2 0.6 1.0 1.0 0.6 1.0 0.2 0.6 0.0 0.2
9 | 15 0.6 0.0 0.6 0.4 0.2 0.0 0.0 1.0 0.4 0.2 0.4 0.6 0.8 0.6 0.8 0.0 0.8 0.4 0.6 0.0 0.0 0.2 1.0 1.0 0.0 1.0 0.8 0.4 0.2 0.8 0.4 0.0 0.2 0.4 0.6 0.6 0.8 0.4 0.6 0.8 0.6 0.4 0.8 0.8 0.4 0.2 0.8 0.2 0.0 0.4
10 | 16 0.2 1.0 0.6 0.6 1.0 0.0 0.2 0.4 1.0 0.8 0.8 0.0 0.6 0.6 1.0 0.8 1.0 0.2 1.0 0.2 0.4 0.6 0.2 0.4 1.0 0.4 0.0 1.0 0.2 0.0 0.8 0.4 0.4 1.0 0.6 0.2 0.2 0.4 1.0 0.0 0.6 0.2 0.4 0.2 0.6 0.2 0.2 0.0 0.6 1.0
11 | 17 0.6 0.2 0.2 0.2 0.2 0.2 0.8 0.2 0.8 1.0 0.2 0.4 0.2 1.0 1.0 0.6 0.2 0.8 0.6 0.6 0.4 0.8 0.0 1.0 0.8 0.0 0.2 0.4 1.0 0.0 0.8 0.8 0.4 0.8 0.6 0.6 0.0 0.2 0.4 0.8 0.4 0.4 0.2 1.0 0.6 0.2 0.4 1.0 0.4 0.8
12 | 18 0.8 0.6 1.0 0.6 0.8 0.4 0.6 0.4 0.8 0.2 1.0 0.4 0.4 0.4 0.2 0.0 0.4 0.0 1.0 0.8 0.4 0.6 1.0 0.2 0.4 0.4 0.4 0.0 1.0 0.0 0.8 0.2 0.2 0.2 0.6 0.6 1.0 0.4 0.6 0.0 0.4 1.0 0.0 0.6 0.8 0.6 0.2 0.0 0.6 0.8
13 | 19 0.4 0.0 0.2 0.4 0.4 0.8 0.6 0.6 0.0 0.4 0.4 1.0 0.2 0.4 0.2 0.4 0.8 0.8 0.0 0.4 1.0 0.4 0.6 0.0 0.6 0.8 1.0 0.2 0.0 0.6 0.4 1.0 0.4 0.0 0.6 1.0 1.0 0.4 0.2 0.0 0.0 0.8 1.0 0.6 0.0 0.4 0.0 0.2 1.0 0.0
14 | 2 1.0 0.6 1.0 1.0 0.4 0.8 0.4 0.8 0.6 0.2 0.4 0.2 1.0 0.8 0.8 1.0 0.2 0.6 1.0 0.8 1.0 1.0 1.0 0.6 0.8 0.6 0.0 0.2 0.0 0.2 0.4 1.0 0.6 1.0 0.4 0.2 0.2 0.0 0.4 0.0 0.6 0.4 0.2 0.2 1.0 0.2 0.2 0.0 0.2 0.8
15 | 20 0.2 0.6 0.4 0.2 0.2 1.0 0.8 0.6 0.6 1.0 0.4 0.4 0.8 1.0 0.0 0.4 0.6 0.4 0.4 0.8 0.4 0.4 1.0 0.2 0.2 0.0 0.4 0.2 1.0 0.6 0.6 1.0 0.4 0.4 0.4 0.8 0.6 0.2 0.4 0.2 1.0 0.4 1.0 1.0 1.0 0.4 1.0 1.0 1.0 0.6
16 | 21 0.8 0.2 0.4 0.2 0.6 0.2 0.0 0.8 1.0 1.0 0.2 0.2 0.8 0.0 1.0 0.2 0.0 0.0 0.6 0.6 0.8 0.4 0.6 1.0 0.6 0.2 0.2 1.0 0.4 0.8 0.6 0.8 0.6 0.6 0.6 0.4 1.0 0.2 0.2 0.6 0.8 1.0 0.2 0.4 0.8 1.0 0.4 0.0 0.4 1.0
17 | 22 0.2 0.6 1.0 1.0 0.0 0.4 0.6 0.0 0.8 0.6 0.0 0.4 1.0 0.4 0.2 1.0 0.2 0.8 0.6 0.8 0.6 0.4 0.2 0.4 0.8 0.8 0.4 1.0 0.6 0.0 1.0 0.4 0.6 0.8 0.6 0.0 1.0 0.8 0.6 0.2 0.8 0.2 0.2 1.0 1.0 0.8 0.4 1.0 1.0 0.2
18 | 23 0.8 0.2 1.0 0.6 0.6 0.8 0.0 0.8 1.0 0.2 0.4 0.8 0.2 0.6 0.0 0.2 1.0 0.6 0.4 0.4 0.0 0.2 0.0 0.2 0.2 0.6 0.2 0.8 1.0 0.6 0.8 0.4 0.6 0.8 1.0 0.4 0.2 0.2 0.4 0.2 0.4 1.0 1.0 0.0 0.6 1.0 0.2 0.2 0.2 0.0
19 | 24 0.0 0.8 0.4 0.4 0.8 0.6 1.0 0.4 0.2 0.8 0.0 0.8 0.6 0.4 0.0 0.8 0.6 1.0 0.6 0.4 0.8 0.2 1.0 0.2 0.6 1.0 0.0 0.4 1.0 0.4 0.4 0.4 1.0 0.4 0.4 0.0 0.2 0.6 1.0 0.6 0.0 0.4 0.4 0.2 0.4 0.4 0.8 0.6 0.4 0.0
20 | 25 0.2 0.0 0.4 0.8 0.4 0.8 0.2 0.6 1.0 0.6 1.0 0.0 1.0 0.4 0.6 0.6 0.4 0.6 1.0 0.8 0.8 0.8 0.8 1.0 0.6 0.0 0.2 1.0 0.2 0.0 0.2 1.0 0.4 0.4 0.6 0.8 0.6 0.2 0.2 1.0 0.2 0.6 0.0 1.0 0.8 0.8 1.0 0.2 0.8 0.0
21 | 26 0.2 1.0 0.8 0.2 0.2 1.0 0.8 0.0 0.2 0.6 0.8 0.4 0.8 0.8 0.6 0.8 0.4 0.4 0.8 1.0 0.4 0.8 0.6 0.6 0.6 0.8 0.8 0.0 1.0 0.2 0.8 0.4 1.0 1.0 1.0 0.4 1.0 0.6 0.8 0.4 0.2 1.0 0.6 0.0 0.6 0.6 0.6 0.2 0.8 0.6
22 | 27 0.2 0.4 0.0 0.0 0.2 0.2 0.0 0.0 0.4 0.4 0.4 1.0 1.0 0.4 0.8 0.6 0.0 0.8 0.8 0.4 1.0 0.8 1.0 0.6 0.4 0.4 1.0 0.2 0.0 0.0 1.0 0.0 0.2 0.6 1.0 0.6 0.6 0.2 0.6 0.0 0.8 0.6 0.8 1.0 0.2 0.6 0.2 0.4 1.0 0.8
23 | 28 0.6 0.6 1.0 0.2 0.2 0.2 0.8 0.2 0.6 0.8 0.6 0.4 1.0 0.4 0.4 0.4 0.2 0.2 0.8 0.8 0.8 1.0 0.8 0.4 0.8 0.2 0.2 0.2 0.8 0.2 0.4 0.6 1.0 1.0 1.0 0.6 0.4 0.0 0.4 0.2 0.2 0.4 0.2 1.0 1.0 0.6 0.8 0.8 1.0 0.4
24 | 29 1.0 0.8 0.4 1.0 0.8 0.8 0.4 1.0 0.2 0.0 1.0 0.6 1.0 1.0 0.6 0.2 0.0 1.0 0.8 0.6 1.0 0.8 1.0 0.0 0.6 0.2 0.0 0.2 0.0 0.2 0.6 0.2 0.2 0.2 0.6 0.6 0.6 0.0 0.4 0.6 0.8 0.2 0.6 0.8 0.0 1.0 0.0 0.2 0.4 1.0
25 | 3 0.0 0.4 0.2 0.2 0.0 0.4 0.2 1.0 0.4 1.0 0.2 0.0 0.6 0.2 1.0 0.4 0.2 0.2 1.0 0.6 0.6 0.4 0.0 1.0 0.6 0.2 0.4 0.2 1.0 0.2 1.0 0.6 0.6 1.0 0.2 0.8 0.2 0.4 0.4 1.0 0.8 0.6 0.8 0.4 1.0 0.4 0.4 0.6 1.0 0.6
26 | 30 0.4 0.2 0.0 0.6 0.4 0.6 0.8 0.0 1.0 0.8 0.4 0.6 0.8 0.2 0.6 0.8 0.2 0.6 0.6 0.6 0.4 0.8 0.6 0.6 1.0 0.8 0.4 1.0 0.0 0.6 1.0 0.0 0.0 0.4 0.2 0.0 0.2 0.4 1.0 0.8 0.0 0.0 0.2 1.0 1.0 0.8 0.8 1.0 0.8 0.0
27 | 31 0.0 0.4 0.6 0.2 1.0 0.2 0.8 1.0 0.4 0.0 0.4 0.8 0.6 0.0 0.2 0.8 0.6 1.0 0.0 0.8 0.4 0.2 0.2 0.2 0.8 1.0 0.0 0.0 0.4 0.8 0.4 1.0 0.6 0.8 1.0 0.0 0.2 0.4 0.2 0.4 1.0 0.4 0.0 0.4 0.2 0.0 0.0 0.8 0.8 0.4
28 | 32 0.8 0.2 1.0 0.6 0.0 0.2 0.4 0.8 0.0 0.2 0.4 1.0 0.0 0.4 0.2 0.4 0.2 0.0 0.2 0.8 1.0 0.2 0.0 0.4 0.4 0.0 1.0 0.6 0.6 0.8 0.6 0.2 1.0 0.0 0.4 0.4 0.0 0.0 0.6 0.0 0.2 0.4 1.0 0.8 0.6 0.4 0.4 0.0 1.0 0.4
29 | 33 0.2 0.6 1.0 0.6 0.2 0.8 1.0 0.4 1.0 0.4 0.0 0.2 0.2 0.2 1.0 1.0 0.8 0.4 1.0 0.0 0.2 0.2 0.2 0.2 1.0 0.0 0.6 1.0 0.8 0.0 1.0 0.0 0.2 0.2 0.4 0.6 0.2 0.8 0.0 0.2 0.2 0.8 0.4 0.2 0.4 0.4 0.0 0.8 0.2 1.0
30 | 34 0.0 0.0 0.2 1.0 1.0 0.0 1.0 0.2 0.2 1.0 1.0 0.0 0.0 1.0 0.4 0.6 1.0 1.0 0.2 1.0 0.0 0.8 0.0 1.0 0.0 0.4 0.6 0.8 1.0 0.0 0.4 0.0 1.0 0.2 0.4 0.6 0.4 0.6 1.0 0.0 0.0 0.6 1.0 0.2 0.4 0.0 0.6 0.8 0.4 0.8
31 | 35 0.2 0.8 0.6 0.4 0.4 0.2 0.0 0.8 0.0 0.0 0.0 0.6 0.2 0.6 0.8 0.0 0.6 0.4 0.0 0.2 0.0 0.2 0.2 0.2 0.6 0.8 0.8 0.0 0.0 1.0 0.0 1.0 0.0 0.8 0.4 0.4 0.8 0.2 0.6 0.8 0.0 0.4 1.0 0.4 0.0 0.6 0.6 0.8 0.2 0.0
32 | 36 1.0 1.0 1.0 0.8 1.0 0.6 0.2 0.4 0.8 0.8 0.8 0.4 0.4 0.6 0.6 1.0 0.8 0.4 0.2 0.8 1.0 0.4 0.6 1.0 1.0 0.4 0.6 1.0 0.4 0.0 1.0 1.0 0.6 0.0 1.0 0.6 0.6 0.2 0.4 0.2 0.6 0.6 0.8 1.0 0.8 0.4 0.0 0.0 0.0 0.2
33 | 37 0.6 0.2 1.0 0.4 0.6 0.4 1.0 0.0 0.4 0.8 0.2 1.0 1.0 1.0 0.8 0.4 0.4 0.4 1.0 0.4 0.0 0.6 0.2 0.6 0.0 1.0 0.2 0.0 0.0 1.0 1.0 1.0 0.0 0.2 0.2 0.8 1.0 0.0 0.4 0.6 1.0 0.2 0.4 1.0 1.0 0.6 1.0 0.2 0.8 0.4
34 | 38 0.0 0.0 0.8 0.8 0.6 0.6 0.0 0.2 0.4 0.4 0.2 0.4 0.6 0.4 0.6 0.6 0.6 1.0 0.4 1.0 0.2 1.0 0.2 0.6 0.0 0.6 1.0 0.2 1.0 0.0 0.6 0.0 1.0 1.0 0.4 1.0 0.4 0.6 0.0 1.0 0.4 0.2 0.4 0.6 1.0 0.4 0.6 0.8 0.8 0.2
35 | 39 0.6 0.4 0.0 1.0 0.8 0.0 0.8 0.4 1.0 0.8 0.2 0.0 1.0 0.4 0.6 0.8 0.8 0.4 0.4 1.0 0.6 1.0 0.2 1.0 0.4 0.8 0.0 0.2 0.2 0.8 0.0 0.2 1.0 1.0 0.0 0.2 0.6 0.6 1.0 0.0 0.2 0.6 0.0 0.6 0.8 0.0 0.8 0.4 1.0 0.2
36 | 4 0.0 1.0 1.0 0.6 0.2 1.0 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.6 0.6 1.0 0.4 0.6 1.0 1.0 1.0 0.6 0.2 0.2 1.0 0.4 0.4 0.4 0.4 1.0 0.2 0.4 0.0 1.0 0.6 0.2 1.0 0.6 0.2 1.0 0.6 0.6 1.0 0.8 0.0 0.6 0.2 0.8 0.0
37 | 40 0.2 1.0 0.6 0.2 0.6 1.0 1.0 0.6 0.2 0.6 0.6 1.0 0.2 0.8 0.4 0.0 0.4 0.0 0.8 0.4 0.6 0.6 0.6 0.8 0.0 0.0 0.4 0.6 0.6 0.4 0.6 0.8 1.0 0.2 0.6 1.0 0.8 0.2 0.0 1.0 0.0 0.0 0.6 0.2 1.0 1.0 0.2 1.0 1.0 0.4
38 | 41 0.4 0.0 0.6 0.4 0.0 0.4 0.8 0.8 0.2 0.0 1.0 1.0 0.2 0.6 1.0 1.0 0.2 0.2 0.6 1.0 0.6 0.4 0.6 0.2 0.2 0.2 0.0 0.2 0.4 0.8 0.6 1.0 0.4 0.6 0.2 0.8 1.0 0.6 0.0 1.0 0.4 1.0 0.0 0.8 0.2 0.6 0.2 0.4 0.2 0.6
39 | 42 1.0 0.4 0.4 0.8 0.2 0.2 0.8 0.4 0.4 0.2 0.4 0.4 0.0 0.2 0.2 0.8 0.2 0.6 0.2 0.6 0.2 0.0 0.0 0.4 0.4 0.4 0.0 0.8 0.6 0.2 0.2 0.0 0.6 0.6 1.0 0.2 0.6 1.0 0.4 0.8 0.4 0.8 0.6 0.8 0.2 0.4 0.0 0.6 0.0 0.0
40 | 43 0.8 0.6 0.4 0.8 0.2 0.0 0.6 0.6 1.0 0.4 0.6 0.2 0.4 0.4 0.2 0.6 0.4 1.0 0.2 0.8 0.6 0.4 0.4 0.4 1.0 0.2 0.6 0.0 1.0 0.6 0.4 0.4 0.0 1.0 0.6 0.0 0.0 0.4 1.0 0.6 0.8 0.4 0.2 0.6 1.0 0.2 0.8 0.0 0.8 1.0
41 | 44 1.0 0.6 0.8 0.0 0.6 1.0 0.0 0.8 0.0 0.8 0.0 0.0 0.0 0.2 0.6 0.2 0.2 0.6 1.0 0.4 0.0 0.2 0.6 1.0 0.8 0.4 0.0 0.2 0.0 0.8 0.2 0.6 1.0 0.0 0.2 1.0 1.0 0.8 0.6 1.0 0.6 0.6 0.8 0.0 0.0 0.2 0.6 1.0 1.0 0.4
42 | 45 0.8 1.0 0.8 0.6 0.0 0.4 0.2 0.6 0.6 0.4 0.4 0.0 0.6 1.0 0.8 0.8 0.4 0.0 0.2 0.2 0.8 0.2 0.8 0.8 0.0 1.0 0.2 0.2 0.0 0.0 0.6 1.0 0.4 0.2 1.0 0.0 0.4 0.4 0.8 0.6 1.0 0.6 0.8 0.8 1.0 1.0 0.0 0.8 0.2 0.8
43 | 46 0.4 0.4 0.8 0.8 0.8 0.2 0.6 0.4 0.2 0.4 1.0 0.8 0.4 0.4 1.0 0.2 1.0 0.4 0.6 1.0 0.6 0.4 0.2 0.6 0.0 0.4 0.4 0.8 0.6 0.4 0.6 0.2 0.2 0.6 0.6 0.0 1.0 0.8 0.4 0.6 0.6 1.0 0.0 0.8 0.4 1.0 0.4 0.8 0.0 0.2
44 | 47 1.0 0.8 0.4 0.2 0.4 0.0 1.0 0.8 0.4 0.2 0.0 1.0 0.2 1.0 0.2 0.2 1.0 0.4 0.0 0.6 0.8 0.2 0.6 0.8 0.2 0.0 1.0 0.4 1.0 1.0 0.8 0.4 0.4 0.0 0.6 0.6 0.0 0.6 0.2 0.8 0.8 0.0 1.0 0.4 0.4 0.8 0.0 0.2 0.8 0.2
45 | 48 0.8 1.0 0.6 0.8 0.4 0.8 1.0 0.8 0.2 1.0 0.6 0.6 0.2 1.0 0.4 1.0 0.0 0.2 1.0 0.0 1.0 1.0 0.8 0.4 1.0 0.4 0.8 0.2 0.2 0.4 1.0 1.0 0.6 0.6 1.0 0.2 0.8 0.8 0.6 0.0 0.8 0.8 0.4 1.0 0.8 0.4 1.0 0.2 1.0 0.8
46 | 49 0.2 0.6 1.0 0.6 0.6 0.2 0.6 0.4 0.6 0.6 0.8 0.0 1.0 1.0 0.8 1.0 0.6 0.4 0.8 0.6 0.2 1.0 0.0 1.0 1.0 0.2 0.6 0.4 0.4 0.0 0.8 1.0 1.0 0.8 0.8 1.0 0.2 0.2 1.0 0.0 1.0 0.4 0.4 0.8 1.0 1.0 0.0 0.2 0.8 1.0
47 | 5 1.0 0.4 0.0 0.0 0.8 0.2 1.0 0.2 0.2 0.2 0.6 0.4 0.2 0.4 1.0 0.8 1.0 0.4 0.8 0.6 0.6 0.6 1.0 0.4 0.8 0.0 0.4 0.4 0.0 0.6 0.4 0.6 0.4 0.0 0.0 1.0 0.6 0.4 0.2 0.2 1.0 1.0 0.8 0.4 1.0 1.0 0.8 1.0 0.8 0.8
48 | 6 0.4 0.6 0.8 0.2 0.8 0.6 0.2 0.8 0.2 0.4 0.2 0.0 0.2 1.0 0.4 0.4 0.2 0.8 1.0 0.6 0.2 0.8 0.0 0.4 0.8 0.0 0.4 0.0 0.6 0.6 0.0 1.0 0.6 0.8 0.6 0.2 0.2 0.0 0.8 0.6 0.0 0.4 0.0 1.0 0.0 0.8 1.0 0.4 0.0 1.0
49 | 7 0.0 0.0 1.0 0.4 0.8 0.8 0.6 0.2 0.0 1.0 0.0 0.2 0.0 1.0 0.0 1.0 0.2 0.6 0.2 0.2 0.4 0.8 0.2 0.6 1.0 0.8 0.0 0.8 0.8 0.8 0.0 0.2 0.8 0.4 0.2 1.0 0.4 0.6 0.0 1.0 0.8 0.8 0.2 0.2 0.2 1.0 0.4 1.0 0.2 0.2
50 | 8 0.0 0.2 0.4 0.8 0.6 0.6 0.0 0.0 0.6 0.4 0.6 1.0 0.2 1.0 0.4 1.0 0.2 0.4 0.8 0.8 1.0 1.0 0.4 1.0 0.8 0.8 1.0 0.2 0.4 0.2 0.0 0.8 0.8 1.0 0.8 1.0 0.2 0.0 0.8 1.0 0.2 0.0 0.8 1.0 0.8 0.8 0.0 0.2 1.0 0.2
51 | 9 0.4 0.2 0.2 0.4 1.0 0.6 0.2 0.4 1.0 0.8 0.8 0.0 0.8 0.6 1.0 0.2 0.0 0.0 0.0 0.6 0.8 0.4 1.0 0.6 0.0 0.4 0.4 1.0 0.8 0.0 0.2 0.4 0.2 0.2 0.0 0.4 0.6 0.0 1.0 0.4 0.8 0.2 0.2 0.8 1.0 0.8 1.0 0.2 0.2 1.0
52 |
--------------------------------------------------------------------------------
/example/pvals/pvals.two_sided.txt:
--------------------------------------------------------------------------------
1 | OTU_id 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 6 7 8 9
2 | 0 1.0 0.0 0.2 0.8 0.8 0.2 0.8 0.8 0.0 0.2 1.0 0.0 1.0 0.2 1.0 0.2 0.8 0.6 0.0 0.2 0.0 0.6 0.8 0.0 0.2 0.0 1.0 0.2 0.0 0.6 0.6 1.0 0.4 0.6 0.4 0.0 0.4 1.0 0.6 0.6 1.0 0.0 1.0 0.4 0.0 1.0 1.0 0.0 0.0 0.6
3 | 1 0.0 1.0 0.0 0.8 0.6 0.2 0.8 0.8 0.6 0.2 0.8 0.0 0.4 0.6 1.0 1.0 0.6 0.8 0.4 0.4 0.2 0.8 0.8 1.0 0.8 0.4 0.6 0.6 0.4 0.6 0.6 0.4 0.2 1.0 1.0 0.6 0.2 0.6 0.4 0.8 1.0 0.4 0.6 1.0 1.0 0.8 0.6 0.0 0.0 0.2
4 | 10 0.2 0.0 1.0 0.0 0.0 0.2 0.8 0.8 0.2 0.0 0.6 0.6 1.0 0.4 0.0 0.8 0.0 0.4 0.2 0.8 0.0 1.0 0.6 0.4 1.0 0.0 0.8 0.6 0.4 1.0 0.8 1.0 0.6 0.6 0.2 0.4 0.8 1.0 0.6 1.0 0.8 0.6 1.0 0.4 0.8 0.6 1.0 1.0 0.4 0.8
5 | 11 0.8 0.8 0.0 1.0 0.0 0.6 1.0 0.2 0.8 0.6 0.6 0.0 1.0 0.4 0.2 0.6 0.0 0.8 0.4 1.0 0.0 0.8 1.0 0.6 1.0 0.2 0.0 1.0 1.0 0.8 0.6 0.2 0.6 0.2 0.4 0.4 0.2 0.8 0.2 0.6 1.0 0.6 0.8 0.2 0.6 0.0 0.6 0.2 0.4 0.4
6 | 12 0.8 0.6 0.0 0.0 1.0 0.0 0.6 0.6 0.6 0.0 1.0 0.6 0.6 0.2 0.8 0.6 0.4 0.6 1.0 0.8 0.8 0.8 0.6 0.0 0.2 0.2 0.0 0.2 0.6 0.4 1.0 1.0 0.6 1.0 0.6 0.8 0.0 0.8 0.4 1.0 0.0 0.2 0.0 0.2 0.0 0.6 0.6 0.6 1.0 0.8
7 | 13 0.2 0.2 0.2 0.6 0.0 1.0 0.8 0.0 0.0 0.4 0.4 0.8 1.0 0.6 0.6 0.6 0.8 0.2 0.2 0.4 0.8 0.8 0.8 0.8 0.4 0.6 0.2 0.6 0.0 0.6 0.6 0.6 0.0 0.4 0.6 1.0 0.6 0.0 0.2 1.0 0.8 0.0 0.0 0.6 0.2 0.6 0.8 0.8 0.8 1.0
8 | 14 0.8 0.8 0.8 1.0 0.6 0.8 1.0 0.0 0.0 0.8 0.4 0.8 1.0 0.6 0.2 1.0 0.6 0.8 0.4 0.6 0.4 0.2 0.8 0.8 0.8 1.0 0.8 0.8 0.6 0.6 1.0 0.6 1.0 0.2 0.2 0.4 1.0 0.4 1.0 0.4 0.6 0.8 0.6 1.0 1.0 0.8 0.2 1.0 0.6 0.6
9 | 15 0.8 0.8 0.8 0.2 0.6 0.0 0.0 1.0 0.2 0.4 0.4 1.0 1.0 0.4 0.6 0.0 0.2 0.0 0.2 0.8 0.6 1.0 0.8 0.0 0.4 0.8 0.8 1.0 0.6 1.0 1.0 0.2 0.6 0.2 0.6 0.4 1.0 1.0 0.4 0.8 0.6 0.4 0.2 1.0 0.4 0.2 0.8 0.0 1.0 0.6
10 | 16 0.0 0.6 0.2 0.8 0.6 0.0 0.0 0.2 1.0 0.2 0.4 0.6 1.0 0.8 0.8 1.0 0.4 1.0 1.0 0.4 0.2 0.0 0.4 0.4 1.0 0.8 0.0 0.8 0.0 0.4 0.6 1.0 0.0 0.6 0.6 0.8 0.2 0.6 1.0 0.0 0.4 0.0 1.0 0.2 1.0 1.0 0.2 0.4 0.2 0.6
11 | 17 0.2 0.2 0.0 0.6 0.0 0.4 0.8 0.4 0.2 1.0 0.0 0.0 0.0 0.6 1.0 0.6 0.8 0.8 0.6 0.2 0.4 1.0 0.2 0.2 0.8 0.0 0.6 0.4 0.4 0.6 0.8 0.4 1.0 0.0 0.0 0.2 0.0 0.8 0.0 0.8 0.0 0.4 0.2 0.8 0.2 0.4 1.0 0.8 0.0 0.6
12 | 18 1.0 0.8 0.6 0.6 1.0 0.4 0.4 0.4 0.4 0.0 1.0 0.6 0.0 0.8 0.4 0.2 0.0 0.2 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.6 0.4 0.6 0.8 0.8 0.8 0.8 0.2 1.0 0.2 0.4 1.0 0.2 0.2 0.6 0.2 0.6 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.6
13 | 19 0.0 0.0 0.6 0.0 0.6 0.8 0.8 1.0 0.6 0.0 0.6 1.0 0.8 0.2 0.8 0.0 0.6 1.0 0.4 0.8 0.8 0.6 0.2 0.2 0.4 0.8 0.6 0.0 0.0 0.6 1.0 0.2 0.2 0.2 0.2 1.0 0.6 0.0 0.8 0.2 0.4 0.8 0.6 0.2 0.0 1.0 0.2 0.6 1.0 1.0
14 | 2 1.0 0.4 1.0 1.0 0.6 1.0 1.0 1.0 1.0 0.0 0.0 0.8 1.0 0.2 1.0 0.2 0.2 0.0 0.4 0.4 0.2 1.0 0.8 1.0 1.0 0.4 0.4 1.0 0.6 0.8 0.0 0.8 0.6 0.2 0.4 0.6 1.0 0.0 0.2 0.0 0.4 0.6 0.2 0.0 0.0 0.2 0.2 0.4 0.0 0.4
15 | 20 0.2 0.6 0.4 0.4 0.2 0.6 0.6 0.4 0.8 0.6 0.8 0.2 0.2 1.0 0.0 0.2 0.0 0.0 0.0 1.0 0.8 0.8 1.0 0.2 1.0 0.0 0.8 0.2 0.8 1.0 0.6 0.8 0.8 0.8 0.0 1.0 0.6 0.4 0.0 0.2 0.6 0.4 0.8 0.8 0.8 0.2 0.4 0.6 1.0 0.2
16 | 21 1.0 1.0 0.0 0.2 0.8 0.6 0.2 0.6 0.8 1.0 0.4 0.8 1.0 0.0 1.0 0.4 0.2 0.6 0.8 1.0 0.0 0.8 0.6 0.4 1.0 0.4 0.0 1.0 0.8 0.4 0.8 0.8 1.0 0.2 0.8 1.0 1.0 0.6 1.0 0.4 0.0 1.0 1.0 1.0 1.0 0.8 0.6 0.0 0.4 0.2
17 | 22 0.2 1.0 0.8 0.6 0.6 0.6 1.0 0.0 1.0 0.6 0.2 0.0 0.2 0.2 0.4 1.0 0.2 0.0 0.4 1.0 1.0 0.4 0.0 0.6 0.4 1.0 0.0 0.6 0.8 0.2 0.8 0.6 1.0 0.6 1.0 0.2 0.8 0.8 0.6 0.0 0.6 0.6 1.0 0.8 1.0 0.6 0.2 0.2 1.0 0.2
18 | 23 0.8 0.6 0.0 0.0 0.4 0.8 0.6 0.2 0.4 0.8 0.0 0.6 0.2 0.0 0.2 0.2 1.0 0.2 0.0 0.8 0.2 1.0 0.0 1.0 0.2 0.4 0.6 0.6 0.6 1.0 0.2 0.8 1.0 0.0 0.2 0.8 1.0 0.6 0.8 0.2 1.0 1.0 0.4 0.4 1.0 1.0 0.6 0.2 0.8 0.0
19 | 24 0.6 0.8 0.4 0.8 0.6 0.2 0.8 0.0 1.0 0.8 0.2 1.0 0.0 0.0 0.6 0.0 0.2 1.0 0.2 0.8 1.0 1.0 0.6 0.6 0.8 1.0 0.6 0.8 1.0 0.2 0.6 0.2 0.8 0.8 1.0 0.2 0.8 0.2 1.0 0.4 0.4 0.2 0.6 0.2 0.4 0.6 0.8 0.8 0.4 0.0
20 | 25 0.0 0.4 0.2 0.4 1.0 0.2 0.4 0.2 1.0 0.6 1.0 0.4 0.4 0.0 0.8 0.4 0.0 0.2 1.0 0.4 0.8 0.4 0.0 1.0 0.8 0.2 1.0 0.4 1.0 0.0 1.0 0.0 0.6 0.6 0.8 0.4 0.4 0.0 0.2 0.2 0.0 0.6 0.4 1.0 0.8 1.0 0.6 0.4 1.0 0.0
21 | 26 0.2 0.4 0.8 1.0 0.8 0.4 0.6 0.8 0.4 0.2 0.8 0.8 0.4 1.0 1.0 1.0 0.8 0.8 0.4 1.0 0.2 1.0 0.8 0.4 1.0 0.6 0.8 1.0 0.6 0.4 0.6 0.6 0.6 1.0 0.8 1.0 0.0 0.2 1.0 0.6 0.6 1.0 0.4 0.0 1.0 0.8 1.0 0.0 0.6 0.4
22 | 27 0.0 0.2 0.0 0.0 0.8 0.8 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.8 0.0 1.0 0.2 1.0 0.8 0.2 1.0 0.6 0.8 0.4 0.4 1.0 0.4 0.2 1.0 0.0 0.8 0.0 0.0 1.0 0.8 1.0 0.0 0.4 0.6 0.2 0.6 0.4 0.8 1.0 0.6 0.6 0.4 0.6 0.6 1.0
23 | 28 0.6 0.8 1.0 0.8 0.8 0.8 0.2 1.0 0.0 1.0 0.4 0.6 1.0 0.8 0.8 0.4 1.0 1.0 0.4 1.0 0.6 1.0 0.6 0.6 0.4 0.0 0.2 0.4 0.8 0.0 0.2 0.8 1.0 1.0 0.8 0.6 0.2 0.2 0.8 0.8 0.6 1.0 0.4 1.0 0.8 0.2 0.4 1.0 0.8 0.6
24 | 29 0.8 0.8 0.6 1.0 0.6 0.8 0.8 0.8 0.4 0.2 1.0 0.2 0.8 1.0 0.6 0.0 0.0 0.6 0.0 0.8 0.8 0.6 1.0 0.2 0.2 0.8 0.2 0.2 0.0 0.0 0.8 0.2 0.2 0.2 0.4 0.4 1.0 0.2 0.0 0.0 1.0 0.6 0.4 0.8 0.0 0.8 0.0 0.2 0.6 0.6
25 | 3 0.0 1.0 0.4 0.6 0.0 0.8 0.8 0.0 0.4 0.2 0.8 0.2 1.0 0.2 0.4 0.6 1.0 0.6 1.0 0.4 0.4 0.6 0.2 1.0 1.0 1.0 0.8 0.8 1.0 0.4 1.0 0.6 0.2 0.4 0.6 0.4 0.2 0.8 0.4 1.0 0.8 0.6 0.6 0.2 1.0 0.6 0.6 0.4 1.0 0.2
26 | 30 0.2 0.8 1.0 1.0 0.2 0.4 0.8 0.4 1.0 0.8 0.6 0.4 1.0 1.0 1.0 0.4 0.2 0.8 0.8 1.0 0.4 0.4 0.2 1.0 1.0 0.6 0.6 1.0 0.6 0.8 0.8 0.8 0.0 0.4 0.4 0.2 0.8 0.4 1.0 1.0 0.2 0.2 0.2 1.0 0.6 0.8 0.2 1.0 1.0 0.2
27 | 31 0.0 0.4 0.0 0.2 0.2 0.6 1.0 0.8 0.8 0.0 0.6 0.8 0.4 0.0 0.4 1.0 0.4 1.0 0.2 0.6 1.0 0.0 0.8 1.0 0.6 1.0 0.0 0.4 0.8 0.4 0.4 0.6 1.0 1.0 0.8 0.8 0.0 0.4 0.0 0.2 1.0 1.0 0.0 0.6 0.0 0.2 0.6 0.6 1.0 0.4
28 | 32 1.0 0.6 0.8 0.0 0.0 0.2 0.8 0.8 0.0 0.6 0.4 0.6 0.4 0.8 0.0 0.0 0.6 0.6 1.0 0.8 0.4 0.2 0.2 0.8 0.6 0.0 1.0 1.0 0.6 0.8 0.6 0.2 0.8 1.0 0.6 0.2 0.0 0.0 0.8 0.6 0.0 0.8 1.0 1.0 0.2 1.0 0.4 0.4 0.8 1.0
29 | 33 0.2 0.6 0.6 1.0 0.2 0.6 0.8 1.0 0.8 0.4 0.6 0.0 1.0 0.2 1.0 0.6 0.6 0.8 0.4 1.0 0.2 0.4 0.2 0.8 1.0 0.4 1.0 1.0 0.6 0.0 0.6 0.2 0.6 0.8 0.2 0.6 0.0 0.8 0.2 0.6 0.8 0.2 1.0 0.2 0.8 0.6 0.2 1.0 0.6 0.8
30 | 34 0.0 0.4 0.4 1.0 0.6 0.0 0.6 0.6 0.0 0.4 0.8 0.0 0.6 0.8 0.8 0.8 0.6 1.0 1.0 0.6 1.0 0.8 0.0 1.0 0.6 0.8 0.6 0.6 1.0 0.2 0.8 0.4 1.0 0.0 1.0 0.2 0.8 0.2 1.0 0.0 0.6 0.6 0.8 1.0 0.8 0.4 0.8 0.6 0.4 1.0
31 | 35 0.6 0.6 1.0 0.8 0.4 0.6 0.6 1.0 0.4 0.6 0.8 0.6 0.8 1.0 0.4 0.2 1.0 0.2 0.0 0.4 0.0 0.0 0.0 0.4 0.8 0.4 0.8 0.0 0.2 1.0 0.2 0.4 0.4 0.8 0.2 0.4 1.0 0.2 0.4 0.4 0.0 0.0 1.0 1.0 0.4 0.8 1.0 0.4 0.2 0.4
32 | 36 0.6 0.6 0.8 0.6 1.0 0.6 1.0 1.0 0.6 0.8 0.8 1.0 0.0 0.6 0.8 0.8 0.2 0.6 1.0 0.6 0.8 0.2 0.8 1.0 0.8 0.4 0.6 0.6 0.8 0.2 1.0 0.6 0.4 0.0 1.0 1.0 1.0 0.4 1.0 0.2 1.0 0.8 0.0 1.0 1.0 0.6 0.0 0.0 0.0 0.6
33 | 37 1.0 0.4 1.0 0.2 1.0 0.6 0.6 0.2 1.0 0.4 0.8 0.2 0.8 0.8 0.8 0.6 0.8 0.2 0.0 0.6 0.0 0.8 0.2 0.6 0.8 0.6 0.2 0.2 0.4 0.4 0.6 1.0 0.6 0.2 0.4 1.0 0.6 0.0 0.4 1.0 0.2 1.0 0.6 1.0 0.8 0.4 0.8 0.8 1.0 1.0
34 | 38 0.4 0.2 0.6 0.6 0.6 0.0 1.0 0.6 0.0 1.0 0.2 0.2 0.6 0.8 1.0 1.0 1.0 0.8 0.6 0.6 0.0 1.0 0.2 0.2 0.0 1.0 0.8 0.6 1.0 0.4 0.4 0.6 1.0 0.6 0.0 1.0 0.4 0.6 0.2 0.0 0.4 0.0 0.8 0.6 0.8 0.2 0.0 1.0 1.0 0.0
35 | 39 0.6 1.0 0.6 0.2 1.0 0.4 0.2 0.2 0.6 0.0 1.0 0.2 0.2 0.8 0.2 0.6 0.0 0.8 0.6 1.0 1.0 1.0 0.2 0.4 0.4 1.0 1.0 0.8 0.0 0.8 0.0 0.2 0.6 1.0 0.2 0.8 0.2 0.6 0.4 0.0 0.0 0.6 0.0 0.8 0.4 0.0 1.0 0.2 0.6 0.8
