├── .gitignore ├── README.md ├── Training Latent ODE Model.ipynb ├── autograd_extended.py ├── data.csv └── requirements.txt /.gitignore: -------------------------------------------------------------------------------- 1 | __pycache__/ 2 | .ipynb_checkpoints/ 3 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Neural Ordinary Differential Equations 2 | ## Overview and Summary 3 | I try to implement the findings in the paper in this repo. Here's a summary of what I think is significant information. 4 | 5 | Neural Ordinary Differential Equations introduces an interesting way of specifiying a neural network. Instead of treating the neural network as a sequence of discrete states, the approach parameterizes the derivative of the hidden state using a neural network. This parameterizing of the hidden state provides a continuous depth model provides a bunch of useful properties. 6 | 7 | ### Useful Properties I Understand 8 | 1. Memory Efficiency: The specifications give a constant memory costs wrt to depth 9 | 2. Adaptive Computation: Adapt level of error for efficiency, useful for real-time or low-power applications 10 | 3. Scalable and Invertible Normalizing Flows: Continuous transformation allows for easier computation of change of variables. The paper derives a new fclass of invertible density models that avoids the bottleneck of normalizing flows, allowing the model to be trained directly by max-likelihood. 11 | 4. Scalable and invertible normalizing flows: The continuous transformation makes the change of variables formula easier to compute. This allows the constructuion of a new class of invertible density models that avoids previous bottlenecks. 12 | 13 | 5. Continuous Time-series Models: Able to model time-series data that arrive at arbitrary times unlike RNNs. 14 | 15 | ### What Are Normalizing Flows? I am confused. 16 | I got stumped on this one for a while. My reaction irl the whole time -> ( ・◇・)? 17 | 18 | If you're a noob like me you would probably get stumped too. Here's what I understand without the math. 19 | 20 | Imagine if you were in a conference and someone asked the presenter something really difficult. Making the presenter go ( ・◇・)? The presenter 21 | doesn't want to cop out and look stupid so he/she tries to answer the question. The presenter then simplifies the question and answers that simpified question instead. Not satisfactory, but it should gets the point across. This is essentially the idea behind Variational Inference. The quantity that describes this is termed as the posterior distribution. 22 | 23 | What happens if this explanation seemed to hand wavy or oversimplistic? We need to find a slightly more detailed way of explaning the same thing. How should we tune the complexity of the explanation? This method of tuning the complexity is the idea behind Normalizing Flows. By using these normalizing flows, we can apply a sequence of invertible transformation (we can back and forth and not lose information) to transform that simple posterior distribution (ie. the explanation) into something more complex that captures the idea we want to describe. 24 | 25 | This paper essentially provides a continuous formulation of the normalizing flow concept. While an elegant concept, it can get hard to compute terms, like the change of variables. Using the continuous formulation, the paper offers a method of using the trace of the mapping function, which is more efficient. Check the maths in the paper for a clearer picture. 26 | 27 | 28 | #### Useful links 29 | 1. [Quora explanation by Sam Wang](https://www.quora.com/What-is-variational-inference) I used his analogy 30 | 2. [Variational Inference by David M. Blei](https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/variational-inference-i.pdf) 31 | 3. [Variational Inference with Normalizing Flows Paper](https://arxiv.org/abs/1505.05770) 32 | 4. [Normalizing Flows](http://akosiorek.github.io/ml/2018/04/03/norm_flows.html) as suggested by zdhNarsil 33 | 34 | ### Limitations 35 | 1. Unstraightforward Minibatching: Though minibatching can still be achieved by concatenating the states of each batch elements together to form an ODE. 36 | 2. Uniqueness: A unique solution only exists if the neural netowrk has finate weights and Lipshitz nonlinearities like tanh or relu. 37 | 3. Reversibility: Forward trajectory of the network is invertible in principle, but numerical errors will emerge in forward ODE solver and reverse ODE solver (though this can be reduce at the cost of more computation). Information is lost due to multiple initial value mapping to the final state, this is expected to be a problem if the system dynamics encoded optimization-like, convergent dynamics. 38 | 39 | 40 | ## Link To Arxiv Paper 41 | https://arxiv.org/abs/1806.07366 42 | 43 | ## TODOS 44 | To look into JJFORD link to Arxiv Paper 45 | https://arxiv.org/abs/1810.01367 46 | -------------------------------------------------------------------------------- /Training Latent ODE Model.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 44, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "%matplotlib inline\n", 10 | "\n", 11 | "# import\n", 12 | "import numpy\n", 13 | "import pandas as pd\n", 14 | "import autograd_extended\n", 15 | "import tensorflow as tf\n", 16 | "import matplotlib.pyplot as plt\n", 17 | "\n", 18 | "from keras.models import Model\n", 19 | "from keras.layers import LSTM, Input, Lambda, Dense, RepeatVector\n", 20 | "from keras import backend as K\n", 21 | "from keras import objectives\n", 22 | "\n", 23 | "import scipy.integrate\n", 24 | "\n", 25 | "import autograd.numpy as np\n", 26 | "from autograd import make_vjp, grad\n", 27 | "from autograd.extend import primitive, defvjp_argnums\n", 28 | "from autograd.misc import flatten\n", 29 | "from autograd.builtins import tuple\n", 30 | "from autograd.misc.optimizers import adam\n", 31 | "\n", 32 | "odeint = primitive(scipy.integrate.odeint)" 33 | ] 34 | }, 35 | { 36 | "cell_type": "markdown", 37 | "metadata": {}, 38 | "source": [ 39 | "# Training the latent ODE model\n", 40 | "From appendix D\n", 41 | "\n", 42 | "To obtain the latent representation $z_{t_{0}}$, we traverse using RNN and obtain parameters of distribution $ q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}, \\theta_{enc})$. The algorithm is the following:\n", 43 | "\n", 44 | "\n", 45 | "## Step 1\n", 46 | "Run an RNN encoder through the time series and infer the parameters for the a posterior over $ \\textbf{z}_{t_{0}}$:\n", 47 | "$$ q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}, \\phi) = \\mathcal{N}(\\textbf{z}_{t_{0}} | \\mu_{\\textbf{z}_{t_{0}}}, \\sigma_{\\textbf{z}_{0}}) $$\n", 48 | "\n", 49 | "where $\\mu_{z_{0}}, \\sigma_{z_{0}}$ comes from hidden state of $ RNN(\\{ \\textbf{x}_{t_{i}} , t_{i} \\}_{i}, \\phi) $\n", 50 | "\n", 51 | "## Step 2\n", 52 | "Sample $ \\textbf{z}_{t_{0}} \\sim q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}) $" 53 | ] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "execution_count": 45, 58 | "metadata": { 59 | "collapsed": true 60 | }, 61 | "outputs": [], 62 | "source": [ 63 | "# Process Data\n", 64 | "\n", 65 | "# obtain simple time series with sine function\n", 66 | "df = pd.read_csv('./data.csv')\n", 67 | "\n", 68 | "x, y = df[\"x\"], df[\"y\"]\n", 69 | "\n", 70 | "# split y into timesteps for training (-1, 100, 1) we use a sliding window\n", 71 | "timesteps = 5\n", 72 | "\n", 73 | "newY = []\n", 74 | "for i in range(0, len(y)-timesteps):\n", 75 | " temp = y[i:i+timesteps]\n", 76 | " \n", 77 | " temp_ls = []\n", 78 | " for j in temp:\n", 79 | " temp_ls.append([j])\n", 80 | " newY.append(temp_ls)\n", 81 | " \n", 82 | "y = np.array(newY)" 83 | ] 84 | }, 85 | { 86 | "cell_type": "markdown", 87 | "metadata": {}, 88 | "source": [ 89 | "Define and run the autoencoder model" 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "execution_count": 46, 95 | "metadata": {}, 96 | "outputs": [ 97 | { 98 | "name": "stdout", 99 | "output_type": "stream", 100 | "text": [ 101 | "Epoch 1/20\n", 102 | "1995/1995 [==============================] - 6s 3ms/step - loss: 0.5040\n", 103 | "Epoch 2/20\n", 104 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.4752\n", 105 | "Epoch 3/20\n", 106 | "1995/1995 [==============================] - 2s 999us/step - loss: 0.4647\n", 107 | "Epoch 4/20\n", 108 | "1995/1995 [==============================] - 2s 983us/step - loss: 0.4599\n", 109 | "Epoch 5/20\n", 110 | "1995/1995 [==============================] - 2s 926us/step - loss: 0.4488\n", 111 | "Epoch 6/20\n", 112 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.4069\n", 113 | "Epoch 7/20\n", 114 | "1995/1995 [==============================] - 2s 942us/step - loss: 0.3175\n", 115 | "Epoch 8/20\n", 116 | "1995/1995 [==============================] - 2s 995us/step - loss: 0.2431\n", 117 | "Epoch 9/20\n", 118 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.2179\n", 119 | "Epoch 10/20\n", 120 | "1995/1995 [==============================] - 2s 950us/step - loss: 0.2021\n", 121 | "Epoch 11/20\n", 122 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1881\n", 123 | "Epoch 12/20\n", 124 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1802\n", 125 | "Epoch 13/20\n", 126 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1734\n", 127 | "Epoch 14/20\n", 128 | "1995/1995 [==============================] - 2s 953us/step - loss: 0.1629\n", 129 | "Epoch 15/20\n", 130 | "1995/1995 [==============================] - 2s 939us/step - loss: 0.1601\n", 131 | "Epoch 16/20\n", 132 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1570\n", 133 | "Epoch 17/20\n", 134 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1520\n", 135 | "Epoch 18/20\n", 136 | "1995/1995 [==============================] - 2s 1ms/step - loss: 0.1479\n", 137 | "Epoch 19/20\n", 138 | "1995/1995 [==============================] - 2s 963us/step - loss: 0.1423\n", 139 | "Epoch 20/20\n", 140 | "1995/1995 [==============================] - 2s 934us/step - loss: 0.1407\n" 141 | ] 142 | }, 143 | { 144 | "data": { 145 | "text/plain": [ 146 | "" 147 | ] 148 | }, 149 | "execution_count": 46, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ], 154 | "source": [ 155 | "# Run an RNN encoder on the time series\n", 156 | "\n", 157 | "# Params\n", 158 | "timesteps = 5\n", 159 | "input_dim = 1\n", 160 | "lstm_dim = 32\n", 161 | "latent_dim = 100\n", 162 | "batch_size = 1\n", 163 | "\n", 164 | "# Encoder model\n", 165 | "def sample_z(args):\n", 166 | " \"\"\"Reparameterization trick by sampling fr an isotropic unit Gaussian.\n", 167 | " # Arguments:\n", 168 | " args (tensor): mean and log of variance of Q(z|X)\n", 169 | " # Returns:\n", 170 | " z (tensor): sampled latent vector\n", 171 | " \"\"\"\n", 172 | "\n", 173 | " z_mean, z_log_var = args\n", 174 | " batch = K.shape(z_mean)[0]\n", 175 | " dim = K.int_shape(z_mean)[1]\n", 176 | " # by default, random_normal has mean=0 and std=1.0\n", 177 | " epsilon = K.random_normal(shape=(batch, dim))\n", 178 | " return z_mean + K.exp(0.5 * z_log_var) * epsilon\n", 179 | "\n", 180 | "\n", 181 | "# Input\n", 182 | "inputs = Input(shape=(timesteps, input_dim,), name='encoder_input')\n", 183 | "\n", 184 | "# LSTM encoding\n", 185 | "h = LSTM(lstm_dim)(inputs)\n", 186 | "\n", 187 | "# VAE Z layer\n", 188 | "z_mean = Dense(latent_dim)(h)\n", 189 | "z_log_sigma = Dense(latent_dim)(h)\n", 190 | "\n", 191 | "# Obtain z\n", 192 | "z = Lambda(sample_z, output_shape=(latent_dim,))([z_mean, z_log_sigma])\n", 193 | "\n", 194 | "# Encoder for sanity checking\n", 195 | "encoder = Model(inputs, z_mean, name=\"encoder\")\n", 196 | "\n", 197 | "# Encoder to extract z values\n", 198 | "encoder_z = Model(inputs, z, name=\"encoder_z\")\n", 199 | "\n", 200 | "# Decoder model\n", 201 | "decoder_h = LSTM(lstm_dim, return_sequences=True)\n", 202 | "decoder_mean = LSTM(input_dim, return_sequences=True)\n", 203 | "\n", 204 | "h_decoded = RepeatVector(timesteps)(z)\n", 205 | "h_decoded = decoder_h(h_decoded)\n", 206 | "\n", 207 | "# decoded layer\n", 208 | "outputs = decoder_mean(h_decoded)\n", 209 | "\n", 210 | "# decoder, from latent space to reconstructed inputs\n", 211 | "decoder_inputs = Input(shape=(latent_dim,))\n", 212 | "\n", 213 | "_h_decoded = RepeatVector(timesteps)(decoder_inputs)\n", 214 | "_h_decoded = decoder_h(_h_decoded)\n", 215 | "\n", 216 | "decoder_outputs = decoder_mean(_h_decoded)\n", 217 | "\n", 218 | "decoder = Model(decoder_inputs, decoder_outputs)\n", 219 | "\n", 220 | "# Build vae\n", 221 | "vae = Model(inputs, outputs, name='vae_lstm')\n", 222 | "def vae_loss(x, x_decoded_mean):\n", 223 | " xent_loss = objectives.mse(x, x_decoded_mean)\n", 224 | " kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma))\n", 225 | " loss = xent_loss + kl_loss\n", 226 | " return loss\n", 227 | "\n", 228 | "vae.compile(optimizer='adam', loss=vae_loss)\n", 229 | "\n", 230 | "# Uncomment to print a summary\n", 231 | "# encoder.summary()\n", 232 | "# decoder.summary()\n", 233 | "# vae.summary()\n", 234 | "\n", 235 | "# Train the VAE to obtain z\n", 236 | "vae.fit(y, y, epochs=20)" 237 | ] 238 | }, 239 | { 240 | "cell_type": "code", 241 | "execution_count": 47, 242 | "metadata": {}, 243 | "outputs": [ 244 | { 245 | "name": "stdout", 246 | "output_type": "stream", 247 | "text": [ 248 | "x: (1995, 5, 1), preds: (1995, 5, 1)\n" 249 | ] 250 | }, 251 | { 252 | "data": { 253 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0Zddd3/nZZ7zTm9+rSSWpNFm2jI0H2YQhSac7sYFObAikl4E0pgNx6A7JWqG7g1mdBELSIQlpkpXACkPsJk0GY6bGgMFhMI2xMbZMLBtZlqtUKkk1vvnd8cy7/9j73OG9O5zhSlWS7m+tWlXv3PtOnWHv/f19v79hCyklC1vYwha2sIWlZtzuC1jYwha2sIXdWbYAhoUtbGELW9iILYBhYQtb2MIWNmILYFjYwha2sIWN2AIYFrawhS1sYSO2AIaFLWxhC1vYiC2AYWELW9jCFjZiC2BY2MIWtrCFjdgCGBa2sIUtbGEjZt3uCyhim5ub8sKFC7f7Mha2sIUt7CVln/nMZ3allFuzvveSBIYLFy7w2GOP3e7LWNjCFrawl5QJIZ7N8r2FlLSwhS1sYQsbsQUwLGxhC1vYwkZsAQwLW9jCFrawEVsAw8IWtrCFLWzEFsCwsIUtbGELG7G5AIMQ4v1CiG0hxJ9M+FwIIf61EOKSEOJzQog3DX32biHERf3n3fO4noUtbGELW1hxmxdj+Bnga6d8/nXAQ/rPe4B/CyCEWAd+APgK4K3ADwgh1uZ0TQtb2MIWtrACNhdgkFL+PrA/5SvvBP4fqeyTwKoQ4izwduC3pJT7UsoD4LeYDjALe5lZFCf83KefI4qT230pC7sD7Q8u7rLd8m73Zbzi7MWKMdwFPD/081V9bNLxEyaEeI8Q4jEhxGM7Ozsv2IWWtd/8k5t0/Kj0ef7rcwf89hduzeGK7mz75OV9vu8XP8+nnpnmV7w8rO1HeGFc+jwXb7X4m//pjwmilzeYxonkf/qZT/EzH79yuy/lFWcvFjCIMcfklOMnD0r5U1LKR6WUj25tzazovi32/H6X7/4Pn+HXP3ej9Ln+7e89zT/8tSfmcFV3tu13AwAOuuFtvpIX3r79fX/EP/71L5Q+z8cv7fLrn7vBc/udOVzVnWstLySM5StibPzq49f53p/77O2+jL69WMBwFbh76OfzwPUpx1+SdqupKO9hLyh9rpYXsdPykXIsTr5s7EgDw1Hv5T/5L263uXrQK32elqcY6W67/Di7k+1QA0JzDmPjoBPw+atHpc/zQtnvPHmLX/t8eYdyXvZiAcOHgG/X2Ul/CjiSUt4APgK8TQixpoPOb9PHXpK20/IBaHvlpSQlOyR0gvLSwwth3SCiPQfJLAWEeQDDD37oCX7sdy+WPs8LYb0gpuVFcxsbAHsvc2A40E5D0ys/Nt7/8Wf4Kz/5iTs2lnWr6RNECeEdcn3zSlf9z8AfAg8LIa4KIb5TCPHdQojv1l/5MHAZuAT8NPC/AEgp94F/BHxa//khfewlaTttDQx++cU8nfy7GmzuNHvvL36e7/7Zz5Q+T+oVzgMYPnZxh9984mbp87wQlgZQ5wGmrXRstO/MsfHsXod/8ZGnSrPdwzk6DfudAC9MuNm8MwPZqdowj/jkPGwu3VWllN8y43MJ/M0Jn70feP88ruN2W58x+OUHcioX7LR9LmzWS59v3vbZ5w+xzHEhonw2z8nfDWK2m0p+E6L8tc3TtvXY6ARzYAxeyhjuTGD4+ceu8mMfvcS3f9W9nFqqFD7PYcoY5jQ2AJ7b73J+rVb6fPO2FBjafsRqzbnNV7OofJ6rDYBhHnKBmgx3ImPwwpjnD7p058CM5qkjd/yIlh+x37nzJJbt5vxkxpaWVnbvwPsE+OLNFqDkszLWHxtzeGapJ/78frf0ueZtLS/sS8bzWDvmYQtgmKOlwNAqOZCjOMELlda4cwd6hZd3Okip4gxlLQWEsjqylLLvFV7Zu/OydVIpqXOHyYwf+NRzPHF9vkHZp241gfL3OiwzlpWlhhnDnWa3moP3eKdISQtgAC5tt/jQ4+WToQYxhnIvd3hClZ38Oy2fv/hvPsbFW61S5xm2SzttQE228jryfLKSgjghStS1XNm9cyd/ECf4UbkFM3U89ubAGH7wV5/gn//mU6XPk1rbj3h+X2Ve9cJy8yCVkuJkAPpFLZXwntsvnxU2b7s1FPeYR3xyHrYABuDv/sLn+P5f/Fzp86SMoSzqt4ZiFDslM08ubbf5k2tN/t3Hnil1nuPnBIgSSVAyi2JewedhWWuejOHpnTbf+TOf5qhkLv1w9W5ZT7o1pxhDkki8MOHjl3b7i3BZ+9KQA1KaMQyNibLjI52T82YM80gnHwaGBWO4Q+yxK/v88XOHdMNy3m+SyH6WSFkdeZhx7JRkDGml7a88fm1utQJPa2CAOejIcwo+Dwd1r+zNZ/JLKfn+X/w8v/PFbZ4qybiG3+O8xkfZOoaeHhtRIvkvT8ynyv6pm4PnVNbLHy5sKys1piA1zxjDxVstvvKHf5df+uOrpc5zc4QxLIDhjrCf+P8uAyAl+CVaDBz1VJWmZYh+OmFRSxcOyxClUxLTyemFCb9ccgCndmkIGMrUWXhhTBAlOKZBsxeSJMWBeXgRenZOjOEX//gan7qisqd7JVtZbDd9TENlSpWZ/FJK2n6EZYjSLTaGn9mvz6m4ahQYys2Do26AY6olqtkrd670WvY7wVwW36sHXf7H932Km02Pp3fas39hit068tBDYy7JCfOwVzQwXNpu89tP3uLUkguU837T+MLd6zXaflSKfaTAcvd6rTQwpAvaqSWX//hHz5WmvlGccHm3zV2rVXX+EpM/lZHOr1dJJLRLnKvTf2ZVntntlI99dAN++MNPsjWHsQFKSrp7TT2zMgtTL4yJE8nd6yrlskycIQWV08vu3OSkL95s9sdGWcZw2As5v67OVZ5Rxtyjn1lZ1rDX9vn2932KThBhm4JeUE5OvdX0++9zISXdAfbvPnYZ1zL4jq++AEC3hPeVSgX3bdZ1xk7xc6Vew32b9dJtMdKF+91fdYGL2+3Szeqe2+8SxpLXn18ByunIaeA5nbBldPz0eT9ydpmWF5Xur/MjH3mKw17ID/6l1wKU8sz9KOagG3L/VgMoN/nTsXFhQz2zMskJ6TP7xjeen4ucJKXkqZst3njPKlAeTA86AffqsVEmnTmME4Io4dVnloBycYYkkfy1f/8Y1w57vO/db2Gl6pRmkzebHnev1XAso5RzNE97xQLDdtPjl/74Gn/l0fP9gpdSjGEIGKDk5PfTyV/Hj5LSHibA//Do3SxVLP7jHz1X+FwwkJFef15N/jIFWyljSCd/Ga9wAAwKsJ7ZLS4nfeF6k//0qef4jq+6wJvuXR05fxFLx8b9emyUkRrT302LHvc6xYEhHRtfcd86d69XS8tJOy2fg27IG+4uPzbiRNL0ooHTMIex8eqzy0A5xrDd8nn8+UO+9y+8irfet07VMUp3zN1uepxadmm41oIx3G77D3/0HGGS8F1fcz9V2wTKeYWp5HPfHCb/gDGoSVEmAJ1OivW6wze96Ty/8Sc3SslTaapqyhjKgGk62e+eg1eYasivPacmf5k4w59cO