└── recommend_movies /recommend_movies: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | 3 | # Load movie ratings data (replace with your data source) 4 | ratings_data = pd.read_csv("movie_ratings.csv") 5 | 6 | # Create a pivot table to show user-movie ratings 7 | ratings_matrix = pd.pivot_table(ratings_data, values='rating', index='user_id', columns='movie_id') 8 | 9 | # Function to recommend movies based on user's ratings history 10 | def recommend_movies(user_id, ratings_matrix, num_recommendations=5): 11 | # Get the user's ratings 12 | user_ratings = ratings_matrix.loc[user_id] 13 | 14 | # Find movies similar to those the user has rated highly 15 | similar_movies = ratings_matrix.corrwith(user_ratings) 16 | similar_movies = similar_movies.drop(user_id) # Exclude user's own ratings 17 | similar_movies = similar_movies.fillna(0) # Fill missing values with 0 18 | 19 | # Sort similar movies by correlation coefficient (higher is better) 20 | similar_movies = similar_movies.sort_values(ascending=False) 21 | 22 | # Recommend the top N movies 23 | return similar_movies.head(num_recommendations).index.to_list() 24 | 25 | # Example usage: 26 | user_id = 123 # Replace with the user's ID 27 | recommended_movies = recommend_movies(user_id, ratings_matrix) 28 | print(f"Recommended movies for user {user_id}: {recommended_movies}") 29 | --------------------------------------------------------------------------------