36 | 4 0.4 1.0 0.2 0.4 0.6 0.6 0.2 0.6 0.6 0.0 0.2 0.2 0.4 0.0 0.8 1.0 0.2 1.0 0.8 0.8 0.8 0.8 0.4 0.6 0.4 0.8 0.6 0.2 1.0 0.2 1.0 0.4 0.0 0.2 1.0 1.0 0.4 0.8 0.6 0.6 0.8 1.0 0.6 0.4 0.8 0.0 1.0 0.4 0.8 0.0
37 | 40 0.0 0.6 0.4 0.4 0.8 1.0 0.4 0.4 0.8 0.2 0.4 1.0 0.6 1.0 1.0 0.2 0.8 0.2 0.4 1.0 1.0 0.6 0.4 0.4 0.2 0.8 0.2 0.6 0.2 0.4 1.0 1.0 1.0 0.8 1.0 1.0 0.4 0.0 0.4 0.4 0.2 0.0 0.4 0.8 1.0 1.0 0.2 1.0 0.6 0.2
38 | 41 0.4 0.2 0.8 0.2 0.0 0.6 1.0 1.0 0.2 0.0 1.0 0.6 1.0 0.6 1.0 0.8 1.0 0.8 0.4 0.0 0.0 0.2 1.0 0.2 0.8 0.0 0.0 0.0 0.8 1.0 1.0 0.6 0.4 0.2 0.4 0.4 1.0 1.0 0.0 0.6 1.0 0.8 0.4 1.0 0.6 1.0 0.8 0.4 0.8 1.0
39 | 42 1.0 0.6 1.0 0.8 0.8 0.0 0.4 1.0 0.6 0.8 0.2 0.0 0.0 0.4 0.6 0.8 0.6 0.2 0.0 0.2 0.4 0.2 0.2 0.8 0.4 0.4 0.0 0.8 0.2 0.2 0.4 0.0 0.6 0.6 0.8 0.0 1.0 1.0 0.6 0.8 1.0 0.8 0.4 1.0 0.2 0.2 0.6 0.8 0.8 0.2
40 | 43 0.6 0.4 0.6 0.2 0.4 0.2 1.0 0.4 1.0 0.0 0.2 0.8 0.2 0.0 1.0 0.6 0.8 1.0 0.2 1.0 0.6 0.8 0.0 0.4 1.0 0.0 0.8 0.2 1.0 0.4 1.0 0.4 0.2 0.4 0.6 0.4 0.0 0.6 1.0 1.0 1.0 0.2 0.4 1.0 0.6 0.8 1.0 0.4 0.4 0.8
41 | 44 0.6 0.8 1.0 0.6 1.0 1.0 0.4 0.8 0.0 0.8 0.6 0.2 0.0 0.2 0.4 0.0 0.2 0.4 0.2 0.6 0.2 0.8 0.0 1.0 1.0 0.2 0.6 0.6 0.0 0.4 0.2 1.0 0.0 0.0 0.6 0.4 0.6 0.8 1.0 1.0 0.8 0.4 1.0 0.6 0.8 0.4 0.8 1.0 1.0 1.0
42 | 45 1.0 1.0 0.8 1.0 0.0 0.8 0.6 0.6 0.4 0.0 0.2 0.4 0.4 0.6 0.0 0.6 1.0 0.4 0.0 0.6 0.6 0.6 1.0 0.8 0.2 1.0 0.0 0.8 0.6 0.0 1.0 0.2 0.4 0.0 0.8 0.2 1.0 1.0 1.0 0.8 1.0 0.4 0.4 0.6 1.0 0.2 0.0 0.6 0.8 1.0
43 | 46 0.0 0.4 0.6 0.6 0.2 0.0 0.8 0.4 0.0 0.4 0.6 0.8 0.6 0.4 1.0 0.6 1.0 0.2 0.6 1.0 0.4 1.0 0.6 0.6 0.2 1.0 0.8 0.2 0.6 0.0 0.8 1.0 0.0 0.6 1.0 0.0 0.8 0.8 0.2 0.4 0.4 1.0 0.2 0.6 0.6 1.0 0.0 0.6 0.0 0.6
44 | 47 1.0 0.6 1.0 0.8 0.0 0.0 0.6 0.2 1.0 0.2 0.0 0.6 0.2 0.8 1.0 1.0 0.4 0.6 0.4 0.4 0.8 0.4 0.4 0.6 0.2 0.0 1.0 1.0 0.8 1.0 0.0 0.6 0.8 0.0 0.6 0.4 0.4 0.4 0.4 1.0 0.4 0.2 1.0 0.4 0.0 1.0 0.8 0.4 0.8 0.2
45 | 48 0.4 1.0 0.4 0.2 0.2 0.6 1.0 1.0 0.2 0.8 0.6 0.2 0.0 0.8 1.0 0.8 0.4 0.2 1.0 0.0 1.0 1.0 0.8 0.2 1.0 0.6 1.0 0.2 1.0 1.0 1.0 1.0 0.6 0.8 0.4 0.8 1.0 1.0 1.0 0.6 0.6 0.6 0.4 1.0 0.0 0.4 1.0 0.0 0.0 1.0
46 | 49 0.0 1.0 0.8 0.6 0.0 0.2 1.0 0.4 1.0 0.2 0.4 0.0 0.0 0.8 1.0 1.0 1.0 0.4 0.8 1.0 0.6 0.8 0.0 1.0 0.6 0.0 0.2 0.8 0.8 0.4 1.0 0.8 0.8 0.4 0.8 1.0 0.6 0.2 0.6 0.8 1.0 0.6 0.0 0.0 1.0 1.0 0.0 0.2 0.2 0.4
47 | 5 1.0 0.8 0.6 0.0 0.6 0.6 0.8 0.2 1.0 0.4 0.4 1.0 0.2 0.2 0.8 0.6 1.0 0.6 1.0 0.8 0.6 0.2 0.8 0.6 0.8 0.2 1.0 0.6 0.4 0.8 0.6 0.4 0.2 0.0 0.0 1.0 1.0 0.2 0.8 0.4 0.2 1.0 1.0 0.4 1.0 1.0 0.4 0.8 0.8 1.0
48 | 6 1.0 0.6 1.0 0.6 0.6 0.8 0.2 0.8 0.2 1.0 0.6 0.2 0.2 0.4 0.6 0.2 0.6 0.8 0.6 1.0 0.4 0.4 0.0 0.6 0.2 0.6 0.4 0.2 0.8 1.0 0.0 0.8 0.0 1.0 1.0 0.2 0.8 0.6 1.0 0.8 0.0 0.0 0.8 1.0 0.0 0.4 1.0 0.0 0.2 0.4
49 | 7 0.0 0.0 1.0 0.2 0.6 0.8 1.0 0.0 0.4 0.8 0.2 0.6 0.4 0.6 0.0 0.2 0.2 0.8 0.4 0.0 0.6 1.0 0.2 0.4 1.0 0.6 0.4 1.0 0.6 0.4 0.0 0.8 1.0 0.2 0.4 1.0 0.4 0.8 0.4 1.0 0.6 0.6 0.4 0.0 0.2 0.8 0.0 1.0 0.6 0.4
50 | 8 0.0 0.0 0.4 0.4 1.0 0.8 0.6 1.0 0.2 0.0 0.6 1.0 0.0 1.0 0.4 1.0 0.8 0.4 1.0 0.6 0.6 0.8 0.6 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.0 0.6 0.8 0.6 0.8 0.8 0.4 1.0 0.8 0.0 0.8 0.0 0.2 0.8 0.2 0.6 1.0 0.2
51 | 9 0.6 0.2 0.8 0.4 0.8 1.0 0.6 0.6 0.6 0.6 0.6 1.0 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.4 1.0 0.6 0.6 0.2 0.2 0.4 1.0 0.8 1.0 0.4 0.6 1.0 0.0 0.8 0.0 0.2 1.0 0.2 0.8 1.0 1.0 0.6 0.2 1.0 0.4 1.0 0.4 0.4 0.2 1.0
52 |
--------------------------------------------------------------------------------
/Lineages.py:
--------------------------------------------------------------------------------
1 | '''
2 | Created on Jun 27, 2011
3 |
4 | @author: jonathanfriedman
5 | '''
6 |
7 | import pickle as pickle
8 | import numpy as np
9 |
10 | _levels = ['k', 'p', 'c', 'o', 'f', 'g' , 's']
11 | _levels_RDP = {'domain':'k', 'phylum':'p', 'class':'c', 'order':'o', 'family':'f', 'genus':'g','species':'s'}
12 | _unassigned_str = 'unassigned'
13 |
14 | class Lineage(object):
15 | '''
16 | Class containing information regarding the taxonomic
17 | assignment of an OTU.
18 |
19 | Class Attributes
20 | -----------------
21 | lin_str : str
22 | The lineage line used to create self.
23 | lin : dict
24 | Lineage assignments. keyed by taxonomic level
25 | (1 letter abbreviations. See Lineages._levels)
26 | conf : dict
27 | confidence level of the assignments.
28 | Same keys as self.lin
29 | '''
30 |
31 | def __init__(self, id=None, lin_str=None, format='QIIME'):
32 | '''
33 |
34 | Parameters
35 | ----------
36 | id : hashable
37 | id of the current lineage. typically an OTU id.
38 | lin_str : str
39 | line containing the lineage assignment information.
40 | format : {'QIIME' (default)| 'HMP' | 'RDP'}
41 | The format of the lin_str.
42 | - QIIME : pairs of '[levelName]__[assignment]'
43 | separated by semicolons. Level names are displayed even for
44 | unassigned levels. Examples:
45 | * `k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__;s__`
46 | * `k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__;f__;g__;s__`
47 | - HMP : pairs of '[assignment]([confidence])' separated by
48 | semicolons. Unassigned levels are omitted. Examples:
49 | * `Root(100);Bacteria(100);"Firmicutes"(100);"Bacilli"(100);Bacillales(100);Bacillaceae(99);Bacillus(99);`
50 | * `Root(100);Bacteria(100);"Firmicutes"(100);"Clostridia"(100);Clostridiales(100);`
51 | - RDP : triplets of '[assignment]\\t[levelName]\t[confidence]',
52 | separated by tabs. Unassigned levels are blanks, and all
53 | tabs are retained! Examples:
54 | * `Bacteria\\tdomain\\t0.98\\tOD1\\tphylum\\t0.47\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tOD1_genera_incertae_sedis\\tgenus\\t0.47`
55 | '''
56 | ## init id
57 | if not id: id = hash(self)
58 | self.id = id
59 | ##init taxonomy
60 | n_levels = len(_levels)
61 | lin_str = lin_str.replace('\t',';')
62 | self.lin_str = lin_str
63 | self.lin = dict.fromkeys(_levels, _unassigned_str) # lineage information
64 | self.conf = dict.fromkeys(_levels, _unassigned_str) # assignment confidence
65 | if lin_str:
66 | if format.upper() == 'QIIME':
67 | fields = lin_str.strip().split(';')
68 | for field in fields:
69 | field = field.strip()
70 | if field.lower() == 'root':
71 | continue
72 | level, lin = field.split('__')
73 | if lin == '': lin = _unassigned_str
74 | self.lin[level] = lin.strip('"')
75 | elif format.upper() == 'HMP':
76 | fields = lin_str.strip().split(';')[1:-1] #ignore first assignment to root.
77 | n_fields = len(fields)
78 | fields += ['unassigned(0)'] * (n_levels-n_fields)
79 | for i,level in enumerate(_levels):
80 | temp = fields[i].split('(')
81 | assignment = temp[0].strip('"')
82 | if assignment == 'unclassified':
83 | assignment = _unassigned_str
84 | self.lin[level] = assignment
85 | self.conf[level] = int(temp[-1][:-1])
86 | elif format.upper() == 'RDP':
87 | fields = lin_str.strip().split(';')
88 | for i,level in enumerate(_levels):
89 | try:
90 | lin = fields[3*i]
91 | conf = float(fields[3*i+2])
92 | if not lin:
93 | lin = _unassigned_str
94 | conf = 0
95 | except:
96 | lin = _unassigned_str
97 | conf = 0
98 | self.lin[level] = lin
99 | self.conf[level] = conf
100 | else:
101 | raise ValueError("Unsuppoerted format: '%s'." %format)
102 |
103 | def __repr__(self): return repr(self.lin_str)
104 |
105 | def __eq__(self, other):
106 | if type(self) != type(other):
107 | return False
108 | attrs = ('lin','lin_str','id','conf')
109 | return all( getattr(self,attr)==getattr(other,attr) for attr in attrs )
110 |
111 | def __ne__(self, other):
112 | return not self.__eq__(other)
113 |
114 | def get_assignment(self, level=None, best=False):
115 | '''
116 | If best is True, return the most resolved lineage assignment
117 | and its level.
118 | '''
119 | if level is None: # return most resolved assignment
120 | for l in _levels[::-1]:
121 | if self.lin[l] != _unassigned_str:
122 | return l + '__' + self.lin[l]
123 | return l + '__' + self.lin[l]
124 | else:
125 | if best: # return assignment at given level if assigned, o.w. return most resolved assignment.
126 | if self.lin[level] == _unassigned_str:
127 | return self.get_assignment(level=None,best=best)
128 | else:
129 | return self.get_assignment(level=level,best=False)
130 | else: # return assignment at given level (assigned or not)
131 | return level + '__' + self.lin[level]
132 |
133 |
134 | class Lineages(dict):
135 | '''
136 | A dictionary of Lineage objects with dedicated methods.
137 | '''
138 | ## override some dict methods to support checking that all items are of type Lineage.
139 | ## See: http://stackoverflow.com/questions/2060972/subclassing-python-dictionary-to-override-setitem
140 | def __init__(self, *args, **kwargs):
141 | '''
142 | A subcalss of :class:`dict` for holding :class:`Lineage`
143 | objects.
144 | '''
145 | self.update(*args, **kwargs)
146 |
147 | def __setitem__(self, key, value):
148 | if not isinstance(value, Lineage):
149 | t = type(value)
150 | raise TypeError("Item corresponding to key '%s' is of type '%s instead of a Lineage object'." %(key, t))
151 | if key != value.id:
152 | raise ValueError("Item with ID '%s' has key '%s' instead of its own ID." %(value.id,key))
153 | super(Lineages, self).__setitem__(key, value)
154 |
155 | def update(self, *args, **kwargs):
156 | if args:
157 | if len(args) > 1:
158 | raise TypeError("update expected at most 1 arguments, got %d" % len(args))
159 | other = dict(args[0])
160 | for key in other:
161 | self[key] = other[key]
162 | for key in kwargs:
163 | self[key] = kwargs[key]
164 |
165 | def setdefault(self, key, value=None):
166 | if key not in self:
167 | self[key] = value
168 | return self[key]
169 |
170 | @classmethod
171 | def from_txt(cls, file, n_skip=0, format='QIIME', **kwargs):
172 | '''
173 | Create lineages object from txt file containing 2 columns:
174 | id and lineage string.
175 | '''
176 | f = open(file,'r')
177 | lines = f.readlines()
178 | delim_def = '\t'
179 | if format.upper() == 'RDP':
180 | delim_def = '\t\t\t\t\t'
181 | delim = kwargs.get('delim', delim_def)
182 | n = len(delim)
183 | d = {}
184 | for line in lines[n_skip:]:
185 | l = line.strip().replace('-','')
186 | i = l.index(delim)
187 | d[l[:i]] = l[i+n:]
188 | # d = dict([ line.strip().split(delim) for line in lines[n_skip:] ])
189 | return cls.from_dict(d, format)
190 |
191 |
192 | def to_txt(self, file, sort_fun=str):
193 | '''
194 | Write all lineage strings to file, sorted by ids.
195 | '''
196 | ids = sorted(list(self.keys()), key=sort_fun)
197 | f = open(file,'w')
198 | header = 'ID' +'\t' + 'Lineage' + '\n'
199 | f.write(header)
200 | for i in ids:
201 | line = str(i) +'\t' + self[i].lin_str + '\n'
202 | f.write(line)
203 | f.close()
204 |
205 |
206 | def to_pickle(self,file):
207 | ''' pickles into file'''
208 | f=open(file,'w')
209 | pickle.dump(self,f)
210 | f.close()
211 |
212 | save = to_pickle
213 |
214 | @classmethod
215 | def from_pickle(cls,file):
216 | ''' unpickles from file'''
217 | f=open(file,'r')
218 | temp=pickle.load(f)
219 | f.close()
220 | return temp
221 |
222 | @classmethod
223 | def from_dict(cls, d, format = 'QIIME'):
224 | '''
225 | Make a Lineages object from a dictionary whose keys are ids
226 | and values are lineage strings.
227 | '''
228 | lins = Lineages()
229 | for id, s in d.items():
230 | lin = Lineage(id = id, lin_str = s, format = format)
231 | lins[id] = lin
232 | return lins
233 |
234 | def get_assignments(self,level, best=False, ids='all'):
235 | '''
236 | Get the assignment of all lineages at given taxonomic level.
237 |
238 | Parameters
239 | ----------
240 | level: str
241 | Desired taxonomic level.
242 | best: bool
243 | If True, return best assignment if less resolved than required level.
244 | Output in formal level_assignment
245 | ids : iterable/str
246 | Ids for which to get taxonomic assignment.
247 |
248 | Returns
249 | -------
250 | A list of assignments keyed by ids of :class:`Lineage` objects.
251 | '''
252 | if level not in _levels:
253 | raise ValueError("Level '%s' is not one of the allowed taxonomic leveles: 'k', 'p', 'c', 'o', 'f', 'g' , 's'." %level)
254 | if isinstance(ids, str):
255 | if ids=='all':
256 | a = [l.get_assignment(level, best=best) for l in self.values()]
257 | return a
258 | else:
259 | ids = (ids,)
260 | a = [self[id].get_assignment(level, best=best) for id in ids]
261 | return a
262 |
263 |
264 | def get_ids(self, level, assignment, best=True, complement = False):
265 | '''
266 | Get the ids of all items with a given taxonomy.
267 | If complement is True, get the ids of otus with assignment
268 | different than given.
269 | '''
270 | if level not in _levels: raise ValueError("Level '%s' is not one of the allowed taxonomic leveles: 'k', 'p', 'c', 'o', 'f', 'g' , 's'." %level)
271 | if complement: ids = [i for i in iter(self.keys()) if self[i].get_assignment(level=level, best=best) != assignment]
272 | else: ids = [i for i in iter(self.keys()) if self[i].get_assignment(level=level, best=best) == assignment]
273 | return ids
274 |
275 | def get_assigned(self, level):
276 | '''
277 | Get the ids of items that have an assigned taxonmy at given level.
278 | '''
279 | if level not in _levels: raise ValueError("Level '%s' is not one of the allowed taxonomic leveles: 'k', 'p', 'c', 'o', 'f', 'g' , 's'." %level)
280 | return self.get_ids(level, level + '.' + _unassigned_str, complement = True, best=False)
281 |
282 |
283 | def filter(self, ids):
284 | '''
285 | Return new instance with only given ids
286 | '''
287 | ids = [i for i in ids if i in self]
288 | new_d = dict([ (id,self[id]) for id in ids ])
289 | new = Lineages(new_d)
290 | return new
291 |
292 |
293 | if __name__ == '__main__':
294 | pass
295 | # test_Lineage()
296 |
297 |
298 |
299 |
--------------------------------------------------------------------------------
/SparCC.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | '''
4 | @author: jonathanfriedman
5 |
6 | Module for estimating the correlations in the basis when only compositional data is available.
7 | '''
8 |
9 | import warnings
10 | import numpy as np
11 | from numpy import (unravel_index, argmax, ones, corrcoef, cov, r_,
12 | diag, sqrt, where, nan)
13 | from core_methods import to_fractions
14 | from compositional_methods import variation_mat, clr
15 | from analysis_methods import correlation
16 | from pandas import DataFrame as DF
17 | try:
18 | from scipy.stats import nanmedian
19 | except ImportError:
20 | from numpy import nanmedian
21 |
22 |
23 | def append_indices(excluded,exclude):
24 | '''
25 | Append the indx of current excluded value to tuple of previously excluded values.
26 | '''
27 | if excluded is None: inds = exclude
28 | else: inds = (r_[excluded[0],exclude[0]], r_[excluded[1],exclude[1]])
29 | return inds
30 |
31 | def new_excluded_pair(C, th=0.1, previously_excluded=[]):
32 | '''
33 | Find component pair with highest correlation among pairs that
34 | weren't previously excluded.
35 | Return the i,j of pair if it's correlaiton >= than th.
36 | Otherwise return None.
37 | '''
38 | # C_temp = abs(C - diag(diag(C)) )
39 | C_temp = np.triu(abs(C),1) # work only on upper triangle, excluding diagonal
40 | C_temp[tuple(zip(*previously_excluded))] = 0
41 | i,j = unravel_index(argmax(C_temp), C_temp.shape)
42 | cmax = C_temp[i,j]
43 | if cmax > th:
44 | return i,j
45 | else:
46 | return None
47 |
48 | def basis_var(f, Var_mat, M, **kwargs):
49 | '''
50 | Estimate the variances of the basis of the compositional data x.
51 | Assumes that the correlations are sparse (mean correlation is small).
52 | The element of V_mat are refered to as t_ij in the SparCC paper.
53 | '''
54 | ## compute basis variances
55 | try: M_inv = np.linalg.inv(M)
56 | except: M_inv = np.linalg.pinv(M)
57 | V_vec = Var_mat.sum(axis=1) # elements are t_i's of SparCC paper
58 | V_base = np.dot(M_inv, V_vec) # basis variances.
59 | ## if any variances are <0 set them to V_min
60 | V_min = kwargs.get('V_min', 1e-10)
61 | V_base[V_base <= 0] = V_min
62 | return V_base
63 |
64 | def C_from_V(Var_mat, V_base):
65 | '''
66 | Given the estimated basis variances and observed fractions variation matrix,
67 | compute the basis correlation & covaraince matrices.
68 | '''
69 | Vi, Vj = np.meshgrid(V_base, V_base)
70 | Cov_base = 0.5*(Vi + Vj - Var_mat)
71 | C_base = Cov_base/ sqrt(Vi) / sqrt(Vj)
72 | return C_base, Cov_base
73 |
74 | def run_sparcc(f, **kwargs):
75 | '''
76 | Estimate the correlations of the basis of the compositional data f.
77 | Assumes that the correlations are sparse (mean correlation is small).