0JKePdXXqBmq+YAZbzCtOr5vq05OA3ewGmAcgHo9JlVHZOvf93Z0nJSGqB/5NwyrmWUGhvN42OjRPA5fd7nViosVaxSjKEvzS4ribFqm6XuM0kk2y2fM8sV6q45lzqXedgrFhie3mlzYaPOhc16HxjKeoWuZXB2RbUAKBNEavkRQsA9c5j8vTDGsQxMQ/BNbzpPGEs+fmm38Pkubbc5vexyWk+MMsHnVDq6V99nGa8wnVAPn1nCEOUyk9LJX3dNKo6aImWchrTq+f5NJSWVGhveKGMoA/Lpgla1Tf7i686VlpPSwPOrzyxTc8xSjCFtoLfZUJ50meBzCoA11+Ke9VopYEjHQbpmVG2zlNOw1wmIEsnp5Qp1x1pkJd1u88N48HId9XeZF7zT8tlaUoMYygUY215Ew7H6QfEyk98LBve5uaR6sJTxSp7ebvPgqQY1R91nt8R9pjGGezfmIReo61it2dy1VuVKCSkpnfwV28QxDQxRVmZU6Ygpmyw1NnSNy1bDpe6YpTqspuO95ph82V3LbC25fPKZvcLn++LNFltLLut1h5pjlXK00jTmlZrNcsWai9NQd8zSwNAbGhvp32XWjbSG4fRyhYZrLbKSbrf1wpiKrW4/XTjLZiVtLbk0KmrBLNMWo+2HNCpWPyOmrJRUcwbeDRT3fqWUPL3T4cGtRv+cpSZ/N8Q0BOd0Fks5uSBd5CwubNRLSUnDk18IUdor3G75GAK2llxqjlkKGNJxtVSx2Gi4pZyG9N2l97latUvNgadutvoB3ppjluqllUpaazWH5apdbmxop6GuGcPVg17h1GgvGAWGqlNOShoAg0vdtebSZHEe9ooFBi9M+kxhwBiKv5Sdls9mw2XJtYHyweeGa7FWczBESblgiBmlg9kr2JLhZtOj7Uc8eHppwBhKDOSjXshq1abumJiGKM0YXC2Z3btRK5Wy6oWqtiKtO6iW9H5vNT02Gy6mIUoHGEeBwSnFGLwhxgBqfBR1GuJE8qVbLR4+rYHBtUpl+aWJCatVm+WqXW5s9BmDxd3rNYIo6cd98lo6d9I5VXPKOQ1pcduZlQqNykJKuu3WC2Iq1uDlqmPF85H7UlKlvJTU8iIaFQvTEKzX3VKMoRfEfeBzLa2XF1zk0oykB7caOJaBZYjScsFKzUYIwUrJyd8JIupaxruwUafpRf3FJa95Q2wSKJ15st3y+8HKhmuVS0zwB97v5pwYQ7UPDEa/eWNee3avgx8lPJwyBtucS43Las1muWKXSkzo9GMMZj/LqaiclK4RI1JSKafBRwgdS3FeZllJQoivFUI8JYS4JIR475jP/6UQ4rP6z5eEEIdDn8VDn31oHteTxbwopuKMetJFvd8wTtjvBkr3ddW5yunIUT9WsbVUbvIPMwYhhJr8BSu8+8BwSgVRa45ZChiOuooxABoYSgQY/YFklmbsFO2Z5IUDMIXymSfbTb+/L0GjUm7yt/2Iim1gmwabDadcYkIqi1jl9fLhwDOosVGqxqUbIAQsV2xWqnYpaTYdoyljgBLAMCb4XMZpuHWk2KRtGkpKukOykkpv1COEMIEfB/4Cag/nTwshPiSl7O96LqX8O0Pf/1vAG4dO0ZNSvqHsdeQ1P0z6E6Ks9r7fCZBSLeKupQKWpWIMXtTPbtpsOKUa6XWDmKXK4DWX8XAubbdZqdpsNlQQu15SFjnsBf0Fs6xc0Aki6lreuqDTfK/sdXjjPWu5z6XiT8eAoSRjSNN76065AGPLC1mqKDDdqLvsd3ySRGIY+TcmSp2G9HcrtlmYnaZtIR46rZ0G1yr1zA57IStVG8MQLFfLBp8HjGG97iBEcWDoJyY4g/hkqeBzy+tn+DVcFX8q+j7nafNgDG8FLkkpL0spA+ADwDunfP9bgP88h/+3lA0Hn1NZpOgLTidTGixWWmHxgdz2B4vc1pJbqrrVG2IMUM7DubzT4YGten93tKpjltKRj/TkB0pLSd0gpqbZ2t3rNYQo3n77xDMrEWCM4oS9jt/PMCurI7e8iCXNJjcbDokc7UKax7pBNMKMKrZZuF9Yy1cxnhRQa7ZZymk4OMYm235UeL/mfmKCbeJYBudWqoWL3LxjWUlVHWMoGs+6eeRxZlk5R6kUWmZOzcvmAQx3Ac8P/XxVHzthQoh7gfuA3x06XBFCPCaE+KQQ4hvmcD2ZbNyCWVQWOQEMJSlhW8cYQKUl7rSLt8XoHZNFysgFTS8c2Xaw7ljl0lW7IRtuAp/4N6xXyhW4dfyIZVtC5ONaJudWqoWlpF6Y4M6JMeylbHK5Al6TVTsuLzPqsbHRKJfO3AsSNiwfklQeKV6U5odJP4YFyjsvI78ddoP+WFvWDKkoC+8GSn6zdEO+u9erJWIMMUt0qep7rdhm8Qacj/8c7zn6V5xtqHOl7/VOiDPMAxjGcZ5Jq9i7gF+QUg6PmHuklI8C3wr8KyHEA2P/EyHeowHksZ2dnVIXLKXk9dHnefu1H4MrfwCJijcU9aT7wNAYCjAWHMRJImkHEQ+EF+Hib7HZcAmipHDAcjhdFdLMk2Ke18mgbHEwjeKElhfxxt4fwn/5e7whfLw0Y3jv/t+HH3kQfuV7eFv9Itf3C8YYgphqep/P/RE/eu1bqfnbhc7VT0dccuFnv5Fv3vuJ0pXPf4rPwf/1ak47SmIsDgwhPxv8HXjfX4DOrhobBTPWvGPyW02zyaIOzVEvZLVmQ3uHFTWtCqesDsuMoHpzFWUMiXfEp93/GfuT/xooJ0PHX/gV/rL8Hb7z6t+D0JtLDdS8bB7AcBW4e+jn88Ck7dDexTEZSUp5Xf99Gfg9RuMPw9/7KSnlo1LKR7e2tkpdcBAn/FXzt3nLjf8IP/Pfw4++hr/BLxb2cNLOqltLLoQ9rRUWpPdhjJTwZ67+JPz8d3Cmqrf4LCgnVYMDvuuZ74VnPwGozJOiO4h5Q3EZUAVDRYEh3cf3Xu+LAJwSh6W2cOz4Iff5T0JtHZ74ZX5g7+/y3Yf/otC5vEgvclLC7/xD1qId1oNiO/ylVc+nGibc+Cxr8W4pNtnyIl6TXILWDU5LBVZFU1Ztb48zchuufQbe9zbOxDcLO0deEHGPuQ87X4Kbn+d0skOcyMLS1EE3YK1iwI+/hTc9/W+B4q23u/5AZgQ4v1Zju+UXmgdWd5uKCOH3/hkcPleqODZs73Mka9x78IfwgW9lyVD393JhDJ8GHhJC3CeEcFCL/4nsIiHEw8Aa8IdDx9aEEK7+9ybw1cAXjv/uvM0LEpbpsNt4GL75/4bGKb4t/KVSUtJSxaISHsE/f4CvTj5TGPXTwOSadxWCNq86+H2gWBdNKSUPRV/igdan4We/EZ76TSpWcYrvR/GIxFIrUZCTsoPTnScB2JQHxIks3GKj7u9QSXrwld8D/9tFLlce4VxUbP+JXlotfuVj8OzHAZBRMWBO8+XPxTcgiXCJSm3v2fYjNlB7NK+h9lYuyhhWerqh4p/5u9Db591P/nXuja4UAuc/tfdL/IL31+HH3wI/8TV826e+kTq9wmPtsBtyr3UAvQPuevb/xSApzCiPM4bUMy9ybYan98eOevCb31+qODbpHvCp5DU89RX/BJ7+Xb78sf8deJkwBillBHwP8BHgSeCDUsonhBA/JIR4x9BXvwX4gBwdda8BHhNCPA58FPinw9lML5R5UcyK6BBUNuHL/jI89DYcglLB560lFw6fg7DDheT5wl5h2w+xiKj3lId61/O/ov6PApM/jCVb6DbbK+fhA9/Knws+WkIuSAZSUu+AVcMvMfEDBAlrh+p1ryYHQPG2GGdCDQKbD4FTo2utYsiC9xnFVCwDPvrDINT9yrCYV55u6bnWexYAB3V/RcdHywtZkyrbuxEdYBqiMGPY8PUz+/J3wV/7CHbi853mbxTy8re8K3REDb7pffCW78KUISt0CjkOqcx4D6rbq9O7xVcYTxaWksbJqUAhSdXydab9q/8ifPHXuHvvD/r/R14T3iFH1JFv+Kvw5nezekOd605oizGXOgYp5YellK+SUj4gpfw/9bF/IKX80NB3flBK+d5jv/cJKeXrpJRfrv9+3zyuZ5b1gphlOkSuSiHEqmCSEATFJthOy1fxhY6KfayJZuEYQ8uLOCf2MGQEy+epX/19NjkqxBh6QcwZsY9EwHf+Ftz7Vbxn959yX++JQtd2IbrM113/MfiJPw3/7D7e8/z3Faa9h72Q+8UNrEjFAZYi1aOnSAA6TiTnkxQYXqX+NmwsWWwh6QUJjwSPw3OfgDd8m/5PiiUAbLd81usO9v5FYAAMRSZ/unvbSqxA1Ojusl53Crfe3gquEWPC6r2w9TBdd4ua8ArJSUvRHnvmFrzum+GerwSgKoo5DqlzcC5WzpE0Hd5pfLxwckLbHxQ/AizLJv+d8ZliUlKggeG//fuw8RCPfPYf4xIUemZWcMSRrKuspNoGRqz3jL8D2mK8IiufU8YgXdU3HktFt6KgV+h8aZ+kFBhWZbNwjKHtR1wQN9UPf+Z/RciEd1qfKFTI1AtjTnOA524o7f2dPwbAmeD5Gb950qI44QfN9/Pmmx+Eygrc+1Xc3fkTCIoFeI+6Ia8XaltV6lvUA9XxtQhj6IUxD4jrBGYNls4CIE1bgWsB88OIt2+/X53rrX8dUAt6EU9aFbe5sPslACyp3mMRuaAbxCRSMQUAOjts1B12WsUcmtPRdfadM2CqRVOaLi5RIea8FB3QNNfVD7aqI6niF5IG0/TbrfAa2HWi13wDX29+ina72Baaw8WPAA89//P8tP2j+N3857NDJd/ROAVf/yNU28/xzebv539mcYgd92iLhgqyWxVEEmES074DitxekcDQ8yOW6SIrqkoTS+URx4E35bcmW19Kaqtg4FJyhBcmhAXyrjt+xD1CZ8C86uvg7Bv4ZuvjhYLPvTDmrNjHq5xWB/SENZP89+lFCWu0uLL15+A7fg2+5u9gEPNaLhEUWDCPeiGvNy4jrRpc+BpcvzgwdP2I+8UNWvV7QddYCNPGohgwPBJ9gXvaj8PXfC+4aow4RIW83+2Wp8ZGHxg0YygADP12GKHugNrZYWvJLcwY7kqus+8O8kak6eAQFpJYVpID2nYKDKopYg2/UDeBtIHeau85WL8f6w3vYll02bz5+7nPBaPtUgBq/g6GkARefqemEuoYQ2UF7v9vkMLkrNjLPzZ6inkk7oqqC9LOqUP4sgk+v+Qs6LWwRAKVUcaQhPkZQy9QeenDjKEeqcFT5AW3PMUYEqsCS2fgy9/Fa7iMvf+l3OfqBhGnxT5BTQODvk+jQCDVD2OWRZfI0WB6/lEA3iguFpz8Chg4+3pYvgu7uw3IQsDQCWIeMK7TXbp/cNB0sIhzF0WFccKruaJ+eO03DCasCAsVHu20fE41XNhVUpIp0xhDkbGh4k9uujh1dtmoF2ykJyXn5U2a1aGEQsvFIcovi0jJWnJAx95QPzuqJUmtoJSU9kmqd56DjfsR9/1Z9ljhwVu/kftcoJjWcPC5GihgDb38KauVuEVHNMAwQQikVaVaJD7pKWAIbNVbCkuDqQgWwHC7LO4oKi5qul2CZgwyzO9JpxkhwzGGmqb6Rb3Ce8Ut5Op9yvv9sm8ixuANB7+Z+1xeGHNGHBA1zqgDevAZSZBbL/eihCW6JCkwVNc4ajzAm42LhQJvzW6X14oriLveDI1TGFGPBr1COnK30+Yce/irA2AQpo1NlFv+8cKYU+KARFhQ2wRTAYNdkDG0vYhz9hH4TUBgah25SF1Ky4vY0JlIgJKSCjbSk+1tGqKnWFZqpoMrCixyQZsqPj1HA4NmphWCYlJSN8Qkxm0pxoBp8VHrT/Nw8+OQZgXlsI4fjaSrVjzFTsMC0nElatI1l/o/S7tGFT8/mGrG4NupaqHG2ZojS7XTmZe9IoEh6aqF26yOMgYZ5p9ggy6QTl9KcnWAqhAweBEXxC3Ehl7kGqf4Uv0tfIX3B7nP5XU7rIk2cumcOmDaSAQOPmGcExi8LhURIp3BpDjceCNvMi7S9fN7rNWDL6l88LveBBq4ThuHhRhDsnsJQ0jitQf7x1JgyDthe2HMKQ7pOetgGGCp6ttCnjSqIvZcGtNZvx8jUc+qiFfY9iM2hV4Y7Tp0dthsuHSDODdrC7YvAdBrDAGDVSl2n3rce+6m+tlRwFDDK9Rh9aAbcJfYRSQRrKt610/W/xy2DOHJX811rihO8KNkhDHYnnLgIj8/MNSTFj1rMAewa8WC7Jox+NYgAQZg1UkWjOF2WaJfilkfZQzEPnHODTzS1M+KbUBHeSJ21MYhLJR50vYC7hHbGBsD77dVO8+SbOU+V9LUm7vrgCxCEBkuLmHulNWwo7Mx0rgM0Dn1ZtZEm2j7Yu5r22zqrORzb4QlJXVdcNuFgEHsq0VObgyAwbAcbOLcnWT9MOGUOMSv6CJKMwWGMLcnHSeSIE44HapUVc68rg8MxcZGxFYKDKdeo6Qk3dAwr5wU7qhn5q9c6B8TtquC7HljDBoYgooGBs0YasIvlJZ71Au5P03A2FDAcLPxZTTFMlz9dK5zpYxlOPhsdxUwhAViio2khZcu5oBwUikp5zPTjCF0RhnDih0vspJum+mXYtd1sEy/FJcwt7eUTqKKbUJnu5/3vkq7kFxgtG/gilBR6P5BG7tAho1oqXQ/Y+Vc/1hiulQIcu/JEHXSoNtq/5h3VsUZrOv5JivAue6TSqtdvx8aChjucVqFgMHWwGBuPdQ/JiwHqyBj2BJHhNVRYHBFlFsyS9MhN73nwFmCtXshKp6V1PIittKO9acfgaDNmqP+j7zPLdm7RCQN4qXz/WOGpZyGvAAo22qf6P4zG8pKKpLhdNANeLWr295oxrBSc+hSgZzxse7Q7m0A+G2MSMUW4gJSUkO2CKyBcyS0lFQ0xhA5JxnDIivpNpnQL8Wpp1KSeimuyD8p0oXHNVGMQQ/kDdEs5BXW2roade2+wUG9yOWNC5gtxRis1UFPw9isaADM5+HEGkyNysBbMjcf4kA2qN58LNe5AC74X+K5ysMqjqKB4S7zqBAwVJpPc1VuUqkNKL5p2Tgixs+5mHthzJY4IKydUgeEIDFUtk5euSB1GjZ6z6jCO6uCiH1qjlEMGPyIzTTGcOq1ACzFCrDz5uSL/Wd4Xm5RqVT6xwzbxRH5wTRqKu8+rmlg6Aefg8KJCQ9Z2+A0VFoosFy18KWVGxj6+z2nwNAZ9LwqkoW4LDuEzjBjqFE3gvySmZ5Pg1oq5Zwu2/FCSrpdJnw1uZwlHSwbYgy5J7+WKmpxC2QMp14NwJpoFXrBS10NDOvDgVQHV0T4OSes2VET1l4deIXSdKmIILeUlKTAUBt4SzXX4jPJQyzv/tdc5yL0uD+5wq2l16ifq2tgupw2moWAod56hsvJ2ZGURMNW79TLGTfqeT4btEjqpwcHTaeQ9p4+49XuFVV4p9nHmlMwxuCpGIN0Gop9AI1QVbbnlX+sw8s8K8+MSCymXS0bEdC3AAAgAElEQVSUrho3bxFJA1nV0qxhgumyYgWFpaQL4qaaAzr9eLli05MWxPkksz5jSO+zPQCGvFmIcZywQnsEGLBr1IsE7L1DerhYepymzumyuQCG22aWf0QiBW59lMYVodH9fXP1BGVLLXYbNAt5haveNSIs1cJCm6EDoH6Yb9F0e7doySrVpYH8I61KIQCUngJTqzY4V821+OPkVSy1nobufvZz3fw8FjEHq1+mDmjWcEoc5AcGKVnuPMtleXZ0kdPPLPDyeYVJextDSGRjAAzScgrFGPwwoU6PundLMwadeeLKgllJIafNJqK+BXXlnVd1BlwuoJcSu/ksz8gzI63nTVulq+aWklo32WMZ1xm0ZMeusmQEhTK5DroB55PrI87RctXGk1Zu+ae/F0MafNayF0CS81xe5xBLJCSVYWCo6uBz/hhDk/qgI60eG0tWvMhKul1mBke0qCGM9KWkwJB/IKeMoeLroqMhxlDkBW8GV9mxzyqvS5tIgcHLN5CrvVvckmsjffJlGmPIO/k1MNi1wY5odcfkM4luQXE1u5zk62C1v/aqwcHGKdblQf4Omq2bOHGHK5wbuU/DVs8szNnmRGpZRCyd6R8Tplow88YYvCjmfqETALYe7qe+rrqycFbSaaOp5JW6CvTWggKMobODFba5Is+M7NVhOpVi7R3aO+zI1ZG22zh1GkZQKJDa6vTYjG71A8+ggCHAJs6ZUj6IMYxjDPnYpN9SzzpxB84Rdo1qkWfmHXIk64NuxboosGFFi+Dz7TI7bNES9cGBVEoSYf7Jn8YYUmDYfBgQnLU6hRjD6eg6B87oPkd97zfIN5Br/jY7Yr2/4xoAdrEAo9D543Z94C1VHZPH5f0kmPD8H2U+l9dU2Vvu8lD79KUzrMQHNPO23t5TIHPNOj9yn1b6zPx8C4nRUR6luTwEDJaLI4olJjwgdLvuzVeNZJ4UiT+10nTVIcbgpsCQJ/tqX7UieVaePgEMKi6Tj7WJzja7cmVkrw7sGnUjPzMFqPVuYBL343WgdnELpEWcczEfZCWljGEADHnrloKWmuNJdWi7WLtKpUjwuXfAoazjps9Mj426ES2kpNtlTtikMwIMAykp9+TXE9JJgWHpLFRX2TLb+Se/lNwlb3BUu3vksFFQFmkE2+wZGyPHhFXFFfl1ZBEoxuDWBsDgmAaRUeFW/VW5gCFo7ZJIQXV56Noap1kK9wjiJN+16YriW/Y9I4dT7TbIuZAYOjhpDQEDabZOAafhAeM6UpgqmSAFBkcWzkrakIeKMTh1sGv9cZdr3O49DcAz8gw1exCXEfr6gpxBWaO7zY5cGdmrA6dGXfi5vd8wTjiddsodZgwViwA7t5efLrIDxnALDH3PUb77jLVcalSHGINTwyV/HYPsHYwyBr0GNayIMJaF27LPy16RwOBGTTrGUJHKUPC5KGOwunsgTBVIrW2yabRo55wUsr1NDZ9OfXSRM7UsEuRp/ZwkLIV7HJibI4eFXaFCkHvgmX6LlqxScQc6shCCmmNyy72v74VmurT2LofUWa0PMmJonKYaHWIT5Ysz7F3CFxU67ujmTZZ+ZlFOlmV1FTA4q2f7x4TlUDGS/DGGKOFBcQ1/6R5VKKeDzyt2UggYer0ey7LZz+KivondK8IYniYRJtfkZn9Te6AvdeV6ZlJi9XbZ4ZiUZNeoFVgwO8NNJNdPSkl598UYAMMQY0jjdzmBIUo7JlTXBwftGhXp4+VkWbKnWm4PGIOaC1WRbtazAIYX3Spxm67RGBwwh7KSCkx+xzIQ3W2l+xoG1DZYF63cjCHQRUfe0r0jx83U+80ji3R2MIk5tEYXTMOuFvJ+zbBFk9qIjg+Kovewc6URyu4+B3Kpv5cv0C9y2yRnyurul7hpn6c2BFgAtqMmWt4Yg+vtsC8bVCrVwUHToWLkD8p6uuurv6brK/oBxmLVraanWamWkahvYen2DrkYw/5lWpVzRFgDiWXo+nIFeHsHGEmoGMMxKamKV8DRSrggbhKa9X4cBbSURP501fT/r6Wg1dmGVe14xfnOlWjGYNaHgUGNk7wZTqIfYxiVkqpG8bbs87RXJDDU4haeOQwMqlVEkT4xXhirxbK9MzRhN1mT+bOS0jYF0cooMKSySC5PrnlN/eUcAwanotJVc96nFbZoU8MwRrf4rrkmvSRfGqHpHXBIYySLKG2LkTszaf8y14y7Rs/FgDGEOaUH19th+1jAHtOlIvL3SvLDmHvENsnqBX1Rek9wqxhjqKTAoHP7qW1idBUw5GIMe09zUFFy5XBW0qD9fA4HRGv2u3IF95iU5BIUKgq8T9yk3Rh0ygWVrupLG5FzMe8EEa5lYJnG4HqX7yLGQORtJqlb6ViNUcYAIPMAQxwiwq6OMehnpp3TlDHc7l3c5gIMQoivFUI8JYS4JIR475jPv0MIsSOE+Kz+811Dn71bCHFR/3n3PK5nltWSDt5Q9SJCQD+NM98L8aNEVz0PAUNtnWWZv8At3r1MLAWsTZCS8kxYXdzWOQEMNc2M8sUYnLCldug6ZjXHxEvyeXJ2cMi+XBrQaOgvdunez5mtd8iBbIzUMADYrl7kcu68VvN32GV1FAAtVUeSFxji7oHqB7Wc9qrSRUwFdeSKDjRT18BQ30J0drFNkR3opYT9Z9h17sKxDMzh+9TXlyvAq9M/lZQ0zBjqVKSXu8DNjxRj6B5jzctVFWMQeesY/HgwNqRU19s4RUh+kME7xJc2TmUoPpkCQ5CjU6uuCTqiPnhmpgWGpcYLt3+zntLAIIQwgR8Hvg54BPgWIcQjY776c1LKN+g//07/7jrwA8BXAG8FfkAIsTbmd+dnkY+Ljz8MDDAUYMzbW0czhs72EDBs0oiPaOfdivDgGa7JTerV+shh2y6wyDVVNkzXPTVy2CqYkmhHbbqifuJ4zbHoJqai5RmziRz/gEPZGPUwdXroljjKx9rCLq3EOcEYTK3nRzkZQy3Y48A4NgTNYplcVkeBs5ECQ5p5Yqrz5HEckkRSjzQwNAbMlM4OrmVkZwx+E4IWe+apE88sbRiYK1tHMwYlJQ3HGKo4iZe7u6rne9wldvGX7hs57lomsWH3e01ltU4QDe7TO1TMtnGaUDj9HdOymvAOOaQ+ksmVSkkizAEMuvPCSPAZtHNavGXKPG0ejOGtwCUp5WUpZQB8AHhnxt99O/BbUsp9KeUB8FvA187hmiZb2rzKXho5LKwKtQI68oAx7A5R/A1M4n6FdVYzWte4zmZ/s/LULEctKGEeKal1gxiDqHos+GxVqBTIvnKPx2W01R2TXqwHd5wNCJ3wiAOWRj3M+ikkglPiIHuFdxJD5NFKnJHumUB/V7I4yrGQSEkj2ufQWB89njKG3MCggqhm2pJEg1XNUot4ngBjN4zZQvdJGmIMJCEbZo7tOHWjxwOxMiojQZ8xJLmAQTMGuTrKAJ06TtIjiJJce2LI5k0skRAt33XyQ9PFzAsMfjQYG2mqauM0keH0W6BnNdM/5FA2Rp+bZgwiyhOXGTCGkWemndP0um+nzQMY7gKG94q8qo8dt28SQnxOCPELQog0HzPr787PdD5+NFzWDmC51Iz8UpIXxqyYPoTdQbBM/+0G+7ly8oXfoilrLFWOySIaGOI8mmjzOjusj1ajgvLkRJQ7V70at/GM8Yyhk6TAkOH6wh524nEoGzjmsI5vIWsbnOIwe0dU7aUdxfZIv311PnXfcZ5q8d4Blgw5skZTfDHdQr2SnK5aNO0UGHTmSd3IryO3vJBNcURoVsHVAK0Z6lmrlZ0x6ADqvlwa9XxhsGFVnnHW2SYWNk1qJ7KS7MQDZK4NjmRLL97DLUm0JaajNjrKMae6QXyyuK2+RSSc3OzD8g+1/HOSMTiJn33HRs0YmicYQxVbFm/LPk+bBzCIMceOv7lfBS5IKV8P/Dbw73P8rvqiEO8RQjwmhHhsZ2en8MUOuhoel5IqVAt4hX6UcNrQLbHrA8YAsCKbuXLyjbBNi+oJxmAXSb1sXmebtTFyQYEAo5RUkg6+eZIx1ByTTsoYsnjnemE6EkuDgGD639RPsyWOsjMGvd/0YTSGMRgq4ylX3ntLefgt+xgwWK7aqCfn2Kj0FDA4a6mUpBlDAWBI+yT1W1tD3wE5ZbayMwYdrN6TSycZQ7ovSR5gaG/TcTYAcaKOAdRmPXkAVbR15flwHYk2aToYyMzMFDRjcI+1w2icJjJcrCQfY7CDJkcTGENV5Chym8IYUmC43W0x5gEMV4HhiqzzwPXhL0gp96SU6Vv4aeDNWX936Bw/JaV8VEr56NbW1rivZDP9UqQ7jjFEuYOynm7TDAzFGNTCsi5atPzsg9gKWrRllcZxxuDqPamjHN5v6wY35NoYr1B5OFGelMSwh0VMYE0AhigHY+iqzJqOuXLiI7F0mi1xkN371cDQSdwxjEEBQy4pSS9K7ePAYDrYMj9jqHrb7MnlfuFYKtVUjDRXPQdj8CM2ORqVBvV42zJyMAYtJW3HSyedBrPAhlXtW3TsDQwBtjlcYZ9u1uPnykxKCwyNxhjGYOjnmEMC6gbx4D77UtIpYsPJLUs54ZHKJBrOWHPSFuM5Wtn3YwzH4mxWBau/kdNLv47h08BDQoj7hBAO8C7gQ8NfEEKcHfrxHcCT+t8fAd4mhFjTQee36WMvmEn9UpKhfQUAsCpURLGspA1DxxIao8CgOqxmzxaxow4taicYg+PkzxaRzRtcj9cmeoVJniwKHSsJjsVlQDXSa0d6GGXxNHVBVsdcPvGRWD6jNsnJ6nlpKamLOybGoBlDHmBoKY+y54zGZbBcrAJxmbQlyfB5AKoaGPI00mt5EZuiSVIbcoo0MGyIZg4pSQHzTtKgevyZ6evLla3T3qZprVOxzWOtV4Y368l+n1Z3m0QKzOWTwCC1PJiJmWrrBMMxhluKSVbXSEwXS+YDhkrUpG00RjPWiuw9MZKVNJoubMQ+rmW89LOSpJQR8D2oBf1J4INSyieEED8khHiH/trfFkI8IYR4HPjbwHfo390H/hEKXD4N/JA+9oJZpHORqZxkDEX3Y9iQxxiDpvgb5EhZDbsYxPTEySIyo6/9ZhzIXhMRtLgp108yBq2J5mpGpuMyoXUSGOqOrmOAbLUMWkrqjQOGxmk2OcIPMz4zDW493DHer86wyZPeqKUGr3KMkZo2lsxfFb8UbLMrhtjH0KY/kI8xpFKSaAxlmWkHZFMc5ZOSrAoHgU3VPjb9+8CQ75k1zWNVzzAkJeXrI2T1ttljiYpONx42aRZgDH48YJOdHZUgIgSJOZBtMlkU4CS9kw6Nnk/5pKQDIrNKiDU6160KRB5LFeu2ZyVZs78y26SUHwY+fOzYPxj69/cD3z/hd98PvH8e15HF4s4BNiCqYxhDgZYYfpSw5qTZIoMdrBLTZS3KISX5Kk7hW41RzwsG3m9WxqBrGG7Idc5NYAzkiTHozqqRfVJKqjoqv1x9ITtj6NljspIbZ3BEjOkfZruuUElJXemeqGNI++HIPPJb+xY9Kgj3GACaLmainAYp5cn3M8GWwx32zaGd+HTw2SF/dWun12OdFp2lIU/acqCyyprMwxj2obZBN4pHq56hD1yZF94khu4eh7X1QQVvarberId8jMH1dtmVq5w5fj4GXYYz18xIiRf4o4xBA6sChr3s71MrDT3z2NhIgSFPLMU7xNdO1nHGQNCh7lovi+DzS8ri7iFd6eK4ldEPrGKZJ14YsyoPwV0ZLLpCEFU22MjTFkMDQzxGx+8DQ9agm65huDWOMejFSebpE+MrxhAfD9ijGINPfsbg2yfPlbbFcHrbJz8bZzrG0KVy8j71Ipfk8X5bN9kVa6MBQVAUnwSTOPsCHPk04qPRXlX6PTpSA0OOyR+2djCExFo5JrHUt1iTOQL2nV2obdALkpNevh6/tgyzZdh0dkEm7IsxjEEvmDWRr19Sxdth+3jqa2p9xpDtnSYf/WF+SXwfDUcv/O1b/T5Tid7JMMiaSdTT+16cYAwKAHMxo95hv45qNPhcgahH3bEWLTFebJO9A46oj9HeixV+eWHMSnw4iC+k/09tnTVa2Se/9spjZxww6EUuq6eUMgbWx94n5Czh19eWHPekUa23czGG7j49UcN0Kic/05O2ovv/zLRgdoxB5go+32JHro7J71fPP5fjoN/BkTUEDEKA6WIkATXHzAUMRkdl4jnHs3XqW6wkhzkYwy7UN+kNF36lNsRoMs0DLb3tsTZo7ZCa3t6zmjP4XPV32GF1NCirTaS7nWV0auKdp3jYuMpDbb0neXuoCFXXDGTOGtRxAe+4Q2PaSGHmA0DvsM88RtNVXeVQuLdfSnoFAsMhTVkb4y1VsAtKSY34YDDgtIn6JhuimZ0S6gCvHOOV9yl+VllE90m6Jcelq+oFOc4fYziRyQXUHYtApowhm5TUNJZPSg8AumulFWYsDOxLSZWJMQbiHBOsdZNbxzecgb4nnWt3s6YChqZ9LF5huRAFNHLKBWmzvBNB2fomS8lhjhjDHrK2QS+MpwNgJmDQfZI41kAPRoKymdtiJAm1cJ9dVkdbdWgT6djNCPax1wbgtTd+Wclend1BZ1odU8zMtDRjCO1jc0AIEquqpKQcjKFrLiFOZHJVIfKou+ZLP/j8kjPvSDEG56RcYMt8TfSklAoYopPAYDa2NGPIeD4tJSXjGEOql+eQkkJ3DR/n5OS39eTKk+GkGQOVcVlJw4whm5TUFEsnPUwYSHFZmdFQ8HlSjIEcKYmyfYub8fLUBTOz49BScl77WEsSBQweDdfKlZXk9DSLOjbOqG+xFOVgDJ094so6iWRigZtDlG1HOM0YtpPlUc8X+sHnmsjBGHoHmDI6WXmurc8YMsZA0nF71/bvwfYX1J7sfWBQCkHm56aBITheGAtqe888LcY9BQwV61gml2YMKsbw0k9XfUmZ4R2d7FECKodY5pOS0kFVD08Cg1FXrbczn08zhnhMgDd3hk3zBl5VTYBJMQYzB2NIekfEUmA6Y4BhOPicsY7hiKUTmVfD15a5T/5Iuur4xVxkZQx+GxG02R5b+5Hu8Bdlf5+aMRzvVYXpQhzQqOTTkftbxzaOna++RS0+IszSRyvyIWgRVtTCe4JlGZbuMpxRStI1B7eS6Ywhc78kDTSH5nhgMPIGn/0WX0zuxpAxfOxH1TH9/IRdybcxV5rmPgEYcnUs7h3SFo2Tz+wOykp65QFDcKTK98dMfisJCGOZubTdDxMsIirR0YkJK+qbLIle9grjNPjsTpaSMqcRNq/Rq0wHhjwpf3FP7ZFdOa7jo4LPQRp8zsIYevsc0jgp10D+PPqgTWQ4xJjUjjMGHWMQWRlD6v3K1ZOgZaaedI505tYNPBziE61XHIh8qraZi52ueM9zwDIcj/PUNxFIqtHR7JPoGgZfZ4SdYEY6jTO7lLQDdp3DyBkTfFbAsGIG2WuDdIFh83hLEm1pXCprZbYIWjwhL3B45ivhiV9WB1NgsCo5YwwHJAiSypj56dSz1zHEIYQd2qJxMo6SMgZnkZX0opsVNE/2KAGwKpgywiD7Tl1+FLNO2g7jWFGUzjE3vYxlGV4aYxgnJZkkiOytAJrXaTtqAkwKPjsyyNzcLOkd0pK1kx4OqsAtH2M4UC23pzCGzAAYdAkNnS54/D4NkwQDISPiJENvnRQYWB0DpqmUlKP1dvM6O2IDd1x1cezj2mauPRTW/atcM86e/ECPu1XZnO3Q6KrnNFX4xH2iisgcomwLZtAGp44XxROBYckMszMGXWDYssYzBlPLoFk75hpBm7ascPSab6PfaUdLSYZdwRIJXtY2M70D2tRxbefER0Z/t7oMz0wHsZvDLbdT04yh7ph0g5gky7h9geyVBQxJjB22dIxhkr4aZi5t98KEu4TWfhvHskVqasJmBga/SQ+332J7xIQgxoIkAzBEPnR3aabAMEkWIcjcrE56TVrUxsYFaraJnwafZ3lycQj+EfuyMQEY1LUZWWWusEtgVKja5thgZWJYOMTZKL7uk7QtV086DZqx2UQ5Ygw32JbrE71C1zKyBz6BTf8qN81zJz8YqheYCTSaMfRsVcNzAkwBaTjZJZY4AKuCFyYnFznDAKvKspkjv1+Dc/t45bm2PjD4Gar2pcQKO7SpEr7q6/uOWsoYUvYRehmz89JsxuOxSUA4NWpZN/kaark9dmww6L6ba/OlOdsrCxh0dk1TTkBr8u377EcxbzW+qH64+62jH+qB6PhZgaFFm+pYrxwgNixEFsbQT5NUMY+TwWflYVfypF76Rye7Z2obCT7P8vR1AG83ro+XkgyTCAsjM2Po4IvKoHvmMUuEjUXGuIBOB92VKxNrIjKncQI0r3FTro0ZZwoYKnkYQ9BlPd7hlj2m8bBeLCsimA00GhjapgKGEwVugLQq2TsARD5Yjt7FcMw7sKs0jCB7VlL7Fp6oIO2TXXxhsJhnYgyRjyFD2rJGvVaDt3wXLJ8HzchNPQ/CLCAD0DvkcJzSAGBXqRkZYwzjNulJLe2+K9T4z7uR0zztFQkMR3JcHUP+fZ+9MOGrjCdoLz84JiiYtt7OWMXrN2nJ6vgJBsTCRmRhDLq4bV8XVk3que/mCZZ5LSUljfHyHdMgNjLWMejitt24Pp4xgOqTn7XrZdjFE5WxCxyANCxsomwLcKBSG8eCc8oms3bflRJaN7mejMnHNx2Ig3yM4eAKADvO+ZOfWSnQZ2CAWkpq6QaG47xfLCc7AEY+mC5+OKZYDsCpa2DIzhgOjPWJY8NKgSHL3uc6ZtdGj48/+174W5/pbxfaZwx+NsYgewccyDFKAyhgyFr5rBnDQVKbzBj0Rk55OjPP215hwDCheRUMGIPIPpADv8dbjKdonvnKkx9qxtDfjnGGSb9FU1YnTopEZNy9SgPDrrGBYxonWltjGMR55ALA8I9oUh0rJQkh+hN2NmNQz2InGRN405ar62XQoceYGgZt0rCxs0pJoYdE4GOfHBvmkNOQZWx09yAOuJ5MZgy5dl3bfxqAPXcMMNgp083IGIRBS+/EV7XHAKrpZk9XjX2k5RLEY6QkAFtJLNnlt1vsi7XxIMMAGDL1+Qo0MMiqGh+GMUjVBkxHM4aMXYZl70BlM467NruevVdSLwWG+pgK+7TvknIAF4zhxbI08CNPNqpLA4x5Fkzr5mdV98hzX33yQ92kz447mc4lvSZtWZ04KRLDQiQZKLkubtsRG+O9G1SfmApBZo/EDCczBoCK45JgZGAMSso4lEsTJbNcffKDzvgaBm0KGDIGUsMuiVkBxBinIWfhlwbnm2NjDJW+lJSZse0pYDiq3n3ys2HGMOs+u7tQXaOnh9G48SGsHFlJkU9iqGcznjHU8vVKat9kT4zJCtNmu2kDyAzjQzMGz6xjH3eOhs+Vtf18T+3eNh4YqtkrvLWcuhePmetW2