├── .gitignore
├── README.md
├── Training Latent ODE Model.ipynb
├── autograd_extended.py
├── data.csv
└── requirements.txt
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | .ipynb_checkpoints/
3 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Neural Ordinary Differential Equations
2 | ## Overview and Summary
3 | I try to implement the findings in the paper in this repo. Here's a summary of what I think is significant information.
4 |
5 | Neural Ordinary Differential Equations introduces an interesting way of specifiying a neural network. Instead of treating the neural network as a sequence of discrete states, the approach parameterizes the derivative of the hidden state using a neural network. This parameterizing of the hidden state provides a continuous depth model provides a bunch of useful properties.
6 |
7 | ### Useful Properties I Understand
8 | 1. Memory Efficiency: The specifications give a constant memory costs wrt to depth
9 | 2. Adaptive Computation: Adapt level of error for efficiency, useful for real-time or low-power applications
10 | 3. Scalable and Invertible Normalizing Flows: Continuous transformation allows for easier computation of change of variables. The paper derives a new fclass of invertible density models that avoids the bottleneck of normalizing flows, allowing the model to be trained directly by max-likelihood.
11 | 4. Scalable and invertible normalizing flows: The continuous transformation makes the change of variables formula easier to compute. This allows the constructuion of a new class of invertible density models that avoids previous bottlenecks.
12 |
13 | 5. Continuous Time-series Models: Able to model time-series data that arrive at arbitrary times unlike RNNs.
14 |
15 | ### What Are Normalizing Flows? I am confused.
16 | I got stumped on this one for a while. My reaction irl the whole time -> ( ・◇・)?
17 |
18 | If you're a noob like me you would probably get stumped too. Here's what I understand without the math.
19 |
20 | Imagine if you were in a conference and someone asked the presenter something really difficult. Making the presenter go ( ・◇・)? The presenter
21 | doesn't want to cop out and look stupid so he/she tries to answer the question. The presenter then simplifies the question and answers that simpified question instead. Not satisfactory, but it should gets the point across. This is essentially the idea behind Variational Inference. The quantity that describes this is termed as the posterior distribution.
22 |
23 | What happens if this explanation seemed to hand wavy or oversimplistic? We need to find a slightly more detailed way of explaning the same thing. How should we tune the complexity of the explanation? This method of tuning the complexity is the idea behind Normalizing Flows. By using these normalizing flows, we can apply a sequence of invertible transformation (we can back and forth and not lose information) to transform that simple posterior distribution (ie. the explanation) into something more complex that captures the idea we want to describe.
24 |
25 | This paper essentially provides a continuous formulation of the normalizing flow concept. While an elegant concept, it can get hard to compute terms, like the change of variables. Using the continuous formulation, the paper offers a method of using the trace of the mapping function, which is more efficient. Check the maths in the paper for a clearer picture.
26 |
27 |
28 | #### Useful links
29 | 1. [Quora explanation by Sam Wang](https://www.quora.com/What-is-variational-inference) I used his analogy
30 | 2. [Variational Inference by David M. Blei](https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/variational-inference-i.pdf)
31 | 3. [Variational Inference with Normalizing Flows Paper](https://arxiv.org/abs/1505.05770)
32 | 4. [Normalizing Flows](http://akosiorek.github.io/ml/2018/04/03/norm_flows.html) as suggested by zdhNarsil
33 |
34 | ### Limitations
35 | 1. Unstraightforward Minibatching: Though minibatching can still be achieved by concatenating the states of each batch elements together to form an ODE.
36 | 2. Uniqueness: A unique solution only exists if the neural netowrk has finate weights and Lipshitz nonlinearities like tanh or relu.
37 | 3. Reversibility: Forward trajectory of the network is invertible in principle, but numerical errors will emerge in forward ODE solver and reverse ODE solver (though this can be reduce at the cost of more computation). Information is lost due to multiple initial value mapping to the final state, this is expected to be a problem if the system dynamics encoded optimization-like, convergent dynamics.
38 |
39 |
40 | ## Link To Arxiv Paper
41 | https://arxiv.org/abs/1806.07366
42 |
43 | ## TODOS
44 | To look into JJFORD link to Arxiv Paper
45 | https://arxiv.org/abs/1810.01367
46 |
--------------------------------------------------------------------------------
/Training Latent ODE Model.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 44,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "%matplotlib inline\n",
10 | "\n",
11 | "# import\n",
12 | "import numpy\n",
13 | "import pandas as pd\n",
14 | "import autograd_extended\n",
15 | "import tensorflow as tf\n",
16 | "import matplotlib.pyplot as plt\n",
17 | "\n",
18 | "from keras.models import Model\n",
19 | "from keras.layers import LSTM, Input, Lambda, Dense, RepeatVector\n",
20 | "from keras import backend as K\n",
21 | "from keras import objectives\n",
22 | "\n",
23 | "import scipy.integrate\n",
24 | "\n",
25 | "import autograd.numpy as np\n",
26 | "from autograd import make_vjp, grad\n",
27 | "from autograd.extend import primitive, defvjp_argnums\n",
28 | "from autograd.misc import flatten\n",
29 | "from autograd.builtins import tuple\n",
30 | "from autograd.misc.optimizers import adam\n",
31 | "\n",
32 | "odeint = primitive(scipy.integrate.odeint)"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "metadata": {},
38 | "source": [
39 | "# Training the latent ODE model\n",
40 | "From appendix D\n",
41 | "\n",
42 | "To obtain the latent representation $z_{t_{0}}$, we traverse using RNN and obtain parameters of distribution $ q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}, \\theta_{enc})$. The algorithm is the following:\n",
43 | "\n",
44 | "\n",
45 | "## Step 1\n",
46 | "Run an RNN encoder through the time series and infer the parameters for the a posterior over $ \\textbf{z}_{t_{0}}$:\n",
47 | "$$ q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}, \\phi) = \\mathcal{N}(\\textbf{z}_{t_{0}} | \\mu_{\\textbf{z}_{t_{0}}}, \\sigma_{\\textbf{z}_{0}}) $$\n",
48 | "\n",
49 | "where $\\mu_{z_{0}}, \\sigma_{z_{0}}$ comes from hidden state of $ RNN(\\{ \\textbf{x}_{t_{i}} , t_{i} \\}_{i}, \\phi) $\n",
50 | "\n",
51 | "## Step 2\n",
52 | "Sample $ \\textbf{z}_{t_{0}} \\sim q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}) $"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": 45,
58 | "metadata": {
59 | "collapsed": true
60 | },
61 | "outputs": [],
62 | "source": [
63 | "# Process Data\n",
64 | "\n",
65 | "# obtain simple time series with sine function\n",
66 | "df = pd.read_csv('./data.csv')\n",
67 | "\n",
68 | "x, y = df[\"x\"], df[\"y\"]\n",
69 | "\n",
70 | "# split y into timesteps for training (-1, 100, 1) we use a sliding window\n",
71 | "timesteps = 5\n",
72 | "\n",
73 | "newY = []\n",
74 | "for i in range(0, len(y)-timesteps):\n",
75 | " temp = y[i:i+timesteps]\n",
76 | " \n",
77 | " temp_ls = []\n",
78 | " for j in temp:\n",
79 | " temp_ls.append([j])\n",
80 | " newY.append(temp_ls)\n",
81 | " \n",
82 | "y = np.array(newY)"
83 | ]
84 | },
85 | {
86 | "cell_type": "markdown",
87 | "metadata": {},
88 | "source": [
89 | "Define and run the autoencoder model"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "execution_count": 46,
95 | "metadata": {},
96 | "outputs": [
97 | {
98 | "name": "stdout",
99 | "output_type": "stream",
100 | "text": [
101 | "Epoch 1/20\n",
102 | "1995/1995 [==============================] - 6s 3ms/step - loss: 0.5040\n",
103 | "Epoch 2/20\n",
104 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.4752\n",
105 | "Epoch 3/20\n",
106 | "1995/1995 [==============================] - 2s 999us/step - loss: 0.4647\n",
107 | "Epoch 4/20\n",
108 | "1995/1995 [==============================] - 2s 983us/step - loss: 0.4599\n",
109 | "Epoch 5/20\n",
110 | "1995/1995 [==============================] - 2s 926us/step - loss: 0.4488\n",
111 | "Epoch 6/20\n",
112 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.4069\n",
113 | "Epoch 7/20\n",
114 | "1995/1995 [==============================] - 2s 942us/step - loss: 0.3175\n",
115 | "Epoch 8/20\n",
116 | "1995/1995 [==============================] - 2s 995us/step - loss: 0.2431\n",
117 | "Epoch 9/20\n",
118 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.2179\n",
119 | "Epoch 10/20\n",
120 | "1995/1995 [==============================] - 2s 950us/step - loss: 0.2021\n",
121 | "Epoch 11/20\n",
122 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1881\n",
123 | "Epoch 12/20\n",
124 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1802\n",
125 | "Epoch 13/20\n",
126 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1734\n",
127 | "Epoch 14/20\n",
128 | "1995/1995 [==============================] - 2s 953us/step - loss: 0.1629\n",
129 | "Epoch 15/20\n",
130 | "1995/1995 [==============================] - 2s 939us/step - loss: 0.1601\n",
131 | "Epoch 16/20\n",
132 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1570\n",
133 | "Epoch 17/20\n",
134 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1520\n",
135 | "Epoch 18/20\n",
136 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1479\n",
137 | "Epoch 19/20\n",
138 | "1995/1995 [==============================] - 2s 963us/step - loss: 0.1423\n",
139 | "Epoch 20/20\n",
140 | "1995/1995 [==============================] - 2s 934us/step - loss: 0.1407\n"
141 | ]
142 | },
143 | {
144 | "data": {
145 | "text/plain": [
146 | ""
147 | ]
148 | },
149 | "execution_count": 46,
150 | "metadata": {},
151 | "output_type": "execute_result"
152 | }
153 | ],
154 | "source": [
155 | "# Run an RNN encoder on the time series\n",
156 | "\n",
157 | "# Params\n",
158 | "timesteps = 5\n",
159 | "input_dim = 1\n",
160 | "lstm_dim = 32\n",
161 | "latent_dim = 100\n",
162 | "batch_size = 1\n",
163 | "\n",
164 | "# Encoder model\n",
165 | "def sample_z(args):\n",
166 | " \"\"\"Reparameterization trick by sampling fr an isotropic unit Gaussian.\n",
167 | " # Arguments:\n",
168 | " args (tensor): mean and log of variance of Q(z|X)\n",
169 | " # Returns:\n",
170 | " z (tensor): sampled latent vector\n",
171 | " \"\"\"\n",
172 | "\n",
173 | " z_mean, z_log_var = args\n",
174 | " batch = K.shape(z_mean)[0]\n",
175 | " dim = K.int_shape(z_mean)[1]\n",
176 | " # by default, random_normal has mean=0 and std=1.0\n",
177 | " epsilon = K.random_normal(shape=(batch, dim))\n",
178 | " return z_mean + K.exp(0.5 * z_log_var) * epsilon\n",
179 | "\n",
180 | "\n",
181 | "# Input\n",
182 | "inputs = Input(shape=(timesteps, input_dim,), name='encoder_input')\n",
183 | "\n",
184 | "# LSTM encoding\n",
185 | "h = LSTM(lstm_dim)(inputs)\n",
186 | "\n",
187 | "# VAE Z layer\n",
188 | "z_mean = Dense(latent_dim)(h)\n",
189 | "z_log_sigma = Dense(latent_dim)(h)\n",
190 | "\n",
191 | "# Obtain z\n",
192 | "z = Lambda(sample_z, output_shape=(latent_dim,))([z_mean, z_log_sigma])\n",
193 | "\n",
194 | "# Encoder for sanity checking\n",
195 | "encoder = Model(inputs, z_mean, name=\"encoder\")\n",
196 | "\n",
197 | "# Encoder to extract z values\n",
198 | "encoder_z = Model(inputs, z, name=\"encoder_z\")\n",
199 | "\n",
200 | "# Decoder model\n",
201 | "decoder_h = LSTM(lstm_dim, return_sequences=True)\n",
202 | "decoder_mean = LSTM(input_dim, return_sequences=True)\n",
203 | "\n",
204 | "h_decoded = RepeatVector(timesteps)(z)\n",
205 | "h_decoded = decoder_h(h_decoded)\n",
206 | "\n",
207 | "# decoded layer\n",
208 | "outputs = decoder_mean(h_decoded)\n",
209 | "\n",
210 | "# decoder, from latent space to reconstructed inputs\n",
211 | "decoder_inputs = Input(shape=(latent_dim,))\n",
212 | "\n",
213 | "_h_decoded = RepeatVector(timesteps)(decoder_inputs)\n",
214 | "_h_decoded = decoder_h(_h_decoded)\n",
215 | "\n",
216 | "decoder_outputs = decoder_mean(_h_decoded)\n",
217 | "\n",
218 | "decoder = Model(decoder_inputs, decoder_outputs)\n",
219 | "\n",
220 | "# Build vae\n",
221 | "vae = Model(inputs, outputs, name='vae_lstm')\n",
222 | "def vae_loss(x, x_decoded_mean):\n",
223 | " xent_loss = objectives.mse(x, x_decoded_mean)\n",
224 | " kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma))\n",
225 | " loss = xent_loss + kl_loss\n",
226 | " return loss\n",
227 | "\n",
228 | "vae.compile(optimizer='adam', loss=vae_loss)\n",
229 | "\n",
230 | "# Uncomment to print a summary\n",
231 | "# encoder.summary()\n",
232 | "# decoder.summary()\n",
233 | "# vae.summary()\n",
234 | "\n",
235 | "# Train the VAE to obtain z\n",
236 | "vae.fit(y, y, epochs=20)"
237 | ]
238 | },
239 | {
240 | "cell_type": "code",
241 | "execution_count": 47,
242 | "metadata": {},
243 | "outputs": [
244 | {
245 | "name": "stdout",
246 | "output_type": "stream",
247 | "text": [
248 | "x: (1995, 5, 1), preds: (1995, 5, 1)\n"
249 | ]
250 | },
251 | {
252 | "data": {
253 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0Zddd3/nZZ7zTm9+rSSWpNFm2jI0H2YQhSac7sYFObAikl4E0pgNx6A7JWqG7g1mdBELSIQlpkpXACkPsJk0GY6bGgMFhMI2xMbZMLBtZlqtUKkk1vvnd8cy7/9j73OG9O5zhSlWS7m+tWlXv3PtOnWHv/f19v79hCyklC1vYwha2sIWlZtzuC1jYwha2sIXdWbYAhoUtbGELW9iILYBhYQtb2MIWNmILYFjYwha2sIWN2AIYFrawhS1sYSO2AIaFLWxhC1vYiC2AYWELW9jCFjZiC2BY2MIWtrCFjdgCGBa2sIUtbGEjZt3uCyhim5ub8sKFC7f7Mha2sIUt7CVln/nMZ3allFuzvveSBIYLFy7w2GOP3e7LWNjCFrawl5QJIZ7N8r2FlLSwhS1sYQsbsQUwLGxhC1vYwkZsAQwLW9jCFrawEVsAw8IWtrCFLWzEFsCwsIUtbGELG7G5AIMQ4v1CiG0hxJ9M+FwIIf61EOKSEOJzQog3DX32biHERf3n3fO4noUtbGELW1hxmxdj+Bnga6d8/nXAQ/rPe4B/CyCEWAd+APgK4K3ADwgh1uZ0TQtb2MIWtrACNhdgkFL+PrA/5SvvBP4fqeyTwKoQ4izwduC3pJT7UsoD4LeYDjALe5lZFCf83KefI4qT230pC7sD7Q8u7rLd8m73Zbzi7MWKMdwFPD/081V9bNLxEyaEeI8Q4jEhxGM7Ozsv2IWWtd/8k5t0/Kj0ef7rcwf89hduzeGK7mz75OV9vu8XP8+nnpnmV7w8rO1HeGFc+jwXb7X4m//pjwmilzeYxonkf/qZT/EzH79yuy/lFWcvFjCIMcfklOMnD0r5U1LKR6WUj25tzazovi32/H6X7/4Pn+HXP3ej9Ln+7e89zT/8tSfmcFV3tu13AwAOuuFtvpIX3r79fX/EP/71L5Q+z8cv7fLrn7vBc/udOVzVnWstLySM5StibPzq49f53p/77O2+jL69WMBwFbh76OfzwPUpx1+SdqupKO9hLyh9rpYXsdPykXIsTr5s7EgDw1Hv5T/5L263uXrQK32elqcY6W67/Di7k+1QA0JzDmPjoBPw+atHpc/zQtnvPHmLX/t8eYdyXvZiAcOHgG/X2Ul/CjiSUt4APgK8TQixpoPOb9PHXpK20/IBaHvlpSQlOyR0gvLSwwth3SCiPQfJLAWEeQDDD37oCX7sdy+WPs8LYb0gpuVFcxsbAHsvc2A40E5D0ys/Nt7/8Wf4Kz/5iTs2lnWr6RNECeEdcn3zSlf9z8AfAg8LIa4KIb5TCPHdQojv1l/5MHAZuAT8NPC/AEgp94F/BHxa//khfewlaTttDQx++cU8nfy7GmzuNHvvL36e7/7Zz5Q+T+oVzgMYPnZxh9984mbp87wQlgZQ5wGmrXRstO/MsfHsXod/8ZGnSrPdwzk6DfudAC9MuNm8MwPZqdowj/jkPGwu3VWllN8y43MJ/M0Jn70feP88ruN2W58x+OUHcioX7LR9LmzWS59v3vbZ5w+xzHEhonw2z8nfDWK2m0p+E6L8tc3TtvXY6ARzYAxeyhjuTGD4+ceu8mMfvcS3f9W9nFqqFD7PYcoY5jQ2AJ7b73J+rVb6fPO2FBjafsRqzbnNV7OofJ6rDYBhHnKBmgx3ImPwwpjnD7p058CM5qkjd/yIlh+x37nzJJbt5vxkxpaWVnbvwPsE+OLNFqDkszLWHxtzeGapJ/78frf0ueZtLS/sS8bzWDvmYQtgmKOlwNAqOZCjOMELlda4cwd6hZd3Okip4gxlLQWEsjqylLLvFV7Zu/OydVIpqXOHyYwf+NRzPHF9vkHZp241gfL3OiwzlpWlhhnDnWa3moP3eKdISQtgAC5tt/jQ4+WToQYxhnIvd3hClZ38Oy2fv/hvPsbFW61S5xm2SzttQE228jryfLKSgjghStS1XNm9cyd/ECf4UbkFM3U89ubAGH7wV5/gn//mU6XPk1rbj3h+X2Ve9cJy8yCVkuJkAPpFLZXwntsvnxU2b7s1FPeYR3xyHrYABuDv/sLn+P5f/Fzp86SMoSzqt4ZiFDslM08ubbf5k2tN/t3Hnil1nuPnBIgSSVAyi2JewedhWWuejOHpnTbf+TOf5qhkLv1w9W5ZT7o1pxhDkki8MOHjl3b7i3BZ+9KQA1KaMQyNibLjI52T82YM80gnHwaGBWO4Q+yxK/v88XOHdMNy3m+SyH6WSFkdeZhx7JRkDGml7a88fm1utQJPa2CAOejIcwo+Dwd1r+zNZ/JLKfn+X/w8v/PFbZ4qybiG3+O8xkfZOoaeHhtRIvkvT8ynyv6pm4PnVNbLHy5sKys1piA1zxjDxVstvvKHf5df+uOrpc5zc4QxLIDhjrCf+P8uAyAl+CVaDBz1VJWmZYh+OmFRSxcOyxClUxLTyemFCb9ccgCndmkIGMrUWXhhTBAlOKZBsxeSJMWBeXgRenZOjOEX//gan7qisqd7JVtZbDd9TENlSpWZ/FJK2n6EZYjSLTaGn9mvz6m4ahQYys2Do26AY6olqtkrd670WvY7wVwW36sHXf7H932Km02Pp3fas39hit068tBDYy7JCfOwVzQwXNpu89tP3uLUkguU837T+MLd6zXaflSKfaTAcvd6rTQwpAvaqSWX//hHz5WmvlGccHm3zV2rVXX+EpM/lZHOr1dJJLRLnKvTf2ZVntntlI99dAN++MNPsjWHsQFKSrp7TT2zMgtTL4yJE8nd6yrlskycIQWV08vu3OSkL95s9sdGWcZw2As5v67OVZ5Rxtyjn1lZ1rDX9vn2932KThBhm4JeUE5OvdX0++9zISXdAfbvPnYZ1zL4jq++AEC3hPeVSgX3bdZ1xk7xc6Vew32b9dJtMdKF+91fdYGL2+3Szeqe2+8SxpLXn18ByunIaeA5nbBldPz0eT9ydpmWF5Xur/MjH3mKw17ID/6l1wKU8sz9KOagG3L/VgMoN/nTsXFhQz2zMskJ6TP7xjeen4ucJKXkqZst3njPKlAeTA86AffqsVEmnTmME4Io4dVnloBycYYkkfy1f/8Y1w57vO/db2Gl6pRmkzebHnev1XAso5RzNE97xQLDdtPjl/74Gn/l0fP9gpdSjGEIGKDk5PfTyV/Hj5LSHibA//Do3SxVLP7jHz1X+FwwkJFef15N/jIFWyljSCd/Ga9wAAwKsJ7ZLS4nfeF6k//0qef4jq+6wJvuXR05fxFLx8b9emyUkRrT302LHvc6xYEhHRtfcd86d69XS8tJOy2fg27IG+4uPzbiRNL0ooHTMIex8eqzy0A5xrDd8nn8+UO+9y+8irfet07VMUp3zN1uepxadmm41oIx3G77D3/0HGGS8F1fcz9V2wTKeYWp5HPfHCb/gDGoSVEmAJ1OivW6wze96Ty/8Sc3SslTaapqyhjKgGk62e+eg1eYasivPacmf5k4w59cO0JKePdXXqBmq+YAZbzCtOr5vq05OA3ewGmAcgHo9JlVHZOvf93Z0nJSGqB/5NwyrmWUGhvN42