78 | '''
79 | th = kwargs.get('th', 0.1)
80 | xiter = kwargs.get('xiter', 10)
81 | ## observed log-ratio variances
82 | Var_mat = variation_mat(f)
83 | Var_mat_temp = Var_mat.copy()
84 | ## Make matrix from eqs. 13 of SparCC paper such that: t_i = M * Basis_Varainces
85 | D = Var_mat.shape[0] # number of components
86 | M = ones((D,D)) + diag([D-2]*D)
87 | ## get approx. basis variances and from them basis covariances/correlations
88 | V_base = basis_var(f, Var_mat_temp, M)
89 | C_base, Cov_base = C_from_V(Var_mat, V_base)
90 | ## Refine by excluding strongly correlated pairs
91 | excluded_pairs = []
92 | excluded_comp = np.array([])
93 | for xi in range(xiter):
94 | # search for new pair to exclude
95 | to_exclude = new_excluded_pair(C_base, th, excluded_pairs) #i,j pair, or None
96 | if to_exclude is None: #terminate if no new pairs to exclude
97 | break
98 | # exclude pair
99 | excluded_pairs.append(to_exclude)
100 | i,j = to_exclude
101 | M[i,j] -= 1
102 | M[j,i] -= 1
103 | M[i,i] -= 1
104 | M[j,j] -= 1
105 | inds = tuple(zip(*excluded_pairs))
106 | Var_mat_temp[inds] = 0
107 | Var_mat_temp.T[inds] = 0
108 | # search for new components to exclude
109 | nexcluded = np.bincount(np.ravel(excluded_pairs)) #number of excluded pairs for each component
110 | excluded_comp_prev = set(excluded_comp.copy())
111 | excluded_comp = where(nexcluded>=D-3)[0]
112 | excluded_comp_new = set(excluded_comp) - excluded_comp_prev
113 | if len(excluded_comp_new)>0:
114 | print(excluded_comp)
115 | # check if enough components left
116 | if len(excluded_comp) > D-4:
117 | warnings.warn('Too many component excluded. Returning clr result.')
118 | return run_clr(f)
119 | for xcomp in excluded_comp_new:
120 | Var_mat_temp[xcomp,:] = 0
121 | Var_mat_temp[:,xcomp] = 0
122 | M[xcomp,:] = 0
123 | M[:,xcomp] = 0
124 | M[xcomp,xcomp] = 1
125 | # run another sparcc iteration
126 | V_base = basis_var(f, Var_mat_temp, M)
127 | C_base, Cov_base = C_from_V(Var_mat, V_base)
128 | # set excluded components infered values to nans
129 | for xcomp in excluded_comp:
130 | V_base[xcomp] = nan
131 | C_base[xcomp,:] = nan
132 | C_base[:,xcomp] = nan
133 | Cov_base[xcomp,:] = nan
134 | Cov_base[:,xcomp] = nan
135 | return V_base, C_base, Cov_base
136 |
137 | def run_clr(f):
138 | '''
139 | Estimate the correlations of the compositional data f.
140 | Data is transformed using the central log ratio (clr) transform.
141 | '''
142 | z = clr(f)
143 | Cov_base = cov(z, rowvar=0)
144 | C_base = corrcoef(z, rowvar=0)
145 | V_base = diag(Cov_base)
146 | return V_base, C_base, Cov_base
147 |
148 | def basis_corr(f, method='sparcc', **kwargs):
149 | '''
150 | Compute the basis correlations between all components of
151 | the compositional data f.
152 |
153 | Parameters
154 | ----------
155 | f : array_like
156 | 2D array of relative abundances.
157 | Columns are counts, rows are samples.
158 | method : str, optional (default 'SparCC')
159 | The algorithm to use for computing correlation.
160 | Supported values: SparCC, clr, pearson, spearman, kendall
161 | Note that the pearson, spearman, kendall methods are not
162 | altered to account for the fact that the data is compositional,
163 | and are provided to facilitate comparisons to
164 | the clr and sparcc methods.
165 |
166 | Returns
167 | -------
168 | V_base: array
169 | Estimated basis variances.
170 | C_base: array
171 | Estimated basis correlation matrix.
172 | Cov_base: array
173 | Estimated basis covariance matrix.
174 |
175 | ======= ============ ======= ================================================
176 | kwarg Accepts Default Desctiption
177 | ======= ============ ======= ================================================
178 | th 0 | 1 + tol:
193 | warnings.warn('Sparcity assumption violated. Returning clr result.')
194 | V_base, C_base, Cov_base = run_clr(f)
195 | else:
196 | raise ValueError('Unsupported basis correlation method: "%s"' %method)
197 | return V_base, C_base, Cov_base
198 |
199 | def main(counts, method='SparCC', **kwargs):
200 | '''
201 | Compute correlations between all components of counts matrix.
202 | Run several iterations, in each the fractions are re-estimated,
203 | and return the median of all iterations.
204 | Running several iterations is only helpful with 'dirichlet'
205 | normalization method, as with other methods all iterations
206 | will give identical results. Thus, if using other normalizations
207 | set 'iter' parameter to 1.
208 |
209 | Parameters
210 | ----------
211 | counts : DataFrame
212 | 2D array of counts. Columns are components, rows are samples.
213 | If using 'dirichlet' or 'pseudo' normalization,
214 | counts (positive integers) are required to produce meaningful results,
215 | though this is not explicitly checked by the code.
216 | method : str, optional (default 'SparCC')
217 | The algorithm to use for computing correlation.
218 | Supported values: SparCC, clr, pearson, spearman, kendall
219 | Note that the pearson, spearman, kendall methods are not
220 | altered to account for the fact that the data is compositional,
221 | and are provided to facilitate comparisons to
222 | the clr and sparcc methods.
223 |
224 | Returns
225 | -------
226 | cor_med: array
227 | Estimated correlation values.
228 | cov_med: array
229 | Estimated covariance matrix if method in {SparCC, clr},
230 | None otherwise.
231 |
232 | ======= ============ ======= ================================================
233 | kwarg Accepts Default Desctiption
234 | ======= ============ ======= ================================================
235 | iter int 20 number of estimation iteration to average over.
236 | oprint bool True print iteration progress?
237 | th 0 | ', '<', '>=', '<=', 'in'.
106 | - A function that accepts a Series and returns a bool.
107 | - A pysurvey.util.filters.Filter object.
108 | axis : {0 | 1}
109 | 0 : filter rows.
110 | 1 : filter columns.
111 | verbose : bool (default True)
112 | Determines whether to print filtering info.
113 | how : {'all' (default) | 'any' | callable}
114 | 'all' - Keep row/cols that pass all filtering criteria.
115 | 'any' - Keep row/cols that pass any of the filtering criteria.
116 | callable - to be used to reduce the list of bools returned by the filters
117 | for each row/col.
118 | nan_val : bool/None (default None)
119 | Value to be returned by filter if a nan is encountered.
120 | If None is given, nan are not treated separately.
121 | norm : bool (default False)
122 | Indicates whether to normalize the frame before evaluating the filters.
123 | The filtering itself is always conducted on the unnormalized frame.
124 |
125 | Returns
126 | -------
127 | filtered: frame
128 | Filtered frame (new instance).
129 | '''
130 | from pysurvey.util.filters import parse_filters
131 | axis = _get_axis(axis)
132 | if norm:
133 | x = normalize(frame)
134 | else:
135 | x = frame
136 | reducer = parse_reducer(how)
137 | ## create filters
138 | filters = parse_filters(criteria, nan_val)
139 | ## find labels to drop
140 | selectors = (x.apply(fil, axis=1-axis) for fil in filters)
141 | selector = reduce(reducer, selectors)
142 | drop = selector[selector==False].index
143 | ## do filtering
144 | filtered = frame.drop(drop, axis=axis)
145 | ## print message
146 | if verbose:
147 | axis_s = {0:'rows',1:'columns'}
148 | s = ['Dropped %d %s' %(len(drop),axis_s[axis]),
149 | 'Resulting size is (%d,%d)' %filtered.shape]
150 | print('\n'.join(s) +'\n')
151 | return filtered
152 |
153 | def keep(frame, n, criterion='sum', axis=0, which='first', sort=True):
154 | '''
155 | Create a new frame with only the n most extreme rows/cols.
156 |
157 | -------- NO UNITTEST ---------
158 |
159 | Parameters
160 | ----------
161 | frame : frame
162 | Frame to be filtered
163 | n : int
164 | Number of row/cols to be kept.
165 | criterion : {'sum' (default) | 'avg' | 'med' | 'std' | 'presence' | 'var' | label | callable}
166 | Criterion by which the row/columns will be ordered.
167 | See pysurvey.util.filters.parse_actor for more information.
168 | axis : {0 | 1}
169 | 0 : keep only n rows.
170 | 1 : keep only n cols.
171 | which : {'first' (default) | last}
172 | Indicates whether to keep the first or last n elements after sorting by criterion.
173 | sort : bool (default False)
174 | Indicates whether to sort the kept n rows/cols by the given criterion,
175 | or retain the order in which they appear in the given frame.
176 |
177 | Returns
178 | -------
179 | filtered: frame
180 | Filtered frame (new instance).
181 | '''
182 | from pysurvey.util.filters import parse_actor
183 | axis = _get_axis(axis)
184 | if axis == 1: data = frame
185 | elif axis == 0: data = frame.T
186 | f = parse_actor(criterion)
187 |
188 | # biggest = kwargs.get('biggest', True) # if true return the n cols with the biggest values for criterion, else return the n cols with the smallest values.
189 | temp = data.apply(f)
190 | temp.sort()
191 | temp = temp[::-1]
192 | which = which.strip().lower()
193 | if which == 'first':
194 | inds = temp.index[:n]
195 | elif which == 'last':
196 | inds = temp.index[-n:]
197 | else:
198 | raise ValueError("Unsupported value for 'which' parameter: %s" %which)
199 | filtered = data.filter(items=inds)
200 | if not sort: filtered = filtered.reindex_like(data).dropna(how='all', axis=axis)
201 | if axis == 0: filtered = filtered.T
202 | return filtered
203 |
204 | def vals_by_keys(frame, key_pairs):
205 | '''
206 | Return a list of values corresponding to key_pairs.
207 | Inputs:
208 | key_pairs = [list] each element = [col_key, row_key].
209 | Outputs:
210 | vals = [list] values for each pair in key_pairs, in corresponding order.
211 | '''
212 | vals = [frame[pair[0]][pair[1]] for pair in key_pairs]
213 | return vals
214 |
215 | def to_binary(frame, th=0):
216 | '''
217 | Discretize matrix s.t. matrix[matrix > th] = 1, matrix[matrix <= th] = 0.
218 | Return new instance.
219 | '''
220 | bin = frame.copy()
221 | ind = frame > th
222 | bin[ind] = 1
223 | bin[-ind] = 0
224 | return bin
225 |
226 |
227 | #-------------------------------------------------------------------------------
228 | # Methods for counts data
229 |
230 | def normalize(frame, axis=0):
231 | '''
232 | Normalize counts by sample total.
233 |
234 | Parameters
235 | ----------
236 | axis : {0, 1}
237 | 0 : normalize each row
238 | 1 : normalize each column
239 |
240 | Returns new instance of same class as input frame.
241 | '''
242 | axis = _get_axis(axis)
243 | tmp = np.apply_along_axis(lambda x:1.*x/x.sum(), 1-axis, frame)
244 | return DF(tmp)
245 |
246 | def to_fractions(frame, method='dirichlet', p_counts=1, axis=0):
247 | '''
248 | Covert counts to fraction using given method.
249 |
250 | Parameters
251 | ----------
252 | method : string {'dirichlet' (default) | 'normalize' | 'pseudo'}
253 | dirichlet - randomly draw from the corresponding posterior
254 | Dirichlet distribution with a uniform prior.
255 | That is, for a vector of counts C,
256 | draw the fractions from Dirichlet(C+1).
257 | normalize - simply divide each row by its sum.
258 | pseudo - add given pseudo count (defualt 1) to each count and
259 | do simple normalization.
260 | p_counts : int/float (default 1)
261 | The value of the pseudo counts to add to all counts.
262 | Used only if method is dirichlet
263 | axis : {0 | 1}
264 | 0 : normalize each row.
265 | 1 : normalize each column.
266 |
267 | Returns
268 | -------
269 | fracs: frame/array
270 | Estimated component fractions.
271 | Returns new instance of same class as input frame.
272 | '''
273 | axis = _get_axis(axis)
274 | if method == 'normalize':
275 | fracs = normalize(frame, axis)
276 | return fracs
277 |
278 | ## if method is not normalize, get the pseudo counts (dirichlet prior)
279 | from numbers import Number
280 | if not isinstance(p_counts, Number):
281 | p_counts = np.asarray(p_counts)
282 |
283 | if method == 'pseudo':
284 | fracs = normalize(frame+p_counts, axis)
285 | elif method == 'dirichlet':
286 | from numpy.random.mtrand import dirichlet
287 | def dir_fun(x):
288 | a = x+p_counts
289 | f = dirichlet(a)
290 | return f
291 | fracs = np.apply_along_axis(dir_fun, 1-axis, frame)
292 | fracs = DF(fracs)
293 | else:
294 | raise ValueError('Unsupported method "%s"' %method)
295 | return fracs
296 |
297 | def rarefy(frame,n, replace=False, remove_shallow=None):
298 | '''
299 | Down-sample all rows to have exactly n counts in total for each row.
300 | if remove_shallow, samples with less than n total counts are excluded.
301 |
302 | Parameters
303 | ----------
304 | n : int
305 | Rows will be down-sampled to this total number of counts.
306 | replace : bool (default False)
307 | Indicates whether sampling is done with or without replacement.
308 | remove_shallow : bool/None (default None)
309 | Indicates whether to remove rows that have less than n total counts to
310 | begin with.
311 | If None is given, remove_shallow is set to be False for sampling with replacement
312 | and True for sampling without replacement.
313 | If remove_shallow is set to False, and sampling is without replacement,
314 | rows that have less than the desired total-number of counts are left unchanged.
315 |
316 | Returns
317 | -------
318 | deep_rarefied: frame
319 | Rarefied frame (new instance).
320 | '''
321 | ## decide whether to remove 'shallow' samples
322 | if remove_shallow is None:
323 | remove_shallow = not replace
324 | if remove_shallow:
325 | deep = filter_by_vals(frame, ('sum','>=', n), axis='rows')
326 | else:
327 | deep = frame
328 | deep_rarefied = deep.copy()
329 | ## perform rarefaction
330 | if replace:
331 | from numpy.random.mtrand import multinomial
332 | def draw(x):
333 | p = x/float(x.sum())
334 | f = 1.*multinomial(n,p)
335 | return f
336 | else:
337 | from numpy.random import rand
338 | def draw(x):
339 | k = len(x)
340 | nt = x.sum()
341 | if nt < n:
342 | return x
343 | new = np.zeros(k)
344 | counts = 1.*x
345 | for j in range(n):
346 | p = counts/nt
347 | i = np.where((p.cumsum() - rand())>0)[0][0]
348 | nt-=1
349 | counts[i]-=1
350 | new[i]+=1
351 | return new
352 | deep_rarefied = (deep_rarefied.T.apply(draw)).T
353 | return deep_rarefied
354 |
355 | def group_taxa(frame, lins, level='p', best=True):
356 | '''
357 | Return a new instance with cols corresponding to counts aggregated at the
358 | desired taxonomic level (e.g. phylum).
359 | OTUs that are missing from lin are not accounted for.
360 | OTUs that are not assigned at desired level are aggregated into the 'unassigned' row.
361 |
362 | Parameters
363 | ----------
364 | lins : Lineages
365 | Lineage info of OTUs in frame.
366 | level : str {'k' | 'p' (default) | 'c' | 'o' | 'f' | 'g' | 's'}
367 | Desired taxonomic level of aggregation
368 | best : bool (default True)
369 | Indicates whether to return the best assigned taxonomy
370 | (at the desired level or above), or return the taxonomy at the desired level,
371 | even if it is unassigned.
372 |
373 | Returns
374 | -------
375 | Grouped frame (new instance).
376 | '''
377 | old = frame
378 | new = old.filter(items = []) # create new object of same class as frame, with same samples but now otus.
379 | taxa = set(lins.get_assignments(level, best=best)) # set of all taxa present in lin.
380 | for t in taxa:
381 | otus = lins.get_ids(level, t, best=best)
382 | temp = old.filter(items = otus) # matrix with only otus of given taxa
383 | new[t] = temp.sum(axis = 1)
384 | return new.dropna(axis=0)
385 |
386 |
387 | if __name__ == '__main__':
388 | rows = ['r1', 'r0', 'r2', 'r3']
389 | cols = ['c0', 'c1', 'c2']
390 | metac = DF([[np.nan,'big'],
391 | ['Entero','small'],
392 | ['Blautia','tiny']],
393 | columns=['name', 'Size'],
394 | index=cols)
395 | mat = np.array([[2., np.NAN,1],
396 | [1, 3, 2],
397 | [10, 15,3],
398 | [0,0,1]])
399 | df = DF(mat, index=rows, columns=cols)
400 | # print df,'\n'
401 | # print filter_by_vals(df,[('sum','<=',3),('presence','>',1)],axis='rows'),'\n'
402 | print(metac, '\n')
403 | actor = lambda x: x['Size']
404 | filter1 = lambda x: isinstance(x['name'], str)
405 | filter2 = (actor,'in',['big','tiny'])
406 | filter3 = ('Size','in',['big','tiny'])
407 | filter4 = ('name','in',['Entero','Blautia'])
408 | print(filter_by_vals(metac, filter1, axis=0),'\n')
409 | print(filter_by_vals(metac, filter2, axis=0),'\n')
410 | print(filter_by_vals(metac, filter3, axis=0),'\n')
411 | print(filter_by_vals(metac,[filter1,filter2], axis=0),'\n')
412 | print(filter_by_vals(metac, filter4, axis=0, nan_val=True),'\n')
413 |
414 | df = DF([[1,3,2],[4,6,5]], columns=['a','b','c'], index=['r1','r2'])
415 | print(df,'\n')
416 | print(rarefy(df,7, replace=True))
417 |
418 |
419 |
--------------------------------------------------------------------------------
/example/true_basis_cor.txt:
--------------------------------------------------------------------------------
1 | OTU_id 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 6 7 8 9
2 | 0 1.000 0.841 0.097 -0.057 0.053 0.052 0.007 0.005 -0.080 -0.063 0.034 -0.049 -0.036 -0.095 -0.031 0.097 -0.042 -0.071 -0.120 -0.083 0.091 0.061 -0.015 -0.103 -0.061 0.062 -0.023 -0.055 0.133 0.045 -0.004 -0.026 -0.088 0.069 -0.027 0.067 0.059 -0.049 0.033 -0.011 0.011 0.103 -0.014 -0.008 -0.091 0.029 0.016 0.129 0.163 -0.056
3 | 1 0.841 1.000 0.083 -0.020 0.051 0.028 0.019 -0.040 -0.048 -0.089 0.082 -0.128 -0.099 -0.076 -0.012 0.042 0.017 -0.047 -0.123 -0.017 0.105 0.044 0.017 -0.008 -0.033 0.012 -0.059 0.029 0.105 0.051 0.012 -0.061 -0.138 0.013 0.034 0.039 0.102 -0.075 0.052 -0.006 0.006 0.086 -0.019 -0.005 -0.028 -0.002 0.032 0.133 0.191 -0.082
4 | 10 0.097 0.083 1.000 -0.825 0.187 0.100 0.069 0.005 -0.048 -0.083 -0.033 -0.084 0.012 -0.066 0.163 0.013 -0.101 -0.039 -0.106 0.056 0.123 -0.040 0.014 -0.078 -0.038 -0.091 -0.061 -0.004 0.038 0.007 0.034 -0.054 0.004 0.091 -0.049 -0.036 -0.004 -0.053 -0.045 -0.017 -0.017 0.009 -0.031 -0.069 -0.010 0.107 0.037 -0.001 0.075 -0.054
5 | 11 -0.057 -0.020 -0.825 1.000 -0.164 -0.084 -0.020 -0.037 -0.046 0.109 0.082 0.149 0.007 0.074 -0.086 -0.025 0.133 0.034 0.023 -0.059 -0.098 0.073 0.004 0.058 0.017 0.073 0.051 -0.022 0.003 -0.006 -0.026 0.082 -0.078 -0.085 0.060 0.036 0.024 -0.041 -0.014 -0.005 0.052 -0.023 0.018 0.077 -0.030 -0.140 -0.079 -0.063 -0.042 0.078
6 | 12 0.053 0.051 0.187 -0.164 1.000 0.518 0.029 0.031 -0.121 -0.189 -0.036 -0.045 0.028 0.067 0.006 -0.118 -0.099 -0.027 -0.075 0.007 -0.067 -0.041 0.003 0.052 0.088 0.044 -0.200 0.068 0.006 0.023 0.012 -0.035 -0.079 -0.047 -0.017 0.009 -0.128 -0.044 0.106 0.019 -0.139 0.148 0.085 -0.071 0.026 0.036 -0.019 -0.033 0.001 -0.042
7 | 13 0.052 0.028 0.100 -0.084 0.518 1.000 0.034 0.104 -0.121 -0.049 0.087 -0.029 -0.026 0.052 -0.064 0.004 0.059 -0.028 0.049 -0.047 -0.102 0.026 -0.015 -0.018 0.069 0.035 -0.134 -0.023 0.087 -0.084 0.042 0.026 -0.153 -0.104 0.017 -0.011 -0.124 -0.125 0.079 0.011 0.020 0.186 0.117 -0.003 0.140 -0.009 0.005 -0.002 -0.031 -0.025
8 | 14 0.007 0.019 0.069 -0.020 0.029 0.034 1.000 -0.431 -0.119 -0.017 -0.051 -0.065 -0.014 -0.005 0.112 -0.032 0.063 -0.000 -0.139 -0.074 -0.095 0.009 0.069 -0.008 0.036 -0.009 -0.061 -0.056 -0.026 -0.052 -0.070 0.058 0.022 -0.080 -0.065 0.049 0.019 -0.089 0.025 -0.095 -0.001 -0.011 -0.033 -0.016 0.037 -0.075 -0.093 0.032 0.005 0.076
9 | 15 0.005 -0.040 0.005 -0.037 0.031 0.104 -0.431 1.000 -0.103 -0.046 0.050 0.020 -0.037 -0.039 -0.034 0.217 -0.034 -0.065 0.113 0.054 -0.033 -0.040 -0.046 0.069 0.197 0.050 -0.029 0.060 -0.020 0.008 0.007 -0.067 0.063 0.133 0.006 -0.070 -0.072 0.019 -0.018 0.018 0.051 0.072 0.122 -0.007 -0.072 0.100 0.080 -0.089 0.049 -0.030
10 | 16 -0.080 -0.048 -0.048 -0.046 -0.121 -0.121 -0.119 -0.103 1.000 -0.051 -0.050 0.027 -0.062 0.007 -0.111 -0.016 0.058 -0.063 -0.055 0.087 0.054 -0.114 0.077 0.065 -0.005 0.014 0.215 -0.084 -0.096 -0.082 -0.003 0.023 0.110 -0.037 0.005 -0.046 0.091 0.085 0.011 0.092 -0.079 -0.167 0.002 0.046 0.008 -0.026 0.124 -0.027 -0.070 0.009
11 | 17 -0.063 -0.089 -0.083 0.109 -0.189 -0.049 -0.017 -0.046 -0.051 1.000 -0.069 0.045 0.120 0.014 -0.060 -0.037 -0.070 -0.004 0.001 0.044 0.048 0.020 -0.130 -0.073 0.021 0.167 0.067 0.065 -0.045 -0.042 -0.054 0.046 0.000 0.076 0.123 0.106 0.175 0.063 -0.026 -0.015 0.133 -0.020 -0.024 0.023 -0.114 -0.109 -0.026 -0.039 -0.076 0.062
12 | 18 0.034 0.082 -0.033 0.082 -0.036 0.087 -0.051 0.050 -0.050 -0.069 1.000 0.053 -0.104 -0.071 -0.016 -0.067 0.140 0.101 0.031 0.058 -0.051 0.056 -0.004 -0.054 -0.008 -0.016 -0.144 0.068 0.010 -0.000 0.011 0.033 0.114 0.001 -0.054 -0.079 0.034 0.036 -0.106 -0.093 -0.013 0.075 0.163 -0.049 -0.011 0.134 0.007 0.099 -0.039 0.056
13 | 19 -0.049 -0.128 -0.084 0.149 -0.045 -0.029 -0.065 0.020 0.027 0.045 0.053 1.000 0.069 -0.129 0.010 0.111 0.029 -0.014 -0.020 -0.137 -0.030 0.118 -0.065 -0.044 0.099 -0.017 -0.009 0.060 -0.158 -0.025 -0.020 -0.041 0.075 -0.055 0.102 -0.014 0.023 0.086 0.082 0.113 0.099 -0.039 0.049 -0.001 -0.094 0.005 0.072 0.001 0.035 -0.013
14 | 2 -0.036 -0.099 0.012 0.007 0.028 -0.026 -0.014 -0.037 -0.062 0.120 -0.104 0.069 1.000 0.072 -0.005 -0.007 -0.080 -0.106 0.038 -0.076 0.057 -0.032 0.013 0.036 -0.041 0.026 0.056 -0.077 -0.081 0.016 -0.099 -0.021 -0.080 0.072 0.085 0.023 0.049 0.178 -0.070 0.133 0.025 0.005 -0.081 0.092 0.059 -0.093 -0.096 -0.061 -0.127 -0.037
15 | 20 -0.095 -0.076 -0.066 0.074 0.067 0.052 -0.005 -0.039 0.007 0.014 -0.071 -0.129 0.072 1.000 -0.098 -0.030 -0.077 0.098 -0.106 -0.021 -0.056 -0.049 -0.053 0.066 0.013 0.134 0.017 -0.145 -0.025 -0.037 0.037 -0.015 -0.001 -0.011 0.127 0.016 -0.067 -0.151 -0.109 0.108 0.028 0.094 -0.024 -0.015 -0.003 -0.067 -0.060 0.039 -0.011 0.056
16 | 21 -0.031 -0.012 0.163 -0.086 0.006 -0.064 0.112 -0.034 -0.111 -0.060 -0.016 0.010 -0.005 -0.098 1.000 0.061 0.049 0.012 -0.089 0.007 -0.043 -0.060 -0.071 0.009 -0.037 0.050 -0.155 -0.057 -0.019 0.066 -0.024 0.006 -0.012 0.103 0.050 -0.016 0.017 -0.059 0.016 -0.047 0.050 -0.022 0.015 0.019 -0.026 0.021 0.042 -0.118 -0.060 -0.043
17 | 22 0.097 0.042 0.013 -0.025 -0.118 0.004 -0.032 0.217 -0.016 -0.037 -0.067 0.111 -0.007 -0.030 0.061 1.000 -0.105 -0.158 -0.099 -0.028 0.005 0.032 0.039 -0.074 0.064 -0.017 0.048 -0.020 0.004 0.032 -0.009 -0.089 -0.058 0.074 0.027 0.070 0.004 -0.003 0.072 0.125 -0.082 -0.046 -0.009 0.016 -0.021 0.016 -0.078 -0.092 0.015 -0.061
18 | 23 -0.042 0.017 -0.101 0.133 -0.099 0.059 0.063 -0.034 0.058 -0.070 0.140 0.029 -0.080 -0.077 0.049 -0.105 1.000 0.054 0.039 0.021 0.117 0.014 -0.105 -0.031 0.026 -0.088 -0.073 -0.082 -0.010 -0.037 0.069 -0.020 -0.033 -0.064 -0.107 -0.011 0.055 -0.094 0.000 -0.069 0.065 0.023 0.050 0.147 0.018 0.022 0.021 -0.043 0.008 0.128
19 | 24 -0.071 -0.047 -0.039 0.034 -0.027 -0.028 -0.000 -0.065 -0.063 -0.004 0.101 -0.014 -0.106 0.098 0.012 -0.158 0.054 1.000 0.108 0.070 -0.010 -0.050 0.014 0.041 -0.025 -0.005 -0.054 -0.014 -0.009 -0.117 0.035 0.095 -0.000 0.071 0.004 0.048 -0.078 0.061 0.024 -0.091 -0.093 -0.113 -0.019 0.067 0.033 0.085 0.057 -0.035 -0.125 0.162
20 | 25 -0.120 -0.123 -0.106 0.023 -0.075 0.049 -0.139 0.113 -0.055 0.001 0.031 -0.020 0.038 -0.106 -0.089 -0.099 0.039 0.108 1.000 0.025 -0.018 -0.072 0.056 -0.004 0.064 -0.153 0.028 -0.027 -0.041 -0.229 -0.033 0.053 -0.040 0.054 -0.048 -0.084 -0.099 0.099 0.049 0.083 0.144 -0.010 -0.054 -0.001 -0.030 0.050 0.062 -0.131 -0.007 0.106
21 | 26 -0.083 -0.017 0.056 -0.059 0.007 -0.047 -0.074 0.054 0.087 0.044 0.058 -0.137 -0.076 -0.021 0.007 -0.028 0.021 0.070 0.025 1.000 0.040 -0.040 -0.040 -0.038 -0.003 -0.040 0.032 -0.032 0.043 0.051 0.038 -0.036 -0.024 -0.017 -0.068 0.013 0.032 0.093 0.034 0.047 -0.086 0.012 -0.037 -0.114 -0.027 -0.025 0.025 -0.133 0.010 -0.045
22 | 27 0.091 0.105 0.123 -0.098 -0.067 -0.102 -0.095 -0.033 0.054 0.048 -0.051 -0.030 0.057 -0.056 -0.043 0.005 0.117 -0.010 -0.018 0.040 1.000 -0.085 -0.052 -0.120 -0.118 -0.000 -0.000 -0.128 0.010 -0.132 0.043 -0.143 0.127 -0.008 0.041 -0.002 0.123 0.059 -0.033 0.114 0.023 -0.066 -0.040 0.004 -0.154 -0.056 0.085 0.045 0.036 0.011
23 | 28 0.061 0.044 -0.040 0.073 -0.041 0.026 0.009 -0.040 -0.114 0.020 0.056 0.118 -0.032 -0.049 -0.060 0.032 0.014 -0.050 -0.072 -0.040 -0.085 1.000 -0.048 -0.037 -0.019 0.001 -0.124 0.046 0.030 0.094 -0.102 -0.064 -0.015 -0.027 -0.038 -0.064 -0.056 -0.121 0.024 0.017 0.104 0.006 -0.091 -0.008 -0.032 0.027 -0.047 -0.019 -0.094 -0.043
24 | 29 -0.015 0.017 0.014 0.004 0.003 -0.015 0.069 -0.046 0.077 -0.130 -0.004 -0.065 0.013 -0.053 -0.071 0.039 -0.105 0.014 0.056 -0.040 -0.052 -0.048 1.000 0.051 -0.073 -0.094 0.073 -0.068 0.124 -0.128 -0.050 0.103 -0.066 -0.050 -0.094 -0.060 0.053 0.109 -0.122 0.041 -0.015 -0.101 -0.026 0.032 0.197 -0.074 -0.109 0.093 -0.062 -0.012
25 | 3 -0.103 -0.008 -0.078 0.058 0.052 -0.018 -0.008 0.069 0.065 -0.073 -0.054 -0.044 0.036 0.066 0.009 -0.074 -0.031 0.041 -0.004 -0.038 -0.120 -0.037 0.051 1.000 -0.056 -0.035 0.007 0.027 -0.054 0.041 -0.001 -0.092 -0.114 0.093 0.067 -0.092 -0.077 -0.005 -0.086 0.027 -0.025 -0.057 -0.037 0.127 -0.038 -0.095 0.041 -0.067 0.003 -0.060