pY9BYYFY3hxTEtJnrV0snHWUIwhq/beuPEJEikIzo9hDKZNjIGZMSe/H+CdxBgMG0OGs3eEa94AZ4nDpDI2uAggdZ8YL4tHIiVm2J4YYwCVDx8Je3ZWkpaSDiYFn4HEcLBkkG3nu7BLR57c77lvhoUl4mz3GfaINTOYLL9lzErScZ5b42IMpqOyknIyhgOxQjKuKr4fYwhne5idXaht9hewcc/NyJPfPwQMY9+nXcvXjrq9zQ6TGUN/X5IsjCFN/x5XFwRYfWDIcK4kQXgHHNIYP6fsKq70sz0zrVrsx+OcU3V/Vd1kMW97nnnaKwwYdL8Ta8wEG4oxZN2KcPXmH/IFeS9WY3zedSAq2TNsfLVJz9jmYQy83zCeBQzXYPns6AYlx89lubgioyYatBEy0emqE4DBNQmFPbuOQUtJ+0yofAZi083e3Czo0knG9EnSJk1HM4Ysi5xHZOqJOYExNMx4DoxBtcSo2CZRIrOlDO9d5nnOjpffcjGGfd0nSd3DOMZg2C6OyMiyYp/YnMIY7BoVvGyedNAFv8l2sjLRaXBti1CayCyLeb8p5fhAdi7GELQQMlGxyXFxGbummuhlCbL3DsGu046MiXL2gjG82Jbu9zxmw5lBjCFjumrYY3X/s3wiee1EWSQwXL3v7WwTflMFPido79KwVerlLK+weR2Wz+GFY3LL03NZObxC/cxajK9jAKjZFiHZGENiVvBwJ54r0cCQNWDcTMbsxaBNmCrGkOlcYZfQ0BNzAmOoWxmBoXUDiWCb1amMATJO/v3LPMuZCTq+vmaC2Yyhuwu19QEwjIsZ6eZy2aSkgFikwDDm2pwarvTpZpGSdKrqzWRCZ1XAtUx87GzNJH2VTBBOyHBKgSHJAjLDmUTj5qdu/5EJZLxDqK7iRckYxpA6p+p5ZYrzvED2ygKG3iEx5vh0OGsQxMs0KZ7/FGYS8IfJIxMDqZHhZsuwSRJEoOSaaYzByhIUbN2A5btUk7RJEotVUXvxZgIGVXg3izEEWLMZQ3efWO+cN+mZyRQYMsYF2olzsoo9NVOxrEzZP6FHJCZJSWrxq5tJNpbVvE5c2yLCmsAYvOzAEHShdZ0ryempjCFTFW8qJYUxtinGau+YDhUjB8sSKiNtfBpnHTfx6Op9LKaaBoYb8Zi+S9oqtkGAlREY9B4iYzaXgkFDPplFljq6CsC2XBs/1nQxX9qiZar1DqGyij/OcUsZA+r+XvJSkhDia4UQTwkhLgkh3jvm8+8VQnxBCPE5IcTvCCHuHfosFkJ8Vv/50PHfnat5h3SNxtjWDiNSUpbJ/8zvkwiTTycPTwmkVrCzSElhB4FUUtKESZEuclMHSxypQq3lc1OlpLRPTKbFV0+wJrWJE1Z1WM3AGHr7RK6qup0kF0jTzdarJ44gDhQwTLguYdpYxJmDz4FmDCezRRQw1Mw4c4whqOkW4mOzkoL+ojDTy9+/DMDT8enxToNhIA1H1TFMO1eSKCmvtkEvmMwm0WwyU0ZMHBBNC5pYdo4AACAASURBVD7bVeykh5QZUi91geG1eGUqYwiws/VK6jelHM8Y0kU4yQIMexcBeFqenRhjALIBQ79afDJjSDdyeklLSUIIE/hx4OuAR4BvEUI8cuxr/xV4VEr5euAXgH8+9FlPSvkG/ecdvJDmHdE2xjSvgtHgcxakvvIxtpceoc2YfGRtkeHiyAwDL/XKp8g1mA62mCGLdLZVB8mls1Mnv9BNv7IxBi0lyclspppu1pOhjiFwFDBMX5gydL3ULbdbiTvxuoTl5EhX7REIByHGgFYalDayxhhu4FdSYJjUEkP9HzMXTJ2qejE+PVlm1AxwKtB7hyCTfoxhYsDecrMH2SNfxZYYA6YATq0vpc4sctMtvG/FKxPnk2sZBNLK1ispaKtMOc2oTphehDNtWLV7kdhwuC43J8ZSAMiyx0nkk1gV4kROZAwOL48Ct7cCl6SUl6WUAfAB4J3DX5BSflRKmcLpJ4ExCdkvgvUOaU/KLNADZcnKsJD4Lbj2GZ5bfjMw2fuNzWq2fWX9Qc71ZMaQ9rCZcm066JlKSZMmf67MkxS0xOQaC9cyVFuMDHUMadviSedKN1CZOSl0y+1m4kw8lzBt7KwdUaMevnBPtkKGvpRUNTIWuDWv0auqgsexXqFMqBhKWsnKGJ6VExgDgF2ZHWPQqcKplDQpY02Ns4zN5SJfxZaYxBjqWImPIJnNwts3kcJU+z1PuM+KnTKGbHOqK2q442o1IN9OhntP02ncS4IxlTGITMDgkWhH42RH2rSPWZqV9BJmDMBdwPNDP1/VxybZdwK/MfRzRQjxmBDik0KIb5j0S0KI9+jvPbazs1PsSr/xJ/knje+b0NlTvZSGGc32bm48DknElfqX45gGxpg+PQCxVcGV/mx9tV+lOXnxVbLIjCrePjCcoxdMnvymU83eWVJv6xmYY/ai1lZJ+yVlqGPw7ekxBrJ2vQwG+z1PYh+G5c5+ZqmFPTzc8XEZwwDDpmZkcBqSRO3QZU9gRhpkamnmyaz73HuapLalmekkMK3iihksS1c9p8Hn6oRMLqyKAoZMUpJPmAafpwRlq1l2RmzfQta3kBiTGYNtEGAjssizfovOlBYz/YaNWdjH3kWa9QvA+IB9yhisuDe78V3kE/dTfMczBit5eTCGcavF2KcjhPirwKPAjwwdvkdK+SjwrcC/EkI8MO53pZQ/JaV8VEr56NbW1rivzLbGFs/FG1MZQ92MZndJ1Av5oVie7MWh9pWtEBDNGix+2sNpslwjLJ1hk5UxBJODz8KqUM0sJSnG4B/fBH3IXMvAm8UYkgR6B/R0qvCkCSts1atn5qTQUlIPd+KCaVo6kytTjKGHjzOxiA/LpWJkaKKn4ywBOmY1IVe9YqRtD2Yzhmj1Pn2uKdLgrMW3m270s0kvHLOtZ//6HGyZoZZHSoiDfsv1SZXPoBr8zY4x3CKqTWBZ2lzLwMfO1n3Xb9IVUxh41k2h4hAOrnBQVWHRafdZFf5sQI08YmMCY0j33O5LSS9txnAVGC7JPA9cP/4lIcSfB/4P4B1Syv7bkFJe139fBn4PeOMcrmmieWEyfvFNG1iZEb1wBmPQlLGT2JMHHiCtKpUsXS+HGMPkQKo7u+9P85rSsGvr47duTE0vvlnTVSNhIYbaCRy3im3iSXu69usfgUzoWtMZQz8wniVbB+hSmRxLsRwlJWUscOvKaRlOTjbtXUsT/iSJRQeyK0KnJM66z72nCVYu6HNNlpKqs57ZkJQ0jU2i92OYHfxXi1cgp0lJ6YLpzX4H7ZuE1a3J50L15QqwMgJDW3cSmMEYZrGPgyuQROxV7lHXNqFXEihmNNNxiPx+wH4WY3ipZyV9GnhICHGfEMIB3gWMZBcJId4I/CQKFLaHjq8JoXIEhRCbwFcDX5jDNU00b9KCmaYkGtknfyexJw88VFCwmqXr5VBK6LRAaqYYw/JZwkQSJXLy5LcqVLLGGPwmnlEfn8mlzbUUxZ+aRqirnju6gduk+zSzZkyFAylposSS1n5kDD735JitUFOzXCpZ4hX6GaTAMCmQnQkY/Da0b+ItzWYMNWPG++xLSRt0p7DJFLhmtp1IAVCmjGG6lDTzfba3+8AwUU4VgkhkZQytqU0pMS1ijNmbQu2qjKQdRwHDNCmpkmV7z8gjmlT7odcgI/axTfHSZgxSygj4HuAjwJPAB6WUTwghfkgIkWYZ/QjQAH7+WFrqa4DHhBCPAx8F/qmU8gUHhrGDWAiwKtkCjCljiO3JixKoLf+ydL0ciTFMiAtYNtasrCRdw9CdUtkK6ABvxu6qXpOumFDYo00FBWfEGDQwtA0lSU06nwqMB/izWFsGxpBmcs2UMaSEqEdXjmmgN3Qul+xjw0uBYVIXX5Gh7cHBMwB0G2pRmhawr86KMXT3VMtpuzLZOYK+1zqz7YQOAHt9ZjROYhnsFTH1PpMYOjt4FQ0MU5ytSDjZmkn6LZqyMtVxC4WDMQsYdKrqDfs8pjGh9iMFwCwdiyOfUEtJJ8aGXoMIe1SsHL20XgCb7AbmMCnlh4EPHzv2D4b+/ecn/N4ngNfN4xqymJRyusRiuVRzyAXt2Jq8kIBurhWwnyXLCegweSAbVob2Ds1rcP4t/e9MBgYNWFlSEv0mHWNM7/ghSxnDVClJt8NoGdMZg+FUMYUkCGZM/jT4PCXGgGnpTqFZGeAUxqCzdXq6WGtSID4FR09O6CF0vLp12mKum+e16vcCzSkpvlWqs6TB7l6/4++0GpeU0czM74/T+9SMYVrwWcyQUzu7IBN6zsbkc6X/rbCzdd/1WzSTCW1EtEWG05dtJtruRahvcZjUqdoTOiVrKamWpS9U5BEypb9U2n3XztFL6wWwV1TlcxhLEjlFq7UqVLNsUqK9wlZszWAMNRVIneX9+k0Cs06CgTPOIwFMW7dDnjRYpFQN9JbOTm2SBvQXpzBLcY93pLc0nM4YVFbSlEmmGUNTKMYw6T77PfdntRdIg89TspIwndksC/rvsztNGrRUjEfKGYu5Bpl0wZwkJblZWivrGoam7qo6O111xuKrgWF6gZtatJJwxoKZAmBiTc7M6y+Y3nTQ0kWUaQ+zaYwha1t2GSgpaZpDEwk3A2O4BBsPjd++NLWsUlIcgYwJxJS4jN7e07XMRUuMF8vSBX/ypFCZJ1lQHwSdcY2whkzonu9Bb0brbb+Jb9awDHFy/wRthu1OZwzdfeXF6YwkmKCHQn/CJpl6uzRpT+msCgPGMLXyWbOipqziWJNTfNM++dGsDVT6UtL0GEOmJnoaGNrJmE3tBxeGo738qZNfL5jdRMmMJ7v4DvaPhhm56u0dcJboCt32Ylq66syspL3+5lHTalz6jGFWfr++z560pwCW3vdhFmjp5+/LNC4z3cufCQxJooLPU6RZUCBjzaoz2r0Imw/iBfHU4lMpjNmZfvqZBpPiT9Bvy+7aRrakiRfIXlHA4M8Ehkq2ttthD+wqXiSnMgajv33gLGBo4RkTer2nl2ap9g4TJ5jeh4Hlc/2sqsm56qlckAEYwg4d6U5O42RQeDQ1KBgNZ3JNPpeVteulbj/QYxpjsLFkhsaDQwxwmtNg61YFWSZ/L5lwLvN424MZ57IrffCY7LFmqBbv7kFtkzBOZiQmpPtuB9Nz8lMpKTEnX9eQlDQVtFKWxZSGfNpUW/YZOxn2W8xUZrAPdzrI9A5Umu/GQ9MlaCFILLUnw/T71KnMYkobkTuEMcwlxvBSsSyMwY0yAEPkgVXBn0YvAdNVHtNM79dr0jOmFDChirUMEeMFEybFcA1DTw2oyZNfLb4yy4Yn4YygLGnhkTWdlmdM8U03fJ8Z/AzaxGaFBANbJDzzzDN43rHf2fp65Nv/NH/DrPDkk09OPlccwNs/yNtYRjiM/+7rvp84SfjpeIXdq5c5ujHhXYVL8PYP8lprg3/5oHnyXFEN3v5B8Nf56XfAcqU7+drOfTOc+kuckbv89DvO4u88x5P7Y/7fc38FufF1/DXTGTlXpVLh/Pnz2LatpaT1THMAFHD5UTI5TtVnRtaUNNpB8Dmb/DabMUjTwZw0B1Lzh7ZpnXKuxHSmdybYvaT+3nwI70vT5zp2jVpvRowhOs6MpsQYLOO2Fri9ooAh9bymZWSk3VWnBhhDTzGGcEwjrCEzUlnEa0+/ML9FT0wHBkw1mKJJ2u9wAVNzhpSU9onJxBi86do7urmZtBEyVhkmxpj/N+yB6dCL5NRzpV0vZzKGoEtkanbR3mNpfZULFy6MvrPWDWjd5KL5AA+dnlygR9CB3YQr8gxufZWzq2P66+w5RFFAEp7loVONyWysdwgHghvOvRxFFq8+c2zvj7AHOwmsXSDaN9hsOJxdmdDPZ/8ZCHvsNR7APujx6jPL2OPGSPM6sn2Lp60HefCU2phGSsne3h5Xr17lvrtOq0Wpvtn3QifLIqN7n2cChkmL71BQdqonrZ2A3rSgrLaZizmMtpiZWoDq4siAME7GZxvpjCTFGHYmzydApv3HphXHpnGZaW1ENGOo2MYixvBi2cBbmhx8tmVIMjPA2MvEGKyUMcxa5PqZP1M8Ep3jHAYTvPJ0kbdr/Uk4q7gnU5+YqEcncaZ6cWk7ZPX9CdcXKTD1x3WVHHNtySw2E3YJNTAkYcDGxsYYIFc/z2xJItW7jqWY7AwIgdAF/VML2fW5Evn/s/fm8bJc1X3vd9fcfYY7X+lKQgMgIYlBspDACTZOzOjENuBJjh0DxoaYGJ5fnAH84D0nwXw+dhJj/EnII9i8Z2zj4BnjODbGgBMM+NnCAgMCIYFGJF3d8ZzTp7ura9jvj713VXV3Dbv6XCEp3PX5SPec7jrVVdVVe63f+q31WwKndl/6NSlxhKoZaN2XcIptmg4N4SAAKct7VgjBoUOHFIrS4yQZHCjujcZiAoMYuno2dNpwN2vh2fwBIFh3OjqCdSQ9yb32YwOko7i21gunHcNOB8fQqeR78g5wPDhwGZMkb25+BISeVtcqp7OAjOodQ1imks5zDF8bK8o42/LI0qId3RIxeKHKseYWHMMuipRttC7EUDiGqOIYmnPSAKLLMWQp5CmjtnQBFTlkaCagkwl4A+Ikb31YSzTTlUraLQbrCEH9gm5ek119DHoxR+A0nqaDkMYxtCxKlX3VruOidAxCiI59SRBOsU29o5nf5/zL+vXi3lgrFpuuVFKnyKK+d8ZZy70hBPhD1t2OhkX9XY+bSnznji/Qn99W6KCqnHY7EIPUgo2NBQCn7oADl4Prq/kJLcclgmG3JpRxDHkX+TztN/r1EbCvS8fQHC1FpWPoyhVaIQbtGDoRww67DFsjpdIxtETkAN6gaKhrrmKxFBDTkdwoa+cY5hFDi+PyzTXrRgydaCYZM3O0qmXjRv0Qg8TBadqbEGCDGJD8659/J//3O/5T/UIuHN7/Jx/lti98AQcbxCCsEEP1PJbMzAnQwQy03BuuqZrqKNvW984oayGfAYIh606H8qtxMm25d21Sp7paK+BmdhyDmX3eeGwnVakq0J5WQzsG0cUxmEour7lZTnMMkf/oNrh9XTqGtiamUqekPcKRulqk7Sb2ByqVlM9aBnjkGcxGqua6FTHo+vKmxTyZKNjreoVTa3aAakF185isbZUrunhbyjgpRy4CzQ9sOgF/eE4RQ2wcQ89IesmqUX7TVyBEgRhaHU3hZBoWciF4/5/8Obd98fZuxIBJJSl00XyeXY7BIIZBN5osyOeOuc86lTRKu3p5BqyJuB0xFOijocS35vhae2aqqaQ2PstvUfLNMyV5fvjJAO36UqhU0nonx6DPs60y7zxi+NrbtIt486JiFGdXTjR3zbSv5psliJRjaCV5K/X97YhBOYbGVFI6LRZ8c0O1NWuBRbqg4hjaHv7IVwNU1HE0IYaykqvtYTWIgS7EMNslFi09DECBGOrFfkurppJanUwzYnjrW9/KU57yFJ7/Hd/L7V++BynhN3/9V7jpppu47rrr+O7v/m7G4zGf+MRf8oEP/Q/+5Zv/DS99/nO4+ytf4Zd+6ZeWtlPHJVUppOx6UDtSZgViGJb3Rou8BuiqJIvodzd12u9bf421LtXRosGww8mgqvMAq56ZkWxHDGooUcMzsHWf+gyNGNpmqANK5UDMOtYNTdjLlrJoPyoQw6PpGL6uqpIMzGvTEHJtlA2TKfm6dgxtiEGnkmhLJVUdQ9tD4aivqrEjVadqQB27EM3dxaZaxDRFrYUNt0FBlnUjBiuOwR8w3c07H1b12d3kcyyOLF2zf/OHn+e2B1SOmTyBNGYsdxiGfvO+shlkM8ZyROi7uAvNd9detMlPP3d/gTwWo/xPfepTvO997+PWW28lPX0fN3zz83nCdd/Et337d/JT/+x1ALz5zW/m3e9+N69/3ev4zhd8C9/+Hd/B9S/6RzgCnvbEi3j1q189v93rX18hn1sq5KBADKLJAVYRw7gDMVQ6s23SItupyxPavs9gyFB0iOgZiZmm3o+KCZv7w3AMXYihmBZY5xjUnGcOKLntaZJ3lqt29zGUvIwNYnjcayU9XqyA0S1DYgrE0HojT4phG+2dz2vF9o2mb+KtvEUMDrpTSRXEME2y+klkxjyj8Jm0C/xZppJ8V5CIrqqkiRqCbokYOlUvZ2MmXsc105F0y5I6Z624QghAp4kWHMPHPvYxXvaylzEcDiFZ5ztf+PdAwh1f/AKvf9UPcvbsWUajES960Yvm0lumKulzn/scb37zm+e309sgHPIcGhrF9bGVqaRaJ2IQQ7DW3SxXQQztqST1/eykTjtn5A8ZcLojkp6C4zNJRfu9gVIZBpBp3Py9xiMyJyChHYE4bUq+xpkG62S5ZJblrakkdLlquwPUKKvNAVY6n88jhq+R2SAGJ7NDDKnTjRhKkrclLaIRw1bWgRhc80DYIIbciuANmXXIO5Qdqa29B0IgHQPxW1JJGzblqqbztgsx7DLxljtbf/o7nlr+MjkDZ+7mS/nFPPHY4Ua5EdUH8DCfzS/niUfWWa9DUDsPIlBOpi6VJBYqoCTwz1/3T/jDD/wB1113Hb/yK7/Cn//5n+uN1RZCCDKZ88pXvpL3v//9y9v1RAwOSgvMXdx0jnzW/FMn+dxRrqrvw50OWRjlGB7srkryBypoaEMfqMUcIJmZrocai3dIPBWUtR1bMeK2zmnVXLNOByg7NKGMWGMrYlDlqpHnkuWyucfiEbavS46hDcY5+QxB3tnHkLrdiKGcBdtCPutZDKfzjny5rkrK0oauzzQuFtVp0vGAmSliXeV1+rinMmhP/1BGco2IIRkXD1nrNbMdoDLbZUzYcVxliqW790Ctps2RebmvRcTw3Oc+l9///d9nMpmws7PNH37ofyIljEYjjh07RpIkvPe97y2231hbY2dnVCCGnZ2d2u3MceWypSIJijedmmMD5npcSv6pXXY77KxKmiKFwyjpWDADvWB29TF4IXFXQAPFwKjZYpd71eIdZq5yDF0NqJ7IieOaYMZcMy/qDigB/CERMdM2wcyikstvrYwkT4lc9T09Wqjh68wxqFLJrhRLZ7SUTElEw+jGqjmulopou4mVYziTdqWSlGOQTRF5OilTSaktYugin6uIod0xlGWEbeR41AMxtOkuzSBP1ZCetvMUZSqpq5JImqi7o8LJFctO5oYbbuDmm2/m+uuv57tf/mN887NvQAL/6k3/J89+9rN5wQtewNVXX11s//0v/Qf8+//4Tv7B3/+73H3Xl3nLW96yvJ2UgEolybbjgjmOodYB9ol+9X0WdMl4ZzG4IbkU7c7ZXyPoGu2ZxrrMuhsxuBXE0GizEbGjFU/bJGuMk4lrAreKMzWo2iYIbJUr14hhJ3U7yf+hHv3aKRn/CNk5SSUJIV4M/CLgAr8spfzZhfdD4FeBZwKngJullHfr934K+BEgA/43KeUHz8Ux1ZlttNqqVJnnagh6Mbe1/UaOCTscg0olnUq7EENXKmk6Rz63OxmPXHhEYtbJpYCSKuiM5LwQUloQw6SIWFsffsclFV7B9dTvSzUM7nYhmcIxdCMGabZt7BUwjqHeybzpTW/iTW96E5z+CjKN+ezsGBdsRrzxJ39iadvnPPsGbvvkh7hfHmUnTnnhN17Pa1/72vmN8rz43FzKDsRQppJaEYMXFZF74/0hhOoITjvGyKaz4p7s6mMI82l7H4Ppceko/wZwA/XcpXH7MzV113AEeC3kjBFsTGc1+6oQ9vHUxjEoRyTbStMNYkgdNtbaEdvQ1YOcHq+IQQjhAu8Avg24FvhHQohrFzb7EeCMlPLJwC8AP6f/9lrUKNCnAi8G/rPe3yNiXbXIc2WcTV9I17D3BZuJCMeCfD6Ttbfvm0iuOSIvEUOc5u0lhJRdn63pggpi6IrkRFcZYTIhc0OyvF0rCSATHdLK+uEb5e3qmSX53LBgGpM5kg7EULzfJYkhy89ta0iTEuG09DGY0lMtiWGDGBzRUJibjNXCJUR3OhXAU3Ofu/in3BQxtObeB4Ry2hGATMEL22cemEMz8zraIvN4m6lQUvFt3EyxrzqRy0qJr+lNaO0z0kqytKWN0yk4HpNMdCKGgRn9+ighhnORSnoWcKeU8itSyhnwPuAlC9u8BHiP/vl3gOcJ9Y29BHiflDKWUt4F3Kn394iYSrFYIAbRUsOtI4lW6dyKzZygPfqNd5DCUfnytgfMIIYsaYgKFxBDh8OSbtTNMRRqkN2IwfFbGo80yspM70eHk0mdsH2ylp7etmONGLoXc9m5mFdTSXtMSyFA5h1aSaVjyKVsr6wqzjOvP7bZuIho4yQj6GgiE17ImtutlSTNUPuOPgZPJs39N7Agl9KBGEwqqQMxdKkVQ6lMUO8YJiBccP0CZXVxDACirWcpjRVqa0P0OrgbFIOcHqeIAbgYuK/y+/36tdpt9IzoLeCQ5d+eM1OkbHd+uzX3boagGyXIjgUzcSL8jlSSDDYA0cFXKMTgyZS0bpWrIoauVBLouc/2DW7W9eV1iEFfs3LWbQdi0CMXG6N8nUoaZYE1YsjbilF7cAzdMhYlU9zuZCQChRhqz7Oig2GNGJD1x6bTeKAWmq6gATdk4HTMsUhjcstUktq+Y8H0LfgnwA8sZNnjEWMGFuijZfaHuWZCdHeLQ8ExOFnbeSpk1HqeC4jh0eplOBeOoe6OXbw9m7ax+Vu1AyFeI4S4RQhxy4kTJ3oeorILNsNClrjWTLWOaKnhriyW0D6fFtT4QC9vuYmn29oxdEReOpXUOJFsDjF0V3fgD9qVJc0+0amkvSAGfc0KXqbjmuVuSNg23F6nkrZze46hO5UkinLUeivTNZ2IwVQ4NeouOUUfAzTc8HIBMbRDBv0wNRybrggDC/4JwAuIRNopIZ2bXp6O8bYAXjpp/g50UGNzbH4xyKk92NrtkrGnLH2tVfJNxsXzVJDPrSS7dgxtpem6+78dMZishYWY5yNo54J8vh94QuX3S4AHGra5XwjhAfuA05Z/C4CU8l3AuwBuvPHGDo2DevuZlz69fQP9pWy62TlDDKkb4TdJZQPE22TaMdikknyhSMGl6QLVBjeL6g7hqVTS8Q7yORcuCR1CaYCrI7l6xKAdg7BDDLkTFI1HtZ+r87jbacAFVoihWyo7x+vQIzLlrA1RebkzqnxE477yrPgsWUEZ1WNS2xqOoeUjhQCcDsTQxzFERE7ajhiy2KrJ0ziGoVDDeuq/T4tI2uwu6JBlzxJIJ51jPYH2SYZaJh5KAngQdDtAtxUZ2SOGiEfXMZwLxPDXwJVCiCuEEAGKTP7AwjYfAF6hf/4e4CNShQ8fAL5fCBEKIa4ArgT+6hwc02qmv5R1r6UiwwwVMZrqnfnyCF+2O4bUVyimnXzWjoEGp7UgiWFTD25DPqdOCHSUJAJum1SBvmYzmxJfSmK8sZJFcwxns/ZpcP0Qg9ORrilTSd0cg0kltXEMJWKodVrFZ5iqpI7+bT0vohkxqIWrS/gRADcgImHaMds6teHZdPf/GtPmJrd0Uja4WSKGxpnUhU5S1I2ai9kfdVVJ1WtmmgK7HWAop6RZ03lOkZaIwYx+fdymkjRn8Drgg8AXgN+SUn5eCPFvhRDfqTd7N3BICHEn8JPAG/Xffh74LeA24E+AH5dSPooCIepLWW9FDGUJJ1jky72QoIN8Tr3uZpxqKmnJaeWZ0gWqVCV1RYWOEf3qIJ9TEeIIJXvRZl6BGGpSSYbExoKsRA9Q0aMla007hq3UkmOo6T2Y/0CpBfTadlVNJbXtq1rh1LYvOY8YFmz90IUAPPDgcf7Za17eemxvf/vbGU9iHPKGPoYKYrCo/MELuxFDGpMKM3Cm5TsIVdAzpKXJLY31gtnNfwRRB2LQkts70h4x1Cr5Vq5Z56x4KBxDRNxc0ZjGSDckl21NtqVWFTy+U0lIKf878N8XXvu/Kj9Pge9t+Nu3Am89F8exZ9NfypqXsdWFGPLu+bQAuTsgpM0xjEg3LureVxvHUBnSA7bpglDlkTvI58QJO8v+QC32MzyCWsSgHUMfxCBGzU5Lp5LOpr5GMg3b9UAMeVsaSe8FDPncPlynrHCa31+WZbiuq45LVyVBe5rr2MUX8fP/5T2tx/b2t7+dH3zhTfihJGtCDJvHAKy6i3EDAkadWkmpsx/oQgzKMayJFoG5ZEpmxPs67tuwQAwNz5SRmOksZaZdybdC2HdOfoTCiZhgq1ZWJZ2Sux39TwYxyAQIH98Nbv/LmP5S1pyU4x2IYSwDfFcsKXEuWu5GhG2ppGTMTI+otOIY6hBDZUiPlNIq8ipkgls1bCbMRHdFkjp2Nfc5qEMMyQJi6IrkXKN62Y4YxpjO56aHx55jkLILMZQcQ92+7r77bl784hfz7Kdfyd/cdicXXn4V73vvr/HUpzyDV73qVfzpn/4pr3vd67jpppv48X/yKk48fIJw4yBveOvbuPLoDdx11138wA/8AGma8uIXeUzytgAAIABJREFUv7jY711338d3fcfL+OQtt5JlGW94wxv44Ac/iBCCV7/61UgpeeCBB/jW7/5h9h84wO998H8uH1w1LZI2LFpV8yJC0o4+hhmJa5FO1amkIdPm7zOdkDl2QUPou8TSKwK0JTNqxXlkjxhqg5kxDA4AVbn+bvK5VWE1jcm1xlqXJH6gOYZHq8HtvGOommlHb6vh1jfkbtsQ9Irl3oCQWbMQ2mzETLfvt3cEG8RQk+aqIAbz8HVFXgoxdI9vjEXY7WRQD/QMr55jSKvD3hOL3K9KJe00pR6SMRKhymg9F6joR/3xG+Ghz+pfJMxGHMJXiMutuyZqmyE+lwgf6q7bhU+HF/xrQJeENpS+3n777bz7597AM7/pBXz/P30j7/ov7wQgiiL+4i/+AoDnPe95vPPfvYUrL9rPR+7Y4Y0/9S94/kc+wk/8xE/w2te+lpe//OW84x3vKPaZV9DHu971Lu666y5uvfVWPM/j9OnTHDx4kLe97W185Pd/lWhjP5OmzueCfM451NR1a0w3uHWRz4lnkUrSiGFdTOrvtTyHbKa5rO77NvLVUKjaxRwKx3A2t+cYGhHDhkJZ0yTDa5q4Zkw7QDXes5ljyAb7gJZnXX9Ppo/nPGJ4LJhpRxdpO1EG7OY+bRL/xqQ/YMCMWdYgBTHbZSbM0J+2PgYHKdyiKmn+mErEENt0tuptbfoYYoJuJ0P5wOZpvExcGTE+7Rg6K6Y0MX6i6TuY7SL9AXLqdKcLMFpJnZt12LyCaZ094QlP4Dk3Xc9YCP7hd30ff/gb7wbg5ptvBpSo3ic+8Qm+95WvhTwl9yJG4ylSwsc//nF+93d/F4Af+qEf4g1v+FdAWcrqCPizP/szfuzHfgzPU4/twYMHKyepyee6A6v2MSQdsucAboBvQT7PQgvOKDAcQ1yPGEyPi2WaMfQctvCbB0IZx5BGXNiJGFpG3C6kkjpRsxsgcRi0pczSspKr8TvQx+Q/ylVJ5x1D1QoBqxbiTSOGUeYTehZfmhfhi4ztOCb0hvPvaTG4qR5R2YVApOOrVFILYujUwimOK1Sy212Iga4pacpCT01xy5NpjWNY5GW6dJci1X3eUpUkvQaU9W0VmS4p4cFPs8UB4sFRLjmwcP1BlTce/xxnxBHG/gEuP7xW/5mZQiWGr6hDgAWZvMAxrK3pEa95zv79+/n0xz8Eo4fZPfQ0vnxiVDTf1SHKKmJok98WwmnRSir7GFSDW/e94cuESQf5nOjlox0xlFVJtQvmYvNjV7eyIxQybZKG0Y7hTBZymQUyhQaJ9wWU1fk8CUHmDRimcfN9m06LSq7G4Egfk5c9uojh60pdtdO0tx44bZ3PVcRgEa2aSG2yu/ymrqCYCj1RrWN/0g0IOjiG2CYfCuBFehhLu+x2jG/PMeCT1VWLFLyMnfCgE7QMUNHHlXtGPdNWXbVhm7mxni0HVXAM6tc61HDvvffyyVs+g5SCP/mD3+Wbvumb5t7f3Nzkiiuu4Ld//7+h3Ifk9ts+i5TwnOc8h/e9730A89LbFdL7hS98Ie985ztJU9UVe/r0aQA2NjbY2R3X91hICXm60MfQvWD6nYN6ZsT47ZMC9b6k8FgTk9aBOGYCYGeHvRCk+M2DnIxjSLsk2WkfCrWAsjqvGZD7Qwa06EKlVfHNJnVb9b54lOc+n3cMVdME70C0lEomVelcC70/I+1b5xhMisUSRuP6eB0cQ4kYusjniEDGTDoGqNgoq0LJMdQTeWamr0YMnV3ULQNUAGa7ZLo0t5NgRLR3K+vXM9lVlVRKW6s/W97fNddczXt++7/xjc99HltnzywrpqIW/Xf/2n/luuffzDOvfwYf/dM/RkrJL/7iL/KOd7yDm266ia2trWL7XJaI4Ud/9Ee59NJLecYznsF1113Hb/zGbwDwmte8hm+7+VW8+Ht+uOY89e++itytKtZcpVU1SbKWbuUpsfTbJwWqAyf31xjSMPc57dfjApAIH9GEGHSwdaazlBlwPTLcBsQw7lfiC0gz37qlObYTMbieGuObTol891HrYzifSqqa46jmHtFCPqcTcHymWfcYQgBHQ+mkTvO9qK4xlQpdD6zfWZXUOb7UmBfhkpPM2uYeTJl0zHs2ZhBDvbyARlnSLpXkBIqwj5ty3MmYtIoYWmajIByd/ml4XyOGDLE8+WxuP2XpK9QjBkc4vPPn3sTZ8CLunYSsDYfcfffdc9tcccUV/Mn7fxO2v8rsyFP54vExuVSvf/KTnyy2e+Nrfwh2T3Lp5Zfzex/+pJKQ9jze9ra38ba3vW1un69//et5/Q+9hGR8lofqEAPMdfF2808Brixz3Evfv5QKMUjP6hmQwZC1cUMkXTgGy4o1IBU+TlNvULyDDNaZTi2eASCtE7nMEtUXZDiGmR1ikP6a6tdoQwxFU2DHvJQ0Po8YHlPmRe1zCvQYQjNXucscLdSVTEbLb+roZqIlvFshOSDcAL/OaRV6+6FdaR1Uuj5bWviTCWPpW51nK2JIp4BgkjrdqQeUgqYrJLMmRc7ZmNS1RQwd3comlSSFReezwGlBDCY6V2kpC3mN1n3lxSwG9Sddnc+OJsYX9mWkNfwhSZZr2XOLoCFPAFkfIOlofSI9hhZBA8G6SiXVjtDUEjPSosJJWyqC5kFO8TYU2mPd+6qVeF/qC+qY92wsWGO9iUuREtIpMyy6xfV4z0dz7vN5x7BoXkjYNsEtnZSTyGwQg5H2rVNw1GJwuzIicB2cjp4I4Qb4ZMu5WoMYqjN9LUv1ZKtM8JRxbpdKinxXPdwtFR5xJgk7JJ+hMkClTg4ZYLZL4lj0foBCDG36RgYxSJvFVzQihssvv5zP3frXapeITtG78v8tkhhaJwk6tJIqx7Z8niViKMd6dqurOuR4ZPXFCab8WHpEbVLUxoJ11pqmuKXzopR2iCHAaZJlj3fINUq3KbPO3ABPLuyr8jyBfSpJhBsMRUOHd6Yc7UxYoGaNGCLv0UslnXcMi+aVzVVtcw9sEYOrZYezuI581vLRXSMqtQkvIBA1csjVCV22qSTfOIaGRiEpIRmzm3kMgu6MY9HH0NTgVsgqW1wzfWyNCprJLonlbAe1YFogBpzuxZeqY6iTyrZFH918BbInYqAJMRjHMLSTjwbQ87vViNu6xVwjhsyziqRFuM5QNExxS0sFX3VsFou54+PkDbPP4xG50R6zOLbMCfHljKzqnStDekClkmzuWxGu6+qr5pRZiYw65sKcRwyPMdPNPdBQQ6wlgm0RgxkGktVyDCqVtCtDqxsPxyOs67GoIgbbqLCtuQdUhCNzRrlv9fCHmmNobHArZJW7r5lrdPKb0MxsTLyAGJplKkRr70G1KqkPYmiboZB3IYYKX9HYlS1zLbmtfu1GDE75d8Xh6LnRMD/vubPz3HTfNkxx02TtOHcZWiAGJ1xrXjAXRCntFvOWCX/xTiFKaVVJ5NbMJamM9QS1DrQO6dHmhGsKMbSgrLL7vwsxTAk9t30k6iNo5x3DonlR2Y7eMvfAFjF4kYK1Wd0s2MSMqLTrFVDEeDtisBL8gkoN90K0ZExD/J3Mb5cb1mYQQ221SDIpUhlWDtDrQgxjYlEihiiKOHXqVP1iXaRYuhBDR7kqFEQ2tCzmqAonK8Qgc9WfUNdJXaSSbDkGM9wh138uOXXqVCHfTDAsx3pa1vcHNPTzpMYxeNYplvUuxGBZmABKlt2TDYhhNqqIUlooE9Q6hnnEYDMREcCN1llnWt97UCAj0/vRzTFEvtNeMvwI2vmqpEXzQvzYOIa9IwYjE1w7JNyohOYhkW/RmusG+KJGvthE6V5UIIbuh19H3MyI04zhYrqoEsntt0glGa0kURfJFamkjgl6xbG16ORLqYa9i7Iq6dAll3D//fdTO8Bp5yES6XAy30GeHSy/H+/A5AwPyozxqZCH2851+zi543M8OUN6KliOImdjGJ/kjJuTSIfsdFS/n2QKuw/DKcHDo5ydwOXsMJjfZvSw+sebcXaS4G5F7RzUbATj05xwcuLT+tpEEZeY8Sb+sOhkttUQCsWsvvtZ32+7qWtNyq7V3bdQLJjjPAAmVo5GOYZm8jnZuEodv8W9ppR8Z/OaRJVACyxLfNEcQ2Mjn7pm09wWMcSEnsvWpMEBPsJ23jEsmhfhT02pXgNiCIbWN4sfKVib15LPWiI4Cwi9tppLba5PKLJlYa10ouC/4/RGDKFOFyw5hgopaFeu2oIYigldFh2k0K6TP9sFJJOKvpTvu1xxxRX1+3rXa7lzN+LHT//vfOEtL15+/y/eDn/203zX9P/h53/w7/IPrjnWfFz/+UfYXbuEf/iFV/ALN1/Hy665ZP79v/k1+ODreP3RX+Uh5wi//WPfUL+fuz8Ov/d98PI/4If/MONbrjrCz33PNfPb/PLrIVjnP1/6H/h3f3IvX3zLi9uv3Wd+Ez74Gv5t9A