OjRPA5fd7nViosVaxSjKEvzS4ribFqm6XuM0kk2y2fM8sV6q45lzqXedgrFhie3mlzYaPOhc16HxjKeoWuZXB2RbUAKBNEavkRQsA9c5j8vTDGsQxMQ/BNbzpPGEs+fmm38Pkubbc5vexyWk+MMsHnVDq6V99nGa8wnVAPn1nCEOUyk9LJX3dNKo6aImWchrTq+f5NJSWVGhveKGMoA/Lpgla1Tf7i686VlpPSwPOrzyxTc8xSjCFtoLfZUJ50meBzCoA11+Ke9VopYEjHQbpmVG2zlNOw1wmIEsnp5Qp1x1pkJd1u88N48HId9XeZF7zT8tlaUoMYygUY215Ew7H6QfEyk98LBve5uaR6sJTxSp7ebvPgqQY1R91nt8R9pjGGezfmIReo61it2dy1VuVKCSkpnfwV28QxDQxRVmZU6Ygpmyw1NnSNy1bDpe6YpTqspuO95ph82V3LbC25fPKZvcLn++LNFltLLut1h5pjlXK00jTmlZrNcsWai9NQd8zSwNAbGhvp32XWjbSG4fRyhYZrLbKSbrf1wpiKrW4/XTjLZiVtLbk0KmrBLNMWo+2HNCpWPyOmrJRUcwbeDRT3fqWUPL3T4cGtRv+cpSZ/N8Q0BOd0Fks5uSBd5CwubNRLSUnDk18IUdor3G75GAK2llxqjlkKGNJxtVSx2Gi4pZyG9N2l97latUvNgadutvoB3ppjluqllUpaazWH5apdbmxop6GuGcPVg17h1GgvGAWGqlNOShoAg0vdtebSZHEe9ooFBi9M+kxhwBiKv5Sdls9mw2XJtYHyweeGa7FWczBESblgiBmlg9kr2JLhZtOj7Uc8eHppwBhKDOSjXshq1abumJiGKM0YXC2Z3btRK5Wy6oWqtiKtO6iW9H5vNT02Gy6mIUoHGEeBwSnFGLwhxgBqfBR1GuJE8qVbLR4+rYHBtUpl+aWJCatVm+WqXW5s9BmDxd3rNYIo6cd98lo6d9I5VXPKOQ1pcduZlQqNykJKuu3WC2Iq1uDlqmPF85H7UlKlvJTU8iIaFQvTEKzX3VKMoRfEfeBzLa2XF1zk0oykB7caOJaBZYjScsFKzUYIwUrJyd8JIupaxruwUafpRf3FJa95Q2wSKJ15st3y+8HKhmuVS0zwB97v5pwYQ7UPDEa/eWNee3avgx8lPJwyBtucS43Las1muWKXSkzo9GMMZj/LqaiclK4RI1JSKafBRwgdS3FeZllJQoivFUI8JYS4JIR475jP/6UQ4rP6z5eEEIdDn8VDn31oHteTxbwopuKMetJFvd8wTtjvBkr3ddW5yunIUT9WsbVUbvIPMwYhhJr8BSu8+8BwSgVRa45ZChiOuooxABoYSgQY/YFklmbsFO2Z5IUDMIXymSfbTb+/L0GjUm7yt/2Iim1gmwabDadcYkIqi1jl9fLhwDOosVGqxqUbIAQsV2xWqnYpaTYdoyljgBLAMCb4XMZpuHWk2KRtGkpKukOykkpv1COEMIEfB/4Cag/nTwshPiSl7O96LqX8O0Pf/1vAG4dO0ZNSvqHsdeQ1P0z6E6Ks9r7fCZBSLeKupQKWpWIMXtTPbtpsOKUa6XWDmKXK4DWX8XAubbdZqdpsNlQQu15SFjnsBf0Fs6xc0Aki6lreuqDTfK/sdXjjPWu5z6XiT8eAoSRjSNN76065AGPLC1mqKDDdqLvsd3ySRGIY+TcmSp2G9HcrtlmYnaZtIR46rZ0G1yr1zA57IStVG8MQLFfLBp8HjGG97iBEcWDoJyY4g/hkqeBzy+tn+DVcFX8q+j7nafNgDG8FLkkpL0spA+ADwDunfP9bgP88h/+3lA0Hn1NZpOgLTidTGixWWmHxgdz2B4vc1pJbqrrVG2IMUM7DubzT4YGten93tKpjltKRj/TkB0pLSd0gpqbZ2t3rNYQo3n77xDMrEWCM4oS9jt/PMCurI7e8iCXNJjcbDokc7UKax7pBNMKMKrZZuF9Yy1cxnhRQa7ZZymk4OMYm235UeL/mfmKCbeJYBudWqoWL3LxjWUlVHWMoGs+6eeRxZlk5R6kUWmZOzcvmAQx3Ac8P/XxVHzthQoh7gfuA3x06XBFCPCaE+KQQ4hvmcD2ZbNyCWVQWOQEMJSlhW8cYQKUl7rSLt8XoHZNFysgFTS8c2Xaw7ljl0lW7IRtuAp/4N6xXyhW4dfyIZVtC5ONaJudWqoWlpF6Y4M6JMeylbHK5Al6TVTsuLzPqsbHRKJfO3AsSNiwfklQeKV6U5odJP4YFyjsvI78ddoP+WFvWDKkoC+8GSn6zdEO+u9erJWIMMUt0qep7rdhm8Qacj/8c7zn6V5xtqHOl7/VOiDPMAxjGcZ5Jq9i7gF+QUg6PmHuklI8C3wr8KyHEA2P/EyHeowHksZ2dnVIXLKXk9dHnefu1H4MrfwCJijcU9aT7wNAYCjAWHMRJImkHEQ+EF+Hib7HZcAmipHDAcjhdFdLMk2Ke18mgbHEwjeKElhfxxt4fwn/5e7whfLw0Y3jv/t+HH3kQfuV7eFv9Itf3C8YYgphqep/P/RE/eu1bqfnbhc7VT0dccuFnv5Fv3vuJ0pXPf4rPwf/1ak47SmIsDgwhPxv8HXjfX4DOrhobBTPWvGPyW02zyaIOzVEvZLVmQ3uHFTWtCqesDsuMoHpzFWUMiXfEp93/GfuT/xooJ0PHX/gV/rL8Hb7z6t+D0JtLDdS8bB7AcBW4e+jn88Ck7dDexTEZSUp5Xf99Gfg9RuMPw9/7KSnlo1LKR7e2tkpdcBAn/FXzt3nLjf8IP/Pfw4++hr/BLxb2cNLOqltLLoQ9rRUWpPdhjJTwZ67+JPz8d3Cmqrf4LCgnVYMDvuuZ74VnPwGozJOiO4h5Q3EZUAVDRYEh3cf3Xu+LAJwSh6W2cOz4Iff5T0JtHZ74ZX5g7+/y3Yf/otC5vEgvclLC7/xD1qId1oNiO/ylVc+nGibc+Cxr8W4pNtnyIl6TXILWDU5LBVZFU1Ztb48zchuufQbe9zbOxDcLO0deEHGPuQ87X4Kbn+d0skOcyMLS1EE3YK1iwI+/hTc9/W+B4q23u/5AZgQ4v1Zju+UXmgdWd5uKCOH3/hkcPleqODZs73Mka9x78IfwgW9lyVD393JhDJ8GHhJC3CeEcFCL/4nsIiHEw8Aa8IdDx9aEEK7+9ybw1cAXjv/uvM0LEpbpsNt4GL75/4bGKb4t/KVSUtJSxaISHsE/f4CvTj5TGPXTwOSadxWCNq86+H2gWBdNKSUPRV/igdan4We/EZ76TSpWcYrvR/GIxFIrUZCTsoPTnScB2JQHxIks3GKj7u9QSXrwld8D/9tFLlce4VxUbP+JXlotfuVj8OzHAZBRMWBO8+XPxTcgiXCJSm3v2fYjNlB7NK+h9lYuyhhWerqh4p/5u9Db591P/nXuja4UAuc/tfdL/IL31+HH3wI/8TV826e+kTq9wmPtsBtyr3UAvQPuevb/xSApzCiPM4bUMy9ybYan98eOevCb31+qODbpHvCp5DU89RX/BJ7+Xb78sf8deJkwBillBHwP8BHgSeCDUsonhBA/JIR4x9BXvwX4gBwdda8BHhNCPA58FPinw9lML5R5UcyK6BBUNuHL/jI89DYcglLB560lFw6fg7DDheT5wl5h2w+xiKj3lId61/O/ov6PApM/jCVb6DbbK+fhA9/Knws+WkIuSAZSUu+AVcMvMfEDBAlrh+p1ryYHQPG2GGdCDQKbD4FTo2utYsiC9xnFVCwDPvrDINT9yrCYV55u6bnWexYAB3V/RcdHywtZkyrbuxEdYBqiMGPY8PUz+/J3wV/7CHbi853mbxTy8re8K3REDb7pffCW78KUISt0CjkOqcx4D6rbq9O7xVcYTxaWksbJqUAhSdXydab9q/8ifPHXuHvvD/r/R14T3iFH1JFv+Kvw5nezekOd605oizGXOgYp5YellK+SUj4gpfw/9bF/IKX80NB3flBK+d5jv/cJKeXrpJRfrv9+3zyuZ5b1gphlOkSuSiHEqmCSEATFJthOy1fxhY6KfayJZuEYQ8uLOCf2MGQEy+epX/19NjkqxBh6QcwZsY9EwHf+Ftz7Vbxn959yX++JQtd2IbrM113/MfiJPw3/7D7e8/z3Faa9h72Q+8UNrEjFAZYi1aOnSAA6TiTnkxQYXqX+NmwsWWwh6QUJjwSPw3OfgDd8m/5PiiUAbLd81usO9v5FYAAMRSZ/unvbSqxA1Ojusl53Crfe3gquEWPC6r2w9TBdd4ua8ArJSUvRHnvmFrzum+GerwSgKoo5DqlzcC5WzpE0Hd5pfLxwckLbHxQ/AizLJv+d8ZliUlKggeG//fuw8RCPfPYf4xIUemZWcMSRrKuspNoGRqz3jL8D2mK8IiufU8YgXdU3HktFt6KgV+h8aZ+kFBhWZbNwjKHtR1wQN9UPf+Z/RciEd1qfKFTI1AtjTnOA524o7f2dPwbAmeD5Gb950qI44QfN9/Pmmx+Eygrc+1Xc3fkTCIoFeI+6Ia8XaltV6lvUA9XxtQhj6IUxD4jrBGYNls4CIE1bgWsB88OIt2+/X53rrX8dUAt6EU9aFbe5sPslACyp3mMRuaAbxCRSMQUAOjts1B12WsUcmtPRdfadM2CqRVOaLi5RIea8FB3QNNfVD7aqI6niF5IG0/TbrfAa2HWi13wDX29+ina72Baaw8WPAA89//P8tP2j+N3857NDJd/ROAVf/yNU28/xzebv539mcYgd92iLhgqyWxVEEmES074DitxekcDQ8yOW6SIrqkoTS+URx4E35bcmW19Kaqtg4FJyhBcmhAXyrjt+xD1CZ8C86uvg7Bv4ZuvjhYLPvTDmrNjHq5xWB/SENZP89+lFCWu0uLL15+A7fg2+5u9gEPNaLhEUWDCPeiGvNy4jrRpc+BpcvzgwdP2I+8UNWvV7QddYCNPGohgwPBJ9gXvaj8PXfC+4aow4RIW83+2Wp8ZGHxg0YygADP12GKHugNrZYWvJLcwY7kqus+8O8kak6eAQFpJYVpID2nYKDKopYg2/UDeBtIHeau85WL8f6w3vYll02bz5+7nPBaPtUgBq/g6GkARefqemEuoYQ2UF7v9vkMLkrNjLPzZ6inkk7oqqC9LOqUP4sgk+v+Qs6LWwRAKVUcaQhPkZQy9QeenDjKEeqcFT5AW3PMUYEqsCS2fgy9/Fa7iMvf+l3OfqBhGnxT5BTQODvk+jQCDVD2OWRZfI0WB6/lEA3iguFpz8Chg4+3pYvgu7uw3IQsDQCWIeMK7TXbp/cNB0sIhzF0WFccKruaJ+eO03DCasCAsVHu20fE41XNhVUpIp0xhDkbGh4k9uujh1dtmoF2ykJyXn5U2a1aGEQsvFIcovi0jJWnJAx95QPzuqJUmtoJSU9kmqd56DjfsR9/1Z9ljhwVu/kftcoJjWcPC5GihgDb38KauVuEVHNMAwQQikVaVaJD7pKWAIbNVbCkuDqQgWwHC7LO4oKi5qul2CZgwyzO9JpxkhwzGGmqb6Rb3Ce8Ut5Op9yvv9sm8ixuANB7+Z+1xeGHNGHBA1zqgDevAZSZBbL/eihCW6JCkwVNc4ajzAm42LhQJvzW6X14oriLveDI1TGFGPBr1COnK30+Yce/irA2AQpo1NlFv+8cKYU+KARFhQ2wRTAYNdkDG0vYhz9hH4TUBgah25SF1Ky4vY0JlIgJKSCjbSk+1tGqKnWFZqpoMrCixyQZsqPj1HA4NmphWCYlJSN8Qkxm0pxoBp8VHrT/Nw8+OQZgXlsI4fjaSrVjzFTsMC0nElatI1l/o/S7tGFT8/mGrG4NupaqHG2ZojS7XTmZe9IoEh6aqF26yOMgYZ5p9ggy6QTl9KcnWAqhAweBEXxC3Ehl7kGqf4Uv0tfIX3B7nP5XU7rIk2cumcOmDaSAQOPmGcExi8LhURIp3BpDjceCNvMi7S9fN7rNWDL6l88LveBBq4ThuHhRhDsnsJQ0jitQf7x1JgyDthe2HMKQ7pOetgGGCp6ttCnjSqIvZcGtNZvx8jUc+qiFfY9iM2hV4Y7Tp0dthsuHSDODdrC7YvAdBrDAGDVSl2n3rce+6m+tlRwFDDK9Rh9aAbcJfYRSQRrKt610/W/xy2DOHJX811rihO8KNkhDHYnnLgIj8/MNSTFj1rMAewa8WC7Jox+NYgAQZg1UkWjOF2WaJfilkfZQzEPnHODTzS1M+KbUBHeSJ21MYhLJR50vYC7hHbGBsD77dVO8+SbOU+V9LUm7vrgCxCEBkuLmHulNWwo7Mx0rgM0Dn1ZtZEm2j7Yu5r22zqrORzb4QlJXVdcNuFgEHsq0VObgyAwbAcbOLcnWT9MOGUOMSv6CJKMwWGMLcnHSeSIE44HapUVc68rg8MxcZGxFYKDKdeo6Qk3dAwr5wU7qhn5q9c6B8TtquC7HljDBoYgooGBs0YasIvlJZ71Au5P03A2FDAcLPxZTTFMlz9dK5zpYxlOPhsdxUwhAViio2khZcu5oBwUikp5zPTjCF0RhnDih0vspJum+mXYtd1sEy/FJcwt7eUTqKKbUJnu5/3vkq7kFxgtG/gilBR6P5BG7tAho1oqXQ/Y+Vc/1hiulQIcu/JEHXSoNtq/5h3VsUZrOv5JivAue6TSqtdvx8aChjucVqFgMHWwGBuPdQ/JiwHqyBj2BJHhNVRYHBFlFsyS9MhN73nwFmCtXshKp6V1PIittKO9acfgaDNmqP+j7zPLdm7RCQN4qXz/WOGpZyGvAAo22qf6P4zG8pKKpLhdNANeLWr295oxrBSc+hSgZzxse7Q7m0A+G2MSMUW4gJSUkO2CKyBcyS0lFQ0xhA5JxnDIivpNpnQL8Wpp1KSeimuyD8p0oXHNVGMQQ/kDdEs5BXW2roade2+wUG9yOWNC5gtxRis1UFPw9isaADM5+HEGkyNysBbMjcf4kA2qN58LNe5AC74X+K5ysMqjqKB4S7zqBAwVJpPc1VuUqkNKL5p2Tgixs+5mHthzJY4IKydUgeEIDFUtk5euSB1GjZ6z6jCO6uCiH1qjlEMGPyIzTTGcOq1ACzFCrDz5uSL/Wd4Xm5RqVT6xwzbxRH5wTRqKu8+rmlg6Aefg8KJCQ9Z2+A0VFoosFy18KWVGxj6+z2nwNAZ9LwqkoW4LDuEzjBjqFE3gvySmZ5Pg1oq5Zwu2/FCSrpdJnw1uZwlHSwbYgy5J7+WKmpxC2QMp14NwJpoFXrBS10NDOvDgVQHV0T4OSes2VET1l4deIXSdKmIILeUlKTAUBt4SzXX4jPJQyzv/tdc5yL0uD+5wq2l16ifq2tgupw2moWAod56hsvJ2ZGURMNW79TLGTfqeT4btEjqpwcHTaeQ9p4+49XuFVV4p9nHmlMwxuCpGIN0Gop9AI1QVbbnlX+sw8s8K8+MSCymXS0bEdC3AAAgAElEQVSUrho3bxFJA1nV0qxhgumyYgWFpaQL4qaaAzr9eLli05MWxPkksz5jSO+zPQCGvFmIcZywQnsEGLBr1IsE7L1DerhYepymzumyuQCG22aWf0QiBW59lMYVodH9fXP1BGVLLXYbNAt5haveNSIs1cJCm6EDoH6Yb9F0e7doySrVpYH8I61KIQCUngJTqzY4V821+OPkVSy1nobufvZz3fw8FjEHq1+mDmjWcEoc5AcGKVnuPMtleXZ0kdPPLPDyeYVJextDSGRjAAzScgrFGPwwoU6PundLMwadeeLKgllJIafNJqK+BXXlnVd1BlwuoJcSu/ksz8gzI63nTVulq+aWklo32WMZ1xm0ZMeusmQEhTK5DroB55PrI87RctXGk1Zu+ae/F0MafNayF0CS81xe5xBLJCSVYWCo6uBz/hhDk/qgI60eG0tWvMhKul1mBke0qCGM9KWkwJB/IKeMoeLroqMhxlDkBW8GV9mxzyqvS5tIgcHLN5CrvVvckmsjffJlGmPIO/k1MNi1wY5odcfkM4luQXE1u5zk62C1v/aqwcHGKdblQf4Omq2bOHGHK5wbuU/DVs8szNnmRGpZRCyd6R8Tplow88YYvCjmfqETALYe7qe+rrqycFbSaaOp5JW6CvTWggKMobODFba5Is+M7NVhOpVi7R3aO+zI1ZG22zh1GkZQKJDa6vTYjG71A8+ggCHAJs6ZUj6IMYxjDPnYpN9SzzpxB84Rdo1qkWfmHXIk64NuxboosGFFi+Dz7TI7bNES9cGBVEoSYf7Jn8YYUmDYfBgQnLU6hRjD6eg6B87oPkd97zfIN5Br/jY7Yr2/4xoAdrEAo9D543Z94C1VHZPH5f0kmPD8H2U+l9dU2Vvu8lD79KUzrMQHNPO23t5TIHPNOj9yn1b6zPx8C4nRUR6luTwEDJaLI4olJjwgdLvuzVeNZJ4UiT+10nTVIcbgpsCQJ/tqX7UieVaePgEMKi6Tj7WJzja7cmVkrw7sGnUjPzMFqPVuYBL343WgdnELpEWcczEfZCWljGEADHnrloKWmuNJdWi7WLtKpUjwuXfAoazjps9Mj426ES2kpNtlTtikMwIMAykp9+TXE9JJgWHpLFRX2TLb+Se/lNwlb3BUu3vksFFQFmkE2+wZGyPHhFXFFfl1ZBEoxuDWBsDgmAaRUeFW/VW5gCFo7ZJIQXV56Noap1kK9wjiJN+16YriW/Y9I4dT7TbIuZAYOjhpDQEDabZOAafhAeM6UpgqmSAFBkcWzkrakIeKMTh1sGv9cZdr3O49DcAz8gw1exCXEfr6gpxBWaO7zY5cGdmrA6dGXfi5vd8wTjiddsodZgwViwA7t5efLrIDxnALDH3PUb77jLVcalSHGINTwyV/HYPsHYwyBr0GNayIMJaF27LPy16RwOBGTTrGUJHKUPC5KGOwunsgTBVIrW2yabRo55wUsr1NDZ9OfXSRM7UsEuRp/ZwkLIV7HJibI4eFXaFCkHvgmX6LlqxScQc6shCCmmNyy72v74VmurT2LofUWa0PMmJonKYaHWIT5Ysz7F3CFxU67ujmTZZ+ZlFOlmV1FTA4q2f7x4TlUDGS/DGGKOFBcQ1/6R5VKKeDzyt2UggYer0ey7LZz+KivondK8IYniYRJtfkZn9Te6AvdeV6ZlJi9XbZ4ZiUZNeoFVgwO8NNJNdPSkl598UYAMMQY0jjdzmBIUo7JlTXBwftGhXp4+VkWbKnWm4PGIOaC1WRbtazAIYX3Spxm67RGBwwh7KSCkx+xzIQ3W2l+xoG1DZYF63cjCHQRUfe0r0jx83U+80ji3R2MIk5tEYXTMOuFvJ+zbBFk9qIjg+Kovewc6URyu4+B3Kpv5cv0C9y2yRnyurul7hpn6c2BFgAtqMmWt4Yg+vtsC8bVCrVwUHToWLkD8p6uuurv6brK/oBxmLVraanWamWkahvYen2DrkYw/5lWpVzRFgDiWXo+nIFeHsHGEmoGMMxKamKV8DRSrggbhKa9X4cBbSURP501fT/r6Wg1dmGVe14xfnOlWjGYNaHgUGNk7wZTqIfYxiVkqpG8bbs87RXJDDU4haeOQwMqlVEkT4xXhirxbK9MzRhN1mT+bOS0jYF0cooMKSySC5PrnlN/eUcAwanotJVc96nFbZoU8MwRrf4rrkmvSRfGqHpHXBIYySLKG2LkTszaf8y14y7Rs/FgDGEOaUH19th+1jAHtOlIvL3SvLDmHvENsnqBX1Rek9wqxhjqKTAoHP7qW1idBUw5GIMe09zUFFy5XBW0qD9fA4HRGv2u3IF95iU5BIUKgq8T9yk3Rh0ygWVrupLG5FzMe8EEa5lYJnG4HqX7yLGQORtJqlb6ViNUcYAIPMAQxwiwq6OMehnpp3TlDHc7l3c5gIMQoivFUI8JYS4JIR475jPv0MIsSOE+Kz+811Dn71bCHFR/3n3PK5nltWSDt5Q9SJCQD+NM98L8aNEVz0PAUNtnWWZv8At3r1MLAWsTZCS8kxYXdzWOQEMNc2M8sUYnLCldug6ZjXHxEvyeXJ2cMi+XBrQaOgvdunez5mtd8iBbIzUMADYrl7kcu68VvN32GV1FAAtVUeSFxji7oHqB7Wc9qrSRUwFdeSKDjRT18BQ30J0drFNkR3opYT9Z9h17sKxDMzh+9TXlyvAq9M/lZQ0zBjqVKSXu8DNjxRj6B5jzctVFWMQeesY/HgwNqRU19s4RUh+kME7xJc2TmUoPpkCQ5CjU6uuCTqiPnhmpgWGpcYLt3+zntLAIIQwgR8Hvg54BPgWIcQjY776c1LKN+g//07/7jrwA8BXAG8FfkAIsTbmd+dnkY+Ljz8MDDAUYMzbW0czhs72EDBs0oiPaOfdivDgGa7JTerV+shh2y6wyDVVNkzXPTVy2CqYkmhHbbqifuJ4zbHoJqai5RmziRz/gEPZGPUwdXroljjKx9rCLq3EOcEYTK3nRzkZQy3Y48A4NgTNYplcVkeBs5ECQ5p5Yqrz5HEckkRSjzQwNAbMlM4OrmVkZwx+E4IWe+apE88sbRiYK1tHMwYlJQ3HGKo4iZe7u6rne9wldvGX7hs57lomsWH3e01ltU4QDe7TO1TMtnGaUDj9HdOymvAOOaQ+ksmVSkkizAEMuvPCSPAZtHNavGXKPG0ejOGtwCUp5WUpZQB8AHhnxt99O/BbUsp9KeUB8FvA187hmiZb2rzKXho5LKwKtQI68oAx7A5R/A1M4n6FdVYzWte4zmZ/s/LULEctKGEeKal1gxiDqHos+GxVqBTIvnKPx2W01R2TXqwHd5wNCJ3wiAOWRj3M+ikkglPiIHuFdxJD5NFKnJHumUB/V7I4yrGQSEkj2ufQWB89njKG3MCggqhm2pJEg1XNUot4ngBjN4zZQvdJGmIMJCEbZo7tOHWjxwOxMiojQZ8xJLmAQTMGuTrKAJ06TtIjiJJce2LI5k0skRAt33XyQ9PFzAsMfjQYG2mqauM0keH0W6BnNdM/5FA2Rp+bZgwiyhOXGTCGkWemndP0um+nzQMY7gKG94q8qo8dt28SQnxOCPELQog0HzPr787PdD5+NFzWDmC51Iz8UpIXxqyYPoTdQbBM/+0G+7ly8oXfoilrLFWOySIaGOI8mmjzOjusj1ajgvLkRJQ7V70at/GM8Yyhk6TAkOH6wh524nEoGzjmsI5vIWsbnOIwe0dU7aUdxfZIv311PnXfcZ5q8d4Blgw5skZTfDHdQr2SnK5aNO0UGHTmSd3IryO3vJBNcURoVsHVAK0Z6lmrlZ0x6ADqvlwa9XxhsGFVnnHW2SYWNk1qJ7KS7MQDZK4NjmRLL97DLUm0JaajNjrKMae6QXyyuK2+RSSc3OzD8g+1/HOSMTiJn33HRs0YmicYQxVbFm/LPk+bBzCIMceOv7lfBS5IKV8P/Dbw73P8rvqiEO8RQjwmhHhsZ2en8MUOuhoel5IqVAt4hX6UcNrQLbHrA8YAsCKbuXLyjbBNi+oJxmAXSb1sXmebtTFyQYEAo5RUkg6+eZIx1ByTTsoYsnjnemE6EkuDgGD639RPsyWOsjMGvd/0YTSGMRgq4ylX3ntLefgt+xgwWK7aqCfn2Kj0FDA4a6mUpBlDAWBI+yT1W1tD3wE5ZbayMwYdrN6TSycZQ7ovSR5gaG/TcTYAcaKOAdRmPXkAVbR15flwHYk2aToYyMzMFDRjcI+1w2icJjJcrCQfY7CDJkcTGENV5Chym8IYUmC43W0x5gEMV4HhiqzzwPXhL0gp96SU6Vv4aeDNWX936Bw/JaV8VEr56NbW1rivZDP9UqQ7jjFEuYOynm7TDAzFGNTCsi5atPzsg9gKWrRllcZxxuDqPamjHN5v6wY35NoYr1B5OFGelMSwh0VMYE0AhigHY+iqzJqOuXLiI7F0mi1xkN371cDQSdwxjEEBQy4pSS9K7ePAYDrYMj9jqHrb7MnlfuFYKtVUjDRXPQdj8CM2ORqVBvV42zJyMAYtJW3HSyedBrPAhlXtW3TsDQwBtjlcYZ9u1uPnykxKCwyNxhjGYOjnmEMC6gbx4D77UtIpYsPJLUs54ZHKJBrOWHPSFuM5Wtn3YwzH4mxWBau/kdNLv47h08BDQoj7hBAO8C7gQ8NfEEKcHfrxHcCT+t8fAd4mhFjTQee36WMvmEn9UpKhfQUAsCpURLGspA1DxxIao8CgOqxmzxaxow4taicYg+PkzxaRzRtcj9cmeoVJniwKHSsJjsVlQDXSa0d6GGXxNHVBVsdcPvGRWD6jNsnJ6nlpKamLOybGoBlDHmBoKY+y54zGZbBcrAJxmbQlyfB5AKoaGPI00mt5EZuiSVIbcoo0MGyIZg4pSQHzTtKgevyZ6evLla3T3qZprVOxzWOtV4Y368l+n1Z3m0QKzOWTwCC1PJiJmWrrBMMxhluKSVbXSEwXS+YDhkrUpG00RjPWiuw9MZKVNJoubMQ+rmW89LOSpJQR8D2oBf1J4INSyieEED8khHiH/trfFkI8IYR4HPjbwHfo390H/hEKXD4N/JA+9oJZpHORqZxkDEX3Y9iQxxiDpvgb5EhZDbsYxPTEySIyo6/9ZhzIXhMRtLgp108yBq2J5mpGpuMyoXUSGOqOrmOAbLUMWkrqjQOGxmk2OcIPMz4zDW493DHer86wyZPeqKUGr3KMkZo2lsxfFb8UbLMrhtjH0KY/kI8xpFKSaAxlmWkHZFMc5ZOSrAoHgU3VPjb9+8CQ75k1zWNVzzAkJeXrI2T1ttljiYpONx42aRZgDH48YJOdHZUgIgSJOZBtMlkU4CS9kw6Nnk/5pKQDIrNKiDU6160KRB5LFeu2ZyVZs78y26SUHwY+fOzYPxj69/cD3z/hd98PvH8e15HF4s4BNiCqYxhDgZYYfpSw5qTZIoMdrBLTZS3KISX5Kk7hW41RzwsG3m9WxqBrGG7Idc5NYAzkiTHozqqRfVJKqjoqv1x9ITtj6NljspIbZ3BEjOkfZruuUElJXemeqGNI++HIPPJb+xY9Kgj3GACaLmainAYp5cn3M8GWwx32zaGd+HTw2SF/dWun12OdFp2lIU/acqCyyprMwxj2obZBN4pHq56hD1yZF94khu4eh7X1QQVvarberId8jMH1dtmVq5w5fj4GXYYz18xIiRf4o4xBA6sChr3s71MrDT3z2NhIgSFPLMU7xNdO1nHGQNCh7lovi+DzS8ri7iFd6eK4ldEPrGKZJ14YsyoPwV0ZLLpCEFU22MjTFkMDQzxGx+8DQ9agm65huDWOMejFSebpE+MrxhAfD9ijGINPfsbg2yfPlbbFcHrbJz8bZzrG0KVy8j71Ipfk8X5bN9kVa6MBQVAUnwSTOPsCHPk04qPRXlX6PTpSA0OOyR+2djCExFo5JrHUt1iTOQL2nV2obdALkpNevh6/tgyzZdh0dkEm7IsxjEEvmDWRr19Sxdth+3jqa2p9xpDtnSYf/WF+SXwfDUcv/O1b/T5Tid7JMMiaSdTT+16cYAwKAHMxo95hv45qNPhcgahH3bEWLTFebJO9A46oj9HeixV+eWHMSnw4iC+k/09tnTVa2Se/9spjZxww6EUuq6eUMgbWx94n5Czh19eWHPekUa23czGG7j49UcN0Kic/05O2ovv/zLRgdoxB5go+32JHro7J71fPP5fjoN/BkTUEDEKA6WIkATXHzAUMRkdl4jnHs3XqW6wkhzkYwy7UN+kNF36lNsRoMs0DLb3tsTZo7ZCa3t6zmjP4XPV32GF1NCirTaS7nWV0auKdp3jYuMpDbb0neXuoCFXXDGTOGtRxAe+4Q2PaSGHmA0DvsM88RtNVXeVQuLdfSnoFAsMhTVkb4y1VsAtKSY34YDDgtIn6JhuimZ0S6gCvHOOV9yl+VllE90m6Jcelq+oFOc4fYziRyQXUHYtApowhm5TUNJZPSg8AumulFWYsDOxLSZWJMQbiHBOsdZNbxzecgb4nnWt3s6YChqZ9LF5huRAFNHLKBWmzvBNB2fomS8lhjhjDHrK2QS+MpwNgJmDQfZI41kAPRoKymdtiJAm1cJ9dVkdbdWgT6djNCPax1wbgtTd+Wclend1BZ1odU8zMtDRjCO1jc0AIEquqpKQcjKFrLiFOZHJVIfKou+ZLP/j8kjPvSDEG56RcYMt8TfSklAoYopPAYDa2NGPIeD4tJSXjGEOql+eQkkJ3DR/n5OS39eTKk+GkGQOVcVlJw4whm5TUFEsnPUwYSHFZmdFQ8HlSjIEcKYmyfYub8fLUBTOz49BScl77WEsSBQweDdfKlZXk9DSLOjbOqG+xFOVgDJ094so6iWRigZtDlG1HOM0YtpPlUc8X+sHnmsjBGHoHmDI6WXmurc8YMsZA0nF71/bvwfYX1J7sfWBQCkHm56aBITheGAtqe888LcY9BQwV61gml2YMKsbw0k9XfUmZ4R2d7FECKodY5pOS0kFVD08Cg1FXrbczn08zhnhMgDd3hk3zBl5VTYBJMQYzB2NIekfEUmA6Y4BhOPicsY7hiKUTmVfD15a5T/5Iuur4xVxkZQx+GxG02R5b+5Hu8Bdlf5+aMRzvVYXpQhzQqOTTkftbxzaOna++RS0+IszSRyvyIWgRVtTCe4JlGZbuMpxRStI1B7eS6Ywhc78kDTSH5nhgMPIGn/0WX0zuxpAxfOxH1TH9/IRdybcxV5rmPgEYcnUs7h3SFo2Tz+wOykp65QFDcKTK98dMfisJCGOZubTdDxMsIirR0YkJK+qbLIle9grjNPjsTpaSMqcRNq/Rq0wHhjwpf3FP7ZFdOa7jo4LPQRp8zsIYevsc0jgp10D+PPqgTWQ4xJjUjjMGHWMQWRlD6v3K1ZOgZaaedI505tYNPBziE61XHIh8qraZi52ueM9zwDIcj/PUNxFIqtHR7JPoGgZfZ4SdYEY6jTO7lLQDdp3DyBkTfFbAsGIG2WuDdIFh83hLEm1pXCprZbYIWjwhL3B45ivhiV9WB1NgsCo5YwwHJAiSypj56dSz1zHEIYQd2qJxMo6SMgZnkZX0opsVNE/2KAGwKpgywiD7Tl1+FLNO2g7jWFGUzjE3vYxlGV4aYxgnJZkkiOytAJrXaTtqAkwKPjsyyNzcLOkd0pK1kx4OqsAtH2M4UC23pzCGzAAYdAkNnS54/D4NkwQDISPiJENvnRQYWB0DpqmUlKP1dvM6O2IDd1x1cezj2mauPRTW/atcM86e/ECPu1XZnO3Q6KrnNFX4xH2iisgcomwLZtAGp44XxROBYckMszMGXWDYssYzBlPLoFk75hpBm7ascPSab6PfaUdLSYZdwRIJXtY2M70D2tRxbefER0Z/t7oMz0wHsZvDLbdT04yh7ph0g5gky7h9geyVBQxJjB22dIxhkr4aZi5t98KEu4TWfhvHskVqasJmBga/SQ+332J7xIQgxoIkAzBEPnR3aabAMEkWIcjcrE56TVrUxsYFaraJnwafZ3lycQj+EfuyMQEY1LUZWWWusEtgVKja5thgZWJYOMTZKL7uk7QtV086DZqx2UQ5Ygw32JbrE71C1zKyBz6BTf8qN81zJz8YqheYCTSaMfRsVcNzAkwBaTjZJZY4AKuCFyYnFznDAKvKspkjv1+Dc/t45bm2PjD4Gar2pcQKO7SpEr7q6/uOWsoYUvYRehmz89JsxuOxSUA4NWpZN/kaark9dmww6L6ba/OlOdsrCxh0dk1TTkBr8u377EcxbzW+qH64+62jH+qB6PhZgaFFm+pYrxwgNixEFsbQT5NUMY+TwWflYVfypF76Rye7Z2obCT7P8vR1AG83ro+XkgyTCAsjM2Po4IvKoHvmMUuEjUXGuIBOB92VKxNrIjKncQI0r3FTro0ZZwoYKnkYQ9BlPd7hlj2m8bBeLCsimA00GhjapgKGEwVugLQq2TsARD5Yjt7FcMw7sKs0jCB7VlL7Fp6oIO2TXXxhsJhnYgyRjyFD2rJGvVaDt3wXLJ8HzchNPQ/CLCAD0DvkcJzSAGBXqRkZYwzjNulJLe2+K9T4z7uR0zztFQkMR3JcHUP+fZ+9MOGrjCdoLz84JiiYtt7OWMXrN2nJ6vgJBsTCRmRhDLq4bV8XVk3que/mCZZ5LSUljfHyHdMgNjLWMejitt24Pp4xgOqTn7XrZdjFE5WxCxyANCxsomwLcKBSG8eCc8oms3bflRJaN7mejMnHNx2Ig3yM4eAKADvO+ZOfWSnQZ2CAWkpq6QaG47xfLCc7AEY+mC5+OKZYDsCpa2DIzhgOjPWJY8NKgSHL3uc6ZtdGj48/+174W5/pbxfaZwx+NsYgewccyDFKAyhgyFr5rBnDQVKbzBj0Rk55OjPP215hwDCheRUMGIPIPpADv8dbjKdonvnKkx9qxtDfjnGGSb9FU1YnTopEZNy9SgPDrrGBYxonWltjGMR55ALA8I9oUh0rJQkh+hN2NmNQz2InGRN405ar62XQoceYGgZt0rCxs0pJoYdE4GOfHBvmkNOQZWx09yAOuJ5MZgy5dl3bfxqAPXcMMNgp083IGIRBS+/EV7XHAKrpZk9XjX2k5RLEY6QkAFtJLNnlt1vsi7XxIMMAGDL1+Qo0MMiqGh+GMUjVBkxHM4aMXYZl70BlM467NruevVdSLwWG+pgK+7TvknIAF4zhxbI08CNPNqpLA4x5Fkzr5mdV98hzX33yQ92kz447mc4lvSZtWZ04KRLDQiQZKLkubtsRG+O9G1SfmApBZo/EDCczBoCK45JgZGAMSso4lEsTJbNcffKDzvgaBm0KGDIGUsMuiVkBxBinIWfhlwbnm2NjDJW+lJSZse0pYDiq3n3ys2HGMOs+u7tQXaOnh9G48SGsHFlJkU9iqGcznjHU8vVKat9kT4zJCtNmu2kDyAzjQzMGz6xjH3eOhs+Vtf18T+3eNh4YqtkrvLWcuhePmetW2pY9BYYFY3hxTEtJnrV0snHWUIwhq/beuPEJEikIzo9hDKZNjIGZMSe/H+CdxBgMG0OGs3eEa94AZ4nDpDI2uAggdZ8YL4tHIiVm2J4YYwCVDx8Je3ZWkpaSDiYFn4HEcLBkkG3nu7BLR57c77lvhoUl4mz3GfaINTOYLL9lzErScZ5b42IMpqOyknIyhgOxQjKuKr4fYwhne5idXaht9hewcc/NyJPfPwQMY9+nXcvXjrq9zQ6TGUN/X5IsjCFN/x5XFwRYfWDIcK4kQXgHHNIYP6fsKq70sz0zrVrsx+OcU3V/Vd1kMW97nnnaKwwYdL8Ta8wEG4oxZN2KcPXmH/IFeS9WY3zedSAq2TNsfLVJz9jmYQy83zCeBQzXYPns6AYlx89lubgioyYatBEy0emqE4DBNQmFPbuOQUtJ+0yofAZi083e3Czo0knG9EnSJk1HM4Ysi5xHZOqJOYExNMx4DoxBtcSo2CZRIrOlDO9d5nnOjpffcjGGfd0nSd3DOMZg2C6OyMiyYp/YnMIY7BoVvGyedNAFv8l2sjLRaXBti1CayCyLeb8p5fhAdi7GELQQMlGxyXFxGbummuhlCbL3DsGu046MiXL2gjG82Jbu9zxmw5lBjCFjumrYY3X/s3wiee1EWSQwXL3v7WwTflMFPido79KwVerlLK+weR2Wz+GFY3LL03NZObxC/cxajK9jAKjZFiHZGENiVvBwJ54r0cCQNWDcTMbsxaBNmCrGkOlcYZfQ0BNzAmOoWxmBoXUDiWCb1amMATJO/v3LPMuZCTq+vmaC2Yyhuwu19QEwjIsZ6eZy2aSkgFikwDDm2pwarvTpZpGSdKrqzWRCZ1XAtUx87GzNJH2VTBBOyHBKgSHJAjLDmUTj5qdu/5EJZLxDqK7iRckYxpA6p+p5ZYrzvED2ygKG3iEx5vh0OGsQxMs0KZ7/FGYS8IfJIxMDqZHhZsuwSRJEoOSaaYzByhIUbN2A5btUk7RJEotVUXvxZgIGVXg3izEEWLMZQ3efWO+cN+mZyRQYMsYF2olzsoo9NVOxrEzZP6FHJCZJSWrxq5tJNpbVvE5c2yLCmsAYvOzAEHShdZ0ryempjCFTFW8qJYUxtinGau+YDhUjB8sSKiNtfBpnHTfx6Op9LKaaBoYb8Zi+S9oqtkGAlREY9B4iYzaXgkFDPplFljq6CsC2XBs/1nQxX9qiZar1DqGyij/OcUsZA+r+XvJSkhDia4UQTwkhLgkh3jvm8+8VQnxBCPE5IcTvCCHuHfosFkJ8Vv/50PHfnat5h3SNxtjWDiNSUpbJ/8zvkwiTTycPTwmkVrCzSElhB4FUUtKESZEuclMHSxypQq3lc1OlpLRPTKbFV0+wJrWJE1Z1WM3AGHr7RK6qup0kF0jTzdarJ44gDhQwTLguYdpYxJmDz4FmDCezRRQw1Mw4c4whqOkW4mOzkoL+ojDTy9+/DMDT8enxToNhIA1H1TFMO1eSKCmvtkEvmMwm0WwyU0ZMHBBNC5pYdo4AACAASURBVD7bVeykh5QZUi91geG1eGUqYwiws/VK6jelHM8Y0kU4yQIMexcBeFqenRhjALIBQ79afDJjSDdyeklLSUIIE/hx4OuAR4BvEUI8cuxr/xV4VEr5euAXgH8+9FlPSvkG/ecdvJDmHdE2xjSvgtHgcxakvvIxtpceoc2YfGRtkeHiyAwDL/XKp8g1mA62mCGLdLZVB8mls1Mnv9BNv7IxBi0lyclspppu1pOhjiFwFDBMX5gydL3ULbdbiTvxuoTl5EhX7REIByHGgFYalDayxhhu4FdSYJjUEkP9HzMXTJ2qejE+PVlm1AxwKtB7hyCTfoxhYsDecrMH2SNfxZYYA6YATq0vpc4sctMtvG/FKxPnk2sZBNLK1ispaKtMOc2oTphehDNtWLV7kdhwuC43J8ZSAMiyx0nkk1gV4kROZAwOL48Ct7cCl6SUl6WUAfAB4J3DX5BSflRKmcLpJ4ExCdkvgvUOaU/KLNADZcnKsJD4Lbj2GZ5bfjMw2fuNzWq2fWX9Qc71ZMaQ9rCZcm066JlKSZMmf67MkxS0xOQaC9cyVFuMDHUMadviSedKN1CZOSl0y+1m4kw8lzBt7KwdUaMevnBPtkKGvpRUNTIWuDWv0auqgsexXqFMqBhKWsnKGJ6VExgDgF2ZHWPQqcKplDQpY02Ns4zN5SJfxZaYxBjqWImPIJnNwts3kcJU+z1PuM+KnTKGbHOqK2q442o1IN9OhntP02ncS4IxlTGITMDgkWhH42RH2rSPWZqV9BJmDMBdwPNDP1/VxybZdwK/MfRzRQjxmBDik0KIb5j0S0KI9+jvPbazs1PsSr/xJ/knje+b0NlTvZSGGc32bm48DknElfqX45gGxpg+PQCxVcGV/mx9tV+lOXnxVbLIjCrePjCcoxdMnvymU83eWVJv6xmYY/ai1lZJ+yVlqGPw7ekxBrJ2vQwG+z1PYh+G5c5+ZqmFPTzc8XEZwwDDpmZkcBqSRO3QZU9gRhpkamnmyaz73HuapLalmekkMK3iihksS1c9p8Hn6oRMLqyKAoZMUpJPmAafpwRlq1l2RmzfQta3kBiTGYNtEGAjssizfovOlBYz/YaNWdjH3kWa9QvA+IB9yhisuDe78V3kE/dTfMczBit5eTCGcavF2KcjhPirwKPAjwwdvkdK+SjwrcC/EkI8MO53pZQ/JaV8VEr56NbW1rivzLbGFs/FG1MZQ92MZndJ1Av5oVie7MWh9pWtEBDNGix+2sNpslwjLJ1hk5UxBJODz8KqUM0sJSnG4B/fBH3IXMvAm8UYkgR6B/R0qvCkCSts1atn5qTQUlIPd+KCaVo6kytTjKGHjzOxiA/LpWJkaKKn4ywBOmY1IVe9YqRtD2Yzhmj1Pn2uKdLgrMW3m270s0kvHLOtZ//6HGyZoZZHSoiDfsv1SZXPoBr8zY4x3CKqTWBZ2lzLwMfO1n3Xb9IVUxh41k2h4hAOrnBQVWHRafdZFf5sQI08YmMCY0j33O5LSS9txnAVGC7JPA9cP/4lIcSfB/4P4B1Syv7bkFJe139fBn4PeOMcrmmieWEyfvFNG1iZEb1wBmPQlLGT2JMHHiCtKpUsXS+HGMPkQKo7u+9P85rSsGvr47duTE0vvlnTVSNhIYbaCRy3im3iSXu69usfgUzoWtMZQz8wniVbB+hSmRxLsRwlJWUscOvKaRlOTjbtXUsT/iSJRQeyK0KnJM66z72nCVYu6HNNlpKqs57ZkJQ0jU2i92OYHfxXi1cgp0lJ6YLpzX4H7ZuE1a3J50L15QqwMgJDW3cSmMEYZrGPgyuQROxV7lHXNqFXEihmNNNxiPx+wH4WY3ipZyV9GnhICHGfEMIB3gWMZBcJId4I/CQKFLaHjq8JoXIEhRCbwFcDX5jDNU00b9KCmaYkGtknfyexJw88VFCwmqXr5VBK6LRAaqYYw/JZwkQSJXLy5LcqVLLGGPwmnlEfn8mlzbUUxZ+aRqirnju6gduk+zSzZkyFAylposSS1n5kDD735JitUFOzXCpZ4hX6GaTAMCmQnQkY/Da0b+ItzWYMNWPG++xLSRt0p7DJFLhmtp1IAVCmjGG6lDTzfba3+8AwUU4VgkhkZQytqU0pMS1ijNmbQu2qjKQdRwHDNCmpkmV7z8gjmlT7odcgI/axTfHSZgxSygj4HuAjwJPAB6WUTwghfkgIkWYZ/QjQAH7+WFrqa4DHhBCPAx8F/qmU8gUHhrGDWAiwKtkCjCljiO3JixKoLf+ydL0ciTFMiAtYNtasrCRdw9CdUtkK6ABvxu6qXpOumFDYo00FBWfEGDQwtA0lSU06nwqMB/izWFsGxpBmcs2UMaSEqEdXjmmgN3Qul+xjw0uBYVIXX5Gh7cHBMwB0G2pRmhawr86KMXT3VMtpuzLZOYK+1zqz7YQOAHt9ZjROYhnsFTH1PpMYOjt4FQ0MU5ytSDjZmkn6LZqyMtVxC4WDMQsYdKrqDfs8pjGh9iMFwCwdiyOfUEtJJ8aGXoMIe1SsHL20XgCb7AbmMCnlh4EPHzv2D4b+/ecn/N4ngNfN4xqymJRyusRiuVRzyAXt2Jq8kIBurhWwnyXLCegweSAbVob2Ds1rcP4t/e9MBgYNWFlSEv0mHWNM7/ghSxnDVClJt8NoGdMZg+FUMYUkCGZM/jT4PCXGgGnpTqFZGeAUxqCzdXq6WGtSID4FR09O6CF0vLp12mKum+e16vcCzSkpvlWqs6TB7l6/4++0GpeU0czM74/T+9SMYVrwWcyQUzu7IBN6zsbkc6X/rbCzdd/1WzSTCW1EtEWG05dtJtruRahvcZjUqdoTOiVrKamWpS9U5BEypb9U2n3XztFL6wWwV1TlcxhLEjlFq7UqVLNsUqK9wlZszWAMNRVIneX9+k0Cs06CgTPOIwFMW7dDnjRYpFQN9JbOTm2SBvQXpzBLcY93pLc0nM4YVFbSlEmmGUNTKMYw6T77PfdntRdIg89TspIwndksC/rvsztNGrRUjEfKGYu5Bpl0wZwkJblZWivrGoam7qo6O111xuKrgWF6gZtatJJwxoKZAmBiTc7M6y+Y3nTQ0kWUaQ+zaYwha1t2GSgpaZpDEwk3A2O4BBsPjd++NLWsUlIcgYwJxJS4jN7e07XMRUuMF8vSBX/ypFCZJ1lQHwSdcY2whkzonu9Bb0brbb+Jb9awDHFy/wRthu1OZwzdfeXF6YwkmKCHQn/CJpl6uzRpT+msCgPGMLXyWbOipqziWJNTfNM++dGsDVT6UtL0GEOmJnoaGNrJmE3tBxeGo738qZNfL5jdRMmMJ7v4DvaPhhm56u0dcJboCt32Ylq66syspL3+5lHTalz6jGFWfr++z560pwCW3vdhFmjp5+/LNC4z3cufCQxJooLPU6RZUCBjzaoz2r0Imw/iBfHU4lMpjNmZfvqZBpPiT9Bvy+7aRrakiRfIXlHA4M8Ehkq2ttthD+wqXiSnMgajv33gLGBo4RkTer2nl2ap9g4TJ5jeh4Hlc/2sqsm56qlckAEYwg4d6U5O42RQeDQ1KBgNZ3JNPpeVteulbj/QYxpjsLFkhsaDQwxwmtNg61YFWSZ/L5lwLvN424MZ57IrffCY7LFmqBbv7kFtkzBOZiQmpPtuB9Nz8lMpKTEnX9eQlDQVtFKWxZSGfNpUW/YZOxn2W8xUZrAPdzrI9A5Umu/GQ9MlaCFILLUnw/T71KnMYkobkTuEMcwlxvBSsSyMwY0yAEPkgVXBn0YvAdNVHtNM79dr0jOmFDChirUMEeMFEybFcA1DTw2oyZNfLb4yy4Yn4YygLGnhkTWdlmdM8U03fJ8Z/AzaxGaFBANbJDzzzDN43rHf2fp65Nv/NH/DrPDkk09OPlccwNs/yNtYRjiM/+7rvp84SfjpeIXdq5c5ujHhXYVL8PYP8lprg3/5oHnyXFEN3v5B8Nf56XfAcqU7+drOfTOc+kuckbv89DvO4u88x5P7Y/7fc38FufF1/DXTGTlXpVLh/Pnz2LatpaT1THMAFHD5UTI5TtVnRtaUNNpB8Dmb/DabMUjTwZw0B1Lzh7ZpnXKuxHSmdybYvaT+3nwI70vT5zp2jVpvRowhOs6MpsQYLOO2Fri9ooAh9bymZWSk3VWnBhhDTzGGcEwjrCEzUlnEa0+/ML9FT0wHBkw1mKJJ2u9wAVNzhpSU9onJxBi86do7urmZtBEyVhkmxpj/N+yB6dCL5NRzpV0vZzKGoEtkanbR3mNpfZULFy6MvrPWDWjd5KL5AA+dnlygR9CB3YQr8gxufZWzq2P66+w5RFFAEp7loVONyWysdwgHghvOvRxFFq8+c2zvj7AHOwmsXSDaN9hsOJxdmdDPZ/8ZCHvsNR7APujx6jPL2OPGSPM6sn2Lp60HefCU2phGSsne3h5Xr17lvrtOq0Wpvtn3QifLIqN7n2cChkmL71BQdqonrZ2A3rSgrLaZizmMtpiZWoDq4siAME7GZxvpjCTFGHYmzydApv3HphXHpnGZaW1ENGOo2MYixvBi2cBbmhx8tmVIMjPA2MvEGKyUMcxa5PqZP1M8Ep3jHAYTvPJ0kbdr/Uk4q7gnU5+YqEcncaZ6cWk7ZPX9CdcXKTD1x3WVHHNtySw2E3YJNTAkYcDGxsYYIFc/z2xJItW7jqWY7AwIgdAF/VML2fW5Evn/s/fm8bJc1X3vd9fcfYY7X+lKQgMgIYlBspDACTZOzOjENuBJjh0DxoaYGJ5fnAH84D0nwXw+dhJj/EnII9i8Z2zj4BnjODbGgBMM+NnCAgMCIYFGJF3d8ZzTp7ura9jvj713VXV3Dbv6XCEp3PX5SPec7jrVVdVVe63f+q31WwKndl/6NSlxhKoZaN2XcIptmg4N4SAAKct7VgjBoUOHFIrS4yQZHCjujcZiAoMYuno2dNpwN2vh2fwBIFh3OjqCdSQ9yb32YwOko7i21gunHcNOB8fQqeR78g5wPDhwGZMkb25+BISeVtcqp7OAjOodQ1imks5zDF8bK8o42/LI0qId3RIxeKHKseYWHMMuipRttC7EUDiGqOIYmnPSAKLLMWQp5CmjtnQBFTlkaCagkwl4A+Ikb31YSzTTlUraLQbrCEH9gm5ek119DHoxR+A0nqaDkMYxtCxKlX3VruOidAxCiI59SRBOsU29o5nf5/zL+vXi3lgrFpuuVFKnyKK+d8ZZy70hBPhD1t2OhkX9XY+bSnznji/Qn99W6KCqnHY7EIPUgo2NBQCn7oADl4Prq/kJLcclgmG3JpRxDHkX+TztN/r1EbCvS8fQHC1FpWPoyhVaIQbtGDoRww67DFsjpdIxtETkAN6gaKhrrmKxFBDTkdwoa+cY5hFDi+PyzTXrRgydaCYZM3O0qmXjRv0Qg8TBadqbEGCDGJD8659/J//3O/5T/UIuHN7/Jx/lti98AQcbxCCsEEP1PJbMzAnQwQy03BuuqZrqKNvW984oayGfAYIh606H8qtxMm25d21Sp7paK+BmdhyDmX3eeGwnVakq0J5WQzsG0cUxmEour7lZTnMMkf/oNrh9XTqGtiamUqekPcKRulqk7Sb2ByqVlM9aBnjkGcxGqua6FTHo+vKmxTyZKNjreoVTa3aAakF185isbZUrunhbyjgpRy4CzQ9sOgF/eE4RQ2wcQ89IesmqUX7TVyBEgRhaHU3hZBoWciF4/5/8Obd98fZuxIBJJSl00XyeXY7BIIZBN5osyOeOuc86lTRKu3p5BqyJuB0xFOijocS35vhae2aqqaQ2PstvUfLNMyV5fvjJAO36UqhU0nonx6DPs60y7zxi+NrbtIt486JiFGdXTjR3zbSv5psliJRjaCV5K/X97YhBOYbGVFI6LRZ8c0O1NWuBRbqg4hjaHv7IVwNU1HE0IYaykqvtYTWIgS7EMNslFi09DECBGOrFfkurppJanUwzYnjrW9/KU57yFJ7/Hd/L7V++BynhN3/9V7jpppu47rrr+O7v/m7G4zGf+MRf8oEP/Q/+5Zv/DS99/nO4+ytf4Zd+6ZeWtlPHJVUppOx6UDtSZgViGJb3Rou8BuiqJIvodzd12u9bf421LtXRosGww8mgqvMAq56ZkWxHDGooUcMzsHWf+gyNGNpmqANK5UDMOtYNTdjLlrJoPyoQw6PpGL6uqpIMzGvTEHJtlA2TKfm6dgxtiEGnkmhLJVUdQ9tD4aivqrEjVadqQB27EM3dxaZaxDRFrYUNt0FBlnUjBiuOwR8w3c07H1b12d3kcyyOLF2zf/OHn+e2B1SOmTyBNGYsdxiGfvO+shlkM8ZyROi7uAvNd9detMlPP3d/gTwWo/xPfepTvO997+PWW28lPX0fN3zz83nCdd/Et337d/JT/+x1ALz5zW/m3e9+N69/3ev4zhd8C9/+Hd/B9S/6RzgCnvbEi3j1q189v93rX18hn1sq5KBADKLJAVYRw7gDMVQ6s23SItupyxPavs9gyFB0iOgZiZmm3o+KCZv7w3AMXYihmBZY5xjUnGcOKLntaZJ3lqt29zGUvIwNYnjcayU9XqyA0S1DYgrE0HojT4phG+2dz2vF9o2mb+KtvEUMDrpTSRXEME2y+klkxjyj8Jm0C/xZppJ8V5CIrqqkiRqCbokYOlUvZ2MmXsc105F0y5I6Z624QghAp4kWHMPHPvYxXvaylzEcDiFZ5ztf+PdAwh1f/AKvf9UPcvbsWUajES960Yvm0lumKulzn/scb37zm+e309sgHPIcGhrF9bGVqaRaJ2IQQ7DW3SxXQQztqST1/eykTjtn5A8ZcLojkp6C4zNJRfu9gVIZBpBp3Py9xiMyJyChHYE4bUq+xpkG62S5ZJblrakkdLlquwPUKKvNAVY6n88jhq+R2SAGJ7NDDKnTjRhKkrclLaIRw1bWgRhc80DYIIbciuANmXXIO5Qdqa29B0IgHQPxW1JJGzblqqbztgsx7DLxljtbf/o7nlr+MjkDZ+7mS/nFPPHY4Ua5EdUH8DCfzS/niUfWWa9DUDsPIlBOpi6VJBYqoCTwz1/3T/jDD/wB1113Hb/yK7/Cn//5n+uN1RZCCDKZ88pXvpL3v//9y9v1RAwOSgvMXdx0jnzW/FMn+dxRrqrvw50OWRjlGB7srkryBypoaEMfqMUcIJmZrocai3dIPBWUtR1bMeK2zmnVXLNOByg7NKGMWGMrYlDlqpHnkuWyucfiEbavS46hDcY5+QxB3tnHkLrdiKGcBdtCPutZDKfzjny5rkrK0oauzzQuFtVp0vGAmSliXeV1+rinMmhP/1BGco2IIRkXD1nrNbMdoDLbZUzYcVxliqW790Ctps2RebmvRcTw3Oc+l9///d9nMpmws7PNH37ofyIljEYjjh07RpIkvPe97y2231hbY2dnVCCGnZ2d2u3MceWypSIJijedmmMD5npcSv6pXXY77KxKmiKFwyjpWDADvWB29TF4IXFXQAPFwKjZYpd71eIdZq5yDF0NqJ7IieOaYMZcMy/qDigB/CERMdM2wcyikstvrYwkT4lc9T09Wqjh68wxqFLJrhRLZ7SUTElEw+jGqjmulopou4mVYziTdqWSlGOQTRF5OilTSaktYugin6uIod0xlGWEbeR41AMxtOkuzSBP1ZCetvMUZSqpq5JImqi7o8LJFctO5oYbbuDmm2/m+uuv57tf/mN887NvQAL/6k3/J89+9rN5wQtewNVXX11s//0v/Qf8+//4Tv7B3/+73H3Xl3nLW96yvJ2UgEolybbjgjmOodYB9ol+9X0WdMl4ZzG4IbkU7c7ZXyPoGu2ZxrrMuhsxuBXE0GizEbGjFU/bJGuMk4lrAreKMzWo2iYIbJUr14hhJ3U7yf+hHv3aKRn/CNk5SSUJIV4M/CLgAr8spfzZhfdD4FeBZwKngJullHfr934K+BEgA/43KeUHz8Ux1ZlttNqqVJnnagh6Mbe1/UaOCTscg0olnUq7EENXKmk6Rz63OxmPXHhEYtbJpYCSKuiM5LwQUloQw6SIWFsffsclFV7B9dTvSzUM7nYhmcIxdCMGabZt7BUwjqHeybzpTW/iTW96E5z+CjKN+ezsGBdsRrzxJ39iadvnPPsGbvvkh7hfHmUnTnnhN17Pa1/72vmN8rz43FzKDsRQppJaEYMXFZF74/0hhOoITjvGyKaz4p7s6mMI82l7H4Ppceko/wZwA/XcpXH7MzV113AEeC3kjBFsTGc1+6oQ9vHUxjEoRyTbStMNYkgdNtbaEdvQ1YOcHq+IQQjhAu8Avg24FvhHQohrFzb7EeCMlPLJwC8AP6f/9lrUKNCnAi8G/rPe3yNiXbXIc2WcTV9I17D3BZuJCMeCfD6Ttbfvm0iuOSIvEUOc5u0lhJRdn63pggpi6IrkRFcZYTIhc0OyvF0rCSATHdLK+uEb5e3qmSX53LBgGpM5kg7EULzfJYkhy89ta0iTEuG09DGY0lMtiWGDGBzRUJibjNXCJUR3OhXAU3Ofu/in3BQxtObeB4Ry2hGATMEL22cemEMz8zraIvN4m6lQUvFt3EyxrzqRy0qJr+lNaO0z0kqytKWN0yk4HpNMdCKGgRn9+ighhnORSnoWcKeU8itSyhnwPuAlC9u8BHiP/vl3gOcJ9Y29BHiflDKWUt4F3Kn394iYSrFYIAbRUsOtI4lW6dyKzZygPfqNd5DCUfnytgfMIIYsaYgKFxBDh8OSbtTNMRRqkN2IwfFbGo80yspM70eHk0mdsH2ylp7etmONGLoXc9m5mFdTSXtMSyFA5h1aSaVjyKVsr6wqzjOvP7bZuIho4yQj6GgiE17ImtutlSTNUPuOPgZPJs39N7Agl9KBGEwqqQMxdKkVQ6lMUO8YJiBccP0CZXVxDACirWcpjRVqa0P0OrgbFIOcHqeIAbgYuK/y+/36tdpt9IzoLeCQ5d+eM1OkbHd+uzX3boagGyXIjgUzcSL8jlSSDDYA0cFXKMTgyZS0bpWrIoauVBLouc/2DW7W9eV1iEFfs3LWbQdi0CMXG6N8nUoaZYE1YsjbilF7cAzdMhYlU9zuZCQChRhqz7Oig2GNGJD1x6bTeKAWmq6gATdk4HTMsUhjcstUktq+Y8H0LfgnwA8sZNnjEWMGFuijZfaHuWZCdHeLQ8ExOFnbeSpk1HqeC4jh0eplOBeOoe6OXbw9m7ax+Vu1AyFeI4S4RQhxy4kTJ3oeorILNsNClrjWTLWOaKnhriyW0D6fFtT4QC9vuYmn29oxdEReOpXUOJFsDjF0V3fgD9qVJc0+0amkvSAGfc0KXqbjmuVuSNg23F6nkrZze46hO5UkinLUeivTNZ2IwVQ4NeouOUUfAzTc8HIBMbRDBv0wNRybrggDC/4JwAuIRNopIZ2bXp6O8bYAXjpp/g50UGNzbH4xyKk92NrtkrGnLH2tVfJNxsXzVJDPrSS7dgxtpem6+78dMZishYWY5yNo54J8vh94QuX3S4AHGra5XwjhAfuA05Z/C4CU8l3AuwBuvPHGDo2DevuZlz69fQP9pWy62TlDDKkb4TdJZQPE22TaMdikknyhSMGl6QLVBjeL6g7hqVTS8Q7yORcuCR1CaYCrI7l6xKAdg7BDDLkTFI1HtZ+r87jbacAFVoihWyo7x+vQIzLlrA1RebkzqnxE477yrPgsWUEZ1WNS2xqOoeUjhQCcDsTQxzFERE7ajhiy2KrJ0ziGoVDDeuq/T4tI2uwu6JBlzxJIJ51jPYH2SYZaJh5KAngQdDtAtxUZ2SOGiEfXMZwLxPDXwJVCiCuEEAGKTP7AwjYfAF6hf/4e4CNShQ8fAL5fCBEKIa4ArgT+6hwc02qmv5R1r6UiwwwVMZrqnfnyCF+2O4bUVyimnXzWjoEGp7UgiWFTD25DPqdOCHSUJAJum1SBvmYzmxJfSmK8sZJFcwxns/ZpcP0Qg9ORrilTSd0cg0kltXEMJWKodVrFZ5iqpI7+bT0vohkxqIWrS/gRADcgImHaMds6teHZdPf/GtPmJrd0Uja4WSKGxpnUhU5S1I2ai9kfdVVJ1WtmmgK7HWAop6RZ03lOkZaIwYx+fdymkjRn8Drgg8AXgN+SUn5eCPFvhRDfqTd7N3BICHEn8JPAG/Xffh74LeA24E+AH5dSPooCIepLWW9FDGUJJ1jky72QoIN8Tr3uZpxqKmnJaeWZ0gWqVCV1RYWOEf3qIJ9TEeIIJXvRZl6BGGpSSYbExoKsRA9Q0aMla007hq3UkmOo6T2Y/0CpBfTadlVNJbXtq1rh1LYvOY8YFmz90IUAPPDgcf7Za17eemxvf/vbGU9iHPKGPoYKYrCo/MELuxFDGpMKM3Cm5TsIVdAzpKXJLY31gtnNfwRRB2LQkts70h4x1Cr5Vq5Z56x4KBxDRNxc0ZjGSDckl21NtqVWFTy+U0lIKf878N8XXvu/Kj9Pge9t+Nu3Am89F8exZ9NfypqXsdWFGPLu+bQAuTsgpM0xjEg3LureVxvHUBnSA7bpglDlkTvI58QJO8v+QC32MzyCWsSgHUMfxCBGzU5Lp5LOpr5GMg3b9UAMeVsaSe8FDPncPlynrHCa31+WZbiuq45LVyVBe5rr2MUX8fP/5T2tx/b2t7+dH3zhTfihJGtCDJvHAKy6i3EDAkadWkmpsx/oQgzKMayJFoG5ZEpmxPs67tuwQAwNz5SRmOksZaZdybdC2HdOfoTCiZhgq1ZWJZ2Sux39TwYxyAQIH98Nbv/LmP5S1pyU4x2IYSwDfFcsKXEuWu5GhG2ppGTMTI+otOIY6hBDZUiPlNIq8ipkgls1bCbMRHdFkjp2Nfc5qEMMyQJi6IrkXKN62Y4YxpjO56aHx55jkLILMZQcQ92+7r77bl784hfz7Kdfyd/cdicXXn4V73vvr/HUpzyDV73qVfzpn/4pr3vd67jpppv48X/yKk48fIJw4yBveOvbuPLoDdx11138wA/8AGma8uIXeUzytgAAIABJREFUv7jY711338d3fcfL+OQtt5JlGW94wxv44Ac/iBCCV7/61UgpeeCBB/jW7/5h9h84wO998H8uH1w1LZI2LFpV8yJC0o4+hhmJa5FO1amkIdPm7zOdkDl2QUPou8TSKwK0JTNqxXlkjxhqg5kxDA4AVbn+bvK5VWE1jcm1xlqXJH6gOYZHq8HtvGOommlHb6vh1jfkbtsQ9Irl3oCQWbMQ2mzETLfvt3cEG8RQk+aqIAbz8HVFXgoxdI9vjEXY7WRQD/QMr55jSKvD3hOL3K9KJe00pR6SMRKhymg9F6joR/3xG+Ghz+pfJMxGHMJXiMutuyZqmyE+lwgf6q7bhU+HF/xrQJeENpS+3n777bz7597AM7/pBXz/P30j7/ov7wQgiiL+4i/+AoDnPe95vPPfvYUrL9rPR+7Y4Y0/9S94/kc+wk/8xE/w2te+lpe//OW84x3vKPaZV9DHu971Lu666y5uvfVWPM/j9OnTHDx4kLe97W185Pd/lWhjP5OmzueCfM451NR1a0w3uHWRz4lnkUrSiGFdTOrvtTyHbKa5rO77NvLVUKjaxRwKx3A2t+cYGhHDhkJZ0yTDa5q4Zkw7QDXes5ljyAb7gJZnXX9Ppo/nPGJ4LJhpRxdpO1EG7OY+bRL/xqQ/YMCMWdYgBTHbZSbM0J+2PgYHKdyiKmn+mErEENt0tuptbfoYYoJuJ0P5wOZpvExcGTE+7Rg6K6Y0MX6i6TuY7SL9AXLqdKcLMFpJnZt12LyCaZ094QlP4Dk3Xc9YCP7hd30ff/gb7wbg5ptvBpSo3ic+8Qm+95WvhTwl9yJG4ylSwsc//nF+93d/F4Af+qEf4g1v+FdAWcrqCPizP/szfuzHfgzPU4/twYMHKyepyee6A6v2MSQdsucAboBvQT7PQgvOKDAcQ1yPGEyPi2WaMfQctvCbB0IZx5BGXNiJGFpG3C6kkjpRsxsgcRi0pczSspKr8TvQx+Q/ylVJ5x1D1QoBqxbiTSOGUeYTehZfmhfhi4ztOCb0hvPvaTG4qR5R2YVApOOrVFILYujUwimOK1Sy212Iga4pacpCT01xy5NpjWNY5GW6dJci1X3eUpUkvQaU9W0VmS4p4cFPs8UB4sFRLjmwcP1BlTce/xxnxBHG/gEuP7xW/5mZQiWGr6hDgAWZvMAxrK3pEa95zv79+/n0xz8Eo4fZPfQ0vnxiVDTf1SHKKmJok98WwmnRSir7GFSDW/e94cuESQf5nOjlox0xlFVJtQvmYvNjV7eyIxQybZKG0Y7hTBZymQUyhQaJ9wWU1fk8CUHmDRimcfN9m06LSq7G4Egfk5c9uojh60pdtdO0tx44bZ3PVcRgEa2aSG2yu/ymrqCYCj1RrWN/0g0IOjiG2CYfCuBFehhLu+x2jG/PMeCT1VWLFLyMnfCgE7QMUNHHlXtGPdNWXbVhm7mxni0HVXAM6tc61HDvvffyyVs+g5SCP/mD3+Wbvumb5t7f3Nzkiiuu4Ld//7+h3Ifk9ts+i5TwnOc8h/e9730A89LbFdL7hS98Ie985ztJU9UVe/r0aQA2NjbY2R3X91hICXm60MfQvWD6nYN6ZsT47ZMC9b6k8FgTk9aBOGYCYGeHvRCk+M2DnIxjSLsk2WkfCrWAsjqvGZD7Qwa06EKlVfHNJnVb9b54lOc+n3cMVdME70C0lEomVelcC70/I+1b5xhMisUSRuP6eB0cQ4kYusjniEDGTDoGqNgoq0LJMdQTeWamr0YMnV3ULQNUAGa7ZLo0t5NgRLR3K+vXM9lVlVRKW6s/W97fNddczXt++7/xjc99HltnzywrpqIW/Xf/2n/luuffzDOvfwYf/dM/RkrJL/7iL/KOd7yDm266ia2trWL7XJaI4Ud/9Ee59NJLecYznsF1113Hb/zGbwDwmte8hm+7+VW8+Ht+uOY89e++itytKtZcpVU1SbKWbuUpsfTbJwWqAyf31xjSMPc57dfjApAIH9GEGHSwdaazlBlwPTLcBsQw7lfiC0gz37qlObYTMbieGuObTol891HrYzifSqqa46jmHtFCPqcTcHymWfcYQgBHQ+mkTvO9qK4xlQpdD6zfWZXUOb7UmBfhkpPM2uYeTJl0zHs2ZhBDvbyARlnSLpXkBIqwj5ty3MmYtIoYWmajIByd/ml4XyOGDLE8+WxuP2XpK9QjBkc4vPPn3sTZ8CLunYSsDYfcfffdc9tcccUV/Mn7fxO2v8rsyFP54vExuVSvf/KTnyy2e+Nrfwh2T3Lp5Zfzex/+pJKQ9jze9ra38ba3vW1un69//et5/Q+9hGR8lofqEAPMdfF2808Brixz3Evfv5QKMUjP6hmQwZC1cUMkXTgGy4o1IBU+TlNvULyDDNaZTi2eASCtE7nMEtUXZDiGmR1ikP6a6tdoQwxFU2DHvJQ0Po8YHlPmRe1zCvQYQjNXucscLdSVTEbLb+roZqIlvFshOSDcAL/OaRV6+6FdaR1Uuj5bWviTCWPpW51nK2JIp4BgkjrdqQeUgqYrJLMmRc7ZmNS1RQwd3comlSSFReezwGlBDCY6V2kpC3mN1n3lxSwG9Sddnc+OJsYX9mWkNfwhSZZr2XOLoCFPAFkfIOlofSI9hhZBA8G6SiXVjtDUEjPSosJJWyqC5kFO8TYU2mPd+6qVeF/qC+qY92wsWGO9iUuREtIpMyy6xfV4z0dz7vN5x7BoXkjYNsEtnZSTyGwQg5H2rVNw1GJwuzIicB2cjp4I4Qb4ZMu5WoMYqjN9LUv1ZKtM8JRxbpdKinxXPdwtFR5xJgk7JJ+hMkClTg4ZYLZL4lj0foBCDG36RgYxSJvFVzQihssvv5zP3frXapeITtG78v8tkhhaJwk6tJIqx7Z8niViKMd6dqurOuR4ZPXFCab8WHpEbVLUxoJ11pqmuKXzopR2iCHAaZJlj3fINUq3KbPO3ABPLuyr8jyBfSpJhBsMRUOHd6Yc7UxYoGaNGCLv0UslnXcMi+aVzVVtcw9sEYOrZYezuI581vLRXSMqtQkvIBA1csjVCV22qSTfOIaGRiEpIRmzm3kMgu6MY9HH0NTgVsgqW1wzfWyNCprJLonlbAe1YFogBpzuxZeqY6iTyrZFH918BbInYqAJMRjHMLSTjwbQ87vViNu6xVwjhsyziqRFuM5QNExxS0sFX3VsFou54+PkDbPP4xG50R6zOLbMCfHljKzqnStDekClkmzuWxGu6+qr5pRZiYw65sKcRwyPMdPNPdBQQ6wlgm0RgxkGktVyDCqVtCtDqxsPxyOs67GoIgbbqLCtuQdUhCNzRrlv9fCHmmNobHArZJW7r5lrdPKb0MxsTLyAGJplKkRr70G1KqkPYmiboZB3IYYKX9HYlS1zLbmtfu1GDE75d8Xh6LnRMD/vubPz3HTfNkxx02TtOHcZWiAGJ1xrXjAXRCntFvOWCX/xTiFKaVVJ5NbMJamM9QS1DrQO6dHmhGsKMbSgrLL7vwsxTAk9t30k6iNo5x3DonlR2Y7eMvfAFjF4kYK1Wd0s2MSMqLTrFVDEeDtisBL8gkoN90K0ZExD/J3Mb5cb1mYQQ221SDIpUhlWDtDrQgxjYlEihiiKOHXqVP1iXaRYuhBDR7kqFEQ2tCzmqAonK8Qgc9WfUNdJXaSSbDkGM9wh138uOXXqVCHfTDAsx3pa1vcHNPTzpMYxeNYplvUuxGBZmABKlt2TDYhhNqqIUlooE9Q6hnnEYDMREcCN1llnWt97UCAj0/vRzTFEvtNeMvwI2vmqpEXzQvzYOIa9IwYjE1w7JNyohOYhkW/RmusG+KJGvthE6V5UIIbuh19H3MyI04zhYrqoEsntt0glGa0kURfJFamkjgl6xbG16ORLqYa9i7Iq6dAll3D//fdTO8Bp5yES6XAy30GeHSy/H+/A5AwPyozxqZCH2851+zi543M8OUN6KliOImdjGJ/kjJuTSIfsdFS/n2QKuw/DKcHDo5ydwOXsMJjfZvSw+sebcXaS4G5F7RzUbATj05xwcuLT+tpEEZeY8Sb+sOhkttUQCsWsvvtZ32+7qWtNyq7V3bdQLJjjPAAmVo5GOYZm8jnZuEodv8W9ppR8Z/OaRJVACyxLfNEcQ2Mjn7pm09wWMcSEnsvWpMEBPsJ23jEsmhfhT02pXgNiCIbWN4sfKVib15LPWiI4Cwi9tppLba5PKLJlYa10ouC/4/RGDKFOFyw5hgopaFeu2oIYigldFh2k0K6TP9sFJJOKvpTvu1xxxRX1+3rXa7lzN+LHT//vfOEtL15+/y/eDn/203zX9P/h53/w7/IPrjnWfFz/+UfYXbuEf/iFV/ALN1/Hy665ZP79v/k1+ODreP3RX+Uh5wi//WPfUL+fuz8Ov/d98PI/4If/MONbrjrCz33PNfPb/PLrIVjnP1/6H/h3f3IvX3zLi9uv3Wd+Ez74Gv5t9A7+6xv/cfn6rR9X//oD4rEt+VxyDLXks04ljTLXKsVCsK4lMRrmiKC0x8ASMdQRxsbiEYmryWerey0kFLvzKbMilVRKYtid5xqeyOsLTQq9MA/PEXgdTYHMRoSR09zk+Qjb+VTSonnlIPomxCA9u/m0AIFOJcmkDjGMwfEZZ3aaP7g+gaiTxKiO9TRRYbe6KqBKc+u4FDPCVAZ2HIPnEtNQLaJLfPsiBlnXE6E7W3dNt7jF0BlfV9fUFxNUHaBNfb/mn1qi31HutkflxVCjmSYYm1KWPbSvfKP7s+BMK4vcKkFDG/m8mzrWiGHIlHhWE/wUiMFXvRrdFQBIV0l21Fq8w8w1QYPNvRYVwVFhFY7BWq0YCl2oPK4pTdeIYZJbKAlojiHy3XYhw0fQzjuGRfMiPC2T3cQx5F6ElHYRSTDQ2ju1iGEXgjWlkW+Te9eLXC1i8EpdF5tegfLhn9UTjJUF04ZgNIih3jGMi0XOygG2ldJqxzBmaFXii9aXgmZHn7shEseqI9jNWyZr6Yd/J/WsJNTJVBNTc8pSBSCBRYmv+f6XHYPJlw966GiZKWINiEF/xk5mxzEUC+asrvu/olZsMfcDlDSMX9fVmMaQJ0x7IIbaSYYVx2CtVgyFLhR1FYgGMeSeRYNhWDa4PR4RgxDioBDiQ0KIO/S/B2q2uV4I8UkhxOeFEH8rhLi58t6vCCHuEkJ8Wv93/V6O55yYFxYVD03VBZljiE+L+v5oWPzdkiXaMaQWipegOp8tEEOnTAFUOIYGvaSKVLbNAxZ6qirJy2fLwkSpHoKe2hH2ZUTdjBh2GFhfM08vIrWLXDIhcy07z70SEdWiLH3NtlNbxBCr/o8mgtdTvIxVtOoZjZ2Fa1bkywcl+WyBsoBm9V2dLhyljlXQYBZMUecY0ikIh3Hq2EX4AK7ScloyfW/Ejj1iMPIr4yqaqZDP1iW+UDhAkdQhBoOMLJxpBTE8XstV3wh8WEp5JfBh/fuijYGXSymfCrwYeLsQYn/l/X8ppbxe//fpPR7P3s2LcHUOtSnFklpOmwLwPJeJDBB10a9BDJZpKXSk1IYYlISB/UISNo33rKaSLB5+3xWF2qZRIi33NV0JMZDVONN4G4CRzehGmHMM47pURjIuHENnWsQNS8fQiBgEu0lHatAghjbZA03YT5PcLlrVqUE3j+dTZrNddW84To8+Bl2V1DSvw1QlWfYxFAvmrGHB9AbETbL0Dcfnk6mRtlUzaLIoTLAoMfWVkm9TKsk4017nWZc2NoS9DWLwS0mMx2uD20uA9+if3wO8dHEDKeWXpJR36J8fAB4Gjuzxcx8587oe/ilZD8EvgCkhImt2DLZENo2y2wuIoQfB25xHLhuPbKJCIUShNc+iKJlJJVmXqzZEv1BO6JIDOwfoBrh6jHhTajB17FRf8UJEOiNwO9I/WQfJXjg+VXnSiNi8PryMRj2Lk++qs4ute1w6+hiKe8O3I2X13GcnrSvZLh2g1feJavSEmuIEfW9MbPknDGJYkJ+vpt9sxnoaM8goaU4l7WaexRAt08fgNDfaPsK2V8dwgZTyQQD979G2jYUQzwIC4MuVl9+qU0y/IIRecR9N86JCbbEpkk5sFxJtUxEu535Bkc9+H8Tg48kGET2vFEmzg72lTn5TigWUY7CKllC5X3U8Cwt6zwa3VjnkimOwumaOV9S8jxu4lKRr3KIx11eLud8QyaUxeKFCRq3liCX5HDV1t6ZTtS/b71Mv/iGz+bx0RT66b4Nbbc8MFKmkGbYcg7rXnKYF0zOlzPaIAWAWLzxTpmFUIwYrRB8MdCqpcp46vYUb2PMyUJynV5tKKhGDlWNOpsXxPxrppM4nSwjxZ0KIz9X895I+HySEOAb8GvDDUhbtmT8FXA3cBBwE3tDy968RQtwihLiltl79XJkXFo5h6QvJEpCZ9bQpYzMR4NYihlEllWRHPntk9YN6KojB6riCNaRw2RDj1lRSbMkxAEinhhuQsrckhnEMtXLIxjFklt3iboAjNcdQ6xjGhWOwSSWpxbyJF6hwKW37Khyo6W5dvM/SYoZCbPt9GsQgZvPHVpWP7tngtuGlTGZ1Tkt9LzNp1xVvUixeHWIoHINlmhEV5QPMpgvPVFGYYM8BuuGgvirJH4IQxetW5xma82wuV92aWfAyXgRZTOQqpPBoOIbOPgYp5fOb3hNCHBdCHJNSPqgX/ocbttsE/gh4s5TyLyv7flD/GAsh/l/gX7Qcx7uAdwHceOONjxy28iIdqcrGSWkzx0IhsWIzERa8xfwbuxAMrQeBqLRIUsMxTMG7ANCOwea4hCAPN9lMxh1CaXYcA2jEkDGfStLOdJVy1TbHsJVHRBajVXF9XO0Yxg3nOROW36cXqAe2qSM1jZF+RJLJ9qjcIIZsVp9HNguLRgxW18wvGxanS4ihHNIDNohBXY81N6uf4qYdQ2ybSjKRdNpQldRDrRhA6OsXL1b6mcIEOUSNkLVoQA0GOCJnOqvca6s4UygdYFaHjNT+txKPA/s6lt2NCwHYn6lBTMrR29zs5872mkr6APAK/fMrgD9Y3EAIEQC/D/yqlPK3F947pv8VKH7ic3s8nr1bqCR7N5gsP/xGO55+iCERYT1iSMaKY7BGDJ5KJbUghti25hog2sem2K1v4a+Wq1o6QJOCmJvHqxc56fUgUvV+ajX3423wBuymwpp8Noihtos3GdsPiXHDdtXLdEquj30tbDk2x1OpijQmrKs8KTrZNWHfA2WZTvbCknE5iSzN7Up8zexzN6u/Ztphz6wdg1ow/bwOMUxKB9gTMSTTeo5hpMfR2pS+1qKPqjNdJZVU96wbxGBTyXVANWseiu8HGnpmHmHbq2P4WeAFQog7gBfo3xFC3CiE+GW9zfcBzwVeWVOW+l4hxGeBzwKHgZ/Z4/Hs3dYUL35IbDXOPTBKkFaleqh5tl7dIjcbkftrZLm0rkoyiGGOkKpwDLGlRDCgHAPtiGGKPWIwqpxziEEThKlrD+/NZC23ros63oFww776yvEReRvHMCUWEZFv0ysQQpY0T9ZKpuQ6nbbUSV41IZSTyUytevtEPqvz9Kvlx1XEMIag5BjsqsL0/e00yW6XHINtgxuAX7tgxhUHaLccub66xskiYjBKArkl/wSFE0yrIpcVZ2oco920xiE5gjBrrko6G1s4hoNPBGC/cQyPQpPbniQxpJSngOfVvH4L8KP6518Hfr3h7791L5//iNjaYQCOiO1l4q1IryhY1/rwVyxxIjbzU8tvzHaLgTNWi7kbKEG4PGNWLe+b4xh6VHcM9rMpHmxQvRyTCZdcuD0esmbEkPbo/QAlh+w2dT6HG/aRtFs6hiaSferazbXG7UolTYvKrO48clD0MdSmBkGLIlqep+OSO34NxzCBdZVmtA4aNOoZug1zSdIpUjik2GolaRnsugUzmcDwINPUMgUKuIFGDIvks0EMuT0vZu7ZeccwKXWS9LW0Co6EIHEGBE1cihswTvLudWPfJeD4bI7vA578qAjpne98XjSNGC70RstfiJldrB1Da7qgYqkT4S8ihnQGeUpq2vctm7UAfFLG8UIVReVGtn0onGgf+8Ruw4I5JRUhA8tuVCjLCOcRg+ZlbPP42lInwJfJsvKrdgzWkbTrI3RfRRP5PJUWg+NBLSJ5SuSKRtXRtEAMNkS2QgyzOgQIZbWOpaPP3YiorvSyki+3RaYAQ9GslZQ7ASDsFkwvIBU+kZyQL36fhnzugRg8jRiWNIniEQQbTFPL5wlgoFqqRFzO2Z6v5LIs8TV/6g4J8+lyiWkaI72IcZJ13xuOCwcuY2N8H/DoIIbzjmHRjGNwd2pIQVOL3A8xZG5EIOtL65I+ui6O+tyAlF3TrGWqfqpKkLZlfzqVVB8VTpg5kXWpKoAoZjzUOIaevIyRQ54tRtN9EYPjq/m9NCCGdMrENl2mF8x1L2tEDKlNKgl05cmsWMDmew+qE/ks5VL0PiNm8ymzBfLZrl9GlWpGbtN5zgpkZHt/pO5Q6SUtfp9JZSKi5XmaeR3poix7vA3hun2HPcDgIADe9Oz8MfUl7LWl3lApydaeZ4iUlujjwBUMR/cCj0+O4X89G+pUkrPdjBhy4xjsbpbMDQnkAmLQ8gAzWzkGKBYmn7R8+LMZIOdSSdbRUrSPzcZyVVWtYw3JAccvq20KWxz2brm/3Anqu7LjHQg3eyCGACFzIreGY9BT6iYy6FUttebljTIWZnTjsAtNmlSSXnDmHv65qiR7xIAfEYoZu/GCvEOFfLaNfHFDosbO5ylpXwToDVkTNQqraaxKmW0r8wBfp5KWHMNsVAYN1ohBqfgESb1jMMGELc+Wemv10ttpXPJPNtfs4BOJRvcC8rHZx/B1Z14A0T6OODs1N7ERD/MJXAe/S6hOW+4OCBZlgnV3ZdyjS9Okkjyy8uGvaOFAj6gQINrPgJhkVpPLTyfMRGjt/KAsI5xHDOo8p7ryx7ZiyiCGpYci3q48/HaVXADrfr78sOopdbu2JbmVMs56ddUJiW1hgkklFYihmhqsVCXZlqvq7SNm7NbV5NMTTXoBg8ZU0ozM6Rccpd6QtdpKv8p8E8tj80I9yGmRg4p3IOiJGIYKMQSzqmMYL6WSrLkxb8i6qJlWV6lYG4YWmYaDV+AmIw6x/ajIYpx3DHW2doSDNCOGUeZ2R4QVy/0BEfG8uJxOJc0c4xjsF6ZApGW+vBjrGSGlii76lKsCMN1efi+ZEvepSALcoAYxJAsjDW2b5TzjGJYRgzQcQ498+aZfo5WkndY4963VbQHWGknZmFjXm691ppKCQhIDFlNJpsQ37OXonWBARMLYBA1Zqr6LqmOwJmUjQprPMxUWs4srlnlqvOfS95lMkV6kiylsEYMZ/bqYSloFMSjHECWVZ6AqI6IbDG15Num3IAa3RzWjLlm9TBw/jxgeM7Z2hINstSAGz762H5BuhIOcXzBnJpLuU8ZZks9FVFhBDL0kggGiTbXb2dbye8mYqbSs1jGHV8cx9Jl1WzHpRss6Tnp6W+6vI6XleerIdiOQTJocfe73Eh5cc2vQB8w1y3U61MEBGB0vPnduf/qapU5ILu2vmfAHRKKCGCqaP+ozeqAPN1gWlzOWzZiJgMBzcC3mJ4BeMEW8/H2mE9KeDaNB2DDIqVKYYC2v4UfEImKYLZLPZSqpzzOQB3q+dc3aYdJvVo5Bl6xeKh4+Tz4/ZmztMPvl2cY+hu3UtYOD2qS+yaiqLmqOoRD8skqLVKqSTPRbQQxxUUFhTz4DuHENYkinTAh7kc9eUIrDFabPeSL76UtJLyQUyXKKJU9I9LD3Ps503ZNMFhFDahBgv1TS0K1RuNXHZ2YXdyKGi26A47cxoEZ+peBlDGFv2RHsRwxFBTEsDLXvU7GGFxJQ02Wvjy/BUg5DW+6rVNLc96kDJUPYWyMGPS43X0wlzcrCBGsuBZh4mwyzyjOQzpPPfc6ToMYBwkLFmsXaceAyJILLnYfOl6s+ZmztCPvyrdovF+Bs4rHWI8ViiOG8WiutU0nTPtU6BfmcsRsvI4ayS7NfKslLa0S/kikT6ffiGIxjmMv9mtnR2A97B1XhFC4qhWoHlphh7z2c6bovl/PlBWLwes2JGIiMLJck2WL0O2UqfYSw+A6e8CyQGYe3Pg8scAxJqV4KPb5Pb8BQJDWIQZPPfVIs/oBITpil+XLJcBr3dgwEGyqSXpTrAHt1W7MrM0d9UaxRcwx9+AqAqbePjVw7hqX0Wz8nQ7CuuZQ9IgYvRG5efB4xPKZs7Sjr+Taz2QJhrCPM7cSzLlUFwFM3WbLYXUkp+GVbYQPNiKEc69kPMfjJzvJ76YSx5VhPY57mGLJqtYi+ZqYpsE+zXEgyT/LqBqaZmdDVw5mue/lyVZJegHdSv5dUx8CtkfHWRPYk9xna9H5cfCMAB8/8rd7XclVSmX6zT4sMxKy8NxYQQ6+u+INP4tD0nuLv5iybqa7nPsFRaCLp5ZSZtSSJ2VWkJ/wtijVqjsFaxVdbHOxjQ+6o3oN0AWX1TCUJk0paQqeVijXb63bwCi4X5xHDY8fWDuMgidIz868nU0BwdiZ6RdKOliSIJ5XIXKeSdmWPdIGjnJFPWiKGohmqHCrSFzGEaY1jSKaKlO1xngbip8lyH4Mp8bV9yMzIxbmFRCOG2NWpJCuOQV2zoSeX8+XaOW/bDpzRDXwDp2ZUqJnQJT0GNkHD2iE4+CQ2T94K1FclmbSUdZTvaY5hEU1qSYpeHMMF17IxfZANxsvXTSOjXj0uwTrrTGpTZpOiYdQu2PI0+Tw3E1ynGQn7I4Yk2M8BdtSxLTjTvhyDCNdxhWQWLzTfpVOSAjHYnadz8Ilcdh4xPIZMN7kNkwXHoAexjJO8F8cg9I2c1KSSCongHohh6OWMExMVLiOGPg1u0OQYxozzfiR74Puk0plHDMkE3IBdPdTNdjExk7XmU0nzoxv7IYbmVNJ2akk+F3MKjGNYXszHuW/dEc8655CJAAAgAElEQVQlN7F24laUku9CisXxiHN1TH0QQ0gVMWiVz1Wi3wueBsBV4r7l65bO7JVVtYlonUgkxHFNmlEHDRuR5TPleORSzHNZZjpcuGmvCaUtDQ8oBYBZVqbfjPZYz1SSqws6sunCM1WpWOuDGA6JbeTivr4Gdt4x1Jl2DOt1iMGP2I3TXhyDo/OV6bTqGMbg+ExytZ8+5arrXl5KYqTLVUnWD3+wTo7DIF/mGGQ6ZceWlNUW+Wru81y1iBb4M30X65YPv+MPlstVzYQupz/HMHTzmsi3rEqyclgbSnNo3+y4Opx0OS2ya4s+AJ5wE97kBJeIE/NVLHrec5Ea7IEYAjlbrljzB6RZTpp3yIFX7ei1AFzt3LecyshiprmlTpI2V88qSOOKJLVJM9IPMSCESstUU0kaTco+8020ZdF+9jNSxQl7IewBN1LnmS2WgKdTYo2MrJ8pXZm0tnuv9eefKzvvGOpMO4aN7Oz867oZZzLLenEMbqgdQ/WhqIz1BFuOoaywKSQx6hCD7UIiBLG3zjBbcAxaZmNCv3LV0HOY4S2Qz2PwI3bilNCzbwo0Q9rnolXtGKZO/6bAoVfjGCpquVbnue9SCDY4sPMl9Xc1qaTd3LVf4C65CYAbxJ3Lnc9aJgJ68DJ+RCDjSlVSST5bj/U0tu8SEn+Dq8W9tTX5vUuZiwWzEv3qe3eU6SbEHr1BCd58+XesJWa8HhVr2vLoIJ7ImY7OVByDemYnsx7NcoA3UJ+fTxdmMqQxUwI8RxBYPgOml2FTayZ9Le28Y6gzrbC6P9+aF/1Kpkg/YneW9uIYSsewUK6qoxvA7mYpKmzqEYP1sPeKxd4Ga+zOV55kMwSSaU/yuUAM6UK6wB8wmqas90i/BdGAkBmjSVI5WDPsfa34vE5zKohhKZVUltLaSXg7cMG17Nu+HajvPRilnv29cfSpSH/INzh3zO9LX7PSMdiWmA5wyct0zdxQ+573hhCM9z+Fpzj31TqGSd6PfPYiNedExpUgZEF7bD20H0aTiGB+9OtiYUIfXkB3Pyc7J2sRQ5/z9AcqlZTHC8GW4WUCe1FKDirHsG96v/Xnnys77xjqLNpPJlwOia0lskx6Ebm00MKpmKcdQ15FDIlxDD06K4s6+gbE0DfCBBJvY1lIrzLWs48DNIhhnhScFKkk2zQSKILRFZLxdDldsEsfxKAJY1elUmY1YnXTPsjogqexdvaLgFxADOo4t/s4BtcjP3YDNzh3LJOyuusZekT5uiw6082TVcSwyr0RH7qaq8V9y/0f2YxJ7jLokXv36hbMdB4xWHMzQCp8RFXe3SgJ9BGl1OZox5COTi0hhr7lqv7AOMDKsy4lZMqZ9nmeCDc4I/ZzID7vGB4b5jjE/sFlnZJkQq5F7zobmCrmRyqKyaoywQYxJJbD3qFADGvVtMgeEUMabLIpdmsdQ68hPaicfyz9+TJCzcuM4n6IQehFbjKpPGDxjuZl1H7shAd1NZSjzm9JkhrVS2LvGJ6Kl4y4mJO1HMNO5vZKM4pLbuRacc88mtS8TH/EoPtlzH1WWeRWuTeSQ9ewKcbIrYWFKZ2qwoQ+z4BOsZhqvOrxbRvH0GN/qQjmyefFwoQ+4o9ryjFku6dqusV7dFFTIiNmlZSZKUyQfq9zBHjIPcbh2QO9/uZc2J4cgxDioBDiQ0KIO/S/Bxq2yyrT2z5Qef0KIcT/p//+N/UY0MeExeFBDi0O66nIKveD0RoxzBbIZ79EDFZmol8nrxCMUzUm0vWLSWB9KjKyYHN5ilvRe9BPXbVADIuy2/6QnWlqn3uHYpGLqyMXC8mDHtGvdgwDPVh9jmfYPUnuhszw7M/zwqcDcI1zby3HsJ24/UqZL302vsjYf/bz5Yt68FLxfVpzDGoxc/NYIaNZucjFfUuZAXn0qerzT32h8qKSdhnnPa4ZqowTQMTVBVM708RlLXC7R45WbOptMEgrBK/hn1ZADP66Sh3L8enlVFLSL5VkSoNFUiXZdSlz1rP3A3jYu4ijyVd7/c25sL0ihjcCH5ZSXgl8WP9eZxMp5fX6v++svP5zwC/ovz8D/Mgej+ec2Sw6xGGxIKSXTArH0AsxhOpmkUkVMYwKxGC9kJt8uZfNN7h5A0Uk961KAvJgU0tv16VY+qWSDMcwF8lpInV3lrLRyzGo6zyrVnJVxnqaz+s0pwUx3PMXjI7cAAh7LuXoNQDLpGyymmMwBPTR7c+Wr5mqpL7fp3amIbOy9NINwXGLAMdaRwsQF6hzHZy5vXxRE77jrF9VEoGJpJcXzK3U6xc0ANvBBRzMHi5fMBVr9EcMwcYh9cPkzBxiUN3tPSq5oJhWJ2rOc7dvKgk4GVzMofwknP5Kr7/bq+3VMbwEeI/++T3AS23/UKik+rcCv7PK3z/SlkaHOMTWEsFY6J30yIeGQUgqnTKCg7IqqY9EsIl+HTnfxKQX0d59DEAebrLJQiopraSSVkAMc6M9q+RzD47BLHKzJcSwWaRw+nAMkaMW2cKhjk/DQ5/j9JFnq/dtnXO4Qbrvcq5x7llCkwBbab9UEutHuJ8LuGin6hh0VVJfBFjMfZ4pDqpm4EyfSDpaP8D98jAbWxXHoNGg6mPoIxWhgiMnraaS1DU7k7i90owAu9ExLpAnS8Xi2QgQTHp2UQOE6wfJpUBMTleUBAb9OR61MwDcZCE1COz2TDMC/O3GN7Mj1uBdfx/u+FCvv92L7dUxXCClfBBA/3u0YbtICHGLEOIvhRBm8T8EnJVSGmbrfuDipg8SQrxG7+OWEydO7PGwuy0bHuaw2F6SQ05Ef8QQBR5nWMebnKzsSw1p74UYilTSAmKoqGc6AnzXHpKLwT41QKU6P7eCGPpEXpHvMpM+Yk52W42WHMVZz1SSGfi+jBh6aeTreQyhsyBjcc/HAcnxw88qjt3W5NGncrW4r5Z87kvYA9zuPImjkzvLFzQv07tcVTvTyDS5VYf09BVYRKVLv5Bfyr6dO8oX9XnOemslaccwt2Aqp7+VuP2CBmA6PMaAWKV/oDKLQf3a6zyjgC3WcKdn5wj7yQq8DF5EhoNb1R/T12yUrYAY1p7Ma4c/r+ZAv/d74X/8e8gfeYmMzjtOCPFnQojP1fz3kh6fc6mU8kbgB4C3CyGeBNStXrLmNfWGlO+SUt4opbzxyJEjPT56NZPDIwxFzGw8nxON+whhaQs9h3vlBQx3K/XIs1F/wS8T/boZkyRTpbQLYz1Dr0c5HBTdz7PxguwwMJU9q5J8hRjmygj1TN9RnPRMJZmB71XEoIf0pBmeI/BsSnx1Ksk4hkIv6a7/Cf6Q4xuqkavXw3/h07hCPEQ6Xa6wiaXfqyse4GH3Qg7MjkNekTnRiEEIy1JmKKaRXSDOKES5hxGVZtvb5RPYv3t32UyWlY6h1zXTKRavihiMKGUsepOys/WLAIhP6eavIs3YHxkNfJezcg1vpvsYhBptaq5ZLwcoBFMR4aWV+9ZwKWl/jiHyXO7KLoAf+RA8/Xvho2+FB/6m1z5Wsc6rJ6V8vpTyaTX//QFwXAhxDED/+3DDPh7Q/34F+HPgG4CTwH4hhLkjLgG+9vR7g0ndy5CPKqeUTJjZTuiqWOg73CMvYL3aqDLbLapFrKGqoz4zEhlSqhrrOcRgO+6yYq4ehp5VHUO6WlVS5CmOQeRVxDAh9yKmSd4vXaARQxbXkM+9Krm0EB2aYygcw8fg0m9kkulr2qf08tjTcIRkY2s5ko7xe8mIAJzwLsQjhW19+2vHMNXT26wd/QVPI3dDnuncUaaSgnKsJ/Q7T8cR3CkuwyGDk1/Sx6bPU/r90iKuR0yAm1aFJFVQs9MXTQL55hMAmJ68S70Q76h5zwZN9vk+XYctNgjis+XEOyFW2hfAVAzwsioyUtdsJ3V6O8DQd5SzC4bwXe+CV38YLrmx1z5Wsb2mkj4AvEL//ArgDxY3EEIcEELlX4QQh4HnALdJKSXwUeB72v7+UTPd/SxHlfRPOi1ksvvcyKHncq88ynp8XN0k6QzytGhws0YMQqgBKjr6LaJCr5z33CuKA5yhcQzV0YZlKqlPtOS7ghkeTjbvGIr02wqIYW5KVyUqtK/kUp8ZVMnn0cNw4gtwxXOLh7+XIJyuTNq/U829m96PHlpJ2k4HKvrlrFIzNZH+zjRhI7Jv+sILmBy5jmc6t6sGyGR3bnob9ERGwN3u5eqH47epf4tUktePY0ANpfKzxbJcXZjQM5Uk9l2idnFaB1tm3nPaHxkBbDsbhMmWSiVVEDj0v2axM1g+T/Qcl56IIfScsiteCLj4mb3+flXbq2P4WeAFQog7gBfo3xFC3CiE+GW9zTXALUKIz6Acwc9KKfVdxhuAnxRC3IniHN69x+M5Z+auK7pEjDWfYfT26al3AriO4KtcgEDC2XtLwa9gnd1Z2g9eugGBMGmRdIFj6KfrAuCtKccgpxXHkJappF4liUKQiQDHIIY8hywm1o6hH/ls5kdPy67sPSCGAJV8nswyuPtj6r3Ln7vaw7//MnaJODiqRwxW6qoVOxMc0z/cU+7LC9maJOwb9HAMwOyiZ/FUcQ/T8c6eyWeAh/2L1RjP459TL6yaSkIvmOlCH4M/YDfOejvTcPMIU+mTn9WOwXAMK0b5u84mUbq1NCMbeqaSgJkzJMyXEcNolVSS7y5Pg/saWL87eMGklKeA59W8fgvwo/rnTwBPb/j7rwDP2ssxPFLmbSrE4Iw1YjASwblOJfVNF/gXKQbl9F1FREIwZLvvw+/6hFrds0AMGt30GhyvzV/TrSeTKsdgdPKD3vvLHB831zIWaYk8gJ6pJFN6mTCKU/b5yjGrqqQe56k5Bl9UOIbjH1Plk8euY/JFVQbYa5FzHL4sLuPouOoYpmRuCIh+Q5yA7egYOQLn7D3FuEu8AduTlM2ekTSXPhv/b/4T0cOfUdHvUJVi9i591RYEIQ85l3HJcd1noSvO4r7kM6r5LMiruXflAEd9e1yA9cjnq/Iwm9u6xj8ewdqRopKrL2LYdTcZZNsLznS1azZzBwSzZY4hpn+DW+g5JJkky6X1GNVzYec7nxvM31SIwZ2cUi+YuQL4hJ5jR3xWbDtS0JczdxWVD9Jf4+y4p2Nw/BrEUELfvjdxqLs+RVx1DOr4hD/oR2QDuRPgSo0Yig5qo4XTHzEYx1DKKm9oWeV+Jb6+QQxJpojny58Drsc0yQlc+9nFxu5yr+DC6ZfLcsk0Ju8zurFiYRBxUhxSiMGQvH60EmLwLlPlt/tO/c3CUPvVFrnId7k7eDI8cGuBmgFmsp/sNkDiDgnnHIPin2ZZ3q8wAdiIfB6Qh/BHxjHM97j0RQwTb5NBPobp1jJh33Nfy+dZRZP9rz/UDEt6hO28Y2iwaLjBSEb403nEMM783tENQLZ2lKmIFGLQi1zsDEhzyf5eiCGYj36TyZx2fN8IP9xQiEFUZYL1uRpZij52xj3MMNuBneOVDuoVUkm+Km/cEGNG07TQSTIPv/V5CgGOhyszHAHuzgNw+stw+TcD9NbuN3aP/0SG+S4YuYh0Sub0L0wA2DfwuZ+jimMoBi+t5hiG+45yZ34Rh0/fOh/9phm+K3o7wMh3ucN7CkxOw5m7iwa3GT3kxbUl7oCoumAm01Jiprdj8HhAHibc1YT9bLGUud+xTX2VUmX7gVJZdUWOIfWGDOSC9DyrlTKb+/xrPcXtvGNosMhzOCU3CWJdJ12ZD9z3gQDYNwx4yLlQIQZdmz/Saam+qSRPt34sIYae2vEAbrhBJgVeMl+umgqfMOyvUHJrqCsm7vxQkZIy09t6IYb1oyT+JleJ+9mZJkVna4EY+jhAN0BkM4aBx4Vn/lq9dsVzgRWGvWv7aqi08nlIN6YlU1LjGHrmy/cPfe7ODmvEUDqG7WnCZk/H4DqCW3kKF27/rQpAfDO9rZ98tLHId7jNuUr98tVPzfcxrIAYIjmfYjHOdDXHcIhBfEIdUzHveTUHGPuqbJvtry4hhr73R+atMZA1qaS+lVxQFB9sV1WGvwZ23jE0mOc6nGYf0Uw7hopEcF+iDGD/wOc+LtCIQRFwOzqS7ucYgiItojiGaYEY+s66BcBxGIkh7my+X2Mm+lUkGXsgfBKn3cPwpQ8WiGF3FccgBNND13Ctcw87cTrnGOK0Z/WV40OeEvkuF5/9FET7iwllq6TfAB4In0yKC1+9Rb2wwuhGY/uGPvdkR5A7D6pUBpB7UX/+Sdvn3WsYZDsLaZEejZQVG/gud/AEdY/df0uFN+rPMaTeGtFCJJ3o9FvfVNJa6PEAWsri9F2qys8UJqzgAJNAI4bZqIKyVktL5d6QIdXz1KNaV0AMB4bq+z973jE8duy0qDgGMzg+7+/1QS3+d2VHFRzXqaStbBXH4ONJdZMoxDCpcAz9y1UBRqwRJJVUUjJhRriSYwh9j1vDm+DLHwWdnhoZx9CTSM2OPo2rxX2MJnHFMWwS90YMPmQzhoHLZbufgUv/jpqtgJnp2/8xEOEaX/GeBPd8Ur2QxsVQ+77Xbf8g4D55RFWtnVSE9hSfXPa8N7R9Kby2/KXofO6nEmpsELhqLOtF1yvEUEkl9b3XssUFM5muVsoM+K7DSUcLLTysixxNKfMK32cWVfQ/jWOYrZZKyv01hkxJDS9QIZ/7Oob9QxVsnBnPOrY8t3beMbTYlrOftcQgBhX97qxQiwwqXXBHcliV+51S8gdnE/XQ90oXuD6ebtYaxzP1oBqOoY/uUsV2xRp+Up2sNSEW/ZrbjIW+w1/5N6qc71c+CsBID2LpW5EhLnwGQxEjTt+1N8Tg+pAlHHO3OTq7Hy77O8Vb0yRfyQFGnsNn3WvL9IpGDJHfn8jeP/S5T+pF7qTqjTDpt80+fQzaToeXsu3oCNiQz2m/uQLGIs9VufaLnwkPfqaYlCadwHoanzG1YE7K8uN0UjjTVXi7rVCNWuXEF9W/GjGs4gDTsMYxrJhKksEajpBMzRS3Su9H36CyQAznHcNjx7ad/aylZ1U9flIqQa6KGO6W+kbWeekzqfrS9w/7pZKcPEEIiKflkB7oP1TE2MRZJ6yO90wnTFdFDJ7LX4lnqP6Bz78fKJ1p3wXTv/gZAAxO3TZHPvfnGJRjuEHoBeTSv1u81avCqWKR73IrVytH/8CnMcPe+zo/MI5By7w8rI7RDK/pyzEADEOPO0KljLqXHheAKHAV8XnxM/W5ajmGFQoTcn+dUKTMjC5XGis1Xujd4AYwjvTzZBCD5hhWQQxGTgQo+xjSDNcRvR2gkf+IdzVvl07JHFXKvCpiODs+n0p6zNi2dxCHHH7hWvjg/wFo7fgVOIZ9A597jGPQNeGnZ37xnrW5ASJPGPouiYlIvL09/BN3najqGJJyDGFfi3yHrSyAy78JTqm0yCqyygDRsWtJpMv61hfOAceQ8PTsC8SEcOy64q2VF0zf4VO5JmXv/aSKfle8ZvsHAcc5QO74RfQ7StX1WiWVtBZ6fM4xjqFc5PpWrIFCDFODGADu+QQArmlA7GNGnsPojyUTYlYjnwHCaI0tZ3/hTAk3GM9WKybwwnViqY+hwstEK1wzIxhY6KylcVmYsELFmhBw5rxjeOzYX0Tfyu/s/xF44t+DcAOOPpU708MrI4YH5CGkcFVlkuNzJlZVJL1IWUcNQR8EXjmrwI+QUq7U4AYwddcZZPOCcH2H9BgLPVfVzF/5ouK1rdTvTS4COEHEV7iEg9tf0o5BQLDGZNa/Koks4drk89zuXQVeWW2lUkkrLJi+y4PZBhx6Mtz7l2oOMsHKiEHiMBpcXHAM26lBDP33NwxcbhXaMWgtrFX5p0HgKMew/1LVSKllO7ygP2IoIulxGUlPpOafVrhuG5HPCeeIKj8GCNc5tTvj0Hp/pzUIPc6ip8zpQGvSd0iPNjOUKJmUDjAr5Pr7nafrCDYj/3wq6bFkabjJ+9dvhpe9U4lX/dNPcGIWrsgxBKR4TNe0sniwxtYkYTPy+jWR6UVuLXTL2b7VMZArPPyxt8FQVhHDhInsT5SBiqTjNIOrXli8dnbm9CaejX3FvZyj4y8Vsximac4kyTiw1qOU1vVgcoZLZ3fyGRNJa1ulxBe0VEGSwaXfCPf9JSRjprK/5AGUqcSt8FjBZW3vBTEEHp/Knwz/+PfgSvU9rIqMBr5LmkuSXBaoIcfB91cYtqgXzHSi77VkwkQaxND/2NZDjwc5DFLX+IebnBrFHO5zb2gbBi5npB4mtOJYT2OOHu+ZTkrEYCrWVkEz+4f+ecTwWLLi4dcmpWScZL0lD6B8wEdD3QGtHUPvB1/ny4eBV84J9qOVBb8AZt4GQzmBTIvZJxN2Zf9yRPP5k1kGB58Ih64E1CCWVSJpgHv8J7EvPalKEsMNTuwoIu9In6jQDeD+W3DI+ZS8eu6tyYqph8hzmCY58gnfqCZ/nb2XSb5aKfPAdwlch5PeseK1rUQ9mqtxDK4S0Xvy84rO75XJZ31tFAGtelQS4TNYAQGKUC2Y2dZX1b0mMybSJ/L7KwmA4iW+Kg+VLwTrnBrNOLTe3zEMfLdEDJVu8VWumasdYDY1jmFKIpRiwiqyFvuHwXnE8FiyRQGraZIjZX84CKVjOBuWjuHsSo4hgGzGWuCSGT0WL1pJVtlY4utISRO8Mp2wm6/Wx3BwLWB3lilH9ZRvA8fn9MxfGTE8MHiy+uG+v4Rok1O76gHp9fA7vpJfwOGv0ifPvbVqJG2Q2exiJUGBzBlLn4G/woIpBPuGPg+Z8kuUM3XEaimWtcBTstsVW73BzS3+notvACBZoYcBYHzhTZyQmxz867cVsiu7udd7epux9cjj3vRguX9nwCTJVkslBS5npHEMZefzKveGGxnHoJFRGjMTwUo8CqjKpPPk82PIQh0VGjMP26rlqgAnfB0VGsQw7BnduIpIHYYesuIYVhnEYiwLNtUPurmKZMJUBr1VQgGObKiH8sRODN/yBvjh/86ZWf8GJmMn155SHlu4wUmNGA73Qgzq2h8fXsmpZP56r9r4VSyY65fDmlrQx9lqhQmgGiDvrwxAPB07bA58nBUizGGgNKCKslDOwXnO8iKV1Ht6m7b1zQP8u/T7WX/4U/Dp9wKmYXS1e2Mj8rmrcAyCU7H6ng+ulEryOCvnEcOqXfH+QAVaeWwcw3TlawZwYBic72N4LNliKmms5yyvQj5HvkvgOTzoasfgr63W2apTSWuBi9QyHWo+7WoiaQBp1TGcvQ/GpzjL2kqkrHEMD+/EKqf8hGetpJ5pTAwP8rBQQ5MINzg50o5ho79jeGj/NxCn5YKZ5ZJZtmIfg7420yxXPAOqkW+VoAG0LEZaTiY8Ezsr9TBAma8fV1DDyg1uxjGkmSKyD12pJLdXOM8LNiN+J3sup/ddCx95K6DKcldFDBuhx/155d7QaPLwnlNJpez2Ks+TP1DyGqVjiFfSSTK2b+CzdR4xPHYs8ucRwzhRD9oqHANoWQxTslpwDD0fCp1KGlQdQwUxrFKVJPV4T6Zb8MdvQAqXX01fuBKRerRADGWH626crZxKWg89vsTl6peKYzjUJyrU0tsnD6qI11yrYqjLShxDJcVyqWqY2037D3s3tm8QcEdS5stPTsVKxDOUgUsxxhT6l/hqM8N4isl3V72IeznWW3YeVNAgcfjI5T+pGiCB7Wy1UmYo9ZIACNY5bdKMa3tNJe2tL8gf6v3EIzUU6vSX2SVaKQUNCjHsxClJ9rUT0jvvGFpMlV6WD9euQQwrfsH7Bj5353oy3Mrks+EYvFJwzR/siXyWgY5wPv0bcPsfcfqmf85XObJSKunohnqoHtYpnzjNmGU9x3pWbD3y+Hx+qfol3ODkaMZG1FOOQSOGs4eVYzALplnsVqlVL+WQq4ih/7B3Y/uHPvdPQjUnwovYmqYrOwaDGHZjFcgYZLRq5zOUSqO88Gf4J7xpxR4Xl30Dn8+Ia+BpanDjTuru6d44xSa5G0K4wanRCvyTtmHgcgZTlbQ3xBBFQ1LpEIwfhF/7Loh3+J3B963kTAEOrJnu568datiTYxBCHBRCfEgIcYf+90DNNn9fCPHpyn9TIcRL9Xu/IoS4q/Le9Xs5nnNti+TzeA8cA6iH//jUh32XkkSHyHLZ/+F3PMhShqGLqChxTvdAPouBSiU5f/s+OHotD17zw8BqpXUH1wIcQVE9ZJzpyg9/6PHpRM33JdzkxCjuV5EEsHEhXPh0xIZCa8aJmmu2aiNfsa8Ln0F6w6v4H9kzVkYM+wc+Z6cpHLgcvJDtabpSDwMsIwaDjFZJJZmUUZFSFYLxijIiABdshhzfnsIL3wJXvoi/za5YPZUU+YBgtnYMwnVO7ho0uQJi8F2+nF9ELjzYUOne1ZsfPcZEXHXvb6qGxZt/nc9w1Z5SSQBbk68dz7BXxPBG4MNSyiuBD+vf50xK+VEp5fVSyuuBbwXGwJ9WNvmX5n0p5af3eDzn1CK/nJ4E5YO2p1zhJIFX/jdO3PiTxWu9zB9AssuPf/plvEa8v3htL4hB6CYoAL79F5hk6rZY5eF3HcHh9ZCHt/U4w6lypqs//B63ycvUL5p87h0RvvCt8Mo/Ks7HfI97uWZhkUrKwfXY+taf5XZ56Z6ChvEsI9t/KXiD1dCkNpPqNIih5J9WRwzmWuW5XDktBYpnOL4Tw+ZF8IO/xVeSAyunksw9dfrIs+GiGzg1UtV6qzj6YeDyN/Iqfut5H4P9KhCZrljiG/oOIyJyHPjuX4YnP091ZK94bxwohPQeJ4gBeAnwHv3ze4CXdmz/PcAfSynHHds9JmxxepJBDKvW5O8bBMoxHLiMs3KteK2X3fgq+JY3cvzADZxkH+ll3wzR/j2Vq7qDTbbkkNHT/jFc+o1F2qDvsHdjRzZCTmguYCdWN/NeHv575VF2n/5yuPIFnNqd9atIApUzjvYVi7Y5v8mK6pnqbyqIgXMQNOiHf/vpr4Bv/knV/Lgqx/bdmW4AABYWSURBVBDOIwaTe1/F0QyCigOEAkGvusgd3Yg4sV3yT6M4ZX3FSi4z9vRTz/jX8A//A6dG8UqlqlCez05ednRPZquV+Iaewy9l384fXfUz8FS1JI5n6crrRuEYdh8/iOECKeWD/P/tnXlw3Ud9wD/fd0pPepJsWZKvWD4ixzY5SGKCgRRS40ACTAMBCimlHgqTTqdQaGE4yh8tM8DA9KC0ZWgz4eqUSZoJtGSgQ4ZroDMtTJwwJYchh3wmtk7b0tPTu7d/7G/fIUuRtft7kvy0nxmP9H5+76fdt/vb737PBYKf/Yu8/53AfXOufUZEfiUiXxCRBUdVRO4WkSMicmRsbMyt1ZeIsT2bBaTqY3DVGKD6c8kPa9dm+O1P8Mj1n+OthU8xfueDesca3K8zufSHvy0R57X5v+XszTpSxPTXJiYftAN6NHA+m+/MpkgaaDuyIsLzN38WttzIeCa/dMEQ0FbVGLSAd3I+xxt30jXBYG9KAhjveyW5G95HoVSxj0oyGkPQz5OTuqbWYG9qyfcyWtZcYepiShqdzlOpKErlCrlixWrOQq2MeybQjCZmClahqnBxP5VS5EqWJTFEuE/ewOM9B6vXXDSGntQq9DGIyA9F5Il5/t2xlD8kIpuAa4CH6y5/AtgDvAxYD3xsoc8rpe5RSu1XSu3v6+tb6G2h0t+ldw9nLgQnkRkfg+XutycVJxNEF0zZCoaAqoMxaNPx8Rna49FqVNBSaI9HGaeb2ZKOmZ8Noq9sJ3JfOln1MWTyRmC52JFhOqe/t/PZorVgSM2xl88WAi3LyvkcaAyBplbNcbHNY6g7kMV1blQ1hkAon5jQCvq29R1LvpfppxEINW3SVmNIUqooJrMFZoJ72uZ+1OaG/r7GMwWrUFXQB3MlopGqgC+UdTKrrcmsPtRdKUW2UHYyMwKcX0Yfw6JPq1Lq0EL/JyIjIrJJKXUmWPhHX+RWvwv8h1KqKvaMtgHkReRrwEcusd3Lwq4+HXb23FiGq7d0VyeN7W7JPOhTs8Wq9O9eSsntOqoOxuDhPzY+w2BvyiohqrbINS6Ytv3sT7cxnilQriimAx+Dqx05ky9Vo042pC13hYn5fQw2i1xfp940nL0QnGttNAbL76ynvVZeuafdcdMwR2M4MZEllYhaLZpVzag05ztz8DEAjEzlqiWlbTcNqXgUkZofayKT59ot3Vb3Aj0PZguNfhmb8G+oq0qLFjLlinJ6BmIRuax8DA8Bh4PfDwPfeZH33sUcM1IgTBBdRe7NwBOO7QmVwd4UIvDcmFbFTUlfm3onUFcWY7Zob0oKmPvwHxufYWff0neEUKdGh7Qr7EsnKVcUkzMFZ1OS+VwmV6olt9nakef0M+dgSupOxelPJ3l6RCcxGUev7cPfU3cgy1SwA7b2MQSbBtOmk5NZBns7llasMSAZiyBSO83MdXNktPDRqXy1fbY5LpGgMvFUrkQlmG82oaqG9ni0OvddNg2gQ2bPBgEYruY3EVn2ekmuguFzwK0i8gxwa/AaEdkvIveaN4nIduAK4KdzPv9NEXkceBzYAHzasT2h0haPsnVdO8NjtYffVh2EmnZwIRAMsYhYJ8sZc8FsoUyxXOHkZJYdG+wEw1x7udk12WsMtbIYrqYk87npXLHq0LYWDAs5ny0cjABDA508MzLdcE/bhWTu3AD7TUMips0ixlRzYmKGwfVL9y+AXpTaYtGqyay6yFn2c6BLj93IVK7qG7AVpqCznzP5ElO5IqWKsnY+gzY1XhSxZjk39mzs4ugZXXtsxjEwAfTGYTl9DPYjAiilJoDXznP9CPC+utfHgS3zvO/g3GurjV19nVWNYbZQtrYhQ108crZYDUe02cVBo8ZwajJLuaLYsaHT6l5tcx2MRXNylV3bamUxcmRyJUTsH4p6B2O0WifJbldYjUqqagyBj8Ey+mqoP80DR05RqaiqZmQbeZJOxohGhPNZd8EApsJqiXJFcWpylkN7B6zvpU0sjdqkre29vmTK5h5dk8h20wDazzCdK1aLK9rODWjsp0uJGYC9m9J867HTjGfy1Y2WrW8SdCG95ayX5DOfF2Hnhk6OjWf0w+8Qcga1yBOzK3R58Kv28nyZ4xNacNlrDHoa5ItmV1gJ7Ld2gsFkP2uNoUxnYolnTtRhvu/pXKnu4beMSoo1+hjyjovc7gF9Ytjz52ergQm2O2kRoaddP/xTs/peXZYmFjAVVsucncpRKFfYZhGRZNAlxsPxMSRjUdZ3JBiZytVMSQ4LZmdbrMH/ZJPcZqg3JdUEoN0SuW+TTho9emaqFrFm+Z2BKb19+fgYWp5d/R3kihXOTOWcQs6gzseQLTjFqUNtwZwplBgONJqdloLhopDEYsmqSJqhfleYyRedTAXRwNyWyZcYn87THo9a3y8SkaD+VTihl7sHtIb2zOi0cx4DaHNSvf/JZX5os0iJE8GmYdAiIsnQlrh4wXTpZ386ychUvmpKctMYYnrTEJgZbcNVQQt1M46nz2Wd7rc3EAxPvTAVytzwGsMqY2dgnnluNMNM3k1jqKW2l5w1hlSytvs9Nj5Dd3t8aaea1XGxj8Gu3LChPRElnYwxNp13KqBn6GyLVZ3PthFJ1bbFaw//c2MZutvjSz/sPWBoQNfWeXokQ7ZQJhGNWN8LtEZ5IavDVVOJqNO9UskYM/kyJ4NQVZscBkN7XehlNWLNRTB0tWkzYwg+hs5kMDdCMCWl6kxJPzo6yrpUnGu39izyqflZ15FgY1dboDG4m5K8xrDK2BVE+gyPZZxikUHHSncmY6GYkhLRCLGIkC2UODY+Y21GAi0YRGqF72Yt69DXY3IZpvMlpx0haDtyJl8K4tTtTQWgI3Zmi2Uy+RIPPznCG6/dtPiHFqC7Pc5AV5KnR6bJFkpO/icIHv7ZgvPcAO2DyhZKnJjMEosIm7otzmgO0DH5WiCYRc7W/AYwkE42mJJs8xhAz42pOo3BdnMENVNSqVzhx78e5eCeAesIRIB9m7s4eiYcbbInFSdfqtSq3DYZLxgWoS+dJJ2M8dzYDNlC2Wl3A3oxMQ9/j2UOA2ibdCoRZSavNQZbMxJoc82tewd44JFTnM8WmC1WnHaEUBMMmVzRWTB0JmNM50tOWc+GtniE2UKZ7z9xltlimbfecFFMxJLYPZDmmUBjcLEhQ1BIL+u+aQAtAI3GsHVdu9XRmYbOZIzjEzPkimVnHwPoXIbxTIGpXIlENGJV3M+QbouRyReZyBToSdlrfwDtiRjZQplHjp/jwmyRW/ctVsjhxdm7Kc1zY5nqTt/lO6vVS1oec5IXDIsgIuzs62B4PEO2UHJeMLuDh9/qkJ45pBIxJmYKnLmQc9IYAD78uqvIFEr880+HmS2UQtEYRqdz2pTkrDHEmM4VQxEMRmP49mOnGexNccO2iwoCL4mh/jTPjmbI5EpOpgLQPoYL2SJTuaJ1OQxDR9JoDDNs63WbG3948w5On5vl0997yjliDXTIarmiODEx46QtgI7myhUrnJ3KLe2MjnlIBQluPzw6QiIW4beG3Cos7N3URami+L9T5wE3k1lP1T+5POYkLxgugZ19nQwbjcFRMPSk4jx/bpaKcgtHBO1neOoFfRznDsvkNsNVG9O8+aVb+Pr/HOP5c7POArA/3RY4n0vuPobA/DY5Y1/ywNAejzI8luF/hye48/qt1tFSht0DncwWyzw9Ou0+N9r1gSyTMwUnxzNoAZjJlzkxkbXOYTC8Zncff/Tqnfzbz0/y8JMjtDtErEEtyW14bCYU/xPoXA2XHAaomZJ+8NQIr9rV62wdMA7oR0+eA1xNSSYz3msMq4ZdfR2cuZALfAzupqSTk9oh6PrwdyRiDI+7harW86FDQ5TKihcu5EIxJWULZcam86GYkk4HwtRVY2hPRDk+kUUpeMv1bmYkqDmgh8dmnL8zY1o8NTkbio9hcibPdK7k5Hg2fPh1V3Hd1m6eHc2EsGnQY3hiIusUzAG1ekknJrLum4ZElIrSmeKH9tnnfRi293bQFo8wPDaDiH15Dagd1rNcZTG8YLgEdvbVEsdcpD5owWBC/txNSVFUcN77dkdzAcBgbwfveJmuRe9qSjIPv8vpbYbOthiFIBnNWTAE/bpp+3qn2H7D0EBtbrguckYwzBbL1of0GFLJGMExImxz1BhAZ1P/4103kE7GnOeGqZcUytwIPp8vVZxCVaFxzrskBBqiEeGqjVpr6HDI5QHvY1iV7KoXDCHYkQ09rrvCoC0DXUlntdfwgYNDtMUjrHNwjAP0d9UWcFdzQbqub667QiPY73R0Ohu62uLViJ8w/E/z/W5DvVlrewjaJMC23hT3Ht7Px2/f43SfvnR4c6M+CdAluQ1qc+O6rd1V4eWKSXQLa26YHJdmE85q0uKYYnpK4WxHbnj4HRdfM5HDMCMZNna38d0P3Oy8M69/+F2FVv3iscGirHg9Xe1xkrEIt19jH6Y6l6GBNGcu5ELQGGpCz93/VGtLGBqD4eU7e53vEY9G2NCZYDxTCHduhGBKgnC0BcO+TdrU6GppaItHaY9Hl+2wHq8xXAKmmB7YH8Ri6GkP8eGvCga7GkkLcWV/umGRssGUxYDGHb8N6boIHVeB9ce37OL+uw84f/f17O7X37+zj6GuTc5RSUFbBrqSTjkHzcLMj86QfAyAs/N5sLeDZCzCGxxyW+ZiHNCu6waY7GfvY1hVGHNSGD6G+X63wUw2lxyGZtHTHicWJAc57wqDzyeiEaf6QaDt29c7hqjOZXfggHYNvazPawlrbriUwmgmpspqGBFrBtdw1Zde0cOTn3p9g+nYlT1VweAunLtTCS4s02E9XjBcIqY0RlgPfzwqzk4805YwTUlhEYlI1ZwUhvMZdI171/DSZnDlgNk0uO9+TfdczYxmboThYG8GRmNw3TTUn/PhqjEATomA89GZjDHYmwrFB7icGoP3MVwiu/r14htGuKr56brImba45jA0i750kjMXctaH9BiMKcrVjNQsrhpIs74j4SygoxGhq02fC+5qSqppDKtTMFQ1BseNVjIWIR4VimXl7GNoFp99yzXOZkbQkUlHz06F0KLFcXpiReTtwF8Be4GbgnMY5nvfbcAXgShwr1LKHOizA7gffd7zY8C7lVLLV0JwCbzpms2cmylUzQa21AsGVw7s7OX1LxlYtQ+/CVkNy8G4Wh/8jmSMI588ZHWs6lx6UvFQSmKY72rIcb42C5Pk1pl066eIkA5JmDaLV125IZT79ASZ8cuBq970BHAn8LOF3iAiUeBLwO3APuAuEdkX/PfngS8opYaAc8B7HdvTNLpTcd5/cMipqJa5D4QjGG4cXMe/vHt/6OpvWIRmSlrlGgMQilCAmgPadX4M9nbw3Q/czOtCSNRqBiYc1NU0C3p+rO9IhDYGq5WeoCy7MslLTcRpRVFKHVVK/WaRt90EPKuUGg60gfuBO4Jzng8CDwbv+wb63OeWxpzUFWZUzGplY1c7IvbnPRvSwa7SNVT1cqA7lSAeFesDYuq5ekv3ql0sd/V1IAJb17lru+m2mLPj+XJgXSpBuaKYypWa/reWw8ewBThV9/o08HKgFzivlCrVXQ8n62gVIyJ0tcXWhGB414FtvGRzl3O4ZLotxhuv3cRrdrsVNbsc6GmPh+J/Wu3s7OvkkU8eCkUL3Lepixb/uoDGeknNXj8WFQwi8kNg4zz/9Uml1Hcu4W/MN2TqRa4v1I67gbsBtm3bdgl/dvXy0dv2cGV/uLkHq5ENnclQas5EIsKXfu+GEFq0+jn8yu28eg0IQAjPNPjXb78ulPusdvZsTPPuA4NOZcovlUUFg1LqkOPfOA1cUfd6K/ACMA70iEgs0BrM9YXacQ9wD8D+/fubb2RrInfddHkLNk/zuHFwHTcOhptn4WkNrt7SzdVbupflby2H1/IRYEhEdohIAngn8JDSHpSfAG8L3ncYuBQNxOPxeDxNxEkwiMhbROQ08ArgeyLycHB9s4j8F0CgDbwfeBg4CjyglHoyuMXHgD8XkWfRPoevuLTH4/F4PO7IcoQ+hc3+/fvVkSPzpkx4PB6PZwFE5FGl1P7F3rc6A+A9Ho/Hs2J4weDxeDyeBrxg8Hg8Hk8DXjB4PB6PpwEvGDwej8fTwGUZlSQiY8AJy49vQCfXrTXWYr/XYp9hbfbb9/nSGFRKLZpaf1kKBhdE5MilhGu1Gmux32uxz7A2++37HC7elOTxeDyeBrxg8Hg8Hk8Da1Ew3LPSDVgh1mK/12KfYW322/c5RNacj8Hj8Xg8L85a1Bg8Ho/H8yKsKcEgIreJyG9E5FkR+fhKt6cZiMgVIvITETkqIk+KyAeD6+tF5Aci8kzws+WK/otIVER+KSLfDV7vEJFfBH3+96Dse0shIj0i8qCI/DoY81e0+liLyJ8Fc/sJEblPRNpacaxF5KsiMioiT9Rdm3dsRfMPwdr2KxFxOtlqzQgGEYkCXwJuB/YBd4nIvpVtVVMoAR9WSu0FDgB/EvTz48CPlFJDwI+C163GB9Gl3Q2fB74Q9Pkc8N4VaVVz+SLwfaXUHuA6dP9bdqxFZAvwp8B+pdTVQBR9xksrjvXXgdvmXFtobG8HhoJ/dwNfdvnDa0YwADcBzyqlhpVSBeB+4I4VblPoKKXOKKUeC36fRi8UW9B9/Ubwtm8Ab16ZFjYHEdkKvBG4N3gtwEHgweAtrdjnLuDVBOeYKKUKSqnztPhYo0+ebBeRGJACztCCY62U+hkwOefyQmN7B/CvSvNz9OmYm2z/9loSDFuAU3WvTwfXWhYR2Q5cD/wCGFBKnQEtPID+lWtZU/h74KNAJXjdC5wPDoqC1hzvncAY8LXAhHaviHTQwmOtlHoe+BvgJFogXAAepfXH2rDQ2Ia6vq0lwSDzXGvZkCwR6QS+BXxIKTW10u1pJiLyJmBUKfVo/eV53tpq4x0DbgC+rJS6HpihhcxG8xHY1O8AdgCbgQ60GWUurTbWixHqfF9LguE0cEXd663ACyvUlqYiInG0UPimUurbweURo1oGP0dXqn1N4FXA74jIcbSJ8CBag+gJzA3QmuN9GjitlPpF8PpBtKBo5bE+BBxTSo0ppYrAt4FX0vpjbVhobENd39aSYHgEGAqiFxJoh9VDK9ym0Als618Bjiql/q7uvx4CDge/Hwa+s9xtaxZKqU8opbYqpbajx/XHSql3AT8B3ha8raX6DKCUOgucEpGrgkuvBZ6ihccabUI6ICKpYK6bPrf0WNex0Ng+BPxBEJ10ALhgTE42rKkENxF5A3onGQW+qpT6zAo3KXRE5Gbgv4HHqdnb/wLtZ3gA2IZ+uN6ulJrr2LrsEZFbgI8opd4kIjvRGsR64JfA7yul8ivZvrARkZeiHe4JYBh4D3rD17JjLSKfAt6BjsD7JfA+tD29pcZaRO4DbkFXUR0B/hL4T+YZ20BI/hM6iikLvEcpdcT6b68lweDxeDyexVlLpiSPx+PxXAJeMHg8Ho+nAS8YPB6Px9OAFwwej8fjacALBo/H4/E04AWDx+PxeBrwgsHj8Xg8DXjB4PF4PJ4G/h8lDE8Vjq7PNQAAAABJRU5ErkJggg==\n",
254 | "text/plain": [
255 | ""
256 | ]
257 | },
258 | "metadata": {
259 | "needs_background": "light"
260 | },
261 | "output_type": "display_data"
262 | }
263 | ],
264 | "source": [
265 | "# Sanity check, we should get a sine graph\n",
266 | "prediction = vae.predict(y, batch_size=batch_size)\n",
267 | "\n",
268 | "# pick a column to plot.\n",
269 | "print(\"x: %s, preds: %s\" % (y.shape, prediction.shape))\n",
270 | "plt.plot(y[:100,0,0], label='data')\n",
271 | "plt.plot(prediction[:100,0,0], label='predict')\n",
272 | "plt.legend()\n",
273 | "plt.show()"
274 | ]
275 | },
276 | {
277 | "cell_type": "markdown",
278 | "metadata": {},
279 | "source": [
280 | "## Step 3\n",
281 | "Obtain $\\textbf{z}_{t_{1}}, \\textbf{z}_{t_{2}}, ..., \\textbf{z}_{t_{M}} $ by solving ODE $ ODESolve(\\textbf{z}_{t_{0}}, f, \\theta_{f}, t_{0},...,t_{M})$ where $f$ is the function defining the gradient $d\\textbf{z}/{dt}$ as a function of $\\textbf{z}$"
282 | ]
283 | },
284 | {
285 | "cell_type": "code",
286 | "execution_count": 48,
287 | "metadata": {},
288 | "outputs": [
289 | {
290 | "name": "stdout",
291 | "output_type": "stream",
292 | "text": [
293 | "(1995, 5, 1)\n",
294 | "[[-0.96730685 -0.30260754 -1.2165959 ... -0.1712243 0.16253346\n",
295 | " 0.1311233 ]\n",
296 | " [ 0.8523834 1.3523002 -0.5332169 ... 0.5856302 0.80972576\n",
297 | " -0.4475613 ]\n",
298 | " [ 1.7198956 1.1818202 -0.38006347 ... -0.61021274 -0.8827091\n",
299 | " -1.177722 ]\n",
300 | " ...\n",
301 | " [ 1.5871499 0.38149977 -1.2908301 ... 1.5604678 -1.1208996\n",
302 | " -0.05023703]\n",
303 | " [ 0.60470605 2.166283 0.07132202 ... -0.35144055 -1.2759343\n",
304 | " -1.1601465 ]\n",
305 | " [-0.84649354 -0.5831001 -0.44895828 ... 1.4420025 0.8956648\n",
306 | " -2.1960166 ]]\n"
307 | ]
308 | }
309 | ],
310 | "source": [
311 | "# We obtain z values from the prior sample by using the predict function\n",
312 | "# As the dataset here is small we just use all y values\n",
313 | "z_val = encoder_z.predict(y)\n",
314 | "print(prediction.shape)\n",
315 | "print(z_val)"
316 | ]
317 | },
318 | {
319 | "cell_type": "code",
320 | "execution_count": 49,
321 | "metadata": {},
322 | "outputs": [],
323 | "source": [
324 | "# From Appendix B\n",
325 | "# For clarity: vjp stands for Vector Jacobian Product\n",
326 | "\n",
327 | "def grad_odeint_all(yt, func, y0, t, func_args, **kwargs):\n",
328 | " \"\"\"\n",
329 | " Extended from \"Scalable Inference of Ordinary Differential\"\n",
330 | " Equation Models of Biochemical Processes\". Sec. 2.4.2\n",
331 | " Fabian Froehlich, Carolin Loos, Jan Hasenauer, 2017\n",
332 | " https://arxiv.org/pdf/1711.08079.pdf\n",
333 | " \"\"\"\n",
334 | " T, D = np.shape(yt)\n",
335 | " flat_args, unflatten = flatten(func_args)\n",
336 | " \n",
337 | " def flat_func(y, t, flat_args):\n",
338 | " return func(y, t, *unflatten(flat_args))\n",
339 | "\n",
340 | " def unpack(x):\n",
341 | " # y, vjp_y, vjp_t, vjp_args\n",
342 | " return x[0:D], x[D:2 * D], x[2 * D], x[2 * D + 1:]\n",
343 | "\n",
344 | " def augmented_dynamics(augmented_state, t, flat_args):\n",
345 | " \"\"\"\n",
346 | " Original system augemented with vjp_y, vjp_t and vjp_args \n",
347 | " \"\"\"\n",
348 | " y, vjp_y, _, _ = unpack(augmented_state)\n",
349 | " vjp_all, dy_dt = make_vjp(flat_func, argnum=(0, 1, 2))(y, t, flat_args)\n",
350 | " vjp_y, vjp_t, vjp_args = vjp_all(-vjp_y)\n",
351 | " return np.hstack((dy_dt, vjp_y, vjp_t, vjp_args))\n",
352 | "\n",
353 | " def vjp_all(g):\n",
354 | " vjp_y = g[-1, :]\n",
355 | " vjp_t0 = 0\n",
356 | " time_vjp_list = []\n",
357 | " vjp_args = np.zeros(np.size(flat_args))\n",
358 | " \n",
359 | " for i in range(T - 1, 0, -1):\n",
360 | "\n",
361 | " # Compute effect of moving measurement time.\n",
362 | " vjp_cur_t = np.dot(func(yt[i, :], t[i], *func_args), g[i, :])\n",
363 | " time_vjp_list.append(vjp_cur_t)\n",
364 | " vjp_t0 = vjp_t0 - vjp_cur_t\n",
365 | "\n",
366 | " # Run augmented system backwards to the previous observation.\n",
367 | " aug_y0 = np.hstack((yt[i, :], vjp_y, vjp_t0, vjp_args))\n",
368 | " aug_ans = odeint(augmented_dynamics, aug_y0,\n",
369 | " np.array([t[i], t[i - 1]]), tuple((flat_args,)), **kwargs)\n",
370 | " _, vjp_y, vjp_t0, vjp_args = unpack(aug_ans[1])\n",
371 | "\n",
372 | " # Add gradient from current output.\n",
373 | " vjp_y = vjp_y + g[i - 1, :]\n",
374 | "\n",
375 | " time_vjp_list.append(vjp_t0)\n",
376 | " vjp_times = np.hstack(time_vjp_list)[::-1]\n",
377 | "\n",
378 | " return None, vjp_y, vjp_times, unflatten(vjp_args)\n",
379 | " return vjp_all\n",
380 | "\n",
381 | "\n",
382 | "def argnums_unpack(all_vjp_builder):\n",
383 | " \"\"\"\n",
384 | " A generic autograd helper function. Takes a function that\n",
385 | " builds vjps for all arguments, and wraps it to return only required vjps.\n",
386 | " \"\"\"\n",
387 | "\n",
388 | " def build_selected_vjps(argnums, ans, combined_args, kwargs):\n",
389 | " vjp_func = all_vjp_builder(ans, *combined_args, **kwargs)\n",
390 | "\n",
391 | " def chosen_vjps(g): # Returns whichever vjps were asked for.\n",
392 | " all_vjps = vjp_func(g)\n",
393 | " return [all_vjps[argnum] for argnum in argnums]\n",
394 | " return chosen_vjps\n",
395 | " return build_selected_vjps\n",
396 | "\n",
397 | "\n",
398 | "# After performing defvjp_argnums, we can use odeint() as a function anywhere now\n",
399 | "# Details of implementation found in autograd library\n",
400 | "# https://github.com/HIPS/autograd/blob/master/autograd/core.py\n",
401 | "\n",
402 | "defvjp_argnums(odeint, argnums_unpack(grad_odeint_all))"
403 | ]
404 | },
405 | {
406 | "cell_type": "code",
407 | "execution_count": 55,
408 | "metadata": {},
409 | "outputs": [],
410 | "source": [
411 | "# define f as sin function\n",
412 | "f = lambda y, t0, z: np.dot(np.sin(y), z)\n",
413 | "\n",
414 | "t = np.linspace(0., max_T, N)\n",
415 | "# odeint(yt, func, y0, t)\n",
416 | "\n",
417 | "# TODO"
418 | ]
419 | },
420 | {
421 | "cell_type": "markdown",
422 | "metadata": {},
423 | "source": [
424 | "## Step 4\n",
425 | "Maximize ELBO (Evidence Lower Bound) \n",
426 | "$$ ELBO = \\sum^{M}_{i=1}\n",
427 | " {\n",
428 | " \\log p(\\textbf{x}_{t_{i}}) | \\textbf{z}_{t_{i}}, \\theta_{\\textbf{x}} ) \n",
429 | " + \\log p(\\textbf{z}_{t_{0}})\n",
430 | " - \\log q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}, \\phi)\n",
431 | " } \n",
432 | "$$\n",
433 | "\n",
434 | "Where $p(\\textbf{z}_{t_{0}}) = \\mathcal{N}(0,1)$"
435 | ]
436 | },
437 | {
438 | "cell_type": "code",
439 | "execution_count": 54,
440 | "metadata": {},
441 | "outputs": [],
442 | "source": [
443 | "# TODO"
444 | ]
445 | },
446 | {
447 | "cell_type": "code",
448 | "execution_count": null,
449 | "metadata": {
450 | "collapsed": true
451 | },
452 | "outputs": [],
453 | "source": []
454 | }
455 | ],
456 | "metadata": {
457 | "kernelspec": {
458 | "display_name": "Python [conda env:catalyst]",
459 | "language": "python",
460 | "name": "conda-env-catalyst-py"
461 | },
462 | "language_info": {
463 | "codemirror_mode": {
464 | "name": "ipython",
465 | "version": 3
466 | },
467 | "file_extension": ".py",
468 | "mimetype": "text/x-python",
469 | "name": "python",
470 | "nbconvert_exporter": "python",
471 | "pygments_lexer": "ipython3",
472 | "version": "3.6.4"
473 | }
474 | },
475 | "nbformat": 4,
476 | "nbformat_minor": 2
477 | }
478 |
--------------------------------------------------------------------------------
/autograd_extended.py:
--------------------------------------------------------------------------------
1 | """
2 | From Appendix B in the paper
3 | Implementation of autograd
4 | """
5 |
6 | import scipy.integrate
7 |
8 | import autograd.numpy as np
9 | from autograd.extend import primitive, defvjp_argnums
10 | from autograd import make_vjp
11 | from autograd.misc import flatten
12 | from autograd.builtins import tuple
13 |
14 | odeint = primitive(scipy.integrate.odeint)
15 |
16 |
17 | def grad_odeint_all(yt, func, y0, t, func_args, **kwargs):
18 | """
19 | Extended from "Scalable Inference of Ordinary Differential"
20 | Equation Models of Biochemical Processes". Sec. 2.4.2
21 | Fabian Froehlich, Carolin Loos, Jan Hasenauer, 2017
22 | https://arxiv.org/pdf/1711.08079.pdf
23 | """
24 |
25 | T, D = np.shape(yt)
26 | flat_args, unflatten = flatten(func_args)
27 |
28 | def flat_func(y, t, flat_args):
29 | return func(y, t, *unflatten(flat_args))
30 |
31 |
32 | def unpack(x):
33 | # y, vjp_y, vjp_t, vjp_args
34 | return x[0:D], x[D:2 * D], x[2 * D], x[2 * D + 1:]
35 |
36 |
37 | def augmented_dynamics(augmented_state, t, flat_args):
38 | # Original system augemented with vjp_y, vjp_t and vjp_args
39 | y, vjp_y, _, _ = unpack(augmented_state)
40 | vjp_all, dy_dt = make_vjp(flat_func, argnum=(0, 1, 2))(y, t, flat_args)
41 | vjp_y, vjp_t, vjp_args = vjp_all(-vjp_y)