26 | 30 -0.061 -0.033 -0.038 0.017 0.088 0.069 0.036 0.197 -0.005 0.021 -0.008 0.099 -0.041 0.013 -0.037 0.064 0.026 -0.025 0.064 -0.003 -0.118 -0.019 -0.073 -0.056 1.000 0.073 -0.096 0.041 -0.126 0.008 0.003 0.088 0.092 -0.104 -0.085 -0.127 -0.036 0.038 0.031 0.008 0.063 -0.138 0.122 -0.037 -0.016 -0.024 0.092 0.010 0.014 0.108
27 | 31 0.062 0.012 -0.091 0.073 0.044 0.035 -0.009 0.050 0.014 0.167 -0.016 -0.017 0.026 0.134 0.050 -0.017 -0.088 -0.005 -0.153 -0.040 -0.000 0.001 -0.094 -0.035 0.073 1.000 -0.150 -0.084 -0.004 0.001 0.014 -0.047 -0.036 -0.005 0.028 -0.097 0.144 0.097 -0.132 -0.056 -0.016 -0.001 0.141 0.068 -0.108 -0.113 -0.056 0.016 0.026 -0.037
28 | 32 -0.023 -0.059 -0.061 0.051 -0.200 -0.134 -0.061 -0.029 0.215 0.067 -0.144 -0.009 0.056 0.017 -0.155 0.048 -0.073 -0.054 0.028 0.032 -0.000 -0.124 0.073 0.007 -0.096 -0.150 1.000 -0.040 -0.062 -0.013 -0.023 0.035 0.004 -0.063 -0.070 0.090 0.144 0.099 0.049 0.051 -0.068 -0.021 0.021 0.036 0.111 -0.006 -0.033 -0.105 0.011 0.012
29 | 33 -0.055 0.029 -0.004 -0.022 0.068 -0.023 -0.056 0.060 -0.084 0.065 0.068 0.060 -0.077 -0.145 -0.057 -0.020 -0.082 -0.014 -0.027 -0.032 -0.128 0.046 -0.068 0.027 0.041 -0.084 -0.040 1.000 -0.034 0.234 -0.002 -0.120 0.056 -0.060 0.108 -0.056 -0.173 -0.015 0.120 -0.111 -0.021 -0.079 0.013 -0.107 -0.007 0.044 0.113 -0.028 -0.091 -0.072
30 | 34 0.133 0.105 0.038 0.003 0.006 0.087 -0.026 -0.020 -0.096 -0.045 0.010 -0.158 -0.081 -0.025 -0.019 0.004 -0.010 -0.009 -0.041 0.043 0.010 0.030 0.124 -0.054 -0.126 -0.004 -0.062 -0.034 1.000 -0.171 -0.009 -0.119 -0.047 0.123 0.009 0.021 -0.067 -0.143 -0.033 -0.097 0.047 0.039 0.059 -0.007 -0.013 0.085 0.023 0.072 -0.013 -0.006
31 | 35 0.045 0.051 0.007 -0.006 0.023 -0.084 -0.052 0.008 -0.082 -0.042 -0.000 -0.025 0.016 -0.037 0.066 0.032 -0.037 -0.117 -0.229 0.051 -0.132 0.094 -0.128 0.041 0.008 0.001 -0.013 0.234 -0.171 1.000 0.042 -0.046 -0.089 0.059 -0.081 -0.070 -0.002 0.062 0.026 -0.045 -0.080 0.060 -0.035 -0.000 0.156 0.038 0.028 0.058 0.036 -0.129
32 | 36 -0.004 0.012 0.034 -0.026 0.012 0.042 -0.070 0.007 -0.003 -0.054 0.011 -0.020 -0.099 0.037 -0.024 -0.009 0.069 0.035 -0.033 0.038 0.043 -0.102 -0.050 -0.001 0.003 0.014 -0.023 -0.002 -0.009 0.042 1.000 0.073 -0.011 -0.114 0.010 0.028 -0.012 -0.062 0.016 -0.019 0.006 -0.014 0.097 0.021 -0.018 0.052 0.139 0.181 -0.082 0.069
33 | 37 -0.026 -0.061 -0.054 0.082 -0.035 0.026 0.058 -0.067 0.023 0.046 0.033 -0.041 -0.021 -0.015 0.006 -0.089 -0.020 0.095 0.053 -0.036 -0.143 -0.064 0.103 -0.092 0.088 -0.047 0.035 -0.120 -0.119 -0.046 0.073 1.000 -0.089 -0.096 -0.073 0.003 0.007 0.076 0.018 -0.016 0.068 -0.019 -0.012 -0.033 0.018 -0.027 0.028 0.050 -0.003 0.056
34 | 38 -0.088 -0.138 0.004 -0.078 -0.079 -0.153 0.022 0.063 0.110 0.000 0.114 0.075 -0.080 -0.001 -0.012 -0.058 -0.033 -0.000 -0.040 -0.024 0.127 -0.015 -0.066 -0.114 0.092 -0.036 0.004 0.056 -0.047 -0.089 -0.011 -0.089 1.000 -0.051 -0.109 -0.010 0.048 0.017 -0.146 -0.062 -0.090 -0.104 0.061 -0.022 -0.036 -0.050 0.105 0.039 -0.094 0.127
35 | 39 0.069 0.013 0.091 -0.085 -0.047 -0.104 -0.080 0.133 -0.037 0.076 0.001 -0.055 0.072 -0.011 0.103 0.074 -0.064 0.071 0.054 -0.017 -0.008 -0.027 -0.050 0.093 -0.104 -0.005 -0.063 -0.060 0.123 0.059 -0.114 -0.096 -0.051 1.000 0.165 -0.042 0.066 -0.003 -0.102 -0.056 -0.119 0.073 -0.084 0.023 0.043 0.137 0.012 -0.054 0.022 -0.030
36 | 4 -0.027 0.034 -0.049 0.060 -0.017 0.017 -0.065 0.006 0.005 0.123 -0.054 0.102 0.085 0.127 0.050 0.027 -0.107 0.004 -0.048 -0.068 0.041 -0.038 -0.094 0.067 -0.085 0.028 -0.070 0.108 0.009 -0.081 0.010 -0.073 -0.109 0.165 1.000 -0.002 -0.067 0.022 0.012 0.102 0.047 0.049 -0.046 0.065 -0.005 0.237 0.001 0.090 -0.040 -0.090
37 | 40 0.067 0.039 -0.036 0.036 0.009 -0.011 0.049 -0.070 -0.046 0.106 -0.079 -0.014 0.023 0.016 -0.016 0.070 -0.011 0.048 -0.084 0.013 -0.002 -0.064 -0.060 -0.092 -0.127 -0.097 0.090 -0.056 0.021 -0.070 0.028 0.003 -0.010 -0.042 -0.002 1.000 -0.005 -0.131 0.082 0.086 -0.094 0.143 0.075 -0.029 -0.023 -0.030 -0.107 0.018 0.038 0.101
38 | 41 0.059 0.102 -0.004 0.024 -0.128 -0.124 0.019 -0.072 0.091 0.175 0.034 0.023 0.049 -0.067 0.017 0.004 0.055 -0.078 -0.099 0.032 0.123 -0.056 0.053 -0.077 -0.036 0.144 0.144 -0.173 -0.067 -0.002 -0.012 0.007 0.048 0.066 -0.067 -0.005 1.000 0.028 -0.141 0.008 0.009 -0.001 0.112 0.057 -0.072 0.010 0.010 0.052 -0.065 0.032
39 | 42 -0.049 -0.075 -0.053 -0.041 -0.044 -0.125 -0.089 0.019 0.085 0.063 0.036 0.086 0.178 -0.151 -0.059 -0.003 -0.094 0.061 0.099 0.093 0.059 -0.121 0.109 -0.005 0.038 0.097 0.099 -0.015 -0.143 0.062 -0.062 0.076 0.017 -0.003 0.022 -0.131 0.028 1.000 -0.009 0.042 -0.040 -0.020 -0.003 -0.030 -0.097 0.062 -0.023 -0.084 -0.056 -0.115
40 | 43 0.033 0.052 -0.045 -0.014 0.106 0.079 0.025 -0.018 0.011 -0.026 -0.106 0.082 -0.070 -0.109 0.016 0.072 0.000 0.024 0.049 0.034 -0.033 0.024 -0.122 -0.086 0.031 -0.132 0.049 0.120 -0.033 0.026 0.016 0.018 -0.146 -0.102 0.012 0.082 -0.141 -0.009 1.000 0.006 0.010 0.104 0.087 0.012 0.021 0.002 0.058 -0.073 0.021 0.004
41 | 44 -0.011 -0.006 -0.017 -0.005 0.019 0.011 -0.095 0.018 0.092 -0.015 -0.093 0.113 0.133 0.108 -0.047 0.125 -0.069 -0.091 0.083 0.047 0.114 0.017 0.041 0.027 0.008 -0.056 0.051 -0.111 -0.097 -0.045 -0.019 -0.016 -0.062 -0.056 0.102 0.086 0.008 0.042 0.006 1.000 0.005 0.140 0.010 -0.047 -0.036 -0.086 0.060 0.042 0.056 -0.016
42 | 45 0.011 0.006 -0.017 0.052 -0.139 0.020 -0.001 0.051 -0.079 0.133 -0.013 0.099 0.025 0.028 0.050 -0.082 0.065 -0.093 0.144 -0.086 0.023 0.104 -0.015 -0.025 0.063 -0.016 -0.068 -0.021 0.047 -0.080 0.006 0.068 -0.090 -0.119 0.047 -0.094 0.009 -0.040 0.010 0.005 1.000 -0.034 -0.016 0.061 -0.007 0.096 0.103 -0.053 0.047 -0.019
43 | 46 0.103 0.086 0.009 -0.023 0.148 0.186 -0.011 0.072 -0.167 -0.020 0.075 -0.039 0.005 0.094 -0.022 -0.046 0.023 -0.113 -0.010 0.012 -0.066 0.006 -0.101 -0.057 -0.138 -0.001 -0.021 -0.079 0.039 0.060 -0.014 -0.019 -0.104 0.073 0.049 0.143 -0.001 -0.020 0.104 0.140 -0.034 1.000 0.182 0.024 -0.084 0.066 -0.116 0.007 0.177 -0.041
44 | 47 -0.014 -0.019 -0.031 0.018 0.085 0.117 -0.033 0.122 0.002 -0.024 0.163 0.049 -0.081 -0.024 0.015 -0.009 0.050 -0.019 -0.054 -0.037 -0.040 -0.091 -0.026 -0.037 0.122 0.141 0.021 0.013 0.059 -0.035 0.097 -0.012 0.061 -0.084 -0.046 0.075 0.112 -0.003 0.087 0.010 -0.016 0.182 1.000 0.094 -0.088 -0.006 0.027 0.081 -0.014 -0.044
45 | 48 -0.008 -0.005 -0.069 0.077 -0.071 -0.003 -0.016 -0.007 0.046 0.023 -0.049 -0.001 0.092 -0.015 0.019 0.016 0.147 0.067 -0.001 -0.114 0.004 -0.008 0.032 0.127 -0.037 0.068 0.036 -0.107 -0.007 -0.000 0.021 -0.033 -0.022 0.023 0.065 -0.029 0.057 -0.030 0.012 -0.047 0.061 0.024 0.094 1.000 0.085 0.100 -0.005 -0.086 -0.025 0.011
46 | 49 -0.091 -0.028 -0.010 -0.030 0.026 0.140 0.037 -0.072 0.008 -0.114 -0.011 -0.094 0.059 -0.003 -0.026 -0.021 0.018 0.033 -0.030 -0.027 -0.154 -0.032 0.197 -0.038 -0.016 -0.108 0.111 -0.007 -0.013 0.156 -0.018 0.018 -0.036 0.043 -0.005 -0.023 -0.072 -0.097 0.021 -0.036 -0.007 -0.084 -0.088 0.085 1.000 -0.008 -0.035 0.102 0.066 0.056
47 | 5 0.029 -0.002 0.107 -0.140 0.036 -0.009 -0.075 0.100 -0.026 -0.109 0.134 0.005 -0.093 -0.067 0.021 0.016 0.022 0.085 0.050 -0.025 -0.056 0.027 -0.074 -0.095 -0.024 -0.113 -0.006 0.044 0.085 0.038 0.052 -0.027 -0.050 0.137 0.237 -0.030 0.010 0.062 0.002 -0.086 0.096 0.066 -0.006 0.100 -0.008 1.000 0.092 -0.000 -0.040 0.011
48 | 6 0.016 0.032 0.037 -0.079 -0.019 0.005 -0.093 0.080 0.124 -0.026 0.007 0.072 -0.096 -0.060 0.042 -0.078 0.021 0.057 0.062 0.025 0.085 -0.047 -0.109 0.041 0.092 -0.056 -0.033 0.113 0.023 0.028 0.139 0.028 0.105 0.012 0.001 -0.107 0.010 -0.023 0.058 0.060 0.103 -0.116 0.027 -0.005 -0.035 0.092 1.000 0.087 -0.108 0.046
49 | 7 0.129 0.133 -0.001 -0.063 -0.033 -0.002 0.032 -0.089 -0.027 -0.039 0.099 0.001 -0.061 0.039 -0.118 -0.092 -0.043 -0.035 -0.131 -0.133 0.045 -0.019 0.093 -0.067 0.010 0.016 -0.105 -0.028 0.072 0.058 0.181 0.050 0.039 -0.054 0.090 0.018 0.052 -0.084 -0.073 0.042 -0.053 0.007 0.081 -0.086 0.102 -0.000 0.087 1.000 -0.058 0.036
50 | 8 0.163 0.191 0.075 -0.042 0.001 -0.031 0.005 0.049 -0.070 -0.076 -0.039 0.035 -0.127 -0.011 -0.060 0.015 0.008 -0.125 -0.007 0.010 0.036 -0.094 -0.062 0.003 0.014 0.026 0.011 -0.091 -0.013 0.036 -0.082 -0.003 -0.094 0.022 -0.040 0.038 -0.065 -0.056 0.021 0.056 0.047 0.177 -0.014 -0.025 0.066 -0.040 -0.108 -0.058 1.000 0.104
51 | 9 -0.056 -0.082 -0.054 0.078 -0.042 -0.025 0.076 -0.030 0.009 0.062 0.056 -0.013 -0.037 0.056 -0.043 -0.061 0.128 0.162 0.106 -0.045 0.011 -0.043 -0.012 -0.060 0.108 -0.037 0.012 -0.072 -0.006 -0.129 0.069 0.056 0.127 -0.030 -0.090 0.101 0.032 -0.115 0.004 -0.016 -0.019 -0.041 -0.044 0.011 0.056 0.011 0.046 0.036 0.104 1.000
--------------------------------------------------------------------------------
/example/basis_corr/cor_pearson.out:
--------------------------------------------------------------------------------
1 | OTU_id 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 6 7 8 9
2 | 0 1.0 0.32450735605 -0.359068267194 -0.378439013831 -0.374180680986 -0.362405465571 -0.388226990111 -0.371929056983 -0.475870420441 -0.482764850564 -0.411983316713 -0.461736391733 -0.387315607062 -0.460946755652 -0.400653185064 -0.393547022809 -0.473234869557 -0.442147097719 -0.462489579493 -0.446084982781 -0.336189591778 -0.397655437798 -0.359908458946 -0.512804774342 -0.469964720474 -0.375182964375 -0.40685135578 -0.398724373992 -0.280740572599 -0.365013830315 -0.430396193612 -0.388918832679 -0.470893906322 -0.336355782567 -0.434643438412 -0.409382788402 -0.352100006106 -0.45990977164 -0.367311405484 -0.411886615671 -0.386660107513 -0.406708617731 -0.411703876625 -0.439560149562 -0.492538707007 -0.399732569181 -0.468749463369 -0.331165764496 -0.342701006602 -0.425742211265
3 | 1 0.32450735605 1.0 -0.112251295748 -0.0868485304313 -0.079613951242 -0.103187207924 -0.120390241621 -0.157749711905 -0.141684627027 -0.15744062151 -0.123530954392 -0.278932638167 -0.206288499128 -0.109775649998 -0.146744304777 -0.107774277394 -0.104268127496 -0.159892294185 -0.180973787349 -0.0955977166459 -0.0849830400229 -0.146541284042 -0.109181348375 -0.101795666842 -0.119303006616 -0.168702146069 -0.175237127425 -0.0582242053883 -0.0857932620305 -0.0888599407971 -0.124841556626 -0.150422769847 -0.188759629435 -0.116605589188 -0.103701444491 -0.151860204774 -0.0476653878103 -0.194018636853 -0.0879466998911 -0.101217630957 -0.180695947767 -0.156735877287 -0.101891429572 -0.145742737492 -0.0815990084454 -0.146347492909 -0.131679770552 -0.0594706182171 -0.0793407075279 -0.213379613349
4 | 10 -0.359068267194 -0.112251295748 1.0 -0.233356330998 0.295213281713 0.192062154006 0.261039558835 0.18810148572 0.176466133991 0.182985377196 0.169961160249 0.175792864685 0.225748752833 0.159113273358 0.267595901794 0.247671183865 0.130872508172 0.142135314556 0.13763463558 0.264061018802 0.223595013554 0.175977851764 0.210394524254 0.173569065006 0.192818297494 0.108043846963 0.169165596929 0.267226558679 0.14708885063 0.185391809491 0.179552441654 0.182683924249 0.234410739177 0.231041632251 0.166383992261 0.13819627921 0.139925357405 0.19800244304 0.142759553277 0.215006674577 0.183238310595 0.223856524122 0.191630526547 0.187928492391 0.197798486974 0.240774070845 0.244320051986 0.1276860028 0.151543579718 0.184120039536
5 | 11 -0.378439013831 -0.0868485304313 -0.233356330998 1.0 0.14285569701 0.239846573518 0.2081463858 0.219151331136 0.24777654144 0.313143705291 0.284291430979 0.319980700744 0.257877518026 0.295399780173 0.204863640131 0.199296052175 0.324890853554 0.251522191916 0.246107951395 0.223576043963 0.108217699534 0.272030548859 0.273313195592 0.29530651714 0.238874358374 0.264911671395 0.234207016954 0.213420667421 0.206990755297 0.270067010636 0.264847215748 0.304194012843 0.220423296741 0.179730991126 0.292844513676 0.248962081571 0.198723991168 0.16836650894 0.231911270094 0.212276636162 0.262161357916 0.176179401942 0.187591094052 0.247045520331 0.283873742924 0.179105617097 0.1637236127 0.194555475287 0.203653313675 0.335993724107
6 | 12 -0.374180680986 -0.079613951242 0.295213281713 0.14285569701 1.0 0.469557731632 0.18414122397 0.267432833166 0.184527287679 0.144080700189 0.226425920931 0.197101604894 0.220632487971 0.26701040979 0.249227822953 0.160391140945 0.210407445622 0.19638440221 0.198873747375 0.236342869233 0.187787491515 0.160535788543 0.218583700337 0.26202346226 0.274297018695 0.241237964347 0.115075497002 0.31467152761 0.263289542189 0.219303088504 0.228049813815 0.204315354749 0.24481362139 0.121965094606 0.155504765047 0.182453071342 0.121605148106 0.193101171079 0.248175496508 0.293838727878 0.139499714304 0.28596820583 0.25273962682 0.176677185281 0.296340009177 0.291660439025 0.240906574552 0.221073463397 0.171507961756 0.240062341287
7 | 13 -0.362405465571 -0.103187207924 0.192062154006 0.239846573518 0.469557731632 1.0 0.201798119154 0.269491399057 0.184709574705 0.194589562864 0.276884127458 0.279368886833 0.21386196954 0.248050796737 0.162162887524 0.158745606522 0.298121198809 0.185196970454 0.257785422296 0.201923120818 0.155872805598 0.20757099649 0.204823138743 0.247905422517 0.244884948682 0.235738235543 0.163038164467 0.176211731616 0.26781224762 0.136026698681 0.215879298715 0.230310627157 0.180796954741 0.115196854152 0.174582429545 0.188961316384 0.153474666215 0.121538400288 0.263112036837 0.218929749565 0.194045796909 0.298552206427 0.288141358024 0.199567918281 0.313311206415 0.208337152519 0.220514353772 0.183403589939 0.151826499071 0.256983529561
8 | 14 -0.388226990111 -0.120390241621 0.261039558835 0.2081463858 0.18414122397 0.201798119154 1.0 -0.0450976601447 0.22705542428 0.229249487574 0.109630201195 0.209750153668 0.186447960099 0.22738769846 0.298608669191 0.204041035517 0.247827343845 0.201711722935 0.172962790796 0.222748635509 0.111688569328 0.179228816817 0.205395125311 0.248312516116 0.241754615636 0.174249199745 0.200061459493 0.180619998868 0.213662454391 0.163258667688 0.204955713913 0.238025791757 0.246058851311 0.166025252156 0.177823880109 0.209721002593 0.187396885289 0.189592251876 0.19805076511 0.137304498836 0.243294303542 0.154218756166 0.203187672719 0.199213522246 0.227192572276 0.220621074185 0.18807326816 0.203206383853 0.197772806659 0.245471365411
9 | 15 -0.371929056983 -0.157749711905 0.18810148572 0.219151331136 0.267432833166 0.269491399057 -0.0450976601447 1.0 0.204081946312 0.187894930235 0.24063776782 0.254307882086 0.230135953689 0.197939455661 0.219255261958 0.306198884124 0.234677211214 0.209853149857 0.318191510719 0.269052794767 0.214925264444 0.199096226226 0.246481181507 0.269542067067 0.330782356649 0.243939561499 0.240159387509 0.27776853237 0.216127407883 0.254705166985 0.230722735677 0.218956521643 0.277815100503 0.294198206412 0.1834907876 0.138203796864 0.221593257343 0.242730492821 0.256252283696 0.250680196794 0.246088635759 0.245330279944 0.316080697309 0.22348438611 0.220731054864 0.340676753635 0.2781801463 0.166712470743 0.199254114632 0.241355046888
10 | 16 -0.475870420441 -0.141684627027 0.176466133991 0.24777654144 0.184527287679 0.184709574705 0.22705542428 0.204081946312 1.0 0.226737529183 0.221434607785 0.297704537521 0.18074502256 0.271333745885 0.169264662328 0.23765262569 0.277402003548 0.209694459046 0.260935796873 0.334140385319 0.251977769529 0.229779417597 0.289012808414 0.320636055395 0.267758391985 0.240664830186 0.337437562385 0.215096430556 0.118879200022 0.16522550856 0.235374280344 0.278301126218 0.344334254921 0.189334554699 0.240821346041 0.207062997752 0.281724450253 0.263054747759 0.224528179483 0.352234101638 0.234913076265 0.175128476874 0.239985625875 0.30830678148 0.300543317386 0.253367650284 0.302057459924 0.247049104719 0.179708319946 0.297575375511
11 | 17 -0.482764850564 -0.15744062151 0.182985377196 0.313143705291 0.144080700189 0.194589562864 0.229249487574 0.187894930235 0.226737529183 1.0 0.236538593724 0.294550234575 0.347806996998 0.258322269635 0.234031729917 0.187653208977 0.244794458027 0.229447602688 0.291080344871 0.299856132114 0.241532117474 0.268526578758 0.205024265401 0.242253373035 0.288179724632 0.358517519565 0.284505346313 0.277710591403 0.175399080952 0.21736003483 0.218337230115 0.217946989818 0.2700507308 0.282388404391 0.334007338419 0.223571480687 0.308718364559 0.293401087566 0.20767731447 0.232105280066 0.354681702086 0.228138290005 0.193014806531 0.254938509172 0.19381656349 0.197886684042 0.255227888326 0.183054084608 0.177256702301 0.302372613699
12 | 18 -0.411983316713 -0.123530954392 0.169961160249 0.284291430979 0.226425920931 0.276884127458 0.109630201195 0.24063776782 0.221434607785 0.236538593724 1.0 0.272880965244 0.167576170672 0.154496264078 0.227986520536 0.158408195494 0.318606517447 0.291949906129 0.239746414468 0.280388577545 0.148243205127 0.246329988004 0.228696941519 0.203663125767 0.233678190124 0.185443288159 0.125412769051 0.278891353167 0.133393626357 0.223976069958 0.224945103627 0.254572342419 0.292954919178 0.221340518689 0.193148738815 0.147473556924 0.165977795446 0.278839683442 0.161273155297 0.195099923145 0.197086416602 0.249505838384 0.26679003 0.182368790459 0.258061773861 0.289716615825 0.198275702287 0.202329259858 0.210927560963 0.291645873795
13 | 19 -0.461736391733 -0.278932638167 0.175792864685 0.319980700744 0.197101604894 0.279368886833 0.209750153668 0.254307882086 0.297704537521 0.294550234575 0.272880965244 1.0 0.310824987908 0.200339601299 0.282463155233 0.309832582679 0.26384532376 0.232784355772 0.256732774728 0.181192189692 0.168204756619 0.309187824239 0.189095059362 0.212015557367 0.344935077849 0.250565889738 0.273667494101 0.299314184127 0.105210208725 0.267427817755 0.218115032528 0.277022809589 0.323469522015 0.173204603618 0.280094032138 0.228582247868 0.221768608532 0.27951892078 0.308138001491 0.27194777006 0.287706467994 0.182842731937 0.261320710606 0.209627678631 0.194918457289 0.274433755035 0.28449852762 0.203090858894 0.204080580128 0.268444886757
14 | 2 -0.387315607062 -0.206288499128 0.225748752833 0.257877518026 0.220632487971 0.21386196954 0.186447960099 0.230135953689 0.18074502256 0.347806996998 0.167576170672 0.310824987908 1.0 0.262253260325 0.223175368094 0.185588784058 0.184538969987 0.178551580274 0.256487035053 0.232991470024 0.217868287484 0.207918610138 0.216366961993 0.289153787251 0.244832121356 0.224648519929 0.264714197944 0.171711952592 0.163842165496 0.252777835515 0.209806568372 0.164109832278 0.203181593333 0.244081081734 0.27733984989 0.162884956545 0.21476096946 0.329858376068 0.156089171139 0.27122154258 0.22293813126 0.197825600278 0.108628374439 0.300619398334 0.278780222488 0.204392011209 0.177286753273 0.170785546178 0.158309935429 0.214606333303
15 | 20 -0.460946755652 -0.109775649998 0.159113273358 0.295399780173 0.26701040979 0.248050796737 0.22738769846 0.197939455661 0.271333745885 0.258322269635 0.154496264078 0.200339601299 0.262253260325 1.0 0.184260863381 0.205098750697 0.20631392202 0.273597835192 0.179866217716 0.243727809524 0.146440068303 0.222858515731 0.21435036905 0.30557591329 0.277787004286 0.295652616327 0.261920966473 0.207451960202 0.235915324531 0.21188703617 0.267047340503 0.243931088989 0.264617042178 0.204289741411 0.316811068645 0.20427146416 0.188195342373 0.136084111697 0.194172344439 0.254127057114 0.226066447433 0.272770830029 0.225674067115 0.215528457061 0.237627738007 0.227703541801 0.239479216258 0.227240157877 0.168992602385 0.255044428642
16 | 21 -0.400653185064 -0.146744304777 0.267595901794 0.204863640131 0.249227822953 0.162162887524 0.298608669191 0.219255261958 0.169264662328 0.234031729917 0.227986520536 0.282463155233 0.223175368094 0.184260863381 1.0 0.291170260783 0.25965660298 0.199317373036 0.201533736042 0.258760290748 0.209812206787 0.181539779896 0.184705341064 0.223819747684 0.223910429014 0.256444741127 0.177271963996 0.205356379741 0.202778932944 0.265563498004 0.24471470886 0.207114072077 0.248339186407 0.26653509634 0.226874926007 0.191219397708 0.186606958312 0.235365392267 0.198594217965 0.19797826984 0.248458077603 0.195799049868 0.210428609277 0.235032507852 0.23761055202 0.220568641747 0.240238484695 0.127229553567 0.191355364338 0.234985771347
17 | 22 -0.393547022809 -0.107774277394 0.247671183865 0.199296052175 0.160391140945 0.158745606522 0.204041035517 0.306198884124 0.23765262569 0.187653208977 0.158408195494 0.309832582679 0.185588784058 0.205098750697 0.291170260783 1.0 0.17339232932 0.112335426967 0.162460677555 0.219057862931 0.160261646662 0.204487402139 0.283266276216 0.173756507292 0.24266079975 0.157135275989 0.259768284542 0.229767924591 0.145431120818 0.214990399824 0.218336342048 0.21220813828 0.199787957061 0.222619393129 0.200765314007 0.21697680306 0.223168951441 0.203260240221 0.231495716254 0.309409312323 0.181921012783 0.153731621669 0.185440170348 0.213349097761 0.232247842995 0.225562309991 0.199430581365 0.117725295491 0.167223035185 0.198195802762
18 | 23 -0.473234869557 -0.104268127496 0.130872508172 0.324890853554 0.210407445622 0.298121198809 0.247827343845 0.234677211214 0.277402003548 0.244794458027 0.318606517447 0.26384532376 0.184538969987 0.20631392202 0.25965660298 0.17339232932 1.0 0.287504482877 0.285743582583 0.256991956678 0.285662740731 0.190466606025 0.21145688762 0.279333189638 0.264650093331 0.212652946073 0.200508191145 0.264151780542 0.20224585285 0.23416451755 0.291619091988 0.194786384151 0.243252781936 0.195531896427 0.189799147605 0.223270596706 0.272287643155 0.250951815385 0.233362329632 0.213969678006 0.24067126833 0.263832130491 0.244505495338 0.326243939552 0.298763457895 0.261938884986 0.254559090875 0.165439402493 0.206326101905 0.327777846903
19 | 24 -0.442147097719 -0.159892294185 0.142135314556 0.251522191916 0.19638440221 0.185196970454 0.201711722935 0.209853149857 0.209694459046 0.229447602688 0.291949906129 0.232784355772 0.178551580274 0.273597835192 0.199317373036 0.112335426967 0.287504482877 1.0 0.302029210236 0.271100139553 0.199645256864 0.17681552815 0.258239327572 0.257123795625 0.202049372196 0.191261326766 0.212716312851 0.213790084986 0.213107485022 0.11850991374 0.2521124825 0.287538560368 0.230767403422 0.229457535321 0.170013102265 0.253586061693 0.146931699588 0.272172817699 0.204607549525 0.182644936347 0.175582307056 0.115944938186 0.18661100379 0.285162794086 0.274169338564 0.285222333279 0.212860671698 0.182008241548 0.141611604666 0.331255988382
20 | 25 -0.462489579493 -0.180973787349 0.13763463558 0.246107951395 0.198873747375 0.257785422296 0.172962790796 0.318191510719 0.260935796873 0.291080344871 0.239746414468 0.256732774728 0.256487035053 0.179866217716 0.201533736042 0.162460677555 0.285743582583 0.302029210236 1.0 0.30601690429 0.220649747588 0.19324629502 0.29691885256 0.26115112515 0.27560068101 0.141900511567 0.252956112017 0.210219348636 0.145170434545 0.127527074014 0.233975630463 0.236165892013 0.291140951435 0.280186553277 0.185745931243 0.153489464287 0.213037567083 0.291586444439 0.257459936791 0.298337454529 0.31439822024 0.252171546049 0.221907606032 0.289725295816 0.260203717508 0.259106544663 0.2909050015 0.130511025353 0.22430448445 0.354302372677
21 | 26 -0.446084982781 -0.0955977166459 0.264061018802 0.223576043963 0.236342869233 0.201923120818 0.222748635509 0.269052794767 0.334140385319 0.299856132114 0.280388577545 0.181192189692 0.232991470024 0.243727809524 0.258760290748 0.219057862931 0.256991956678 0.271100139553 0.30601690429 1.0 0.265874391455 0.252187364283 0.261428970414 0.294117334998 0.273539628999 0.24509818654 0.256541493476 0.226286186629 0.245860300002 0.285501465951 0.310062543108 0.248594377976 0.29578956746 0.232138634834 0.270422402186 0.208741459014 0.18979796489 0.289182093089 0.278126680067 0.273938479946 0.193095616959 0.248956058567 0.139116292645 0.246901583513 0.31775358294 0.291368608397 0.238968256879 0.159250790722 0.244191631235 0.214815434607
22 | 27 -0.336189591778 -0.0849830400229 0.223595013554 0.108217699534 0.187787491515 0.155872805598 0.111688569328 0.214925264444 0.251977769529 0.241532117474 0.148243205127 0.168204756619 0.217868287484 0.146440068303 0.209812206787 0.160261646662 0.285662740731 0.199645256864 0.220649747588 0.265874391455 1.0 0.152080068225 0.205999461096 0.152503500529 0.11299641916 0.200773925843 0.227044860518 0.127642868465 0.157921139862 0.0930683755509 0.206881616803 0.0946938319504 0.325093719047 0.18286507337 0.225455959209 0.178842192575 0.195677119662 0.223131547659 0.171768184901 0.26399075347 0.187532574223 0.140796983921 0.121776466606 0.20872717905 0.113151900947 0.172703564306 0.289262490461 0.202664349982 0.194799253212 0.216233413047
23 | 28 -0.397655437798 -0.146541284042 0.175977851764 0.272030548859 0.160535788543 0.20757099649 0.179228816817 0.199096226226 0.229779417597 0.268526578758 0.246329988004 0.309187824239 0.207918610138 0.222858515731 0.181539779896 0.204487402139 0.190466606025 0.17681552815 0.19324629502 0.252187364283 0.152080068225 1.0 0.23587191184 0.246777883984 0.21005678644 0.235996345825 0.195634532697 0.231283767064 0.169482798259 0.256308692265 0.179274471878 0.20325771652 0.232335465567 0.170863971614 0.237799708773 0.163119023836 0.16250355354 0.111764355501 0.251903239415 0.229978314288 0.251648660291 0.203909604985 0.136189044616 0.221059652364 0.209558877809 0.234240414081 0.211738744306 0.17645608768 0.131312557916 0.233543336716