7+6xv/cfn6rR9X//oD4rEt+VxyDLXks04ljTLXKsVCsK4lMRrmiKC0x8ASMdQRxsbiEYmryWerey0kFLvzKbMilVRKYtid5xqeyOsLTQq9MA/PEXgdTYHMRoSR09zk+Qjb+VTSonnlIPomxCA9u/m0AIFOJcmkDjGMwfEZZ3aaP7g+gaiTxKiO9TRRYbe6KqBKc+u4FDPCVAZ2HIPnEtNQLaJLfPsiBlnXE6E7W3dNt7jF0BlfV9fUFxNUHaBNfb/mn1qi31HutkflxVCjmSYYm1KWPbSvfKP7s+BMK4vcKkFDG/m8mzrWiGHIlHhWE/wUiMFXvRrdFQBIV0l21Fq8w8w1QYPNvRYVwVFhFY7BWq0YCl2oPK4pTdeIYZJbKAlojiHy3XYhw0fQzjuGRfMiPC2T3cQx5F6ElHYRSTDQ2ju1iGEXgjWlkW+Te9eLXC1i8EpdF5tegfLhn9UTjJUF04ZgNIih3jGMi0XOygG2ldJqxzBmaFXii9aXgmZHn7shEseqI9jNWyZr6Yd/J/WsJNTJVBNTc8pSBSCBRYmv+f6XHYPJlw966GiZKWINiEF/xk5mxzEUC+asrvu/olZsMfcDlDSMX9fVmMaQJ0x7IIbaSYYVx2CtVgyFLhR1FYgGMeSeRYNhWDa4PR4RgxDioBDiQ0KIO/S/B2q2uV4I8UkhxOeFEH8rhLi58t6vCCHuEkJ8Wv93/V6O55yYFxYVD03VBZljiE+L+v5oWPzdkiXaMaQWipegOp8tEEOnTAFUOIYGvaSKVLbNAxZ6qirJy2fLwkSpHoKe2hH2ZUTdjBh2GFhfM08vIrWLXDIhcy07z70SEdWiLH3NtlNbxBCr/o8mgtdTvIxVtOoZjZ2Fa1bkywcl+WyBsoBm9V2dLhyljlXQYBZMUecY0ikIh3Hq2EX4AK7ScloyfW/Ejj1iMPIr4yqaqZDP1iW+UDhAkdQhBoOMLJxpBTE8XstV3wh8WEp5JfBh/fuijYGXSymfCrwYeLsQYn/l/X8ppbxe//fpPR7P3s2LcHUOtSnFklpOmwLwPJeJDBB10a9BDJZpKXSk1IYYlISB/UISNo33rKaSLB5+3xWF2qZRIi33NV0JMZDVONN4G4CRzehGmHMM47pURjIuHENnWsQNS8fQiBgEu0lHatAghjbZA03YT5PcLlrVqUE3j+dTZrNddW84To8+Bl2V1DSvw1QlWfYxFAvmrGHB9AbETbL0Dcfnk6mRtlUzaLIoTLAoMfWVkm9TKsk4017nWZc2NoS9DWLwS0mMx2uD20uA9+if3wO8dHEDKeWXpJR36J8fAB4Gjuzxcx8587oe/ilZD8EvgCkhImt2DLZENo2y2wuIoQfB25xHLhuPbKJCIUShNc+iKJlJJVmXqzZEv1BO6JIDOwfoBrh6jHhTajB17FRf8UJEOiNwO9I/WQfJXjg+VXnSiNi8PryMRj2Lk++qs4ute1w6+hiKe8O3I2X13GcnrSvZLh2g1feJavSEmuIEfW9MbPknDGJYkJ+vpt9sxnoaM8goaU4l7WaexRAt08fgNDfaPsK2V8dwgZTyQQD979G2jYUQzwIC4MuVl9+qU0y/IIRecR9N86JCbbEpkk5sFxJtUxEu535Bkc9+H8Tg48kGET2vFEmzg72lTn5TigWUY7CKllC5X3U8Cwt6zwa3VjnkimOwumaOV9S8jxu4lKRr3KIx11eLud8QyaUxeKFCRq3liCX5HDV1t6ZTtS/b71Mv/iGz+bx0RT66b4Nbbc8MFKmkGbYcg7rXnKYF0zOlzPaIAWAWLzxTpmFUIwYrRB8MdCqpcp46vYUb2PMyUJynV5tKKhGDlWNOpsXxPxrppM4nSwjxZ0KIz9X895I+HySEOAb8GvDDUhbtmT8FXA3cBBwE3tDy968RQtwihLiltl79XJkXFo5h6QvJEpCZ9bQpYzMR4NYihlEllWRHPntk9YN6KojB6riCNaRw2RDj1lRSbMkxAEinhhuQsrckhnEMtXLIxjFklt3iboAjNcdQ6xjGhWOwSSWpxbyJF6hwKW37Khyo6W5dvM/SYoZCbPt9GsQgZvPHVpWP7tngtuGlTGZ1Tkt9LzNp1xVvUixeHWIoHINlmhEV5QPMpgvPVFGYYM8BuuGgvirJH4IQxetW5xma82wuV92aWfAyXgRZTOQqpPBoOIbOPgYp5fOb3hNCHBdCHJNSPqgX/ocbttsE/gh4s5TyLyv7flD/GAsh/l/gX7Qcx7uAdwHceOONjxy28iIdqcrGSWkzx0IhsWIzERa8xfwbuxAMrQeBqLRIUsMxTMG7ANCOwea4hCAPN9lMxh1CaXYcA2jEkDGfStLOdJVy1TbHsJVHRBajVXF9XO0Yxg3nOROW36cXqAe2qSM1jZF+RJLJ9qjcIIZsVp9HNguLRgxW18wvGxanS4ihHNIDNohBXY81N6uf4qYdQ2ybSjKRdNpQldRDrRhA6OsXL1b6mcIEOUSNkLVoQA0GOCJnOqvca6s4UygdYFaHjNT+txKPA/s6lt2NCwHYn6lBTMrR29zs5872mkr6APAK/fMrgD9Y3EAIEQC/D/yqlPK3F947pv8VKH7ic3s8nr1bqCR7N5gsP/xGO55+iCERYT1iSMaKY7BGDJ5KJbUghti25hog2sem2K1v4a+Wq1o6QJOCmJvHqxc56fUgUvV+ajX3423wBuymwpp8Noihtos3GdsPiXHDdtXLdEquj30tbDk2x1OpijQmrKs8KTrZNWHfA2WZTvbCknE5iSzN7Up8zexzN6u/Ztphz6wdg1ow/bwOMUxKB9gTMSTTeo5hpMfR2pS+1qKPqjNdJZVU96wbxGBTyXVANWseiu8HGnpmHmHbq2P4WeAFQog7gBfo3xFC3CiE+GW9zfcBzwVeWVOW+l4hxGeBzwKHgZ/Z4/Hs3dYUL35IbDXOPTBKkFaleqh5tl7dIjcbkftrZLm0rkoyiGGOkKpwDLGlRDCgHAPtiGGKPWIwqpxziEEThKlrD+/NZC23ros63oFww776yvEReRvHMCUWEZFv0ysQQpY0T9ZKpuQ6nbbUSV41IZSTyUytevtEPqvz9Kvlx1XEMIag5BjsqsL0/e00yW6XHINtgxuAX7tgxhUHaLccub66xskiYjBKArkl/wSFE0yrIpcVZ2oco920xiE5gjBrrko6G1s4hoNPBGC/cQyPQpPbniQxpJSngOfVvH4L8KP6518Hfr3h7791L5//iNjaYQCOiO1l4q1IryhY1/rwVyxxIjbzU8tvzHaLgTNWi7kbKEG4PGNWLe+b4xh6VHcM9rMpHmxQvRyTCZdcuD0esmbEkPbo/QAlh+w2dT6HG/aRtFs6hiaSferazbXG7UolTYvKrO48clD0MdSmBkGLIlqep+OSO34NxzCBdZVmtA4aNOoZug1zSdIpUjik2GolaRnsugUzmcDwINPUMgUKuIFGDIvks0EMuT0vZu7ZeccwKXWS9LW0Co6EIHEGBE1cihswTvLudWPfJeD4bI7vA578qAjpne98XjSNGC70RstfiJldrB1Da7qgYqkT4S8ihnQGeUpq2vctm7UAfFLG8UIVReVGtn0onGgf+8Ruw4I5JRUhA8tuVCjLCOcRg+ZlbPP42lInwJfJsvKrdgzWkbTrI3RfRRP5PJUWg+NBLSJ5SuSKRtXRtEAMNkS2QgyzOgQIZbWOpaPP3YiorvSyki+3RaYAQ9GslZQ7ASDsFkwvIBU+kZyQL36fhnzugRg8jRiWNIniEQQbTFPL5wlgoFqqRFzO2Z6v5LIs8TV/6g4J8+lyiWkaI72IcZJ13xuOCwcuY2N8H/DoIIbzjmHRjGNwd2pIQVOL3A8xZG5EIOtL65I+ui6O+tyAlF3TrGWqfqpKkLZlfzqVVB8VTpg5kXWpKoAoZjzUOIaevIyRQ54tRtN9EYPjq/m9NCCGdMrENl2mF8x1L2tEDKlNKgl05cmsWMDmew+qE/ks5VL0PiNm8ymzBfLZrl9GlWpGbtN5zgpkZHt/pO5Q6SUtfp9JZSKi5XmaeR3poix7vA3hun2HPcDgIADe9Oz8MfUl7LWl3lApydaeZ4iUlujjwBUMR/cCj0+O4X89G+pUkrPdjBhy4xjsbpbMDQnkAmLQ8gAzWzkGKBYmn7R8+LMZIOdSSdbRUrSPzcZyVVWtYw3JAccvq20KWxz2brm/3Anqu7LjHQg3eyCGACFzIreGY9BT6iYy6FUttebljTIWZnTjsAtNmlSSXnDmHv65qiR7xIAfEYoZu/GCvEOFfLaNfHFDosbO5ylpXwToDVkTNQqraaxKmW0r8wBfp5KWHMNsVAYN1ohBqfgESb1jMMGELc+Wemv10ttpXPJPNtfs4BOJRvcC8rHZx/B1Z14A0T6OODs1N7ERD/MJXAe/S6hOW+4OCBZlgnV3ZdyjS9Okkjyy8uGvaOFAj6gQINrPgJhkVpPLTyfMRGjt/KAsI5xHDOo8p7ryx7ZiyiCGpYci3q48/HaVXADrfr78sOopdbu2JbmVMs56ddUJiW1hgkklFYihmhqsVCXZlqvq7SNm7NbV5NMTTXoBg8ZU0ozM6Rccpd6QtdpKv8p8E8tj80I9yGmRg4p3IOiJGIYKMQSzqmMYL6WSrLkxb8i6qJlWV6lYG4YWmYaDV+AmIw6x/ajIYpx3DHW2doSDNCOGUeZ2R4QVy/0BEfG8uJxOJc0c4xjsF6ZApGW+vBjrGSGlii76lKsCMN1efi+ZEvepSALcoAYxJAsjDW2b5TzjGJYRgzQcQ498+aZfo5WkndY4963VbQHWGknZmFjXm691ppKCQhIDFlNJpsQ37OXonWBARMLYBA1Zqr6LqmOwJmUjQprPMxUWs4srlnlqvOfS95lMkV6kiylsEYMZ/bqYSloFMSjHECWVZ6AqI6IbDG15Num3IAa3RzWjLlm9TBw/jxgeM7Z2hINstSAGz762H5BuhIOcXzBnJpLuU8ZZks9FVFhBDL0kggGiTbXb2dbye8mYqbSs1jGHV8cx9Jl1WzHpRss6Tnp6W+6vI6XleerIdiOQTJocfe73Eh5cc2vQB8w1y3U61MEBGB0vPnduf/qapU5ILu2vmfAHRKKCGCqaP+ozeqAPN1gWlzOWzZiJgMBzcC3mJ4BeMEW8/H2mE9KeDaNB2DDIqVKYYC2v4UfEImKYLZLPZSqpzzOQB3q+dc3aYdJvVo5Bl6xeKh4+Tz4/ZmztMPvl2cY+hu3UtYOD2qS+yaiqLmqOoRD8skqLVKqSTPRbQQxxUUFhTz4DuHENYkinTAh7kc9eUIrDFabPeSL76UtJLyQUyXKKJU9I9LD3Ps503ZNMFhFDahBgv1TS0K1RuNXHZ2YXdyKGi26A47cxoEZ+peBlDGFv2RHsRwxFBTEsDLXvU7GGFxJQ02Wvjy/BUg5DW+6rVNLc96kDJUPYWyMGPS43X0wlzcrCBGsuBZh4mwyzyjOQzpPPfc6ToMYBwkLFmsXaceAyJILLnYfOl6s+ZmztCPvyrdovF+Bs4rHWI8ViiOG8WiutU0nTPtU6BfmcsRsvI4ayS7NfKslLa0S/kikT6ffiGIxjmMv9mtnR2A97B1XhFC4qhWoHlphh7z2c6bovl/PlBWLwes2JGIiMLJck2WL0O2UqfYSw+A6e8CyQGYe3Pg8scAxJqV4KPb5Pb8BQJDWIQZPPfVIs/oBITpil+XLJcBr3dgwEGyqSXpTrAHt1W7MrM0d9UaxRcwx9+AqAqbePjVw7hqX0Wz8nQ7CuuZQ9IgYvRG5efB4xPKZs7Sjr+Taz2QJhrCPM7cSzLlUFwFM3WbLYXUkp+GVbYQPNiKEc69kPMfjJzvJ76YSx5VhPY57mGLJqtYi+ZqYpsE+zXEgyT/LqBqaZmdDVw5mue/lyVZJegHdSv5dUx8CtkfHWRPYk9xna9H5cfCMAB8/8rd7XclVSmX6zT4sMxKy8NxYQQ6+u+INP4tD0nuLv5iybqa7nPsFRaCLp5ZSZtSSJ2VWkJ/wtijVqjsFaxVdbHOxjQ+6o3oN0AWX1TCUJk0paQqeVijXb63bwCi4X5xHDY8fWDuMgidIz868nU0BwdiZ6RdKOliSIJ5XIXKeSdmWPdIGjnJFPWiKGohmqHCrSFzGEaY1jSKaKlO1xngbip8lyH4Mp8bV9yMzIxbmFRCOG2NWpJCuOQV2zoSeX8+XaOW/bDpzRDXwDp2ZUqJnQJT0GNkHD2iE4+CQ2T94K1FclmbSUdZTvaY5hEU1qSYpeHMMF17IxfZANxsvXTSOjXj0uwTrrTGpTZpOiYdQu2PI0+Tw3E1ynGQn7I4Yk2M8BdtSxLTjTvhyDCNdxhWQWLzTfpVOSAjHYnadz8Ilcdh4xPIZMN7kNkwXHoAexjJO8F8cg9I2c1KSSCongHohh6OWMExMVLiOGPg1u0OQYxozzfiR74Puk0plHDMkE3IBdPdTNdjExk7XmU0nzoxv7IYbmVNJ2akk+F3MKjGNYXszHuW/dEc8655CJAAAgAElEQVQlN7F24laUku9CisXxiHN1TH0QQ0gVMWiVz1Wi3wueBsBV4r7l65bO7JVVtYlonUgkxHFNmlEHDRuR5TPleORSzHNZZjpcuGmvCaUtDQ8oBYBZVqbfjPZYz1SSqws6sunCM1WpWOuDGA6JbeTivr4Gdt4x1Jl2DOt1iMGP2I3TXhyDo/OV6bTqGMbg+ExytZ8+5arrXl5KYqTLVUnWD3+wTo7DIF/mGGQ6ZceWlNUW+Wru81y1iBb4M30X65YPv+MPlstVzYQupz/HMHTzmsi3rEqyclgbSnNo3+y4Opx0OS2ya4s+AJ5wE97kBJeIE/NVLHrec5Ea7IEYAjlbrljzB6RZTpp3yIFX7ei1AFzt3LecyshiprmlTpI2V88qSOOKJLVJM9IPMSCESstUU0kaTco+8020ZdF+9jNSxQl7IewBN1LnmS2WgKdTYo2MrJ8pXZm0tnuv9eefKzvvGOpMO4aN7Oz867oZZzLLenEMbqgdQ/WhqIz1BFuOoaywKSQx6hCD7UIiBLG3zjBbcAxaZmNCv3LV0HOY4S2Qz2PwI3bilNCzbwo0Q9rnolXtGKZO/6bAoVfjGCpquVbnue9SCDY4sPMl9Xc1qaTd3LVf4C65CYAbxJ3Lnc9aJgJ68DJ+RCDjSlVSST5bj/U0tu8SEn+Dq8W9tTX5vUuZiwWzEv3qe3eU6SbEHr1BCd58+XesJWa8HhVr2vLoIJ7ImY7OVByDemYnsx7NcoA3UJ+fTxdmMqQxUwI8RxBYPgOml2FTayZ9Le28Y6gzrbC6P9+aF/1Kpkg/YneW9uIYSsewUK6qoxvA7mYpKmzqEYP1sPeKxd4Ga+zOV55kMwSSaU/yuUAM6UK6wB8wmqas90i/BdGAkBmjSVI5WDPsfa34vE5zKohhKZVUltLaSXg7cMG17Nu+HajvPRilnv29cfSpSH/INzh3zO9LX7PSMdiWmA5wyct0zdxQ+573hhCM9z+Fpzj31TqGSd6PfPYiNedExpUgZEF7bD20H0aTiGB+9OtiYUIfXkB3Pyc7J2sRQ5/z9AcqlZTHC8GW4WUCe1FKDirHsG96v/Xnnys77xjqLNpPJlwOia0lskx6Ebm00MKpmKcdQ15FDIlxDD06K4s6+gbE0DfCBBJvY1lIrzLWs48DNIhhnhScFKkk2zQSKILRFZLxdDldsEsfxKAJY1elUmY1YnXTPsjogqexdvaLgFxADOo4t/s4BtcjP3YDNzh3LJOyuusZekT5uiw6082TVcSwyr0RH7qaq8V9y/0f2YxJ7jLokXv36hbMdB4xWHMzQCp8RFXe3SgJ9BGl1OZox5COTi0hhr7lqv7AOMDKsy4lZMqZ9nmeCDc4I/ZzID7vGB4b5jjE/sFlnZJkQq5F7zobmCrmRyqKyaoywQYxJJbD3qFADGvVtMgeEUMabLIpdmsdQ68hPaicfyz9+TJCzcuM4n6IQehFbjKpPGDxjuZl1H7shAd1NZSjzm9JkhrVS2LvGJ6Kl4y4mJO1HMNO5vZKM4pLbuRacc88mtS8TH/EoPtlzH1WWeRWuTeSQ9ewKcbIrYWFKZ2qwoQ+z4BOsZhqvOrxbRvH0GN/qQjmyefFwoQ+4o9ryjFku6dqusV7dFFTIiNmlZSZKUyQfq9zBHjIPcbh2QO9/uZc2J4cgxDioBDiQ0KIO/S/Bxq2yyrT2z5Qef0KIcT/p//+N/UY0MeExeFBDi0O66nIKveD0RoxzBbIZ79EDFZmol8nrxCMUzUm0vWLSWB9KjKyYHN5ilvRe9BPXbVADIuy2/6QnWlqn3uHYpGLqyMXC8mDHtGvdgwDPVh9jmfYPUnuhszw7M/zwqcDcI1zby3HsJ24/UqZL302vsjYf/bz5Yt68FLxfVpzDGoxc/NYIaNZucjFfUuZAXn0qerzT32h8qKSdhnnPa4ZqowTQMTVBVM708RlLXC7R45WbOptMEgrBK/hn1ZADP66Sh3L8enlVFLSL5VkSoNFUiXZdSlz1rP3A3jYu4ijyVd7/c25sL0ihjcCH5ZSXgl8WP9eZxMp5fX6v++svP5zwC/ovz8D/Mgej+ec2Sw6xGGxIKSXTArH0AsxhOpmkUkVMYwKxGC9kJt8uZfNN7h5A0Uk961KAvJgU0tv16VY+qWSDMcwF8lpInV3lrLRyzGo6zyrVnJVxnqaz+s0pwUx3PMXjI7cAAh7LuXoNQDLpGyymmMwBPTR7c+Wr5mqpL7fp3amIbOy9NINwXGLAMdaRwsQF6hzHZy5vXxRE77jrF9VEoGJpJcXzK3U6xc0ANvBBRzMHi5fMBVr9EcMwcYh9cPkzBxiUN3tPSq5oJhWJ2rOc7dvKgk4GVzMofwknP5Kr7/bq+3VMbwEeI/++T3AS23/UKik+rcCv7PK3z/SlkaHOMTWEsFY6J30yIeGQUgqnTKCg7IqqY9EsIl+HTnfxKQX0d59DEAebrLJQiopraSSVkAMc6M9q+RzD47BLHKzJcSwWaRw+nAMkaMW2cKhjk/DQ5/j9JFnq/dtnXO4Qbrvcq5x7llCkwBbab9UEutHuJ8LuGin6hh0VVJfBFjMfZ4pDqpm4EyfSDpaP8D98jAbWxXHoNGg6mPoIxWhgiMnraaS1DU7k7i90owAu9ExLpAnS8Xi2QgQTHp2UQOE6wfJpUBMTleUBAb9OR61MwDcZCE1COz2TDMC/O3GN7Mj1uBdfx/u+FCvv92L7dUxXCClfBBA/3u0YbtICHGLEOIvhRBm8T8EnJVSGmbrfuDipg8SQrxG7+OWEydO7PGwuy0bHuaw2F6SQ05Ef8QQBR5nWMebnKzsSw1p74UYilTSAmKoqGc6AnzXHpKLwT41QKU6P7eCGPpEXpHvMpM+Yk52W42WHMVZz1SSGfi+jBh6aeTreQyhsyBjcc/HAcnxw88qjt3W5NGncrW4r5Z87kvYA9zuPImjkzvLFzQv07tcVTvTyDS5VYf09BVYRKVLv5Bfyr6dO8oX9XnOemslaccwt2Aqp7+VuP2CBmA6PMaAWKV/oDKLQf3a6zyjgC3WcKdn5wj7yQq8DF5EhoNb1R/T12yUrYAY1p7Ma4c/r+ZAv/d74X/8e8gfeYmMzjtOCPFnQojP1fz3kh6fc6mU8kbgB4C3CyGeBNStXrLmNfWGlO+SUt4opbzxyJEjPT56NZPDIwxFzGw8nxON+whhaQs9h3vlBQx3K/XIs1F/wS8T/boZkyRTpbQLYz1Dr0c5HBTdz7PxguwwMJU9q5J8hRjmygj1TN9RnPRMJZmB71XEoIf0pBmeI/BsSnx1Ksk4hkIv6a7/Cf6Q4xuqkavXw3/h07hCPEQ6Xa6wiaXfqyse4GH3Qg7MjkNekTnRiEEIy1JmKKaRXSDOKES5hxGVZtvb5RPYv3t32UyWlY6h1zXTKRavihiMKGUsepOys/WLAIhP6eavIs3YHxkNfJezcg1vpvsYhBptaq5ZLwcoBFMR4aWV+9ZwKWl/jiHyXO7KLoAf+RA8/Xvho2+FB/6m1z5Wsc6rJ6V8vpTyaTX//QFwXAhxDED/+3DDPh7Q/34F+HPgG4CTwH4hhLkjLgG+9vR7g0ndy5CPKqeUTJjZTuiqWOg73CMvYL3aqDLbLapFrKGqoz4zEhlSqhrrOcRgO+6yYq4ehp5VHUO6WlVS5CmOQeRVxDAh9yKmSd4vXaARQxbXkM+9Krm0EB2aYygcw8fg0m9kkulr2qf08tjTcIRkY2s5ko7xe8mIAJzwLsQjhW19+2vHMNXT26wd/QVPI3dDnuncUaaSgnKsJ/Q7T8cR3CkuwyGDk1/Sx6bPU/r90iKuR0yAm1aFJFVQs9MXTQL55hMAmJ68S70Q76h5zwZN9vk+XYctNgjis+XEOyFW2hfAVAzwsioyUtdsJ3V6O8DQd5SzC4bwXe+CV38YLrmx1z5Wsb2mkj4AvEL//ArgDxY3EEIcEELlX4QQh4HnALdJKSXwUeB72v7+UTPd/SxHlfRPOi1ksvvcyKHncq88ynp8XN0k6QzytGhws0YMQqgBKjr6LaJCr5z33CuKA5yhcQzV0YZlKqlPtOS7ghkeTjbvGIr02wqIYW5KVyUqtK/kUp8ZVMnn0cNw4gtwxXOLh7+XIJyuTNq/U829m96PHlpJ2k4HKvrlrFIzNZH+zjRhI7Jv+sILmBy5jmc6t6sGyGR3bnob9ERGwN3u5eqH47epf4tUktePY0ANpfKzxbJcXZjQM5Uk9l2idnFaB1tm3nPaHxkBbDsbhMmWSiVVEDj0v2axM1g+T/Qcl56IIfScsiteCLj4mb3+flXbq2P4WeAFQog7gBfo3xFC3CiE+GW9zTXALUKIz6Acwc9KKfVdxhuAnxRC3IniHN69x+M5Z+auK7pEjDWfYfT26al3AriO4KtcgEDC2XtLwa9gnd1Z2g9eugGBMGmRdIFj6KfrAuCtKccgpxXHkJappF4liUKQiQDHIIY8hywm1o6hH/ls5kdPy67sPSCGAJV8nswyuPtj6r3Ln7vaw7//MnaJODiqRwxW6qoVOxMc0z/cU+7LC9maJOwb9HAMwOyiZ/FUcQ/T8c6eyWeAh/2L1RjP459TL6yaSkIvmOlCH4M/YDfOejvTcPMIU+mTn9WOwXAMK0b5u84mUbq1NCMbeqaSgJkzJMyXEcNolVSS7y5Pg/saWL87eMGklKeA59W8fgvwo/rnTwBPb/j7rwDP2ssxPFLmbSrE4Iw1YjASwblOJfVNF/gXKQbl9F1FREIwZLvvw+/6hFrds0AMGt30GhyvzV/TrSeTKsdgdPKD3vvLHB831zIWaYk8gJ6pJFN6mTCKU/b5yjGrqqQe56k5Bl9UOIbjH1Plk8euY/JFVQbYa5FzHL4sLuPouOoYpmRuCIh+Q5yA7egYOQLn7D3FuEu8AduTlM2ekTSXPhv/b/4T0cOfUdHvUJVi9i591RYEIQ85l3HJcd1noSvO4r7kM6r5LMiruXflAEd9e1yA9cjnq/Iwm9u6xj8ewdqRopKrL2LYdTcZZNsLznS1azZzBwSzZY4hpn+DW+g5JJkky6X1GNVzYec7nxvM31SIwZ2cUi+YuQL4hJ5jR3xWbDtS0JczdxWVD9Jf4+y4p2Nw/BrEUELfvjdxqLs+RVx1DOr4hD/oR2QDuRPgSo0Yig5qo4XTHzEYx1DKKm9oWeV+Jb6+QQxJpojny58Drsc0yQlc+9nFxu5yr+DC6ZfLcsk0Ju8zurFiYRBxUhxSiMGQvH60EmLwLlPlt/tO/c3CUPvVFrnId7k7eDI8cGuBmgFmsp/sNkDiDgnnHIPin2ZZ3q8wAdiIfB6Qh/BHxjHM97j0RQwTb5NBPobp1jJh33Nfy+dZRZP9rz/UDEt6hO28Y2iwaLjBSEb403nEMM783tENQLZ2lKmIFGLQi1zsDEhzyf5eiCGYj36TyZx2fN8IP9xQiEFUZYL1uRpZij52xj3MMNuBneOVDuoVUkm+Km/cEGNG07TQSTIPv/V5CgGOhyszHAHuzgNw+stw+TcD9NbuN3aP/0SG+S4YuYh0Sub0L0wA2DfwuZ+jimMoBi+t5hiG+45yZ34Rh0/fOh/9phm+K3o7wMh3ucN7CkxOw5m7iwa3GT3kxbUl7oCoumAm01Jiprdj8HhAHibc1YT9bLGUud+xTX2VUmX7gVJZdUWOIfWGDOSC9DyrlTKb+/xrPcXtvGNosMhzOCU3CWJdJ12ZD9z3gQDYNwx4yLlQIQZdmz/Saam+qSRPt34sIYae2vEAbrhBJgVeMl+umgqfMOyvUHJrqCsm7vxQkZIy09t6IYb1oyT+JleJ+9mZJkVna4EY+jhAN0BkM4aBx4Vn/lq9dsVzgRWGvWv7aqi08nlIN6YlU1LjGHrmy/cPfe7ODmvEUDqG7WnCZk/H4DqCW3kKF27/rQpAfDO9rZ98tLHId7jNuUr98tVPzfcxrIAYIjmfYjHOdDXHcIhBfEIdUzHveTUHGPuqbJvtry4hhr73R+atMZA1qaS+lVxQFB9sV1WGvwZ23jE0mOc6nGYf0Uw7hopEcF+iDGD/wOc+LtCIQRFwOzqS7ucYgiItojiGaYEY+s66BcBxGIkh7my+X2Mm+lUkGXsgfBKn3cPwpQ8WiGF3FccgBNND13Ctcw87cTrnGOK0Z/WV40OeEvkuF5/9FET7iwllq6TfAB4In0yKC1+9Rb2wwuhGY/uGPvdkR5A7D6pUBpB7UX/+Sdvn3WsYZDsLaZEejZQVG/gud/AEdY/df0uFN+rPMaTeGtFCJJ3o9FvfVNJa6PEAWsri9F2qys8UJqzgAJNAI4bZqIKyVktL5d6QIdXz1KNaV0AMB4bq+z973jE8duy0qDgGMzg+7+/1QS3+d2VHFRzXqaStbBXH4ONJdZMoxDCpcAz9y1UBRqwRJJVUUjJhRriSYwh9j1vDm+DLHwWdnhoZx9CTSM2OPo2rxX2MJnHFMWwS90YMPmQzhoHLZbufgUv/jpqtgJnp2/8xEOEaX/GeBPd8Ur2QxsVQ+77Xbf8g4D55RFWtnVSE9hSfXPa8N7R9Kby2/KXofO6nEmpsELhqLOtF1yvEUEkl9b3XssUFM5muVsoM+K7DSUcLLTysixxNKfMK32cWVfQ/jWOYrZZKyv01hkxJDS9QIZ/7Oob9QxVsnBnPOrY8t3beMbTYlrOftcQgBhX97qxQiwwqXXBHcliV+51S8gdnE/XQ90oXuD6ebtYaxzP1oBqOoY/uUsV2xRp+Up2sNSEW/ZrbjIW+w1/5N6qc71c+CsBID2LpW5EhLnwGQxEjTt+1N8Tg+pAlHHO3OTq7Hy77O8Vb0yRfyQFGnsNn3WvL9IpGDJHfn8jeP/S5T+pF7qTqjTDpt80+fQzaToeXsu3oCNiQz2m/uQLGIs9VufaLnwkPfqaYlCadwHoanzG1YE7K8uN0UjjTVXi7rVCNWuXEF9W/GjGs4gDTsMYxrJhKksEajpBMzRS3Su9H36CyQAznHcNjx7ad/aylZ1U9flIqQa6KGO6W+kbWeekzqfrS9w/7pZKcPEEIiKflkB7oP1TE2MRZJ6yO90wnTFdFDJ7LX4lnqP6Bz78fKJ1p3wXTv/gZAAxO3TZHPvfnGJRjuEHoBeTSv1u81avCqWKR73IrVytH/8CnMcPe+zo/MI5By7w8rI7RDK/pyzEADEOPO0KljLqXHheAKHAV8XnxM/W5ajmGFQoTcn+dUKTMjC5XGis1Xujd4AYwjvTzZBCD5hhWQQxGTgQo+xjSDNcRvR2gkf+IdzVvl07JHFXKvCpiODs+n0p6zNi2dxCHHH7hWvjg/wFo7fgVOIZ9A597jGPQNeGnZ37xnrW5ASJPGPouiYlIvL09/BN3najqGJJyDGFfi3yHrSyAy78JTqm0yCqyygDRsWtJpMv61hfOAceQ8PTsC8SEcOy64q2VF0zf4VO5JmXv/aSKfle8ZvsHAcc5QO74RfQ7StX1WiWVtBZ6fM4xjqFc5PpWrIFCDFODGADu+QQArmlA7GNGnsPojyUTYlYjnwHCaI0tZ3/hTAk3GM9WKybwwnViqY+hwstEK1wzIxhY6KylcVmYsELFmhBw5rxjeOzYX0Tfyu/s/xF44t+DcAOOPpU708MrI4YH5CGkcFVlkuNzJlZVJL1IWUcNQR8EXjmrwI+QUq7U4AYwddcZZPOCcH2H9BgLPVfVzF/5ouK1rdTvTS4COEHEV7iEg9tf0o5BQLDGZNa/Koks4drk89zuXQVeWW2lUkkrLJi+y4PZBhx6Mtz7l2oOMsHKiEHiMBpcXHAM26lBDP33NwxcbhXaMWgtrFX5p0HgKMew/1LVSKllO7ygP2IoIulxGUlPpOafVrhuG5HPCeeIKj8GCNc5tTvj0Hp/pzUIPc6ip8zpQGvSd0iPNjOUKJmUDjAr5Pr7nafrCDYj/3wq6bFkabjJ+9dvhpe9U4lX/dNPcGIWrsgxBKR4TNe0sniwxtYkYTPy+jWR6UVuLXTL2b7VMZArPPyxt8FQVhHDhInsT5SBiqTjNIOrXli8dnbm9CaejX3FvZyj4y8Vsximac4kyTiw1qOU1vVgcoZLZ3fyGRNJa1ulxBe0VEGSwaXfCPf9JSRjprK/5AGUqcSt8FjBZW3vBTEEHp/Knwz/+PfgSvU9rIqMBr5LmkuSXBaoIcfB91cYtqgXzHSi77VkwkQaxND/2NZDjwc5DFLX+IebnBrFHO5zb2gbBi5npB4mtOJYT2OOHu+ZTkrEYCrWVkEz+4f+ecTwWLLi4dcmpWScZL0lD6B8wEdD3QGtHUPvB1/ny4eBV84J9qOVBb8AZt4GQzmBTIvZJxN2Zf9yRPP5k1kGB58Ih64E1CCWVSJpgHv8J7EvPalKEsMNTuwoIu9In6jQDeD+W3DI+ZS8eu6tyYqph8hzmCY58gnfqCZ/nb2XSb5aKfPAdwlch5PeseK1rUQ9mqtxDK4S0Xvy84rO75XJZ31tFAGtelQS4TNYAQGKUC2Y2dZX1b0mMybSJ/L7KwmA4iW+Kg+VLwTrnBrNOLTe3zEMfLdEDJVu8VWumasdYDY1jmFKIpRiwiqyFvuHwXnE8FiyRQGraZIjZX84CKVjOBuWjuHsSo4hgGzGWuCSGT0WL1pJVtlY4utISRO8Mp2wm6/Wx3BwLWB3lilH9ZRvA8fn9MxfGTE8MHiy+uG+v4Rok1O76gHp9fA7vpJfwOGv0ifPvbVqJG2Q2exiJUGBzBlLn4G/woIpBPuGPg+Z8kuUM3XEaimWtcBTstsVW73BzS3+notvACBZoYcBYHzhTZyQmxz867cVsiu7udd7epux9cjj3vRguX9nwCTJVkslBS5npHEMZefzKveGGxnHoJFRGjMTwUo8CqjKpPPk82PIQh0VGjMP26rlqgAnfB0VGsQw7BnduIpIHYYesuIYVhnEYiwLNtUPurmKZMJUBr1VQgGObKiH8sRODN/yBvjh/86ZWf8GJmMn155SHlu4wUmNGA73Qgzq2h8fXsmpZP56r9r4VSyY65fDmlrQx9lqhQmgGiDvrwxAPB07bA58nBUizGGgNKCKslDOwXnO8iKV1Ht6m7b1zQP8u/T7WX/4U/Dp9wKmYXS1e2Mj8rmrcAyCU7H6ng+ulEryOCvnEcOqXfH+QAVaeWwcw3TlawZwYBic72N4LNliKmms5yyvQj5HvkvgOTzoasfgr63W2apTSWuBi9QyHWo+7WoiaQBp1TGcvQ/GpzjL2kqkrHEMD+/EKqf8hGetpJ5pTAwP8rBQQ5MINzg50o5ho79jeGj/NxCn5YKZ5ZJZtmIfg7420yxXPAOqkW+VoAG0LEZaTiY8Ezsr9TBAma8fV1DDyg1uxjGkmSKyD12pJLdXOM8LNiN+J3sup/ddCx95K6DKcldFDBuhx/155d7QaPLwnlNJpez2Ks+TP1DyGqVjiFfSSTK2b+CzdR4xPHYs8ucRwzhRD9oqHANoWQxTslpwDD0fCp1KGlQdQwUxrFKVJPV4T6Zb8MdvQAqXX01fuBKRerRADGWH626crZxKWg89vsTl6peKYzjUJyrU0tsnD6qI11yrYqjLShxDJcVyqWqY2037D3s3tm8QcEdS5stPTsVKxDOUgUsxxhT6l/hqM8N4isl3V72IeznWW3YeVNAgcfjI5T+pGiCB7Wy1UmYo9ZIACNY5bdKMa3tNJe2tL8gf6v3EIzUU6vSX2SVaKQUNCjHsxClJ9rUT0jvvGFpMlV6WD9euQQwrfsH7Bj5353oy3Mrks+EYvFJwzR/siXyWgY5wPv0bcPsfcfqmf85XObJSKunohnqoHtYpnzjNmGU9x3pWbD3y+Hx+qfol3ODkaMZG1FOOQSOGs4eVYzALplnsVqlVL+WQq4ih/7B3Y/uHPvdPQjUnwovYmqYrOwaDGHZjFcgYZLRq5zOUSqO88Gf4J7xpxR4Xl30Dn8+Ia+BpanDjTuru6d44xSa5G0K4wanRCvyTtmHgcgZTlbQ3xBBFQ1LpEIwfhF/7Loh3+J3B963kTAEOrJnu568datiTYxBCHBRCfEgIcYf+90DNNn9fCPHpyn9TIcRL9Xu/IoS4q/Le9Xs5nnNti+TzeA8cA6iH//jUh32XkkSHyHLZ/+F3PMhShqGLqChxTvdAPouBSiU5f/s+OHotD17zw8BqpXUH1wIcQVE9ZJzpyg9/6PHpRM33JdzkxCjuV5EEsHEhXPh0xIZCa8aJmmu2aiNfsa8Ln0F6w6v4H9kzVkYM+wc+Z6cpHLgcvJDtabpSDwMsIwaDjFZJJZmUUZFSFYLxijIiABdshhzfnsIL3wJXvoi/za5YPZUU+YBgtnYMwnVO7ho0uQJi8F2+nF9ELjzYUOne1ZsfPcZEXHXvb6qGxZt/nc9w1Z5SSQBbk68dz7BXxPBG4MNSyiuBD+vf50xK+VEp5fVSyuuBbwXGwJ9WNvmX5n0p5af3eDzn1CK/nJ4E5YO2p1zhJIFX/jdO3PiTxWu9zB9AssuPf/plvEa8v3htL4hB6CYoAL79F5hk6rZY5eF3HcHh9ZCHt/U4w6lypqs//B63ycvUL5p87h0RvvCt8Mo/Ks7HfI97uWZhkUrKwfXY+taf5XZ56Z6ChvEsI9t/KXiD1dCkNpPqNIih5J9WRwzmWuW5XDktBYpnOL4Tw+ZF8IO/xVeSAyunksw9dfrIs+GiGzg1UtV6qzj6YeDyN/Iqfut5H4P9KhCZrljiG/oOIyJyHPjuX4YnP091ZK94bxwohPQeJ4gBeAnwHv3ze4CXdmz/PcAfSynHHds9JmxxepJBDKvW5O8bBMoxHLiMs3KteK2X3fgq+JY3cvzADZxkH+ll3wzR/j2Vq7qDTbbkkNHT/jFc+o1F2qDvsHdjRzZCTmguYCdWN/NeHv575VF2n/5yuPIFnNqd9atIApUzjvYVi7Y5v8mK6pnqbyqIgXMQNOiHf/vpr4Bv/knV/Lgqx/bdmW4AABYWSURBVBDOIwaTe1/F0QyCigOEAkGvusgd3Yg4sV3yT6M4ZX3FSi4z9vRTz/jX8A//A6dG8UqlqlCez05ednRPZquV+Iaewy9l384fXfUz8FS1JI5n6crrRuEYdh8/iOECKeWD/P/tnXlw3Ud9wD/fd0pPepJsWZKvWD4ixzY5SGKCgRRS40ACTAMBCimlHgqTTqdQaGE4yh8tM8DA9KC0ZWgz4eqUSZoJtGSgQ4ZroDMtTJwwJYchh3wmtk7b0tPTu7d/7G/fIUuRtft7kvy0nxmP9H5+76fdt/vb737PBYKf/Yu8/53AfXOufUZEfiUiXxCRBUdVRO4WkSMicmRsbMyt1ZeIsT2bBaTqY3DVGKD6c8kPa9dm+O1P8Mj1n+OthU8xfueDesca3K8zufSHvy0R57X5v+XszTpSxPTXJiYftAN6NHA+m+/MpkgaaDuyIsLzN38WttzIeCa/dMEQ0FbVGLSAd3I+xxt30jXBYG9KAhjveyW5G95HoVSxj0oyGkPQz5OTuqbWYG9qyfcyWtZcYepiShqdzlOpKErlCrlixWrOQq2MeybQjCZmClahqnBxP5VS5EqWJTFEuE/ewOM9B6vXXDSGntQq9DGIyA9F5Il5/t2xlD8kIpuAa4CH6y5/AtgDvAxYD3xsoc8rpe5RSu1XSu3v6+tb6G2h0t+ldw9nLgQnkRkfg+XutycVJxNEF0zZCoaAqoMxaNPx8Rna49FqVNBSaI9HGaeb2ZKOmZ8Noq9sJ3JfOln1MWTyRmC52JFhOqe/t/PZorVgSM2xl88WAi3LyvkcaAyBplbNcbHNY6g7kMV1blQ1hkAon5jQCvq29R1LvpfppxEINW3SVmNIUqooJrMFZoJ72uZ+1OaG/r7GMwWrUFXQB3MlopGqgC+UdTKrrcmsPtRdKUW2UHYyMwKcX0Yfw6JPq1Lq0EL/JyIjIrJJKXUmWPhHX+RWvwv8h1KqKvaMtgHkReRrwEcusd3Lwq4+HXb23FiGq7d0VyeN7W7JPOhTs8Wq9O9eSsntOqoOxuDhPzY+w2BvyiohqrbINS6Ytv3sT7cxnilQriimAx+Dqx05ky9Vo042pC13hYn5fQw2i1xfp940nL0QnGttNAbL76ynvVZeuafdcdMwR2M4MZEllYhaLZpVzag05ztz8DEAjEzlqiWlbTcNqXgUkZofayKT59ot3Vb3Aj0PZguNfhmb8G+oq0qLFjLlinJ6BmIRuax8DA8Bh4PfDwPfeZH33sUcM1IgTBBdRe7NwBOO7QmVwd4UIvDcmFbFTUlfm3onUFcWY7Zob0oKmPvwHxufYWff0neEUKdGh7Qr7EsnKVcUkzMFZ1OS+VwmV6olt9nakef0M+dgSupOxelPJ3l6RCcxGUev7cPfU3cgy1SwA7b2MQSbBtOmk5NZBns7llasMSAZiyBSO83MdXNktPDRqXy1fbY5LpGgMvFUrkQlmG82oaqG9ni0OvddNg2gQ2bPBgEYruY3EVn2ekmuguFzwK0i8gxwa/AaEdkvIveaN4nIduAK4KdzPv9NEXkceBzYAHzasT2h0haPsnVdO8NjtYffVh2EmnZwIRAMsYhYJ8sZc8FsoUyxXOHkZJYdG+wEw1x7udk12WsMtbIYrqYk87npXLHq0LYWDAs5ny0cjABDA508MzLdcE/bhWTu3AD7TUMips0ixlRzYmKGwfVL9y+AXpTaYtGqyay6yFn2c6BLj93IVK7qG7AVpqCznzP5ElO5IqWKsnY+gzY1XhSxZjk39mzs4ugZXXtsxjEwAfTGYTl9DPYjAiilJoDXznP9CPC+utfHgS3zvO/g3GurjV19nVWNYbZQtrYhQ108crZYDUe02cVBo8ZwajJLuaLYsaHT6l5tcx2MRXNylV3bamUxcmRyJUTsH4p6B2O0WifJbldYjUqqagyBj8Ey+mqoP80DR05RqaiqZmQbeZJOxohGhPNZd8EApsJqiXJFcWpylkN7B6zvpU0sjdqkre29vmTK5h5dk8h20wDazzCdK1aLK9rODWjsp0uJGYC9m9J867HTjGfy1Y2WrW8SdCG95ayX5DOfF2Hnhk6OjWf0w+8Qcga1yBOzK3R58Kv28nyZ4xNacNlrDHoa5ItmV1gJ7Ld2gsFkP2uNoUxnYolnTtRhvu/pXKnu4beMSoo1+hjyjovc7gF9Ytjz52ergQm2O2kRoaddP/xTs/peXZYmFjAVVsucncpRKFfYZhGRZNAlxsPxMSRjUdZ3JBiZytVMSQ4LZmdbrMH/ZJPcZqg3JdUEoN0SuW+TTho9emaqFrFm+Z2BKb19+fgYWp5d/R3kihXOTOWcQs6gzseQLTjFqUNtwZwplBgONJqdloLhopDEYsmqSJqhfleYyRedTAXRwNyWyZcYn87THo9a3y8SkaD+VTihl7sHtIb2zOi0cx4DaHNSvf/JZX5os0iJE8GmYdAiIsnQlrh4wXTpZ386ychUvmpKctMYYnrTEJgZbcNVQQt1M46nz2Wd7rc3EAxPvTAVytzwGsMqY2dgnnluNMNM3k1jqKW2l5w1hlSytvs9Nj5Dd3t8aaea1XGxj8Gu3LChPRElnYwxNp13KqBn6GyLVZ3PthFJ1bbFaw//c2MZutvjSz/sPWBoQNfWeXokQ7ZQJhGNWN8LtEZ5IavDVVOJqNO9UskYM/kyJ4NQVZscBkN7XehlNWLNRTB0tWkzYwg+hs5kMDdCMCWl6kxJPzo6yrpUnGu39izyqflZ15FgY1dboDG4m5K8xrDK2BVE+gyPZZxikUHHSncmY6GYkhLRCLGIkC2UODY+Y21GAi0YRGqF72Yt69DXY3IZpvMlpx0haDtyJl8K4tTtTQWgI3Zmi2Uy+RIPPznCG6/dtPiHFqC7Pc5AV5KnR6bJFkpO/icIHv7ZgvPcAO2DyhZKnJjMEosIm7otzmgO0DH5WiCYRc7W/AYwkE42mJJs8xhAz42pOo3BdnMENVNSqVzhx78e5eCeAesIRIB9m7s4eiYcbbInFSdfqtSq3DYZLxgWoS+dJJ2M8dzYDNlC2Wl3A3oxMQ9/j2UOA2ibdCoRZSavNQZbMxJoc82tewd44JFTnM8WmC1WnHaEUBMMmVzRWTB0JmNM50tOWc+GtniE2UKZ7z9xltlimbfecFFMxJLYPZDmmUBjcLEhQ1BIL+u+aQAtAI3GsHVdu9XRmYbOZIzjEzPkimVnHwPoXIbxTIGpXIlENGJV3M+QbouRyReZyBToSdlrfwDtiRjZQplHjp/jwmyRW/ctVsjhxdm7Kc1zY5nqTt/lO6vVS1oec5IXDIsgIuzs62B4PEO2UHJeMLuDh9/qkJ45pBIxJmYKnLmQc9IYAD78uqvIFEr880+HmS2UQtEYRqdz2pTkrDHEmM4VQxEMRmP49mOnGexNccO2iwoCL4mh/jTPjmbI5EpOpgLQPoYL2SJTuaJ1OQxDR9JoDDNs63WbG3948w5On5vl0997yjliDXTIarmiODEx46QtgI7myhUrnJ3KLe2MjnlIBQluPzw6QiIW4beG3Cos7N3URami+L9T5wE3k1lP1T+5POYkLxgugZ19nQwbjcFRMPSk4jx/bpaKcgtHBO1neOoFfRznDsvkNsNVG9O8+aVb+Pr/HOP5c7POArA/3RY4n0vuPobA/DY5Y1/ywNAejzI8luF/hye48/qt1tFSht0DncwWyzw9Ou0+N9r1gSyTMwUnxzNoAZjJlzkxkbXOYTC8Zncff/Tqnfzbz0/y8JMjtDtErEEtyW14bCYU/xPoXA2XHAaomZJ+8NQIr9rV62wdMA7oR0+eA1xNSSYz3msMq4ZdfR2cuZALfAzupqSTk9oh6PrwdyRiDI+7harW86FDQ5TKihcu5EIxJWULZcam86GYkk4HwtRVY2hPRDk+kUUpeMv1bmYkqDmgh8dmnL8zY1o8NTkbio9hcibPdK7k5Hg2fPh1V3Hd1m6eHc2EsGnQY3hiIusUzAG1ekknJrLum4ZElIrSmeKH9tnnfRi293bQFo8wPDaDiH15Dagd1rNcZTG8YLgEdvbVEsdcpD5owWBC/txNSVFUcN77dkdzAcBgbwfveJmuRe9qSjIPv8vpbYbOthiFIBnNWTAE/bpp+3qn2H7D0EBtbrguckYwzBbL1of0GFLJGMExImxz1BhAZ1P/4103kE7GnOeGqZcUytwIPp8vVZxCVaFxzrskBBqiEeGqjVpr6HDI5QHvY1iV7KoXDCHYkQ09rrvCoC0DXUlntdfwgYNDtMUjrHNwjAP0d9UWcFdzQbqub667QiPY73R0Ohu62uLViJ8w/E/z/W5DvVlrewjaJMC23hT3Ht7Px2/f43SfvnR4c6M+CdAluQ1qc+O6rd1V4eWKSXQLa26YHJdmE85q0uKYYnpK4WxHbnj4HRdfM5HDMCMZNna38d0P3Oy8M69/+F2FVv3iscGirHg9Xe1xkrEIt19jH6Y6l6GBNGcu5ELQGGpCz93/VGtLGBqD4eU7e53vEY9G2NCZYDxTCHduhGBKgnC0BcO+TdrU6GppaItHaY9Hl+2wHq8xXAKmmB7YH8Ri6GkP8eGvCga7GkkLcWV/umGRssGUxYDGHb8N6boIHVeB9ce37OL+uw84f/f17O7X37+zj6GuTc5RSUFbBrqSTjkHzcLMj86QfAyAs/N5sLeDZCzCGxxyW+ZiHNCu6waY7GfvY1hVGHNSGD6G+X63wUw2lxyGZtHTHicWJAc57wqDzyeiEaf6QaDt29c7hqjOZXfggHYNvazPawlrbriUwmgmpspqGBFrBtdw1Zde0cOTn3p9g+nYlT1VweAunLtTCS4s02E9XjBcIqY0RlgPfzwqzk4805YwTUlhEYlI1ZwUhvMZdI171/DSZnDlgNk0uO9+TfdczYxmboThYG8GRmNw3TTUn/PhqjEATomA89GZjDHYmwrFB7icGoP3MVwiu/r14htGuKr56brImba45jA0i750kjMXctaH9BiMKcrVjNQsrhpIs74j4SygoxGhq02fC+5qSqppDKtTMFQ1BseNVjIWIR4VimXl7GNoFp99yzXOZkbQkUlHz06F0KLFcXpiReTtwF8Be4GbgnMY5nvfbcAXgShwr1LKHOizA7gffd7zY8C7lVLLV0JwCbzpms2cmylUzQa21AsGVw7s7OX1LxlYtQ+/CVkNy8G4Wh/8jmSMI588ZHWs6lx6UvFQSmKY72rIcb42C5Pk1pl066eIkA5JmDaLV125IZT79ASZ8cuBq970BHAn8LOF3iAiUeBLwO3APuAuEdkX/PfngS8opYaAc8B7HdvTNLpTcd5/cMipqJa5D4QjGG4cXMe/vHt/6OpvWIRmSlrlGgMQilCAmgPadX4M9nbw3Q/czOtCSNRqBiYc1NU0C3p+rO9IhDYGq5WeoCy7MslLTcRpRVFKHVVK/WaRt90EPKuUGg60gfuBO4Jzng8CDwbv+wb63OeWxpzUFWZUzGplY1c7IvbnPRvSwa7SNVT1cqA7lSAeFesDYuq5ekv3ql0sd/V1IAJb17lru+m2mLPj+XJgXSpBuaKYypWa/reWw8ewBThV9/o08HKgFzivlCrVXQ8n62gVIyJ0tcXWhGB414FtvGRzl3O4ZLotxhuv3cRrdrsVNbsc6GmPh+J/Wu3s7OvkkU8eCkUL3Lepixb/uoDGeknNXj8WFQwi8kNg4zz/9Uml1Hcu4W/MN2TqRa4v1I67gbsBtm3bdgl/dvXy0dv2cGV/uLkHq5ENnclQas5EIsKXfu+GEFq0+jn8yu28eg0IQAjPNPjXb78ulPusdvZsTPPuA4NOZcovlUUFg1LqkOPfOA1cUfd6K/ACMA70iEgs0BrM9YXacQ9wD8D+/fubb2RrInfddHkLNk/zuHFwHTcOhptn4WkNrt7SzdVbupflby2H1/IRYEhEdohIAngn8JDSHpSfAG8L3ncYuBQNxOPxeDxNxEkwiMhbROQ08ArgeyLycHB9s4j8F0CgDbwfeBg4CjyglHoyuMXHgD8XkWfRPoevuLTH4/F4PO7IcoQ+hc3+/fvVkSPzpkx4PB6PZwFE5FGl1P7F3rc6A+A9Ho/Hs2J4weDxeDyeBrxg8Hg8Hk8DXjB4PB6PpwEvGDwej8fTwGUZlSQiY8AJy49vQCfXrTXWYr/XYp9hbfbb9/nSGFRKLZpaf1kKBhdE5MilhGu1Gmux32uxz7A2++37HC7elOTxeDyeBrxg8Hg8Hk8Da1Ew3LPSDVgh1mK/12KfYW322/c5RNacj8Hj8Xg8L85a1Bg8Ho/H8yKsKcEgIreJyG9E5FkR+fhKt6cZiMgVIvITETkqIk+KyAeD6+tF5Aci8kzws+WK/otIVER+KSLfDV7vEJFfBH3+96Dse0shIj0i8qCI/DoY81e0+liLyJ8Fc/sJEblPRNpacaxF5KsiMioiT9Rdm3dsRfMPwdr2KxFxOtlqzQgGEYkCXwJuB/YBd4nIvpVtVVMoAR9WSu0FDgB/EvTz48CPlFJDwI+C163GB9Gl3Q2fB74Q9Pkc8N4VaVVz+SLwfaXUHuA6dP9bdqxFZAvwp8B+pdTVQBR9xksrjvXXgdvmXFtobG8HhoJ/dwNfdvnDa0YwADcBzyqlhpVSBeB+4I4VblPoKKXOKKUeC36fRi8UW9B9/Ubwtm8Ab16ZFjYHEdkKvBG4N3gtwEHgweAtrdjnLuDVBOeYKKUKSqnztPhYo0+ebBeRGJACztCCY62U+hkwOefyQmN7B/CvSvNz9OmYm2z/9loSDFuAU3WvTwfXWhYR2Q5cD/wCGFBKnQEtPID+lWtZU/h74KNAJXjdC5wPDoqC1hzvncAY8LXAhHaviHTQwmOtlHoe+BvgJFogXAAepfXH2rDQ2Ia6vq0lwSDzXGvZkCwR6QS+BXxIKTW10u1pJiLyJmBUKfVo/eV53tpq4x0DbgC+rJS6HpihhcxG8xHY1O8AdgCbgQ60GWUurTbWixHqfF9LguE0cEXd663ACyvUlqYiInG0UPimUurbweURo1oGP0dXqn1N4FXA74jIcbSJ8CBag+gJzA3QmuN9GjitlPpF8PpBtKBo5bE+BBxTSo0ppYrAt4FX0vpjbVhobENd39aSYHgEGAqiFxJoh9VDK9ym0Als618Bjiql/q7uvx4CDge/Hwa+s9xtaxZKqU8opbYqpbajx/XHSql3AT8B3ha8raX6DKCUOgucEpGrgkuvBZ6ihccabUI6ICKpYK6bPrf0WNex0Ng+BPxBEJ10ALhgTE42rKkENxF5A3onGQW+qpT6zAo3KXRE5Gbgv4HHqdnb/wLtZ3gA2IZ+uN6ulJrr2LrsEZFbgI8opd4kIjvRGsR64JfA7yul8ivZvrARkZeiHe4JYBh4D3rD17JjLSKfAt6BjsD7JfA+tD29pcZaRO4DbkFXUR0B/hL4T+YZ20BI/hM6iikLvEcpdcT6b68lweDxeDyexVlLpiSPx+PxXAJeMHg8Ho+nAS8YPB6Px9OAFwwej8fjacALBo/H4/E04AWDx+PxeBrwgsHj8Xg8DXjB4PF4PJ4G/h8lDE8Vjq7PNQAAAABJRU5ErkJggg==\n", 254 | "text/plain": [ 255 | "
" 256 | ] 257 | }, 258 | "metadata": { 259 | "needs_background": "light" 260 | }, 261 | "output_type": "display_data" 262 | } 263 | ], 264 | "source": [ 265 | "# Sanity check, we should get a sine graph\n", 266 | "prediction = vae.predict(y, batch_size=batch_size)\n", 267 | "\n", 268 | "# pick a column to plot.\n", 269 | "print(\"x: %s, preds: %s\" % (y.shape, prediction.shape))\n", 270 | "plt.plot(y[:100,0,0], label='data')\n", 271 | "plt.plot(prediction[:100,0,0], label='predict')\n", 272 | "plt.legend()\n", 273 | "plt.show()" 274 | ] 275 | }, 276 | { 277 | "cell_type": "markdown", 278 | "metadata": {}, 279 | "source": [ 280 | "## Step 3\n", 281 | "Obtain $\\textbf{z}_{t_{1}}, \\textbf{z}_{t_{2}}, ..., \\textbf{z}_{t_{M}} $ by solving ODE $ ODESolve(\\textbf{z}_{t_{0}}, f, \\theta_{f}, t_{0},...,t_{M})$ where $f$ is the function defining the gradient $d\\textbf{z}/{dt}$ as a function of $\\textbf{z}$" 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "execution_count": 48, 287 | "metadata": {}, 288 | "outputs": [ 289 | { 290 | "name": "stdout", 291 | "output_type": "stream", 292 | "text": [ 293 | "(1995, 5, 1)\n", 294 | "[[-0.96730685 -0.30260754 -1.2165959 ... -0.1712243 0.16253346\n", 295 | " 0.1311233 ]\n", 296 | " [ 0.8523834 1.3523002 -0.5332169 ... 0.5856302 0.80972576\n", 297 | " -0.4475613 ]\n", 298 | " [ 1.7198956 1.1818202 -0.38006347 ... -0.61021274 -0.8827091\n", 299 | " -1.177722 ]\n", 300 | " ...\n", 301 | " [ 1.5871499 0.38149977 -1.2908301 ... 1.5604678 -1.1208996\n", 302 | " -0.05023703]\n", 303 | " [ 0.60470605 2.166283 0.07132202 ... -0.35144055 -1.2759343\n", 304 | " -1.1601465 ]\n", 305 | " [-0.84649354 -0.5831001 -0.44895828 ... 1.4420025 0.8956648\n", 306 | " -2.1960166 ]]\n" 307 | ] 308 | } 309 | ], 310 | "source": [ 311 | "# We obtain z values from the prior sample by using the predict function\n", 312 | "# As the dataset here is small we just use all y values\n", 313 | "z_val = encoder_z.predict(y)\n", 314 | "print(prediction.shape)\n", 315 | "print(z_val)" 316 | ] 317 | }, 318 | { 319 | "cell_type": "code", 320 | "execution_count": 49, 321 | "metadata": {}, 322 | "outputs": [], 323 | "source": [ 324 | "# From Appendix B\n", 325 | "# For clarity: vjp stands for Vector Jacobian Product\n", 326 | "\n", 327 | "def grad_odeint_all(yt, func, y0, t, func_args, **kwargs):\n", 328 | " \"\"\"\n", 329 | " Extended from \"Scalable Inference of Ordinary Differential\"\n", 330 | " Equation Models of Biochemical Processes\". Sec. 2.4.2\n", 331 | " Fabian Froehlich, Carolin Loos, Jan Hasenauer, 2017\n", 332 | " https://arxiv.org/pdf/1711.08079.pdf\n", 333 | " \"\"\"\n", 334 | " T, D = np.shape(yt)\n", 335 | " flat_args, unflatten = flatten(func_args)\n", 336 | " \n", 337 | " def flat_func(y, t, flat_args):\n", 338 | " return func(y, t, *unflatten(flat_args))\n", 339 | "\n", 340 | " def unpack(x):\n", 341 | " # y, vjp_y, vjp_t, vjp_args\n", 342 | " return x[0:D], x[D:2 * D], x[2 * D], x[2 * D + 1:]\n", 343 | "\n", 344 | " def augmented_dynamics(augmented_state, t, flat_args):\n", 345 | " \"\"\"\n", 346 | " Original system augemented with vjp_y, vjp_t and vjp_args \n", 347 | " \"\"\"\n", 348 | " y, vjp_y, _, _ = unpack(augmented_state)\n", 349 | " vjp_all, dy_dt = make_vjp(flat_func, argnum=(0, 1, 2))(y, t, flat_args)\n", 350 | " vjp_y, vjp_t, vjp_args = vjp_all(-vjp_y)\n", 351 | " return np.hstack((dy_dt, vjp_y, vjp_t, vjp_args))\n", 352 | "\n", 353 | " def vjp_all(g):\n", 354 | " vjp_y = g[-1, :]\n", 355 | " vjp_t0 = 0\n", 356 | " time_vjp_list = []\n", 357 | " vjp_args = np.zeros(np.size(flat_args))\n", 358 | " \n", 359 | " for i in range(T - 1, 0, -1):\n", 360 | "\n", 361 | " # Compute effect of moving measurement time.\n", 362 | " vjp_cur_t = np.dot(func(yt[i, :], t[i], *func_args), g[i, :])\n", 363 | " time_vjp_list.append(vjp_cur_t)\n", 364 | " vjp_t0 = vjp_t0 - vjp_cur_t\n", 365 | "\n", 366 | " # Run augmented system backwards to the previous observation.\n", 367 | " aug_y0 = np.hstack((yt[i, :], vjp_y, vjp_t0, vjp_args))\n", 368 | " aug_ans = odeint(augmented_dynamics, aug_y0,\n", 369 | " np.array([t[i], t[i - 1]]), tuple((flat_args,)), **kwargs)\n", 370 | " _, vjp_y, vjp_t0, vjp_args = unpack(aug_ans[1])\n", 371 | "\n", 372 | " # Add gradient from current output.\n", 373 | " vjp_y = vjp_y + g[i - 1, :]\n", 374 | "\n", 375 | " time_vjp_list.append(vjp_t0)\n", 376 | " vjp_times = np.hstack(time_vjp_list)[::-1]\n", 377 | "\n", 378 | " return None, vjp_y, vjp_times, unflatten(vjp_args)\n", 379 | " return vjp_all\n", 380 | "\n", 381 | "\n", 382 | "def argnums_unpack(all_vjp_builder):\n", 383 | " \"\"\"\n", 384 | " A generic autograd helper function. Takes a function that\n", 385 | " builds vjps for all arguments, and wraps it to return only required vjps.\n", 386 | " \"\"\"\n", 387 | "\n", 388 | " def build_selected_vjps(argnums, ans, combined_args, kwargs):\n", 389 | " vjp_func = all_vjp_builder(ans, *combined_args, **kwargs)\n", 390 | "\n", 391 | " def chosen_vjps(g): # Returns whichever vjps were asked for.\n", 392 | " all_vjps = vjp_func(g)\n", 393 | " return [all_vjps[argnum] for argnum in argnums]\n", 394 | " return chosen_vjps\n", 395 | " return build_selected_vjps\n", 396 | "\n", 397 | "\n", 398 | "# After performing defvjp_argnums, we can use odeint() as a function anywhere now\n", 399 | "# Details of implementation found in autograd library\n", 400 | "# https://github.com/HIPS/autograd/blob/master/autograd/core.py\n", 401 | "\n", 402 | "defvjp_argnums(odeint, argnums_unpack(grad_odeint_all))" 403 | ] 404 | }, 405 | { 406 | "cell_type": "code", 407 | "execution_count": 55, 408 | "metadata": {}, 409 | "outputs": [], 410 | "source": [ 411 | "# define f as sin function\n", 412 | "f = lambda y, t0, z: np.dot(np.sin(y), z)\n", 413 | "\n", 414 | "t = np.linspace(0., max_T, N)\n", 415 | "# odeint(yt, func, y0, t)\n", 416 | "\n", 417 | "# TODO" 418 | ] 419 | }, 420 | { 421 | "cell_type": "markdown", 422 | "metadata": {}, 423 | "source": [ 424 | "## Step 4\n", 425 | "Maximize ELBO (Evidence Lower Bound) \n", 426 | "$$ ELBO = \\sum^{M}_{i=1}\n", 427 | " {\n", 428 | " \\log p(\\textbf{x}_{t_{i}}) | \\textbf{z}_{t_{i}}, \\theta_{\\textbf{x}} ) \n", 429 | " + \\log p(\\textbf{z}_{t_{0}})\n", 430 | " - \\log q(\\textbf{z}_{t_{0}} | \\{ \\textbf{x}_{t_{i}}, t_{i} \\}_{i}, \\phi)\n", 431 | " } \n", 432 | "$$\n", 433 | "\n", 434 | "Where $p(\\textbf{z}_{t_{0}}) = \\mathcal{N}(0,1)$" 435 | ] 436 | }, 437 | { 438 | "cell_type": "code", 439 | "execution_count": 54, 440 | "metadata": {}, 441 | "outputs": [], 442 | "source": [ 443 | "# TODO" 444 | ] 445 | }, 446 | { 447 | "cell_type": "code", 448 | "execution_count": null, 449 | "metadata": { 450 | "collapsed": true 451 | }, 452 | "outputs": [], 453 | "source": [] 454 | } 455 | ], 456 | "metadata": { 457 | "kernelspec": { 458 | "display_name": "Python [conda env:catalyst]", 459 | "language": "python", 460 | "name": "conda-env-catalyst-py" 461 | }, 462 | "language_info": { 463 | "codemirror_mode": { 464 | "name": "ipython", 465 | "version": 3 466 | }, 467 | "file_extension": ".py", 468 | "mimetype": "text/x-python", 469 | "name": "python", 470 | "nbconvert_exporter": "python", 471 | "pygments_lexer": "ipython3", 472 | "version": "3.6.4" 473 | } 474 | }, 475 | "nbformat": 4, 476 | "nbformat_minor": 2 477 | } 478 | -------------------------------------------------------------------------------- /autograd_extended.py: -------------------------------------------------------------------------------- 1 | """ 2 | From Appendix B in the paper 3 | Implementation of autograd 4 | """ 5 | 6 | import scipy.integrate 7 | 8 | import autograd.numpy as np 9 | from autograd.extend import primitive, defvjp_argnums 10 | from autograd import make_vjp 11 | from autograd.misc import flatten 12 | from autograd.builtins import tuple 13 | 14 | odeint = primitive(scipy.integrate.odeint) 15 | 16 | 17 | def grad_odeint_all(yt, func, y0, t, func_args, **kwargs): 18 | """ 19 | Extended from "Scalable Inference of Ordinary Differential" 20 | Equation Models of Biochemical Processes". Sec. 2.4.2 21 | Fabian Froehlich, Carolin Loos, Jan Hasenauer, 2017 22 | https://arxiv.org/pdf/1711.08079.pdf 23 | """ 24 | 25 | T, D = np.shape(yt) 26 | flat_args, unflatten = flatten(func_args) 27 | 28 | def flat_func(y, t, flat_args): 29 | return func(y, t, *unflatten(flat_args)) 30 | 31 | 32 | def unpack(x): 33 | # y, vjp_y, vjp_t, vjp_args 34 | return x[0:D], x[D:2 * D], x[2 * D], x[2 * D + 1:] 35 | 36 | 37 | def augmented_dynamics(augmented_state, t, flat_args): 38 | # Original system augemented with vjp_y, vjp_t and vjp_args 39 | y, vjp_y, _, _ = unpack(augmented_state) 40 | vjp_all, dy_dt = make_vjp(flat_func, argnum=(0, 1, 2))(y, t, flat_args) 41 | vjp_y, vjp_t, vjp_args = vjp_all(-vjp_y) 