42 | return np.hstack((dy_dt, vjp_y, vjp_t, vjp_args))
43 |
44 |
45 | def vjp_all(g, **kwargs):
46 | vjp_y = g[-1, :]
47 | vjp_t0 = 0
48 | time_vjp_list = []
49 | vjp_args = np.zeros(np.size(flat_args))
50 |
51 | for i in range(T - 1, 0, -1):
52 | # Compute effect of moving current time.
53 | vjp_cur_t = np.dot(func(yt[i, :], t[i], *func_args), g[i, :])
54 | time_vjp_list.append(vjp_cur_t)
55 | vjp_t0 = vjp_t0 - vjp_cur_t
56 |
57 | # Run augmented system backwards to the previous observation
58 | aug_y0 = np.hstack((yt[i, :], vjp_y, vjp_t0, vjp_args))
59 | aug_ans = odeint(augmented_dynamics, aug_y0,
60 | np.array(t[i], t[i - 1]), tuple((flat_args,)), **kwargs)
61 | _, vjp_y, vjp_t0, vjp_args = unpack(aug_ans[1])
62 |
63 | # Add gradient from current output
64 | vjp_y = vjp_y + g[i - 1, :]
65 |
66 | time_vjp_list.append(vjp_t0)
67 | vjp_times = np.hstack(time_vjp_list)[::-1]
68 |
69 | return None, vjp_y, vjp_times, unflatten(vjp_args)
70 |
71 | return vjp_all
72 |
73 |
74 | def grad_argnums_wrapper(all_vjp_builder):
75 | """
76 | A generic autograd helper funciton. Takes a function that
77 | builds vjps for all arguments, and wraps it to return only required vjps.
78 | """
79 | def build_selected_vjps(argnums, ans, combined_args, kwargs):
80 | vjp_func = all_vjp_builder(ans, *combined_args, **kwargs)
81 |
82 | def chosen_vjps(g):
83 | # Return whichever vjps were asked for
84 | all_vjps = vjp_func(g)
85 | return [all_vjps[argnum] for argnum in argnums]
86 |
87 | return chosen_vjps
88 |
89 | return build_selected_vjps
90 |
91 |
92 | if __name__ == '__main__':
93 | print(defvjp_argnums(odeint, grad_argnums_wrapper(grad_odeint_all)))
--------------------------------------------------------------------------------
/data.csv:
--------------------------------------------------------------------------------
1 | x,y
2 | 0,0
3 | 1,0.8414709848
4 | 2,0.9092974268
5 | 3,0.1411200081
6 | 4,-0.7568024953
7 | 5,-0.9589242747
8 | 6,-0.2794154982
9 | 7,0.6569865987
10 | 8,0.9893582466
11 | 9,0.4121184852
12 | 10,-0.5440211109
13 | 11,-0.9999902066
14 | 12,-0.536572918
15 | 13,0.4201670368
16 | 14,0.9906073557
17 | 15,0.6502878402
18 | 16,-0.2879033167
19 | 17,-0.9613974919
20 | 18,-0.7509872468
21 | 19,0.1498772097
22 | 20,0.9129452507
23 | 21,0.8366556385
24 | 22,-0.0088513093
25 | 23,-0.8462204042
26 | 24,-0.905578362
27 | 25,-0.1323517501
28 | 26,0.7625584505
29 | 27,0.9563759284
30 | 28,0.2709057883
31 | 29,-0.6636338842
32 | 30,-0.9880316241
33 | 31,-0.4040376453
34 | 32,0.5514266812
35 | 33,0.9999118601
36 | 34,0.5290826861
37 | 35,-0.4281826695
38 | 36,-0.9917788534
39 | 37,-0.6435381334
40 | 38,0.2963685787
41 | 39,0.9637953863
42 | 40,0.7451131605
43 | 41,-0.1586226688
44 | 42,-0.9165215479
45 | 43,-0.8317747426
46 | 44,0.0177019251
47 | 45,0.8509035245
48 | 46,0.9017883476
49 | 47,0.1235731227
50 | 48,-0.7682546613
51 | 49,-0.9537526528
52 | 50,-0.2623748537
53 | 51,0.6702291758
54 | 52,0.986627592
55 | 53,0.3959251502
56 | 54,-0.5587890489
57 | 55,-0.9997551734
58 | 56,-0.5215510021
59 | 57,0.4361647552
60 | 58,0.9928726481
61 | 59,0.6367380071
62 | 60,-0.3048106211
63 | 61,-0.96611777
64 | 62,-0.7391806966
65 | 63,0.1673557003
66 | 64,0.9200260382
67 | 65,0.8268286795
68 | 66,-0.026551154
69 | 67,-0.855519979
70 | 68,-0.8979276807
71 | 69,-0.1147848138
72 | 70,0.7738906816
73 | 71,0.9510546533
74 | 72,0.2538233628
75 | 73,-0.6767719569
76 | 74,-0.9851462605
77 | 75,-0.3877816354
78 | 76,0.5661076369
79 | 77,0.9995201586
80 | 78,0.513978456
81 | 79,-0.4441126687
82 | 80,-0.9938886539
83 | 81,-0.6298879943
84 | 82,0.3132287824
85 | 83,0.9683644611
86 | 84,0.7331903201
87 | 85,-0.1760756199
88 | 86,-0.923458447
89 | 87,-0.8218178366
90 | 88,0.0353983027
91 | 89,0.8600694058
92 | 90,0.8939966636
93 | 91,0.1059875118
94 | 92,-0.7794660696
95 | 93,-0.9482821413
96 | 94,-0.2452519855
97 | 95,0.6832617147
98 | 96,0.9835877454
99 | 97,0.379607739
100 | 98,-0.573381872
101 | 99,-0.9992068342
102 | 100,-0.5063656411
103 | 101,0.4520257872
104 | 102,0.9948267914
105 | 103,0.6229886314
106 | 104,-0.3216224032
107 | 105,-0.9705352835
108 | 106,-0.7271425001
109 | 107,0.1847817446
110 | 108,0.9268185054
111 | 109,0.8167426066
112 | 110,-0.0442426781
113 | 111,-0.8645514486
114 | 112,-0.8899956044
115 | 113,-0.0971819059
116 | 114,0.7849803887
117 | 115,0.945435334
118 | 116,0.2366613934
119 | 117,-0.6896979409
120 | 118,-0.981952169
121 | 119,-0.3714041014
122 | 120,0.5806111842
123 | 121,0.9988152247
124 | 122,0.4987131539
125 | 123,-0.4599034907
126 | 124,-0.9956869869
127 | 125,-0.6160404592
128 | 126,0.3299908257
129 | 127,0.9726300672
130 | 128,0.7210377105
131 | 129,-0.193473392
132 | 130,-0.9301059502
133 | 131,-0.8116033871
134 | 132,0.0530835871
135 | 133,0.8689657562
136 | 134,0.8859248165
137 | 135,0.0883686861
138 | 136,-0.7904332067
139 | 137,-0.9425144546
140 | 138,-0.2280522595
141 | 139,0.6960801312
142 | 140,0.9802396594
143 | 141,0.3631713654
144 | 142,-0.5877950072
145 | 143,-0.9983453609
146 | 144,-0.4910215939
147 | 145,0.467745162
148 | 146,0.9964691731
149 | 147,0.6090440219
150 | 148,-0.3383333943
151 | 149,-0.9746486481
152 | 150,-0.7148764296
153 | 151,0.2021498814
154 | 152,0.9333205237
155 | 153,0.8064005808
156 | 154,-0.0619203373
157 | 155,-0.8733119828
158 | 156,-0.8817846188
159 | 157,-0.0795485429
160 | 158,0.7958240965
161 | 159,0.9395197317
162 | 160,0.2194252584
163 | 161,-0.7024077856
164 | 162,-0.9784503508
165 | 163,-0.3549101758
166 | 164,0.594932778
167 | 165,0.9977972794
168 | 166,0.4832915637
169 | 167,-0.4755501869
170 | 168,-0.9971732888
171 | 169,-0.6019998677
172 | 170,0.3466494555
173 | 171,0.9765908679
174 | 172,0.7086591402
175 | 173,-0.2108105329
176 | 174,-0.9364619743
177 | 175,-0.8011345952
178 | 176,0.0707522361
179 | 177,0.8775897878
180 | 178,0.8775753358
181 | 179,0.0707221672
182 | 180,-0.8011526357
183 | 181,-0.9364514001
184 | 182,-0.2107810659
185 | 183,0.7086804082
186 | 184,0.9765843833
187 | 185,0.3466211801
188 | 186,-0.6020239376
189 | 187,-0.9971710234
190 | 188,-0.475523669
191 | 189,0.4833179537
192 | 190,0.9977992787
193 | 191,0.5949085485
194 | 192,-0.3549383577
195 | 193,-0.9784565746
196 | 194,-0.7023863293
197 | 195,0.219454668
198 | 196,0.9395300556
199 | 197,0.7958058429
200 | 198,-0.0795785917
201 | 199,-0.8817988361
202 | 200,-0.8732972972
203 | 201,-0.0618902507
204 | 202,0.8064184069
205 | 203,0.9333097002
206 | 204,0.2021203593
207 | 205,-0.7148975078
208 | 206,-0.9746419031
209 | 207,-0.3383050275
210 | 208,0.6090679302
211 | 209,0.9964666418
212 | 210,0.4677185183
213 | 211,-0.4910478539
214 | 212,-0.9983470938
215 | 213,-0.5877706198
216 | 214,0.3631994514
217 | 215,0.980245622
218 | 216,0.6960584883
219 | 217,-0.2280816094
220 | 218,-0.9425245273
221 | 219,-0.7904147415
222 | 220,0.0883987125
223 | 221,0.8859387979
224 | 222,0.8689508382
225 | 223,0.0530534853
226 | 224,-0.8116209974
227 | 225,-0.930094878
228 | 226,-0.1934438172
229 | 227,0.7210585971
230 | 228,0.9726230625
231 | 229,0.3299623697
232 | 230,-0.6160642041
233 | 231,-0.9956841898
234 | 232,-0.4598767232
235 | 233,0.4987392818
236 | 234,0.9988166912
237 | 235,0.580586641
238 | 236,-0.3714320894
239 | 237,-0.9819578698
240 | 238,-0.6896761132
241 | 239,0.2366906813
242 | 240,0.9454451549
243 | 241,0.7849617133
244 | 242,-0.0972119075
245 | 243,-0.8900093489
246 | 244,-0.8645362993
247 | 245,-0.0442125632
248 | 246,0.8167599996
249 | 247,0.9268071855
250 | 248,0.1847521192
251 | 249,-0.7271631934
252 | 250,-0.9705280195
253 | 251,-0.3215938603
254 | 252,0.623012211
255 | 253,0.9948237287
256 | 254,0.4519988981
257 | 255,-0.5063916349
258 | 256,-0.9992080341
259 | 257,-0.5733571748
260 | 258,0.3796356268
261 | 259,0.9835931839
262 | 260,0.6832397038
263 | 261,-0.2452812091
264 | 262,-0.9482917095
265 | 263,-0.7794471855
266 | 264,0.1060174863
267 | 265,0.8940101701
268 | 266,0.8600540265
269 | 267,0.0353681773
270 | 268,-0.821835011
271 | 269,-0.9234468802
272 | 270,-0.1760459465
273 | 271,0.7332108186
274 | 272,0.9683569384
275 | 273,0.3132001549
276 | 274,-0.6299114067
277 | 275,-0.9938853259
278 | 276,-0.44408566
279 | 277,0.5140043137
280 | 278,0.9995210918
281 | 279,0.5660827877
282 | 280,-0.3878094208
283 | 281,-0.9851514363
284 | 282,-0.6767497645
285 | 283,0.2538525198
286 | 284,0.9510639681
287 | 285,0.7738715902
288 | 286,-0.1148147588
289 | 287,-0.8979409481
290 | 288,-0.8555043708
291 | 289,-0.0265210203
292 | 290,0.8268456339
293 | 291,0.9200142255
294 | 292,0.167325981
295 | 293,-0.7392009988
296 | 294,-0.9661099893
297 | 295,-0.3047819111
298 | 296,0.6367612506
299 | 297,0.992869055
300 | 298,0.4361376291
301 | 299,-0.5215767216
302 | 300,-0.9997558399
303 | 301,-0.5587640496
304 | 302,0.395952831
305 | 303,0.9866325048
306 | 304,0.6702068038
307 | 305,-0.2624039419
308 | 306,-0.9537617135
309 | 307,-0.7682353642
310 | 308,0.123603036
311 | 309,0.901801375
312 | 310,0.8508876887
313 | 311,0.0176717855
314 | 312,-0.8317914758
315 | 313,-0.9165094902
316 | 314,-0.158592906
317 | 315,0.7451332646
318 | 316,0.9637873481
319 | 317,0.2963397885
320 | 318,-0.643561206
321 | 319,-0.9917749956
322 | 320,-0.4281554281
323 | 321,0.5291082655
324 | 322,0.9999122599
325 | 323,0.5514015339
326 | 324,-0.4040652195
327 | 325,-0.9880362735
328 | 326,-0.6636113342
329 | 327,0.2709348053
330 | 328,0.9563847343
331 | 329,0.7625389492
332 | 330,-0.1323816292
333 | 331,-0.9055911482
334 | 332,-0.8462043419
335 | 333,-0.0088211661
336 | 334,0.8366721491
337 | 335,0.9129329489
338 | 336,0.1498474057
339 | 337,-0.7510071513
340 | 338,-0.9613891968
341 | 339,-0.2878744485
342 | 340,0.6503107402
343 | 341,0.9906032334
344 | 342,0.4201396822
345 | 343,-0.5365983552
346 | 344,-0.9999903395
347 | 345,-0.5439958174
348 | 346,0.4121459505
349 | 347,0.9893626322
350 | 348,0.6569638725
351 | 349,-0.2794444418
352 | 350,-0.958932825
353 | 351,-0.7567827913
354 | 352,0.1411498507
355 | 353,0.9093099709
356 | 354,0.8414546974
357 | 355,-3.01443533594884E-05
358 | 356,-0.8414872715
359 | 357,-0.9092848819
360 | 358,-0.1410901653
361 | 359,0.7568221986
362 | 360,0.9589157234
363 | 361,0.2793865544
364 | 362,-0.6570093243
365 | 363,-0.9893538602
366 | 364,-0.4120910196
367 | 365,0.5440464039
368 | 366,0.9999900727
369 | 367,0.5365474803
370 | 368,-0.420194391
371 | 369,-0.9906114771
372 | 370,-0.6502649396
373 | 371,0.2879321846
374 | 372,0.9614057861
375 | 373,0.7509673416
376 | 374,-0.1499070135
377 | 375,-0.9129575517
378 | 376,-0.8366391272
379 | 377,0.0088814525
380 | 378,0.8462364657
381 | 379,0.905565575
382 | 380,0.1323218709
383 | 381,-0.7625779511
384 | 382,-0.9563671216
385 | 383,-0.2708767711
386 | 384,0.6636564336
387 | 385,0.9880269738
388 | 386,0.4040100708
389 | 387,-0.5514518281
390 | 388,-0.9999114594
391 | 389,-0.5290571063
392 | 390,0.4282099105
393 | 391,0.9917827104
394 | 392,0.6435150602
395 | 393,-0.2963973687
396 | 394,-0.9638034236
397 | 395,-0.7450930557
398 | 396,0.1586524314
399 | 397,0.9165336048
400 | 398,0.8317580087
401 | 399,-0.0177320647
402 | 400,-0.8509193596
403 | 401,-0.9017753195
404 | 402,-0.1235432094
405 | 403,0.7682739577
406 | 404,0.9537435912
407 | 405,0.2623457653
408 | 406,-0.6702515473
409 | 407,-0.9866226783
410 | 408,-0.395897469
411 | 409,0.5588140476
412 | 410,0.9997545059
413 | 411,0.5215252821
414 | 412,-0.436191881
415 | 413,-0.9928762402
416 | 414,-0.6367147631
417 | 415,0.3048393308
418 | 416,0.9661255499
419 | 417,0.7391603939
420 | 418,-0.1673854194
421 | 419,-0.9200378501
422 | 420,-0.8268117243
423 | 421,0.0265812877
424 | 422,0.8555355864
425 | 423,0.8979144125
426 | 424,0.1147548686
427 | 425,-0.7739097722
428 | 426,-0.9510453375
429 | 427,-0.2537942055
430 | 428,0.6767941486
431 | 429,0.9851410837
432 | 430,0.3877538496
433 | 431,-0.5661324856
434 | 432,-0.9995192244
435 | 433,-0.5139525978
436 | 434,0.444139677
437 | 435,0.993891981
438 | 436,0.6298645813
439 | 437,-0.3132574097
440 | 438,-0.9683719829
441 | 439,-0.7331698209
442 | 440,0.1761052933
443 | 441,0.9234700129
444 | 442,0.8218006615
445 | 443,-0.0354284282
446 | 444,-0.8600847844
447 | 445,-0.8939831563
448 | 446,-0.1059575371
449 | 447,0.779484953
450 | 448,0.9482725722
451 | 449,0.2452227616
452 | 450,-0.683283725
453 | 451,-0.983582306
454 | 452,-0.3795798509
455 | 453,0.5734065686
456 | 454,0.9992056334
457 | 455,0.5063396468
458 | 456,-0.4520526759
459 | 457,-0.9948298531
460 | 458,-0.6229650513
461 | 459,0.3216509457
462 | 460,0.9705425467
463 | 461,0.7271218061
464 | 462,-0.1848113697
465 | 463,-0.9268298245
466 | 464,-0.8167252129
467 | 465,0.0442727929
468 | 466,0.8645665971
469 | 467,0.8899818591
470 | 468,0.0971519042
471 | 469,-0.7849990634
472 | 470,-0.9454255123
473 | 471,-0.2366321052
474 | 472,0.6897197681
475 | 473,0.9819464674
476 | 474,0.3713761131
477 | 475,-0.5806357269
478 | 476,-0.9988137573
479 | 477,-0.4986870255
480 | 478,0.4599302577
481 | 479,0.9956897831
482 | 480,0.6160167138
483 | 481,-0.3300192813
484 | 482,-0.9726370711
485 | 483,-0.7210168233
486 | 484,0.1935029667
487 | 485,0.9301170215
488 | 486,0.8115857762
489 | 487,-0.053113689
490 | 488,-0.8689806734
491 | 489,-0.8859108342
492 | 490,-0.0883386596
493 | 491,0.7904516712
494 | 492,0.9425043809
495 | 493,0.2280229094
496 | 494,-0.6961017735
497 | 495,-0.980233696
498 | 496,-0.363143279
499 | 497,0.587819394
500 | 498,0.998343627
501 | 499,0.4909953335
502 | 500,-0.4677718053
503 | 501,-0.9964717036
504 | 502,-0.609020113
505 | 503,0.3383617608
506 | 504,0.9746553922
507 | 505,0.7148553508
508 | 506,-0.2021794033
509 | 507,-0.9333313465
510 | 508,-0.806382754
511 | 509,0.0619504237
512 | 510,0.8733266675
513 | 511,0.8817704008
514 | 512,0.079518494
515 | 513,-0.7958423494
516 | 514,-0.939509407
517 | 515,-0.2193958486
518 | 516,0.7024292412
519 | 517,0.9784441261
520 | 518,0.3548819937
521 | 519,-0.594957007
522 | 520,-0.9977952793
523 | 521,-0.4832651733
524 | 522,0.4755767043
525 | 523,0.9971755532
526 | 524,0.6019757973
527 | 525,-0.3466777306
528 | 526,-0.9765973517
529 | 527,-0.7086378715
530 | 528,0.2108399997
531 | 529,0.9364725475
532 | 530,0.8011165539
533 | 531,-0.0707823049
534 | 532,-0.877604239
535 | 533,-0.877560883
536 | 534,-0.0706920983
537 | 535,0.8011706756
538 | 536,0.9364408251
539 | 537,0.2107515987
540 | 538,-0.7087016757
541 | 539,-0.9765778978
542 | 540,-0.3465929044
543 | 541,0.6020480069
544 | 542,0.9971687571
545 | 543,0.4754971507
546 | 544,-0.4833443432
547 | 545,-0.997801277
548 | 546,-0.5948843184
549 | 547,0.3549665391
550 | 548,0.9784627976
551 | 549,0.7023648723
552 | 550,-0.2194840774
553 | 551,-0.9395403786
554 | 552,-0.7957875886
555 | 553,0.0796086404
556 | 554,0.8818130525
557 | 555,0.8732826109
558 | 556,0.0618601641
559 | 557,-0.8064362322
560 | 558,-0.9332988757
561 | 559,-0.202090837
562 | 560,0.7149185853
563 | 561,0.9746351573
564 | 562,0.3382766605
565 | 563,-0.6090918379
566 | 564,-0.9964641095
567 | 565,-0.4676918742
568 | 566,0.4910741134
569 | 567,0.9983488258
570 | 568,0.5877462319
571 | 569,-0.363227537
572 | 570,-0.9802515836
573 | 571,-0.6960368448
574 | 572,0.2281109591
575 | 573,0.9425345992
576 | 574,0.7903962755
577 | 575,-0.0884287388
578 | 576,-0.8859527785
579 | 577,-0.8689359194
580 | 578,-0.0530233833
581 | 579,0.8116386069
582 | 580,0.930083805
583 | 581,0.1934142421
584 | 582,-0.721079483
585 | 583,-0.9726160568
586 | 584,-0.3299339135
587 | 585,0.6160879484
588 | 586,0.9956813917
589 | 587,0.4598499554
590 | 588,-0.4987654093
591 | 589,-0.9988181568
592 | 590,-0.5805620972
593 | 591,0.3714600771
594 | 592,0.9819635696
595 | 593,0.6896542848
596 | 594,-0.236719969
597 | 595,-0.945454975
598 | 596,-0.7849430372
599 | 597,0.0972419091
600 | 598,0.8900230925
601 | 599,0.8645211493
602 | 600,0.0441824483
603 | 601,-0.8167773919
604 | 602,-0.9267958647
605 | 603,-0.1847224937
606 | 604,0.7271838861
607 | 605,0.9705207547
608 | 606,0.3215653171
609 | 607,-0.62303579
610 | 608,-0.9948206651
611 | 609,-0.4519720085
612 | 610,0.5064176283
613 | 611,0.9992092331
614 | 612,0.5733324771
615 | 613,-0.3796635143
616 | 614,-0.9835986216
617 | 615,-0.6832176923
618 | 616,0.2453104325
619 | 617,0.9483012769
620 | 618,0.7794283007
621 | 619,-0.1060474607
622 | 620,-0.8940236758
623 | 621,-0.8600386463
624 | 622,-0.0353380517
625 | 623,0.8218521846
626 | 624,0.9234353126
627 | 625,0.1760162728
628 | 626,-0.7332313165
629 | 627,-0.9683494149
630 | 628,-0.313171527
631 | 629,0.6299348185
632 | 630,0.993881997
633 | 631,0.444058651
634 | 632,-0.5140301709
635 | 633,-0.9995220242
636 | 634,-0.566057938
637 | 635,0.3878372059
638 | 636,0.9851566113
639 | 637,0.6767275716
640 | 638,-0.2538816766
641 | 639,-0.9510732821
642 | 640,-0.7738524982
643 | 641,0.1148447038
644 | 642,0.8979542147
645 | 643,0.8554887617
646 | 644,0.0264908865
647 | 645,-0.8268625876
648 | 646,-0.920002412
649 | 647,-0.1672962616
650 | 648,0.7392213002
651 | 649,0.9661022076
652 | 650,0.3047532008
653 | 651,-0.6367844934
654 | 652,-0.9928654611
655 | 653,-0.4361105026