24 | 29 -0.359908458946 -0.109181348375 0.210394524254 0.273313195592 0.218583700337 0.204823138743 0.205395125311 0.246481181507 0.289012808414 0.205024265401 0.228696941519 0.189095059362 0.216366961993 0.21435036905 0.184705341064 0.283266276216 0.21145688762 0.258239327572 0.29691885256 0.261428970414 0.205999461096 0.23587191184 1.0 0.312363882621 0.172405041083 0.106146621778 0.270542738109 0.193306104592 0.327150427133 0.167213789218 0.247869663331 0.303481242889 0.183978367265 0.192707361212 0.21782274599 0.197740870218 0.230681417365 0.28179541219 0.174035799503 0.273013980364 0.260586998017 0.185940951786 0.184504579678 0.270887257751 0.328234377706 0.225483099565 0.148351349974 0.233942280353 0.151463723793 0.266757518551
25 | 3 -0.512804774342 -0.101795666842 0.173569065006 0.29530651714 0.26202346226 0.247905422517 0.248312516116 0.269542067067 0.320636055395 0.242253373035 0.203663125767 0.212015557367 0.289153787251 0.30557591329 0.223819747684 0.173756507292 0.279333189638 0.257123795625 0.26115112515 0.294117334998 0.152503500529 0.246777883984 0.312363882621 1.0 0.232600877347 0.182090732597 0.307538608828 0.279221323124 0.225792659588 0.250437122708 0.261538630052 0.204745011943 0.241562677565 0.240350140267 0.267365495554 0.227835962471 0.180241930587 0.232192189549 0.171544287485 0.220483017771 0.268052972978 0.167698196918 0.228404708083 0.335151428072 0.309816153424 0.267026148108 0.273056911925 0.154046143803 0.219903129751 0.209513275504
26 | 30 -0.469964720474 -0.119303006616 0.192818297494 0.238874358374 0.274297018695 0.244884948682 0.241754615636 0.330782356649 0.267758391985 0.288179724632 0.233678190124 0.344935077849 0.244832121356 0.277787004286 0.223910429014 0.24266079975 0.264650093331 0.202049372196 0.27560068101 0.273539628999 0.11299641916 0.21005678644 0.172405041083 0.232600877347 1.0 0.267480688206 0.214898183078 0.264411636596 0.119871409806 0.238764224846 0.226530414336 0.298402728581 0.334299350141 0.155778609776 0.20841251762 0.145097468933 0.194580707183 0.243318215821 0.254785725304 0.243561923726 0.268702696795 0.164054338291 0.279533543935 0.181125897896 0.270435260704 0.223871331423 0.278791853663 0.220222910157 0.201407012063 0.319439179192
27 | 31 -0.375182964375 -0.168702146069 0.108043846963 0.264911671395 0.241237964347 0.235738235543 0.174249199745 0.243939561499 0.240664830186 0.358517519565 0.185443288159 0.250565889738 0.224648519929 0.295652616327 0.256444741127 0.157135275989 0.212652946073 0.191261326766 0.141900511567 0.24509818654 0.200773925843 0.235996345825 0.106146621778 0.182090732597 0.267480688206 1.0 0.139660428231 0.167310400831 0.237736939975 0.216703788793 0.229873668756 0.191050021397 0.221488416588 0.189093723923 0.20352679808 0.139069259521 0.263285180386 0.205440424558 0.130657609682 0.1507608154 0.173358610116 0.203720073397 0.282305492723 0.236170575205 0.177153709831 0.165579752352 0.202743383059 0.20015003854 0.184387546196 0.230601422537
28 | 32 -0.40685135578 -0.175237127425 0.169165596929 0.234207016954 0.115075497002 0.163038164467 0.200061459493 0.240159387509 0.337437562385 0.284505346313 0.125412769051 0.273667494101 0.264714197944 0.261920966473 0.177271963996 0.259768284542 0.200508191145 0.212716312851 0.252956112017 0.256541493476 0.227044860518 0.195634532697 0.270542738109 0.307538608828 0.214898183078 0.139660428231 1.0 0.258934470483 0.12538146132 0.237529408972 0.226523968883 0.248658062709 0.285204410644 0.220071822147 0.210648546282 0.226459996017 0.304559045968 0.289284920688 0.246062444921 0.238896450055 0.204657712859 0.184084745632 0.229573360365 0.237883439674 0.323662561145 0.193696910365 0.196158798167 0.156918770524 0.216670335258 0.260390863461
29 | 33 -0.398724373992 -0.0582242053883 0.267226558679 0.213420667421 0.31467152761 0.176211731616 0.180619998868 0.27776853237 0.215096430556 0.277710591403 0.278891353167 0.299314184127 0.171711952592 0.207451960202 0.205356379741 0.229767924591 0.264151780542 0.213790084986 0.210219348636 0.226286186629 0.127642868465 0.231283767064 0.193306104592 0.279221323124 0.264411636596 0.167310400831 0.258934470483 1.0 0.139200607691 0.370798277664 0.260165271879 0.154118054744 0.312846162714 0.181959752722 0.288554903923 0.235211871607 0.0766328136729 0.236636858763 0.290498426544 0.231877793832 0.246288557099 0.167674358727 0.209078047428 0.178147369164 0.261114358205 0.278588799344 0.295675869738 0.156136843354 0.155970026942 0.244432396765
30 | 34 -0.280740572599 -0.0857932620305 0.14708885063 0.206990755297 0.263289542189 0.26781224762 0.213662454391 0.216127407883 0.118879200022 0.175399080952 0.133393626357 0.105210208725 0.163842165496 0.235915324531 0.202778932944 0.145431120818 0.20224585285 0.213107485022 0.145170434545 0.245860300002 0.157921139862 0.169482798259 0.327150427133 0.225792659588 0.119871409806 0.237736939975 0.12538146132 0.139200607691 1.0 0.096721598247 0.210609039434 0.169674824629 0.16795868382 0.238121093461 0.230349341863 0.224655445803 0.116026783362 0.117317095021 0.184530717305 0.206458737283 0.228670917518 0.209446669709 0.210517937465 0.209999411215 0.194709550451 0.250105051821 0.219376275601 0.249237903371 0.112814317256 0.242492519185
31 | 35 -0.365013830315 -0.0888599407971 0.185391809491 0.270067010636 0.219303088504 0.136026698681 0.163258667688 0.254705166985 0.16522550856 0.21736003483 0.223976069958 0.267427817755 0.252777835515 0.21188703617 0.265563498004 0.214990399824 0.23416451755 0.11850991374 0.127527074014 0.285501465951 0.0930683755509 0.256308692265 0.167213789218 0.250437122708 0.238764224846 0.216703788793 0.237529408972 0.370798277664 0.096721598247 1.0 0.240079552271 0.203724698168 0.223383135738 0.189212710104 0.209394179799 0.163644140482 0.168409324086 0.218960956303 0.262916990846 0.18785035437 0.17933697842 0.231212690111 0.166247780746 0.231613462075 0.341702934846 0.244424436798 0.192406792172 0.248637157417 0.193939047356 0.152486299548
32 | 36 -0.430396193612 -0.124841556626 0.179552441654 0.264847215748 0.228049813815 0.215879298715 0.204955713913 0.230722735677 0.235374280344 0.218337230115 0.224945103627 0.218115032528 0.209806568372 0.267047340503 0.24471470886 0.218336342048 0.291619091988 0.2521124825 0.233975630463 0.310062543108 0.206881616803 0.179274471878 0.247869663331 0.261538630052 0.226530414336 0.229873668756 0.226523968883 0.260165271879 0.210609039434 0.240079552271 1.0 0.299682483682 0.298023959642 0.101972622402 0.21496754767 0.236429826665 0.191325370221 0.2162410507 0.19670587046 0.18564307364 0.25871889888 0.202695190792 0.277959343137 0.248520194066 0.268566844012 0.26119206122 0.303427368279 0.311034763885 0.160809479024 0.312583691127
33 | 37 -0.388918832679 -0.150422769847 0.182683924249 0.304194012843 0.204315354749 0.230310627157 0.238025791757 0.218956521643 0.278301126218 0.217946989818 0.254572342419 0.277022809589 0.164109832278 0.243931088989 0.207114072077 0.21220813828 0.194786384151 0.287538560368 0.236165892013 0.248594377976 0.0946938319504 0.20325771652 0.303481242889 0.204745011943 0.298402728581 0.191050021397 0.248658062709 0.154118054744 0.169674824629 0.203724698168 0.299682483682 1.0 0.21437812667 0.208956679408 0.20523556299 0.161014047518 0.193105023229 0.283268103701 0.244907965168 0.203697922189 0.252961744809 0.225519249288 0.23742350871 0.226871487584 0.240586056567 0.194091319308 0.26984847062 0.218427310144 0.22167537037 0.26570848119
34 | 38 -0.470893906322 -0.188759629435 0.234410739177 0.220423296741 0.24481362139 0.180796954741 0.246058851311 0.277815100503 0.344334254921 0.2700507308 0.292954919178 0.323469522015 0.203181593333 0.264617042178 0.248339186407 0.199787957061 0.243252781936 0.230767403422 0.291140951435 0.29578956746 0.325093719047 0.232335465567 0.183978367265 0.241562677565 0.334299350141 0.221488416588 0.285204410644 0.312846162714 0.16795868382 0.223383135738 0.298023959642 0.21437812667 1.0 0.236096079502 0.209290931223 0.192980248685 0.281424325335 0.310149624295 0.176030958197 0.27034774582 0.235614745839 0.186231059187 0.279645458836 0.231420240721 0.26556607454 0.257820646892 0.339247327697 0.24893061072 0.149167918235 0.33256338391
35 | 39 -0.336355782567 -0.116605589188 0.231041632251 0.179730991126 0.121965094606 0.115196854152 0.166025252156 0.294198206412 0.189334554699 0.282388404391 0.221340518689 0.173204603618 0.244081081734 0.204289741411 0.26653509634 0.222619393129 0.195531896427 0.229457535321 0.280186553277 0.232138634834 0.18286507337 0.170863971614 0.192707361212 0.240350140267 0.155778609776 0.189093723923 0.220071822147 0.181959752722 0.238121093461 0.189212710104 0.101972622402 0.208956679408 0.236096079502 1.0 0.253558485464 0.138542360783 0.21561337357 0.194185905814 0.127139444593 0.150593943789 0.159119778556 0.20198967269 0.0865065949379 0.178095365248 0.257196421457 0.224861355392 0.175427545801 0.124712430161 0.176518066463 0.167877496888
36 | 4 -0.434643438412 -0.103701444491 0.166383992261 0.292844513676 0.155504765047 0.174582429545 0.177823880109 0.1834907876 0.240821346041 0.334007338419 0.193148738815 0.280094032138 0.27733984989 0.316811068645 0.226874926007 0.200765314007 0.189799147605 0.170013102265 0.185745931243 0.270422402186 0.225455959209 0.237799708773 0.21782274599 0.267365495554 0.20841251762 0.20352679808 0.210648546282 0.288554903923 0.230349341863 0.209394179799 0.21496754767 0.20523556299 0.209290931223 0.253558485464 1.0 0.185757659335 0.20232228586 0.243975504165 0.275188606617 0.289237529107 0.211695118256 0.193385174623 0.190897524262 0.262874072614 0.237020951723 0.353175042632 0.21212328678 0.234557671959 0.176840862587 0.195008760237
37 | 40 -0.409382788402 -0.151860204774 0.13819627921 0.248962081571 0.182453071342 0.188961316384 0.209721002593 0.138203796864 0.207062997752 0.223571480687 0.147473556924 0.228582247868 0.162884956545 0.20427146416 0.191219397708 0.21697680306 0.223270596706 0.253586061693 0.153489464287 0.208741459014 0.178842192575 0.163119023836 0.197740870218 0.227835962471 0.145097468933 0.139069259521 0.226459996017 0.235211871607 0.224655445803 0.163644140482 0.236429826665 0.161014047518 0.192980248685 0.138542360783 0.185757659335 1.0 0.161808157656 0.149415261674 0.275023068377 0.263033586854 0.136896985479 0.301684551236 0.23542099442 0.211289390828 0.225212447296 0.199054042523 0.159806082701 0.188263153106 0.191394709083 0.276922566706
38 | 41 -0.352100006106 -0.0476653878103 0.139925357405 0.198723991168 0.121605148106 0.153474666215 0.187396885289 0.221593257343 0.281724450253 0.308718364559 0.165977795446 0.221768608532 0.21476096946 0.188195342373 0.186606958312 0.223168951441 0.272287643155 0.146931699588 0.213037567083 0.18979796489 0.195677119662 0.16250355354 0.230681417365 0.180241930587 0.194580707183 0.263285180386 0.304559045968 0.0766328136729 0.116026783362 0.168409324086 0.191325370221 0.193105023229 0.281424325335 0.21561337357 0.20232228586 0.161808157656 1.0 0.196249063652 0.109062615668 0.189508510149 0.184796845126 0.178700117447 0.220490471546 0.233636466281 0.160531265 0.187359097628 0.209859747226 0.236824379063 0.134097432141 0.230626301476
39 | 42 -0.45990977164 -0.194018636853 0.19800244304 0.16836650894 0.193101171079 0.121538400288 0.189592251876 0.242730492821 0.263054747759 0.293401087566 0.278839683442 0.27951892078 0.329858376068 0.136084111697 0.235365392267 0.203260240221 0.250951815385 0.272172817699 0.291586444439 0.289182093089 0.223131547659 0.111764355501 0.28179541219 0.232192189549 0.243318215821 0.205440424558 0.289284920688 0.236636858763 0.117317095021 0.218960956303 0.2162410507 0.283268103701 0.310149624295 0.194185905814 0.243975504165 0.149415261674 0.196249063652 1.0 0.22858440568 0.239984659345 0.178672798773 0.240945839052 0.203333111204 0.229778947925 0.169340394894 0.269167671124 0.216891398479 0.146155919453 0.169174665807 0.180406882866
40 | 43 -0.367311405484 -0.0879466998911 0.142759553277 0.231911270094 0.248175496508 0.263112036837 0.19805076511 0.256252283696 0.224528179483 0.20767731447 0.161273155297 0.308138001491 0.156089171139 0.194172344439 0.198594217965 0.231495716254 0.233362329632 0.204607549525 0.257459936791 0.278126680067 0.171768184901 0.251903239415 0.174035799503 0.171544287485 0.254785725304 0.130657609682 0.246062444921 0.290498426544 0.184530717305 0.262916990846 0.19670587046 0.244907965168 0.176030958197 0.127139444593 0.275188606617 0.275023068377 0.109062615668 0.22858440568 1.0 0.237814792705 0.233311881811 0.297925222658 0.264117963655 0.234550069347 0.279916314829 0.227482759155 0.229694001016 0.169466234264 0.201916130502 0.232607367823
41 | 44 -0.411886615671 -0.101217630957 0.215006674577 0.212276636162 0.293838727878 0.218929749565 0.137304498836 0.250680196794 0.352234101638 0.232105280066 0.195099923145 0.27194777006 0.27122154258 0.254127057114 0.19797826984 0.309409312323 0.213969678006 0.182644936347 0.298337454529 0.273938479946 0.26399075347 0.229978314288 0.273013980364 0.220483017771 0.243561923726 0.1507608154 0.238896450055 0.231877793832 0.206458737283 0.18785035437 0.18564307364 0.203697922189 0.27034774582 0.150593943789 0.289237529107 0.263033586854 0.189508510149 0.239984659345 0.237814792705 1.0 0.254899196 0.299452197925 0.224272032705 0.208326777806 0.239526404873 0.199355836847 0.26388497724 0.258213805158 0.215920182773 0.248153846495
42 | 45 -0.386660107513 -0.180695947767 0.183238310595 0.262161357916 0.139499714304 0.194045796909 0.243294303542 0.246088635759 0.234913076265 0.354681702086 0.197086416602 0.287706467994 0.22293813126 0.226066447433 0.248458077603 0.181921012783 0.24067126833 0.175582307056 0.31439822024 0.193095616959 0.187532574223 0.251648660291 0.260586998017 0.268052972978 0.268702696795 0.173358610116 0.204657712859 0.246288557099 0.228670917518 0.17933697842 0.25871889888 0.252961744809 0.235614745839 0.159119778556 0.211695118256 0.136896985479 0.184796845126 0.178672798773 0.233311881811 0.254899196 1.0 0.179947171504 0.211316101125 0.271974438204 0.268871021947 0.242584179 0.319156596408 0.150820676158 0.201101020997 0.242299934763
43 | 46 -0.406708617731 -0.156735877287 0.223856524122 0.176179401942 0.28596820583 0.298552206427 0.154218756166 0.245330279944 0.175128476874 0.228138290005 0.249505838384 0.182842731937 0.197825600278 0.272770830029 0.195799049868 0.153731621669 0.263832130491 0.115944938186 0.252171546049 0.248956058567 0.140796983921 0.203909604985 0.185940951786 0.167698196918 0.164054338291 0.203720073397 0.184084745632 0.167674358727 0.209446669709 0.231212690111 0.202695190792 0.225519249288 0.186231059187 0.20198967269 0.193385174623 0.301684551236 0.178700117447 0.240945839052 0.297925222658 0.299452197925 0.179947171504 1.0 0.300666170406 0.237247066579 0.230343961271 0.236556464312 0.143838182155 0.178765636201 0.287145997144 0.250890561198
44 | 47 -0.411703876625 -0.101891429572 0.191630526547 0.187591094052 0.25273962682 0.288141358024 0.203187672719 0.316080697309 0.239985625875 0.193014806531 0.26679003 0.261320710606 0.108628374439 0.225674067115 0.210428609277 0.185440170348 0.244505495338 0.18661100379 0.221907606032 0.139116292645 0.121776466606 0.136189044616 0.184504579678 0.228404708083 0.279533543935 0.282305492723 0.229573360365 0.209078047428 0.210517937465 0.166247780746 0.277959343137 0.23742350871 0.279645458836 0.0865065949379 0.190897524262 0.23542099442 0.220490471546 0.203333111204 0.264117963655 0.224272032705 0.211316101125 0.300666170406 1.0 0.287537050052 0.227344769189 0.210335080008 0.279732683336 0.243713708935 0.147368595185 0.250159632805
45 | 48 -0.439560149562 -0.145742737492 0.187928492391 0.247045520331 0.176677185281 0.199567918281 0.199213522246 0.22348438611 0.30830678148 0.254938509172 0.182368790459 0.209627678631 0.300619398334 0.215528457061 0.235032507852 0.213349097761 0.326243939552 0.285162794086 0.289725295816 0.246901583513 0.20872717905 0.221059652364 0.270887257751 0.335151428072 0.181125897896 0.236170575205 0.237883439674 0.178147369164 0.209999411215 0.231613462075 0.248520194066 0.226871487584 0.231420240721 0.178095365248 0.262874072614 0.211289390828 0.233636466281 0.229778947925 0.234550069347 0.208326777806 0.271974438204 0.237247066579 0.287537050052 1.0 0.319864099412 0.28580153031 0.2477981642 0.174624808347 0.16943724145 0.281274243715
46 | 49 -0.492538707007 -0.0815990084454 0.197798486974 0.283873742924 0.296340009177 0.313311206415 0.227192572276 0.220731054864 0.300543317386 0.19381656349 0.258061773861 0.194918457289 0.278780222488 0.237627738007 0.23761055202 0.232247842995 0.298763457895 0.274169338564 0.260203717508 0.31775358294 0.113151900947 0.209558877809 0.328234377706 0.309816153424 0.270435260704 0.177153709831 0.323662561145 0.261114358205 0.194709550451 0.341702934846 0.268566844012 0.240586056567 0.26556607454 0.257196421457 0.237020951723 0.225212447296 0.160531265 0.169340394894 0.279916314829 0.239526404873 0.268871021947 0.230343961271 0.227344769189 0.319864099412 1.0 0.249919667734 0.164461211458 0.314310988337 0.261718780476 0.286436905601
47 | 5 -0.399732569181 -0.146347492909 0.240774070845 0.179105617097 0.291660439025 0.208337152519 0.220621074185 0.340676753635 0.253367650284 0.197886684042 0.289716615825 0.274433755035 0.204392011209 0.227703541801 0.220568641747 0.225562309991 0.261938884986 0.285222333279 0.259106544663 0.291368608397 0.172703564306 0.234240414081 0.225483099565 0.267026148108 0.223871331423 0.165579752352 0.193696910365 0.278588799344 0.250105051821 0.244424436798 0.26119206122 0.194091319308 0.257820646892 0.224861355392 0.353175042632 0.199054042523 0.187359097628 0.269167671124 0.227482759155 0.199355836847 0.242584179 0.236556464312 0.210335080008 0.28580153031 0.249919667734 1.0 0.30594410619 0.177871056026 0.180842257429 0.267219230326
48 | 6 -0.468749463369 -0.131679770552 0.244320051986 0.1637236127 0.240906574552 0.220514353772 0.18807326816 0.2781801463 0.302057459924 0.255227888326 0.198275702287 0.28449852762 0.177286753273 0.239479216258 0.240238484695 0.199430581365 0.254559090875 0.212860671698 0.2909050015 0.238968256879 0.289262490461 0.211738744306 0.148351349974 0.273056911925 0.278791853663 0.202743383059 0.196158798167 0.295675869738 0.219376275601 0.192406792172 0.303427368279 0.26984847062 0.339247327697 0.175427545801 0.21212328678 0.159806082701 0.209859747226 0.216891398479 0.229694001016 0.26388497724 0.319156596408 0.143838182155 0.279732683336 0.2477981642 0.164461211458 0.30594410619 1.0 0.225702957282 0.10075582801 0.264941473549
49 | 7 -0.331165764496 -0.0594706182171 0.1276860028 0.194555475287 0.221073463397 0.183403589939 0.203206383853 0.166712470743 0.247049104719 0.183054084608 0.202329259858 0.203090858894 0.170785546178 0.227240157877 0.127229553567 0.117725295491 0.165439402493 0.182008241548 0.130511025353 0.159250790722 0.202664349982 0.17645608768 0.233942280353 0.154046143803 0.220222910157 0.20015003854 0.156918770524 0.156136843354 0.249237903371 0.248637157417 0.311034763885 0.218427310144 0.24893061072 0.124712430161 0.234557671959 0.188263153106 0.236824379063 0.146155919453 0.169466234264 0.258213805158 0.150820676158 0.178765636201 0.243713708935 0.174624808347 0.314310988337 0.177871056026 0.225702957282 1.0 0.124371265931 0.200159162956
50 | 8 -0.342701006602 -0.0793407075279 0.151543579718 0.203653313675 0.171507961756 0.151826499071 0.197772806659 0.199254114632 0.179708319946 0.177256702301 0.210927560963 0.204080580128 0.158309935429 0.168992602385 0.191355364338 0.167223035185 0.206326101905 0.141611604666 0.22430448445 0.244191631235 0.194799253212 0.131312557916 0.151463723793 0.219903129751 0.201407012063 0.184387546196 0.216670335258 0.155970026942 0.112814317256 0.193939047356 0.160809479024 0.22167537037 0.149167918235 0.176518066463 0.176840862587 0.191394709083 0.134097432141 0.169174665807 0.201916130502 0.215920182773 0.201101020997 0.287145997144 0.147368595185 0.16943724145 0.261718780476 0.180842257429 0.10075582801 0.124371265931 1.0 0.27307298559
51 | 9 -0.425742211265 -0.213379613349 0.184120039536 0.335993724107 0.240062341287 0.256983529561 0.245471365411 0.241355046888 0.297575375511 0.302372613699 0.291645873795 0.268444886757 0.214606333303 0.255044428642 0.234985771347 0.198195802762 0.327777846903 0.331255988382 0.354302372677 0.214815434607 0.216233413047 0.233543336716 0.266757518551 0.209513275504 0.319439179192 0.230601422537 0.260390863461 0.244432396765 0.242492519185 0.152486299548 0.312583691127 0.26570848119 0.33256338391 0.167877496888 0.195008760237 0.276922566706 0.230626301476 0.180406882866 0.232607367823 0.248153846495 0.242299934763 0.250890561198 0.250159632805 0.281274243715 0.286436905601 0.267219230326 0.264941473549 0.200159162956 0.27307298559 1.0
52 |
--------------------------------------------------------------------------------
/example/basis_corr/cor_spearman.out:
--------------------------------------------------------------------------------
1 | OTU_id 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 6 7 8 9
2 | 0 1.0 0.250243756094 -0.378243456086 -0.481545038626 -0.477803945099 -0.459912997825 -0.435015375384 -0.451682292057 -0.462215555389 -0.503771094277 -0.444890122253 -0.534550363759 -0.462700067502 -0.499320483012 -0.452379809495 -0.442466061652 -0.522637065927 -0.489322733068 -0.538936473412 -0.523597089927 -0.459629490737 -0.455291382285 -0.510083252081 -0.543784594615 -0.506460661517 -0.439626490662 -0.466178654466 -0.504110102753 -0.382341558539 -0.41214880372 -0.49263481587 -0.479161479037 -0.51575639391 -0.427194179854 -0.518253956349 -0.428616215405 -0.415196879922 -0.497389934748 -0.446618165454 -0.446862671567 -0.465368634216 -0.453071326783 -0.461731043276 -0.462691067277 -0.569405235131 -0.490699767494 -0.453116327908 -0.40751518788 -0.427173179329 -0.515547888697
3 | 1 0.250243756094 1.0 -0.079960999025 -0.0441776044401 -0.098382959574 -0.116912922823 -0.102778069452 -0.0942503562589 -0.141291532288 -0.142893572339 -0.0828290707268 -0.260345008625 -0.196789919748 -0.136864921623 -0.0870096752419 -0.138021450536 -0.078451961299 -0.103618090452 -0.105722643066 -0.0491577289432 -0.0550768769219 -0.141041026026 -0.146769669242 -0.121033525838 -0.115745893647 -0.138072451811 -0.177745443636 -0.00582464561614 -0.0386019650491 -0.0645961149029 -0.0929048226206 -0.136384909623 -0.198417460437 -0.0872421810545 -0.109667741694 -0.156495912398 -0.118756468912 -0.181578039451 -0.0465206630166 -0.098379959499 -0.115225380635 -0.0932993324833 -0.119912997825 -0.108881722043 -0.0646336158404 -0.113150828771 -0.134850371259 -0.00417310432761 -0.0534403360084 -0.177235430886
4 | 10 -0.378243456086 -0.079960999025 1.0 -0.268568214205 0.267074176854 0.206085652141 0.240607515188 0.162397059926 0.157058426461 0.16794719868 0.123759093977 0.194631365784 0.230365259131 0.13929798245 0.293927848196 0.226559663992 0.136624915623 0.115783394585 0.1199639991 0.245848646216 0.202371559289 0.192456311408 0.234119852996 0.164971124278 0.232699317483 0.0683852096302 0.192468311708 0.213090827271 0.202434560864 0.161261531538 0.21150678767 0.130410260257 0.249802745069 0.211625290632 0.187326183155 0.13632640816 0.174503862597 0.173630840771 0.155291382285 0.192318307958 0.174560864022 0.165637140929 0.15165079127 0.163903097577 0.20414760369 0.251983799595 0.18836720918 0.167540688517 0.170948773719 0.141137028426
5 | 11 -0.481545038626 -0.0441776044401 -0.268568214205 1.0 0.134253356334 0.186432160804 0.20337358434 0.26455561389 0.25555238881 0.322193054826 0.260735018375 0.353786844671 0.248616215405 0.280537013425 0.168887722193 0.212948323708 0.312904822621 0.234785869647 0.294787369684 0.246678166954 0.178802970074 0.272942323558 0.233437335933 0.297478436961 0.215523888097 0.245209630241 0.218555463887 0.292390309758 0.218139953499 0.211413785345 0.242374559364 0.330150753769 0.197137928448 0.193081827046 0.297847446186 0.252399309983 0.186943673592 0.206183154579 0.222979074477 0.238586964674 0.235757893947 0.166982674567 0.192547813695 0.208272706818 0.305140628516 0.201881047026 0.167474686867 0.129399234981 0.218990474762 0.276777919448
6 | 12 -0.477803945099 -0.098382959574 0.267074176854 0.134253356334 1.0 0.477925448136 0.262167554189 0.24400960024 0.0861531538288 0.106481662042 0.197895447386 0.172006300158 0.211553288832 0.238199954999 0.221668041701 0.135124878122 0.178178954474 0.195340883522 0.209549238731 0.253717842946 0.194938873472 0.229463736593 0.218585464637 0.305680642016 0.261540538513 0.190075751894 0.0751743793595 0.27599639991 0.184398109953 0.25147078677 0.23165679142 0.185865146629 0.195907897697 0.128670216755 0.17984999625 0.210461261532 0.0985164629116 0.168500712518 0.280363009075 0.190098252456 0.119461486537 0.261311032776 0.252585314633 0.157041926048 0.306088652216 0.188706217655 0.142227555689 0.152018300458 0.196402910073 0.169984249606