42 | return np.hstack((dy_dt, vjp_y, vjp_t, vjp_args)) 43 | 44 | 45 | def vjp_all(g, **kwargs): 46 | vjp_y = g[-1, :] 47 | vjp_t0 = 0 48 | time_vjp_list = [] 49 | vjp_args = np.zeros(np.size(flat_args)) 50 | 51 | for i in range(T - 1, 0, -1): 52 | # Compute effect of moving current time. 53 | vjp_cur_t = np.dot(func(yt[i, :], t[i], *func_args), g[i, :]) 54 | time_vjp_list.append(vjp_cur_t) 55 | vjp_t0 = vjp_t0 - vjp_cur_t 56 | 57 | # Run augmented system backwards to the previous observation 58 | aug_y0 = np.hstack((yt[i, :], vjp_y, vjp_t0, vjp_args)) 59 | aug_ans = odeint(augmented_dynamics, aug_y0, 60 | np.array(t[i], t[i - 1]), tuple((flat_args,)), **kwargs) 61 | _, vjp_y, vjp_t0, vjp_args = unpack(aug_ans[1]) 62 | 63 | # Add gradient from current output 64 | vjp_y = vjp_y + g[i - 1, :] 65 | 66 | time_vjp_list.append(vjp_t0) 67 | vjp_times = np.hstack(time_vjp_list)[::-1] 68 | 69 | return None, vjp_y, vjp_times, unflatten(vjp_args) 70 | 71 | return vjp_all 72 | 73 | 74 | def grad_argnums_wrapper(all_vjp_builder): 75 | """ 76 | A generic autograd helper funciton. Takes a function that 77 | builds vjps for all arguments, and wraps it to return only required vjps. 78 | """ 79 | def build_selected_vjps(argnums, ans, combined_args, kwargs): 80 | vjp_func = all_vjp_builder(ans, *combined_args, **kwargs) 81 | 82 | def chosen_vjps(g): 83 | # Return whichever vjps were asked for 84 | all_vjps = vjp_func(g) 85 | return [all_vjps[argnum] for argnum in argnums] 86 | 87 | return chosen_vjps 88 | 89 | return build_selected_vjps 90 | 91 | 92 | if __name__ == '__main__': 93 | print(defvjp_argnums(odeint, grad_argnums_wrapper(grad_odeint_all))) -------------------------------------------------------------------------------- /data.csv: -------------------------------------------------------------------------------- 1 | x,y 2 | 0,0 3 | 1,0.8414709848 4 | 2,0.9092974268 5 | 3,0.1411200081 6 | 4,-0.7568024953 7 | 5,-0.9589242747 8 | 6,-0.2794154982 9 | 7,0.6569865987 10 | 8,0.9893582466 11 | 9,0.4121184852 12 | 10,-0.5440211109 13 | 11,-0.9999902066 14 | 12,-0.536572918 15 | 13,0.4201670368 16 | 14,0.9906073557 17 | 15,0.6502878402 18 | 16,-0.2879033167 19 | 17,-0.9613974919 20 | 18,-0.7509872468 21 | 19,0.1498772097 22 | 20,0.9129452507 23 | 21,0.8366556385 24 | 22,-0.0088513093 25 | 23,-0.8462204042 26 | 24,-0.905578362 27 | 25,-0.1323517501 28 | 26,0.7625584505 29 | 27,0.9563759284 30 | 28,0.2709057883 31 | 29,-0.6636338842 32 | 30,-0.9880316241 33 | 31,-0.4040376453 34 | 32,0.5514266812 35 | 33,0.9999118601 36 | 34,0.5290826861 37 | 35,-0.4281826695 38 | 36,-0.9917788534 39 | 37,-0.6435381334 40 | 38,0.2963685787 41 | 39,0.9637953863 42 | 40,0.7451131605 43 | 41,-0.1586226688 44 | 42,-0.9165215479 45 | 43,-0.8317747426 46 | 44,0.0177019251 47 | 45,0.8509035245 48 | 46,0.9017883476 49 | 47,0.1235731227 50 | 48,-0.7682546613 51 | 49,-0.9537526528 52 | 50,-0.2623748537 53 | 51,0.6702291758 54 | 52,0.986627592 55 | 53,0.3959251502 56 | 54,-0.5587890489 57 | 55,-0.9997551734 58 | 56,-0.5215510021 59 | 57,0.4361647552 60 | 58,0.9928726481 61 | 59,0.6367380071 62 | 60,-0.3048106211 63 | 61,-0.96611777 64 | 62,-0.7391806966 65 | 63,0.1673557003 66 | 64,0.9200260382 67 | 65,0.8268286795 68 | 66,-0.026551154 69 | 67,-0.855519979 70 | 68,-0.8979276807 71 | 69,-0.1147848138 72 | 70,0.7738906816 73 | 71,0.9510546533 74 | 72,0.2538233628 75 | 73,-0.6767719569 76 | 74,-0.9851462605 77 | 75,-0.3877816354 78 | 76,0.5661076369 79 | 77,0.9995201586 80 | 78,0.513978456 81 | 79,-0.4441126687 82 | 80,-0.9938886539 83 | 81,-0.6298879943 84 | 82,0.3132287824 85 | 83,0.9683644611 86 | 84,0.7331903201 87 | 85,-0.1760756199 88 | 86,-0.923458447 89 | 87,-0.8218178366 90 | 88,0.0353983027 91 | 89,0.8600694058 92 | 90,0.8939966636 93 | 91,0.1059875118 94 | 92,-0.7794660696 95 | 93,-0.9482821413 96 | 94,-0.2452519855 97 | 95,0.6832617147 98 | 96,0.9835877454 99 | 97,0.379607739 100 | 98,-0.573381872 101 | 99,-0.9992068342 102 | 100,-0.5063656411 103 | 101,0.4520257872 104 | 102,0.9948267914 105 | 103,0.6229886314 106 | 104,-0.3216224032 107 | 105,-0.9705352835 108 | 106,-0.7271425001 109 | 107,0.1847817446 110 | 108,0.9268185054 111 | 109,0.8167426066 112 | 110,-0.0442426781 113 | 111,-0.8645514486 114 | 112,-0.8899956044 115 | 113,-0.0971819059 116 | 114,0.7849803887 117 | 115,0.945435334 118 | 116,0.2366613934 119 | 117,-0.6896979409 120 | 118,-0.981952169 121 | 119,-0.3714041014 122 | 120,0.5806111842 123 | 121,0.9988152247 124 | 122,0.4987131539 125 | 123,-0.4599034907 126 | 124,-0.9956869869 127 | 125,-0.6160404592 128 | 126,0.3299908257 129 | 127,0.9726300672 130 | 128,0.7210377105 131 | 129,-0.193473392 132 | 130,-0.9301059502 133 | 131,-0.8116033871 134 | 132,0.0530835871 135 | 133,0.8689657562 136 | 134,0.8859248165 137 | 135,0.0883686861 138 | 136,-0.7904332067 139 | 137,-0.9425144546 140 | 138,-0.2280522595 141 | 139,0.6960801312 142 | 140,0.9802396594 143 | 141,0.3631713654 144 | 142,-0.5877950072 145 | 143,-0.9983453609 146 | 144,-0.4910215939 147 | 145,0.467745162 148 | 146,0.9964691731 149 | 147,0.6090440219 150 | 148,-0.3383333943 151 | 149,-0.9746486481 152 | 150,-0.7148764296 153 | 151,0.2021498814 154 | 152,0.9333205237 155 | 153,0.8064005808 156 | 154,-0.0619203373 157 | 155,-0.8733119828 158 | 156,-0.8817846188 159 | 157,-0.0795485429 160 | 158,0.7958240965 161 | 159,0.9395197317 162 | 160,0.2194252584 163 | 161,-0.7024077856 164 | 162,-0.9784503508 165 | 163,-0.3549101758 166 | 164,0.594932778 167 | 165,0.9977972794 168 | 166,0.4832915637 169 | 167,-0.4755501869 170 | 168,-0.9971732888 171 | 169,-0.6019998677 172 | 170,0.3466494555 173 | 171,0.9765908679 174 | 172,0.7086591402 175 | 173,-0.2108105329 176 | 174,-0.9364619743 177 | 175,-0.8011345952 178 | 176,0.0707522361 179 | 177,0.8775897878 180 | 178,0.8775753358 181 | 179,0.0707221672 182 | 180,-0.8011526357 183 | 181,-0.9364514001 184 | 182,-0.2107810659 185 | 183,0.7086804082 186 | 184,0.9765843833 187 | 185,0.3466211801 188 | 186,-0.6020239376 189 | 187,-0.9971710234 190 | 188,-0.475523669 191 | 189,0.4833179537 192 | 190,0.9977992787 193 | 191,0.5949085485 194 | 192,-0.3549383577 195 | 193,-0.9784565746 196 | 194,-0.7023863293 197 | 195,0.219454668 198 | 196,0.9395300556 199 | 197,0.7958058429 200 | 198,-0.0795785917 201 | 199,-0.8817988361 202 | 200,-0.8732972972 203 | 201,-0.0618902507 204 | 202,0.8064184069 205 | 203,0.9333097002 206 | 204,0.2021203593 207 | 205,-0.7148975078 208 | 206,-0.9746419031 209 | 207,-0.3383050275 210 | 208,0.6090679302 211 | 209,0.9964666418 212 | 210,0.4677185183 213 | 211,-0.4910478539 214 | 212,-0.9983470938 215 | 213,-0.5877706198 216 | 214,0.3631994514 217 | 215,0.980245622 218 | 216,0.6960584883 219 | 217,-0.2280816094 220 | 218,-0.9425245273 221 | 219,-0.7904147415 222 | 220,0.0883987125 223 | 221,0.8859387979 224 | 222,0.8689508382 225 | 223,0.0530534853 226 | 224,-0.8116209974 227 | 225,-0.930094878 228 | 226,-0.1934438172 229 | 227,0.7210585971 230 | 228,0.9726230625 231 | 229,0.3299623697 232 | 230,-0.6160642041 233 | 231,-0.9956841898 234 | 232,-0.4598767232 235 | 233,0.4987392818 236 | 234,0.9988166912 237 | 235,0.580586641 238 | 236,-0.3714320894 239 | 237,-0.9819578698 240 | 238,-0.6896761132 241 | 239,0.2366906813 242 | 240,0.9454451549 243 | 241,0.7849617133 244 | 242,-0.0972119075 245 | 243,-0.8900093489 246 | 244,-0.8645362993 247 | 245,-0.0442125632 248 | 246,0.8167599996 249 | 247,0.9268071855 250 | 248,0.1847521192 251 | 249,-0.7271631934 252 | 250,-0.9705280195 253 | 251,-0.3215938603 254 | 252,0.623012211 255 | 253,0.9948237287 256 | 254,0.4519988981 257 | 255,-0.5063916349 258 | 256,-0.9992080341 259 | 257,-0.5733571748 260 | 258,0.3796356268 261 | 259,0.9835931839 262 | 260,0.6832397038 263 | 261,-0.2452812091 264 | 262,-0.9482917095 265 | 263,-0.7794471855 266 | 264,0.1060174863 267 | 265,0.8940101701 268 | 266,0.8600540265 269 | 267,0.0353681773 270 | 268,-0.821835011 271 | 269,-0.9234468802 272 | 270,-0.1760459465 273 | 271,0.7332108186 274 | 272,0.9683569384 275 | 273,0.3132001549 276 | 274,-0.6299114067 277 | 275,-0.9938853259 278 | 276,-0.44408566 279 | 277,0.5140043137 280 | 278,0.9995210918 281 | 279,0.5660827877 282 | 280,-0.3878094208 283 | 281,-0.9851514363 284 | 282,-0.6767497645 285 | 283,0.2538525198 286 | 284,0.9510639681 287 | 285,0.7738715902 288 | 286,-0.1148147588 289 | 287,-0.8979409481 290 | 288,-0.8555043708 291 | 289,-0.0265210203 292 | 290,0.8268456339 293 | 291,0.9200142255 294 | 292,0.167325981 295 | 293,-0.7392009988 296 | 294,-0.9661099893 297 | 295,-0.3047819111 298 | 296,0.6367612506 299 | 297,0.992869055 300 | 298,0.4361376291 301 | 299,-0.5215767216 302 | 300,-0.9997558399 303 | 301,-0.5587640496 304 | 302,0.395952831 305 | 303,0.9866325048 306 | 304,0.6702068038 307 | 305,-0.2624039419 308 | 306,-0.9537617135 309 | 307,-0.7682353642 310 | 308,0.123603036 311 | 309,0.901801375 312 | 310,0.8508876887 313 | 311,0.0176717855 314 | 312,-0.8317914758 315 | 313,-0.9165094902 316 | 314,-0.158592906 317 | 315,0.7451332646 318 | 316,0.9637873481 319 | 317,0.2963397885 320 | 318,-0.643561206 321 | 319,-0.9917749956 322 | 320,-0.4281554281 323 | 321,0.5291082655 324 | 322,0.9999122599 325 | 323,0.5514015339 326 | 324,-0.4040652195 327 | 325,-0.9880362735 328 | 326,-0.6636113342 329 | 327,0.2709348053 330 | 328,0.9563847343 331 | 329,0.7625389492 332 | 330,-0.1323816292 333 | 331,-0.9055911482 334 | 332,-0.8462043419 335 | 333,-0.0088211661 336 | 334,0.8366721491 337 | 335,0.9129329489 338 | 336,0.1498474057 339 | 337,-0.7510071513 340 | 338,-0.9613891968 341 | 339,-0.2878744485 342 | 340,0.6503107402 343 | 341,0.9906032334 344 | 342,0.4201396822 345 | 343,-0.5365983552 346 | 344,-0.9999903395 347 | 345,-0.5439958174 348 | 346,0.4121459505 349 | 347,0.9893626322 350 | 348,0.6569638725 351 | 349,-0.2794444418 352 | 350,-0.958932825 353 | 351,-0.7567827913 354 | 352,0.1411498507 355 | 353,0.9093099709 356 | 354,0.8414546974 357 | 355,-3.01443533594884E-05 358 | 356,-0.8414872715 359 | 357,-0.9092848819 360 | 358,-0.1410901653 361 | 359,0.7568221986 362 | 360,0.9589157234 363 | 361,0.2793865544 364 | 362,-0.6570093243 365 | 363,-0.9893538602 366 | 364,-0.4120910196 367 | 365,0.5440464039 368 | 366,0.9999900727 369 | 367,0.5365474803 370 | 368,-0.420194391 371 | 369,-0.9906114771 372 | 370,-0.6502649396 373 | 371,0.2879321846 374 | 372,0.9614057861 375 | 373,0.7509673416 376 | 374,-0.1499070135 377 | 375,-0.9129575517 378 | 376,-0.8366391272 379 | 377,0.0088814525 380 | 378,0.8462364657 381 | 379,0.905565575 382 | 380,0.1323218709 383 | 381,-0.7625779511 384 | 382,-0.9563671216 385 | 383,-0.2708767711 386 | 384,0.6636564336 387 | 385,0.9880269738 388 | 386,0.4040100708 389 | 387,-0.5514518281 390 | 388,-0.9999114594 391 | 389,-0.5290571063 392 | 390,0.4282099105 393 | 391,0.9917827104 394 | 392,0.6435150602 395 | 393,-0.2963973687 396 | 394,-0.9638034236 397 | 395,-0.7450930557 398 | 396,0.1586524314 399 | 397,0.9165336048 400 | 398,0.8317580087 401 | 399,-0.0177320647 402 | 400,-0.8509193596 403 | 401,-0.9017753195 404 | 402,-0.1235432094 405 | 403,0.7682739577 406 | 404,0.9537435912 407 | 405,0.2623457653 408 | 406,-0.6702515473 409 | 407,-0.9866226783 410 | 408,-0.395897469 411 | 409,0.5588140476 412 | 410,0.9997545059 413 | 411,0.5215252821 414 | 412,-0.436191881 415 | 413,-0.9928762402 416 | 414,-0.6367147631 417 | 415,0.3048393308 418 | 416,0.9661255499 419 | 417,0.7391603939 420 | 418,-0.1673854194 421 | 419,-0.9200378501 422 | 420,-0.8268117243 423 | 421,0.0265812877 424 | 422,0.8555355864 425 | 423,0.8979144125 426 | 424,0.1147548686 427 | 425,-0.7739097722 428 | 426,-0.9510453375 429 | 427,-0.2537942055 430 | 428,0.6767941486 431 | 429,0.9851410837 432 | 430,0.3877538496 433 | 431,-0.5661324856 434 | 432,-0.9995192244 435 | 433,-0.5139525978 436 | 434,0.444139677 437 | 435,0.993891981 438 | 436,0.6298645813 439 | 437,-0.3132574097 440 | 438,-0.9683719829 441 | 439,-0.7331698209 442 | 440,0.1761052933 443 | 441,0.9234700129 444 | 442,0.8218006615 445 | 443,-0.0354284282 446 | 444,-0.8600847844 447 | 445,-0.8939831563 448 | 446,-0.1059575371 449 | 447,0.779484953 450 | 448,0.9482725722 451 | 449,0.2452227616 452 | 450,-0.683283725 453 | 451,-0.983582306 454 | 452,-0.3795798509 455 | 453,0.5734065686 456 | 454,0.9992056334 457 | 455,0.5063396468 458 | 456,-0.4520526759 459 | 457,-0.9948298531 460 | 458,-0.6229650513 461 | 459,0.3216509457 462 | 460,0.9705425467 463 | 461,0.7271218061 464 | 462,-0.1848113697 465 | 463,-0.9268298245 466 | 464,-0.8167252129 467 | 465,0.0442727929 468 | 466,0.8645665971 469 | 467,0.8899818591 470 | 468,0.0971519042 471 | 469,-0.7849990634 472 | 470,-0.9454255123 473 | 471,-0.2366321052 474 | 472,0.6897197681 475 | 473,0.9819464674 476 | 474,0.3713761131 477 | 475,-0.5806357269 478 | 476,-0.9988137573 479 | 477,-0.4986870255 480 | 478,0.4599302577 481 | 479,0.9956897831 482 | 480,0.6160167138 483 | 481,-0.3300192813 484 | 482,-0.9726370711 485 | 483,-0.7210168233 486 | 484,0.1935029667 487 | 485,0.9301170215 488 | 486,0.8115857762 489 | 487,-0.053113689 490 | 488,-0.8689806734 491 | 489,-0.8859108342 492 | 490,-0.0883386596 493 | 491,0.7904516712 494 | 492,0.9425043809 495 | 493,0.2280229094 496 | 494,-0.6961017735 497 | 495,-0.980233696 498 | 496,-0.363143279 499 | 497,0.587819394 500 | 498,0.998343627 501 | 499,0.4909953335 502 | 500,-0.4677718053 503 | 501,-0.9964717036 504 | 502,-0.609020113 505 | 503,0.3383617608 506 | 504,0.9746553922 507 | 505,0.7148553508 508 | 506,-0.2021794033 509 | 507,-0.9333313465 510 | 508,-0.806382754 511 | 509,0.0619504237 512 | 510,0.8733266675 513 | 511,0.8817704008 514 | 512,0.079518494 515 | 513,-0.7958423494 516 | 514,-0.939509407 517 | 515,-0.2193958486 518 | 516,0.7024292412 519 | 517,0.9784441261 520 | 518,0.3548819937 521 | 519,-0.594957007 522 | 520,-0.9977952793 523 | 521,-0.4832651733 524 | 522,0.4755767043 525 | 523,0.9971755532 526 | 524,0.6019757973 527 | 525,-0.3466777306 528 | 526,-0.9765973517 529 | 527,-0.7086378715 530 | 528,0.2108399997 531 | 529,0.9364725475 532 | 530,0.8011165539 533 | 531,-0.0707823049 534 | 532,-0.877604239 535 | 533,-0.877560883 536 | 534,-0.0706920983 537 | 535,0.8011706756 538 | 536,0.9364408251 539 | 537,0.2107515987 540 | 538,-0.7087016757 541 | 539,-0.9765778978 542 | 540,-0.3465929044 543 | 541,0.6020480069 544 | 542,0.9971687571 545 | 543,0.4754971507 546 | 544,-0.4833443432 547 | 545,-0.997801277 548 | 546,-0.5948843184 549 | 547,0.3549665391 550 | 548,0.9784627976 551 | 549,0.7023648723 552 | 550,-0.2194840774 553 | 551,-0.9395403786 554 | 552,-0.7957875886 555 | 553,0.0796086404 556 | 554,0.8818130525 557 | 555,0.8732826109 558 | 556,0.0618601641 559 | 557,-0.8064362322 560 | 558,-0.9332988757 561 | 559,-0.202090837 562 | 560,0.7149185853 563 | 561,0.9746351573 564 | 562,0.3382766605 565 | 563,-0.6090918379 566 | 564,-0.9964641095 567 | 565,-0.4676918742 568 | 566,0.4910741134 569 | 567,0.9983488258 570 | 568,0.5877462319 571 | 569,-0.363227537 572 | 570,-0.9802515836 573 | 571,-0.6960368448 574 | 572,0.2281109591 575 | 573,0.9425345992 576 | 574,0.7903962755 577 | 575,-0.0884287388 578 | 576,-0.8859527785 579 | 577,-0.8689359194 580 | 578,-0.0530233833 581 | 579,0.8116386069 582 | 580,0.930083805 583 | 581,0.1934142421 584 | 582,-0.721079483 585 | 583,-0.9726160568 586 | 584,-0.3299339135 587 | 585,0.6160879484 588 | 586,0.9956813917 589 | 587,0.4598499554 590 | 588,-0.4987654093 591 | 589,-0.9988181568 592 | 590,-0.5805620972 593 | 591,0.3714600771 594 | 592,0.9819635696 595 | 593,0.6896542848 596 | 594,-0.236719969 597 | 595,-0.945454975 598 | 596,-0.7849430372 599 | 597,0.0972419091 600 | 598,0.8900230925 601 | 599,0.8645211493 602 | 600,0.0441824483 603 | 601,-0.8167773919 604 | 602,-0.9267958647 605 | 603,-0.1847224937 606 | 604,0.7271838861 607 | 605,0.9705207547 608 | 606,0.3215653171 609 | 607,-0.62303579 610 | 608,-0.9948206651 611 | 609,-0.4519720085 612 | 610,0.5064176283 613 | 611,0.9992092331 614 | 612,0.5733324771 615 | 613,-0.3796635143 616 | 614,-0.9835986216 617 | 615,-0.6832176923 618 | 616,0.2453104325 619 | 617,0.9483012769 620 | 618,0.7794283007 621 | 619,-0.1060474607 622 | 620,-0.8940236758 623 | 621,-0.8600386463 624 | 622,-0.0353380517 625 | 623,0.8218521846 626 | 624,0.9234353126 627 | 625,0.1760162728 628 | 626,-0.7332313165 629 | 627,-0.9683494149 630 | 628,-0.313171527 631 | 629,0.6299348185 632 | 630,0.993881997 633 | 631,0.444058651 634 | 632,-0.5140301709 635 | 633,-0.9995220242 636 | 634,-0.566057938 637 | 635,0.3878372059 638 | 636,0.9851566113 639 | 637,0.6767275716 640 | 638,-0.2538816766 641 | 639,-0.9510732821 642 | 640,-0.7738524982 643 | 641,0.1148447038 644 | 642,0.8979542147 645 | 643,0.8554887617 646 | 644,0.0264908865 647 | 645,-0.8268625876 648 | 646,-0.920002412 649 | 647,-0.1672962616 650 | 648,0.7392213002 651 | 649,0.9661022076 652 | 650,0.3047532008 653 | 651,-0.6367844934 654 | 652,-0.9928654611 