656 | 654,0.5216024407
657 | 655,0.9997565055
658 | 656,0.5587390498
659 | 657,-0.3959805115
660 | 658,-0.9866374168
661 | 659,-0.6701844311
662 | 660,0.2624330298
663 | 661,0.9537707734
664 | 662,0.7682160665
665 | 663,-0.1236329491
666 | 664,-0.9018144015
667 | 665,-0.850871852
668 | 666,-0.0176416458
669 | 667,0.8318082082
670 | 668,0.9164974317
671 | 669,0.1585631431
672 | 670,-0.745153368
673 | 671,-0.963779309
674 | 672,-0.296310998
675 | 673,0.643584278
676 | 674,0.9917711369
677 | 675,0.4281281863
678 | 676,-0.5291338444
679 | 677,-0.9999126587
680 | 678,-0.551376386
681 | 679,0.4040927932
682 | 680,0.9880409219
683 | 681,0.6635887836
684 | 682,-0.2709638221
685 | 683,-0.9563935393
686 | 684,-0.7625194472
687 | 685,0.1324115082
688 | 686,0.9056039336
689 | 687,0.8461882788
690 | 688,0.0087910229
691 | 689,-0.8366886589
692 | 690,-0.9129206463
693 | 691,-0.1498176017
694 | 692,0.751027055
695 | 693,0.9613809009
696 | 694,0.2878455801
697 | 695,-0.6503336396
698 | 696,-0.9905991102
699 | 697,-0.4201123273
700 | 698,0.5366237919
701 | 699,0.9999904716
702 | 700,0.5439705234
703 | 701,-0.4121734154
704 | 702,-0.9893670168
705 | 703,-0.6569411457
706 | 704,0.2794733851
707 | 705,0.9589413745
708 | 706,0.7567630866
709 | 707,-0.1411796932
710 | 708,-0.9093225141
711 | 709,-0.8414384092
712 | 710,6.02887066915853E-05
713 | 711,0.8415035574
714 | 712,0.9092723362
715 | 713,0.1410603224
716 | 714,-0.7568419013
717 | 715,-0.9589071713
718 | 716,-0.2793576103
719 | 717,0.6570320493
720 | 718,0.9893494728
721 | 719,0.4120635536
722 | 720,-0.5440716964
723 | 721,-0.9999899379
724 | 722,-0.5365220422
725 | 723,0.4202217449
726 | 724,0.9906155976
727 | 725,0.6502420384
728 | 726,-0.2879610522
729 | 727,-0.9614140794
730 | 728,-0.7509474358
731 | 729,0.1499368171
732 | 730,0.9129698518
733 | 731,0.8366226151
734 | 732,-0.0089115956
735 | 733,-0.8462525265
736 | 734,-0.9055527872
737 | 735,-0.1322919915
738 | 736,0.762597451
739 | 737,0.956358314
740 | 738,0.2708477536
741 | 739,-0.6636789824
742 | 740,-0.9880223227
743 | 741,-0.403982496
744 | 742,0.5514769745
745 | 743,0.9999110579
746 | 744,0.529031526
747 | 745,-0.4282371512
748 | 746,-0.9917865664
749 | 747,-0.6434919864
750 | 748,0.2964261583
751 | 749,0.9638114601
752 | 750,0.7450729503
753 | 751,-0.1586821939
754 | 752,-0.9165456608
755 | 753,-0.8317412741
756 | 754,0.0177622043
757 | 755,0.850935194
758 | 756,0.9017622906
759 | 757,0.1235132959
760 | 758,-0.7682932534
761 | 759,-0.9537345287
762 | 760,-0.2623166767
763 | 761,0.6702739181
764 | 762,0.9866177637
765 | 763,0.3958697874
766 | 764,-0.5588390459
767 | 765,-0.9997538375
768 | 766,-0.5214995616
769 | 767,0.4362190063
770 | 768,0.9928798315
771 | 769,0.6366915186
772 | 770,-0.3048680403
773 | 771,-0.9661333289
774 | 772,-0.7391400904
775 | 773,0.1674151384
776 | 774,0.9200496611
777 | 775,0.8267947684
778 | 776,-0.0266114214
779 | 777,-0.8555511931
780 | 778,-0.8979011434
781 | 779,-0.1147249234
782 | 780,0.7739288621
783 | 781,0.9510360209
784 | 782,0.253765048
785 | 783,-0.6768163398
786 | 784,-0.9851359061
787 | 785,-0.3877260635
788 | 786,0.5661573337
789 | 787,0.9995182893
790 | 788,0.5139267392
791 | 789,-0.4441666848
792 | 790,-0.9938953072
793 | 791,-0.6298411677
794 | 792,0.3132860367
795 | 793,0.9683795038
796 | 794,0.733149321
797 | 795,-0.1761349664
798 | 796,-0.923481578
799 | 797,-0.8217834856
800 | 798,0.0354585536
801 | 799,0.8601001622
802 | 800,0.8939696482
803 | 801,0.1059275624
804 | 802,-0.7795038357
805 | 803,-0.9482630022
806 | 804,-0.2451935376
807 | 805,0.6833057347
808 | 806,0.9835768657
809 | 807,0.3795519624
810 | 808,-0.5734312648
811 | 809,-0.9992044316
812 | 810,-0.5063136521
813 | 811,0.4520795642
814 | 812,0.994832914
815 | 813,0.6229414706
816 | 814,-0.321679488
817 | 815,-0.9705498089
818 | 816,-0.7271011114
819 | 817,0.1848409947
820 | 818,0.9268411427
821 | 819,0.8167078184
822 | 820,-0.0443029077
823 | 821,-0.8645817448
824 | 822,-0.889968113
825 | 823,-0.0971219024
826 | 824,0.7850177374
827 | 825,0.9454156897
828 | 826,0.2366028169
829 | 827,-0.6897415946
830 | 828,-0.9819407649
831 | 829,-0.3713481244
832 | 830,0.5806602691
833 | 831,0.998812289
834 | 832,0.4986608967
835 | 833,-0.4599570244
836 | 834,-0.9956925784
837 | 835,-0.6159929678
838 | 836,0.3300477367
839 | 837,0.9726440741
840 | 838,0.7209959354
841 | 839,-0.1935325413
842 | 840,-0.930128092
843 | 841,-0.8115681645
844 | 842,0.0531437908
845 | 843,0.8689955898
846 | 844,0.8858968512
847 | 845,0.0883086331
848 | 846,-0.790470135
849 | 847,-0.9424943064
850 | 848,-0.2279935591
851 | 849,0.6961234151
852 | 850,0.9802277317
853 | 851,0.3631151924
854 | 852,-0.5878437803
855 | 853,-0.9983418923
856 | 854,-0.4909690727
857 | 855,0.4677984482
858 | 856,0.9964742331
859 | 857,0.6089962036
860 | 858,-0.338390127
861 | 859,-0.9746621354
862 | 860,-0.7148342714
863 | 861,0.2022089251
864 | 862,0.9333421684
865 | 863,0.8063649264
866 | 864,-0.0619805102
867 | 865,-0.8733413515
868 | 866,-0.8817561819
869 | 867,-0.0794884451
870 | 868,0.7958606016
871 | 869,0.9394990814
872 | 870,0.2193664386
873 | 871,-0.7024506963
874 | 872,-0.9784379005
875 | 873,-0.3548538113
876 | 874,0.5949812355
877 | 875,0.9977932783
878 | 876,0.4832387825
879 | 877,-0.4756032213
880 | 878,-0.9971778168
881 | 879,-0.6019517263
882 | 880,0.3467060054
883 | 881,0.9766038346
884 | 882,0.7086166021
885 | 883,-0.2108694664
886 | 884,-0.93648312
887 | 885,-0.8010985119
888 | 886,0.0708123736
889 | 887,0.8776186893
890 | 888,0.8775464295
891 | 889,0.0706620294
892 | 890,-0.8011887147
893 | 891,-0.9364302493
894 | 892,-0.2107221313
895 | 893,0.7087229424
896 | 894,0.9765714113
897 | 895,0.3465646283
898 | 896,-0.6020720757
899 | 897,-0.9971664899
900 | 898,-0.475470632
901 | 899,0.4833707322
902 | 900,0.9978032744
903 | 901,0.5948600877
904 | 902,-0.3549947203
905 | 903,-0.9784690196
906 | 904,-0.7023434147
907 | 905,0.2195134866
908 | 906,0.9395507007
909 | 907,0.7957693335
910 | 908,-0.079638689
911 | 909,-0.8818272682
912 | 910,-0.8732679237
913 | 911,-0.0618300775
914 | 912,0.8064540568
915 | 913,0.9332880505
916 | 914,0.2020613146
917 | 915,-0.7149396621
918 | 916,-0.9746284105
919 | 917,-0.3382482931
920 | 918,0.6091157451
921 | 919,0.9964615763
922 | 920,0.4676652297
923 | 921,-0.4911003724
924 | 922,-0.9983505569
925 | 923,-0.5877218435
926 | 924,0.3632556224
927 | 925,0.9802575443
928 | 926,0.6960152007
929 | 927,-0.2281403086
930 | 928,-0.9425446703
931 | 929,-0.7903778089
932 | 930,0.088458765
933 | 931,0.8859667583
934 | 932,0.8689209999
935 | 933,0.0529932814
936 | 934,-0.8116562156
937 | 935,-0.9300727311
938 | 936,-0.1933846669
939 | 937,0.7211003682
940 | 938,0.9726090503
941 | 939,0.329905457
942 | 940,-0.6161116921
943 | 941,-0.9956785928
944 | 942,-0.4598231871
945 | 943,0.4987915363
946 | 944,0.9988196214
947 | 945,0.580537553
948 | 946,-0.3714880644
949 | 947,-0.9819692686
950 | 948,-0.6896324558
951 | 949,0.2367492565
952 | 950,0.9454647941
953 | 951,0.7849243603
954 | 952,-0.0972719105
955 | 953,-0.8900368354
956 | 954,-0.8645059985
957 | 955,-0.0441523334
958 | 956,0.8167947834
959 | 957,0.9267845431
960 | 958,0.184692868
961 | 959,-0.7272045782
962 | 960,-0.9705134889
963 | 961,-0.3215367737
964 | 962,0.6230593684
965 | 963,0.9948176006
966 | 964,0.4519451186
967 | 965,-0.5064436212
968 | 966,-0.9992104312
969 | 967,-0.5733077789
970 | 968,0.3796914014
971 | 969,0.9836040583
972 | 970,0.6831956801
973 | 971,-0.2453396556
974 | 972,-0.9483108434
975 | 973,-0.7794094151
976 | 974,0.106077435
977 | 975,0.8940371806
978 | 976,0.8600232654
979 | 977,0.0353079262
980 | 978,-0.8218693575
981 | 979,-0.9234237442
982 | 980,-0.175986599
983 | 981,0.7332518137
984 | 982,0.9683418905
985 | 983,0.3131428989
986 | 984,-0.6299582298
987 | 985,-0.9938786672
988 | 986,-0.4440316415
989 | 987,0.5140560276
990 | 988,0.9995229557
991 | 989,0.5660330878
992 | 990,-0.3878649906
993 | 991,-0.9851617854
994 | 992,-0.676705378
995 | 993,0.2539108332
996 | 994,0.9510825952
997 | 995,0.7738334054
998 | 996,-0.1148746486
999 | 997,-0.8979674805
1000 | 998,-0.855473152
1001 | 999,-0.0264607527
1002 | 1000,0.8268795405
1003 | 1001,0.9199905976
1004 | 1002,0.167266542
1005 | 1003,-0.7392416009
1006 | 1004,-0.9660944251
1007 | 1005,-0.3047244902
1008 | 1006,0.6368077357
1009 | 1007,0.9928618662
1010 | 1008,0.4360833758
1011 | 1009,-0.5216281593
1012 | 1010,-0.9997571703
1013 | 1011,-0.5587140495
1014 | 1012,0.3960081917
1015 | 1013,0.9866423278
1016 | 1014,0.6701620578
1017 | 1015,-0.2624621175
1018 | 1016,-0.9537798324
1019 | 1017,-0.768196768
1020 | 1018,0.1236628622
1021 | 1019,0.9018274271
1022 | 1020,0.8508560146
1023 | 1021,0.0176115061
1024 | 1022,-0.8318249398
1025 | 1023,-0.9164853723
1026 | 1024,-0.15853338
1027 | 1025,0.7451734707
1028 | 1026,0.963771269
1029 | 1027,0.2962822073
1030 | 1028,-0.6436073495
1031 | 1029,-0.9917672772
1032 | 1030,-0.4281009441
1033 | 1031,0.5291594228
1034 | 1032,0.9999130567
1035 | 1033,0.5513512376
1036 | 1034,-0.4041203666
1037 | 1035,-0.9880455695
1038 | 1036,-0.6635662324
1039 | 1037,0.2709928386
1040 | 1038,0.9564023435
1041 | 1039,0.7624999445
1042 | 1040,-0.1324413871
1043 | 1041,-0.9056167181
1044 | 1042,-0.846172215
1045 | 1043,-0.0087608797
1046 | 1044,0.8367051679
1047 | 1045,0.9129083429
1048 | 1046,0.1497877975
1049 | 1047,-0.7510469582
1050 | 1048,-0.9613726041
1051 | 1049,-0.2878167114
1052 | 1050,0.6503565384
1053 | 1051,0.9905949861
1054 | 1052,0.4200849719
1055 | 1053,-0.5366492281
1056 | 1054,-0.9999906027
1057 | 1055,-0.5439452289
1058 | 1056,0.4122008799
1059 | 1057,0.9893714006
1060 | 1058,0.6569184183
1061 | 1059,-0.2795023282
1062 | 1060,-0.9589499232
1063 | 1061,-0.7567433812
1064 | 1062,0.1412095355
1065 | 1063,0.9093350565
1066 | 1064,0.8414221202
1067 | 1065,-9.04330599688988E-05
1068 | 1066,-0.8415198426
1069 | 1067,-0.9092597897
1070 | 1068,-0.1410304794
1071 | 1069,0.7568616032
1072 | 1070,0.9588986183
1073 | 1071,0.2793286659
1074 | 1072,-0.6570547737
1075 | 1073,-0.9893450846
1076 | 1074,-0.4120360873
1077 | 1075,0.5440969885
1078 | 1076,0.9999898022
1079 | 1077,0.5364966035
1080 | 1078,-0.4202490983
1081 | 1079,-0.9906197172
1082 | 1080,-0.6502191366
1083 | 1081,0.2879899196
1084 | 1082,0.9614223718
1085 | 1083,0.7509275292
1086 | 1084,-0.1499666206
1087 | 1085,-0.9129821511
1088 | 1086,-0.8366061023
1089 | 1087,0.0089417388
1090 | 1088,0.8462685864
1091 | 1089,0.9055399985
1092 | 1090,0.1322621121
1093 | 1091,-0.7626169503
1094 | 1092,-0.9563495055
1095 | 1093,-0.2708187358
1096 | 1094,0.6637015306
1097 | 1095,0.9880176706
1098 | 1096,0.4039549207
1099 | 1097,-0.5515021204
1100 | 1098,-0.9999106554
1101 | 1099,-0.5290059452
1102 | 1100,0.4282643914
1103 | 1101,0.9917904215
1104 | 1102,0.643468912
1105 | 1103,-0.2964549477
1106 | 1104,-0.9638194957
1107 | 1105,-0.7450528442
1108 | 1106,0.1587119563
1109 | 1107,0.9165577161
1110 | 1108,0.8317245386
1111 | 1109,-0.0177923439
1112 | 1110,-0.8509510275
1113 | 1111,-0.9017492608
1114 | 1112,-0.1234833823
1115 | 1113,0.7683125484
1116 | 1114,0.9537254654
1117 | 1115,0.2622875878
1118 | 1116,-0.6702962884
1119 | 1117,-0.9866128483
1120 | 1118,-0.3958421054
1121 | 1119,0.5588640436
1122 | 1120,0.9997531683
1123 | 1121,0.5214738406
1124 | 1122,-0.4362461312
1125 | 1123,-0.9928834218
1126 | 1124,-0.6366682734
1127 | 1125,0.3048967495
1128 | 1126,0.966141107
1129 | 1127,0.7391197863
1130 | 1128,-0.1674448573
1131 | 1129,-0.9200614713
1132 | 1130,-0.8267778117
1133 | 1131,0.0266415551
1134 | 1132,0.855566799
1135 | 1133,0.8978878735
1136 | 1134,0.114694978
1137 | 1135,-0.7739479514
1138 | 1136,-0.9510267035
1139 | 1137,-0.2537358903
1140 | 1138,0.6768385303
1141 | 1139,0.9851307275
1142 | 1140,0.387698277
1143 | 1141,-0.5661821814
1144 | 1142,-0.9995173533
1145 | 1143,-0.5139008801
1146 | 1144,0.4441936923
1147 | 1145,0.9938986325
1148 | 1146,0.6298177536
1149 | 1147,-0.3133146634
1150 | 1148,-0.9683870238
1151 | 1149,-0.7331288205
1152 | 1150,0.1761646394
1153 | 1151,0.9234931423
1154 | 1152,0.821766309
1155 | 1153,-0.035488679
1156 | 1154,-0.8601155392
1157 | 1155,-0.8939561393
1158 | 1156,-0.1058975876
1159 | 1157,0.7795227177
1160 | 1158,0.9482534313
1161 | 1159,0.2451643133
1162 | 1160,-0.6833277438
1163 | 1161,-0.9835714245
1164 | 1162,-0.3795240736
1165 | 1163,0.5734559604
1166 | 1164,0.999203229
1167 | 1165,0.5062876569
1168 | 1166,-0.4521064521
1169 | 1167,-0.994835974
1170 | 1168,-0.6229178894
1171 | 1169,0.32170803
1172 | 1170,0.9705570702
1173 | 1171,0.727080416
1174 | 1172,-0.1848706196
1175 | 1173,-0.9268524601
1176 | 1174,-0.8166904232
1177 | 1175,0.0443330224
1178 | 1176,0.8645968917
1179 | 1177,0.889954366
1180 | 1178,0.0970919005
1181 | 1179,-0.7850364106
1182 | 1180,-0.9454058662
1183 | 1181,-0.2365735283
1184 | 1182,0.6897634204
1185 | 1183,0.9819350615
1186 | 1184,0.3713201354
1187 | 1185,-0.5806848107
1188 | 1186,-0.9988108198
1189 | 1187,-0.4986347675
1190 | 1188,0.4599837906
1191 | 1189,0.9956953729
1192 | 1190,0.6159692212
1193 | 1191,-0.3300761917
1194 | 1192,-0.9726510762
1195 | 1193,-0.7209750469
1196 | 1194,0.1935621156
1197 | 1195,0.9301391617
1198 | 1196,0.811550552
1199 | 1197,-0.0531738925
1200 | 1198,-0.8690105055
1201 | 1199,-0.8858828674
1202 | 1200,-0.0882786065
1203 | 1201,0.7904885981
1204 | 1202,0.9424842311
1205 | 1203,0.2279642085
1206 | 1204,-0.6961450561
1207 | 1205,-0.9802217665
1208 | 1206,-0.3630871054
1209 | 1207,0.587868166
1210 | 1208,0.9983401567
1211 | 1209,0.4909428114
1212 | 1210,-0.4678250906
1213 | 1211,-0.9964767618
1214 | 1212,-0.6089722936
1215 | 1213,0.3384184928
1216 | 1214,0.9746688777
1217 | 1215,0.7148131913
1218 | 1216,-0.2022384466
1219 | 1217,-0.9333529894
1220 | 1218,-0.8063470981
1221 | 1219,0.0620105965
1222 | 1220,0.8733560347
1223 | 1221,0.8817419622
1224 | 1222,0.0794583961
1225 | 1223,-0.795878853
1226 | 1224,-0.939488755
1227 | 1225,-0.2193370283
1228 | 1226,0.7024721507
1229 | 1227,0.978431674
1230 | 1228,0.3548256285
1231 | 1229,-0.5950054635
1232 | 1230,-0.9977912763
1233 | 1231,-0.4832123913
1234 | 1232,0.4756297379
1235 | 1233,0.9971800795
1236 | 1234,0.6019276548
1237 | 1235,-0.3467342798
1238 | 1236,-0.9766103166
1239 | 1237,-0.7085953321
1240 | 1238,0.2108989328
1241 | 1239,0.9364936915
1242 | 1240,0.8010804691
1243 | 1241,-0.0708424422
1244 | 1242,-0.8776331389
1245 | 1243,-0.8775319751
1246 | 1244,-0.0706319603
1247 | 1245,0.801206753
1248 | 1246,0.9364196726
1249 | 1247,0.2106926637
1250 | 1248,-0.7087442085
1251 | 1249,-0.976564924
1252 | 1250,-0.346536352
1253 | 1251,0.6020961439
1254 | 1252,0.9971642218
1255 | 1253,0.4754441128
1256 | 1254,-0.4833971209
1257 | 1255,-0.9978052709
1258 | 1256,-0.5948358565
1259 | 1257,0.3550229011
1260 | 1258,0.9784752408
1261 | 1259,0.7023219565
1262 | 1260,-0.2195428956
1263 | 1261,-0.939561022
1264 | 1262,-0.7957510778
1265 | 1263,0.0796687376
1266 | 1264,0.881841483
1267 | 1265,0.8732532358
1268 | 1266,0.0617999908
1269 | 1267,-0.8064718807
1270 | 1268,-0.9332772243
1271 | 1269,-0.2020317919
1272 | 1270,0.7149607383
1273 | 1271,0.9746216629
1274 | 1272,0.3382199253
1275 | 1273,-0.6091396518
1276 | 1274,-0.9964590423
1277 | 1275,-0.4676385847
1278 | 1276,0.491126631
1279 | 1277,0.9983522871
1280 | 1278,0.5876974546
1281 | 1279,-0.3632837074
1282 | 1280,-0.9802635042
1283 | 1281,-0.6959935559
1284 | 1282,0.2281696579
1285 | 1283,0.9425547405
1286 | 1284,0.7903593415
1287 | 1285,-0.0884887912
1288 | 1286,-0.8859807373
1289 | 1287,-0.8689060795
1290 | 1288,-0.0529631794
1291 | 1289,0.8116738236
1292 | 1290,0.9300616564
1293 | 1291,0.1933550915
1294 | 1292,-0.7211212528
1295 | 1293,-0.9726020429
1296 | 1294,-0.3298770001
1297 | 1295,0.6161354353
1298 | 1296,0.9956757929
1299 | 1297,0.4597964184
1300 | 1298,-0.4988176628
1301 | 1299,-0.9988210852
1302 | 1300,-0.5805130082
1303 | 1301,0.3715160514
1304 | 1302,0.9819749666
1305 | 1303,0.6896106262
1306 | 1304,-0.2367785437
1307 | 1305,-0.9454746125
1308 | 1306,-0.7849056828
1309 | 1307,0.0973019119
1310 | 1308,0.8900505775
1311 | 1309,0.8644908468
1312 | 1310,0.0441222184
1313 | 1311,-0.8168121741
1314 | 1312,-0.9267732207
1315 | 1313,-0.1846632422
1316 | 1314,0.7272252696
1317 | 1315,0.9705062223
1318 | 1316,0.3215082299
1319 | 1317,-0.6230829463
1320 | 1318,-0.9948145352
1321 | 1319,-0.4519182283
1322 | 1320,0.5064696136
1323 | 1321,0.9992116284
1324 | 1322,0.5732830802
1325 | 1323,-0.3797192882
1326 | 1324,-0.9836094941
1327 | 1325,-0.6831736673
1328 | 1326,0.2453688786
1329 | 1327,0.9483204091
1330 | 1328,0.7793905289
1331 | 1329,-0.1061074092
1332 | 1330,-0.8940506847
1333 | 1331,-0.8600078837
1334 | 1332,-0.0352778006
1335 | 1333,0.8218865297
1336 | 1334,0.9234121749
1337 | 1335,0.1759569251
1338 | 1336,-0.7332723102
1339 | 1337,-0.9683343652
1340 | 1338,-0.3131142705
1341 | 1339,0.6299816405
1342 | 1340,0.9938753365
1343 | 1341,0.4440046316
1344 | 1342,-0.5140818839
1345 | 1343,-0.9995238862
1346 | 1344,-0.566008237