7 | 13 -0.459912997825 -0.116912922823 0.206085652141 0.186432160804 0.477925448136 1.0 0.22388959724 0.353167329183 0.10340358509 0.178355958899 0.245721143029 0.195349883747 0.188341708543 0.255387384685 0.144162604065 0.17547438686 0.233287332183 0.191310282757 0.257772444311 0.234535363384 0.172402310058 0.228749718743 0.217107927698 0.239440486012 0.285566639166 0.181278031951 0.186300157504 0.209501237531 0.312348308708 0.186658666467 0.251559288982 0.226573164329 0.215808895222 0.147128178204 0.201018525463 0.202496062402 0.152007800195 0.0929903247581 0.27554038851 0.195273381835 0.211002775069 0.296783919598 0.233003825096 0.224294607365 0.357938948474 0.23229880747 0.204246606165 0.157691442286 0.150012750319 0.244726618165
8 | 14 -0.435015375384 -0.102778069452 0.240607515188 0.20337358434 0.262167554189 0.22388959724 1.0 -0.00802670066752 0.109226730668 0.17543238581 0.178219455486 0.16078601965 0.221755043876 0.283861096527 0.299977499437 0.259312982825 0.216714917873 0.257817445436 0.114952373809 0.192672316808 0.14325358134 0.202737568439 0.216806420161 0.171412285307 0.254773869347 0.202539563489 0.214785869647 0.145253131328 0.175124878122 0.175699392485 0.186681167029 0.210140253506 0.258085952149 0.138079951999 0.193467336683 0.203199579989 0.249796744919 0.185334133353 0.183262581565 0.126823670592 0.194488862222 0.193110327758 0.158382959574 0.187173179329 0.268694217355 0.216450911273 0.178067951699 0.222115052876 0.162785569639 0.281510537763
9 | 15 -0.451682292057 -0.0942503562589 0.162397059926 0.26455561389 0.24400960024 0.353167329183 -0.00802670066752 1.0 0.15121878047 0.184251106278 0.264755118878 0.270117752944 0.202314557864 0.172595814895 0.141143028576 0.337938948474 0.247864696617 0.2004080102 0.32460361509 0.254046351159 0.207279681992 0.151413785345 0.2406720168 0.260376509413 0.292675316883 0.191241281032 0.227044176104 0.267762694067 0.228542713568 0.251484287107 0.243940598515 0.175807395185 0.301891547289 0.232169804245 0.209249231231 0.189178729468 0.192300307508 0.245518637966 0.190462761569 0.205641641041 0.224686117153 0.223162079052 0.30752118803 0.187596189905 0.217833945849 0.296471911798 0.239936998425 0.109940748519 0.192295807395 0.214022350559
10 | 16 -0.462215555389 -0.141291532288 0.157058426461 0.25555238881 0.0861531538288 0.10340358509 0.109226730668 0.15121878047 1.0 0.151833795845 0.218843471087 0.327059176479 0.201470036751 0.229870246756 0.209610740269 0.237938948474 0.286388659716 0.189144228606 0.264360609015 0.304281107028 0.253851346284 0.15192079802 0.291823295582 0.312282307058 0.197848946224 0.225347633691 0.325887647191 0.237754443861 0.149658741469 0.168458711468 0.194811370284 0.26802520063 0.313570839271 0.192378309458 0.247578189455 0.209241731043 0.263324083102 0.218390459761 0.226370659266 0.291766294157 0.190266256656 0.108026700668 0.240370509263 0.288965724143 0.290486762169 0.189949748744 0.249897247431 0.226409660242 0.120795019875 0.256956423911
11 | 17 -0.503771094277 -0.142893572339 0.16794719868 0.322193054826 0.106481662042 0.178355958899 0.17543238581 0.184251106278 0.151833795845 1.0 0.163066076652 0.235193879847 0.301288532213 0.265038625966 0.177166429161 0.144222605565 0.251833795845 0.25239480987 0.287410185255 0.26468161704 0.309324233106 0.228676216905 0.128274206855 0.24331358284 0.222122553064 0.318051451286 0.244518112953 0.281359033976 0.214124353109 0.18408760219 0.21592439811 0.26359558989 0.256023400585 0.271953798845 0.313129828246 0.285887647191 0.287741693542 0.292589814745 0.185688142204 0.230044251106 0.276561914048 0.176335408385 0.149816245406 0.245640141004 0.209121728043 0.148140703518 0.185290632266 0.186255156379 0.153708842721 0.266843171079
12 | 18 -0.444890122253 -0.0828290707268 0.123759093977 0.260735018375 0.197895447386 0.245721143029 0.178219455486 0.264755118878 0.218843471087 0.163066076652 1.0 0.267246681167 0.154748368709 0.201842046051 0.171164779119 0.174967374184 0.304359108978 0.265274131853 0.264869121728 0.263454586365 0.134110852771 0.220256506413 0.238867471687 0.232970824271 0.230840771019 0.142701567539 0.14791719793 0.24048601215 0.191526288157 0.164410110253 0.230419260482 0.224155103878 0.310176254406 0.163358583965 0.156711917798 0.160009000225 0.187788194705 0.264683117078 0.12809120228 0.167186679667 0.18036600915 0.192996324908 0.285778144454 0.163166579164 0.240625515638 0.263813095327 0.204593114828 0.250878271957 0.181426535663 0.245308632716
13 | 19 -0.534550363759 -0.260345008625 0.194631365784 0.353786844671 0.172006300158 0.195349883747 0.16078601965 0.270117752944 0.327059176479 0.235193879847 0.267246681167 1.0 0.340273006825 0.206294157354 0.282236555914 0.325644641116 0.273492837321 0.247048676217 0.274961374034 0.204690617265 0.242151053776 0.304383109578 0.227216680417 0.259384984625 0.343288082202 0.245127128178 0.264855621391 0.266016650416 0.0933188329708 0.246795169879 0.197965949149 0.240496512413 0.316057901448 0.192459311483 0.272111302783 0.247278181955 0.215379884497 0.337247431186 0.257119927998 0.345251631291 0.319422485562 0.183550588765 0.300082502063 0.254560864022 0.266928673217 0.246657166429 0.226121653041 0.17996999925 0.266133653341 0.296021900548
14 | 2 -0.462700067502 -0.196789919748 0.230365259131 0.248616215405 0.211553288832 0.188341708543 0.221755043876 0.202314557864 0.201470036751 0.301288532213 0.154748368709 0.340273006825 1.0 0.29526438161 0.238480462012 0.266417160429 0.229355733893 0.142328058201 0.245545638641 0.241356033901 0.28762319058 0.186900172504 0.215136878422 0.273873846846 0.205581639541 0.169258231456 0.235346883672 0.234970374259 0.139245481137 0.273237830946 0.168172204305 0.211538288457 0.223741093527 0.24455561389 0.329550738768 0.22843921098 0.22830120753 0.334566864172 0.141384534613 0.271038775969 0.230836270907 0.239593489837 0.180799519988 0.327986199655 0.3003720093 0.158829970749 0.164939623491 0.121122028051 0.101924548114 0.189621240531
15 | 20 -0.499320483012 -0.136864921623 0.13929798245 0.280537013425 0.238199954999 0.255387384685 0.283861096527 0.172595814895 0.229870246756 0.265038625966 0.201842046051 0.206294157354 0.29526438161 1.0 0.174416860422 0.189427735693 0.212451811295 0.29246081152 0.207422185555 0.285286132153 0.228388209705 0.188197704943 0.242338558464 0.278399459986 0.239554488862 0.318082952074 0.255544888622 0.161072526813 0.214536863422 0.203039075977 0.274769369234 0.294736368409 0.271124278107 0.193077326933 0.292247806195 0.211358283957 0.187927698192 0.122343058576 0.132808820221 0.269780244506 0.246418660467 0.304444611115 0.269363234081 0.23665641641 0.30842721068 0.193308332708 0.162163054076 0.226744168604 0.250213755344 0.242866571664
16 | 21 -0.452379809495 -0.0870096752419 0.293927848196 0.168887722193 0.221668041701 0.144162604065 0.299977499437 0.141143028576 0.209610740269 0.177166429161 0.171164779119 0.282236555914 0.238480462012 0.174416860422 1.0 0.26732918323 0.277092927323 0.233270831771 0.226520663017 0.234949373734 0.187726693167 0.200310507763 0.160513012825 0.225586139653 0.269117227931 0.259707492687 0.130027750694 0.178144453611 0.17130278257 0.245236630916 0.212181804545 0.194899872497 0.270702767569 0.216339908498 0.278379959499 0.181624540614 0.180073501838 0.190222755569 0.255706892672 0.159740493512 0.250054751369 0.164975624391 0.230696767419 0.241542038551 0.228365709143 0.196233405835 0.256525913148 0.156269406735 0.137998949974 0.205722643066
17 | 22 -0.442466061652 -0.138021450536 0.226559663992 0.212948323708 0.135124878122 0.17547438686 0.259312982825 0.337938948474 0.237938948474 0.144222605565 0.174967374184 0.325644641116 0.266417160429 0.189427735693 0.26732918323 1.0 0.146585164629 0.141266031651 0.181900547514 0.200154503863 0.20806720168 0.2407320183 0.262838070952 0.186877671942 0.197581939548 0.223064576614 0.266054151354 0.266345158629 0.198721968049 0.266258156454 0.193279831996 0.197356933923 0.28337358434 0.16393759844 0.234578864472 0.257898447461 0.249733743344 0.262722568064 0.178234455861 0.262908572714 0.19220280507 0.16366759169 0.246873171829 0.283844596115 0.25613440336 0.259971499287 0.115226880672 0.157766444161 0.165118127953 0.181840546014
18 | 23 -0.522637065927 -0.078451961299 0.136624915623 0.312904822621 0.178178954474 0.233287332183 0.216714917873 0.247864696617 0.286388659716 0.251833795845 0.304359108978 0.273492837321 0.229355733893 0.212451811295 0.277092927323 0.146585164629 1.0 0.307171679292 0.262913072827 0.280979524488 0.313963849096 0.196798919973 0.193492837321 0.255286882172 0.309928748219 0.229355733893 0.192187804695 0.222778069452 0.226348158704 0.187446186155 0.307189679742 0.221092027301 0.202694067352 0.190177754444 0.167138678467 0.249111227781 0.218694967374 0.258528463212 0.271521788045 0.206552163804 0.249295732393 0.230053251331 0.262421060527 0.312729318233 0.306267156679 0.270093752344 0.217745443636 0.167374184355 0.21156678917 0.358298957474
19 | 24 -0.489322733068 -0.103618090452 0.115783394585 0.234785869647 0.195340883522 0.191310282757 0.257817445436 0.2004080102 0.189144228606 0.25239480987 0.265274131853 0.247048676217 0.142328058201 0.29246081152 0.233270831771 0.141266031651 0.307171679292 1.0 0.311724293107 0.23945398635 0.226060151504 0.1799399985 0.266259656491 0.301747543689 0.194943373584 0.19998199955 0.188973224331 0.2198919973 0.20725718143 0.122163054076 0.274467861697 0.254328358209 0.257445436136 0.253738843471 0.239234980875 0.270765769144 0.171007275182 0.223196579914 0.250716267907 0.175126378159 0.205404635116 0.155915397885 0.200855021376 0.318906472662 0.298948473712 0.269519237981 0.217157428936 0.200952523813 0.157428935723 0.32839120978
20 | 25 -0.538936473412 -0.105722643066 0.1199639991 0.294787369684 0.209549238731 0.257772444311 0.114952373809 0.32460361509 0.264360609015 0.287410185255 0.264869121728 0.274961374034 0.245545638641 0.207422185555 0.226520663017 0.181900547514 0.262913072827 0.311724293107 1.0 0.310189754744 0.252672316808 0.233108827721 0.290825770644 0.250641266032 0.338184954624 0.122743568589 0.272360309008 0.257806945174 0.199473486837 0.127831695792 0.207155178879 0.283537088427 0.294521863047 0.261563039076 0.184864621616 0.213882847071 0.177337433436 0.299809495237 0.268071701793 0.277454436361 0.286073651841 0.22479561989 0.183868596715 0.231394284857 0.248149703743 0.183732093302 0.246157653941 0.173287332183 0.278489462237 0.354118352959
21 | 26 -0.523597089927 -0.0491577289432 0.245848646216 0.246678166954 0.253717842946 0.234535363384 0.192672316808 0.254046351159 0.304281107028 0.26468161704 0.263454586365 0.204690617265 0.241356033901 0.285286132153 0.234949373734 0.200154503863 0.280979524488 0.23945398635 0.310189754744 1.0 0.279750993775 0.214616365409 0.271005775144 0.296912922823 0.229804245106 0.206316657916 0.279792994825 0.222323558089 0.241182029551 0.279737493437 0.260994524863 0.255399384985 0.261191029776 0.235078376959 0.234079351984 0.218124953124 0.21279081977 0.289357233931 0.234602865072 0.239186979674 0.175268881722 0.253636840921 0.226702167554 0.199015975399 0.328689717243 0.259660991525 0.216965424136 0.133788344709 0.214631365784 0.251085277132
22 | 27 -0.459629490737 -0.0550768769219 0.202371559289 0.178802970074 0.194938873472 0.172402310058 0.14325358134 0.207279681992 0.253851346284 0.309324233106 0.134110852771 0.242151053776 0.28762319058 0.228388209705 0.187726693167 0.20806720168 0.313963849096 0.226060151504 0.252672316808 0.279750993775 1.0 0.149096227406 0.198732468312 0.15934598365 0.169124728118 0.204068101703 0.207537688442 0.158849471237 0.212828320708 0.135819395485 0.241963549089 0.151116777919 0.356864921623 0.217872946824 0.230740268507 0.225556138903 0.277131928298 0.194635865897 0.199266481662 0.249462236556 0.221228530713 0.136749418735 0.147396684917 0.201387534688 0.157476936923 0.190977274432 0.264912622816 0.189472736818 0.195138378459 0.257538438461
23 | 28 -0.455291382285 -0.141041026026 0.192456311408 0.272942323558 0.229463736593 0.228749718743 0.202737568439 0.151413785345 0.15192079802 0.228676216905 0.220256506413 0.304383109578 0.186900172504 0.188197704943 0.200310507763 0.2407320183 0.196798919973 0.1799399985 0.233108827721 0.214616365409 0.149096227406 1.0 0.195931898297 0.206091652291 0.246345158629 0.197727443186 0.115871896797 0.261218030451 0.228236705918 0.255549388735 0.185970149254 0.19631440786 0.230608265207 0.200439510988 0.246340658516 0.15602640066 0.181411535288 0.123786094652 0.25654841371 0.245575639391 0.285002625066 0.197539938498 0.118420460512 0.166186154654 0.249825245631 0.256347408685 0.176957923948 0.202890572264 0.15609240231 0.187426685667
24 | 29 -0.510083252081 -0.146769669242 0.234119852996 0.233437335933 0.218585464637 0.217107927698 0.216806420161 0.2406720168 0.291823295582 0.128274206855 0.238867471687 0.227216680417 0.215136878422 0.242338558464 0.160513012825 0.262838070952 0.193492837321 0.266259656491 0.290825770644 0.271005775144 0.198732468312 0.195931898297 1.0 0.338414460362 0.202440561014 0.110077251931 0.332333308333 0.230879771994 0.258712967824 0.165715142879 0.202934073352 0.296888922223 0.220040501013 0.158751968799 0.213492837321 0.187068176704 0.239944498612 0.308443711093 0.159960999025 0.257188929723 0.230210755269 0.205502137553 0.180316507913 0.274469361734 0.346336158404 0.275066376659 0.168677716943 0.271778294457 0.220297007425 0.273105827646
25 | 3 -0.543784594615 -0.121033525838 0.164971124278 0.297478436961 0.305680642016 0.239440486012 0.171412285307 0.260376509413 0.312282307058 0.24331358284 0.232970824271 0.259384984625 0.273873846846 0.278399459986 0.225586139653 0.186877671942 0.255286882172 0.301747543689 0.250641266032 0.296912922823 0.15934598365 0.206091652291 0.338414460362 1.0 0.25145278632 0.202995574889 0.285632640816 0.301137028426 0.210759768994 0.281171529288 0.250510762769 0.234529363234 0.223933098327 0.271955298882 0.346438160954 0.218667966699 0.181357533938 0.236162904073 0.204113102828 0.213041326033 0.234137853446 0.22421360534 0.222371559289 0.331031275782 0.297439435986 0.186066151654 0.231851796295 0.177620940524 0.22831320783 0.233248331208
26 | 30 -0.506460661517 -0.115745893647 0.232699317483 0.215523888097 0.261540538513 0.285566639166 0.254773869347 0.292675316883 0.197848946224 0.222122553064 0.230840771019 0.343288082202 0.205581639541 0.239554488862 0.269117227931 0.197581939548 0.309928748219 0.194943373584 0.338184954624 0.229804245106 0.169124728118 0.246345158629 0.202440561014 0.25145278632 1.0 0.20734118353 0.190207755194 0.256479411985 0.154068851721 0.179680492012 0.175781894547 0.266586664667 0.315927398185 0.128221705543 0.201681542039 0.162755568889 0.21279681992 0.266990174754 0.235820895522 0.173155328883 0.276791419785 0.0959558988975 0.246559663992 0.20358958974 0.286688667217 0.209541738543 0.278199954999 0.217757443936 0.233414835371 0.308026700668
27 | 31 -0.439626490662 -0.138072451811 0.0683852096302 0.245209630241 0.190075751894 0.181278031951 0.202539563489 0.191241281032 0.225347633691 0.318051451286 0.142701567539 0.245127128178 0.169258231456 0.318082952074 0.259707492687 0.223064576614 0.229355733893 0.19998199955 0.122743568589 0.206316657916 0.204068101703 0.197727443186 0.110077251931 0.202995574889 0.20734118353 1.0 0.117857946449 0.182281557039 0.212303307583 0.20744318608 0.195577889447 0.188682217055 0.199848496212 0.187041176029 0.214034350859 0.174748368709 0.274160354009 0.179797494937 0.106904672617 0.185040126003 0.167768694217 0.194977874447 0.283322583065 0.244618615465 0.254812870322 0.138241956049 0.0925373134328 0.177179929498 0.180852021301 0.18439360984
28 | 32 -0.466178654466 -0.177745443636 0.192468311708 0.218555463887 0.0751743793595 0.186300157504 0.214785869647 0.227044176104 0.325887647191 0.244518112953 0.14791719793 0.264855621391 0.235346883672 0.255544888622 0.130027750694 0.266054151354 0.192187804695 0.188973224331 0.272360309008 0.279792994825 0.207537688442 0.115871896797 0.332333308333 0.285632640816 0.190207755194 0.117857946449 1.0 0.227816695417 0.136807920198 0.20748518713 0.198240456011 0.262865071627 0.23677041926 0.169582239556 0.225770644266 0.229052726318 0.305004125103 0.305988149704 0.233974349359 0.277895447386 0.136287407185 0.202545563639 0.182433060827 0.226462161554 0.338774469362 0.196113402835 0.170144753619 0.159021975549 0.270162754069 0.251037275932
29 | 33 -0.504110102753 -0.00582464561614 0.213090827271 0.292390309758 0.27599639991 0.209501237531 0.145253131328 0.267762694067 0.237754443861 0.281359033976 0.24048601215 0.266016650416 0.234970374259 0.161072526813 0.178144453611 0.266345158629 0.222778069452 0.2198919973 0.257806945174 0.222323558089 0.158849471237 0.261218030451 0.230879771994 0.301137028426 0.256479411985 0.182281557039 0.227816695417 1.0 0.212648316208 0.377005925148 0.201899047476 0.20427360684 0.328449711243 0.165827645691 0.286358658966 0.256785419635 0.180097502438 0.245317632941 0.306442661067 0.197196429911 0.200121503038 0.158798469962 0.2397119928 0.174266856671 0.305830645766 0.245544138603 0.236071401785 0.228278706968 0.188821720543 0.238648466212
30 | 34 -0.382341558539 -0.0386019650491 0.202434560864 0.218139953499 0.184398109953 0.312348308708 0.175124878122 0.228542713568 0.149658741469 0.214124353109 0.191526288157 0.0933188329708 0.139245481137 0.214536863422 0.17130278257 0.198721968049 0.226348158704 0.20725718143 0.199473486837 0.241182029551 0.212828320708 0.228236705918 0.258712967824 0.210759768994 0.154068851721 0.212303307583 0.136807920198 0.212648316208 1.0 0.0962589064727 0.287380184505 0.151335783395 0.227924698117 0.205218630466 0.233500337508 0.230402760069 0.185773644341 0.117356933923 0.173270831771 0.204980124503 0.179356483912 0.211361284032 0.171101777544 0.17255081377 0.209775744394 0.207690692267 0.201830045751 0.193194329858 0.144773119328 0.255126378159
31 | 35 -0.41214880372 -0.0645961149029 0.161261531538 0.211413785345 0.25147078677 0.186658666467 0.175699392485 0.251484287107 0.168458711468 0.18408760219 0.164410110253 0.246795169879 0.273237830946 0.203039075977 0.245236630916 0.266258156454 0.187446186155 0.122163054076 0.127831695792 0.279737493437 0.135819395485 0.255549388735 0.165715142879 0.281171529288 0.179680492012 0.20744318608 0.20748518713 0.377005925148 0.0962589064727 1.0 0.257791944799 0.152115802895 0.154487362184 0.21275481887 0.157043426086 0.218432460812 0.18427360684 0.252487812195 0.254844371109 0.195495387385 0.154460361509 0.268362709068 0.176185404635 0.233107327683 0.325248631216 0.205959648991 0.199087977199 0.214236855921 0.232019800495 0.162335558389
32 | 36 -0.49263481587 -0.0929048226206 0.21150678767 0.242374559364 0.23165679142 0.251559288982 0.186681167029 0.243940598515 0.194811370284 0.21592439811 0.230419260482 0.197965949149 0.168172204305 0.274769369234 0.212181804545 0.193279831996 0.307189679742 0.274467861697 0.207155178879 0.260994524863 0.241963549089 0.185970149254 0.202934073352 0.250510762769 0.175781894547 0.195577889447 0.198240456011 0.201899047476 0.287380184505 0.257791944799 1.0 0.26466961674 0.266864171604 0.111263781595 0.22448961224 0.242451061277 0.238963474087 0.191979299482 0.224767119178 0.184470111753 0.17568439211 0.219914497862 0.27167479187 0.226249156229 0.268616215405 0.262145053626 0.305389634741 0.254500862522 0.131413785345 0.291910297757
33 | 37 -0.479161479037 -0.136384909623 0.130410260257 0.330150753769 0.185865146629 0.226573164329 0.210140253506 0.175807395185 0.26802520063 0.26359558989 0.224155103878 0.240496512413 0.211538288457 0.294736368409 0.194899872497 0.197356933923 0.221092027301 0.254328358209 0.283537088427 0.255399384985 0.151116777919 0.19631440786 0.296888922223 0.234529363234 0.266586664667 0.188682217055 0.262865071627 0.20427360684 0.151335783395 0.152115802895 0.26466961674 1.0 0.177755943899 0.137223430586 0.226034650866 0.167530188255 0.186241656041 0.320784519613 0.247123678092 0.217880447011 0.251814295357 0.262721068027 0.206769669242 0.205383634591 0.228254706368 0.202985074627 0.221717542939 0.215838895972 0.251140778519 0.261063526588
34 | 38 -0.51575639391 -0.198417460437 0.249802745069 0.197137928448 0.195907897697 0.215808895222 0.258085952149 0.301891547289 0.313570839271 0.256023400585 0.310176254406 0.316057901448 0.223741093527 0.271124278107 0.270702767569 0.28337358434 0.202694067352 0.257445436136 0.294521863047 0.261191029776 0.356864921623 0.230608265207 0.220040501013 0.223933098327 0.315927398185 0.199848496212 0.23677041926 0.328449711243 0.227924698117 0.154487362184 0.266864171604 0.177755943899 1.0 0.246258156454 0.176167404185 0.241023025576 0.272453311333 0.246697667442 0.21161479037 0.229775744394 0.238756468912 0.158693467337 0.306343658591 0.216057901448 0.232691817295 0.209655741394 0.288164704118 0.251329783245 0.171251781295 0.357421435536
35 | 39 -0.427194179854 -0.0872421810545 0.211625290632 0.193081827046 0.128670216755 0.147128178204 0.138079951999 0.232169804245 0.192378309458 0.271953798845 0.163358583965 0.192459311483 0.24455561389 0.193077326933 0.216339908498 0.16393759844 0.190177754444 0.253738843471 0.261563039076 0.235078376959 0.217872946824 0.200439510988 0.158751968799 0.271955298882 0.128221705543 0.187041176029 0.169582239556 0.165827645691 0.205218630466 0.21275481887 0.111263781595 0.137223430586 0.246258156454 1.0 0.338682967074 0.186808670217 0.198783469587 0.14774319358 0.188713717843 0.137062926573 0.154245856146 0.226807170179 0.121434035851 0.227149178729 0.293336833421 0.24444161104 0.16402160054 0.14423160579 0.213401335033 0.18017400435
36 | 4 -0.518253956349 -0.109667741694 0.187326183155 0.297847446186 0.17984999625 0.201018525463 0.193467336683 0.209249231231 0.247578189455 0.313129828246 0.156711917798 0.272111302783 0.329550738768 0.292247806195 0.278379959499 0.234578864472 0.167138678467 0.239234980875 0.184864621616 0.234079351984 0.230740268507 0.246340658516 0.213492837321 0.346438160954 0.201681542039 0.214034350859 0.225770644266 0.286358658966 0.233500337508 0.157043426086 0.22448961224 0.226034650866 0.176167404185 0.338682967074 1.0 0.214779869497 0.164233105828 0.264359108978 0.210287257181 0.236725418135 0.26457961449 0.188821720543 0.147285682142 0.284203105078 0.294842871072 0.361233030826 0.203594089852 0.227345683642 0.182820070502 0.148017700443
37 | 40 -0.428616215405 -0.156495912398 0.13632640816 0.252399309983 0.210461261532 0.202496062402 0.203199579989 0.189178729468 0.209241731043 0.285887647191 0.160009000225 0.247278181955 0.22843921098 0.211358283957 0.181624540614 0.257898447461 0.249111227781 0.270765769144 0.213882847071 0.218124953124 0.225556138903 0.15602640066 0.187068176704 0.218667966699 0.162755568889 0.174748368709 0.229052726318 0.256785419635 0.230402760069 0.218432460812 0.242451061277 0.167530188255 0.241023025576 0.186808670217 0.214779869497 1.0 0.193456836421 0.172567314183 0.270126753169 0.253446336158 0.186562664067 0.263459086477 0.267051676292 0.184866121653 0.257403435086 0.242176554414 0.139176479412 0.183549088727 0.157415435386 0.251394284857
38 | 41 -0.415196879922 -0.118756468912 0.174503862597 0.186943673592 0.0985164629116 0.152007800195 0.249796744919 0.192300307508 0.263324083102 0.287741693542 0.187788194705 0.215379884497 0.22830120753 0.187927698192 0.180073501838 0.249733743344 0.218694967374 0.171007275182 0.177337433436 0.21279081977 0.277131928298 0.181411535288 0.239944498612 0.181357533938 0.21279681992 0.274160354009 0.305004125103 0.180097502438 0.185773644341 0.18427360684 0.238963474087 0.186241656041 0.272453311333 0.198783469587 0.164233105828 0.193456836421 1.0 0.193012825321 0.0977859446486 0.222352058801 0.177599939998 0.130080252006 0.174161854046 0.230746268657 0.205344633616 0.227483687092 0.186546163654 0.214169354234 0.153032325808 0.230777769444
39 | 42 -0.497389934748 -0.181578039451 0.173630840771 0.206183154579 0.168500712518 0.0929903247581 0.185334133353 0.245518637966 0.218390459761 0.292589814745 0.264683117078 0.337247431186 0.334566864172 0.122343058576 0.190222755569 0.262722568064 0.258528463212 0.223196579914 0.299809495237 0.289357233931 0.194635865897 0.123786094652 0.308443711093 0.236162904073 0.266990174754 0.179797494937 0.305988149704 0.245317632941 0.117356933923 0.252487812195 0.191979299482 0.320784519613 0.246697667442 0.14774319358 0.264359108978 0.172567314183 0.193012825321 1.0 0.203894097352 0.229600240006 0.180993024826 0.221954548864 0.250839270982 0.236455411385 0.213557338933 0.254470861772 0.172013800345 0.110386259656 0.157295432386 0.246928673217