655 | 653,-0.4361105026 656 | 654,0.5216024407 657 | 655,0.9997565055 658 | 656,0.5587390498 659 | 657,-0.3959805115 660 | 658,-0.9866374168 661 | 659,-0.6701844311 662 | 660,0.2624330298 663 | 661,0.9537707734 664 | 662,0.7682160665 665 | 663,-0.1236329491 666 | 664,-0.9018144015 667 | 665,-0.850871852 668 | 666,-0.0176416458 669 | 667,0.8318082082 670 | 668,0.9164974317 671 | 669,0.1585631431 672 | 670,-0.745153368 673 | 671,-0.963779309 674 | 672,-0.296310998 675 | 673,0.643584278 676 | 674,0.9917711369 677 | 675,0.4281281863 678 | 676,-0.5291338444 679 | 677,-0.9999126587 680 | 678,-0.551376386 681 | 679,0.4040927932 682 | 680,0.9880409219 683 | 681,0.6635887836 684 | 682,-0.2709638221 685 | 683,-0.9563935393 686 | 684,-0.7625194472 687 | 685,0.1324115082 688 | 686,0.9056039336 689 | 687,0.8461882788 690 | 688,0.0087910229 691 | 689,-0.8366886589 692 | 690,-0.9129206463 693 | 691,-0.1498176017 694 | 692,0.751027055 695 | 693,0.9613809009 696 | 694,0.2878455801 697 | 695,-0.6503336396 698 | 696,-0.9905991102 699 | 697,-0.4201123273 700 | 698,0.5366237919 701 | 699,0.9999904716 702 | 700,0.5439705234 703 | 701,-0.4121734154 704 | 702,-0.9893670168 705 | 703,-0.6569411457 706 | 704,0.2794733851 707 | 705,0.9589413745 708 | 706,0.7567630866 709 | 707,-0.1411796932 710 | 708,-0.9093225141 711 | 709,-0.8414384092 712 | 710,6.02887066915853E-05 713 | 711,0.8415035574 714 | 712,0.9092723362 715 | 713,0.1410603224 716 | 714,-0.7568419013 717 | 715,-0.9589071713 718 | 716,-0.2793576103 719 | 717,0.6570320493 720 | 718,0.9893494728 721 | 719,0.4120635536 722 | 720,-0.5440716964 723 | 721,-0.9999899379 724 | 722,-0.5365220422 725 | 723,0.4202217449 726 | 724,0.9906155976 727 | 725,0.6502420384 728 | 726,-0.2879610522 729 | 727,-0.9614140794 730 | 728,-0.7509474358 731 | 729,0.1499368171 732 | 730,0.9129698518 733 | 731,0.8366226151 734 | 732,-0.0089115956 735 | 733,-0.8462525265 736 | 734,-0.9055527872 737 | 735,-0.1322919915 738 | 736,0.762597451 739 | 737,0.956358314 740 | 738,0.2708477536 741 | 739,-0.6636789824 742 | 740,-0.9880223227 743 | 741,-0.403982496 744 | 742,0.5514769745 745 | 743,0.9999110579 746 | 744,0.529031526 747 | 745,-0.4282371512 748 | 746,-0.9917865664 749 | 747,-0.6434919864 750 | 748,0.2964261583 751 | 749,0.9638114601 752 | 750,0.7450729503 753 | 751,-0.1586821939 754 | 752,-0.9165456608 755 | 753,-0.8317412741 756 | 754,0.0177622043 757 | 755,0.850935194 758 | 756,0.9017622906 759 | 757,0.1235132959 760 | 758,-0.7682932534 761 | 759,-0.9537345287 762 | 760,-0.2623166767 763 | 761,0.6702739181 764 | 762,0.9866177637 765 | 763,0.3958697874 766 | 764,-0.5588390459 767 | 765,-0.9997538375 768 | 766,-0.5214995616 769 | 767,0.4362190063 770 | 768,0.9928798315 771 | 769,0.6366915186 772 | 770,-0.3048680403 773 | 771,-0.9661333289 774 | 772,-0.7391400904 775 | 773,0.1674151384 776 | 774,0.9200496611 777 | 775,0.8267947684 778 | 776,-0.0266114214 779 | 777,-0.8555511931 780 | 778,-0.8979011434 781 | 779,-0.1147249234 782 | 780,0.7739288621 783 | 781,0.9510360209 784 | 782,0.253765048 785 | 783,-0.6768163398 786 | 784,-0.9851359061 787 | 785,-0.3877260635 788 | 786,0.5661573337 789 | 787,0.9995182893 790 | 788,0.5139267392 791 | 789,-0.4441666848 792 | 790,-0.9938953072 793 | 791,-0.6298411677 794 | 792,0.3132860367 795 | 793,0.9683795038 796 | 794,0.733149321 797 | 795,-0.1761349664 798 | 796,-0.923481578 799 | 797,-0.8217834856 800 | 798,0.0354585536 801 | 799,0.8601001622 802 | 800,0.8939696482 803 | 801,0.1059275624 804 | 802,-0.7795038357 805 | 803,-0.9482630022 806 | 804,-0.2451935376 807 | 805,0.6833057347 808 | 806,0.9835768657 809 | 807,0.3795519624 810 | 808,-0.5734312648 811 | 809,-0.9992044316 812 | 810,-0.5063136521 813 | 811,0.4520795642 814 | 812,0.994832914 815 | 813,0.6229414706 816 | 814,-0.321679488 817 | 815,-0.9705498089 818 | 816,-0.7271011114 819 | 817,0.1848409947 820 | 818,0.9268411427 821 | 819,0.8167078184 822 | 820,-0.0443029077 823 | 821,-0.8645817448 824 | 822,-0.889968113 825 | 823,-0.0971219024 826 | 824,0.7850177374 827 | 825,0.9454156897 828 | 826,0.2366028169 829 | 827,-0.6897415946 830 | 828,-0.9819407649 831 | 829,-0.3713481244 832 | 830,0.5806602691 833 | 831,0.998812289 834 | 832,0.4986608967 835 | 833,-0.4599570244 836 | 834,-0.9956925784 837 | 835,-0.6159929678 838 | 836,0.3300477367 839 | 837,0.9726440741 840 | 838,0.7209959354 841 | 839,-0.1935325413 842 | 840,-0.930128092 843 | 841,-0.8115681645 844 | 842,0.0531437908 845 | 843,0.8689955898 846 | 844,0.8858968512 847 | 845,0.0883086331 848 | 846,-0.790470135 849 | 847,-0.9424943064 850 | 848,-0.2279935591 851 | 849,0.6961234151 852 | 850,0.9802277317 853 | 851,0.3631151924 854 | 852,-0.5878437803 855 | 853,-0.9983418923 856 | 854,-0.4909690727 857 | 855,0.4677984482 858 | 856,0.9964742331 859 | 857,0.6089962036 860 | 858,-0.338390127 861 | 859,-0.9746621354 862 | 860,-0.7148342714 863 | 861,0.2022089251 864 | 862,0.9333421684 865 | 863,0.8063649264 866 | 864,-0.0619805102 867 | 865,-0.8733413515 868 | 866,-0.8817561819 869 | 867,-0.0794884451 870 | 868,0.7958606016 871 | 869,0.9394990814 872 | 870,0.2193664386 873 | 871,-0.7024506963 874 | 872,-0.9784379005 875 | 873,-0.3548538113 876 | 874,0.5949812355 877 | 875,0.9977932783 878 | 876,0.4832387825 879 | 877,-0.4756032213 880 | 878,-0.9971778168 881 | 879,-0.6019517263 882 | 880,0.3467060054 883 | 881,0.9766038346 884 | 882,0.7086166021 885 | 883,-0.2108694664 886 | 884,-0.93648312 887 | 885,-0.8010985119 888 | 886,0.0708123736 889 | 887,0.8776186893 890 | 888,0.8775464295 891 | 889,0.0706620294 892 | 890,-0.8011887147 893 | 891,-0.9364302493 894 | 892,-0.2107221313 895 | 893,0.7087229424 896 | 894,0.9765714113 897 | 895,0.3465646283 898 | 896,-0.6020720757 899 | 897,-0.9971664899 900 | 898,-0.475470632 901 | 899,0.4833707322 902 | 900,0.9978032744 903 | 901,0.5948600877 904 | 902,-0.3549947203 905 | 903,-0.9784690196 906 | 904,-0.7023434147 907 | 905,0.2195134866 908 | 906,0.9395507007 909 | 907,0.7957693335 910 | 908,-0.079638689 911 | 909,-0.8818272682 912 | 910,-0.8732679237 913 | 911,-0.0618300775 914 | 912,0.8064540568 915 | 913,0.9332880505 916 | 914,0.2020613146 917 | 915,-0.7149396621 918 | 916,-0.9746284105 919 | 917,-0.3382482931 920 | 918,0.6091157451 921 | 919,0.9964615763 922 | 920,0.4676652297 923 | 921,-0.4911003724 924 | 922,-0.9983505569 925 | 923,-0.5877218435 926 | 924,0.3632556224 927 | 925,0.9802575443 928 | 926,0.6960152007 929 | 927,-0.2281403086 930 | 928,-0.9425446703 931 | 929,-0.7903778089 932 | 930,0.088458765 933 | 931,0.8859667583 934 | 932,0.8689209999 935 | 933,0.0529932814 936 | 934,-0.8116562156 937 | 935,-0.9300727311 938 | 936,-0.1933846669 939 | 937,0.7211003682 940 | 938,0.9726090503 941 | 939,0.329905457 942 | 940,-0.6161116921 943 | 941,-0.9956785928 944 | 942,-0.4598231871 945 | 943,0.4987915363 946 | 944,0.9988196214 947 | 945,0.580537553 948 | 946,-0.3714880644 949 | 947,-0.9819692686 950 | 948,-0.6896324558 951 | 949,0.2367492565 952 | 950,0.9454647941 953 | 951,0.7849243603 954 | 952,-0.0972719105 955 | 953,-0.8900368354 956 | 954,-0.8645059985 957 | 955,-0.0441523334 958 | 956,0.8167947834 959 | 957,0.9267845431 960 | 958,0.184692868 961 | 959,-0.7272045782 962 | 960,-0.9705134889 963 | 961,-0.3215367737 964 | 962,0.6230593684 965 | 963,0.9948176006 966 | 964,0.4519451186 967 | 965,-0.5064436212 968 | 966,-0.9992104312 969 | 967,-0.5733077789 970 | 968,0.3796914014 971 | 969,0.9836040583 972 | 970,0.6831956801 973 | 971,-0.2453396556 974 | 972,-0.9483108434 975 | 973,-0.7794094151 976 | 974,0.106077435 977 | 975,0.8940371806 978 | 976,0.8600232654 979 | 977,0.0353079262 980 | 978,-0.8218693575 981 | 979,-0.9234237442 982 | 980,-0.175986599 983 | 981,0.7332518137 984 | 982,0.9683418905 985 | 983,0.3131428989 986 | 984,-0.6299582298 987 | 985,-0.9938786672 988 | 986,-0.4440316415 989 | 987,0.5140560276 990 | 988,0.9995229557 991 | 989,0.5660330878 992 | 990,-0.3878649906 993 | 991,-0.9851617854 994 | 992,-0.676705378 995 | 993,0.2539108332 996 | 994,0.9510825952 997 | 995,0.7738334054 998 | 996,-0.1148746486 999 | 997,-0.8979674805 1000 | 998,-0.855473152 1001 | 999,-0.0264607527 1002 | 1000,0.8268795405 1003 | 1001,0.9199905976 1004 | 1002,0.167266542 1005 | 1003,-0.7392416009 1006 | 1004,-0.9660944251 1007 | 1005,-0.3047244902 1008 | 1006,0.6368077357 1009 | 1007,0.9928618662 1010 | 1008,0.4360833758 1011 | 1009,-0.5216281593 1012 | 1010,-0.9997571703 1013 | 1011,-0.5587140495 1014 | 1012,0.3960081917 1015 | 1013,0.9866423278 1016 | 1014,0.6701620578 1017 | 1015,-0.2624621175 1018 | 1016,-0.9537798324 1019 | 1017,-0.768196768 1020 | 1018,0.1236628622 1021 | 1019,0.9018274271 1022 | 1020,0.8508560146 1023 | 1021,0.0176115061 1024 | 1022,-0.8318249398 1025 | 1023,-0.9164853723 1026 | 1024,-0.15853338 1027 | 1025,0.7451734707 1028 | 1026,0.963771269 1029 | 1027,0.2962822073 1030 | 1028,-0.6436073495 1031 | 1029,-0.9917672772 1032 | 1030,-0.4281009441 1033 | 1031,0.5291594228 1034 | 1032,0.9999130567 1035 | 1033,0.5513512376 1036 | 1034,-0.4041203666 1037 | 1035,-0.9880455695 1038 | 1036,-0.6635662324 1039 | 1037,0.2709928386 1040 | 1038,0.9564023435 1041 | 1039,0.7624999445 1042 | 1040,-0.1324413871 1043 | 1041,-0.9056167181 1044 | 1042,-0.846172215 1045 | 1043,-0.0087608797 1046 | 1044,0.8367051679 1047 | 1045,0.9129083429 1048 | 1046,0.1497877975 1049 | 1047,-0.7510469582 1050 | 1048,-0.9613726041 1051 | 1049,-0.2878167114 1052 | 1050,0.6503565384 1053 | 1051,0.9905949861 1054 | 1052,0.4200849719 1055 | 1053,-0.5366492281 1056 | 1054,-0.9999906027 1057 | 1055,-0.5439452289 1058 | 1056,0.4122008799 1059 | 1057,0.9893714006 1060 | 1058,0.6569184183 1061 | 1059,-0.2795023282 1062 | 1060,-0.9589499232 1063 | 1061,-0.7567433812 1064 | 1062,0.1412095355 1065 | 1063,0.9093350565 1066 | 1064,0.8414221202 1067 | 1065,-9.04330599688988E-05 1068 | 1066,-0.8415198426 1069 | 1067,-0.9092597897 1070 | 1068,-0.1410304794 1071 | 1069,0.7568616032 1072 | 1070,0.9588986183 1073 | 1071,0.2793286659 1074 | 1072,-0.6570547737 1075 | 1073,-0.9893450846 1076 | 1074,-0.4120360873 1077 | 1075,0.5440969885 1078 | 1076,0.9999898022 1079 | 1077,0.5364966035 1080 | 1078,-0.4202490983 1081 | 1079,-0.9906197172 1082 | 1080,-0.6502191366 1083 | 1081,0.2879899196 1084 | 1082,0.9614223718 1085 | 1083,0.7509275292 1086 | 1084,-0.1499666206 1087 | 1085,-0.9129821511 1088 | 1086,-0.8366061023 1089 | 1087,0.0089417388 1090 | 1088,0.8462685864 1091 | 1089,0.9055399985 1092 | 1090,0.1322621121 1093 | 1091,-0.7626169503 1094 | 1092,-0.9563495055 1095 | 1093,-0.2708187358 1096 | 1094,0.6637015306 1097 | 1095,0.9880176706 1098 | 1096,0.4039549207 1099 | 1097,-0.5515021204 1100 | 1098,-0.9999106554 1101 | 1099,-0.5290059452 1102 | 1100,0.4282643914 1103 | 1101,0.9917904215 1104 | 1102,0.643468912 1105 | 1103,-0.2964549477 1106 | 1104,-0.9638194957 1107 | 1105,-0.7450528442 1108 | 1106,0.1587119563 1109 | 1107,0.9165577161 1110 | 1108,0.8317245386 1111 | 1109,-0.0177923439 1112 | 1110,-0.8509510275 1113 | 1111,-0.9017492608 1114 | 1112,-0.1234833823 1115 | 1113,0.7683125484 1116 | 1114,0.9537254654 1117 | 1115,0.2622875878 1118 | 1116,-0.6702962884 1119 | 1117,-0.9866128483 1120 | 1118,-0.3958421054 1121 | 1119,0.5588640436 1122 | 1120,0.9997531683 1123 | 1121,0.5214738406 1124 | 1122,-0.4362461312 1125 | 1123,-0.9928834218 1126 | 1124,-0.6366682734 1127 | 1125,0.3048967495 1128 | 1126,0.966141107 1129 | 1127,0.7391197863 1130 | 1128,-0.1674448573 1131 | 1129,-0.9200614713 1132 | 1130,-0.8267778117 1133 | 1131,0.0266415551 1134 | 1132,0.855566799 1135 | 1133,0.8978878735 1136 | 1134,0.114694978 1137 | 1135,-0.7739479514 1138 | 1136,-0.9510267035 1139 | 1137,-0.2537358903 1140 | 1138,0.6768385303 1141 | 1139,0.9851307275 1142 | 1140,0.387698277 1143 | 1141,-0.5661821814 1144 | 1142,-0.9995173533 1145 | 1143,-0.5139008801 1146 | 1144,0.4441936923 1147 | 1145,0.9938986325 1148 | 1146,0.6298177536 1149 | 1147,-0.3133146634 1150 | 1148,-0.9683870238 1151 | 1149,-0.7331288205 1152 | 1150,0.1761646394 1153 | 1151,0.9234931423 1154 | 1152,0.821766309 1155 | 1153,-0.035488679 1156 | 1154,-0.8601155392 1157 | 1155,-0.8939561393 1158 | 1156,-0.1058975876 1159 | 1157,0.7795227177 1160 | 1158,0.9482534313 1161 | 1159,0.2451643133 1162 | 1160,-0.6833277438 1163 | 1161,-0.9835714245 1164 | 1162,-0.3795240736 1165 | 1163,0.5734559604 1166 | 1164,0.999203229 1167 | 1165,0.5062876569 1168 | 1166,-0.4521064521 1169 | 1167,-0.994835974 1170 | 1168,-0.6229178894 1171 | 1169,0.32170803 1172 | 1170,0.9705570702 1173 | 1171,0.727080416 1174 | 1172,-0.1848706196 1175 | 1173,-0.9268524601 1176 | 1174,-0.8166904232 1177 | 1175,0.0443330224 1178 | 1176,0.8645968917 1179 | 1177,0.889954366 1180 | 1178,0.0970919005 1181 | 1179,-0.7850364106 1182 | 1180,-0.9454058662 1183 | 1181,-0.2365735283 1184 | 1182,0.6897634204 1185 | 1183,0.9819350615 1186 | 1184,0.3713201354 1187 | 1185,-0.5806848107 1188 | 1186,-0.9988108198 1189 | 1187,-0.4986347675 1190 | 1188,0.4599837906 1191 | 1189,0.9956953729 1192 | 1190,0.6159692212 1193 | 1191,-0.3300761917 1194 | 1192,-0.9726510762 1195 | 1193,-0.7209750469 1196 | 1194,0.1935621156 1197 | 1195,0.9301391617 1198 | 1196,0.811550552 1199 | 1197,-0.0531738925 1200 | 1198,-0.8690105055 1201 | 1199,-0.8858828674 1202 | 1200,-0.0882786065 1203 | 1201,0.7904885981 1204 | 1202,0.9424842311 1205 | 1203,0.2279642085 1206 | 1204,-0.6961450561 1207 | 1205,-0.9802217665 1208 | 1206,-0.3630871054 1209 | 1207,0.587868166 1210 | 1208,0.9983401567 1211 | 1209,0.4909428114 1212 | 1210,-0.4678250906 1213 | 1211,-0.9964767618 1214 | 1212,-0.6089722936 1215 | 1213,0.3384184928 1216 | 1214,0.9746688777 1217 | 1215,0.7148131913 1218 | 1216,-0.2022384466 1219 | 1217,-0.9333529894 1220 | 1218,-0.8063470981 1221 | 1219,0.0620105965 1222 | 1220,0.8733560347 1223 | 1221,0.8817419622 1224 | 1222,0.0794583961 1225 | 1223,-0.795878853 1226 | 1224,-0.939488755 1227 | 1225,-0.2193370283 1228 | 1226,0.7024721507 1229 | 1227,0.978431674 1230 | 1228,0.3548256285 1231 | 1229,-0.5950054635 1232 | 1230,-0.9977912763 1233 | 1231,-0.4832123913 1234 | 1232,0.4756297379 1235 | 1233,0.9971800795 1236 | 1234,0.6019276548 1237 | 1235,-0.3467342798 1238 | 1236,-0.9766103166 1239 | 1237,-0.7085953321 1240 | 1238,0.2108989328 1241 | 1239,0.9364936915 1242 | 1240,0.8010804691 1243 | 1241,-0.0708424422 1244 | 1242,-0.8776331389 1245 | 1243,-0.8775319751 1246 | 1244,-0.0706319603 1247 | 1245,0.801206753 1248 | 1246,0.9364196726 1249 | 1247,0.2106926637 1250 | 1248,-0.7087442085 1251 | 1249,-0.976564924 1252 | 1250,-0.346536352 1253 | 1251,0.6020961439 1254 | 1252,0.9971642218 1255 | 1253,0.4754441128 1256 | 1254,-0.4833971209 1257 | 1255,-0.9978052709 1258 | 1256,-0.5948358565 1259 | 1257,0.3550229011 1260 | 1258,0.9784752408 1261 | 1259,0.7023219565 1262 | 1260,-0.2195428956 1263 | 1261,-0.939561022 1264 | 1262,-0.7957510778 1265 | 1263,0.0796687376 1266 | 1264,0.881841483 1267 | 1265,0.8732532358 1268 | 1266,0.0617999908 1269 | 1267,-0.8064718807 1270 | 1268,-0.9332772243 1271 | 1269,-0.2020317919 1272 | 1270,0.7149607383 1273 | 1271,0.9746216629 1274 | 1272,0.3382199253 1275 | 1273,-0.6091396518 1276 | 1274,-0.9964590423 1277 | 1275,-0.4676385847 1278 | 1276,0.491126631 1279 | 1277,0.9983522871 1280 | 1278,0.5876974546 1281 | 1279,-0.3632837074 1282 | 1280,-0.9802635042 1283 | 1281,-0.6959935559 1284 | 1282,0.2281696579 1285 | 1283,0.9425547405 1286 | 1284,0.7903593415 1287 | 1285,-0.0884887912 1288 | 1286,-0.8859807373 1289 | 1287,-0.8689060795 1290 | 1288,-0.0529631794 1291 | 1289,0.8116738236 1292 | 1290,0.9300616564 1293 | 1291,0.1933550915 1294 | 1292,-0.7211212528 1295 | 1293,-0.9726020429 1296 | 1294,-0.3298770001 1297 | 1295,0.6161354353 1298 | 1296,0.9956757929 1299 | 1297,0.4597964184 1300 | 1298,-0.4988176628 1301 | 1299,-0.9988210852 1302 | 1300,-0.5805130082 1303 | 1301,0.3715160514 1304 | 1302,0.9819749666 1305 | 1303,0.6896106262 1306 | 1304,-0.2367785437 1307 | 1305,-0.9454746125 1308 | 1306,-0.7849056828 1309 | 1307,0.0973019119 1310 | 1308,0.8900505775 1311 | 1309,0.8644908468 1312 | 1310,0.0441222184 1313 | 1311,-0.8168121741 1314 | 1312,-0.9267732207 1315 | 1313,-0.1846632422 1316 | 1314,0.7272252696 1317 | 1315,0.9705062223 1318 | 1316,0.3215082299 1319 | 1317,-0.6230829463 1320 | 1318,-0.9948145352 1321 | 1319,-0.4519182283 1322 | 1320,0.5064696136 1323 | 1321,0.9992116284 1324 | 1322,0.5732830802 1325 | 1323,-0.3797192882 1326 | 1324,-0.9836094941 1327 | 1325,-0.6831736673 1328 | 1326,0.2453688786 1329 | 1327,0.9483204091 1330 | 1328,0.7793905289 1331 | 1329,-0.1061074092 1332 | 1330,-0.8940506847 1333 | 1331,-0.8600078837 1334 | 1332,-0.0352778006 1335 | 1333,0.8218865297 1336 | 1334,0.9234121749 1337 | 1335,0.1759569251 1338 | 1336,-0.7332723102 1339 | 1337,-0.9683343652 1340 | 1338,-0.3131142705 1341 | 1339,0.6299816405 1342 | 1340,0.9938753365 1343 | 1341,0.4440046316 1344 | 1342,-0.5140818839 1345 | 1343,-0.9995238862 1346 | 