1347 | 1345,0.387892775
1348 | 1346,0.9851669585
1349 | 1347,0.6766831838
1350 | 1348,-0.2539399895
1351 | 1349,-0.9510919075
1352 | 1350,-0.7738143119
1353 | 1351,0.1149045934
1354 | 1352,0.8979807455
1355 | 1353,0.8554575414
1356 | 1354,0.0264306189
1357 | 1355,-0.8268964927
1358 | 1356,-0.9199787824
1359 | 1357,-0.1672368222
1360 | 1358,0.739261901
1361 | 1359,0.9660866418
1362 | 1360,0.3046957794
1363 | 1361,-0.6368309774
1364 | 1362,-0.9928582704
1365 | 1363,-0.4360562485
1366 | 1364,0.5216538774
1367 | 1365,0.9997578341
1368 | 1366,0.5586890488
1369 | 1367,-0.3960358715
1370 | 1368,-0.9866472379
1371 | 1369,-0.6701396839
1372 | 1370,0.2624912049
1373 | 1371,0.9537888905
1374 | 1372,0.7681774688
1375 | 1373,-0.1236927751
1376 | 1374,-0.901840452
1377 | 1375,-0.8508401764
1378 | 1376,-0.0175813665
1379 | 1377,0.8318416707
1380 | 1378,0.9164733121
1381 | 1379,0.1585036168
1382 | 1380,-0.7451935727
1383 | 1381,-0.9637632282
1384 | 1382,-0.2962534162
1385 | 1383,0.6436304203
1386 | 1384,0.9917634167
1387 | 1385,0.4280737015
1388 | 1386,-0.5291850007
1389 | 1387,-0.9999134537
1390 | 1388,-0.5513260887
1391 | 1389,0.4041479397
1392 | 1390,0.9880502162
1393 | 1391,0.6635436805
1394 | 1392,-0.2710218549
1395 | 1393,-0.9564111468
1396 | 1394,-0.7624804411
1397 | 1395,0.1324712658
1398 | 1396,0.9056295018
1399 | 1397,0.8461561504
1400 | 1398,0.0087307365
1401 | 1399,-0.8367216762
1402 | 1400,-0.9128960386
1403 | 1401,-0.1497579931
1404 | 1402,0.7510668606
1405 | 1403,0.9613643064
1406 | 1404,0.2877878425
1407 | 1405,-0.6503794366
1408 | 1406,-0.9905908611
1409 | 1407,-0.4200576162
1410 | 1408,0.5366746638
1411 | 1409,0.9999907329
1412 | 1410,0.5439199339
1413 | 1411,-0.412228344
1414 | 1412,-0.9893757834
1415 | 1413,-0.6568956904
1416 | 1414,0.279531271
1417 | 1415,0.9589584709
1418 | 1416,0.7567236751
1419 | 1417,-0.1412393778
1420 | 1418,-0.9093475981
1421 | 1419,-0.8414058304
1422 | 1420,0.0001205774
1423 | 1421,0.8415361269
1424 | 1422,0.9092472423
1425 | 1423,0.1410006363
1426 | 1424,-0.7568813045
1427 | 1425,-0.9588900644
1428 | 1426,-0.2792997213
1429 | 1427,0.6570774975
1430 | 1428,0.9893406954
1431 | 1429,0.4120086205
1432 | 1430,-0.54412228
1433 | 1431,-0.9999896656
1434 | 1432,-0.5364711644
1435 | 1433,0.4202764514
1436 | 1434,0.9906238359
1437 | 1435,0.6501962342
1438 | 1436,-0.2880187867
1439 | 1437,-0.9614306634
1440 | 1438,-0.750907622
1441 | 1439,0.149996424
1442 | 1440,0.9129944496
1443 | 1441,0.8365895887
1444 | 1442,-0.0089718819
1445 | 1443,-0.8462846457
1446 | 1444,-0.905527209
1447 | 1445,-0.1322322325
1448 | 1446,0.7626364488
1449 | 1447,0.9563406961
1450 | 1448,0.2707897178
1451 | 1449,-0.6637240782
1452 | 1450,-0.9880130177
1453 | 1451,-0.4039273451
1454 | 1452,0.5515272657
1455 | 1453,0.999910252
1456 | 1454,0.5289803639
1457 | 1455,-0.4282916313
1458 | 1456,-0.9917942758
1459 | 1457,-0.643445837
1460 | 1458,0.2964837369
1461 | 1459,0.9638275304
1462 | 1460,0.7450327374
1463 | 1461,-0.1587417185
1464 | 1462,-0.9165697704
1465 | 1463,-0.8317078025
1466 | 1464,0.0178224835
1467 | 1465,0.8509668603
1468 | 1466,0.9017362302
1469 | 1467,0.1234534686
1470 | 1468,-0.7683318427
1471 | 1469,-0.9537164012
1472 | 1470,-0.2622584987
1473 | 1471,0.670318658
1474 | 1472,0.9866079319
1475 | 1473,0.3958144231
1476 | 1474,-0.5588890408
1477 | 1475,-0.9997524981
1478 | 1476,-0.5214481192
1479 | 1477,0.4362732557
1480 | 1478,0.9928870113
1481 | 1479,0.6366450277
1482 | 1480,-0.3049254584
1483 | 1481,-0.9661488842
1484 | 1482,-0.7390994815
1485 | 1483,0.1674745759
1486 | 1484,0.9200732806
1487 | 1485,0.8267608542
1488 | 1486,-0.0266716887
1489 | 1487,-0.8555824041
1490 | 1488,-0.8978746029
1491 | 1489,-0.1146650325
1492 | 1490,0.7739670399
1493 | 1491,0.9510173852
1494 | 1492,0.2537067323
1495 | 1493,-0.6768607202
1496 | 1494,-0.9851255481
1497 | 1495,-0.3876704902
1498 | 1496,0.5662070285
1499 | 1497,0.9995164164
1500 | 1498,0.5138750206
1501 | 1499,-0.4442206993
1502 | 1500,-0.9939019569
1503 | 1501,-0.6297943389
1504 | 1502,0.3133432898
1505 | 1503,0.968394543
1506 | 1504,0.7331083193
1507 | 1505,-0.1761943123
1508 | 1506,-0.9235047057
1509 | 1507,-0.8217491316
1510 | 1508,0.0355188043
1511 | 1509,0.8601309154
1512 | 1510,0.8939426295
1513 | 1511,0.1058676127
1514 | 1512,-0.779541599
1515 | 1513,-0.9482438596
1516 | 1514,-0.2451350888
1517 | 1515,0.6833497522
1518 | 1516,0.9835659824
1519 | 1517,0.3794961844
1520 | 1518,-0.5734806555
1521 | 1519,-0.9992020254
1522 | 1520,-0.5062616612
1523 | 1521,0.4521333395
1524 | 1522,0.9948390331
1525 | 1523,0.6228943075
1526 | 1524,-0.3217365717
1527 | 1525,-0.9705643307
1528 | 1526,-0.72705972
1529 | 1527,0.1849002442
1530 | 1528,0.9268637767
1531 | 1529,0.8166730273
1532 | 1530,-0.0443631371
1533 | 1531,-0.8646120378
1534 | 1532,-0.8899406183
1535 | 1533,-0.0970618985
1536 | 1534,0.7850550832
1537 | 1535,0.9453960418
1538 | 1536,0.2365442396
1539 | 1537,-0.6897852457
1540 | 1538,-0.9819293572
1541 | 1539,-0.3712921461
1542 | 1540,0.5807093518
1543 | 1541,0.9988093497
1544 | 1542,0.4986086377
1545 | 1543,-0.4600105563
1546 | 1544,-0.9956981664
1547 | 1545,-0.6159454741
1548 | 1546,0.3301046464
1549 | 1547,0.9726580774
1550 | 1548,0.7209541577
1551 | 1549,-0.1935916898
1552 | 1550,-0.9301502305
1553 | 1551,-0.8115329388
1554 | 1552,0.0532039942
1555 | 1553,0.8690254203
1556 | 1554,0.8858688827
1557 | 1555,0.0882485798
1558 | 1556,-0.7905070605
1559 | 1557,-0.9424741549
1560 | 1558,-0.2279348578
1561 | 1559,0.6961666964
1562 | 1560,0.9802158005
1563 | 1561,0.3630590181
1564 | 1562,-0.5878925512
1565 | 1563,-0.9983384201
1566 | 1564,-0.4909165496
1567 | 1565,0.4678517326
1568 | 1566,0.9964792895
1569 | 1567,0.6089483831
1570 | 1568,-0.3384468584
1571 | 1569,-0.9746756191
1572 | 1570,-0.7147921106
1573 | 1571,0.202267968
1574 | 1572,0.9333638096
1575 | 1573,0.8063292691
1576 | 1574,-0.0620406828
1577 | 1575,-0.8733707171
1578 | 1576,-0.8817277418
1579 | 1577,-0.079428347
1580 | 1578,0.7958971037
1581 | 1579,0.9394784277
1582 | 1580,0.2193076179
1583 | 1581,-0.7024936044
1584 | 1582,-0.9784254466
1585 | 1583,-0.3547974454
1586 | 1584,0.5950296909
1587 | 1585,0.9977892735
1588 | 1586,0.4831859996
1589 | 1587,-0.475656254
1590 | 1588,-0.9971823412
1591 | 1589,-0.6019035827
1592 | 1590,0.346762554
1593 | 1591,0.9766167977
1594 | 1592,0.7085740615
1595 | 1593,-0.2109283991
1596 | 1594,-0.9365042623
1597 | 1595,-0.8010624257
1598 | 1596,0.0708725108
1599 | 1597,0.8776475877
1600 | 1598,0.8775175199
1601 | 1599,0.0706018912
1602 | 1600,-0.8012247907
1603 | 1601,-0.9364090951
1604 | 1602,-0.2106631959
1605 | 1603,0.708765474
1606 | 1604,0.9765584358
1607 | 1605,0.3465080753
1608 | 1606,-0.6021202116
1609 | 1607,-0.9971619528
1610 | 1608,-0.4754175933
1611 | 1609,0.483423509
1612 | 1610,0.9978072665
1613 | 1611,0.5948116248
1614 | 1612,-0.3550510817
1615 | 1613,-0.978481461
1616 | 1614,-0.7023004977
1617 | 1615,0.2195723045
1618 | 1616,0.9395713425
1619 | 1617,0.7957328213
1620 | 1618,-0.0796987861
1621 | 1619,-0.8818556971
1622 | 1620,-0.873238547
1623 | 1621,-0.061769904
1624 | 1622,0.8064897039
1625 | 1623,0.9332663974
1626 | 1624,0.2020022691
1627 | 1625,-0.7149818138
1628 | 1626,-0.9746149144
1629 | 1627,-0.3381915573
1630 | 1628,0.6091635579
1631 | 1629,0.9964565073
1632 | 1630,0.4676119393
1633 | 1631,-0.4911528892
1634 | 1632,-0.9983540164
1635 | 1633,-0.5876730651
1636 | 1634,0.3633117921
1637 | 1635,0.9802694631
1638 | 1636,0.6959719105
1639 | 1637,-0.228199007
1640 | 1638,-0.9425648098
1641 | 1639,-0.7903408734
1642 | 1640,0.0885188172
1643 | 1641,0.8859947155
1644 | 1642,0.8688911583
1645 | 1643,0.0529330773
1646 | 1644,-0.8116914309
1647 | 1645,-0.9300505808
1648 | 1646,-0.1933255159
1649 | 1647,0.7211421368
1650 | 1648,0.9725950346
1651 | 1649,0.329848543
1652 | 1650,-0.6161591779
1653 | 1651,-0.9956729922
1654 | 1652,-0.4597696492
1655 | 1653,0.4988437889
1656 | 1654,0.998822548
1657 | 1655,0.5804884628
1658 | 1656,-0.3715440381
1659 | 1657,-0.9819806638
1660 | 1658,-0.6895887959
1661 | 1659,0.2368078308
1662 | 1660,0.9454844299
1663 | 1661,0.7848870045
1664 | 1662,-0.0973319131
1665 | 1663,-0.8900643187
1666 | 1664,-0.8644756944
1667 | 1665,-0.0440921034
1668 | 1666,0.8168295641
1669 | 1667,0.9267618974
1670 | 1668,0.1846336162
1671 | 1669,-0.7272459603
1672 | 1670,-0.9704989547
1673 | 1671,-0.3214796859
1674 | 1672,0.6231065236
1675 | 1673,0.9948114689
1676 | 1674,0.4518913375
1677 | 1675,-0.5064956056
1678 | 1676,-0.9992128247
1679 | 1677,-0.5732583809
1680 | 1678,0.3797471746
1681 | 1679,0.9836149291
1682 | 1680,0.6831516539
1683 | 1681,-0.2453981013
1684 | 1682,-0.9483299739
1685 | 1683,-0.7793716419
1686 | 1684,0.1061373834
1687 | 1685,0.8940641879
1688 | 1686,0.8599925013
1689 | 1687,0.035247675
1690 | 1688,-0.8219037011
1691 | 1689,-0.9234006048
1692 | 1690,-0.175927251
1693 | 1691,0.7332928061
1694 | 1692,0.968326839
1695 | 1693,0.3130856418
1696 | 1694,-0.6300050506
1697 | 1695,-0.9938720049
1698 | 1696,-0.4439776213
1699 | 1697,0.5141077397
1700 | 1698,0.9995248158
1701 | 1699,0.5659833858
1702 | 1700,-0.387920559
1703 | 1701,-0.9851721308
1704 | 1702,-0.6766609889
1705 | 1703,0.2539691456
1706 | 1704,0.9511012189
1707 | 1705,0.7737952178
1708 | 1706,-0.114934538
1709 | 1707,-0.8979940096
1710 | 1708,-0.8554419301
1711 | 1709,-0.0264004851
1712 | 1710,0.8269134441
1713 | 1711,0.9199669663
1714 | 1712,0.1672071023
1715 | 1713,-0.7392822004
1716 | 1714,-0.9660788575
1717 | 1715,-0.3046670683
1718 | 1716,0.6368542185
1719 | 1717,0.9928546738
1720 | 1718,0.4360291208
1721 | 1719,-0.521679595
1722 | 1720,-0.999758497
1723 | 1721,-0.5586640475
1724 | 1722,0.3960635509
1725 | 1723,0.9866521471
1726 | 1724,0.6701173094
1727 | 1725,-0.2625202921
1728 | 1726,-0.9537979478
1729 | 1727,-0.7681581689
1730 | 1728,0.1237226879
1731 | 1729,0.901853476
1732 | 1730,0.8508243374
1733 | 1731,0.0175512268
1734 | 1732,-0.8318584008
1735 | 1733,-0.916461251
1736 | 1734,-0.1584738535
1737 | 1735,0.7452136741
1738 | 1736,0.9637551864
1739 | 1737,0.296224625
1740 | 1738,-0.6436534906
1741 | 1739,-0.9917595553
1742 | 1740,-0.4280464585
1743 | 1741,0.5292105781
1744 | 1742,0.9999138498
1745 | 1743,0.5513009394
1746 | 1744,-0.4041755123
1747 | 1745,-0.9880548619
1748 | 1746,-0.6635211281
1749 | 1747,0.2710508709
1750 | 1748,0.9564199492
1751 | 1749,0.762460937
1752 | 1750,-0.1325011444
1753 | 1751,-0.9056422847
1754 | 1752,-0.846140085
1755 | 1753,-0.0087005933
1756 | 1754,0.8367381838
1757 | 1755,0.9128837335
1758 | 1756,0.1497281887
1759 | 1757,-0.7510867623
1760 | 1758,-0.9613560079
1761 | 1759,-0.2877589733
1762 | 1760,0.6504023343
1763 | 1761,0.9905867352
1764 | 1762,0.4200302601
1765 | 1763,-0.5367000991
1766 | 1764,-0.9999908622
1767 | 1765,-0.5438946384
1768 | 1766,0.4122558077
1769 | 1767,0.9893801654
1770 | 1768,0.6568729618
1771 | 1769,-0.2795602136
1772 | 1770,-0.9589670178
1773 | 1771,-0.7567039684
1774 | 1772,0.1412692199
1775 | 1773,0.9093601389
1776 | 1774,0.8413895399
1777 | 1775,-0.0001507218
1778 | 1776,-0.8415524106
1779 | 1777,-0.9092346941
1780 | 1778,-0.140970793
1781 | 1779,0.756901005
1782 | 1780,0.9588815097
1783 | 1781,0.2792707765
1784 | 1782,-0.6571002207
1785 | 1783,-0.9893363054
1786 | 1784,-0.4119811534
1787 | 1785,0.5441475711
1788 | 1786,0.9999895281
1789 | 1787,0.5364457247
1790 | 1788,-0.420303804
1791 | 1789,-0.9906279537
1792 | 1790,-0.6501733313
1793 | 1791,0.2880476535
1794 | 1792,0.9614389541
1795 | 1793,0.7508877141
1796 | 1794,-0.1500262273
1797 | 1795,-0.9130067472
1798 | 1796,-0.8365730743
1799 | 1797,0.0090020251
1800 | 1798,0.8463007041
1801 | 1799,0.9055144187
1802 | 1800,0.1322023528
1803 | 1801,-0.7626559466
1804 | 1802,-0.9563318859
1805 | 1803,-0.2707606996
1806 | 1804,0.6637466252
1807 | 1805,0.9880083638
1808 | 1806,0.4038997691
1809 | 1807,-0.5515524106
1810 | 1808,-0.9999098477
1811 | 1809,-0.5289547821
1812 | 1810,0.4283188707
1813 | 1811,0.9917981291
1814 | 1812,0.6434227615
1815 | 1813,-0.2965125257
1816 | 1814,-0.9638355642
1817 | 1815,-0.7450126299
1818 | 1816,0.1587714805
1819 | 1817,0.916581824
1820 | 1818,0.8316910655
1821 | 1819,-0.0178526231
1822 | 1820,-0.8509826923
1823 | 1821,-0.9017231988
1824 | 1822,-0.1234235548
1825 | 1823,0.7683511363
1826 | 1824,0.9537073361
1827 | 1825,0.2622294093
1828 | 1826,-0.670341027
1829 | 1827,-0.9866030146
1830 | 1828,-0.3957867405
1831 | 1829,0.5589140375
1832 | 1830,0.999751827
1833 | 1831,0.5214223973
1834 | 1832,-0.4363003798
1835 | 1833,-0.9928905998
1836 | 1834,-0.6366217813
1837 | 1835,0.304954167
1838 | 1836,0.9661566606
1839 | 1837,0.7390791761
1840 | 1838,-0.1675042945
1841 | 1839,-0.9200850892
1842 | 1840,-0.8267438961
1843 | 1841,0.0267018224
1844 | 1842,0.8555980084
1845 | 1843,0.8978613314
1846 | 1844,0.1146350869
1847 | 1845,-0.7739861278
1848 | 1846,-0.951008066
1849 | 1847,-0.2536775742
1850 | 1848,0.6768829095
1851 | 1849,0.9851203677
1852 | 1850,0.387642703
1853 | 1851,-0.5662318751
1854 | 1852,-0.9995154786
1855 | 1853,-0.5138491606
1856 | 1854,0.444247706
1857 | 1855,0.9939052804
1858 | 1856,0.6297709236
1859 | 1857,-0.313371916
1860 | 1858,-0.9684020612
1861 | 1859,-0.7330878174
1862 | 1860,0.1762239849
1863 | 1861,0.9235162682
1864 | 1862,0.8217319535
1865 | 1863,-0.0355489296
1866 | 1864,-0.8601462908
1867 | 1865,-0.893929119
1868 | 1866,-0.1058376377
1869 | 1867,0.7795604796
1870 | 1868,0.9482342871
1871 | 1869,0.2451058641
1872 | 1870,-0.68337176
1873 | 1871,-0.9835605395
1874 | 1872,-0.3794682948
1875 | 1873,0.57350535
1876 | 1874,0.999200821
1877 | 1875,0.5062356651
1878 | 1876,-0.4521602266
1879 | 1877,-0.9948420912
1880 | 1878,-0.6228707251
1881 | 1879,0.3217651131
1882 | 1880,0.9705715903
1883 | 1881,0.7270390234
1884 | 1882,-0.1849298687
1885 | 1883,-0.9268750924
1886 | 1884,-0.8166556306
1887 | 1885,0.0443932518
1888 | 1886,0.8646271832
1889 | 1887,0.8899268698
1890 | 1888,0.0970318964
1891 | 1889,-0.785073755
1892 | 1890,-0.9453862167
1893 | 1891,-0.2365149506
1894 | 1892,0.6898070703
1895 | 1893,0.981923652
1896 | 1894,0.3712641564
1897 | 1895,-0.5807338924
1898 | 1896,-0.9988078787
1899 | 1897,-0.4985825076
1900 | 1898,0.4600373217
1901 | 1899,0.995700959
1902 | 1900,0.6159217265
1903 | 1901,-0.3301331009
1904 | 1902,-0.9726650778
1905 | 1903,-0.7209332678
1906 | 1904,0.1936212638
1907 | 1905,0.9301612984
1908 | 1906,0.8115153249
1909 | 1907,-0.0532340958
1910 | 1908,-0.8690403344
1911 | 1909,-0.8858548973
1912 | 1910,-0.088218553
1913 | 1911,0.7905255221
1914 | 1912,0.9424640779
1915 | 1913,0.2279055068
1916 | 1914,-0.6961883361
1917 | 1915,-0.9802098335
1918 | 1916,-0.3630309304
1919 | 1917,0.5879169359
1920 | 1918,0.9983366827
1921 | 1919,0.4908902874
1922 | 1920,-0.4678783742
1923 | 1921,-0.9964818163
1924 | 1922,-0.608924472
1925 | 1923,0.3384752236
1926 | 1924,0.9746823597
1927 | 1925,0.7147710292
1928 | 1926,-0.2022974892
1929 | 1927,-0.9333746289
1930 | 1928,-0.8063114393
1931 | 1929,0.0620707691
1932 | 1930,0.8733853987
1933 | 1931,0.8817135205
1934 | 1932,0.0793982978
1935 | 1933,-0.7959153537
1936 | 1934,-0.9394680996
1937 | 1935,-0.2192782073
1938 | 1936,0.7025150575
1939 | 1937,0.9784192183
1940 | 1938,0.354769262
1941 | 1939,-0.5950539177
1942 | 1940,-0.9977872697
1943 | 1941,-0.4831596074
1944 | 1942,0.4756827697
1945 | 1943,0.9971846021
1946 | 1944,0.6018795101
1947 | 1945,-0.3467908278
1948 | 1946,-0.9766232779
1949 | 1947,-0.7085527902
1950 | 1948,0.2109578651
1951 | 1949,0.9365148322
1952 | 1950,0.8010443815
1953 | 1951,-0.0709025793
1954 | 1952,-0.8776620357
1955 | 1953,-0.877503064
1956 | 1954,-0.0705718221
1957 | 1955,0.8012428276
1958 | 1956,0.9363985167
1959 | 1957,0.210633728
1960 | 1958,-0.7087867389
1961 | 1959,-0.9765519467
1962 | 1960,-0.3464797984
1963 | 1961,0.6021442787
1964 | 1962,0.9971596829
1965 | 1963,0.4753910732
1966 | 1964,-0.4834498968
1967 | 1965,-0.9978092612
1968 | 1966,-0.5947873925
1969 | 1967,0.3550792618
1970 | 1968,0.9784876804
1971 | 1969,0.7022790382
1972 | 1970,-0.2196017131
1973 | 1971,-0.939581662
1974 | 1972,-0.795714564
1975 | 1973,0.0797288345
1976 | 1974,0.8818699103
1977 | 1975,0.8732238575
1978 | 1976,0.0617398172
1979 | 1977,-0.8065075263
1980 | 1978,-0.9332555695
1981 | 1979,-0.201972746
1982 | 1980,0.7150028887
1983 | 1981,0.974608165
1984 | 1982,0.338163189
1985 | 1983,-0.6091874634
1986 | 1984,-0.9964539714
1987 | 1985,-0.4675852935
1988 | 1986,0.4911791469
1989 | 1987,0.9983557448
1990 | 1988,0.5876486751
1991 | 1989,-0.3633398764
1992 | 1990,-0.9802754212
1993 | 1991,-0.6959502645
1994 | 1992,0.2282283559
1995 | 1993,0.9425748783
1996 | 1994,0.7903224046
1997 | 1995,-0.0885488432
1998 | 1996,-0.8860086929
1999 | 1997,-0.8688762364
2000 | 1998,-0.0529029752
2001 | 1999,0.8117090374
2002 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | autograd==1.2
2 | certifi==2018.4.16
3 | future==0.16.0
4 | numpy==1.14.5
5 | scipy==1.1.0
6 | wincertstore==0.2
7 |
--------------------------------------------------------------------------------