40 | 43 -0.446618165454 -0.0465206630166 0.155291382285 0.222979074477 0.280363009075 0.27554038851 0.183262581565 0.190462761569 0.226370659266 0.185688142204 0.12809120228 0.257119927998 0.141384534613 0.132808820221 0.255706892672 0.178234455861 0.271521788045 0.250716267907 0.268071701793 0.234602865072 0.199266481662 0.25654841371 0.159960999025 0.204113102828 0.235820895522 0.106904672617 0.233974349359 0.306442661067 0.173270831771 0.254844371109 0.224767119178 0.247123678092 0.21161479037 0.188713717843 0.210287257181 0.270126753169 0.0977859446486 0.203894097352 1.0 0.21219680492 0.26321158029 0.308392709818 0.264827120678 0.212816320408 0.28474161854 0.204216605415 0.227254181355 0.151989799745 0.25228080702 0.232415810395
41 | 44 -0.446862671567 -0.098379959499 0.192318307958 0.238586964674 0.190098252456 0.195273381835 0.126823670592 0.205641641041 0.291766294157 0.230044251106 0.167186679667 0.345251631291 0.271038775969 0.269780244506 0.159740493512 0.262908572714 0.206552163804 0.175126378159 0.277454436361 0.239186979674 0.249462236556 0.245575639391 0.257188929723 0.213041326033 0.173155328883 0.185040126003 0.277895447386 0.197196429911 0.204980124503 0.195495387385 0.184470111753 0.217880447011 0.229775744394 0.137062926573 0.236725418135 0.253446336158 0.222352058801 0.229600240006 0.21219680492 1.0 0.171238280957 0.305809645241 0.229481737043 0.130828770719 0.235628890722 0.147195679892 0.182550063752 0.188578714468 0.207126678167 0.233783844596
42 | 45 -0.465368634216 -0.115225380635 0.174560864022 0.235757893947 0.119461486537 0.211002775069 0.194488862222 0.224686117153 0.190266256656 0.276561914048 0.18036600915 0.319422485562 0.230836270907 0.246418660467 0.250054751369 0.19220280507 0.249295732393 0.205404635116 0.286073651841 0.175268881722 0.221228530713 0.285002625066 0.230210755269 0.234137853446 0.276791419785 0.167768694217 0.136287407185 0.200121503038 0.179356483912 0.154460361509 0.17568439211 0.251814295357 0.238756468912 0.154245856146 0.26457961449 0.186562664067 0.177599939998 0.180993024826 0.26321158029 0.171238280957 1.0 0.241950048751 0.206199654991 0.243156078902 0.270774769369 0.229558238956 0.281932048301 0.202625065627 0.202374559364 0.189042226056
43 | 46 -0.453071326783 -0.0932993324833 0.165637140929 0.166982674567 0.261311032776 0.296783919598 0.193110327758 0.223162079052 0.108026700668 0.176335408385 0.192996324908 0.183550588765 0.239593489837 0.304444611115 0.164975624391 0.16366759169 0.230053251331 0.155915397885 0.22479561989 0.253636840921 0.136749418735 0.197539938498 0.205502137553 0.22421360534 0.0959558988975 0.194977874447 0.202545563639 0.158798469962 0.211361284032 0.268362709068 0.219914497862 0.262721068027 0.158693467337 0.226807170179 0.188821720543 0.263459086477 0.130080252006 0.221954548864 0.308392709818 0.305809645241 0.241950048751 1.0 0.248854721368 0.231499287482 0.223466586665 0.213971349284 0.113639840996 0.163744093602 0.273111827796 0.221459536488
44 | 47 -0.461731043276 -0.119912997825 0.15165079127 0.192547813695 0.252585314633 0.233003825096 0.158382959574 0.30752118803 0.240370509263 0.149816245406 0.285778144454 0.300082502063 0.180799519988 0.269363234081 0.230696767419 0.246873171829 0.262421060527 0.200855021376 0.183868596715 0.226702167554 0.147396684917 0.118420460512 0.180316507913 0.222371559289 0.246559663992 0.283322583065 0.182433060827 0.2397119928 0.171101777544 0.176185404635 0.27167479187 0.206769669242 0.306343658591 0.121434035851 0.147285682142 0.267051676292 0.174161854046 0.250839270982 0.264827120678 0.229481737043 0.206199654991 0.248854721368 1.0 0.215030375759 0.186249156229 0.265622140554 0.248148203705 0.237505437636 0.185448136203 0.201699542489
45 | 48 -0.462691067277 -0.108881722043 0.163903097577 0.208272706818 0.157041926048 0.224294607365 0.187173179329 0.187596189905 0.288965724143 0.245640141004 0.163166579164 0.254560864022 0.327986199655 0.23665641641 0.241542038551 0.283844596115 0.312729318233 0.318906472662 0.231394284857 0.199015975399 0.201387534688 0.166186154654 0.274469361734 0.331031275782 0.20358958974 0.244618615465 0.226462161554 0.174266856671 0.17255081377 0.233107327683 0.226249156229 0.205383634591 0.216057901448 0.227149178729 0.284203105078 0.184866121653 0.230746268657 0.236455411385 0.212816320408 0.130828770719 0.243156078902 0.231499287482 0.215030375759 1.0 0.347650191255 0.254668866722 0.179444986125 0.145143628591 0.169916747919 0.268968724218
46 | 49 -0.569405235131 -0.0646336158404 0.20414760369 0.305140628516 0.306088652216 0.357938948474 0.268694217355 0.217833945849 0.290486762169 0.209121728043 0.240625515638 0.266928673217 0.3003720093 0.30842721068 0.228365709143 0.25613440336 0.306267156679 0.298948473712 0.248149703743 0.328689717243 0.157476936923 0.249825245631 0.346336158404 0.297439435986 0.286688667217 0.254812870322 0.338774469362 0.305830645766 0.209775744394 0.325248631216 0.268616215405 0.228254706368 0.232691817295 0.293336833421 0.294842871072 0.257403435086 0.205344633616 0.213557338933 0.28474161854 0.235628890722 0.270774769369 0.223466586665 0.186249156229 0.347650191255 1.0 0.233003825096 0.161675541889 0.304969624241 0.290329258231 0.314911872797
47 | 5 -0.490699767494 -0.113150828771 0.251983799595 0.201881047026 0.188706217655 0.23229880747 0.216450911273 0.296471911798 0.189949748744 0.148140703518 0.263813095327 0.246657166429 0.158829970749 0.193308332708 0.196233405835 0.259971499287 0.270093752344 0.269519237981 0.183732093302 0.259660991525 0.190977274432 0.256347408685 0.275066376659 0.186066151654 0.209541738543 0.138241956049 0.196113402835 0.245544138603 0.207690692267 0.205959648991 0.262145053626 0.202985074627 0.209655741394 0.24444161104 0.361233030826 0.242176554414 0.227483687092 0.254470861772 0.204216605415 0.147195679892 0.229558238956 0.213971349284 0.265622140554 0.254668866722 0.233003825096 1.0 0.226067651691 0.210056251406 0.170438760969 0.245508137703
48 | 6 -0.453116327908 -0.134850371259 0.18836720918 0.167474686867 0.142227555689 0.204246606165 0.178067951699 0.239936998425 0.249897247431 0.185290632266 0.204593114828 0.226121653041 0.164939623491 0.162163054076 0.256525913148 0.115226880672 0.217745443636 0.217157428936 0.246157653941 0.216965424136 0.264912622816 0.176957923948 0.168677716943 0.231851796295 0.278199954999 0.0925373134328 0.170144753619 0.236071401785 0.201830045751 0.199087977199 0.305389634741 0.221717542939 0.288164704118 0.16402160054 0.203594089852 0.139176479412 0.186546163654 0.172013800345 0.227254181355 0.182550063752 0.281932048301 0.113639840996 0.248148203705 0.179444986125 0.161675541889 0.226067651691 1.0 0.211826295657 0.130363759094 0.228806720168
49 | 7 -0.40751518788 -0.00417310432761 0.167540688517 0.129399234981 0.152018300458 0.157691442286 0.222115052876 0.109940748519 0.226409660242 0.186255156379 0.250878271957 0.17996999925 0.121122028051 0.226744168604 0.156269406735 0.157766444161 0.167374184355 0.200952523813 0.173287332183 0.133788344709 0.189472736818 0.202890572264 0.271778294457 0.177620940524 0.217757443936 0.177179929498 0.159021975549 0.228278706968 0.193194329858 0.214236855921 0.254500862522 0.215838895972 0.251329783245 0.14423160579 0.227345683642 0.183549088727 0.214169354234 0.110386259656 0.151989799745 0.188578714468 0.202625065627 0.163744093602 0.237505437636 0.145143628591 0.304969624241 0.210056251406 0.211826295657 1.0 0.179662491562 0.250536263407
50 | 8 -0.427173179329 -0.0534403360084 0.170948773719 0.218990474762 0.196402910073 0.150012750319 0.162785569639 0.192295807395 0.120795019875 0.153708842721 0.181426535663 0.266133653341 0.101924548114 0.250213755344 0.137998949974 0.165118127953 0.21156678917 0.157428935723 0.278489462237 0.214631365784 0.195138378459 0.15609240231 0.220297007425 0.22831320783 0.233414835371 0.180852021301 0.270162754069 0.188821720543 0.144773119328 0.232019800495 0.131413785345 0.251140778519 0.171251781295 0.213401335033 0.182820070502 0.157415435386 0.153032325808 0.157295432386 0.25228080702 0.207126678167 0.202374559364 0.273111827796 0.185448136203 0.169916747919 0.290329258231 0.170438760969 0.130363759094 0.179662491562 1.0 0.250872271807
51 | 9 -0.515547888697 -0.177235430886 0.141137028426 0.276777919448 0.169984249606 0.244726618165 0.281510537763 0.214022350559 0.256956423911 0.266843171079 0.245308632716 0.296021900548 0.189621240531 0.242866571664 0.205722643066 0.181840546014 0.358298957474 0.32839120978 0.354118352959 0.251085277132 0.257538438461 0.187426685667 0.273105827646 0.233248331208 0.308026700668 0.18439360984 0.251037275932 0.238648466212 0.255126378159 0.162335558389 0.291910297757 0.261063526588 0.357421435536 0.18017400435 0.148017700443 0.251394284857 0.230777769444 0.246928673217 0.232415810395 0.233783844596 0.189042226056 0.221459536488 0.201699542489 0.268968724218 0.314911872797 0.245508137703 0.228806720168 0.250536263407 0.250872271807 1.0
52 |
--------------------------------------------------------------------------------
/example/pvals/perm_cor_3.txt:
--------------------------------------------------------------------------------
1 | OTU_id 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 6 7 8 9
2 | 0 1.0 0.0452525066401 -0.0984763317111 -0.0190124781238 0.00364481951434 0.00144879733854 0.0241500798772 -0.0393306168393 -0.0664830936076 -0.0819005105424 0.0379576303656 0.0144434301463 0.00596420567005 -0.0280303558193 0.0136690808943 0.0658631278688 -0.0239035193879 0.0134708334048 0.097205671031 -0.0258864778142 -0.0795847378025 0.0586110475794 -0.0563500349019 0.0162184818118 -0.0304521244068 -0.0699598009673 0.0231100486196 0.0389637085335 0.0830728785413 0.023239456459 0.0240376005522 -0.0105497167897 0.0409370604159 -0.0826713578045 -0.00728651276769 0.0351410610141 0.0507496028031 0.0564237898378 0.039265722542 0.0339104770252 -0.0498953576915 0.0791177834679 0.0126817003821 0.0584315130496 0.0826904907874 -0.0934883694851 -0.0953806212813 -0.0263585207442 -0.00129780089958 -0.0498132753726
3 | 1 0.0452525066401 1.0 0.0589820477675 0.031859029046 0.0163248246166 -0.0193877749128 -0.127234186708 0.0681852119805 0.0196524351352 -0.0141672409829 -0.0051220436111 -0.0219457527933 0.0487185699809 -0.0230163976024 0.00049281757552 0.0197803557101 -0.0108573371799 0.0721198655439 0.0350754928994 0.0265402232696 0.0202047327287 -0.0412994177463 -0.0987659938317 0.00142507127801 -0.00773654496602 -0.0110556315273 -0.0579215042024 0.0649929953141 0.050606372696 -0.0182690709449 -0.0688049602607 0.0153006907404 0.00702033027401 -0.0110164148927 0.0372594727958 -0.124560104762 0.0159092204213 0.0744813656578 0.0112584344883 -0.0942326264432 -0.0658527434856 0.0999783848592 -0.0308441366423 0.093776472736 0.00434062857562 0.0543607018494 0.204529002002 -0.0798797797159 0.0297762194372 0.0228741977176
4 | 10 -0.0984763317111 0.0589820477675 1.0 -0.0499859396044 -0.0733423157118 -0.0162474836206 0.0035217115422 0.017415874759 0.0538537830232 -0.00328837383713 -0.0462569970363 0.0460813681635 0.0376494799835 -0.0537856199556 0.0621677835538 0.0401128250852 0.21290098095 0.0190358653037 0.0199517981628 0.0385926976687 0.0698141666938 -0.0872291051318 -0.0419200333563 -0.0368265088675 -0.0156098615044 -0.00533296851861 0.114331991455 0.0565027436733 -0.00883067283876 -0.0167522244526 -0.122156863208 -0.0202435864904 -0.0788426516251 -0.00528731587067 -0.0592456978658 -0.0562403996227 -0.0804062554269 0.045440977678 0.0323831997072 0.0300688300792 -0.0254562596583 -0.0530407185839 0.119763295482 0.0430268598084 0.137832628772 -0.0328267922838 0.0477946945781 0.0626036294486 -0.00775196843427 0.029160283937
5 | 11 -0.0190124781238 0.031859029046 -0.0499859396044 1.0 -0.0228392771008 -0.0322531990855 -0.00642866590792 -0.0799861640604 0.0174296124644 0.062486122684 0.0379135592928 0.0227593075356 -0.0208248411744 -0.0297203745634 -0.0567276659296 -0.109220911386 0.0582757871051 -0.0466719929103 0.0179783336703 0.00861974618816 0.0289109969931 0.0730095274979 0.0731558296685 -0.00544080077084 -0.0656518186891 -0.013935078331 0.00736449565374 -0.118232153038 -0.0301353719942 0.0822913158199 0.0851152622158 -0.0164624891776 0.148694594072 0.0997653138106 -0.0737821322655 -0.0116475287891 0.0418188218984 0.0425796172737 0.0186086023644 -0.0210586099623 0.0608823790982 -0.0139088831551 -0.0192875632216 -0.0120910535892 -0.0784123444111 -0.0340436705434 0.016351074033 -0.0257004894573 -0.0302872728073 -0.0822723749486
6 | 12 0.00364481951434 0.0163248246166 -0.0733423157118 -0.0228392771008 1.0 -0.0130433463607 0.0468741886921 -0.0379918584394 -0.0815314709998 -0.00838818624724 0.146262518552 -0.0644286482348 0.0303290685726 0.0149348851507 -0.0959614556717 -0.0434746794674 0.0464578695132 -0.112336277489 -0.0401734724433 0.0765277935395 -0.112431193575 -0.000548447131803 -0.00313434264238 0.0200592744362 -0.126212285785 0.0465075541703 0.0873710423996 0.0131721458958 0.0237433053832 0.109081310555 -0.0134388457191 -0.0240517245421 -0.0110827531378 0.0807809406974 0.0324249807576 0.0466312328278 0.0166191546204 0.00905952843739 0.0313886957995 0.016757574857 0.0472597053984 -0.0549598065086 -0.0163897718588 -0.0557437071005 -0.0503626781245 -0.0447644384243 0.0153196535499 0.0821207328311 -0.036524347993 0.0648548816723
7 | 13 0.00144879733854 -0.0193877749128 -0.0162474836206 -0.0322531990855 -0.0130433463607 1.0 -0.0317798988121 0.092762259779 0.0732157964535 -0.02827330035 -0.0891499240282 -0.0609790656805 -0.0697270315689 -0.0434354269841 -0.0217466997241 -0.04028709967 -0.156372085651 -0.0212923655131 0.0458131058973 0.108697837097 -0.0319297023131 -0.0104970298359 0.0524177383498 0.0328221802306 -0.000747936671113 0.0644561148696 0.0217697136812 -0.0433854292062 -0.0163638452381 0.0609480608346 0.0437494086189 -0.0161700628537 0.00395337233788 0.0348817209742 0.107404259378 0.0245304663211 -0.028610136147 0.141676058386 0.00966890124802 -0.0261978971607 0.00911987683561 -0.0157461728416 0.0932540401372 -0.0275136622828 -0.0409013911248 0.0459678334757 -0.0739062308216 -0.0344720093231 0.00306717929876 0.0212455876701
8 | 14 0.0241500798772 -0.127234186708 0.0035217115422 -0.00642866590792 0.0468741886921 -0.0317798988121 1.0 -0.0668985898973 0.0900303744478 -0.0581754186983 0.0586800066987 0.0767376757371 -0.07381002567 0.0122058231954 -0.0397182514631 -0.039142792927 -0.0234140514219 0.071889918749 0.0325599652829 -0.0571819877557 -0.0262275631783 0.0338855138853 -0.0044804394005 -0.0589003388047 0.0598784903221 -0.113962236372 -0.0236301197911 -0.0813809707983 0.0129136897724 0.0389135151349 -0.0243779544494 0.0617129104662 -0.0310487811784 0.0738444631662 -0.0875231830312 -0.0190899182686 -0.0701955971782 0.0414269762424 -0.0149378204976 0.122928892484 0.0338902572299 -0.0220382966707 0.0418314449373 0.100291304879 -0.0504130208191 0.16294192469 0.0187659776184 0.044787217225 -0.0340863204982 -0.0465372459566
9 | 15 -0.0393306168393 0.0681852119805 0.017415874759 -0.0799861640604 -0.0379918584394 0.092762259779 -0.0668985898973 1.0 0.018320104536 0.0520108949803 0.00323950399751 -0.0797101909848 -0.0778425334049 -0.00203133931168 0.108472940167 -0.0504998388552 0.00713867424671 0.00424722376722 -0.0587794015988 -0.00528132843109 0.0574396503892 -0.0192954485094 -0.0680320579772 0.015505530002 0.0648678139156 -0.0402084422323 -0.0463028991961 -0.00561424176221 -0.0325345433111 -0.0408153110095 0.0159562922902 -0.0245362118782 -0.0460102565473 0.0286667706231 0.0928014442791 0.0118217072415 0.0156801377518 -0.0244520815097 0.0198408283747 -0.072262235353 -0.0292010573171 0.02552087501 0.0976985044968 -0.0408849359694 -0.0017864836942 -0.00974272808439 -0.0611057075926 0.0766447057194 -0.00134563346515 0.0950092795652
10 | 16 -0.0664830936076 0.0196524351352 0.0538537830232 0.0174296124644 -0.0815314709998 0.0732157964535 0.0900303744478 0.018320104536 1.0 -0.00970198206367 -0.0444992359508 0.0463487508251 -0.074280554142 0.0813885881851 0.00920878116186 0.104711203492 -0.0850669160655 -0.0244818551223 0.0956972322509 0.0133595986144 -0.0105002004436 0.0604155623548 -0.0093389989731 -0.0173734210449 0.0453743251075 -0.0756844868004 -0.0364948757827 0.233306115269 -0.085410744056 -0.00931789068721 -0.0616975766014 -0.114772733577 -0.0211573477542 -0.0397547879808 -0.0232610205929 -0.0417873122141 0.0162787942366 0.0178814182304 -0.0809892483051 0.0714602267206 0.0301209217816 -0.056655777254 0.0371496553036 0.00317249708371 -0.0268533990357 0.0138332338274 0.063947319199 0.0304766623772 -0.0227740246582 0.045955873802
11 | 17 -0.0819005105424 -0.0141672409829 -0.00328837383713 0.062486122684 -0.00838818624724 -0.02827330035 -0.0581754186983 0.0520108949803 -0.00970198206367 1.0 0.0130098200745 0.107676232872 -0.0577750230109 -0.0326900285793 -0.0656164234039 -0.0850922404766 -0.0226487073151 -0.0311122806369 -0.0493179295253 0.0236232137455 0.0594785369673 -0.0617570806406 0.0677830001501 0.0584620334992 0.0286478013717 0.0752440772433 0.0625977509833 -0.0746076680981 0.0274678135735 -0.054960177866 0.0545633777924 -0.0855476333507 0.00169740878173 -0.0525996565857 0.0432389748429 0.135482767163 -0.00843075549674 0.0342467366064 -0.022408149945 0.017070130966 0.0588661684289 0.0235845730554 0.0654364648606 -0.141095571793 -0.0330849015224 0.0901464721143 -0.19217433751 -0.0226654831337 0.113572577417 0.0168871839851
12 | 18 0.0379576303656 -0.0051220436111 -0.0462569970363 0.0379135592928 0.146262518552 -0.0891499240282 0.0586800066987 0.00323950399751 -0.0444992359508 0.0130098200745 1.0 -0.00206924169568 0.088088365954 -0.0235061103038 0.0128901271935 -0.0517010293769 0.0598540680809 0.040830661377 0.0683577177604 -0.0314824952364 -0.0229519163787 0.0784061626612 0.022790170588 -0.037207837859 -0.0145004638305 -0.0623573226769 -0.0621265510756 -0.0105583519915 -0.0128950089266 0.0353793025251 -0.00228219686246 0.0322528544348 -0.0162511286264 0.0263129715259 0.046889636339 -0.0797097480588 0.070792044095 0.00465019553887 -0.0181123958437 -0.0389902354049 -0.0113887375595 -0.073087963474 0.00993233485957 0.0207621713316 -0.0421846424443 -0.0801553284208 -0.0385898295151 0.071135582997 -0.113002135523 -0.00155275137439
13 | 19 0.0144434301463 -0.0219457527933 0.0460813681635 0.0227593075356 -0.0644286482348 -0.0609790656805 0.0767376757371 -0.0797101909848 0.0463487508251 0.107676232872 -0.00206924169568 1.0 0.0246590324156 -0.029636840556 -0.0175462924758 0.09107430524 0.114072519988 0.0948979227987 0.0513060901227 -0.032444877719 -0.0293585209531 0.00255903283893 -0.0117699739777 -0.0263156281684 0.0963843440772 -0.0517018397334 -0.0355478936832 0.0367402334113 -0.00137777458527 -0.0341674992105 -0.0451542774413 0.0126033565044 -0.0170886016403 -0.00528928311153 -0.0916389275566 -0.0629055371017 -0.126663118103 -0.00414123313689 -0.0197668872271 0.0109233032663 -0.042966736585 0.0211257895964 -0.00655477113637 0.0373271561964 -0.049885508118 -0.0154514087968 0.0310446712471 -0.00574868618084 0.0369545177475 0.0176536102026
14 | 2 0.00596420567005 0.0487185699809 0.0376494799835 -0.0208248411744 0.0303290685726 -0.0697270315689 -0.07381002567 -0.0778425334049 -0.074280554142 -0.0577750230109 0.088088365954 0.0246590324156 1.0 0.125951726891 -0.00239785636209 -0.094721043351 -0.0339747152757 -0.124395352872 -0.103748383715 0.0547508970785 0.105959800718 0.0796987184438 -0.0136602648221 -0.0535407940286 0.0217997779621 0.0606826142857 0.0246885949111 -0.00108244772915 -0.0324378677723 -0.0441843353158 0.0568539238409 -0.04880998361 0.00454224864032 -0.067434050971 0.0432402369849 -0.0050457070464 0.0222434231064 0.0540876945857 0.0632581253173 -0.0630281915621 0.0336120956089 0.0666629072167 0.0215298184314 0.0200900551556 0.0165978327071 -0.0284167663081 0.0858781034101 -0.0176829115828 -0.0486251127919 -0.036053596586
15 | 20 -0.0280303558193 -0.0230163976024 -0.0537856199556 -0.0297203745634 0.0149348851507 -0.0434354269841 0.0122058231954 -0.00203133931168 0.0813885881851 -0.0326900285793 -0.0235061103038 -0.029636840556 0.125951726891 1.0 -0.00153998743889 0.0310673016137 -0.094350806893 -0.092566694566 0.0511254215294 0.0153519689916 0.0508654608599 -0.07875535782 0.0259671603029 -0.00395282505416 0.0776502178775 0.0866970596699 0.0743249103102 -0.03011814128 0.0269170580904 -0.0829993960729 0.0153821661751 0.0571533133039 0.030099548804 -0.0138265541804 -0.0794893571082 -0.0835482489909 -0.046063963598 0.0748879529461 0.182683322711 -0.0355434758885 0.0565588770742 0.0250267278284 0.0457815079349 -0.0111209801145 -0.0587403754606 0.0457802517185 -0.0877347530976 -0.0462336554899 -0.0121620137313 0.0312941798324
16 | 21 0.0136690808943 0.00049281757552 0.0621677835538 -0.0567276659296 -0.0959614556717 -0.0217466997241 -0.0397182514631 0.108472940167 0.00920878116186 -0.0656164234039 0.0128901271935 -0.0175462924758 -0.00239785636209 -0.00153998743889 1.0 0.126537391784 0.04335789854 -0.0279546262631 -0.019633800835 0.0714985966583 0.0200737879087 -0.00184371975924 0.00693231784984 0.0532109697267 0.0493660201053 0.048923920891 0.0392801785423 -0.0192947003645 -0.0772835551065 -0.102281410371 -0.0229758978652 -0.0581491721344 -0.0651781229978 -0.0906407450842 0.0140789804534 -0.0568811538247 0.0853132202586 -0.0101047775619 0.0340387009645 -0.0501382278148 -0.0207121541964 0.0746686385088 0.0556094813961 -0.00989134508277 -0.0470135883654 0.0261940472375 -0.110158410704 0.00500315716816 0.130962908954 0.0753626723064
17 | 22 0.0658631278688 0.0197803557101 0.0401128250852 -0.109220911386 -0.0434746794674 -0.04028709967 -0.039142792927 -0.0504998388552 0.104711203492 -0.0850922404766 -0.0517010293769 0.09107430524 -0.094721043351 0.0310673016137 0.126537391784 1.0 0.00167755119999 0.0786435780813 -0.073969398215 -0.0245364407506 0.177611397859 -0.0321051722866 0.0440847377591 0.0809999236666 0.0203962139598 -0.0728224388375 0.0162274176326 0.024403401193 -0.044527995313 -0.025107225244 -0.0981727908596 0.0214374875101 -0.126569157088 -0.0320983068147 -0.000497856331967 -0.00994812342329 0.0872597765812 -0.0612130520132 -0.044166166911 -0.0392284159918 0.140354712216 -0.0521002660501 0.0233617383607 -0.0771614364872 0.112267740308 -0.0620615123941 0.172688137671 0.087650202095 0.0665480724237 0.0222739739635
18 | 23 -0.0239035193879 -0.0108573371799 0.21290098095 0.0582757871051 0.0464578695132 -0.156372085651 -0.0234140514219 0.00713867424671 -0.0850669160655 -0.0226487073151 0.0598540680809 0.114072519988 -0.0339747152757 -0.094350806893 0.04335789854 0.00167755119999 1.0 0.0935417295919 0.0322419456977 -0.0542243234298 -0.00953169458782 0.00471691919664 -0.0315136192261 -0.0372441424324 0.040239623485 0.0239494799428 0.121923212215 0.0487071554324 0.0265366592725 0.0495274603517 0.0967142509484 -0.0167824258212 -0.0147076753674 -0.0336411099497 -0.0885852328897 0.0158559327785 -0.00470648276007 -0.116347906611 -0.0943103591005 0.0276690954953 -0.0869344659156 -0.0552135980535 0.0532662671848 -0.0863168446425 -0.0425761754128 0.0289347923962 0.00832623727776 0.0140891380656 -0.0024964326274 0.0274930329807
19 | 24 0.0134708334048 0.0721198655439 0.0190358653037 -0.0466719929103 -0.112336277489 -0.0212923655131 0.071889918749 0.00424722376722 -0.0244818551223 -0.0311122806369 0.040830661377 0.0948979227987 -0.124395352872 -0.092566694566 -0.0279546262631 0.0786435780813 0.0935417295919 1.0 0.0859607425971 -0.138721961582 0.0814122905784 0.095231827088 -0.0977470821719 0.00730721561729 0.0838512381322 -0.0151945652026 -0.0280151557752 0.00634341524925 0.00564595053224 -0.0281536777668 0.00842092579376 0.0559567919579 -0.0367412875547 -0.0107858634575 -0.0140519781957 -0.0320743562442 -0.0801930611314 -0.0486530890239 0.0207094441285 0.125862800519 0.0104059193427 -0.0351553352385 0.0272451689295 0.0311542232273 0.0256001583847 0.0739724360174 0.0381696245615 -0.0645992715311 -0.0254401524112 0.0572508131313
20 | 25 0.097205671031 0.0350754928994 0.0199517981628 0.0179783336703 -0.0401734724433 0.0458131058973 0.0325599652829 -0.0587794015988 0.0956972322509 -0.0493179295253 0.0683577177604 0.0513060901227 -0.103748383715 0.0511254215294 -0.019633800835 -0.073969398215 0.0322419456977 0.0859607425971 1.0 -0.0800098248555 -0.0328190943299 -0.035730578031 0.019132290205 -0.0945516330882 -0.0239840565334 0.0596575035274 -0.0470905088185 0.0342398531376 0.00972316400173 0.0643529706912 -0.0191914029803 0.0205228258767 0.0106588678907 -0.0784535176337 0.0320827345062 0.00165204295216 -0.0748490229723 0.025701783617 -0.0682548190266 0.0671783771827 0.0280723559876 0.0290623123282 0.0160011752994 0.0189468442587 -0.0672783614777 -0.0202294238037 -0.00967614059654 -0.0464319011659 -0.0409898927413 -0.0189133694862
21 | 26 -0.0258864778142 0.0265402232696 0.0385926976687 0.00861974618816 0.0765277935395 0.108697837097 -0.0571819877557 -0.00528132843109 0.0133595986144 0.0236232137455 -0.0314824952364 -0.032444877719 0.0547508970785 0.0153519689916 0.0714985966583 -0.0245364407506 -0.0542243234298 -0.138721961582 -0.0800098248555 1.0 -0.0112164650581 0.0100055032961 0.0233978651137 -0.00580020340066 -0.0803172212387 0.0602886918694 -0.0156047163616 0.0269299807942 -0.0132410257302 -0.0148580680519 0.0746295847286 -0.0980025228083 -0.0766901142861 0.021589088918 -0.00945122934294 0.118852736095 -0.0505201092669 0.100828969541 0.0410294586322 -0.0427994135271 -0.0786796129791 -0.0142917575997 0.0627204616719 -0.0146486235331 0.0274958947946 -0.00545877420688 0.00798745694743 0.0155901394307 -0.0231241679421 0.00593078761076