1344,-0.566008237 1347 | 1345,0.387892775 1348 | 1346,0.9851669585 1349 | 1347,0.6766831838 1350 | 1348,-0.2539399895 1351 | 1349,-0.9510919075 1352 | 1350,-0.7738143119 1353 | 1351,0.1149045934 1354 | 1352,0.8979807455 1355 | 1353,0.8554575414 1356 | 1354,0.0264306189 1357 | 1355,-0.8268964927 1358 | 1356,-0.9199787824 1359 | 1357,-0.1672368222 1360 | 1358,0.739261901 1361 | 1359,0.9660866418 1362 | 1360,0.3046957794 1363 | 1361,-0.6368309774 1364 | 1362,-0.9928582704 1365 | 1363,-0.4360562485 1366 | 1364,0.5216538774 1367 | 1365,0.9997578341 1368 | 1366,0.5586890488 1369 | 1367,-0.3960358715 1370 | 1368,-0.9866472379 1371 | 1369,-0.6701396839 1372 | 1370,0.2624912049 1373 | 1371,0.9537888905 1374 | 1372,0.7681774688 1375 | 1373,-0.1236927751 1376 | 1374,-0.901840452 1377 | 1375,-0.8508401764 1378 | 1376,-0.0175813665 1379 | 1377,0.8318416707 1380 | 1378,0.9164733121 1381 | 1379,0.1585036168 1382 | 1380,-0.7451935727 1383 | 1381,-0.9637632282 1384 | 1382,-0.2962534162 1385 | 1383,0.6436304203 1386 | 1384,0.9917634167 1387 | 1385,0.4280737015 1388 | 1386,-0.5291850007 1389 | 1387,-0.9999134537 1390 | 1388,-0.5513260887 1391 | 1389,0.4041479397 1392 | 1390,0.9880502162 1393 | 1391,0.6635436805 1394 | 1392,-0.2710218549 1395 | 1393,-0.9564111468 1396 | 1394,-0.7624804411 1397 | 1395,0.1324712658 1398 | 1396,0.9056295018 1399 | 1397,0.8461561504 1400 | 1398,0.0087307365 1401 | 1399,-0.8367216762 1402 | 1400,-0.9128960386 1403 | 1401,-0.1497579931 1404 | 1402,0.7510668606 1405 | 1403,0.9613643064 1406 | 1404,0.2877878425 1407 | 1405,-0.6503794366 1408 | 1406,-0.9905908611 1409 | 1407,-0.4200576162 1410 | 1408,0.5366746638 1411 | 1409,0.9999907329 1412 | 1410,0.5439199339 1413 | 1411,-0.412228344 1414 | 1412,-0.9893757834 1415 | 1413,-0.6568956904 1416 | 1414,0.279531271 1417 | 1415,0.9589584709 1418 | 1416,0.7567236751 1419 | 1417,-0.1412393778 1420 | 1418,-0.9093475981 1421 | 1419,-0.8414058304 1422 | 1420,0.0001205774 1423 | 1421,0.8415361269 1424 | 1422,0.9092472423 1425 | 1423,0.1410006363 1426 | 1424,-0.7568813045 1427 | 1425,-0.9588900644 1428 | 1426,-0.2792997213 1429 | 1427,0.6570774975 1430 | 1428,0.9893406954 1431 | 1429,0.4120086205 1432 | 1430,-0.54412228 1433 | 1431,-0.9999896656 1434 | 1432,-0.5364711644 1435 | 1433,0.4202764514 1436 | 1434,0.9906238359 1437 | 1435,0.6501962342 1438 | 1436,-0.2880187867 1439 | 1437,-0.9614306634 1440 | 1438,-0.750907622 1441 | 1439,0.149996424 1442 | 1440,0.9129944496 1443 | 1441,0.8365895887 1444 | 1442,-0.0089718819 1445 | 1443,-0.8462846457 1446 | 1444,-0.905527209 1447 | 1445,-0.1322322325 1448 | 1446,0.7626364488 1449 | 1447,0.9563406961 1450 | 1448,0.2707897178 1451 | 1449,-0.6637240782 1452 | 1450,-0.9880130177 1453 | 1451,-0.4039273451 1454 | 1452,0.5515272657 1455 | 1453,0.999910252 1456 | 1454,0.5289803639 1457 | 1455,-0.4282916313 1458 | 1456,-0.9917942758 1459 | 1457,-0.643445837 1460 | 1458,0.2964837369 1461 | 1459,0.9638275304 1462 | 1460,0.7450327374 1463 | 1461,-0.1587417185 1464 | 1462,-0.9165697704 1465 | 1463,-0.8317078025 1466 | 1464,0.0178224835 1467 | 1465,0.8509668603 1468 | 1466,0.9017362302 1469 | 1467,0.1234534686 1470 | 1468,-0.7683318427 1471 | 1469,-0.9537164012 1472 | 1470,-0.2622584987 1473 | 1471,0.670318658 1474 | 1472,0.9866079319 1475 | 1473,0.3958144231 1476 | 1474,-0.5588890408 1477 | 1475,-0.9997524981 1478 | 1476,-0.5214481192 1479 | 1477,0.4362732557 1480 | 1478,0.9928870113 1481 | 1479,0.6366450277 1482 | 1480,-0.3049254584 1483 | 1481,-0.9661488842 1484 | 1482,-0.7390994815 1485 | 1483,0.1674745759 1486 | 1484,0.9200732806 1487 | 1485,0.8267608542 1488 | 1486,-0.0266716887 1489 | 1487,-0.8555824041 1490 | 1488,-0.8978746029 1491 | 1489,-0.1146650325 1492 | 1490,0.7739670399 1493 | 1491,0.9510173852 1494 | 1492,0.2537067323 1495 | 1493,-0.6768607202 1496 | 1494,-0.9851255481 1497 | 1495,-0.3876704902 1498 | 1496,0.5662070285 1499 | 1497,0.9995164164 1500 | 1498,0.5138750206 1501 | 1499,-0.4442206993 1502 | 1500,-0.9939019569 1503 | 1501,-0.6297943389 1504 | 1502,0.3133432898 1505 | 1503,0.968394543 1506 | 1504,0.7331083193 1507 | 1505,-0.1761943123 1508 | 1506,-0.9235047057 1509 | 1507,-0.8217491316 1510 | 1508,0.0355188043 1511 | 1509,0.8601309154 1512 | 1510,0.8939426295 1513 | 1511,0.1058676127 1514 | 1512,-0.779541599 1515 | 1513,-0.9482438596 1516 | 1514,-0.2451350888 1517 | 1515,0.6833497522 1518 | 1516,0.9835659824 1519 | 1517,0.3794961844 1520 | 1518,-0.5734806555 1521 | 1519,-0.9992020254 1522 | 1520,-0.5062616612 1523 | 1521,0.4521333395 1524 | 1522,0.9948390331 1525 | 1523,0.6228943075 1526 | 1524,-0.3217365717 1527 | 1525,-0.9705643307 1528 | 1526,-0.72705972 1529 | 1527,0.1849002442 1530 | 1528,0.9268637767 1531 | 1529,0.8166730273 1532 | 1530,-0.0443631371 1533 | 1531,-0.8646120378 1534 | 1532,-0.8899406183 1535 | 1533,-0.0970618985 1536 | 1534,0.7850550832 1537 | 1535,0.9453960418 1538 | 1536,0.2365442396 1539 | 1537,-0.6897852457 1540 | 1538,-0.9819293572 1541 | 1539,-0.3712921461 1542 | 1540,0.5807093518 1543 | 1541,0.9988093497 1544 | 1542,0.4986086377 1545 | 1543,-0.4600105563 1546 | 1544,-0.9956981664 1547 | 1545,-0.6159454741 1548 | 1546,0.3301046464 1549 | 1547,0.9726580774 1550 | 1548,0.7209541577 1551 | 1549,-0.1935916898 1552 | 1550,-0.9301502305 1553 | 1551,-0.8115329388 1554 | 1552,0.0532039942 1555 | 1553,0.8690254203 1556 | 1554,0.8858688827 1557 | 1555,0.0882485798 1558 | 1556,-0.7905070605 1559 | 1557,-0.9424741549 1560 | 1558,-0.2279348578 1561 | 1559,0.6961666964 1562 | 1560,0.9802158005 1563 | 1561,0.3630590181 1564 | 1562,-0.5878925512 1565 | 1563,-0.9983384201 1566 | 1564,-0.4909165496 1567 | 1565,0.4678517326 1568 | 1566,0.9964792895 1569 | 1567,0.6089483831 1570 | 1568,-0.3384468584 1571 | 1569,-0.9746756191 1572 | 1570,-0.7147921106 1573 | 1571,0.202267968 1574 | 1572,0.9333638096 1575 | 1573,0.8063292691 1576 | 1574,-0.0620406828 1577 | 1575,-0.8733707171 1578 | 1576,-0.8817277418 1579 | 1577,-0.079428347 1580 | 1578,0.7958971037 1581 | 1579,0.9394784277 1582 | 1580,0.2193076179 1583 | 1581,-0.7024936044 1584 | 1582,-0.9784254466 1585 | 1583,-0.3547974454 1586 | 1584,0.5950296909 1587 | 1585,0.9977892735 1588 | 1586,0.4831859996 1589 | 1587,-0.475656254 1590 | 1588,-0.9971823412 1591 | 1589,-0.6019035827 1592 | 1590,0.346762554 1593 | 1591,0.9766167977 1594 | 1592,0.7085740615 1595 | 1593,-0.2109283991 1596 | 1594,-0.9365042623 1597 | 1595,-0.8010624257 1598 | 1596,0.0708725108 1599 | 1597,0.8776475877 1600 | 1598,0.8775175199 1601 | 1599,0.0706018912 1602 | 1600,-0.8012247907 1603 | 1601,-0.9364090951 1604 | 1602,-0.2106631959 1605 | 1603,0.708765474 1606 | 1604,0.9765584358 1607 | 1605,0.3465080753 1608 | 1606,-0.6021202116 1609 | 1607,-0.9971619528 1610 | 1608,-0.4754175933 1611 | 1609,0.483423509 1612 | 1610,0.9978072665 1613 | 1611,0.5948116248 1614 | 1612,-0.3550510817 1615 | 1613,-0.978481461 1616 | 1614,-0.7023004977 1617 | 1615,0.2195723045 1618 | 1616,0.9395713425 1619 | 1617,0.7957328213 1620 | 1618,-0.0796987861 1621 | 1619,-0.8818556971 1622 | 1620,-0.873238547 1623 | 1621,-0.061769904 1624 | 1622,0.8064897039 1625 | 1623,0.9332663974 1626 | 1624,0.2020022691 1627 | 1625,-0.7149818138 1628 | 1626,-0.9746149144 1629 | 1627,-0.3381915573 1630 | 1628,0.6091635579 1631 | 1629,0.9964565073 1632 | 1630,0.4676119393 1633 | 1631,-0.4911528892 1634 | 1632,-0.9983540164 1635 | 1633,-0.5876730651 1636 | 1634,0.3633117921 1637 | 1635,0.9802694631 1638 | 1636,0.6959719105 1639 | 1637,-0.228199007 1640 | 1638,-0.9425648098 1641 | 1639,-0.7903408734 1642 | 1640,0.0885188172 1643 | 1641,0.8859947155 1644 | 1642,0.8688911583 1645 | 1643,0.0529330773 1646 | 1644,-0.8116914309 1647 | 1645,-0.9300505808 1648 | 1646,-0.1933255159 1649 | 1647,0.7211421368 1650 | 1648,0.9725950346 1651 | 1649,0.329848543 1652 | 1650,-0.6161591779 1653 | 1651,-0.9956729922 1654 | 1652,-0.4597696492 1655 | 1653,0.4988437889 1656 | 1654,0.998822548 1657 | 1655,0.5804884628 1658 | 1656,-0.3715440381 1659 | 1657,-0.9819806638 1660 | 1658,-0.6895887959 1661 | 1659,0.2368078308 1662 | 1660,0.9454844299 1663 | 1661,0.7848870045 1664 | 1662,-0.0973319131 1665 | 1663,-0.8900643187 1666 | 1664,-0.8644756944 1667 | 1665,-0.0440921034 1668 | 1666,0.8168295641 1669 | 1667,0.9267618974 1670 | 1668,0.1846336162 1671 | 1669,-0.7272459603 1672 | 1670,-0.9704989547 1673 | 1671,-0.3214796859 1674 | 1672,0.6231065236 1675 | 1673,0.9948114689 1676 | 1674,0.4518913375 1677 | 1675,-0.5064956056 1678 | 1676,-0.9992128247 1679 | 1677,-0.5732583809 1680 | 1678,0.3797471746 1681 | 1679,0.9836149291 1682 | 1680,0.6831516539 1683 | 1681,-0.2453981013 1684 | 1682,-0.9483299739 1685 | 1683,-0.7793716419 1686 | 1684,0.1061373834 1687 | 1685,0.8940641879 1688 | 1686,0.8599925013 1689 | 1687,0.035247675 1690 | 1688,-0.8219037011 1691 | 1689,-0.9234006048 1692 | 1690,-0.175927251 1693 | 1691,0.7332928061 1694 | 1692,0.968326839 1695 | 1693,0.3130856418 1696 | 1694,-0.6300050506 1697 | 1695,-0.9938720049 1698 | 1696,-0.4439776213 1699 | 1697,0.5141077397 1700 | 1698,0.9995248158 1701 | 1699,0.5659833858 1702 | 1700,-0.387920559 1703 | 1701,-0.9851721308 1704 | 1702,-0.6766609889 1705 | 1703,0.2539691456 1706 | 1704,0.9511012189 1707 | 1705,0.7737952178 1708 | 1706,-0.114934538 1709 | 1707,-0.8979940096 1710 | 1708,-0.8554419301 1711 | 1709,-0.0264004851 1712 | 1710,0.8269134441 1713 | 1711,0.9199669663 1714 | 1712,0.1672071023 1715 | 1713,-0.7392822004 1716 | 1714,-0.9660788575 1717 | 1715,-0.3046670683 1718 | 1716,0.6368542185 1719 | 1717,0.9928546738 1720 | 1718,0.4360291208 1721 | 1719,-0.521679595 1722 | 1720,-0.999758497 1723 | 1721,-0.5586640475 1724 | 1722,0.3960635509 1725 | 1723,0.9866521471 1726 | 1724,0.6701173094 1727 | 1725,-0.2625202921 1728 | 1726,-0.9537979478 1729 | 1727,-0.7681581689 1730 | 1728,0.1237226879 1731 | 1729,0.901853476 1732 | 1730,0.8508243374 1733 | 1731,0.0175512268 1734 | 1732,-0.8318584008 1735 | 1733,-0.916461251 1736 | 1734,-0.1584738535 1737 | 1735,0.7452136741 1738 | 1736,0.9637551864 1739 | 1737,0.296224625 1740 | 1738,-0.6436534906 1741 | 1739,-0.9917595553 1742 | 1740,-0.4280464585 1743 | 1741,0.5292105781 1744 | 1742,0.9999138498 1745 | 1743,0.5513009394 1746 | 1744,-0.4041755123 1747 | 1745,-0.9880548619 1748 | 1746,-0.6635211281 1749 | 1747,0.2710508709 1750 | 1748,0.9564199492 1751 | 1749,0.762460937 1752 | 1750,-0.1325011444 1753 | 1751,-0.9056422847 1754 | 1752,-0.846140085 1755 | 1753,-0.0087005933 1756 | 1754,0.8367381838 1757 | 1755,0.9128837335 1758 | 1756,0.1497281887 1759 | 1757,-0.7510867623 1760 | 1758,-0.9613560079 1761 | 1759,-0.2877589733 1762 | 1760,0.6504023343 1763 | 1761,0.9905867352 1764 | 1762,0.4200302601 1765 | 1763,-0.5367000991 1766 | 1764,-0.9999908622 1767 | 1765,-0.5438946384 1768 | 1766,0.4122558077 1769 | 1767,0.9893801654 1770 | 1768,0.6568729618 1771 | 1769,-0.2795602136 1772 | 1770,-0.9589670178 1773 | 1771,-0.7567039684 1774 | 1772,0.1412692199 1775 | 1773,0.9093601389 1776 | 1774,0.8413895399 1777 | 1775,-0.0001507218 1778 | 1776,-0.8415524106 1779 | 1777,-0.9092346941 1780 | 1778,-0.140970793 1781 | 1779,0.756901005 1782 | 1780,0.9588815097 1783 | 1781,0.2792707765 1784 | 1782,-0.6571002207 1785 | 1783,-0.9893363054 1786 | 1784,-0.4119811534 1787 | 1785,0.5441475711 1788 | 1786,0.9999895281 1789 | 1787,0.5364457247 1790 | 1788,-0.420303804 1791 | 1789,-0.9906279537 1792 | 1790,-0.6501733313 1793 | 1791,0.2880476535 1794 | 1792,0.9614389541 1795 | 1793,0.7508877141 1796 | 1794,-0.1500262273 1797 | 1795,-0.9130067472 1798 | 1796,-0.8365730743 1799 | 1797,0.0090020251 1800 | 1798,0.8463007041 1801 | 1799,0.9055144187 1802 | 1800,0.1322023528 1803 | 1801,-0.7626559466 1804 | 1802,-0.9563318859 1805 | 1803,-0.2707606996 1806 | 1804,0.6637466252 1807 | 1805,0.9880083638 1808 | 1806,0.4038997691 1809 | 1807,-0.5515524106 1810 | 1808,-0.9999098477 1811 | 1809,-0.5289547821 1812 | 1810,0.4283188707 1813 | 1811,0.9917981291 1814 | 1812,0.6434227615 1815 | 1813,-0.2965125257 1816 | 1814,-0.9638355642 1817 | 1815,-0.7450126299 1818 | 1816,0.1587714805 1819 | 1817,0.916581824 1820 | 1818,0.8316910655 1821 | 1819,-0.0178526231 1822 | 1820,-0.8509826923 1823 | 1821,-0.9017231988 1824 | 1822,-0.1234235548 1825 | 1823,0.7683511363 1826 | 1824,0.9537073361 1827 | 1825,0.2622294093 1828 | 1826,-0.670341027 1829 | 1827,-0.9866030146 1830 | 1828,-0.3957867405 1831 | 1829,0.5589140375 1832 | 1830,0.999751827 1833 | 1831,0.5214223973 1834 | 1832,-0.4363003798 1835 | 1833,-0.9928905998 1836 | 1834,-0.6366217813 1837 | 1835,0.304954167 1838 | 1836,0.9661566606 1839 | 1837,0.7390791761 1840 | 1838,-0.1675042945 1841 | 1839,-0.9200850892 1842 | 1840,-0.8267438961 1843 | 1841,0.0267018224 1844 | 1842,0.8555980084 1845 | 1843,0.8978613314 1846 | 1844,0.1146350869 1847 | 1845,-0.7739861278 1848 | 1846,-0.951008066 1849 | 1847,-0.2536775742 1850 | 1848,0.6768829095 1851 | 1849,0.9851203677 1852 | 1850,0.387642703 1853 | 1851,-0.5662318751 1854 | 1852,-0.9995154786 1855 | 1853,-0.5138491606 1856 | 1854,0.444247706 1857 | 1855,0.9939052804 1858 | 1856,0.6297709236 1859 | 1857,-0.313371916 1860 | 1858,-0.9684020612 1861 | 1859,-0.7330878174 1862 | 1860,0.1762239849 1863 | 1861,0.9235162682 1864 | 1862,0.8217319535 1865 | 1863,-0.0355489296 1866 | 1864,-0.8601462908 1867 | 1865,-0.893929119 1868 | 1866,-0.1058376377 1869 | 1867,0.7795604796 1870 | 1868,0.9482342871 1871 | 1869,0.2451058641 1872 | 1870,-0.68337176 1873 | 1871,-0.9835605395 1874 | 1872,-0.3794682948 1875 | 1873,0.57350535 1876 | 1874,0.999200821 1877 | 1875,0.5062356651 1878 | 1876,-0.4521602266 1879 | 1877,-0.9948420912 1880 | 1878,-0.6228707251 1881 | 1879,0.3217651131 1882 | 1880,0.9705715903 1883 | 1881,0.7270390234 1884 | 1882,-0.1849298687 1885 | 1883,-0.9268750924 1886 | 1884,-0.8166556306 1887 | 1885,0.0443932518 1888 | 1886,0.8646271832 1889 | 1887,0.8899268698 1890 | 1888,0.0970318964 1891 | 1889,-0.785073755 1892 | 1890,-0.9453862167 1893 | 1891,-0.2365149506 1894 | 1892,0.6898070703 1895 | 1893,0.981923652 1896 | 1894,0.3712641564 1897 | 1895,-0.5807338924 1898 | 1896,-0.9988078787 1899 | 1897,-0.4985825076 1900 | 1898,0.4600373217 1901 | 1899,0.995700959 1902 | 1900,0.6159217265 1903 | 1901,-0.3301331009 1904 | 1902,-0.9726650778 1905 | 1903,-0.7209332678 1906 | 1904,0.1936212638 1907 | 1905,0.9301612984 1908 | 1906,0.8115153249 1909 | 1907,-0.0532340958 1910 | 1908,-0.8690403344 1911 | 1909,-0.8858548973 1912 | 1910,-0.088218553 1913 | 1911,0.7905255221 1914 | 1912,0.9424640779 1915 | 1913,0.2279055068 1916 | 1914,-0.6961883361 1917 | 1915,-0.9802098335 1918 | 1916,-0.3630309304 1919 | 1917,0.5879169359 1920 | 1918,0.9983366827 1921 | 1919,0.4908902874 1922 | 1920,-0.4678783742 1923 | 1921,-0.9964818163 1924 | 1922,-0.608924472 1925 | 1923,0.3384752236 1926 | 1924,0.9746823597 1927 | 1925,0.7147710292 1928 | 1926,-0.2022974892 1929 | 1927,-0.9333746289 1930 | 1928,-0.8063114393 1931 | 1929,0.0620707691 1932 | 1930,0.8733853987 1933 | 1931,0.8817135205 1934 | 1932,0.0793982978 1935 | 1933,-0.7959153537 1936 | 1934,-0.9394680996 1937 | 1935,-0.2192782073 1938 | 1936,0.7025150575 1939 | 1937,0.9784192183 1940 | 1938,0.354769262 1941 | 1939,-0.5950539177 1942 | 1940,-0.9977872697 1943 | 1941,-0.4831596074 1944 | 1942,0.4756827697 1945 | 1943,0.9971846021 1946 | 1944,0.6018795101 1947 | 1945,-0.3467908278 1948 | 1946,-0.9766232779 1949 | 1947,-0.7085527902 1950 | 1948,0.2109578651 1951 | 1949,0.9365148322 1952 | 1950,0.8010443815 1953 | 1951,-0.0709025793 1954 | 1952,-0.8776620357 1955 | 1953,-0.877503064 1956 | 1954,-0.0705718221 1957 | 1955,0.8012428276 1958 | 1956,0.9363985167 1959 | 1957,0.210633728 1960 | 1958,-0.7087867389 1961 | 1959,-0.9765519467 1962 | 1960,-0.3464797984 1963 | 1961,0.6021442787 1964 | 1962,0.9971596829 1965 | 1963,0.4753910732 1966 | 1964,-0.4834498968 1967 | 1965,-0.9978092612 1968 | 1966,-0.5947873925 1969 | 1967,0.3550792618 1970 | 1968,0.9784876804 1971 | 1969,0.7022790382 1972 | 1970,-0.2196017131 1973 | 1971,-0.939581662 1974 | 1972,-0.795714564 1975 | 1973,0.0797288345 1976 | 1974,0.8818699103 1977 | 1975,0.8732238575 1978 | 1976,0.0617398172 1979 | 1977,-0.8065075263 1980 | 1978,-0.9332555695 1981 | 1979,-0.201972746 1982 | 1980,0.7150028887 1983 | 1981,0.974608165 1984 | 1982,0.338163189 1985 | 1983,-0.6091874634 1986 | 1984,-0.9964539714 1987 | 1985,-0.4675852935 1988 | 1986,0.4911791469 1989 | 1987,0.9983557448 1990 | 1988,0.5876486751 1991 | 1989,-0.3633398764 1992 | 1990,-0.9802754212 1993 | 1991,-0.6959502645 1994 | 1992,0.2282283559 1995 | 1993,0.9425748783 1996 | 1994,0.7903224046 1997 | 1995,-0.0885488432 1998 | 1996,-0.8860086929 1999 | 1997,-0.8688762364 2000 | 1998,-0.0529029752 2001 | 1999,0.8117090374 2002 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | autograd==1.2 2 | certifi==2018.4.16 3 | future==0.16.0 4 | numpy==1.14.5 5 | scipy==1.1.0 6 | wincertstore==0.2 7 | --------------------------------------------------------------------------------