22 | 27 -0.0795847378025 0.0202047327287 0.0698141666938 0.0289109969931 -0.112431193575 -0.0319297023131 -0.0262275631783 0.0574396503892 -0.0105002004436 0.0594785369673 -0.0229519163787 -0.0293585209531 0.105959800718 0.0508654608599 0.0200737879087 0.177611397859 -0.00953169458782 0.0814122905784 -0.0328190943299 -0.0112164650581 1.0 -0.0470439988239 0.090125520992 0.0909138574015 0.00977817273994 -0.025093877357 -0.040328969617 0.0330926757795 0.0283331163233 -0.0748150746976 -0.0588480772887 0.0413909136329 -0.0475487043142 0.010673578759 0.0421212761214 -0.0175105930331 -0.0714947051986 -0.0534273507773 0.0448501223693 0.0281516481022 0.151090852272 -0.0408947770383 -0.0609200155182 -0.089967181515 -0.0224772388448 0.00260100466804 0.0926992154445 -0.0780142593775 0.0301438945276 -0.0874867791378
23 | 28 0.0586110475794 -0.0412994177463 -0.0872291051318 0.0730095274979 -0.000548447131803 -0.0104970298359 0.0338855138853 -0.0192954485094 0.0604155623548 -0.0617570806406 0.0784061626612 0.00255903283893 0.0796987184438 -0.07875535782 -0.00184371975924 -0.0321051722866 0.00471691919664 0.095231827088 -0.035730578031 0.0100055032961 -0.0470439988239 1.0 -0.0493258131691 0.0255814862353 -0.00883988484321 -0.0167723034772 -0.0600097658635 0.0102908217382 -0.0274966710258 0.0195082269942 0.0512216609549 -0.0592004590675 0.144707592089 -0.0322882021747 0.0746610303256 0.0339491786158 0.0694488298907 -0.0536432110885 0.0232899087414 0.0767727612348 -0.110322919337 0.0241677597157 -0.0408284760204 -0.062083580081 0.0422705151727 -0.0536051177466 -0.00170456231376 0.0393307004491 0.0226994629327 0.00953679022526
24 | 29 -0.0563500349019 -0.0987659938317 -0.0419200333563 0.0731558296685 -0.00313434264238 0.0524177383498 -0.0044804394005 -0.0680320579772 -0.0093389989731 0.0677830001501 0.022790170588 -0.0117699739777 -0.0136602648221 0.0259671603029 0.00693231784984 0.0440847377591 -0.0315136192261 -0.0977470821719 0.019132290205 0.0233978651137 0.090125520992 -0.0493258131691 1.0 -0.0199749488762 -0.0685653926446 0.0331948283713 0.0114522097768 -0.00767434618867 0.0838828504697 -0.0191483922796 -0.0153412197675 -0.0436510423017 0.0997044888819 -0.0124732374385 -0.000440328869226 0.0830079448469 0.0921887312182 0.00723783913252 0.0670314200024 -0.0815378430475 -0.00141861339323 -0.0667330568005 0.131552008504 -0.050950753059 -0.0309763070882 0.0465897306782 -0.0454557959233 0.0307221150678 -0.0382407794683 -0.0746561865524
25 | 3 0.0162184818118 0.00142507127801 -0.0368265088675 -0.00544080077084 0.0200592744362 0.0328221802306 -0.0589003388047 0.015505530002 -0.0173734210449 0.0584620334992 -0.037207837859 -0.0263156281684 -0.0535407940286 -0.00395282505416 0.0532109697267 0.0809999236666 -0.0372441424324 0.00730721561729 -0.0945516330882 -0.00580020340066 0.0909138574015 0.0255814862353 -0.0199749488762 1.0 0.0193516964184 -0.0131428131054 0.121649834415 0.124742865044 -0.0110791296093 0.0253587970511 0.0980181272708 -0.00670861591789 -0.0124060764549 0.110778709689 0.0477769180988 0.0223815138182 -0.0315502353908 -0.00362852381447 -0.104208404955 0.0408530714035 -0.0245606582268 -0.0241046535944 -0.0657956067435 0.0423604430263 -0.0537535753622 0.0174192249117 -0.0244283998167 -0.0417385852449 0.167540439795 -0.084087632652
26 | 30 -0.0304521244068 -0.00773654496602 -0.0156098615044 -0.0656518186891 -0.126212285785 -0.000747936671113 0.0598784903221 0.0648678139156 0.0453743251075 0.0286478013717 -0.0145004638305 0.0963843440772 0.0217997779621 0.0776502178775 0.0493660201053 0.0203962139598 0.040239623485 0.0838512381322 -0.0239840565334 -0.0803172212387 0.00977817273994 -0.00883988484321 -0.0685653926446 0.0193516964184 1.0 -0.00653340905138 0.0676077522468 0.0247528124041 -0.0916810565075 -0.140791398148 -0.102807114255 0.0745081077619 -0.013831516866 -0.0508059142141 -0.0279257133198 -0.0217960456021 -0.0612896399881 -0.0217238899389 -0.0185080292396 -0.0266925586983 0.0381521808119 -0.0130294963588 0.025148593207 0.0160238114486 -0.0297301718263 0.0101646259999 -0.035106269044 -0.0171173509007 -0.0187885826884 0.0123229878913
27 | 31 -0.0699598009673 -0.0110556315273 -0.00533296851861 -0.013935078331 0.0465075541703 0.0644561148696 -0.113962236372 -0.0402084422323 -0.0756844868004 0.0752440772433 -0.0623573226769 -0.0517018397334 0.0606826142857 0.0866970596699 0.048923920891 -0.0728224388375 0.0239494799428 -0.0151945652026 0.0596575035274 0.0602886918694 -0.025093877357 -0.0167723034772 0.0331948283713 -0.0131428131054 -0.00653340905138 1.0 -0.00709212022501 0.0132173530995 0.0103811690264 0.0370036334189 -0.0338595957188 0.0515288874045 0.0511011978216 -0.096598969781 0.0435059824809 0.0624587562424 0.0625932402741 0.0335370080452 0.192191367742 -0.043873246858 0.0596154950012 -0.0425251377198 -0.0915953797902 -0.0142776443879 5.92391429725e-06 0.0518867901041 -0.0251027030542 -0.0364416854076 0.00682838325953 0.00429737007969
28 | 32 0.0231100486196 -0.0579215042024 0.114331991455 0.00736449565374 0.0873710423996 0.0217697136812 -0.0236301197911 -0.0463028991961 -0.0364948757827 0.0625977509833 -0.0621265510756 -0.0355478936832 0.0246885949111 0.0743249103102 0.0392801785423 0.0162274176326 0.121923212215 -0.0280151557752 -0.0470905088185 -0.0156047163616 -0.040328969617 -0.0600097658635 0.0114522097768 0.121649834415 0.0676077522468 -0.00709212022501 1.0 0.0628997170038 -0.0643292438654 0.0573855132693 0.0335688489394 -0.0107579287421 -0.0149521882707 -0.00272797387366 -0.0763891267287 0.0557415589743 -0.000861114193384 -0.107462382711 -0.0689971446496 0.0514404653461 0.0499255251207 0.0632388298706 0.0659800076107 -0.0586345858629 -0.101437038434 -0.132637752735 -0.0245528069004 -0.0374681061937 -0.0587380051812 0.0552095383413
29 | 33 0.0389637085335 0.0649929953141 0.0565027436733 -0.118232153038 0.0131721458958 -0.0433854292062 -0.0813809707983 -0.00561424176221 0.233306115269 -0.0746076680981 -0.0105583519915 0.0367402334113 -0.00108244772915 -0.03011814128 -0.0192947003645 0.024403401193 0.0487071554324 0.00634341524925 0.0342398531376 0.0269299807942 0.0330926757795 0.0102908217382 -0.00767434618867 0.124742865044 0.0247528124041 0.0132173530995 0.0628997170038 1.0 0.0829708535004 -0.0396335013092 -0.0263695965771 -0.0157276472409 -0.0227717824449 -0.012867187424 0.0455567648652 -0.106175759521 -0.0999317019829 0.00445335015312 -0.0466729051675 0.0176508539874 -0.0204458136153 -0.00758177080298 -0.0117552495876 0.037186381482 -0.00392924592559 0.00285192484411 0.0560210809264 -0.0517436325268 0.0583421302202 -0.0360746352167
30 | 34 0.0830728785413 0.050606372696 -0.00883067283876 -0.0301353719942 0.0237433053832 -0.0163638452381 0.0129136897724 -0.0325345433111 -0.085410744056 0.0274678135735 -0.0128950089266 -0.00137777458527 -0.0324378677723 0.0269170580904 -0.0772835551065 -0.044527995313 0.0265366592725 0.00564595053224 0.00972316400173 -0.0132410257302 0.0283331163233 -0.0274966710258 0.0838828504697 -0.0110791296093 -0.0916810565075 0.0103811690264 -0.0643292438654 0.0829708535004 1.0 0.0430190264804 0.110235851803 -0.0176611237189 0.0899489743115 -0.0115000574164 -0.00223307715733 -0.0110125053684 -0.0834268798155 -0.0958557921099 0.043472526755 -0.01097539478 0.0422255418885 0.108736138914 -0.0445494029887 -0.0183365766996 0.0538106236863 0.0683361349431 -0.0316598517453 -0.0150512154617 0.0626498088679 -0.0646149748206
31 | 35 0.023239456459 -0.0182690709449 -0.0167522244526 0.0822913158199 0.109081310555 0.0609480608346 0.0389135151349 -0.0408153110095 -0.00931789068721 -0.054960177866 0.0353793025251 -0.0341674992105 -0.0441843353158 -0.0829993960729 -0.102281410371 -0.025107225244 0.0495274603517 -0.0281536777668 0.0643529706912 -0.0148580680519 -0.0748150746976 0.0195082269942 -0.0191483922796 0.0253587970511 -0.140791398148 0.0370036334189 0.0573855132693 -0.0396335013092 0.0430190264804 1.0 -0.0274603893944 0.125817424941 0.0178015224639 -0.0509865657818 -0.0314349433411 0.0133020512839 0.0522179566526 -0.098628055743 0.00620422113693 0.0744282978529 -0.0601904994957 0.048029635151 -0.0917239784044 -0.011412305996 0.0705811316226 -0.0426938546464 0.0372929815935 0.038128539049 -0.044540067233 0.0188387362714
32 | 36 0.0240376005522 -0.0688049602607 -0.122156863208 0.0851152622158 -0.0134388457191 0.0437494086189 -0.0243779544494 0.0159562922902 -0.0616975766014 0.0545633777924 -0.00228219686246 -0.0451542774413 0.0568539238409 0.0153821661751 -0.0229758978652 -0.0981727908596 0.0967142509484 0.00842092579376 -0.0191914029803 0.0746295847286 -0.0588480772887 0.0512216609549 -0.0153412197675 0.0980181272708 -0.102807114255 -0.0338595957188 0.0335688489394 -0.0263695965771 0.110235851803 -0.0274603893944 1.0 -0.0800617382319 0.0774521416569 0.0363484548141 -0.041869546848 0.0619419894412 0.0364854214556 -0.0566948841877 0.0416900545904 0.07011380609 0.0101738474559 -0.0124423725122 -0.0496254852058 -0.00168290785004 -0.0430510911529 -0.00483370677863 -0.05150871281 0.0599055641365 -0.0173247079398 -0.0540995809916
33 | 37 -0.0105497167897 0.0153006907404 -0.0202435864904 -0.0164624891776 -0.0240517245421 -0.0161700628537 0.0617129104662 -0.0245362118782 -0.114772733577 -0.0855476333507 0.0322528544348 0.0126033565044 -0.04880998361 0.0571533133039 -0.0581491721344 0.0214374875101 -0.0167824258212 0.0559567919579 0.0205228258767 -0.0980025228083 0.0413909136329 -0.0592004590675 -0.0436510423017 -0.00670861591789 0.0745081077619 0.0515288874045 -0.0107579287421 -0.0157276472409 -0.0176611237189 0.125817424941 -0.0800617382319 1.0 -0.0131909404596 0.00707042720861 -0.0316325491812 -0.0528293080459 -0.0303995894916 0.0228964015174 0.0292630953291 0.041292880346 0.0454412479315 -0.0100894077468 -0.0148271617877 0.134498187323 0.0789096179448 -0.0650374793139 0.155209694538 -0.038102418629 0.0555809762172 -0.0353398434861
34 | 38 0.0409370604159 0.00702033027401 -0.0788426516251 0.148694594072 -0.0110827531378 0.00395337233788 -0.0310487811784 -0.0460102565473 -0.0211573477542 0.00169740878173 -0.0162511286264 -0.0170886016403 0.00454224864032 0.030099548804 -0.0651781229978 -0.126569157088 -0.0147076753674 -0.0367412875547 0.0106588678907 -0.0766901142861 -0.0475487043142 0.144707592089 0.0997044888819 -0.0124060764549 -0.013831516866 0.0511011978216 -0.0149521882707 -0.0227717824449 0.0899489743115 0.0178015224639 0.0774521416569 -0.0131909404596 1.0 -0.030263617778 0.0505039056464 0.0435710138228 0.0696009254967 -0.0467518326245 0.0289904430199 0.113054830261 -0.0116450491157 0.0532230066944 -0.0655585675415 0.0367565361742 -0.0427109615873 0.118062649928 -0.0457768769668 0.00282977829358 -0.149609542598 -0.0343728372724
35 | 39 -0.0826713578045 -0.0110164148927 -0.00528731587067 0.0997653138106 0.0807809406974 0.0348817209742 0.0738444631662 0.0286667706231 -0.0397547879808 -0.0525996565857 0.0263129715259 -0.00528928311153 -0.067434050971 -0.0138265541804 -0.0906407450842 -0.0320983068147 -0.0336411099497 -0.0107858634575 -0.0784535176337 0.021589088918 0.010673578759 -0.0322882021747 -0.0124732374385 0.110778709689 -0.0508059142141 -0.096598969781 -0.00272797387366 -0.012867187424 -0.0115000574164 -0.0509865657818 0.0363484548141 0.00707042720861 -0.030263617778 1.0 -0.00891450927848 0.0706145493054 0.0877719443887 0.00669738168325 -0.0681753778295 -0.0102412458637 -0.0660352954761 -0.0987047637166 -0.0678277494143 0.106667756168 0.0940439799996 0.000555705392517 0.0437235041825 -0.0260133994804 0.0762080682525 0.0584818808716
36 | 4 -0.00728651276769 0.0372594727958 -0.0592456978658 -0.0737821322655 0.0324249807576 0.107404259378 -0.0875231830312 0.0928014442791 -0.0232610205929 0.0432389748429 0.046889636339 -0.0916389275566 0.0432402369849 -0.0794893571082 0.0140789804534 -0.000497856331967 -0.0885852328897 -0.0140519781957 0.0320827345062 -0.00945122934294 0.0421212761214 0.0746610303256 -0.000440328869226 0.0477769180988 -0.0279257133198 0.0435059824809 -0.0763891267287 0.0455567648652 -0.00223307715733 -0.0314349433411 -0.041869546848 -0.0316325491812 0.0505039056464 -0.00891450927848 1.0 0.0164201871101 0.111658234272 0.0306828895933 -0.0363855051657 -0.0152024284913 -0.041220263783 0.0345319183962 -0.0402876742674 0.0291666020287 0.00456080150298 -9.28116746456e-05 -0.0494137318753 0.1289063605 0.0399488365963 -0.049913339439
37 | 40 0.0351410610141 -0.124560104762 -0.0562403996227 -0.0116475287891 0.0466312328278 0.0245304663211 -0.0190899182686 0.0118217072415 -0.0417873122141 0.135482767163 -0.0797097480588 -0.0629055371017 -0.0050457070464 -0.0835482489909 -0.0568811538247 -0.00994812342329 0.0158559327785 -0.0320743562442 0.00165204295216 0.118852736095 -0.0175105930331 0.0339491786158 0.0830079448469 0.0223815138182 -0.0217960456021 0.0624587562424 0.0557415589743 -0.106175759521 -0.0110125053684 0.0133020512839 0.0619419894412 -0.0528293080459 0.0435710138228 0.0706145493054 0.0164201871101 1.0 0.0272776060382 -0.0353162214589 0.0242069345442 0.0504482267795 -0.0153815320961 -0.018378681952 -0.0725700853017 -0.0409734334816 0.0234449688226 -0.0655252285513 -0.0586043523316 -0.0957361774261 0.0344864635076 0.0580173162008
38 | 41 0.0507496028031 0.0159092204213 -0.0804062554269 0.0418188218984 0.0166191546204 -0.028610136147 -0.0701955971782 0.0156801377518 0.0162787942366 -0.00843075549674 0.070792044095 -0.126663118103 0.0222434231064 -0.046063963598 0.0853132202586 0.0872597765812 -0.00470648276007 -0.0801930611314 -0.0748490229723 -0.0505201092669 -0.0714947051986 0.0694488298907 0.0921887312182 -0.0315502353908 -0.0612896399881 0.0625932402741 -0.000861114193384 -0.0999317019829 -0.0834268798155 0.0522179566526 0.0364854214556 -0.0303995894916 0.0696009254967 0.0877719443887 0.111658234272 0.0272776060382 1.0 0.00483816740193 -0.0200104743703 -0.098306857282 0.0934346278308 -0.033080079071 -0.0571918950617 -0.0282752422766 0.00864633537922 0.010951487324 0.0106203999947 0.118698721058 -0.0821848129729 0.00289056709306
39 | 42 0.0564237898378 0.0744813656578 0.045440977678 0.0425796172737 0.00905952843739 0.141676058386 0.0414269762424 -0.0244520815097 0.0178814182304 0.0342467366064 0.00465019553887 -0.00414123313689 0.0540876945857 0.0748879529461 -0.0101047775619 -0.0612130520132 -0.116347906611 -0.0486530890239 0.025701783617 0.100828969541 -0.0534273507773 -0.0536432110885 0.00723783913252 -0.00362852381447 -0.0217238899389 0.0335370080452 -0.107462382711 0.00445335015312 -0.0958557921099 -0.098628055743 -0.0566948841877 0.0228964015174 -0.0467518326245 0.00669738168325 0.0306828895933 -0.0353162214589 0.00483816740193 1.0 0.046926448317 -0.04632574472 -0.0614602696547 0.00829050745663 0.0358974401789 0.0208578890235 -0.00719988414336 0.0272799633925 -0.0334503119395 0.000980529171728 0.00667282627665 -0.0050183355047
40 | 43 0.039265722542 0.0112584344883 0.0323831997072 0.0186086023644 0.0313886957995 0.00966890124802 -0.0149378204976 0.0198408283747 -0.0809892483051 -0.022408149945 -0.0181123958437 -0.0197668872271 0.0632581253173 0.182683322711 0.0340387009645 -0.044166166911 -0.0943103591005 0.0207094441285 -0.0682548190266 0.0410294586322 0.0448501223693 0.0232899087414 0.0670314200024 -0.104208404955 -0.0185080292396 0.192191367742 -0.0689971446496 -0.0466729051675 0.043472526755 0.00620422113693 0.0416900545904 0.0292630953291 0.0289904430199 -0.0681753778295 -0.0363855051657 0.0242069345442 -0.0200104743703 0.046926448317 1.0 -0.0461137089744 0.0370758481248 0.00339260074404 -0.11370917156 -0.00246719753268 0.0429030282104 0.0512078256496 -0.0867377756904 0.0297307338088 0.0877475308019 -0.107496555509
41 | 44 0.0339104770252 -0.0942326264432 0.0300688300792 -0.0210586099623 0.016757574857 -0.0261978971607 0.122928892484 -0.072262235353 0.0714602267206 0.017070130966 -0.0389902354049 0.0109233032663 -0.0630281915621 -0.0355434758885 -0.0501382278148 -0.0392284159918 0.0276690954953 0.125862800519 0.0671783771827 -0.0427994135271 0.0281516481022 0.0767727612348 -0.0815378430475 0.0408530714035 -0.0266925586983 -0.043873246858 0.0514404653461 0.0176508539874 -0.01097539478 0.0744282978529 0.07011380609 0.041292880346 0.113054830261 -0.0102412458637 -0.0152024284913 0.0504482267795 -0.098306857282 -0.04632574472 -0.0461137089744 1.0 -0.0258274660901 -0.030469081898 -0.135685997111 -0.021446679676 0.0174742385705 0.0163896625154 0.056746329568 -0.141327835436 -0.0507513088827 -0.0200622609768
42 | 45 -0.0498953576915 -0.0658527434856 -0.0254562596583 0.0608823790982 0.0472597053984 0.00911987683561 0.0338902572299 -0.0292010573171 0.0301209217816 0.0588661684289 -0.0113887375595 -0.042966736585 0.0336120956089 0.0565588770742 -0.0207121541964 0.140354712216 -0.0869344659156 0.0104059193427 0.0280723559876 -0.0786796129791 0.151090852272 -0.110322919337 -0.00141861339323 -0.0245606582268 0.0381521808119 0.0596154950012 0.0499255251207 -0.0204458136153 0.0422255418885 -0.0601904994957 0.0101738474559 0.0454412479315 -0.0116450491157 -0.0660352954761 -0.041220263783 -0.0153815320961 0.0934346278308 -0.0614602696547 0.0370758481248 -0.0258274660901 1.0 0.000748210929568 -0.151470215755 -0.0187080941882 -0.0988456706748 0.151646342199 -0.0335697242405 -0.0289847571794 -0.0737251095931 0.0022842427633
43 | 46 0.0791177834679 0.0999783848592 -0.0530407185839 -0.0139088831551 -0.0549598065086 -0.0157461728416 -0.0220382966707 0.02552087501 -0.056655777254 0.0235845730554 -0.073087963474 0.0211257895964 0.0666629072167 0.0250267278284 0.0746686385088 -0.0521002660501 -0.0552135980535 -0.0351553352385 0.0290623123282 -0.0142917575997 -0.0408947770383 0.0241677597157 -0.0667330568005 -0.0241046535944 -0.0130294963588 -0.0425251377198 0.0632388298706 -0.00758177080298 0.108736138914 0.048029635151 -0.0124423725122 -0.0100894077468 0.0532230066944 -0.0987047637166 0.0345319183962 -0.018378681952 -0.033080079071 0.00829050745663 0.00339260074404 -0.030469081898 0.000748210929568 1.0 0.0984186442906 0.046906038641 0.0527615851096 0.033951829204 -0.0495951640083 0.00488847778435 0.0859813675748 -0.0400220127197
44 | 47 0.0126817003821 -0.0308441366423 0.119763295482 -0.0192875632216 -0.0163897718588 0.0932540401372 0.0418314449373 0.0976985044968 0.0371496553036 0.0654364648606 0.00993233485957 -0.00655477113637 0.0215298184314 0.0457815079349 0.0556094813961 0.0233617383607 0.0532662671848 0.0272451689295 0.0160011752994 0.0627204616719 -0.0609200155182 -0.0408284760204 0.131552008504 -0.0657956067435 0.025148593207 -0.0915953797902 0.0659800076107 -0.0117552495876 -0.0445494029887 -0.0917239784044 -0.0496254852058 -0.0148271617877 -0.0655585675415 -0.0678277494143 -0.0402876742674 -0.0725700853017 -0.0571918950617 0.0358974401789 -0.11370917156 -0.135685997111 -0.151470215755 0.0984186442906 1.0 -0.0127402931666 -0.0402490470862 -0.054949710268 -0.0438574072691 -9.59321405722e-05 -0.0775893939769 0.0531259303003
45 | 48 0.0584315130496 0.093776472736 0.0430268598084 -0.0120910535892 -0.0557437071005 -0.0275136622828 0.100291304879 -0.0408849359694 0.00317249708371 -0.141095571793 0.0207621713316 0.0373271561964 0.0200900551556 -0.0111209801145 -0.00989134508277 -0.0771614364872 -0.0863168446425 0.0311542232273 0.0189468442587 -0.0146486235331 -0.089967181515 -0.062083580081 -0.050950753059 0.0423604430263 0.0160238114486 -0.0142776443879 -0.0586345858629 0.037186381482 -0.0183365766996 -0.011412305996 -0.00168290785004 0.134498187323 0.0367565361742 0.106667756168 0.0291666020287 -0.0409734334816 -0.0282752422766 0.0208578890235 -0.00246719753268 -0.021446679676 -0.0187080941882 0.046906038641 -0.0127402931666 1.0 0.04559696859 0.0982070658998 0.10406434636 -0.0338005644549 -0.0199211630424 -0.0337596924079
46 | 49 0.0826904907874 0.00434062857562 0.137832628772 -0.0784123444111 -0.0503626781245 -0.0409013911248 -0.0504130208191 -0.0017864836942 -0.0268533990357 -0.0330849015224 -0.0421846424443 -0.049885508118 0.0165978327071 -0.0587403754606 -0.0470135883654 0.112267740308 -0.0425761754128 0.0256001583847 -0.0672783614777 0.0274958947946 -0.0224772388448 0.0422705151727 -0.0309763070882 -0.0537535753622 -0.0297301718263 5.92391429725e-06 -0.101437038434 -0.00392924592559 0.0538106236863 0.0705811316226 -0.0430510911529 0.0789096179448 -0.0427109615873 0.0940439799996 0.00456080150298 0.0234449688226 0.00864633537922 -0.00719988414336 0.0429030282104 0.0174742385705 -0.0988456706748 0.0527615851096 -0.0402490470862 0.04559696859 1.0 -0.0576001660449 0.0422836649919 0.0472994086675 0.124343754838 0.13473344379
47 | 5 -0.0934883694851 0.0543607018494 -0.0328267922838 -0.0340436705434 -0.0447644384243 0.0459678334757 0.16294192469 -0.00974272808439 0.0138332338274 0.0901464721143 -0.0801553284208 -0.0154514087968 -0.0284167663081 0.0457802517185 0.0261940472375 -0.0620615123941 0.0289347923962 0.0739724360174 -0.0202294238037 -0.00545877420688 0.00260100466804 -0.0536051177466 0.0465897306782 0.0174192249117 0.0101646259999 0.0518867901041 -0.132637752735 0.00285192484411 0.0683361349431 -0.0426938546464 -0.00483370677863 -0.0650374793139 0.118062649928 0.000555705392517 -9.28116746458e-05 -0.0655252285513 0.010951487324 0.0272799633925 0.0512078256496 0.0163896625154 0.151646342199 0.033951829204 -0.054949710268 0.0982070658998 -0.0576001660449 1.0 -0.0328251414249 -0.131161226969 0.026185040436 -0.0443073981267
48 | 6 -0.0953806212813 0.204529002002 0.0477946945781 0.016351074033 0.0153196535499 -0.0739062308216 0.0187659776184 -0.0611057075926 0.063947319199 -0.19217433751 -0.0385898295151 0.0310446712471 0.0858781034101 -0.0877347530976 -0.110158410704 0.172688137671 0.00832623727776 0.0381696245615 -0.00967614059654 0.00798745694743 0.0926992154445 -0.00170456231376 -0.0454557959233 -0.0244283998167 -0.035106269044 -0.0251027030542 -0.0245528069004 0.0560210809264 -0.0316598517453 0.0372929815935 -0.05150871281 0.155209694538 -0.0457768769668 0.0437235041825 -0.0494137318753 -0.0586043523316 0.0106203999947 -0.0334503119395 -0.0867377756904 0.056746329568 -0.0335697242405 -0.0495951640083 -0.0438574072691 0.10406434636 0.0422836649919 -0.0328251414249 1.0 0.0896033852144 -0.0419513441315 -0.0435982294021
49 | 7 -0.0263585207442 -0.0798797797159 0.0626036294486 -0.0257004894573 0.0821207328311 -0.0344720093231 0.044787217225 0.0766447057194 0.0304766623772 -0.0226654831337 0.071135582997 -0.00574868618084 -0.0176829115828 -0.0462336554899 0.00500315716816 0.087650202095 0.0140891380656 -0.0645992715311 -0.0464319011659 0.0155901394307 -0.0780142593775 0.0393307004491 0.0307221150678 -0.0417385852449 -0.0171173509007 -0.0364416854076 -0.0374681061937 -0.0517436325268 -0.0150512154617 0.038128539049 0.0599055641365 -0.038102418629 0.00282977829358 -0.0260133994804 0.1289063605 -0.0957361774261 0.118698721058 0.000980529171728 0.0297307338088 -0.141327835436 -0.0289847571794 0.00488847778435 -9.59321405722e-05 -0.0338005644549 0.0472994086675 -0.131161226969 0.0896033852144 1.0 -0.0378124654897 0.0357487943448
50 | 8 -0.00129780089958 0.0297762194372 -0.00775196843427 -0.0302872728073 -0.036524347993 0.00306717929876 -0.0340863204982 -0.00134563346515 -0.0227740246582 0.113572577417 -0.113002135523 0.0369545177475 -0.0486251127919 -0.0121620137313 0.130962908954 0.0665480724237 -0.0024964326274 -0.0254401524112 -0.0409898927413 -0.0231241679421 0.0301438945276 0.0226994629327 -0.0382407794683 0.167540439795 -0.0187885826884 0.00682838325953 -0.0587380051812 0.0583421302202 0.0626498088679 -0.044540067233 -0.0173247079398 0.0555809762172 -0.149609542598 0.0762080682525 0.0399488365963 0.0344864635076 -0.0821848129729 0.00667282627665 0.0877475308019 -0.0507513088827 -0.0737251095931 0.0859813675748 -0.0775893939769 -0.0199211630424 0.124343754838 0.026185040436 -0.0419513441315 -0.0378124654897 1.0 -0.0493212332887
51 | 9 -0.0498132753726 0.0228741977176 0.029160283937 -0.0822723749486 0.0648548816723 0.0212455876701 -0.0465372459566 0.0950092795652 0.045955873802 0.0168871839851 -0.00155275137439 0.0176536102026 -0.036053596586 0.0312941798324 0.0753626723064 0.0222739739635 0.0274930329807 0.0572508131313 -0.0189133694862 0.00593078761076 -0.0874867791378 0.00953679022526 -0.0746561865524 -0.084087632652 0.0123229878913 0.00429737007969 0.0552095383413 -0.0360746352167 -0.0646149748206 0.0188387362714 -0.0540995809916 -0.0353398434861 -0.0343728372724 0.0584818808716 -0.049913339439 0.0580173162008 0.00289056709306 -0.0050183355047 -0.107496555509 -0.0200622609768 0.0022842427633 -0.0400220127197 0.0531259303003 -0.0337596924079 0.13473344379 -0.0443073981267 -0.0435982294021 0.0357487943448 -0.0493212332887 1.0
52 |
--------------------------------------------------------------------------------
|